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Part I

Introduction

I.1 What Is Mathematics About?

It is notoriously hard to give a satisfactory answer to
the question, “What is mathematics?” The approach of
this book is not to try. Rather than giving a definition of
mathematics, the intention is to give a good idea of what
mathematics is by describing many of its most impor-
tant concepts, theorems, and applications. Nevertheless,
to make sense of all this information it is useful to be
able to classify it somehow.

The most obvious way of classifying mathematics is by
its subject matter, and that will be the approach of this
brief introductory section and the longer section enti-
tled some fundamental mathematical definitions
[I.3]. However, it is not the only way, and not even obvi-
ously the best way. Another approach is to try to clas-
sify the kinds of questions that mathematicians like to
think about. This gives a usefully different view of the
subject: it often happens that two areas of mathematics
that appear very different if you pay attention to their
subject matter are much more similar if you look at the
kinds of questions that are being asked. The last sec-
tion of part I, entitled the general goals of mathe-
matical research [I.4], looks at the subject from this
point of view. At the end of that article there is a brief
discussion of what one might regard as a third classi-
fication, not so much of mathematics itself but of the
content of a typical article in a mathematics journal. As
well as theorems and proofs, such an article will contain
definitions, examples, lemmas, formulas, conjectures,
and so on. The point of that discussion will be to say
what these words mean and why the different kinds of
mathematical output are important.

1 Algebra, Geometry, and Analysis

Although any classification of the subject matter of
mathematics must immediately be hedged around with
qualifications, there is a crude division that undoubtedly
works well as a first approximation, namely the division

of mathematics into algebra, geometry, and analysis. So
let us begin with this, and then qualify it later.

1.1 Algebra versus Geometry

Most people who have done some high-school mathe-
matics will think of algebra as the sort of mathemat-
ics that results when you substitute letters for num-
bers. Algebra will often be contrasted with arithmetic,
which is a more direct study of the numbers themselves.
So, for example, the question, “What is 3 × 7?” will be
thought of as belonging to arithmetic, while the ques-
tion, “If x + y = 10 and xy = 21, then what is the
value of the larger of x and y?” will be regarded as a
piece of algebra. This contrast is less apparent in more
advanced mathematics for the simple reason that it is
very rare for numbers to appear without letters to keep
them company.

There is, however, a different contrast, between alge-
bra and geometry, which is much more important at an
advanced level. The high-school conception of geometry
is that it is the study of shapes such as circles, trian-
gles, cubes, and spheres together with concepts such
as rotations, reflections, symmetries, and so on. Thus,
the objects of geometry, and the processes that they
undergo, have a much more visual character than the
equations of algebra.

This contrast persists right up to the frontiers of mod-
ern mathematical research. Some parts of mathemat-
ics involve manipulating symbols according to certain
rules: for example, a true equation remains true if you
“do the same to both sides.” These parts would typically
be thought of as algebraic, whereas other parts are con-
cerned with concepts that can be visualized, and these
are typically thought of as geometrical.

However, a distinction like this is never simple. If you
look at a typical research paper in geometry, will it be full
of pictures? Almost certainly not. In fact, the methods
used to solve geometrical problems very often involve
a great deal of symbolic manipulation, although good
powers of visualization may be needed to find and use
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these methods and pictures will typically underlie what
is going on. As for algebra, is it “mere” symbolic manip-
ulation? Not at all: very often one solves an algebraic
problem by finding a way to visualize it.

As an example of visualizing an algebraic problem,
consider how one might justify the rule that if a and
b are positive integers then ab = ba. It is possible to
approach the problem as a pure piece of algebra (per-
haps proving it by induction), but the easiest way to con-
vince yourself that it is true is to imagine a rectangular
array that consists of a rows with b objects in each row.
The total number of objects can be thought of as a lots
of b, if you count it row by row, or as b lots of a, if you
count it column by column. Therefore, ab = ba. Similar
justifications can be given for other basic rules such as
a(b + c) = ab + ac and a(bc) = (ab)c.

In the other direction, it turns out that a good way
of solving many geometrical problems is to “convert
them into algebra.” The most famous way of doing this
is to use Cartesian coordinates. For example, suppose
that you want to know what happens if you reflect a
circle about a line L through its center, then rotate it
through 40◦ counterclockwise, and then reflect it once
more about the same line L. One approach is to visualize
the situation as follows.

Imagine that the circle is made of a thin piece of wood.
Then instead of reflecting it about the line you can rotate
it through 180◦ about L (using the third dimension). The
result will be upside down, but this does not matter if
you simply ignore the thickness of the wood. Now if you
look up at the circle from below while it is rotated coun-
terclockwise through 40◦, what you will see is a circle
being rotated clockwise through 40◦. Therefore, if you
then turn it back the right way up, by rotating about L
once again, the total effect will have been a clockwise
rotation through 40◦.

Mathematicians vary widely in their ability and willing-
ness to follow an argument like that one. If you cannot
quite visualize it well enough to see that it is definitely
correct, then you may prefer an algebraic approach,
using the theory of linear algebra and matrices (which
will be discussed in more detail in [I.3 §4.2]). To beginPUP: first
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with, one thinks of the circle as the set of all pairs of
numbers (x,y) such that x2 + y2 � 1. The two trans-
formations, reflection in a line through the center of the
circle and rotation through an angle θ, can both be rep-
resented by 2×2 matrices, which are arrays of numbers
of the form ( a bc d ). There is a slightly complicated, but
purely algebraic, rule for multiplying matrices together,
and it is designed to have the property that if matrix A
represents a transformation R (such as a reflection) and

matrix B represents a transformation T , then the prod-
uct AB represents the transformation that results when
you first do T and then R. Therefore, one can solve
the problem above by writing down the matrices that
correspond to the transformations, multiplying them
together, and seeing what transformation corresponds
to the product. In this way, the geometrical problem has
been converted into algebra and solved algebraically.

Thus, while one can draw a useful distinction between
algebra and geometry, one should not imagine that the
boundary between the two is sharply defined. In fact,
one of the major branches of mathematics is even called
algebraic geometry [IV.7]. And as the above examples
illustrate, it is often possible to translate a piece of math-
ematics from algebra into geometry or vice versa. Never-
theless, there is a definite difference between algebraic
and geometric methods of thinking—one more symbolic
and one more pictorial—and this can have a profound
influence on the subjects that mathematicians choose
to pursue.

1.2 Algebra versus Analysis

The word “analysis,” used to denote a branch of math-
ematics, is not one that features at high-school level.
However, the word “calculus” is much more familiar,
and differentiation and integration are good examples of
mathematics that would be classified as analysis rather
than algebra or geometry. The reason for this is that they
involve limiting processes. For example, the derivative of
a function f at a point x is the limit of the gradients
of a sequence of chords of the graph of f , and the area
of a shape with a curved boundary is defined to be the
limit of the areas of rectilinear regions that fill up more
and more of the shape. (These concepts are discussed in
much more detail in [I.3 §5].)

Thus, as a first approximation, one might say that a
branch of mathematics belongs to analysis if it involves
limiting processes, whereas it belongs to algebra if you
can get to the answer after just a finite sequence of steps.
However, here again the first approximation is so crude
as to be misleading, and for a similar reason: if one looks
more closely one finds that it is not so much branches
of mathematics that should be classified into analysis or
algebra, but mathematical techniques.

Given that we cannot write out infinitely long proofs,
how can we hope to prove anything about limiting pro-
cesses? To answer this, let us look at the justification for
the simple statement that the derivative ofx3 is 3x2. The
usual reasoning is that the gradient of the chord of the
line joining the two points (x,x3) and ((x+h), (x+h)3)
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is
(x + h)3 − x3

x + h− x ,

which works out as 3x2+3xh+h2. As h “tends to zero,”

this gradient “tends to 3x2,” so we say that the gradient

at x is 3x2. But what if we wanted to be a bit more care-

ful? For instance, if x is very large, are we really justified

in ignoring the term 3xh?

To reassure ourselves on this point, we do a small cal-

culation to show that, whatever x is, the error 3xh+h2

can be made arbitrarily small, provided only that h is

sufficiently small. Here is one way of going about it. Sup-

pose we fix a small positive number ε, which represents

the error we are prepared to tolerate. Then if |h| � ε/6x,

we know that |3xh| is at most ε/2. If in addition we

know that |h| �
√
ε/2, then we also know that h2 � ε/2.

So, provided that |h| is smaller than the minimum of

the two numbers ε/6x and
√
ε/2, the difference between

3x2 + 3xh+ h2 and 3x2 will be at most ε.
There are two features of the above argument that

are typical of analysis. First, although the statement we

wished to prove was about a limiting process, and was

therefore “infinitary,” the actual work that we needed to

do to prove it was entirely finite. Second, the nature of

that work was to find sufficient conditions for a certain

fairly simple inequality (the inequality |3xh + h2| � ε)
to be true.

Let us illustrate this second feature with another

example: a proof that x4 − x2 − 6x + 10 is positive for

every real number x. Here is an “analyst’s argument.”

Note first that if x � −1 then x4 � x2 and 10− 6x � 0,

so the result is certainly true in this case. If −1 � x � 1,

then |x4−x2−6x| cannot be greater than x4+x2+6|x|,
which is at most 8, so x4 −x2 −6x � −8, which implies

thatx4−x2−6x+10 � 2. If 1 � x � 3
2 , thenx4 � x2 and

6x � 9, so x4 − x2 − 6x + 10 � 1. If 3
2 � x � 2, then

x2 � 9
4 � 2, so x4−x2 = x2(x2−1) � 2. Also, 6x � 12,

so 10 − 6x � −2. Therefore, x4 − x2 − 6x + 10 � 0.

Finally, if x � 2, then x4−x2 = x2(x2−1) � 3x2 � 6x,

from which it follows that x4 − x2 − 6x + 10 � 10.

The above argument is somewhat long, but each step

consists in proving a rather simple inequality—this is

the sense in which the proof is typical of analysis. Here,

for contrast, is an “algebraist’s proof.” One simply points

out that x4−x2−6x+10 is equal to (x2−1)2+(x−3)2,

and is therefore always positive.

This may make it seem as though, given the choice

between analysis and algebra, one should go for alge-

bra. After all, the algebraic proof was much shorter, and

makes it obvious that the function is always positive.

However, although there were several steps to the ana-
lyst’s proof, they were all easy, and the brevity of the
algebraic proof is misleading since no clue has been
given about how the equivalent expression for x4−x2−
6x + 10 was found. And in fact, the general question of
when a polynomial can be written as a sum of squares of
other polynomials turns out to be an interesting and dif-
ficult one (particularly when the polynomials have more
than one variable).

There is also a third, hybrid approach to the problem,
which is to use calculus to find the points wherex4−x2−
6x+10 is minimized. The idea would be to calculate the
derivative 4x3−2x−6 (an algebraic process, justified by
an analytic argument), find its roots (algebra), and check
that the values of x4 − x2 − 6x + 10 at the roots of the
derivative are positive. However, though the method is
a good one for many problems, in this case it is tricky
because the cubic 4x3 − 2x − 6 does not have integer
roots. But one could use an analytic argument to find
small intervals inside which the minimum must occur,
and that would then reduce the number of cases that had
to be considered in the first, purely analytic, argument.

As this example suggests, although analysis often
involves limiting processes and algebra usually does not,
a more significant distinction is that algebraists like to
work with exact formulas and analysts use estimates. Or,
to put it even more succinctly, algebraists like equalities
and analysts like inequalities.

2 The Main Branches of Mathematics

Now that we have discussed the differences between
algebraic, geometrical, and analytical thinking, we are
ready for a crude classification of the subject matter of
mathematics. We face a potential confusion, because the
words “algebra,” “geometry,” and “analysis” refer both to
specific branches of mathematics and to ways of think-
ing that cut across many different branches. Thus, it
makes sense to say (and it is true) that some branches
of analysis are more algebraic (or geometrical) than oth-
ers; similarly, there is no paradox in the fact that alge-
braic topology is almost entirely algebraic and geometri-
cal in character, even though the objects it studies, topo-
logical spaces, are part of analysis. In this section, we
shall think primarily in terms of subject matter, but it
is important to keep in mind the distinctions of the pre-
vious section and be aware that they are in some ways
more fundamental. Our descriptions will be very brief:
further reading about the main branches of mathemat-
ics can be found in parts II and IV, and more specific
points are discussed in parts III and V.
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2.1 Algebra

The word “algebra,” when it denotes a branch of math-
ematics, means something more specific than manipu-
lation of symbols and a preference for equalities over
inequalities. Algebraists are concerned with number sys-
tems, polynomials, and more abstract structures such
as groups, fields, vector spaces, and rings (discussed
in some detail in some fundamental mathematical
definitions [I.3]). Historically, the abstract structures
emerged as generalizations from concrete instances. For
instance, there are important analogies between the set
of all integers and the set of all polynomials with rational
(for example) coefficients, which are brought out by the
fact that they are both examples of algebraic struc-
tures known as Euclidean domains. If one has a good
understanding of Euclidean domains, one can apply this
understanding to integers and polynomials.

This highlights a contrast that appears in many
branches of mathematics, namely the distinction
between general, abstract statements and particular,
concrete ones. One algebraist might be thinking about
groups, say, in order to understand a particular rather
complicated group of symmetries, while another might
be interested in the general theory of groups on the
grounds that they are a fundamental class of mathemat-
ical objects. The development of abstract algebra from
its concrete beginnings is discussed in the origins of
modern algebra [II.3].

A supreme example of a theorem of the first kind
is the insolubility of the quintic [V.24]—the result
that there is no formula for the roots of a quintic poly-
nomial in terms of its coefficients. One proves this theo-
rem by analyzing symmetries associated with the roots
of a polynomial, and understanding the group that is
formed by them. This concrete example of a group (or
rather, class of groups, one for each polynomial) played
a very important part in the development of the abstract
theory of groups.

As for the second kind of theorem, a good example
is the classification of finite simple groups [V.8],
which describes the basic building blocks out of which
any finite group can be built.

Algebraic structures appear throughout mathematics,
and there are many applications of algebra to other
areas, such as number theory, geometry, and even math-
ematical physics.

2.2 Number Theory

Number theory is largely concerned with properties of
the set of positive integers, and as such has a consid-

erable overlap with algebra. But a simple example that
illustrates the difference between a typical question in
algebra and a typical question in number theory is pro-
vided by the equation 13x − 7y = 1. An algebraist
would simply note that there is a one-parameter fam-
ily of solutions: if y = λ then x = (1 + 7λ)/13, so the
general solution is (x,y) = ((1 + 7λ)/13, λ). A num-
ber theorist would be interested in integer solutions,
and would therefore work out for which integers λ the
number 1 + 7λ is a multiple of 13. (The answer is that
1 + 7λ is a multiple of 13 if and only if λ has the form
13m + 11 for some integer m.) Other topics studied by
number theorists are properties of special numbers such
as primes.

However, this description does not do full justice to
modern number theory, which has developed into a
highly sophisticated subject. Most number theorists are
not directly trying to solve equations in integers; instead
they are trying to understand structures that were origi-
nally developed to study such equations but which then
took on a life of their own and became objects of study
in their own right. In some cases, this process has hap-
pened several times, so the phrase “number theory”
gives a very misleading picture of what some number
theorists do. Nevertheless, even the most abstract parts
of the subject can have down-to-earth applications: a
notable example is Andrew Wiles’s famous proof of
fermat’s last theorem [V.12].

Interestingly, in view of the discussion earlier, num-
ber theory has two fairly distinct subbranches, known
as algebraic number theory [IV.3] and analytic
number theory [IV.4]. As a rough rule of thumb, the
study of equations in integers leads to algebraic number
theory and the study of prime numbers leads to analytic
number theory, but the true picture is of course more
complicated.

2.3 Geometry

A central object of study is the manifold, which is dis-
cussed in [I.3 §6.9]. Manifolds are higher-dimensional
generalizations of shapes like the surface of a sphere,
which have the property that any small portion of them
looks fairly flat but the whole may be curved in compli-
cated ways. Most people who call themselves geometers
are studying manifolds in one way or another. As with
algebra, some will be interested in particular manifolds
and others in the more general theory.

Within the study of manifolds, one can attempt a fur-
ther classification, according to when two manifolds are
regarded as “genuinely distinct.” A topologist regards
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two objects as the same if one can be continuously
deformed, or “morphed,” into the other; thus, for exam-
ple, an apple and a pear would count as the same for
a topologist. This means that relative distances are not
important to topologists, since one can change them by
suitable continuous stretches. A differential topologist
asks for the deformations to be “smooth” (which means
“sufficiently differentiable”). This results in a finer classi-
fication of manifolds and a different set of problems. At
the other, more “geometrical,” end of the spectrum are
mathematicians who are much more concerned by the
precise nature of the distances between points on a man-
ifold (a concept that would not make sense to a topolo-
gist) and in auxiliary structures that one can associate
with a manifold. See riemannian metrics [I.3 §6.10]
and ricci flow [III.80] for some indication of what the
more geometrical side of geometry is like.

2.4 Algebraic Geometry

As its name suggests, algebraic geometry does not have
an obvious place in the above classification, so it is eas-
ier to discuss it separately. Algebraic geometers also
study manifolds, but with the important difference that
their manifolds are defined using polynomials. (A simple
example of this is the surface of a sphere, which can be
defined as the set of all (x,y, z) such that x2+y2+z2 =
1.) This means that algebraic geometry is algebraic in the
sense that it is “all about polynomials” but geometric in
the sense that the set of solutions of a polynomial in
several variables is a geometric object.

An important part of algebraic geometry is the study
of singularities. Often the set of solutions to a system of
polynomial equations is similar to a manifold, but has a
few exceptional, singular points. For example, the equa-
tion x2 = y2 + z2 defines a (double) cone, which has its
vertex at the origin (0,0,0). If you look at a small enough
neighborhood of a point x on the cone, then, provided
x is not (0,0,0), the neighborhood will resemble a flat
plane. However, ifx is (0,0,0), then no matter how small
the neighborhood is, you will still see the vertex of the
cone. Thus, (0,0,0) is a singularity. (This means that the
cone is not actually a manifold, but a “manifold with a
singularity.”)

The interplay between algebra and geometry is part
of what gives algebraic geometry its fascination. A fur-
ther impetus to the subject comes from its connections
to other branches of mathematics. There is a particu-
larly close connection with number theory, explained in
arithmetic geometry [IV.6]. More surprisingly, there
are important connections between algebraic geom-

etry and mathematical physics. See mirror symmetry
[IV.14] for an account of some of these.

2.5 Analysis

Analysis comes in many different flavors. A major
topic is the study of partial differential equations
[IV.16]. This began because partial differential equa-
tions were found to govern many physical processes,
such as motion in a gravitational field, for example. But
they arise in purely mathematical contexts as well—
particularly in geometry—so partial differential equa-
tions give rise to a big branch of mathematics with many
subbranches and links to many other areas.

Like algebra, analysis has some abstract structures
that are central objects of study, such as banach spaces
[III.64], hilbert spaces [III.37], C∗-algebras [IV.19 §3],
and von neumann algebras [IV.19 §2]. These are all
infinite-dimensional vector spaces [I.3 §2.3], and the
last two are “algebras,” which means that one can multi-
ply their elements together as well as adding them and
multiplying them by scalars. Because these structures
are infinite dimensional, studying them involves limit-
ing arguments, which is why they belong to analysis.
However, the extra algebraic structure of C∗-algebras
and von Neumann algebras means that in those areas
substantial use is made of algebraic tools as well. And
as the word “space” suggests, geometry also has a very
important role.

dynamics [IV.15] is another significant branch of
analysis. It is concerned with what happens when you
take a simple process and do it over and over again.
For example, if you take a complex number z0, then let
z1 = z2

0+2, and then let z2 = z2
1+2, and so on, then what

is the limiting behavior of the sequence z0, z1, z2, . . . ?
Does it head off to infinity or stay in some bounded
region? The answer turns out to depend in a compli-
cated way on the original number z0. The study of how
it depends on z0 is a question in dynamics.

Sometimes the process to be repeated is an “infinites-
imal” one. For example, if you are told the positions,
velocities, and masses of all the planets in the solar sys-
tem at a particular moment (as well as the mass of the
Sun), then there is a simple rule that tells you how the
positions and velocities will be different an instant later.
Later, the positions and velocities have changed, so the
calculation changes; but the basic rule is the same, so
one can regard the whole process as applying the same
simple infinitesimal process infinitely many times. The
correct way to formulate this is by means of partial dif-
ferential equations and therefore much of dynamics is
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concerned with the long-term behavior of solutions to
these.

2.6 Logic

The word “logic” is sometimes used as a shorthand
for all branches of mathematics that are concerned
with fundamental questions about mathematics itself,
notably set theory [IV.1], category theory [III.8],
model theory [IV.2], and logic in the narrower sense of
“rules of deduction.” Among the triumphs of set theory
are gödel’s incompleteness theorems [V.18]and Paul
Cohen’s proof of the independence of the contin-
uum hypothesis [V.21]. Gödel’s theorems in particular
had a dramatic effect on philosophical perceptions of
mathematics, though now that it is understood that not
every mathematical statement has a proof or disproof
most mathematicians carry on much as before, since
most statements they encounter do tend to be decid-
able. However, set theorists are a different breed. Since
Gödel and Cohen, many further statements have been
shown to be undecidable, and many new axioms have
been proposed that would make them decidable. Thus,
decidability is now studied for mathematical rather than
philosophical reasons.

Category theory is another subject that began as
a study of the processes of mathematics and then
became a mathematical subject in its own right. It differs
from set theory in that its focus is less on mathemati-
cal objects themselves than on what is done to those
objects—in particular, the maps that transform one to
another.

A model for a collection of axioms is a mathematical
structure for which those axioms, suitably interpreted,
are true. For example, any concrete example of a group
is a model for the axioms of group theory. Set theo-
rists study models of set-theoretic axioms, and these
are essential to the proofs of the famous theorems men-
tioned above, but the notion of model is more widely
applicable and has led to important discoveries in fields
well outside set theory.

2.7 Combinatorics

There are various ways in which one can try to define
combinatorics. None is satisfactory on its own, but
together they give some idea of what the subject is like.
A first definition is that combinatorics is about counting
things. For example, how many ways are there of filling
an n×n square grid with 0s and 1s if you are allowed at
most two 1s in each row and at most two 1s in each col-

umn? Because this problem asks us to count something,
it is, in a rather simple sense, combinatorial.

Combinatorics is sometimes called “discrete math-
ematics” because it is concerned with “discrete” as
opposed to “continuous” structures. Roughly speaking,
an object is discrete if it consists of points that are
isolated from each other and continuous if you can
move from one point to another without making sud-
den jumps. (A good example of a discrete structure is
the integer lattice Z2, which is the grid consisting of
all points in the plane with integer coordinates, and a
good example of a continuous one is the surface of a
sphere.) There is a close affinity between combinatorics
and theoretical computer science (which deals with the
quintessentially discrete structure of sequences of 0s
and 1s), and combinatorics is sometimes contrasted with
analysis, though in fact there are several connections
between the two.

A third definition is that combinatorics is con-
cerned with mathematical structures that have “few con-
straints.” This idea helps to explain why number theory,
despite the fact that it studies (among other things)
the distinctly discrete set of all positive integers, is not
considered a branch of combinatorics.

In order to illustrate this last contrast, here are two
somewhat similar problems, both about positive inte-
gers.

(i) Is there a positive integer that can be written in a
thousand different ways as a sum of two squares?

(ii) Let a1, a2, a3, . . . be a sequence of positive integers,
and suppose that each an lies between n2 and (n+
1)2. Will there always be a positive integer that can
be written in a thousand different ways as a sum of
two numbers from the sequence?

The first question counts as number theory, since it
concerns a very specific sequence—the sequence of
squares—and one would expect to use properties of this
special set of numbers in order to determine the answer,
which turns out to be yes.1

The second question concerns a far less structured
sequence. All we know about an is its rough size—it is
fairly close to n2—but we know nothing about its more
detailed properties, such as whether it is a prime, or a

1. Here is a quick hint at a proof. At the beginning of analytic
number theory [IV.4] you will find a condition that tells you pre-
cisely which numbers can be written as sums of two squares. From
this criterion it follows that “most” numbers cannot. A careful count
shows that if N is a large integer, then there are many more expres-
sions of the formm2+n2 with bothm2 and n2 less thanN than there
are numbers less than 2N that can be written as a sum of two squares.
Therefore there is a lot of duplication.
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perfect cube, or a power of 2, etc. For this reason, the
second problem belongs to combinatorics. The answer
is not known. If the answer turns out to be yes, then it
will show that, in a sense, the number theory in the first
problem was an illusion and that all that really mattered
was the rough rate of growth of the sequence of squares.

2.8 Theoretical Computer Science

This branch of mathematics is described at considerable
length in part IV, so we shall be brief here. Broadly speak-
ing, theoretical computer science is concerned with effi-
ciency of computation, meaning the amounts of various
resources, such as time and computer memory, needed
to perform given computational tasks. There are math-
ematical models of computation that allow one to study
questions about computational efficiency in great gen-
erality without having to worry about precise details
of how algorithms are implemented. Thus, theoretical
computer science is a genuine branch of pure mathe-
matics: in theory, one could be an excellent theoretical
computer scientist and be unable to program a com-
puter. However, it has had many notable applications as
well, especially to cryptography (see mathematics and
cryptography [VII.7] for more on this).

2.9 Probability

There are many phenomena, from biology and eco-
nomics to computer science and physics, that are so
complicated that instead of trying to understand them
in complete detail one tries to make probabilistic state-
ments instead. For example, if you wish to analyze how
a disease is likely to spread, you cannot hope to take
account of all the relevant information (such as who will
come into contact with whom) but you can build a math-
ematical model and analyze it. Such models can have
unexpectedly interesting behavior with direct practical
relevance. For example, it may happen that there is a
“critical probability”p with the following property: if the
probability of infection after contact of a certain kind is
above p then an epidemic may very well result, whereas
if it is below p then the disease will almost certainly
die out. A dramatic difference in behavior like this is
called a phase transition. (See probabilistic models of
critical phenomena [IV.26] for further discussion.)

Setting up an appropriate mathematical model can be
surprisingly difficult. For example, there are physical cir-
cumstances where particles travel in what appears to be
a completely random manner. Can one make sense of
the notion of a random continuous path? It turns out

that one can—the result is the elegant theory of brown-
ian motion [IV.25]—but the proof that one can is highly
sophisticated, roughly speaking because the set of all
possible paths is so complex.

2.10 Mathematical Physics

The relationship between mathematics and physics has
changed profoundly over the centuries. Up to the eigh-
teenth century there was no sharp distinction drawn
between mathematics and physics, and many famous
mathematicians could also be regarded as physicists,
at least some of the time. During the nineteenth cen-
tury and the beginning of the twentieth century this
situation gradually changed, until by the middle of the
twentieth century the two disciplines were very sepa-
rate. And then, toward the end of the twentieth cen-
tury, mathematicians started to find that ideas that had
been discovered by physicists had huge mathematical
significance.

There is still a big cultural difference between the two
subjects: mathematicians are far more interested in find-
ing rigorous proofs, whereas physicists, who use math-
ematics as a tool, are usually happy with a convincing
argument for the truth of a mathematical statement,
even if that argument is not actually a proof. The result
is that physicists, operating under less stringent con-
straints, often discover fascinating mathematical phe-
nomena long before mathematicians do.

Finding rigorous proofs to back up these discoveries is
often extremely hard: it is far more than a pedantic exer-
cise in certifying the truth of statements that no physi-
cist seriously doubted. Indeed, it often leads to further
mathematical discoveries. The articles vertex opera-
tor algebras [IV.13], mirror symmetry [IV.14], gen-
eral relativity and the einstein equations [IV.17],
and operator algebras [IV.19] describe some fasci-
nating examples of how mathematics and physics have
enriched each other.

I.2 The Language and Grammar of
Mathematics

1 Introduction

It is a remarkable phenomenon that children can learn
to speak without ever being consciously aware of the
sophisticated grammar they are using. Indeed, adults
too can live a perfectly satisfactory life without ever
thinking about ideas such as parts of speech, subjects,
predicates, or subordinate clauses. Both children and
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adults can easily recognize ungrammatical sentences,

at least if the mistake is not too subtle, and to do this

it is not necessary to be able to explain the rules that

have been violated. Nevertheless, there is no doubt that

one’s understanding of language is hugely enhanced by

a knowledge of basic grammar, and this understanding

is essential for anybody who wants to do more with

language than use it unreflectingly as a means to a

nonlinguistic end.

The same is true of mathematical language. Up to a

point, one can do and speak mathematics without know-

ing how to classify the different sorts of words one is

using, but many of the sentences of advanced mathemat-

ics have a complicated structure that is much easier to

understand if one knows a few basic terms of mathemat-

ical grammar. The object of this section is to explain the

most important mathematical “parts of speech,” some

of which are similar to those of natural languages and

others quite different. These are normally taught right

at the beginning of a university course in mathematics.

Much of The Companion can be understood without a

precise knowledge of mathematical grammar, but a care-

ful reading of this article will help the reader who wishes

to follow some of the later, more advanced parts of the

book.

The main reason for using mathematical grammar is

that the statements of mathematics are supposed to be

completely precise, and it is not possible to achieve com-

plete precision unless the language one uses is free of

many of the vaguenesses and ambiguities of ordinary

speech. Mathematical sentences can also be highly com-

plex: if the parts that made them up were not clear and

simple, then the unclarities would rapidly accumulate

and render the sentences unintelligible.

To illustrate the sort of clarity and simplicity that is

needed in mathematical discourse, let us consider the

famous mathematical sentence “Two plus two equals

four” as a sentence of English rather than of mathemat-

ics, and try to analyze it grammatically. On the face of it,

it contains three nouns (“two,” “two,” and “four”), a verb

(“equals”) and a conjunction (“plus”). However, looking

more carefully we may begin to notice some oddities.

For example, although the word “plus” resembles the

word “and,” the most obvious example of a conjunction,

it does not behave in quite the same way, as is shown

by the sentence “Mary and Peter love Paris.” The verb in

this sentence, “love,” is plural, whereas the verb in the

previous sentence, “equals,” was singular. So the word

“plus” seems to take two objects (which happen to be

numbers) and produce out of them a new, single object,

while “and” conjoins “Mary” and “Peter” in a looser way,
leaving them as distinct people.

Reflecting on the word “and” a bit more, one finds that
it has two very different uses. One, as above, is to link
two nouns, whereas the other is to join two whole sen-
tences together, as in “Mary likes Paris and Peter likes
New York.” If we want the basics of our language to be
absolutely clear, then it will be important to be aware
of this distinction. (When mathematicians are at their
most formal, they simply outlaw the noun-linking use
of “and”—a sentence such as “3 and 5 are prime num-
bers” is then paraphrased as “3 is a prime number and
5 is a prime number.”)

This is but one of many similar questions: anybody
who has tried to classify all words into the standard
eight parts of speech will know that the classification is
hopelessly inadequate. What, for example, is the role of
the word “six” in the sentence “This section has six sub-
sections”? Unlike “two” and “four” earlier, it is certainly
not a noun. Since it modifies the noun “subsection” it
would traditionally be classified as an adjective, but it
does not behave like most adjectives: the sentences “My
car is not very fast” and “Look at that tall building” are
perfectly grammatical, whereas the sentences “My car
is not very six” and “Look at that six building” are not
just nonsense but ungrammatical nonsense. So do we
classify adjectives further into numerical adjectives and
nonnumerical adjectives? Perhaps we do, but then our
troubles will be only just beginning. For example, what
about possessive adjectives such as “my” and “your”? In
general, the more one tries to refine the classification of
English words, the more one realizes how many different
grammatical roles there are.

2 Four Basic Concepts

Another word that famously has three quite distinct
meanings is “is.” The three meanings are illustrated in
the following three sentences.

(1) 5 is the square root of 25.
(2) 5 is less than 10.
(3) 5 is a prime number.

In the first of these sentences, “is” could be replaced
by “equals”: it says that two objects, 5 and the square
root of 25, are in fact one and the same object, just as
it does in the English sentence “London is the capital of
the United Kingdom.” In the second sentence, “is” plays a
completely different role. The words “less than 10” form
an adjectival phrase, specifying a property that numbers
may or may not have, and “is” in this sentence is like “is”
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in the English sentence “Grass is green.” As for the third
sentence, the word “is” there means “is an example of,”
as it does in the English sentence “Mercury is a planet.”

These differences are reflected in the fact that the sen-
tences cease to resemble each other when they are writ-
ten in a more symbolic way. An obvious way to write
(1) is 5 = √25. As for (2), it would usually be written
5 < 10, where the symbol “<” means “is less than.” The
third sentence would normally not be written symboli-
cally because the concept of a prime number is not quite
basic enough to have universally recognized symbols
associated with it. However, it is sometimes useful to
do so, and then one must invent a suitable symbol. One
way to do it would be to adopt the convention that if n
is a positive integer, then P(n) stands for the sentence
“n is prime.” Another way, which does not hide the word
“is,” is to use the language of sets.

2.1 Sets

Broadly speaking, a set is a collection of objects, and in
mathematical discourse these objects are mathematical
ones such as numbers, points in space, or even other
sets. If we wish to rewrite sentence (3) symbolically,
another way to do it is to define P to be the collection,
or set, of all prime numbers. Then (3) can be rewritten,
“5 belongs to the set P .” This notion of belonging to a set
is sufficiently basic to deserve its own symbol, and the
symbol used is “∈.” So a fully symbolic way of writing
the sentence is 5 ∈ P .

The members of a set are usually called its elements,
and the symbol “∈” is usually read “is an element of.”
So the “is” of sentence (3) is more like “∈” than “=.”
Although one cannot directly substitute the phrase “is
an element of” for “is,” one can do so if one is prepared
to modify the rest of the sentence a little.

There are three common ways to denote a specific
set. One is to list its elements inside curly brackets:
{2,3,5,7,11,13,17,19}, for example, is the set whose
elements are the eight numbers 2, 3, 5, 7, 11, 13, 17,
and 19. The majority of sets considered by mathemati-
cians are too large for this to be feasible—indeed, they
are often infinite—so a second way to denote sets is
to use dots to imply a list that is too long to write
down: for example, the expressions {1,2,3, . . . ,100} and
{2,4,6,8, . . . } can be used to represent the set of all pos-
itive integers up to 100 and the set of all positive even
numbers, respectively. A third way, and the way that
is most important, is to define a set via a property : an
example that shows how this is done is the expression
{x : x is prime and x < 20}. To read an expression such

as this, one first reads the opening curly bracket as “The

set of.” Next, one reads the symbol that occurs before

the colon. The colon itself one reads as “such that.”

Finally, one reads what comes after the colon, which is

the property that determines the elements of the set. In

this instance, we end up saying, “The set of x such that

x is prime and x is less than 20,” which is in fact equal

to the set {2,3,5,7,11,13,17,19} considered earlier.

Many sentences of mathematics can be rewritten in

set-theoretic terms. For example, sentence (2) earlier

could be written as 5 ∈ {n : n < 10}. Often there is

no point in doing this (as here, where it is much eas-

ier to write 5 < 10) but there are circumstances where

it becomes extremely convenient. For example, one of

the great advances in mathematics was the use of Carte-

sian coordinates to translate geometry into algebra and

the way this was done was to define geometrical objects

as sets of points, where points were themselves defined

as pairs or triples of numbers. So, for example, the

set {(x,y) : x2 + y2 = 1} is (or represents) a circle

of radius 1 with its center at the origin (0,0). That is

because, by the Pythagorean theorem, the distance from

(0,0) to (x,y) is
√
x2 +y2, so the sentence “x2 +y2 =

1” can be reexpressed geometrically as “the distance

from (0,0) to (x,y) is 1.” If all we ever cared about was

which points were in the circle, then we could make do

with sentences such as “x2 + y2 = 1,” but in geometry

one often wants to consider the entire circle as a single

object (rather than as a multiplicity of points, or as a

property that points might have), and then set-theoretic

language is indispensable.

A second circumstance where it is usually hard to do

without sets is when one is defining new mathematical

objects. Very often such an object is a set together with

a mathematical structure imposed on it, which takes

the form of certain relationships among the elements

of the set. For examples of this use of set-theoretic lan-

guage, see sections 1 and 2, on number systems and alge-

braic structures, respectively, in some fundamental

mathematical definitions [I.3].

Sets are also very useful if one is trying to do meta-

mathematics, that is, to prove statements not about

mathematical objects but about the process of mathe-

matical reasoning itself. For this it helps a lot if one can

devise a very simple language—with a small vocabulary

and an uncomplicated grammar—into which it is in prin-

ciple possible to translate all mathematical arguments.

Sets allow one to reduce greatly the number of parts of

speech that one needs, turning almost all of them into

nouns. For example, with the help of the membership
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symbol “∈” one can do without adjectives, as the trans-
lation of “5 is a prime number” (where “prime” functions
as an adjective) into “5 ∈ P” has already suggested.1

This is of course an artificial process—imagine replac-
ing “roses are red” by “roses belong to the set R”—but
in this context it is not important for the formal language
to be natural and easy to understand.

2.2 Functions

Let us now switch attention from the word “is” to some
other parts of the sentences (1)–(3), focusing first on
the phrase “the square root of” in sentence (1). If we
wish to think about this phrase grammatically, then we
should analyze what sort of role it plays in a sentence,
and the analysis is simple: in virtually any mathemati-
cal sentence where the phrase appears, it is followed by
the name of a number. If the number is n, then this pro-
duces the slightly longer phrase, “the square root of n,”
which is a noun phrase that denotes a number and plays
the same grammatical role as a number (at least when
the number is used as a noun rather than as an adjec-
tive). For instance, replacing “5” by “the square root of
25” in the sentence “5 is less than 7” yields a new sen-
tence, “The square root of 25 is less than 7,” that is still
grammatically correct (and true).

One of the most basic activities of mathematics is to
take a mathematical object and transform it into another
one, sometimes of the same kind and sometimes not.
“The square root of” transforms numbers into numbers,
as do “four plus,” “two times,” “the cosine of,” and “the
logarithm of.” A nonnumerical example is “the center of
gravity of,” which transforms geometrical shapes (pro-
vided they are not too exotic or complicated to have a
center of gravity) into points—meaning that if S stands
for a shape, then “the center of gravity of S” stands for
a point. A function is, roughly speaking, a mathematical
transformation of this kind.

It is not easy to make this definition more precise. To
ask, “What is a function?” is to suggest that the answer
should be a thing of some sort, but functions seem to
be more like processes. Moreover, when they appear in
mathematical sentences they do not behave like nouns.
(They are more like prepositions, though with a defi-
nite difference that will be discussed in the next subsec-
tion.) One might therefore think it inappropriate to ask
what kind of object “the square root of” is. Should one
not simply be satisfied with the grammatical analysis
already given?

1. For another discussion of adjectives see arithmetic geometry
[IV.6 §3.1].

As it happens, no. Over and over again, throughout
mathematics, it is useful to think of a mathematical phe-
nomenon, which may be complex and very un-thinglike,
as a single object. We have already seen a simple exam-
ple: a collection of infinitely many points in the plane
or space is sometimes better thought of as a single geo-
metrical shape. Why should one wish to do this for func-
tions? Here are two reasons. First, it is convenient to be
able to say something like, “The derivative of sin is cos,”
or to speak in general terms about some functions being
differentiable and others not. More generally, functions
can have properties, and in order to discuss those prop-
erties one needs to think of functions as things. Second,
many algebraic structures are most naturally thought of
as sets of functions. (See, for example, the discussion
of groups and symmetry in [I.3 §2.1]. See also hilbert
spaces [III.37], function spaces [III.29], and vector
spaces [I.3 §2.3].)

If f is a function, then the notation f(x) = y means
that f turns the object x into the object y . Once one
starts to speak formally about functions, it becomes
important to specify exactly which objects are to be sub-
jected to the transformation in question, and what sort
of objects they can be transformed into. One of the main
reasons for this is that it makes it possible to discuss
another notion that is central to mathematics, that of
inverting a function. (See [I.4 §1] for a discussion of why
it is central.) Roughly speaking, the inverse of a function
is another function that undoes it, and that it undoes; for
example, the function that takes a number n to n− 4 is
the inverse of the function that takes n to n+ 4, since if
you add four and then subtract four, or vice versa, you
get the number you started with.

Here is a function f that cannot be inverted. It takes
each number and replaces it by the nearest multiple
of 100, rounding up if the number ends in 50. Thus,
f(113) = 100, f(3879) = 3900, and f(1050) = 1100.
It is clear that there is no way of undoing this process
with a function g. For example, in order to undo the
effect of f on the number 113 we would need g(100)
to equal 113. But the same argument applies to every
number that is at least as big as 50 and smaller than
150, and g(100) cannot be more than one number at
once.

Now let us consider the function that doubles a num-
ber. Can this be inverted? Yes it can, one might say: just
divide the number by two again. And much of the time
this would be a perfectly sensible response, but not, for
example, if it was clear from the context that the num-
bers being talked about were positive integers. Then one
might be focusing on the difference between even and
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odd numbers, and this difference could be encapsulated
by saying that odd numbers are precisely those numbers
n for which the equation 2x = n does not have a solu-
tion. (Notice that one can undo the doubling process by
halving. The problem here is that the relationship is not
symmetrical: there is no function that can be undone
by doubling, since you could never get back to an odd
number.)

To specify a function, therefore, one must be careful
to specify two sets as well: the domain, which is the set
of objects to be transformed, and the range, which is the
set of objects they are allowed to be transformed into. A
function f from a set A to a set B is a rule that specifies,
for each element x of A, an element y = f(x) of B. (Not
every element of the range needs to be used: consider
once again the example of “two times” when the domain
and range are both the set of all positive integers.)

The following symbolic notation is used. The expres-
sion f : A → B means that f is a function with domain
A and range B. If we then write f(x) = y , we know that
x must be an element of A and y must be an element
of B. Another way of writing f(x) = y that is sometimes
more convenient is f : x �→ y . (The bar on the arrow is
to distinguish it from the arrow in f : A → B, which has
a very different meaning.)

If we want to undo the effect of a function f : A → B,
then we can, as long as we avoid the problem that
occurred with the approximating function discussed
earlier. That is, we can do it if f(x) and f(x′) are dif-
ferent whenever x and x′ are different elements of A. If
this condition holds, then f is called an injection. On the
other hand, if we want to find a function g that is undone
by f , then we can do so as long as we avoid the problem
of the integer-doubling function. That is, we can do it if
every elementy of B is equal to f(x) for some elementx
of A (so that we have the option of setting g(y) = x). If
this condition holds, then f is called a surjection. If f
is both an injection and a surjection, then f is called a
bijection. Bijections are precisely the functions that have
inverses.

It is important to realize that not all functions have
tidy definitions. Here, for example, is the specification
of a function from the positive integers to the positive
integers: f(n) = n if n is a prime number, f(n) = k if
n is of the form 2k for an integer k greater than 1, and
f(n) = 13 for all other positive integersn. This function
has an unpleasant, arbitrary definition but it is neverthe-
less a perfectly legitimate function. Indeed, “most” func-
tions, though not most functions that one actually uses,
are so arbitrary that they cannot be defined. (Such func-
tions may not be useful as individual objects, but they

are needed so that the set of all functions from one set
to another has an interesting mathematical structure.)

2.3 Relations

Let us now think about the grammar of the phrase “less
than” in sentence (2). As with “the square root of,” it
must always be followed by a mathematical object (in
this case a number again). Once we have done this we
obtain a phrase such as “less than n,” which is impor-
tantly different from “the square root of n” because it
behaves like an adjective rather than a noun, and refers
to a property rather than an object. This is just how
prepositions behave in English: look, for example, at
the word “under” in the sentence “The cat is under the
table.”

At a slightly higher level of formality, mathematicians
like to avoid too many parts of speech, as we have
already seen for adjectives. So there is no symbol for
“less than”: instead, it is combined with the previous
word “is” to make the phrase “is less than,” which is
denoted by the symbol “<.” The grammatical rules for
this symbol are once again simple. To use “<” in a sen-
tence, one should precede it by a noun and follow it
by a noun. For the resulting grammatically correct sen-
tence to make sense, the nouns should refer to numbers
(or perhaps to more general objects that can be put in
order). A mathematical “object” that behaves like this is
called a relation, though it might be more accurate to call
it a potential relationship. “Equals” and “is an element
of” are two other examples of relations.

As with functions, it is important, when specifying
a relation, to be careful about which objects are to be
related. Usually a relation comes with a set A of objects
that may or may not be related to each other. For exam-
ple, the relation “<” might be defined on the set of all
positive integers, or alternatively on the set of all real
numbers; strictly speaking these are different relations.
Sometimes relations are defined with reference to two
sets A and B. For example, if the relation is “∈,” then A
might be the set of all positive integers and B the set of
all sets of positive integers.

There are many situations in mathematics where one
wishes to regard different objects as “essentially the
same,” and to help us make this idea precise there is
a very important class of relations known as equiva-
lence relations. Here are two examples. First, in elemen-
tary geometry one sometimes cares about shapes but
not about sizes. Two shapes are said to be similar if
one can be transformed into the other by a combina-
tion of reflections, rotations, translations, and enlarge-
ments (see figure 1); the relation “is similar to” is an
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Figure 1 Similar shapes.

equivalence relation. Second, when doing arithmetic

modulo m [III.61], one does not wish to distinguish

between two whole numbers that differ by a multiple

ofm: in this case one says that the numbers are congru-

ent (mod m); the relation “is congruent (mod m) to” is

another equivalence relation.

What exactly is it that these two relations have in com-

mon? The answer is that they both take a set (in the first

case the set of all geometrical shapes, and in the sec-

ond the set of all whole numbers) and split it into parts,

called equivalence classes, where each part consists of

objects that one wishes to regard as essentially the same.

In the first example, a typical equivalence class is the

set of all shapes that are similar to some given shape;

in the second, it is the set of all integers that leave a

given remainder when you divide by m (for example, if

m = 7 then one of the equivalence classes is the set

{. . . ,−16,−9,−2,5,12,19, . . . }).
An alternative definition of what it means for a rela-

tion ∼, defined on a set A, to be an equivalence relation

is that it has the following three properties. First, it is

reflexive, which means that x ∼ x for every x in A. Sec-

ond, it is symmetric, which means that if x and y are

elements of A and x ∼ y , then it must also be the case

that y ∼ x. Third, it is transitive, meaning that if x, y ,

and z are elements of A such that x ∼ y and y ∼ z,

then it must be the case that x ∼ z. (To get a feel for

these properties, it may help if you satisfy yourself that

the relations “is similar to” and “is congruent (mod m)

to” both have all three properties, while the relation “<,”

defined on the positive integers, is transitive but neither

reflexive nor symmetric.)

One of the main uses of equivalence relations is to

make precise the notion of quotient [I.3 §3.3] construc-

tions.

2.4 Binary Operations

Let us return to one of our earlier examples, the sentence
“Two plus two equals four.” We have analyzed the word
“equals” as a relation, an expression that sits between
the noun phrases “two plus two” and “four” and makes
a sentence out of them. But what about “plus”? That also
sits between two nouns. However, the result, “two plus
two,” is not a sentence but a noun phrase. That pattern is
characteristic of binary operations. Some familiar exam-
ples of binary operations are “plus,” “minus,” “times,”
“divided by,” and “raised to the power.”

As with functions, it is customary, and convenient, to
be careful about the set to which a binary operation is
applied. From a more formal point of view, a binary oper-
ation on a setA is a function that takes pairs of elements
of A and produces further elements of A from them. To
be more formal still, it is a function with the set of all
pairs (x,y) of elements of A as its domain and with A
as its range. This way of looking at it is not reflected in
the notation, however, since the symbol for the opera-
tion comes between x and y rather than before them:
we write x +y rather than +(x,y).

There are four properties that a binary operation may
have that are very useful if one wants to manipulate sen-
tences in which it appears. Let us use the symbol ∗ to
denote an arbitrary binary operation on some set A. The
operation ∗ is said to be commutative if x ∗y is always
equal to y ∗ x, and associative if x ∗ (y ∗ z) is always
equal to (x ∗y)∗ z. For example, the operations “plus”
and “times” are commutative and associative, whereas
“minus,” “divided by,” and “raised to the power” are nei-
ther (for instance, 9− (5− 3) = 7 while (9− 5)− 3 = 1).
These last two operations raise another issue: unless the
setA is chosen carefully, they may not always be defined.
For example, if one restricts one’s attention to the posi-
tive integers, then the expression 3− 5 has no meaning.
There are two conventions one could imagine adopting
in response to this. One might decide not to insist that
a binary operation should be defined for every pair of
elements of A, and to regard it as a desirable extra prop-
erty of an operation if it is defined everywhere. But the
convention actually in force is that binary operations do
have to be defined everywhere, so that “minus,” though
a perfectly good binary operation on the set of all inte-
gers, is not a binary operation on the set of all positive
integers.

An element e of A is called an identity for ∗ if e∗x =
x∗e = x for every elementx ofA. The two most obvious
examples are 0 and 1, which are identities for “plus” and
“times,” respectively. Finally, if ∗ has an identity e and
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x belongs to A, then an inverse for x is an element y
such that x ∗y = y ∗x = e. For example, if ∗ is “plus”
then the inverse of x is −x, while if ∗ is “times” then
the inverse is 1/x.

These basic properties of binary operations are fun-
damental to the structures of abstract algebra. See four
important algebraic structures [I.3 §2] for further
details.

3 Some Elementary Logic

3.1 Logical Connectives

A logical connective is the mathematical equivalent of a
conjunction. That is, it is a word (or symbol) that joins
two sentences to produce a new one. We have already
discussed an example, namely “and” in its sentence-
linking meaning, which is sometimes written by the sym-
bol “∧,” particularly in more formal or abstract mathe-
matical discourse. If P and Q are statements (note here
the mathematical habit of representing not just num-
bers but any objects whatsoever by single letters), then
P ∧Q is the statement that is true if and only if both P
and Q are true.

Another connective is the word “or,” a word that has
a more specific meaning for mathematicians than it
has for normal speakers of the English language. The
mathematical use is illustrated by the tiresome joke of
responding, “Yes please,” to a question such as, “Would
you like your coffee with or without sugar?” The symbol
for “or,” if one wishes to use a symbol, is “∨,” and the
statement P ∨Q is true if and only if P is true or Q is
true. This is taken to include the case when they are both
true, so “or,” for mathematicians, is always the so-called
inclusive version of the word.

A third important connective is “implies,” which is
usually written “⇒.” The statement P ⇒ Q means,
roughly speaking, that Q is a consequence of P , and is
sometimes read as “if P then Q.” However, as with “or,”
this does not mean quite what it would in English. To
get a feel for the difference, consider the following even
more extreme example of mathematical pedantry. At the
supper table, my young daughter once said, “Put your
hand up if you are a girl.” One of my sons, to tease her,
put his hand up on the grounds that, since she had not
added, “and keep it down if you are a boy,” his doing so
was compatible with her command.

Something like this attitude is taken by mathemati-
cians to the word “implies,” or to sentences containing
the word “if.” The statement P ⇒ Q is considered to be
true under all circumstances except one: it is not true if P
is true andQ is false. This is the definition of “implies.” It

can be confusing because in English the word “implies”
suggests some sort of connection between P andQ, that
P in some way causes Q or is at least relevant to it. If P
causesQ then certainly P cannot be true withoutQ being
true, but all a mathematician cares about is this logical
consequence and not whether there is any reason for it.
Thus, if you want to prove that P ⇒ Q, all you have to do
is rule out the possibility that P could be true andQ false
at the same time. To give an example: if n is a positive
integer, then the statement “n is a perfect square with
final digit 7” implies the statement “n is a prime num-
ber,” not because there is any connection between the
two but because no perfect square ends in a 7. Of course,
implications of this kind are less interesting mathemat-
ically than more genuine-seeming ones, but the reward
for accepting them is that, once again, one avoids being
confused by some of the ambiguities and subtle nuances
of ordinary language.

3.2 Quantifiers

Yet another ambiguity in the English language is ex-
ploited by the following old joke that suggests that our
priorities need to be radically rethought.

(4) Nothing is better than lifelong happiness.
(5) But a cheese sandwich is better than nothing.
(6) Therefore, a cheese sandwich is better than life-

long happiness.

Let us try to be precise about how this play on words
works (a good way to ruin any joke, but not a tragedy in
this case). It hinges on the word “nothing,” which is used
in two different ways. The first sentence means “There
is no single thing that is better than lifelong happiness,”
whereas the second means “It is better to have a cheese
sandwich than to have nothing at all.” In other words,
in the second sentence, “nothing” stands for what one
might call the null option, the option of having nothing,
whereas in the first it does not (to have nothing is not
better than to have lifelong happiness).

Words like “all,” “some,” “any,” “every,” and “nothing”
are called quantifiers, and in the English language they
are highly prone to this kind of ambiguity. Mathemati-
cians therefore make do with just two quantifiers, and
the rules for their use are much stricter. They tend to
come at the beginning of sentences, and can be read
as “for all” (or “for every”) and “there exists” (or “for
some”). A rewriting of sentence (4) that renders it unam-
biguous (and much less like a real English sentence)
is

(4′) For all x, lifelong happiness is better than x.
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The second sentence cannot be rewritten in these
terms because the word “nothing” is not playing the role
of a quantifier. (Its nearest mathematical equivalent is
something like the empty set, that is, the set with no
elements.)

Armed with “for all” and “there exists,” we can be
clear about the difference between the beginnings of the
following sentences.

(7) Everybody likes at least one drink, namely water.
(8) Everybody likes at least one drink; I myself go for

red wine.

The first sentence makes the point (not necessarily cor-
rectly) that there is one drink that everybody likes,
whereas the second claims merely that we all have some-
thing we like to drink, even if that something varies from
person to person. The precise formulations that capture
the difference are as follows.

(7′) There exists a drink D such that, for every person
P , P likes D.

(8′) For every person P there exists a drinkD such that
P likes D.

This illustrates an important general principle: if you
take a sentence that begins “for every x there exists y
such that . . . ” and interchange the two parts so that it
now begins “there exists y such that, for every x, . . . ,”
then you obtain a much stronger statement, since y is
no longer allowed to depend on x. If the second state-
ment is still true—that is, if you really can choose a y
that works for all the x at once—then the first statement
is said to hold uniformly.

The symbols ∀ and ∃ are often used to stand for
“for all” and “there exists,” respectively. This allows us
to write quite complicated mathematical sentences in a
highly symbolic form if we want to. For example, sup-
pose we let P be the set of all primes, as we did earlier.
Then the following symbols make the claim that there
are infinitely many primes, or rather a slightly different
claim that is equivalent to it.

(9) ∀n ∃m (m > n) ∧ (m ∈ P).

In words, this says that for every n we can find some
m that is both bigger than n and a prime. If we wish to
unpack sentence (6) further, we could replace the part
m ∈ P by

(10) ∀a,b ab =m ⇒ ((a = 1) ∨ (b = 1)).

There is one final important remark to make about the
quantifiers “∀” and “∃.” I have presented them as if they

were freestanding, but actually a quantifier is always
associated with a set (one says that it quantifies over that
set). For example, sentence (10) would not be a transla-
tion of the sentence “m is prime” if a and b were allowed
to be fractions: if a = 3 and b = 7

3 then ab = 7 with-
out either a or b equaling 1, but this does not show that
7 is not a prime. Implicit in the opening symbols ∀a,b
is the idea that a and b are intended to be positive inte-
gers. If this had not been clear from the context, then we
could have used the symbol N (which stands for the set
of all positive integers) and started sentence (10) with
∀a,b ∈ N instead.

3.3 Negation

The basic idea of negation in mathematics is very sim-
ple: there is a symbol, “¬,” which means “not,” and if P
is any mathematical statement, then ¬P stands for the
statement that is true if and only if P is not true. How-
ever, this is another example of a word that has a slightly
more restricted meaning to mathematicians than it has
in ordinary speech.

To illustrate this phenomenon once again, let us take
A to be a set of positive integers and ask ourselves what
the negation is of the sentence “Every number in the set
A is odd.” Many people when asked this question will
suggest, “Every number in the set A is even.” However,
this is wrong: if one thinks carefully about what exactly
would have to happen for the first sentence to be false,
one realizes that all that is needed is that at least one
number in A should be even. So in fact the negation of
the sentence is, “There exists a number inA that is even.”

What explains the temptation to give the first, incor-
rect answer? One possibility emerges when one writes
the sentence more formally, thus:

(11) ∀n ∈ A n is odd.

The first answer is obtained if one negates just the last
part of this sentence, “n is odd”; but what is asked for
is the negation of the whole sentence. That is, what is
wanted is not

(12) ∀n ∈ A ¬(n is odd),

but rather

(13) ¬(∀n ∈ A n is odd),

which is equivalent to

(14) ∃n ∈ A n is even.
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A second possible explanation is that one is inclined (for
psycholinguistic reasons) to think of the phrase “every
element of A” as denoting something like a single, typ-
ical element of A. If that comes to have the feel of a
particular number n, then we may feel that the negation
of “n is odd” is “n is even.” The remedy is not to think
of the phrase “every element of A” on its own: it should
always be part of the longer phrase, “for every element
of A.”

3.4 Free and Bound Variables

Suppose we say something like, “At time t the speed of
the projectile is v .” The letters t and v stand for real
numbers, and they are called variables, because in the
back of our mind is the idea that they are changing.
More generally, a variable is any letter used to stand for
a mathematical object, whether or not one thinks of that
object as changing through time. Let us look once again
at the formal sentence that said that a positive integer
m is prime:

(10) ∀a,b ab =m ⇒ ((a = 1) ∨ (b = 1)).

In this sentence, there are three variables, a, b, and m,
but there is a very important grammatical and semantic
difference between the first two and the third. Here are
two results of that difference. First, the sentence does
not really make sense unless we already know whatm is
from the context, whereas it is important that a and b do
not have any prior meaning. Second, while it makes per-
fect sense to ask, “For which values ofm is sentence (10)
true?” it makes no sense at all to ask, “For which values
of a is sentence (10) true?” The letterm in sentence (10)
stands for a fixed number, not specified in this sentence,
while the letters a and b, because of the initial∀a,b, do
not stand for numbers—rather, in some way they search
through all pairs of positive integers, trying to find a pair
that multiply together to give m. Another sign of the
difference is that you can ask, “What number ism?” but
not, “What number is a?” A fourth sign is that the mean-
ing of sentence (10) is completely unaffected if one uses
different letters for a and b, as in the reformulation

(10′) ∀c,d cd =m ⇒ ((c = 1) ∨ (d = 1)).

One cannot, however, change m to n without establish-
ing first that n denotes the same integer as m. A vari-
able such asm, which denotes a specific object, is called
a free variable. It sort of hovers there, free to take any
value. A variable like a and b, of the kind that does
not denote a specific object, is called a bound variable,
or sometimes a dummy variable. (The word “bound”

is used mainly when the variable appears just after a
quantifier, as in sentence (10).)

Yet another indication that a variable is a dummy
variable is when the sentence in which it occurs can
be rewritten without it. For example, the notation∑100
n=1 f(n) is shorthand for f(1)+f(2)+· · ·+f(100),

and the second way of writing it does not involve the
letter n, so n was not really standing for anything in
the first way. Sometimes, actual elimination is not pos-
sible, but one feels it could be done in principle. For
instance, the sentence “For every real number x, x is
either positive, negative, or zero” is a bit like putting
together infinitely many sentences such as “t is either
positive, negative, or zero,” one for each real number t,
none of which involve a variable.

4 Levels of Formality

It is a surprising fact that a small number of set-theo-
retic concepts and logical terms can be used to provide
a precise language that is versatile enough to express
all the statements of ordinary mathematics. There are
some technicalities to sort out, but even these can often
be avoided if one allows not just sets but also numbers
as basic objects. However, if you look at a well-written
mathematics paper, then much of it will be written not
in symbolic language peppered with symbols such as
∀ and ∃, but in what appears to be ordinary English.
(Some papers are written in other languages, particularly
French, but English has established itself as the interna-
tional language of mathematics.) How can mathemati-
cians be confident that this ordinary English does not
lead to confusion, ambiguity, and even incorrectness?

The answer is that the language typically used is a
careful compromise between fully colloquial English,
which would indeed run the risk of being unacceptably
imprecise, and fully formal symbolism, which would be
a nightmare to read. The ideal is to write in as friendly
and approachable a way as possible, while making sure
that the reader (who, one assumes, has plenty of experi-
ence and training in how to read mathematics) can see
easily how what one writes could be made more for-
mal if it became important to do so. And sometimes it
does become important: when an argument is difficult
to grasp it may be that the only way to convince oneself
that it is correct is to rewrite it more formally.

Consider, for example, the following reformulation of
the principle of mathematical induction, which underlies
many proofs:

(15) Every nonempty set of positive integers has a least
element.
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If we wish to translate this into a more formal lan-

guage we need to strip it of words and phrases such

as “nonempty” and “has.” But this is easily done. To say

that a set A of positive integers is nonempty is simply

to say that there is a positive integer that belongs to A.

This can be stated symbolically:

(16) ∃n ∈ N n ∈ A.

What does it mean to say that A has a least element?

It means that there exists an element x of A such that

every element y of A is either greater than x or equal to

x itself. This formulation is again ready to be translated

into symbols:

(17) ∃x ∈ A ∀y ∈ A (y > x) ∨ (y = x).

Statement (15) says that (16) implies (17) for every set A
of positive integers. Thus, it can be written symbolically

as follows:

(18) ∀A ⊂ N

[(∃n ∈ N n ∈ A)
⇒ (∃x ∈ A ∀y ∈ A (y > x) ∨ (y = x))].

Here we have two very different modes of presentation

of the same mathematical fact. Obviously (15) is much

easier to understand than (18). But if, for example, one

is concerned with the foundations of mathematics, or

wishes to write a computer program that checks the

correctness of proofs, then it is better to work with a

greatly pared-down grammar and vocabulary, and then

(18) has the advantage. In practice, there are many dif-

ferent levels of formality, and mathematicians are adept

at switching between them. It is this that makes it pos-

sible to feel completely confident in the correctness of

a mathematical argument even when it is not presented

in the manner of (18)—though it is also this that allows

mistakes to slip through the net from time to time.

I.3 Some Fundamental Mathematical
Definitions

The concepts discussed in this article occur throughout

so much of modern mathematics that it would be inap-

propriate to discuss them in part III—they are too basic.

Many later articles will assume at least some acquain-

tance with these concepts, so if you have not met them,

then reading this article will help you to understand

significantly more of the book.

1 The Main Number Systems

Almost always, the first mathematical concept that a

child is exposed to is the idea of numbers, and num-

bers retain a central place in mathematics at all levels.

However, it is not as easy as one might think to say

what the word “number” means: the more mathemat-

ics one learns, the more uses of this word one comes

to know, and the more sophisticated one’s concept of

number becomes. This individual development parallels

a historical development that took many centuries (see

from numbers to number systems [II.1]).

The modern view of numbers is that they are best

regarded not individually but as parts of larger wholes,

called number systems; the distinguishing features of

number systems are the arithmetical operations—such

as addition, multiplication, subtraction, division, and

extraction of roots—that can be performed on them.

This view of numbers is very fruitful and provides a

springboard into abstract algebra. The rest of this sec-

tion gives a brief description of the five main number

systems.

1.1 The Natural Numbers

The natural numbers, otherwise known as the positive

integers, are the numbers familiar even to young chil-

dren: 1, 2, 3, 4, and so on. It is the natural numbers that

we use for the very basic mathematical purpose of count-

ing. The set of all natural numbers is usually denoted

N.

Of course, the phrase “1, 2, 3, 4, and so on” does not

constitute a formal definition, but it does suggest the

following basic picture of the natural numbers, one that

we tend to take for granted.

(i) Given any natural number n there is another, n+1,

that comes next—known as the successor of n.

(ii) A list that starts with 1 and follows each number

by its successor will include every natural number

exactly once and nothing else.

This picture is encapsulated by the peano axioms

[III.69].

Given two natural numbersm andn one can add them

together or multiply them, obtaining in each case a new

natural number. By contrast, subtraction and division

are not always possible. If we want to give meaning to

expressions such as 8 − 13 or 5
7 , then we must work in

a larger number system.
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1.2 The Integers

The natural numbers are not the only whole numbers,
since they do not include zero or negative numbers, both
of which are indispensable to mathematics. One of the
first reasons for introducing zero was that it is needed
for the normal decimal notation of positive integers—
how else could one conveniently write 1005? However,
it is now thought of as much more than just a conve-
nience, and the property that makes it significant is that
it is an additive identity, which means that adding zero to
any number leaves that number unchanged. And while
it is not particularly interesting to do to a number some-
thing that has no effect, the property itself is interest-
ing and distinguishes zero from all other numbers. An
immediate illustration of this is that it allows us to think
about negative numbers: if n is a positive integer, then
the defining property of −n is that when you add it to n
you get zero.

Somebody with little mathematical experience may
unthinkingly assume that numbers are for counting and
find negative numbers objectionable because the answer
to a question beginning “How many” is never negative.
However, simple counting is not the only use for num-
bers, and there are many situations that are naturally
modeled by a number system that includes both posi-
tive and negative numbers. For example, negative num-
bers are sometimes used for the amount of money in
a bank account, for temperature (in degrees Celsius or
Fahrenheit), and for altitude compared with sea level.

The set of all integers—positive, negative, and zero—
is usually denoted Z (for the German word “Zahlen,”
meaning “numbers”). Within this system, subtraction is
always possible: that is, ifm and n are integers, then so
is m−n.

1.3 The Rational Numbers

So far we have considered only whole numbers. If we
form all possible fractions as well, then we obtain the
rational numbers. The set of all rational numbers is
denoted Q (for “quotients”).

One of the main uses of numbers besides counting is
measurement, and most quantities that we measure are
ones that can vary continuously, such as length, weight,
temperature, and velocity. For these, whole numbers are
inadequate.

A more theoretical justification for the rational num-
bers is that they form a number system in which division
is always possible—except by zero. This fact, together
with some basic properties of the arithmetical opera-
tions, means that Q is a field. What fields are and why

they are important will be explained in more detail later
(section 2.2).

1.4 The Real Numbers

A famous discovery of the ancient Greeks, often
attributed, despite very inadequate evidence, to the
school of pythagoras [VI.1], was that the square root
of 2 is not a rational number. That is, there is no frac-
tion p/q such that (p/q)2 = 2. The Pythagorean the-
orem about right-angled triangles (which was probably
known at least a thousand years before Pythagoras) tells
us that if a square has sides of length 1, then the length
of its diagonal is

√
2. Consequently, there are lengths

that cannot be measured by rational numbers.

This argument seems to give strong practical reasons
for extending our number system still further. However,
such a conclusion can be resisted: after all, we cannot
make any measurements with infinite precision, so in
practice we round off to a certain number of decimal
places, and as soon as we have done so we have pre-
sented our measurement as a rational number. (This
point is discussed more fully in numerical analysis
[IV.20].)

Nevertheless, the theoretical arguments for going
beyond the rational numbers are irresistible. If we
want to solve polynomial equations, take logarithms
[III.25 §4], do trigonometry, or work with the gauss-
ian distribution [III.73 §5], to give just four examples
from an almost endless list, then irrational numbers will
appear everywhere we look. They are not used directly
for the purposes of measurement, but they are needed
if we want to reason theoretically about the physical
world by describing it mathematically. This necessarily
involves a certain amount of idealization: it is far more
convenient to say that the length of the diagonal of a
unit square is

√
2 than it is to talk about what would be

observed, and with what degree of certainty, if one tried
to measure this length as accurately as possible.

The real numbers can be thought of as the set of
all numbers with a finite or infinite decimal expansion.
In the latter case, they are defined not directly but by
a process of successive approximation. For example,
the squares of the numbers 1, 1.4, 1.41, 1.414, 1.4142,
1.41421, . . . , get as close as you like to 2, if you go far
enough along the sequence, which is what we mean by
saying that the square root of 2 is the infinite decimal
1.41421 . . . .

The set of all real numbers is denoted R. A more
abstract view of R is that it is an extension of the rational
number system to a larger field, and in fact the only one



�

18 I. Introduction

possible in which processes of the above kind always
give rise to numbers that themselves belong to R.

Because real numbers are intimately connected with
the idea of limits (of successive approximations), a true
appreciation of the real number system depends on an
understanding of mathematical analysis, which will be
discussed in section 5.

1.5 The Complex Numbers

Many polynomial equations, such as the equation x2 =
2, do not have rational solutions but can be solved in R.
However, there are many other equations that cannot be
solved even in R. The simplest example is the equation
x2 = −1, which has no real solution since the square
of any real number is positive or zero. In order to get
around this problem, mathematicians introduce a sym-
bol, i, which they treat as a number, and they simply stip-
ulate that i2 is to be regarded as equal to−1. The complex
number system, denoted C, is the set of all numbers of
the form a + bi, where a and b are real numbers. To
add or multiply complex numbers, one treats i as a vari-
able (like x, say), but any occurrences of i2 are replaced
by −1. Thus,

(a+ bi)+ (c + di) = (a+ c)+ (b + d)i
and

(a+ bi)(c + di) = ac + bci + adi + bdi2

= (ac − bd)+ (bc + ad)i.
There are several remarkable points to note about this

definition. First, despite its apparently artificial nature,
it does not lead to any inconsistency. Secondly, although
complex numbers do not directly count or measure any-
thing, they are immensely useful. Thirdly, and perhaps
most surprisingly, even though the number i was intro-
duced to help us solve just one equation, it in fact allows
us to solve all polynomial equations. This is the famous
fundamental theorem of algebra [V.15].

One explanation for the utility of complex numbers
is that they provide a concise way to talk about many
aspects of geometry, via Argand diagrams. These repre-
sent complex numbers as points in the plane, the num-
ber a + bi corresponding to the point with coordin-
ates (a, b). If r = √a2 + b2 and θ = tan−1(b/a), then
a = r cosθ and b = r sinθ. It turns out that multiplying
a complex number z = x +yi by a+ bi corresponds to
the following geometrical process. First, you associate
z with the point (x,y) in the plane. Next, you multiply
this point by r , obtaining the point (rx, ry). Finally,
you rotate this new point counterclockwise about the
origin through an angle of θ. In other words, the effect

on the complex plane of multiplication by a + bi is to PUP: Tim wanted
to keep this here
rather than move it
before ‘is to dilate’
as proofreader
suggested.

dilate it by r and then rotate it by θ. In particular, if
a2 + b2 = 1, then multiplying by a + bi corresponds to
rotating by θ.

For this reason, polar coordinates are at least as good
as Cartesian coordinates for representing complex num-
bers: an alternative way to write a+bi is reiθ , which tells
us that the number has distance r from the origin and is
positioned at an angle θ around from the positive part of
the real axis (in a counterclockwise direction). If z = reiθ

with r > 0, then r is called the modulus of z, denoted
by |z|, and θ is the argument of z. (Since adding 2π
to θ does not change eiθ , it is usually understood that
0 � θ < 2π , or sometimes that −π � θ < π .) One final
useful definition: if z = x+yi is a complex number, then
its complex conjugate, written z̄, is the number x − yi.
It is easy to check that zz̄ = x2 +y2 = |z|2.

2 Four Important Algebraic Structures

In the previous section it was emphasized that numbers
are best thought of not as individual objects but as mem-
bers of number systems. A number system consists of
some objects (numbers) together with operations (such
as addition and multiplication) that can be performed
on those objects. As such, it is an example of an alge-
braic structure. However, there are many very important
algebraic structures that are not number systems, and a
few of them will be introduced here.

2.1 Groups

If S is a geometrical shape, then a rigid motion of S
is a way of moving S in such a way that the distances
between the points of S are not changed—squeezing and
stretching are not allowed. A rigid motion is a symme-
try of S if, after it is completed, S looks the same as it
did before it moved. For example, if S is an equilateral
triangle, then rotating S through 120◦ about its center
is a symmetry; so is reflecting S about a line that passes
through one of the vertices of S and the midpoint of the
opposite side.

More formally, a symmetry of S is a function f from S
to itself such that the distance between any two points
x and y of S is the same as the distance between the
transformed points f(x) and f(y).

This idea can be hugely generalized: if S is any mathe-
matical structure, then a symmetry of S is a function
from S to itself that preserves its structure. If S is a
geometrical shape, then the mathematical structure that
should be preserved is the distance between any two of
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its points. But there are many other mathematical struc-
tures that a function may be asked to preserve, most
notably algebraic structures of the kind that will soon be
discussed. It is fruitful to draw an analogy with the geo-
metrical situation and regard any structure-preserving
function as a sort of symmetry.

Because of its extreme generality, symmetry is an all-
pervasive concept within mathematics; and wherever
symmetries appear, structures known as groups fol-
low close behind. To explain what these are and why
they appear, let us return to the example of an equi-
lateral triangle, which has, as it turns out, six possible
symmetries.

Why is this? Well, let f be a symmetry of an equilateral
triangle with vertices A, B, and C and suppose for con-
venience that this triangle has sides of length 1. Then
f(A), f(B), and f(C) must be three points of the tri-
angle and the distances between these points must all
be 1. It follows that f(A), f(B), and f(C) are distinct
vertices of the triangle, since the furthest apart any two
points can be is 1 and this happens only when the two
points are distinct vertices. So f(A), f(B), and f(C) are
the vertices A, B, and C in some order. But the number of
possible orders of A, B, and C is 6. It is not hard to show
that, once we have chosen f(A), f(B), and f(C), the rest
of what f does is completely determined. (For example,
if X is the midpoint of A and C, then f(X) must be the
midpoint of f(A) and f(C) since there is no other point
at distance 1

2 from f(A) and f(C).)
Let us refer to these symmetries by writing down in

order what happens to the vertices A, B, and C. So, for
instance, the symmetry ACB is the one that leaves the
vertex A fixed and exchanges B and C, which is achieved
by reflecting the triangle in the line that joins A to the
midpoint of B and C. There are three reflections like this:
ACB, CBA, and BAC. There are also two rotations: BCA
and CAB. Finally, there is the “trivial” symmetry, ABC,
which leaves all points where they were originally. (The
“trivial” symmetry is useful in much the same way as
zero is useful for the algebra of integer addition.)

What makes these and other sets of symmetries into
groups is that any two symmetries can be composed,
meaning that one symmetry followed by another pro-
duces a third (since if two operations both preserve a
structure then their combination clearly does too). For
example, if we follow the reflection BAC by the reflection
ACB, then we obtain the rotation CAB. To work this out,
one can either draw a picture or use the following kind
of reasoning: the first symmetry takes A to B and the sec-
ond takes B to C, so the combination takes A to C, and
similarly B goes to A, and C to B. Notice that the order

in which we perform the symmetries matters: if we had
started with the reflection ACB and then done the reflec-
tion BAC, then we would have obtained the rotation BCA.
(If you try to see this by drawing a picture, it is impor-
tant to think of A, B, and C as labels that stay where they
are rather than moving with the triangle—they mark
positions that the vertices can occupy.)

We can think of symmetries as “objects” in their own
right, and of composition as an algebraic operation, a bit
like addition or multiplication for numbers. The opera-
tion has the following useful properties: it is associa-
tive, the trivial symmetry is an identity element, and
every symmetry has an inverse. (See binary operations
[I.2 §2.4]. For example, the inverse of a reflection is itself,
since doing the same reflection twice leaves the triangle
where it started.) More generally, any set with a binary
operation that has these properties is called a group. It
is not part of the definition of a group that the binary
operation should be commutative, since, as we have just
seen, if one is composing two symmetries then it often
makes a difference which one goes first. However, if it is
commutative then the group is called Abelian, after the
Norwegian mathematician Niels Henrik abel [VI.32]. The
number systems Z, Q, R, and C all form Abelian groups
with the operation of addition, or under addition, as one
usually says. If you remove zero from Q, R, and C, then
they form Abelian groups under multiplication, but Z

does not because of a lack of inverses: the reciprocal of
an integer is not usually an integer. Further examples of
groups will be given later in this section.

2.2 Fields

Although several number systems form groups, to
regard them merely as groups is to ignore a great deal of
their algebraic structure. In particular, whereas a group
has just one binary operation, the standard number
systems have two, namely addition and multiplication
(from which further ones, such as subtraction and divi-
sion, can be derived). The formal definition of a field is
quite long: it is a set with two binary operations and
there are several axioms that these operations must
satisfy. Fortunately, there is an easy way to remember
these axioms. You just write down all the basic proper-
ties you can think of that are satisfied by addition and
multiplication in the number systems Q, R, and C.

These properties are as follows. Both addition and
multiplication are commutative and associative, and
both have identity elements (0 for addition and 1 for
multiplication). Every element x has an additive inverse
−x and a multiplicative inverse 1/x (except that 0 does
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not have a multiplicative inverse). It is the existence of
these inverses that allows us to define subtraction and
division:x−y meansx+(−y) andx/y meansx·(1/y).

That covers all the properties that addition and mul-
tiplication satisfy individually. However, a very general
rule when defining mathematical structures is that if a
definition splits into parts, then the definition as a whole
will not be interesting unless those parts interact. Here
our two parts are addition and multiplication, and the
properties mentioned so far do not relate them in any
way. But one final property, known as the distributive
law, does this, and thereby gives fields their special char-
acter. This is the rule that tells us how to multiply out
brackets: x(y + z) = xy +xz for any three numbers x,PUP: Tim would

like to keep
‘brackets’ as even
he, as a
mathematician,
would say
‘brackets’ rather
than the more
formal
‘parentheses’. OK?

y , and z.
Having listed these properties, one may then view the

whole situation abstractly by regarding the properties as
axioms and saying that a field is any set with two binary
operations that satisfy all those axioms. However, when
one works in a field, one usually thinks of the axioms not
as a list of statements but rather as a general license to
do all the algebraic manipulations that one can do when
talking about rational, real, and complex numbers.

Clearly, the more axioms one has, the harder it is to
find a mathematical structure that satisfies them, and
it is indeed the case that fields are harder to come by
than groups. For this reason, the best way to understand
fields is probably to concentrate on examples. In addi-
tion to Q, R, and C, one other field stands out as funda-
mental, namely Fp , which is the set of integers modulo
a prime p, with addition and multiplication also defined
modulo p (see modular arithmetic [III.60]).

What makes fields interesting, however, is not so
much the existence of these basic examples as the fact
that there is an important process of extension that
allows one to build new fields out of old ones. The idea
is to start with a field F, find a polynomial P that has
no roots in F, and “adjoin” a new element to F with
the stipulation that it is a root of P . This produces an
extended field F′, which consists of everything that one
can produce from this root and from elements of F using
addition and multiplication.

We have already seen an important example of this
process: in the field R, the polynomial P(x) = x2+1 has
no root, so we adjoined the element i and let C be the
field of all combinations of the form a+ bi.

We can apply exactly the same process to the field F3,
in which again the equation x2 + 1 = 0 has no solu-
tion. If we do so, then we obtain a new field, which, like
C, consists of all combinations of the form a + bi, but
now a and b belong to F3. Since F3 has three elements,

this new field has nine elements. Another example is the
field Q(

√
2), which consists of all numbers of the form

a+ b√2, where now a and b are rational numbers. A
slightly more complicated example is Q(γ), where γ is
a root of the polynomial x3 − x − 1. A typical element
of this field has the form a+ bγ + cγ2, with a, b, and c
rational. If one is doing arithmetic in Q(γ), then when-
ever γ3 appears, it can be replaced by γ + 1 (because
γ3 − γ − 1 = 0), just as i2 can be replaced by −1 in
the complex numbers. For more on why field extensions PUP: Tim and I

both think this
cross-referencing
sentence works
well but I wanted
to draw your
attention to it in
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so happy with it.
There aren’t many
cross-references
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volume.

are interesting, see the discussion of automorphisms
in section 4.1.

A second very significant justification for introducing
fields is that they can be used to form vector spaces, and
it is to these that we now turn.

2.3 Vector Spaces

One of the most convenient ways to represent points in
a plane that stretches out to infinity in all directions is
to use Cartesian coordinates. One chooses an origin and
two directions X and Y , usually at right angles to each
other. Then the pair of numbers (a, b) stands for the
point you reach in the plane if you go a distance a in
direction X and a distance b in direction Y (where if a
is a negative number such as −2, this is interpreted as
going a distance +2 in the opposite direction to X, and
similarly for b).

Another way of saying the same thing is this. Let x
and y stand for the unit vectors in directions X and
Y , respectively, so their Cartesian coordinates are (1,0)
and (0,1). Then every point in the plane is a so-called
linear combination ax + by of the basis vectors x and
y. To interpret the expression ax + by, first rewrite it
as a(1,0) + b(0,1). Then a times the unit vector (1,0)
is (a,0) and b times the unit vector (0,1) is (0, b) and
when you add (a,0) and (0, b) coordinate by coordinate
you get the vector (a, b).

Here is another situation where linear combinations
appear. Suppose you are presented with the differential
equation (d2y/dx2) + y = 0, and happen to know (or
notice) that y = sinx and y = cosx are two possible
solutions. Then you can easily check that y = a sinx +
b cosx is a solution for any pair of numbers a and b.
That is, any linear combination of the existing solutions
sinx and cosx is another solution. It turns out that all
solutions are of this form, so we can regard sinx and
cosx as “basis vectors” for the “space” of solutions of
the differential equation.

Linear combinations occur in many many contexts
throughout mathematics. To give one more example,
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an arbitrary polynomial of degree 3 has the form
ax3 + bx2 + cx + d, which is a linear combination of the
four basic polynomials 1, x, x2, and x3.

A vector space is a mathematical structure in which the
notion of linear combination makes sense. The objects
that belong to the vector space are usually called vec-
tors, unless we are talking about a specific example and
are thinking of them as concrete objects such as poly-
nomials or solutions of a differential equation. Slightly
more formally, a vector space is a set V such that, given
any two vectors v and w (that is, elements of V ) and
any two real numbers a and b, we can form the linear
combination av + bw.

Notice that this linear combination involves objects of
two different kinds, the vectors v and w and the num-
bers a and b. The latter are known as scalars. The oper-
ation of forming linear combinations can be broken up
into two constituent parts: addition and scalar multipli-
cation. To form the combination av+bw, first multiply
the vectors v andw by the scalars a and b, obtaining the
vectors av and bw, and then add these resulting vectors
to obtain the full combination av + bw.

The definition of linear combination must obey certain
natural rules. Addition of vectors must be commutative
and associative, with an identity, the zero vector, and
inverses for each v (written −v). Scalar multiplication
must obey a sort of associative law, namely that a(bv)
and (ab)v are always equal. We also need two distribu-
tive laws: (a+ b)v = av + bv and a(v +w) = av + aw
for any scalars a and b and any vectors v and w.

Another context in which linear combinations arise,
one that lies at the heart of the usefulness of vector
spaces, is the solution of simultaneous equations. Sup-
pose one is presented with the two equations 3x+2y =
6 and x − y = 7. The usual way to solve such a pair of
equations is to try to eliminate either x or y by adding
an appropriate multiple of one of the equations to the
other: that is, by taking a certain linear combination
of the equations. In this case, we can eliminate y by
adding twice the second equation to the first, obtain-
ing the equation 5x = 20, which tells us that x = 4 and
hence that y = −3. Why were we allowed to combine
equations like this? Well, let us write L1 and R1 for the
left- and right-hand sides of the first equation, and sim-
ilarly L2 and R2 for the second. If, for some particular
choice of x and y , it is true that L1 = R1 and L2 = R2,
then clearly L1+2L2 = R1+2R2, as the two sides of this
equation are merely giving different names to the same
numbers.

Given a vector space V , a basis is a collection of vectors
v1,v2, . . . ,vn with the following property: every vector

in V can be written in exactly one way as a linear combi-
nation a1v1+a2v2+· · ·+anvn. There are two ways in
which this can fail: there may be a vector that cannot be
written as a linear combination of v1,v2, . . . ,vn or there
may be a vector that can be so expressed, but in more
than one way. If every vector is a linear combination then
we say that the vectors v1,v2, . . . ,vn span V , and if no
vector is a linear combination in more than one way then
we say that they are independent. An equivalent defini-
tion is that v1,v2, . . . ,vn are independent if the only way
of writing the zero vector as a1v1 + a2v2 + · · · + anvn
is by taking a1 = a2 = · · · = an = 0.

The number of elements in a basis is called the dimen-
sion of V . It is not immediately obvious that there could
not be two bases of different sizes, but it turns out that
there cannot, so the concept of dimension makes sense.
For the plane, the vectorsx andy defined earlier formed
a basis, so the plane, as one would hope, has dimen-
sion 2. If we were to take more than two vectors, then
they would no longer be independent: for example, if
we take the vectors (1,2), (1,3), and (3,1), then we can
write (0,0) as the linear combination 8(1,2)− 5(1,3)−
(3,1). (To work this out one must solve some simulta-
neous equations—this is typical of calculations in vector
spaces.)

The most obvious n-dimensional vector space is the
space of all sequences (x1, . . . , xn) of n real numbers.
To add this to a sequence (y1, . . . , yn) one simply forms
the sequence (x1+y1, . . . , xn+yn) and to multiply it
by a scalar c one forms the sequence (cx1, . . . , cxn).
This vector space is denoted Rn. Thus, the plane with
its usual coordinate system is R2 and three-dimensional
space is R3.

It is not in fact necessary for the number of vectors
in a basis to be finite. A vector space that does not have
a finite basis is called infinite dimensional. This is not
an exotic property: many of the most important vec-
tor spaces, particularly spaces where the “vectors” are
functions, are infinite dimensional.

There is one final remark to make about scalars. They
were defined earlier as real numbers that one uses to
make linear combinations of vectors. But it turns out
that the calculations one does with scalars, in particu-
lar solving simultaneous equations, can all be done in a
more general context. What matters is that they should
belong to a field, so Q, R, and C can all be used as sys-
tems of scalars, as indeed can more general fields. If the
scalars for a vector space V come from a field F, then one
says that V is a vector space over F. This generalization
is important and useful: see, for example, algebraic
numbers [IV.3 §17].
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2.4 Rings

Another algebraic structure that is very important is a
ring. Rings are not quite as central to mathematics as
groups, fields, or vector spaces, so a proper discussion
of them will be deferred to rings, ideals, and mod-
ules [III.82]. However, roughly speaking, a ring is an
algebraic structure that has most, but not necessarily
all, of the properties of a field. In particular, the require-
ments of the multiplicative operation are less strict. The
most important relaxation is that nonzero elements of
a ring are not required to have multiplicative inverses;
but sometimes multiplication is not even required to
be commutative. If it is, then the ring itself is said to
be commutative—a typical example of a commutative
ring is the set Z of all integers. Another is the set of all
polynomials with coefficients in some field F.

3 Creating New Structures Out of Old Ones

An important first step in understanding the defini-
tion of some mathematical structure is to have a sup-
ply of examples. Without examples, a definition is dry
and abstract. With them, one begins to have a feeling
for the structure that its definition alone cannot usually
provide.

One reason for this is that it makes it much easier
to answer basic questions. If you have a general state-
ment about structures of a given type and want to know
whether it is true, then it is very helpful if you can test
it in a wide range of particular cases. If it passes all
the tests, then you have some evidence in favor of the
statement. If you are lucky, you may even be able to
see why it is true; alternatively, you may find that the
statement is true for each example you try, but always
for reasons that depend on particular features of the
example you are examining. Then you will know that you
should try to avoid these features if you want to find a
counterexample. If you do find a counterexample, then
the general statement is false, but it may still happen
that a modification to the statement is true and useful.
In that case, the counterexample will help you to find an
appropriate modification.

The moral, then, is that examples are important. So
how does one find them? There are two completely dif-
ferent approaches. One is to build them from scratch.
For example, one might define a group G to be the group
of all symmetries of an icosahedron. Another, which is
the main topic of this section, is to take some already
constructed examples and build new ones out of them.
For example, the group Z2, which consists of all pairs
of integers (x,y), with addition defined by the obvious

rule (x,y) + (x′, y ′) = (x + x′, y + y ′), is a “product”
of two copies of the group Z. As we shall see, this notion
of product is very general and can be applied in many
other contexts. But first let us look at an even more basic
method of finding new examples.

3.1 Substructures

As we saw earlier, the set C of all complex numbers, with
the operations of addition and multiplication, forms one
of the most basic examples of a field. It also contains
many subfields: that is, subsets that themselves form
fields. Take, for example, the set Q(i) of all complex
numbers of the forma+bi for whicha andb are rational.
This is a subset of C and is also a field. To show this, one
must prove that Q(i) is closed under addition, multipli-
cation, and the taking of inverses. That is, if z and w
are elements of Q(i), then z + w and zw must be as
well, as must −z and 1/z (this last requirement apply-
ing only when z �= 0). Axioms such as the commutativity
and associativity of addition and multiplication are then
true in Q(i) for the simple reason that they are true in
the larger set C.

Even though Q(i) is contained in C, it is a more inter-
esting field in some important ways. But how can this
be? Surely, one might think, an object cannot become
more interesting when most of it is taken away. But a
moment’s further thought shows that it certainly can:
for example, the set of all prime numbers contains fas-
cinating mysteries of a kind that one does not expect
to encounter in the set of all positive integers. As for
fields, the fundamental theorem of algebra [V.15]
tells us that every polynomial equation has a solution in
C. This is very definitely not true in Q(i). So in Q(i), and
in many other fields of a similar kind, we can ask which
polynomial equations have solutions. This turns out to
be a deep and important question that simply does not
arise in the larger field C.

In general, given an example X of an algebraic struc-
ture, a substructure of X is a subset Y that has rele-
vant closure properties. For instance, groups have sub-
groups, vector spaces have subspaces, rings have sub-
rings (and also ideals [III.82]), and so on. If the property
defining the substructure Y is a sufficiently interesting
one, then Y may well be significantly different from X
and may therefore be a useful addition to one’s stock of
examples.

This discussion has focused on algebra, but interest-
ing substructures abound in analysis and geometry as
well. For example, the plane R2 is not a particularly inter-
esting set, but it has subsets, such as the mandelbrot
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set [IV.15 §2.8], to give just one example, that are still
far from fully understood.

3.2 Products

LetG andH be two groups. The product group G×H has
as its elements all pairs of the form (g,h) such that g
belongs to G and h belongs to H. This definition shows
how to build the elements ofG×H out of the elements of
G and the elements of H. But to define a group we need
to do more: we are given binary operations on G and
H and we must use them to build a binary operation on
G×H. If g1 and g2 are elements ofG, let us write g1g2 for
the result of applying G’s binary operation to them, as is
customary, and let us do the same for H. Then there is
an obvious binary operation we can define on the pairs,
namely

(g1, h1)(g2, h2) = (g1g2, h1h2).

That is, one applies the binary operation from G to the
first coordinate and the binary operation from H to the
second.

One can form products of vector spaces in a very sim-
ilar way. If V and W are two vector spaces, then the ele-
ments of V ×W are all pairs of the form (v,w) with v
in V and w in W . Addition and scalar multiplication are
defined by the formulas

(v1,w1)+ (v2,w2) = (v1 + v2,w1 +w2)

and

λ(v,w) = (λv, λw).
The dimension of the resulting space is the sum of the
dimensions of V and W . (It is actually more usual to
denote this space by V ⊕ W and call it the direct sum
of V and W . Nevertheless, it is a product construction.)

It is not always possible to define product structures
in this simple way. For example, if F1 and F2 are two
fields, we might be tempted to define a “product field”
F1 × F2 using the formulas

(x1, y1)+ (x2, y2) = (x1 + x2, y1 +y2)

and

(x1, y1)(x2, y2) = (x1x2, y1y2).

However, with this definition we do not obtain a field.
Most of the axioms hold, including the existence of addi-
tive and multiplicative identities—they are (0,0) and
(1,1), respectively—but the nonzero element (1,0) does
not have a multiplicative inverse, since (1,0)(x,y) =
(x,0), which can never equal (1,1).

Occasionally we can define more complicated binary
operations that do make the set F1 × F2 into a field. For

instance, if F1 = F2 = R, then we can define addition as
above, but define multiplication in a less obvious way as
follows:

(x1, y1)(x2, y2) = (x1x2 −y1y2, x1y2 + x2y1).

Then we obtain C, the field of complex numbers, since
the pair (x,y) can be identified with the complex num-
ber x + iy . However, this is not a product field in the
general sense we are discussing.

Returning to groups, what we defined earlier was the
direct product of G and H. However, there are other,
more complicated products of groups, which can be
used to give a much richer supply of examples. To illus-
trate this, let us consider the dihedral group D4, which is
the group of all symmetries of a square, of which there
are eight. If we let R stand for one of the reflections and
T for a counterclockwise quarter turn, then every sym-
metry can be written in the form TiRj , where i is 0, 1,
2, or 3 and j is 0 or 1. (Geometrically, this says that you
can produce any symmetry by either rotating through a
multiple of 90◦ or reflecting and then rotating.)

This suggests that we might be able to regard D4 as
a product of the group {I, T , T 2, T 3}, consisting of four
rotations, with the group {I, R}, consisting of the iden-
tity I and the reflection R. We could even write (T i, Rj)
instead of TiRj . However, we have to be careful. For
instance, (TR)(TR) does not equal T 2R2 = T 2 but I.
The correct rule for multiplication can be deduced from
the fact that RTR = T−1 (which in geometrical terms is
saying that if you reflect the square, rotate it counter-
clockwise through 90◦, and reflect back, then the result
is a clockwise rotation through 90◦). It turns out to be

(T i, Rj)(T i
′
, Rj

′
) = (T i−i′ , Rj+j′).

For example, the product of (T ,R)with (T 3, R) is T−2R2,
which equals T 2.

This is a simple example of a “semi-direct product” of
two groups. In general, given two groups G and H, there
may be several interesting ways of defining a binary
operation on the set of pairs (g,h), and therefore several
potentially interesting new groups.

3.3 Quotients

Let us write Q[x] for the set of all polynomials in the
variable x with rational coefficients: that is, expressions
like 2x4 − 3

2x + 6. Any two such polynomials can be
added, subtracted, or multiplied together and the result
will be another polynomial. This makes Q[x] into a com-
mutative ring, but not a field, because if you divide one
polynomial by another then the result is not (necessarily)
a polynomial.
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We will now convert Q[x] into a field in what may at
first seem a rather strange way: by regarding the polyno-
mial x3−x−1 as “equivalent” to the zero polynomial. To
put this another way, whenever a polynomial involvesx3

we will allow ourselves to replace x3 by x+1, and we will
regard the new polynomial that results as equivalent to
the old one. For example, writing “∼” for “is equivalent
to”:

x5 = x3x2 ∼ (x + 1)x2 = x3 + x2

∼ x + 1+ x2 = x2 + x + 1.

Notice that in this way we can convert any polynomial
into one of degree at most 2, since whenever the degree
is higher, you can reduce it by taking out x3 from the
term of highest degree and replacing it by x + 1, just as
we did above.

Notice also that whenever we do such a replacement,
the difference between the old polynomial and the new
one is a multiple of x3 − x − 1. For example, when we
replaced x3x2 by (x + 1)x2 the difference was (x3 −
x − 1)x2. Therefore, what our process amounts to is
this: two polynomials are equivalent if and only if their
difference is a multiple of the polynomial x3 − x − 1.

Now the reason Q[x] was not a field was that noncon-
stant polynomials do not have multiplicative inverses.
For example, it is obvious that one cannot multiply x2

by a polynomial and obtain the polynomial 1. However,
we can obtain a polynomial that is equivalent to 1 if we
multiply by 1+x−x2. Indeed, the product of the two is

x2 + x3 − x4 ∼ x2 + x + 1− (x + 1)x = 1.

It turns out that all polynomials that are not equivalent
to zero (that is, are not multiples of x3−x−1) have mul-
tiplicative inverses in this generalized sense. (To find an
inverse for a polynomial P one applies the generalized
euclid algorithm [III.22] to find polynomials Q and R
such that PQ+R(x3−x−1) = 1. The reason we obtain
1 on the right-hand side is that x3 − x − 1 cannot be
factorized in Q[x] and P is not a multiple of x3 −x−1,
so their highest common factor is 1. The inverse of P is
then Q.)

In what sense does this mean that we have a field?
After all, the product ofx2 and 1+x−x2 was not 1: it was
merely equivalent to 1. This is where the notion of quo-
tients comes in. We simply decide that when two poly-
nomials are equivalent, we will regard them as equal,
and we denote the resulting mathematical structure by
Q[x]/(x3 − x − 1). This structure turns out to be a
field, and it turns out to be important as the smallest
field that contains Q and also has a root of the poly-
nomial X3 − X − 1. What is this root? It is simply x.

This is a slightly subtle point because we are now think-
ing of polynomials in two different ways: as elements
of Q[x]/(x3 − x − 1) (at least when equivalent ones
are regarded as equal), and also as functions defined on
Q[x]/(x3−x−1). So the polynomialX3−X−1 is not the
zero polynomial, since for example it takes the value 5
whenX = 2 and the valuex6−x2−1 ∼ (x+1)2−x2−1 ∼
2x when X = x2.

You may have noticed a strong similarity between the
discussion of the field Q[x]/(x3 − x − 1) and the dis-
cussion of the field Q(γ) at the end of section 2.2. And
indeed, this is no coincidence: they are two different
ways of describing the same field. However, thinking of
the field as Q/(x3−x−1) brings significant advantages,
as it converts questions about a mysterious set of com-
plex numbers into more approachable questions about
polynomials.

What does it mean to “regard two mathematical
objects as equal” when they are not equal? A formal
answer to this question uses the notion of equivalence
relations and equivalence classes (discussed in the lan-
guage and grammar of mathematics [I.2 §2.3]): one
says that the elements of Q[x]/(x3 − x − 1) are not in
fact polynomials but equivalence classes of polynomials.
However, to understand the notion of a quotient it is
much easier to look at an example with which we are
all familiar, namely the set Q of rational numbers. If we
are trying to explain carefully what a rational number is,
then we may start by saying that a typical rational num-
ber has the form a/b, where a and b are integers and b
is not 0. And it is possible to define the set of rational
numbers to be the set of all such expressions, with the
rules

a
b
+ c
d
= ad+ bc

bd

and

a
b
c
d
= ac
bd
.

However, there is one very important further remark
we must make, which is that we do not regard all such
expressions as different: for example, 1

2 and 3
6 are sup-

posed to be the same rational number. So we define two
expressions a

b and c
d to be equivalent if ad = bc and

we regard equivalent expressions as denoting the same
number. Notice that the expressions can be genuinely
different, but we think of them as denoting the same
object.

If we do this, then we must be careful whenever we
define functions and binary operations. For example,
suppose we tried to define a binary operation “◦” on Q
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by the natural-looking formula

a
b
◦ c
d
= a+ c
b + d .

This definition turns out to have a very serious flaw. To

see why, let us apply it to the fractions 1
2 and 1

3 . Then it

gives us the answer 2
5 . Now let us replace 1

2 by the equiv-

alent fraction 3
6 and apply the formula again. This time it

gives us the answer 4
9 , which is different. Thus, although

the formula defines a perfectly good binary operation on

the set of expressions of the form a
b , it does not make

any sense as a binary operation on the set of rational

numbers.

In general, it is essential to check that if you put equiv-

alent objects in then you get equivalent objects out. For

example, when defining addition and multiplication for

the field Q[x]/(x3−x−1), one must check that if P and

P ′ differ by a multiple of x3 − x − 1, and Q and Q′ also

differ by a multiple of x3 −x − 1, then so do P +Q and

P ′ +Q′, and so do PQ and P ′Q′. This is an easy exercise.

Why is the word “quotient” used? Well, a quotient is

normally what you get when you divide one number

by another, so to understand the analogy let us think

about dividing 21 by 3. We can think of this as divid-

ing up twenty-one objects into sets of three objects

each and asking how many sets we get. This can be

described in terms of equivalence as follows. Let us call

two objects equivalent if they belong to the same one of

the seven sets. Then there can be at most seven inequiv-

alent objects. So when we regard equivalent objects as

the same, we “divide out by the equivalence,” obtaining

a “quotient set” that has seven elements.

A rather different use of quotients leads to an elegant

definition of the mathematical shape known as a torus:

that is, the shape of the surface of a doughnut (of the

kind that has a hole). We start with the plane, R2, and

define two points (x,y) and (x′, y ′) to be equivalent if

x − x′ and y − y ′ are both integers. Suppose that we

regard any two equivalent points as the same and that

we start at a point (x,y) and move right until we reach

the point (x + 1, y). This point is “the same” as (x,y),
since the difference is (1,0). Therefore, it is as though

the entire plane has been wrapped around a vertical

cylinder of circumference 1 and we have gone around

this cylinder once. If we now apply the same argument

to the y-coordinate, noting that (x,y) is always “the

same” point as (x,y+1), then we find that this cylinder

is itself “folded around” so that if you go “upwards” by

a distance of 1 then you get back to where you started.

But that is what a torus is: a cylinder that is folded back

into itself. (This is not the only way of defining a torus,

however. For example, it can be defined as the product
of two circles.)

Many other important objects in modern geometry are
defined using quotients. It often happens that the object
one starts with is extremely big, but that at the same time
the equivalence relation is very generous, in the sense
that it is easy for one object to be equivalent to another.
In that case the number of “genuinely distinct” objects
can be quite small. This is a rather loose way of talking,
since it is not really the number of distinct objects that is
interesting so much as the complexity of the set of these
objects. It might be better to say that one often starts
with a hopelessly large and complicated structure but
“divides out most of the mess” and ends up with a quo-
tient object that has a structure that is simple enough
to be manageable while still conveying important infor-
mation. Good examples of this are the fundamental
group [IV.10 §3] and the homology and cohomology
groups [IV.10 §2] of a topological space; an even better
example is the notion of a moduli space [IV.8].

Many people find the idea of a quotient somewhat dif-
ficult to grasp, but it is of major importance throughout
mathematics, which is why it has been discussed at some
length here.

4 Functions between Algebraic Structures

One rule with almost no exceptions is that mathemat-
ical structures are not studied in isolation: as well as
the structures themselves one looks at certain functions
defined on those structures. In this section we shall see
which functions are worth considering, and why. (For a
discussion of functions in general, see the language
and grammar of mathematics [I.2 §2.2].)

4.1 Homomorphisms, Isomorphisms, and

Automorphisms

If X and Y are two examples of a particular mathemat-
ical structure, such as a group, field, or vector space,
then, as was suggested in the discussion of symmetry in
section 2.1, there is a class of functions from X to Y of
particular interest, namely the functions that “preserve
the structure.” Roughly speaking, a function f : X → Y is
said to preserve the structure of X if, given any relation-
ship between elements of X that is expressed in terms
of that structure, there is a corresponding relationship
between the images of those elements that is expressed
in terms of the structure of Y . For example, if X and Y
are groups and a, b, and c are elements of X such that
ab = c, then, if f is to preserve the algebraic structure
of X, f(a)f(b) must equal f(c) in Y . (Here, as is usual,
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we are using the same notation for the binary opera-
tions that make X and Y groups as is normally used
for multiplication.) Similarly, if X and Y are fields, with
binary operations that we shall write using the standard
notation for addition and multiplication, then a function
f : X → Y will be interesting only if f(a)+ f(b) = f(c)
whenever a + b = c, and f(a)f(b) = f(c) whenever
ab = c. For vector spaces, the functions of interest are
ones that preserve linear combinations: if V and W are
vector spaces, then f(av + bw) should always equal
af(v)+ bf(w).

A function that preserves structure is generally known
as a homomorphism, though homomorphisms of par-
ticular mathematical structures often have their own
names: for example, a homomorphism of vector spaces
is called a linear map.

There are some useful properties that a homomor-
phism may have if we are lucky. To see why further prop-
erties can be desirable, consider the following example.
Let X and Y be groups and let f : X → Y be the function
that takes every element of X to the identity element
e of Y . Then, according to the definition above, f pre-
serves the structure of X, since whenever ab = c, we
have f(a)f(b) = ee = e = f(c). However, it seems
more accurate to say that f has collapsed the struc-
ture. One can make this idea more precise: although
f(a)f(b) = f(c) whenever ab = c, the converse does
not hold : it is perfectly possible for f(a)f(b) to equal
f(c) without ab equaling c, and indeed that happens in
the example just given.

An isomorphism between two structures X and Y is a
homomorphism f : X → Y that has an inverse g : Y → X
that is also a homomorphism. For most algebraic struc-
tures, if f has an inverse g, then g is automatically a
homomorphism; in such cases we can simply say that
an isomorphism is a homomorphism that is also a bijec-
tion [I.2 §2.2]. That is, f is a one-to-one correspondence
between X and Y that preserves structure.1PUP: large footnote
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If X and Y are fields, then these considerations are
less interesting: it is a simple exercise to show that every
homomorphism f : X → Y is automatically an isomor-
phism between X and its image f(X), that is, the set of
all values taken by the function f . So structure cannot

1. Let us see how this claim is proved for groups. If X and Y are
groups, f : X → Y is a homomorphism with inverse g : Y → X and
u, v , and w are elements of Y with uv = w, then we must show that
g(u)g(v) = g(w). To do this, let a = g(u), b = g(v), and d = g(w).
Since f and g are inverse functions, f(a) = u, f(b) = v , and f(d) =
w. Now let c = ab. Then w = uv = f(a)f(b) = f(c), since f is a
homomorphism. But then f(c) = f(d), which implies that c = d (just
apply the function g to f(c) and f(d)). Therefore ab = d, which tells
us that g(u)g(v) = g(w), as we needed to show.

be collapsed without being lost. (The proof depends on
the fact that the zero in Y has no multiplicative inverse.)

In general, if there is an isomorphism between two
algebraic structures X and Y , then X and Y are said to
be isomorphic (coming from the Greek words for “same”
and “shape”). Loosely, the word “isomorphic” means
“the same in all essential respects,” where what counts
as essential is precisely the algebraic structure. What is
absolutely not essential is the nature of the objects that
have the structure: for example, one group might consist
of certain complex numbers, another of integers modulo
a prime p, and a third of rotations of a geometrical fig-
ure, and they could all turn out to be isomorphic. The
idea that two mathematical constructions can have very
different constituent parts and yet in a deeper sense be
“the same” is one of the most important in mathematics.

An automorphism of an algebraic structureX is an iso-
morphism from X to itself. Since it is hardly surprising
that X is isomorphic to itself, one might ask what the
point is of automorphisms. The answer is that automor-
phisms are precisely the algebraic symmetries alluded
to in our discussion of groups. An automorphism of X
is a function from X to itself that preserves the struc-
ture (which now comes in the form of statements like
ab = c). The composition of two automorphisms is
clearly a third, and as a result the automorphisms of a
structure X form a group. Although the individual auto-
morphisms may not be of much interest, the group cer-
tainly is, as it often encapsulates what one really wants
to know about a structure X that is too complicated to
analyze directly.

A spectacular example of this is when X is a field.
To illustrate, let us take the example of Q(

√
2). If f :

Q(
√

2) → Q(
√

2) is an automorphism, then f(1) = 1, as
we have seen, and then f(2) = f(1+1) = f(1)+f(1) =
1+1 = 2. Continuing like this, we can show that f(n) =
n for every positive integer n. Then f(n) + f(−n) =
f(n + (−n)) = f(0) = 0, so f(−n) = −f(n) = −n.
Finally, f(p/q) = f(p)/f(q) = p/q when p and q
are integers with q �= 0. So f takes every rational
number to itself. What can we say about f(

√
2)? Well,

f(
√

2)f (
√

2) = f(√2 · √2) = f(2) = 2, but this implies
only that f(

√
2) is

√
2 or −√2. It turns out that both

choices are possible: one automorphism is the “trivial”
one f(a + b√2) = a + b√2 and the other is the more
interesting one f(a + b√2) = a − b√2. This observa-
tion demonstrates that there is no algebraic difference
between the two square roots; in this sense, the field
Q(
√

2) does not know which square root of 2 is positive
and which negative. These two automorphisms form a
group, which is isomorphic to the group consisting of
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the elements ±1 under multiplication, or the group of

integers modulo 2, or the group of symmetries of an

isosceles triangle that is not equilateral, or . . . . The listPUP: proofreader
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is endless.

The automorphism groups associated with certain

field extensions are called galois groups [III.30], and

are a vital component of the proof of the insolubil-

ity of the quintic [V.24], as well as of large parts

of algebraic number theory (see algebraic numbers

[IV.3]).

4.2 Linear Maps and Matrices

Homomorphisms between vector spaces have a distinc-

tive geometrical property: they send straight lines to

straight lines. For this reason they are called linear maps,

as was mentioned in the previous subsection. From a

more algebraic point of view, the structure that linear

maps preserve is that of linear combinations: a function

f from one vector space to another is a linear map if

f(au + bv) = af(u) + bf(v) for every pair of vectors

u,v ∈ V and every pair of scalars a and b. From this

one can deduce the more general assertion that f(a1v1+
· · ·+anvn) is always equal to a1f(v1)+· · ·+anf(vn).

Suppose that we wish to define a linear map from V to

W . How much information do we need to provide? This

may seem a vague question, so here is a similar one. How

much information is needed to specify a point in space?

The answer is that, once one has devised a sensible coor-

dinate system, three numbers will suffice. If the point is

not too far from Earth’s surface then one might wish

to use its latitude, its longitude, and its height above

sea level, for instance. Can a linear map from V to W
similarly be specified by just a few numbers?

The answer is that it can, at least if V and W are finite

dimensional. Suppose that V has a basis v1, . . . ,vn, that

W has a basis w1, . . . ,wm, and that f : V → W is the

linear map we would like to specify. Since every vector in

V can be written in the form a1v1+· · ·+anvn and since

f(a1v1+· · ·+anvn) is always equal to a1f(v1)+· · ·+
anf(vn), once we decide what f(v1), . . . , f (vn) are we

have specified f completely. But each vector f(vj) is a

linear combination of the basis vectorsw1, . . . ,wm: that

is, it can be written in the form

f(vi) = a1jw1 + · · · + amjwm.
Thus, to specify an individual f(vj) needs m numbers,

the scalars a1j , . . . , amj . Since there are n different vec-

tors vj , the linear map is determined by the mn num-

bers aij , where i runs from 1 to m and j from 1 to n.

These numbers can be written in an array, as follows:⎛
⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

⎞
⎟⎟⎟⎟⎟⎠ .

An array like this is called a matrix. It is important to
note that a different choice of basis vectors for V and
W would lead to a different matrix, so one often talks of
the matrix of f relative to a given pair of bases (a basis
for V and a basis for W ).

Now suppose that f is a linear map from V to W and
that g is a linear map from U to V . Then fg stands for
the linear map from U to W obtained by doing first g,
then f . If the matrices of f and g, relative to certain
bases of U , V , and W , are A and B, then what is the
matrix of fg? To work it out, one takes a basis vector
uk of U and applies to it the function g, obtaining a lin-
ear combination b1kv1+· · ·+bnkvn of the basis vectors
of V . To this linear combination one applies the function
f , obtaining a rather complicated linear combination
of linear combinations of the basis vectors w1, . . . ,wm
of W .

Pursuing this idea, one can calculate that the entry in
row i and column j of the matrix P of fg is ai1b1j +
ai2b2j + · · · + ainbnj . This matrix P is called the prod-
uct of A and B and is written AB. If you have not seen
this definition then you will find it hard to grasp, but the
main point to remember is that there is a way of calculat-
ing the matrix for fg from the matrices A, B of f and g,
and that this matrix is denotedAB. Matrix multiplication
of this kind is associative but not commutative. That is,
A(BC) is always equal to (AB)C but AB is not necessar-
ily the same as BA. The associativity follows from the
fact that composition of the underlying linear maps is
associative: if A, B, and C are the matrices of f , g, and
h, respectively, then A(BC) is the matrix of the linear
map “do h-then-g, then f ” and (AB)C is the matrix of
the linear map “do h, then g-then-f ,” and these are the
same linear map.

Let us now confine our attention to automorphisms
from a vector space V to itself. These are linear maps f :
V → V that can be inverted; that is, for which there exists
a linear map g : V → V such that fg(v) = gf(v) = v
for every vector v in V . These we can think of as “sym-
metries” of the vector space V , and as such they form
a group under composition. If V is n dimensional and
the scalars come from the field F, then this group is
called GLn(F). The letters “G” and “L” stand for “gen-
eral” and “linear”; some of the most important and dif-
ficult problems in mathematics arise when one tries to
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understand the structure of the general linear groups
(and related groups) for certain interesting fields F (see
representation theory [IV.12]).

While matrices are very useful, many interesting linear
maps are between infinite-dimensional vector spaces,
and we close this section with two examples for the
reader who is familiar with elementary calculus. (There
will be a brief discussion of calculus later in this arti-
cle.) For the first, let V be the set of all functions from
R to R that can be differentiated and let W be the set
of all functions from R to R. These can be made into
vector spaces in a simple way: if f and g are func-
tions, then their sum is the function h defined by the
formula h(x) = f(x) + g(x), and if a is a real num-
ber then af is the function k defined by the formula
k(x) = af(x). (So, for example, we could regard the
polynomial x2 + 3x + 2 as a linear combination of the
functions x2, x, and the constant function 1.) Then dif-
ferentiation is a linear map (from V to W ), since the
derivative (af + bg)′ is af ′ + bg′. This is clearer if we
write Df for the derivative of f : then we are saying that
D(af + bg) = aDf + bDg.

A second example uses integration. Let V be another
vector space of functions, and let u be a function of two
variables. (The functions involved have to have certain
properties for the definition to work, but let us ignore
the technicalities.) Then we can define a linear map T on
the space V by the formula

(Tf)(x) =
∫
u(x,y)f(y)dy.

Definitions like this one can be hard to take in, because
they involve holding in one’s mind three different lev-
els of complexity. At the bottom we have real numbers,
denoted by x and y . In the middle are functions like f ,
u, and Tf , which turn real numbers (or pairs of them)
into real numbers. At the top is another function, T ,
but the “objects” that it transforms are themselves func-
tions: it turns a function like f into a different function
Tf . This is just one example where it is important to
think of a function as a single, elementary “thing” rather
than as a process of transformation. (See the discussion
of functions in the language and grammar of math-
ematics [I.2 §2.2].) Another remark that may help to
clarify the definition is that there is a very close analogy
between the role of the two-variable function u(x,y)
and the role of a matrix aij (which can itself be thought
of as a function of the two integer variables i and j).
Functions like u are sometimes called kernels. For more
about linear maps between infinite-dimensional spaces,
see operator algebras [IV.19] and linear operators
[III.52].

4.3 Eigenvalues and Eigenvectors

Let V be a vector space and let S : V → V be a linear
map from V to itself. An eigenvector of S is a nonzero
vector v in V such that Sv is proportional to v; that
is, Sv = λv for some scalar λ. The scalar in question
is called the eigenvalue corresponding to v. This sim-
ple pair of definitions is extraordinarily important: it
is hard to think of any branch of mathematics where
eigenvectors and eigenvalues do not have a major part
to play. But what is so interesting about Sv being pro-
portional to v? A rather vague answer is that in many
cases the eigenvectors and eigenvalues associated with
a linear map contain all the information one needs about
the map, and in a very convenient form. Another answer
is that linear maps occur in many different contexts, and
questions that arise in those contexts often turn out to
be questions about eigenvectors and eigenvalues, as the
following two examples illustrate.

First, imagine that you are given a linear map T
from a vector space V to itself and want to understand
what happens if you perform the map repeatedly. One
approach would be to pick a basis of V , work out the cor-
responding matrix A of T and calculate the powers of A
by matrix multiplication. The trouble is that the calcu-
lation will be messy and uninformative, and it does not
really give much insight into the linear map.

However, it often happens that one can pick a very
special basis, consisting only of eigenvectors, and in
that case understanding the powers of T becomes easy.
Indeed, suppose that the basis vectors are v1,v2, . . . ,vn
and that each vi is an eigenvector with corresponding
eigenvalue λi. That is, suppose that T(vi) = λivi for
every i. If w is any vector in V , then there is exactly one
way of writing it in the form a1v1+· · ·+anvn, and then

T(w) = λ1a1v1 + · · · + λnanvn.
Roughly speaking, this says that T stretches the part of
w in direction vi by a factor of λi. But now it is easy
to say what happens if we apply T not just once but m
times to w. The result will be

Tm(w) = λm1 a1v1 + · · · + λmn anvn.
In other words, now the amount by which we stretch in
the vi direction is λmi , and that is all there is to it.

Why should one be interested in doing linear maps
over and over again? There are many reasons, but one
fairly convincing one is that this sort of calculation is
exactly what Google does in order to put Web sites into a
useful order. Details can be found in the mathematics
of algorithm design [VII.5].
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The second example concerns the interesting property
of the exponential function [III.25] ex : that its deriva-
tive is the same function. In other words, if f(x) = ex ,
then f ′(x) = f(x). Now differentiation, as we saw ear-
lier, can be thought of as a linear map, and if f ′(x) =
f(x) then this map leaves the function f unchanged,
which says that f is an eigenvector with eigenvalue 1.
More generally, if g(x) = eλx , then g′(x) = λeλx =
λg(x), so g is an eigenvector of the differentiation map,
with eigenvalue λ. Many linear differential equations
can be thought of as asking for eigenvectors of lin-
ear maps defined using differentiation. (Differentiation
and differential equations will be discussed in the next
section.)

5 Basic Concepts of Mathematical Analysis

Mathematics took a huge leap forward in sophistication
with the invention of calculus, and the notion that one
can specify a mathematical object indirectly by means of
better and better approximations. These ideas form the
basis of a broad area of mathematics known as analysis,
and the purpose of this section is to help the reader who
is unfamiliar with them. However, it will not be possible
to do full justice to the subject, and what is written here
will be hard to understand without at least some prior
knowledge of calculus.

5.1 Limits

In our discussion of real numbers (section 1.4) there
was a brief discussion of the square root of 2. How do
we know that 2 has a square root? One answer is the
one given there: that we can calculate its decimal expan-
sion. If we are asked to be more precise, we may well
end up saying something like this. The real numbers 1,
1.4, 1.41, 1.414, 1.4142, 1.41421, . . . , which have termi-
nating decimal expansions (and are therefore rational)
approach another number x = 1.4142135 . . . . We can-
not actually write down x properly because it has an
infinite decimal expansion but we can at least explain
how its digits are defined: for example, the third digit
after the decimal point is a 4 because 1.414 is the largest
multiple of 0.001 that squares to less than 2. It follows
that the squares of the original numbers, 1, 1.96, 1.9881,
1.999396, 1.99996164, 1.9999899241, …, approach 2,
and this is why we are entitled to say that x2 = 2.

Suppose that we are asked to determine the length of
a curve drawn on a piece of paper, and that we are given
a ruler to help us. We face a problem: the ruler is straight
and the curve is not. One way of tackling the problem is
as follows. First, draw a few points P0,P1,P2, . . . ,Pn along

the curve, with P0 at one end and Pn at the other. Next,

measure the distance from P0 to P1, the distance from P1

to P2, and so on up to Pn. Finally, add all these distances

up. The result will not be an exactly correct answer, but if

there are enough points, spaced reasonably evenly, and

if the curve does not wiggle too much, then our pro-

cedure will give us a good notion of the “approximate

length” of the curve. Moreover, it gives us a way to define

what we mean by the “exact length”: suppose that, as

we take more and more points, we find that the approx-

imate lengths, in the sense just defined, approach some

number l. Then we say that l is the length of the curve.

In both these examples, there is a number that we

reach by means of better and better approximations.

I used the word “approach” in both cases, but this is

rather vague, and it is important to make it precise. Let

a1, a2, a3, . . . be a sequence of real numbers. What does

it mean to say that these numbers approach a specified

real number l?
The following two examples are worth bearing in

mind. The first is the sequence 1
2 ,

2
3 ,

3
4 ,

4
5 , . . . . In a sense,

the numbers in this sequence approach 2, since each one

is closer to 2 than the one before, but it is clear that this

is not what we mean. What matters is not so much that

we get closer and closer, but that we get arbitrarily close,

and the only number that is approached in this stronger

sense is the obvious “limit,” 1.

A second sequence illustrates this in a different way:

1,0, 1
2 ,0,

1
3 ,0,

1
4 ,0, . . . . Here, we would like to say that the

numbers approach 0, even though it is not true that each

one is closer than the one before. Nevertheless, it is true

that eventually the sequence gets as close as you like to

0 and remains at least that close.

This last phrase serves as a definition of the mathe-

matical notion of a limit : the limit of the sequence of

numbers a1, a2, a3, . . . is l if eventually the sequence

gets as close as you like to l and remains that close.

However, in order to meet the standards of precision

demanded by mathematics, we need to know how to

translate English words like “eventually” into mathemat-

ics, and for this we need quantifiers [I.2 §3.2].

Suppose δ is a positive number (which one usually

imagines as small). Let us say that an is δ-close to l if

|an − l|, the difference between an and l, is less than δ.

What would it mean to say that eventually the sequence

gets δ-close to l and stays there? It means that from

some point onwards, all the an are δ-close to l. And what

is the meaning of “from some point onwards”? It is that

there is some number N (the point in question) with the

property that an is δ-close to l fromN onwards—that is,



�

30 I. Introduction

for everyn that is greater than or equal toN . In symbols:

∃N ∀n � N an is δ-close to l.

It remains to capture the idea of “as close as you like.”
What this means is that the above sentence is true for
any δ you might wish to specify. In symbols:

∀δ > 0 ∃N ∀n � N an is δ-close to l.

Finally, let us stop using the nonstandard phrase “δ-
close”:

∀δ > 0 ∃N ∀n � N |an − l| < δ.
This sentence is not particularly easy to understand.
Unfortunately (and interestingly in the light of the dis-
cussion in [I.2 §4]), using a less symbolic language does
not necessarily make things much easier: “Whatever pos-
itive δ you choose, there is some numberN such that for
all bigger numbers n the difference between an and l is
less than δ.”

The notion of limit applies much more generally than
just to real numbers. If you have any collection of math-
ematical objects and can say what you mean by the dis-
tance between any two of those objects, then you can
talk of a sequence of those objects having a limit. Two
objects are now called δ-close if the distance between
them is less than δ, rather than the difference. (The
idea of distance is discussed further in metric spaces
[III.58].) For example, a sequence of points in space can
have a limit, as can a sequence of functions. (In the sec-
ond case it is less obvious how to define distance—there
are many natural ways to do it.) A further example comes
in the theory of fractals (see dynamics [IV.15]): the very
complicated shapes that appear there are best defined
as limits of simpler ones.

Other ways of saying that the limit of the sequence
a1, a2, . . . is l are to say that an converges to l or that it
tends to l. One sometimes says that this happens as n
tends to infinity. Any sequence that has a limit is called
convergent. If an converges to l then one often writes
an → l.

5.2 Continuity

Suppose you want to know the approximate value of π2.
Perhaps the easiest thing to do is to press a π button
on a calculator, which displays 3.1415927, and then an
x2 button, after which it displays 9.8696044. Of course,
one knows that the calculator has not actually squared
π : instead it has squared the number 3.1415927. (If it is
a good one, then it may have secretly used a few more
digits of π without displaying them, but not infinitely
many.) Why does it not matter that the calculator has
squared the wrong number?

A first answer is that it was only an approximate value
of π2 that was required. But that is not quite a complete
explanation: how do we know that if x is a good approx-
imation to π then x2 is a good approximation to π2?
Here is how one might show this. If x is a good approx-
imation to π , then we can write x = π + δ for some
very small number δ (which could be negative). Then
x2 = π2 + 2δπ +δ2. Since δ is small, so is 2δπ +δ2, so
x2 is indeed a good approximation to π2.

What makes the above reasoning work is that the func-
tion that takes a number x to its square is continuous.
Roughly speaking, this means that if two numbers are
close, then so are their squares.

To be more precise about this, let us return to the cal-
culation of π2, and imagine that we wish to work it out
to a much greater accuracy—so that the first hundred
digits after the decimal point are correct, for example.
A calculator will not be much help, but what we might
do is find a list of the digits of π (on the Internet you
can find sites that tell you at least the first fifty million),
use this to define a new x that is a much better approx-
imation to π , and then calculate the new x2 by getting
a computer to do the necessary long multiplication.

How close do we need x to be to π for x2 to be within
10−100 of π2? To answer this, we can use our earlier
argument. Let x = π+δ again. Then x2−π2 = 2δπ+δ2,
and an easy calculation shows that this has modulus less
than 10−100 if δ has modulus less than 10−101. So we will
be all right if we take the first 101 digits of π after the
decimal point.

More generally, however accurate we wish our esti-
mate of π2 to be, we can achieve this accuracy if we are
prepared to make x a sufficiently good approximation
to π . In mathematical parlance, the function f(x) = x2

is continuous at π .
Let us try to say this more symbolically. The state-

ment “x2 = π2 to within an accuracy of ε” means that
|x2−π2| < ε. To capture the phrase “however accurate,”
we need this to be true for every positive ε, so we should
start by saying∀ε > 0. Now let us think about the words
“if we are prepared to makex a sufficiently good approx-
imation to π .” The thought behind them is that there is
some δ > 0 for which the approximation is guaranteed
to be accurate to within ε as long as x is within δ of π .
That is, there exists a δ > 0 such that if |x − δ| < π
then it is guaranteed that |x2 − π2| < ε. Putting every-
thing together, we end up with the following symbolic
sentence:

∀ε > 0 ∃δ > 0 (|x −π| < δ⇒ |x2 −π2| < ε).
To put that in words: “Given any positive number ε there
is a positive number δ such that if |x−π| is less than δ
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then |x2 −π2| is less than ε.” Earlier, we found a δ that
worked when ε was chosen to be 10−100: it was 10−101.

What we have just shown is that the function f(x) =
x2 is continuous at the point x = π . Now let us general-
ize this idea: let f be any function and let a be any real
number. We say that f is continuous at a if

∀ε > 0 ∃δ > 0 (|x − a| < δ⇒ |f(x)− f(a)| < ε).
This says that however accurate you wish f(x) to be as
an estimate for f(a), you can achieve this accuracy if
you are prepared to make x a sufficiently good approx-
imation to a. The function f is said to be continuous if
it is continuous at every a. Roughly speaking, what this
means is that f has no “sudden jumps.” (It also rules out
certain kinds of very rapid oscillations that would also
make accurate estimates difficult.)

As with limits, the idea of continuity applies in much
more general contexts, and for the same reason. Let f
be a function from a set X to a set Y (see the language
and grammar of mathematics [I.2 §2.2]), and suppose
that we have two notions of distance, one for elements of
X and the other for elements of Y . Using the expression
d(x,a) to denote the distance between x and a, and
similarly ford(f(x), f (a)), one says that f is continuous
at a if

∀ε > 0 ∃δ > 0 (d(x,a) < δ⇒ d(f(x), f (a)) < ε)
and that f is continuous if it is continuous at every a in
X. In other words, we replace differences such as |x−a|
by distances such as d(x,a).

Continuous functions, like homomorphisms (see sec-
tion 4.1 above), can be regarded as preserving a certain
sort of structure. It can be shown that a function f is con-
tinuous if and only if, whenever an → x, we also have
f(an) → f(x). That is, continuous functions are func-
tions that preserve the structure provided by convergent
sequences and their limits.

5.3 Differentiation

The derivative of a function f at a value a is usually pre-
sented as a number that measures the rate of change of
f(x) as x passes through a. The purpose of this section
is to promote a slightly different way of regarding it, one
that is more general and that opens the door to much of
modern mathematics. This is the idea of differentiation
as linear approximation.

Intuitively speaking, to say that f ′(a) = m is to say
that if one looks through a very powerful microscope
at the graph of f in a tiny region that includes the point
(a, f (a)), then what one sees is almost exactly a straight
line of gradientm. In other words, in a sufficiently small

neighborhood of the point a, the function f is approxi-
mately linear. We can even write down a formula for the
linear function g that approximates f :

g(x) = f(a)+m(x − a).
This is the equation of the straight line of gradient m
that passes through the point (a, f (a)). Another way of
writing it, which is a little clearer, is

g(a+ h) = f(a)+mh,
and to say that g approximates f in a small neighbor-
hood of a is to say that f(a+h) is approximately equal
to f(a)+mh when h is small.

One must be a little careful here: after all, if f does
not jump suddenly, then, when h is small, f(a+h) will
be close to f(a) and mh will be small, so f(a + h) is
approximately equal to f(a)+mh. This line of reasoning
seems to work regardless of the value of m, and yet we
wanted there to be something special about the choice
m = f ′(a). What singles out that particular value is that
f(a + h) is not just close to f(a) +mh, but the differ-
ence ε(h) = f(a + h) − f(a) −mh is small compared
with h. That is, ε(h)/h → 0 as h → 0. (This is a slightly
more general notion of limit than that discussed in sec-
tion 5.1, but can be recovered from it: it is equivalent to
saying that if you choose any sequence h1, h2, . . . such
that hn → 0, then ε(hn)/hn → 0 as well.)

The reason these ideas can be generalized is that the
notion of a linear map is much more general than sim-
ply a function from R to R of the form g(x) =mx + c.
Many functions that arise naturally in mathematics—
and also in science, engineering, economics, and many
other areas—are functions of several variables, and can
therefore be regarded as functions defined on a vec-
tor space of dimension greater than 1. As soon as we
look at them this way, we can ask ourselves whether, in
a small neighborhood of a point, they can be approx-
imated by linear maps. It is very useful if they can: a
general function can behave in very complicated ways,
but if it can be approximated by a linear function, then at
least in small regions of n-dimensional space its behav-
ior is much easier to understand. In this situation one
can use the machinery of linear algebra and matrices,
which leads to calculations that are feasible, especially
if one has the help of a computer.

Imagine, for instance, a meteorologist interested in
how the direction and speed of the wind changes as
one looks at different parts of some three-dimensional
region above Earth’s surface. Wind behaves in compli-
cated, chaotic ways, but to get some sort of handle on
this behavior one can describe it as follows. To each
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point (x,y, z) in the region (think ofx andy as horizon-
tal coordinates and z as a vertical one) one can associate
a vector (u,v,w) representing the velocity of the wind
at that point: u, v , and w are the components of the
velocity in the x-, y-, and z-directions.

Now let us change the point (x,y, z) very slightly by
choosing three small numbers h, k, and l and looking at
(x +h,y + k, z+ l). At this new point, we would expect
the wind vector to be slightly different as well, so let
us write it (u + p,v + q,w + r). How does the small
change (p, q, r) in the wind vector depend on the small
change (h, k, l) in the position vector? Provided the wind
is not too turbulent and h, k, and l are small enough, we
expect the dependence to be roughly linear: that is how
nature seems to work. In other words, we expect there
to be some linear map T such that (p, q, r) is roughly
T(h, k, l) when h, k, and l are small. Notice that each
of p, q, and r depends on each of h, k, and l, so nine
numbers will be needed in order to specify this linear
map. In fact, we can express it in matrix form:⎛

⎜⎜⎝
p
q
r

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎟⎠
⎛
⎜⎜⎝
h
k
l

⎞
⎟⎟⎠ .

The matrix entries aij express individual dependencies.
For example, ifx and z are held fixed, then we are setting
h = l = 0, from which it follows that the rate of change
u as just y varies is given by the entry a12. That is, a12

is the partial derivative ∂u/∂y at the point (x,y, z).
This tells us how to calculate the matrix, but from

the conceptual point of view it is easier to use vector
notation. Write x for (x,y, z), u(x) for (u,v,w), h for
(h, k, l), and p for (p, q, r). Then what we are saying is
that

p = T(h)+ ε(h)
for some vector ε(h) that is small relative to h. Alterna-
tively, we can write

u(x + h) = u(x)+ T(h)+ ε(h),
a formula that is closely analogous to our earlier formula
g(x+h) = g(x)+mh+ε(h). This tells us that if we add
a small vector h to x, then u(x) will change by roughly
T(h).

5.4 Partial Differential Equations

Partial differential equations are of immense importance
in physics, and have inspired a vast amount of mathe-
matical research. Three basic examples will be discussed
here, as an introduction to more advanced articles later
in the volume (see, in particular, partial differential
equations [IV.16]).

The first is the heat equation, which, as its name sug-
gests, describes the way the distribution of heat in a
physical medium changes with time:

∂T
∂t
= κ

(
∂2T
∂x2

+ ∂
2T
∂y2

+ ∂
2T
∂z2

)
.

Here, T(x,y, z, t) is a function that specifies the tem-
perature at the point (x,y, z) at time t.

It is one thing to read an equation like this and under-
stand the symbols that make it up, but quite another to
see what it really means. However, it is important to do
so, since of the many expressions one could write down
that involve partial derivatives, only a minority are of
much significance, and these tend to be the ones that
have interesting interpretations. So let us try to interpret
the expressions involved in the heat equation.

The left-hand side, ∂T/∂t, is quite simple. It is the rate
of change of the temperature T(x,y, z, t) when the spa-
tial coordinates x, y , and z are kept fixed and t varies.
In other words, it tells us how fast the point (x,y, z) is
heating up or cooling down at time t. What would we
expect this to depend on? Well, heat takes time to travel
through a medium, so although the temperature at some
distant point (x′, y ′, z′) will eventually affect the tem-
perature at (x,y, z), the way the temperature is chang-
ing right now (that is, at time t) will be affected only
by the temperatures of points very close to (x,y, z): if
points in the immediate neighborhood of (x,y, z) are
hotter, on average, than (x,y, z) itself, then we expect
the temperature at (x,y, z) to be increasing, and if they
are colder then we expect it to be decreasing.

The expression in brackets on the right-hand side
appears so often that it has its own shorthand. The
symbol ∆, defined by

∆f = ∂
2f
∂x2

+ ∂
2f
∂y2

+ ∂
2f
∂z2

,

is known as the Laplacian. What information does ∆f
give us about a function f ? The answer is that it captures
the idea in the last paragraph: it tells us how the value
of f at (x,y, z) compares with the average value of f
in a small neighborhood of (x,y, z), or, more precisely,
with the limit of the average value in a neighborhood
of (x,y, z) as the size of that neighborhood shrinks to
zero.

This is not immediately obvious from the formula,
but the following (not wholly rigorous) argument in one
dimension gives a clue about why second derivatives
should be involved. Let f be a function that takes real
numbers to real numbers. Then to obtain a good approx-
imation to the second derivative of f at a point x,
one can look at the expression (f ′(x) − f ′(x − h))/h
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for some small h. (If one substitutes −h for h in the
above expression, one obtains the more usual formula,
but this one is more convenient here.) The derivatives
f ′(x) and f ′(x−h) can themselves be approximated by
(f (x + h)− f(x))/h and (f (x)− f(x − h))/h, respec-
tively, and if we substitute these approximations into
the earlier expression, then we obtain

1
h

(
f(x + h)− f(x)

h
− f(x)− f(x − h)

h

)
,

which equals (f (x + h) − 2f(x) + f(x − h))/h2.
Dividing the top of this last fraction by 2, we obtain
1
2 (f (x + h)+ f(x − h))− f(x): that is, the difference
between the value of f at x and the average value of
f at the two surrounding points x + h and x − h.

In other words, the second derivative conveys just the
idea we want—a comparison between the value at x and
the average value near x. It is worth noting that if f is
linear, then the average of f(x−h) and f(x+h) will be
equal to f(x), which fits with the familiar fact that the
second derivative of a linear function f is zero.

Just as, when defining the first derivative, we have to
divide the difference f(x + h) − f(x) by h so that it is
not automatically tiny, so with the second derivative it is
appropriate to divide by h2. (This is appropriate, since,
whereas the first derivative concerns linear approxima-
tions, the second derivative concerns quadratic ones:
the best quadratic approximation for a function f near
a value x is f(x + h) = f(x) + hf ′(x) + 1

2h
2f ′′(x),

an approximation that one can check is exact if f was a
quadratic function to start with.)

It is possible to pursue thoughts of this kind and show
that if f is a function of three variables then the value of
∆f at (x,y, z) does indeed tell us how the value of f at
(x,y, z) compares with the average values of f at points
nearby. (There is nothing special about the number 3
here—the ideas can easily be generalized to functions
of any number of variables.) All that is left to discuss
in the heat equation is the parameter κ. This measures
the conductivity of the medium. If κ is small, then the
medium does not conduct heat very well and∆T has less
of an effect on the rate of change of the temperature; if
it is large then heat is conducted better and the effect is
greater.

A second equation of great importance is the Laplace
equation, ∆f = 0. Intuitively speaking, this says of a
function f that its value at a point (x,y, z) is always
equal to the average value at the immediately surround-
ing points. If f is a function of just one variable x,
this says that the second derivative of f is zero, which
implies that f is of the form ax+b. However, for two or
more variables, a function has more flexibility—it can lie

above the tangent lines in some directions and below it

in others. As a result, one can impose a variety of bound-

ary conditions on f (that is, specifications of the values

f takes on the boundaries of certain regions), and there

is a much wider and more interesting class of solutions.

A third fundamental equation is the wave equation. In

its one-dimensional formulation it describes the motion

of a vibrating string that connects two points A and B.

Suppose that the height of the string at distance x from

A and at time t is writtenh(x, t). Then the wave equation

says that

1
v2

∂2h
∂t2

= ∂
2h
∂x2

.

Ignoring the constant 1/v2 for a moment, the left-hand

side of this equation represents the acceleration (in a

vertical direction) of the piece of string at distance x
from A. This should be proportional to the force act-

ing on it. What will govern this force? Well, suppose for

a moment that the portion of string containing x were

absolutely straight. Then the pull of the string on the

left of x would exactly cancel out the pull on the right

and the net force would be zero. So, once again, what

matters is how the height at x compares with the aver-

age height on either side: if the string lies above the

tangent line at x, then there will be an upwards force,

and if it lies below, then there will be a downwards one.

This is why the second derivative appears on the right-

hand side once again. How much force results from this

second derivative depends on factors such as the den-

sity and tautness of the string, which is where the con-

stant comes in. Since h and x are both distances, v2

has dimensions of (distance/time)2, which means that

v represents a speed, which is, in fact, the speed of

propagation of the wave.

Similar considerations yield the three-dimensional

wave equation, which is, as one might now expect,

1
v2

∂2h
∂t2

= ∂
2h
∂x2

+ ∂
2h
∂y2

+ ∂
2h
∂z2

,

or, more concisely,

1
v2

∂2h
∂t2

= ∆h.

One can be more concise still and write this equation as

�2h = 0, where �2h is shorthand for

∆h− 1
v2

∂2h
∂t2

.

The operation �2 is called the d’Alembertian, after

d’alembert [VI.19], who was the first to formulate the

wave equation.
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5.5 Integration

Suppose that a car drives down a long straight road for
one minute, and that you are told where it starts and
what its speed is during that minute. How can you work
out how far it has gone? If it travels at the same speed
for the whole minute then the problem is very simple
indeed—for example, if that speed is thirty miles per
hour then we can divide by sixty and see that it has gone
half a mile—but the problem becomes more interesting
if the speed varies. Then, instead of trying to give an
exact answer, one can use the following technique to
approximate it. First, write down the speed of the car
at the beginning of each of the sixty seconds that it is
traveling. Next, for each of those seconds, do a simple
calculation to see how far the car would have gone dur-
ing that second if the speed had remained exactly as
it was at the beginning of the second. Finally, add up
all these distances. Since one second is a short time, the
speed will not change very much during any one second,
so this procedure gives quite an accurate answer. More-
over, if you are not satisfied with this accuracy, then you
can improve it by using intervals that are shorter than a
second.

If you have done a first course in calculus, then you
may well have solved such problems in a completely dif-
ferent way. In a typical question, one is given an explicit
formula for the speed at time t—something like at +u,
for example—and in order to work out how far the car
has gone one “integrates” this function to obtain the for-
mula 1

2at
2 +ut for the distance traveled at time t. Here,

integration simply means the opposite of differentiation:
to find the integral of a function f is to find a function
g such that g′(t) = f(t). This makes sense, because if
g(t) is the distance traveled and f(t) is the speed, then
f(t) is indeed the rate of change of g(t).

However, antidifferentiation is not the definition of
integration. To see why not, consider the following ques-PUP: to solve

antecedent
problem spotted
by proofreader in
the next sentence,
Tim rewrote this
one. OK?

tion: what is the distance traveled if the speed at time t
is e−t2 . It is known that there is no nice function (which
means, roughly speaking, a function built up out of
standard ones such as polynomials, exponentials, log-
arithms, and trigonometric functions) with e−t2 as its
derivative, yet the question still makes good sense and
has a definite answer. (It is possible that you have heard
of a function Φ(t) that differentiates to e−t2/2, from
which it follows that Φ(t

√
2)/
√

2 differentiates to e−t2 .
However, this does not remove the difficulty, since Φ(t)
is defined as the integral of e−t2/2.)

In order to define integration in situations like this
where antidifferentiation runs into difficulties, we must

fall back on messy approximations of the kind discussed

earlier. A formal definition along such lines was given by

riemann [VI.48] in the mid nineteenth century. To see

what Riemann’s basic idea is, and to see also that integra-

tion, like differentiation, is a procedure that can usefully

be applied to functions of more than one variable, let us

look at another physical problem.

Suppose that you have a lump of impure rock and wish

to calculate its mass from its density. Suppose also that

this density is not constant but varies rather irregularly

through the rock. Perhaps there are even holes inside, so

that the density is zero in places. What should you do?

Riemann’s approach would be this. First, you enclose

the rock in a cuboid. For each point (x,y, z) in this

cuboid there is then an associated density d(x,y, z)
(which will be zero if (x,y, z) lies outside the rock or

inside a hole). Second, you divide the cuboid into a large

number of smaller cuboids. Third, in each of the small

cuboids you look for the point of lowest density (if any

point in the cuboid is not in the rock, then this density

will be zero) and the point of highest density. Let C be

one of the small cuboids and suppose that the lowest

and highest densities in C are a and b, respectively, and

that the volume of C is V . Then the mass of the part

of the rock that lies in C must lie between aV and bV .

Fourth, add up all the numbers aV that are obtained in

this way, and then add up all the numbers bV . If the

totals are M1 and M2, respectively, then the total mass

of rock has to lie between M1 and M2. Finally, repeat

this calculation for subdivisions into smaller and smaller

cuboids. As you do this, the resulting numbers M1 and

M2 will become closer and closer to each other, and you

will have better and better approximations to the mass

of the rock.

Similarly, his approach to the problem about the car

would be to divide the minute up into small intervals and

look at the minimum and maximum speeds during those

intervals. This would enable him to say for each interval

that the car had traveled a distance of at least a and at

most b. Adding up these sets of numbers, he could then

say that over the full minute the car must have traveled

a distance of at least D1 (the sum of the as) and at most

D2 (the sum of the bs).

For both these problems we had a function (den-

sity/speed) defined on a set (the cuboid/a minute of

time) and in a certain sense we wanted to work out the

“total amount” of the function. We did so by dividing

the set into small parts and doing simple calculations

in those parts to obtain approximations to this amount

from below and above. This process is what is known
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as (Riemann) integration. The following notation is com-
mon: if S is the set and f is the function, then the
total amount of f in S, known as the integral, is written∫
S f (x)dx. Here, x denotes a typical element of S. If,

as in the density example, the elements of S are points
(x,y, z), then vector notation such as

∫
S f (x)dx can

be used, though often it is not and the reader is left to
deduce from the context that an ordinary “x” denotes a
vector rather than a real number.

We have been at pains to distinguish integration from
antidifferentiation, but a famous theorem, known as the
fundamental theorem of calculus, asserts that the two
procedures do, in fact, give the same answer, at least
when the function in question has certain continuity
properties that all “sensible” functions have. So it is usu-
ally legitimate to regard integration as the opposite of
differentiation. More precisely, if f is continuous and
F(x) is defined to be

∫ x
a f(t)dt for some a, then F can

be differentiated and F ′(x) = f(x). That is, if you inte-
grate a continuous function and differentiate it again,
you get back to where you started. Going the other way
around, if F has a continuous derivative f and a < b,
then

∫ x
a f(t)dt = F(x)− F(a). This almost says that if

you differentiate F and then integrate it again, you get
back to F . Actually, you have to choose an arbitrary
number a and what you get is the function F with the
constant F(a) subtracted.

To give an idea of the sort of exceptions that arise if
one does not assume continuity, consider the so-called
Heaviside step function H(x), which is 0 when x < 0
and 1 when x � 0. This function has a jump at 0 and is
therefore not continuous. The integral J(x) of this func-
tion is 0 whenx < 0 andx whenx � 0, and for almost all
values of x we have J′(x) = H(x). However, the gradi-
ent of J suddenly changes at 0, so J is not differentiable
there and one cannot say that J′(0) = H(0) = 1.

5.6 Holomorphic Functions

One of the jewels in the crown of mathematics is com-
plex analysis, which is the study of differentiable func-
tions that take complex numbers to complex numbers.
Functions of this kind are called holomorphic.

At first, there seems to be nothing special about such
functions, since the definition of a derivative in this con-
text is no different from the definition for functions of a
real variable: if f is a function then the derivative f ′(z)
at a complex number z is defined to be the limit as h
tends to zero of (f (z + h) − f(z))/h. However, if we
look at this definition in a slightly different way (one
which we saw in section 5.3), we find that it is not alto-
gether easy for a complex function to be differentiable.

Recall from that section that differentiation means lin-
ear approximation. In the case of a complex function,
this means that we would like to approximate it by func-
tions of the form g(w) = λw + µ, where λ and µ are
complex numbers. (The approximation near z will be
g(w) = f(z) + f ′(z)(w − z), which gives λ = f ′(z)
and µ = f(z)− zf ′(z).)

Let us regard this situation geometrically. If λ �= 0 then
the effect of multiplying by λ is to expand z by some fac-
tor r and to rotate it by some angle θ. This means that
many transformations of the plane that we would ordi-
narily consider to be linear, such as reflections, shears,
or stretches, are ruled out. We need two real numbers
to specify λ (whether we write it in the form a + bi or
reiθ), but to specify a general linear transformation of
the plane takes four (see the discussion of matrices in
section 4.2). This reduction in the number of degrees of
freedom is expressed by a pair of differential equations
called the Cauchy–Riemann equations. Instead of writing
f(z) let us write u(x+ iy)+ iv(x+ iy), where x and y
are the real and imaginary parts of z and u(x+ iy) and
v(x+ iy) are the real and imaginary parts of f(x+ iy).
Then the linear approximation to f near z has the matrix⎛

⎜⎜⎜⎝
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

⎞
⎟⎟⎟⎠ .

The matrix of an expansion and rotation always has the
form ( a b

−b a ), from which we deduce that

∂u
∂x
= ∂v
∂y

and
∂u
∂y
= −∂v

∂x
.

These are the Cauchy–Riemann equations. One conse-
quence of these equations is that

∂2u
∂x2

+ ∂
2u
∂y2

= ∂2v
∂x∂y

− ∂2v
∂y∂x

= 0.

(It is not obvious that the necessary conditions hold for
the symmetry of the mixed partial derivatives, but when
f is holomorphic they do.) Therefore, u satisfies the
Laplace equation (which was discussed in section 5.4).
A similar argument shows that v does as well.

These facts begin to suggest that complex differentia-
bility is a much stronger condition than real differen-
tiability and that we should expect holomorphic func-
tions to have interesting properties. For the remainder
of this subsection, let us look at a few of the remarkable
properties that they do indeed have.

The first is related to the fundamental theorem
of calculus (discussed in the previous subsection). Sup- PUP: change to

cross-reference OK
here?pose that F is a holomorphic function and we are given

its derivative f and the value of F(u) for some complex
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number u. How can we reconstruct F? An approximate
method is as follows. Let w be another complex num-
ber and let us try to work out F(w). We take a sequence
of points z0, z1, . . . , zn with z0 = u and zn = z, and
with the differences |z1 − z0|, |z2 − z1|, . . . , |zn − zn−1|
all small. We can then approximate F(zi+1)− F(zi) by
(zi+1 − zi)f (zi). It follows that F(w) − F(u), which
equals F(zn) − F(z0), is approximated by the sum of
all the (zi+1 − zi)f (zi). (Since we have added together
many small errors, it is not obvious that this approxi-
mation is a good one, but it turns out that it is.) We can
imagine a number z that starts at u and follows a path P
tow by jumping from one zi to another in small steps of
δz = zi+1 − zi. In the limit as n goes to infinity and the
steps δz go to zero we obtain a so-called path integral,
which is denoted

∫
P f (z)dz.

The above argument has the consequence that if the
path P begins and ends at the same point u, then
the path integral

∫
P f (z)dz is zero. Equivalently, if two

paths P1 and P2 have the same starting point u and the
same endpointw, then the path integrals

∫
P1
f(z)dz and∫

P2
f(z)dz are the same, since they both give the value

F(w)− F(u).
Of course, in order to establish this, we made the big

assumption that f was the derivative of a function F .
Cauchy’s theorem says that the same conclusion is true
if f is holomorphic. That is, rather than requiring f to
be the derivative of another function, it asks for f itself
to have a derivative. If that is the case, then any path
integral of f depends only on where the path begins and
ends. What is more, these path integrals can be used to
define a function F that differentiates to f , so a function
with a derivative automatically has an antiderivative.

It is not necessary for the function f to be defined on
the whole of C for Cauchy’s theorem to be valid: every-
thing remains true if we restrict attention to a simply
connected domain, which means an open set with no
holes in it. If there are holes, then two path integrals
may differ if the paths go around the holes in different
ways. Thus, path integrals have a close connection with
the topology of subsets of the plane, an observation that
has many ramifications throughout modern geometry.
For more on topology, see section 6.4 of this article and
algebraic topology [IV.10].

A very surprising fact, which can be deduced from
Cauchy’s theorem, is that if f is holomorphic then it
can be differentiated twice. (This is completely untrue
of real-valued functions: consider, for example, the func-
tion f where f(x) = 0 when x < 0 and f(x) = x2 when
x � 0.) It follows that f ′ is holomorphic, so it too can
be differentiated twice. Continuing, one finds that f can

be differentiated any number of times. Thus, for com-
plex functions differentiability implies infinite differen- PUP: proofreader

wanted a comma
here but Tim
would strongly
prefer not to insert
one. OK to keep it
as it is I presume?

tiability. (This property is what is used to establish the
symmetry, and even the existence, of the mixed partial
derivatives mentioned earlier.)

A closely related fact is that wherever a holomorphic
function is defined it can be expanded in a power series.
That is, if f is defined and differentiable everywhere on
an open disk of radius R about w, then it will be given
by a formula of the form

f(z) =
∞∑
n=0

an(z −w)n

valid everywhere in that disk. This is called the Taylor
expansion of f .

Another fundamental property of holomorphic func-
tions, one that shows just how “rigid” they are, is that
their entire behavior is determined just by what they do
in a small region. That is, if f and g are holomorphic and
they take the same values in some tiny disk, then they
must take the same values everywhere. This remarkable
fact allows a process of analytic continuation. If it is diffi-
cult to define a holomorphic function f everywhere you
want it defined, then you can simply define it in some
small region and say that elsewhere it takes the only
possible values that are consistent with the ones that
you have just specified. This is how the famous riemann
zeta function [IV.4 §3] is conventionally defined.

6 What Is Geometry?

It is not easy to do justice to geometry in this article
because the fundamental concepts of the subject are
either too simple to need explaining—for example, there
is no need to say here what a circle, line, or plane is—
or sufficiently advanced that they are better discussed in
parts III and IV of the book. However, if you have not met
the advanced concepts and have no idea what modern
geometry is like, then you will get much more out of this
book if you understand two basic ideas: the relationship
between geometry and symmetry, and the notion of a
manifold. These ideas will occupy us for the rest of the
article.

6.1 Geometry and Symmetry Groups

Broadly speaking, geometry is the part of mathemat-
ics that involves the sort of language that one would
conventionally regard as geometrical, with words such
as “point,” “line,” “plane,” “space,” “curve,” “sphere,”
“cube,” “distance,” and “angle” playing a prominent
role. However, there is a more sophisticated view, first
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advocated by klein [VI.56], which regards transforma-
tions as the true subject matter of geometry. So, to the
above list one should add words like “reflection,” “rota-
tion,” “translation,” “stretch,” “shear,” and “projection,”
together with slightly more nebulous concepts such as
“angle-preserving map” or “continuous deformation.”

As was discussed in section 2.1, transformations go
hand in hand with groups, and for this reason there
is an intimate connection between geometry and group
theory. Indeed, given any group of transformations,
there is a corresponding notion of geometry, in which
one studies the phenomena that are unaffected by trans-
formations in that group. In particular, two shapes are
regarded as equivalent if one can be turned into the
other by means of one of the transformations in the
group. Different groups will of course lead to differ-
ent notions of equivalence, and for this reason mathe-
maticians frequently talk about geometries, rather than
about a single monolithic subject called geometry. This
subsection contains brief descriptions of some of the
most important geometries and their associated groups
of transformations.

6.2 Euclidean Geometry

Euclidean geometry is what most people would think
of as “ordinary” geometry, and, not surprisingly given
its name, it includes the basic theorems of Greek geom-
etry that were the staple of geometers for thousands of
years. For example, the theorem that the three angles of
a triangle add up to 180◦ belongs to Euclidean geometry.

To understand Euclidean geometry from a transfor-
mational viewpoint, we need to say how many dimen-
sions we are working in, and we must of course specify
a group of transformations. The appropriate group is the
group of rigid transformations. These can be thought of
in two different ways. One is that they are the transfor-
mations of the plane, or of space, or more generally of
Rn for somen, that preserve distance. That is, T is a rigid
transformation if, given any two points x and y , the dis-
tance between Tx and Ty is always the same as the dis-
tance between x and y . (In dimensions greater than 3,
distance is defined in a way that naturally generalizes
the Pythagorean formula. See metric spaces [III.58] for
more details.)

It turns out that every such transformation can be
realized as a combination of rotations, reflections, and
translations, and this gives us a more concrete way to
think about the group. Euclidean geometry, in other
words, is the study of concepts that do not change when
you rotate, reflect, or translate, and these include points,

lines, planes, circles, spheres, distance, angle, length,
area, and volume. The rotations of Rn form an important
group, the special orthogonal group, known as SO(n).
The larger orthogonal group O(n) includes reflections
as well. (It is not quite obvious how to define a “rota-
tion” of n-dimensional space, but it is not too hard to
do. An orthogonal map of Rn is a linear map T that pre-
serves distances, in the sense that d(Tx, Ty) is always
the same as d(x,y). It is a rotation if its determinant
[III.15] is 1. The only other possibility for the determi-
nant of a distance-preserving map is −1. Such maps are
like reflections in that they turn space “inside out.”)

6.3 Affine Geometry

There are many linear maps besides rotations and reflec-
tions. What happens if we enlarge our group from SO(n)
or O(n) to include as many of them as possible? For a
transformation to be part of a group it must be invertible
and not all linear maps are, so the natural group to look
at is the group GLn(R) of all invertible linear transfor-
mations of Rn, a group that we first met in section 4.2.
These maps all leave the origin fixed, but if we want
we can incorporate translations and consider a larger
group that consists of all transformations of the form
x �→ Tx+b, where b is a fixed vector and T is an invert-
ible linear map. The resulting geometry is called affine
geometry.

Since linear maps include stretches and shears, they
preserve neither distance nor angle, so these are not
concepts of affine geometry. However, points, lines, and
planes remain as points, lines, and planes after an invert-
ible linear map and a translation, so these concepts do
belong to affine geometry. Another affine concept is that
of two lines being parallel. (That is, although angles in
general are not preserved by linear maps, angles of zero
are.) This means that although there is no such thing as
a square or a rectangle in affine geometry, one can still
talk about a parallelogram. Similarly, one cannot talk of
circles but one can talk of ellipses, since a linear map
transformation of an ellipse is another ellipse (provided
that one regards a circle as a special kind of ellipse).

6.4 Topology

The idea that the geometry associated with a group
of transformations “studies the concepts that are pre-
served by all the transformations” can be made more
precise using the notion of equivalence relations
[I.2 §2.3]. Indeed, let G be a group of transformations of
Rn. We might think of a d-dimensional “shape” as being
a subset S of Rn, but if we are doing G-geometry, then
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Figure 1 A sphere morphing into a cube.

we do not want to distinguish between a set S and any
other set we can obtain from it using a transformation in
G. So in that case we say that the two shapes are equiva-
lent. For example, two shapes are equivalent in Euclidean
geometry if and only if they are congruent in the usual
sense, whereas in two-dimensional affine geometry all
parallelograms are equivalent, as are all ellipses. One can
think of the basic objects of G-geometry as equivalence
classes of shapes rather than the shapes themselves.

Topology can be thought of as the geometry that
arises when we use a particularly generous notion of
equivalence, saying that two shapes are equivalent, or
homeomorphic, to use the technical term, if each can be
“continuously deformed” into the other. For example, a
sphere and a cube are equivalent in this sense, as figure 1
illustrates.

Because there are very many continuous deforma-
tions, it is quite hard to prove that two shapes are not
equivalent in this sense. For example, it may seem obvi-
ous that a sphere (this means the surface of a ball rather
than the solid ball) cannot be continuously deformed
into a torus (the shape of the surface of a doughnut
of the kind that has a hole in it), since they are fun-
damentally different shapes—one has a “hole” and the
other does not. However, it is not easy to turn this intu-
ition into a rigorous argument. For more on this kind
of problem, see invariants [I.4 §2.2] and differential
topology [IV.9].

6.5 Spherical Geometry

We have been steadily relaxing our requirements for two
shapes to be equivalent, by allowing more and more
transformations. Now let us tighten up again and look
at spherical geometry. Here the universe is no longer Rn

but the n-dimensional sphere Sn, which is defined to be
the surface of the (n+ 1)-dimensional ball, or, to put it
more algebraically, the set of all points (x1, x2, . . . , xn+1)
in Rn+1 such that x2

1 + x2
2 + · · · + x2

n+1 = 1. Just as the
surface of a three-dimensional ball is two dimensional,
so this set is n dimensional. We shall discuss the case
n = 2 here, but it is easy to generalize the discussion to
larger n.

The appropriate group of transformations is SO(3):
the group of all rotations about some axis that goes

through the origin. (One could allow reflections as well
and take O(3).) These are symmetries of the sphere S2,
and that is how we regard them in spherical geometry,
rather than as transformations of the whole of R3.

Among the concepts that make sense in spherical
geometry are line, distance, and angle. It may seem odd
to talk about a line if one is confined to the surface of
a ball, but a “spherical line” is not a line in the usual
sense. Rather, it is a subset of S2 obtained by intersect-
ing S2 with a plane through the origin. This produces a
great circle, that is, a circle of radius 1, which is as large
as it can be given that it lives inside a sphere of radius 1.

The reason that a great circle deserves to be thought
of as some sort of line is that the shortest path between
any two points x and y in S2 will always be along a
great circle, provided that the path is confined to S2.
This is a very natural restriction to make, since we are
regarding S2 as our “universe.” It is also a restriction
of some practical relevance, since the shortest sensible
route between two distant points on Earth’s surface will
not be the straight-line route that burrows hundreds of
miles underground.

The distance between two points x and y is defined to
be the length of the shortest path from x to y that lies
entirely in S2. (If x and y are opposite each other, then
there are infinitely many shortest paths, all of length π ,
so the distance between x and y is π .) How about the
angle between two spherical lines? Well, the lines are
intersections of S2 with two planes, so one can define it
to be the angle between these two planes in the Euclidean
sense. A more aesthetically pleasing way to view this,
because it does not involve ideas external to the sphere,
is to notice that if you look at a very small region about
one of the two points where two spherical lines cross,
then that portion of the sphere will be almost flat, and
the lines almost straight. So you can define the angle to
be the usual angle between the “limiting” straight lines
inside the “limiting” plane.

Spherical geometry differs from Euclidean geometry
in several interesting ways. For example, the angles of
a spherical triangle always add up to more than 180◦.
Indeed, if you take as the vertices the North Pole, a point
on the equator, and a second point a quarter of the way
around the equator from the first, then you obtain a tri-
angle with three right angles. The smaller a triangle, the
flatter it becomes, and so the closer the sum of its angles
comes to 180◦. There is a beautiful theorem that gives a
precise expression to this: if we switch to radians, and
if we have a spherical triangle with angles α, β, and γ,
then its area is α+β+γ−π . (For example, this formula
tells us that the triangle with three angles of 1

2π has area
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1
2π , which indeed it does as the surface area of a ball of
radius 1 is 4π and this triangle occupies one-eighth of
the surface.)

6.6 Hyperbolic Geometry

So far, the idea of defining geometries with reference
to sets of transformations may look like nothing more
than a useful way to view the subject, a unified approach
to what would otherwise be rather different-looking
aspects. However, when it comes to hyperbolic geom-
etry, the transformational approach becomes indispens-
able, for reasons that will be explained in a moment.

The group of transformations that produces hyper-
bolic geometry is called PSL(2,R), the projective special
linear group in two dimensions. One way to present this
group is as follows. The special linear group SL(2,R) is
the set of all matrices ( a bc d ) with determinant [III.15]
ad− bc equal to 1. (These form a group because the
product of two matrices with determinant 1 again has
determinant 1.) To make this “projective,” one then
regards each matrix A as equivalent to −A: for example,
the matrices ( 3 −1

−5 2 ) and (−3 1
5 −2 ) are equivalent.

To get from this group to the geometry one must first
interpret it as a group of transformations of some two-
dimensional set of points. Once we have done this, we
have what is called a model of two-dimensional hyper-
bolic geometry. The subtlety is that, unlike with spheri-
cal geometry, where the sphere was the “obvious” model,
there is no single model of hyperbolic geometry that is
clearly the best. (In fact, there are alternative models of
spherical geometry. For example, there is a natural way
of associating with each rotation of R3 a transformation
of R2 with a “point at infinity” added, so the extended
plane can be used as a model of spherical geometry.) The
three most commonly used models of hyperbolic geom-
etry are called the half-plane model, the disk model, and
the hyperboloid model.

The half-plane model is the one most directly asso-
ciated with the group PSL(2,R). The set in question is
the upper half-plane of the complex numbers C, that is,
the set of all complex numbers z = x + yi such that
y > 0. Given a matrix ( a bc d ), the corresponding trans-
formation is the one that takes the point z to the point
(az+b)/(cz+d). (Notice that if we replace a, b, c, and d
by their negatives, then we get the same transformation.)
The condition ad−bc = 1 can be used to show that the
transformed point will still lie in the upper half-plane,
and also that the transformation can be inverted.

What this does not yet do is tell us anything about
distances, and it is here that we need the group to “gen-

erate” the geometry. If we are to have a notion of dis-
tance d that is sensible from the perspective of our
group of transformations, then it is important that the
transformations should preserve it. That is, if T is one
of the transformations and z and w are two points in
the upper half-plane, then d(T(z), T(w)) should always
be the same as d(z,w). It turns out that there is essen-
tially only one definition of distance that has this prop-
erty, and that is the sense in which the group defines the
geometry. (One could of course multiply all distances by
some constant factor such as 3, but this would be like
measuring distances in feet instead of yards, rather than
a genuine difference in the geometry.)

This distance has some properties that at first seem
odd. For example, a typical hyperbolic line takes the form
of a semicircular arc with endpoints on the real axis.
However, it is semicircular only from the point of view of
the Euclidean geometry of C: from a hyperbolic perspec-
tive it would be just as odd to regard a Euclidean straight
line as straight. The reason for the discrepancy is that
hyperbolic distances become larger and larger, relative
to Euclidean ones, the closer you get to the real axis. To
get from a point z to another point w, it is therefore
shorter to take a “detour” away from the real axis, and
the best detour turns out to be along an arc of the circle
that goes through z andw and cuts the real axis at right
angles. (If z andw are on the same vertical line, then one
obtains a “degenerate circle,” namely that vertical line.)
These facts are no more paradoxical than the fact that
a flat map of the world involves distortions of spher-
ical geometry, making Greenland very large, for exam-
ple. The half-plane model is like a “map” of a geometric
structure, the hyperbolic plane, that in reality has a very
different shape.

One of the most famous properties of two-dimen-
sional hyperbolic geometry is that it provides a geometry
in which Euclid’s parallel postulate fails to hold. That is,
it is possible to have a hyperbolic line L, a point x not
on the line, and two different hyperbolic lines through
x, neither of which meets L. All the other axioms of
Euclidean geometry are, when suitably interpreted, true
of hyperbolic geometry as well. It follows that the paral-
lel postulate cannot be deduced from those axioms. This
discovery, associated with gauss [VI.25], bolyai [VI.33],
and lobachevskii [VI.30], solved a problem that had
bothered mathematicians for over two thousand years.

Another property complements the result about the
sum of the angles of spherical and Euclidean triangles.
There is a natural notion of hyperbolic area, and the area
of a hyperbolic triangle with anglesα, β, and γ isπ−α−
β− γ. Thus, in the hyperbolic plane α+ β+ γ is always
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Figure 2 A tessellation of the hyperbolic disk.

less than π , and it almost equals π when the triangle
is very small. These properties of angle sums reflect the
fact that the sphere has positive curvature [III.13], the
Euclidean plane is “flat,” and the hyperbolic plane has
negative curvature.

The disk model, conceived in a famous moment of
inspiration by poincaré [VI.60] as he was getting into
a bus, takes as its set of points the open unit disk in C,
that is, the set D of all complex numbers with modu-
lus less than 1. This time, a typical transformation takes
the following form. One takes a real number θ and a
complex number a from inside D, and sends each z
in D to the point eiθ(z − a)/(1 − āz). It is not com-
pletely obvious that these transformations form a group,
and still less that the group is isomorphic to PSL(2,R).
However, it turns out that the function that takes z to
−(iz + 1)/(z + i) maps the unit disk to the upper half-
plane and vice versa. This shows that the two models
give the same geometry and can be used to transfer
results from one to the other.

As with the half-plane model, distances become larger,
relative to Euclidean distances, as you approach the
boundary of the disk: from a hyperbolic perspective, the
diameter of the disk is infinite and it does not really
have a boundary. Figure 2 shows a tessellation of the
disk by shapes that are congruent in the sense that any
one can be turned into any other by means of a transfor-
mation from the group. Thus, even though they do not
look identical, within hyperbolic geometry they all have
the same size and shape. Straight lines in the disk model
are either arcs of (Euclidean) circles that meet the unit
circle at right angles, or segments of (Euclidean) straight
lines that pass through the center of the disk.

The hyperboloid model is the model that explains why
the geometry is called hyperbolic. This time the set is
the hyperboloid consisting of all points (x,y, z) ∈ R3

such that z > 0 and x2 +y2 = 1+ z2. This is the hyper-
boloid of revolution about the z-axis of the hyperbola

x2 = 1+z2 in the plane y = 0. A general transformation
in the group is a sort of “rotation” of the hyperboloid,
and can be built up from genuine rotations about the z-
axis, and “hyperbolic rotations” of the xz-plane, which
have matrices of the form(

coshθ sinhθ
sinhθ coshθ

)
.

Just as an ordinary rotation preserves the unit circle, one
of these hyperbolic rotations preserves the hyperbola
x2 = 1 + z2, moving points around inside it. Again, it
is not quite obvious that this gives the same group of
transformations, but it does, and the hyperboloid model
is equivalent to the other two.

6.7 Projective Geometry

Projective geometry is regarded by many as an old-fash-
ioned subject, and it is no longer taught in schools, but
it still has an important role to play in modern mathe-
matics. We shall concentrate here on the real projective
plane, but projective geometry is possible in any number
of dimensions and with scalars in any field. This makes
it particularly useful to algebraic geometers.

Here are two ways of regarding the projective plane.
The first is that the set of points is the ordinary plane,
together with a “point at infinity.” The group of trans-
formations consists of functions known as projections.
To understand what a projection is, imagine two planes
P and P′ in space, and a point x that is not in either of
them. We can “project” P onto P′ as follows. If a is a
point in P, then its image φ(a) is the point where the
line joining x to a meets P′. (If this line is parallel to
P′, then φ(a) is the point at infinity of P′.) Thus, if you
are at x and a picture is drawn on the plane P, then its
image under the projection φ will be the picture drawn
on P′ that to you looks exactly the same. In fact, how-
ever, it will have been distorted, so the transformation
φ has made a difference to the shape. To turn φ into
a transformation of P itself, one can follow it by a rigid
transformation that moves P′ back to where P is.

Such projections do not preserve distances, but
among the interesting concepts that they do preserve are
points, lines, quantities known as cross-ratios, and, most
famously, conic sections. A conic section is the intersec-
tion of a plane with a cone, and it can be a circle, an
ellipse, a parabola, or a hyperbola. From the point of
view of projective geometry, these are all the same kind
of object (just as, in affine geometry, one can talk about
ellipses but there is no special ellipse called a circle).

A second view of the projective plane is that it is the
set of all lines in R3 that go through the origin. Since a
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line is determined by the two points where it intersects
the unit sphere, one can regard this set as a sphere, but
with the significant difference that opposite points are
regarded as the same—because they correspond to the
same line. (This is quite hard to imagine, but not impos-
sible. Suppose that, whatever happened on one side of
the world, an identical copy of that event happened at
the exactly corresponding place on the opposite side. If
one was used to this situation and traveled from Paris,
say, to the copy of Paris on the other side of the world,
would one actually think that it was a different place?
It would look the same and appear to have all the same
people, and just as you arrived an identical copy of you,
whom you could never meet, would be arriving in the
“real” Paris. It might under such circumstances be more
natural to say that there was only one Paris and only one
you and that the world was not a sphere but a projective
plane.)

Under this view, a typical transformation of the pro-
jective plane is obtained as follows. Take any invertible
linear map, and apply it to R3. This takes lines through
the origin to lines through the origin, and can there-
fore be thought of as a function from the projective
plane to itself. If one invertible linear map is a multi-
ple of another, then they will have the same effect on
all lines, so the resulting group of transformations is
like GL3(R), except that all nonzero multiples of any
given matrix are regarded as equivalent. This group
is called the projective special linear group PSL(3,R),
and it is the three-dimensional equivalent of PSL(2,R),
which we have already met. Since PSL(3,R) is bigger
than PSL(2,R), the projective plane comes with a richer
set of transformations than the hyperbolic plane, which
is why fewer geometrical properties are preserved. (For
example, as we have seen, there is a useful notion of
hyperbolic distance, but no obvious notion of projective
distance.)

6.8 Lorentz Geometry

This is a geometry used in the theory of special relativity
to model four-dimensional spacetime, otherwise known
as Minkowski space. The main difference between it and
four-dimensional Euclidean geometry is that, instead
of the usual notion of distance between two points
(t, x,y, z) and (t′, x′, y ′, z′), one considers the quantity

−(t − t′)2 + (x − x′)2 + (y −y ′)2 + (z − z′)2,
which would be the square of the Euclidean distance
were it not for the all-important minus sign before
(t − t′)2. This reflects the fact that space and time are
significantly different (though intertwined).

A Lorentz transformation is a linear map from R4 to R4

that preserves these “generalized distances.” Letting g
be the linear map that sends (t, x,y, z) to (−t, x,y, z)
and letting G be the corresponding matrix (which has
−1,1,1,1 down the diagonal and 0 everywhere else),
we can define a Lorentz transformation abstractly as
one whose matrix Λ satisfies ΛGΛT = I, where I is
the 4× 4 identity matrix and ΛT is the transpose of Λ.
(The transpose of a matrix A is the matrix B defined by
Bij = Aji.)

A point (t, x,y, z) is said to be spacelike if −t2+x2+
y2 + z2 > 0, and timelike if −t2 + x2 + y2 + z2 < 0. If
−t2 + x2 + y2 + z2 = 0, then the point lies in the light
cone. All these are genuine concepts of Lorentz geometry
because they are preserved by Lorentz transformations.

Lorentzian geometry is also of fundamental impor-
tance to general relativity, which can be thought of as
the study of Lorentzian manifolds. These are closely
related to Riemannian manifolds, which are discussed
in section 6.10. For a discussion of general relativity,
see general relativity and the einstein equations
[IV.17].

6.9 Manifolds and Differential Geometry

To somebody who has not been taught otherwise, it is
natural to think that Earth is flat, or rather that it con-
sists of a flat surface on top of which there are buildings,
mountains, and so on. However, we now know that it is in
fact more like a sphere, appearing to be flat only because
it is so large. There are various kinds of evidence for this.
One is that if you stand on a cliff by the sea then you can
see a definite horizon, not too far away, over which ships
disappear. This would be hard to explain if Earth were
genuinely flat. Another is that if you travel far enough
in what feels like a straight line then you eventually get
back to where you started. A third is that if you travel
along a triangular route and the triangle is a large one,
then you will be able to detect that its three angles add
up to more than 180◦.

It is also very natural to believe that the geometry that
best models that of the universe is three-dimensional
Euclidean geometry, or what one might think of as “nor-
mal” geometry. However, this could be just as much of
a mistake as believing that two-dimensional Euclidean
geometry is the best model for Earth’s surface.

Indeed, one can immediately improve on it by consid-
ering Lorentz geometry as a model of spacetime, but
even if there were no theory of special relativity, our
astronomical observations would give us no particular
reason to suppose that Euclidean geometry was the best
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model for the universe. Why should we be so sure that
we would not obtain a better model by taking the three-
dimensional surface of a very large four-dimensional
sphere? This might feel like “normal” space in just the
way that the surface of Earth feels like a “normal” plane
unless you travel large distances. Perhaps if you trav-
eled far enough in a rocket without changing your course
then you would end up where you started.

It is easy to describe “normal” space mathematically:
one just associates with each point in space a triple of
coordinates (x,y, z) in the usual way. How might we
describe a huge “spherical” space? It is slightly harder,
but not much: one can give each point four coordin-
ates (x,y, z,w) but add the condition that these must
satisfy the equation x2 + y2 + z2 +w2 = R2 for some
fixed R that we think of as the “radius” of the universe.
This describes the three-dimensional surface of a four-
dimensional sphere of radius R in just the same way
that the equation x2 + y2 + z2 = R2 describes the two-
dimensional surface of a three-dimensional sphere of
radius R.

A possible objection to this approach is that it seems
to rely on the rather implausible idea that the universe
lives in some larger unobserved four-dimensional space.
However, this objection can be answered. The object we
have just defined, the 3-sphere S3, can also be described
in what is known as an intrinsic way: that is, without
reference to some surrounding space. The easiest way
to see this is to discuss the 2-sphere first, in order to
draw an analogy.

Let us therefore imagine a planet covered with calm
water. If you drop a large rock into the water at the
North Pole, a wave will propagate out in a circle of ever-
increasing radius. (At any one moment, it will be a circle
of constant latitude.) In due course, however, this circle
will reach the equator, after which it will start to shrink,
until eventually the whole wave reaches the South Pole
at once, in a sudden burst of energy.

Now imagine setting off a three-dimensional wave in
space—it could, for example, be a light wave caused
by the switching on of a bright light. The front of this
wave would now be not a circle but an ever-expanding
spherical surface. It is logically possible that this surface
could expand until it became very large and then con-
tract again, not by shrinking back to where it started,
but by turning itself inside out, so to speak, and shrink-
ing to another point on the opposite side of the uni-
verse. (Notice that in the two-dimensional example, what
you want to call the inside of the circle changes when
the circle passes the equator.) With a bit of effort,
one can visualize this possibility, and there is no need

to appeal to the existence of a fourth dimension in
order to do so. More to the point, this account can be
turned into a mathematically coherent and genuinely
three-dimensional description of the 3-sphere.

A different and more general approach is to use what
is called an atlas. An atlas of the world (in the nor-
mal, everyday sense) consists of a number of flat pages,
together with an indication of their overlaps: that is, of
how parts of some pages correspond to parts of others.
Now, although such an atlas is mapping out an exter-
nal object that lives in a three-dimensional universe, the
spherical geometry of Earth’s surface can be read off
from the atlas alone. It may be much less convenient to
do this but it is possible: rotations, for example, might be
described by saying that such-and-such a part of page 17
moved to a similar but slightly distorted part of page 24,
and so on.

Not only is this possible, but one can define a surface
by means of two-dimensional atlases. For example, there
is a mathematically neat “atlas” of the 2-sphere that con-
sists of just two pages, both of them circular. One is
a map of the Northern Hemisphere plus a little bit of
the Southern Hemisphere near the equator (to provide
a small overlap) and the other is a map of the South-
ern Hemisphere with a bit of the Northern Hemisphere.
Because these maps are flat, they necessarily involve
some distortion, but one can specify what this distortion
is.

The idea of an atlas can easily be generalized to three
dimensions. A “page” now becomes a portion of three-
dimensional space. The technical term is not “page” but
“chart,” and a three-dimensional atlas is a collection of
charts, again with specifications of which parts of one
chart correspond to which parts of another. A possible
atlas of the 3-sphere, generalizing the simple atlas of
the 2-sphere just discussed, consists of two solid three-
dimensional balls. There is a correspondence between
points toward the edge of one of these balls and points
toward the edge of the other, and this can be used to
describe the geometry: as you travel toward the edge of
one ball you find yourself in the overlapping region, so
you are also in the other ball. As you go further, you are
off the map as far as the first ball is concerned, but the
second ball has by that stage taken over.

The 2-sphere and the 3-sphere are basic examples of
manifolds. Other examples that we have already met in
this section are the torus and the projective plane. Infor-
mally, a d-dimensional manifold, or d-manifold, is any
geometrical object M with the property that every point
x in M is surrounded by what feels like a portion of d-
dimensional Euclidean space. So, because small parts of
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a sphere, torus, or projective plane are very close to pla-
nar, they are all 2-manifolds, though when the dimen-
sion is two the word surface is more usual. (However,
it is important to remember that a “surface” need not
be the surface of anything.) Similarly, the 3-sphere is a
3-manifold.

The formal definition of a manifold uses the idea of
atlases: indeed, one says that the atlas is a manifold. This
is a typical mathematician’s use of the word “is,” and it
should not be confused with the normal use. In practice,
it is unusual to think of a manifold as a collection of
charts with rules for how parts of them correspond, but
the definition in terms of charts and atlases turns out
to be the most convenient when one wishes to reason
about manifolds in general rather than discussing spe-
cific examples. For the purposes of this book, it may be
better to think of ad-manifold in the “extrinsic” way that
we first thought about the 3-sphere: as a d-dimensional
“hypersurface” living in some higher-dimensional space.
Indeed, there is a famous theorem of Nash that states
that all manifolds arise in this way. Note, however, that
it is not always easy to find a simple formula for defining
such a hypersurface. For example, while the 2-sphere is
described by the simple formula x2+y2+z2 = 1 and the
torus by the slightly more complicated and more artifi-
cial formula (r − 2)2 + z2 = 1, where r is shorthand
for

√
x2 +y2, it is not easy to come up with a formula

that describes a two-holed torus. Even the usual torus
is far more easily described using quotients, as we did
in section 3.3. Quotients can also be used to define a
two-holed torus (see fuchsian groups [III.28]), and the
reason one is confident that the result is a manifold is
that every point has a small neighborhood that looks
like a small part of the Euclidean plane. In general, a
d-dimensional manifold can be thought of as any con-
struction that gives rise to an object that is “locally like
Euclidean space of d dimensions.”

An extremely important feature of manifolds is that
calculus is possible for functions defined on them.
Roughly speaking, ifM is a manifold and f is a function
from M to R, then to see whether f is differentiable at a
point x in M you first find a chart that contains x (or a
representation of it), and regard f as a function defined
on the chart instead. Since the chart is a portion of the
d-dimensional Euclidean space Rd and we can differen-
tiate functions defined on such sets, the notion of dif-
ferentiability now makes sense for f . Of course, for this
definition to work for the manifold, it is important that
if x belongs to two overlapping charts, then the answer
will be the same for both. This is guaranteed if the func-
tion that gives the correspondence between the overlap-

ping parts (known as a transition function) is itself differ-
entiable. Manifolds with this property are called differ-
entiable manifolds: manifolds for which the transition
functions are continuous but not necessarily differen-
tiable are called topological manifolds. The availability
of calculus makes the theory of differentiable manifolds
very different from that of topological manifolds.

The above ideas generalize easily from real-valued
functions to functions from M to Rd, or from M to M′,
where M′ is another manifold. However, it is easier to
judge whether a function defined on a manifold is dif-
ferentiable than it is to say what the derivative is. The
derivative at some point x of a function from Rn to Rm

is a linear map, and so is the derivative of a function
defined on a manifold. However, the domain of the lin-
ear map is not the manifold itself, which is not usually
a vector space, but rather the so-called tangent space at
the point x in question.

For more details on this and on manifolds in general,
see differential topology [IV.9].

6.10 Riemannian Metrics

Suppose you are given two points P and Q on a sphere.
How do you determine the distance between them? The
answer depends on how the sphere is defined. If it is the
set of all points (x,y, z) such that x2 + y2 + z2 = 1
then P and Q are points in R3. One can therefore use the
Pythagorean theorem to calculate the distance between
them. For example, the distance between the points
(1,0,0) and (0,1,0) is

√
2.

However, do we really want to measure the length of
the line segment PQ? This segment does not lie in the
sphere itself, so to use it as a means of defining length
does not sit at all well with the idea of a manifold as
an intrinsically defined object. Fortunately, as we saw
earlier in the discussion of spherical geometry, there is
another natural definition that avoids this problem: we
can define the distance between P and Q as the length
of the shortest path from P to Q that lies entirely within
the sphere.

Now let us suppose that we wish to talk more gener-
ally about distances between points in manifolds. If the
manifold is presented to us as a hypersurface in some
bigger space, then we can use lengths of shortest paths
as we did in the sphere. But suppose that the manifold is
presented differently and all we have is a way of demon-
strating that every point is contained in a chart—that is,
has a neighborhood that can be associated with a por-
tion ofd-dimensional Euclidean space. (For the purposes
of this discussion, nothing is lost if one takes d to be
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2 throughout, in which case there is a correspondence
between the neighborhood and a portion of the plane.)
One idea is to define the distance between the two points
to be the distance between the corresponding points in
the chart, but this raises at least three problems.

The first is that the points P and Q that we are looking
at might belong to different charts. This, however, is not
too much of a problem, since all we actually need to do is
calculate lengths of paths, and that can be done provided
we have a way of defining distances between points that
are very close together, in which case we can find a single
chart that contains them both.

The second problem, which is much more serious, is
that for any one manifold there are many ways of choos-
ing the charts, so this idea does not lead to a single
notion of distance for the manifold. Worse still, even if
one fixes one set of charts, these charts will overlap, and
it may not be possible to make the notions of distance
compatible where the overlap occurs.

The third problem is related to the second. The surface
of a sphere is curved, whereas the charts of any atlas (in
either the everyday or the mathematical sense) are flat.
Therefore, the distances in the charts cannot correspond
exactly to the lengths of shortest paths in the sphere
itself.

The single most important moral to draw from the
above problems is that if we wish to define a notion of
distance for a given manifold, we have a great deal of
choice about how to do so. Very roughly, a Riemannian
metric is a way of making such a choice.

A little less roughly, a metric means a sensible
notion of distance (the precise definition can be found
in [III.58]). A Riemannian metric is a way of determin-
ing infinitesimal distances. These infinitesimal distances
can be used to calculate lengths of paths, and then the
distance between two points can be defined as the length
of the shortest path between them. To see how this is
done, let us first think about lengths of paths in the ordi-
nary Euclidean plane. Suppose that (x,y) belongs to a
path and (x+δx,y +δy) is another point on the path,
very close to (x,y). Then the distance between the two
points is

√
δx2 + δy2. To calculate the length of a suffi-

ciently smooth path, one can choose a large number of
points along the path, each one very close to the next,
and add up their distances. This gives a good approxi-
mation, and one can make it better and better by taking
more and more points.

In practice, it is easier to work out the length using cal-
culus. A path itself can be thought of as a moving point
(x(t),y(t)) that starts when t = 0 and ends when t = 1.
If δt is very small, then x(t+δt) is approximately x(t)+

x′(t)δt and y(t + δt) is approximately y(t)+y ′(t)δt.
Therefore, the distance between (x(t),y(t)) and (x(t+
δt),y(t + δt)) is approximately δt

√
x′(t)2 +y ′(t)2, by

the Pythagorean theorem. Therefore, letting δt go to
zero and integrating all the infinitesimal distances along
the path, we obtain the formula∫ 1

0

√
x′(t)2 +y ′(t)2 dt

for the length of the path. Notice that if we write
x′(t) and y ′(t) as dx/dt and dy/dt, then we can
rewrite

√
x′(t)2 +y ′(t)2 dt as

√
dx2 + dy2, which is

the infinitesimal version of our earlier expression√
δx2 + δy2. We have just defined a Riemannian met-

ric, which is usually denoted by dx2 + dy2. This can be
thought of as the square of the distance between (x,y)
and the infinitesimally close point (x + dx,y + dy).

If we want to, we can now prove that the shortest path
between two points (x0, y0) and (x1, y1) is a straight
line, which will tell us that the distance between them
is
√
(x1 − x0)2 + (y1 −y0)2. (A proof can be found in

variational methods [III.94].) However, since we could
have just used this formula to begin with, this exam-
ple does not really illustrate what is distinctive about
Riemannian metrics. To do that, let us give a more pre-
cise definition of the disk model for hyperbolic geom-
etry, which was discussed in section 6.6. There it was
stated that distances become larger, relative to Euclid-
ean distances, as one approaches the edge of the disk.
A more precise definition is that the open unit disk is
the set of all points (x,y) such that x2 + y2 < 1 and
that the Riemannian metric on this disk is given by the
expression (dx2 + dy2)/(1 − x2 − y2). This is how we
define the square of the distance between (x,y) and
(x + dx,y + dy). Equivalently, the length of a path
(x(t),y(t)) with respect to this Riemannian metric is
defined as ∫ 1

0

√
x′(t)2 +y ′(t)2

1− x(t)2 −y(t)2 dt.

More generally, a Riemannian metric on a portion of
the plane is an expression of the form

E(x,y)dx2 + 2F(x,y)dx dy +G(x,y)dy2

that is used to calculate infinitesimal distances and
hence lengths of paths. (In the disk model we took
E(x,y) and G(x,y) to be 1/(1− x2 − y2) and F(x,y)
to be 0.) It is important for these distances to be
positive, which will turn out to be the case provided
that E(x,y)G(x,y) − F(x,y)2 is always positive. One
also needs the functions E, F , and G to satisfy certain
smoothness conditions.
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This definition generalizes straightforwardly to

more dimensions. In n dimensions we must spec-

ify the squared distance between (x1, . . . , xn) and

(x1+dx1, . . . , xn+dxn), using an expression of the

form
n∑

i,j=1

Fij(x1, . . . , xn)dxi dxj.

The numbers Fij(x1, . . . , xn) form an n × n matrix

that depends on the point (x1, . . . , xn). This matrix

is required to be symmetric and positive definite,

which means that Fij(x1, . . . , xn) should always equal

Fji(x1, . . . , xn) and the expression that determines the

squared distance should always be positive. It should

also depend smoothly on the point (x1, . . . , xn).
Finally, now that we know how to define many differ-

ent Riemannian metrics on portions of Euclidean space,

we have many potential ways to define metrics on the

charts that we use to define a manifold. A Riemannian

metric on a manifold is a way of choosing compatible

Riemannian metrics on the charts, where “compatible”

means that wherever two charts overlap the distances

should be the same. As mentioned earlier, once one

has done this, one can define the distance between two

points to be the length of a shortest path between them.

Given a Riemannian metric on a manifold, it is pos-

sible to define many other concepts, such as angles

and volumes. It is also possible to define the impor-

tant concept of curvature, which is discussed in ricci

flow [III.80]. Another important definition is that of a

geodesic, which is the analogue for Riemannian geom-

etry of a straight line in Euclidean geometry. A curve C

is a geodesic if, given any two points P and Q on C that

are sufficiently close, the shortest path from P to Q is

part of C. For example, the geodesics on the sphere are

the great circles.

As should be clear by now from the above discussion,

on any given manifold there is a multitude of possi-

ble Riemannian metrics. A major theme in Riemannian

geometry is to choose one that is “best” in some way.

For example, on the sphere, if we take the obvious defi-

nition of the length of a path, then the resulting metric

is particularly symmetric, and this is a highly desirable

property. In particular, with this Riemannian metric the

curvature of the sphere is the same everywhere. More

generally, one searches for extra conditions to impose

on Riemannian metrics. Ideally, these conditions should

be strong enough that there is just one Riemannian met-

ric that satisfies them, or at least that the family of such

metrics should be very small.

I.4 The General Goals of
Mathematical Research

The previous article introduced many concepts that
appear throughout mathematics. This one discusses
what mathematicians do with those concepts, and the
sorts of questions they ask about them.

1 Solving Equations

As we have seen in earlier articles, mathematics is full
of objects and structures (of a mathematical kind), but
they do not simply sit there for our contemplation: we
also like to do things to them. For example, given a num-
ber, there will be contexts in which we want to double
it, or square it, or work out its reciprocal; given a suit-
able function, we may wish to differentiate it; given a
geometrical shape, we may wish to transform it; and so
on.

Transformations like these give rise to a never-ending
source of interesting problems. If we have defined some
mathematical process, then a rather obvious mathe-
matical project is to invent techniques for carrying it
out. This leads to what one might call direct questions
about the process. However, there is also a deeper set of
inverse questions, which take the following form. Sup-
pose you are told what process has been carried out and
what answer it has produced. Can you then work out
what the mathematical object was that the process was
applied to? For example, suppose I tell you that I have
just taken a number and squared it, and that the result
was 9. Can you tell me the original number?

In this case the answer is more or less yes: it must have
been 3, except that if negative numbers are allowed, then
another solution is −3.

If we want to talk more formally, then we say that we
have been examining the equation x2 = 9, and have dis-
covered that there are two solutions. This example raises
three issues that appear again and again.

• Does a given equation have any solutions?
• If so, does it have exactly one solution?
• What is the set in which solutions are required to

live?

The first two concerns are known as the existence and the
uniqueness of solutions. The third does not seem partic-
ularly interesting in the case of the equation x2 = 9, but
in more complicated cases, such as partial differential
equations, it can be a subtle and important question.
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To use more abstract language, suppose that f is a
function [I.2 §2.2] and we are faced with a statement
of the form f(x) = y . The direct question is to work
out y given what x is. The inverse question is to work
out x given what y is: this would be called solving the
equation f(x) = y . Not surprisingly, questions about
the solutions of an equation of this form are closely
related to questions about the invertibility of the func-
tion f , which were discussed in [I.2]. Because x and y
can be very much more general objects than numbers,
the notion of solving equations is itself very general, and
for that reason it is central to mathematics.

1.1 Linear Equations

The very first equations a schoolchild meets will typi-
cally be ones like 2x + 3 = 17. To solve simple equa-
tions like this, one treats x as an unknown number that
obeys the usual rules of arithmetic. By exploiting these
rules one can transform the equation into something
much simpler: subtracting 3 from both sides we learn
that 2x = 14, and dividing both sides of this new equa-
tion by 2 we then discover that x = 7. If we are very
careful, we will notice that all we have shown is that if
there is some number x such that 2x + 3 = 17 then x
must be 7. What we have not shown is that there is any
such x. So strictly speaking there is a further step of
checking that 2× 7+ 3 = 17. This will obviously be true
here, but the corresponding assertion is not always true
for more complicated equations so this final step can be
important.

The equation 2x + 3 = 17 is called “linear” because
the function f we have performed on x (to multiply it
by 2 and add 3) is a linear one, in the sense that its graph
is a straight line. As we have just seen, linear equations
involving a single unknown x are easy to solve, but mat-
ters become considerably more sophisticated when one
starts to deal with more than one unknown. Let us look
at a typical example of an equation in two unknowns, the
equation 3x + 2y = 14. This equation has many solu-
tions: for any choice of y you can set x = (14 − 2y)/3
and you have a pair (x,y) that satisfies the equation.
To make it harder, one can take a second equation as
well, 5x + 3y = 22, say, and try to solve the two equa-
tions simultaneously. Then, it turns out, there is just one
solution, namely x = 2 and y = 4. Typically, two lin-
ear equations in two unknowns have exactly one solu-
tion, just as these two do, which is easy to see if one
thinks about the situation geometrically. An equation of
the form ax+by = c is the equation of a straight line in
the xy-plane. Two lines normally meet in a single point,

the exceptions being when they are identical, in which
case they meet in infinitely many points, or parallel but
not identical, in which case they do not meet at all.

If one has several equations in several unknowns, it
can be conceptually simpler to think of them as one
equation in one unknown. This sounds impossible, but
it is perfectly possible if the new unknown is allowed
to be a more complicated object. For example, the two
equations 3x+2y = 14 and 5x+3y = 22 can be rewrit-
ten as the following single equation involving matrices
and vectors: (

3 2

5 3

)(
x
y

)
=
(

14

22

)
.

If we let A stand for the matrix, x for the unknown col-
umn vector, and b for the known one, then this equation
becomes simply Ax = b, which looks much less com-
plicated, even if in fact all we have done is hidden the
complication behind our notation.

There is more to this process, however, than sweep-
ing dirt under the carpet. While the simpler notation
conceals many of the specific details of the problem,
it also reveals very clearly what would otherwise be
obscured: that we have a linear map from R2 to R2 and
we want to know which vectors x, if any, map to the
vector b. When faced with a particular set of simul-
taneous equations, this reformulation does not make
much difference—the calculations we have to do are
the same—but when we wish to reason more generally,
either directly about simultaneous equations or about
other problems where they arise, it is much easier to
think about a matrix equation with a single unknown
vector than about a collection of simultaneous equations
in several unknown numbers. This phenomenon occurs
throughout mathematics and is a major reason for the
study of high-dimensional spaces.

1.2 Polynomial Equations

We have just discussed the generalization of linear equa-
tions from one variable to several variables. Another
direction in which one can generalize them is to think
of linear functions as polynomials of degree 1 and con-
sider functions of higher degree. At school, for example,
one learns how to solve quadratic equations, such as
x2 −7x+12 = 0. More generally, a polynomial equation
is one of the form

anxn + an−1xn−1 + · · · + a2x2 + a1x + a0 = 0.

To solve such an equation means to find a value of x
for which the equation is true (or, better still, all such
values). This may seem an obvious thing to say until one
considers a very simple example such as the equation
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x2−2 = 0, or equivalently x2 = 2. The solution to this is,
of course, x = ±√2. What, though, is

√
2? It is defined to

be the positive number that squares to 2, but it does not
seem to be much of a “solution” to the equation x2 = 2
to say that x is plus or minus the positive number that
squares to 2. Neither does it seem entirely satisfactory to
say that x = 1.4142135 . . . , since this is just the begin-
ning of a calculation that never finishes and does not
result in any discernible pattern.

There are two lessons that can be drawn from this
example. One is that what matters about an equation
is often the existence and properties of solutions and
not so much whether one can find a formula for them.
Although we do not appear to learn anything when we
are told that the solutions to the equation x2 = 2 are
x = ±√2, this assertion does contain within it a fact that
is not wholly obvious: that the number 2 has a square
root. This is usually presented as a consequence of the
intermediate value theorem (or another result of a sim-
ilar nature), which states that if f is a continuous real-
valued function and f(a) and f(b) lie on either side of
0, then somewhere between a and b there must be a c
such that f(c) = 0. This result can be applied to the
function f(x) = x2 − 2, since f(1) = −1 and f(2) = 2.
Therefore, there is some x between 1 and 2 such that
x2−2 = 0, that is, x2 = 2. For many purposes, the mere
existence of this x is enough, together with its defining
properties of being positive and squaring to 2.

A similar argument tells us that all positive real num-
bers have positive square roots. But the picture changes
when we try to solve more complicated quadratic equa-
tions. Then we have two choices. Consider, for exam-
ple, the equation x2 − 6x + 7 = 0. We could note that
x2 − 6x + 7 is −1 when x = 4 and 2 when x = 5 and
deduce from the intermediate value theorem that the
equation has some solution between 4 and 5. However,
we do not learn as much from this as if we complete the
square, rewriting x2−6x+7 as (x−3)2−2. This allows
us to rewrite the equation as (x−3)2 = 2, which has the
two solutions x = 3 ± √2. We have already established
that

√
2 exists and lies between 1 and 2, so not only do we

have a solution of x2−6x+7 = 0 that lies between 4 and
5, but we can see that it is closely related to, indeed built
out of, the solution to the equation x2 = 2. This demon-
strates a second important aspect of equation solving,
which is that in many instances the explicit solubility of
an equation is a relative notion. If we are given a solution
to the equation x2 = 2, we do not need any new input
from the intermediate value theorem to solve the more
complicated equation x2 − 6x + 7 = 0: all we need is
some algebra. The solution, x = 3 ± √2, is given by an

explicit expression, but inside that expression we have√
2, which is not defined by means of an explicit formula

but as a real number, with certain properties, that we can
prove to exist.

Solving polynomial equations of higher degree is
markedly more difficult than solving quadratics, and
raises fascinating questions. In particular, there are com-
plicated formulas for the solutions of cubic and quartic
equations, but the problem of finding corresponding for-
mulas for quintic and higher-degree equations became
one of the most famous unsolved problems in mathe-
matics, until abel [VI.32] and galois [VI.40] showed that
it could not be done. For more details about these mat-
ters see the insolubility of the quintic [V.24]. For
another article related to polynomial equations see the
fundamental theorem of algebra [V.15].

1.3 Polynomial Equations in Several Variables

Suppose that we are faced with an equation such as

x3 +y3 + z3 = 3x2y + 3y2z + 6xyz.

We can see straight away that there will be many solu-
tions: if you fix x and y , then the equation is a cubic
polynomial in z, and all cubics have at least one (real)
solution. Therefore, for every choice of x and y there is
some z such that the triple (x,y, z) is a solution of the
above equation.

Because the formula for the solution of a general cubic
equation is rather complicated, a precise specification of
the set of all triples (x,y, z) that solve the equation may
not be very enlightening. However, one can learn a lot by
regarding this solution set as a geometric object—a two-
dimensional surface in space, to be precise—and to ask
qualitative questions about it. One might, for instance,
wish to understand roughly what shape it is. Questions
of this kind can be made precise using the language and
concepts of topology [I.3 §6.4].

One can of course generalize further and consider
simultaneous solutions to several polynomial equa-
tions. Understanding the solution sets of such systems
of equations is the province of algebraic geometry
[IV.7].

1.4 Diophantine Equations

As has been mentioned, the answer to the question
of whether a particular equation has a solution varies
according to where the solution is allowed to be. The
equation x2 + 3 = 0 has no solution if x is required to
be real, but in the complex numbers it has the two solu-
tions x = ±i

√
3. The equation x2+y2 = 11 has infinitely
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many solutions if we are looking for x and y in the real
numbers, but none if they have to be integers.

This last example is a typical Diophantine equation,
the name given to an equation if one is looking for inte-
ger solutions. The most famous Diophantine equation
is the Fermat equation xn + yn = zn, which is now
known, thanks to Andrew Wiles, to have no positive inte-
ger solutions if n is greater than 2. (See fermat’s last
theorem [V.12]. By contrast, the equation x2 +y2 = z2

has infinitely many solutions.) A great deal of modern
algebraic number theory [IV.3] is concerned with Dio-
phantine equations, either directly or indirectly. As with
equations in the real and complex numbers, it is often
fruitful to study the structure of sets of solutions to
Diophantine equations: this investigation belongs to the
area known as arithmetic geometry [IV.6].

A notable feature of Diophantine equations is that
they tend to be extremely difficult. It is therefore natural
to wonder whether there could be a systematic approach
to them. This question was the tenth in a famous list of
problems asked by hilbert [VI.62] in 1900. It was not
until 1970 that Yuri Matiyasevitch, building on work by
Martin Davis, Julia Robinson, and Hilary Putnam, proved
that the answer was no. (This is discussed further in the
insolubility of the halting problem [V.23].)

An important step in the solution was taken in 1936,
by Church and turing [VI.92]. This was to make precise
the notion of a “systematic approach,” by formalizing
(in two different ways) the notion of an algorithm (see
algorithms [II.4 §3] and computational complexity
[IV.21 §1]). It was not easy to do this in the pre-computer
age, but now we can restate the solution of Hilbert’s
tenth problem as follows: there is no computer program
that can take as its input any Diophantine equation, and
without fail print “YES” if it has a solution and “NO”
otherwise.

What does this tell us about Diophantine equations?
We can no longer dream of a final theory that will encom-
pass them all, so instead we are forced to restrict our
attention to individual equations or special classes of
equations, continually developing different methods for
solving them. This would make them uninteresting after
the first few, were it not for the fact that specific Dio-
phantine equations have remarkable links with very gen-
eral questions in other parts of mathematics. For exam-
ple, equations of the form y2 = f(x), where f(x) is
a cubic polynomial in x, may look rather special, but
in fact the elliptic curves [III.21] that they define are
central to modern number theory, including the proof of
Fermat’s last theorem. Of course, Fermat’s last theorem
is itself a Diophantine equation, but its study has led to

major developments in other parts of number theory.
The correct moral to draw is perhaps this: solving a par-
ticular Diophantine equation is fascinating and worth-
while if, as is often the case, the result is more than a
mere addition to the list of equations that have been
solved.

1.5 Differential Equations

So far, we have looked at equations where the unknown
is either a number or a point in n-dimensional space
(that is, a sequence of n numbers). To generate
these equations, we took various combinations of the
basic arithmetical operations and applied them to our
unknowns.

Here, for comparison, are two well-known differential
equations, the first “ordinary” and the second “partial”:

d2x
dt2

+ k2x = 0,

∂T
∂t
= κ

(
∂2T
∂x2

+ ∂
2T
∂y2

+ ∂
2T
∂z2

)
.

The first is the equation for simple harmonic motion,
which has the general solution x(t) = A sinkt+B coskt;
the second is the heat equation, which was discussed
in some fundamental mathematical definitions
[I.3 §5.4].

For many reasons, differential equations represent a
jump in sophistication. One is that the unknowns are
functions, which are much more complicated objects
than numbers or n-dimensional points. (For example,
the first equation above asks what function x of t has
the property that if you differentiate it twice then you
get −k2 times the original function.) A second is that
the basic operations one performs on functions include
differentiation and integration, which are considerably
less “basic” than addition and multiplication. A third is
that differential equations that can be solved in “closed
form,” that is, by means of a formula for the unknown
function f , are the exception rather than the rule, even
when the equations are natural and important.

Consider again the first equation above. Suppose that,
given a function f , we write φ(f) for the function
(d2f/dt2) + k2f . Then φ is a linear map, in the sense
that φ(f + g) = φ(f) +φ(g) and φ(af) = aφ(f) for
any constant a. This means that the differential equa-
tion can be regarded as something like a matrix equa-
tion, but generalized to infinitely many dimensions. The
heat equation has the same property: if we define ψ(T)
to be

∂T
∂t
− κ

(
∂2T
∂x2

+ ∂
2T
∂y2

+ ∂
2T
∂z2

)
,
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thenψ is another linear map. Such differential equations
are called linear, and the link with linear algebra makes
them markedly easier to solve. (A very useful tool for
this is the fourier transform [III.27].)

What about the more typical equations, the ones that
cannot be solved in closed form? Then the focus shifts
once again toward establishing whether or not solutions
exist, and if so what properties they have. As with poly-
nomial equations, this can depend on what you count
as an allowable solution. Sometimes we are in the posi-
tion we were in with the equation x2 = 2: it is not too
hard to prove that solutions exist and all that is left
to do is name them. A simple example is the equation
dy/dx = e−x2

. In a certain sense, this cannot be solved:
it can be shown that there is no function built out of
polynomials, exponentials [III.25], and trigonomet-
ric functions [III.93] that differentiates to e−x2

. How-
ever, in another sense the equation is easy to solve—
all you have to do is integrate the function e−x2

. The
resulting function (when divided by

√
2π ) is the normal

distribution [III.73 §5] function. The normal distribu-
tion is of fundamental importance in probability, so the
function is given a name, Φ.

In most situations, there is no hope of writing down
a formula for a solution, even if one allows oneself to
integrate “known” functions. A famous example is the
so-called three-body problem [V.36]: given three bod-
ies moving in space and attracted to each other by grav-
itational forces, how will they continue to move? Using
Newton’s laws, one can write down some differential
equations that describe this situation. newton [VI.13]
solved the corresponding equations for two bodies, and
thereby explained why planets move in elliptical orbits
around the Sun, but for three or more bodies they proved
very hard indeed to solve. It is now known that there
was a good reason for this: the equations can lead to
chaotic behavior (see dynamics [IV.15] for more about
chaos). However, this opens up a new and very inter-
esting avenue of research into questions of chaos and
stability.

Sometimes there are ways of proving that solutions
exist even if they cannot be easily specified. Then
one may ask not for precise formulas, but for general
descriptions. For example, if the equation has a time
dependence (as, for instance, the heat equation and wave
equations have), one can ask whether solutions tend
to decay over time, or blow up, or remain roughly the
same. These more qualitative questions concern what is
known as asymptotic behavior, and there are techniques
for answering some of them even when a solution is not
given by a tidy formula.

As with Diophantine equations, there are some special
and important classes of partial differential equations,
including nonlinear ones, that can be solved exactly.
This gives rise to a very different style of research: again
one is interested in properties of solutions, but now
these properties may be more algebraic in nature, in the
sense that exact formulas will play a more important
role. See linear and nonlinear waves and solitons
[III.51].

2 Classifying

If one is trying to understand a new mathematical struc-
ture, such as a group [I.3 §2.1] or a manifold [I.3 §6.9],
one of the first tasks is to come up with a good sup-
ply of examples. Sometimes examples are very easy to
find, in which case there may be a bewildering array of
them that cannot be put into any sort of order. Often,
however, the conditions that an example must satisfy
are quite stringent, and then it may be possible to come
up with something like an infinite list that includes every
single one. For example, it can be shown that any vector
space [I.3 §2.3] of dimension n over a field F is isomor-
phic to Fn. This means that just one positive integer, n,
is enough to determine the space completely. In this case
our “list” will be {0},F,F2,F3,F4, . . . . In such a situation
we say that we have a classification of the mathematical
structure in question.

Classifications are very useful because if we can clas-
sify a mathematical structure then we have a new way of
proving results about that structure: instead of deducing
a result from the axioms that the structure is required
to satisfy, we can simply check that it holds for every
example on the list, confident in the knowledge that we
have thereby proved it in general. This is not always eas-
ier than the more abstract, axiomatic approach, but it
certainly is sometimes. Indeed, there are several results
proved using classifications that nobody knows how to
prove in any other way. More generally, the more exam-
ples you know of a mathematical structure, the easier
it is to think about that structure—testing hypotheses,
finding counterexamples, and so on. If you know all the
examples of the structure, then for some purposes your
understanding is complete.

2.1 Identifying Building Blocks and Families

There are two situations that typically lead to interesting
classification theorems. The boundary between them is
somewhat blurred, but the distinction is clear enough to
be worth making, so we shall discuss them separately in
this subsection and the next.



�

50 I. Introduction

As an example of the first kind of situation, let us
look at objects called regular polytopes. Polytopes are
polygons, polyhedra, and their higher-dimensional gen-
eralizations. The regular polygons are those for which
all sides have the same length and all angles are equal,
and the regular polyhedra are those for which all faces
are congruent regular polygons and every vertex has the
same number of edges coming out of it. More generally,
a higher-dimensional polytope is regular if it is as sym-
metrical as possible, though the precise definition of this
is somewhat complicated. (Here, in three dimensions, is
a definition that turns out to be equivalent to the one just
given but easier to generalize. A flag is a triple (v, e, f )
where v is a vertex of the polyhedron, e is an edge con-
taining v , and f is a face containing e. A polyhedron is
regular if for any two flags (v, e, f ) and (v′, e′, f ′) there
is a symmetry of the polyhedron that takes v to v′, e to
e′, and f to f ′.)

It is easy to see what the regular polygons are in two
dimensions: for every k greater than 2 there is exactly
one regular k-gon and that is all there is. In three dimen-
sions, the regular polyhedra are the famous Platonic
solids, that is, the tetrahedron, the cube, the octahedron,
the dodecahedron, and the icosahedron. It is not too
hard to see that there cannot be any more regular poly-
hedra, since there must be at least three faces meeting
at every vertex, and the angles at that vertex must add
up to less than 360◦. This constraint means that the only
possibilities for the faces at a vertex are three, four, or
five triangles, three squares, or three pentagons. These
give the tetrahedron, the octahedron, the icosahedron,
the cube, and the dodecahedron, respectively.

Some of the polygons and polyhedra just defined have
natural higher-dimensional analogues. For example, if
you take n+ 1 points in Rn all at the same distance
from one another, then they form the vertices of a reg-
ular simplex, which is an equilateral triangle or regu-
lar tetrahedron when n = 2 or 3. The set of all points
(x1, x2, . . . , xn) with 0 � xi � 1 for every i forms
the n-dimensional analogue of a unit square or cube.
The octahedron can be defined as the set of all points
(x,y, z) in R3 such that |x| + |y| + |z| � 1, and the
analogue of this in n dimensions is the set of all points
(x1, x2, . . . , xn) such that |x1| + · · · + |xn| � 1.

It is not obvious how the dodecahedron and icosa-
hedron would lead to infinite families of regular poly-
topes, and it turns out that they do not. In fact, apart
from three more examples in four dimensions, the above
polytopes constitute a complete list. These three exam-
ples are quite remarkable. One of them has 120 “three-
dimensional faces,” each of which is a regular dodec-

ahedron. It has a so-called dual, which has 600 regu-
lar tetrahedra as its “faces.” The third example can be
described in terms of coordinates: its vertices are the six-
teen points of the form (±1,±1,±1,±1), together with
the eight points (±2,0,0,0), (0,±2,0,0), (0,0,±2,0),
and (0,0,0,±2).

The theorem that these are all the regular polytopes
is significantly harder to prove than the result sketched
above for three dimensions. The complete list was
obtained by Schäfli in the mid nineteenth century; the
first proof that there are no others was given by Donald
Coxeter in 1969.

We therefore know that the regular polytopes
in dimensions three and higher fall into three
families—the n-dimensional versions of the tetra-
hedron, cube, and octahedron—together with five
“exceptional” examples—the dodecahedron, the icosa-
hedron, and the three four-dimensional polytopes just
described. This situation is typical of many classification
theorems. The exceptional examples, often called “spo-
radic,” tend to have a very high degree of symmetry—it
is almost as if we have no right to expect this degree
of symmetry to be possible, but just occasionally by a
happy chance it is. The families and sporadic examples
that occur in different classification results are often
closely related, and this can be a sign of deep connec-
tions between areas that do not at first appear to be
connected at all.

Sometimes one does not try to classify all mathemat-
ical structures of a given kind, but instead identifies a
certain class of “basic” structures out of which all the
others can be built in a simple way. A good analogy for
this is the set of primes, out of which all other integers
can be built as products. Finite groups, for example, are
all “products” of certain basic groups that are called sim-
ple. the classification of finite simple groups [V.8],
one of the most famous theorems of twentieth-century
mathematics, is discussed in part V.

For more on this style of classification theorem, see
also lie theory [III.50].

2.2 Equivalence, Nonequivalence, and Invariants

There are many situations in mathematics where two
objects are, strictly speaking, different, but where we
are not interested in the difference. In such situations
we want to regard the objects as “essentially the same,”
or “equivalent.” Equivalence of this kind is expressed
formally by the notion of an equivalence relation
[I.2 §2.3].

For example, a topologist regards two shapes as essen-
tially the same if one is a continuous deformation of
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the other, as we saw in [I.3 §6.4]. As pointed out there, a
sphere is the same as a cube in this sense, and one can
also see that the surface of a doughnut, that is, a torus,
is essentially the same as the surface of a teacup. (To
turn the teacup into a doughnut, let the handle expand
while the cup part is gradually swallowed up into it.) It is
equally obvious, intuitively speaking, that a sphere is not
essentially the same as a torus, but this is much harder
to prove.

Why should nonequivalence be harder to prove than
equivalence? The answer is that in order to show that
two objects are equivalent, all one has to do is find
a single transformation that demonstrates this equiva-
lence. However, to show that two objects are not equiv-
alent, one must somehow consider all possible transfor-
mations and show that not one of them works. How can
one rule out the existence of some wildly complicated
continuous deformation that is impossible to visualize
but happens, remarkably, to turn a sphere into a torus?

Here is a sketch of a proof. The sphere and the torus
are examples of compact orientable surfaces, which
means, roughly speaking, two-dimensional shapes that
occupy a finite portion of space and have no boundary.
Given any such surface, one can find an equivalent sur-
face that is built out of triangles and is topologically the
same. Here is a famous theorem of euler [VI.18].

Let P be a polyhedron that is topologically the same as a
sphere, and suppose that it has V vertices, E edges, and
F faces. Then V − E + F = 2.

For example, if P is an icosahedron, then it has twelve
vertices, thirty edges, and twenty faces, and 12−30+20
is indeed equal to 2.

For this theorem, it is not in fact important that the tri-
angles are flat: we can draw them on the original sphere,
except that now they are spherical triangles. It is just
as easy to count vertices, edges, and faces when we do
this, and the theorem is still valid. A network of trian-
gles drawn on a sphere is called a triangulation of the
sphere.

Euler’s theorem tells us that V−E+F = 2 regardless of
what triangulation of the sphere we take. Moreover, the
formula is still valid if the surface we triangulate is not a
sphere but another shape that is topologically equivalent
to the sphere, since triangulations can be continuously
deformed without V , E, or F changing.

More generally, one can triangulate any surface, and
evaluate V − E + F . The result is called the Euler num-
ber of that surface. For this definition to make sense,
we need the following fact, which is a generalization of
Euler’s theorem (and which is not much harder to prove
than the original result).

(i) Although a surface can be triangulated in many
ways, the quantity V − E + F will be the same for
all triangulations.

If we continuously deform the surface and continuously
deform one of its triangulations at the same time, we
can deduce that the Euler number of the new surface is
the same as that of the old one. In other words, fact (i)
above has the following interesting consequence.

(ii) If two surfaces are continuous deformations of each
other, then they have the same Euler number.

This gives us a potential method for showing that sur-
faces are not equivalent: if they have different Euler
numbers then we know from the above that they are
not continuous deformations of each other. The Euler
number of the torus turns out to be 0 (as one can show
by calculating V − E + F for any triangulation), and that
completes the proof that the sphere and the torus are
not equivalent.

The Euler number is an example of an invariant. This
means a function φ, the domain of which is the set of
all objects of the kind one is studying, with the prop-
erty that if X and Y are equivalent objects, then φ(X) =
φ(Y). To show that X is not equivalent to Y , it is enough
to find an invariant φ for which φ(X) and φ(Y) are
different. Sometimes the values φ takes are numbers
(as with the Euler number), but often they will be more
complicated objects such as polynomials or groups.

It is perfectly possible for φ(X) to equal φ(Y) even
when X and Y are not equivalent. An extreme example
would be the invariant φ that simply took the value 0
for every object X. However, sometimes it is so hard
to prove that objects are not equivalent that invariants
can be considered useful and interesting even when they
work only part of the time.

There are two main properties that one looks for in
an invariant φ, and they tend to pull in opposite direc-
tions. One is that it should be as fine as possible: that
is, as often as possible φ(X) and φ(Y) are different if X
and Y are not equivalent. The other is that as often as
possible one should actually be able to establish when
φ(X) is different from φ(Y). There is not much use in
having a fine invariant if it is impossible to calculate.
(An extreme example would be the “trivial” invariant
that simply mapped each X to its equivalence class. It
is as fine as possible, but unless we have some indepen-
dent means of specifying it, then it does not represent
an advance on the original problem of showing that two
objects are not equivalent.) The most powerful invari-
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ants therefore tend to be ones that can be calculated,
but not very easily.

In the case of compact orientable surfaces, we are
lucky: not only is the Euler number an invariant that is
easy to calculate, but it also classifies the compact ori-
entable surfaces completely. To be precise, k is the Euler
number of a compact orientable surface if and only if it
is of the form 2−2g for some nonnegative integer g (so
the possible Euler numbers are 2,0,−2,−4, . . . ), and two
compact orientable surfaces with the same Euler number
are equivalent. Thus, if we regard equivalent surfaces as
the same, then the number g gives us a complete speci-
fication of a surface. It is called the genus of the surface,
and can be interpreted geometrically as the number of
“holes” the surface has (so the genus of the sphere is 0
and that of the torus is 1).

For other examples of invariants, see algebraic
topology [IV.10] and knot polynomials [III.46].

3 Generalizing

When an important mathematical definition is formu-
lated, or theorem proved, that is rarely the end of the
story. However clear a piece of mathematics may seem,
it is nearly always possible to understand it better, and
one of the most common ways of doing so is to present
it as a special case of something more general. There
are various different kinds of generalization, of which
we discuss a few here.

3.1 Weakening Hypotheses and Strengthening

Conclusions

The number 1729 is famous for being expressible as the
sum of two cubes in two different ways: it is 13+123 and
also 93 + 103. Let us now try to decide whether there is
a number that can be written as the sum of four cubes
in ten different ways.

At first this problem seems alarmingly difficult. It is
clear that any such number, if it exists, must be very
large and would be extremely tedious to find if we simply
tested one number after another. So what can we do that
is better than this?

The answer turns out to be that we should weaken
our hypotheses. The problem we wish to solve is of
the following general kind. We are given a sequence
a1, a2, a3, . . . of positive integers and we are told that it
has a certain property. We must then prove that there
is a positive integer that can be written as a sum of
four terms of the sequence in ten different ways. This
is perhaps an artificial way of thinking about the prob-
lem since the property we assume of the sequence is the

property of “being the sequence of cubes,” which is so
specific that it is more natural to think of it as an identi-
fication of the sequence. However, this way of thinking
encourages us to consider the possibility that the conclu-
sion might be true for a much wider class of sequences.
And indeed this turns out to be the case.

There are a thousand cubes less than or equal to
1 000 000 000. We shall now see that this property alone
is sufficient to guarantee that there is a number that can
be written as the sum of four cubes in ten different ways.
That is, if a1, a2, a3, . . . is any sequence of positive inte-
gers, and if none of the first thousand terms exceeds
1 000 000 000, then some number can be written as the
sum of four terms of the sequence in ten different ways.

To prove this, all we have to do is notice that the num-
ber of different ways of choosing four distinct terms
from the sequence a1, a2, . . . , a1000 is 1000×999×998×
997/24, which is greater than 40 × 1 000 000 000. The
sum of any four terms of the sequence cannot exceed
4× 1 000 000 000. It follows that the average number of
ways of writing one of the first 4 000 000 000 numbers
as the sum of four terms of the sequence is at least ten.
But if the average number of representations is at least
ten, then there must certainly be numbers that have at
least this number of representations.

Why did it help to generalize the problem in this way?
One might think that it would be harder to prove a result
if one assumed less. However, that is often not true. The
less you assume, the fewer options you have when try-
ing to use your assumptions, and that can speed up the
search for a proof. Had we not generalized the prob-
lem above, we would have had too many options. For
instance, we might have found ourselves trying to solve
very difficult Diophantine equations involving cubes
rather than noticing the easy counting argument. In a
way, it was only once we had weakened our hypotheses
that we understood the true nature of the problem.

We could also think of the above generalization as a
strengthening of the conclusion: the problem asks for
a statement about cubes, and we prove not just that
but much more besides. There is no clear distinction
between weakening hypotheses and strengthening con-
clusions, since if we are asked to prove a statement of the
form P ⇒ Q, we can always reformulate it as ¬Q ⇒ ¬P .
Then, if we weaken P we are weakening the hypotheses
of P ⇒ Q but strengthening the conclusion of¬Q ⇒ ¬P .

3.2 Proving a More Abstract Result

A famous result in modular arithmetic, known as Fer-
mat’s little theorem (see modular arithmetic [III.60]),
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states that if p is a prime and a is not a multiple of p,
then ap−1 leaves a remainder of 1 when you divide by p.
That is, ap−1 is congruent to 1 mod p.

There are several proofs of this result, one of which
is a good illustration of a certain kind of generalization.
Here is the argument in outline. The first step is to show
that the numbers 1,2, . . . , p − 1 form a group [I.3 §2.1]
under multiplication mod p. (This means multiplication
followed by taking the remainder on division by p. For
example, ifp = 7 then the “product” of 3 and 6 is 4, since
4 is the remainder when you divide 18 by 7.) The next
step is to note that if 1 � a � p − 1 then the powers of
a (mod p) form a subgroup of this group. Moreover, the
size of the subgroup is the smallest positive integer m
such that am is congruent to 1 mod p. One then applies
Lagrange’s theorem, which states that the size of a group
is always divisible by the size of any of its subgroups.
In this case, the size of the group is p − 1, from which
it follows that p − 1 is divisible by m. But then, since
am = 1, it follows that ap−1 = 1.

This argument shows that Fermat’s little theorem is,
when viewed appropriately, just one special case of
Lagrange’s theorem. (The word “just” is, however, a lit-
tle misleading, because it is not wholly obvious that the
integers mod p form a group in the way stated. This fact
is proved using euclid’s algorithm [III.22].)

Fermat could not have viewed his theorem in this way,
since the concept of a group had not been invented when
he proved it. Thus, the abstract concept of a group helps
one to see Fermat’s little theorem in a completely new
way: it can be viewed as a special case of a more general
result, but a result that cannot even be stated until one
has developed some new, abstract concepts.

This process of abstraction has many benefits. Most
obviously, it provides us with a more general theorem,
one that has many other interesting particular cases.
Once we see this, then we can prove the general result
once and for all rather than having to prove each case
separately. A related benefit is that it enables us to see
connections between results that may originally have
seemed quite different. And finding surprising connec-
tions between different areas of mathematics almost
always leads to significant advances in the subject.

3.3 Identifying Characteristic Properties

There is a marked contrast between the way one defines√
2 and the way one defines

√−1, or i as it is usually
written. In the former case one begins, if one is being
careful, by proving that there is exactly one positive real
number that squares to 2. Then

√
2 is defined to be this

number.

This style of definition is impossible for i since there
is no real number that squares to −1. So instead one
asks the following question: if there were a number that
squared to−1, what could one say about it? Such a num-
ber would not be a real number, but that does not rule
out the possibility of extending the real number system
to a larger system that contains a square root of −1.

At first it may seem as though we know precisely one
thing about i: that i2 = −1. But if we assume in addition
that i obeys the normal rules of arithmetic, then we can
do more interesting calculations, such as

(i + 1)2 = i2 + 2i + 1 = −1+ 2i + 1 = 2i,

which implies that (i + 1)/
√

2 is a square root of i.

From these two simple assumptions—that i2 = −1
and that i obeys the usual rules of arithmetic—we can
develop the entire theory of complex numbers [I.3 §1.5]
without ever having to worry about what i actually is.
And in fact, once you stop to think about it, the exis-
tence of

√
2, though reassuring, is not in practice any-

thing like as important as its defining properties, which
are very similar to those of i: it squares to 2 and obeys
the usual rules of arithmetic.

Many important mathematical generalizations work
in a similar way. Another example is the definition of
xa when x and a are real numbers with x positive. It
is difficult to make sense of this expression in a direct
way unless a is a positive integer, and yet mathemati-
cians are completely comfortable with it, whatever the
value of a. How can this be? The answer is that what
really matters about xa is not its numerical value but its
characteristic properties when one thinks of it as a func-
tion of a. The most important of these is the property
that xa+b = xaxb . Together with a couple of other sim-
ple properties, this completely determines the function
xa. More importantly, it is these characteristic proper-
ties that one uses when reasoning about xa. This exam-
ple is discussed in more detail in the exponential and
logarithmic functions [III.25].

There is an interesting relationship between abstrac-
tion and classification. The word “abstract” is often used
to refer to a part of mathematics where it is more com-
mon to use characteristic properties of an object than it
is to argue directly from a definition of the object itself
(though, as the example of

√
2 shows, this distinction

can be somewhat hazy). The ultimate in abstraction is to
explore the consequences of a system of axioms, such as
those for a group or a vector space. However, sometimes,
in order to reason about such algebraic structures, it is
very helpful to classify them, and the result of classifica-
tion is to make them more concrete again. For instance,
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every finite-dimensional real vector space V is isomor-
phic to Rn for some nonnegative integer n, and it is
sometimes helpful to think of V as the concrete object
Rn, rather than as an algebraic structure that satisfies
certain axioms. Thus, in a certain sense, classification is
the opposite of abstraction.

3.4 Generalization after Reformulation

Dimension is a mathematical idea that is also a famil-
iar part of everyday language: for example, we say that
a photograph of a chair is a two-dimensional represen-
tation of a three-dimensional object, because the chair
has height, breadth, and depth, but the image just has
height and breadth. Roughly speaking, the dimension of
a shape is the number of independent directions one can
move about in while staying inside the shape, and this
rough conception can be made mathematically precise
(using the notion of a vector space [I.3 §2.3]).

If we are given any shape, then its dimension, as one
would normally understand it, must be a nonnegative
integer: it does not make much sense to say that one can
move about in 1.4 independent directions, for example.
And yet there is a rigorous mathematical theory of frac-
tional dimension, in which for every nonnegative real
number d you can find many shapes of dimension d.

How do mathematicians achieve the seemingly impos-
sible? The answer is that they reformulate the concept of
dimension and only then do they generalize it. What this
means is that they give a new definition of dimension
with the following two properties.

(i) For all “simple” shapes the new definition agrees
with the old one. For example, under the new defi-
nition a line will still be one dimensional, a square
two dimensional, and a cube three dimensional.

(ii) With the new definition it is no longer obvious that
the dimension of every shape must be a positive
integer.

There are several ways of doing this, but most of them
focus on the differences between length, area, and vol-
ume. Notice that a line segment of length 2 can be
expressed as a union of two nonoverlapping line seg-
ments of length 1, a square of side-length 2 can be
expressed as a union of four nonoverlapping squares
of side-length 1, and a cube of side-length 2 can be
expressed as a union of eight nonoverlapping cubes of
side-length 1. It is because of this that if you enlarge a d-
dimensional shape by a factor r , then its d-dimensional
“volume” is multiplied by rd. Now suppose that you
would like to exhibit a shape of dimension 1.4. One way

of doing it is to let r = 25/7, so that r 1.4 = 2, and find
a shape X such that if you expand X by a factor of r ,
then the expanded shape can be expressed as a union of
two disjoint copies of X. Two copies of X ought to have
twice the “volume” of X itself, so the dimension d of X
ought to satisfy the equation rd = 2. By our choice of
r , this tells us that the dimension of X is 1.4. For more
details, see dimension [III.17].

Another concept that seems at first to make no sense
is noncommutative geometry. The word “commutative”
applies to binary operations [I.2 §2.4] and therefore
belongs to algebra rather than geometry, so what could
“noncommutative geometry” possibly mean?

By now the answer should not be a surprise: one refor-
mulates part of geometry in terms of a certain algebraic
structure and then generalizes the algebra. The algebraic
structure involves a commutative binary operation, so
one can generalize the algebra by allowing the binary
operation not to be commutative.

The part of geometry in question is the study of man-
ifolds [I.3 §6.9]. Associated with a manifold X is the
set C(X) of all continuous complex-valued functions
defined on X. Given two functions f , g in C(X), and
two complex numbers λ and µ, the linear combination
λf+µg is another continuous complex-valued function,
so it also belongs to C(X). Therefore, C(X) is a vec-
tor space. However, one can also multiply f and g to
form the continuous function fg (defined by (fg)(x) =
f(x)g(x)). This multiplication has various natural prop-
erties (for instance, f(g+h) = fh+gh for all functions
f , g, and h) that make C(X) into an algebra, and even a
C∗-algebra [IV.19 §3]. It turns out that a great deal of
the geometry of a compact manifold X can be reformu-
lated purely in terms of the corresponding C∗-algebra
C(X). The word “purely” here means that it is not nec-
essary to refer to the manifold X in terms of which the
algebra C(X) was originally defined—all one uses is the
fact that C(X) is an algebra. This raises the possibil-
ity that there might be algebras that do not arise geo-
metrically, but to which the reformulated geometrical
concepts nevertheless apply.

An algebra has two binary operations: addition and
multiplication. Addition is always assumed to be com-
mutative, but multiplication is not: when multiplication
is commutative as well, one says that the algebra is com-
mutative. Since fg and gf are clearly the same func-
tion, the algebra C(X) is a commutative C∗-algebra, so
the algebras that arise geometrically are always commu-
tative. However, many geometrical concepts, once they
have been reformulated in algebraic terms, continue to
make sense for noncommutative C∗-algebras, and that
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is why the phrase “noncommutative” geometry is used.
For more details, see operator algebras [IV.19 §5].

This process of reformulating and then generalizing
underlies many of the most important advances in math-
ematics. Let us briefly look at a third example. the fun-
damental theorem of arithmetic [V.16] is, as its
name suggests, one of the foundation stones of num-
ber theory: it states that every positive integer can be
written in exactly one way as a product of prime num-
bers. However, number theorists like to look at enlarged
number systems, and for most of these the obvious ana-
logue of the fundamental theorem of arithmetic is no
longer true. For example, in the ring [III.82 §1] of num-
bers of the form a+ b√−5 (where a and b are required
to be integers), the number 6 can be written either as
2 × 3 or as (1+√−5)× (1−√−5). Since none of the
numbers 2, 3, 1+√−5, or 1−√−5 can be decomposed
further, the number 6 has two genuinely different prime
factorizations in this ring.

There is, however, a natural way of generalizing
the concept of “number” to include ideal numbers
[III.82 §2] that allow one to prove a version of the fun-
damental theorem of arithmetic in rings such as the one
just defined. First, we must reformulate: we associate
with each number γ the set of all its multiples δγ, where
δ belongs to the ring. This set, which is denoted (γ),
has the following closure property: if α and β belong to
(γ) and δ and ε are any two elements of the ring, then
δα+ εβ belongs to (γ).

A subset of a ring with that closure property is called
an ideal. If the ideal is of the form (γ) for some number
γ, then it is called a principal ideal. However, there are
ideals that are not principal, so we can think of the set
of ideals as generalizing the set of elements of the orig-
inal ring (once we have reformulated each element γ as
the principal ideal (γ)). It turns out that there are nat-
ural notions of addition and multiplication that can be
applied to ideals. Moreover, it makes sense to define an
ideal I to be “prime” if the only way of writing I as a prod-
uct JK is if one of J and K is a “unit.” In this enlarged
set, unique factorization turns out to hold. These con-
cepts give us a very useful way to measure “the extent
to which unique factorization fails” in the original ring.
For more details, see algebraic numbers [IV.3 §7].

3.5 Higher Dimensions and Several Variables

We have already seen that the study of polynomial equa-
tions becomes much more complicated when one looks
not just at single equations in one variable, but at sys-
tems of equations in several variables. Similarly, we have

Figure 1 The densest possible
packing of circles in the plane.

seen that partial differential equations [I.3 §5.4],
which can be thought of as differential equations involv-
ing several variables, are typically much more difficult to
analyze than ordinary differential equations, that is, dif-
ferential equations in just one variable. These are two
notable examples of a process that has generated many
of the most important problems and results in math-
ematics, particularly over the last century or so: the
process of generalization from one variable to several
variables.

Suppose one has an equation that involves three real
variables, x, y , and z. It is often useful to think of
the triple (x,y, z) as an object in its own right, rather
than as a collection of three numbers. Furthermore,
this object has a natural interpretation: it represents
a point in three-dimensional space. This geometrical
interpretation is important, and goes a long way toward
explaining why extensions of definitions and theorems
from one variable to several variables are so interest-
ing. If we generalize a piece of algebra from one vari-
able to several variables, we can also think of what we
are doing as generalizing from a one-dimensional set-
ting to a higher-dimensional setting. This idea leads
to many links between algebra and geometry, allowing
techniques from one area to be used to great effect in
the other.

4 Discovering Patterns

Suppose that you wish to fill the plane as densely as
possible with nonoverlapping circles of radius 1. How
should you do it? This question is an example of a so-
called packing problem. The answer is known, and it is
what one might expect: you should arrange the circles
so that their centers form a triangular lattice, as shown
in figure 1. In three dimensions a similar result is true,
but much harder to prove: until recently it was a famous
open problem known as the Kepler conjecture. Several
mathematicians wrongly claimed to have solved it, but in
1998 a long and complicated solution, obtained with the
help of a computer, was announced by Thomas Hales,
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and although his solution has proved very hard to check,

the consensus is that it is probably correct.

Questions about packing of spheres can be asked in

any number of dimensions, but they become harder and

harder as the dimension increases. Indeed, it is likely

that the best density for a ninety-seven-dimensional

packing, say, will never be known. Experience with sim-

ilar problems suggests that the best arrangement will

almost certainly not have a simple structure such as one

sees in two dimensions, so that the only method for find-

ing it would be a “brute-force search” of some kind. How-

ever, to search for the best possible complicated struc-

ture is not feasible: even if one could somehow reduce

the search to finitely many possibilities, there would be

far more of them than one could feasibly check.

When a problem looks too difficult to solve, one

should not give up completely. A much more produc-

tive reaction is to formulate related but more approach-

able questions. In this case, instead of trying to discover

the very best packing, one can simply see how dense a

packing one can find. Here is a sketch of an argument

that gives a goodish packing in n dimensions, when n is

large. One begins by taking a maximal packing: that is,

one simply picks sphere after sphere until it is no longer

possible to pick another one without it overlapping one

of the spheres already chosen. This means that, for at

least one of the spheres we have chosen, the distance

from its center to x is less than 2—otherwise we could

take a unit sphere about x and it would not overlap any

of the other spheres. Therefore, if we take all the spheres

in the collection and expand them by a factor of 2, then

we cover all of Rn. Since expanding an n-dimensional

sphere by a factor of 2 increases its (n-dimensional) vol-

ume by a factor of 2n, the proportion of Rn covered by

the unexpanded spheres must be at least 2−n.

Notice that in the above argument we learned nothing

at all about the nature of the arrangements of spheres

with density 2−n. All we did was take a maximal packing,

and that can be done in a very haphazard way. This is

in marked contrast with the approach that worked in

two dimensions, where we defined a specific pattern of

circles.

This contrast pervades all of mathematics. For some

problems, the best approach is to build a highly struc-

tured pattern that does what you want, while for

others—usually problems for which there is no hope of

obtaining an exact answer—it is better to look for less

specific arrangements. “Highly structured” in this con-

text often means “possessing a high degree of symme-

try.”

The triangular lattice is a rather simple pattern, but
some highly structured patterns are much more com-
plicated, and much more of a surprise when they are
discovered. A notable example occurs in packing prob-
lems. By and large, the higher the dimension you are
working in, the more difficult it is to find good patterns,
but an exception to this general rule occurs at twenty-
four dimensions. Here, there is a remarkable construc-
tion, known as the Leech lattice, which gives rise to a
miraculously dense packing. Formally, a lattice in Rn is
a subset Λ with the following three properties.

(i) If x and y belong toΛ, then so do x +y and x −y .
(ii) If x belongs to Λ, then x is isolated. That is, there is

some d > 0 such that the distance between x and
any other point of Λ is at least d.

(iii) Λ is not contained in any (n− 1)-dimensional sub-
space of Rn.

A good example of a lattice is the set Zn of all points
in Rn with integer coordinates. If one is searching for a
dense packing, then it is a good idea to look at lattices,
since if you know that every nonzero point in a lattice
has distance at least d from 0, then you know that any
two points have distance at least d from each other. This
is because the distance between x and y is the same as
the distance between 0 and y − x, both of which lie in
the lattice if x and y do. Thus, instead of having to look
at the whole lattice, one can get away with looking at a
small portion around 0.

In twenty-four dimensions it can be shown that there
is a lattice Λ with the following additional properties,
and that it is unique, in the sense that any other lattice
with those properties is just a rotation of the first one.

(iv) There is a 24 × 24 matrix M with determinant
[III.15] equal to 1 such that Λ consists of all integer
combinations of the columns of M .

(v) If v is a point in Λ, then the square of the distance
from 0 to v is an even integer.

(vi) The nearest nonzero vector to 0 is at distance 2.
Thus, the balls of radius 1 about the points in Λ
form a packing of R24.

The nearest nonzero vector is far from unique: in fact
there are 196 560 of them, which is a remarkably large
number considering that these points must all be at
distance at least 2 from each other.

The Leech lattice also has an extraordinary degree of
symmetry. To be precise, it has 8 315 553 613 086 720
000 rotational symmetries. (This number equals 222·39·
54 · 72 · 11 · 13 · 23.) If you take the quotient [I.3 §3.3]
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of its symmetry group by the subgroup consisting of

the identity and minus the identity, then you obtain the

Conway group Co1, which is one of the famous sporadic

simple groups [V.8]. The existence of so many symme-

tries makes it easier still to determine the smallest dis-

tance from 0 of any nonzero point of the lattice, since

once you have checked one distance you have automat-

ically checked lots of others (just as, in the triangular

lattice, the six-fold rotational symmetry tells us that the

distances from 0 to its six neighbors are all the same).

These facts about the Leech lattice illustrate a gen-

eral principle of mathematical research: often, if a math-

ematical construction has one remarkable property, it

will have others as well. In particular, a high degree of

symmetry will often be related to other interesting fea-

tures. So, although it is a surprise that the Leech lat-

tice exists at all, it is not as surprising when one then

discovers that it gives an extremely dense packing of

R24. In fact, it was shown in 2004 by Henry Cohn and

Abhinav Kumar that it gives the densest possible pack-

ing of spheres in twenty-four-dimensional space, at least

among all packings derived from lattices. It is probably

the densest packing of any kind, but this has not yet

been proved.

5 Explaining Apparent Coincidences

The largest of all the sporadic finite simple groups is

called the Monster group. Its name is partly explained

by the fact that it has 246 · 320 · 59 · 76 · 112 · 133 · 17 ·
19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 elements. How can one

hope to understand a group of this size?

One of the best ways is to show that it is a group

of symmetries of some other mathematical object (see

the article on representation theory [IV.12] for much

more on this theme), and the smaller that object is, the

better. We have just seen that another large sporadic

group, the Conway group Co1, is closely related to the

symmetry group of the Leech lattice. Might there be a

lattice that played a similar role for the Monster group?

It is not hard to show that there will be at least some

lattice that works, but more challenging is to find one

of small dimension. It has been shown that the smallest

possible dimension that can be used is 196 883.

Now let us turn to a different branch of mathemat-

ics. If you look at the article about algebraic numbers

[IV.3 §8] you will see a definition of a function j(z),
called the elliptic modular function, of central impor-

tance in algebraic number theory. It is given as the sum

of a series that starts

j(z) = e−2π iz + 744+ 196 884e2π iz

+ 21 493 760e4π iz + 864 299 970e6π iz + · · · .
Rather intriguingly, the coefficient of e2π iz in this series
is 196 884, one more than the smallest possible dimen-
sion of a lattice that has the Monster group as its group
of symmetries.

It is not obvious how seriously we should take this
observation, and when it was first made by John McKay
opinions differed about it. Some believed that it was
probably just a coincidence, since the two areas seemed
to be so different and unconnected. Others took the atti-
tude that the function j(z) and the Monster group are
so important in their respective areas, and the number
196 883 so large, that the surprising numerical fact was
probably pointing to a deep connection that had not yet
been uncovered.

It turned out that the second view was correct. After
studying the coefficients in the series for j(z), McKay
and John Thompson were led to a conjecture that
related them all (and not just 196 884) to the Mon-
ster group. This conjecture was extended by John Con-
way and Simon Norton, who formulated the “Monstrous
moonshine” conjecture, which was eventually proved
by Richard Borcherds in 1992. (The word “moonshine”
reflects the initial disbelief that there would be a seri-
ous relationship between the Monster group and the
j-function.)

In order to prove the conjecture, Borcherds introduced
a new algebraic structure, which he called a vertex
algebra [IV.13]. And to analyze vertex algebras, he used
results from string theory [IV.13 §2]. In other words,
he explained the connection between two very different-
looking areas of pure mathematics with the help of
concepts from theoretical physics.

This example demonstrates in an extreme way another
general principle of mathematical research: if you can
obtain the same series of numbers (or the same structure
of a more general kind) from two different mathematical
sources, then those sources are probably not as differ-
ent as they seem. Moreover, if you can find one deep
connection, you will probably be led to others. There
are many other examples where two completely differ-
ent calculations give the same answer, and many of them
remain unexplained. This phenomenon results in some
of the most difficult and fascinating unsolved prob-
lems in mathematics. (See the introduction to mirror
symmetry [IV.14] for another example.)

Interestingly, the j-function leads to a second famous
mathematical “coincidence.” There may not seem to be
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anything special about the number eπ
√

163, but here is
the beginning of its decimal expansion:

eπ
√

163

= 262 537 412 640 768 743.99999999999925 . . . ,

which is astonishingly close to an integer. Again it is
initially tempting to dismiss this as a coincidence, but
one should think twice before yielding to the temptation.
After all, there are not all that many numbers that can
be defined as simply as eπ

√
163, and each one has a prob-

ability of less than one in a million million of being as
close to an integer as eπ

√
163 is. In fact, it is not a coinci-

dence at all: for an explanation see algebraic numbers
[IV.3 §8].

6 Counting and Measuring

How many rotational symmetries are there of a regular
icosahedron? Here is one way to work it out. Choose a
vertexv of the icosahedron and letv′ be one of its neigh-
bors. An icosahedron has twelve vertices, so there are
twelve places where v could end up after the rotation.
Once we know where v goes, there are five possibilities
for v′ (since each vertex has five neighbors and v′ must
still be a neighbor of v after the rotation). Once we have
determined where v and v′ go, there is no further choice
we can make, so the number of rotational symmetries is
5× 12 = 60.

This is a simple example of a counting argument, that
is, an answer to a question that begins “How many.”
However, the word “argument” is at least as important as
the word “counting,” since we do not put all the symme-
tries in a row and say “one, two, three, . . . , sixty,” as we
might if we were counting in real life. What we do instead
is come up with a reason for the number of rotational
symmetries being 5× 12. At the end of the process, we
understand more about those symmetries than merely
how many there are. Indeed, it is possible to go further
and show that the group of rotations of the icosahedron
is A5, the alternating group [III.70] on five elements.

6.1 Exact Counting

Here is a more sophisticated counting problem. A one-
dimensional random walk of n steps is a sequence
of integers a0, a1, a2, . . . , an, such that for each i the
difference ai − ai−1 is either 1 or −1. For example,
0,1,2,1,2,1,0,−1 is a seven-step random walk. The
number of n-step random walks that start at 0 is clearly
2n, since there are two choices for each step (either you
add 1 or you subtract 1).

Now let us try a slightly harder problem. How many
walks of length 2n are there that start and end at 0? (We
look at walks of length 2n since a walk that starts and
ends in the same place must have an even number of
steps.)

In order to think about this problem, it helps to use the
letters R and L (for “right” and “left”) to denote adding 1
and subtracting 1, respectively. This gives us an alterna-
tive notation for random walks that start at 0: for exam-
ple, the walk 0,1,2,1,2,1,0,−1 would be rewritten as
RRLRLLL. Now a walk will end at 0 if and only if the
number of Rs is equal to the number of Ls. Moreover,
if we are told the set of steps where an R occurs, then
we know the entire walk. So what we are counting is the
number of ways of choosing n of the 2n steps as the
steps where an R will occur. And this is well-known to
be (2n)!/(n!)2.

Now let us look at a related quantity that is consider-
ably less easy to determine: the number W(n) of walks
of length 2n that start and end at 0 and are never neg-
ative. Here, in the notation introduced for the previous
problem, is a list of all such walks of length 6: RRRLLL,
RRLRLL, RRLLRL, RLRRLL, and RLRLRL.

Now three of these five walks do not just start and end
at 0 but visit it in the middle: RRLLRL visits it after four
steps, RLRRLL after two, and RLRLRL after two and four.
Suppose we have a walk of length 2n that is never neg-
ative and visits 0 for the first time after 2k steps. Then
the remainder of the walk is a walk of length 2(n− k)
that starts and ends at 0 and is never negative. There
are W(n− k) of these. As for the first 2k steps of such
a walk, they must begin with R and end with L, and in
between must never visit 0. This means that between the
initial R and the final L they give a walk of length 2(k− 1)
that starts and ends at 1 and is never less than 1. The
number of such walks is clearly the same as W(k− 1).
Therefore, since the first visit to 0 must take place after
2k steps for some k between 1 and n, W satisfies the
following slightly complicated recurrence relation:

W(n) = W(0)W(n− 1)+ · · · +W(n− 1)W(0).

Here, W(0) is taken to be equal to 1.

This allows us to calculate the first few values of
W . We have W(1) = W(0)W(0) = 1, which is eas-
ier to see directly: the only possibility is RL. Then
W(2) = W(1)W(0) + W(0)W(1) = 2, and W(3), which
counts the number of such walks of length 6, equals
W(0)W(2)+W(1)W(1)+W(2)W(0) = 5, confirming our
earlier calculation.

Of course, it would not be a good idea to use the recur-
rence relation directly if one wished to work out W(n)
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for large values of n such as 1010. However, the recur-
rence is of a sufficiently nice form that it is amenable
to treatment by generating functions [IV.22 §2.4], as
is explained in enumerative and algebraic combi-
natorics [IV.22 §3]. (To see the connection with that
discussion, replace the letters R and L by the square
brackets [ and ], respectively. A legal bracketing then
corresponds to a walk that is never negative.)

The argument above gives an efficient way of calcu-
lating W(n) exactly. There are many other exact count-
ing arguments in mathematics. Here is a small further
sample of quantities that mathematicians know how to
count exactly without resorting to “brute force.” (See
the introduction to [IV.22] for a discussion of when one
regards a counting problem as solved.)

(i) The number r(n) of regions that a plane is cut into
by n lines if no two of the lines are parallel and no three
concurrent. The first four values of r(n) are 2, 4, 7, and
11. It is not hard to prove that r(n) = r(n−1)+n, which
leads to the formula r(n) = 1

2n(n+ 3). This statement,
and its proof, can be generalized to higher dimensions.

(ii) The number s(n) of ways of writing n as a sum
of four squares. Here we allow zero and negative num-
bers and we count different orderings as different (so,
for example, 12 + 32 + 42 + 22, 32 + 42 + 12 + 22,
12+(−3)2+42+22, and 02+12+22+52 are considered
to be four different ways of writing 30 as a sum of four
squares). It can be shown that s(n) is equal to 8 times
the sum of all the divisors of n that are not multiples of
4. For example, the divisors of 12 are 1, 2, 3, 4, 6, and 12,
of which 1, 2, 3, and 6 are not multiples of 4. Therefore
s(12) = 8(1 + 2 + 3 + 6) = 96. The different ways are
12+12+12+32, 02+42+42+42, and the other expres-
sions that can be obtained from these ones by reordering
and replacing positive integers by negative ones.

(iii) The number of lines in space that meet a given
four lines L1, L2, L3, and L4 when those four are in “gen-
eral position.” (This means that they do not have special
properties such as two of them being parallel or inter-
secting each other.) It turns out that for any three such
lines, there is a subset of R3 known as a quadric sur-
face that contains them, and that this quadric surface is
unique. Let us take the surface for L1, L2, and L3 and call
it S.

The surface S has some interesting properties that
allow us to solve the problem. The main one is that one
can find a continuous family of lines (that is, a collec-
tion of lines L(t), one for each real number t, that varies
continuously with t) that, between them, make up the
surface S and include each of the lines L1, L2, and L3.

But there is also another such continuous family of lines

M(s), each of which meets every line L(t) in exactly one

point. In particular, every line M(s) meets all of L1, L2,

and L3, and in fact every line that meets all of L1, L2, and

L3 must be one of the lines M(s).
It can be shown that L4 intersects the surface S in

exactly two points, P and Q. Now P lies in some lineM(s)
from the second family, and Q lies in some other line

M(s′) (which must be different, or else L4 would equal

M(s) and intersect L1, L2, and L3, contradicting the fact

that the lines Li are in general position). Therefore, the

two lines M(s) and M(s′) intersect all four of the lines

Li. But every line that meets all the Li has to be one of

the linesM(s) and has to go through either P or Q (since

the lines M(s) lie in S and L4 meets S at only those two

points). Therefore, the answer is 2.

This question can be generalized very considerably,

and answered by means of a technique known as Schu-

bert calculus.

(iv) The number p(n) of ways of writing a positive

integer n as a sum of smaller positive integers. When

n = 6 this number is 11, since 6 = 1 + 1 + 1 + 1 + 1 +
1 = 2 + 1 + 1 + 1 + 1 = 2 + 2 + 1 + 1 = 2 + 2 + 2 =
3 + 1 + 1 + 1 = 3 + 2 + 1 = 3 + 3 = 4 + 1 + 1 = 4 +
2 = 5 + 1 = 6. The function p(n) is called the partition

function. A remarkable formula, due to hardy [VI.72]

and ramanujan [VI.81], gives an approximationα(n) to

p(n) that is so accurate that p(n) is always the nearest

integer to α(n).

6.2 Estimates

Once we have seen example (ii) above, it is natural to

ask whether it can be generalized. Is there a formula for

the number t(n) of ways of writing n as a sum of ten

sixth powers, for example? It is generally believed that

the answer to this question is no, and certainly no such

formula has been discovered. However, as with pack-

ing problems, even if an exact answer does not seem

to be forthcoming, it is still very interesting to obtain

estimates. In this case, one can try to define an easily

calculated function f such that f(n) is always approx-

imately equal to t(n). If even that is too hard, one can

try to find two easily calculated functions L and U such

that L(n) � t(n) � U(n) for every n. If we succeed,

then we call L a lower bound for t and U an upper bound.

Here are a few examples of quantities that nobody knows

how to count exactly, but for which there are interesting

approximations, or at least interesting upper and lower

bounds.
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(i) Probably the most famous approximate counting
problem in all of mathematics is to estimate π(n), the
number of prime numbers less than or equal to n. For
small values of n, we can of course compute π(n)
exactly: for example, π(20) = 8 since the primes less
than or equal to 20 are 2, 3, 5, 7, 11, 13, 17, and 19.
However, there does not seem to be a useful formula for
π(n), and although it is easy to think of a brute-force
algorithm for computing π(n)—look at every number
up to n, test whether it is prime, and keep count as you
go along—such a procedure takes a prohibitively long
time if n is at all large. Furthermore, it does not give us
much insight into the nature of the function π(n).

If, however, we modify the question slightly, and ask
roughly how many primes there are up to n, then we
find ourselves in the area known as analytic number
theory [IV.4], a branch of mathematics with many fasci-
nating results. In particular, the famous prime number
theorem [V.33], proved by hadamard [VI.64] and de la
vallée poussin [VI.66] at the end of the nineteenth cen-
tury, states thatπ(n) is approximately equal ton/ logn,
in the sense that the ratio of π(n) to n/ logn converges
to 1 as n tends to infinity.

This statement can be refined. It is believed that the
“density” of primes close to n is about 1/ logn, in the
sense that a randomly chosen integer close to n has a
probability of about 1/ logn of being prime. This would
suggest that π(n) should be about

∫n
0 dt/ log t, a func-

tion of n that is known as the logarithmic integral of n,
or li(n).

How accurate is this estimate? Nobody knows, but
the riemann hypothesis [V.33], perhaps the most
famous unsolved problem in mathematics, is equivalent
to the statement that π(n) and li(n) differ by at most
c
√
n logn for some constant c. Since

√
n logn is much

smaller than π(n), this would tell us that li(n) was an
extremely good approximation to π(n).

(ii) A self-avoiding walk of length n in the plane
is a sequence of points (a0, b0),(a1, b1),(a2, b2), . . . ,
(an, bn) with the following properties.

• The numbers ai and bi are all integers.
• For each i, one obtains (ai, bi) from (ai−1, bi−1) by

taking a horizontal or vertical step of length 1. That
is, either ai = ai−1 and bi = bi−1±1 or ai = ai−1±1
and bi = bi−1.

• No two of the points (ai, bi) are equal.

The first two conditions tell us that the sequence forms
a two-dimensional walk of length n, and the third says
that this walk never visits any point more than once—
hence the term “self-avoiding.”

Let S(n) be the number of self-avoiding walks of
length n that start at (0,0). There is no known formula
for S(n), and it is very unlikely that such a formula
exists. However, quite a lot is known about the way the
function S(n) grows as n grows. For instance, it is fairly
easy to prove that S(n)1/n converges to a limit c. The
value of c is not known, but it has been shown (with the
help of a computer) to lie between 2.62 and 2.68.

(iii) Let C(t) be the number of points in the plane
with integer coordinates contained in a circle of radius
t about the origin. That is, C(t) is the number of pairs
(a, b) of integers such thata2+b2 � t2. A circle of radius
t has areaπt2, and the plane can be tiled by unit squares,
each of which has a point with integer coordinates at its
center. Therefore, when t is large it is fairly clear (and
not hard to prove) that C(t) is approximately πt2. How-
ever, it is much less clear how good this approximation
is.

To make this question more precise, let us set ε(t) to
equal |C(t)−πt2|. That is, ε(t) is the error in πt2 as an
estimate for C(t). It was shown in 1915, by Hardy and
Landau, that ε(t)must be at least c

√
t for some constant

c > 0, and this estimate, or something very similar, prob-
ably gives the right order of magnitude for ε(t). How-
ever, the best upper bound, proved by Huxley in 1990
(the latest in a long line of successive improvements), is
that ε(t) is at most At46/73 for some constant A.

6.3 Averages

So far, our discussion of estimates and approximations
has been confined to problems where the aim is to count
mathematical objects of a given kind. However, that is
by no means the only context in which estimates can
be interesting. Given a set of objects, one may wish to
know, besides its size, roughly what a typical one of
those objects looks like. Many questions of this kind
take the form of asking what the average value is of some
numerical parameter that is associated with each object.
Here are two examples.

(i) What is the average distance between the starting
point and the endpoint of a self-avoiding walk of length
n? In this instance, the objects are self-avoiding walks of
lengthn that start at (0,0), and the numerical parameter
is the end-to-end distance.

Surprisingly, this is a notoriously difficult problem,
and almost nothing is known. It is obvious that n is an
upper bound for S(n), but one would expect a typical
self-avoiding walk to take many twists and turns and end
up traveling much less far than n away from its starting
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point. However, there is no known upper bound for S(n)
that is substantially better than n.

In the other direction, one would expect the end-
to-end distance of a typical self-avoiding walk to be
greater than that of an ordinary walk, to give it room
to avoid itself. This would suggest that S(n) is signifi-
cantly greater than

√
n, but it has not even been proved

that it is greater.

This is not the whole story, however, and the problem
will be discussed further in section 8.

(ii) Let n be a large randomly chosen positive integer
and letω(n) be the number of distinct prime factors of
n. On average, how large willω(n) be? As it stands, this
question does not quite make sense because there are
infinitely many positive integers, so one cannot choose
one randomly. However, one can make the question pre-
cise by specifying a large integerm and choosing a ran-
dom integer n betweenm and 2m. It then turns out that
the average size of ω(n) is around log logn.

In fact, much more is known than this. If all you know
about a random variable [III.73 §4] is its average, then
a great deal of its behavior is not determined, so for
many problems calculating averages is just the begin-
ning of the story. In this case, Hardy and Ramanujan
gave an estimate for the standard deviation [III.73 §4]
ofω(n), showing that it is about

√
log logn. Then Erdős

and Kac went even further and gave a precise esti-
mate for the probability thatω(n) differs from log logn
by more than c

√
log logn, proving the surprising fact

that the distribution of ω is approximately gaussian
[III.73 §5].

To put these results in perspective, let us think about
the range of possible values of ω(n). At one extreme,
n might be a prime itself, in which case it obviously has
just one prime factor. At the other extreme, we can write
the primes in ascending order as p1, p2, p3, . . . and take
numbers of the form n = p1p2 · · ·pk. With the help
of the prime number theorem, one can show that the
order of magnitude of k is logn/ log logn, which is much
bigger than log logn. However, the results above tell us
that such numbers are exceptional: a typical number has
a few distinct prime factors, but nothing like as many as
logm/ log logm.

6.4 Extremal Problems

There are many problems in mathematics where one
wishes to maximize or minimize some quantity in
the presence of various constraints. These are called
extremal problems. As with counting questions, there are
some extremal problems for which one can realistically

hope to work out the answer exactly, and many more for
which, even though an exact answer is out of the ques-
tion, one can still aim to find interesting estimates. Here
are some examples of both kinds.

(i) Let n be a positive integer and let X be a set with n
elements. How many subsets of X can be chosen if none
of these subsets is contained in any other?

A simple observation one can make is that if two dif-
ferent sets have the same size, then neither is contained
in the other. Therefore, one way of satisfying the con-
straints of the problem is to choose all the sets of some
particular size k. Now the number of subsets of X of
size k is n!/k!(n − k)!, which is usually written

(
n
k

)
(or

nCk), and the value of k for which
(
n
k

)
is largest is easily

shown to be n/2 if n is even and (n + 1)/2 if n is odd.
For simplicity let us concentrate on the case when n is
even. What we have just proved is that it is possible to
pick

(
n
n/2

)
subsets of ann-element set in such a way that

none of them contains any other. That is,
(
n
n/2

)
is a lower

bound for the problem. A result known as Sperner’s the-
orem states that it is an upper bound as well. That is,
if you choose more than

(
n
n/2

)
subsets of X, then, how-

ever you do it, one of these subsets will be contained
in another. Therefore, the question is answered exactly,
and the answer is

(
n
n/2

)
. (When n is odd, then the answer

is
(

n
(n+1)/2

)
, as one might now expect.)

(ii) Suppose that the two ends of a heavy chain are
attached to two hooks on the ceiling and that the chain
is not supported anywhere else. What shape will the
hanging chain take?

At first, this question does not look like a maximiza-
tion or minimization problem, but it can be quickly
turned into one. That is because a general principle from
physics tells us that the chain will settle in the shape that
minimizes its potential energy. We therefore find our-
selves asking a new question: let A and B be two points
at distance d apart, and let C be the set of all curves of
length l that have A and B as their two endpoints. Which
curve C ∈ C has the smallest potential energy? Here one
takes the mass of any portion of the curve to be pro-
portional to its length. The potential energy of the curve
is equal to mgh, where m is the mass of the curve, g
is the gravitational constant, and h is the height of the
center of gravity of the curve. Since m and g do not
change, another formulation of the question is: which
curve C ∈ C has the smallest average height?

This problem can be solved by means of a technique
known as the calculus of variations. Very roughly, the
idea is this. We have a set, C, and a function h defined
on C that takes each curveC ∈ C to its average height. We
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are trying to minimize h, and a natural way to approach
that task is to define some sort of derivative and look
for a curve C at which this derivative is 0. Notice that
the word “derivative” here does not refer to the rate of
change of height as you move along the curve. Rather,
it means the (linear) way that the average height of the
entire curve changes in response to small perturbations
of the curve. Using this kind of derivative to find a min-
imum is more complicated than looking for the sta-
tionary points of a function defined on R, since C is
an infinite-dimensional set and is therefore much more
complicated than R. However, the approach can be made
to work, and the curve that minimizes the average height
is known. (It is called a catenary, after the Latin word for
chain.) Thus, this is another minimization problem that
has been answered exactly.

For a typical problem in the calculus of variations,
one is trying to find a curve, or surface, or more gen-
eral kind of function, for which a certain quantity is
minimized or maximized. If a minimum or maximum
exists (which is by no means automatic when one is
working with an infinite-dimensional set, so this can be
an interesting and important question), the object that
achieves it satisfies a system of partial differential
equations [I.3 §5.4] known as the Euler–Lagrange equa-
tions. For more about this style of minimization or max-
imization, see variational methods [III.94] (and also
optimization and lagrange multipliers [III.66]).

(iii) How many numbers can you choose between 1 and
n if no three of them are allowed to lie in an arithmetic
progression? If n = 9 then the answer is 5. To see this,
note first that no three of the five numbers 1,2,4,8,9 lie
in an arithmetic progression. Now let us see if we can
find six numbers that work.

If we make one of our numbers 5, then we must leave
out either 4 or 6, or else we would have the progression
4,5,6. Similarly, we must leave out one of 3 and 7, one
of 2 and 8, and one of 1 and 9. But then we have left out
four numbers. It follows that we cannot choose 5 as one
of the numbers.

We must leave out one of 1, 2, and 3, and one of 7, 8,
and 9, so if we leave out 5 then we must include 4 and
6. But then we cannot include 2 or 8. But we must also
leave out at least one of 1, 4, and 7, so we are forced to
leave out at least four numbers.

An ugly case-by-case argument of this kind is feasi-
ble when n = 9, but as soon as n is at all large there
are far too many cases for it to be possible to consider
them all. For this problem, there does not seem to be a
tidy answer that tells us exactly which is the largest set
of integers between 1 and n that contains no arithmetic

progression of length 3. So instead one looks for upper
and lower bounds on its size. To prove a lower bound,
one must find a good way of constructing a large set
that does not contain any arithmetic progressions, and
to prove an upper bound one must show that any set
of a certain size must necessarily contain an arithmetic
progression. The best bounds to date are very far apart.
In 1947, Behrend found a set of size n/ec

√
logn that con-

tains no arithmetic progression, and in 1999 Jean Bour-
gain proved that every set of size Cn

√
log logn/ logn

contains an arithmetic progression. (If it is not obvious
to you that these numbers are far apart, then consider
what happens whenn = 10100, say. Then e

√
logn is about

4 000 000, while
√

logn/ log logn is about 6.5.)

(iv) Theoretical computer science provides many min-
imization problems: if one is programming a computer
to perform a certain task, then one wants it to do so in as
short a time as possible. Here is an elementary-sounding
example: how many steps are needed to multiply two
n-digit numbers together?

Even if one is not too precise about what is meant by
a “step,” one can see that the traditional method, long
multiplication, takes at least n2 steps since, during the
course of the calculation, each digit of the first number is
multiplied by each digit of the second. One might imag-
ine that this was necessary, but in fact there are clever
ways of transforming the problem and dramatically
reducing the time that a computer needs to perform a
multiplication of this kind. The fastest known method
uses the fast fourier transform [III.26] to reduce the
number of steps from n2 to Cn logn log logn. Since the
logarithm of a number is much smaller than the number
itself, one thinks of Cn logn log logn as being only just
worse than a bound of the form Cn. Bounds of this form
are called linear, and for a problem like this are clearly
the best one can hope for, since it takes 2n steps even
to read the digits of the two numbers.

Another question that is similar in spirit is whether
there are fast algorithms for matrix multiplication. To
multiply two n×n matrices using the obvious method
one needs to do n3 individual multiplications of the
numbers in the matrices, but once again there are less
obvious methods that do better. The main breakthrough
on this problem was due to Strassen, who had the idea
of splitting each matrix into four n/2×n/2 matrices
and multiplying those together. At first it seems as
though one has to calculate the products of eight pairs
of n/2×n/2 matrices, but these products are related,
and Strassen came up with seven such calculations from
which the eight products could quickly be derived. One
can then apply recursion: that is, use the same idea to
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speed up the calculation of the seven n/2×n/2 matrix
products, and so on.

Strassen’s algorithm reduces the number of numeri-
cal multiplications from about n3 to about nlog2 7. Since
log2 7 is less than 2.81, this is a significant improve-
ment, but only when n is large. His basic divide-and-
conquer strategy has been developed further, and the
current record is better than n2.4. In the other direc-
tion, the situation is less satisfactory: nobody has found
a proof that one needs to use significantly more than n2

multiplications.

For more problems of a similar kind, see computa-
tional complexity [IV.21] and the mathematics of
algorithm design [VII.5].

(v) Some minimization and maximization problems
are of a more subtle kind. For example, suppose that
one is trying to understand the nature of the differences
between successive primes. The smallest such difference
is 1 (the difference between 2 and 3), and it is not hard to
prove that there is no largest difference (given any inte-
gern greater than 1, none of the numbers betweenn!+2
and n! + n is a prime). Therefore, there do not seem to
be interesting maximization or minimization problems
concerning these differences.

However, one can in fact formulate some fascinating
problems if one first normalizes in an appropriate way.
As was mentioned earlier in this section, the prime num-
ber theorem states that the density of primes near n is
about 1/ logn, so an average gap between two primes
near n will be about logn. If p and q are successive
primes, we can therefore define a “normalized gap” to
be (q − p)/ logp. The average value of this normalized
gap will be 1, but is it sometimes much smaller and
sometimes much bigger?

It was shown by Westzynthius in 1931 that even nor-
malized gaps can be arbitrarily large, and it was widely
believed that they could also be arbitrarily close to
zero. (The famous twin-prime conjecture—that there
are infinitely many primes p for which p + 2 is also
a prime—implies this immediately.) However, it took
until 2005 for this to be proved, by Goldston, Pintz, and
Yıldırım. (See analytic number theory [IV.4 §§6–8]
for a discussion of this problem.)

7 Determining Whether Different
Mathematical Properties Are Compatible

In order to understand a mathematical concept, such
as that of a group or a manifold, there are various
stages one typically goes through. Obviously it is a good

idea to begin by becoming familiar with a few repre-
sentative examples of the structure, and also with tech-
niques for building new examples out of old ones. It is
also extremely important to understand the homomor-
phisms, or “structure-preserving functions,” from one
example of the structure to another, as was discussed
in some fundamental mathematical definitions
[I.3 §§4.1, 4.2].

Once one knows these basics, what is there left to
understand? Well, for a general theory to be useful, it
should tell us something about specific examples. For
instance, as we saw in section 3.2, Lagrange’s theorem
can be used to prove Fermat’s little theorem. Lagrange’s
theorem is a general fact about groups: that if G is a
group of sizen, then the size of any subgroup ofGmust
be a factor of n. To obtain Fermat’s little theorem, one
applies Lagrange’s theorem to the particular case when
G is the multiplicative group of integers mod p. The
conclusion one obtains—that ap is always congruent to
a—is far from obvious.

However, what if we want to know something about a
group G that might not be true for all groups? That is,
suppose that we wish to determine whether G has some
property P that some groups have and others do not.
Since we cannot prove that the property P follows from
the group axioms, it might seem that we are forced to
abandon the general theory of groups and look at the
specific group G. However, in many situations there is
an intermediate possibility: to identify some fairly gen-
eral property Q that the group G has, and show that Q
implies the more particular property P that interests us.

Here is an illustration of this sort of technique in a dif-
ferent context. Suppose we wish to determine whether
the polynomial p(x) = x4 − 2x3 − x2 − 2x + 1 has a
real root. One method would be to study this particu-
lar polynomial and try to find a root. After quite a lot
of effort we might discover that p(x) can be factorized
as (x2 + x + 1)(x2 − 3x + 1). The first factor is always
positive, but if we apply the quadratic formula to the
second, we find that p(x) = 0 when x = (3±√5)/2. An
alternative method, which uses a bit of general theory, is
to notice that p(1) is negative (in fact, it equals −3) and
that p(x) is large when x is large (because then the x4

term is far bigger than anything else), and then to use the
intermediate value theorem, the result that any contin-
uous function that is negative somewhere and positive
somewhere else must be zero somewhere in between.

Notice that, with the second approach, there was still
some computation to do—finding a value of x for which
p(x) is negative—but that it was much easier than the
computation in the first approach—finding a value of
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x for which p(x) is zero. In the second approach, we

established that p had the rather general property of

being negative somewhere, and used the intermediate

value theorem to finish off the argument.

There are many situations like this throughout math-

ematics, and as they arise certain general properties

become established as particularly useful. For exam-

ple, if you know that a positive integer n is prime, or

that a group G is Abelian (that is, gh = hg for any

two elements g and h of G), or that a function tak-

ing complex numbers to complex numbers is holomor-

phic [I.3 §5.6], then as a consequence of these general

properties you know a lot more about the objects in

question.

Once properties have established themselves as

important, they give rise to a large class of mathemati-

cal questions of the following form: given a mathemat-

ical structure and a selection of interesting properties

that it might have, which combinations of these prop-

erties imply which other ones? Not all such questions

are interesting, of course—many of them turn out to

be quite easy and others are too artificial—but some of

them are very natural and surprisingly resistant to one’s

initial attempts to solve them. This is usually a sign that

one has stumbled on what mathematicians would call a

“deep” question. In the rest of this section let us look at

a problem of this kind.

A group G is called finitely generated if there is some

finite set {x1, x2, . . . , xk} of elements of G such that all

the rest can be written as products of elements in that

set. For example, the group SL2(Z) consists of all 2 × 2

matrices ( a bc d ) such that a, b, c, and d are integers and

ad−bc = 1. This group is finitely generated: it is a nice

exercise to show that every such matrix can be built from

the four matrices ( 1 1
0 1 ), (

1 −1
0 1 ), (

1 0
1 1 ), and ( 1 0

−1 1 ) using

matrix multiplication. (See [I.3 §4.2] for a discussion of

matrices. A first step toward proving this result is to

show that ( 1 m
0 1 )(

1 n
0 1 ) = ( 1 m+n

0 1 ).)
Now let us consider a second property. If x is an ele-

ment of a group G, then x is said to have finite order if

there is some power of x that equals the identity. The

smallest such power is called the order of x. For exam-

ple, in the multiplicative group of integers mod 7, the

identity is 1, and the order of the element 4 is 3, because

41 = 4, 42 = 16 ≡ 2 and 43 = 64 ≡ 1 mod 7. As for 3,

its first six powers are 3, 2, 6, 4, 5, 1, so it has order

6. Now some groups have the very special property that

there is some integer n such that xn equals the identity

for every x—or, equivalently, the order of every x is a

factor of n. What can we say about such groups?

Let us look first at the case where all elements have
order 2. Writing e for the identity element, we are assum-
ing that a2 = e for every element a. If we multiply both
sides of this equation by the inverse a−1, then we deduce
that a = a−1. The opposite implication is equally easy,
so such groups are ones where every element is its own
inverse.

Now let a and b be two elements of G. For any two
elements a and b of any group we have the identity
(ab)−1 = b−1a−1 (simply because abb−1a−1 = aa−1 =
e), and in our special group where all elements equal
their inverses we can deduce from this that ab = ba.
That is, G is automatically Abelian.

Already we have shown that one general property,
that every element of G squares to the identity, implies
another, that G is Abelian. Now let us add the condi-
tion that G is finitely generated, and let x1, x2, . . . , xk
be a minimal set of generators. That is, suppose that
every element of G can be built up out of the xi and
that we need all of the xi to be able to do this. Because
G is Abelian and because every element is equal to its
own inverse, we can rearrange products of the xi into
a standard form, where each xi occurs at most once
and the indices increase. For example, take the product
x4x3x1x4x4x1x3x1x5. BecauseG is Abelian, this equals
x1x1x1x3x3x4x4x4x5, and because each element is its
own inverse this equals x1x4x5, the standard form of
the original expression.

This shows that G can have at most 2k elements, since
for each xi we have the choice of whether or not to
include it in the product (after it has been put in the form
above). In particular, the properties “G is finitely gener-
ated” and “every nonidentity element of G has order 2”
imply the third property “G is finite.” It turns out to be
fairly easy to prove that two elements whose standard
forms are different are themselves different, so in fact G
has exactly 2k elements (where k is the size of a minimal
set of generators).

Now let us ask what happens if n is some integer
greater than 2 and xn = e for every element x. That is,
if G is finitely generated and xn = e for every x, must G
be finite? This turns out to be a much harder question,
originally asked by burnside [VI.59]. Burnside himself
showed that G must be finite if n = 3, but it was not
until 1968 that his problem was solved, when Adian and
Novikov proved the remarkable result that if n � 4381
thenG does not have to be finite. There is of course a big
gap between 3 and 4381, and progress in bridging it has
been slow. It was only in 1992 that this was improved
to n � 13, by Ivanov. And to give an idea of how hard
the Burnside problem is, it is still not known whether a
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group with two generators such that the fifth power of
every element is the identity must be finite.

8 Working with Arguments that
Are Not Fully Rigorous

A mathematical statement is considered to be estab-
lished when it has a proof that meets the high stan-
dards of rigor that are characteristic of the subject. How-
ever, nonrigorous arguments have an important place
in mathematics as well. For example, if one wishes to
apply a mathematical statement to another field, such as
physics or engineering, then the truth of the statement
is often more important than whether one has proved it.

However, this raises an obvious question: if one has
not proved a statement, then what grounds could there
be for believing it? There are in fact several different
kinds of nonrigorous justification, so let us look at some
of them.

8.1 Conditional Results

As was mentioned earlier in this article, the Riemann
hypothesis is the most famous unsolved problem in
mathematics. Why is it considered so important? Why,
for example, is it considered more important than the
twin-prime conjecture, another problem to do with the
behavior of the sequence of primes?

The main reason, though not the only one, is that it
and its generalizations have a huge number of interest-
ing consequences. In broad terms, the Riemann hypoth-
esis tells us that the appearance of a certain degree of
“randomness” in the sequence of primes is not mislead-
ing: in many respects, the primes really do behave like
an appropriately chosen random set of integers.

If the primes behave in a random way, then one might
imagine that they would be hard to analyze, but in fact
randomness can be an advantage. For example, it is ran-
domness that allows me to be confident that at least one
girl was born in London on every day of the twentieth
century. If the sex of babies were less random, I would
be less sure: there could be some strange pattern such as
girls being born on Mondays to Thursdays and boys on
Fridays to Sundays. Similarly, if I know that the primes
behave like a random sequence, then I know a great deal
about their average behavior in the long term. The Rie-
mann hypothesis and its generalizations formulate in a
precise way the idea that the primes, and other impor-
tant sequences that arise in number theory, “behave ran-
domly.” That is why they have so many consequences.
There are large numbers of papers with theorems that
are proved only under the assumption of some version

of the Riemann hypothesis. Therefore, anybody who
proves the Riemann hypothesis will change the status
of all these theorems from conditional to fully proved.

How should one regard a proof if it relies on the Rie-
mann hypothesis? One could simply say that the proof
establishes that such and such a result is implied by
the Riemann hypothesis and leave it at that. But most
mathematicians take a different attitude. They believe
the Riemann hypothesis, and believe that it will one day
be proved. So they believe all its consequences as well,
even if they feel more secure about results that can be
proved unconditionally.

Another example of a statement that is generally
believed and used as a foundation for a great deal of fur-
ther research comes from theoretical computer science.
As was mentioned in section 6.4 (iv), one of the main
aims of computer science is to establish how quickly
certain tasks can be performed by a computer. This aim
splits into two parts: finding algorithms that work in as
few steps as possible, and proving that every algorithm
must take at least some particular number of steps. The
second of these tasks is notoriously difficult: the best
results known are far weaker than what is believed to be
true.

There is, however, a class of computational problems,
called NP-complete problems, that are known to be of
equivalent difficulty. That is, an efficient algorithm for
one of these problems can be converted into an efficient
algorithm for any other. Furthermore, it is almost univer-
sally believed that there is in fact no efficient algorithm
for any of the problems, or, as it is usually expressed,
that “P does not equal NP.” Therefore, if you want to
demonstrate that no quick algorithm exists for some
problem, all you have to do is prove that it is at least
as hard as some problem that is already known to be
NP-complete. This will not be a rigorous proof, but it
will be a convincing demonstration, since most mathe-
maticians are convinced that P does not equal NP. (See
computational complexity [IV.21] for much more on
this topic.)

Some areas of research depend on several conjectures
rather than just one. It is as though researchers in such
areas have discovered a beautiful mathematical land-
scape and are impatient to map it out despite the fact
that there is a great deal that they do not understand.
And this is often a very good research strategy, even
from the perspective of finding rigorous proofs. There
is far more to a conjecture than simply a wild guess:
for it to be accepted as important, it should have been
subjected to tests of many kinds. For example, does it
have consequences that are already known to be true?
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Are there special cases that one can prove? If it were
true, would it help one solve other problems? Is it sup-
ported by numerical evidence? Does it make a bold, pre-
cise statement that would probably be easy to refute if
it were false? It requires great insight and hard work to
produce a conjecture that passes all these tests, but if
one succeeds, one has not just an isolated statement, but
a statement with numerous connections to other state-
ments. This increases the chances that it will be proved,
and greatly increases the chances that the proof of one
statement will lead to proofs of others as well. Even a
counterexample to a good conjecture can be extraor-
dinarily revealing: if the conjecture is related to many
other statements, then the effects of the counterexample
will permeate the whole area.

One area that is full of conjectural statements is alge-
braic number theory [IV.3]. In particular, the Lang-
lands program is a collection of conjectures, due to
Robert Langlands, that relate number theory to rep-
resentation theory (it is discussed in representation
theory [IV.12 §6]). Between them, these conjectures
generalize, unify, and explain large numbers of other
conjectures and results. For example, the Shimura–
Taniyama–Weil conjecture, which was central to Andrew
Wiles’s proof of fermat’s last theorem [V.12], forms
one small part of the Langlands program. The Lang-
lands program passes the tests for a good conjecture
supremely well, and has for many years guided the
research of a large number of mathematicians.

Another area of a similar nature is known as mirror
symmetry [IV.14]. This is a sort of duality [III.19] that
relates objects known as calabi–yau manifolds [III.6],
which arise in algebraic geometry [IV.7] and also in
string theory [IV.13 §2], to other, dual manifolds. Just
as certain differential equations can become much easier
to solve if one looks at the fourier transforms [III.27]
of the functions in question, so there are calculations
arising in string theory that look impossible until one
transforms them into equivalent calculations in the dual,
or “mirror,” situation. There is at present no rigorous
justification for the transformation, but this process has
led to complicated formulas that nobody could possibly
have guessed, and some of these formulas have been
rigorously proved in other ways. Maxim Kontsevich has
proposed a precise conjecture that would explain the
apparent successes of mirror symmetry.

8.2 Numerical Evidence

The goldbach conjecture [V.30] states that every even
number greater than or equal to 4 is the sum of two

primes. It seems to be well beyond what anybody could
hope to prove with today’s mathematical machinery,
even if one is prepared to accept statements such as the
Riemann hypothesis. And yet it is regarded as almost
certainly true.

There are two principal reasons for believing Gold-
bach’s conjecture. The first is a reason we have already
met: one would expect it to be true if the primes are “ran-
domly distributed.” This is because if n is a large even
number, then there are many ways of writing n = a+b,
and there are enough primes for one to expect that from
time to time both a and b would be prime.

Such an argument leaves open the possibility that for
some value of n that is not too large one might be
unlucky, and it might just happen that n− a was com-
posite whenever a was prime. This is where numerical
evidence comes in. It has now been checked that every
even number up to 1014 can be written as a sum of
two primes, and once n is greater than this, it becomes
extremely unlikely that it could “just happen,” by a fluke,
to be a counterexample.

This is perhaps rather a crude argument, but there is
a way to make it even more convincing. If one makes
more precise the idea that the primes appear to be ran-
domly distributed, one can formulate a stronger version
of Goldbach’s conjecture that says not only that every
even number can be written as a sum or two primes, but
also roughly how many ways there are of doing this. For
instance, if a and n− a are both prime, then neither is a
multiple of 3 (unless they are equal to 3 itself). If n is a
multiple of 3, then this merely says that a is not a multi-
ple of 3, but if n is of the form 3m+ 1 then a cannot be
of the form 3k+ 1 either (or n− a would be a multiple
of 3). So, in a certain sense, it is twice as easy for n to
be a sum of two primes if it is a multiple of 3. Taking
this kind of information into account, one can estimate
in how many ways it “ought” to be possible to write n as
a sum of two primes. It turns out that, for every even n,
there should be many such representations. Moreover,
one’s predictions of how many are closely matched by
the numerical evidence: that is, they are true for values
of n that are small enough to be checked on a computer.
This makes the numerical evidence much more convinc-
ing, since it is evidence not just for Goldbach’s conjec-
ture itself, but also for the more general principles that
led us to believe it.

This illustrates a general phenomenon: the more pre-
cise the predictions that follow from a conjecture, the
more impressive it is when they are confirmed by later
numerical evidence. Of course, this is true not just of
mathematics but of science more generally.
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8.3 “Illegal” Calculations

In section 6.3 it was stated that “almost nothing is
known” about the average end-to-end distance of an n-
step self-avoiding walk. That is a statement with which
theoretical physicists would strongly disagree. Instead,
they would tell you that the end-to-end distance of a
typical n-step self-avoiding walk is somewhere in the
region of n3/4. This apparent disagreement is explained
by the fact that, although almost nothing has been rig-
orously proved, physicists have a collection of nonrig-
orous methods that, if used carefully, seem to give cor-
rect results. With their methods, they have in some areas
managed to establish statements that go well beyond
what mathematicians can prove. Such results are fasci-
nating to mathematicians, partly because if one regards
the results of physicists as mathematical conjectures
then many of them are excellent conjectures, by the
standards explained earlier: they are deep, completely
unguessable in advance, widely believed to be true,
backed up by numerical evidence, and so on. Another
reason for their fascination is that the effort to pro-
vide them with a rigorous underpinning often leads to
significant advances in pure mathematics.

To give an idea of what the nonrigorous calculations
of physicists can be like, here is a rough description of a
famous argument of Pierre-Gilles de Gennes, which lies
behind some of the results (or predictions, if you pre-
fer to call them that) of physicists. In statistical physics
there is a model known as the n-vector model, closely
related to the Ising and Potts models described in prob-
abilistic models of critical phenomena [IV.26]. At
each point of Zd one places a unit vector in Rn. This
gives rise to a random configuration of unit vectors, with
which one associates an “energy” that increases as the
angles between neighboring vectors increase. De Gennes
found a way of transforming the self-avoiding walk prob-
lem so that it could be regarded as a question about the
n-vector model in the case n = 0. The 0-vector prob-
lem itself does not make obvious sense, since there is
no such thing as a unit vector in R0, but de Gennes was
nevertheless able to take parameters associated with the
n-vector model and show that if you let n converge to
zero then you obtained parameters associated with self-
avoiding walks. He proceeded to choose other parame-
ters in the n-vector model to derive information about
self-avoiding walks, such as the expected end-to-end
distance.

To a pure mathematician, there is something very wor-
rying about this approach. The formulas that arise in
the n-vector model do not make sense when n = 0, so

instead one has to regard them as limiting values when
n tends to zero. But n is very clearly a positive integer in
the n-vector model, so how can one say that it tends to
zero? Is there some way of defining an n-vector model
for more general n? Perhaps, but nobody has found one.
And yet de Gennes’s argument, like many other argu-
ments of a similar kind, leads to remarkably precise pre-
dictions that agree with numerical evidence. There must
be a good reason for this, even if we do not understand
what it is.

The examples in this section are just a few illus-
trations of how mathematics is enriched by nonrigor-
ous arguments. Such arguments allow one to penetrate
much further into the mathematical unknown, open-
ing up whole areas of research into phenomena that
would otherwise have gone unnoticed. Given this, one
might wonder whether rigor is important: if the results
established by nonrigorous arguments are clearly true,
then is that not good enough? As it happens, there are
examples of statements that were “established” by non-
rigorous methods and later shown to be false, but the
most important reason for caring about rigor is that the
understanding one gains from a rigorous proof is fre-
quently deeper than the understanding provided by a
nonrigorous one. The best way to describe the situation
is perhaps to say that the two styles of argument have
profoundly benefited each other and will undoubtedly
continue to do so.

9 Finding Explicit Proofs and Algorithms

There is no doubt that the equation x5 −x− 13 = 0 has
a solution. After all, if we set f(x) = x5 − x − 13, then
f(1) = −13 and f(2) = 17, so somewhere between 1
and 2 there will be an x for which f(x) = 0.

That is an example of a pure existence argument—in
other words, an argument that establishes that some-
thing exists (in this case, a solution to a certain equa-
tion), without telling us how to find it. If the equation
had been x2 − x − 13 = 0, then we could have used
an argument of a very different sort: the formula for
quadratic equations tells us that there are precisely two
solutions, and it even tells us what they are (they are
(1+√53)/2 and (1−√53)/2). However, there is no sim-
ilar formula for quintic equations (see the insolubility
of the quintic [V.24]).

These two arguments illustrate a fundamental dichot-
omy in mathematics. If you are proving that a math-
ematical object exists, then sometimes you can do so
explicitly, by actually describing that object, and some-
times you can do so only indirectly, by showing that its
nonexistence would lead to a contradiction.
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There is also a spectrum of possibilities in between.

As it was presented, the argument above showed merely

that the equation x5 − x − 13 has a solution between

1 and 2, but it also suggests a method for calculating

that solution to any desired accuracy. If, for example,

you want to know it to two decimal places, then run

through the numbers 1,1.01,1.02, . . . ,1.99,2 evaluating

f at each one. You will find that f(1.96) is approxi-

mately −0.202 and f(1.97) is approximately 0.0914, so

there must be a solution between the two (which the cal-

culations suggest will be closer to 1.97 than to 1.96).

And in fact there are much better ways, such as new-

ton’s method [II.4 §2.3], of approximating solutions.

For many purposes, a pretty formula for a solution is

less important than a method of calculating or approxi-

mating it. (See numerical analysis [IV.20 §1] for a fur-

ther discussion of this point.) And if one has a method,

its usefulness depends very much on whether it works

quickly.

Thus, at one end of the spectrum one has simple for-

mulas that define mathematical objects and can easily

be used to find them, at the other one has proofs that

establish existence but give no further information, and

in between one has proofs that yield algorithms for find-

ing the objects, algorithms that are significantly more

useful if they run quickly.

Just as, all else being equal, a rigorous argument is

preferable to a nonrigorous one, so an explicit or algo-

rithmic argument is worth looking for even if an indirect

one is already established, and for similar reasons: the

effort to find an explicit argument very often leads to

new mathematical insights. (Less obviously, as we shall

soon see, finding indirect arguments can also lead to new

insights.)

One of the most famous examples of a pure exis-

tence argument concerns transcendental numbers

[III.43], which are real numbers that are not roots of any

polynomial with integer coefficients. The first person to

prove that such numbers existed was liouville [VI.38],

in 1844. He proved that a certain condition was suffi-

cient to guarantee that a number was transcendental

and demonstrated that it is easy to construct numbers

satisfying his condition (see liouville’s theorem and

roth’s theorem [V.25]). After that, various important

numbers such as e andπ were proved to be transcenden-

tal, but these proofs were difficult. Even now there are

many numbers that are almost certainly transcenden-

tal but which have not been proved to be transcenden-

tal. (See irrational and transcendental numbers

[III.43] for more information about this.)

All the proofs mentioned above were direct and

explicit. Then in 1873 cantor [VI.53] provided a com-

pletely different proof of the existence of transcenden-

tal numbers, using his theory of countability [III.11].

He proved that the algebraic numbers were countable

and the real numbers uncountable. Since countable sets

are far smaller than uncountable sets, this showed that

almost every real number (though not necessarily almost

every real number you will actually meet) is transcenden-

tal.

In this instance, each of the two arguments tells us

something that the other does not. Cantor’s proof shows

that there are transcendental numbers, but it does not

provide us with a single example. (Strictly speaking, this

is not true: one could specify a way of listing the alge-

braic numbers and then apply Cantor’s famous diago-

nal argument to that particular list. However, the result-

ing number would be virtually devoid of meaning.) Liou-

ville’s proof is much better in that way, as it gives us

a method of constructing several transcendental num-

bers with fairly straightforward definitions. However,

if one knew only the explicit arguments such as Liou-

ville’s and the proofs that e and π are transcendental,

then one might have the impression that transcendental

numbers are numbers of a very special kind. The insight

that is completely missing from these arguments, but

present in Cantor’s proof, is that a typical real number

is transcendental.

For much of the twentieth century, highly abstract

and indirect proofs were fashionable, but in more recent

years, especially with the advent of the computer, atti-

tudes have changed. (Of course, this is a very general

statement about the entire mathematical community

rather than about any single mathematician.) Nowadays,

more attention is often paid to the question of whether a

proof is explicit, and, if so, whether it leads to an efficient

algorithm.

Needless to say, algorithms are interesting in them-

selves, and not just for the light they shed on mathe-

matical proofs. Let us conclude this section with a brief

description of a particularly interesting algorithm that

has been developed by several authors over the last

few years. It gives a way of computing the volume of

a high-dimensional convex body.

A shape K is called convex if, given any two points x
and y in K, the line segment joining x to y lies entirely

inside K. For example, a square or a triangle is convex,

but a five-pointed star is not. This concept can be gener-

alized straightforwardly to n dimensions, for any n, as

can the notions of area and volume.
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Now let us suppose that an n-dimensional convex

body K is specified for us in the following sense: we

have a computer program that runs quickly and tells us,

for each point (x1, . . . , xn), whether or not that point

belongs to K. How can we estimate the volume of K?

One of the most powerful methods for problems like

this is statistical : you choose points at random and see

whether they belong to K, basing your estimate of the

volume of K on the frequency with which they do. For

example, if you wanted to estimate π , you could take a

circle of radius 1, enclose it in a square of side-length

2, and choose a large number of points randomly from

the square. Each point has a probability π/4 (the ratio

of the area π of the circle to the area 4 of the square)

of belonging to the circle, so we can estimate π by tak-

ing the proportion of points that fall in the circle and

multiplying it by 4.

This approach works quite easily for very low dimen-

sions but as soon as n is at all large it runs into a

severe difficulty. Suppose for example that we were to

try to use the same method for estimating the vol-

ume of an n-dimensional sphere. We would enclose that

sphere in an n-dimensional cube, choose points at ran-

dom in the cube, and see how often they belonged to

the sphere as well. However, the ratio of the volume of

an n-dimensional sphere to that of an n-dimensional

cube that contains it is exponentially small, which means

that the number of points you have to pick before even

one of them lands in the sphere is exponentially large.

Therefore, the method becomes hopelessly impractical.

All is not lost, though, because there is a trick for get-

ting around this difficulty. You define a sequence of con-

vex bodies, K0, K1, . . . , Km, each contained in the next,

starting with the convex body whose volume you want

to know, and ending with the cube, in such a way that

the volume of Ki is always at least half that of Ki+1. Then

for each i you estimate the ratio of the volumes of Ki−1

and Ki. The product of all these ratios will be the ratio

of the volume of K0 to that of Km. Since you know the

volume of Km, this tells you the volume of K0.

How do you estimate the ratio of the volumes of Ki−1

and Ki? You simply choose points at random from Ki
and see how many of them belong to Ki−1. However, it

is just here that the true subtlety of the problem arises:

how do you choose points at random from a convex body

Ki that you do not know much about? Choosing a ran-

dom point in the n-dimensional cube is easy, since all

you need to do is independently choose n random num-

bers x1, . . . , xn, each between−1 and 1. But for a general

convex body it is not easy at all.

There is a wonderfully clever idea that gets around
this problem. It is to design carefully a random walk
that starts somewhere inside the convex body and at
each step moves to another point, chosen at random
from just a few possibilities. The more random steps
of this kind that are taken, the less can be said about
where the point is, and if the walk is defined prop-
erly, it can be shown that after not too many steps,
the point reached is almost purely random. However,
the proof is not at all easy. (It is discussed further in
high-dimensional geometry and its probabilistic
analogues [IV.24 §6].)

For further discussion of algorithms and their math-
ematical importance, see computational number
theory [IV.5], computational complexity [IV.21],
and the mathematics of algorithm design [VII.5].

10 What Do You Find in
a Mathematical Paper?

Mathematical papers have a very distinctive style, one
that became established early in the twentieth century.
This final section is a description of what mathemati-
cians actually produce when they write.

A typical paper is usually a mixture of formal and
informal writing. Ideally (but by no means always), the
author writes a readable introduction that tells the
reader what to expect from the rest of the paper. And
if the paper is divided into sections, as most papers are
unless they are quite short, then it is also very helpful
to the reader if each section can begin with an informal
outline of the arguments to follow. But the main sub-
stance of the paper has to be more formal and detailed,
so that readers who are prepared to make a sufficient
effort can convince themselves that it is correct.

The object of a typical paper is to establish mathe-
matical statements. Sometimes this is an end in itself:
for example, the justification for the paper may be that it
proves a conjecture that has been open for twenty years.
Sometimes the mathematical statements are established
in the service of a wider aim, such as helping to explain
a mathematical phenomenon that is poorly understood.
But either way, mathematical statements are the main
currency of mathematics.

The most important of these statements are usu-
ally called theorems, but one also finds statements
called propositions, lemmas, and corollaries. One can-
not always draw sharp distinctions between these kinds
of statements, but in broad terms this is what the dif-
ferent words mean. A theorem is a statement that you
regard as intrinsically interesting, a statement that you
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might think of isolating from the paper and telling other
mathematicians about in a seminar, for instance. The
statements that are the main goals of a paper are usually
called theorems. A proposition is a bit like a theorem, but
it tends to be slightly “boring.” It may seem odd to want
to prove boring results, but they can be important and
useful. What makes them boring is that they do not sur-
prise us in any way. They are statements that we need,
that we expect to be true, and that we do not have much
difficulty proving.

Here is a quick example of a statement that one might
choose to call a proposition. The associative law for
a binary operation [I.2 §2.4] “∗” states that x ∗ (y ∗
z) = (x∗y)∗z. One often describes this law informally
by saying that “brackets do not matter.” However, while
it shows that we can write x ∗ y ∗ z without fear of
ambiguity, it does not show quite so obviously that we
can write a ∗ b ∗ c ∗ d ∗ e, for example. How do we
know that, just because the positions of brackets do not
matter when you have three objects, they do not matter
when you have more than three?

Many mathematics students go happily through uni-
versity without noticing that this is a problem. It just
seems obvious that the associative law shows that brack-
ets do not matter. And they are basically right: although
it is not completely obvious, it is certainly not a surprise
and turns out to be easy to prove. Since we often need
this simple result and could hardly call it a theorem, we
might call it a proposition instead. To get a feel for how
to prove it, you might wish to show that the associative
law implies that

(a∗ ((b ∗ c)∗ d))∗ e = a∗ (b ∗ ((c ∗ d)∗ e)).
Then you can try to generalize what it is you are doing.

Often, if you are trying to prove a theorem, the proof
becomes long and complicated, in which case if you want
anybody to read it you need to make the structure of the
argument as clear as possible. One of the best ways of
doing this is to identify subgoals, which take the form of
statements intermediate between your initial assump-
tions and the conclusion you wish to draw from them.
These statements are usually called lemmas. Suppose,
for example, that you are trying to give a very detailed
presentation of the standard proof that

√
2 is irrational.

One of the facts you will need is that every fraction p/q
is equal to a fraction r/s with r and s not both even, and
this fact requires a proof. For the sake of clarity, you
might well decide to isolate this proof from the main
proof and call the fact a lemma. Then you have split
your task into two separate tasks: proving the lemma,
and proving the main theorem using the lemma. One

can draw a parallel with computer programming: if you

are writing a complicated program, it is good practice

to divide your main task into subtasks and write sepa-

rate mini-programs for them, which you can then treat

as “black boxes,” to be called upon by other parts of the

program whenever they are useful.

Some lemmas are difficult to prove and are useful in

many different contexts, so the most important lemmas

can be more important than the least important theo-

rems. However, a general rule is that a result will be

called a lemma if the main reason for proving it is in

order to use it as a stepping stone toward the proofs of

other results.

A corollary of a mathematical statement is another

statement that follows easily from it. Sometimes the

main theorem of a paper is followed by several corollar-

ies, which advertise the strength of the theorem. Some-

times the main theorem itself is labeled a corollary,

because all the work of the proof goes into proving a

different, less punchy statement from which the theo-

rem follows very easily. If this happens, the author may

wish to make clear that the corollary is the main result

of the paper, and other authors would refer to it as a

theorem.

A mathematical statement is established by means

of a proof. It is a remarkable feature of mathematics

that proofs are possible: that, for example, an argu-

ment invented by euclid [VI.2] over two thousand years

ago can still be accepted today and regarded as a com-

pletely convincing demonstration. It took until the late

nineteenth and early twentieth centuries for this phe-

nomenon to be properly understood, when the language

of mathematics was formalized (see the language and

grammar of mathematics [I.2], and especially sec-

tion 4, for an idea of what this means). Then it became

possible to make precise the notion of a proof as well.

From a logician’s point of view a proof is a sequence

of mathematical statements, each written in a formal

language, with the following properties: the first few

statements are the initial assumptions, or premises; each

remaining statement in the sequence follows from ear-

lier ones by means of logical rules that are so simple

that the deductions are clearly valid (for instance rules

such as “if P ∧Q is true then P is true,” where “∧” is the

logical symbol for “and”); and the final statement in the

sequence is the statement that is to be proved.

The above idea of a proof is a considerable idealization

of what actually appears in a normal mathematical paper

under the heading “Proof.” That is because a purely for-

mal proof would be very long and almost impossible
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to read. And yet, the fact that arguments can in princi-
ple be formalized provides a very valuable underpinning
for the edifice of mathematics, because it gives a way
of resolving disputes. If a mathematician produces an
argument that is strangely unconvincing, then the best
way to see whether it is correct is to ask him or her to
explain it more formally and in greater detail. This will
usually either expose a mistake or make it clearer why
the argument works.

Another very important component of mathematical
papers is definitions. This book is full of them: see in
particular part III. Some definitions are given simply
because they enable one to speak more concisely. For
example, if I am proving a result about triangles and I
keep needing to consider the distances between the ver-
tices and the opposite sides, then it is a nuisance to have
to say “the distances from A, B, and C to the lines BC, AC,
and AB, respectively,” so instead I will probably choose
a word like “altitude” and write, “Given a vertex of a tri-
angle, define its altitude to be the distance from that
vertex to the opposite side.” If I am looking at triangles
with obtuse angles, then I will have to be more careful:
“Given a vertex A of a triangle ABC, define its altitude
to be the distance from A to the unique line that passes
through B and C.” From then on, I can use the word “alti-
tude” and the exposition of my proof will be much more
crisp.

Definitions like this are mere definitions of conve-
nience. When the need arises, it is pretty obvious what
to do and one does it. But the really interesting defini-
tions are ones that are far from obvious and that make
you think in new ways once you know them. A very good
example is the definition of the derivative of a function.
If you do not know this definition, you will have no idea
how to find out for which nonnegative x the function
f(x) = 2x3−3x2−6x+1 takes its smallest value. If you
do know it, then the problem becomes a simple exercise.
That is perhaps an exaggeration, since you also need to
know that the minimum will occur either at 0 or at a
point where the derivative vanishes, and you will need
to know how to differentiate f(x), but these are simple
facts—propositions rather than theorems—and the real
breakthrough is the concept itself.

There are many other examples of definitions like
this, but interestingly they are more common in some
branches of mathematics than in others. Some mathe-
maticians will tell you that the main aim of their research
is to find the right definition, after which their whole
area will be illuminated. Yes, they will have to write
proofs, but if the definition is the one they are look-
ing for, then these proofs will be fairly straightforward.

And yes, there will be problems they can solve with the
help of the new definition, but, like the minimization
problem above, these will not be central to the theory.
Rather, they will demonstrate the power of the defini-
tion. For other mathematicians, the main purpose of def-
initions is to prove theorems, but even very theorem-
oriented mathematicians will from time to time find
that a good definition can have a major effect on their
problem-solving prowess.

This brings us to mathematical problems. The main
aim of an article in mathematics is usually to prove the-
orems, but one of the reasons for reading an article is
to advance one’s own research. It is therefore very wel-
come if a theorem is proved by a technique that can be
used in other contexts. It is also very welcome if an arti-
cle contains some good unsolved problems. By way of
illustration, let us look at a problem that most mathe-
maticians would not take all that seriously, and try to
see what it lacks.

A number is called palindromic if its representation in
base 10 is a palindrome: some simple examples are 22,
131, and 548 845. Of these, 131 is interesting because it
is also a prime. Let us try to find some more prime palin-
dromic numbers. Single-digit primes are of course palin-
dromic, and two-digit palindromic numbers are multi-
ples of 11, so only 11 itself is also a prime. So let us
move quickly on to three-digit numbers. Here there turn
out to be several examples: 101, 131, 151, 191, 313, 353,
373, 383, 727, 757, 787, 797, 919, and 929. It is not hard
to show that every palindromic number with an even
number of digits is a multiple of 11, but the palindromic
primes do not stop at 929—for example, 10 301 is the
next smallest.

And now anybody with a modicum of mathematical
curiosity will ask the question: are there infinitely many
palindromic primes? This, it turns out, is an unsolved
problem. It is believed (on the combined grounds that
the primes should be sufficiently random and that palin-
dromic numbers with an odd number of digits do not
seem to have any particular reason to be factorizable)
that there are, but nobody knows how to prove it.

This problem has the great virtue of being easy to
understand, which makes it appealing in the way that
fermat’s last theorem [V.12] and goldbach’s con-
jecture [V.30] are appealing. And yet, it is not a cen-
tral problem in the way that those two are: most math-
ematicians would put it into a mental box marked
“recreational” and forget about it.

What explains this dismissive attitude? Are the primes
not central objects of study in mathematics? Well, yes
they are, but palindromic numbers are not. And the
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main reason they are not is that the definition of “palin-
dromic” is extremely unnatural. If you know that a num-
ber is palindromic, what you know is less a feature of
the number itself and more a feature of the particular
way that, for accidental historical reasons, we choose to
represent it. In particular, the property depends on our
choice of the number 10 as our base. For example, if we
write 131 in base 3, then it becomes 11212, which is no
longer the same when written backwards. By contrast, a
prime number is prime however you write it.

This is not quite a complete explanation, since
there could conceivably be interesting properties that
involved the number 10, or at least some artificial choice
of number, in an essential way. For example, the prob-
lem of whether there are infinitely many primes of the
form 2n − 1 is considered interesting, despite the use of
the particular number 2. However, the choice of 2 can be
justified here: an−1 has a factor a−1, so for any larger
integer the answer would be no. Moreover, numbers of
the form 2n − 1 have special properties that make them
more likely to be prime. (See computational number
theory [IV.5] for an explanation of this point.)

But even if we replace 10 by the “more natural” num-
ber 2 and look at numbers that are palindromic when
written in binary, we still do not obtain a property that
would be considered a serious topic for research. Sup-
pose that, given an integer n, we define r(n) to be the
reverse of n—that is, the number obtained if you write
n in binary and then reverse its digits. Then a palin-
dromic number, in the binary sense, is a number n such
that n = r(n). But the function r(n) is very strange
and “unmathematical.” For instance, the reverses of the
numbers from 1 to 20 are 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 13, 3,
11, 7, 15, 1, 17, 9, 25, and 5, which gives us a sequence
with no obvious pattern. Indeed, when one calculates
this sequence, one realizes that it is even more artifi-
cial than it at first seemed. One might imagine that the
reverse of the reverse of a number is the number itself,
but that is not so. If you take the number 10, for exam-
ple, it is 1010 in binary, so its reverse is 0101, which
is the number 5. But this we would normally write as
101, so the reverse of 5 is not 10 but 5. But we cannot
solve this problem by deciding to write 5 as 0101, since
then we would have the problem that 5 was no longer
palindromic, when it clearly ought to be.

Does this mean that nobody would be interested in
a proof that there were infinitely many palindromic
primes? Not at all. It can be shown quite easily that the
number of palindromic numbers less than n is in the
region of

√
n, which is a very small fraction indeed. It is

notoriously hard to prove results about primes in sparse

sets like this, so a solution to this conjecture would be
a big breakthrough. However, the definition of “palin-
dromic” is so artificial that there seems to be no way of
using it in a detailed way in a mathematical proof. The
only realistic hope of solving this problem would be to
prove a much more general result, of which this would
be just one of many consequences. Such a result would
be wonderful, and undeniably interesting, but you will
not discover it by thinking about palindromic numbers.
Instead, you would be better off either trying to formu-
late a more general question, or else looking at a more
natural problem of a similar kind. An example of the lat-
ter is this: are there infinitely many primes of the form
m2 + 1 for some positive integer m?

Perhaps the most important feature of a good prob-
lem is generality: the solution to a good problem should
usually have ramifications beyond the problem itself. A
more accurate word for this desirable quality is “gen-
eralizability,” since some excellent problems may look
rather specific. For example, the statement that

√
2 is

irrational looks as though it is about just one number,
but once you know how to prove it, you will have no
difficulty in proving that

√
3 is irrational as well, and

in fact the proof can be generalized to a much wider
class of numbers (see algebraic numbers [IV.3 §14]).
It is quite common for a good problem to look uninter-
esting until you start to think about it. Then you realize
that it has been asked for a reason: it might be the “first
difficult case” of a more general problem, or it might be
just one well-chosen example of a cluster of problems,
all of which appear to run up against the same difficulty.

Sometimes a problem is just a question, but frequently
the person who asks a mathematical question has a good
idea of what the answer is. A conjecture is a mathemati-
cal statement that the author firmly believes but cannot
prove. As with problems, some conjectures are better
than others: as we have already discussed in section 8.1,
the very best conjectures can have a major effect on the
direction of mathematical research. T&T note:

must fix the
fact that
folio is not
appearing on
the final
page of
some of the
parts before
CRC!
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Part II

The Origins of
Modern Mathematics

II.1 From Numbers to
Number Systems
Fernando Q. Gouvêa

People have been writing numbers down for as long as
they have been writing. In every civilization that has
developed a way of recording information, we also find
a way of recording numbers. Some scholars even argue
that numbers came first.

It is fairly clear that numbers first arose as adjectives:
they specified how many or how much of something
there was. Thus, it was possible to talk about three
apricots, say, long before it was possible to talk about
the number 3. But once the concept of “threeness” is
on the table, so that the same adjective specifies three
fish and three horses, and once a written symbol such
as “3” is developed that can be used in all of those
instances, the conditions exist for 3 itself to emerge
as an independent entity. Once it does, we are doing
mathematics.

This process seems to have repeated itself many
times when new kinds of numbers have been intro-
duced: first a number is used, then it is represented
symbolically, and finally it comes to be conceived as a
thing in itself and as part of a system of similar entities.

1 Numbers in Early Mathematics

The earliest mathematical documents we know about
go back to the civilizations of the ancient Middle East,
in Egypt and in Mesopotamia. In both cultures, a scribal
class developed. Scribes were responsible for keeping
records, which often required them to do arithmetic
and solve simple mathematical problems. Most of the
mathematical documents we have from those cultures

seem to have been created for the use of young scribes
learning their craft. Many of them are collections of
problems, provided with either answers or brief solu-
tions: twenty-five problems about digging trenches in
one tablet, twelve problems requiring the solution of
a linear equation in another, problems about squares
and their sides in a third.

Numbers were used both for counting and for mea-
suring, so a need for fractional numbers must have
come up fairly early. Fractions are complicated to write
down, and computing with them can be difficult. Hence,
the problem of “broken numbers” may well have been
the first really challenging mathematical problem. How
does one write down fractions? The Egyptians and
the Mesopotamians came up with strikingly different
answers, both of which are also quite different from
the way we write them today.

In Egypt (and later in Greece and much of the Mediter-
ranean world), the fundamental notion was “the nth
part,” as in “the third part of six is two.” In this lan-
guage, one would express the idea of dividing 7 by 3
as, “What is the third part of seven?” The answer is,
“Two and the third.” The process was complicated by an
additional restriction: one never recorded a final result
using more than one of the same kind of part. Thus, the
number we would want to express as “two fifth parts”
would have to be given as “the third and the fifteenth.”

In Mesopotamia, we find a very different idea, which
may have arisen to allow easy conversion between dif-
ferent kinds of units. First of all, the Babylonians had
a way to generate symbols for all the numbers from 1
to 59. For larger numbers, they used a positional sys-
tem much like the one we use today, but based on 60
rather than 10. So something like 1,20 means one sixty
and twenty units, that is, 1 × 60 + 20 = 80. The same
system was then extended to fractions, so that one half
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was represented as thirty sixtieths. It is convenient to
mark the beginning of the fractional part with a semi-
colon, though this and the comma are a modern con-
vention that has no counterpart in the original texts.
Then, for example, 1;24,36 means 1+ 24

60 + 36
602 , the frac-

tion that we would more usually write as 141
100 , or 1.41.

T&T note: need to
fix clash of
fractions here
before press. The Mesopotamian way of writing numbers is called

a sexagesimal place-value system by analogy with the
system we use today, which is, of course, a decimal
place-value system.

Neither of these systems is really equipped to deal
well with complicated numbers. In Mesopotamia, for
example, only finite sexagesimal expressions were
employed, so the scribes were not able to write down
an exact value for the reciprocal of 7 because there is
no finite sexagesimal expression for 1

7 . In practice, this
meant that to divide by 7 required finding an approxi-
mate answer. The Egyptian “parts” system, on the other
hand, can represent any positive rational number, but
doing so may require a sequence of denominators that
to our eyes looks very complicated. One of the sur-
viving papyri includes problems that look designed to
produce just such complicated answers. One of these
answers is “14, the 4th, the 56th, the 97th, the 194th,
the 388th, the 679th, the 776th,” which in modern nota-
tion is the fraction 14 28

97 . It seems that the joy of com-
putation for its own sake became well-established very
early in the development of mathematics.

Mediterranean civilizations preserved both of these
systems for a while. Most everyday numbers were spec-
ified using the system of “parts.” On the other hand,
astronomy and navigation required more precision, so
the sexagesimal system was used in those fields. This
included measuring time and angles. The fact that we
still divide an hour into sixty minutes and a minute into
sixty seconds goes back, via the Greek astronomers,
to the Babylonian sexagesimal fractions; almost four
thousand years later, we are still influenced by the
Babylonian scribes.

2 Lengths Are Not Numbers

Things get more complicated with the mathematics
of classical Greek and Hellenistic civilizations. The
Greeks, of course, are famous for coming up with
the first mathematical proofs. They were the first to
attempt to do mathematics in a rigorously deductive
way, using clear initial assumptions and careful state-
ments. This, perhaps, is what led them to be very
careful about numbers and their relations to other
magnitudes.

Sometime before the fourth century b.c.e., the Greeks

made the fundamental discovery of “incommensurable

magnitudes.” That is, they discovered that it is not

always possible to express two given lengths as (inte-

ger) multiples of a third length. It is not just that lengths

and numbers are conceptually distinct things (though

this was important too). The Greeks had found a proof

that one cannot use numbers to represent lengths.

Suppose, they argued, you have two line segments.

If their lengths are both given by numbers, then those

numbers will at worst involve some fractions. By chang-

ing the unit of length, then, we can make sure that both

of the lengths correspond to whole numbers. In other

words, it must be possible to choose a unit length so

that each of our segments consists of a whole number

multiple of the unit. The two segments, then, could be

“measured together,” i.e., would be “commensurable.”

Now here’s the catch: the Greeks could prove that this

was not always the case. Their standard example had to

do with the side and the diagonal of a square. We do not

know exactly how they first established that these two

segments are not commensurable, but it might have

been something like this: if you subtract the side from

the diagonal, you will get a segment shorter than either

of them; if both side and diagonal are measured by a

common unit, then so is the difference. Now repeat the

argument: take the remainder and subtract it from the

side until we get a second remainder smaller than the

first (it can be subtracted twice, in fact). The second

remainder will also be measured by the common unit.

It turns out to be quite easy to show that this process

will never terminate; instead, it will produce smaller and

smaller remainder segments. Eventually, the remainder

segment will be smaller than the unit that supposedly

measures it a whole number of times. That is impossi-

ble (no whole number is smaller than 1, after all), and

hence we can conclude that the common unit does not,

in fact, exist.

Of course, the diagonal does in fact have a length.

Today, we would say that if the length of the side is

one unit, then the length of the diagonal is
√

2 units,

and we would interpret this argument as showing that

the number
√

2 is not a fraction. The Greeks did not

quite see in what sense
√

2 could be a number. Instead,

it was a length, or, even better, the ratio between the

length of the diagonal and the length of the side. Sim-

ilar arguments could be applied to other lengths; for

example, they knew that the side of a square of area 1

and a square of area 10 are incommensurable.
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The conclusion, then, is that lengths are not numbers:
instead, they are some other kind of magnitude. But
now we are faced with a proliferation of magnitudes:
numbers, lengths, areas, angles, volumes, etc. Each of
these must be taken as a different kind of quantity, not
comparable with the others.

This is a problem for geometry, particularly if we
want to measure things. The Greeks solved this prob-
lem by relying heavily on the notion of a ratio. Two
quantities of the same type have a ratio, and this ratio
was allowed to be equal to the ratio of two quantities of
another type: equality of two ratios was defined using
Eudoxus’s theory of proportion, the latter being one of
the most important and deep ideas of Greek geometry.
So, for example, rather than talking about a number
called π , which to them would not be a number at all,
they would say that “the ratio of the circle to the square
on its radius is the same as the ratio of the circumfer-
ence to the diameter.” Notice that one of the two ratios
is between two areas, the other between two lengths.
The number π itself had no name in Greek mathemat-
ics, but the Greeks did compare it with ratios between
numbers: archimedes [VI.3] showed that it was just a
little bit less than the ratio of 22 to 7 and just a little
bit more than the ratio of 223 to 71.

Doing things this way seems ungainly to us, but it
worked very well. Furthermore, it is philosophically sat-
isfying to conceive of a great variety of magnitudes
organized into various kinds (segments, angles, sur-
faces, etc.). Magnitudes of the same kind can be related
to one another by ratios, and ratios can be compared
with each other because they are relations perceived by
our minds. In fact, the word for ratio, both in Greek and
in Latin, is the same as the word for “reason” or “expla-
nation” (logos in Greek, ratio in Latin). From the begin-
ning, “irrational” (alogos in Greek) could mean both
“without a ratio” and “unreasonable.”

Inevitably, the austere system of the theoretical
mathematicians was somewhat disconnected from the
everyday needs of people who needed to measure
things such as lengths and angles. Astronomers kept
right on using sexagesimal approximations, as did map-
makers and other scientists. There was some “leakage”
of course: in the first century c.e., Heron of Alexandria
wrote a book that reads like an attempt to apply the
theoreticians’ discoveries to practical measurement. It
is to him, for example, that we owe the recommenda-
tion to use 22

7 as an approximation for π . (Presumably,
he chose Archimedes’ upper bound because it was the
simpler number.) In theoretical mathematics, however,

the distinction between numbers and other kinds of

magnitudes remained firm.

The history of numbers in the West over the fifteen

hundred years that followed the classical Greek period

can be seen as having two main themes: first, the Greek

compartmentalization between different kinds of quan-

tities was slowly demolished; second, in order to do this

the notion of number had to be generalized over and

over again.

3 Decimal Place Value

Our system for representing whole numbers goes back,

ultimately, to the mathematicians of the Indian subcon-

tinent. Sometime before (probably well before) the fifth

century c.e., they created nine symbols to designate

the numbers from one to nine and used the position

of these symbols to indicate their actual value. So a 3

in the units position meant three, and a 3 in the tens

position meant three tens, i.e., thirty. This, of course, is

what we still do; the symbols themselves have changed,

but not the principle. At about the same time, a place

marker was developed to indicate an unoccupied space;

this eventually evolved into our zero.

Indian astronomy made extensive use of sines, which

are almost never whole numbers. To represent these,

a Babylonian-style sexagesimal system was used, with

each “sexagesimal unit” being represented using the

decimal system. So “thirty-three and a quarter” might

be represented as 33 15′, i.e., 33 units and 15 “minutes”

(sixtieths).

Decimal place-value numeration was passed on from

India to the Islamic world fairly early. In the ninth cen-

tury c.e. in Baghdad, the recently established capital

of the caliphate, one finds al-khwārizmı̄ [VI.5] writ-

ing a treatise on numeration in the Indian style, “using

nine symbols.” Several centuries later, al-Khwārizm̄ı’s

treatise was translated into Latin. It was so popular

and influential in late-medieval Europe that decimal

numeration was often referred to as “algorism.”

It is worth noting that in al-Khwārizm̄ı’s writing zero

still had a special status: it was a place holder, not

a number. But once we have a symbol, and we start

doing arithmetic using these symbols, the distinction

quickly disappears. We have to know how to add and

multiply numbers by zero in order to multiply multi-

digit numbers. In this way, “nothing” slowly became a

number.
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4 What People Want Is a Number

As Greek culture was displaced by other influences, the

practical tradition became more important. One can see

this in al-Khwārizm̄ı’s other famous book, whose title

gave us the word “algebra.” The book is actually a com-

pendium of many different kinds of practical or semi-

practical mathematics problems. Al-Khwārizm̄ı opens

the book with a declaration that tells us at once that we

are no longer in the Greek mathematical world: “When

I considered what people generally want in calculating,

I found that it is always a number.”

The first portion of al-Khwārizm̄ı’s book deals with

quadratic equations and with the algebraic manipula-

tions (done entirely in words, with no symbols whatso-

ever) needed to deal with them. His procedure is exactly

the quadratic formula we still use, which of course

requires extracting a square root. But in every example

the number whose square root we need to find turns

out to be a square, so that the square root is easily

found—and al-Khwārizm̄ı does get a number!

At other points in the book, however, we can see

that al-Khwārizm̄ı is beginning to think of irrational

square roots as number-like entities. He teaches the

reader how to manipulate symbols with square roots

in them, and gives (in words, of course) examples such

as (20−√200)+(√200−10) = 10. In the second part of

the book, which deals with geometry and measurement,

one even sees an approximation to a square root: “The

product is one thousand eight hundred and seventy-

five; take its root, it is the area; it is forty-three and a

little.”

The mathematicians of medieval Islam were influ-

enced not only by the practical tradition represented

by al-Khwārizm̄ı, but also by the Greek tradition, espe-

cially euclid’s [VI.2] Elements. One finds in their writ-

ing a mixture of Greek precision and a more prac-

tical approach to measurement. In Omar Khayyam’s

Algebra, for example, one sees both theorems in the

Greek style and the desire for numerical solutions. In

his discussion of cubic equations Khayyam manages to

find solutions by means of geometric constructions but

laments his inability to find numerical values.

Slowly, however, the realm of “number” began to

grow. The Greeks might have insisted that
√

10 was not

a number, but rather a name for a line segment, the

side of a square whose area is 10, or a name for a ratio.

Among the medieval mathematicians, both in Islam and

in Europe,
√

10 started to behave more and more like a

number, entering into operations and even appearing

as the solution of certain problems.

5 Giving Equal Status to All Numbers

The idea of extending the decimal place-value system to

include fractions was discovered by several mathemati- PUP: Tim
considered option
of ‘developed’
given by
proofreader but
strongly prefers
‘discovered’ as the
point was that it
was ‘discovered’
by many
mathematicians
independently.
OK?

cians. The most influential of these was stevin [VI.10],

a Flemish mathematician and engineer who popular-

ized the system in a booklet called De Thiende (“The

tenth”), first published in 1585. By extending place

value to tenths, hundredths, and so on, Stevin created

the system we still use today. More importantly, he

explained how it simplified calculations that involved

fractions, and gave many practical applications. The

cover page, in fact, announces that the book is for

“astrologers, surveyors, measurers of tapestries.”

Stevin was certainly aware of some of the issues cre-

ated by his move. He knew, for example, that the dec-

imal expansion for 1
3 was infinitely long; his discus-

sion simply says that while it might be more correct

to say that the full infinite expansion was the correct

representation, in practice it made little difference if

we truncated it.

Stevin was also aware that his system provided a way

to attach a “number” (meaning a decimal expansion)

to every single length. He saw little difference between

1.1764705882 (the beginning of the decimal expansion

of 20
17 ) and 1.4142135623 (the beginning of the decimal

expansion of
√

2). In his Arithmetic he boldly declared

that all (positive) numbers were squares, cubes, fourth

powers, etc., and that roots were just numbers. He also

says that “there are no absurd, irrational, irregular,

inexplicable, or surd numbers.” Those were all terms

used for irrational numbers, i.e., numbers that are not

fractions.

What Stevin was proposing, then, was to flatten the

incredible diversity of “quantities” or “magnitudes”

into one expansive notion of number, defined by dec-

imal expansions. He was aware that these numbers

could be represented as lengths along a line. This

amounted to a fairly clear notion of what we now call

the positive real numbers.

Stevin’s proposal was made immensely more influ-

ential by the invention of logarithms. Like the sine and

the cosine, these were practical computational tools. In

order to be used, they needed to be tabulated, and the

tables were given in decimal form. Very soon, everyone

was using decimal representation.
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It was only much later that it came to be understood

what a bold leap this move represented. The positive

real numbers are not just a larger number system; they

are an immensely larger number system, whose inter-

nal complexity we still do not fully understand (see set

theory [IV.1]).

6 Real, False, Imaginary

Even as Stevin was writing, the next steps were being

taken: under the pressure of the theory of equations,

negative numbers and complex numbers began to be

useful. Stevin himself was already aware of negative

numbers, though he was clearly not quite comfortable

with them. For example, he explained that the fact that

−3 is a root of x2 + x − 6 really means that 3 is a root

of the associated polynomial x2 − x − 6, obtained by

replacing x by −x everywhere.

This was an easy dodge, but cubic equations cre-

ated more difficult problems. The work of several Ital-

ian mathematicians of the sixteenth century led to a

method for solving cubic equations. As a crucial step,

this method involved extracting a square root. The

problem was that the number whose root was needed

sometimes came out negative.

Up until then, it had always turned out that when an

algebraic problem led to the extraction of the square

root of a negative number, the problem simply had no

solution. But the equation x3 = 15x + 4 clearly did

have a solution—indeed, x = 4 is one—it was just that

applying the cubic formula required computing
√−121.

It was bombelli [VI.8], also a mathematician and

engineer, who decided to bite the bullet and just see

what happened. In his Algebra, published in 1572, he

went ahead and computed with this “new kind of rad-

ical” and showed that he could find the solution of

the cubic in this way. This showed that the cubic for-

mula did indeed work in this case; more importantly,

it showed that these strange new numbers could be

useful.

It took a while for people to become comfortable with

these new quantities. About fifty years later, we find

both Albert Girard and descartes [VI.11] saying that

equations can have three sorts of roots: true (mean-

ing positive), false (negative), and imaginary. It is not

completely clear that they understood that these imag-

inary roots would be what we now call complex num-

bers; Descartes, at least, sometimes seems to be saying

that an equation of degree n must have n roots, and

that the ones that are neither “true” nor “false” must
simply be imagined.

Slowly, however, complex numbers began to be used.
They came up in the theory of equations, in debates
about the logarithms of negative numbers, and in con-
nection to trigonometry. Their connection with the sine
and cosine functions (via the exponential) was turned
into a powerful tool by euler [VI.19] in the eighteenth
century. By the middle of the eighteenth century, it was
well-known that every polynomial had a complete set
of roots in the complex numbers. This result became
known as the fundamental theorem of algebra
[V.15]; it was finally proved to everyone’s satisfaction
by gauss [VI.26]. Thus, the theory of equations did not
seem to require any further extension of the notion of
number.

7 Number Systems, Old and New

Since complex numbers are clearly different from real
numbers, their presence stimulated people to begin
classifying numbers into different kinds. Stevin’s egal-
itarianism had its impact, but it could not quite erase
the fact that whole numbers are nicer than decimals,
and that fractions are generally easier to grasp than
irrational numbers.

In the nineteenth century, all sorts of new ideas cre-
ated the need for a more careful look at this classifi-
cation. In number theory, Gauss and kummer [VI.40]
started looking at subsets of the complex numbers that
behaved in a way analogous to the integers, such as the
set of all numbersa+ b√−1 witha and b both integers.
In the theory of equations, galois [VI.41] pointed out
that in order to do a careful analysis of the solvability of
an equation one must start by agreeing on what num-
bers count as “rational.” So, for example, he pointed out
that in abel’s [VI.33] theorem on the unsolvability of
the quintic, “rational” meant “expressible as a quotient
of polynomials in the symbols used as the coefficients
of the equation,” and he noted that the set of all such
expressions obeyed the usual rules of arithmetic.

In the eighteenth century, Johann Lambert had estab-
lished that e and π were irrational, and conjectured
that in fact they were transcendental, that is, that they
were not roots of any polynomial equation. Even the
existence of transcendental numbers was not known at
the time; liouville [VI.39] proved that such numbers
exist in 1844. Within a few decades, it was proved that
both e and π were transcendental, and later in the cen-
tury cantor [VI.54] showed that in fact the vast major-
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ity of real numbers were transcendental. Cantor’s dis-
covery highlighted, for the first time, that the system
Stevin had popularized contained unexpected depths.

Perhaps the most important change in the concept of
number, however, came after hamilton’s [VI.37] dis-
covery, in 1843, of a completely new number system.
Hamilton had noticed that coordinatizing the plane
using complex numbers (rather than simply using pairs
of real numbers) vastly simplified plane geometry. He
set out to find a similar way to parametrize three-
dimensional space. This turned out to be impossible,
but led Hamilton to a four -dimensional system, which
he called the quaternions [III.78]. These behaved
much like numbers, with one crucial difference: mul-
tiplication was not commutative, that is, if q and q′ are
quaternions, qq′ and q′q are usually not the same.

The quaternions were the first system of “hyper-
complex numbers,” and their appearance generated
lots of new questions. Were there other such systems?
What counts as a number system? If certain “numbers”
can fail to satisfy the commutative law, can we make
numbers that break other rules?

In the long run, this intellectual ferment led math-
ematicians to let go of the vague notion of “number”
or “quantity” and to hold on, instead, to the more for-
mal notion of an algebraic structure. Each of the num-
ber systems, in the end, is simply a set of entities on
which we can do operations. What makes them inter-
esting is that we can use them to parametrize, or coor-
dinatize, systems that interest us. The whole numbers
(or integers, to give them their latinized formal name),
for example, formalize the notion of counting, while
the real numbers parametrize the line and serve as the
basis for geometry.

By the beginning of the twentieth century, there were
many well-known number systems. The integers had
pride of place, followed by a nested hierarchy con-
sisting of the rational numbers (i.e., the fractions), the
real numbers (Stevin’s decimals, now carefully formal-
ized), and the complex numbers. Still more general than
the complex numbers were the quaternions. But these
were by no means the only systems around. Number
theorists worked with several different fields of alge-
braic numbers, subsets of the complex numbers that
could be understood as autonomous systems. Galois
had introduced finite systems that obeyed the usual
rules of arithmetic, which we now call finite fields. Func-
tion theorists worked with fields of functions; they cer-
tainly did not think of these as numbers, but their
analogy to number systems was known and exploited.

Early in the twentieth century, Kurt Hensel intro-

duced the p-adic numbers [III.53], which were built

from the rational numbers by giving a special role to a

prime number p. (Since p can be chosen at will, Hensel

in fact created infinitely many new number systems.)

These too “obeyed the usual rules of arithmetic,” in

the sense that addition and multiplication behaved as

expected; in modern language, they were fields. The

p-adics provided the first system of things that were

recognizably numbers but that had no visible relation

to the real or complex numbers—apart from the fact

that both systems contained the rational numbers. As

a result, they led Ernst Steinitz to create an abstract

theory of fields.

The move to abstraction that appears in Steinitz’s

work had also occurred in other parts of mathemat-

ics, most notably the theory of groups and their repre-

sentations and the theory of algebraic numbers. All of

these theories were brought together into conceptual

unity by noether [VI.76], whose program came to be

known as “abstract algebra.” This left numbers behind

completely, focusing instead on the abstract structure

of sets with operations.

Today, it is no longer that easy to decide what counts

as a “number.” The objects from the original sequence

of “integer, rational, real, and complex” are certainly

numbers, but so are the p-adics. The quaternions are

rarely referred to as “numbers,” on the other hand,

though they can be used to coordinatize certain math-

ematical notions. In fact, even stranger systems can

show up as coordinates, such as Cayley’s octonions

[III.78]. In the end, whatever serves to parametrize or

coordinatize the problem at hand is what we use. If the

requisite system turns out not to exist yet, well, one

just has to invent it.
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II.2 Geometry
Jeremy Gray

1 Introduction

The modern view of geometry was inspired by the novel
geometrical theories of hilbert [VI.63] and Einstein in
the early years of the twentieth century, which built in
their turn on other radical reformulations of geometry
in the nineteenth century. For thousands of years, the
geometrical knowledge of the Greeks, as set out most
notably in euclid’s [VI.2] Elements, was held up as a
paradigm of perfect rigor, and indeed of human know-
ledge. The new theories amounted to the overthrow of
an entire way of thinking. This essay will pursue the his-
tory of geometry, starting from the time of Euclid, con-
tinuing with the advent of non-Euclidean geometry, and
ending with the work of riemann [VI.49], klein [VI.57],
and poincaré [VI.61]. Along the way, we shall exam-
ine how and why the notions of geometry changed so
remarkably. Modern geometry itself will be discussed
in later parts of this book.

2 Naive Geometry

Geometry generally, and Euclidean geometry in partic-
ular, is informally and rightly taken to be the math-
ematical description of what you see all around you:
a space of three dimensions (left–right, up–down, for-
wards–backwards) that seems to extend indefinitely
far. Objects in it have positions, they sometimes move
around and occupy other positions, and all of these
positions can be specified by measuring lengths along
straight lines: this object is twenty meters from that
one, it is two meters tall, and so on. We can also mea-
sure angles, and there is a subtle relationship between

angles and lengths. Indeed, there is another aspect
to geometry, which we do not see but which we rea-
son about. Geometry is a mathematical subject that is
full of theorems—the isosceles triangle theorem, the
Pythagorean theorem, and so on—which collectively
summarize what we can say about lengths, angles,
shapes, and positions. What distinguishes this aspect
of geometry from most other kinds of science is its
highly deductive nature. It really seems that by tak-
ing the simplest of concepts and thinking hard about
them one can build up an impressive, deductive body
of knowledge about space without having to gather
experimental evidence.

But can we? Is it really as simple as that? Can we have
genuine knowledge of space without ever leaving our
armchairs? It turns out that we cannot: there are other
geometries, also based on the concepts of length and
angle, that have every claim to be useful, but that dis-
agree with Euclidean geometry. This is an astonishing
discovery of the early nineteenth century, but, before it
could be made, a naive understanding of fundamental
concepts, such as straightness, length, and angle, had
to be replaced by more precise definitions—a process
that took many hundreds of years. Once this had been
done, first one and then infinitely many new geometries
were discovered.

3 The Greek Formulation

Geometry can be thought of as a set of useful facts
about the world, or else as an organized body of know-
ledge. Either way, the origins of the subject are much
disputed. It is clear that the civilizations of Egypt and
Babylonia had at least some knowledge of geometry—
otherwise, they could not have built their large cities,
elaborate temples, and pyramids. But not only is it dif-
ficult to give a rich and detailed account of what was
known before the Greeks, it is difficult even to make
sense of the few scattered sources that we have from
before the time of Plato and Aristotle. One reason for
this is the spectacular success of the later Greek writer,
and author of what became the definitive text on geom-
etry, Euclid of Alexandria (ca. 300 b.c.e.). One glance at
his famous Elements shows that a proper account of
the history of geometry will have to be about some-
thing much more than the acquisition of geometrical
facts. The Elements is a highly organized, deductive
body of knowledge. It is divided into a number of dis-
tinct themes, but each theme has a complex theoret-
ical structure. Thus, whatever the origins of geom-
etry might have been, by the time of Euclid it had
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become the paradigm of a logical subject, offering a
kind of knowledge quite different from, and seemingly
higher than, knowledge directly gleaned from ordinary
experience.

Rather, therefore, than attempt to elucidate the early
history of geometry, this essay will trace the high road
of geometry’s claim on our attention: the apparent cer-
tainty of mathematical knowledge. It is exactly this
claim to a superior kind of knowledge that led even-
tually to the remarkable discovery of non-Euclidean
geometry: there are geometries other than Euclid’s that
are every bit as rigorously logical. Even more remark-
ably, some of these turn out to provide better models
of physical space than Euclidean geometry.

The Elements opens with four books on the study
of plane figures: triangles, quadrilaterals, and circles.
The famous theorem of Pythagoras is the forty-seventh
proposition of the first book. Then come two books on
the theory of ratio and proportion and the theory of
similar figures (scale copies), treated with a high degree
of sophistication. The next three books are about whole
numbers, and are presumably a reworking of much
older material that would now be classified as elemen-
tary number theory. Here, for example, one finds the
famous result that there are infinitely many prime num-
bers. The next book, the tenth, is by far the longest,
and deals with the seemingly specialist topic of lengths
of the form

√
a±√b (to write them as we would). The

final three books, where the curious lengths studied in
Book X play a role, are about three-dimensional geom-
etry. They end with the construction of the five regular
solids and a proof that there are no more. The discov-
ery of the fifth and last had been one of the topics that
excited Plato. Indeed, the five regular solids are crucial
to the cosmology of Plato’s late work the Timaeus.

Most books of the Elements open with a number
of definitions, and each has an elaborate deductive
structure. For example, to understand the Pythagorean
theorem, one is driven back to previous results, and
thence to even earlier results, until finally one comes
to rest on basic definitions. The whole structure is
quite compelling: reading it as an adult turned the
philosopher Thomas Hobbes from incredulity to last-
ing belief in a single sitting. What makes the Elements
so convincing is the nature of the arguments employed.
With some exceptions, mostly in the number-theoretic
books, these arguments use the axiomatic method.
That is to say, they start with some very simple axioms
that are intended to be self-evidently true, and proceed
by purely logical means to deduce theorems from them.

For this approach to work, three features must be
in place. The first is that circularity should be care-
fully avoided. That is, if you are trying to prove a state-
ment P and you deduce it from an earlier statement,
and deduce that from a yet earlier statement, and so
on, then at no stage should you reach the statement
P again. That would not prove P from the axioms, but
merely show that all the statements in your chain were
equivalent. Euclid did a remarkable job in this respect.

The second necessary feature is that the rules of
inference should be clear and acceptable. Some geomet-
rical statements seem so obvious that one can fail to
notice that they need to be proved: ideally, one should
use no properties of figures other than those that have
been clearly stated in their definitions, but this is a diffi-
cult requirement to meet. Euclid’s success here was still
impressive, but mixed. On the one hand, the Elements
is a remarkable work, far outstripping any contempo-
rary account of any of the topics it covers, and capable
of speaking down the millennia. On the other, it has
little gaps that from time to time later commentators
would fill. For example, it is neither explicitly assumed
nor proved in the Elements that two circles will meet
if their centers lie outside each other and the sum of
their radii is greater than the distance between their
centers. However, Euclid is surprisingly clear that there
are rules of inference that are of general, if not indeed
universal, applicability, and others that apply to math-
ematics because they rely on the meanings of the terms
involved.

The third feature, not entirely separable from the
second, is adequate definitions. Euclid offered two, or
perhaps three, sorts of definition. Book I opens with
seven definitions of objects, such as “point” and “line,”
that one might think were primitive and beyond def-
inition, and it has recently been suggested that these
definitions are later additions. Then come, in Book I
and again in many later books, definitions of familiar
figures designed to make them amenable to mathemat-
ical reasoning: “triangle,” “quadrilateral,” “circle,” and
so on. The postulates of Book I form the third class of
definition and are rather more problematic.

Book I states five “common notions,” which are rules
of inference of a very general sort. For example, “If
equals be added to equals, the wholes are equals.” The
book also has five “postulates,” which are more nar-
rowly mathematical. For example, the first of these
asserts that one may draw a straight line from any point
to any point. One of these postulates, the fifth, became
notorious: the so-called parallel postulate. It says that



�

II.2. Geometry 85

“If a straight line falling on two straight lines make the
interior angles on the same side less than two right
angles, the two straight lines, if produced indefinitely,
meet on that side on which are the angles less than two
right angles.”

Parallel lines, therefore, are straight lines that do not
meet. A helpful rephrasing of Euclid’s parallel postulate
was introduced by the Scottish editor, Robert Simson. It
appears in his edition of Euclid’s Elements from 1806.
There he showed that the parallel postulate is equiva-
lent, if one assumes those parts of the Elements that
do not depend on it, to the following statement: given
any line m in a plane, and any point P in that plane that
does not lie on the line m, there is exactly one line n
in the plane that passes through the point P and does
not meet the line m. From this formulation it is clear
that the parallel postulate makes two assertions: given
a line and a point as described, a parallel line exists and
it is unique.

It is worth noting that Euclid himself was probably
well aware that the parallel postulate was awkward. It
asserts a property of straight lines that seems to have
made Greek mathematicians and philosophers uncom-
fortable, and this may be why its appearance in the Ele-
ments is delayed until proposition 29 of Book I. The
commentator Proclus (fifth century c.e.), in his exten-
sive discussion of Book I of the Elements, observed that
the hyperbola and asymptote get closer and closer as
they move outwards, but they never meet. If a line and a
curve can do this, why not two lines? The matter needs
further analysis. Unfortunately, not much of the Ele-
ments would be left if mathematicians dropped the par-
allel postulate and retreated to the consequences of the
remaining definitions: a significant body of knowledge
depends on it. Most notably, the parallel postulate is
needed to prove that the angles in a triangle add up to
two right angles—a crucial result in establishing many
other theorems about angles in figures, including the
Pythagorean theorem.

Whatever claims educators may have made about
Euclid’s Elements down the ages, a significant number
of experts knew that it was an unsatisfactory compro-
mise: a useful and remarkably rigorous theory could be
had, but only at the price of accepting the parallel pos-
tulate. But the parallel postulate was difficult to accept
on trust: it did not have the same intuitively obvious
feel of the other axioms and there was no obvious way
of verifying it. The higher one’s standards, the more
painful this compromise was. What, the experts asked,
was to be done?

One Greek discussion must suffice here. In Proclus’s
view, if the truth of the parallel postulate was not obvi-
ous, and yet geometry was bare without it, then the only
possibility was that it was true because it was a theo-
rem. And so he gave it a proof. He argued as follows. Let
two lines m and n cross a third line k at P and Q, respec-
tively, and make angles with it that add up to two right
angles. Now draw a line l that crosses m at P and enters
the space between the lines m and n. The distance
between l and m as one moves away from the point P
continually increases, said Proclus, and therefore line l
must eventually cross line n.

Proclus’s argument is flawed. The flaw is subtle, and
sets us up for what is to come. He was correct that
the distance between the lines l and m increases indef-
initely. But his argument assumes that the distance
between lines m and n does not also increase indefi-
nitely, and is instead bounded. Now Proclus knew very
well that if the parallel postulate is granted, then it can
be shown that the lines m and n are parallel and that
the distance between them is a constant. But until the
parallel postulate is proved, nothing prevents one say-
ing that the lines m and n diverge. Proclus’s proof does
not therefore work unless one can show that lines that
do not meet also do not diverge.

Proclus’s attempt was not the only one, but it is typi-
cal of such arguments, which all have a standard form.
They start by detaching the parallel postulate from
Euclid’s Elements, together with all the arguments and
theorems that depend on it. Let us call what remains
the “core” of the Elements. Using this core, an attempt
is then made to derive the parallel postulate as a the-
orem. The correct conclusion to be derived from Pro-
clus’s attempt is not that the parallel postulate is a the-
orem, but rather that, given the core of the Elements,
the parallel postulate is equivalent to the statement
that lines that do not meet also do not diverge. Aganis,
a writer of the sixth century c.e. about whom almost
nothing is known, assumed, in a later attempt, that par-
allel lines are everywhere equidistant, and his argument
showed only that, given the core, the Euclidean defini-
tion of parallel lines is equivalent to defining them to
be equidistant.

Notice that one cannot even enter this debate unless
one is clear which properties of straight lines belong to
them by definition, and which are to be derived as the-
orems. If one is willing to add to the store of “common-
sense” assumptions about geometry as one goes along,
the whole careful deductive structure of the Elements
collapses into a pile of facts.
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This deductive character of the Elements is clearly
something that Euclid regarded as important, but one
can also ask what he thought geometry was about. Was
it meant, for example, as a mathematical description
of space? No surviving text tells us what he thought
about this question, but it is worth noting that the most
celebrated Greek theory of the universe, developed by
Aristotle and many later commentators, assumed that
space was finite, bounded by the sphere of the fixed
stars. The mathematical space of the Elements is infi-
nite, and so one has at least to consider the possibility
that, for all these writers, mathematical space was not
intended as a simple idealization of the physical world.

4 Arab and Islamic Commentators

What we think of today as Greek geometry was the
work of a handful of mathematicians, mostly concen-
trated in a period of less than two centuries. They were
eventually succeeded by a somewhat larger number of
Arabic and Islamic writers, spread out over a much
greater area and a longer time. These writers tend to be
remembered as commentators on Greek mathematics
and science, and for transmitting them to later West-
ern authors, but they should also be remembered as
creative, innovative mathematicians and scientists in
their own right. A number of them took up the study
of Euclid’s Elements, and with it the problem of the par-
allel postulate. They too took the view that it was not
a proper postulate, but one that could be proved as a
theorem using the core alone.

Among the first to attempt a proof was Thābit
ibn Qurra. He was a pagan from near Aleppo who lived
and worked in Baghdad, where he died in 901. Here
there is room to describe only his first approach. He
argued that if two lines m and n are crossed by a third,
k, and if they approach each other on one side of the
line k, then they diverge indefinitely on the other side
of k. He deduced that two lines that make equal alter-
nate angles with a transversal (the marked angles in
figure 1) cannot approach each other on one side of a
transversal: the symmetry of the situation would imply
that they approached on the other side as well, but
he had shown that they would have to diverge on the
other side. From this he deduced the Euclidean theory
of parallels, but his argument was also flawed, since he
had not considered the possibility that two lines could
diverge in both directions.

The distinguished Islamic mathematician and scien-
tist ibn al-Haytham was born in Basra in 965 and died

m
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k
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b

Figure 1 The lines m and n make equal alternate
angles a and b with the transversal k.

A

B B'

A'
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C

Figure 2 AB and CD are equal, the angle ADC is a right
angle, A′B′ is an intermediate position of AB as it moves
toward CD.

in Egypt in 1041. He took a quadrilateral with two equal

sides perpendicular to the base and dropped a perpen-

dicular from one side to the other. He now attempted PUP: query relating
to figure acted on
here and sentence
rewritten to clarify
things. OK?

to prove that this perpendicular is equal to the base,

and to do so he argued that as one of two original per-

pendiculars is moved toward the other, its tip sweeps

out a straight line, which will coincide with the per-

pendicular just dropped (see figure 2). This amounts

to the assumption that the curve everywhere equidis-

tant from a straight line is itself straight, from which

the parallel postulate easily follows, and so his attempt

fails. His proof was later heavily criticized by Omar

Khayyam for its use of motion, which he found fun-

damentally unclear and alien to Euclid’s Elements. It

is indeed quite distinct from any use Euclid had for

motion in geometry, because in this case the nature

of the curve obtained is not clear: it is precisely what

needs to be analyzed.

The last of the Islamic attempts on the parallel pos-

tulate is due to Nas. ır al-D̄ın al-T. ūs̄ı. He was born in Iran

in 1201 and died in Baghdad in 1274. His extensive
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commentary is also one of our sources of knowledge
of earlier Islamic mathematical work on this subject.
Al-T. ūs̄ı focused on showing that if two lines begin to
converge, then they must continue to do so until they
eventually meet. To this end he set out to show that

(∗) if l and m are two lines that make an angle of less
than a right angle, then every line perpendicular
to l meets the line m.

He showed that if (∗) is true, then the parallel postulate
follows. However, his argument for (∗) is flawed.

It is genuinely difficult to see what is wrong with
some of these arguments if one uses only the tech-
niques available to mathematicians of the time. Islamic
mathematicians showed a degree of sophistication that
was not to be surpassed by their Western successors
until the eighteenth century. Unfortunately, however,
their writings did not come to the attention of the West
until much later, with the exception of a single work
in the Vatican Library, published in 1594, which was
for many years erroneously attributed to al-T. ūs̄ı (and
which may have been the work of his son).

5 The Western Revival of Interest

The Western revival of interest in the parallel postu-
late came with the second wave of translations of Greek
mathematics, led by Commandino and Maurolico in the
sixteenth century and spread by the advent of print-
ing. Important texts were discovered in a number of
older libraries, and ultimately this led to the produc-
tion of new texts of Euclid’s Elements. Many of these
had something to say about the problem of parallels,
pithily referred to by Henry Savile as “a blot on Euclid.”
For example, the powerful Jesuit Christopher Clavius,
who edited and reworked the Elements in 1574, tried to
argue that parallel lines could be defined as equidistant
lines.

The ready identification of physical space with the
space of Euclidean geometry came about gradually dur-
ing the sixteenth and seventeenth centuries, after the
acceptance of Copernican astronomy and the aboli-
tion of the so-called sphere of fixed stars. It was can-
onized by newton [VI.14] in his Principia Mathemat-
ica, which proposed a theory of gravitation that was
firmly situated in Euclidean space. Although Newto-
nian physics had to fight for its acceptance, Newto-
nian cosmology had a smooth path and became the
unchallenged orthodoxy of the eighteenth century. It
can be argued that this identification raised the stakes,

because any unexpected or counterintuitive conclusion
drawn solely from the core of the Elements was now,
possibly, a counterintuitive fact about space.

In 1663 the English mathematician John Wallis took
a much more subtle view of the parallel postulate than
any of his predecessors. He had been instructed by Hal-
ley, who could read Arabic, in the contents of the apoc-
ryphal edition of al-T. ūs̄ı’s work in the Vatican Library,
and he too gave an attempted proof. Unusually, Wallis
also had the insight to see where his own argument was
flawed, and commented that what it really showed was
that, in the presence of the core, the parallel postulate
was equivalent to the assertion that there exist similar
figures that are not congruent.

Half a century later, Wallis was followed by the most
persistent and thoroughgoing of all the defenders of
the parallel postulate, Gerolamo Saccheri, an Italian
Jesuit who published in 1733, the year of his death,
a short book called Euclid Freed of Every Flaw. This
little masterpiece of classical reasoning opens with a
trichotomy. Unless the parallel postulate is known, the
angle sum of a triangle may be either less than, equal to,
or greater than two right angles. Saccheri showed that
whatever happens in one triangle happens for them all,
so there are apparently three geometries compatible
with the core. In the first, every triangle has an angle
sum less than two right angles (call this case L). In the
second, every triangle has an angle sum equal to two
right angles (call this case E). In the third, every trian-
gle has an angle sum greater than two right angles (call
this case G). Case E is, of course, Euclidean geometry,
which Saccheri wished to show was the only case pos-
sible. He therefore set to work to show that each of the
other cases independently self-destructed. He was suc-
cessful with case G, and then turned to case L “which
alone obstructs the truth of the [parallel] axiom,” as he
put it.

Case L proved to be difficult, and during the course
of his investigations Saccheri established a number of
interesting propositions. For example, if case L is true,
then two lines that do not meet have just one common
perpendicular, and they diverge on either side of it.
In the end, Saccheri tried to deal with his difficulties
by relying on foolish statements about the behavior of
lines at infinity: it was here that his attempted proof
failed.

Saccheri’s work sank slowly, though not completely,
into obscurity. It did, however, come to the atten-
tion of the Swiss mathematician Johann Heinrich Lam-
bert, who pursued the trichotomy but, unlike Saccheri,
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stopped short of claiming success in proving the paral-
lel postulate. Instead the work was abandoned, and was
published only in 1786, after his death. Lambert dis-
tinguished carefully between unpalatable results and
impossibilities. He had a sketch of an argument to show
that in case L the area of a triangle is proportional to
the difference between two right angles and the angle
sum of the triangle. He knew that in case L similar tri-
angles had to be congruent, which would imply that the
tables of trigonometric functions used in astronomy
were not in fact valid and that different tables would
have to be produced for every size of triangle. In par-
ticular, for every angle less than 60◦ there would be
precisely one equilateral triangle with that given angle
at each vertex. This would lead to what philosophers
called an “absolute” measure of length (one could take,
for instance, the length of the side of an equilateral tri-
angle with angles equal to 30◦), which leibniz’s [VI.15]
follower Wolff had said was impossible. And indeed it
is counterintuitive: lengths are generally defined in rel-
ative terms, as, for instance, a certain proportion of the
length of a meter rod in Paris, or of the circumference
of Earth, or of something similar. But such arguments,
said Lambert, “were drawn from love and hate, with
which a mathematician can have nothing to do.”

6 The Shift of Focus around 1800

The phase of Western interest in the parallel postu-
late that began with the publication of modern editions
of Euclid’s Elements started to decline with a further
turn in that enterprise. After the French revolution,
legendre [VI.24] set about writing textbooks, largely
for the use of students hoping to enter the École Poly-
technique, that would restore the study of elementary
geometry to something like the rigorous form in which
it appeared in the Elements. However, it was one thing
to seek to replace books of a heavily intuitive kind, but
quite another to deliver the requisite degree of rigor.
Legendre, as he came to realize, ultimately failed in his
attempt. Specifically, like everyone before him, he was
unable to give an adequate defense of the parallel pos-
tulate. Legendre’s Éléments de Géométrie ran to numer-
ous editions, and from time to time a different attempt
on the postulate was made. Some of these attempts
would be hard to describe favorably, but the best can
be extremely persuasive.

Legendre’s work was classical in spirit, and he still
took it for granted that the parallel postulate had to
be true. But by around 1800 this attitude was no longer

universally held. Not everybody thought that the postu-
late must, somehow, be defended, and some were pre-
pared to contemplate with equanimity the idea that it
might be false. No clearer illustration of this shift can
be found than a brief note sent to gauss [VI.26] by
F. K. Schweikart, a Professor of Law at the University
of Marburg, in 1818. Schweikart described in a page
the main results he had been led to in what he called
“astral geometry,” in which the angle sum of a triangle
was less than two right angles: squares had a partic-
ular form, and the altitude of a right-angled isosceles
triangle was bounded by an amount Schweikart called
“the constant.” Schweikart went so far as to claim that
the new geometry might even be the true geometry of
space. Gauss replied positively. He accepted the results,
and he claimed that he could do all of elementary
geometry once a value for the constant was given. One
could argue, somewhat ungenerously, that Schweikart
had done little more than read Lambert’s posthumous
book—although the theorem about isosceles triangles
is new. However, what is notable is the attitude of
mind: the idea that this new geometry might be true,
and not just a mathematical curiosity. Euclid’s Elements
shackled him no more.

Unfortunately, it is much less clear precisely what
Gauss himself thought. Some historians, mindful of
Gauss’s remarkable mathematical originality, have
been inclined to interpret the evidence in such a way
that Gauss emerges as the first person to discover
non-Euclidean geometry. The evidence, however, is very
slight, and difficult to interpret. There are traces of
some early investigations by Gauss of Euclidean geom-
etry that include a study of a new definition of parallel
lines; there are claims made by Gauss late in life that he
had known this or that fact for many years; and there
are letters he wrote to his friends. But there is no mate-
rial in the surviving papers that allows us to reconstruct
what Gauss knew, or that supports the claim that Gauss
discovered non-Euclidean geometry.

Rather, the picture would seem to be that Gauss came
to realize during the 1810s that all previous attempts
to derive the parallel postulate from the core of Euclid-
ean geometry had failed and that all future attempts
would probably fail as well. He became more and more
convinced that there was another possible geometry
of space. Geometry ceased, in his mind, to have the
status of arithmetic, which was a matter of logic, and
became associated with mechanics, an empirical sci-
ence. The simplest accurate statement of Gauss’s posi-
tion through the 1820s is that he did not doubt that
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space might be described by a non-Euclidean geometry,
and of course there was only one possibility: that of
case L described above. It was an empirical matter, but
one that could not be resolved by land-based measure-
ments because any departure from Euclidean geometry
was, evidently, very small. In this view he was sup-
ported by his friends, such as Bessel and Olbers, both
professional astronomers. Gauss the scientist was con-
vinced, but Gauss the mathematician may have retained
a small degree of doubt, and certainly never devel-
oped the mathematical theory required to describe
non-Euclidean geometry adequately.

One theory available to Gauss from the early 1820s
was that of differential geometry. Gauss eventually
published one of his masterworks on this subject,
his Disquisitiones Generales circa Superficies Curvas
(1827). In it he showed how to describe geometry on
any surface in space, and how to regard certain fea-
tures of the geometry of a surface as intrinsic to the sur-
face and independent of how the surface was embed-
ded into three-dimensional space. It would have been
possible for Gauss to consider a surface of constant
negative curvature [III.80], and to show that triangles
on such a surface are described by hyperbolic trigono-
metric formulas, but he did not do this until the 1840s.
Had he done so, he would have had a surface on which
the formulas of a geometry satisfying case L apply.

A surface, however, is not enough. We accept
the validity of two-dimensional Euclidean geometry
because it is a simplification of three-dimensional
Euclidean geometry. Before a two-dimensional geom-
etry satisfying the hypotheses of case L can be
accepted, it is necessary to show that there is a plau-
sible three-dimensional geometry analogous to case L.
Such a geometry has to be described in detail and
shown to be as plausible as Euclidean three-dimen-
sional geometry. This Gauss simply never did.

7 Bolyai and Lobachevskii

The fame for discovering non-Euclidean geometry goes
to two men, bolyai [VI.34] in Hungary and lobachev-
skii [VI.31] in Russia, who independently gave very sim-
ilar accounts of it. In particular, both men described a
system of geometry in two and three dimensions that
differed from Euclid’s but had an equally good claim to
be the geometry of space. Lobachevskii published first,
in 1829, but only in an obscure Russian journal, and
then in French in 1837, in German in 1840, and again
in French in 1855. Bolyai published his account in 1831,

P

n'n''

m

Figure 3 The lines n′ and n′′ through P separate the lines
through P that meet the line m from those that do not.

in an appendix to a two-volume work on geometry by
his father.

It is easiest to describe their achievements together.
Both men defined parallels in a novel way, as follows.
Given a point P and a line m there will be some lines
through P that meet m and others that do not. Sepa-
rating these two sets will be two lines through P that
do not quite meet m but which might come arbitrarily
close, one to the right of P and one to the left. This situ-
ation is illustrated in figure 3: the two lines in question
are n′ and n′′. Notice that lines on the diagram appear
curved. This is because, in order to represent them on
a flat, Euclidean page, it is necessary to distort them,
unless the geometry is itself Euclidean, in which case
one can put n′ and n′′ together and make a single line
that is infinite in both directions.

Given this new way of talking, it still makes sense to
talk of dropping the perpendicular from P to the line m.
The left and right parallels to m through P make equal
angles with the perpendicular, called the angle of par-
allelism. If the angle is a right angle, then the geometry
is Euclidean. However, if it is less than a right angle,
then the possibility arises of a new geometry. It turns
out that the size of the angle depends on the length
of the perpendicular from P to m. Neither Bolyai nor
Lobachevskii expended any effort in trying to show that
there was not some contradiction in taking the angle of
parallelism to be less than a right angle. Instead, they
simply made the assumption and expended a great deal
of effort on determining the angle from the length of
the perpendicular.

They both showed that, given a family of lines all par-
allel (in the same direction) to a given line, and given
a point on one of the lines, there is a curve through
that point that is perpendicular to each of the lines
(figure 4).

In Euclidean geometry the curve defined in this way
is the straight line that is at right angles to the fam-
ily of parallel lines and that passes through the given
point (figure 5). If, again in Euclidean geometry, one
takes the family of all lines through a common point Q
and chooses another point P, then there will be a curve
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P

Figure 4 A curve perpendicular to a family of parallels.

P

Figure 5 A curve perpendicular to
a family of Euclidean parallels.

QP

Figure 6 A curve perpendicular to
a family of Euclidean lines through a point.

through P that is perpendicular to all the lines: the circle
with center Q that passes through P (figure 6).

The curve defined by Bolyai and Lobachevskii has
some of the properties of both these Euclidean con-
structions: it is perpendicular to all the parallels, but it
is curved and not straight. Bolyai called such a curve
an L-curve. Lobachevskii more helpfully called it a
horocycle, and the name has stuck.

Their complicated arguments took both men into
three-dimensional geometry. Here Lobachevskii’s argu-

ments were somewhat clearer than Bolyai’s, and both
men notably surpassed Gauss. If the figure defining a
horocycle is rotated about one of the parallel lines, the
lines become a family of parallel lines in three dimen-
sions and the horocycle sweeps out a bowl-shaped sur-
face, called the F -surface by Bolyai and the horosphere
by Lobachevskii. Both men now showed that something
remarkable happens. Planes through the horosphere
cut it either in circles or in horocycles, and if a triangle
is drawn on a horosphere whose sides are horocycles,
then the angle sum of such a triangle is two right angles.
To put this another way, although the space that con-
tains the horosphere is a three-dimensional version of
case L, and is definitely not Euclidean, the geometry you
obtain when you restrict attention to the horosphere is
(two-dimensional) Euclidean geometry!

Bolyai and Lobachevskii also knew that one can draw
spheres in their three-dimensional space, and they
showed (though in this they were not original) that the
formulas of spherical geometry hold independently of
the parallel postulate. Lobachevskii now used an inge-
nious construction involving his parallel lines to show
that a triangle on a sphere determines and is deter-
mined by a triangle in the plane, which also deter-
mines and is determined by a triangle on the horo-
sphere. This implies that the formulas of spherical
geometry must determine formulas that apply to the
triangles on the horosphere. On checking through the
details, Lobachevskii, and in more or less the same way
Bolyai, showed that the triangles on the horosphere are
described by the formulas of hyperbolic trigonometry.

The formulas for spherical geometry depend on the
radius of the sphere in question. Similarly, the formu-
las of hyperbolic trigonometry depend on a certain real
parameter. However, this parameter does not have a
similarly clear geometrical interpretation. That defect
apart, the formulas have a number of reassuring prop-
erties. In particular, they closely approximate the famil-
iar formulas of plane geometry when the sides of the
triangles are very small, which helps to explain how
this geometry could have remained undetected for so
long—it differs very little from Euclidean geometry in
small regions of space. Formulas for length and area
can be developed in the new setting: they show that
the area of a triangle is proportional to the amount by
which the angle sum of the triangle falls short of two
right angles. Lobachevskii, in particular, seems to have
felt that the very fact that there were neat and plausible
formulas of this kind was enough reason to accept the
new geometry. In his opinion, all geometry was about
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measurement, and theorems in geometry were unfail-
ing connections between measurements expressed by
formulas. His methods produced such formulas, and
that, for him, was enough.

Bolyai and Lobachevskii, having produced a descrip-
tion of a novel three-dimensional geometry, raised the
question of which geometry is true: is it Euclidean
geometry or is it the new geometry for some value of
the parameter that could presumably be determined
experimentally? Bolyai left matters there, but Loba-
chevskii explicitly showed that measurements of stellar
parallax might resolve the question. Here he was unsuc-
cessful: such experiments are notoriously delicate.

By and large, the reaction to Bolyai and Lobachev-
skii’s ideas during their lifetimes was one of neglect
and hostility, and they died unaware of the success
their discoveries would ultimately have. Bolyai and his
father sent their work to Gauss, who replied in 1832
that he could not praise the work “for to do so would be
to praise myself,” adding, for extra measure, a simpler
proof of one of Janos Bolyai’s opening results. He was,
he said, nonetheless delighted that it was the son of his
old friend who had taken precedence over him. Janos
Bolyai was enraged, and refused to publish again, thus
depriving himself of the opportunity to establish his
priority over Gauss by publishing his work as an article
in a mathematics journal. Oddly, there is no evidence
that Gauss knew the details of the young Hungarian’s
work in advance. More likely, he saw at once how the
theory would go once he appreciated the opening of
Bolyai’s account.

A charitable interpretation of the surviving evidence
would be that, by 1830, Gauss was convinced of the
possibility that physical space might be described by
non-Euclidean geometry, and he surely knew how to
handle two-dimensional non-Euclidean geometry using
hyperbolic trigonometry (although no detailed account
of this survives from his hand). But the three-dimen-
sional theory was known first to Bolyai and Lobachev-
skii, and may well not have been known to Gauss until
he read their work.

Lobachevskii fared little better than Bolyai. His ini-
tial publication of 1829 was savaged in the press by
Ostrogradskii, a much more established figure who
was, moreover, in St Petersburg, whereas Lobachevskii
was in provincial Kazan. His account in Journal für die
reine und angewandte Mathematik (otherwise known
as Crelle’s Journal) suffered grievously from referring
to results proved only in the Russian papers from
which it had been adapted. His booklet of 1840 drew

only one review, of more than usual stupidity. He did,
however, send it to Gauss, who found it excellent and
had Lobachevskii elected to the Göttingen Academy of
Sciences. But Gauss’s enthusiasm stopped there, and
Lobachevskii received no further support from him.

Such a dreadful response to a major discovery invites
analysis on several levels. It has to be said that the defi-
nition of parallels upon which both men depended was,
as it stood, inadequate, but their work was not crit-
icized on that account. It was dismissed with scorn,
as if it were self-evident that it was wrong: so wrong
that it would be a waste of time finding the error it
surely contained, so wrong that the right response was
to heap ridicule upon its authors or simply to dismiss
them without comment. This is a measure of the hold
that Euclidean geometry still had on the minds of most
people at the time. Even Copernicanism, for example,
and the discoveries of Galileo drew a better reception
from the experts.

8 Acceptance of Non-Euclidean Geometry

When Gauss died in 1855, an immense amount of un-
published mathematics was found among his papers. PUP: Tim thinks

‘among’ is better
and clearer than
‘in’ (suggested by
proofreader). OK?

Among it was evidence of his support for Bolyai and
Lobachevskii, and his correspondence endorsing the
possible validity of non-Euclidean geometry. As this
was gradually published, the effect was to send peo-
ple off to look for what Bolyai and Lobachevskii had
written and to read it in a more positive light.

Quite by chance, Gauss had also had a student at
Göttingen who was capable of moving the matter deci-
sively forward, even though the actual amount of con-
tact between the two was probably quite slight. This
was riemann [VI.49]. In 1854 he was called to defend
his Habilitation thesis, the postdoctoral qualification
that was a German mathematician’s license to teach
in a university. As was the custom, he offered three
titles and Gauss, who was his examiner, chose the one
Riemann least expected: “On the hypotheses that lie at
the foundation of geometry.” The paper, which was to
be published only posthumously, in 1867, was nothing
less than a complete reformulation of geometry.

Riemann proposed that geometry was the study of
what he called manifolds [I.3 §§6.9, 6.10]. These were
“spaces” of points, together with a notion of distance
that looked like Euclidean distance on small scales but
which could be quite different at larger scales. This kind
of geometry could be done in a variety of ways, he sug-
gested, by means of the calculus. It could be carried
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out for manifolds of any dimension, and in fact Rie-
mann was even prepared to contemplate manifolds for
which the dimension was infinite.

A vital aspect of Riemann’s geometry, in which he
followed the lead of Gauss, was that it was concerned
only with those properties of the manifold that were
intrinsic, rather than properties that depended on some
embedding into a larger space. In particular, the dis-
tance between two points x and y was defined to be
the length of the shortest curve joining x and y that
lay entirely within the surface. Such curves are called
geodesics. (On a sphere, for example, the geodesics are
arcs of great circles.)

Even two-dimensional manifolds could have differ-
ent, intrinsic curvatures—indeed, a single two-dimen-
sional manifold could have different curvatures in dif-
ferent places—so Riemann’s definition led to infinitely
many genuinely distinct geometries in each dimension.
Furthermore, these geometries were best defined with-
out reference to a Euclidean space that contained them,
so the hegemony of Euclidean geometry was broken
once and for all.

As the word “hypotheses” in the title of his thesis
suggests, Riemann was not at all interested in the sorts
of assumptions needed by Euclid. Nor was he much
interested in the opposition between Euclidean and
non-Euclidean geometry. He made a small reference
at the start of his paper to the murkiness that lay at
the heart of geometry, despite the efforts of Legendre,
and toward the end he considered the three different
geometries on two-dimensional manifolds for which
the curvature is constant. He noted that one was spheri-
cal geometry, another was Euclidean geometry, and the
third was different again, and that in each case the angle
sums of all triangles could be calculated as soon as one
knew the sum of the angles of any one triangle. But
he made no reference to Bolyai or Lobachevskii, merely
noting that if the geometry of space was indeed a three-
dimensional geometry of constant curvature, then to
determine which geometry it was would involve tak-
ing measurements in unfeasibly large regions of space.
He did discuss generalizations of Gauss’s curvature to
spaces of arbitrary dimension, and he showed what
metrics [III.58] (that is, definitions of distance) there
could be on spaces of constant curvature. The formula
he wrote down is very general, but as with Bolyai and
Lobachevskii it depended on a certain real parameter—
the curvature. When the curvature is negative, his defi-
nition of distance gives a description of non-Euclidean
geometry.

Riemann died in 1866, and by the time his thesis was
published an Italian mathematician, Eugenio Beltrami,
had independently come to some of the same ideas.
He was interested in what the possibilities were if one
wished to map one surface to another. For example, one
might ask, for some particular surface S, whether it is
possible to find a map from S to the plane such that
the geodesics in S are mapped to straight lines in the
plane. He found that the answer was yes if and only if
the space has constant curvature. There is, for example,
a well-known map from the hemisphere to a plane with
this property. Beltrami found a simple way of modify-
ing the formula so that now it defined a map from a
surface of constant negative curvature onto the inte-
rior of a disk, and he realized the significance of what
he had done: his map defined a metric on the interior
of the disk, and the resulting metric space obeyed the
axioms for non-Euclidean geometry; therefore, those
axioms would not lead to a contradiction.

Some years earlier, Minding, in Germany, had found a
surface, sometimes called the pseudosphere, that had
constant negative curvature. It was obtained by rotat-
ing a curve called the tractrix about its axis. This sur-
face has the shape of a bugle, so it seemed rather less
natural than the space of Euclidean plane geometry
and unsuitable as a rival to it. The pseudosphere was
independently rediscovered by liouville [VI.39] some
years later, and Codazzi learned of it from that source
and showed that triangles on this surface are described
by the formulas of hyperbolic trigonometry. But none
of these men saw the connection to non-Euclidean
geometry—that was left to Beltrami.

Beltrami realized that his disk depicted an infinite
space of constant negative curvature, in which the
geometry of Lobachevskii (he did not know at that time
of Bolyai’s work) held true. He saw that it related to the
pseudosphere in a way similar to the way that a plane
relates to an infinite cylinder. After a period of some
doubt, he learned of Riemann’s ideas and realized that
his disk was in fact as good a depiction of the space
of non-Euclidean geometry as any could be; there was
no need to realize his geometry as that of a surface in
Euclidean three-dimensional space. He thereupon pub-
lished his essay, in 1868. This was the first time that
sound foundations had been publicly given for the area
of mathematics that could now be called non-Euclidean
geometry.

In 1871 the young klein [VI.57] took up the sub-
ject. He already knew that the English mathematician
cayley [VI.46] had contrived a way of introducing
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Euclidean metrical concepts into projective geom-
etry [I.3 §6.7]. While studying at Berlin, Klein saw a
way of generalizing Cayley’s idea and exhibiting Bel-
trami’s non-Euclidean geometry as a special case of
projective geometry. His idea met with the disapproval
of weierstrass [VI.44], the leading mathematician in
Berlin, who objected that projective geometry was not
a metrical geometry: therefore, he claimed, it could not
generate metrical concepts. However, Klein persisted
and in a series of three papers, in 1871, 1872, and
1873, showed that all the known geometries could be
regarded as subgeometries of projective geometry. His
idea was to recast geometry as the study of a group
acting on a space. Properties of figures (subsets of the
space) that remain invariant under the action of the
group are the geometric properties. So, for example,
in a projective space of some dimension, the appropri-
ate group for projective geometry is the group of all
transformations that map lines to lines, and the sub-
group that maps the interior of a given conic to itself
may be regarded as the group of transformations of
non-Euclidean geometry (see the box on p. 94). (For aT&T note: in a

perfect world
figure 7 would
appear on same
spread as the box.
Check at CRC
stage.

fuller discussion of Klein’s approach to geometry, see
(I.3 §6).)

In the 1870s Klein’s message was spread by the first
and third of these papers, which were published in
the recently founded journal Mathematische Annalen.
As Klein’s prestige grew, matters changed, and by the
1890s, when he had the second of the papers repub-
lished and translated into several languages, it was this,
the Erlangen Program, that became well-known. It is
named after the university where Klein became a pro-
fessor, at the remarkably young age of twenty-three,
but it was not his inaugural address. (That was about
mathematics education.) For many years it was a singu-
larly obscure publication, and it is unlikely that it had
the effect on mathematics that some historians have
come to suggest.

9 Convincing Others

Klein’s work directed attention away from the figures
in geometry and toward the transformations that do
not alter the figures in crucial respects. For example,
in Euclidean geometry the important transformations
are the familiar rotations and translations (and reflec-
tions, if one chooses to allow them). These correspond
to the motions of rigid bodies that contemporary psy-
chologists saw as part of the way in which individu-
als learn the geometry of the space around them. But

this theory was philosophically contentious, especially
when it could be extended to another metrical geom-
etry, non-Euclidean geometry. Klein prudently entitled
his main papers “On the so-called non-Euclidean geom-
etry,” to keep hostile philosophers at bay (in particular
Lotze, who was the well-established Kantian philoso-
pher at Göttingen). But with these papers and the previ-
ous work of Beltrami the case for non-Euclidean geom-
etry was made, and almost all mathematicians were
persuaded. They believed, that is, that alongside Euclid-
ean geometry there now stood an equally valid mathe-
matical system called non-Euclidean geometry. As for
which one of these was true of space, it seemed so
clear that Euclidean geometry was the sensible choice
that there appears to have been little or no discus-
sion. Lipschitz showed that it was possible to do all
of mechanics in the new setting, and there the matter
rested, a hypothetical case of some charm but no more.
Helmholtz, the leading physicist of his day, became
interested—he had known Riemann personally—and
gave an account of what space would have to be if it
was learned about through the free mobility of bod-
ies. His first account was deeply flawed, because he
was unaware of non-Euclidean geometry, but when Bel-
trami pointed this out to him he reworked it (in 1870).
The reworked version also suffered from mathematical
deficiencies, which were pointed out somewhat later by
lie [VI.53], but he had more immediate trouble from
philosophers.

Their question was, “What sort of knowledge is this
theory of non-Euclidean geometry?” Kantian philoso-
phy was coming back into fashion, and in Kant’s view
knowledge of space was a fundamental pure a priori
intuition, rather than a matter to be determined by
experiment: without this intuition it would be impos-
sible to have any knowledge of space at all. Faced with
a rival theory, non-Euclidean geometry, neo-Kantian
philosophers had a problem. They could agree that the
mathematicians had produced a new and prolonged
logical exercise, but could it be knowledge of the world?
Surely the world could not have two kinds of geom-
etry? Helmholtz hit back, arguing that knowledge of
Euclidean geometry and non-Euclidean geometry would
be acquired in the same way—through experience—but
these empiricist overtones were unacceptable to the
philosophers, and non-Euclidean geometry remained a
problem for them until the early years of the twentieth
century.

Mathematicians could not in fact have given a com-
pletely rigorous defense of what was becoming the
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Cross-ratios and distances in conics. A projec-
tive transformation of the plane sends four distinct
points on a line, A, B, C, D, to four distinct collinear
points, A′, B′, C′, D′, in such a way that the quantity

AB
AD

CD
CB

is preserved: that is,

AB
AD

CD
CB
= A′B′

A′D′
C′D′

C′B′
.

This quantity is called the cross-ratio of the four
points A, B, C, D, and is written CR(A,B,C,D).

In 1871, Klein described non-Euclidean geometry
as the geometry of points inside a fixed conic, K,
where the transformations allowed are the projec-

tive transformations that map K to itself and its
interior to its interior (see figure 7). To define the
distance between two points P and Q inside K, Klein
noted that if the line PQ is extended to meet K at A
and D, then the cross-ratio CR(A,P,D,Q) does not
change if one applies a projective transformation:
that is, it is a projective invariant. Moreover, if R is
a third point on the line PQ and the points lie in the
order P, Q, R, then CR(A,P,D,Q)CR(A,Q ,D,R) =
CR(A,P,D,R). Accordingly, he defined the distance
between P and Q as d(PQ) = − 1

2 log CR(A,P,D,Q)
(the factor of − 1

2 is introduced to facilitate the later
introduction of trigonometry). With this definition,
distance is additive along a line: d(PQ) + d(QR) =
d(PR).

accepted position, but as the news spread that there
were two possible descriptions of space, and that one
could therefore no longer be certain that Euclidean
geometry was correct, the educated public took up the
question: what was the geometry of space? Among the
first to grasp the problem in this new formulation was
poincaré [VI.61]. He came to mathematical fame in the
early 1880s with a remarkable series of essays in which
he reformulated Beltrami’s disk model so as to make
it conformal : that is, so that angles in non-Euclidean
geometry were represented by the same angles in the
model. He then used his new disk model to connect
complex function theory, the theory of linear differ-
ential equations, riemann surface [III.81] theory, and
non-Euclidean geometry to produce a rich new body
of ideas. Then, in 1891, he pointed out that the disk
model permitted one to show that any contradiction
in non-Euclidean geometry would yield a contradiction
in Euclidean geometry as well, and vice versa. There-
fore, Euclidean geometry was consistent if and only if
non-Euclidean geometry was consistent. A curious con-
sequence of this was that if anybody had managed to
derive the parallel postulate from the core of Euclidean
geometry, then they would have inadvertently proved
that Euclidean geometry was inconsistent!

One obvious way to try to decide which geometry
described the actual universe was to appeal to physics.
But Poincaré was not convinced by this. He argued in
another paper (1902) that experience was open to many
interpretations and there was no logical way of decid-
ing what belonged to mathematics and what to physics.
Imagine, for example, an elaborate set of measure-
ments of angle sums of figures, perhaps on an astro-
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Figure 7 Three points, P, Q, and R, on a non-Euclidean
straight line in Klein’s projective model of non-Euclidean
geometry.

nomical scale. Something would have to be taken to be

straight, perhaps the paths of rays of light. Suppose,

finally, that the conclusion is that the angle sum of a tri-

angle is indeed less than two right angles by an amount

proportional to the area of the triangle. Poincaré said

that there were two possible conclusions: light rays are

straight and the geometry of space is non-Euclidean;

or light rays are somehow curved, and space is Euclid-

ean. Moreover, he continued, there was no logical way

to choose between these possibilities. All one could do

was to make a convention and abide by it, and the sen-

sible convention was to choose the simpler geometry:

Euclidean geometry.

This philosophical position was to have a long life in

the twentieth century under the name of convention-

alism, but it was far from accepted in Poincaré’s life-

time. A prominent critic of conventionalism was the
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Italian Federigo Enriques, who, like Poincaré, was both a
powerful mathematician and a writer of popular essays
on issues in science and philosophy. He argued that
one could decide whether a property was geometri-
cal or physical by seeing whether we had any control
over it. We cannot vary the law of gravity, but we can
change the force of gravity at a point by moving mat-
ter around. Poincaré had compared his disk model to
a metal disk that was hot in the center and got cooler
as one moved outwards. He had shown that a simple
law of cooling produced figures identical to those of
non-Euclidean geometry. Enriques replied that heat was
likewise something we can vary. A property such as
Poincaré invoked, which was truly beyond our control,
was not physical but geometric.

10 Looking Ahead

In the end, the question was not resolved in its
own terms. Two developments moved mathemati-
cians beyond the simple dichotomy posed by Poincaré.
Starting in 1899, hilbert [VI.63] began an extensive
rewriting of geometry along axiomatic lines, which
eclipsed earlier ideas of some Italian mathematicians
and opened the way to axiomatic studies of many
kinds. Hilbert’s work captured very well the idea that
if mathematics is sound, it is sound because of the
nature of its reasoning, and led to profound investi-
gations in mathematical logic. And in 1915 Einstein
proposed his general theory of relativity, which is in
large part a geometric theory of gravity. Confidence
in mathematics was restored; our sense of geometry
was much enlarged, and our insights into the rela-
tionships between geometry and space became consid-
erably more sophisticated. Einstein made full use of
contemporary ideas about geometry, and his achieve-
ment would have been unthinkable without Riemann’s
work. He described gravity as a kind of curvature in the
four-dimensional manifold of spacetime (see general
relativity and the einstein equations [IV.17]). His
work led to new ways of thinking about the large-scale
structure of the universe and its ultimate fate, and to
questions that remain unanswered to this day.
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II.3 The Development of
Abstract Algebra
Karen Hunger Parshall

1 Introduction

What is algebra? To the high-school student encoun-
tering it for the first time, algebra is an unfamiliar
abstract language of x’s and y ’s, a’s and b’s, together
with rules for manipulating them. These letters, some
of them variables and some constants, can be used
for many purposes. For example, one can use them to
express straight lines as equations of the form y =
ax+b, which can be graphed and thereby visualized in
the Cartesian plane. Furthermore, by manipulating and
interpreting these equations, it is possible to determine
such things as what a given line’s root is (if it has one)—
that is, where it crosses the x-axis—and what its slope
is—that is, how steep or flat it appears in the plane
relative to the axis system. There are also techniques
for solving simultaneous equations, or equivalently for
determining when and where two lines intersect (or
demonstrating that they are parallel).

Just when there already seem to be a lot of tech-
niques and abstract manipulations involved in deal-
ing with lines, the ante is upped. More complicated
curves like quadratics, y = ax2 + bx + c, and even
cubics, y = ax3 + bx2 + cx + d, and quartics, y =
ax4 + bx3 + cx2 + dx + e, enter the picture, but the
same sort of notation and rules apply, and similar sorts
of questions are asked. Where are the roots of a given
curve? Given two curves, where do they intersect?

Suppose now that the same high-school student, hav-
ing mastered this sort of algebra, goes on to university
and attends an algebra course there. Essentially gone
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are the by now familiar x’s, y ’s, a’s, and b’s; essen-
tially gone are the nice graphs that provide a way to
picture what is going on. The university course reflects
some brave new world in which the algebra has some-
how become “modern.” This modern algebra involves
abstract structures—groups [I.3 §2.1], rings [III.83 §1],
fields [I.3 §2.2], and other so-called objects—each one
defined in terms of a relatively small number of axioms
and built up of substructures like subgroups, ideals,
and subfields. There is a lot of moving around between
these objects, too, via maps like group homomor-
phisms and ring automorphisms [I.3 §4.1]. One objec-
tive of this new type of algebra is to understand the
underlying structure of the objects and, in doing so, to
build entire theories of groups or rings or fields. These
abstract theories may then be applied in diverse set-
tings where the basic axioms are satisfied but where it
may not be at all apparent a priori that a group or a ring
or a field may be lurking. This, in fact, is one of modern
algebra’s great strengths: once we have proved a gen-
eral fact about an algebraic structure, there is no need
to prove that fact separately each time we come across
an instance of that structure. This abstract approach
allows us to recognize that contexts that may look quite
different are in fact importantly similar.

How is it that two endeavors—the high-school analy-
sis of polynomial equations and the modern algebra of
the research mathematician—so seemingly different in
their objectives, in their tools, and in their philosoph-
ical outlooks are both called “algebra”? Are they even
related? In fact, they are, but the story of how they are
is long and complicated.

2 Algebra before There Was Algebra:
From Old Babylon to the Hellenistic Era

Solutions of what would today be recognized as first-
and second-degree polynomial equations may be found
in Old Babylonian cuneiform texts that date to the sec-
ond millennium b.c.e. However, these problems were
neither written in a notation that would be recogniz-
able to our modern-day high-school student nor solved
using the kinds of general techniques so characteris-
tic of the high-school algebra classroom. Rather, par-
ticular problems were posed, and particular solutions
obtained, from a series of recipe-like steps. No general
theoretical justification was given, and the problems
were largely cast geometrically, in terms of measurable
line segments and surfaces of particular areas. Con-
sider, for example, this problem, translated and tran-
scribed from a clay tablet held in the British Museum

A BC D

E FG

HL
MK

Figure 1 The sixth proposition from Euclid’s Book II.

(catalogued as BM 13901, problem 1) that dates from
between 1800 and 1600 b.c.e.:

The surface of my confrontation I have accumulated:
45′ is it. 1, the projection, you posit. The moiety of 1
you break, 30′ and 30′ you make hold. 15′ to 45′ you
append: by 1, 1 is equalside. 30′ which you have made
hold in the inside you tear out: 30′ the confrontation.

This may be translated into modern notation as the
equation x2 + 1x = 3

4 , where it is important to notice
that the Babylonian number system is base 60, so 45′

denotes 45
60 = 3

4 . The text then lays out the following
algorithm for solving the problem: take 1, the coeffi-
cient of the linear term, and halve it to get 1

2 . Square 1
2

to get 1
4 . Add 1

4 to 3
4 , the constant term, to get 1. This is

the square of 1. Subtract from this the 1
2 which you mul-

tiplied by to get 1
2 , the side of the square. The modern

reader can easily see that this algorithm is equivalent to
what is now called the quadratic formula, but the Baby-
lonian tablet presents it in the context of a particular
problem and repeats it in the contexts of other partic-
ular problems. There are no equations in the modern
sense; the Babylonian writer is literally effecting a con-
struction of plane figures. Similar problems and simi-
lar algorithmic solutions can also be found in ancient
Egyptian texts such as the Rhind papyrus, believed to
have been copied in 1650 b.c.e. from a text that was
about a century and a half older.

The problem-oriented, untheoretical approach to
mathematics characteristic of texts from this early
period contrasts sharply with the axiomatic and deduc-
tive approach that euclid [VI.2] introduced into mathe-
matics in around 300 b.c.e. in his magisterial, geometri-
cal treatise, the Elements. (See geometry [II.2] for a fur-
ther discussion of this work.) There, building on explicit
definitions and a small number of axioms or self-
evident truths, Euclid proceeded to deduce known—
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and almost certainly some hitherto unknown—results
within a strictly geometrical context. Geometry done
in this axiomatic context defined Euclid’s standard of
rigor. But what does this quintessentially geometrical
text have to do with algebra? Consider the sixth propo-
sition in Euclid’s Book II, ostensibly a book on plane
figures, and in particular quadrilaterals:

If a straight line be bisected and a straight line be
added to it in a straight line, the rectangle contained by
the whole with the added straight line and the added
straight line together with the square on the half is
equal to the square on the straight line made up of
the half and the added straight line.

While clearly a geometrical construction, it equally
clearly describes two constructions—one a rectangle
and one a square—that have equal areas. It therefore
describes something that we should be able to write as
an equation. Figure 1 gives the picture corresponding
to Euclid’s construction: he proves that the area of rect-
angle ADMK equals the sum of rectangles CDML and
HMFG. To do this, he adds the square on CB—namely,
square LHGE—to CDML and HMFG. This gives square
CDFE. It is not hard to see that this is equivalent to the
high-school procedure of “completing the square” and
to the algebraic equation (2a + b)b + a2 = (a + b)2,
which we obtain by setting CB = a and BD = b. Equiv-
alent, yes, but for Euclid this is a specific geometrical
construction and a particular geometrical equivalence.
For this reason, he could not deal with anything but
positive real quantities, since the sides of a geometrical
figure could only be measured in those terms. Nega-
tive quantities did not and could not enter into Euclid’s
fundamentally geometrical mathematical world. Never-
theless, in the historical literature, Euclid’s Book II has
often been described as dealing with “geometrical alge-
bra,” and, because of our easy translation of the book’s
propositions into the language of algebra, it has been
argued, albeit ahistorically, that Euclid had algebra but
simply presented it geometrically.

Although Euclid’s geometrical standard of rigor came
to be regarded as a pinnacle of mathematical achieve-
ment, it was in many ways not typical of the math-
ematics of classical Greek antiquity, a mathematics
that focused less on systematization and more on the
clever and individualistic solution of particular prob-
lems. There is perhaps no better exemplar of this than
archimedes [VI.3], held by many to have been one
of the three or four greatest mathematicians of all
time. Still, Archimedes, like Euclid, posed and solved

particular problems geometrically. As long as geom-

etry defined the standard of rigor, not only negative

numbers but also what we would recognize as poly-

nomial equations of degree higher than three effec-

tively fell outside the sphere of possible mathemati-

cal discussion. (As in the example from Euclid above,

quadratic polynomials result from the geometrical pro-

cess of completing the square; cubics could conceiv-

ably result from the geometrical process of completing

the cube; but quartics and higher-degree polynomials

could not be constructed in this way in familiar, three-

dimensional space.) However, there was another mathe-

matician of great importance to the present story, Dio-

phantus of Alexandria (who was active in the middle

of the third century c.e.). Like Archimedes, he posed

particular problems, but he solved them in an algorith-

mic style much more reminiscent of the Old Babylo-

nian texts than of Archimedes’ geometrical construc-

tions, and as a result he was able to begin to exceed the

bounds of geometry.

In his text Arithmetica, Diophantus put forward gen-

eral, indeterminate problems, which he then restricted

by specifying that the solutions should have partic-

ular forms, before providing specific solutions. He

expressed these problems in a very different way from

the purely rhetorical style that held sway for centuries

after him. His notation was more algebraic and was ulti-

mately to prove suggestive to sixteenth-century math-

ematicians (see below). In particular, he used special

abbreviations that allowed him to deal with the first six

positive and negative powers of the unknown as well

as with the unknown to the zeroth power. Thus, what-

ever his mathematics was, it was not the “geometrical

algebra” of Euclid and Archimedes.

Consider, for example, this problem from Book II

of the Arithmetica: “To find three numbers such that

the square of any one of them minus the next fol-

lowing gives a square.” In terms of modern notation,

he began by restricting his attention to solutions of

the form (x + 1,2x + 1,4x + 1). It is easy to see that

(x+1)2−(2x+1) = x2 and (2x+1)2−(4x+1) = 4x2, so

two of the conditions of the problem are immediately

satisfied, but he needed (4x+1)2−(x+1) = 16x2+7x
to be a square as well. Arbitrarily setting 16x2 + 7x =
25x2, Diophantus then determined thatx = 7

9 gave him

what he needed, so a solution was 16
9 ,

23
9 ,

37
9 , and he was

done. He provided no geometrical justification because

in his view none was needed; a single numerical solu-

tion was all he required. He did not set up what we
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would recognize as a more general set of equations and
try to find all possible solutions.

Diophantus, who lived more than four centuries after
Archimedes’ death, was doing neither geometry nor
algebra in our modern sense, yet the kinds of problems
and the sorts of solutions he obtained for them were
very different from those found in the works of either
Euclid or Archimedes. The extent to which Diophantus
created a wholly new approach, rather than drawing on
an Alexandrian tradition of what might be called “algo-
rithmic algebraic,” as opposed to “geometric algebraic,”
scholarship is unknown. It is clear that by the time Dio-
phantus’s ideas were introduced into the Latin West in
the sixteenth century, they suggested new possibilities
to mathematicians long conditioned to the authority of
geometry.

3 Algebra before There Was Algebra:
The Medieval Islamic World

The transmission of mathematical ideas was, however,
a complex process. After the fall of the Roman Empire
and the subsequent decline of learning in the West,
both the Euclidean and the Diophantine traditions ulti-
mately made their way into the medieval Islamic world.
There they were not only preserved—thanks to the
active translation initiatives of Islamic scholars—but
also studied and extended.

al-khwārizmı̄ [VI.5] was a scholar at the royally
funded House of Wisdom in Baghdad. He linked the
kinds of geometrical arguments Euclid had presented
in Book II of his Elements with the indigenous problem-
solving algorithms that dated back to Old Babylonian
times. In particular, he wrote a book on practical math-
ematics, entitled al-Kitāb al-mukhtas. ar f̄ı h. isāb al-jabr
wa’l-muqābala (“The compendious book on calcula-
tion by completion and balancing”), beginning it with
a theoretical discussion of what we would now recog-
nize as polynomial equations of the first and second
degrees. (The latinization of the word “al-jabr” or “com-
pletion” in his title gave us our modern term “alge-
bra.”) Because he employed neither negative numbers
nor zero coefficients, al-Khwārizm̄ı provided a system-
atization in terms of six separate kinds of examples
where we would need just one, namelyax2+bx+c = 0.
He considered, for example, the case when “a square
and 10 roots are equal to 39 units,” and his algorith-
mic solution in terms of multiplications, additions, and
subtractions was in precisely the same form as the
above solution from tablet BM 13901. This, however,

was not enough for al-Khwārizm̄ı. “It is necessary,” he

said, “that we should demonstrate geometrically the

truth of the same problems which we have explained

in numbers,” and he proceeded to do this by “complet-

ing the square” in geometrical terms reminiscent of,

but not as formal as, those Euclid used in Book II. (Abū

Kāmil (ca. 850–930), an Egyptian Islamic mathemati-

cian of the generation after al-Khwārizm̄ı, introduced a

higher level of Euclidean formality into the geometric–

algorithmic setting.) This juxtaposition made explicit

how the relationships between geometrical areas and

lines could be interpreted in terms of numerical multi-

plications, additions, and subtractions, a key step that

would ultimately suggest a move away from the geo-

metrical solution of particular problems and toward an

algebraic solution of general types of equations.

Another step along this path was taken by the math-

ematician and poet Omar Khayyam (ca. 1050–1130) in

a book he entitled Al-jabr after al-Khwārizm̄ı’s work.

Here he proceeded to systematize and solve what we

would recognize, in the absence of both negative num-

bers and zero coefficients, as the cases of the cubic

equation. Following al-Khwārizm̄ı, Khayyam provided

geometrical justifications, yet his work, even more than

that of his predecessor, may be seen as closer to a

general problem-solving technique for specific cases of

equations, that is, closer to the notion of algebra.

The Persian mathematician al-Karaj̄ı (who flourished

in the early eleventh century) also knew well and

appreciated the geometrical tradition stemming from

Euclid’s Elements. However, like Abū-Kāmil, he was

aware of the Diophantine tradition too, and synthe-

sized in more general terms some of the procedures

Diophantus had laid out in the context of specific exam-

ples in the Arithmetica. Although Diophantus’s ideas

and style were known to these and other medieval

Islamic mathematicians, they would remain unknown

in the Latin West until their rediscovery and trans-

lation in the sixteenth century. Equally unknown in

the Latin West were the accomplishments of Indian

mathematicians, who had succeeded in solving some

quadratic equations algorithmically by the beginning

of the eighth century and who, like Bragmagupta four

hundred years later, had techniques for finding inte-

ger solutions to particular examples of what are today

called Pell’s equations, namely, equations of the form

ax2 + b = y2, where a and b are integers and a is not

a square.
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4 Algebra before There
Was Algebra: The Latin West

Concurrent with the rise of Islam in the East, the
Latin West underwent a gradual cultural and polit-
ical stabilization in the centuries following the fall
of the Roman Empire. By the thirteenth century, this
relative stability had resulted in the firm entrench-
ment of the Catholic Church as well as the establish-
ment both of universities and of an active economy.
Moreover, the Islamic conquest of most of the Iberian
peninsula in the eighth century and the subsequent
establishment there of an Islamic court, library, and
research facility similar to the House of Wisdom in
Baghdad brought the fruits of medieval Islamic schol-
arship to western Europe’s doorstep. However, as Islam
found its position on the Iberian peninsula increasingly
compromised in the twelfth and thirteenth centuries,
this Islamic learning, as well as some of the ancient
Greek scholarship that the medieval Islamic scholars
had preserved in Latin translation, began to filter into
medieval Europe. In particular, fibonacci [VI.6], son of
an influential administrator within the Pisan city state,
encountered al-Khwārizm̄ı’s text and recognized not
only the impact that the Arabic number system detailed
there could have on accounting and commerce (Roman
numerals and their cumbersome rules for manipula-
tion were still widely in use) but also the importance
of al-Khwārizm̄ı’s theoretical discussion, with its wed-
ding of geometrical proof and the algorithmic solution
of what we can interpret as first- and second-degree
equations. In his 1202 book Liber abbaci , Fibonacci
presented al-Khwārizm̄ı’s work almost verbatim, and
extolled all of these virtues, thus effectively introducing
this knowledge and approach into the Latin West.

Fibonacci’s presentation, especially of the practi-
cal aspects of al-Khwārizm̄ı’s text, soon became well-
known in Europe. So-called abacus schools (named
after Fibonacci’s text and not after the Chinese calculat-
ing instrument) sprang up all over the Italian peninsula,
particularly in the fourteenth and fifteenth centuries,
for the training of accountants and bookkeepers in an
increasingly mercantilistic Western world. The teach-
ers in these schools, the “maestri d’abaco,” built on
and extended the algorithms they found in Fibonacci’s
text. Another tradition, the Cossist tradition—after the
German word “Coss” connoting algebra, that is, “Kun-
strechnung” or “artful calculation”—developed simul-
taneously in the Germanic regions of Europe and aimed
to introduce algebra into the mainstream there.

In 1494 the Italian Luca Pacioli published (by now
this is the operative word: Pacioli’s text is one of the
earliest printed mathematical texts) a compendium of
all known mathematics. By this time, the geometrical
justifications that al-Khwārizm̄ı and Fibonacci had pre-
sented had long since fallen from the mathematical ver-
nacular. By reintroducing them in his book, the Summa,
Pacioli brought them back to the mathematical fore.
Not knowing of Khayyam’s work, he asserted that solu-
tions had been discovered only in the six cases treated
by both al-Khwārizm̄ı and Fibonacci, even though there
had been abortive attempts to solve the cubic and even
though he held out the hope that it could ultimately be
solved.

Pacioli had highlighted a key unsolved problem:
could algorithmic solutions be determined for the var-
ious cases of the cubic? And, if so, could these be justi-
fied geometrically with proofs similar in spirit to those
found in the texts of al-Khwārizm̄ı and Fibonacci?

Among several sixteenth-century Italian mathemati-
cians who eventually managed to answer the first ques-
tion in the affirmative was cardano [VI.7]. In his Ars
magna, or The Great Art, of 1545, he presented algo-
rithms with geometric justifications for the various
cases of the cubic, effectively completing the cube
where al-Khwārizm̄ı and Fibonacci had completed the
square. He also presented algorithms that had been dis-
covered by his student Ludovico Ferrari (1522–65) for
solving the cases of the quartic. These intrigued him,
because, unlike the algorithms for the cubic, they were
not justified geometrically. As he put it in his book, “all
those matters up to and including the cubic are fully
demonstrated, but the others which we will add, either
by necessity or out of curiosity, we do not go beyond
barely setting out.” An algebra was breaking out of the
geometrical shell in which it had been encased.

5 Algebra Is Born

This process was accelerated by the rediscovery and
subsequent translation into Latin of Diophantus’s
Arithmetica in the 1560s, with its abbreviated presenta-
tional style and ungeometrical approach. Algebra, as a
general problem-solving technique, applicable to ques-
tions in geometry, number theory, and other mathe-
matical settings, was established in Raphael bombelli’s
[VI.8] Algebra of 1572 and, more importantly, in
viète’s [VI.9] In artem analyticem isagoge, or Introduc-
tion to the Analytic Art, of 1591. The aim of the latter
was, in Viète’s words, “to leave no problem unsolved,”
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and to this end he developed a true notation—using
vowels to denote variables and consonants to denote
coefficients—as well as methods for solving equations
in one unknown. He called his techniques “specious
logistics.”

Dimensionality—in the form of his so-called law of
homogeneity—was, however, still an issue for Viète.
As he put it, “[o]nly homogeneous magnitudes are
to be compared to one another.” The problem was
that he distinguished two types of magnitudes: “lad-
der magnitudes”—that is, variables (A side) (or x in our
modern notation), (A square) (or x2), (A cube) (or x3),
etc.; and “compared magnitudes”—that is, coefficients
(B length) of dimension one, (B plane) of dimension
two, (B solid) of dimension three, etc. In the light of
his law of homogeneity, then, Viète could legitimately
perform the operation (A cube)+(B plane)(A side) (or
x3+bx in our notation), since the dimension of (A cube)
is three, as is that of the product of the two-dimensional
coefficient (B plane) and the one-dimensional vari-
able (A side), but he could not legally add the three-
dimensional variable (A cube) to the two-dimensional
product of the one-dimensional coefficient (B length)
and the one-dimensional variable (A side) (or, again,
x3 + bx in our notation). Be this as it may, his “ana-
lytic art” still allowed him to add, subtract, multiply,
and divide letters as opposed to specific numbers, and
those letters, as long as they satisfied the law of homo-
geneity, could be raised to the second, third, fourth,
or, indeed, any power. He had a rudimentary algebra,
although he failed to apply it to curves.

The first mathematicians to do that were fermat
[VI.12] and descartes [VI.11] in their independent
development of the analytic geometry so familiar to
the high-school algebra student of today. Fermat, and
others like Thomas Harriot (ca. 1560–1621) in England,
were influenced in their approaches by Viète, while Des-
cartes not only introduced our present-day notational
convention of representing variables by x’s and y ’s
and constants by a’s, b’s, and c’s but also began the
arithmetization of algebra. He introduced a unit that
allowed him to interpret all geometrical magnitudes
as line segments, whether they were x’s, x2’s, x3’s,
x4’s, or any higher power of x, thereby removing con-
cerns about homogeneity. Fermat’s main work in this
direction was a 1636 manuscript written in Latin, enti-
tled “Introduction to plane and solid loci” and circu-
lated among the early seventeenth-century mathemat-
ical cognoscenti; Descartes’s was the Geometry , writ-
ten in French as one of three appendices to his philo-

sophical tract, Discourse on Method, published in 1637.
Both were regarded as establishing the identification of
geometrical curves with equations in two unknowns,
or in other words as establishing analytic geometry
and thereby introducing algebraic techniques into the
solution of what had previously been considered geo-
metrical problems. In Fermat’s case, the curves were
lines or conic sections—quadratic expressions in x
and y ; Descartes did this too, but he also considered
equations more generally, tackling questions about the
roots of polynomial equations that were connected
with transforming and reducing the polynomials.

In particular, although he gave no proof or even gen-
eral statement of it, Descartes had a rudimentary ver-
sion of what we would now call the fundamental
theorem of algebra [V.15], the result that a poly-
nomial equation xn + an−1xn−1 + · · · + a1x + a0 of
degree n has precisely n roots over the field C of com-
plex numbers. For example, while he held that a given
polynomial of degree n could be decomposed into n
linear factors, he also recognized that the cubic x3 −
6x2 +13x−10 = 0 has three roots: the real root 2 and
two complex roots. In his further exploration of these
issues, moreover, he developed algebraic techniques,
involving suitable transformations, for analyzing poly-
nomial equations of the fifth and sixth degrees. Liber-
ated from homogeneity concerns, Descartes was thus
able to use his algebraic techniques freely to explore
territory where the geometrically bound Cardano had
clearly been reluctant to venture. newton [VI.14] took
the liberation of algebra from geometrical concerns a
step further in his Arithmetica universalis (or Univer-
sal Arithmetic) of 1707, arguing for the complete arith-
metization of algebra, that is, for modeling algebra and
algebraic operations on the real numbers and the usual
operations of arithmetic.

Descartes’s Geometry highlighted at least two prob-
lems for further algebraic exploration: the fundamen-
tal theorem of algebra and the solution of polyno-
mial equations of degree greater than four. Although
eighteenth-century mathematicians like d’alembert
[VI.20] and euler [VI.19] attempted proofs of the fun-
damental theorem of algebra, the first person to prove
it rigorously was gauss [VI.26], who gave four distinct
proofs over the course of his career. His first, an alge-
braic geometrical proof, appeared in his doctoral dis-
sertation of 1799, while a second, fundamentally dif-
ferent proof was published in 1816, which in modern
terminology essentially involved constructing the poly-
nomial’s splitting field. While the fundamental theorem
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of algebra established how many roots a given poly-
nomial equation has, it did not provide insight into
exactly what those roots were or how precisely to find
them. That problem and its many mathematical reper-
cussions exercised a number of mathematicians in the
late eighteenth and nineteenth centuries and formed
one of the strands of the mathematical thread that
became modern algebra in the early twentieth century.
Another emerged from attempts to understand the gen-
eral behavior of systems of (one or more) polynomials
in n unknowns, and yet another grew from efforts to
approach number-theoretic questions algebraically.

6 The Search for the Roots
of Algebraic Equations

The problem of finding roots of polynomials pro-
vides a direct link from the algebra of the high-school
classroom to that of the modern research mathemati-
cian. Today’s high-school student dutifully employs the
quadratic formula to calculate the roots of second-
degree polynomials. To derive this formula, one trans-
forms the given polynomial into one that can be solved
more easily. By more complicated manipulations of
cubics and quartics, Cardano and Ferrari obtained for-
mulas for the roots of those as well. It is natural to ask
whether the same can be done for higher-degree poly-
nomials. More precisely, are there formulas that involve
just the usual operations of arithmetic—addition, sub-
traction, multiplication, and division—together with
the extraction of roots? When there is such a formula,
one says that the equation is solvable by radicals.

Although many eighteenth-century mathematicians
(among them Euler, Alexandre-Théophile Vander-
monde (1735–96), waring [VI.21], and Étienne Bézout
(1730–83)) contributed to the effort to decide whether
higher-order polynomial equations are solvable by rad-
icals, it was not until the years from roughly 1770 to
1830 that there were significant breakthroughs, partic-
ularly in the work of lagrange [VI.22], abel [VI.33],
and Gauss.

In a lengthy set of “Réflections sur la résolution
algébrique des équations” (Reflections on the algebraic
resolution of equations) published in 1771, Lagrange
tried to determine principles underlying the resolution
of algebraic equations in general by analyzing in detail
the specific cases of the cubic and the quartic. Build-
ing on the work of Cardano, Lagrange showed that a
cubic of the form x3 + ax2 + bx + c = 0 could always
be transformed into a cubic with no quadratic term

x3 + px + q = 0 and that the roots of this could be
written as x = u + v , where u3 and v3 are the roots
of a certain quadratic polynomial equation. Lagrange
was then able to show that if x1, x2, x3 are the three
roots of the cubic, the intermediate functions u and v
could actually be written as u = 1

3 (x1 + αx2 + α2x3)
and v = 1

3 (x1+α2x2+αx3), forα a primitive cube root
of unity. That is, u and v could be written as rational
expressions or resolvents in x1, x2, x3. Conversely,
starting with a linear expression y = Ax1 + Bx2 +Cx3

in the roots x1, x2, x3 and then permuting the roots
in all possible ways yielded six expressions each of
which was a root of a particular sixth-degree polyno-
mial equation. An analysis of the latter equation (which
involved the exploitation of properties of symmetric
polynomials) yielded the same expressions for u and v
in terms of x1, x2, x3 and the cube root of unity α. As
Lagrange showed, this kind of two-pronged analysis—
involving intermediate expressions rational in the roots
that are solutions of a solvable equation as well as the
behavior of certain rational expressions under permu-
tation of the roots—yielded the complete solution in
the cases both of the cubic and the quartic. It was one
approach that encompassed the solution of both types
of equation. But could this technique be extended to
the case of the quintic and higher-degree polynomials?
Lagrange was unable to push it through in the case of
the quintic, but by building on his ideas, first his stu-
dent Paolo Ruffini (1765–1822) at the turn of the nine-
teenth century and then, definitively, the young Norwe-
gian mathematician Abel in the 1820s showed that, in
fact, the quintic is not solvable by radicals. (See the
insolubility of the quintic [V.24].) This negative
result, however, still left open the questions of which
algebraic equations were solvable by radicals and why.

As Lagrange’s analysis seemed to underscore, the
answer to this question in the cases of the cubic and the
quartic involved in a critical way the cube and fourth
roots of unity, respectively. By definition, these satisfy
the particularly simple polynomial equations x3−1 = 0
and x4 − 1 = 0, respectively. It was thus natural to
examine the general case of the so-called cyclotomic
equation xn − 1 = 0 and ask for what values n the
nth roots of unity are actually constructible. To put
this question in equivalent algebraic terms: for which
n is it possible to find a formula for the nth roots of
unity that expresses them in terms of integers using the
usual arithmetical operations and extraction of square
(but not higher) roots? This was one of the many ques-
tions explored by Gauss in his wide-ranging, magiste-



�

102 II. The Origins of Modern Mathematics

rial, and groundbreaking 1801 treatise Disquisitiones
arithmeticæ. One of his most famous results was that
the regular 17-gon (or, equivalently, a 17th root of
unity) was constructible. In the course of his analysis,
he not only employed techniques similar to those devel-
oped by Lagrange but also developed key concepts such
as modular arithmetic [III.60] and the properties of
the modular “worlds” Zp , for p a prime, and, more gen-
erally, Zn, for n ∈ Z+, as well as the notion of a primi-
tive element (a generator) of what would later be termed
a cyclic group.

Although it is not clear how well he knew Gauss’s
work, in the years around 1830 galois [VI.41] drew
from the ideas both of Lagrange on the analysis of
resolvents and of cauchy [VI.29] on permutations and
substitutions to obtain a solution to the general prob-
lem of solvability of polynomial equations by radicals.
Although his approach borrowed from earlier ideas,
it was in one important respect fundamentally new.
Whereas prior efforts had aimed at deriving an explicit
algorithm for calculating the roots of a polynomial of a
given degree, Galois formulated a theoretical process
based on constructs more general than but derived
from the given equation that allowed him to assess
whether or not that equation was solvable.

To be more precise, Galois recast the problem into
one in terms of two new concepts: fields (which he
called “domains of rationality”) and groups (or, more
precisely, groups of substitutions). A polynomial equa-
tion f(x) = 0 of degreenwas reducible over its domain
of rationality—the ground field from which its coef-
ficients were taken—if all n of its roots were in that
ground field; otherwise, it was irreducible over that
field. It could, however, be reducible over some larger
field. Consider, for example, the polynomial x2 + 1 as
a polynomial over R, the field of real numbers. While
we know from high-school algebra that this polyno-
mial does not factor into a product of two real, lin-
ear factors (that is, there are no real numbers r1 and
r2 such that x2 + 1 = (x − r1)(x − r2)), it does factorPUP: I can confirm

that ‘x − r1’ is
indeed correct
here.

over C, the field of complex numbers, and, specifically,
x2 + 1 = (x + √−1)(x − √−1). Thus, if we take all
numbers of the form a+ b√−1, where a and b belong
to R, then we enlarge R to a new field C in which the
polynomial x2+1 is reducible. If F is a field and x is an
element of F that does not have annth root in F, then by
a similar process we can adjoin an element y to F and
stipulate that yn = x. We call y a radical. The set of
all polynomial expressions in y , with coefficients in F,
can be shown to form a larger field. Galois showed that

if it was possible to enlarge F by successively adjoin-

ing radicals to obtain a field K in which f(x) factored

into n linear factors, then f(x) = 0 was solvable by

radicals. He developed a process that hinged both on

the notion of adjoining an element—in particular, a so-

called primitive element—to a given ground field and

on the idea of analyzing the internal structure of this

new, enlarged field via an analysis of the (finite) group

of substitutions (automorphisms ofK) that leave invari-

ant all rational relations of the n roots of f(x) = 0. The

group-theoretic aspects of Galois’s analysis were par-

ticularly potent; he introduced the notions, although

not the modern terminology, of a normal subgroup of a

group, a factor group, and a solvable group. Galois thus

resolved the concrete problem of determining when a

polynomial equation was solvable by radicals by exam-

ining it from the abstract perspective of groups and

their internal structure.

Galois’s ideas, although sketched in the early 1830s,

did not begin to enter into the broader mathemati-

cal consciousness until their publication in 1846 in

liouville’s [VI.39] Journal des Mathématiques Pures et

Appliquées, and they were not fully appreciated until

two decades later when first Joseph Serret (1819–85)

and then jordan [VI.52] fleshed them out more fully.

In particular, Jordan’s Traité des substitutions et des

équations algébriques (“Treatise on substitutions and

on algebraic equations”) of 1870 not only highlighted

Galois’s work on the solution of algebraic equations

but also developed the general structure theory of per-

mutation groups as it had evolved at the hands of

Lagrange, Gauss, Cauchy, Galois, and others. By the end

of the nineteenth century, this line of development of

group theory, stemming from efforts to solve algebraic

equations by radicals, had intertwined with three oth-

ers: the abstract notion of a group defined in terms

of a group multiplication table, which was formulated

by cayley [VI.46], the structural work of mathemati-

cians like Ludwig Sylow (1832–1918) and Otto Hölder

(1859–1937), and the geometrical work of lie [VI.53]

and klein [VI.57]. By 1893, when Heinrich Weber (1842–

1914) codified much of this earlier work by giving the

first actual abstract definitions of the notions both of

group and field, thereby recasting them in a form much

more familiar to the modern mathematician, groups

and fields had been shown to be of central impor-

tance in a wide variety of areas, both mathematical and

physical.
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7 Exploring the Behavior of
Polynomials in n Unknowns

The problem of solving algebraic equations involved

finding the roots of polynomials in one unknown. At

least as early as the late seventeenth century, how-

ever, mathematicians like leibniz [VI.15] had been

interested in techniques for solving simultaneously

systems of linear equations in more than two vari-

ables. Although his work remained unknown at the

time, Leibniz considered three linear equations in three

unknowns and determined their simultaneous solvabil-

ity based on the value of a particular expression in

the coefficients of the system. This expression, equiva-

lent to what Cauchy would later call the determinant

[III.15] and which would ultimately be associated with

an n×n square array or matrix [I.3 §4.2] of coeffi-

cients, was also developed and analyzed independently

by Gabriel Cramer (1704–52) in the mid eighteenth cen-

tury in the general context of the simultaneous solution

of a system of n linear equations in n unknowns. From

these beginnings, a theory of determinants, indepen-

dent of the context of solving systems of linear equa-

tions, quickly became a topic of algebraic study in its

own right, attracting the attention of Vandermonde,

laplace [VI.23], and Cauchy, among others. Determi-

nants were thus an example of a new algebraic con-

struct, the properties of which were then systematically

explored.

Although determinants came to be viewed in terms of

what sylvester [VI.42] would dub matrices, a theory of

matrices proper grew initially from the context not of

solving simultaneous linear equations but rather of lin-

early transforming the variables of homogeneous poly-

nomials in two, three, or more generally n variables. In

the Disquisitiones arithmeticæ, for example, Gauss con-

sidered how binary and ternary quadratic forms with

integer coefficients—expressions of the form a1x2 +
2a2xy + a3y2 and a1x2 + a2y2 + a3z2 + 2a4xy +
2a5xz + 2a6yz, respectively—are affected by a linear

transformation of their variables. In the ternary case, he

applied the linear transformation x = αx′ +βy ′ +γz′,
y = α′x′ + β′y′ + γ′z′, and z = α′′x′ + β′′y′ + γ′′z′
to derive a new ternary form. He denoted the linear

transformation of the variables by the square array

α, β, γ

α′, β′, γ′

α′′, β′′, γ′′

and, in showing what the composition of two such
transformations was, gave an explicit example of
matrix multiplication. By the middle of the nineteenth
century, Cayley had begun to explore matrices per se
and had established many of the properties that the
theory of matrices as a mathematical system in its
own right enjoys. This line of algebraic thought was
eventually reinterpreted in terms of the theory of alge-
bras (see below) and developed into the independent
area of linear algebra and the theory of vector spaces
[I.3 §2.3].

Another theory that arose out of the analysis of lin-
ear transformations of homogeneous polynomials was
the theory of invariants, and this too has its origins in
some sense in Gauss’s Disquisitiones. As in his study
of ternary quadratic forms, Gauss began his study
of binary forms by applying a linear transformation,
specifically, x = αx′ + βy′, y = γx′ + δy′. The result
was the new binary form a′1(x′)2+2a′2x′y′ +a′3(y′)2,
where, explicitly, a′1 = a1α2 + 2a2αγ + a3γ2, a′2 =
a1αβ+a2(αδ+βγ)+a3γδ, and a′3 = a1β2+2a2βδ+
a3δ2. As Gauss noted, if you multiply the second of
these equations by itself and subtract from this the
product of the first and the third equations, you obtain
the relation a′22 − a′1a′3 = (a2

2 − a1a3)(αδ − βγ)2. To
use language that Sylvester would develop in the early
1850s, Gauss realized that the expression a2

2−a1a3 in
the coefficients of the original binary quadratic form
is an invariant in the sense that it remains unchanged
up to a power of the determinant of the linear trans-
formation. By the time Sylvester coined the term, the
invariant phenomenon had also appeared in the work
of the English mathematician boole [VI.43], and had
attracted Cayley’s attention. It was not until after Cay-
ley and Sylvester met in the late 1840s, however, that
the two of them began to pursue a theory of invari-
ants proper, which aimed to determine all invariants for
homogeneous polynomials of degreem inn unknowns
as well as simultaneous invariants for systems of such
polynomials.

Although Cayley and (especially) Sylvester pursued
this line of research from a purely algebraic point of
view, invariant theory also had number-theoretic and
geometric implications, the former explored by Got-
thold Eisenstein (1823–52) and hermite [VI.47], the
latter by Otto Hesse (1811–74), Paul Gordan (1837–
1912), and Alfred Clebsch (1833–72), among others.
It was of particular interest to understand how many
“genuinely distinct” invariants were associated with a
specific form, or system of forms. In 1868, Gordan
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achieved a fundamental breakthrough by showing that
the invariants associated with any binary form inn vari-
ables can always be expressed in terms of a finite num-
ber of them. By the late 1880s and early 1890s, how-
ever, hilbert [VI.63] brought new, abstract concepts
associated with the theory of algebras (see below) to
bear on invariant theory and, in so doing, not only re-
proved Gordan’s result but also showed that the result
was true for forms of degree m in n unknowns. With
Hilbert’s work, the emphasis shifted from the concrete
calculations of his English and German predecessors
to the kind of structurally oriented existence theorems
that would soon be associated with abstract, modern
algebra.

8 The Quest to Understand
the Properties of “Numbers”

As early as the sixth century b.c.e., the Pythagoreans
had studied the properties of numbers formally. For
example, they defined the concept of a perfect num-
ber, which is a positive integer, such as 6 = 1 + 2 + 3
and 28 = 1 + 2 + 4 + 7 + 14, which is the sum of its
divisors (excluding the integer itself). In the sixteenth
century, Cardano and Bombelli had willingly worked
with new expressions, complex numbers, of the form
a+√−b, for real numbers a and b, and had explored
their computational properties. In the seventeenth cen-
tury, Fermat famously claimed that he could prove that
the equation xn + yn = zn, for n an integer greater
than 2, had no solutions in the integers, except for the
trivial cases when z = x or z = y and the remaining
variable is zero. The latter result, known as fermat’s
last theorem [V.12], generated many new ideas, espe-
cially in the eighteenth and nineteenth centuries, as
mathematicians worked to find an actual proof of Fer-
mat’s claim. Central to their efforts were the creation
and algebraic analysis of new types of number systems
that extended the integers in much the same way that
Galois had extended fields. This flexibility to create and
analyze new number systems was to become one of the
hallmarks of modern algebra as it would develop into
the twentieth century.

One of the first to venture down this path was Euler.
In the proof of Fermat’s last theorem for the n = 3
case that he gave in his Elements of Algebra of 1770,
Euler introduced the system of numbers of the form
a+ b√−3, where a and b are integers. He then blithely
proceeded to factorize them into primes, without fur-
ther justification, just as he would have factorized

ordinary integers. By the 1820s and 1830s, Gauss had
launched a more systematic study of numbers that are
now called the Gaussian integers. These are all num-
bers of the form a+ b√−1, for integers a and b. He
showed that, like the integers, the Gaussian integers are
closed under addition, subtraction, and multiplication;
he defined the notions of unit, prime, and norm in order
to prove an analogue of the fundamental theorem
of arithmetic [V.16] for them. He thereby demon-
strated that there were whole new algebraic worlds to
create and explore. (See algebraic numbers [IV.3] for
more on these topics.)

Whereas Euler had been motivated in his work by
Fermat’s last theorem, Gauss was trying to generalize
the law of quadratic reciprocity [V.30] to a law of
biquadratic reciprocity. In the quadratic case, the prob-
lem was the following. If a and m are integers with
m � 2, then we say that a is a quadratic residue modm
if the equation x2 = a has a solution mod m; that is,
if there is an integer x such that x2 is congruent to
a mod m. Now suppose that p and q are distinct odd
primes. If you know whether p is a quadratic residue
mod q, is there a simple way of telling whether q is a
quadratic residue mod p? In 1785, Legendre had posed
and answered this question—the status of q mod p
will be the same as that of p mod q if at least one
of p and q is congruent to 1 mod 4, and different if
they are both congruent to 3 mod 4—but he had given
a faulty proof. By 1796, Gauss had come up with the
first rigorous proof of the theorem (he would ultimately
give eight different proofs of it), and by the 1820s he
was asking the analogous question for the case of two
biquadratic equivalences x4 ≡ p (mod q) and y4 ≡ q
(mod p). It was in his attempts to answer this new ques-
tion that he introduced the Gaussian integers and sig-
naled at the same time that the theory of residues of
higher degrees would make it necessary to create and
analyze still other new sorts of “integers.” Although
Eisenstein, dirichlet [VI.36], Hermite, kummer [VI.40],
and kronecker [VI.48], among others, pushed these
ideas forward in this Gaussian spirit, it was dedekind
[VI.50] in his tenth supplement to Dirichlet’s Vorlesun-
gen über Zahlentheorie (Lectures on Number Theory)
of 1871 who fundamentally reconceptualized the prob-
lem by treating it not number theoretically but rather
set theoretically and axiomatically. Dedekind intro-
duced, for example, the general notions—if not what
would become the precise axiomatic definitions—of
fields, rings, ideals [III.83 §2], and modules [III.83 §3]
and analyzed his number-theoretic setting in terms of
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these new, abstract constructs. His strategy was, from
a philosophical point of view, not unlike that of Galois:
translate the “concrete” problem at hand into new,
more abstract terms in order to solve it more cleanly
at a “higher” level. In the early twentieth century,
noether [VI.76] and her students, among them Bartel
van der Waerden (1903–96), would develop Dedekind’s
ideas further to help create the structural approach to
algebra so characteristic of the twentieth century.

Parallel to this nineteenth-century, number-theoretic
evolution of the notion of “number” on the continent of
Europe, a very different set of developments was taking
place, initially in the British Isles. From the late eigh-
teenth century, British mathematicians had debated
not only the nature of number—questions such as,
“Do negative and imaginary numbers make sense?”—
but also the meaning of algebra—questions like, “In an
expression like ax + by , what values may a, b, x, and
y legitimately take on and what precisely may ‘+’ con-
note?” By the 1830s, the Irish mathematician hamilton
[VI.37] had come up with a “unified” interpretation of
the complex numbers that circumvented, in his view,
the logical problem of adding a real number and an
imaginary one, an apple and an orange. Given real num-
bers a and b, Hamilton conceived of the complex num-
ber a+ b√−1 as the ordered pair (he called it a “cou-
ple”) (a, b). He then defined addition, subtraction, mul-
tiplication, and division of such couples. As he realized,
this also provided a way of representing numbers in
the complex plane, and so he naturally asked whether
he could construct algebraic, ordered triples so as to
represent points in 3-space. After a decade of con-
templating this question off and on, Hamilton finally
answered it not for triples but for quadruples, the so-
called quaternions [III.78], “numbers” of the form
(a, b, c, d) := a+bi+cj+dk, wherea, b, c, andd are real
and where i, j, k satisfy the relations ij = −ji = k, jk =
−kj = i, ki = −ik = j, i2 = j2 = k2 = −1. As in the two-
dimensional case, addition is defined component-wise,
but multiplication, while definable in such a way that
every nonzero element has a multiplicative inverse, is
not commutative. Thus, this new number system did
not obey all of the “usual” laws of arithmetic.

Although some of Hamilton’s British contemporaries
questioned the extent to which mathematicians were
free to create such new mathematical worlds, oth-
ers, like Cayley, immediately took the idea further
and created a system of ordered 8-tuples, the octo-
nions, the multiplication of which was neither com-
mutative nor even, as was later discovered, associa-

tive. Several questions naturally arise about such sys-
tems, but one that Hamilton asked was what hap-
pens if the field of coefficients, the base field, is not
the reals but rather the complexes? In that case, it
is easy to see that the product of the two nonzero
complex quaternions (−√−1,0,1,0) = −√−1+ j and
(
√−1,0,1,0) = √−1+ j is 1+ j2 = 1+ (−1) = 0. In

other words, the complex quaternions contain zero
divisors—nonzero elements the product of which is
zero—another phenomenon that distinguishes their
behavior fundamentally from that of the integers. As
it flourished in the hands of mathematicians like Ben-
jamin Peirce (1809–80), frobenius [VI.58], Georg Schef-
fers (1866–1945), Theodor Molien (1861–1941), car-
tan [VI.69], and Joseph H. M. Wedderburn (1882–
1948), among others, this line of thought resulted in
a freestanding theory of algebras. This naturally inter-
twined with developments in the theory of matrices
(the n×n matrices form an algebra of dimension n2

over their base field) as it had evolved through the
work of Gauss, Cayley, and Sylvester. It also merged
with the not unrelated theory of n-dimensional vector
spaces (n-dimensional algebras are n-dimensional vec-
tor spaces with a vector multiplication as well as a vec-
tor addition and scalar multiplication) that issued from
ideas like those of Hermann Grassmann (1809–77).

9 Modern Algebra

By 1900, many new algebraic structures had been iden-
tified and their properties explored. Structures that
were first isolated in one context were then found to
appear, sometimes unexpectedly, in others: thus, these
new structures were mathematically more general than
the problems that had led to their discovery. In the
opening decades of the twentieth century, algebraists
(the term is not ahistorical by 1900) increasingly rec-
ognized these commonalities—these shared structures
such as groups, fields and rings—and asked questions
at a more abstract level. For example, what are all of
the finite simple groups? Can they be classified? (See
the classification of finite simple groups [V.8].)
Moreover, inspired by the set-theoretic and axiomatic
work of cantor [VI.54], Hilbert, and others, they came
to appreciate the common standard of analysis and
comparison that axiomatization could provide. Coming
from this axiomatic point of view, Ernst Steinitz (1871–
1928), for example, laid the groundwork for an abstract
theory of fields in 1910, while Abraham Fraenkel (1891–
1965) did the same for an abstract theory of rings four
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years later. As van der Waerden came to realize in the
late 1920s, these developments could be interpreted as
dovetailing philosophically with results like Hilbert’s in
invariant theory and Dedekind’s and Noether’s in the
algebraic theory of numbers. That interpretation, laid
out in 1930 in van der Waerden’s classic textbook Mod-
erne Algebra, codified the structurally oriented “mod-
ern algebra” that subsumed the algebra of polynomials
of the high-school classroom and that continues to
characterize algebraic thought today.
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II.4 Algorithms
Jean-Luc Chabert

1 What Is an Algorithm?

It is not easy to give a precise definition of the word
“algorithm.” One can provide approximate synonyms:

some other words that (sometimes) mean roughly the
same thing are “rule,” “technique,” “procedure,” and
“method.” One can also give good examples, such as
long multiplication, the method one learns in high
school for multiplying two positive integers together.
However, although informal explanations and well-
chosen examples do give a good idea of what an algo-
rithm is, the concept has undergone a long evolution: it
was not until the twentieth century that a satisfactory
formal definition was achieved, and ideas about algo-
rithms have evolved further even since then. In this arti-
cle, we shall try to explain some of these developments
and clarify the contemporary meaning of the term.

1.1 Abacists and Algorists

Returning to the example of multiplication, an obvi-
ous point is that how you try to multiply two numbers
together is strongly influenced by how you represent
those numbers. To see this, try multiplying the Roman
numerals CXLVII and XXIX together without first con-
verting them into their decimal counterparts, 147 and
29. It is difficult and time-consuming, and explains why
arithmetic in the Roman empire was extremely rudi-
mentary. A numeration system can be additive, as it
was for the Romans, or positional, like ours today. If it
is positional, then it can use one or several bases—for
instance, the Sumerians used both base 10 and base 60.

For a long time, many processes of calculation used
abacuses. Originally, these were lines traced on sand,
onto which one placed stones (the Latin for small stone
is calculus) to represent numbers. Later there were
counting tables equipped with rows or columns onto
which one placed tokens. These could be used to rep-
resent numbers to a given base. For example, if the
base was 10, then a token would represent one unit,
ten units, one hundred units, etc., according to which
row or column it was in. The four arithmetic operations
could then be carried out by moving the tokens accord-
ing to precise rules. The Chinese counting frame can be
regarded as a version of the abacus.

In the twelfth century, when the Arabic mathemati-
cal works were translated into Latin, the denary posi-
tional numeration system spread through Europe. This
system was particularly suitable for carrying out the
arithmetic operations, and led to new methods of cal-
culation. The term algoritmus was introduced to refer
to these, and to distinguish them from the traditional
methods that used tokens on an abacus.

Although the signs for the numerals had been
adapted from Indian practice, the numerals became
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known as Arabic. And the origin of the word “algo-
rithm” is Arabic: it arose from a distortion of the name
al-khwārizmı̄ [VI.5], who was the author of the oldest
known work on algebra, in the first half of the ninth
century. His treatise, entitled al-Kitāb al-mukhtas. ar f̄ı
h. isāb al-jabr wa’l-muqābala (“The compendious book
on calculation by completion and balancing”), gave rise
to the word “algebra.”

1.2 Finiteness

As we have just seen, in the Middle Ages the term “algo-
rithm” referred to the processes of calculation based
on the decimal notation for the integers. However, in
the seventeenth century, according to d’alembert’s
[VI.20] Encyclopédie, the word was used in a more gen-
eral sense, referring not just to arithmetic but also to
methods in algebra and to other calculational proce-
dures such as “the algorithm of the integral calculus”
or “the algorithm of sines.”

Gradually, the term came to mean any process of sys-
tematic calculation that could be carried out by means
of very precise rules. Finally, with the growing role of
computers, the important role of finiteness was fully
understood: it is essential that the process stops and
provides a result after a finite time. Thus one arrives at
the following naive definition:

An algorithm is a set of finitely many rules for manip-
ulating a finite amount of data in order to produce a
result in a finite number of steps.

Note the insistence on finiteness: finiteness in the writ-
ing of the algorithm and finiteness in the implementa-
tion of the algorithm.

The formulation above is not of course a mathemat-
ical definition in the classical sense of the term. As we
shall see later, it was important to formalize it further.
But for now, let us be content with this “definition”
and look at some classical examples of algorithms in
mathematics.

2 Three Historical Examples

A feature of algorithms that we have not yet mentioned
is iteration, or the repetition of simple procedures. To
see why iteration is important, consider once again the
example of long multiplication. This is a method that
works for positive integers of any size. As the num-
bers get larger, the procedure takes longer, but—and
this is of vital importance—the method is “the same”:
if you understand how to multiply two three-digit num-
bers together, then you do not need to learn any new

principles in order to multiply two 137-digit numbers
together (even if you might be rather reluctant to do
the calculation). The reason for this is that the method
for long multiplication involves a great deal of carefully
structured repetition of much smaller tasks, such as
multiplying two one-digit numbers together. We shall
see that iteration plays a very important part in the
algorithms to be discussed in this section.

2.1 Euclid’s Algorithm: Iteration

One of the best, and most often used, examples to illus-
trate the nature of algorithms is euclid’s algorithm
[III.22], which goes back to the third century b.c.e. It
is a procedure described by euclid [VI.2] to determine
the greatest common divisor (gcd) of two positive inte-
gers a and b. (Sometimes the greatest common divisor
is known as the highest common factor (hcf).)

When one first meets the concept of the greatest com-
mon divisor of a and b, it is usually defined to be the
largest positive integer that is a divisor (or factor) of
both a and b. However, for many purposes it is more
convenient to think of it as the unique positive inte-
ger d with the following two properties. First, d is a
divisor of a and b, and second, if c is any other divi-
sor of a and b, then d is divisible by c. The method for
determining d is provided by the first two propositions
of Book VII of Euclid’s Elements. Here is the first one:
“Two unequal numbers being set out, and the less being
continually subtracted in turn from the greater, if the
number which is left never measures the one before it
until a unit is left, the original numbers will be prime
to one another.” In other words, if by carrying out suc-
cessive alternate subtractions one obtains the number
1, then the gcd of the two numbers is equal to 1. In this
case one says that the numbers are relatively prime or
coprime.

2.1.1 Alternate Subtractions

Let us describe Euclid’s procedure in general. It is based
on two simple observations:

(i) if a = b then the gcd of a and b is b (or a);
(ii) d is a common divisor of a and b if and only if it

is a common divisor of a− b and b, which implies
that the gcd of a and b is the same as the gcd of
a− b and b.

Now suppose that we wish to determine the gcd of a
and b and suppose that a � b. If a = b then obser-



�

108 II. The Origins of Modern Mathematics
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numbers is the 

current value of a
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yes no

Figure 1 A flow chart for the
procedure in Euclid’s algorithm.

vation (i) tells us that the gcd is b. Otherwise, observa-
tion (ii) tells us that the answer will be the same as it is
for the two numbers a− b and b. If we now let a1 be
the larger of these two numbers and b1 the smaller (of
course, if they are equal then we just set a1 = b1 = b),
then we are faced with the same task that we started
with—to determine the gcd of two numbers—but the
larger of these two numbers, a1, is smaller than a, the
larger of the original two numbers. We can therefore
repeat the process: if a1 = b1 then the gcd of a1 and
b1, and hence that of a and b, is b1, and otherwise
we replace a1 by a1 − b1 and reorganize the numbers
a1 − b1 and b1 so that if one of them is larger then it
comes first.

One further observation is needed if we want to show
that this procedure works. It is the following fundamen-
tal fact about the positive integers, sometimes known
as the well-ordering principle.

(iii) A strictly decreasing sequence of positive integers
a0 > a1 > a2 > · · · must be finite.

Since the iterative procedure just described produces
exactly such a strictly decreasing sequence, the itera-
tions must eventually stop, which means that at some
point ak and bk will be equal, and that value is thus the
gcd of a and b (see figure 1).

2.1.2 Euclidean Divisions

Euclid’s algorithm is usually described in a slightly dif-
ferent way. One makes use of a more complex pro-
cedure called Euclidean division—that is, division with
remainder—which greatly reduces the number of steps

that the algorithm takes. The basic fact underlying this
procedure is that if a and b are two positive integers
then there are (unique) integers q and r such that

a = bq + r and 0 � r < b.
The number q is called the quotient and r is the remain-
der. Remarks (i) and (ii) above are then replaced by the
following ones:

(i′) if r = 0 then the gcd of a and b is equal to b;
(ii′) the gcd of a and b is the same as the gcd of b and

r .

This time, at the first step, one replaces (a, b) by (b, r).
If r �= 0, then at the second step one replaces (b, r) by
(r , r1), where r1 is the remainder in the division of b
by r , and so on. The sequence of remainders is strictly
decreasing (b > r > r1 > r2 � 0), so the process stops
and the gcd is the last nonzero remainder.

It is not hard to see that the two approaches are
equivalent. Suppose, for example, that a = 103 438 and
b = 37. If you use the first approach, then you will
repeatedly subtract 37 from 103 438 until you reach a
number that is smaller than 37. This number will be the
remainder when 103 438 is divided by 37, which is the
first number you would calculate if you used the second
approach. Thus, the reason for the second approach is
that repeated subtraction can be a very inefficient way
of calculating remainders. This efficiency gain is very
important in practice: the second approach gives rise
to a polynomial-time algorithm [IV.21 §2], while the
time taken by the first is exponentially long.

2.1.3 Generalizations

Euclid’s algorithm can be generalized to many other
contexts where we have notions of addition, subtrac-
tion, and multiplication. For example, there is a variant
of it that applies to the ring [III.83 §1] Z[i] of Gaussian
integers, that is, numbers of the form a + bi, where a
and b are ordinary integers. It can also be applied to the
ring of all polynomials with real coefficients (or coeffi-
cients in any field, for that matter). The one require-
ment is that we should be able to find some analogue
of the notion of division with remainder, after which
the algorithm is virtually identical to the algorithm for
positive integers. For example, we have the following
statement for polynomials: given any two polynomials
A and B with B not the zero polynomial, there are poly-
nomialsQ and R such thatA = BQ+R and either R = 0
or the degree of R is less than the degree of B.
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As Euclid noticed (Elements, Book X, proposition 2),

one may also carry out the procedure on pairs of num-

bers a and b that are not necessarily integers. It is easy

to check that the process will stop if and only if the

ratio a/b is a rational number. This observation leads

to the concept of continued fractions [III.22], which

are discussed in part III. They were not studied explic-

itly before the seventeenth century, but the roots of the

idea can be traced back to archimedes [VI.3].

2.2 The Method of Archimedes to Calculate π:

Approximation and Finiteness

The ratio of the circumference of a circle to the diam-

eter is a constant that has been denoted by π since

the eighteenth century (see the article “π” in part III).

Let us see how Archimedes, in the third century b.c.e.,

obtained the classical approximation 22
7 for this ratio.

If one draws inscribed polygons (whose vertices lie on

the circle) and circumscribed polygons (whose sides are

tangent to the circle) and if one computes the length

of these polygons, then one obtains lower and upper

bounds for the value of π , since the circumference of

the circle is greater than the length of any inscribed

polygon and less than the length of any circumscribed

polygon (figure 2). Archimedes started with regular

hexagons, and then repeatedly doubled the number of

sides, obtaining more and more precise bounds. He

finished with ninety-six-sided polygons, obtaining the

estimates

3+ 10
71 � π � 3+ 1

7 .

This process clearly involves iteration, but is it right

to call it an algorithm? Strictly speaking it is not: how-

ever many sides you take for your polygon, all you

will get is an approximation to π , so the process is

not finite. However, what we do have is an algorithm

that will calculate π to any desired accuracy: for exam-

ple, if you demand an approximation that is correct

to ten decimal places, then after a finite number of

steps the algorithm will give you one. What matters now

is that the process converges. That is, it is important

that the values that come out of the iteration get arbi-

trarily close to π . The geometric origin of the method

can be used to prove that this is indeed the case, and

in 1609 in Germany Ludolph van Ceulen obtained an

approximation accurate to thirty-five decimal places

using polygons with 262 sides.

Nevertheless, there is a clear difference between this

algorithm for approximating π and Euclid’s algorithm

O
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Figure 2 Approximation of π .

for calculating the gcd of two positive integers. Algo-

rithms like Euclid’s are often called discrete algorithms,

and are contrasted with numerical algorithms, which

are algorithms that are used to compute numbers that

are not integers (see numerical analysis [IV.20]).

2.3 The Newton–Raphson Method:

Recurrence Formulas

In around 1670, newton [VI.14] devised a method for

finding roots of equations, which he explained with ref-

erence to the example x3−2x−5 = 0. His explanation

starts with the observation that the root x is approxi-

mately equal to 2. He therefore writes x = 2 + p and

obtains an equation for p by substituting 2+p for x in

the original equation. This new equation works out to

be p3 + 6p2 + 10p− 1 = 0. Because x is close to 2, p is

small, so he then estimates p by forgetting the terms

p3 and 6p2 (since these should be considerably smaller

than 10p − 1). This gives him the equation 10p−1 = 0,

or p = 1
10 . Of course, this is not an exact solution, but it

provides him with a new and better approximation, 2.1,

for x. He then repeats the process, writing x = 2.1+q,

substituting to obtain an equation for q, solving this

equation approximately, and refining his estimate still

further. The estimate he obtains for q is −0.0054, so

the next approximation for x is 2.0946.

How, though, can we be sure that this process really

does converge to x? Let us examine the method more

closely.
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a a + pa + p + q

Figure 3 Newton’s method.

2.3.1 Tangents and Convergence

Newton’s method has a geometrical interpretation,
which Newton himself did not give, in terms of the
graph of a function f . A rootx of the equation f(x) = 0
corresponds to a point where the curve with equation
y = f(x) intersects the x-axis. If you start with an
approximate value a for x and set p = x − a, as we
did above, then when you substitute a + p for x to
obtain a new function g(p), you are effectively moving
the origin from (0,0) to the point (a,0). Then when
you forget all powers of p other than the constant and
linear terms, you are finding the best linear approxima-
tion to the function g—which, geometrically speaking,
is the tangent line to g at the point (0, g(0)). Thus, the
approximate value you obtain for p is the x-coordinate
of the point where the tangent at (0, g(0)) crosses the
x-axis. Addinga to this value returns the origin to (0,0)
and gives the new approximation to the root of f . This
is why Newton’s method is often called the tangent
method (figure 3). And one can now see that the new
approximation will definitely be better than the old one
if the tangent to f at (a, f (a)) intersects the x-axis at a
point that lies between a and the point where the curve
y = f(x) intersects the x-axis.

As it happens, this is not the case for Newton’s choice
of the value a = 2 above, but it is true for the approx-
imate value 2.1 and for all subsequent ones. Geo-
metrically, the favorable situation occurs if the point
(a, f (a)) lies above the x-axis in a convex part of the
curve that crosses the x-axis or below the x-axis in a
concave part of the curve that crosses the x-axis. Under
these circumstances, and provided the root is not a
multiple one, the convergence is quadratic, meaning
that the error at each stage is roughly the square of
the error at the previous stage—or, equivalently, the

approximation is valid to a number of decimal places
that roughly doubles at each stage. This is enormously
fast.

The choice of the initial approximation value is obvi-
ously important, and raises unexpectedly subtle ques-
tions. These are clearer if we look at complex polyno-
mials and their complex roots. Newton’s method can be
easily adapted to this more general context. Suppose
that z is a root of some complex polynomial and that
z0 is an initial approximation for z. Newton’s method
then gives us a sequence z0, z1, z2, . . . , which may or
may not converge to z. We define the domain of attrac-
tion, denoted A(z), to be the set of all complex num-
bers z0 such that the resulting sequence does indeed
converge to z. How do we determine A(z)?

The first person to ask this problem was cayley
[VI.46], in 1879. He noticed that the solution is easy
for quadratic polynomials but difficult as soon as the
degree is 3 or more. For example, the domains of
attraction of the roots ±1 of the polynomial z2 − 1
are the open half-planes bounded by the vertical axis,
but the domains corresponding to the roots 1, ω, and
ω2 of z3 − 1 are extremely complicated sets. They
were described by Julia in 1918—such subsets are now
called fractal sets. Newton’s method and fractal sets are
discussed further in dynamics [IV.15].

2.3.2 Recurrence Formulas

At each stage of his method, Newton had to produce
a new equation, but in 1690 Raphson noticed that this
was not really necessary. For particular examples, he
gave single formulas that could be used at each step,
but his basic observation applies in general and leads
to a general formula for every case, which one can
easily obtain using the interpretation in terms of tan-
gents. Indeed, the tangent to the curve y = f(x) at the
point of x-coordinate a has the equation y − f(a) =
f ′(a)(x − a), and it cuts the x-axis at the point with
x-coordinate a − f(a)/f ′(a). What we now call the
Newton–Raphson method springs from this simple for-
mula. One starts with an initial approximation a0 = a
and then defines successive approximations using the
recurrence formula

an+1 = an − f(an)f ′(an)
.

As an example, let us consider the function f(x) =
x2 − c. Here, Newton’s method provides a sequence of
approximations of the square root

√
c of c, given by

the recurrence formula an+1 = 1
2 (an + c/an) (which
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we obtain by substituting x2 + c for f in the general
formula above). This method for approximating square
roots was known by Heron of Alexandria in the first
century. Note that if a0 is close to

√
c, then c/a0 is also

close,
√
c lies between them, and a1 = 1

2 (a0 + c/a0) is
their arithmetic mean.

3 Does an Algorithm Always Exist?

3.1 Hilbert’s Tenth Problem:

The Need for Formalization

In 1900, at the Second International Congress of Math-
ematicians, hilbert [VI.63] proposed a list of twenty-
three problems. These problems, and Hilbert’s works in
general, had a huge influence on mathematics during
the twentieth century (Gray 2000). We are interested
here in Hilbert’s tenth problem: given a Diophantine
equation, that is, a polynomial equation with any num-
ber of indeterminates and with integer coefficients, “a
process is sought by which it can be determined, in a
finite number of operations, whether the equation is
solvable in integral numbers.” In other words, we have
to find an algorithm which tells us, for any Diophan-
tine equation, whether or not it has at least one integer
solution. Of course, for many Diophantine equations it
is easy to find solutions, or to prove that no solutions
exist. However, this is by no means always the case: con-
sider, for instance, the Fermat equation xn + yn = zn
(n � 3). (Even before the solution of fermat’s last
theorem [V.12] an algorithm was known for deter-
mining for any specific n whether this equation had
a solution. However, one could not call it easy.)

If Hilbert’s tenth problem has a positive answer, then
one can demonstrate it by exhibiting a “process” of the
sort that Hilbert asked for. To do this, it is not necessary
to have a precise understanding of what a “process” is.
However, if you want to give a negative answer, then
you have to show that no algorithm exists, and for that
you need to say precisely what counts as an algorithm.
In section 1.2 we gave a definition that seems to be rea-
sonably precise, but it is not precise enough to enable
us to think about Hilbert’s tenth problem. What kind of
rules are we allowed to use in an algorithm? How can
we be sure that no algorithm achieves a certain task,
rather than just that we are unable to find one?

3.2 Recursive Functions: Church’s Thesis

What we need is a formal definition of the notion of an
algorithm. In the seventeenth century, leibniz [VI.15]

envisaged a universal language that would allow one to
reduce mathematical proofs to simple computations.
Then, during the nineteenth century, logicians such
as Charles Babbage, boole [VI.43], frege [VI.56], and
peano [VI.62] tried to formalize mathematical reason-
ing by an “algebraization” of logic. Finally, between
1931 and 1936, gödel [VI.92], church [VI.89], and
Stephen Kleene introduced the notion of recursive func-
tions (see Davis (1965), which contains the original
texts). Roughly speaking, a recursive function is one
that can be calculated by means of an algorithm, but
the definition of recursive functions is different, and is
completely precise.

3.2.1 Primitive Recursive Functions

Another rough definition of a recursive function is as
follows: a recursive function is one that has an induc-
tive definition. To give an idea of what this means, let us
consider addition and multiplication as functions from
N×N to N. To emphasize this, we shall write sum(x,y)
and prod(x,y) for x +y and xy , respectively.

A familiar fact about multiplication is that it is
“repeated addition.” Let us examine this more pre-
cisely. We can define the function “prod” in terms
of the function “sum” by means of the following
two rules: prod(1, y) = y and prod(x + 1, y) =
sum(prod(x,y),y). Thus, if you know prod(x,y) and
you know how to calculate sums, then you know
prod(x + 1, y). Since you also know the “base case”
prod(1, y), a simple inductive argument shows that
these simple rules completely determine the function
“prod.”

We have just seen how one function can be “recur-
sively defined” in terms of another. We now want to
understand the class of all functions from Nn to N that
can be built up in a few basic ways, of which recursion
is the most important. We shall refer to functions from
Nn to N as n-ary functions.

To begin with, we need an initial stock of functions
out of which the rest will be built. It turns out that a
very simple set of functions is enough. Most basic are
the constant functions: that is, functions that take every
n-tuple in Nn to some fixed positive integer c. Another
very simple function, but the function that allows us
to create much more interesting ones, is the successor
function, which takes a positive integer n to the next
one, n + 1. Finally, we have projection functions: the
function Unk takes a sequence (x1, . . . , xn) in Nn and
maps it to the kth coordinate xk.
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We then have two ways of constructing functions
from other functions. The first is substitution. Given an
m-ary function φ and m n-ary functions ψ1, . . . ,ψm,
one defines an n-ary function by (x1, . . . , xn) �→
φ(ψ1(x1, . . . , xn), . . . ,ψm(x1, . . . , xn)). For example,
(x + y)2 = prod(sum(x,y), sum(x,y)), so we can
obtain the function (x,y) �→ (x + y)2 from the func-
tions “sum” and “prod” by means of substitution.

The second method of construction is called prim-
itive recursion. This is a more general form of the
inductive method we used above in order to con-
struct the function “prod” from the function “sum.”
Given an (n− 1)-ary function ψ and an (n+ 1)-ary
function µ, one defines an n-ary function φ by say-
ing that φ(1, x2, . . . , xn) = ψ(x2, . . . , xn) and φ(k +
1, x2, . . . , xn) = µ(k,φ(k,x2, . . . , xn), x2, . . . , xn). In
other words, ψ tells you the “initial values” of φ
(the values when the first coordinate is 1) and µ
tells you how to work out φ(k + 1, x2, . . . , xn) in
terms of φ(k,x2, . . . , xn), x2, . . . , xn and k. (The sum–
product example was simpler because we did not have
a dependence on k.)

A primitive recursive function is any function that can
be built from the initial stock of functions using the two
operations, substitution and primitive recursion, that
we have just described.

3.2.2 Recursive Functions

If you think for a while about primitive recursion and
know a small amount about programming computers,
you should be able to convince yourself that they are
effectively computable: that is, that for any primitive
recursive function there is an algorithm for computing
it. (For example, the operation of primitive recursion
can usually be realized in a rather direct way as a FOR
loop.)

How about the converse? Are all computable func-
tions primitive recursive? Consider, for example, the
function that takes the positive integer n to pn, the
nth prime number. It is not hard to devise a simple
algorithm for computing pn, and it is then a good exer-
cise (if you want to understand primitive recursion) to
convert this algorithm into a proof that the function is
primitive recursive.

However, it turns out that this function is not typical:
there are computable functions that are not primitive
recursive. In 1928, Wilhelm Ackermann defined a func-
tion, now known as the Ackermann function, that has a
“doubly inductive” definition. The following function is

not quite the same as Ackermann’s, but it is very simi-
lar. It is the function A(x,y) that is determined by the
following recurrence rules:

(i) A(1, y) = y + 2 for every y ;
(ii) A(x,1) = 2 for every x;

(iii) A(x+1, y+1) = A(x,A(x+1, y))whenever x > 1
and y > 1.

For example, A(2, y +1) = A(1, A(2, y)) = A(2, y)+2.
From this and the fact that A(2,1) = 2 it follows that
A(2, y) = 2y for every y . In a similar way one can
show that A(3, y) = 2y , and in general that for each x
the function that takes y to A(x + 1, y) “iterates” the
function that takes y to A(x,y). This means that the
values of A(x,y) are extremely large even when x and
y are fairly small. For example, A(4, y + 1) = 2A(4,y),
so in general A(4, y) is given by an “exponential tower”
of height y . We have A(4,1) = 2, A(4,2) = 22 = 4,
A(4,3) = 24 = 16, A(4,4) = 216 = 65 536, and
A(4,5) = 265 536, which is too large a number for its
decimal notation to be reproduced here.

It can be shown that for every primitive recursive
function φ there is some x such that the function
A(x,y) grows faster than φ(y). This is proved by an
inductive argument. To oversimplify slightly, if ψ(y)
and µ(y) have already been shown to grow more slowly
than A(x,y), then one can show that the function
φ produced from them by primitive recursion also
grows more slowly. This allows us to define a “diag-
onal” function A(y) = A(y,y) that is not primi-
tive recursive because it grows faster than any of the
functions A(x,y).

If we are trying to understand in a precise way which
functions can be calculated algorithmically, then our
definition will surely have to encompass functions like
the Ackermann function, since they can in principle be
computed. Therefore, we must consider a larger class
of functions than just the primitive recursive ones.
This is what Gödel, Church, and Kleene did, and they
obtained in different ways the same class of recursive
functions. For instance, Kleene added a third method of
construction, which he called minimization. If f is an
(n+ 1)-ary function, one defines an n-ary function g
by taking g(x1, . . . , xn) to be the smallest y such that
f(x1, . . . , xn,y) = 0. (If there is no such y , one regards
g as undefined for (x1, . . . , xn). We shall ignore this
complication in what follows.)

It turns out that, not only is the Ackermann function
recursive, but so are all functions that one can write
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a computer program to calculate. So this gives us the

formal definition of computability that we did not have

before.

3.2.3 Effective Calculability

With such a class of recursive functions, Church

claimed that the class of “effectively calculable” func-

tions is exactly the class of recursive functions.

Church’s thesis is widely believed, but this is a convic-

tion that cannot be proved since the notion of recur-

sive function is a mathematically precise concept while

that of an effectively calculable function is an intuitive

notion, actually quite like that of “algorithm.” Church’s

statement lies in the realm of metamathematics and is

now called Church’s thesis.

3.3 Turing Machines

One of the strongest pieces of evidence for Church’s

thesis is that in 1936 turing [VI.94] found a very

different-looking way of formalizing the notion of an

algorithm, which he showed was equivalent. That is,

every function that was computable in his new sense

was recursive and vice versa. His approach was to

define a notion that is now called a Turing machine,

which can be thought of as an extremely primitive com-

puter, and which played an important part in the devel-

opment of actual computers. Indeed, functions that

are computable by Turing machines are precisely those

that can be programmed on a computer. The primi-

tive architecture of Turing machines does not make

them any less powerful: it merely means that in prac-

tice they would be too cumbersome to program or to

implement in hardware. Since recursive functions are

the same as Turing-computable functions, it follows

that recursive functions too are those functions that

can be programmed on a computer, so to disbelieve

Church’s thesis would be to maintain that there are

some “effective procedures” that cannot be converted

into computer programs—which seems rather implau-

sible. A description of Turing machines can be found

in computational complexity [IV.21 §1].

Turing introduced his machines in response to a

question that generalized Hilbert’s tenth problem. The

Entscheidungsproblem, or decision problem, was also

asked by Hilbert, in 1922. He wanted to know whether

there was a “mechanical process” by which one could

determine whether any given mathematical statement

could be proved. In order to think about this, Turing

needed a precise notion of what constituted a “mechan-
ical process.” Once he had defined Turing machines,
he was able to show by means of a fairly straightfor-
ward diagonal argument that the answer to Hilbert’s
question was no. His argument is outlined in the
insolubility of the halting problem [V.23].

4 Properties of Algorithms

4.1 Iteration versus Recursion

As previously mentioned, we often encounter compu-
tation rules which define each element of a sequence
in terms of the preceding elements. This gives rise to
two different ways of carrying out the computation.
The first is iteration: one computes the first terms, then
one obtains succeeding terms by means of a recurrence
formula. The second is recursion, a procedure which
seems circular at first because one defines a procedure
in terms of itself. However, this is allowed because the
procedure calls on itself with smaller values of the vari-
ables. The concept of recursion is subtle and powerful.
Let us try to clarify the difference between recursion
and iteration with some examples.

Suppose that we wish to compute n! = 1 · 2 ·
3 · · · (n− 1) ·n. An obvious way of doing it is to note
the recurrence relation n! = n · (n − 1)! and the ini-
tial value 1! = 1. Having done so, one could then
compute successively the numbers 2!, 3!, 4!, and so
on until one reached n!, which would be the iterative
approach. Alternatively, one could say that if fact(n) is
the result of a procedure that leads ton!, then fact(n) =
n× fact(n− 1), which would be a recursive procedure.
The second approach says that to obtainn! it suffices to
know how to obtain (n−1)!, and to obtain (n−1)! it suf-
fices to know how to obtain (n−2)!, and so on. Since one
knows that 1! = 1, one can obtain n!. Thus, recursion
is a bit like iteration but thought of “backwards.”

In some ways this example is too simple to show
clearly the difference between the two procedures.
Moreover, if one wishes to compute n!, then iteration
seems simpler and more natural than recursion. We
now look at an example where recursion is far simpler
than iteration.

4.1.1 The Tower of Hanoi

The Tower of Hanoi is a problem that goes back to
Édouard Lucas in 1884. One is given n disks, all of dif-
ferent sizes and each with a hole in the middle, stacked
on a peg A in order of size, with the largest one at the
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bottom. We also have two empty pegs B and C. The
problem is to move the stack from peg A to peg B while
obeying the following rules. One is allowed to move just
one disk at a time, and each move consists in taking
the top disk from one of the pegs and putting it onto
another peg. In addition, no disk may ever be placed
above a smaller disk.

The problem is easy if you have just three disks,
but becomes rapidly harder as the number of disks
increases. However, with the help of recursion one can
see very quickly that an algorithm exists for moving
the disks in the required way. Indeed, suppose that we
know a procedure H(n−1) that solves the problem for
n− 1 disks. Here is a procedureH(n) forn disks: move
the firstn− 1 disks on top of A to C with the procedure
H(n−1), then move the last disk on A to B, and finally
apply once more the procedureH(n−1) to move all the
disks from C to B. If we write HAB(n) for the procedure
that movesn disks from peg A to peg B according to the
rules, then we can represent this recursion symbolically
as

HAB(n) = HAC(n− 1)HAB(1)HBC(n− 1).

Thus,HAB(n) is deduced fromHAC(n−1) andHBC(n−
1), which are clearly equivalent to HAB(n − 1). Since
HAB(1) is certainly easy, we have the full recursion.

One can easily check by induction that this proce-
dure takes 2n − 1 moves—moreover, it turns out that
the task cannot be accomplished in fewer moves. Thus,
the number of moves is an exponential function of n,
so for large n the procedure will be very long.

Furthermore, the larger n is, the more memory one
must use to keep track of where one is in the procedure.
By contrast, if we wish to carry out an iteration during
an iterative procedure, it is usually enough to know just
the result of the previous iteration. Thus, the most we
need to remember is the result of one iteration. There
is in fact an iterative procedure for the Tower of Hanoi
as well. It is easy to describe, but it is much less obvious
that it actually solves the problem. It encodes the posi-
tions of the n disks as an n-bit sequence and at each
step applies a very simple rule to obtain the next n-bit
sequence. This rule makes no reference to how many
steps have so far taken place, and therefore the amount
of memory needed, beyond that required to store the
positions of the disks, is very small.

4.1.2 The Extended Euclid Algorithm

Euclid’s algorithm is another example that lends itself
in a very natural way to a recursive procedure. Recall

that if a and b are two positive integers, then we
can write a = qb + r with 0 � r < b. The algo-
rithm depended on the observation that gcd(a, b) =
gcd(b, r). Since the remainder r can be calculated eas-
ily from a and b, and since the pair (b, r) is smaller
than the pair (a, b), this gives us a recursive procedure,
which stops when we reach a pair of the form (a,0).

An important extension of Euclid’s algorithm is
Bézout’s lemma, which states that for any pair of posi-
tive integers (a, b) there exist (not necessarily positive)
integers u and v such that

ua+ vb = d = gcd(a, b).

How can we obtain such integers u and v? The answer
is given by the extended Euclid algorithm, which again
can be defined using recursion. Suppose we can find a
pair (u′, v′) that works for b and r : that is, u′b+v′r =
d. Since a = qb + r , we can substitute r = a− qb into
this equation and deduce that d = u′b + v′(a− qb) =
v′a+(u′−v′q)b. Thus, settingu = v′ andv = u′−v′q,
we have ua + vb = d. Since a pair (u,v) that works
for a and b can be easily calculated from a pair (u′, v′)
that works for the smaller b and r , this gives us a recur-
sive procedure. The “bottom” of the recursion is when
r = 0, in which case we know that 1b+0r = d. Once we
reach this, we can “run back up” through Euclid’s algo-
rithm, successively modifying our pair (u,v) according
to the rule just given. Notice, incidentally, that the fact
that this procedure exists is a proof of Bézout’s lemma.

4.2 Complexity

So far we have considered algorithms in a theoretical
way and ignored their obvious practical importance.
However, the mere existence of an algorithm for car-
rying out a certain task does not guarantee that your
computer can do it, because some algorithms take so
many steps that no computer can implement them
(unless you are prepared to wait billions of years for
the answer). The complexity of an algorithm is, loosely
speaking, the number of steps it takes to complete
its task (as a function of the size of the input). More
precisely, this is the time complexity of the algorithm.
There is also its space complexity, which measures the
maximum amount of memory a computer needs in
order to implement it. Complexity theory is the study
of the computational resources that are needed to carry
out various tasks. It is discussed in detail in computa-
tional complexity [IV.21]—here we shall give a hint
of it by examining the complexity of one algorithm.
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4.2.1 The Complexity of Euclid’s Algorithm

The length of time that a computer will take to imple-

ment Euclid’s algorithm is closely related to the number

of times one needs to compute quotients and remain-

ders: that is, to the number of times that the recur-

sive procedure calls on itself. Of course, this number

depends in turn on the size of the numbers a and b
whose gcd is to be determined. An initial observation

is that if 0 < b � a, then the remainder in the divi-

sion of a by b is less than a/2. To see this, notice that

if b � a/2 then the remainder is a − b, which is at

most a/2, whereas if b � a/2 then we know that the

remainder is at most b and so is again at most a/2. It

follows that after two steps of calculating the remain-

der, one arrives at a pair where the larger number is

at most half what it was before. From this it is easy to

show that the number of such calculations needed is at

most 2 log2 a+ 1, which is roughly proportional to the

number of digits of a. Since this number is far smaller

than a itself, the algorithm can be used easily for very

large numbers, which gives it great practical utility to

go with its theoretical significance.

The number of divisions needed in the worst case

does not appear to have been studied until the first half

of the nineteenth century: the above bound of 2 log2 a+
1 was given by Pierre-Joseph-Étienne Finck in 1841. It

is in fact not hard to improve this result slightly and

prove that the algorithm takes longest whena and b are

consecutive Fibonacci numbers. This implies that the

number of divisions needed is never more than logφ a+
1, where φ is the golden ratio.

Euclid’s algorithm also has low space complexity:

once one has replaced a pair (a, b) by a new pair (b, r),
one can forget the original pair, so at any stage one

does not have to hold very much in one’s memory (or

store it in the memory of one’s computer). By contrast,

the extended Euclid algorithm appears to require one

to remember the entire sequence of calculations that

leads to the gcd d of a and b, so that one can make

a series of substitutions and eventually find u and v
such that ua + vb = d. However, a closer look at it

reveals that one can perform it while keeping track of

only a few numbers at any one time.

Let us see how this works with an example. We shall

set a = 38, b = 21, and find integers u and v such that

38u+21v = 1. We begin by writing down the first step

of Euclid’s algorithm:

38 = 1× 21+ 17.

This tells us that 17 = 38− 21. Now we write down the
second step:

21 = 1× 17+ 4.

We know how to write 17 in terms of 38 and 21, so let
us do a substitution:

21 = 1× (38− 21)+ 4.

Rearranging this, we discover that 4 = 2×21−38. Now
we write down the third step of Euclid’s algorithm:

17 = 4× 4+ 1.

We know how to write 17 and 4 in terms of 38 and 21,
so let us substitute again:

38− 21 = 4× (2× 21− 38)+ 1.

Rearranging this, we find that 1 = 5× 38− 9× 21, and
we have finished.

If you think about this procedure, you will see that
at each stage one just has to keep track of how two
numbers are expressed in terms of a and b. Thus, the
space complexity of the extended Euclid algorithm is
small if you implement it properly.

5 Modern Aspects of Algorithms

5.1 Algorithms and Chance

Earlier it was remarked that the notion of algorithm
has continued to develop even since its formalization
in the 1920s and 1930s. One of the main reasons for
this has been the realization that randomness can be
a very useful tool in algorithms. This may seem puz-
zling at first, since algorithms as we have described
them are deterministic procedures; in a moment we
shall give an example that illustrates how randomness
can be used. A second reason is the recent development
of the notion of a quantum algorithm: for more about
this, see quantum computation [III.76].

The following simple example illustrates how chance
can be useful. Given an integern, we shall define a func-
tion f(n) that is not too hard to calculate but is diffi-
cult to analyze. If n has d digits, then you approximate√
n to the point where the first d digits after the dec-

imal point are correct (using Newton’s method, say),
and let f(n) equal the dth digit. Now suppose that you
wish to know roughly what proportion of numbers n
between 1030 and 1031 have f(n) = 0. There does not
seem to be a good way of determining this theoretically,
but calculating it on a computer looks very hard, too,
as there are so many numbers between 1030 and 1031.
However, if one chooses a random sample of 10 000
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numbers between 1030 and 1031 and does the calcula-
tion for just those numbers, then with high probability
the proportion of those numbers with f(n) = 0 will be
roughly the same as the proportion of all numbers in
the range with f(n) = 0. Thus, if you do not demand
absolute certainty but instead are satisfied with a very
small error probability, then you can achieve your goal
with much more modest computational resources.

5.1.1 Pseudorandom Numbers

How, though, does one use a deterministic computer to
select ten thousand random numbers between 1030 and
1031? The answer is that one does not in fact need to: it
is almost always good enough to make a pseudorandom
selection instead. The basic idea is well-illustrated by
a method proposed by von neumann [VI.91] in the
mid 1940s. One begins with a 2n-digit integer a, called
the “seed,” calculates a2, and extracts from a2 a new
2n-digit number b by taking all the digits ofa2 from the
(n+ 1)st to the 3nth. One then repeats the procedure
for b, and so on. Because of the way multiplication jum-
bles up digits, the resulting sequence of 2n-digit num-
bers is very hard to distinguish from a truly random
sequence, and can be used in randomized algorithms.

There are many other ways of producing pseudo-
random sequences, and this raises an obvious ques-
tion: what properties should a sequence have for us
to regard it as pseudorandom? This turns out to be a
complex question, and several different answers have
been proposed. Randomized algorithms and pseudo-
randomness are discussed in depth in computational
complexity [IV.21 §§6, 7], and a formal definition of
“pseudorandom generators” can be found there. (See
also computational number theory [IV.5 §2] for an
account of a famous randomized algorithm for testing
whether a number is prime.) Here, let us discuss a simi-
lar question about infinite sequences of zeros and ones.
When should we regard such a sequence as “random”?

Again, many different answers have been suggested.
One idea is to consider simple statistical tests: we
would expect that in the long run the frequency of zeros
should be roughly the same as that of ones, and more
generally that any small subsequence such as 00110
should appear with the “right” frequency (which for
this sequence would be 1

32 since it has length 5).
It is perfectly possible, however, for a sequence to

pass these simple tests but to be generated by a deter-
ministic procedure. If one is trying to decide whether
a sequence of zeros and ones is actually random—
that is, produced by some means such as tossing a

coin—then we will be very suspicious of a sequence if

we can identify an algorithm that produces the same

sequence. For example, we would reject a sequence that

was derived in a simple way from the digits of π , even

if it passed the statistical tests. However, merely to ask

that a sequence cannot be produced by a recursive pro-

cedure does not give a good test for randomness: for

example, if one takes any such sequence and alternates

the terms of that sequence with zeros, one then obtains

a new sequence that is far from random, but which still

cannot be produced recursively.

For this reason, von Mises suggested in 1919 that a

sequence of zeros and ones should be called random if

it is not only the case that the limit of the frequency of

ones is 1
2 , but also that the same is true for any subse-

quence that can be extracted “by means of a reasonable

procedure.” In 1940 Church made this more precise by

translating “by means of a reasonable procedure” into

“by means of a recursive function.” However, even this

condition is too weak: there are such sequences that

do not satisfy the “law of the iterated logarithm” (some-

thing that a random sequence would satisfy). Currently,

the so-called Martin–Löf thesis, formulated in 1966, is

one of the most commonly used definitions of random-

ness: a random sequence is a sequence that satisfies all

the “effective statistical sequential tests,” a notion that

we cannot formulate precisely here, but which uses in

an essential manner the notion of recursive function. By

contrast with Church’s thesis, with which almost every

mathematician agrees, the Martin–Löf thesis is still very

much under discussion.

5.2 The Influence of Algorithms on

Contemporary Mathematics

Throughout its history, mathematics has concerned

itself with problems of existence. For example, are there

transcendental numbers [III.43], that is, numbers

that are not the root of any polynomial with integer

coefficients? There are two kinds of answers to such

questions: either one actually exhibits a number such

asπ and proves that it is transcendental (this was done

by Carl Lindemann in 1873), or one gives an “indirect

existence proof,” such as cantor’s [VI.54] demonstra-

tion that there are “far more” real numbers than there

are roots of polynomials with integer coefficients (see

countable and uncountable sets [III.11]), which

shows in particular that some real numbers must be

transcendental.
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5.2.1 Constructivist Schools

In around 1910, under the influence of brouwer
[VI.75], the intuitionist school [II.7 §3.1] of math-
ematics arose, which rejected the principle of the
excluded middle, which is the principle that every
mathematical assertion is either true or false. In par-
ticular, Brouwer did not accept that the existence of a
mathematical object such as a transcendental number
is proved by the fact that its nonexistence would lead
to a contradiction. This was the first of several “con-
structivist” schools, for which an object exists if and
only if it can be constructed explicitly.

Not many working mathematicians subscribe to
these principles, but almost all would agree that there
is an important difference between constructive proofs
and indirect proofs of existence, a difference that has
come to seem more important with the rise of com-
puter science. This has added a further level of refine-
ment: sometimes, even if you know that a mathemat-
ical object can be produced algorithmically, you still
care whether the algorithm can be made to work in a
reasonably short time.

5.2.2 Effective Results

In number theory there is an important distinction
between “effective” and “ineffective” results. For exam-
ple, mordell’s conjecture [V.31], proposed in 1922
and finally proved by Faltings in 1983, states that a
smooth rational plane curve of degree n > 3 has at
most finitely many points with rational coefficients.
Among its many consequences is that the Fermat equa-
tion xn+yn = zn has only finitely many integral solu-
tions for each n � 4. (Of course, we now know that it
has no nontrivial solutions, but the Mordell conjecture
was proved before Fermat’s last theorem, and it has
many other consequences.) However, Faltings’s proof is
ineffective, which means that it does not give any infor-
mation about how many solutions there are (except that
there are not infinitely many), or how large they can be,
so one cannot use a computer to find them all and know
that one has finished the job. There are many other
very important proofs in number theory that are inef-
fective, and replacing any one of them with an effective
argument would be a major breakthrough.

A completely different set of issues was raised by
another solution to a famous open problem, the four-
color theorem [V.14], which was conjectured by Fran-
cis Guthrie, a student of de morgan [VI.38], in 1852
and proved in 1976 by Appel and Haken, with a proof

that made essential use of computers. They began with
a theoretical argument that reduced the problem to
checking finitely many cases, but the number of cases
was so large that it could not be done by hand and was
instead done by computers. But how should we judge
such a proof? Can we be sure that the computer has
been programmed correctly? And even if it has, how do
we know with a computation of that size that the com-
puter has operated correctly? And does a proof that
relies on a computer really tell us why the theorem is
true? These questions continue to be debated today.
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II.5 The Development of Rigor in
Mathematical Analysis
Tom Archibald

1 Background

This article is about how rigor was introduced into
mathematical analysis. The question is a complicated
one, since mathematical practice has changed consid-
erably, especially in the period between the founding of
the calculus (shortly before 1700) and the early twen-
tieth century. In a sense, the basic criteria for what
constitutes a correct and logical argument have not
altered, but the circumstances under which one would
require such an argument, and even to some degree the
purpose of the argument, have altered with time. The
voluminous and successful mathematical analysis of
the 1700s, associated with names such as Johann and
Daniel bernoulli [VI.18], euler [VI.19], and lagrange
[VI.22], lacked foundational clarity in ways that were
criticized and remedied in subsequent periods. By
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around 1910 a general consensus had emerged about
how to make arguments in analysis rigorous.

Mathematics consists of more than techniques for
calculation, methods for describing important features
of geometric objects, and models of worldly phenom-
ena. Almost all working mathematicians today are
trained in, and concerned with, the production of rig-
orous arguments that justify their conclusions. These
conclusions are usually framed as theorems, which are
statements of fact, accompanied by an argument, or
proof, that the theorem is indeed true. Here is a simple
example: every positive whole number that is divisible
by 6 is also divisible by 2. Running through the six times
table (6, 12, 18, 24, …) we see that each number is even,
which makes the statement easy enough to believe. A
possible justification of it would be to say that since 6
is divisible by 2, then every number divisible by 6 must
also be divisible by 2.

Such a justification might or might not be thought
of as a thorough proof, depending on the reader. For
on hearing the justification we can raise questions: is it
always true that if a, b, and c are three positive whole
numbers such that c is divisible by b and b is divisi-
ble by a, then c is divisible by a? What is divisibility
exactly? What is a whole number? The mathematician
deals with such questions by precisely defining con-
cepts (such as divisibility of one number by another),
basing the definitions on a smallish number of unde-
fined terms (“whole number” might be one, though it
is possible to start even further back, with sets). For
example, one could define a number n to be divisible
by a number m if and only if there exists an integer q
such that qm = n. Using this definition, we can give a
more precise proof: if n is divisible by 6, then n = 6q
for some q, and therefore n = 2(3q), which proves that
n is divisible by 2. Thus we have used the definitions
to show that the definition of divisibility by 2 holds
whenever the definition of divisibility by 6 holds.

Historically, mathematical writers have been satis-
fied with varying levels of rigor. Results and methods
have often been widely used without a full justification
of the kind just outlined, particularly in bodies of math-
ematical thought that are new and rapidly developing.
Some ancient cultures, the Egyptians for example, had
methods for multiplication and division, but no justi-
fication of these methods has survived and it does not
seem especially likely that formal justification existed.
The methods were probably accepted simply because
they worked, rather than because there was a thorough
argument justifying them.

By the middle of the seventeenth century, European
mathematical writers who were engaged in research
were well-acquainted with the model of rigorous math-
ematical argument supplied by euclid’s [VI.2] Ele-
ments. The kind of deductive, or synthetic, argument
we illustrated earlier would have been described as a
proof more geometrico—in the geometrical way. While
Euclid’s arguments, assumptions, and definitions are
not wholly rigorous by today’s standards, the basic idea
was clear: one proceeds from clear definitions and gen-
erally agreed basic ideas (such as that the whole is
greater than the part) to deduce theorems (also called
propositions) in a step-by-step manner, not bringing
in anything extra (either on the sly or unintentionally).
This classical model of geometric argument was widely
used in reasoning about whole numbers (for example
by fermat [VI.12]), in analytic geometry (descartes
[VI.11]), and in mechanics (Galileo).

This article is about rigor in analysis, a term which
itself has had a shifting meaning. Coming from ancient
origins, by around 1600 the term was used to refer to
mathematics in which one worked with an unknown
(something we would now write asx) to do a calculation
or find a length. In other words, it was closely related to
algebra, though the notion was imported into geometry
by Descartes and others. However, over the course of
the eighteenth century the word came to be associated
with the calculus, which was the principal area of appli-
cation of analytic techniques. When we talk about rigor
in analysis it is the rigorous theory of the mathematics
associated with differential and integral calculus that
we are principally discussing. In the third quarter of
the seventeenth century rival methods for the differ-
ential and integral calculus were devised by newton
[VI.14] and leibniz [VI.15], who thereby synthesized
and extended a considerable amount of earlier work
concerned with tangents and normals to curves and
with the areas of regions bounded by curves. The tech-
niques were highly successful, and were extended read-
ily in a variety of directions, most notably in mechanics
and in differential equations.

The key common feature of this research was the use
of infinities: in some sense, it involved devising meth-
ods for combining infinitely many infinitely small quan-
tities to get a finite answer. For example, suppose we
divide the circumference of a circle into a (large) num-
ber of equal parts by marking off points at equal dis-
tances, then joining the points and creating triangles by
joining the points to the center. Adding up the areas of
the triangles approximates the circular area, and the
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more points we use the better the approximation. If
we imagine infinitely many of these inscribed triangles,
the area of each will be “infinitely small” or infinitesi-
mal. But because the total involves adding up infinitely
many of them, it may be that we get a finite posi-
tive total (rather than just 0, from adding up infinitely
many zeros, or an infinite number, as we would get
if we added the same finite number to itself infinitely
many times). Many techniques for doing such calcula-
tions were devised, though the interpretation of what
was taking place varied. Were the infinities involved
“real” or merely “potential”? If something is “really”
infinitesimal, is it just zero? Aristotelian writers had
abhorred actual infinities, and complaints about them
were common at the time.

Newton, Leibniz, and their immediate followers pro-
vided mathematical arguments to justify these meth-
ods. However, the introduction of techniques involv-
ing reasoning with infinitely small objects, limiting
processes, infinite sums, and so forth meant that
the founders of the calculus were exploring new
ground in their arguments, and the comprehensibility
of these arguments was frequently compromised by
vague terms, or the drawing of one conclusion when
another might seem to follow equally well. The objects
they were discussing included infinitesimals (quantities
infinitely smaller than those we experience directly),
ratios of vanishingly small quantities (i.e., fractions
in, or approaching, the form 0/0), and finite sums of
infinitely many positive terms. Taylor series represen-
tations, in particular, provoked a variety of questions.
A function may be written as a series in such a way
that the series, when viewed as a function, will have, at
a given point x = a, the same value as the function, the
same rate of change (or first derivative), and the same
higher-order derivatives to arbitrary order:

f(x) = f(a)+ f ′(a)(x − a)+ 1
2f
′′(a)(x − a)2 + · · · .

For example, sinx = x − x3/3! + x5/5! + · · · , a fact
already known to Newton though such series are now
named after Newton’s disciple brook taylor [VI.16].

One problem with early arguments was that the
terms being discussed were used in different ways by
different writers. Other problems arose from this lack
of clarity, since it concealed a variety of issues. Per-
haps the most important of these was that an argument
could fail to work in one context, even though a very
similar argument worked perfectly well in another. In
time, this led to serious problems in extending analysis.
Eventually, analysis became fully rigorous and these

difficulties were solved, but the process was a long

one and it was complete only by the beginning of the

twentieth century.

Let us consider some examples of the kinds of dif-

ficulties that arose from the very beginning, using a

result of Leibniz. Suppose we have two variables, u
and v , each of which changes when another variable,

x, changes. An infinitesimal change in x is denoted dx,

the differential of x. The differential is an infinitesimal

quantity, thought of as a geometrical magnitude, such

as a length, for example. This was imagined to be com-

bined or compared with other magnitudes in the usual

ways (two lengths can be added, have a ratio, and so on).

When x changes to x + dx, u and v change to u+ du
and v + dv , respectively. Leibniz concluded that the

product uv would then change to uv + udv + v du,

so that d(uv) = udv+v du. His argument is, roughly,

that d(uv) = (u + du)(v + dv) − uv . Expanding the

right-hand side using regular algebra and then simpli-

fying gives udv + v du + dudv . But the term dudv
is a second-order infinitesimal, vanishingly small com-

pared with the first-order differentials, and is thus

treated as equal to 0. Indeed, one aspect of the prob-

lems is that there appears to be an inconsistency in the

way that infinitesimals are treated. For instance, if you

want to work out the derivative of y = x2, the calcu-

lation corresponding to the one just given (expanding

(x+dx)2, and so on) shows that dy/dx = 2x+dx. We

then treat the dx on the right-hand side as zero, but

the one on the left-hand side seems as though it ought

to be an infinitesimal nonzero quantity, since otherwise

we could not divide by it. So is it zero or not? And if not,

how do we get around the apparent inconsistency?

At a slightly more technical level, the calculus

required mathematicians to deal repeatedly with the

“ultimate” values of ratios of the form dy/dx when

the quantities in both numerator and denominator

approach or actually reach 0. This phrasing uses, once

again, the differential notation of Leibniz, though the

same issues arose for Newton with a slightly different

notational and conceptual approach. Newton generally

spoke of variables as depending on time, and he sought

(for example) the values approached when “evanes-

cent increments”—vanishingly small time intervals—

are considered. One long-standing set of confusions

arose precisely from this idea that variable quantities

were in the process of changing, whether with time

or with changes in the value of another variable. This

means that we talk about values of a variable approach-
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ing a given value, but without a clear idea of what this
“approach” actually is.

2 Eighteenth-Century Approaches
and Critiques

Of course, had the calculus not turned out to be an
enormously fruitful field of endeavor, no one would
have bothered to criticize it. But the methods of New-
ton and Leibniz were widely adopted for the solution
of problems that had interested earlier generations
(notably tangent and area problems) and for the pos-
ing and solution of problems that these techniques
suddenly made far more accessible. Problems of areas,
maxima and minima, the formulation and solution of
differential equations to describe the shape of hanging
chains or the positions of points on vibrating strings,
applications to celestial mechanics, the investigation of
problems having to do with the properties of functions
(thought of for the most part as analytic expressions
involving variable quantities)—all these fields and more
were developed over the course of the eighteenth cen-
tury by such individuals as Taylor, Johann and Daniel
Bernoulli, Euler, d’alembert [VI.20], Lagrange, and
many others. These people employed many virtuoso
arguments of suspect validity. Operations with diver-
gent series, the use of imaginary numbers, and manip-
ulations involving actual infinities were used effectively
in the hands of the most capable of these writers. How-
ever, the methods could not always be explained to
the less capable, and thus certain results were not reli-
ably reproducible—a very odd state for mathematics
from today’s standpoint. To do Euler’s calculations, one
needed to be Euler. This was a situation that persisted
well into the following century.

Specific controversies often highlighted issues that
we now see as a result of foundational confusion. In the
case of infinite series, for example, there was confusion
about the domain of validity of formal expressions.
Consider the series

1− 1+ 1− 1+ 1− 1+ 1− · · · .
In today’s usual elementary definition (due to cauchy
[VI.29] around 1820) we would now consider this series
to be divergent because the sequence of partial sums
1,0,1,0, . . . does not tend to a limit. But in fact there
was some controversy about the actual meaning of such
expressions. Euler and Nicholas Bernoulli, for example,
discussed the potential distinction between the sum
and the value of an infinite sum, Bernoulli arguing that
something like 1−2+6−24+120+· · · has no sum but

that this algebraic expression does constitute a value.
Whatever may have been meant by this, Euler defended
the notion that the sum of the series is the value of
the finite expression that gives rise to the series. In
his 1755 Institutiones Calculi Differentialis, he gives the
example of 1 − x + x2 − x3 + · · · , which comes from
1/(1+x), and later defended the view that this meant
that 1 − 1 + 1 − 1 + · · · = 1

2 . His view was not uni-
versally accepted. Similar controversies arose in con-
sidering how to extend the values of functions outside
their usual domain, for example with the logarithms of
negative numbers.

Probably the most famous eighteenth-century cri-
tique of the language and methods of eighteenth-cen-
tury analysis is due to the philosopher George Berke-
ley (1685–1753). Berkeley’s motto, “To be is to be per-
ceived,” expresses his idealist stance, which was cou-
pled with a strong view that the abstraction of individ- PUP: this phrase

changed, which I
hope means that
proofreader’s
comment here has
been dealt with.
OK?

ual qualities, for the purposes of philosophical discus-
sion, is impossible. The objects of philosophy should
thus be things that are perceived, and perceived in
their entirety. The impossibility of perceiving infinites-
imally small objects, combined with their manifestly
abstracted nature, led him to attack their use in his
1734 treatise The Analyst: Or, a Discourse Addressed
to an Infidel Mathematician. Referring sarcastically in
1734 to infinitesimals as the “ghosts of departed quan-
tities,” Berkeley argued that neglecting some quantity,
no matter how small, was inappropriate in mathemati-
cal argument. He quoted Newton in this regard, to the
effect that “in mathematical matters, errors are to be
condemned, no matter how small.” Berkeley continued,
saying that “[n]othing but the obscurity of the sub-
ject” could have induced Newton to impose this kind
of reasoning on his followers. Such remarks, while they
apparently did not dissuade those enamored of the
methods, contributed to a sentiment that aspects of the
calculus required deeper explanation. Writers such as
Euler, d’Alembert, Lazare Carnot, and others attempted
to address foundational criticisms by clarifying what
differentials were, and gave a variety of arguments to
justify the operations of the calculus.

2.1 Euler

Euler contributed to the general development of analy-
sis more than any other individual in the eighteenth
century, and his approaches to justifying his arguments
were enormously influential even after his death, owing
to the success and wide use of his important textbooks.
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Euler’s reasoning is sometimes regarded as rather care-
less since he operated rather freely with the notation of
the calculus, and many of his arguments are certainly
deficient by later standards. This is particularly true
of arguments involving infinite series and products. A
typical example is provided by an early version of his
proof that

∞∑
n=1

1
n2
= π

2

6
.

His method is as follows. Using the known series ex-
pansion for sinx he considered the zeros of

sin
√
x√
x

= 1− x
3!
+ x

2

5!
− x

3

7!
+ · · · .

These lie at π2, (2π)2, (3π)2, . . . . Applying (with-
out argument) the factor theorem for finite algebraic
equations he expressed this equation as(

1− x
π2

)(
1− x

4π2

)(
1− x

9π2

)
· · · = 0.

Now, it can be seen that the coefficient of x in the infi-
nite sum, − 1

6 , should equal the negative of the sum
of the coefficients of x in the product. Euler appar-
ently concluded this by imagining multiplying out the
infinitely many terms and selecting the 1 from all but
one of them. This gives

1
π2
+ 1

4π2
+ 1

9π2
+ · · · = 1

6
,

and multiplying both sides by π2 gives the required
sum.

We now think of this approach as having several
problems. The product of the infinitely many terms
may or may not represent a finite value, and today
we would specify conditions for when it does. Also,
applying a result about (finite) polynomials to (infi-
nite) power series is a step that requires justification.
Euler himself was to provide alternative arguments
for this result later in his life. But the fact that he
may have known counterexamples—situations in which
such usages would not work—was not, for him, a deci-
sive obstacle. This view, in which one reasoned in a
generic situation that might admit a few exceptions,
was common at his time, and it was only in the late
nineteenth century that a concerted effort was made to
state the results of analysis in ways that set out pre-
cisely the conditions under which the theorems would
hold.

Euler did not dwell on the interpretation of infinite
sums or infinitesimals. Sometimes he was happy to
regard differentials as actually equal to zero, and to

derive the meaning of a ratio of differentials from the
context of the problem:

An infinitely small quantity is nothing but a vanish-
ing quantity and therefore will be actually equal to
0. … Hence there are not so many mysteries hidden in
this concept as there are usually believed to be. These
supposed mysteries have rendered the calculus of the
infinitely small quite suspect to many people.

This statement, from the Institutiones Calculi Differen-
tialis of 1755, was followed by a discussion of propor-
tions in which one of the ratios is 0/0, and a justifi-
cation of the fact that differentials may be neglected
in calculations with ordinary numbers. This accurately
describes a good deal of his practice—when he worked
with differential equations, for example.

Controversial matters did arise, however, and
debates about definitions were not unusual. The best-
known example involves discussions connected with
the so-called vibrating string problem, which involved
Euler, d’Alembert, and Daniel Bernoulli. These were
closely connected with the definition of functions
[I.2 §2.2], and the question of which functions studied
by analysis actually could be represented by series (in
particular trigonometric series). The idea that a curve
of arbitrary shape could serve as an initial position for
a vibrating string extended the idea of function, and
the work of fourier [VI.25] in the early nineteenth
century made such functions analytically accessible. In
this context, functions with broken graphs (a kind of
discontinuous function) came under inspection. Later,
how to deal with such functions would be a decisive
issue for the foundations of analysis, as the more “nat-
ural” objects associated with algebraic operations and
trigonometry gave way to the more general modern
concept of function.

2.2 Responses from the Late Eighteenth Century

One significant response to Berkeley in Britain was that
of Colin Maclaurin (1698–1746), whose 1742 textbook
A Treatise of Fluxions attempted to clarify the foun-
dations of the calculus and do away with the idea
of infinitely small quantities. Maclaurin, a leading fig-
ure of the Scottish Enlightenment of the mid eigh-
teenth century, was the most distinguished British
mathematician of his time and an ardent proponent
of Newton’s methods. His work, unlike that of many
of his British contemporaries, was read with interest
on the Continent, especially his elaborations of Newto-
nian celestial mechanics. Maclaurin attempted to base
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his reasoning on the notion of the limits of what he
termed “assignable” finite quantities. Maclaurin’s work
is famously obscure, though it did provide examples of
calculating the limits of ratios. Perhaps his most impor-
tant contribution to the clarification of the foundations
of analysis was his influence on d’Alembert.

D’Alembert had read both Berkeley and Maclaurin
and followed them in rejecting infinitesimals as real
quantities. While exploring the idea of a differential as
a limit, he also attempted to reconcile his idea with the
idea that infinitesimals may be consistently regarded
as being actually zero, perhaps in a nod to Euler’s
view. The main exposition of d’Alembert’s views may
be found in the Encyclopédie, in the articles on dif-
ferentials (published in 1754) and on limits (1765).
D’Alembert argued for the importance of geometric
rather than algebraic limits. His meaning seems to have
been that the quantities being investigated should not
be treated merely formally, by substitution and sim-
plification. Rather, a limit should be understood as the
limit of a length (or collection of lengths), area, or other
dimensioned quantity, in much the way that a circle
may be seen as a limit of inscribed polygons. His aim
seems primarily to have been to establish the reality
of the objects described by existing algorithms, since
the actual calculations he employs are carried out with
differentials.

2.2.1 Lagrange

In the course of the eighteenth century, the differential
and the integral calculus gradually distinguished them-
selves as a set of methods distinct from their applica-
tions in mechanics and physics. At the same time, the
primary focus of the methods moved away from geom-
etry, so that in work of the second half of the eighteenth
century we increasingly see calculus treated as “alge-
braic analysis” of “analytic functions.” The term “ana-
lytic” was used in a variety of senses. For many writers,
such as Euler, it merely referred to a function (that is, a
relationship between variable quantities) that is given
by a single expression of the type used in analysis.

Lagrange provided a foundation for the calculus that
was indebted to this algebraic viewpoint. Lagrange
concentrated on power-series expansions as the basic
entity of analysis, and through his work the term ana-
lytic function evolved toward its more recent mean-
ing connected with the existence of a convergent Tay-
lor series representation. His approach reached a full
expression in his Théorie des Fonctions Analytiques of

1797. This was a version of his lectures at the École
Polytechnique, a new institution for the elite training
of military engineers in revolutionary France. Lagrange
assumed that a function must necessarily be express-
ible as an infinite series of algebraic functions, bas-
ing this argument on the existence of expansions for
known functions. He first sought to show that “in gen-
eral” no negative or fractional powers would appear
in the expansion, and from this he obtained a power-
series representation. His arguments here are surpris-
ing, and somewhat ad hoc, and I use an example given
by Fraser (1987). The slightly strange notation is based
on that of Lagrange. Suppose that one seeks an expan-
sion of f(x) = √x + i in powers of i. In general, only
integer powers will be involved. Terms of the form im/n

do not make sense, says Lagrange, since the expression
of the function

√
x + i is only two-valued, while im/n

has n values. Hence the series√
x + i = √x + pi+ qi2 + · · · + tik + · · ·

obtains its two values from the term
√
x, and all other

powers must be integral. With fractional exponents set
aside, Lagrange argued that f(x+i) = f(x)+iaP(x, i),
with P finite for i = 0. Successive application of this
result gave him the expansion

f(x + i) = f(x)+ pi+ qi2 + ri3 + · · · ,
where i was a small increment. The number p depends
on x, so Lagrange defined a derived function f ′(x) =
p(x). The French term dérivée is the origin of the term
derivative, and in Lagrange’s language f is the “prim-
itive” of this derived function. Similar arguments can
be made to relate the higher coefficients to the higher
derivatives in the usual Taylor formula.

This approach, which seems oddly circular to mod-
ern eyes, relied on the eighteenth-century distinction
between the “algebraic” infinite process of the series
expansion on the one hand, and the use of differen-
tials on the other. Lagrange did not see the original
series expansion as based on the limit process. With
the renewed emphasis on limits and modern defini-
tions developed by Cauchy, this approach was soon to
be regarded as untenable.

3 The First Half of the Nineteenth Century

3.1 Cauchy

Many writers contributed to discussions on rigor in
analysis in the first decades of the nineteenth century.
It was Cauchy who was to revive the limit approach to
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greatest effect. His aim was pedagogical, and his ideas
were probably worked out in the context of preparing
his introductory lectures for the École Polytechnique at
the beginning of the 1820s. Although the students were
the best in France in scholarly ability, many found the
approach too difficult. As a result, while Cauchy him-
self continued to use his methods, other instructors
held on to older approaches using infinitesimals, which
they found more intuitively accessible for the students
as well as better adapted to the solution of problems
in elementary mechanics. Cauchy’s self-imposed exile
from Paris in the 1830s further limited the impact of
his approach, which was initially taken up only by a
few of his students.

Nonetheless, Cauchy’s definitions of limit, of conti-
nuity, and of the derivative gradually came into gen-
eral use in France, and were influential elsewhere as
well, especially in Italy. Moreover, his methods of using
these definitions in proofs, and particularly his use of
mean-value theorems in various forms, moved analysis
from a collection of symbolic manipulations of quanti-
ties with special properties toward the science of argu-
ment about infinite processes using close estimation
via the manipulation of inequalities.

In some respects, Cauchy’s greatest contribution lay
in his clear definitions. For earlier writers, the sum
of an infinite series was a somewhat vague notion,
sometimes interpreted by a kind of convergence argu-
ment (as with the sum of a geometric series such as∑∞
n=0 2−n) and sometimes as the value of the function

from which the series was derived (as Euler, for exam-
ple, often regarded it). Cauchy revised the definition to
state that the sum of an infinite series was the limit
of the sequence of partial sums. This provided a uni-
fied approach for series of numbers and series of func-
tions, an important step in the move to base calculus
and analysis on ideas about real numbers. This trend,
eventually dominant, is often referred to as the “arith-
metization of analysis.” Similarly, a continuous func-
tion is one for which “an infinitely small increase of
the variable produces an infinitely small increase of the
function itself” (Cauchy 1821, pp. 34–35).

As we see from the example just given, Cauchy did
not shy away from infinitely small quantities, nor did
he analyze this notion further. The limit of a variable
quantity is defined in a way that we would now regard
as conversational, or heuristic:

When the values that are successively assigned to a
given variable approach a fixed value indefinitely, in

such a way that it ends up differing from it as little as
one wishes, this latter value is called the limit of all the
others. Thus, for example, an irrational number is the
limit of the various fractions that provide values that
are closer and closer to it.

Cauchy (1821, p. 4)

These ideas were not completely rigorous by modern
standards, but he was able to use them to provide a
unified foundation for the basic processes of analysis.

This use of infinitely small quantities appears, for
example, in his definition of a continuous function. To
paraphrase his definition, suppose that a function f(x)
is single-valued on some finite interval of the real line,
and choose any value x0 inside the interval. If the value
of x0 is increased to x0 + a, the function also changes
by the amount f(x0 + a) − f(x0). Cauchy says that
the function f is continuous for this interval if, for
each value of x0 in that interval, the numerical value of
the difference f(x0+a)−f(x0) decreases indefinitely
to 0 with a. In other words, Cauchy defines continu-
ity as a property on an interval rather than at a point,
in essence by saying that on that interval infinitely
small changes in the argument produce infinitely small
changes in the function value. Cauchy appears to have
considered continuity to be a property of a function on
an interval.

This definition emphasizes the importance of jumps
in the value of the function for the understanding of
its properties, something that Cauchy had encountered
early in his career when discussing the fundamental
theorem of calculus [I.3 §5.5]. In his 1814 memoir
on definite integrals, Cauchy stated:

If the function φ(z) increases or decreases in a con-
tinuous manner between z = b′ and z = b′′, the
value of the integral [

∫ b′′
b′ φ′(z)dz] will ordinarily be

represented by φ(b′′) − φ(b′). But if … the function
passes suddenly from one value to another sensibly
different … the ordinary value of the integral must be
diminished.

Oeuvres (volume 1, pp. 402–3)

In his lectures, Cauchy assumed continuity when
defining the definite integral. He considered first of all
a division of the interval of integration into a finite
number of subintervals on which the function is either
increasing or decreasing. (This is not possible for all
functions, but this appeared not to concern Cauchy.)
He then defined the definite integral as the limit of the
sum S = (x1 − x0)f (x0) + (x2 − x1)f (x1) + · · · +
(X − xn−1)f (xn−1) as the number n becomes very
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large. Cauchy gives a detailed argument for the exis-
tence of this limit, using his theorem of the mean and
the fact of continuity.

Versions of the main subjects of Cauchy’s lectures
were published in 1821 and 1823. Every student at the
École Polytechnique would have been aware of them
subsequently, and many would have used them explic-
itly. They were joined in 1841 by a version of the course
elaborated by Cauchy’s associate, the Abbé Moigno.
They were referred to frequently in France and the def-
initions employed by Cauchy became standard there.
We also know that the lectures were studied by oth-
ers, notably by abel [VI.33] and dirichlet [VI.36], who
spent time in Paris in the 1820s, and by riemann
[VI.49].

Cauchy’s movement away from the formal approach
of Lagrange rejected the “vagueness of algebra.” Al-
though he was clearly guided by intuition (both geo-
metric and otherwise), he was well aware that intu-
ition could be misleading, and produced examples to
show the value of adhering to precise definitions. One
famous example, the function that takes the value
e−1/x2

when x ≠ 0 and zero when x = 0, is differ-
entiable infinitely many times, yet it does not yield
a Taylor series that converges to the function at the
origin. Despite this example, which he mentioned in
his lectures, Cauchy was not a specialist in counter-
examples, and in fact the trend toward producing
counterexamples for the purpose of clarifying defini-
tions was a later development.

Abel famously drew attention to an error in Cauchy’s
work: his statement that a convergent series of contin-
uous functions has a continuous sum. For this to be
true, the series must be uniformly convergent, and in
1826 Abel gave as a counterexample the series

∞∑
k=1

(−1)k+1 sinkx
k

,

which is discontinuous at odd multiples of π . Cauchy
was led to make this distinction only much later, after
the phenomenon had been identified by several writers.
Historians have written extensively about this apparent
error; one influential account, due to Bottazzini, pro-
poses that for various reasons Cauchy would not have
found Abel’s example telling, even if he had known of
it at the time (Bottazzini 1990, p. LXXXV).

Before leaving the time of Cauchy, we should note
the related independent activity of bolzano [VI.28].
Bolzano, a Bohemian priest and professor whose ideas
were not widely disseminated at the time, investigated

the foundations of the calculus extensively. In 1817,
for example, he gave what he termed a “purely ana-
lytic proof of the theorem that between any two values
that possess opposite signs, at least one real root of
the equation exists”: the intermediate value theorem.
Bolzano also studied infinite sets: what is now called
the Bolzano–Weierstrass theorem states that in every
bounded infinite set there is at least one point having
the property that any disk about that point contains
infinitely many points of the set. Such “limit points”
were studied independently by weierstrass [VI.44].
By the 1870s, Bolzano’s work became more broadly
known.

3.2 Riemann, the Integral, and Counterexamples

Riemann is indelibly associated with the foundations of
analysis because of the Riemann integral, which is part
of every calculus course. Despite this, he was not always
driven by issues involving rigor. Indeed he remains a
standard example of the fruitfulness of nonrigorous
intuitive invention. There are many points in Riemann’s
work at which issues about rigor arise naturally, and
the wide interest in his innovations did much to direct
the attention of researchers to making these insights
precise.

Riemann’s definition of the definite integral was pre-
sented in his 1854 Habilitationschrift—the “second the-
sis,” which qualified him to lecture at a university for
fees. He generalized Cauchy’s notion to functions that
are not necessarily continuous. He did this as part of an
investigation of fourier series [III.27] expansions. The
extensive theory of such series was devised by Fourier
in 1807 but not published until the 1820s. A Fourier
series represents a function in the form

f(x) = a0 +
∞∑
n=1

(an cos(nx)+ bn sin(nx))

on a finite interval.
The immediate inspiration for Riemann’s work was

dirichlet [VI.36], who had corrected and developed
earlier faulty work by Cauchy on the question of when
and whether the Fourier series expansion of a function
converges to the function from which it is derived. In
1829 Dirichlet had succeeded in proving such conver-
gence for a function with period 2π that is integrable
on an interval of that length, does not possess infinitely
many maxima and minima there, and at jump discon-
tinuities takes on the average value between the two
limiting values on each side. As Riemann noted, follow-
ing his professor Dirichlet, “this subject stands in the
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closest connection to the principles of infinitesimal cal-
culus, and can therefore serve to bring these to greater
clarity and definiteness” (Riemann 1854, p. 238). Rie-
mann sought to extend Dirichlet’s investigations to fur-
ther cases, and was thus led to investigate in detail
each of the conditions given by Dirichlet. Accordingly,
he generalized the definition of a definite integral as
follows:

We take between a and b an increasing sequence of
valuesx1, x2, . . . , xn−1, and for brevity designatex1−a
by δ1, x2 − x1 by δ2, . . . , b − xn−1 by δn and by ε a
positive proper fraction. Then the value of the sum

S = δ1f(a+ ε1δ1)+ δ2f(x1 + ε2δ2)

+ δ3f(x2 + ε3δ3)+ · · · + δnf(xn−1 + εnδn)
depends on the choice of the intervals δ and the quanti-
ties ε. If it has the property that it approaches infinitely
closely a fixed limit A no matter how the δ and ε are
chosen, as δ becomes infinitely small, then we call this

value
∫ b
a f(x)dx.

In connection with this definition of the integral, and
in part to show its power, Riemann provided an exam-
ple of a function that is discontinuous in any inter-
val, yet can be integrated. The integral thus has points
of nondifferentiability on each interval. Riemann’s def-
inition rendered problematic the inverse relationship
between differentiation and integration, and his exam-
ple brought this problem out clearly. The role of such
“pathological” counterexamples in pushing the devel-
opment of rigor, already apparent in Cauchy’s work,
intensified greatly around this time.

Riemann’s definition was published only in 1867, fol-
lowing his death; an expository version due to Gaston
Darboux appeared in French in 1873. The populariza-
tion and extension of Riemann’s approach went hand
in hand with the increasing appreciation of the impor-
tance of rigor associated with the Weierstrass school,
discussed below. Riemann’s approach focused atten-
tion on sets of points of discontinuities, and thus were
seminal for cantor’s [VI.54] investigations into point
sets in the 1870s and afterwards.

The use of the Dirichlet principle serves as a fur-
ther example of the way in which Riemann’s work drew
attention to problems in the foundations of analysis.
In connection with his research into complex analy-
sis, Riemann was led to investigate solutions to the
so-called Dirichlet problem: given a function g, defined
on the boundary of a closed region in the plane, does
there exist a function f that satisfies the laplace

partial differential equation [I.3 §5.4] in the inte-
rior and takes the same values as g on the bound-
ary? Riemann asserted that the answer was yes. To
demonstrate this, he reduced the question to prov-
ing the existence of a function that minimizes a cer-
tain integral over the region, and argued on physical
grounds that such a minimizing function must always
exist. Even before Riemann’s death his assertion was
questioned by weierstrass [VI.44], who published a
counterexample in 1870. This led to attempts to refor-
mulate Riemann’s results and prove them by other
means, and ultimately to a rehabilitation of the Dirich-
let principle through the provision of precise and broad
hypotheses for its validity, which were expressed by
hilbert [VI.63] in 1900.

4 Weierstrass and His School

Weierstrass had a passion for mathematics as a stu-
dent at Bonn and Münster, but his student career was
very uneven. He spent the years from 1840 to 1856
as a high-school teacher, undertaking research inde-
pendently but at first publishing obscurely. Papers
from 1854 onward in Journal für die reine und ange-
wandte Mathematik (otherwise known as Crelle’s Jour-
nal) attracted wide attention to his talent, and he
obtained a professorship in Berlin in 1856. Weierstrass
began to lecture regularly on mathematical analysis,
and his approach developed into a series of four
courses of lectures given cyclically between the early
1860s and 1890. The lectures evolved over time and
were attended by a large number of important math-
ematical researchers. They also indirectly influenced
many others through the circulation of unpublished
notes. This circle included R. Lipschitz, P. du Bois-
Reymond, H. A. Schwarz, O. Hölder, Cantor, L. Koenigs-
berger, G. Mittag-Leffler, kovalevskaya [VI.59], and
L. Fuchs, to name only some of the most important.
Through their use of Weierstrassian approaches in their
own research, and their espousal of his ideas in their
own lectures, these approaches became widely used
well before the eventual publication of a version of
his lectures late in his life. The account that follows
is based largely on the 1878 version of the lectures. His
approach was also influential outside Germany: parts of
it were absorbed in France in the lectures of hermite
[VI.47] and jordan [VI.52], for example.

Weierstrass’s approach builds on that of Cauchy
(though the detailed relationship between the two bod-
ies of work has never been fully examined). The two



�

126 II. The Origins of Modern Mathematics

overarching themes of Weierstrass’s approach are, on
the one hand, the banning of the idea of motion, or
changing values of a variable, from limit processes, and,
on the other, the representation of functions, notably
of a complex variable. The two are intimately linked.
Essential to the motion-free definition of a limit is
Weierstrass’s nascent investigation of what we would
now call the topology of the real line or complex plane,
with the idea of a limit point, and a clear distinction
between local and global behavior. The central objects
of study for Weierstrass are functions (of one or more
real or complex variable quantities), but it should be
borne in mind that set theory is not involved, so that
functions are not to be thought of as sets of ordered
pairs.

The lectures begin with a now-familiar subject: the
development of rational, negative, and real numbers
from the integers. For example, negative numbers are
defined operationally by making the integers closed
under the operation of subtraction. He attempted a
unified approach to the definition of rational and irra-
tional numbers which involved unit fractions and dec-
imal expansions and now seems somewhat murky.
While Weierstrass’s definition of the real numbers
appears unsatisfactory to modern eyes, the general
path of arithmetization of analysis was established
by this approach. In parallel to the development of
number systems, he also developed different classes
of functions, building them up from rational func-
tions by using power-series representations. Thus, in
Weierstrass’s approach, a polynomial (called an inte-
ger rational function) is generalized to a “function of
integer character,” which means a function with a con-
vergent power series expansion everywhere. The Weier-
strass factorization theorem asserts that any such
function may be written as a (possibly infinite) product
of certain “prime” functions and exponential functions
with polynomial exponents of a certain type.

The limit definition given by Weierstrass has thor-
oughly modern features:

That a variable quantity x becomes infinitely small
simultaneously with another quantity y means: “After
the assumption of an arbitrarily small quantity ε a
bound δ for x may be found, such that for every value
of x for which |x| < δ, the corresponding value of |y|
will be less than ε.”

Weierstrass (1988, p. 57)

Weierstrass immediately used this definition to give
a proof of continuity for rational functions of sev-

eral variables, using an argument that could appear
in a textbook today. The former notions of variables
tending to given values were replaced by quantified
statements about linked inequalities. The framing of
hypotheses in terms of inequalities became a guiding
motif in the work of Weierstrass’s school: here we men-
tion in passing the Lipschitz and Hölder conditions in
the existence theory for differential equations. The clar-
ity that this language gave to problems involving the
interchange of limits, for example, meant that previ-
ously intractable problems could now be handled in
a routine way by those inculcated in the Weierstrass
approach.

The fact that general functions were built from
rational functions using series expansions gave the lat-
ter a key role in Weierstrass’s work, and as early as
1841 he had identified the importance of uniform con-
vergence. The distinction between uniform and point-
wise convergence was made very clearly in his lec-
tures. A series converges, as it does for Cauchy, if
its sequence of partial sums converges, though now
the convergence is phrased in the following terms: the
series

∑
fn(x) converges to s0 at x = x0 if, given an

arbitrary positive ε, there is an integer N such that
|s0 − (f1(x0) + f2(x0) + · · · + fn(x0))| < ε for every
n > N . The convergence is uniform on a domain of the
variable if the same N will work for that ε value for all
x in the domain. Uniform convergence guarantees con-
tinuity of the sum, since these are series of rational,
hence continuous, functions. From this point of view,
then, uniform convergence is important well beyond
the context of trigonometric series (important though
those may be). Indeed, it is a central tool of the entire
theory of functions.

Weierstrass’s role as a critic of rigor in the work of
others, notably Riemann, has already been noted. More
than any other leading figure, he generated counter-
examples to illustrate difficulties with received notions
and to distinguish between different kinds of analyti-
cal behavior. One of his best-known examples was of
an everywhere-continuous but nowhere-differentiable
function, namely f(x) =∑bn cos(anx), which is uni-
formly convergent for b < 1 but fails to be differ-
entiable at any x if ab > 1 + 3

2π . Similarly he con-
structed functions for which the Dirichlet principle
fails, examples of sets constituting “natural bound-
aries,” that is, obstacles to continuing series expan-
sions into larger domains, and so forth. The careful
distinctions he encouraged, and the very procedure
of seeking pathological rather than typical examples,
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threw the spotlight on the precision of hypotheses in
analysis to an unprecedented degree. From the 1880s,
with the maturity of this program, analysis no longer
dealt with generic cases and looked instead for abso-
lutely precise statements in a way that has for the most
part endured to the present. This was also to become
a pattern and an imperative in other areas of mathe-
matics, though sometimes the passage from reasoning
from generic examples to fully expressed hypotheses
and definitions took decades. (Algebraic geometry pro-
vides a famous example, one in which reasoning with
generic cases lasted until the 1920s.) In this sense the
form of rigorous argument and exposition espoused by
Weierstrass and his school was to become a pattern for
mathematics generally.

4.1 The Aftermath of Weierstrass and Riemann

Analysis became the model subdiscipline for rigor for
a variety of reasons. Of course, analysis was important
for the sheer volume and range of application of its
results. Not everyone agreed with the precise way in
which Weierstrass approached foundational questions
(through series, rational functions, and so on). Indeed,
Riemann’s more geometric approach had attracted
followers, if not exactly a school, and the insights
his approach afforded were enthusiastically embraced.
However, any subsequent discussion had to take place
at a level of rigor comparable to that which Weierstrass
had attained. While approaches to the foundations of
analysis were to vary, the idea that limits should be rig-
orously handled in much the way that Weierstrass did
was not to alter. Among the remaining central issues
for rigor was the definition of the number systems.

For the real numbers, probably the most success-
ful definition (in terms of its later use) was provided
by dedekind [VI.50]. Dedekind, like Weierstrass, took
the integers as fundamental, and extended them to the
rationals, noting that the algebraic properties satisfied
by the latter are those satisfied by what we now call a
field [I.3 §2.2]. (This idea is also Dedekind’s.) He then
showed that the rational numbers satisfy a trichotomy
law. That is, each rational number x divides the entire
collection into three parts: x itself, rational numbers
greater than x, and rational numbers less than x. He
also showed that the rationals greater and less than a
given number extend to infinity, and that any rational
corresponds to a distinct point on the number line.
However, he also observed that along that line there
are infinitely many points that do not correspond to

any rational. Using the idea that to every point on the

line there should correspond a number, he constructed

the remainder of the continuum (that is, the real line)

by the use of cuts. These are ordered pairs (A1, A2) of

nonempty sets of rational numbers such that every ele-

ment of the first set is less than every element of the

second, and such that taken together they contain all

the rationals. Such cuts may obviously be produced by

an element x, in which case x is either the greatest ele-

ment of A1 or the least element of A2. But sometimes

A1 does not have a greatest element, or A2 a least ele-

ment, and in that case we can use the cut to define a

new number, which is necessarily irrational. The set of

all such cuts may be shown to correspond to the points

of the number line, so that nothing is left out. A critical

reader might feel that this is begging the question, since

the idea of the number line constituting a continuum

in some way might seem to be a hidden premise.

Dedekind’s construction stimulated a good deal of

discussion, especially in Germany, about the best

way to found the real numbers. Participants included

E. Heine, Cantor, and the logician frege [VI.56]. Heine

and Cantor, for example, considered real numbers as

equivalence classes of Cauchy sequences of rationals,

together with a machinery that permitted them to

define the basic arithmetical operations. A very simi-

lar approach was proposed by the French mathemati-

cian Charles Méray. Frege, by contrast, in his 1884 Die

Grundlagen der Arithmetik, sought to found the inte-

gers on logic. While his attempts to construct the reals

along these lines did not bear fruit, he had an impor-

tant role in his insistence that the various construc-

tions should not merely be mathematically functional

but should also be demonstrably free from internal

contradiction.

Despite much activity on the foundations of the

real numbers, infinite sets, and other basic notions for

analysis, consensus remained elusive. For example, the

influential Berlin mathematician Leopold kronecker

[VI.48] denied the existence of the reals, and held that

all true mathematics was to be based on finite sets. Like

Weierstrass, with whom he worked and whom he influ-

enced, he emphasized the strong analogies between the

integers and the polynomials, and sought to use this

algebraic foundation to build all of mathematics. Hence

for Kronecker the entire main path of research in analy-

sis was anathema, and he opposed it ardently. These

views were influential, both directly and indirectly, on

a number of later writers, including brouwer [VI.75],



�

128 II. The Origins of Modern Mathematics

the intuitionist school around him, and the algebraist
and number theorist Kurt Hensel.

All efforts to found analysis were based in one way
or another on an underlying notion (not always made
explicit) of quantity. The foundational framework of
analysis, however, was to shift over the period from
1880 to 1910 toward the theory of sets. This had its
origin in the work of Cantor, a student of Weierstrass
who began studying discontinuities of Fourier series in
the early 1870s. Cantor became concerned about how
to distinguish between different types of infinite sets.
His proofs that the rational numbers and the algebraic
numbers are countable [III.11] while the reals are not
led him to a hierarchy of infinite sets of different car-
dinality. The importance of this discovery for analysis
was at first not widely recognized, though in the 1880s
Mittag-Leffler and Hurwitz both made significant appli-
cations of notions about derived sets (the set of limit
points of a given set) and dense or nowhere-dense sets.

Cantor gradually came to the view that set theory
could function as a foundational tool for all of math-
ematics. As early as 1882 he wrote that the science
of sets encompassed arithmetic, function theory, and
geometry, combining them into a “higher unity” based
on the idea of cardinality. However, this proposal was
vaguely articulated and at first attracted no adherents.
Nonetheless, sets began to find their way into the lan-
guage of analysis, most notably through ideas of mea-
sure [III.57] and measurability of a set. Indeed, one
important route to the absorption of analysis by set
theory was the path that sought to determine what kind
of function could “measure” a set in an abstract sense.
The work of lebesgue [VI.72] and borel [VI.70] around
1900 on integration and measurability tied set theory
to the calculus in a very concrete and intimate way.

A further key step in the establishment of the foun-
dations of analysis in the early twentieth century was
a new emphasis on mathematical theories as axiomatic
structures. This received enormous impetus from the
work of Hilbert, who, beginning in the 1890s, had
sought to provide a renewed axiomatization of geom-
etry. peano [VI.62] in Italy headed a school with simi-
lar aims. Hilbert redefined the reals on these axiomatic
grounds, and his many students and associates turned
to axiomatics with enthusiasm for the clarity the
approach could provide. Rather than proving the exis-
tence of specific entities such as the reals, the math-
ematician posits a system satisfying the fundamental
properties they possess. A real number (or whatever
object) is then defined by the set of axioms provided.

As Epple has pointed out, such definitions were con-

sidered to be ontologically neutral in that they did not

provide methods for telling real numbers from other

objects, or even state whether they existed at all (Epple

2003, p. 316). Hilbert’s student Ernst Zermelo began

work on axiomatizing set theory along these lines, pub-

lishing his axioms in 1908 (see [IV.1 §3]). Problems with

set theory had emerged in the form of paradoxes, the

most famous due to russell [VI.71]: if S is the set of

all sets that do not contain themselves, then it is not

possible for S to be in S, nor can it not be in S. Zer-

melo’s axiomatics sought to avoid this difficulty, in part

by avoiding the definition of set. By 1910, weyl [VI.80]

was to refer to mathematics as the science of “∈,” or

set membership, rather than the science of quantity.

Nonetheless, Zermelo’s axioms as a foundational strat-

egy were contested. For one thing, a consistency proof

for the axioms was lacking. Such “meaning-free” axiom-

atization was also contested on the grounds that it

removed intuition from the picture.

Against the complex and rapidly developing back-

ground of mathematics in the early twentieth century,

these debates took on many dimensions that have

implications well beyond the question of what consti-

tutes rigorous argument in analysis. For the practicing

analyst, however, as well as for the teacher of basic

infinitesimal calculus, these discussions are marginal

to everyday mathematical life and education, and are

treated as such. Set theory is pervasive in the language

used to describe the basic objects. Real-valued func-

tions of one real variable are defined as sets of ordered

pairs of real numbers, for example; a set-theoretic defi-

nition of an ordered pair was given by wiener [VI.85] in

1914, and the set-theoretic definition of functions may

be dated from that time. However, research in analysis

has been largely distinct from, and generally avoids, the

foundational issues that may remain in connection with

this vocabulary. This is not at all to say that contempo-

rary mathematicians treat analysis in a purely formal

way. The intuitive content associated with numbers and

functions is very much a part of the way of thinking of

most mathematicians. The axioms for the reals and for

set theory form a framework to be referred to when

necessary. But the essential objects of basic analysis,

namely derivatives, integrals, series, and their existence

or convergence behaviors, are dealt with along the lines

of the early twentieth century, so that the ontologi-

cal debates about the infinitesimal and infinite are no

longer very lively.
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A coda to this story is provided by the researches of

robinson [VI.95] (1918–74) into “nonstandard” analy-

sis, published in 1961. Robinson was an expert in model

theory: the study of the relationship between systems

of logical axioms and the structures that may satisfy

them. His differentials were obtained by adjoining to

the regular real numbers a set of “differentials,” which

satisfied the axioms of an ordered field (in which there

is ordinary arithmetic like that of the real numbers) but

in addition had elements that were smaller than 1/n
for every positive integer n. In the eyes of some, this

creation eliminated many of the unpleasant features of

the usual way of dealing with the reals, and realized the

ultimate goal of Leibniz to have a theory of infinitesi-

mals which was part of the same structure as that of

the reals. Despite stimulating a flurry of activity, and

considerable acclaim from some quarters, Robinson’s

approach has never been widely accepted as a working

foundation for analysis.
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II.6 The Development of the
Idea of Proof
Leo Corry

1 Introduction and
Preliminary Considerations

In many respects the development of the idea of proof
is coextensive with the development of mathematics as
a whole. Looking back into the past, one might at first
consider mathematics to be a body of scientific know-
ledge that deals with the properties of numbers, mag-
nitudes, and figures, obtaining its justifications from
proofs rather than, say, from experiments or induc-
tive inferences. Such a characterization, however, is
not without problems. For one thing, it immediately
leaves out important chapters in the history of civiliza-
tion that are more naturally associated with mathemat-
ics than with any other intellectual activity. For exam-
ple, the Mesopotamian and Egyptian cultures devel-
oped elaborate bodies of knowledge that would most
naturally be described as belonging to arithmetic or
geometry, even though nothing is found in them that
comes close to the idea of proof as it was later prac-
ticed in mathematics at large. To the extent that any
justification is given, say, in the thousands of math-
ematical procedures found on clay tablets written in
cuneiform script, it is inductive or based on experi-
ence. The tablets repetitively show—without additional
explanation or attempts at general justifications—a
given procedure to be followed whenever one is pursu-
ing a certain type of result. Later on, in the context of
Chinese, Japanese, Mayan, or Hindu cultures, one again
finds important developments in fields naturally asso-
ciated with mathematics. The extent to which these cul-
tures pursued the idea of mathematical proof—a ques-
tion that is debated among historians to this day—
was undoubtedly not as great as it was in Greek tra-
dition, and it certainly did not take the specific forms
we typically associate with the latter. Should one nev-
ertheless say that these are instances of mathematical
knowledge, even though they are not justified on the
basis of some kind of general, deductive proof? If so,
then we cannot characterize mathematics as a body of
knowledge that is backed up by proofs, as suggested
above. However, this litmus test certainly provides a
useful criterion—one that we do not want to give up
too easily—for distinguishing mathematics from other
intellectual endeavors.
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Without totally ignoring these important questions,
the present account focuses on a story that started,
at some point in the past, usually taken to be before
or around the fifth century b.c.e. in Greece, with the
realization that there was a distinctive body of claims,
mainly associated with numbers and with diagrams,
whose truth could be and needed to be vindicated in
a very special way—namely, by means of a general,
deductive argument, or “proof.” Exactly when and how
this story began is unclear. Equally unclear are the
direct historical sources of such a unique idea. Since the
emphasis on the use of logic and reason in constructing
an argument was well-entrenched in other spheres of
public life in ancient Greece—such as politics, rhetoric,
and law—much earlier than the fifth century b.c.e., it is
possible that it is in those domains that the origins of
mathematical proof are to be found.

The early stages of this story raise some addi-
tional questions, both historical and methodological.
For instance, Thales of Miletus, the first mathemati-
cian known by name (though he was also a philoso-
pher and scientist), is reported to have proved sev-
eral geometric theorems, such as, for instance, that the
opposite angles between two intersecting straight lines
are equal, or that if two vertices of a triangle are the
endpoints of the diameter of a circle and the third is
any other point on the circle then the triangle must be
right angled. Even if we were to accept such reports at
face value, several questions would immediately arise:
in what sense can it be asserted that Thales “proved”
these results? More specifically, what were Thales’s ini-
tial assumptions and what inference methods did he
take to be valid? We know very little about this. How-
ever, we do know that, as a result of a complex histor-
ical process, a certain corpus of knowledge eventually
developed that comprised known results, techniques
employed, and problems (both solved and yet requir-
ing solution). This corpus gradually also incorporated
the regulatory idea of proof: that is, the idea that some
kind of general argument, rather than an example (or
even many examples), was the necessary justification to
be sought in all cases. As part of this development, the
idea of proof came to be associated with strictly deduc-
tive arguments, as opposed to, say, dialogic (meaning
“negotiated”) or “probabilistically inferred” truth. It is
an interesting and difficult historical question to estab-
lish why this was the case, and one that we will not
address here.

euclid’s [VI.2] Elements was compiled some time
around the year 300 b.c.e. It stands out as the most suc-

cessful and comprehensive attempt of its kind to orga-
nize the basic concepts, results, proofs, and techniques
required by anyone wanting to master this increasingly
complex body of knowledge. Still, it is important to
stress that it was not the only such attempt within the
Hellenic world. This endeavor was not just a matter
of compilation, codification, and canonization, such as
one can find in any other evolving field of learning at
any point in time. Instead, the assertions it contained
were of two different kinds, and the distinction was
vitally important. On the one hand there were basic
assumptions, or axioms, and on the other there were
theorems, which were typically more elaborate state-
ments, together with accounts of how they followed
from the axioms—that is, proofs. The way that proof
was conceived and realized in the Elements became the
paradigm for centuries to come.

This article outlines the evolution of the idea of
deductive proof as initially shaped in the framework
of Euclidean-style mathematics and as subsequently
practiced in the mainstream mathematical culture of
ancient Greece, the Islamic world, Renaissance Europe,
early modern European science, and then in the nine-
teenth century and at the turn of the twentieth. The
main focus will be on geometry: other fields, like arith-
metic and algebra, will be treated mainly in relation
to it. This choice is amply justified by the subject
matter itself. Indeed, much as mathematics stands
out among the sciences for the unique way in which
it relies on proof, so Euclidean-style geometry stood
out—at least until well into the seventeenth century—
among closely related disciplines such as arithmetic,
algebra, and trigonometry. Individual results in these
other disciplines, or indeed the domains as a whole,
were often regarded as fully legitimate only when they
had been provided with a geometric (or geometric-like)
foundation. Important developments in nineteenth-
century mathematics, mainly in connection with the
rise of non-euclidean geometries [II.2 §§6–10] and
with problems in the foundations of analysis [II.5],
eventually led to a fundamental change of orientation,
where arithmetic (and eventually set theory [IV.1])
became the bastion of certainty and clarity from which
other mathematical disciplines, geometry included,
drew their legitimacy and their clarity. (See the cri-
sis in the foundations of mathematics [II.7] for a
detailed account of this development.) And yet, even
before this fundamental change, Euclidean-style proof
was not the only way in which mathematical proof was
conceived, explored, and practiced. By focusing mainly
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on geometry, the present account will necessarily leave

out important developments that eventually became

the mainstream of legitimate mathematical knowledge.

To mention just one important example in this regard,

a fundamental question that will not be pursued here is

how the principle of mathematical induction originated

and developed, became accepted as a legitimate infer-

ence rule of universal validity, and was finally codified

as one of the basic axioms of arithmetic in the late nine-

teenth century. Moreover, the evolution of the notion

of proof involves many other dimensions that will not

be treated here, such as the development of the inter-

nal organization of mathematics into subdisciplines,

as well as the changing interrelations between math-

ematics and its neighboring disciplines. At a different

level, it is related to how mathematics itself evolved as

a socially institutionalized enterprise: we shall not dis-

cuss interesting questions about how proofs are pro-

duced, made public, disseminated, criticized, and often

rewritten and improved.

2 Greek Mathematics

Euclid’s Elements is the paradigmatic work of Greek

mathematics, partly for what it has to say about the

basic concepts, tools, results, and problems of syn-

thetic geometry and arithmetic, but also for how it

regards the role of a mathematical proof and the form

that such a proof takes. All proofs appearing in the Ele-

ments have six parts and are accompanied by a dia-

gram. I illustrate this with the example of proposi-

tion I.37. Euclid’s text is quoted here in the classical

translation of Sir Thomas Heath, and the meaning of

some terms differs from current usage. Thus, two tri-

angles are said to be “in the same parallels” if they have

the same height and both their bases are contained in

a single line, and any two figures are said to be “equal”

if their areas are equal. For the sake of explanation,

names of the parts of the proof have been added: these

do not appear in the original. The proof is illustrated

in figure 1.

Protasis (enunciation). Triangles which are on the

same base and in the same parallels are equal to one

another.

Ekthesis (setting out). Let ABC, DBC be triangles on

the same base BC and in the same parallels AD, BC.

Diorismos (definition of goal). I say that the triangle

ABC is equal to the triangle DBC.

E

B C

A FD

Figure 1 Proposition I.37 of Euclid’s Elements.

Kataskeue (construction). Let AD be produced in both
directions to E, F; through B let BE be drawn parallel
to CA, and through C let CF be drawn parallel to BD.

Apodeixis (proof). Then each of the figures EBCA,
DBFC is a parallelogram; and they are equal, for they
are on the same base BC and in the same parallels
BC, EF. Moreover the triangle ABC is half of the par-
allelogram EBCA, for the diameter AB bisects it; and
the triangle DBC is half of the parallelogram DBCF,
for the diameter DC bisects it. Therefore the triangle
ABC is equal to the triangle DBC.

Sumperasma (conclusion). Therefore triangles which
are on the same base and in the same parallels are
equal to one another.

This is an example of a proposition that states a prop-
erty of geometric figures. The Elements also includes
propositions that express a task to be carried out. An
example is proposition I.1: “On a given finite straight
line to construct an equilateral triangle.” The same six
parts of the proof and the diagram invariably appear
in propositions of this kind as well. This formal struc-
ture is also followed in all propositions appearing in
the three arithmetic books of the Elements and, most
importantly, all of them are always accompanied by a
diagram. Thus, for instance, consider proposition IX.35,
which in its original version reads as follows:

If as many numbers as we please be in continued pro-
portion, and there be subtracted from the second and
the last numbers equal to the first, then, as the excess
of the second is to the first, so will the excess of the
last be to all those before it.

This cumbersome formulation may prove incompre-
hensible on first reading. In more modern terms, an
equivalent to this theorem would state that, given a
geometric progression a1, a2, . . . , an+1, we have

(an+1 − a1) : (a1 + a2 + · · · + an) = (a2 − a1) : a1.
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Figure 2 Proposition IX.35 of Euclid’s Elements.

This translation, however, fails to convey the spirit of

the original, in which no formal symbolic manipulation

is, or can be, made. More importantly, a modern alge-

braic proof fails to convey the ubiquity of diagrams in

Greek mathematical proofs, even where they are not

needed for a truly geometric construction. Indeed, the

accompanying diagram for proposition IX.35 is shown

as figure 2 and the first few lines of the proof are as

follows:

Let there be as many numbers as we please in contin-
ued proportion A, BC, D, EF, beginning from A as least
and let there be subtracted from BC and EF the num-
bers BG, FH, each equal to A; I say that, as GC is to A,
so is EH to A, BC, D. For let FK be made equal to BC and
FL equal to D. . . .

This proposition and its proof provide good exam-

ples of the capabilities, as well as the limitations, of

ancient Greek practices of notation, and especially of

how they managed without a truly symbolic language.

In particular, they demonstrate that proofs were never

conceived by the Greeks, even ideally, as purely logical

constructs, but rather as specific kinds of arguments

that one applied to a diagram. The diagram was not

just a visual aid to the argumentation. Rather, through

the ekthesis part of the proof, it embodied the idea

referred to by the general character and formulation

of the proposition.

Together with the centrality of diagrams, the six-

part structure is also typical of most of Greek math-

ematics. The constructions and diagrams that typi-

cally appeared in Greek mathematical proofs were not

of an arbitrary kind, but what we identify today as

straightedge-and-compass constructions. The reason-

ing in the apodeixis part could be either a direct deduc-

tion or an argument by contradiction, but the result was

always known in advance and the proof was a means

to justify it. In addition, Greek geometric thinking,

and in particular Euclid-style geometric proofs, strictly

adhered to a principle of homogeneity. That is, magni-

tudes were only compared with, added to, or subtracted
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Figure 3 Proposition XII.2 of Euclid’s Elements.

from magnitudes of like kind—numbers, lengths, areas,
or volumes. (See numbers [II.1 §2] for more about this.)

Of particular interest are those Greek proofs con-
cerned with lengths of curves, as well as with areas or
volumes enclosed by curvilinear shapes. Greek mathe-
maticians lacked a flexible notation capable of express-
ing the gradual approximation of curves by polygons
and an eventual passage to the infinite. Instead, they
devised a special kind of proof that involved what can
retrospectively be seen as an implicit passage to the
limit, but which did so in the framework of a purely geo-
metric proof and thus unmistakably followed the six-
part proof-scheme described above. This implicit pas-
sage to the infinite was based on the application of a
continuity principle, later associated with archimedes
[VI.3]. In Euclid’s formulation, for instance, the princi-
ple states that, given two unequal magnitudes of the
same kind, A, B (be they two lengths, two areas, or two
volumes), withA greater than B, and if we subtract from
A a magnitude which is greater than A/2, and from
the remainder we subtract a magnitude that is greater
than its half, and if this process is iterated a sufficient
number of times, then we will eventually remain with a
magnitude that is smaller than B. Euclid used this prin-
ciple to prove, for instance, that the ratio of the areas
of two circles equals the ratio of the squares of their
diameters (XII.2). The method used, later known as the
exhaustion method , was based on a double contradic-
tion that became standard for many centuries to come.
This double contradiction is illustrated in figure 3, the
accompanying diagram to the proposition.

If the ratio of the square on BD to the square on FH
is not the same as the ratio of circle ABCD to circle
EFGH, then it must be the same as the ratio of circle
ABCD to an area S either larger or smaller than cir-
cle EFGH. The curvilinear figures are approximated by
polygons, since the continuity principle allows the dif-
ference between the inscribed polygon and the circle
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to be as close as desired (e.g., closer than the differ-

ence between S and EFGH). The “double contradiction”

is reached if one assumes that S is either smaller or

larger than EFGH.

Forms of proof and constructions other than those

mentioned so far are occasionally found in Greek math-

ematical texts. These include diagrams based on what

is assumed to be the synchronized motion of two lines

(e.g., the trisectrix, or Archimedes’ spiral), mechanical

devices of many sorts, or reasoning based on ideal-

ized mechanical considerations. However, the Euclid-

ean type of proof described above remained a model

to be followed wherever possible. There is a famous

Archimedes palimpsest that provides evidence of how

less canonical methods, drawing on mechanical consid-

erations (albeit of a highly idealized kind), were used to

deduce results about areas and volumes. However, even

this bears testimony to the primacy of the ideal model:

there is a letter from Archimedes to Eratosthenes in

which he displays the ingenuity of his mechanical meth-

ods but at the same time is at pains to stress their

heuristic character.

3 Islamic and Renaissance Mathematics

Just as Euclid is considered to be representative of

a mainstream tradition in Greek mathematics, al-

khwārizmı̄ [VI.5] is regarded as a typical representa-

tive of Islamic mathematics. There are two main traits

of his work that are relevant to the present account

and that became increasingly central to the develop-

ment of mathematics, starting with his works in the

late eighth century and continuing until the works of

cardano [VI.7] in sixteenth-century Italy. These traits

are a pervasive “algebraization” of mathematical think-

ing, and a continued reliance on Euclidean-style geo-

metric proof as the main way of legitimizing the validity

of mathematical knowledge in general and of algebraic

reasoning in mathematics in particular.

The prime example of this combination is found in

al-Khwārizm̄ı’s seminal text al-Kitāb al-mukhtas. ar f̄ı

h. isāb al-jabr wa’l-muqābala (“The compendious book

on calculation by completion and balancing”), where

he discusses the solutions of problems in which the

unknown length appears in combination with numbers

and squares (the side of which is an unknown). Since he

only envisages the possibility of positive “coefficients”

and positive rational solutions, al-Khwārizm̄ı needs to

consider six different situations each of which requires
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Figure 4 Al-Khwārizm̄ı’s geometric justification
of the formula for a quadratic equation.

a different recipe for finding the unknown: the full-
grown idea of a general quadratic equation and an algo-
rithm to solve it in all cases does not appear in Islamic
mathematical texts. For instance, the problem “squares
and roots equal to numbers” (e.g., x2 + 10x = 39, in
modern notation) and the problem “roots and numbers
equal to squares” (e.g., 3x + 4 = x2) are considered
to be completely different ones, as are their solutions,
and accordingly al-Khwārizm̄ı treats them separately.
In all cases, however, al-Khwārizm̄ı proves the validity
of the method described by translating it into geomet-
ric terms and then relying on Euclid-like geometric the-
orems built around a specific diagram. It is noteworthy,
however, that the problems refer to specific numeri-
cal quantities associated with the magnitudes involved,
and these measured magnitudes refer to the accompa-
nying diagrams as well. In this way, al-Khwārizm̄ı inter-
estingly departs from the Euclidean style of proof. Still,
the Greek principle of homogeneity is essentially pre-
served, as the three quantities usually involved in the
problem are all of the same kind, namely, areas.

Consider, for instance, the equation x2 + 10x =
39, which corresponds to the following problem of
al-Khwārizm̄ı.

What is the square which combined with ten of its roots
will give a sum total of 39?

The recipe prescribes the following steps.

Take one-half of the roots [5] and multiply them by
itself [25]. Add this amount to 39 and obtain 64. Take
the square root of this, which is eight, subtract from it
half the roots, leaving three. The number three there-
fore represents one root of this square, which itself, of
course, is nine.

The justification is provided by figure 4.
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Here ab represents the said square, which for us is
x2, and the rectangles c, d, e, f represent an area of
10
4 x each, so that all of them together equal 10x, as

in the problem. Thus, the small squares in the cor-
ners represent an area of 6.25 each, and we can “com-
plete” the large square, being equal to 64, and whose
side is therefore 8, thus yielding the solution 3 for the
unknown.

Abu Kamil Shuja, just one generation after al-
Khwārizm̄ı, added force to this approach when he
solved additional problems while specifically relying
on theorems taken from the Elements, including the
accompanying diagrams, in order to justify his method
of solution. The primacy of the Euclidean-type proof,
which was already accepted in geometry and arith-
metic, thus also became associated with the algebraic
methods that eventually turned into the main topic of
interest in Renaissance mathematics. Cardano’s 1545
Ars Magna, the foremost example of this new trend,
presented a complete treatment of the equations of
third and fourth degree. Although the algebraic line
of reasoning that he adopted and developed became
increasingly abstract and formal, Cardano continued
to justify his arguments and methods of solution by
reference to Euclid-like geometric arguments based on
diagrams.

4 Seventeenth-Century Mathematics

The next significant change in the conception of proof
appears in the seventeenth century. The most influen-
tial development of mathematics in this period was the
creation of the infinitesimal calculus simultaneously
by newton [VI.14] and leibniz [VI.15]. This momen-
tous development was the culmination of a process
that spanned most of the century, involving the intro-
duction and gradual improvement of important tech-
niques for determining areas and volumes, gradients
of tangents, and maxima and minima. These develop-
ments included the elaboration of traditional points of
view that went back to the Greek classics, as well as the
introduction of completely new ideas such as the “indi-
visibles,” whose status as a legitimate tool for math-
ematical proof was hotly debated. At the same time,
the algebraic techniques and approaches that Renais-
sance mathematicians continued to expand upon, fol-
lowing on from their Islamic predecessors, now gained
additional impetus and were gradually incorporated—
starting with the work of fermat [VI.12] and des-
cartes [VI.11]—into the arsenal of tools available for
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Figure 5 Diagram for Fermat’s proof
of the area under a hyperbola.

proving geometric results. Underlying these various

trends were different conceptions and practices of

mathematical proof, which are briefly described and

illustrated now.

Examples of how the classical Greek conception of

geometric proof was essentially followed but at the

same time fruitfully modified and expanded are found

in the work of Fermat, as can be seen in his calcula-

tion of the area enclosed by a generalized hyperbola

(in modern notation (y/a)m = (x/b)n (m,n ≠ 1)) and

its asymptotes.

The quadratic hyperbola (i.e., a figure represented by

y = 1/x2), for instance, is defined here in terms of a

purely geometric relationship on any two of its points,

namely, that the ratio between the squares built on the

abscissas equals the inverse ratio between the lengths

of the ordinates. In its original version it is expressed as

follows: AG2 : AH2 :: IH : EG (see figure 5). It should be

noticed that this is not an equation in the present sense

of the word, on which the standard symbolic manipula-

tions can be directly performed. Rather, this is a four-

term proportion to which the rules of Greek classical

mathematics apply. Also, the proof was entirely geo-

metric and indeed it essentially followed the Euclidean

style. Thus, if the segments AG, AH, AO, etc., are cho-

sen in continued proportion, then one can prove that

the rectangles EH, IO, NM, etc., are also in continued

proportion, and indeed that EH : IO :: IO : NM :: · · · ::

AH : AG.

Fermat made use of proposition IX.35 of the Elements

(mentioned above), which comprises an expression for

the sum of any number of quantities in a geometric

progression, namely (in more modern notation):

(an+1 − a1) : (a1 + a2 + · · · + an) = (a2 − a1) : a1.
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But at this point his proof takes an interesting turn.
He introduces the somewhat obscure concept of “ade-
quare,” which he found in the works of Diophantus,
and which allows a kind of “approximate equality.”
Specifically, this idea allows him to bypass the cumber-
some procedure of double contradiction typically used
in Greek geometry as an implicit passage to the infi-
nite. A figure bounded by GE, by the horizontal asymp-
tote, and by the hyperbola will equal the infinite sum
of rectangles obtained when the rectangle EH “will van-
ish and will be reduced to nothing.” Further, proposi-
tion IX.35 implies that this sum equals the area of the
rectangle BG. Significantly, Fermat still chose to rely on
the authority of the ancients, hinting at the method of
double contradiction when he declared that this result
“would be easy to confirm by a more lengthy proof
carried out in the manner of Archimedes.”

Attempts to expand the accepted canon of geo-
metric proof eventually led to the more progressive
approaches associated with the idea of indivisibles
(described below), as practiced by Cavalieri, Roberval,
and Torricelli. This is well-illustrated by Torricelli’s
1643 calculation of the volume of the infinite body
created by (expressed in modern terms) rotating the
hyperbola xy = k2 around the y-axis, with values of x
between 0 and a.

The essential idea of indivisibles is that areas are con-
sidered to be sums, or collections, of infinitely many
line segments, and volumes are considered to be sums,
or collections, of infinitely many areas. In this exam-
ple, Torricelli calculated the volume of revolution by
considering it to be a sum of the curved surfaces of
an infinite collection of cylinders successively inscribed
within each other and having radii ranging from 0 to a.
The area of the curved surface of the inscribed cylin-
der with radius x is 2πx(k2/x) and is thus equal, for
any x, to the area of the circle AS, where S is the point
(k, k) on the hyperbola in figure 6(b).

However, from the figure it can be seen that in build-
ing the entire rotational body there is a cylindrical sur-
face associated with each possible length between 0
and a, and therefore that the total volume of the infi-
nite body can be considered as being composed of all
the cylindrical surfaces, which in turn equals the infi-
nite sum of circles, each of which is associated with a
radius between 0 and a (see figure 6(c)), and which is
equal to the volume of a cylinder with radius AS and
height a (see figure 6(d)).

The rules of Euclid-like geometric proof were com-
pletely contravened in proofs of this kind and this

made them unacceptable in the eyes of many. On the
other hand, their fruitfulness was highly appealing,
especially in cases like this one in which an infinite body
was shown to have a finite volume, a result which Torri-
celli himself found extremely surprising. Both support-
ers and detractors alike, however, realized that tech-
niques of this kind might lead to contradictions and
inaccurate results. By the eighteenth century, with the
accelerated development of the infinitesimal calculus
and its associated techniques and concepts, techniques
based on indivisibles had essentially disappeared.

The limits set by the classical paradigm of Euclid-
ean geometric proof were then transgressed in a dif-
ferent direction by the all-embracing algebraization of
geometry at the hands of Descartes. The fundamen-
tal step undertaken by Descartes was to introduce unit
lengths as a key element in the diagrams used in geo-
metric proofs. The radical innovation implied by this
step, allowing the hitherto nonexistent possibility of
defining operations with line segments, was explicitly
stressed by Descartes in La Géométrie in 1637:

Just as arithmetic consists of only four or five oper-
ations, namely addition, subtraction, multiplication,
division, and the extraction of roots, which may be
considered a kind of division, so in geometry, to find
required lines it is merely necessary to add or subtract
other lines; or else, taking one line, which I shall call the
unit in order to relate it as closely as possible to num-
bers, and which can in general be chosen arbitrarily,
and having given two other lines, to find a fourth line
which shall be to one of the given lines as the other is to
the unit (which is the same as multiplication); or again,
to find a fourth line which is to one of the given lines as
the unit is to the other (which is equivalent to division);
or, finally, to find one, two, or several mean proportion-
als between the unit and some other line (which is the
same as extracting the square root, cube root, etc., of
the given line).

Thus, for instance, given two segments BD, BE, the
division of their lengths is represented by BC in figure 7,
in which AB represents the unit length.

Although the proof was Euclid-like in appearance
(because of the diagram and the use of the theory of
similar triangles), the introduction of the unit length
and its use for defining the operations with segments
set it radically apart and opened completely new hori-
zons for geometric proofs. Not only had measurements
of length been absent from Euclidean-style proofs thus
far, but also, as a consequence of the very existence
of these operations, the essential dimensionality tra-
ditionally associated with geometric theorems lost its
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Figure 6 Torricelli’s proof of the volume of an infinite body.

significance. Descartes used expressions such as a −
b, a/b, a2, b3, and their roots, but he stressed that

they should all be understood as “only simple lines,

which, however, I name squares, cubes, etc., so that I

make use of the terms employed in algebra.” With the

removal of dimensionality, the requirement of homo-

geneity also became unnecessary. Unlike his predeces-

sors, who handled magnitudes only when they had a

direct geometric significance, Descartes could not see

any problem in forming an expression such as a2b2−b
and then extracting its cube root. In order to do so, he

said “we must consider the quantity a2b2 divided once

by the unit, and the quantity b multiplied twice by the

unit.” Sentences of this kind would be simply incompre-

hensible to Greek geometers, as well as to their Islamic

and Renaissance followers.

This algebraization of geometry, and particularly the
newly created possibility of proving geometric facts via
algebraic procedures, was strongly related to the recent
consolidation of the idea of an algebraic equation, seen
as an autonomous mathematical entity, for which for-
mal rules of manipulation were well-known and could
be systematically applied. This idea reached full matu-
rity in the hands of viète [VI.9] only around 1591. But
not all mathematicians in the seventeenth century saw
the important developments associated with algebraic
thinking either as a direction to be naturally adopted
or as a clear sign of progress in the latter discipline.
A prominent opponent of any attempt to deviate from
the classical Euclidean-style approach in geometry was
none other than newton [VI.14], who, in the Arith-
metica Universalis (1707), was emphatic in expressing
his views:
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Figure 7 Descartes’s geometric calculation
of the division of two given segments.

Equations are expressions of arithmetic computation
and properly have no place in geometry, except in
so far as truly geometrical quantities (lines, surfaces,
solids and proportions) are thereby shown equal, some
to others. Multiplications, divisions, and computations
of that kind have recently been introduced into geom-
etry, unadvisedly and against the first principle of this
science. … Therefore these two sciences ought not to
be confounded, and recent generations by confounding
them have lost that simplicity in which all geometrical
elegance consists.

Newton’s Principia bears witness to the fact that

statements like this one were far from mere lip ser-

vice, as Newton consistently preferred Euclidean-style

proofs, considering them to be the correct language for

presenting his new physics and for bestowing it with

the highest degree of certainty. He used his own cal-

culus only where strictly necessary, and barred algebra

from his treatise entirely.

5 Geometry and Proof in
Eighteenth-Century Mathematics

Mathematical analysis became the primary focus of

mathematicians in the eighteenth century. Questions

relating to the foundations of analysis arose immedi-

ately after the calculus began to be developed and were

not settled until the late nineteenth century. To a con-

siderable extent these questions were about the nature

of legitimate mathematical proof, and debates about

them played an important role in undermining the long-

undisputed status of geometry as the basis for math-

ematical certainty and bestowing this status on arith-

metic instead. The first important stage in this process

was euler’s [VI.19] reformulation of the calculus. Once

separated from its purely geometric roots, the calculus

came to be centered on the algebraically oriented con-

cept of function. This trend for favoring algebra over

geometry was given further impetus by Euler’s suc-
cessors. d’alembert [VI.20], for instance, associated
mathematical certainty above all with algebra—because
of its higher degree of generality and abstraction—and
only subsequently with geometry and mechanics. This
was a clear departure from the typical views of Newton
and of his contemporaries. The trend reached a peak
and was transformed into a well-conceived program
in the hands of lagrange [VI.22], who in the preface
to his 1788 Mécanique Analytique famously expressed
a radical view about how one could achieve certainty
in the mathematical sciences while distancing oneself
from geometry. He wrote as follows:

One will not find figures in this work. The methods
that I expound require neither constructions, nor geo-
metrical or mechanical arguments, but only algebraic
operations, subject to a regular and uniform course.

The details of these developments are beyond the scope
of this article. What is important to stress, however, is
that in spite of their very considerable impact, the basic
conceptions of proof in the more mainstream realm of
geometry did not change very much during the eigh-
teenth century. An illuminating perspective on these
conceptions is offered by the views of contemporary
philosophers, especially Immanuel Kant.

Kant had a very profound knowledge of contem-
porary science, and particularly of mathematics. A
philosophical discussion of his views on mathematical
knowledge and proof need not concern us here. How-
ever, given his acquaintance with contemporary con-
ceptions, they do provide an insightful historical per-
spective on proof as it was understood at the time. Of
particular interest is the contrast he draws between a
philosophical argument, on the one hand, and a geo-
metric proof, on the other. Whereas the former deals
with general concepts, the latter deals with concrete,
yet nonempirical, concepts, by reference to “visualiz-
able intuitions” (Anschauung). This difference is epit-
omized in the following, famous passage from his
Critique of Pure Reason.

Suppose a philosopher be given the concept of a tri-
angle and he is left to find out, in his own way, what
relation the sum of its angles bears to a right angle.
He has nothing but the concept of a figure enclosed by
three straight lines, and possessing three angles. How-
ever long he meditates on this concept, he will never
produce anything new. He can analyze and clarify the
concept of a straight line or of an angle or of the num-
ber three, but he can never arrive at any properties not
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already contained in these concepts. Now let the geo-
metrician take up these questions. He at once begins by
constructing a triangle. Since he knows that the sum of
two right angles is exactly equal to the sum of all the
adjacent angles which can be constructed from a single
point on a straight line, he prolongs one side of his tri-
angle and obtains two adjacent angles, which together
are equal to two right angles. He then divides the exter-
nal angle by drawing a line parallel to the opposite side
of the triangle, and observes that he has thus obtained
an external adjacent angle which is equal to an internal
angle—and so on. In this fashion, through a chain of
inferences guided throughout by intuition, he arrives
at a fully evident and universally valid solution of the
problem.

In a nutshell, then, for Kant the nature of mathemat-
ical proof that sets it apart from other kinds of deduc-
tive argumentation (like philosophy) lies in the central-
ity of the diagrams and the role that they play. As in the
Elements, this diagram is not just a heuristic guide for
what is no more than abstract reasoning, but rather an
“intuition,” a singular embodiment of the mathematical
idea that is clearly located not only in space, but rather
in space and time. In fact,

I cannot represent to myself a line, however small, with-
out drawing it in thought, that is gradually generat-
ing all its parts from a point. Only in this way can the
intuition be obtained.

This role played by diagrams as “visualizable intu-
itions” is what provides, for Kant, the explanation of
why geometry is not just an empirical science, but also
not just a huge tautology devoid of any synthetic con-
tent. According to him, geometric proof is constrained
by logic but it is much more than just a purely logi-
cal analysis of the terms involved. This view was at the
heart of a novel philosophical analysis whose starting
point was the then-entrenched conception of what a
mathematical proof is.

6 Nineteenth-Century Mathematics and
the Formal Conception of Proof

The nineteenth century was full of important develop-
ments in geometry and other parts of mathematics, not
just of the methods but also of the aims of the vari-
ous subdisciplines. Logic, as a field of knowledge, also
underwent significant changes and a gradual mathema-
tization that entirely transformed its scope and meth-
ods. Consequently, by the end of the century the con-
ception of proof and its role in mathematics had also
been deeply transformed.

In Göttingen in 1854 riemann [VI.49] gave his sem-

inal talk “On the hypotheses which lie at the foun-

dations of geometry.” At around the same time, the

works of bolyai [VI.34] and lobachevskii [VI.31] on

non-Euclidean geometry, as well as the related ideas of

gauss [VI.26], all dating from the 1830s, began to be

more generally known. The existence of coherent, alter-

native geometries brought about a pressing need for

the most basic, longstanding beliefs about the essence

of geometric knowledge, including the role of proof

and mathematical rigor, to be revised. Of even greater

significance in this regard was the renewed interest in

projective geometry [I.3 §6.7], which became a very

active field of research with its own open research

questions and foundational issues after the publica-

tion of Jean Poncelet’s 1822 treatise. The addition of

projective geometry to the many other possible geo-

metric perspectives prompted a variety of attempts at

unification and classification, the most significant of

which were those based on group-theoretic ideas. Par-

ticularly notable were those of klein [VI.57] and lie

[VI.53] in the 1870s. In 1882, Moritz Pasch published

an influential treatise on projective geometry devoted

to a systematic exploration of its axiomatic foundations

and the interrelationships among its fundamental the-

orems. Pasch’s book also attempted to close the many

logical gaps that had been found in Euclidean geometry

over the years. More systematically than any of his fel-

low nineteenth-century mathematicians, Pasch empha-

sized that all geometric results should be obtained

from axioms by strict logical deduction, without rely-

ing on analytical means, and above all without appeal to

diagrams or to properties of the figures involved. Thus,

although in some ways he was consciously reverting

to the canons of Euclid-like proof (which by then were

somewhat loosened), his attitude toward diagrams was

fundamentally different. Aware of the potential limita-

tions of visualizing diagrams (and perhaps their mis-

leading influence) he put a much greater emphasis on

the pure logical structure of the proof than his prede-

cessors had. Nevertheless, he was not led to an out-

right formalist view of geometry and geometric proof.

Rather, he consistently adopted an empirical approach

to the origins and meaning of geometry and fell short

of claiming that diagrams were for heuristic use only:

The basic propositions [of geometry] cannot be under-
stood without corresponding drawings; they express
what has been observed from certain, very simple facts.
The theorems are not founded on observations, but
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rather, they are proved. Every inference performed dur-
ing a deduction must find confirmation in a drawing,
yet it is not justified by a drawing but from a certain
preceding statement (or a definition).

Pasch’s work definitely contributed to diagrams los-

ing their central status in geometric proofs in favor of

purely deductive relations, but it did not directly lead

to a thorough revision of the status of the axioms of

geometry, or to a change in the conception that geom-

etry deals essentially with the study of our spatial, visu-

alizable intuition (in the sense of Anschauung). The all-

important nineteenth-century developments in geom-

etry produced significant changes in the conception of

proof only under the combined influence of additional

factors.

Mathematical analysis continued to be a primary field

of research, and the study of its foundations became

increasingly identified with arithmetic, rather than geo-

metric, rigor. This shift was provoked by the works

of mathematicians like cauchy [VI.29], weierstrass

[VI.44], cantor [VI.54], and dedekind [VI.50], which

aimed at eliminating intuitive arguments and concepts

in favor of ever more elementary statements and defi-

nitions. (In fact, it was not until the work of Dedekind

on the foundations of arithmetic, in the last third of

the century, that the rigorous formulation pursued in

these works was given any kind of axiomatic underpin-

ning.) The idea of investigating the axiomatic basis of

mathematical theories, whether geometry, algebra, or

arithmetic, and of exploring alternative possible sys-

tems of postulates was indeed pursued during the nine-

teenth century by mathematicians such as George Pea-

cock, Charles Babbage, John Herschel, and, in a differ-

ent geographical and mathematical context, Hermann

Grassmann. But such investigations were the exception

rather than the rule, and they had only a fairly limited

role in shaping a new conception of proof in analysis

and geometry.

One major turning point, where the above trends

combined to produce a new kind of approach to proof,

is to be found in the works of Giuseppe peano [VI.62]

and his Italian followers. Peano’s mainstream activities

were as a competent analyst, but he was also interested

in artificial languages, and particularly in developing an

artificial language that would allow a completely formal

treatment of mathematical proofs. In 1889 his success-

ful application of such a conceptual language to arith-

metic yielded his famous postulates for the nat-

ural numbers [III.69]. Pasch’s systems of axioms for

projective geometry posed a challenge to Peano’s arti-
ficial language, and he set out to investigate the rela-
tionship between the logical and the geometric terms
involved in the deductive structure of geometry. In this
context he introduced the idea of an independent set
of axioms, and applied this concept to his own system
of axioms for projective geometry, which were a slight
modification of Pasch’s. This view did not lead Peano to
a formalistic conception of proof, and he still conceived
geometry in terms very similar to his predecessors:

Anyone is allowed to take a hypothesis and develop
its logical consequences. However, if one wants to
give this work the name of geometry it is necessary
that such hypotheses or postulates express the result
of simple and elementary observations of physical
figures.

Under the influence of Peano, Mario Pieri developed
a symbolism with which to handle abstract–formal the-
ories. Unlike Peano and Pasch, Pieri consistently pro-
moted the idea of geometry as a purely logical sys-
tem, where theorems are deduced from hypothetical
premises and where the basic terms are completely
detached from any empirical or intuitive significance.

A new chapter in the history of geometry and of
proof was opened at the end of the nineteenth century
with the publication of hilbert’s [VI.63] Grundlagen
der Geometrie, a work that synthesized and brought to
completion the various trends of geometric research
described above. Hilbert was able to achieve a com-
prehensive analysis of the logical interrelations among
the fundamental results of projective geometry, such
as the theorems of Desargues and Pappus, while pay-
ing particular attention to the role of continuity con-
siderations within their proofs. His analysis was based
on the introduction of a generalized analytic geometry,
in which the coordinates may be taken from a variety
of different number fields [III.65], rather than from
the real numbers alone. This approach created a purely
synthetic arithmetization of any given type of geom-
etry, and thus helped to clarify the logical structure
of Euclidean geometry as a deductive system. It also
clarified the relationship between Euclidean geometry
and the various other kinds of known geometries—non-
Euclidean, projective, or non-Archimedean. This focus
on logic implied, among other things, that diagrams
should be relegated to a merely heuristic role. In fact,
although diagrams still appear in many proofs in the
Grundlagen, the entire purpose of the logical analysis
is to avoid being misled by diagrams. Proofs, and partic-
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ularly geometric proofs, have thus become purely logi-
cal arguments, rather than arguments about diagrams.
And at the same time, the essence and the role of the
axioms from which the derivations in question start
also underwent a dramatic change.

Following Pasch’s lead, Hilbert introduced a new sys-
tem of axioms for geometry that attempted to close
the logical gaps inherent in earlier systems. These
axioms were of five kinds—axioms of incidence, of
order, of congruence, of parallels, and of continuity—
each of which expressed a particular way in which
spatial intuition manifests itself in our understanding.
They were formulated for three fundamental kinds of
object: points, lines, and planes. These remained unde-
fined, and the system of axioms was meant to provide
an implicit definition of them. In other words, rather
than defining points or lines at the outset and then pos-
tulating axioms that are assumed to be valid for them,
a point and a line were not directly defined, except as
entities that satisfy the axioms postulated by the sys-
tem. Further, Hilbert demanded that the axioms in a
system of this kind should be mutually independent,
and introduced a method for checking that this demand
is fulfilled; in order to do so, he constructed models
of geometries that fail to satisfy a given axiom of the
system but satisfy all the others. Hilbert also required
that the system be consistent, and that the consistency
of geometry could be made to depend, in his system,
on that of arithmetic. He initially assumed that prov-
ing the consistency of arithmetic would not present a
major obstacle and it was a long time before he realized
that this was not the case. Two additional requirements
that Hilbert initially introduced for axiomatic systems
were simplicity and completeness. Simplicity meant, in
essence, that an axiom should not contain more than
“a single idea.” The demand that every axiom in a sys-
tem be “simple,” however, was never clearly defined or
systematically pursued in subsequent works of Hilbert
or any of his successors. The last requirement, com-
pleteness, meant for Hilbert in 1900 that any adequate
axiomatization of a mathematical domain should allow
for a derivation of all the known theorems of the disci-
pline in question. Hilbert claimed that his axioms would
indeed yield all the known results of Euclidean geom-
etry, but of course this was not a property that he could
formally prove. In fact, since this property of “com-
pleteness” cannot be formally checked for any given
axiomatic system, it did not become one of the stan-
dard requirements of an axiomatic system. It is impor-
tant to note that the concept of completeness used by

Hilbert in 1900 is completely different from the cur-
rently accepted, model-theoretical one that appeared
much later. The latter amounts to the requirement that
in a given axiomatic system every true statement, be it
known or unknown, should be provable.

The use of undefined concepts and the concomitant
conception of axioms as implicit definitions gave enor-
mous impetus to the view of geometry as a purely logi-
cal system, such as Pieri had devised it, and eventually
transformed the very idea of truth and proof in mathe-
matics. Hilbert claimed on various occasions—echoing
an idea of Dedekind—that, in his system, “points, lines,
and planes” could be substituted by “chairs, tables, and
beer mugs,” without thereby affecting in any sense the
logical structure of the theory. Moreover, in the light
of discussions about set-theoretical paradoxes, Hilbert
strongly emphasized the view that the logical consis-
tency of a concept implicitly defined by axioms was the
essence of mathematical existence. Under the influence
of these views, of the new methodological tools intro-
duced by Hilbert, and of the successful overview of the
foundations of geometry thus achieved, many mathe-
maticians went on to promote new views of mathemat-
ics and new mathematical activities that in many senses
went beyond the views embodied in Hilbert’s approach.
On the one hand, a trend that thrived in the United
States at the beginning of the twentieth century, led by
Eliakim H. Moore, turned the study of systems of postu-
lates into a mathematical field in its own right, indepen-
dent of direct interest in the field of research defined
by the systems in question. For instance, these math-
ematicians defined the minimal set of independent
postulates for groups, fields, projective geometry, etc.,
without then proceeding to investigate of any of these
individual disciplines. On the other hand, prominent
mathematicians started to adopt and develop increas-
ingly formalistic views of proof and of mathematical
truth, and began applying them in a growing number
of mathematical fields. The work of the radically mod-
ernist mathematician Felix hausdorff [VI.68] provides
important examples of this trend, as he was among
the first to consistently associate Hilbert’s achievement
with a new, formalistic view of geometry. In 1904, for
instance, he wrote:

In all philosophical debates since Kant, mathematics,
or at least geometry, has always been treated as het-
eronomous, as dependent on some external instance
of what we could call, for want of a better term, intu-
ition, be it pure or empirical, subjective or scientifically
amended, innate or acquired. The most important and
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fundamental task of modern mathematics has been to
set itself free from this dependency, to fight its way
through from heteronomy to autonomy.

Hilbert himself would pursue such a point of view
around 1918, when he engaged in the debates about the
consistency of arithmetic and formulated his “finitist”
program. This program did indeed adopt a strongly for-
malistic view, but it did so with the restricted aim of
solving this particular problem. It is therefore impor-
tant to stress that Hilbert’s conceptions of geometry
were, and remained, essentially empiricist and that he
never regarded his axiomatic analysis of geometry as
part of an overall formalistic conception of mathemat-
ics. He considered the axiomatic approach as a tool for
the conceptual clarification of existing, well-elaborated
theories, of which geometry provided only the most
prominent example.

The implication of Hilbert’s axiomatic approach for
the concept of proof and of truth in mathematics pro-
voked strong reactions from some mathematicians,
and prominently so from frege [VI.56]. Frege’s views
are closely connected with the changing status of logic
at the turn of the twentieth century and its gradual pro-
cess of mathematization and formalization. This pro-
cess was an outcome of the successive efforts through
the nineteenth century of boole [VI.43], de mor-
gan [VI.38], Grassmann, Charles S. Peirce, and Ernst
Schröder at formulating an algebra of logic. The most
significant step toward a new, formal conception of
logic, however, came with the increased understanding
of the role of the logical quantifiers [I.2 §3.2] (univer-
sal, ∀, and existential, ∃) in the process of formulat-
ing a modern mathematical proof. This understanding
emerged in an informal, but increasingly clear, fash-
ion as part of the process of the rigorization of analy-
sis and the distancing from visual intuition, especially
at the hands of Cauchy, bolzano [VI.28], and Weier-
strass. It was formally defined and systematically cod-
ified for the first time by Frege in his 1879 Begriffss-
chrift . Frege’s system, as well as similar ones proposed
later by Peano and by russell [VI.71], brought to the
fore a clear distinction between propositional connec-
tives and quantifiers, as well as between logical symbols
and algebraic or arithmetic ones.

Frege formulated the idea of a formal system, in
which one defines in advance all the allowable sym-
bols, all the rules that produce well-formed formulas,
all axioms (i.e., certain preselected, well-formed formu-
las), and all the rules of inference. In such systems

any deduction can be checked syntactically—in other
words, by purely symbolic means. On the basis of such
systems Frege aimed to produce theories with no log-
ical gaps in their proofs. This would apply not only to
analysis and to its arithmetic foundation—the mathe-
matical fields that provided the original motivation for
his work—but also to the new systems of geometry that
were evolving at the time. On the other hand, in Frege’s
view the axioms of mathematical theories—even if they
appear in the formal system merely as well-formed for-
mulas—embody truths about the world. This is pre-
cisely the source of his criticism of Hilbert. It is the
truth of the axioms, asserted Frege, that certifies their
consistency, rather than the other way around, as
Hilbert suggested.

We thus see how foundational research in two sep-
arate fields—geometry and analysis—was inspired by
different methodologies and philosophical outlooks,
but converged at the turn of the twentieth century
to create an entirely new conception of mathematical
proof. In this conception a mathematical proof is seen
as a purely logical construct validated in purely syntac-
tic terms, independently of any visualization through
diagrams. This conception has dominated mathematics
ever since.

Epilogue: Proof in the Twentieth Century

The new notion of proof that stabilized at the beginning
of the twentieth century provided an idealized model—
broadly accepted to this day—of what should consti-
tute a valid mathematical argument. To be sure, actual
proofs devised and published by mathematicians since
that time are seldom presented as fully formalized
texts. They typically present a clearly articulated argu-
ment in a language that is precise enough to convince
the reader that it could—in principle, and perhaps with
straightforward (if sustained) effort—be turned into
one. Throughout the decades, however, some limita-
tions of this dominant idea have gradually emerged
and alternative conceptions of what should count as a
valid mathematical argument have become increasingly
accepted as part of current mathematical practice.

The attempt to pursue this idea systematically to its
full extent led, early on and very unexpectedly, to a
serious difficulty with the notion of a proof as a com-
pletely formalized and purely syntactic deductive argu-
ment. In the early 1920s, Hilbert and his collaborators
developed a fully fledged mathematical theory whose
subject matter was “proof,” considered as an object of
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study in itself. This theory, which presupposed the for-
mal conception of proof, arose as part of an ambitious
program for providing a direct, finitistic consistency
proof of arithmetic represented as a formalized sys-
tem. Hilbert asserted that, just as the physicist exam-
ines the physical apparatus with which he carries out
his experiments and the philosopher engages in a cri-
tique of reason, so the mathematician should be able
to analyze mathematical proofs and do so strictly by
mathematical means. About a decade after the program
was launched, gödel [VI.92] came up with his astonish-
ing incompleteness theorem [V.18], which famously
showed that “mathematical truth” and “provability”
were not one and the same thing. Indeed, in any consis-
tent, sufficiently rich axiomatic system (including the
systems typically used by mathematicians) there are
true mathematical statements that cannot be proved.
Gödel’s work implied that Hilbert’s finitistic program
was too optimistic, but at the same time it also made
clear the deep mathematical insights that could be
obtained from Hilbert’s proof theory.

A closely related development was the emergence of
proofs that certain important mathematical statements
were undecidable. Interestingly, these seemingly neg-
ative results have given rise to new ideas about the
legitimate grounds for establishing the truth of such
statements. For instance, in 1963 Paul Cohen estab-
lished that the continuum hypothesis [IV.1 §5] can
be neither proved nor disproved in the usual systems
of axioms for set theory. Most mathematicians sim-
ply accept this idea and regard the problem as solved
(even if not in the way that was originally expected),
but some contemporary set theorists, notably Hugh
Woodin, maintain that there are good reasons to believe
that the hypothesis is false. The strategy they follow in
order to justify this assertion is fundamentally differ-
ent from the formal notion of proof: they devise new
axioms, demonstrate that these axioms have very desir-
able properties, argue that they should therefore be
accepted, and then show that they imply the negation of
the continuum hypothesis. (See set theory [IV.1 §10]
for further discussion.)

A second important challenge came from the ever-
increasing length of significant proofs appearing in
various mathematical domains. A prominent example
was the classification theorem for finite simple
groups [V.8], whose proof was worked out in many sep-
arate parts by a large numbers of mathematicians. The
resulting arguments, if put together, would reach about
ten thousand pages, and errors have been found since

the announcement in the early 1980s that the proof was
complete. It has always been relatively straightforward
to fix the errors and the theorem is indeed accepted
and used by group theorists. Nevertheless, the notion
of a proof that is too long for a single human being to
check is a challenge to our conception of when a proof
should be accepted as such. The more recent, very con-
spicuous cases of fermat’s last theorem [V.12] and
the poincaré conjecture [V.28] were hard to survey
for different reasons: not only were they long (though
nowhere near as long as the classification of finite sim-
ple groups), but they were also very difficult. In both
cases there was a significant interval between the first
announcement of the proofs and their complete accep-
tance by the mathematical community because check-
ing them required enormous efforts by the very few
people qualified to do so. There is no controversy about
either of these two breakthroughs, but they do raise an
interesting sociological problem: if somebody claims to
have proved a theorem and nobody else is prepared
to check it carefully (perhaps because, unlike the two
theorems just mentioned, this one is not important
enough for another mathematician to be prepared to
spend the time that it would take), then what is the
status of the theorem?

Proofs based on probabilistic considerations have
also appeared in various mathematical domains,
including number theory, group theory, and combina-
torics. It is sometimes possible to prove mathematical
statements (see, for example, the discussion of random
primality testing in computational number theory
[IV.5 §2]), not with complete certainty, but in such a way
that the probability of error is tiny—at most one in a
trillion, say. In such cases, we may not have a formal
proof, but the chances that we are mistaken in consid-
ering the given statement to be true are probably lower
than, say, than the chance that there is a significant
mistake in one of the lengthy proofs mentioned above.

Another challenge has come from the introduction
of computer-assisted methods of proof. For instance,
in 1976 Kenneth Appel and Wolfgang Haken settled a
famous old problem by proving the four-color the-
orem [V.14]. Their proof involved the checking of a
huge number of different map configurations, which
they did with the help of a computer. Initially, this
raised debates about the legitimacy of their proof but
it quickly became accepted and there are now sev-
eral proofs of this kind. Some mathematicians even
believe that computer-assisted and, more importantly,
computer-generated proofs are the future of the entire
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discipline. Under this (currently minority) view, our

present views about what counts as an acceptable

mathematical proof will soon become obsolete.

A last point to stress is that many branches of math-

ematics now contain conjectures that seem to be both

fundamentally important and out of reach for the fore-

seeable future. Mathematicians persuaded of the truth

of such conjectures increasingly undertake the sys-

tematic study of their consequences, assuming that an

acceptable proof will one day appear (or at least that the

conjecture is true). Such conditional results are pub-

lished in leading mathematical journals and doctoral

degrees are routinely awarded for them.

All of these trends raise interesting questions

about existing conceptions of legitimate mathematical

proofs, the status of truth in mathematics, and the

relationship between “pure” and “applied” fields. The

formal notion of a proof as a string of symbols that

obeys certain syntactical rules continues to provide

an ideal model for the principles that underlie what

most mathematicians see as the essence of their dis-

cipline. It allows far-reaching mathematical analysis of

the power of certain axiomatic systems, but at the same

time it falls short of explaining the changing ways in

which mathematicians decide what kinds of arguments

they are willing to accept as legitimate in their actual

professional practice.

I thank José Ferreirós and Reviel Netz for useful comments
on previous versions of this text.
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II.7 The Crisis in the Foundations of
Mathematics
José Ferreirós

The foundational crisis is a celebrated affair among
mathematicians and it has also reached a large non-
mathematical audience. A well-trained mathematician
is supposed to know something about the three view-
points called “logicism,” “formalism,” and “intuition-
ism” (to be explained below), and about what gödel’s
incompleteness results [V.18] tell us about the status
of mathematical knowledge. Professional mathemati-
cians tend to be rather opinionated about such top-
ics, either dismissing the foundational discussion as
irrelevant—and thus siding with the winning party—
or defending, either as a matter of principle or as an
intriguing option, some form of revisionist approach
to mathematics. But the real outlines of the histori-
cal debate are not well-known and the subtler philo-
sophical issues at stake are often ignored. Here we
shall mainly discuss the former, in the hope that this
will help bring the main conceptual issues into sharper
focus.

The foundational crisis is usually understood as a
relatively localized event in the 1920s, a heated debate
between the partisans of “classical” (meaning late-nine-
teenth-century) mathematics, led by hilbert [VI.63],
and their critics, led by brouwer [VI.75], who advo-
cated strong revision of the received doctrines. There
is, however, a second, and in my opinion very impor-
tant, sense in which the “crisis” was a long and global
process, indistinguishable from the rise of modern
mathematics and the philosophical and methodologi-
cal issues it created. This is the standpoint from which
the present account has been written.

Within this longer process one can still pick out some
noteworthy intervals. Around 1870 there were many
discussions about the acceptability of non-Euclidean
geometries, and also about the proper foundations of
complex analysis and even the real numbers. Early in
the twentieth century there were debates about set
theory, about the concept of the continuum, and about
the role of logic and the axiomatic method versus
the role of intuition. By about 1925 there was a cri-
sis in the proper sense, during which the main opin-
ions in these debates were developed and turned into
detailed mathematical research projects. And in the
1930s gödel [VI.92] proved his incompleteness results,
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which could not be assimilated without some cherished
beliefs being abandoned. Let us analyze some of these
events and issues in greater detail.

1 Early Foundational Questions

There is evidence that in 1899 Hilbert endorsed the
viewpoint that came to be known as logicism. Logicism
was the thesis that the basic concepts of mathemat-
ics are definable by means of logical notions, and that
the key principles of mathematics are deducible from
logical principles alone.

Over time this thesis has become unclear, based as it
seems to be on a fuzzy and immature conception of the
scope of logical theory. But historically speaking logi-
cism was a neat intellectual reaction to the rise of mod-
ern mathematics, and particularly to the set-theoretic
approach and methods. Since the majority opinion was
that set theory is just a part of (refined) logic,1 this the-
sis was thought to be supported by the fact that the
theories of natural and real numbers can be derived
from set theory, and also by the increasingly important
role of set-theoretic methods in algebra and in real and
complex analysis.

Hilbert was following dedekind [VI.50] in the way
he understood mathematics. For us, the essence of
Hilbert’s and Dedekind’s early logicism is their self-
conscious endorsement of certain modern methods,
however daring they seemed at the time. These meth-
ods had emerged gradually during the nineteenth cen-
tury, and were particularly associated with Göttingen
mathematics (gauss [VI.26] and dirichlet [VI.36]);
they experienced a crucial turning point with rie-
mann’s [VI.49] novel ideas, and were developed fur-
ther by Dedekind, cantor [VI.54], Hilbert, and other,
lesser figures. Meanwhile, the influential Berlin school
of mathematics had opposed this new trend, kro-
necker [VI.48] head-on and weierstrass [VI.44] more
subtly. (The name of Weierstrass is synonymous with
the introduction of rigor in real analysis, but in fact, as
will be indicated below, he did not favor the more mod-
ern methods elaborated in his time.) Mathematicians in
Paris and elsewhere also harbored doubts about these
new and radical ideas.

The most characteristic traits of the modern ap-
proach were:

1. One should mention that key figures like Riemann and Cantor
disagreed (see Ferreirós 1999). The “majority” included Dedekind,
peano [VI.62], Hilbert, russell [VI.71], and others.

(i) acceptance of the notion of an “arbitrary” function
proposed by Dirichlet;

(ii) a wholehearted acceptance of infinite sets and the
higher infinite;

(iii) a preference “to put thoughts in the place of
calculations” (Dirichlet), and to concentrate on
“structures” characterized axiomatically; and

(iv) a reliance on “purely existential” methods of
proof.

An early and influential example of these traits was
Dedekind’s approach (1871) to algebraic number
theory [IV.3]—his set-theoretic definition of number
fields [III.65] and ideals [III.83 §2], and the methods
by which he proved results such as the fundamen-
tal theorem of unique decomposition. In a remark-
able departure from the number-theoretic tradition,
Dedekind studied the factorization properties of alge-
braic integers in terms of ideals, which are certain infi-
nite sets of algebraic integers. Using this new abstract
concept, together with a suitable definition of the
product of two ideals, Dedekind was able to prove in
full generality that, within any ring of algebraic inte-
gers, ideals possess a unique decomposition into prime
ideals.

The influential algebraist Kronecker complained that
Dedekind’s proofs do not enable us to calculate, in
a particular case, the relevant divisors or ideals: that
is, the proof was purely existential . Kronecker’s view
was that this abstract way of working, made possible
by the set-theoretic methods and by a concentration
on the algebraic properties of the structures involved,
was too remote from an algorithmic treatment—that is,
from so-called constructive methods. But for Dedekind
this complaint was misguided: it merely showed that
he had succeeded in elaborating the principle “to put
thoughts in the place of calculations,” a principle that
was also emphasized in Riemann’s theory of complex
functions. Obviously, concrete problems would require
the development of more delicate computational tech-
niques, and Dedekind contributed to this in several
papers. But he also insisted on the importance of a
general, conceptual theory.

The ideas and methods of Riemann and Dedekind
became better known through publications of the
period 1867–72. These were found particularly shock-
ing because of their very explicit defense of the view
that mathematical theories ought not to be based
upon formulas and calculations—they should always
be based on clearly formulated general concepts, with



�

II.7. The Crisis in the Foundations of Mathematics 145

analytical expressions or calculating devices relegated
to the further development of the theory.

To explain the contrast, let us consider the par-
ticularly clear case of the opposition between Rie-
mann’s and Weierstrass’s approaches to function
theory. Weierstrass opted systematically for explicit
representations of analytic (or holomorphic [I.3 §5.6])
functions by means of power series of the form∑∞
n=0 an(z − a)n, connected with each other by ana-

lytic continuation [I.3 §5.6]. Riemann chose a very
different and more abstract approach, defining a func-
tion to be analytic if it satisfies the cauchy–riemann
differentiability conditions [I.3 §5.6].2 This neat
conceptual definition appeared objectionable to Weier-
strass, as the class of differentiable functions had never
been carefully characterized (in terms of series repre-
sentations, for example). Exercising his famous critical
abilities, Weierstrass offered examples of continuous
functions that were nowhere differentiable.

It is worth mentioning that, in preferring infinite
series as the key means for research in analysis and
function theory, Weierstrass remained closer to the
old eighteenth-century idea of a function as an ana-
lytical expression. On the other hand, Riemann and
Dedekind were always in favor of Dirichlet’s abstract
idea of a function f as an “arbitrary” way of associ-
ating with each x some y = f(x). (Previously it had
been required that y should be expressed in terms
of x by means of an explicit formula.) In his let-
ters, Weierstrass criticized this conception of Dirich-
let’s as too general and vague to constitute the starting
point for any interesting mathematical development.
He seems to have missed the point that it was in fact
just the right framework in which to define and ana-
lyze general concepts such as continuity [I.3 §5.2]
and integration [I.3 §5.5]. This framework came to be
called the conceptual approach in nineteenth-century
mathematics.

Similar methodological debates emerged in other
areas too. In a letter of 1870, Kronecker went as far
as saying that the Bolzano–Weierstrass theorem was
an “obvious sophism,” promising that he would offer
counterexamples. The Bolzano–Weierstrass theorem,
which states that an infinite bounded set of real num-
bers has an accumulation point, was a cornerstone

2. Riemann determined particular functions by a series of indepen-
dent traits such as the associated riemann surface [III.81] and the
behavior at singular points. These traits determined the function via a
certain variational principle (the “Dirichlet principle”), which was also
criticized by Weierstrass, who gave a counterexample to it. Hilbert and
Kneser would later reformulate and justify the principle.

of classical analysis, and was emphasized as such by
Weierstrass in his famous Berlin lectures. The problem
for Kronecker was that this theorem rests entirely on
the completeness axiom for the real numbers (which,
in one version, states that every sequence of nonempty
nested closed intervals in R has a nonempty intersec-
tion). The real numbers cannot be constructed in an
elementary way from the rational numbers: one has
to make heavy use of infinite sets (such as the set of
all possible “Dedekind cuts,” which are subsets C ⊂ Q

such that p ∈ C whenever p and q are rational num-
bers such that p < q and q ∈ C). To put it another
way: Kronecker was drawing attention to the problem
that, very often, the accumulation point in the Bolzano–
Weierstrass theorem cannot be constructed by elemen-
tary operations from the rational numbers. The classi-
cal idea of the set of real numbers, or “the continuum,”
already contained the seeds of the nonconstructive
ingredient in modern mathematics.

Later on, in around 1890, Hilbert’s work on invari-
ant theory led to a debate about his purely existen-
tial proof of another basic result, the basis theorem,
which states (in modern terminology) that every ideal
in a polynomial ring is finitely generated. Paul Gor-
dan, famous as the “king” of invariants for his heavily
algorithmic work on the topic, remarked humorously
that this was “theology,” not mathematics! (He appar-
ently meant that, because the proof was purely existen-
tial, rather than constructive, it was comparable with
philosophical proofs of the existence of God.)

This early foundational debate led to a gradual clari-
fication of the opposing viewpoints. Cantor’s proofs in
set theory also became quintessential examples of the
modern methodology of existential proof. He offered
an explicit defense of the higher infinite and modern
methods in a paper of 1883, which was peppered with
hidden attacks on Kronecker’s views. Kronecker in turn
criticized Dedekind’s methods publicly in 1882, spoke
privately against Cantor, and in 1887 published an
attempt to spell out his foundational views. Dedekind
replied with a detailed set-theoretic (and “thus,” for
him, logicistic) theory of the natural numbers in 1888.

The early round of criticism ended with an apparent
victory for the modern camp, which enrolled new and
powerful allies such as Hurwitz, minkowski [VI.64],
Hilbert, Volterra, Peano, and hadamard [VI.65], and
which was defended by influential figures such as klein
[VI.57]. Although Riemannian function theory was still
in need of further refinement, recent developments
in real analysis, number theory, and other fields were
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showing the power and promise of the modern meth-

ods. During the 1890s, the modern viewpoint in gen-

eral, and logicism in particular, enjoyed great expan-

sion. Hilbert developed the new methodology into the

axiomatic method, which he used to good effect in his

treatment of geometry (1899 and subsequent editions)

and of the real number system.

Then, dramatically, came the so-called logical para-

doxes, discovered by Cantor, Russell, Zermelo, and oth-

ers, which will be discussed below. These were of two

kinds. On the one hand, there were arguments show-

ing that assumptions that certain sets exist lead to

contradictions. These were later called the set-theoretic

paradoxes. On the other, there were arguments, later

known as the semantic paradoxes, which showed up

difficulties with the notions of truth and definability.

These paradoxes completely destroyed the attractive

view of recent developments in mathematics that had

been proposed by logicism. Indeed, the heyday of logi-

cism came before the paradoxes, that is, before 1900;

it subsequently enjoyed a revival with Russell and his

“theory of types,” but by 1920 logicism was of inter-

est more to philosophers than to mathematicians. How-

ever, the divide between advocates of the modern meth-

ods and constructivist critics of these methods was

there to stay.

2 Around 1900

Hilbert opened his famous list of mathematical prob-

lems at the Paris International Congress of Mathematics

of 1900 with Cantor’s continuum problem [IV.1 §5],

a key question in set theory, and with the problem

of whether every set can be well-ordered. His second

problem amounted to establishing the consistency of

the notion of the set R of real numbers. It was not by

chance that he began with these problems: rather, it

was a way of making a clear statement about how math-

ematics should be in the twentieth century. Those two

problems, and the axiom of choice [III.1] employed

by Hilbert’s young colleague Zermelo to show that R

(the continuum) can be well-ordered, are quintessential

examples of the traits (i)–(iv) that were listed above. It

is little wonder that less daring minds objected and

revived Kronecker’s doubts, as can be seen in many

publications of 1905–6. This brings us to the next stage

of the debate.

2.1 Paradoxes and Consistency

In a remarkable turn of events, the champions of mod-
ern mathematics stumbled upon arguments that cast
new doubts on its cogency. In around 1896, Cantor dis-
covered that the seemingly harmless concepts of the
set of all ordinals and the set of all cardinals led to
contradictions. In the former case the contradiction
is usually called the Burali-Forti paradox; the latter is
the Cantor paradox. The assumption that all transfi-
nite ordinals form a set leads, by Cantor’s previous
results, to the result that there is an ordinal that is less
than itself—and similarly for cardinals. Upon learning
of these paradoxes, Dedekind began to doubt whether
human thought is completely rational. Even worse, in
1901–2 Zermelo and Russell discovered a very elemen-
tary contradiction, now known as Russell’s paradox or
sometimes as the Zermelo–Russell paradox, which will
be discussed in a moment. The untenability of the
previous understanding of set theory as logic became
clear, and there began a new period of instability. But
it should be said that only logicists were seriously
upset by these arguments: they were presented with
contradictions in their theories.

Let us explain the importance of the Zermelo–Russell
paradox. From Riemann to Hilbert, many authors
accepted the principle that, given any well-defined log-
ical or mathematical property, there exists a set of all
objects satisfying that property. In symbols: given a
well-defined property p, there exists another object,
the set {x : p(x)}. For example, corresponding to the
property of “being a real number” (which is expressed
formally by Hilbert’s axioms) there is the set of all real
numbers; corresponding to the property of “being an
ordinal” there is the set of all ordinals; and so on. This
is called the comprehension principle, and it constitutes
the basis for the logicistic understanding of set theory,
often called naive set theory, although its naivete is
only clear with hindsight. The principle was thought
of as a basic logical law, so that all of set theory was
merely a part of elementary logic.

The Zermelo–Russell paradox shows that the com-
prehension principle is contradictory, and it does so
by formulating a property that seems to be as basic
and purely logical as possible. Let p(x) be the prop-
erty x ∉ x (bearing in mind that negation and mem-
bership were assumed to be purely logical concepts).
The comprehension principle yields the existence of
the set R = {x : x ∉ x}, but this leads quickly to a
contradiction: if R ∈ R, then R ∉ R (by the definition
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of R), and similarly, if R ∉ R, then R ∈ R. Hilbert (like
his older colleague frege [VI.56]) was led to abandon
logicism, and even wondered whether Kronecker might
have been right all along. Eventually he concluded that
set theory had shown the need to refine logical theory.
It was also necessary to establish set theory axiomat-
ically, as a basic mathematical theory based on math-
ematical (not logical) axioms, and Zermelo undertook
this task.

Hilbert famously advocated that to claim that a set of
mathematical objects exists is tantamount to proving
that the corresponding axiom system is consistent—
that is, free of contradictions. The documentary evi-
dence suggests that Hilbert came to this celebrated
principle in reaction to Cantor’s paradoxes. His rea-
soning may have been that, instead of jumping directly
from well-defined concepts to their corresponding sets,
one had first to prove that the concepts are logically
consistent. For example, before one could accept the set
of all real numbers, one should prove the consistency
of Hilbert’s axiom system for them. Hilbert’s principle
was a way of removing any metaphysical content from
the notion of mathematical existence. This view, that
mathematical objects had a sort of “ideal existence” in
the realm of thought rather than an independent meta-
physical existence, had been anticipated by Dedekind
and Cantor.

The “logical” paradoxes included not only the ones
that go by the names of Burali-Forti, Cantor, and Rus-
sell, but also many semantic paradoxes formulated by
Russell, Richard, König, Grelling, etc. (Richard’s para-
dox will be discussed below.) Much confusion emerged
from the abundance of different paradoxes, but one
thing is clear: they played an important role in promot-
ing the development of modern logic and convincing
mathematicians of the need for strictly formal presen-
tation of their theories. Only when a theory has been
stated within a precise formal language can one disre-
gard the semantic paradoxes, and even formulate the
distinction between these and the set-theoretic ones.

2.2 Predicativity

When the books of Frege and Russell made the para-
doxes of set theory widely known to the mathematical
community in 1903, poincaré [VI.61] used them to put
forward criticisms of both logicism and formalism.

His analysis of the paradoxes led him to coin an
important new notion, predicativity , and maintain that
impredicative definitions should be avoided in mathe-
matics. Informally, a definition is impredicative when

it introduces an element by reference to a totality that
already contains that element. A typical example is
the following: Dedekind defines the set N of natural
numbers as the intersection of all sets that contain
1 and are closed under an injective function σ such
that 1 ∉ σ(N). (The function σ is called the successor
function.) His idea was to characterize N as minimal,
but in his procedure the set N is first introduced by
appeal to a totality of sets that should already include
N itself. This kind of procedure appeared unacceptable
to Poincaré (and also to Russell), especially when the
relevant object can be specified only by reference to
the more embracing totality. Poincaré found examples
of impredicative procedures in each of the paradoxes
he studied.

Take, for instance, Richard’s paradox, which is one
of the linguistic or semantic paradoxes (where, as we
said, the notions of truth and definability are promi-
nent). One begins with the idea of definable real num-
bers. Because definitions must be expressed in a certain
language by finite expressions, there are only count-
ably many definable numbers. Indeed, we can explic-
itly count the definable real numbers by listing them in
alphabetical order of their definitions. (This is known
as the lexicographic order.) Richard’s idea was to apply
to this list a diagonal process, of the kind used by Can-
tor to prove that R is not countable [III.11]. Let the
definable numbers be a1, a2, a3, . . . . Define a new num-
ber r in a systematic way, making sure that the nth
decimal digit of r is different from the nth decimal
digit of an. (For example, let the nth digit of r be 2
unless the nth digit of an is 2, in which case let the
nth digit of r be 4.) Then r cannot belong to the set
of definable numbers. But in the course of this con-
struction, the number r has just been defined in finitely
many words! Poincaré would ban impredicative defini-
tions and would therefore prevent the introduction of
the number r , since it was defined with reference to the
totality of all definable numbers.3

In this kind of approach to the foundations of math-
ematics, all mathematical objects (beyond the natural
numbers) must be introduced by explicit definitions.
If a definition refers to a presumed totality of which
the object being defined is itself a member, we are
involved in a circle: the object itself is then a con-
stituent of its own definition. In this view, “definitions”

3. The modern solution is to establish mathematical definitions
within a well-determined formal theory, whose language and expres-
sions are fixed to begin with. Richard’s paradox takes advantage of an
ambiguity as to what the available means of definition are.
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must be predicative: one refers only to totalities that
have already been established before the object one is
defining. Important authors such as Russell and weyl
[VI.80] accepted this point of view and developed it.

Zermelo was not convinced, arguing that impredica-
tive definitions were often used unproblematically, not
only in set theory (as in Dedekind’s definition of N, for
example), but also in classical analysis. As a particular
example, he cited cauchy’s [VI.29] proof of the fun-
damental theorem of algebra [V.15],4 but a sim-
pler example of impredicative definition is the least
upper bound in real analysis. The real numbers are
not introduced separately, by explicit predicative defi-
nitions of each one of them; rather, they are introduced
as a completed whole, and the particular way in which
the least upper bound of an infinite bounded set of
reals is singled out becomes impredicative. But Zermelo
insisted that these definitions are innocuous, because
the object being defined is not “created” by the defini-
tion; it is merely singled out (see his paper of 1908 in
van Heijenoort (1967, pp. 183–98)).

Poincaré’s idea of abolishing impredicative defini-
tions became important for Russell, who incorporated
it as the “vicious circle principle” in his influential
theory of types. Type theory is a system of higher-order
logic, with quantification over properties or sets, over
relations, over sets of sets, and so on. Roughly speak-
ing, it is based on the idea that the elements of any
set should always be objects of a certain homogeneous
type. For instance, we can have sets of “individuals,”
such as {a,b}, or sets of sets of individuals, such as
{{a}, {a,b}}, but never a “mixed” set like {a, {a,b}}.
Russell’s version of type theory became rather compli-
cated because of the so-called ramification he adopted
in order to avoid impredicativity. This system, together
with axioms of infinity, choice, and “reducibility” (a
surprisingly ad hoc means to “collapse” the ramifica-
tion), sufficed for the development of set theory and the
number systems. Thus it became the logical basis for
the renowned Principia Mathematica by Whitehead and
Russell (1910–13), in which they carefully developed a
foundation for mathematics.

Type theory remained the main logical system until
about 1930, but under the form of simple type theory

4. Cauchy’s reasoning was clearly nonconstructive, or “purely exis-
tential” as we have been saying. In order to show that the polynomial
must have one root, Cauchy studied the absolute value of the polyno-
mial, which has a global minimum σ . This global minimum is impred-
icatively defined. Cauchy assumed that it was positive, and from this
he derived a contradiction.

(that is, without ramification), which, as Chwistek, Ram-
sey, and others realized, suffices for a foundation in
the style of Principia. Ramsey proposed arguments that
were aimed at eliminating worries about impredicativ-
ity, and he tried to justify the other existence axioms
of Principia—the axiom of infinity and the axiom of
choice—as logical principles. But his arguments were
inconclusive. Russell’s attempt to rescue logicism from
the paradoxes remained unconvincing, except to some
philosophers (especially members of the Vienna Circle).

Poincaré’s suggestions also became a key principle
for the interesting foundational approach proposed by
Weyl in his book Das Kontinuum (1918). The main idea
was to accept the theory of the natural numbers as they
were conventionally developed using classical logic,
but to work predicatively from there on. Thus, unlike
Brouwer, Weyl accepted the principle of the excluded
middle. (This, and Brouwer’s views, will be discussed in
the next section.) However, the full system of the real
numbers was not available to him: in his system the set
R was not complete and the Bolzano–Weierstrass theo-
rem failed, which meant that he had to devise sophisti-
cated replacements for the usual derivations of results
in analysis.

The idea of predicative foundations for mathematics,
in the style of Weyl, has been carefully developed in
recent decades with noteworthy results (see Feferman
1998). Predicative systems lie between those that coun-
tenance all of the modern methodology and the more
stringent constructivistic systems. This is one of sev-
eral foundational approaches that do not fit into the
conventional but by now outdated triad of logicism,
formalism, and intuitionism.

2.3 Choices

As important as the paradoxes were, their impact on
the foundational debate has often been overstated. One
frequently finds accounts that take the paradoxes as
the real starting point of the debate, in strong con-
trast with our discussion in section 1. But even if we
restrict our attention to the first decade of the twenti-
eth century, there was another controversy of equal,
if not greater, importance: the arguments that sur-
rounded the axiom of choice and Zermelo’s proof of
the well-ordering theorem.

Recall from section 2.1 that the association between
sets and their defining properties was at the time
deeply ingrained in the minds of mathematicians and
logicians (via the contradictory principle of comprehen-
sion). The axiom of choice (AC) is the principle that,
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given any infinite family of disjoint nonempty sets,
there is a set, known as a choice set, that contains
exactly one element from each set in the family. The
problem with this, said the critics, is that it merely
stipulates the existence of the choice set and does not
give a defining property for it. Indeed, when it is possi-
ble to characterize the choice set explicitly, then the
use of AC is avoidable! But in the case of Zermelo’s
well-ordering theorem it is essential to employ AC. The
required well-ordering of R “exists” in the ideal sense of
Cantor, Dedekind, and Hilbert, but it seemed clear that
it was completely out of reach from any constructivist
perspective.

Thus, the axiom of choice exacerbated obscurities in
previous conceptions of set theory, forcing mathemati-
cians to introduce much-needed clarifications. On the
one hand, AC was nothing but an explicit statement
of previous views about arbitrary subsets, and yet, on
the other, it obviously clashed with strongly held views
about the need to explicitly define infinite sets by prop-
erties. The stage was set for deep debate. The discus-
sions about this particular topic contributed more than
anything else to a clarification of the existential impli-
cations of modern mathematical methods. It is instruc-
tive to know that borel [VI.70], Baire, and lebesgue
[VI.72], who became critics, had all relied on AC in less
obvious ways in order to prove theorems of analysis.
Not by chance, the axiom was suggested to Zermelo
by an analyst, Erhard Schmidt, who was a student of
Hilbert.5

After the publication of Zermelo’s proof, an intense
debate developed throughout Europe. Zermelo was
spurred on to work out the foundations of set theory
in an attempt to show that his proof could be devel-
oped within an unexceptionable axiom system. The out-
come was his famous axiom system [IV.1 §3], a master-
piece that emerged from careful analysis of set theory
as it was historically given in the contributions of Can-
tor and Dedekind and in Zermelo’s own theorem. With
some additions due to Fraenkel and von neumann
[VI.91] (the axioms of replacement and regularity) and
the major innovation proposed by Weyl and skolem
[VI.81] (to formulate it within first-order logic, i.e.,
quantifying over individuals, the sets, but not over their
properties), the axiom system became in the 1920s the
one that we now know.

5. One may still gain much insight by reading the letters exchanged
by the French analysts in 1905 (see Moore 1982; Ewald 1996) and Zer-
melo’s clever arguments in his second 1908 proof of well-ordering
(van Heijenoort 1967).

The ZFC system (this stands for “Zermelo–Fraenkel
with choice”) codifies the key traits of modern math-
ematical methodology, offering a satisfactory frame-
work for the development of mathematical theories
and the conduct of proofs. In particular, it includes
strong existence principles, allows impredicative def-
initions and arbitrary functions, warrants purely exis-
tential proofs, and makes it possible to define the main
mathematical structures. It thus exhibits all the ten-
dencies (i)–(iv) mentioned in section 1. Zermelo’s own
work was completely in line with Hilbert’s informal
axiomatizations of about 1900, and he did not for-
get to promise a proof of consistency. Axiomatic set
theory, whether in the Zermelo–Fraenkel presentation
or the von Neumann–Bernays–Gödel version, is the sys-
tem that most mathematicians regard as the working
foundation for their discipline.

As of 1910, the contrast between Russell’s type
theory and Zermelo’s set theory was strong. The for-
mer system was developed within formal logic, and its
point of departure (albeit later compromised for prag-
matic reasons) was in line with predicativism; in order
to derive mathematics, the system needed the existen-
tial assumptions of infinity and choice, but these were
rhetorically treated as tentative hypotheses rather than
outright axioms. The latter system was presented infor-
mally, adopted the impredicative standpoint whole-
heartedly, and asserted as axioms strong existential
assumptions that were sufficient to derive all of classi-
cal mathematics and Cantor’s theory of the higher infi-
nite. In the 1920s the separation diminished greatly,
especially with respect to the first two traits just indi-
cated. Zermelo’s system was perfected and formulated
within the language of modern formal logic. And the
Russellians adopted simple type theory, thus accept-
ing the impredicative and “existential” methodology of
modern mathematics. This is often given the (poten-
tially confusing) term “Platonism”: the objects that the
theory refers to are treated as if they were independent
of what the mathematician can actually and explicitly
define.

Meanwhile, back in the first decade of the twentieth
century, a young mathematician in the Netherlands was
beginning to find his way toward a philosophically col-
ored version of constructivism. Brouwer presented his
strikingly peculiar metaphysical and ethical views in
1905, and started to elaborate a corresponding founda-
tion for mathematics in his thesis of 1907. His philos-
ophy of “intuitionism” derived from the old metaphys-
ical view that individual consciousness is the one and
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only source of knowledge. This philosophy is perhaps
of little interest in itself, so we shall concentrate here
on Brouwer’s constructivistic principles. In the years
around 1910, Brouwer became a renowned mathemati-
cian, with crucial contributions to topology such as his
fixed-point theorem [V.13]. By the end of World War I,
he started to publish detailed elaborations of his foun-
dational ideas, helping to create the famous “crisis,” to
which we now turn. He was also successful in establish-
ing the customary (but misleading) distinction between
formalism and intuitionism.

3 The Crisis in a Strict Sense

In 1921, the Mathematische Zeitschrift published a
paper by Weyl in which the famous mathematician, who

PUP: editors think
that italics are
more appropriate
than quotes here,
and are more in
keeping with usage
elsewhere in the
volume.

was a disciple of Hilbert, openly espoused intuitionism
and diagnosed a “crisis in the foundations” of math-
ematics. The crisis pointed toward a “dissolution” of
the old state of analysis, by means of Brouwer’s “revo-
lution.” Weyl’s paper was meant as a propaganda pam-
phlet to rouse the sleepers, and it certainly did. Hilbert
answered in the same year, accusing Brouwer and Weyl
of attempting a “putsch” aimed at establishing “dic-
tatorship à la Kronecker” (see the relevant papers in
Mancosu (1998) and van Heijenoort (1967)). The foun-
dational debate shifted dramatically toward the battle
between Hilbert’s attempts to justify “classical” math-
ematics and Brouwer’s developing reconstruction of a
much-reformed intuitionistic mathematics.

Why was Brouwer “revolutionary”? Up to 1920 the
key foundational issues had been the acceptability of
the real numbers and, more fundamentally, of the
impredicativity and strong existential assumptions of
set theory, which supported the higher infinite and
the unrestricted use of existential proofs. Set theory
and, by implication, classical analysis had been crit-
icized for their reliance on impredicative definitions
and for their strong existential assumptions (in partic-
ular, the axiom of choice, of which extensive use was
made by sierpiński [VI.77] in 1918). Thus, the debate
in the first two decades of the twentieth century was
mainly about which principles to accept when it came
to defining and establishing the existence of sets and
subsets. A key question was, can one make rigorous the
vague idea behind talk of “arbitrary subsets”? The most
coherent reactions had been Zermelo’s axiomatization
of set theory and Weyl’s predicative system in Das
Kontinuum. (The Principia Mathematica of Whitehead
and Russell was an unsuccessful compromise between
predicativism and classical mathematics.)

Brouwer, however, brought new and even more basic
questions to the fore. No one had questioned the tra-
ditional ways of reasoning about the natural numbers:
classical logic, in particular the use of quantifiers and
the principle of the excluded middle, had been used in
this context without hesitation. But Brouwer put for-
ward principled critiques of these assumptions and
started developing an alternative theory of analysis
that was much more radical than Weyl’s. In doing so, he
came upon a new theory of the continuum, which finally
enticed Weyl and made him announce the coming of a
new age.

3.1 Intuitionism

Brouwer began the systematic development of his
views with two papers on “intuitionistic set theory,”
written in German and published in 1918 and 1919 by
the Verhandelingen of the Dutch Academy of Sciences.
These contributions were part of what he regarded as
the “Second Act” of intuitionism. The “First Act” (from
1907) had been his emphasis on the intuitive founda-
tions of mathematics. Already Klein and Poincaré had
insisted that intuition has an inescapable role to play
in mathematical knowledge: as important as logic is in
proofs and in the development of mathematical theory,
mathematics cannot be reduced to pure logic; theories
and proofs are of course organized logically, but their
basic principles (axioms) are grounded in intuition. But
Brouwer went beyond them and insisted on the abso-
lute independence of mathematics from language and
logic.

From 1907, Brouwer rejected the principle of the
excluded middle (PEM), which he regarded as equiva-
lent to Hilbert’s conviction that all mathematical prob-
lems are solvable. PEM is the logical principle that the
statementp∨¬p (that is, eitherp or notp) must always
be true, whatever the proposition p may be. (For exam-
ple, it follows from PEM that either the decimal expan-
sion of π contains infinitely many sevens or it contains
only finitely many sevens, even though we do not have
a proof of which.) Brouwer held that our customary log-
ical principles were abstracted from the way we dealt
with subsets of a finite set, and that it was wrong to
apply them to infinite sets as well. After World War I he
started the systematic reconstruction of mathematics.

The intuitionist position is that one can only state “p
or q” when one can give either a constructive proof of
p or a constructive proof of q. This standpoint has the
consequence that proofs by contradiction (reductio ad



�

II.7. The Crisis in the Foundations of Mathematics 151

absurdum) are not valid. Consider Hilbert’s first proof
of his basis theorem (section 1), achieved by reductio:
he showed that one can derive a contradiction from the
assumption that the basis is infinite, and from this he
concluded that the basis is finite. The logic behind this
procedure is that we start from a concrete instance of
PEM, p∨¬p, show that ¬p is untenable, and conclude
that pmust be true. But constructive mathematics asks
for explicit procedures for constructing each object that
is assumed to exist, and explicit constructions behind
any mathematical statement. Similarly, we have men-
tioned before (section 2.1) Cauchy’s proof of the fun-
damental theorem of algebra, as well as many proofs in
real analysis that invoke the least upper bound. All of
these proofs are invalid for a constructivist, and sev-
eral mathematicians have tried to save the theorems
by finding constructivist proofs for them. For instance,
both Weyl and Kneser worked on constructivist proofs
for the fundamental theorem of algebra.

It is easy to give instances of the use of PEM that a
constructivist will not accept: one just has to apply it
to any unsolved mathematical problem. For example,
Catalan’s constant is the number

K =
∞∑
n=0

(−1)n

(2n+ 1)2
.

It is not known whether K is transcendental, so if p is
the statement “Catalan’s constant is transcendental,”
then a constructivist will not accept that p is either true
or false.

This may seem odd, or even obviously wrong, until
one realizes that constructivists have a different view
about what truth is. For a constructivist, to say that a
proposition is true simply means that we can prove it
in accordance with the stringent methods that we are
discussing; to say that it is false means that we can
actually exhibit a counterexample to it. Since there is
no reason to suppose that every existence statement
has either a strict constructivist proof or an explicit
counterexample, there is no reason to believe PEM (with
this notion of truth). Thus, in order to establish the
existence of a natural number with a certain prop-
erty, a proof by reductio ad absurdum is not enough.
Existence must be shown by explicit determination or
construction if you want to persuade a constructivist.

Notice also how this viewpoint implies that math-
ematics is not timeless or ahistorical. It was only in
1882 that Lindemann proved thatπ is a transcenden-
tal number [III.43]. Since that date, it has been pos-
sible to assign a truth value to statements that were

neither true nor false before, according to intuition-
ists. This may seem paradoxical, but it was just right
for Brouwer, since in his view mathematical objects
are mental constructions and he rejected as “meta-
physics” the assumption that they have an independent
existence.

In 1918, Brouwer replaced the sets of Cantor and
Zermelo by constructive counterparts, which he would
later call “spreads” and “species.” A species is basically
a set that has been defined by a characteristic prop-
erty, but with the proviso that every element has been
previously and independently defined by an explicit
construction. In particular, the definition of any given
species will be strictly predicative.

The concept of a spread is particularly characteris-
tic of intuitionism, and it forms the basis for Brouwer’s
definition of the continuum. It is an attempt to avoid
idealization and do justice to the temporal nature
of mathematical constructions. Suppose, for example,
that we wish to define a sequence of rational num-
bers that gives better and better approximations to
the square root of 2. In classical analysis, one con-
ceives of such sequences as existing in their entirety,
but Brouwer defined a notion that he called a choice
sequence, which pays more attention to how they might
be produced. One way to produce them is to give a rule,
such as the recurrence relation xn+1 = (x2

n + 2)/2xn
(and the initial condition x1 = 2). But another is to
make less rigidly determined choices that obey certain
constraints: for instance, one might insist that xn has
denominator n and that x2

n differs from 2 by at most
100/n, which does not determine xn uniquely but does
ensure that the sequence produces better and better
approximations to

√
2.

A choice sequence is therefore not required to be
completely specified from the outset, and it can involve
choices that are freely made by the mathematician at
different moments in time. Both these features make
choice sequences very different from the sequences
of classical analysis: it has been said that intuitionist
mathematics is “mathematics in the making.” By con-
trast, classical mathematics is marked by a kind of
timeless objectivity, since its objects are assumed to
be fully determined in themselves and independent of
the thinking processes of mathematicians.

A spread has choice sequences as its elements—it is
something like a law that regulates how the sequences
are constructed.6 For instance, one could take a spread

6. More precisely, a spread is defined by means of two laws; see
Heyting (1956), or more recently van Atten (2003), for further details
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that consisted of all choice sequences that began in
some particular way, and such a spread would repre-
sent a segment—in general, spreads do not represent
isolated elements, but continuous domains. By using
spreads whose elements satisfy the Cauchy condition,
Brouwer offered a new mathematical conception of the
continuum: rather than being made up of points (or real
numbers) with some previous Platonic existence, it was
more genuinely “continuous.” Interestingly, this view
is reminiscent of Aristotle, who, twenty-three centuries
earlier, had emphasized the priority of the continuum
and rejected the idea that an extended continuum can
be made up of unextended points.

The next stage in Brouwer’s redevelopment of analy-
sis was to analyze the idea of a function. Brouwer
defined a function to be an assignment of values to the
elements of a spread. However, because of the nature of
spreads, this assignment had to be wholly dependent
on an initial segment of the choice sequence in order
to be constructively admissible. This threw up a big
surprise: all functions that are everywhere defined are
continuous (and even uniformly continuous). What, you
might wonder, about the function f where f(x) = 0
when x < 0 and f(x) = 1 when x � 0? For Brouwer,
this is not a well-defined function, and the underlying
reason for this is that one can determine spreads for
which we do not know (and may never know) whether
they are positive, zero, or negative. For instance, one
could let xn be 1 if all the even numbers between 4 and
2n are sums of two primes, and −1 otherwise.

The rejection of PEM has the effect that intuitionis-
tic negation differs in meaning from classical negation.
Thus, intuitionistic arithmetic is also different from
classical arithmetic. Nevertheless, in 1933 Gödel and
Gentzen were able to show that the dedekind–peano
axioms [III.69] of arithmetic are consistent relative to
formalized intuitionistic arithmetic. (That is, they were
able to establish a correspondence between the sen-
tences of both formal systems, such that a contradic-
tion in classical arithmetic yields a contradiction in its
intuitionistic counterpart; thus, if the latter is consis-
tent, the former must be as well.) This was a small tri-
umph for the Hilbertians, though corresponding proofs
for systems of analysis or set theory have never been
found.

on this and other points. One can picture a spread as a subtree of the
universal tree of natural numbers (consisting of all finite sequences of
natural numbers), together with an assignment of previously available
mathematical objects to the nodes. One law of the spread determines
nodes in the tree, the other maps them to objects.

Initially there had been hopes that the develop-
ment of intuitionism would end in a simple and ele-
gant presentation of pure mathematics. However, as
Brouwer’s reconstruction developed in the 1920s, it
became more and more clear that intuitionistic analysis
was extremely complicated and foreign. Brouwer was
not worried, for, as he would say in 1933, “the spheres
of truth are less transparent than those of illusion.” But
Weyl, although convinced that Brouwer had delineated
the domain of mathematical intuition in a completely
satisfactory way, remarked in 1925: “the mathemati-
cian watches with pain the largest part of his tower-
ing theories dissolve into mist before his eyes.” Weyl
seems to have abandoned intuitionism shortly there-
after. Fortunately, there was an alternative approach
that suggested another way of rehabilitating classical
mathematics.

3.2 Hilbert’s Program

This alternative approach was, of course, Hilbert’s pro-
gram, which promised, in the memorable phrasing of
1928, “to eliminate from the world once and for all the
skeptical doubts” as to the acceptability of the classical
theories of mathematics. The new perspective, which
he started to develop in 1904, relied heavily on formal
logic and a combinatorial study of the formulas that are
provable from given formulas (the axioms). With mod-
ern logic, proofs are turned into formal computations
that can be checked mechanically, so that the process
is purely constructivistic.

In the light of our previous discussion (section 1),
it is interesting that the new project was to employ
Kroneckerian means for a justification of modern, anti-
Kroneckerian methodology. Hilbert’s aim was to show
that it is impossible to prove a contradictory formula
from the axioms. Once this had been shown combina-
torially or constructively (or, as Hilbert also said, fini-
tarily), the argument can be regarded as a justification
of the axiom system—even if we read the axioms as
talking about non-Kroneckerian objects like the real
numbers or transfinite sets.

Still, Hilbert’s ideas at the time were marred by a defi-
cient understanding of logical theory.7 It was only in
1917–18 that Hilbert returned to this topic, now with
a refined understanding of logical theory and a greater
awareness of the considerable technical difficulties of

7. The logic he presented in 1905 lagged far behind Frege’s system
of 1879 or Peano’s of the 1890s. We do not enter into the development
of logical theory in this period (see, for example, Moore 1998).
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his project. Other mathematicians played very signif-
icant parts in promoting this better understanding.
By 1921, helped by his assistant Bernays, Hilbert had
arrived at a very refined conception of the formaliza-
tion of mathematics, and had perceived the need for a
deeper and more careful probing into the logical struc-
ture of mathematical proofs and theories. His program
was first clearly formulated in a talk at Leipzig late in
1922.

Here we will describe the mature form of Hilbert’s
program, as it was presented for instance in the 1925
paper “On the infinite” (see van Heijenoort 1967). The
main goal was to establish, by means of syntactic con-
sistency proofs, the logical acceptability of the princi-
ples and modes of inference of modern mathematics.
Axiomatics, logic, and formalization made it possible
to study mathematical theories from a purely mathe-
matical standpoint (hence the name metamathematics),
and Hilbert hoped to establish the consistency of the
theories by employing very weak means. In particular,
Hilbert hoped to answer all of the criticisms of Weyl
and Brouwer, and thereby justify set theory, the clas-
sical theory of real numbers, classical analysis, and of
course classical logic with its PEM (the basis for indirect
proofs by reductio ad absurdum).

The whole point of Hilbert’s approach was to make
mathematical theories fully precise, so that it would
become possible to obtain precise results about their
properties. The following steps are indispensable for
the completion of such a program.

(i) Finding suitable axioms and primitive concepts for
a mathematical theory T , such as that of the real
numbers.

(ii) Finding axioms and inference rules for classical
logic, which makes the passage from given propo-
sitions to new propositions a purely syntactic,
formal procedure.

(iii) Formalizing T by means of the formal logical cal-
culus, so that propositions of T are just strings of
symbols, and proofs are sequences of such strings
that obey the formal rules of inference.

(iv) A finitary study of the formalized proofs of T that
shows that it is impossible for a string of symbols
that expresses a contradiction to be the last line
of a proof.

In fact, steps (ii) and (iii) can be solved with rather sim-
ple systems formalized in first-order logic, like those
studied in any introduction to mathematical logic, such

as Dedekind–Peano arithmetic or Zermelo–Fraenkel set
theory. It turns out that first-order logic is enough for
codifying mathematical proofs, but, interestingly, this
realization came rather late—after gödel’s theorems
[V.18].

Hilbert’s main insight was that, when theories are
formalized, any proof becomes a finite combinatorial
object: it is just an array of strings of symbols com-
plying with the formal rules of the system. As Bernays
said, this was like “projecting” the deductive structure
of a theory T into the number-theoretic domain, and it
became possible to express in this domain the consis-
tency of T . These realizations raised hopes that a fini-
tary study of formalized proofs would suffice to estab-
lish the consistency of the theory, that is, to prove the
sentence expressing the consistency of T . But this hope,
not warranted by the previous insights, turned out to
be wrong.8

Also, a crucial presupposition of the program was
that not only the logical calculus but also each of the
axiomatic systems would be complete. Roughly speak-
ing, this means that they would be sufficiently power-
ful to allow the derivation of all the relevant results.9

This assumption turned out to be wrong for systems
that contain (primitive recursive) arithmetic, as Gödel
showed.

It remains to say a bit more about what Hilbert meant
by finitism (for details, see Tait 1981). This is one of
the points in which his program of the 1920s adopted
to some extent the principles of intuitionists such as
Poincaré and Brouwer and deviated strongly from the
ideas Hilbert himself had considered in 1900. The key
idea is that, contrary to the views of logicists like
Frege and Dedekind, logic and pure thought require
something that is given “intuitively” in our immediate
experience: the signs and formulas.

In 1905, Poincaré had put forth the view that a for-
mal consistency proof for arithmetic would be circu-
lar, as such a demonstration would have to proceed by
induction on the length of formulas and proofs, and
thus would rely on the same axiom of induction that it
was supposed to establish. Hilbert replied in the 1920s
that the form of induction required at the metamath-
ematical level is much weaker than full arithmetical
induction, and that this weak form is grounded on the

8. For further details, see, for example, Sieg (1999).
9. The notion of “relevant result” should of course be made precise:

doing so leads to the notion either of syntactic completeness or of
semantic completeness.
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finitary consideration of signs that he took to be intu-
itively given. Finitary mathematics was not in need of
any further justification or reduction.

Hilbert’s program proceeded gradually by studying
weak theories at first and proceeding to progressively
stronger ones. The metatheory of a formal system stud-
ies properties such as consistency, completeness, and
some others (“completeness” in the logical sense means
that all true or valid formulas that can be represented
in the calculus are formally deducible in it). Proposi-
tional logic was quickly proved to be consistent and
complete. First-order logic, also known as predicate
logic, was proved complete by Gödel in his dissertation
of 1929. For all of the 1920s, the attention of Hilbert
and coworkers was set on elementary arithmetic and its
subsystems; once this had been settled, the project was
to move on to the much more difficult, but crucial, cases
of the theory of real numbers and set theory. Acker-
mann and von Neumann were able to establish consis-
tency results for certain subsystems of arithmetic, but
between 1928 and 1930 Hilbert was convinced that the
consistency of arithmetic had already been established.
Then came the severe blow of Gödel’s incompleteness
results (see section 4).

The name “formalism,” as a description of this pro-
gram, came from the fact that Hilbert’s method con-
sisted in formalizing each mathematical theory, and
formally studying its proof structure. However, this
name is rather one-sided and even confusing, espe-
cially because it is usually contrasted with intuition-
ism, a full-blown philosophy of mathematics. Like most
mathematicians, Hilbert never viewed mathematics as
a mere game played with formulas. Indeed, he often
emphasized the meaningfulness of (informal) mathe-
matical statements and the depth of conceptual con-
tent expressed in them.10

3.3 Personal Disputes

The crisis was unfolding not just at an intellectual level
but also at a personal level. One should perhaps tell
this story as a tragedy, in which the personalities of
the main figures and the successive events made the
final result quite inescapable.

Hilbert and Brouwer were very different personali-
ties, though they were both extremely willful and clever
men. Brouwer’s worldview was idealistic and tended

10. This is very explicit, for example, in the lectures of 1919–20
edited by Rowe (1992), and also in the 1930 paper that bears exactly
the same title (see Gesammelte Abhandlungen, volume 3).

to solipsism. He had an artistic temperament and an
eccentric private life. He despised the modern world,
looking to the inner life of the self as the only way
out (at least in principle, though not always in prac-
tice). He preferred to work in isolation, although he had
good friends in the mathematical community, espe-
cially in the international group of topologists that
gathered around him. Hilbert was typically modernist
in his views and attitudes; full of optimism and ratio-
nalism, he was ready to lead his university, his country,
and the international community into a new world. He
was very much in favor of collaboration, and felt happy
to join Klein’s schemes for institutional development
and power.

As a consequence of World War I, Germans in the
early 1920s were not allowed to attend the Interna-
tional Congresses of Mathematicians. When the oppor-
tunity finally arose in 1928, Hilbert was eager to seize
on it, but Brouwer was furious because of restrictions
that were still imposed on the German delegation and
sent a circular letter in order to convince other math-
ematicians. Their viewpoints were widely known and
led to a clash between the two men. On another level,
Hilbert had made important concessions to his oppo-
nents in the 1920s, hoping that he would succeed in
his project of finding a consistency proof. Brouwer
emphasized these concessions, accusing him of fail-
ing to recognize authorship, and demanded new con-
cessions.11 Hilbert must have felt insulted and per-
haps even threatened by a man whom he regarded
as perhaps the greatest mathematician of the younger
generation.

The last straw came with an episode in 1928. Brouwer
had since 1915 been a member of the editorial board
of Mathematische Annalen, the most prestigious math-
ematics journal at the time, of which Hilbert had been
the main editor since 1902. Ill with “pernicious ane-
mia,” and apparently thinking that he was close to the
end, Hilbert feared for the future of his journal and
decided it was imperative to remove Brouwer from the
editorial board. When he wrote to other members of the
board explaining his scheme, which he was already car-
rying out, Einstein replied saying that his proposal was
unwise and that he wanted to have nothing to do with
it. Other members, however, did not wish to upset the
old and admired Hilbert. Finally, a dubious procedure
was adopted, where the whole board was dissolved and
created anew. Brouwer was greatly disturbed by this

11. See his “Intuitionistic reflections on formalism” of 1928 (in
Mancosu 1998).



�

II.7. The Crisis in the Foundations of Mathematics 155

action, and as a result of it the journal lost Einstein and
Carathéodory, who had previously been main editors
(see van Dalen 2005).

After that, Brouwer ceased to publish for some years,
leaving some book plans unfinished. With his disap-
pearance from the scene, and with the gradual disap-
pearance of previous political turbulences, the feelings
of “crisis” began to fade away (see Hesseling 2003).
Hilbert did not intervene much in the subsequent
debates and foundational developments.

4 Gödel and the Aftermath

It was not only the Annalen war that Hilbert won: the
mathematical community as a whole continued to work
in the style of modern mathematics. And yet his pro-
gram suffered a profound blow with the publication
of Gödel’s famous 1931 article in the Monatshefte für
Mathematik und Physik. An extremely ingenious devel-
opment of metamathematical methods—the arithme-
tization of metamathematics—allowed Gödel to prove
that systems like axiomatic set theory or Dedekind–
Peano arithmetic are incomplete (see gödel’s theorem
[V.18]). That is, there exist propositions P formulated
strictly in the language of the system such that neither
P nor ¬P is formally provable in the system.

This theorem already presented a deep problem for
Hilbert’s endeavor, as it shows that formal proof cannot
even capture arithmetical truth. But there was more.
A close look at Gödel’s arguments made it clear that
this first metamathematical proof could itself be for-
malized, which led to “Gödel’s second theorem”—that
it is impossible to establish the consistency of the sys-
tems mentioned above by any proof that can be codi-
fied within them. Gödel’s arithmetization of metamath-
ematics makes it possible to build a sentence, in the
language of formal arithmetic, that expresses the con-
sistency of this same formal system. And this sentence
turns out to be among those that are unprovable.12

To express it contrapositively, a finitary formal proof
(codifiable in the system of formal arithmetic) of the
impossibility of proving 1 = 0 could be transformed
into a contradiction of the system! Thus, if the sys-
tem is indeed consistent (as most mathematicians are
convinced it is), then there is no such finitary proof.

According to what Gödel called at the time “the
von Neumann conjecture” (namely, that if there is a

12. For further details, see, for example, Smullyan (2001), van Hei-
jenoort (1967), and good introductions to mathematical logic. Both
theorems were carefully proved in Hilbert and Bernays (1934/39). Bad
expositions and faulty interpretations of Gödel’s results abound.

finitary proof of consistency, then it can be formalized
and codified within elementary arithmetic), the second
theorem implies the failure of Hilbert’s program (see
Mancosu (1999, p. 38) and, for more on the reception,
Dawson (1997, pp. 68 ff)). One should emphasize that
Gödel’s negative results are purely constructivistic and
even finitistic, valid for all parties in the foundational
debate. They were difficult to digest, but in the end
they led to a reestablishment of the basic terms for
foundational studies.

Mathematical logic and foundational studies con-
tinued to develop brilliantly with Gentzen-style proof
theory, with the rise of model theory [IV.2], etc.—all
of which had their roots in the foundational studies of
the first third of the twentieth century. Although the
Zermelo–Fraenkel axioms suffice for giving a rigorous
foundation to most of today’s mathematics, and have a
rather convincing intuitive justification in terms of the
“iterative” conception of sets,13 there is a general feel-
ing that foundational studies, instead of achieving their
ambitious goal, “found themselves attracted into the
whirl of mathematical activity, and are now enjoying
full voting rights in the mathematical senate.”14

However, this impression is somewhat superficial.
Proof theory has developed, leading to noteworthy
reductions of classical theories to systems that can be
regarded as constructive. A striking example is that
analysis can be formalized in conservative extensions
of arithmetic: that is, in systems that extend the lan-
guage of arithmetic while including all theorems of
arithmetic, but which are “conservative” in the sense
that they have no new consequences in the language of
arithmetic. Some parts of analysis can even be devel-
oped in conservative extensions of primitive recursive
arithmetic (see Feferman 1998). This raises questions
about the philosophical bases on which the admissibil-
ity of the relevant constructive theories can be founded.
But for these systems the question is far less simple
than it was for Hilbert’s finitary mathematics; it seems
fair to say that no general consensus has yet been
reached.

Whatever its roots and justification may be, mathe-
matics is a human activity. This truism is clear from the

13. The basic idea is to view the set-theoretic universe as a product
of iterating the following operation: one starts with a basic domain
V0 (possibly finite or even equal to ∅) and forms all possible sets of
elements in the domain; this gives a new domain V1, and one iterates
forming sets of V0 ∪ V1, and so on (to infinity and beyond!). This pro-
duces an open-ended set-theoretic universe, masterfully described by
Zermelo (1930). On the iterative conception, see, for example, the last
papers in Bernacerraf and Putnam (1983).

14. To use the words of Gian-Carlo Rota in an essay of 1973.
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subsequent development of our story. The mathemati-
cal community refused to abandon “classical” ideas and
methods; the constructivist “revolution” was aborted.
In spite of its failure, formalism established itself in
practice as the avowed ideology of twentieth-century
mathematicians. Some have remarked that formalism
was less a real faith than a Sunday refuge for those who
spent their weekdays working on mathematical objects
as something very real. The Platonism of working days
was only abandoned, as a bourbaki [VI.96] member
said, when a ready-made reply was needed to unwel-
come philosophical questions concerning mathemati-
cal knowledge.

One should note that formalism suited very well the
needs of a self-conscious, autonomous community of
research mathematicians. It granted them full freedom
to choose their topics and to employ modern meth-
ods to explore them. However, to reflective mathemat-
ical minds it has long been clear that it is not the
answer. Epistemological questions about mathematical
knowledge have not been “eliminated from the world”;
philosophers, historians, cognitive scientists, and oth-
ers keep looking for more adequate ways of under-
standing its content and development. Needless to say,
this does not threaten the autonomy of mathematical
researchers—if autonomy is to be a concern, perhaps
we should worry instead about the pressures exerted
on us by the market and other powers.

Both (semi-)constructivism and modern mathemat-
ics have continued to develop: the contrast between
them has simply been consolidated, though in a very
unbalanced way, since some 99% of practicing mathe-
maticians are “modern.” (But do statistics matter when
it comes to the correct methods for mathematics?) In
1905, commenting on the French debate, hadamard
[VI.65] wrote that “there are two conceptions of math-
ematics, two mentalities, in evidence.” It has now come
to be recognized that there is value in both approaches:
they complement each other and can coexist peacefully.
In particular, interest in effective methods, algorithms,
and computational mathematics has grown markedly
in recent decades—and all of these are closer to the
constructivist tradition.

The foundational debate left a rich legacy of ideas
and results, key insights and developments, including
the formulation of axiomatic set theories and the rise
of intuitionism. One of the most important of these
developments was the emergence of modern mathe-
matical logic as a refinement of axiomatics, which led to
the theories of recursion and computability in around

1936 (see algorithms [II.4 §3.2]). In the process, our
understanding of the characteristics, possibilities, and
limitations of formal systems was hugely clarified.

One of the hottest issues throughout the whole
debate, and probably its main source, was the question
of how to understand the continuum. The reader may
recall the contrast between the set-theoretic under-
standing of the real numbers and Brouwer’s approach,
which rejected the idea that the continuum is “built
of” points. That this is a labyrinthine question was
further established by results on Cantor’s continuum
hypothesis (CH), which postulates that the cardinality
of the set of real numbers is ℵ1, the second transfi-
nite cardinal, or equivalently that every infinite subset
of R must biject with either N or with R itself. Gödel
proved in 1939 that CH is consistent with axiomatic
set theory, but Paul Cohen proved in 1963 that it
is independent of its axioms (i.e., Cohen proved that
the negation of CH is consistent with axiomatic set
theory [IV.1 §5]). The problem is still alive, with a few
mathematicians proposing alternative approaches to
the continuum and others trying to find new and con-
vincing set-theoretic principles that will settle Cantor’s
question (see Woodin 2001).

The foundational debate has also contributed in
a definitive way to clarifying the peculiar style and
methodology of modern mathematics, especially the
so-called Platonism or existential character of modern
mathematics (see the classic 1935 paper of Bernays
in Benacerraf and Putnam (1983)), by which is meant
(here at least) a methodological trait rather than any
supposed implications of metaphysical existence. Mod-
ern mathematics investigates structures by consider-
ing their elements as given independently of human
(or mechanical) capabilities of effective definition and
construction. This may seem surprising, but perhaps
this trait can be explained by broader characteristics of
scientific thought and the role played by mathematical
structures in the modeling of scientific phenomena.

In the end, the debate made it clear that mathematics
and its modern methods are still surrounded by impor-
tant philosophical problems. When a sizable amount of
mathematical knowledge can be taken for granted, the-
orems can be established and problems can be solved
with the certainty and clarity for which mathematics is
celebrated. But when it comes to laying out the bare
beginnings, philosophical issues cannot be avoided.
The reader of these pages may have felt this at several
places, especially in the discussion of intuitionism, but
also in the basic ideas behind Hilbert’s program, and
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of course in the problem of the relationship between
formal mathematics and its informal counterpart, a
problem that is brought into sharp focus by Gödel’s
theorems.

I thank Mark van Atten, Jeremy Gray, Paolo Mancosu,
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comments on a previous version of this paper.
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Part III

Mathematical Concepts

III.1 The Axiom of Choice

Consider the following problem: it is easy to find two
irrational numbers a and b such that a+ b is rational,
or such that ab is rational (in both cases one could take
a = √2 and b = −√2), but is it possible for ab to be
rational? Here is an elegant proof that the answer is yes.
Let x = √2

√
2
. If x is rational then we have our example.

But x
√

2 = √2
2 = 2 is rational, so if x is irrational then

again we have an example.

Now this argument certainly establishes that it is
possible for a and b to be irrational and for ab to
be rational. However, the proof has a very interesting
feature: it is nonconstructive, in the sense that it does
not actually name two irrationals a and b that work.
Instead, it tells us that either we can take a = b = √2
or we can take a = √2

√
2

and b = √2. Not only does it
not tell us which of these alternatives will work, it gives
us absolutely no clue about how to find out.

Some philosophers and philosophically inclined
mathematicians have been troubled by arguments of
this kind, but as far as mainstream mathematics goes
they are a fully accepted and important style of rea-
soning. Formally, we have appealed to the “law of the
excluded middle.” We have shown that the negation of
the statement cannot be true, and deduced that the
statement itself must be true. A typical reaction to
the proof above is not that it is in any sense invalid,
but merely that its nonconstructive nature is rather
surprising.

Nevertheless, faced with a nonconstructive proof, it
is very natural to ask whether there is a constructive
proof. After all, an actual construction may give us
more insight into the statement, which is an impor-
tant point since we prove things not only to be sure
they are true but also to gain an idea of why they are
true. Of course, to ask whether there is a constructive
proof is not to suggest that the nonconstructive proof

is invalid, but just that it may be more informative to

have a constructive proof.

The axiom of choice is one of several rules that we

use for building sets out of other sets. Typical exam-

ples of such rules are the statement that for any set A
we can form the set of all its subsets, and the statement

that for any set A and any property p we can form the

set of all elements of A that satisfy p (these are usually

called the power-set axiom and the axiom of compre-

hension, respectively). Roughly speaking, the axiom of

choice says that we are allowed to make an arbitrary

number of unspecified choices when we wish to form a

set.

Like the other axioms, the axiom of choice can seem

so natural that one may not even notice that one is

using it, and indeed it was applied by many mathe-

maticians before it was first formalized. To get an idea

of what it means, let us look at the well-known proof

that the union of a countable family of countable sets is

countable. The fact that the family is countable allows

us to write out the sets in a list A1, A2, A3, . . . , and then

the fact that each individual set An is countable allows

us to write its elements in a list an1, an2, an3, . . . . We

then finish the proof by finding some systematic way

of counting through the elements anm.

Now in that proof we actually made an infinite num-

ber of unspecified choices. We were told that each An
was countable and then for eachAn we “chose” a listing

of the elements of An without specifying the choice we

had made. Moreover, since we are told absolutely noth-

ing about the setsAn, it is clearly impossible to say how

we choose to list them. This remark does not invalidate

the proof, but it does show that it is nonconstructive.

(Note, however, that if we are actually told what the sets

An are, then we may well be able to specify listings of

their elements and thereby give a constructive proof

that the union of those particular sets is countable.)

Here is another example. A graph [III.34] is bipartite

if its vertices can be split into two classes X and Y in
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such a way that no two vertices in the same class are
connected by an edge. For example, any even cycle (an
even number of points arranged in a circle, with consec-
utive points joined) is bipartite, while no odd cycle is.
Now, is an infinite disjoint union of even cycles bipar-
tite? Of course it is: we just split each of the individual
cycles C into two classes XC and YC and then let X be
the union of the sets XC and Y be the union of the sets
YC . But how do we choose for each cycle C which set to
call XC and which to call YC? Again, we cannot actually
specify how we do this, so we are using the axiom of
choice (even if we do not explicitly say so).

In general, the axiom of choice states that if we are
given a family of nonempty sets Xi, then we may select
an element xi from each one at once. More precisely, it
states that if the Xi are nonempty sets, where i ranges
over some index set I, then there is a function f defined
on I such that f(i) ∈ Xi for all i. Such a function f is
called a choice function for the family.

For one set we do not need any separate rule to do
this: indeed, the statement that a set X1 is nonempty is
exactly the statement that there exists x1 ∈ X1. (More
formally, we might say that the function f that takes 1
to x1 is a choice function for the “family” that consists
of the single set X1.) For two sets, and indeed for any
finite collection of sets, one can prove the existence of
a choice function by induction on the number of sets.
But for infinitely many sets it turns out that one can-
not deduce the existence of a choice function from the
other rules for building sets.

Why do people make a fuss about the axiom of
choice? The main reason is that if it is used in a proof,
then that part of the proof is automatically noncon-
structive. This is reflected in the very statement of the
axiom. For the other rules that we use, such as “one
may take the union of two sets,” the set whose exis-
tence is being asserted is uniquely defined by its prop-
erties (u is an element of X ∪ Y if and only if it is an
element of X or of Y or of both). But this is not the case
with the axiom of choice: the object whose existence is
asserted (a choice function) is not uniquely specified by
its properties, and there will typically be many choice
functions.

For this reason, the general view in mainstream math-
ematics is that, although there is nothing wrong with
using the axiom of choice, it is a good idea to signal
that one has used it, to draw attention to the fact that
one’s proof is not constructive.

An example of a statement whose proof involves
the axiom of choice is the banach–tarski paradox

[V.3]. This says that there is a way of dividing up
a solid unit sphere into a finite number of subsets
and then reassembling these subsets (using rotations,
reflections, and translations) to form two solid unit
spheres. The proof does not provide an explicit way
of defining the subsets.

It is sometimes claimed that the axiom of choice
has “undesirable” or “highly counterintuitive” conse-
quences, but in almost all cases a little thought reveals
that the consequence under consideration is actu-
ally not counterintuitive at all. For example, consider
the Banach–Tarski paradox above. Why does it seem
strange and paradoxical? It is because we feel that vol-
ume has not been preserved. And indeed, this feeling
can be converted into a rigorous argument that the sub-
sets used in the decomposition cannot all be sets to
which one can meaningfully assign a volume. But that
is not a paradox at all: we can say what we mean by the
volume of a nice set such as a polyhedron, but there is
no reason to suppose that we can give a sensible defini-
tion of volume for all subsets of the sphere. (The sub-
ject called measure theory can be used to give a volume
to a very wide class of sets, called the measurable sets
[III.57], but there is no reason at all to believe that all
sets should be measurable, and indeed it can be shown,
again by a use of the axiom of choice, that there are sets
that are not measurable.)

There are two forms of the axiom of choice that are
more often used in daily mathematical life than the
basic form we have been discussing. One is the well-
ordering principle, which states that every set can be
well-ordered [III.68]. The other is Zorn’s lemma, which
states that under certain circumstances “maximal” ele-
ments exist. For example, a basis for a vector space
is precisely a maximal linearly independent set, and it
turns out that Zorn’s lemma applies to the collection
of linearly independent sets in a vector space, which
shows that every vector space has a basis.

These two statements are called forms of the axiom
of choice because they are equivalent to it, in the sense
that each one both implies the axiom of choice and may
be deduced from it, in the presence of the other rules
for building sets. A good way of seeing why these two
other forms of the axiom have a nonconstructive feel
to them is to spend a few minutes trying to find a well-
ordering of the reals, or a basis for the vector space of
all sequences of real numbers.

For more about the axiom of choice, and especially
about its relationship to the other axioms of formal set
theory, see set theory [IV.1].
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III.2 The Axiom of Determinacy

Consider the following “infinite game.” Two players,

A and B, take turns to name natural numbers, with A

going first, say. By doing this, they generate an infinite

sequence. A wins the game if this sequence is “eventu-

ally periodic,” and B wins if it is not. (An eventually peri-

odic sequence is one like 1,56,4,5,8,3,5,8,3,5,8,3,5,
8,3, . . . , which settles down after a while to a recurring

pattern.) It is not hard to see that B has a winning strat-

egy for this game, since eventually periodic sequences

are rather special. However, there is never a point in

the game at which B is guaranteed to win, since every

finite sequence could be the beginning of an eventually

periodic sequence.

More generally, any collection S of infinite sequences

of natural numbers gives rise to an infinite game: A’s

object is now to ensure that the sequence produced is

one of the sequences in S, and B’s object is to ensure

the reverse. The resulting game is called determined if

one of the two players has a winning strategy. As we

have seen, the game is certainly determined when S is

the set of eventually periodic sequences, and indeed for

just about any set S that one writes down it is easy to

see that the corresponding game is determined. Never-

theless, it turns out that there are games that are not

determined. (It is an instructive exercise to see where

the plausible-seeming argument, “If A does not have a

winning strategy, then A cannot force a win, so B must

have a winning strategy,” breaks down.)

It is not too hard to construct nondetermined games,

but the constructions use the axiom of choice [III.1]:

roughly speaking, one can well-order all possible strate-

gies so that each one has fewer predecessors than there

are infinite sequences, and select sequences to belong

to S or its complement in a way that stops each strategy

in turn from being a winning strategy for either player.

The axiom of determinacy states that all games are

determined. It contradicts the axiom of choice, but it

is a rather interesting axiom when it is added to the

zermelo–fraenkel axioms [III.101] without choice. It

turns out, for example, to imply that many sets of

reals have surprisingly good properties, such as being

Lebesgue measurable. Variants of the axiom of deter-

minacy are closely connected with the theory of large

cardinals. For more details, see set theory [IV.1].

Banach Spaces
See normed spaces and banach spaces

[III.64]

III.3 Bayesian Analysis

Suppose you throw a pair of standard dice. The proba-
bility that the total is 10 is 1

12 because there are thirty-
six ways the dice can come up, of which three (4 and
6, 5 and 5, and 6 and 4) give 10. If, however, you look
at the first die and see that it came up as a 6, then the
conditional probability that the total is 10, given this
information, is 1

6 (since that is the probability that the
other die comes up as a 4).

In general, the probability of A given B is defined to
be the probability of A and B divided by the probability
of B. In symbols, one writes

P[A|B] = P[A∧ B]
P[B]

.

From this it follows that P[A ∧ B] = P[A|B]P[B]. Now
P[A∧ B] is the same as P[B ∧A]. Therefore,

P[A|B]P[B] = P[B|A]P[A],

since the left-hand side is P[A∧ B] and the right-hand
side is P[B ∧ A]. Dividing through by P[B] we obtain
Bayes’s theorem:

P[A|B] = P[B|A]P[A]
P[B]

,

which expresses the conditional probability of A given
B in terms of the conditional probability of B given A.

A fundamental problem in statistics is to analyze ran-
dom data given by an unknown probability distribu-
tion [III.73]. Here, Bayes’s theorem can make a signif-
icant contribution. For example, suppose you are told
that an unknown number of unbiased coins between 1
and 10 have been tossed, and that three of them came
up heads. Suppose that you wish to guess how many
coins there were. Let H3 stand for the event that three
coins came up heads and let C be the number of coins.
Then for each n between 1 and 10 it is not hard to cal-
culate the conditional probability P[H3|C = n], but we
would like to know the reverse, namely P[C = n|H3].
Bayes’s theorem tells us that it is

P[H3|C = n]P[C = n]
P[H3]

.

This would tell us the ratios between the various con-
ditional probabilities P[C = n|H3] if we knew what the
probabilities P[C = n] were. Typically, one does not
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know this, but one makes some kind of guess, called a
prior distribution. For example, one might guess, before
knowing that three coins had come up heads, that
for each n between 1 and 10 the probability that n
coins had been chosen was 1

10 . After this information,
one would use the calculation above to revise one’s
assessment and obtain a posterior distribution, in which
the probability that C = n would be proportional to
1

10 P[H3|C = n].
There is more to Bayesian analysis than simply apply-

ing Bayes’s theorem to replace prior distributions by
posterior distributions. In particular, as in the exam-
ple just given, there is not always an obvious prior
distribution to take, and it is a subtle and interesting
mathematical problem to devise methods for choosing
prior distributions that are “optimal” in different ways.
For further discussion, see mathematics and medi-
cal statistics [VII.11] and mathematical statistics
[VII.10].

III.4 Braid Groups
F. E. A. Johnson

Take two parallel planes, each punctured at n points.
Label the holes 1 to n in each plane, and run a string
from each hole in the first plane to one in the second,
in such a way that no two strings go to the same hole.
The result is an n-braid. Two different 3-braids, shown
in two-dimensional projection in a similar manner to
knot diagrams [III.46], are given in figure 1.

As the diagrams suggest, we insist that the strings
go from left to right without “doubling back”; so, for
example, a knotted string is not allowed.

In describing the “same” braid in different ways, a
certain freedom is allowed. Subject to the restrictions
that string ends remain fixed and that strings neither
break nor pass through each other, strings are allowed
to stretch, contract, bend, and otherwise move about in
three dimensions. This notion of “sameness” is called
braid isotopy.

Braids may be composed as follows: arrange a pair of
braids end to end to abut in a common (middle) plane,
join up the strings, and remove the middle plane. For
the braids X and Y in figure 1, the composition XY is
given in figure 2.

With this notion of composition, n-braids form a
group Bn. In our example, Y = X−1, since ‘pulling all
the strings tight” shows thatXY is isotopic to the trivial
braid (figure 3), which acts as the identity.

1 1

2 2

3 3}
X

1 1

2 2

3 3}
Y

Figure 1 Two 3-braids.

}

Y

3

2

1

}3

2

1

X

Figure 2 Braid composition.

1 1

2 2

3 3

Figure 3 The trivial braid.

As a group, Bn is generated by elements (σi)1�i�n−1,
where σi is formed from the trivial braid by crossing
the ith string over the (i + 1)st as in figure 4. The
reader may perceive a similarity between the σi and the
adjacent transpositions that generate the group Sn of
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i − 1 i − 1

i i

i + 1 i + 1

i + 2 i + 2}

σi

Figure 4 The generator σi.

permutations [III.70] of {1, . . . , n}. Indeed, any braid
determines a permutation by the rule

i �→ right-hand label of ith string.

Ignoring everything except the behavior at the ends
gives a surjective homomorphism Bn → Sn, which
mapsσi to the transposition (i, i+1). This is not an iso-
morphism, however, as Bn is infinite. In fact,σi has infi-
nite order, whereas the transposition (i, i+ 1) squares
to the identity. In his celebrated 1925 paper “Theorie
der Zöpfe,” artin [VI.86] showed that multiplication in
Bn is completely described by the relations

σiσj = σjσi (|i− j| � 2),

σiσi+1σi = σi+1σiσi+1.

These relations have subsequently acquired impor-
tance in statistical physics, where they are known as
the Yang–Baxter equations.

In groups defined by generators and relations it is
usually difficult (there being no method which works
uniformly in all cases) to decide whether an arbitrary
word in the generators represents the identity element
(see geometric and combinatorial group theory
[IV.11]). For Bn, Artin solved this problem geometri-
cally, by “combing the braid.” An alternative algebraic
method, due to Garside (1967), also decides when two
elements in Bn are conjugate.

In relation to the decidability of such questions, and
in many other respects, braid groups display close
affinities with linear groups: that is, groups in which all
elements behave as if they were invertibleN ×N matri-
ces. Although such similarities suggested that it should
be possible to prove that braid groups genuinely are
linear, the problem of doing so remained unsolved for
many years, until in 2001 a proof was eventually found
by Bigelow and independently by Krammer.

The groups described here are, strictly speaking,
braid groups of the plane, the plane being the object
punctured. Other braid groups also occur, often in
surprising contexts. The connection with statistical
physics has already been mentioned. They arise also
in algebraic geometry, when algebraic curves become
punctured by discarding exceptional points. Thus,
though originating in topology, braids may intervene
significantly in areas such as “constructive Galois
theory” that seem at first sight to be purely algebraic.

III.5 Buildings
Mark Ronan

The invertible linear transformations on a vector space
form a group, called the general linear group. If n is
the dimension of the vector space and K is the field of
scalars, then it is denoted by GLn(K), and if we pick
a basis for the vector space, then each group element
can be written as an n×nmatrix whose determinant
[III.15] is nonzero. This group and its subgroups are of
great interest in mathematics, and can be studied “geo-
metrically” in the following way. Instead of looking at
the vector space V , where of course the origin plays a
unique role and is fixed by the group, we use the pro-
jective space [I.3 §6.7] associated with V : the points
of projective space are the one-dimensional subspaces
of V , the lines are the two-dimensional subspaces, the
planes are the three-dimensional subspaces, and so on.

Several important subgroups of GLn(K) can be
obtained by imposing constraints on the linear maps
(or matrices). For example, SLn(K) consists of all
linear transformations of determinant 1. The group
O(n) consists of all linear transformations α of an
n-dimensional real inner-product space such that
〈αv,αw〉 = 〈v,w〉 for any two vectors v and w (or
in matrix terms all real matrices A such that AAT =
I); more generally, one can define many similar sub-
groups of GLn(K) by taking all linear maps that pre-
serve certain forms, such as bilinear or sesquilinear
forms. These subgroups are called classical groups. The
classical groups are either simple or close to simple (for
example, we can often make them simple by quotient-
ing out by the subgroup of scalar matrices). When K
is the field of real or complex numbers, the classical
groups are Lie groups.

Lie groups and their classification are discussed in
lie theory [III.50]: the simple Lie groups comprise the
classical groups, which fall into one of four families,
known as An, Bn, Cn, and Dn (where n is a natural
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number), along with other types known as E6, E7, E8,

F4, and G2. The subscripts are related to the dimen-

sions of the groups. For example, the groups of type

An are the groups of invertible linear transformations

in n+ 1 dimensions.

These simple Lie groups have analogues over any

field, where they are often referred to as groups of

Lie type. For example, K can be a finite field, in which

case the groups are finite. It turns out that almost all

finite simple groups are of Lie type: see the classi-

fication of finite simple groups [V.8]. A geometric

theory underlying the classical groups had been devel-

oped by the first half of the twentieth century. It used

projective space and various subgeometries of projec-

tive space, which made it possible to provide analogues

for the classical groups, but it did not provide ana-

logues for the groups of types E6, E7, E8, F4, andG2. For

this reason, Jacques Tits looked for a geometric theory

that would embrace all families, and ended up creating

the theory of buildings.

The full abstract definition of a building is some-

what complicated, so instead we shall try to give some

idea of the concept by looking at the building associ-

ated with the groups GLn(K) and SLn(K), which are of

type An−1. This building is an abstract simplicial com-PUP: I can confirm
that this is correct
as written. plex, which can be thought of as a higher-dimensional

analogue of a graph [III.34]. It consists of a collection

of points called vertices; as in a graph, some pairs of

vertices form edges; however, it is then possible for

triples of vertices to form two-dimensional faces, and

for sets of k vertices to form (k− 1)-dimensional “sim-

plexes.” (The geometrical meaning of the word “sim-

plex” is a convex hull of a finite set of points in gen-

eral position: for instance, a three-dimensional simplex

is a tetrahedron.) All faces of simplexes must also be

included, so for example three vertices cannot form a

two-dimensional face unless each pair is joined by an

edge.

To form the building of type An−1, we start by tak-

ing all the 1-spaces, 2-spaces, 3-spaces, and so on (cor-

responding to points, lines, planes, and so on, in pro-

jective space), and treat them as “vertices.” The sim-

plexes are formed by all nested sequences of proper

subspaces: for example, a 2-space inside a 4-space

inside a 5-space will form a “triangle” whose vertices

are these three subspaces. The simplexes of maximal

dimension have n− 1 vertices: a 1-space inside a 2-

space inside a 3-space, and so on. These simplexes are

called chambers.

There are many subspaces, so a building is a huge
object. However, buildings have important subgeome-
tries called apartments, which in the An−1 case are
obtained by taking a basis for the vector space, and
then taking all subspaces generated by subsets of this
basis. For example, in the A3 case our vector space is
four dimensional, so a basis has four elements; its sub-
sets span four 1-spaces, six 2-spaces, and four 3-spaces.
To visualize this apartment it helps to view the four 1-
spaces as the vertices of a tetrahedron, the six 2-spaces
as the midpoints of its edges, and the four 3-spaces as
the midpoints of its faces. The apartment has twenty-
four chambers, six for each face of the original tetra-
hedron, and they form a triangular tiling of the surface
of the tetrahedron. This surface is topologically equiv-
alent to a sphere, as are all apartments of this building:
such buildings are called spherical. The buildings for
the groups of Lie type are all spherical, and, just as
A3 is related to the tetrahedron, their apartments are
related to the regular and semiregular polyhedra in n
dimensions, wheren is the subscript in the Lie notation
given earlier.

Buildings have the following two noteworthy fea-
tures. First, any two chambers lie in a common apart-
ment: this is not obvious in the example above but it can
be proved using linear algebra. Second, in any building
all apartments are isomorphic and any two apartments
intersect nicely: more precisely, if A and A′ are apart-
ments, then A ∩ A′ is convex and there is an isomor-
phism fromA toA′ that fixesA∩A′. These two features
were originally used by Tits in defining buildings.

The theory of spherical buildings does not just give
a pleasing geometric basis for the groups of Lie type:
it can also be used to construct those of types E6, E7,
E8, and F4, for an arbitrary field K, without the need for
sophisticated machinery such as Lie algebras. Once the
building has been constructed (and a construction can
be given in a surprisingly simple manner), a theorem of
Tits on the existence of automorphisms shows that the
groups themselves must exist.

In a spherical building the apartments are tilings of PUP: some very
minor corrections
suggested by
author after
proofreading
proof sent to you
and these are
included above.
The main one,
though, is the
addition of this
paragraph.

a sphere, but other types of buildings also play signifi-
cant roles. Of particular importance are affine buildings,
in which the apartments are tilings of Euclidean space;
such buildings arise in a natural way from groups, such
as GLn(K), where K is a p-adic field [III.53]. For such
fields there are two buildings, one spherical and one
affine, but the affine one carries more information and
yields the spherical building as a structure “at infin-
ity.” Going beyond affine buildings, there are hyperbolic
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buildings, whose apartments are tilings of hyperbolic

space; they arise naturally in the study of hyperbolic

Kac–Moody groups.

III.6 Calabi–Yau Manifolds
Eric Zaslow

1 Basic Definition

Calabi–Yau manifolds, named after Eugenio Calabi and

Shing-Tung Yau, arise in Riemannian geometry and

algebraic geometry, and play a prominent role in string

theory and mirror symmetry.

In order to explain what they are, we need first

to recall the notion of orientability on a real mani-

fold [I.3 §6.9]. Such a manifold is orientable if you

can choose coordinate systems at each point in such

a way that any two systems x = (x1, . . . , xm) and

y = (y1, . . . , ym) that are defined on overlapping sets

give rise to a positive Jacobian: det(∂yi/∂xj) > 0. The

notion of a Calabi–Yau manifold is the natural com-

plex analogue of this. Now the manifold is complex,

and for each local coordinate system z = (z1, . . . , zn)
one has a holomorphic function [I.3 §5.6] f(z). It is

vital that f should be nonvanishing: that is, it never

takes the value 0. There is also a compatibility con-

dition: if z̄(z) is another coordinate system, then the

corresponding function f̄ is related to f by the equa-

tion f = f̃ det(∂z̃a/∂zb). Note that in this definition,

if we replace all complex terms by real terms, then we

have the notion of a real orientation. So a Calabi–Yau

manifold can be thought of informally as a complex

manifold with complex orientation.

2 Complex Manifolds and Hermitian Structure

Before we go any further, a few words about complex

and Kähler geometry are in order. A complex manifold

is a structure that looks locally like Cn, in the sense

that one can find complex coordinates z = (z1, . . . , zn)
near every point. Moreover, where two coordinate sys-

tems z and z̃ overlap, the coordinates z̃a are holomor-

phic when they are regarded as functions of the zb .PUP: this ‘the’ has
to stay. It shows
the reader that
there is more than
one ‘zb ’ and is a
pretty common
formulation in
maths writing.

Thus the notion of a holomorphic function on a com-

plex manifold makes sense and does not depend on the

coordinates used to express the function. In this way,

the local geometry of a complex manifold does indeed

look like an open set in Cn, and the tangent space at a

point looks like Cn itself.

On complex vector spaces it is natural to consider
Hermitian inner products [III.37] represented by her-
mitian matrices [III.52 §3]1 gab̄ with respect to a basis
ea. On complex manifolds, a Hermitian inner product
on the tangent spaces is called a “Hermitian metric,”
and is represented in a coordinate basis by a Hermitian
matrix gab̄ , which depends on position.

3 Holonomy, and Calabi–Yau Manifolds
in Riemannian Geometry

On a riemannian manifold [I.3 §6.10] one can move a
vector along a path so as to keep it of constant length
and “always pointing in the same direction.” Curvature
expresses the fact that the vector you wind up with at
the end of the path depends on the path itself. When
your path is a closed loop, the vector at the starting
point comes back to a new vector at the same point.
(A good example to think about is a path on a sphere
that goes from the North Pole to the equator, then a
quarter of the way around the equator, then back to
the North Pole again. When the journey is completed,
the “constant” vector that began by pointing south will
have been rotated by 90◦.) With each loop we asso-
ciate a matrix operator, called the holonomy matrix,
which sends the starting vector to the ending vector;
the group generated by all of these matrices is called
the holonomy group of the manifold. Since the length
of the vector does not change during the process of
keeping it constant along the loop, the holonomy matri-
ces all lie in the orthogonal group of length-preserving
matrices, O(m). If the manifold is oriented, then the
holonomy group must lie in SO(m), as one can see by
transporting an oriented basis of vectors around the
loop.

Every complex manifold of (complex) dimension n
is also a real manifold of (real) dimension m = 2n,
which one can think of as coordinatized by the real
and imaginary parts of the complex coordinates zj .
Real manifolds that arise in this way have additional
structure. For example, the fact that we can multiply
complex coordinate directions by i = √−1 implies
that there must be an operator on the real tangent
space that squares to−1. This operator has eigenvalues PUP: I can confirm

that bold 1 is OK.±i, which can be thought of as “holomorphic” and
“anti-holomorphic” directions. The Hermitian property
states that these directions are orthogonal, and we say
that the manifold is Kähler if they remain so after

1. The notation gab̄ indicates the conjugate-linear property of a
Hermitian inner product.
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transport around loops. This means that the holon-
omy group is a subgroup of U(n) (which itself is a
subgroup of SO(2m): complex manifolds always have
real orientations). There is a nice local characterization
of the Kähler property: if gab̄ are the components of
the Hermitian metric in some coordinate patch, then
there exists a functionϕ on that patch such that gab̄ =
∂2ϕ/∂za∂z̄b .

Given a complex orientation—that is, the nonmetric
definition of a Calabi–Yau manifold given above—a
compatible Kähler structure leads to a holonomy that
lies in SU(n) ⊂ U(n), the natural analogue of the case
of real orientation. This is the metric definition of a
Calabi–Yau manifold.

4 The Calabi Conjecture

Calabi conjectured that, for any Kähler manifold of
complex dimension n and any complex orientation,
there exists a function u and a new Kähler metric g̃,
given in coordinates by

g̃ab̄ = gab̄ +
∂2u

∂za∂z̄b
,

that is compatible with the orientation. In equations,
the compatibility condition states that

det
(
gab̄ +

∂2u
∂za∂z̄b

)
= |f |2,

where f is the holomorphic orientation function dis-
cussed above. Thus, the metric notion of a Calabi–Yau
manifold amounts to a formidable nonlinear partial dif-
ferential equation for u. Calabi proved the uniqueness
and Yau proved the existence of a solution to this equa-
tion. So in fact the metric definition of a Calabi–Yau
manifold is uniquely determined by its Kähler structure
and its complex orientation.

Yau’s theorem establishes that the space of metrics
with holonomy group SU(n) on a manifold with com-
plex orientation is in correspondence with the space
of inequivalent Kähler structures. The latter space can
easily be probed with the techniques of algebraic geom-
etry.

5 Calabi–Yau Manifolds in Physics

Einstein’s theory of gravity, general relativity, con-
structs equations that the metric of a Riemannian
space-time manifold must obey (see general rela-
tivity and the einstein equations [IV.17]). The
equations involve three symmetric tensors: the metric,

the ricci curvature [III.80] tensor, and the energy–
momentum tensor of matter. A Riemannian manifold
whose Ricci tensor vanishes is a solution to these equa-
tions when there is no matter, and is a special case
of an Einstein manifold. A Calabi–Yau manifold with
its unique SU(n)-holonomy metric has vanishing Ricci
tensor, and is therefore of interest in general relativity.

A fundamental problem in theoretical physics is the
incorporation of Einstein’s theory into the quantum
theory of particles. This enterprise is known as quan-
tum gravity, and Calabi–Yau manifolds figure promi-
nently in the leading theory of quantum gravity, string
theory [IV.13 §2].

In string theory, the fundamental objects are one-
dimensional “strings.” The motion of the strings
through space-time is described by two-dimensional
trajectories, known as worldsheets, so every point
on the worldsheet is labeled by the point in space-
time where it sits. In this way, string theory is con-
structed from a quantum field theory of maps from
two-dimensional riemann surfaces [III.81] to a space-
time manifold M . The two-dimensional surface should
be given a Riemannian metric, and there is an infinite-
dimensional space of such metrics to consider. This
means that we must solve quantum gravity in two
dimensions—a problem that, like its four-dimensional
cousin, is too hard. If, however, it happens that the two-
dimensional worldsheet theory is conformal (invari-
ant under local changes of scale), then just a finite-
dimensional space of conformally inequivalent metrics
remains, and the theory is well-defined.

The Calabi–Yau condition arises from these consid-
erations. The requirement that the two-dimensional
theory is conformal, so that the string theory makes
good sense, is in essence the requirement that the
Ricci tensor of space-time should vanish. Thus, a two-
dimensional condition leads to a space-time equation,
which turns out to be exactly Einstein’s equation with-
out matter. We add to this condition the “phenomeno-
logical” criterion that the theory be endowed with
“supersymmetry,” which requires the space-time man-
ifold M to be complex. The two conditions together
mean that M is a complex manifold with holonomy
group SU(n): that is, a Calabi–Yau manifold. By Yau’s
theorem, the choices of suchM can easily be described
by algebraic geometric methods.

We remark that there is a kind of distillation of string
theory called “topological strings,” which can be given
a rigorous mathematical framework. Calabi–Yau mani-
folds are both symplectic and complex, and this leads
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to two versions of topological strings, called A and B,
that one can associate with a Calabi–Yau manifold. Mir-
ror symmetry is the remarkable phenomenon that the
A version of one Calabi–Yau manifold is related to the
B version of an entirely different “mirror partner.” The
mathematical consequences of such an equivalence are
extremely rich. (See mirror symmetry [IV.14] for more
details. For other notions related to those discussed in
this article, see symplectic manifolds [III.90].)

The Calculus of Variations
See Variational Methods [III.96]

III.7 Cardinals

The cardinality of a set is a measure of how large that
set is. More precisely, two sets are said to have the same
cardinality if there is a bijection between them. So what
do cardinalities look like?

There are finite cardinalities, meaning the cardinali-
ties of finite sets: a set has “cardinality n” if it has pre-
cisely n elements. Then there are countable [III.11]
infinite sets: these all have the same cardinality (this
follows from the definition of “countable”), usually
written ℵ0. For example, the natural numbers, the inte-
gers, and the rationals all have cardinality ℵ0. How-
ever, the reals are uncountable, and so do not have
cardinality ℵ0. In fact, their cardinality is denoted by
2ℵ0 .

It turns out that cardinals can be added and multi-
plied and even raised to powers of other cardinals (so
“2ℵ0 ” is not an isolated piece of notation). For details,
and more explanation, see set theory [IV.1 §2].

III.8 Categories
Eugenia Cheng

When we study groups [I.3 §2.1] or vector spaces
[I.3 §2.3], we pay particular attention to certain classes
of maps between them: the important maps between
groups are the group homomorphisms [I.3 §4.1], and
between vector spaces they are the linear maps
[I.3 §4.2]. What makes these maps important is that
they are the functions that “preserve structure”: for
example, if φ is a homomorphism from a group G to a
groupH, then it “preserves multiplication,” in the sense
that φ(g1g2) = φ(g1)φ(g2) for any pair of elements
g1 and g2 ofG. Similarly, linear maps preserve addition
and scalar multiplication.

The notion of a structure-preserving map applies far
more generally than just to these two examples, and
one of the purposes of category theory is to understand
the general properties of such maps. For instance, if A,
B, and C are mathematical structures of some given
type, and f and g are structure-preserving maps from
A to B and from B to C , respectively, then their compos-
ite g◦f is a structure-preserving map fromA to C . That
is, structure-preserving maps can be composed (at least
if the range of one equals the domain of the other). We
also use structure-preserving maps to decide when to
regard two structures as “essentially the same”: we call
A and B isomorphic if there is a structure-preserving
map from A to B with an inverse that also preserves
structure.

A category is a mathematical structure that allows
one to discuss properties such as these in the abstract.
It consists of a collection of objects, together with mor-
phisms between those objects. That is, if a and b are
two objects in the category, then there is a collection of
morphisms between a and b. There is also a notion of
composition of morphisms: if f is a morphism from a
to b and g is a morphism from b to c, then there is a
composite of f and g, which is a morphism from a to c.
This composition must be associative. In addition, for
each object a there is an “identity morphism,” which
has the property that if you compose it with another
morphism f then you get f .

As the earlier discussion suggests, an example of
a category is the category of groups. The objects of
this category are groups, the morphisms are group
homomorphisms, and composition and the identity are
defined in the way we are used to. However, it is by no
means the case that all categories are like this, as the
following examples show.

(i) We can form a category by taking the natural num-
bers as its objects, and letting the morphisms from
n tom be all the n×mmatrices with real entries.
Composition of morphisms is the usual matrix
multiplication. We would not normally think of
an n×m matrix as a map from the number n to
the number m, but the axioms for a category are
nevertheless satisfied.

(ii) Any set can be turned into a category: the objects
are the elements of the set, and a morphism from
x to y is the assertion “x = y .” We can also make
an ordered set into a category by letting a mor-
phism from x to y be the assertion “x � y .” (The
“composite” of “x � y” and “y � z” is “x � z.”)
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(iii) Any group G can be made into a category as fol-
lows: you have just one object, and the morphisms
from that object to itself are the elements of the
group, with the group multiplication defining the
composition of two morphisms.

(iv) There is an obvious category where the objects are
topological spaces [III.92] and the morphisms
are continuous functions. A less obvious category
with the same objects takes as its morphisms
not continuous functions but homotopy classes
[IV.10 §2] of continuous functions.

Morphisms are also called maps. However, as the
above examples illustrate, the maps in a category do
not have to be remotely map-like. They are also called
arrows, partly to emphasize the more abstract nature
of a general category, and partly because arrows are
often used to represent morphisms pictorially.

The general framework and language of “objects and
morphisms” enable us to seek and study structural fea-
tures that depend only on the “shape” of the category,
that is, on its morphisms and the equations they sat-
isfy. The idea is both to make general arguments that
are then applicable to all categories possessing partic-
ular structural features, and also to be able to make
arguments in specific environments without having to
go into the details of the structures in question. The use
of the former to achieve the latter is sometimes referred
to, endearingly or otherwise, as “abstract nonsense.”

As we mentioned above, the morphisms in a cate-
gory are generally depicted as arrows, so a morphism
f from a to b is depicted as a

f−−→ b and composition
is depicted by concatenating the arrows a

f−−→ b g−−→ c.
This notation greatly eases complex calculations and
gives rise to the so-called commutative diagrams that
are often associated with category theory; an equality
between composites of morphisms such as g ◦f = t ◦s
is expressed by asserting that the following diagram
commutes, that is, that either of the two different paths
from a to c yield the same composite:

a
f ��

s

��

b

g

��
d

t
�� c

Proving that one long string of compositions equals an-
other then becomes a matter of “filling in” the space in
between with smaller diagrams that are already known
to commute. Furthermore, many important mathemati-
cal concepts can be described in terms of commutative

diagrams: some examples are free groups, free rings,
free algebras, quotients, products, disjoint unions,
function spaces, direct and inverse limits, completion,
compactification, and geometric realization.

Let us see how it is done in the case of disjoint unions.
We say that a disjoint union of sets A and B is another
set U equipped with morphisms A

p−−→ U and B
q−→ U

such that, given any set X and morphisms A
f−−→ X

and B
g−−→ X, there is a unique morphism U h−−→ X that

makes the following diagram commute:

X

U

h

��

A

f

��

p
���������

B

g

��

q
���������

Here p and q tell us how A and B inject into the dis-
joint union. The “such that” part of the definition above
is a universal property. It expresses the fact that giv-
ing a function from the disjoint union to another set
is precisely the same as giving a function from each
of the individual sets; this completely characterizes
a disjoint union (which we regard as defined up to
isomorphism). Another viewpoint is that the univer-
sal property expresses the fact that a disjoint union
is the “most free” way of having two sets map into
another set, neither adding any information nor col-
lapsing any information. Universal properties are cen-
tral to the way category theory describes structures
that are somehow “canonical.” (See also the discus-
sion of free groups in geometric and combinatorial
group theory [IV.11].)

Another key concept in a category is that of an iso-
morphism. As one might expect, this is defined to be a
morphism with a two-sided inverse. Isomorphic objects
in a given category are thought of as “the same, as far as
this particular category is concerned.” Thus, categories
provide a framework in which the most natural way of
classifying objects is “up to isomorphism.”

Categories are mathematical structures of a certain
kind, and as such they themselves form a category
(subject to size restrictions so as to avoid a Russell-
type paradox). The morphisms, which are the structure-
preserving maps for categories, are called functors. In
other words, a functor F from a category X to a cate-
gory Y takes the objects of X to the objects of Y and
the morphisms of X to the morphisms of Y in such
a way that the identity of a is taken to the identity
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of Fa and the composite of f and g is taken to the
composite of Ff and Fg. An important example of a
functor is the one that takes a topological space S with
a “marked point” s to its fundamental group π1(S, s):
it is one of the basic theorems of algebraic topology
that a continuous map between two topological spaces
(that takes marked point to marked point) gives rise to
a homomorphism between their fundamental groups.

Furthermore, there is a notion of morphism between
functors, called a natural transformation, which is
analogous to the notion of homotopy between maps of
topological spaces. Given continuous maps F,G : X →
Y , a homotopy from F toG gives us, for every point x in
X, a path in Y from Fx to Gx; analogously, given func-
tors F,G : X −→ Y , a natural transformation from F to
G gives us, for every point x inX, a morphism in Y from
Fx to Gx. There is also a commuting condition that is
analogous to the fact that, in the case of homotopy, a
path in X must have its image under F continuously
transformed to its image under G without passing over
any “holes” in the space Y . This avoidance of holes is
expressed in the category case by the commutativity of
certain squares in the target category Y , which is known
as the “naturality condition.”

One example of a natural transformation encodes the
fact that every vector space is canonically isomorphic
to its double dual; there is a functor from the category
of vector spaces to itself that takes each vector space
to its double dual, and there is an invertible natural
transformation from this functor to the identity func-
tor via the canonical isomorphisms. By contrast, every
finite-dimensional vector space is isomorphic to its
dual, but not canonically so because the isomorphism
involves an arbitrary choice of basis; if we attempt to
construct a natural transformation in this case, we find
that the naturality condition fails. In the presence of
natural transformations, categories actually form a 2-
category, which is a two-dimensional generalization of
a category, with objects, morphisms, and morphisms
between morphisms. These last are thought of as two-
dimensional morphisms; more generally an n-category
has morphisms for each dimension up to n.

Categories and the language of categories are used
in a wide variety of other branches of mathematics.
Historically, the subject is closely associated with alge-
braic topology; the notions were first introduced in
1945 by Eilenberg and Mac Lane. Applications followedPUP: I confirm that

this is correct as
set (with the
space).

in algebraic geometry, theoretical computer science,
theoretical physics, and logic. Category theory, with its
abstract nature and lack of dependency on other fields

of mathematics, can be thought of as “foundational.” In
fact, it has been proposed as an alternative candidate
for the foundations of mathematics, with the notion of
morphism as the basic one from which everything else
is built up, instead of the relation of set membership
that is used in set-theoretic foundations [IV.1 §4].

Class Field Theory
See from quadratic reciprocity to

class field theory [V.30] PUP: what do you
think of the style
of the
cross-reference
entries now?Cohomology

See homology and cohomology [III.39]

III.9 Compactness and
Compactification
Terence Tao

In mathematics, it is well-known that the behavior of
finite sets and the behavior of infinite sets can be rather
different. For instance, each of the following statements
is easily seen to be true whenever X is a finite set but
false whenever X is an infinite set.

All functions are bounded. If f : X → R is a real-
valued function on X, then f must be bounded (i.e.,
there exists a finite number M such that |f(x)| � M
for all x ∈ X).

All functions attain a maximum. If f : X → R is a real-
valued function on X, then there must exist at least
one point x0 ∈ X such that f(x0) � f(x) for all
x ∈ X.

All sequences have constant subsequences. If x1, x2,
T&T: check word
spacing here at
page makeup.x3, · · · ∈ X is a sequence of points in X, then there

must exist a subsequence xn1 , xn2 , xn3 , . . . that is
constant. In other words, xn1 = xn2 = · · · = c for
some c ∈ X. (This fact is sometimes known as the
infinite pigeonhole principle.)

The first statement—that all functions on a finite set
are bounded—can be viewed as a very simple exam-
ple of a local-to-global principle. The hypothesis is an
assertion of “local” boundedness: it asserts that |f(x)|
is bounded for each point x ∈ X separately, but with
a bound that may depend on x. The conclusion is that
of “global” boundedness: that |f(x)| is bounded by a
single bound M for all x ∈ X.

So far we have viewed the object X only as a set.
However, in many areas of mathematics we like to
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endow our objects with additional structures, such as a
topology [III.92], a metric [III.58], or a group struc-
ture [I.3 §2.1]. When we do this, it turns out that some
objects exhibit properties similar to those of finite
sets (in particular, they enjoy local-to-global principles),
even though as sets they are infinite. In the categories
of topological spaces and metric spaces, these “almost-
finite” objects are known as compact spaces. (Other cat-
egories have “almost-finite” objects as well. For exam-
ple, in the category of groups there is a notion of a
pro-finite group; for linear operators [III.52] between
normed spaces [III.64] the analogous notion is that of
a compact operator, which is “almost of finite rank”;
and so forth.)

A good example of a compact set is the closed unit
interval X = [0,1]. This is an infinite set, so the previ-
ous three assertions are all false as stated for X. But if
we modify them by inserting topological concepts such
as continuity and convergence, then we can restore
these assertions for [0,1] as follows.

All continuous functions are bounded. If f : X → R is
T&T: check word
spacing here at
page makeup. a real-valued continuous function on X, then f must

be bounded. (This is again a type of local-to-global
principle: if a function does not vary too much locally,
then it does not vary too much globally.)

All continuous functions attain a maximum. If f :
X → R is a real-valued continuous function on X,
then there must exist at least one point x0 ∈ X such
that f(x0) � f(x) for all x ∈ X.

All sequences have convergent subsequences. If
x1, x2,x3, · · · ∈ X is a sequence of points in X, then
there must exist a subsequence xn1 , xn2 , xn3 , . . . that
converges to some limit c ∈ X. (This statement is
known as the Bolzano–Weierstrass theorem.)

To these assertions we can add a fourth (which, like the
others, has a rather trivial analogue for finite sets).

All open covers have finite subcovers. If V is a col-
lection of open sets and the union of all these open
sets contains X (in which case V is called an open
cover of X), then there must exist a finite subcol-
lection Vn1 , Vn2 , . . . , Vnk of sets in V that still covers
X.

All four of these topological statements are false for
sets such as the open unit interval (0,1) or the real
line R, as one can easily check by constructing simple
counterexamples. The Heine–Borel theorem asserts that
when X is a subset of a Euclidean space Rn, the above

statements are all true when X is topologically closed
and bounded, and all false otherwise.

The above four assertions are closely related to each
other. For instance, if you know that all sequences
in X contain convergent subsequences, then you can
quickly deduce that all continuous functions have a
maximum. This is done by first constructing a maximiz-
ing sequence—a sequence of points xn in X such that
f(xn) approaches the maximal value of f (or, more pre-
cisely, its supremum)—and then investigating a conver-
gent subsequence of that sequence. In fact, given some
fairly mild assumptions on the space X (e.g., that X
is a metric space), one can deduce any of these four
statements from any of the others.

To oversimplify a little, we say that a topological
space X is compact if one (and hence all) of the above
four assertions holds forX. Because the four assertions
are not quite equivalent in general, the formal defini-
tion of compactness uses only the fourth version: that
every open cover has a finite subcover. There are other
notions of compactness, such as sequential compact-
ness, for example, which is based on the third version,
but the distinctions between these notions are technical
and we shall gloss over them here.

Compactness is a powerful property of spaces, and it
is used in many ways in many different areas of math-
ematics. One is via appeal to local-to-global principles:
one establishes local control on a function, or on some
other quantity, and then uses compactness to boost
the local control to global control. Another is to locate
maxima or minima of a function, which is particularly
useful in the calculus of variations [III.96]. A third
is to partially recover the notion of a limit when deal-
ing with nonconvergent sequences, by accepting the
need to pass to a subsequence of the original sequence.
(However, different subsequences may converge to dif-
ferent limits; compactness guarantees the existence of
a limit point, but not its uniqueness.) Compactness of
one object also tends to beget compactness of other
objects; for instance, the image of a compact set under
a continuous map is still compact, and the product
of finitely many or even infinitely many compact sets
continues to be compact. This last result is known as
Tychonoff’s theorem.

Of course, many spaces of interest are not compact.
An obvious example is the real line R, which is not com-
pact, because it contains sequences such as 1,2,3, . . .
that are “trying to escape” the real line and that do not
leave behind any convergent subsequences. However,
one can often recover compactness by adding a few
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more points to the space: this process is known as com-
pactification. For instance, one can compactify the real
line by adding one point at each end: we call the added
points +∞ and −∞. The resulting object, known as the
extended real line [−∞,+∞], can be given a topology
in a natural way, which basically defines what it means
to converge to +∞ or to −∞. The extended real line is
compact: any sequence xn of extended real numbers
will have a subsequence that either converges to +∞,
converges to−∞, or converges to a finite number. Thus,
by using this compactification of the real line, we can
generalize the notion of a limit to one that no longer
has to be a real number. While there are some draw-
backs to dealing with extended reals instead of ordi-
nary reals (for instance, one can always add two real
numbers together, but the sum of +∞ and −∞ is unde-
fined), the ability to take limits of what would otherwise
be divergent sequences can be very useful, particularly
in the theory of infinite series and improper integrals.

It turns out that a single noncompact space can have
many different compactifications. For instance, by the
device of stereographic projection, one can topologi-
cally identify the real line with a circle that has a sin-
gle point removed. (For example, if one maps the real
number x to the point (x/(1+ x2), x2/(1+ x)2), then
R maps to the circle of radius 1

2 and center (0, 1
2 ), with

the north pole (0,1) removed.) If we then insert the
missing point, we obtain the one-point compactification
R ∪ {∞} of the real line. More generally, any reason-
able topological space (e.g., a locally compact Hausdorff
space) has a number of compactifications, ranging from
the one-point compactification X ∪ {∞}, which is the
“minimal” compactification as it adds only one point, to
the Stone–Čech compactification βX, which is the “max-
imal” compactification, and adds an enormous number
of points. The Stone–Čech compactification βN of the
natural numbers N is the space of ultrafilters, which
are very useful tools in the more infinitary parts of
mathematics.

One can use compactifications to distinguish be-
tween different types of divergence in a space. For
instance, the extended real line [−∞,+∞] distinguishes
between divergence to +∞ and divergence to −∞. In a
similar spirit, by using compactifications of the plane
R2 such as the projective plane [I.3 §6.7], one can dis-
tinguish a sequence that diverges along (or near) the x-
axis from a sequence that diverges along (or near) the
y-axis. Such compactifications arise naturally in situa-
tions in which sequences that diverge in different ways
exhibit markedly different behavior.

Another use of compactifications is to allow one to
rigorously view one type of mathematical object as a
limit of others. For instance, one can view a straight
line in the plane as the limit of increasingly large circles
by describing a suitable compactification of the space
of circles that includes lines. This perspective allows
us to deduce certain theorems about lines from analo-
gous theorems about circles, and conversely to deduce
certain theorems about very large circles from theo-
rems about lines. In a rather different area of mathe-
matics, the Dirac delta function is not, strictly speaking,
a function, but it exists in certain (local) compactifica-
tions of spaces of functions, such as spaces of mea-
sures [III.57] or distributions [III.18]. Thus, one can
view the Dirac delta function as a limit of classical func-
tions, and this can be very useful for manipulating it.
One can also use compactifications to view the continu-
ous as the limit of the discrete: for instance, it is possi-
ble to compactify the sequence Z/2Z,Z/3Z,Z/4Z, . . . of
cyclic groups in such a way that their limit is the circle
group T = R/Z. These simple examples can be general-
ized to much more sophisticated examples of compact-
ifications, which have many applications in geometry,
analysis, and algebra.

III.10 Computational Complexity
Classes

One of the basic challenges of theoretical computer sci-
ence is to determine what computational resources are
necessary in order to perform a given computational
task. The most basic resource is time, or equivalently
(given the hardware) the number of steps needed to
implement the most efficient algorithm that will actu-
ally carry out the task. Especially important is how this
time scales up with the size of the input for the task:
for instance, how much longer does it take to factorize
an integer with 2n digits than an integer with n dig-
its? Another resource connected with the feasibility of
a computation is memory: one can ask how much stor-
age space a computer will need in order to implement
an algorithm, and how this can be minimized. A com-
plexity class is a set of computational problems that can
be performed with certain restrictions on the resources
allowed. For instance, the complexity class P consists
of all problems that can be performed in “polynomial
time”: that is, there is some positive integer k such that
if the size of the problem isn (in the example above, the
size was the number of digits of the integer to be fac-
torized), then the computation can be carried out in at
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most nk steps. A problem belongs to P if and only if the

time taken to solve it scales up by at most a constant

factor when the size of the input scales up by a con-

stant factor. A good example of such a problem is mul-

tiplication of two n-digit numbers: if you use ordinary

long multiplication, then replacing n by 2n increases

the time taken by a factor of 4.

Suppose that you are presented with a positive inte-

ger x and told that it is a product of two primes p and

q. How difficult is it to determine p and q? Nobody

knows, but one thing is easy to see: if you are told p
and q, then it is not hard (for a computer, at any rate) to

check that pq really does equal x. Indeed, as we have

just seen, long multiplication takes polynomial time,

and comparing the answer with x is even easier. The

complexity class NP consists of those computational

tasks for which a correct answer can be verified in poly-

nomial time, even if it cannot necessarily be found in

polynomial time. Remarkably, although this is a fun-

damental distinction, nobody knows how to prove that

P �= NP: this problem is widely considered to be the

most important in theoretical computer science.

We briefly mention two other important complexity

classes. PSPACE consists of all problems that can be

solved using an amount of memory that grows at most

polynomially with the size of the input. It turns out to

be the natural class associated with reasonable compu-

tational strategies for games such as chess. The com-

plexity class NC is the set of all Boolean functions that

can be computed by a “circuit of polynomial size and

depth at most a polynomial in logn.” This last class is

a model for the class of problems that can be solved

very rapidly using parallel processing. In general, com-

plexity classes are often surprisingly good at character-

izing large families of problems with interesting and

intuitively recognizable features in common. Another

remarkable fact is that almost all complexity classes

have “hardest problems” within them: that is, problems

for which a solution can be converted into a solution for

any other problem in the class. These problems are said

to be complete for the class in question.

These issues, as well as several other complexity

classes, are discussed in computational complexity

[IV.21]. A vast number of further classes can be found

at

http://qwiki.stanford.edu/wiki/Complexity_Zoo#ac

along with brief definitions of each.

Continued Fractions
See the euclidean algorithm and

continued fractions [III.22]

III.11 Countable and Uncountable Sets

Infinite sets arise all the time in mathematics: the natu-
ral numbers, the squares, the primes, the integers, the
rationals, the reals, and so on. It is often natural to try
to compare the sizes of these sets: intuitively, one feels
that the set of natural numbers is “smaller” than the
set of integers (as it contains just the positive ones),
and much larger than the set of squares (since a typi-
cal large integer is unlikely to be a square). But can we
make comparisons of size in a precise way?

An obvious method of attack is to build on our intu-
ition about finite sets. If A and B are finite sets, there
are two ways we might go about comparing their sizes.
One is to count their elements: we obtain two nonnega-
tive integers m and n and just look at whether m < n,
m = n, or m > n. But there is another important
method, which does not require us to know the sizes of
either A or B. This is to pair off elements from A with
elements of B until one or other of the sets runs out
of elements: the first one to run out is the smaller set,
and if there is a dead heat, then the sets have the same
size.

A suitable modification of this second method works
for infinite sets as well: we can declare two sets to
be of equal size if there is a one-to-one correspon-
dence between them. This turns out to be an important
and useful definition, though it does have some con-
sequences that seem a little odd at first. For example,
there is an obvious one-to-one correspondence between
natural numbers and perfect squares: for each n we let
n correspond to n2. Thus, according to this definition
there are “as many” squares as there are natural num-
bers. Similarly, we could show that there are as many
primes as natural numbers by associating n with the
nth prime number.1

What about Z? It seems that it should be “twice as
large” as N, but again we can find a one-to-one corre-
spondence between them. We just list the integers in
the order 0,1,−1,2,−2,3,−3, . . . and then match the
natural numbers with them in the obvious way: 0 with

1. There is a notion of “density” according to which the sets of
squares and primes have density 0, the even numbers have density
1
2 , and so on for all sufficiently nice sets. This notion can be useful
too, but it is not the notion under discussion here.
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0, then 1 with 1, then 2 with −1, 3 with 2, 4 with −2,

and so on.

An infinite set is called countable if it has the same

size as the natural numbers. As the above example

shows, this is exactly the same as saying that we can

list the elements of the set. Indeed, if we have listed a

set A as a0, a1, a2, . . . , then our correspondence is just

to send n to an. It is worth noting that there are of

course many attempted listings that fail: for example,

for Z we might have tried −3,−2,−1,0,1,2,3,4, . . . . So

it is important to recognize that when we say that a

set is countable we are not saying that every attempt

to list it works, or even that the obvious attempt does:

we are merely saying that there is some way of listing

the elements. This is in complete contrast to finite sets,

where if we attempt to match up two sets and find some

elements of one set left over, then we know that the

two sets cannot be in one-to-one correspondence. It is

this difference that is mainly responsible for the “odd

consequences” mentioned above.

Now that we have established that some sets that

seem smaller or larger than N, such as the squares

or the integers, are actually countable, let us turn to

a set that seems “much larger,” namely Q. How could

we hope to list all the rationals? After all, between any

two of them you can find infinitely many others, so it

seems hard not to leave some of them out when you

try to list them. However, remarkable as it may seem,

it is possible to list the rationals. The key idea is that

listing the rationals whose numerator and denominator

are both smaller (in modulus) than some fixed number

k is easy, as there are only finitely many of them. So

we go through in order: first when both numerator and

denominator are at most 1, then when they are at most

2, and so on (being careful not to relist any number, so

that for example 1
2 should not also appear as 2

4 or 3
6 ).

This leads to an ordering such as 0,1,−1,2,−2, 1
2 ,− 1

2 ,

3,−3, 1
3 ,− 1

3 ,4,−4, 1
4 ,− 1

4 ,
3
4 ,− 3

4 ,
4
3 ,− 4

3 ,5,−5, . . . .
We could use the same idea to list even larger-looking

sets such as, for example, the algebraic numbers (all

real numbers, such as
√

2, that satisfy a polynomial

equation with integer coefficients). Indeed, we note that

each polynomial has only finitely many roots (which are

therefore listable), so all we need to do is list the polyno-

mials (as then we can go through them, in order, listing

their roots). And we can do that by applying the same

technique again: for each dwe list those polynomials of

degree at most d that we have not already listed, with

coefficients that are at most d in modulus.

Based on the above examples, one might well guess

that every infinite set is countable. But a beautiful argu-

ment of cantor [VI.54], called his “diagonal” argu-

ment, shows that the real numbers are not countable.

We imagine that we have a list of all real numbers, say

r1, r2, r3, . . . . Our aim is to show that this list cannot

possibly contain all the reals, so we wish to construct a

real that is not on this list. How do we accomplish this?

We have each ri written as an infinite decimal, say, and

now we define a new number s as follows. For the first

digit of s (after the decimal point), we choose a digit that

is not the first digit of r1. Note that this already guaran-

tees that s cannot equal r1. (To avoid coincidences with

recurring 9s and the like, it is best to choose this first

digit of s not to be 0 or 9 either.) Then, for the second

digit of s, we choose a digit that is not the second digit

of r2; this guarantees that s cannot be equal to r2. Con-

tinuing in this way, we end up with a real number s that

is not on our list: whatever n is, the number s cannot

be rn, as s and Rn differ in the nth decimal place!

One can use similar arguments any time that we have

“an infinite number of independent choices” to make

in specifying an object (like the various digits of s). For

example, let us use the same ideas to show that the

set of all subsets of N is uncountable. Suppose we have

listed all the subsets as A1, A2, A3, . . . . We will define

a new set B that is not equal to any of the An. So we

include the point 1 in B if and only if 1 does not belong

to A1 (this guarantees that B is not equal to A1), and

we include 2 in B if and only if 2 does not belong to A2,

and so on. It is amusing to note that one can write this

set B down as {n ∈ N : n �∈ An}, which shows a striking

resemblance to the set in Russell’s paradox.

Countable sets are the “smallest” infinite sets. How-

ever, the set of real numbers is by no means the

“largest” infinite set. Indeed, the above argument shows

that no set X can be put into one-to-one correspon-

dence with the set of all its subsets. So the set of all

subsets of the real numbers is “strictly larger” than the

set of real numbers, and so on.

The notion of countability is often a very fruitful

one to bear in mind. For example, suppose we want to

know whether or not all real numbers are algebraic. It

is a genuinely hard exercise to write down a particu-

lar real that is transcendental [III.43] (meaning not

algebraic; see liouville’s theorem and roth’s theo-

rem [V.25] for an idea of how it can be done), but the

above notions make it utterly trivial that transcenden-

tal numbers exist. Indeed, the set of all real numbers is
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uncountable but the set of algebraic numbers is count-
able! Furthermore, this shows that “most” real numbers
are transcendental: the algebraic numbers form only a
tiny proportion of the reals.

III.12 C∗-Algebras

A banach space [III.64] is both a vector space
[I.3 §2.3] and a metric space [III.58], and the study of
Banach spaces is therefore a mixture of linear algebra
and analysis. However, one can arrive at more sophis-
ticated mixtures of algebra and analysis if one looks at
Banach spaces with more algebraic structure. In partic-
ular, while one can add two elements of a Banach space
together, one cannot in general multiply them. How-
ever, sometimes one can: a vector space with a multi-
plicative structure is called an algebra, and if the vector
space is also a Banach space, and if the multiplication
has the property that ‖xy‖ � ‖x‖‖y‖ for any two ele-
ments x and y , then it is called a Banach algebra. (This
name does not really reflect historical reality, since the
basic theory of Banach algebras was not worked out
by Banach. A more appropriate name might have been
Gelfand algebras.)

A C∗-algebra is a Banach algebra with an involution,
which means a function that associates with each ele-
ment x another elementx∗ in such a way thatx∗∗ = x,
‖x∗‖ = ‖x‖, (x +y)∗ = x∗ +y∗, and (xy)∗ = y∗x∗
for any two elements x and y . A basic example of a
C∗-algebra is the algebra B(H) of all continuous lin-
ear maps T defined on a hilbert space [III.37] H. The
norm of T is defined to be the smallest constantM such
that ‖Tx‖ � M‖x‖ for every x ∈ H, and the involution
takes T to its adjoint. This is a map T∗ that has the
property that 〈x,Ty〉 = 〈T∗x,y〉 for every x and y in
H. (It can be shown that there is exactly one map with
this property.) If H is finite dimensional, then T can be
thought of as an n × n matrix for some n, and T∗ is
then the complex conjugate of the transpose of T .

A fundamental theorem of Gelfand and Naimark
states that every C∗-algebra can be represented as a
subalgebra of B(H) for some Hilbert spaceH. For more
information, see operator algebras [IV.19 §3].

III.13 Curvature

If you cut an orange in half, scoop out the inside, and
try to flatten one of the resulting hemispheres of peel,
then you will tear it. If you try to flatten a horse’s saddle,
or a soggy potato chip, then you will have the opposite

problem: this time, there is “too much” of the surface
to flatten and you will have to fold it over itself. If, how-
ever, you have a roll of wallpaper and wish to flatten it,
then there is no difficulty: you just unroll it. Surfaces
such as spheres are said to be positively curved, ones
with a saddle-like shape are negatively curved, and ones
like a piece of wallpaper are flat.

Notice that a surface can be flat in this sense even if
it does not lie in a plane. This is because curvature is
defined in terms of the intrinsic geometry of a surface,
where distance is measured in terms of paths that lie
inside the surface.

There are various ways of making the above notion
of curvature precise, and also quantitative, so that with
each point of a surface one can associate a number that
tells you “how curved” it is at that point. In order to
do this, the surface must have a riemannian metric
[I.3 §6.10] on it, which is used to determine the lengths
of paths. The notion of curvature can also be general-
ized to higher dimensions, so that one can talk about
the curvature of a point in a d-dimensional Rieman-
nian manifold. However, when the dimension is higher
than 2, the way that the manifold can curve at a point
is more complicated, and is expressed not by a single
number but by the so-called Ricci tensor. See ricci flow
[III.80] for more details.

Curvature is one of the fundamental concepts of
modern geometry: not only the notion just described
but also various alternative definitions that measure in
other ways how far a geometric object deviates from
being flat. It is also an integral part of the theory
of general relativity (which is discussed in general
relativity and the einstein equations [IV.17]).

III.14 Designs
Peter J. Cameron

Block designs were first used in the design of experi-
ments in statistics, as a method for coping with system-
atic differences in the experimental material. Suppose,
for example, that we want to test seven different vari-
eties of seed in an agricultural experiment, and that we
have twenty-one plots of land available for the experi-
ment. If the plots can be regarded as identical, then the
best strategy is clearly to plant three plots with each
variety. Suppose, however, that the available plots are
on seven farms in different regions, with three plots
on each farm. If we simply plant one variety on each
farm, we lose information, because we cannot distin-
guish systematic differences between regions from dif-
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Figure 1 A block design.

ferences in the seed varieties. It is better to follow a
scheme like this: plant varieties 1, 2, 3 on the first farm;
1, 4, 5 on the second; and then 1, 6, 7; 2, 4, 6; 2, 5, 7;
3, 4, 7; and 3, 5, 6. This design is represented in figure 1.

This arrangement is called a balanced incomplete-
block design, or BIBD for short. The blocks are the
sets of seed varieties used on the seven farms. The
blocks are “incomplete” because not every variety can
be planted on every farm; the design is “balanced”
because each pair of varieties occur together in a block
the same number of times (just once in this case).
This is a (7,3,1) design: there are seven varieties; each
block contains three of them; and two varieties occur
together in a block once. It is also an example of a
finite projective plane. Because of the connection with
geometry, varieties are usually called “points.”

Mathematicians have developed an extensive theory
of BIBDs and related classes of designs. Indeed, the
study of such designs predates their use in statistics.
In 1847, T. P. Kirkman showed that a (v,3,1) design
exists if and only ifv is congruent to 1 or 3 mod 6. (Such
designs are now called Steiner triple systems, although
Steiner did not pose the problem of their existence until
1853.)

Kirkman also posed a more difficult problem. In his
own words,

Fifteen young ladies in a school walk out three abreast
for seven days in succession: it is required to arrange
them daily so that no two shall walk twice abreast.

The solution requires a (15,3,1) Steiner triple system
with the extra property that the thirty-five blocks can
be partitioned into seven sets called “replicates,” each

replicate consisting of five blocks that partition the set
of points. Kirkman himself gave a solution, but it was
not until the late 1960s that Ray-Chaudhuri and Wilson
showed that (v,3,1) designs with this property exist
whenever v is congruent to 3 mod 6.

For which v , k, λ do designs exist? Counting argu-
ments show that, given k and λ, the values of v
for which (v, k, λ) designs exist are restricted to cer-
tain congruence classes. (We noted above that (v,3,1)
designs exist only if v is congruent to 1 or 3 mod 6.)
An asymptotic existence theory developed by Richard
Wilson shows that this necessary condition is sufficient
for the existence of a design, apart from finitely many
exceptions, for each value of k and λ.

The concept of design has been further generalized:
a t–(v, k, λ) design has the property that any t points
are contained in exactly λ blocks. Luc Teirlinck showed
that nontrivial t-designs exist for all t, but examples
for t > 3 are comparatively rare.

The statisticians’ concerns are a bit different. In our
introductory example, if only six farms were available,
we could not use a BIBD for the experiment, but would
have to choose the most “efficient” possible design
(allowing the most information to be obtained from
the experimental results). A BIBD is most efficient if it
exists; but not much is known in other cases.

There are other types of design; these can be impor-
tant to statistics and also lead to new mathematics.
Here, for example, is an orthogonal array: in any two
rows of this matrix, each ordered pair of symbols from
{0,1,2} occurs just once:

0 0 0 1 1 1 2 2 2

0 1 2 0 1 2 0 1 2

0 1 2 1 2 0 2 0 1

0 2 1 1 0 2 2 1 0

It could be used if we had four different treatments,
each of which could be applied at three different levels,
and if we had nine plots available for testing.

Design theory is closely related to other combina-
torial topics such as error-correcting codes; indeed,
Fisher “discovered” the Hamming codes as designs five
years before R. W. Hamming found them in the context
of error correction. Other related subjects include pack-
ing and covering problems, and especially finite geom-
etry, where many finite versions of classical geometries
can be regarded as designs.

III.15 Determinants
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The determinant of a 2× 2 matrix(
a b
c d

)

is defined to be ad − bc. The determinant of a 3 × 3

matrix ⎛
⎜⎜⎝
a b c
d e f
g h i

⎞
⎟⎟⎠

is defined to be aei+bfg+cdh−afh−bdi−ceg. What

do these expressions have in common, how do they

generalize, and why is the generalization significant?

To begin with the first question, let us make a few

simple observations. Both expressions are sums and

differences of products of entries from the matrix.

Each one of these products contains exactly one ele-

ment from each row of the matrix and also exactly

one element from each column. In both cases, a minus

sign seems to attach itself to the products for which

the entries selected from the matrix “slope backward”

rather than forward.

Up to a point it is easy to see how to extend this

definition to n × n matrices with n � 4. We simply

take sums and differences of all possible products of

n entries, where one entry from each row is used and

one from each column. The difficulty comes in deciding

which of these products to add and which to subtract.

To do this we take one of the products and use it to

define a permutation σ of the set {1,2, . . . , n} as fol-

lows. For each i � n, the product contains exactly one

entry in the ith row. If it belongs to the jth column

then σ(i) = j. The product is added if this permuta-

tion is even and subtracted if it is odd (see permuta-

tion groups [III.70]). So, for example, the permutation

corresponding to the entry afh in the 3× 3 determi-

nant above sends 1 to 1, 2 to 3, and 3 to 2. This is an

odd permutation, which is why afh receives a minus

sign.

We still need to explain why the particular choice of

products and minus signs that we have just defined

is important. The reason is that it tells us something

about the effect of a matrix when it is considered as a

linear map. LetA be ann×nmatrix. Then, as explained

in [I.3 §3.2], A specifies a linear map α from Rn to Rn.

The determinant of A tells us what this linear map

does to volumes. More precisely, if X is a subset of Rn

with n-dimensional volume V , then αX, the result of

transforming X using the linear map α, will have vol-

ume V times the determinant of A. We could write this

symbolically as follows:

vol(αX) = detA · vol(X).

For example, consider the 2× 2 matrix

A =
(

cosθ − sinθ
sinθ cosθ

)
.

The corresponding linear map is a rotation of R2

through an angle of θ. Since rotating a shape does not
affect its volume, we should expect the determinant of
A to be 1, and sure enough it is cos2 θ + sin2 θ, which
is 1 by Pythagoras’s theorem.

The above explanation is a slight oversimplifica-
tion in one respect: determinants can be negative, but
clearly volumes cannot. If the determinant of a matrix
is −2, to give an example, it means that the linear map
multiplies volumes by 2 but also “turns shapes inside
out” by reflecting them.

Determinants have many useful properties, which
become obvious once one knows the above interpre-
tation in terms of volumes. (However, it is much less
obvious that this interpretation is correct: in setting
up the theory of determinants one must do some work
somewhere.) Let us give three of these properties.

(i) Let V be a vector space [I.3 §2.3] and let α : V → V
be a linear map. Let v1, . . . ,vn be a basis of V and let
A be the matrix of α with respect to this basis. Now let
w1, . . . ,wn be another basis of V and let B be the matrix
of α with respect to this different basis. Then A and B
are different matrices, but since they both represent
the linear map α, they must have the same effect on
volumes. It follows that det(A) = det(B). To put this
another way: the determinant is better thought of as a
property of linear maps rather than of matrices.

Two matrices that represent the same linear map in
the above sense are called similar. It turns out that
A and B are similar if and only if there is an invert-
ible matrix P such that P−1AP = B. (An n×n matrix
P is invertible if there is a matrix Q such that PQ
equals the n×n identity matrix, In. It turns out that
QP must also equal In as well. If this is true, then Q
is called the inverse of P and is denoted P−1.) What we
have just shown is that similar matrices have the same
determinant.

(ii) If A and B are any two n×n matrices, then they
represent linear maps α and β of Rn. The product
AB represents the linear map αβ: that is, the linear
map that results from doing β followed by α. Since β
multiplies volumes by detB and α multiplies them by
detA, αβmultiplies them by detAdetB. It follows that
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det(AB) = detAdetB. (The determinant of a product
equals the product of the determinants.)

(iii) If A is a linear map with determinant 0 and B is any
other linear map, then AB will, by the multiplicative
property just discussed, have determinant 0 as well. It
follows that AB cannot equal In, since In has determi-
nant 1. Therefore a matrix with determinant 0 is not
invertible. The converse of this turns out to be true as
well: a matrix with nonzero determinant is invertible.
Thus, the determinant gives us a way of finding out
whether a matrix can be inverted.

III.16 Differential Forms and Integration
Terence Tao

It goes without saying that integration is one of the
fundamental concepts of single-variable calculus. How-
ever, there are in fact three concepts of integration that
appear in the subject: the indefinite integral

∫
f (also

known as the antiderivative), the unsigned definite inte-
gral

∫
[a,b] f (x)dx (which one would use to find the

area under a curve, or the mass of a one-dimensional
object of varying density), and the signed definite inte-
gral

∫ b
a f(x)dx (which one would use, for instance, to

compute the work required to move a particle froma to
b). For simplicity we shall restrict our attention here to
functions f : R → R that are continuous on the entire
real line (and similarly, when we come to differential
forms, we shall discuss only forms that are continu-
ous on the entire domain). We shall also informally use
terminology such as “infinitesimal” in order to avoid
having to discuss the (routine) “epsilon–delta” analyti-
cal issues that one must resolve in order to make these
integration concepts fully rigorous.

These three integration concepts are of course
closely related to each other in single-variable calcu-
lus; indeed, the fundamental theorem of calculus
[I.3 §5.5] relates the signed definite integral

∫ b
a f(x)dx

to any one of the indefinite integrals F = ∫ f by the
formula ∫ b

a
f(x)dx = F(b)− F(a), (1)

while the signed and unsigned integral are related by
the simple identity∫ b

a
f(x)dx = −

∫ a
b
f(x)dx =

∫
[a,b]

f (x)dx, (2)

which is valid whenever a � b.

When one moves from single-variable calculus to
several-variable calculus, though, these three concepts

begin to diverge significantly from each other. The

indefinite integral generalizes to the notion of a solu-

tion to a differential equation, or to an integral of a con-

nection, vector field [IV.10 §5], or bundle [IV.10 §5]. PUP: repeated
cross-reference
here isn’t great but
we think it might
be the best
solution. OK?

The unsigned definite integral generalizes to the

lebesgue integral [III.57], or more generally to inte-

gration on a measure space. Finally, the signed def-

inite integral generalizes to the integration of forms,

which will be our focus here. While these three con-

cepts are still related to each other, they are not as

interchangeable as they are in the single-variable set-

ting. The integration-of-forms concept is of fundamen-

tal importance in differential topology, geometry, and

physics, and also yields one of the most important

examples of cohomology [IV.10 §4], namely de Rham

cohomology, which (roughly speaking) measures the

extent to which the fundamental theorem of calculus

fails in higher dimensions and on general manifolds.

To provide some motivation for the concept, let us

informally revisit one of the basic applications of the

signed definite integral from physics, namely com-

puting the amount of work required to move a one-

dimensional particle from point a to point b in the

presence of an external field. (For example, one might

be moving a charged particle in an electric field.) At

the infinitesimal level, the amount of work required to

move a particle from a point xi ∈ R to a nearby point

xi+1 ∈ R is (up to a small error) proportional to the dis-

placement ∆xi = xi+1 − xi, with the constant of pro-

portionality f(xi) depending on the initial location xi
of the particle. Thus, the total work required for this is

approximately f(xi)∆xi. Note that we do not require

xi+1 to be to the right ofxi, so the displacement∆xi (or

the infinitesimal work f(xi)∆xi) may well be negative.

To return to the noninfinitesimal problem of comput-

ing the work required to move from a to b, we arbi-

trarily select a discrete path x0 = a,x1, x2, . . . , xn = b
from a to b, and approximate the work as

∫ b
a
f(x)dx ≈

n−1∑
i=0

f(xi)∆xi. (3)

Again, we do not require xi+1 to be to the right of xi;
it is quite possible for the path to “backtrack” repeat-

edly: for instance, one might have xi < xi+1 > xi+2 for

some i. However, it turns out that the effect of such

backtracking eventually cancels itself out; regardless

of what path we choose, the expression (3) above con-

verges as the maximum step size tends to zero, and the
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limit is the signed definite integral∫ b
a
f(x)dx, (4)

provided only that the total length
∑n−1
i=0 |∆xi| of

the path (which controls the amount of backtracking
involved) stays bounded. In particular, in the case when
a = b, so that all paths are closed (i.e., x0 = xn), we see
that the signed definite integral is zero:∫ a

a
f(x)dx = 0. (5)

From this informal definition of the signed definite
integral it is obvious that we have the concatenation
formula∫ c

a
f (x)dx =

∫ b
a
f(x)dx +

∫ c
b
f (x)dx (6)

regardless of the relative position of the real numbers
a, b, and c. In particular (setting a = c and using (5))
we conclude that∫ b

a
f(x)dx = −

∫ a
b
f(x)dx.

Thus if we reverse a path from a to b to form a path
from b to a, the sign of the integral changes. This con-
trasts with the unsigned definite integral

∫
[a,b] f (x)dx,

since the set [a, b] of numbers between a and b is
exactly the same as the set of numbers between b and
a. Thus we see that paths are not quite the same as
sets: they carry an orientation which can be reversed,
whereas sets do not.

Now let us move from one-dimensional integration
to higher-dimensional integration: that is, from single-
variable calculus to several-variable calculus. It turns
out that there are two objects whose dimensions may
increase: the “ambient space,”1 which will now be Rn

instead of R, and the path, which will now become an
oriented k-dimensional manifold S, over which the inte-
gration will take place. For example, if n = 3 and k = 2,
then one is integrating over a surface that lives in R3.

Let us begin with the case n � 1 and k = 1. Here, we
will be integrating over a continuously differentiable
path (or oriented rectifiable curve) γ in Rn starting and
ending at points a and b, respectively. (These points
may or may not be distinct, depending on whether the
path is closed or open.) From a physical point of view,
we are still computing the work required to move from
a to b, but now we are moving in several dimensions

1. We will start with integration on Euclidean spaces Rn for sim-
plicity, although the true power of the integration-of-forms concept is
much more apparent when we integrate on more general spaces, such
as abstract n-dimensional manifolds.

instead of one. In the one-dimensional case, we did not
need to specify exactly which path we used to get from
a to b, because all backtracking canceled itself out.
However, in higher dimensions, the exact choice of the
path γ becomes important.

Formally, a path from a to b can be described (or
parametrized) as a continuously differentiable function
γ from the unit interval [0,1] to Rn such that γ(0) =
a and γ(1) = b. For instance, the line segment from
a to b can be parametrized as γ(t) = (1 − t)a + tb.
This segment also has many other parametrizations,
such as γ̃(t) = (1− t2)a+ t2b; however, as in the one-
dimensional case, the exact choice of parametrization
does not ultimately influence the integral. On the other
hand, the reverse line segment (−γ)(t) = ta+ (1− t)b
from b to a is a genuinely different path; the integral
along −γ will turn out to be the negative of the integral
along γ.

As in the one-dimensional case, we will need to
approximate the continuous path γ by a discrete path

x0 = γ(t0), x1 = γ(t1), x2 = γ(t2), . . . , xn = γ(tn),
where γ(t0) = a and γ(t1) = b. Again, we allow some
backtracking: ti+1 is not necessarily larger than ti. The
displacement ∆xi = xi+1 − xi ∈ Rn from xi to xi+1 is
now a vector rather than a scalar. (Indeed, with an eye
on the generalization to manifolds, one should think
of ∆xi as an infinitesimal tangent vector to the ambi-
ent space Rn at the point xi.) In the one-dimensional
case, we converted the scalar displacement ∆xi into
a new number f(xi)∆xi, which was linearly related
to the original displacement by a proportionality con-
stant f(xi) that depended on the position xi. In higher
dimensions, we again have a linear dependence, but
this time, since the displacement is a vector, we must
replace the simple constant of proportionality by a lin-
ear transformation ωxi from Rn to R. Thus, ωxi(∆xi)
represents the infinitesimal “work” required to move
from xi to xi+1. In technical terms,ωxi is a linear func-
tional on the space of tangent vectors at xi, and is thus
a cotangent vector at xi. By analogy with (3), the net
work

∫
γ ω required to move from a to b along the path

γ is approximated by
∫
γ
ω ≈

n−1∑
i=0

ωxi(∆xi). (7)

As in the one-dimensional case, one can show that
the right-hand side of (7) converges if the maximum
step size sup0�i�n−1 |∆xi| of the path converges to
zero and the total length

∑n−1
i=0 |∆xi| of the path stays
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bounded. The limit is written as
∫
γ ω. (Recall that we

are restricting our attention to continuous functions.
The existence of this limit uses the continuity of ω.)

The object ω, which continuously assigns2 a cotan-
gent vector to each point in Rn, is called a 1-form,
and (7) leads to a recipe for integrating any 1-form ω
on a path γ. That is, to shift the emphasis slightly, it
allows us to integrate the path γ “against” the 1-form
ω. Indeed, it is useful to think of this integration as
a binary operation (similar in some ways to the dot
product) which takes the curve γ and the form ω as
inputs, and returns a scalar

∫
γ ω as output. There is in

fact a “duality” between curves and forms; compare, for
instance, the identity∫

γ
(ω1 +ω2) =

∫
γ
ω1 +

∫
γ
ω2,

which expresses (part of) the fundamental fact that
integration of forms is a linear operation, with the
identity ∫

γ1+γ2

ω =
∫
γ1

ω+
∫
γ2

ω,

which generalizes (6) whenever the initial point of γ2 is
the final point of γ1, where γ1+γ2 is the concatenation
of γ1 and γ2.3

Recall that if f is a differentiable function from Rn

to R, then its derivative at a point x is a linear map
from Rn to R (see [I.3 §5.3]). If f is continuously differ-
entiable, then this linear map depends continuously on
x, and can therefore be thought of as a 1-form, which
we denote by df , writing dfx for the derivative at x.
This 1-form can be characterized as the unique 1-form
such that one has the approximation

f(x + v) ≈ f(v)+ dfx(v)

for all infinitesimal v . (More rigorously, the condition
is that |f(x + v)− f(v)− dfx(v)|/|v| → 0 as v → 0.)

The fundamental theorem of calculus (1) now gener-
alizes to ∫

γ
df = f(b)− f(a) (8)

whenever γ is any oriented curve from a point a to a
point b. In particular, if γ is closed, then

∫
γ df = 0. Note

that in order to interpret the left-hand side of the above
equation, we are regarding it as a particular example of

2. More precisely, one can think of ω as a section of the cotangent
bundle.

3. This duality is best understood using the abstract, and much
more general, formalism of homology and cohomology. In particular,
one can remove the requirement that γ2 begins where γ1 leaves off
by generalizing the notion of an integral to cover not just integration
on paths, but also integration on formal sums or differences of paths.
This makes the duality between curves and forms more symmetric.

an integral of the form
∫
γ ω: in this case,ω happens to

be the form df . Note also that, with this interpretation,
df has an independent meaning (it is a 1-form) even if
it does not appear under an integral sign.

A 1-form whose integral against every sufficiently
small4 closed curve vanishes is called closed, while a
1-form that can be written as df for some continuously
differentiable function is called exact. Thus, the funda-
mental theorem implies that every exact form is closed.
This turns out to be a general fact, valid for all mani-
folds. Is the converse true: that is, is every closed form
exact? If the domain is a Euclidean space, or indeed
any other simply connected manifold, then the answer
is yes (this is a special case of the Poincaré lemma), but
it is not true for general domains. In modern terminol-
ogy, this demonstrates that the de Rham cohomology
of such domains can be nontrivial.

As we have just seen, a 1-form can be thought of as
an object ω that associates with each path γ a scalar,
which we denote by

∫
γ ω. Of course, ω is not just

any old function from paths to scalars: it must sat-
isfy the concatenation and reversing rules discussed
earlier, and this, together with our continuity assump-
tions, more or less forces it to be associated with some
kind of continuously varying linear function that can be
used, in combination with γ, to define an integral. Now
let us see if we can generalize this basic idea from paths
to integration on k-dimensional sets with k > 1. For
simplicity we shall stick to the two-dimensional case,
that is, to integration of forms on (oriented) surfaces
in Rn, since this already illustrates many features of
the general case.

Physically, such integrals arise when one is com-
puting a flux of some field (e.g., a magnetic field)
across a surface. We parametrized one-dimensional ori-
ented curves as continuously differentiable functions
γ from the interval [0,1] to Rn. It is thus natural to
parametrize two-dimensional oriented surfaces as con-
tinuously differentiable functionsφ defined on the unit
square [0,1]2. This does not in fact cover all possible
surfaces one wishes to integrate over, but it turns out
that one can cut up more general surfaces into pieces
that can be parametrized using “nice” domains such as
[0,1]2.

In the one-dimensional case, we cut up the oriented
interval [0,1] into infinitesimal oriented intervals from
ti to ti+1 = ti + ∆t, which led to infinitesimal curves

4. The precise condition needed is that the curve should be con-
tractible, which means that it can be continuously shrunk down to a
point.
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from xi = γ(ti) to xi+1 = γ(ti+1) = xi+∆xi. Note that
∆xi and ∆t are related by the approximation ∆xi ≈
γ′(ti)∆ti. In the two-dimensional case, we will cut up
the unit square [0,1]2 into infinitesimal squares in an
obvious way.5 A typical one of these will have cor-
ners of the form (t1, t2), (t1 + ∆t, t2), (t1, t2 + ∆t),
(t1 + ∆t, t2 + ∆t). The surface described by φ can
then be partitioned into regions with corners φ(t1, t2),
φ(t1+∆t, t2),φ(t1, t2+∆t),φ(t1+∆t, t2+∆t), each of
which carries an orientation. Since φ is differentiable,
it is approximately linear at small distance scales, so
this region is approximately an oriented parallelogram
in Rn with corners x, x + ∆1x, x + ∆2x, x + ∆1x +
∆2x, where x = (t1, t2) and ∆1x and ∆2x are the
infinitesimal vectors

∆1x = ∂φ
∂t1

(t1, t2)∆t, ∆2x = ∂φ
∂t2

(t1, t2)∆t.

Let us refer to this object as the infinitesimal parallel-
ogram with dimensions ∆1x ∧ ∆2x and base point x.
For now, we will think of the symbol “∧” as a mere
notational convenience and not try to interpret it. In
order to integrate in a manner analogous with inte-
gration on curves, we now need some sort of func-
tionalωx at this base point that depends continuously
on x. This functional should take the above infinitesi-
mal parallelogram and return an infinitesimal number
ωx(∆1x∧∆2x), which one can think of as the amount
of “flux” passing through this parallelogram.

As in the one-dimensional case, we expectωx to have
certain properties. For instance, if you double ∆1x, you
double one of the sides of the infinitesimal parallel-
ogram, so (by the continuity of ω) the “flux” passing
through the parallelogram should double. More gener-
ally,ωx(∆1x∧∆2x) should depend linearly on each of
∆1x and ∆2x: in other words, it is bilinear. (This gen-
eralizes the linear dependence in the one-dimensional
case.)

Another important property is that

ωx(∆2x ∧∆1x) = −ωx(∆1x ∧∆2x). (9)

That is, the bilinear form ωx is antisymmetric. Again,
this has an intuitive explanation: the parallelogram rep-
resented by ∆2x∧∆1x is the same as that represented
by ∆1x ∧ ∆2x except that it has had its orientation
reversed, so the “flux” now counts negatively where it
used to count positively, and vice versa. Another way

5. One could also use infinitesimal oriented rectangles, parallel-
ograms, triangles, etc.; this leads to an equivalent concept of the
integral.

of seeing this is to note that if∆1x = ∆2x, then the par-

allelogram is degenerate and there should be no flux.

Antisymmetry follows from this and the bilinearity. A

2-form ω is a continuous assignment of a functional

ωx with these properties to each point x.

Ifω is a 2-form andφ : [0,1]2 → Rn is a continuously

differentiable function, we can now define the integral∫
φω of ω “against” φ (or, more precisely, the inte-

gral against the image under φ of the oriented square

[0,1]2) by the approximation∫
φ
ω ≈

∑
i
ωxi(∆x1,i ∧∆x2,i), (10)

where the image of φ is (approximately) partitioned

into parallelograms of dimensions ∆x1,i ∧∆x2,i based

at points xi. We do not need to decide what order

these parallelograms should be arranged in, because

addition is both commutative and associative. One can

show that the right-hand side of (10) converges to a

unique limit as one makes the partition of parallelo-

grams “increasingly fine,” though we will not make this

precise here.

We have thus shown how to integrate 2-forms against

oriented two-dimensional surfaces. More generally, one

can define the concept of a k-form on ann-dimensional

manifold (such as Rn) for any 0 � k � n and inte-

grate this against an oriented k-dimensional surface

in that manifold. For instance, a 0-form on a manifold

X is the same thing as a scalar function f : X → R,

whose integral on a positively oriented point x (which

is zero dimensional) is f(x), and on a negatively ori-

ented point x is −f(x). A k-form tells us how to assign

a value to an infinitesimal k-dimensional parallelepiped

with dimensions∆x1∧· · ·∧∆xk, and hence to a portion

of k-dimensional “surface,” in much the same way as

we have seen when k = 2. By convention, if k ≠ k′, the

integral of a k-dimensional form on a k′-dimensional

surface is understood to be zero. We refer to 0-forms,

1-forms, 2-forms, etc. (and formal sums and differences

thereof), collectively as differential forms.

There are three fundamental operations that one can

perform on scalar functions: addition (f , g) �→ f + g,

pointwise product (f , g) �→ fg, and differentiation

f �→ df , although the last of these is not especially use-

ful unless f is continuously differentiable. These oper-

ations have various relationships with each other. For

instance, the product is distributive over addition,

f(g + h) = fg + fh,
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and differentiation is a derivation with respect to the
product:

d(fg) = (df)g + f(dg).
It turns out that one can generalize all three of

these operations to differential forms. Adding a pair
of forms is easy: if ω and η are two k-forms and φ :
[0,1]k → Rn is a continuously differentiable function,
then

∫
φ(ω+ η) is defined to be

∫
φω+

∫
φ η. One multi-

plies forms using the so-called wedge product. Ifω is a
k-form and η is an l-form, thenω∧η is a (k+ l)-form.
Roughly speaking, given a (k+ l)-dimensional infinites-
imal parallelepiped with base point x and dimensions
∆x1 ∧ · · · ∧ ∆xk+l, one evaluates ω and η at the par-
allelepipeds with base point x and dimensions ∆x1 ∧
· · · ∧ ∆xk and ∆xk+1 ∧ · · · ∧ ∆xk+l, respectively, and
multiplies the results together.

As for differentiation, ifω is a continuously differen-
tiable k-form, then its derivative dω is a k+ 1-form that
measures something like the “rate of change” of ω. To
see what this might mean, and in particular to see why
dω is a k+ 1 form, let us think how we might answer
a question of the following kind. We are given a spheri-
cal surface in R3 and a flow, and we would like to know
the net flux out of the surface: that is, the difference
between the amount of flux coming out and the amount
going in. One way to do this would be to approximate
the surface of the sphere by a union of tiny parallelo-
grams, to measure the flux through each one, and to
take the sum of all these fluxes. Another would be to
approximate the solid sphere by a union of tiny paral-
lelepipeds, to measure the net flux out of each of these,
and to add up the results. If a parallelepiped is small
enough, then we can closely approximate the net flux
out of it by looking at the difference, for each pair of
opposite faces, between the amount coming out of the
parallelepiped through one and the amount going into
it through the other, and this will depend on the rate
of change of the 2-form.

The process of summing up the net fluxes out of the
parallelepipeds is more rigorously described as inte-
grating a 3-form over the solid sphere. In this way, one
can see that it is natural to expect that information
about how a 2-form varies should be encapsulated in
a 3-form.

The exact construction of these operations requires
a little bit of algebra and is omitted here. However,
we remark that they obey similar laws to their scalar
counterparts, except that there are some sign changes
that are ultimately due to the antisymmetry (9). For

instance, if ω is a k-form and η is an l-form, the
commutative law for multiplication becomes

ω∧ η = (−1)klη∧ω,
basically because kl swaps are needed to interchange k
dimensions with l dimensions; and the derivation rule
for differentiation becomes

d(ω∧ η) = (dω)∧ η+ (−1)kω∧ (dη).
Another rule is that the differentiation operator d is
nilpotent:

d(dω) = 0. (11)

This may seem rather unintuitive, but it is fundamen-
tally important. To see why it might be expected, let
us think about differentiating a 1-form twice. The orig-
inal 1-form associates a scalar with each small line seg-
ment. Its derivative is a 2-form that associates a scalar
with each small parallelogram. This scalar essentially
measures the sum of the scalars given by the 1-form
as you go around the four edges of the parallelogram,
though to get a sensible answer when you pass to the
limit you have to divide by the area of the parallelo-
gram. If we now repeat the process, we are looking at
a sum of the six scalars associated with the six faces
of a parallelepiped. But each of these scalars in turn
comes from a sum of the scalars associated with the
four directed edges around the corresponding face, and
each edge is therefore counted twice (as it belongs to
two faces), once in each direction. Therefore, the con-
tributions from each edge cancel and the sum of all
contributions is zero.

The description given earlier of the relationship
between integrating a 2-form over the surface of a
sphere and integrating its derivative over the solid
sphere can be thought of as a generalization of the fun-
damental theorem of calculus, and can itself be gener-
alized considerably: Stokes’s theorem is the assertion
that ∫

S
dω =

∫
∂S
ω (12)

for any oriented manifold S and formω, where ∂S is the
oriented boundary of S (which we will not define here).
Indeed one can view this theorem as a definition of the
derivative operation ω �→ dω; thus, differentiation is
the adjoint of the boundary operation. (For instance, the
identity (11) is dual to the geometric observation that
the boundary ∂S of an oriented manifold itself has no
boundary: ∂(∂S) = ∅.) As a particular case of Stokes’s
theorem, we see that

∫
S dω = 0 whenever S is a closed

manifold, i.e., one with no boundary. This observation
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lets one extend the notions of closed and exact forms
to general differential forms, which (together with (11))
allows one to fully set up de Rham cohomology.

We have already seen that 0-forms can be identified
with scalar functions. Also, in Euclidean spaces one can
use the inner product to identify linear functionals with
vectors, and therefore 1-forms can be identified with
vector fields. In the special (but very physical) case of
three-dimensional Euclidean space R3, 2-forms can also
be identified with vector fields via the famous right-
hand rule,6 and 3-forms can be identified with scalar
functions by a variant of this rule. (This is an exam-
ple of a concept known as Hodge duality.) In this case,
the differentiation operationω �→ dω can be identified
with the gradient operation f �→ ∇f when ω is a 0-
form, with the curl operation X �→ ∇ × X when ω is a
1-form, and with the divergence operation X �→ ∇ · X
when ω is a 2-form. Thus, for instance, the rule (11)
implies that ∇×∇f = 0 and ∇ · (∇× X) for any suit-
ably smooth scalar function f and vector field X, while
various cases of Stokes’s theorem (12), with this inter-
pretation, become the various theorems about integrals
of curves and surfaces in three dimensions that you
may have seen referred to as “the divergence theorem,”
“Green’s theorem,” and “Stokes’s theorem” in a course
on several-variable calculus.

Just as the signed definite integral is connected to
the unsigned definite integral in one dimension via
(2), there is a connection between integration of dif-
ferential forms and the Lebesgue (or Riemann) inte-
gral. On the Euclidean space Rn one has the n stan-
dard coordinate functions x1, x2, . . . , xn : Rn → R.
Their derivatives dx1, . . . ,dxn are then 1-forms on Rn.
Taking their wedge product, one obtains an n-form
dx1∧· · ·∧dxn. We can multiply this with any (contin-
uous) scalar function f : Rn → R to obtain another n-
form dx1∧· · ·∧dxn. IfΩ is any open bounded domain
in Rn, we then have the identity∫

Ω
f(x)dx1 ∧ · · · ∧ dxn =

∫
Ω
f(x)dx,

where on the left-hand side we have an integral of a dif-
ferential form (with Ω viewed as a positively oriented
n-dimensional manifold) and on the right-hand side we
have the Riemann or Lebesgue integral of f on Ω. If
we give Ω the negative orientation, we have to reverse

6. This is an entirely arbitrary convention; one could just as easily
have used the left-hand rule to provide this identification, and apart
from some harmless sign changes here and there, one gets essentially
the same theory as a consequence.

the sign of the left-hand side. This correspondence
generalizes (2).

There is one last operation on forms that is worth
pointing out. Suppose we have a continuously differen-
tiable map Φ : X → Y from one manifold to another
(we allow X and Y to have different dimensions). Then
of course every point x in X pushes forward to a
point Φ(x) in Y . Similarly, if we let v ∈ TxX be an
infinitesimal tangent vector to X based at x, then this
tangent vector also pushes forward to a tangent vec-
tor Φ∗v ∈ TΦ(x)(Y) based at Φ∗x; informally speak-
ing, Φ∗v can be defined by requiring the infinitesi-
mal approximation Φ(x + v) = Φ(x) + Φ∗v . One can
write Φ∗v = DΦ(x)(v), where DΦ : TxX → TΦ(x)Y
is the derivative of the several-variable map Φ at x.
Finally, any k-dimensional oriented manifold S in X
also pushes forward to a k-dimensional oriented mani-
foldΦ(S) inX, although in some cases (e.g., if the image
of Φ has dimension less than k) this pushed-forward
manifold may be degenerate.

We have seen that integration is a duality pairing
between manifolds and forms. Since manifolds push
forward under Φ from X to Y , we expect forms to pull
back from Y to X. Indeed, given any k-formω on Y , we
can define the pull-back Φ∗ω as the unique k-form on
X such that we have the change-of-variables formula∫

Φ(S)
ω =

∫
S
Φ∗(ω).

In the case of 0-forms (i.e., scalar functions), the pull-
backΦ∗f : X → R of a scalar function f : Y → R is given
explicitly by Φ∗f(x) = f(φ(x)), while the pull-back of
a 1-form ω is given explicitly by the formula

(Φ∗ω)x(v) =ωφ(x)(φ∗v).

Similar definitions can be given for other differen-
tial forms. The pull-back operation enjoys several nice
properties: for instance, it respects the wedge product,

Φ∗(ω∧ η) = (Φ∗ω)∧ (Φ∗η),
and the derivative,

d(Φ∗ω) = Φ∗(dω).
By using these properties, one can recover rather
painlessly the change-of-variables formulas in several-
variable calculus. Moreover, the whole theory carries
effortlessly over from Euclidean spaces to other man-
ifolds. It is because of this that the theory of differ-
ential forms and integration is an indispensable tool
in the modern study of manifolds, and especially in
differential topology [IV.9].
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III.17 Dimension

What is the difference between a two-dimensional set
and a three-dimensional set? A rough answer that one
might give is that a two-dimensional set lives inside a
plane, while a three-dimensional set fills up a portion of
space. Is this a good answer? For many sets it does seem
to be: triangles, squares, and circles can be drawn in a
plane, while tetrahedra, cubes, and spheres cannot. But
how about the surface of a sphere? This we would nor-
mally think of as two dimensional, contrasting it with
the solid sphere, which is three dimensional. But the
surface of a sphere does not live inside a plane.

Does this mean that our rough definition was incor-
rect? Not exactly. From the perspective of linear alge-
bra, the set {(x,y, z) : x2 +y2 + z2 = 1}, which is the
surface of a sphere of radius 1 in R3 centered at the
origin, is three dimensional, precisely because it is not
contained in a plane. (One can express this in algebraic
language by saying that the affine subspace generated
by the sphere is the whole of R3.) However, this sense
of “three dimensional” does not do justice to the rough
idea that the surface of a sphere has no thickness.
Surely there ought to be another sense of dimension
in which the surface of a sphere is two dimensional?

As this example illustrates, dimension, though very
important throughout mathematics, is not a single con-
cept. There turn out to be many natural ways of gener-
alizing our ideas about the dimensions of simple sets
such as squares and cubes, and they are often incom-
patible with one another, in the sense that the dimen-
sion of a set may vary according to which definition
you use. The remainder of this article will set out a few
different definitions.

One very basic idea we have about the dimension of a
set is that it is “the number of coordinates you need to
specify a point.” We can use this to justify our instinct
that the surface of a sphere is two dimensional: you
can specify any point by giving its longitude and lati-
tude. It is a little tricky to turn this idea into a rigorous
mathematical definition because you can in fact spec-
ify a point of the sphere by means of just one num-
ber if you do not mind doing it in a highly artificial
way. This is because you can take any two numbers
and interleave the digits to form a single number from
which the original two numbers can be recovered. For
instance, from the two numbers π = 3.141592653 . . .
and e = 2.718281828 . . . you can form the number
32.174118529821685238 . . . , and by taking alternate

digits you get back π and e again. It is even possible
to find a continuous function f from the closed inter-
val [0,1] (that is, the set of all real numbers between 0
and 1, inclusive) to the surface of a sphere that takes
every value.

We therefore have to decide what we mean by a “nat-
ural” coordinate system. One way of making this deci-
sion leads to the definition of a manifold, a very impor-
tant concept that is discussed in [I.3 §6.9] and also in
differential topology [IV.9]. This is based on the
idea that every point in the sphere is contained in a
neighborhood N that “looks like” a piece of the plane,
in the sense that there is a “nice” one-to-one correspon-
denceφ betweenN and a subset of the Euclidean plane
R2. Here, “nice” can have different meanings: typical
ones are that φ and its inverse should both be contin-
uous, or differentiable, or infinitely differentiable.

Thus, the intuitive notion that a d-dimensional set
is one where you need d numbers to specify a point
can be developed into a rigorous definition that tells
us, as we had hoped, that the surface of a sphere is two
dimensional. Now let us take another intuitive notion
and see what we can get from it.

Suppose I want to cut a piece of paper into two pieces.
The boundary that separates the pieces will be a curve,
which we would normally like to think of as one dimen-
sional. Why is it one dimensional? Well, we could use
the same reasoning: if you cut a curve into two pieces
then the part where the two pieces meet each other is
a single point (or pair of points if the curve is a loop),
which is zero dimensional. That is, there appears to be
a sense in which a (d− 1)-dimensional set is needed if
you want to cut a d-dimensional set into two.

Let us try to be slightly more precise about this idea.
Suppose that X is a set and x and y are points in X.
Let us call a set Y a barrier between x and y if there
is no continuous path from x to y that avoids Y . For
example, if X is a solid sphere of radius 2, x is the
center of X, and y is a point on the boundary of X, then
one possible barrier between x and y is the surface of
a sphere of radius 1. With this terminology in place, we
can make the following inductive definition. A finite set
is zero dimensional, and in general we say that X is at
mostd dimensional if between any two points inX there
is a barrier that is at most (d− 1) dimensional. We also
say thatX isd dimensional if it is at mostd dimensional
but not at most (d− 1) dimensional.

The above definition makes sense, but it runs into
difficulties: one can construct a pathological set X that
acts as a barrier between any two points in the plane,
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Figure 1 How to cover with squares
so that no four overlap.

but contains no segment of any curve. This makes X
zero dimensional and therefore makes the plane one
dimensional, which is not satisfactory. A small modifi-
cation to the above definition eliminates such patholo-
gies and gives a definition that was put forward by
brouwer [VI.75]. A complete metric space [III.58] X
is said to have dimension at most d if, given any pair
of disjoint closed sets A and B, you can find disjoint
open sets U and V with A ⊂ U and B ⊂ V such that
the complement Y of U ∪ V (that is, everything in X
that does not belong to either U or V ) has dimension
at most d− 1. The set Y is the barrier—the main differ-
ence is that we have now asked for it to be closed. The
induction starts with the empty set, which has dimen-
sion −1. Brouwer’s definition is known as the inductive
dimension of a set.

Here is another basic idea that leads to a useful def-
inition of dimension, proposed by lebesgue [VI.72].
Suppose you want to cover an open interval of real
numbers (that is, an interval that does not contain its
endpoints) with shorter open intervals. Then you will be
forced to make the shorter ones overlap, but you can
do it in such a way that no point is contained in more
than two of your intervals: just start each new interval
close to the end of the previous one.

Now suppose that you want to cover an open square
(that is, one that does not contain its boundary) with
smaller open squares. Again you will be forced to make
the smaller squares overlap, but this time the situation
is slightly worse: some points will have to be contained
in three squares. However, if you take squares arranged
like bricks, as in figure 1, and expand them slightly,
then you can do the covering in such a way that no
four squares overlap. In general, it seems that to cover
a typical d-dimensional set with small open sets, you

need to have overlaps of d+ 1 sets but you do not need
to have overlaps greater than this.

The precise definition that this leads to is surpris-
ingly general: it makes sense not just for subsets of Rn

but even for an arbitrary topological space [III.92].
We say that a set X is at most d dimensional if, how-
ever you cover X with a finite collection of open sets
U1, . . . , Un, you can find a finite collection of open sets
V1, . . . , Vm with the following properties:

(i) the sets Vi also cover the whole of X;
(ii) every Vi is a subset of at least one Ui;

(iii) no point is contained in more than d+1 of the Vi.

IfX is a metric space, then we can choose ourUi to have
small diameter, thereby forcing the Vi to be small. So
this definition is basically saying that it is possible to
cover X with open sets with no d+ 2 of them overlap-
ping, and that these open sets can be as small as you
like.

As with inductive dimension, we then define the
dimension of X to be the smallest d such that X is at
most d dimensional. And again it can be shown that
this definition assigns the “correct” dimension to the
familiar shapes of elementary geometry.

A fourth intuitive idea leads to concepts known as
homological and cohomological dimension. Associated
with any suitable topological space X, such as a man-
ifold, are sequences of groups known as homology
and cohomology groups [IV.10 §4]. Here we will
discuss homology groups, but a very similar discus-
sion is possible for cohomology. Roughly speaking, the
nth homology group tells you how many interestingly
different continuous maps there are from closed n-
dimensional manifolds M to X. If X is a manifold of
dimension less than n, then it can be shown that the
nth homology group is trivial: in a sense, there is not
enough room in X to define any map that is interest-
ingly different from a constant map. On the other hand,
the nth homology group of the n-sphere itself is Z,
which says that one can classify the maps from the
n-sphere to itself by means of an integer parameter.

It is therefore tempting to say that a space is at least
n dimensional if there is room inside it for interest-
ing maps from n-dimensional manifolds. This thought
leads to a whole class of definitions. The homological
dimension of a structure X is defined to be the largest
n for which some substructure of X has a nontrivial
nth homology group. (It is necessary to consider sub-
structures, because homology groups can also be trivial
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when there is too much room: it then becomes easy to
deform a continuous map and show that it is equiva-
lent to a constant map.) However, homology is a very
general concept and there are many different homology
theories, so there are many different notions of homo-
logical dimension. Some of these are geometric, but
there are also homology theories for algebraic struc-
tures: for example, using suitable theories, one can
define the homological dimension of algebraic struc-
tures such as rings [III.83 §1] or groups [I.3 §2.1]. This
is a very good example of geometrical ideas having an
algebraic payoff.

Now let us turn to a fifth and final (for this article at
least) intuitive idea about dimension, namely the way it
affects how we measure size. If you want to convey how
big a shape X is, then a good way of doing so is to give
the length of X if X is one dimensional, the area if it is
two dimensional, and the volume if it is three dimen-
sional. Of course, this presupposes that you already
know what the dimension is, but, as we shall see, there
is a way of deciding which measure is the most appro-
priate without determining the dimension in advance.
Then the tables are turned: we can actually define the
dimension to be the number that corresponds to the
best measure.

To do this, we use the fact that length, area, and vol-
ume scale in different ways when you expand a shape.
If you take a curve and expand it by a factor of 2 (in all
directions), then its length doubles. More generally, if
you expand by a factor of C , then the length multiplies
by C . However, if you take a two-dimensional shape and
expand it by C , then its area multiplies by C2. (Roughly
speaking, this is because each little portion of the shape
expands by C “in two directions” so you have to mul-
tiply the area by C twice.) And the volume of a three-
dimensional shape multiplies by C3: for instance, the
volume of a sphere of radius 3 is twenty-seven times
the volume of a sphere of radius 1.

It may look as though we still have to decide in
advance whether we will talk about length, area, or vol-
ume before we can even begin to think about how the
measurement scales when we expand the shape. But
this is not the case. For instance, if we expand a square
by a factor of 2, then we obtain a new square that can
be divided up into four congruent copies of the original
square. So, without having decided in advance that we
are talking about area, we can say that the size of the
new square is four times that of the old square.

This observation has a remarkable consequence:
there are sets to which it is natural to assign a dimen-

sion that is not an integer! Perhaps the simplest exam-
ple is a famous set first defined by cantor [VI.54] and
now known as the Cantor set. This set is produced as
follows. You start with the closed interval [0,1], and
call it X0. Then you form a set X1 by removing the mid-
dle third of X0: that is, you remove all points between
1
3 and 2

3 , but leave 1
3 and 2

3 themselves. So X1 is the
union of the closed intervals [0, 1

3 ] and [ 2
3 ,1]. Next, you

remove the middle thirds of these two closed intervals
to produce a set X2, so X2 is the union of the intervals
[0, 1

9 ], [
2
9 ,

1
3 ], [

2
3 ,

7
9 ], and [ 8

9 ,1].
In general,Xn is a union of closed intervals, andXn+1

is what you get by removing the middle thirds of each
of these intervals—so Xn+1 consists of twice as many
intervals asXn, but they are a third of the size. Once you
have produced the sequence X0, X1, X2, . . . , you define
the Cantor set to be the intersection of all the Xi: that
is, all the real numbers that remain, no matter how
far you go with the process of removing middle thirds
of intervals. It is not hard to show that these are pre-
cisely the numbers whose ternary expansions consist
just of 0s and 2s. (There are some numbers that have
two different ternary expansions. For instance, 1

3 can
be written either as 0.1 or as 0.22222 . . . . In such cases
we take the recurring expansion rather than the ter-
minating one. So 1

3 belongs to the Cantor set.) Indeed,
when you remove middle thirds for the nth time, you
are removing all numbers that have a 1 in the nth place
after the “decimal” (in fact, ternary) point.

The Cantor set has many interesting properties. For
example, it is uncountable [III.11], but it also has mea-
sure [III.57] zero. Briefly, the first of these assertions
follows from the fact that there is a different element
of the Cantor set for every subsetA of the natural num-
bers (just take the ternary number 0.a1a2a3 . . . , where
ai = 2 whenever i ∈ A and ai = 0 otherwise), and there
are uncountably many subsets of the natural numbers.
To justify the second, note that the total length of the
intervals making up Xn is ( 2

3 )
n (since one removes a

third of Xn−1 to produce Xn). Since the Cantor set is
contained in every Xn, its measure must be smaller
than ( 2

3 )
n, whatever n is, which means that it must be

zero. Thus, the Cantor set is very large in one respect
and very small in another.

A further property of the Cantor set is that it is self-
similar. The set X1 consists of two intervals, and if you
look at just one of these intervals as the middle thirds
are repeatedly removed, then what you see is just like
the construction of the whole Cantor set, but scaled
down by a factor of 3. That is, the Cantor set consists
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of two copies of itself, each scaled down by a factor
of 3. From this we deduce the following statement: if
you expand the Cantor set by a factor of 3, then you can
divide the expanded set up into two congruent copies
of the original, so it is “twice as big.”

What consequence should this have for the dimen-
sion of the Cantor set? Well, if the dimension is d, then
the expanded set ought to be 3d times as big. There-
fore, 3d should equal 2. This means that d should be
log 2/ log 3, which is roughly 0.63.

Once one knows this, the mystery of the Cantor set
is lessened. As we shall see in a moment, a theory of
fractional dimension can be developed with the use-
ful property that a countable union of sets of dimen-
sion at most d has dimension at most d. Therefore, the
fact that the Cantor set has dimension greater than 0
implies that it cannot be countable (since single points
have dimension 0). On the other hand, because the
dimension of the Cantor set is less than 1, it is much
smaller than a one-dimensional set, so it is no surprise
that its measure is zero. (This is a bit like saying that
a surface has no volume, but now the two dimensions
are 0.63 and 1 instead of 2 and 3.)

The most useful theory of fractional dimension is
one developed by hausdorff [VI.68]. One begins with
a concept known as Hausdorff measure, which is a nat-
ural way of assessing the “d-dimensional volume” of a
set, even ifd is not an integer. Suppose you have a curve
in R3 and you want to work out its length by consider-
ing how easy it is to cover it with spheres. A first idea
might be to say that the length was the smallest you
could make the sum of the diameters of the spheres.
But this does not work: you might be lucky and find that
a long curve was tightly wrapped up, in which case you
could cover it with a single sphere of small diameter.

However, this would no longer be possible if your
spheres were required to be small. Suppose, therefore,
that we require all the diameters of the spheres to be
at most δ. Let L(δ) be the smallest we can then get the
sum of the diameters to be. The smaller δ is, the less
flexibility we have, so the larger L(δ) will be. Therefore,
L(δ) tends to a (possibly infinite) limit L as δ tends to 0,
and we call L the length of the curve.

Now suppose that we have a smooth surface in R3

and want to deduce its area from information about
covering it with spheres. This time, the area that you
can cover with a very small sphere (so small that it
meets only one portion of the surface and that por-
tion is almost flat) will be roughly proportional to the
square of the diameter of the sphere. But that is the only

detail we need to change: let A(δ) be the smallest we

can make the sum of the squares of the diameters of a

set of spheres that cover the surface, if all those spheres

have diameter at most δ. Then declare the area of the

surface to be the limit of A(δ) as δ tends to 0. (Strictly

speaking, we ought to multiply this limit by π/4, but

then we get a definition that does not generalize easily.)

We have just given a way of defining length and area,

for shapes in R3. The only difference between the two

was that for length we considered the sum of the diam-

eters of small spheres, while for area we considered the

sum of the squares of the diameters of small spheres.

In general, we define the d-dimensional Hausdorff mea-

sure in a similar way, but considering the sum of the

dth powers of the diameters.

We can use the concept of Hausdorff measure to give

a rigorous definition of fractional dimension. It is not

hard to show that for any shape X there will be exactly

one appropriate d, in the following sense: if c is less

than d, then the c-dimensional Hausdorff measure of

X is 0, while if c is greater than d, then it is infinite.

(For instance, the c-dimensional Hausdorff measure of

a smooth surface is 0 if c < 2 and infinite if c > 2.) This

d is called the Hausdorff dimension of the set X. Haus-

dorff dimension is very useful for analyzing fractal sets,

which are discussed further in dynamics [IV.15].

It is important to realize that the Hausdorff dimen-

sion of a set need not equal its topological dimension.

For example, the Cantor set has topological dimen-

sion zero and Hausdorff dimension log 2/ log 3. A larger

example is a very wiggly curve known as the Koch

snowflake. Because it is a curve (and a single point is

enough to cut it into two) it has topological dimen-

sion 1. However, because it is very wiggly, it has infi-

nite length, and its Hausdorff dimension is in fact

log 4/ log 3.

III.18 Distributions
Terence Tao

A function is normally defined to be an object f : X → Y
which assigns to each point x in a set X, known as the

domain, a point f(x) in another set Y , known as the

range (see the language and grammar of mathe-

matics [I.2 §2.2]). Thus, the definition of functions is

set-theoretic and the fundamental operation that one

can perform on a function is evaluation: given an ele-

ment x of X, one evaluates f at x to obtain the element

f(x) of Y .
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However, there are some fields of mathematics where

this may not be the best way of describing functions.

In geometry, for instance, the fundamental property of

a function is not necessarily how it acts on points, but

rather how it pushes forward or pulls back objects that

are more complicated than points (e.g., other functions,

bundles [IV.10 §5] and sections, schemes [IV.6 §3] and

sheaves, etc.). Similarly, in analysis, a function need not

necessarily be defined by what it does to points, but

may instead be defined by what it does to objects of

different kinds, such as sets or other functions; the for-

mer leads to the notion of a measure; the latter to that

of a distribution.

Of course, all these notions of function and function-

like objects are related. In analysis, it is helpful to think

of the various notions of a function as forming a spec-

trum, with very “smooth” classes of functions at one

end and very “rough” ones at the other. The smooth

classes of functions are very restrictive in their mem-

bership: this means that they have good properties, and

there are many operations that one can perform on

them (such as, for example, differentiation), but it also

means that one cannot necessarily ensure that the func-

tions one is working with belong to this category. Con-

versely, the rough classes of functions are very general

and inclusive: it is easy to ensure that one is working

with them, but the price one pays is that the number of

operations one can perform on these functions is often

sharply reduced (see function spaces [III.29]).

Nevertheless, the various classes of functions can

often be treated in a unified manner, because it is

often possible to approximate rough functions arbitrar-

ily well (in an appropriate topology [III.92]) by smooth

ones. Then, given an operation that is naturally defined

for smooth functions, there is a good chance that there

will be exactly one natural way to extend it to an opera-

tion on rough functions: one takes a sequence of better

and better smooth approximations to the rough func-

tions, performs the operation on them, and passes to

the limit.

Distributions, or generalized functions, belong at the

rough end of the spectrum, but before we say what

they are, it will be helpful to begin by considering some

smoother classes of functions, partly for comparison

and partly because one obtains rough classes of func-

tions from smooth ones by a process known as duality:

a linear functional defined on a space E of functions

is simply a linear map φ from E to the scalars R or C.

Typically, E is a normed space, or at least comes with a

topology, and the dual space is the space of continuous
linear functionals.

The class Cω[−1, 1] of analytic functions. These are in
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many ways the “nicest” functions of all, and include
many familiar functions such as exp(x), sin(x), poly-
nomials, and so on. However, we shall not discuss them
further, because for many purposes they form too rigid
a class to be useful. (For example, if an analytic func-
tion is zero everywhere on an interval, then it is forced
to be zero everywhere.)

The class C∞c [−1, 1] of test functions. These are the
smooth (that is, infinitely differentiable) functions f ,
defined on the interval [−1,1], that vanish on neighbor-
hoods of 1 and−1. (That is, one can find δ > 0 such that
f(x) = 0 whenever x > 1− δ or x < −1+ δ.) They are
more numerous than analytic functions and therefore
more tractable for analysis. For instance, it is often use-
ful to construct smooth “cutoff functions,” which are
functions that vanish outside some small set but do not
vanish inside it. Also, all the operations from calculus
(differentiation, integration, composition, convolution,
evaluation, etc.) are available for these functions.

The class C0[−1, 1] of continuous functions. These func-
tions are regular enough for the notion of evaluation,
x �→ f(x), to make sense for every x ∈ [−1,1], and
one can integrate such functions and perform algebraic
operations such as multiplication and composition, but
they are not regular enough that operations such as dif-
ferentiation can be performed on them. Still, they are
usually considered among the smoother examples of
functions in analysis.

The class L2[−1, 1] of square-integrable functions. These
are measurable functions f : [−1,1] → R for which
the Lebesgue integral

∫ 1
−1 |f(x)|2 dx is finite. Usually

one regards two such functions f and g as equal if
the set of x such that f(x) �= g(x) has measure zero.
(Thus, from the set-theoretic point of view, the object
in question is really an equivalence class [I.2 §2.3]
of functions.) Since a singleton {x} has measure zero,
we can change the value of f(x) without changing the
function. Thus, the notion of evaluation does not make
sense for a square-integrable function f(x) at any spe-
cific point x. However, two functions that differ on a
set of measure zero have the same lebesgue integral
[III.57], so integration does make sense.

A key point about this class is that it is self-dual
in the following sense. Any two functions in this
class can be paired together by the inner product



�

188 III. Mathematical Concepts

〈f , g〉 = ∫ 1
−1 f(x)g(x)dx. Therefore, given a function

g ∈ L2[−1,1], the map f �→ 〈f , g〉 defines a linear func-
tional on L2[−1,1], which turns out to be continuous.
Moreover, given any continuous linear functional φ on
L2[−1,1], there is a unique function g ∈ L2[−1,1] such
that φ(f) = 〈f , g〉 for every f . This is a special case of
one of the Riesz representation theorems.

The class C0[−1, 1]∗ of finite Borel measures. Any finite
Borel measure [III.57] µ gives rise to a continuous lin-
ear functional on C0[−1,1] defined by f �→ 〈µ, f 〉 =∫ 1
−1f(x)dµ. Another of the Riesz representation theo-

rems says that every continuous linear functional on
C0[−1,1] arises in this way, so one could in principle
define a finite Borel measure to be a continuous linear
functional on C0[−1,1].

The class C∞([−1, 1])∗ of distributions. Just as mea-
sures can be viewed as continuous linear functionals
on C0([−1,1]), a distribution µ is a continuous linear
functional on C∞c ([−1,1]) (with an appropriate topol-
ogy). Thus, a distribution can be viewed as a “virtual
function”: it cannot itself be directly evaluated, or even
integrated over an open set, but it can still be paired
with any test function g ∈ C∞c ([−1,1]), producing a
number 〈µ,g〉. A famous example is the Dirac distribu-
tion δ0, defined as the functional which, when paired
with any test function g, returns the evaluation g(0)
of g at zero: 〈δ0, g〉 = g(0). Similarly, we have the
derivative of the Dirac distribution, −δ′0, which, when
paired with any test function g, returns the derivative
g′(0) of g at zero: 〈−δ′0, g〉 = g′(0). (The reason for
the minus sign will be given later.) Since test functions
have so many operations available to them, there are
many ways to define continuous linear functionals, so
the class of distributions is quite large. Despite this,
and despite the indirect, virtual nature of distributions,
one can still define many operations on them; we shall
discuss this later.

The class Cω([−1, 1])∗ of hyperfunctions. There areT&T note: this
paragraph can be
cut, according to
Terry and Tim, if
space becomes
really tight.

classes of functions more general still than distribu-
tions. For instance, there are hyperfunctions, which
roughly speaking one can think of as linear function-
als that can be tested only against analytic functions
g ∈ Cω([−1,1]) rather than against test functions
g ∈ C∞([−1,1]). However, as the class of analytic func-
tions is so sparse, hyperfunctions tend not to be as
useful in analysis as distributions.

At first glance, the concept of a distribution has lim-
ited utility, since all a distribution µ is empowered to do

is to be tested against test functions g to produce inner
products 〈µ,g〉. However, using this inner product, one
can often take operations that are initially defined only
on test functions, and extend them to distributions by
duality. A typical example is differentiation. Suppose
one wants to know how to define the derivative µ′ of
a distribution, or in other words how to define 〈µ′, g〉
for any test function g and distribution µ. If µ is itself
a test function µ = f , then we can evaluate this using
integration by parts (recalling that test functions vanish
at −1 and 1). We have

〈f ′, g〉 =
∫ 1

−1
f ′(x)g(x)dx

= −
∫ 1

−1
f(x)g′(x)dx = −〈f , g′〉.

Note that if g is a test function, then so is g′. We can
therefore generalize this formula to arbitrary distribu-
tions by defining 〈µ′, g〉 = −〈µ,g′〉. This is the justifi-
cation for the differentiation of the Dirac distribution:
〈δ′0, g〉 = −〈δ0, g′〉 = −g′(0).

More formally, what we have done here is to com-
pute the adjoint of the differentiation operation (as
defined on the dense space of test functions). Then
we have taken adjoints again to define the differenti-
ation operation for general distributions. This proce-
dure is well-defined and also works for many other con-
cepts; for instance, one can add two distributions, mul-
tiply a distribution by a smooth function, convolve two
distributions, and compose distributions on both left
and right with suitably smooth functions. One can even
take Fourier transforms of distributions. For instance,
the Fourier transform of the Dirac delta δ0 is the con-
stant function 1, and vice versa (this is essentially
the Fourier inversion formula), while the distribution∑
n∈Z δ0(x −n) is its own Fourier transform (this is

essentially the Poisson summation formula). Thus the
space of distributions is quite a good space to work in,
in that it contains a large class of functions (e.g., all
measures and integrable functions), and is also closed
under a large number of common operations in analy-
sis. Because the test functions are dense in the space
of distributions, the operations as defined on distribu-
tions are usually compatible with those on test func-
tions. For instance, if f and g are test functions and
f ′ = g in the sense of distributions, then f ′ = g will
also be true in the classical sense. This often allows
one to manipulate distributions as if they were test
functions without fear of confusion or inaccuracy. The
main operations one has to be careful about are evalua-
tion and pointwise multiplication of distributions, both
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of which are usually not well-defined (e.g., the square
of the Dirac delta distribution is not well-defined as a
distribution).

Another way to view distributions is as the weak limit
of test functions. A sequence of functions fn is said to
converge weakly to a distribution µ if 〈fn, g〉 → 〈µ,g〉
for all test functions g. For instance, ifϕ is a test func-
tion with total integral

∫ 1
−1ϕ = 1, then the test func-

tions fn(x) = nϕ(nx) can be shown to converge
weakly to the Dirac delta distributionδ0, while the func-
tions f ′n = n2ϕ′(nx) converge weakly to the derivative
δ′0 of the Dirac delta. On the other hand, the functions
gn(x) = cos(nx)ϕ(x) converge weakly to zero (this is
a variant of the Riemann–Lebesgue lemma). Thus weak
convergence has some unusual features not present in
stronger notions of convergence, in that severe oscil-
lations can sometimes “disappear” in the limit. One
advantage of working with distributions instead of
smoother functions is that one often has some com-
pactness in the space of distributions under weak lim-
its (e.g., by the Banach–Alaoglu theorem). Thus, distri-
butions can be thought of as asymptotic extremes of
behavior of smoother functions, just as real numbers
can be thought of as limits of rational numbers.

Because distributions can be easily differentiated,
while still being closely connected to smoother func-
tions, they have been extremely useful in the study of
partial differential equations (PDEs), particularly when
the equations are linear. For instance, the general solu-
tion to a linear PDE can often be described in terms
of its fundamental solution, which solves the PDE in
the sense of distributions. More generally, distribution
theory (together with related concepts, such as that of
a weak derivative) gives an important (though certainly
not the only) means to define generalized solutions of
both linear and nonlinear PDEs. As the name suggests,
these generalize the concept of smooth (or classical)
solutions by allowing the formation of singularities,
shocks, and other nonsmooth behavior. In some cases
the easiest way to construct a smooth solution to a PDE
is first to construct a generalized solution and then to
use additional arguments to show that the generalized
solution is in fact smooth.

III.19 Duality

Duality is an important general theme that has manifes-
tations in almost every area of mathematics. Over and
over again, it turns out that one can associate with a
given mathematical object a related, “dual” object that

helps one to understand the properties of the object
one started with. Despite the importance of duality in
mathematics, there is no single definition that covers
all instances of the phenomenon. So let us look at a
few examples and at some of the characteristic features
that they exhibit.

1 Platonic Solids

Suppose you take a cube, draw points at the centers of
each of its six faces, and let those points be the ver-
tices of a new polyhedron. The polyhedron you get will
be a regular octagon. What happens if you repeat the
process? If you draw a point at the center of each of
the eight faces of the octahedron, you will find that
these points are the eight vertices of a cube. We say that
the cube and the octahedron are dual to one another.
The same can be done for the other Platonic solids:
the dodecahedron and the icosahedron are dual to one
another, while the dual of a tetrahedron is again a
tetrahedron.

The duality just described does more than just split
up the five Platonic solids into three groups: it allows us
to associate statements about a solid with statements
about its dual. For instance, two faces of a dodecahe-
dron are adjacent if they share an edge, and this is so
if and only if the corresponding vertices of the dual
icosahedron are linked by an edge. And for this reason
there is also a correspondence between edges of the
dodecahedron and edges of the icosahedron.

2 Points and Lines in the Projective Plane

There are several equivalent definitions of the projec-
tive plane [I.3 §6.7]. One, which we shall use here, is
that it is the set of all lines in R3 that go through the
origin. These lines we call the “points” of the projec-
tive plane. In order to visualize this set as a geometri-
cal object and to make its “points” more point-like, it
is helpful to associate each line through the origin with
the pair of points in R3 at which it intersects the unit
sphere: indeed, one can define the projective plane as
the unit sphere with opposite points identified.

A typical “line” in the projective plane is the set of
all “points” (that is, lines through the origin) that lie in
some plane through the origin. This is associated with
the great circle in which that plane intersects the unit
sphere, once again with opposite points identified.

There is a natural association between lines and
points in the projective plane: each point P is associated
with the line L that consists of all points orthogonal to
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P, and each line L is associated with the single point P
that is orthogonal to all points in L. For example, if P is
the z-axis, then the associated projective line L is the set
of all lines through the origin that lie in the xy-plane,
and vice versa. This association has the following basic
property: if a point P belongs to a line L, then the line
associated with P contains the point associated with L.

This allows us to translate statements about points
and lines into logically equivalent statements about
lines and points. For example, three points are collinear
(that is, they all lie in a line) if and only if the corre-
sponding lines are concurrent (that is, there is some
point that is contained in all of them). In general, once
you have proved a theorem in projective geometry, you
get another, dual, theorem for free (unless the dual
theorem turns out to be the same as the original one).

3 Sets and Their Complements

Let X be a set. If A is any subset of X, then the com-
plement of A, written Ac, is the set of all elements of X
that do not belong to A. The complement of the com-
plement of A is clearly A, so there is a kind of dual-
ity between sets and their complements. De Morgan’s
laws are the statements that (A ∩ B)c = Ac ∪ Bc and
(A ∪ B)c = Ac ∩ Bc: they tell us that complementation
“turns intersections into unions,” and vice versa. Notice
that if we apply the first law to Ac and Bc, then we find
that (Ac ∩ Bc)c = A ∪ B. Taking complements of both
sides of this equality gives us the second law.

Because of de Morgan’s laws, any identity involv-
ing unions and intersections remains true when you
interchange them. For example, one useful identity is
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). Applying this to the
complements of the sets and using de Morgan’s laws, it
is straightforward to deduce the equally useful identity
A∩ (B ∪ C) = (A∩ B)∪ (A∩ C).

4 Dual Vector Spaces

Let V be a vector space [I.3 §2.3], over R, say. The dual
space V∗ is defined to be the set of all linear functionals
on V : that is, linear maps from V to R. It is not hard to
define appropriate notions of addition and scalar mul-
tiplication and show that these make V∗ into a vector
space as well.

Suppose that T is a linear map [I.3 §4.2] from a vec-
tor space V to a vector space W . If we are given an ele-
ment w∗ of the dual space W∗, then we can use T and
w∗ to create an element of V∗ as follows: it is the map
that takes v to the real number w∗(Tv). This map,

which is denoted by T∗w∗ , is easily checked to be lin-

ear. The function T∗ is itself a linear map, called the

adjoint of T , and it takes elements of W∗ to elements

of V∗.

This is a typical feature of duality: a function f from

object A to object B very often gives rise to a function

g from the dual of B to the dual of A.

Suppose that T∗ is a surjection. Then if v �= v′,
we can find v∗ such that v∗(v) �= v∗(v′), and then

w∗ ∈ W∗ such that T∗w∗ = v∗, so that T∗w∗(v) �=
T∗w∗(v′), and hence w∗(Tv) �= w∗(Tv′). This

implies that Tv �= Tv′, which proves that T is an injec-

tion. We can also prove that if T∗ is an injection, then

T is a surjection. Indeed, if T is not a surjection, then

TV is a proper subspace of W , which allows us to find

a nonzero linear functional w∗ such that w∗(Tv) = 0

for every v ∈ V , and hence such that T∗w∗ = 0, which

contradicts the injectivity of T∗. If V and W are finite

dimensional, then (T∗)∗ = T , so in this case we find

that T is an injection if and only if T∗ is a surjection,

and vice versa. Therefore, we can use duality to con-

vert an existence problem into a uniqueness problem.

This conversion of one kind of problem into a different

kind is another characteristic and very useful feature

of duality.

If a vector space has additional structure, the defini-

tion of the dual space may well change. For instance, if

X is a real banach space [III.64], then X∗ is defined

to be the space of all continuous linear functionals

from X to R, rather than the space of all linear func-

tionals. This space is also a Banach space: the norm

of a continuous linear functional f is defined to be

sup{|f(x)| : x ∈ X, ‖x‖ � 1}. If X is an explicit exam-

ple of a Banach space (such as one of the spaces dis-

cussed in function spaces [III.29]), it can be extremely

useful to have an explicit description of the dual space.

That is, one would like to find an explicitly described

Banach space Y and a way of associating with each

nonzero element y of Y a nonzero continuous linear

functional φy defined on X, in such a way that every

continuous linear functional is equal to φy for some

y ∈ Y .

From this perspective, it is more natural to regard X
and Y as having the same status. We can reflect this in

our notation by writing 〈x,y〉 instead of φy(x). If we

do this, then we are drawing attention to the fact that

the map 〈· , ·〉, which takes the pair (x,y) to the real

number 〈x,y〉, is a continuous bilinear map fromX×Y
to R.
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More generally, whenever we have two mathematical
objects A and B, a set S of “scalars” of some kind, and
a function β : A × B → S that is a structure-preserving
map in each variable separately, we can think of the
elements of A as elements of the dual of B, and vice
versa. Functions like β are called pairings.

5 Polar Bodies

Let X be a subset of Rn and let 〈· , ·〉 be the standard
inner product [III.37] on Rn. Then the polar of X,
denoted X◦, is the set of all points y ∈ Rn such that
〈x,y〉 � 1 for every x ∈ X. It is not hard to check that
X◦ is closed and convex, and that if X is closed and
convex, then (X◦)◦ = X. Furthermore, if n = 3 and X
is a Platonic solid centered at the origin, then X◦ is (a
multiple of) the dual Platonic solid, and if X is the “unit
ball” of a normed space (that is, the set of all points of
norm at most 1), then X◦ is (easily identified with) the
unit ball of the dual space.

6 Duals of Abelian Groups

If G is an Abelian group, then a character on G is a
homomorphism from G to the group T of all complex
numbers of modulus 1. Two characters can be multi-
plied together in an obvious way, and this multiplica-
tion makes the set of all characters on G into another
Abelian group, called the dual group, Ĝ, of the groupG.
Again, ifG has a topological structure, then one usually
imposes an additional continuity condition.

An important example is when the group is itself T.
It is not hard to show that the continuous homomor-
phisms from T to T all have the form eiθ �→ einθ for
some integer n (which may be negative or zero). Thus,
the dual of T is (isomorphic to) Z.

This form of duality between groups is called Pon-
tryagin duality. Note that there is an easily defined pair-
ing between G and Ĝ: given an element g ∈ G and a
character ψ ∈ Ĝ, we define 〈g,ψ〉 to be ψ(g).

Under suitable conditions, this pairing extends to
functions defined on G and Ĝ. For instance, if G and
Ĝ are finite, and f : G → C and F : Ĝ → C,
then we can define 〈f , F〉 to be the complex number
|G|−1

∑
g∈G

∑
ψ∈Ĝ f (g)F(ψ). In general, one obtains a

pairing between a complex hilbert space [III.37] of
functions on G and a Hilbert space of functions on Ĝ.

This extended pairing leads to another important
duality. Given a function in the Hilbert space L2(T),
its Fourier transform is the function f̂ ∈ �2(Z) that

is defined by the formula

f̂ (n) = 1
2π

∫ 2π

0
f(eiθ)e−inθ dθ.

The Fourier transform, which can be defined similarly

for functions on other Abelian groups, is immensely

useful in many areas of mathematics. (See, for exam-

ple, fourier transforms [III.27] and representation

theory [IV.12].) By contrast with some of the previ-

ous examples, it is not always easy to translate a state-

ment about a function f into an equivalent statement

about its Fourier transform f̂ , but this is what gives

the Fourier transform its power: if you wish to under-

stand a function f defined on T, then you can explore

its properties by looking at both f and f̂ . Some proper-

ties will follow from facts that are naturally expressed

in terms of f and others from facts that are naturally

expressed in terms of f̂ . Thus, the Fourier transform

“doubles one’s mathematical power.”

7 Homology and Cohomology

Let X be a compact n-dimensional manifold [I.3 §6.9].

If M and M′ are an i-dimensional submanifold and

an (n− i)-dimensional submanifold of X, respectively,

and if they are well-behaved and in sufficiently gen-

eral position, then they will intersect in a finite set of

points. If one assigns either 1 or −1 to each of these

points in a natural way that takes account of how M
and M′ intersect, then the sum of the numbers at the

points is an invariant called the intersection number of

M and M′. This number turns out to depend only on

the homology classes [IV.10 §4] of M and M′. Thus,

it defines a map from Hi(X)×Hn−i(X) to Z, where we

writeHr(X) for the r th homology group ofX. This map

is a group homomorphism in each variable separately,

and the resulting pairing leads to a notion of duality

called Poincaré duality, and ultimately to the modern

theory of cohomology, which is dual to homology. As

with some of our other examples, many concepts asso-

ciated with homology have dual concepts: for exam-

ple, in homology one has a boundary map, whereas in

cohomology there is a coboundary map (in the opposite

direction). Another example is that a continuous map

from X to Y gives rise to a homomorphism from the

homology group Hi(X) to the homology group Hi(Y),
and also to a homomorphism from the cohomology

group Hi(Y) to the cohomology group Hi(X).



�

192 III. Mathematical Concepts

8 Further Examples Discussed in This Book

The examples above are not even close to a complete

list: even in this book there are several more. For

instance, the article on differential forms [III.16] dis-

cusses a pairing, and hence a duality, between k-forms

and k-dimensional surfaces. (The pairing is given by

integrating the form over the surface.) The article on

distributions [III.18] shows how to use duality to give

rigorous definitions of function-like objects such as the

Dirac delta function. The article on mirror symme-

try [IV.14] discusses an astonishing (and still largely

conjectural) duality between calabi–yau manifolds

[III.6] and so-called “mirror manifolds.” Often the mir-

ror manifold is much easier to understand than the

original manifold, so this duality, like the Fourier trans-

form, makes certain calculations possible that would

otherwise be unthinkable. And the article on repre-

sentation theory [IV.12] discusses the “Langlands

dual” of certain (non-Abelian) groups: a proper under-

standing of this duality would solve many major open

problems.

III.20 Dynamical Systems and Chaos

From a scientific point of view, a dynamical system is a

physical system, such as a collection of planets or the

water in a canal, that changes over time. Typically, the

positions and velocities of the parts of such a system

at a time t depend only on the positions and veloci-

ties of those parts just before that time, which means

that the behavior of the system is governed by a system

of partial differential equations [I.3 §5.3]. Often,

a very simple collection of partial differential equations

can lead to very complicated behavior of the physical

system.

From a mathematical point of view, a dynamical sys-

tem is any mathematical object that evolves in time

according to a precise rule that determines the behavior

of the system at time t from its behavior just before-

hand. Sometimes, as above, “just beforehand” refers to

a time infinitesimally earlier, which is why calculus is

involved. But there is also a vigorous theory of discrete

dynamical systems, where the “time” t takes integer

values, and the “time just before t” is t − 1. If f is the

function that tells us how the system at time t depends

on the system at time t − 1, then the system as a whole

can be thought of as the process of iterating f : that is,

applying f over and over again.

As with continuous dynamical systems, a very simple

function f can lead to very complicated behavior if you

iterate it enough times. In particular, some of the most

interesting dynamical systems, both discrete ones and

continuous ones, exhibit an extreme sensitivity to ini-

tial conditions, which is known as chaos. This is true,

for example, of the equations that govern weather. One

cannot hope to specify exactly the wind speed at every

point on the Earth’s surface (not to mention high above

it), which means that one has to make do with approx-

imations. Because the relevant equations are chaotic,

the resulting inaccuracies, which may be small to start

with, rapidly propagate and overwhelm the system: you

could start with a different, equally good approxima-

tion and find that after a fairly short time the system

had evolved in a completely different way. This is why

accurate forecasting is impossible more than a few days

in advance.

For more about dynamical systems and chaos, see

dynamics [IV.15].

III.21 Elliptic Curves
Jordan S. Ellenberg

An elliptic curve over a field K can be defined as an

algebraic curve of genus 1 overK, endowed with a point

defined over K. If this definition is too abstract for your

tastes, then an equivalent definition is the following: an

elliptic curve is a curve in the plane determined by an

equation of the form

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6. (1)

When the characteristic of K is not 2, we can trans-

form this equation into the simpler form y2 = f(x),
for some cubic polynomial f . In this sense, an ellip-

tic curve is a rather concrete object. However, this def-

inition has given rise to a subject of seemingly inex-

haustible mathematical interest, which has provided a

tremendous fund of ideas, examples, and problems in

number theory and algebraic geometry. This is in part

because there are many values of “X” for which it is the

case that “the simplest interesting example of X is an

elliptic curve.”

For instance, the points of an elliptic curve E with

coordinates in K naturally form an Abelian group,

which we call E(K). The connected projective vari-

eties [III.97] that admit a group law of this kind are

called Abelian varieties; and elliptic curves are just

the Abelian varieties that are one dimensional. The
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Mordell–Weil theorem tells us that, when K is a num-
ber field and A is an Abelian variety, A(K) is actually a
finitely generated Abelian group, called a Mordell–Weil
group; these Abelian groups are much studied but have
retained much of their mystery (see rational points
on curves and the mordell conjecture [V.31]).
Even whenA is an elliptic curve, in which case we would
call it E instead, there is a great deal that we do not
know, though the birch–swinnerton-dyer conjec-
ture [V.4] offers a conjectural formula for the rank of
the group E(K). For much more on the topic of rational
points on elliptic curves, see arithmetic geometry
[IV.6].

Since E(K) forms an Abelian group, given any prime
p one can look at the subgroup of elements P such
that pP = 0. This subgroup is called E(K)[p]. In par-
ticular, we can take the algebraic closure K̄ of K and
look at E(K̄)[p]. It turns out that, when K is a num-
ber field [III.65] (or, for that matter, any field of char-
acteristic not equal to p), this group is isomorphic to
(Z/pZ)2, no matter what choice of E we started with.
If the group is the same for all elliptic curves, why is it
interesting? Because it turns out that the galois group
[V.24] Gal(K̄/K) permutes the set E(K̄)[p]. In fact, the
action of Gal(K̄/K) on the group (Z/pZ)2 gives rise to
a representation [III.79] of the Galois group. This is
a foundational example in the theory of Galois repre-
sentations, which has become central to contemporary
number theory. Indeed, the proof of fermat’s last
theorem [V.12] by Andrew Wiles is in the end a the-
orem about the Galois representations that arise from
elliptic curves. And what Wiles proved about these spe-
cial Galois representations is itself a small special case
of the family of conjectures known as the Langlands
program, which proposes a thoroughgoing correspon-
dence between Galois representations and automorphic
forms, which are generalized versions of the classical
analytic functions called modular forms [III.61].

In another direction, if E is an elliptic curve over
C, then the set of points of E with complex coordin-
ates, which we denote E(C), is a complex manifold
[III.90 §3]. It turns out that this manifold can always be
expressed as the quotient of the complex plane by a cer-
tain group Λ of transformations. What is more, these
transformations are just translations: each map sends
z to z + c for some complex number c. (This expres-
sion of E(C) as a quotient is carried out with the help
of elliptic functions [V.34].) Each elliptic curve gives
rise in this way to a subset—indeed, a subgroup—of
the complex numbers; the elements of this subgroup

are called periods of the elliptic curve. This construc-
tion can be regarded as the very beginning of Hodge
theory, a powerful branch of algebraic geometry with
a reputation for extreme difficulty. (The Hodge conjec-
ture, a central question in the theory, is one of the Clay
Institute’s million-dollar-prize problems.)

Yet another point of view is presented by the mod-
uli space [IV.8] of elliptic curves, denotedM1,1. This is
itself a curve, but not an elliptic one. (In fact, if I am
completely honest, I should say that M1,1 is not quite a
curve at all—it is an object called, depending on whom
you ask, an orbifold [IV.7 §7] or an algebraic stack—
you can think of it as a curve from which someone has
removed a few points, folded the points in half or into
thirds, and then glued the folded-up points back in.
You might find it reassuring to know that even pro-
fessionals in the subject find this process rather diffi-
cult to visualize.) The curve M1,1 is a “simplest exam-
ple” in two ways: it is the simplest modular curve, and
simultaneously the simplest moduli space of curves.

III.22 The Euclidean Algorithm and
Continued Fractions
Keith Ball

1 The Euclidean Algorithm

the fundamental theorem of arithmetic [V.16],
which states that every integer can be factored into
primes in a unique way, has been known since antiq-
uity. The usual proof depends upon what is known as
the Euclidean algorithm, which constructs the highest
common factor (h, say) of two numbers m and n. In
doing so, it shows that h can be written in the form
am+bn for some pair of integers a, b (not necessarily
positive). For example, the highest common factor of
17 and 7 is 1, and sure enough we can express 1 as the
combination 1 = 5× 17− 12× 7.

The algorithm works as follows. Assume that m is
larger than n and start by dividing m by n to yield a
quotient q1 and a remainder r1 that is less thann. Then
we have

m = q1n+ r1. (1)

Now since r1 < n we may divide n by r1 to obtain a
second quotient and remainder:

n = q2r1 + r2. (2)

Continue in this way, dividing r1 by r2, r2 by r3, and so
on. The remainders get smaller each time but cannot
go below zero. So the process must stop at some point
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with a remainder of 0: that is, with a division that comes
out exactly. For instance, if m = 165 and n = 70, the
algorithm generates the sequence of divisions

165 = 2× 70+ 25, (3)

70 = 2× 25+ 20, (4)

25 = 1× 20+ 5, (5)

20 = 4× 5+ 0. (6)

The process guarantees that the last nonzero remain-
der, 5 in this case, is the highest common factor of m
and n. On the one hand, the last line shows that 5 is a
factor of the previous remainder 20. Now the last-but-
one line shows that 5 is also a factor of the remain-
der 25 that occurred one step earlier, because 25 is
expressed as a combination of 20 and 5. Working back
up the algorithm we conclude that 5 is a factor of both
m = 165 and n = 70. So 5 is certainly a common factor
of m and n.

On the other hand, the last-but-one line shows that
5 can be written as a combination of 25 and 20 with
integer coefficients. Since the previous line shows that
20 can be written as a combination of 70 and 25 we can
write 5 in terms of 70 and 25:

5 = 25− 20 = 25− (70− 2× 25) = 3× 25− 70.

Continuing back up the algorithm we can express 25 in
terms of 165 and 70 and conclude that

5 = 3× (165− 2× 70)− 70 = 3× 165− 7× 70.

This shows that 5 is the highest common factor
of 165 and 70 because any factor of 165 and 70 would
automatically be a factor of 3× 165− 7× 70: that is, a
factor of 5. Along the way we have shown that the high-
est common factor can be expressed as a combination
of the two original numbers m and n.

2 Continued Fractions for Numbers

During the 1500 years following Euclid, it was realized
by mathematicians of the Indian and Arabic schools
that the application of the Euclidean algorithm to a pair
of integers m and n could be encoded in a formula for
the ratio m/n. The equation (1) can be written

m
n
= q1 + r1

n
= q1 + 1

F
,

where F = n/r1. Now equation (2) expresses F as

F = q2 + r2

r1
.

The next step of the algorithm will produce an expres-
sion for r1/r2 and so on. If the algorithm stops after

k steps, then we can put these expressions together to
get what is called the continued fraction for m/n:

m
n
= q1 + 1

q2 + 1

q3+ . . .+ 1
qk

.

For example,
165
70

= 2+ 1

2+ 1
1+ 1

4

.

The continued fraction can be constructed directly
from the ratio 165/70 = 2.35714 . . . without refer-
ence to the integers 165 and 70. We start by subtract-
ing from 2.35714 . . . the largest whole number we can:
namely 2. Now we take the reciprocal of what is left:
1/0.35714 . . . = 2.8. Again we subtract off the largest
integer we can, 2, which tells us that q2 = 2. The recip-
rocal of 0.8 is 1.25, so q3 = 1 and then, finally, 1/0.25 =
4, so q4 = 4 and the continued fraction stops.

The mathematician John Wallis, who worked in the
seventeenth century, seems to have been the first to
give a systematic account of continued fractions and
to recognize that continued-fraction expansions exist
for all numbers (not only rational numbers), provided
that we allow the continued fraction to have infinitely
many levels. If we start with any positive number, we
can build its continued fraction in the same way as
for the ratio 2.35714 . . . . For example, if the number
is π = 3.14159265 . . . , we start by subtracting 3, then
take the reciprocal of what is left: 1/0.14159 . . . =
7.06251 . . . . So for π we get that the second quotient
is 7. Continuing the process we build the continued
fraction

π = 3+ 1

7+ 1
15+ 1

1+ 1

292+ 1
1+ .

.
.

. (7)

The numbers 3, 7, 15, and so on, that appear in the
fraction are called the partial quotients of π .

The continued fraction for a real number can be used
to approximate it by rational numbers. If we truncate
the continued fraction after several steps, we are left
with a finite continued fraction which is a rational num-
ber: for example, by truncating the fraction (7), one
level down we get the familiar approximation π ≈
3+ 1/7 = 22/7; at the second level we get the approx-
imation 3 + 1/(7 + 1/15) = 333/106. The truncations
at different levels thus generate a sequence of rational
approximations: the sequence for π begins

3, 22/7, 333/106, 355/113, . . . .
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Whatever positive number x we start with, the
sequence of continued-fraction approximations will
approach x as we move further down the fraction.
Indeed, the formal interpretation of the equation (7) is
precisely that the successive truncations of the fraction
approach π .

Naturally, in order to get better approximations to
a number x we need to take more “complicated”
fractions—fractions with larger numerator and denom-
inator. The continued-fraction approximations to x are
best approximations to x in the following sense: if p/q
is one of these fractions, then it is impossible to find
any fraction r/s that is closer than p/q to x and that
has denominator s smaller than q.

Moreover, if p/q is one of the approximations com-
ing from the continued fraction for x, then the error
x − p/q cannot be too large relative to the size of the
denominator q; specifically, it is always true that∣∣∣∣x − pq

∣∣∣∣ � 1
q2
. (8)

This error estimate shows just how special the contin-
ued-fraction approximations are: if you pick a denom-
inator q without thinking, and then select the numera-
tor p that makes p/q closest to x, the only thing you
can guarantee is that x lies between (p − 1/2)/q and
(p + 1/2)/q. So the error could be as large as 1/(2q),
which is much bigger than 1/(q2) if q is a large integer.

Sometimes a continued-fraction approximation to x
can have even smaller error than is guaranteed by (8).
For example, the approximation π ≈ 355/113 that we
get by truncating (7) at the third level is exceptionally
accurate, the reason being that the next partial quo-
tient, 292, is rather large. So we are not changing the
fraction much by ignoring the tail 1/(292+ 1/(1+ . . .)).
In this sense, the most difficult number to approximate
by fractions is the one with the smallest possible par-
tial quotients, i.e., the one with all its partial quotients
equal to 1. This number,

1+ 1

1+ 1
1+ . . .

, (9)

can be easily calculated because the sequence of par-
tial quotients is periodic: it repeats itself. If we call the
number φ, then φ− 1 is 1/(1+ 1/(1+ . . .)). The recip-
rocal of this number is exactly the continued fraction
(9) for φ. Hence

1
φ− 1

= φ,

which in turn implies that φ2 − φ = 1. The roots of
this quadratic equation are (1+√5)/2 = 1.618 . . . and

(1−√5)/2 = −0.618 . . . . Since the number we are try-
ing to find is positive, it is the first of these roots: the
so-called golden ratio.

It is quite easy to show that, just as (9) represents
the positive solution of the equation x2 − x − 1 = 0,
any other periodic continued fraction represents a root
of a quadratic equation. This fact seems to have been
understood already in the sixteenth century. It is quite
a lot trickier to prove the converse: that the contin-
ued fraction of any quadratic surd is periodic. This was
established by lagrange [VI.22] during the eighteenth
century and is closely related to the existence of units
in quadratic number fields (see algebraic numbers
[IV.3]).

3 Continued Fractions for Functions

Several of the most important functions in mathemat-
ics are most easily described using infinite sums. For
example, the exponential function [III.25] has the
infinite series

ex = 1+ x + x
2

2
+ · · · + x

n

n!
+ · · · .

There are also a number of functions that have sim-
ple continued-fraction expansions: continued fractions
involving a variable like x. These are probably the most
important continued fractions historically.

For example, the function x �→ tanx has the contin-
ued fraction

tanx = x
1− x2

3− x2

5−. . .

, (10)

valid for any value of x other than the odd multi-
ples of π/2, where the tangent function has a vertical
asymptote.

Whereas the infinite series of a function can be trun-
cated to provide polynomial approximations to the
function, truncation of the continued fraction provides
approximations by rational functions: functions that
are ratios of polynomials. For instance, if we truncate
the fraction for the tangent after one level, then we get
the approximation

tanx ≈ x
1− x2/3

= 3x
3− x2

.

This continued fraction, and the rapidity with which its
truncations approach tanx, played the central role in
the proof that π is irrational: that π is not the ratio of
two whole numbers. The proof was found by Johann
Lambert in the 1760s. He used the continued fraction
to show that if x is a rational number (other than 0),
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then tanx is not. But tanπ/4 = 1 (which certainly is

rational), so π/4 cannot be.

III.23 The Euler and Navier–Stokes
Equations
Charles Fefferman

The Euler and Navier–Stokes equations describe the

motion of an idealized fluid. They are important in sci-

ence and engineering, yet they are very poorly under-

stood. They present a major challenge to mathematics.

To state the equations we work in Euclidean space

Rd, with d = 2 or 3. Suppose that, at position

x = (x1, . . . , xd) ∈ Rd and at time t ∈ R, the

fluid is moving with a velocity vector u(x, t) =
(u1(x, t), . . . , ud(x, t)) ∈ Rd, and the pressure in the

fluid is p(x, t) ∈ R. The Euler equation is

(
∂
∂t
+

d∑
j=1

uj
∂
∂xj

)
ui(x, t) = −∂p∂xi (x, t) (i = 1, . . . , d)

(1)

for all (x, t); and the Navier–Stokes equation is

(
∂
∂t
+

d∑
j=1

uj
∂
∂xj

)
ui(x, t)

= ν
( d∑
j=1

∂2

∂x2
j

)
ui(x, t)− ∂p

∂xi
(x, t) (i = 1, . . . , d)

(2)

for all (x, t). Here, ν > 0 is a coefficient of friction called

the “viscosity” of the fluid.

In this article we restrict our attention to incompress-

ible fluids, which means that, in addition to requiring

that they satisfy (1) or (2), we also demand that

divu ≡
d∑
j=1

∂uj
∂xj

= 0 (3)

for all (x, t). The Euler and Navier–Stokes equations

are nothing but Newton’s law F = ma applied to an

infinitesimal portion of the fluid. In fact, the vector

(
∂
∂t
+

d∑
j=1

uj
∂
∂xj

)
u

is easily seen to be the acceleration experienced by a

molecule of fluid that finds itself at position x at time t.
The forces F leading to the Euler equation arise

entirely from pressure gradients (e.g., if the pressure

increases with height, then there is a net force pushing

the fluid down). The additional term

ν
( d∑
j=1

∂2

∂x2
j

)
u

in (2) arises from frictional forces.

The Navier–Stokes equations agree very well with
experiments on real fluids under many and varied
circumstances. Since fluids are important, so are the
Navier–Stokes equations.

The Euler equation is simply the limiting case ν = 0
of Navier–Stokes. However, as we shall see, solutions of
the Euler equation behave very differently from solu-
tions of the Navier–Stokes equation, even when ν is
small.

We want to understand the solutions of the Euler
equations (1) and (3), or the Navier–Stokes equations
(2) and (3), together with an initial condition

u(x) = u0(x) for all x ∈ Rd, (4)

where u0(x) is a given initial velocity, i.e., a vector-
valued function on Rd. For consistency with (3), we
assume that

divu0(x) = 0 for all x ∈ Rd.

Also, to avoid physically unreasonable conditions, such
as infinite energy, we demand that u0(x), as well as
u(x, t) for each fixed t, should tend to zero “fast
enough” as |x| → ∞. We will not specify here exactly
what is meant by “fast enough,” but we assume from
now on that we are dealing only with such rapidly
decreasing velocities.

A physicist or engineer would want to know how
to calculate efficiently and accurately the solution to
the Navier–Stokes equations (2)–(4), and to understand
how that solution behaves. A mathematician asks first
whether a solution exists, and, if so, whether there
is only one solution. Although the Euler equation is
250 years old and the Navier–Stokes equation well over
100 years old, there is no consensus among experts as
to whether Navier–Stokes or Euler solutions exist for all
time, or whether instead they “break down” at a finite
time. Definitive answers supported by rigorous proofs
seem a long way off.

Let us state more precisely the problem of “break-
down” for the Euler and Navier–Stokes equations. Equa-
tions (1)–(3) refer to the first and second derivatives of
u(x, t). It is natural to suppose that the initial velocity
u0(x) in (4) has derivatives

∂αu0(x) =
(
∂
∂x1

)α1

· · ·
(
∂
∂xd

)αd
u0(x)
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of all orders, and that these derivatives tend to zero
“fast enough” as |x| → ∞. We then ask whether the
Navier–Stokes equations (2)–(4), or the Euler equations
(1), (3), and (4), have solutions u(x, t), p(x, t), defined
for all x ∈ Rd and t > 0, such that the derivatives

∂αx,tu(x, t) =
(
∂
∂t

)α0
(
∂
∂x1

)α1

· · ·
(
∂
∂x1

)αd
u(x, t)

and ∂αx,tp(x, t) of all orders exist for all x ∈ Rd, t ∈
[0,∞) (and tend to zero “fast enough” as |x| → ∞). A
pair u and p with these properties is called a “smooth”
solution for the Euler or Navier–Stokes equations. No
one knows whether such solutions exist (in the three-
dimensional case). It is known that, for some positive
time T = T(u0) > 0 depending on the initial velocity
u0 in (4), there exist smooth solutions u(x, t), p(x, t)
to the Euler or Navier–Stokes equations, defined forx ∈
Rd and t ∈ [0, T ).

In two space dimensions (one speaks of “2D Euler”
or “2D Navier–Stokes”), we can take T = +∞; in other
words, there is no “breakdown” for 2D Euler or 2D
Navier–Stokes. In three space dimensions, no one can
rule out the possibility that, for some finite T = T(u0)
as above, there is an Euler or Navier–Stokes solution
u(x, t), p(x, t), which is defined and smooth on

Ω = {(x, t) : x ∈ R3, t ∈ [0, T )},
such that some derivative |∂αx,tu(x, t)| or |∂αx,tp(x, t)|
is unbounded on Ω. This would imply that there is
no smooth solution past time T . (We say that the
3D Navier–Stokes or Euler solution “breaks down” at
time T .) Perhaps this can actually happen for 3D Euler
and/or Navier–Stokes. No one knows what to believe.

Many computer simulations of the 3D Navier–Stokes
and Euler equations have been carried out. Navier–
Stokes simulations exhibit no evidence of breakdown,
but this may mean only that initial velocities u0 that
lead to breakdown are exceedingly rare. Solutions of
3D Euler behave very wildly, so that it is hard to
decide whether a given numerical study indicates a
breakdown. Indeed, it is notoriously hard to perform a
reliable numerical simulation of the 3D Euler equations.

It is useful to study how a Navier–Stokes or Euler
solution behaves if one assumes that there is a break-
down. For instance, if there is a breakdown at time
T < ∞ for the 3D Euler equation, then a theorem of
Beale, Kato, and Majda asserts that the “vorticity”

ω(x, t) = curl(u(x, t))

=
(
∂u2

∂x3
− ∂u3

∂x2
,
∂u3

∂x1
− ∂u1

∂x3
,
∂u1

∂x2
− ∂u2

∂x1

)
(5)

grows so large as t → T that the integral∫ T
0

(
max
x∈R3

|ω(x, t)|
)

dt

diverges. This has been used to invalidate some plau-
sible computer simulations that allegedly indicated a
breakdown for 3D Euler. It is also known that the direc-
tion of the vorticity vector ω(x, t) must vary wildly
with x, as t approaches a finite breakdown time T .

The vectorω in (5) has a natural physical meaning: it
indicates how the fluid is rotating about the point x at
time t. A small pinwheel placed in the fluid in position
x at time t with its axis of rotation oriented parallel
to ω(x, t) would be turned by the fluid at an angular
velocity |ω(x, t)|.

For the 3D Navier–Stokes equation, a recent result of
V. Sverak shows that if there is a breakdown, then the
pressure p(x, t) is unbounded, both above and below.

A promising idea, pioneered by J. Leray in the 1930s,
is to study “weak solutions” of the Navier–Stokes equa-
tions. The idea is as follows. At first glance, the Navier–
Stokes equations (2) and (3) make sense only when
u(x, t), p(x, t) are sufficiently smooth: for example,
one would like the second derivatives of u with respect
to the xj to exist. However, a formal calculation shows
that (2) and (3) are apparently equivalent to conditions
that we shall call (2′) and (3′), which make sense even
when u(x, t) and p(x, t) are very rough. Let us first
see how to derive (2′) and (3′), and then we will discuss
their use.

The starting point is the observation that a function
F on Rn is equal to zero if and only if

∫
RnFθ dx = 0 for

every smooth function θ. Applying this remark to the
3D Navier–Stokes equations (2) and (3) and performing
a simple formal computation (an integration by parts),
we find that (2) and (3) are equivalent to the following
equations:

∫∫
R3×(0,∞)

{
−

3∑
i=1

ui
∂θi
∂t
−

3∑
i,j=1

uiuj
(
∂θi
∂xj

)}
dx dt

=
∫∫

R3×(0,∞)

{
ν

3∑
i,j=1

(
∂2

∂x2
j
θi
)
ui+

( 3∑
i=1

∂θi
∂xi

)
p
}

dx dt

(2′)

and ∫∫
R3×(0,∞)

{ 3∑
i=1

ui
∂ϕ
∂xi

}
dx dt = 0. (3′)

More precisely, given any smooth functionsu(x, t) and
p(x, t), equations (2) and (3) hold if and only if (2′)
and (3′) are satisfied for arbitrary smooth functions
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θ1(x, t), θ2(x, t), θ3(x, t), and ϕ(x, t) that vanish
outside a compact subset of R3 × (0,∞).

We call θ1, θ2, θ3, and φ test functions, and we
say that u and p form a weak solution of 3D Navier–
Stokes. Since all the derivatives in (2′) and (3′) are
applied to smooth test functions, equations (2′) and (3′)
make sense even for very rough functions u and p. To
summarize, we have the following conclusion.

A smooth pair (u,p) solves 3D Navier–Stokes if and
only if it is a weak solution. However, the idea of a weak
solution makes sense even for rough (u,p).

We hope to use weak solutions, by carrying out the
following plan.

Step (i): prove that suitable weak solutions exist for 3D
Navier–Stokes on all of R3 × (0,∞).

Step (ii): prove that any suitable weak solution of 3D
Navier–Stokes must be smooth.

Step (iii): conclude that the suitable weak solution con-
structed in step (i) is in fact a smooth solution of the
3D Navier–Stokes equations on all of R3 × (0,∞).

Here, “suitable” means “not too big”; we omit the pre-
cise definition.

Analogues of the above plan have succeeded for
interesting partial differential equations. But for 3D
Navier–Stokes, the plan has been only partly carried
out. It has been known for a long time how to con-
struct suitable weak solutions of 3D Navier–Stokes, but
the uniqueness of these solutions has not been proved.
Thanks to the work of Sheffer, of Lin, and of Caffarelli,
Kohn, and Nirenberg, it is known that any suitable weak
solution to 3D Navier–Stokes must be smooth (i.e., it
must possess derivatives of all orders), outside a set
E ⊂ R3 × (0,∞) of small fractal dimension [III.17].
In particular, E cannot contain a curve. To rule out a
breakdown, one would have to show that E is the empty
set.

For the Euler equation, weak solutions again make
sense, but examples due to Sheffer and Shnirelman
show that they can behave very strangely. A two-
dimensional fluid that is initially at rest and subject
to no outside forces can suddenly start moving in a
bounded region of space and then return to rest. Such
behavior can occur for a weak solution of 2D Euler.

The Navier–Stokes and Euler equations give rise to
a number of fundamental problems in addition to the
breakdown problem discussed above. We finish this
article with one such problem. Suppose that we fix an

initial velocity u0(x) for the 3D Navier–Stokes or Euler
equation. The energy E0 at time t = 0 is given by

E0 = 1
2

∫
R3
|u(x,0)|2 dx.

For ν � 0, let u(ν)(x, t) = (u(ν)1 , u(ν)2 , u(ν)3 ) denote the
Navier–Stokes solution with initial velocity u0 and with
viscosity ν . (If ν = 0, then u(0) is an Euler solution.)
We assume that u(ν) exists for all time, at least when
ν > 0. The energy for u(ν)(x, t) at time t � 0 is given
by

E(ν)(t) = 1
2

∫
R3
|u(ν)(x, t)|2 dx.

An elementary calculation based on (1)–(3) (we multiply
(1) or (2) byui(x), sum over i, integrate over all x ∈ R3,
and integrate by parts) shows that

d
dt
E(ν)(t) = − 1

2ν
∫

R3

3∑
ij=1

(∂u(ν)i
∂xj

)2

dx. (6)

In particular, for the Euler equation we have ν = 0, and
(6) shows that the energy is equal to E0, independently
of time, as long as the solution exists.

Now suppose that ν is small but nonzero. From (6) it
is natural to guess that |(d/dt)E(ν)(t)| is small when ν
is small, so that the energy remains almost constant for
a long time. However, numerical and physical experi-
ments suggest strongly that this is not the case. Instead,
it seems that there exists T0 > 0, depending on u0 but
independent of ν , such that the fluid loses at least half
of its initial energy by time T0, regardless of how small
ν is (provided that ν > 0).

It would be very important if one could prove (or dis-
prove) this assertion. We need to understand why a tiny
viscosity dissipates a lot of energy.

III.24 Expanders
Avi Wigderson

1 The Basic Definition

An expander is a special sort of graph [III.34] that has
remarkable properties and many applications. Roughly
speaking, it is a graph that is very hard to disconnect
because every set of vertices in the graph is joined by
many edges to its complement. More precisely, we say
that a graph with n vertices is a c-expander if for every
m � 1

2n and every set S ofm vertices there are at least
cm edges between S and the complement of S.

This definition is particularly interesting when G is
sparse: in other words, when G has few edges. We shall
concentrate on the important special case where G is
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regular of degree d for some fixed constant d that is
independent of the number n of vertices: this means
that every vertex is joined to exactly d others. When
G is regular of degree d, the number of edges from S
to its complement is obviously at most dm, so if c is
some fixed constant (that is, not tending to zero with
n), then the number of edges between any set of ver-
tices and its complement is within a constant of the
largest number possible. As this comment suggests, we
are usually interested not in single graphs but in infi-
nite families of graphs: we say that an infinite family of
d-regular graphs is a family of expanders if there is a
constant c > 0 such that each graph in the family is a
c-expander.

2 The Existence of Expanders

The first person to prove that expanders exist was
Pinkser, who proved that if n is large and d � 3,
then almost every d-regular graph with n vertices is
an expander. That is, he proved that there is a constant
c > 0 such that for every fixed d � 3, the proportion of
d-regular graphs withn vertices that are not expanders
tends to zero as n tends to infinity. This proof was an
early example of the probabilistic method [IV.23 §3]
in combinatorics. It is not hard to see that if a d-regular
graph is chosen uniformly at random, then the expected
number of edges leaving a set S is d|S|(n − |S|)/n,
which is at least ( 1

2d)|S|. Standard “tail estimates” are
then used to prove that, for any fixed S, the probabil-
ity that the number of edges leaving S is significantly
different from its expected value is extremely small: so
small that if we add up the probabilities for all sets,
then even the sum is small. So with high probability
all sets S have at least c|S| edges to their comple-
ment. (In one respect this description is misleading: it
is not a straightforward matter to discuss probabilities
of events concerning random d-regular graphs because
the edges are not independently chosen. However, Bol-
lobás has defined an equivalent model for random
regular graphs that allows them to be handled.)

Note that this proof does not give us an explicit
description of any expander: it merely proves that
they exist in abundance. This is a drawback to the
proof, because, as we shall see later, there are appli-
cations for expanders that depend on some kind of
explicit description, or at least on an efficient method
of producing expanders. But what exactly is an “explicit
description” or an “efficient method”? There are many
possible answers to this question, of which we shall dis-

cuss two. The first is to demand that there is an algo-
rithm that can list, for any integern, all the vertices and
edges of a d-regular c-expander with around n vertices
(we could be flexible about this and ask for the num-
ber of vertices to be between n and n2, say) in a time
that is polynomial inn. (See computational complex-
ity [IV.21 §2] for a discussion of polynomial-time algo-
rithms.) Descriptions of this kind are sometimes called
“mildly explicit.”

To get an idea of what is “mild” about this, consider
the following graph. Its vertices are all 01 sequences
of length k, and two such sequences are joined by an
edge if they differ in exactly one place. This graph is
sometimes called the discrete cube in k dimensions. It
has 2k vertices, so the time taken to list all the vertices
and edges will be huge compared with k. However, for
many purposes we do not actually need such a list: what
matters is that there is a concise way of representing
each vertex, and an efficient algorithm for listing the
(representations of the) neighbors of any given vertex.
Here the 01 sequence itself is a very concise represen-
tation, and given such a sequence σ it is very easy to
list, in a time that is polynomial in k rather than 2k, the
k sequences that can be obtained by altering σ in one
place. Graphs that can be efficiently described in this
way (so that listing the neighbors of a vertex takes a
time that is polynomial in the logarithm of the number
of vertices) are called strongly explicit.

The quest for explicitly constructed expanders has
been the source of some beautiful mathematics, which
has often used ideas from fields such as number theory
and algebra. The first explicit expander was discovered
by Margulis. We give his construction and another one;
we stress that although these constructions are very
simple to describe, it is rather less easy to prove that
they really are expanders.

Margulis’s construction gives an 8-regular graph Gm
for every integer m. The vertex set is Zm × Zm, where
Zm is the set of all integers mod m. The neighbors of
the vertex (x,y) are (x+y,y), (x−y,y), (x,y +x),
(x,y−x), (x+y+1, y), (x−y+1, y), (x,y+x+1),
(x,y − x + 1) (all operations are mod m). Margulis’s
proof that Gm is an expander was based on represen-
tation theory [IV.12] and did not provide any specific
bound on the expansion constant c. Gabber and Galil
later derived such a bound using harmonic analy-
sis [IV.18]. Note that this family of graphs is strongly
explicit.

Another construction provides, for each prime p, a
3-regular graph with p vertices. This time the vertex
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set is Zp , and a vertex x is connected to x + 1, x − 1,
and x−1 (where this is the inverse of x mod p, and we
define the inverse of 0 to be 0). The proof that these
graphs are expanders depends on a deep result in num-
ber theory, called the Selberg 3/16 theorem. This family
is only mildly explicit, since we are at present unable to
generate large primes deterministically.

Until recently, the only known methods for explic-
itly constructing expanders were algebraic. However, in
2002 Reingold, Vadhan, and Wigderson introduced the
so-called zigzag product of graphs, and used it to give
a combinatorial, iterative construction of expanders.

3 Expanders and Eigenvalues

The condition that a graph should be a c-expander
involves all subsets of the vertices. Since there are expo-
nentially many subsets, it would seem on the face of
it that checking whether a graph is a c-expander is
an exponentially long task. And, indeed, this problem
turns out to be co-np complete [IV.21 §§3, 4]. How-T&T note: ensure

that ‘NP’ is
smallcaps, rather
than full caps, in
all
cross-references
before CRC.

ever, we shall now describe a closely related property
that can be checked in polynomial time, and which is
in some ways more natural.

Given a graph G with n vertices, its adjacency matrix
A is the n×n matrix where Auv is defined to be 1 if
u is joined to v and 0 otherwise. This matrix is real
and symmetric, and therefore has n real eigenvalues
[I.3 §4.3] λ1, λ2, . . . , λn, which we name in such a way
that λ1 � λ2 � · · · � λn. Moreover, eigenvectors
[I.3 §4.3] with distinct eigenvalues are orthogonal.

It turns out that these eigenvalues encode a great deal
of useful information about G. But before we come to
this, let us briefly consider how A acts as a linear map.
If we are given a function f , defined on the vertices of
G, then Af is the function whose value at u is the sum
of f(v) over all neighbors v of u. From this we see
immediately that if G is d-regular and f is the function
that is 1 at every vertex, then Af is the function that is
d at every vertex. In other words, a constant function
is an eigenvector of A with eigenvalue d. It is also not
hard to see that this is the largest possible eigenvalue
λ1, and that if the graph is connected, then the second
largest eigenvalue λ2 will be strictly less than d.

In fact, the relationship between λ2 and connectiv-
ity properties of the graph is considerably deeper than
this: roughly speaking, the further away λ2 is from d,
the bigger the expansion parameter c of the graph.
More precisely, it can be shown that c lies between
1
2 (d − λ2) and

√
2d(d− λ2). From this it follows that

an infinite family of d-regular graphs is a family of
expanders if and only if there is some constant a > 0
such that the spectral gaps d − λ2 are at least a for
every graph in the family. One of the many reasons
these bounds on c are important is that although, as
we have remarked, it is hard to test whether a graph
is a c-expander, its second largest eigenvalue can be
computed in polynomial time. So we can at least obtain
estimates for how good the expansion properties of a
graph are.

Another important parameter of a d-regular graph
G is the largest absolute value of any eigenvalue apart
from λ1, which we denote by λ(G). If λ(G) is small,
then G behaves in many respects like a random d-
regular graph. For example, let A and B be two dis-
joint sets of vertices. If G were random, a small calcu-
lation shows that we would expect the number E(A, B)
of edges from A to B to be about d|A| |B|/n. It can be
shown that, for any two disjoint sets in any d-regular
graph G, E(A, B) will differ from this expected amount
by at most λ(G)

√|A| |B|. Therefore, if λ(G) is a small
fraction of d, then between any two reasonably large
sets A and B we get roughly the number of edges that
we expect. This shows that graphs for which λ(G) is
small “behave like random graphs.”

It is natural to ask how small λ(G) can be in d-
regular graphs. Alon and Boppana proved that it was
always at least 2

√
d− 1 − g(n) for a certain function

g that tends to zero as n increases. Friedman proved
that almost all d-regular graphs G with n vertices have
λ(G) � 2

√
d− 1 + h(n), where h(n) tends to zero, so

a typical d-regular graph comes very close to match-
ing the best possible bound for λ(G). The proof was
a tour de force. Even more remarkably, it is possible
to match the lower bound with explicit constructions:
the famous Ramanujan graphs of Lubotzky, Philips,
and Sarnak, and, independently, Margulis. They con-
structed, for each d such that d−1 is a prime power, a
family of d-regular graphs G with λ(G) = 2

√
d− 1.

4 Applications of Expanders

Perhaps the most obvious use for expanders is in
communication networks. The fact that expanders are
highly connected means that such a network is highly
“fault tolerant,” in the sense that one cannot cut off
part of the network without destroying a large number
of individual communication lines. Further desirable
properties of such a network, such as a small diameter,
follow from an analysis of random walks on expanders.
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A random walk of lengthm on a d-regular graph G is
a path v0, v1, . . . , vm, where each vi is a randomly cho-
sen neighbor of vi−1. Random walks on graphs can be
used to model many phenomena, and one of the ques-
tions one frequently asks about a random walk is how
rapidly it “mixes.” That is, how large does m have to
be before the probability that vm = v is approximately
the same for all vertices v?

If we let pk(v) be the probability that vk = v , then
it is not hard to show that pk+1 = d−1Apk. In other
words, the transition matrix T of the random walk,
which tells you how the distribution after k + 1 steps
depends on the distribution after k steps, is d−1 times
the adjacency matrix A. Therefore, its largest eigen-
value is 1, and if λ(G) is small then all other eigenvalues
are small.

Suppose that this is the case, and let p be any proba-
bility distribution [III.73] on the vertices of G. Then
we can write p as a linear combination

∑
i ui, where

ui is an eigenvector of T with eigenvalue d−1λi. If T
is applied k times, then the new distribution will be∑
i(d−1λi)kui. If λ(G) is small, then (d−1λi)k tends

rapidly to zero, except that it equals 1 when i = 1.
In other words, after a short time, the “nonconstant
part” of p goes to zero and we are left with the uniform
distribution.

Thus, random walks on expanders mix rapidly. This
property is at the heart of some of the applications of
expanders. For example, suppose that V is a large set, f
is a function from V to the interval [0,1], and we wish
to estimate quickly and accurately the average of f . A
natural idea is to choose a random samplev1, v2, . . . , vk
of points in V and calculate the average k−1

∑k
i=1 f(vi).

If k is large and the vi are chosen independently, then
it is not too hard to prove that this sample average
will almost certainly be close to the true average: the
probability that they differ by more than ε is at most
e−ε2k.

This idea is very simple, but actually implementing
it requires a source of randomness. In theoretical com-
puter science, randomness is regarded as a resource,
and it is desirable to use less of it if one can. The
above procedure needed about log(|V |) bits of ran-
domness for each vi, so k log(|V |) bits in all. Can we
do better? Ajtai, Komlos, and Szemerédi showed that
the answer is yes: big time! What one does is asso-
ciate V with the vertices of an explicit expander. Then,
instead of choosing v1, v2, . . . , vk independently, one
chooses them to be the vertices of a random walk in
this expanding graph, starting at a random point v1

of V . The randomness needed for this is far smaller:
log(|V |) bits for v1 and log(d) bits for each further vi,
making log(|V |) + k log(d) bits in all. Since V is very
large and d is a fixed constant, this is a big saving: we
essentially pay only for the first sample point.

But is this sample any good? Clearly there is a heavy
dependence between the vi. However, it can be shown PUP: I can confirm

that this sentence
is how it should
be.

that nothing is lost in accuracy: again, the probabil-
ity that the estimate differs from the true mean by
more than ε is at most e−ε2k. Thus, there are no costs
attached to the big saving in randomness.

This is just one of a huge number of applications of
expanders, which include both practical applications
and applications in pure mathematics. For instance,
they were used by Gromov to give counterexamples to
certain variants of the famous baum–connes conjec-
ture [IV.19 §4.4]. And certain bipartite graphs called
“lossless expanders” have been used to produce linear
codes with efficient decodings. (See reliable trans-
mission of information [VII.6] for a description of
what this means.)

III.25 The Exponential and Logarithmic
Functions

1 Exponentiation

The following is a very well-known mathematical
sequence: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . . .
Each term in this sequence is twice the term before, so,
for instance, 128, the seventh term in the sequence, is
equal to 2×2×2×2×2×2×2. Since repeated multipli-
cations of this kind occur throughout mathematics, it
is useful to have a less cumbersome notation for them,
so 2 × 2 × 2 × 2 × 2 × 2 × 2 is normally written as 27,
which we read as “2 to the power 7” or just “2 to the 7.”
More generally, if a is any real number and m is any
positive integer, then am stands for a × a × · · · × a,
where there are m as in the product. This product is
called “a to the m,” and numbers of the form am are
called the powers of a.

The process of raising a number to a power is known
as exponentiation. (The number m is called the expo-
nent.) A fundamental fact about exponentiation is the
following identity:

am+n = am · an

This says that exponentiation “turns addition into mul-
tiplication.” It is easy to see why this identity must be
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true if one looks at a small example and temporarily
reverts to the old, cumbersome notation. For instance,

27 = 2× 2× 2× 2× 2× 2× 2

= (2× 2× 2)× (2× 2× 2× 2)

= 23 × 24.

Suppose now that we are asked to evaluate 23/2. At
first sight, the question seems misconceived: an essen-
tial part of the definition of 2m that has just been given
was that m was a positive integer. The idea of multi-
plying one-and-a-half 2s together does not make sense.
However, mathematicians like to generalize, and even if
we cannot immediately make sense of 2m except when
m is a positive integer, there is nothing to stop us
inventing a meaning for it for a wider class of numbers.

The more natural we make our generalization, the
more interesting and useful it is likely to be. And the
way we make it natural is to ensure that at all costs we
keep the property of “turning addition into multiplica-
tion.” This, it turns out, leaves us with only one sensi-
ble choice for what 23/2 should be. If the fundamental
property is to be preserved, then we must have

23/2 · 23/2 = 23/2+3/2 = 23 = 8.

Therefore, 23/2 has to be ±√8. It turns out to be con-
venient to take 23/2 to be positive, so we define 23/2 to
be
√

8.
A similar argument shows that 20 should be defined

to be 1: if we wish to keep the fundamental property,
then

2 = 21 = 21+0 = 21 · 20 = 2 · 20.

Dividing both sides by 2 gives the answer 20 = 1.
What we are doing with these kinds of arguments is

solving a functional equation, that is, an equation where
the unknown is a function. So that we can see this more
clearly, let us write f(t) for 2t . The information we are
given is the fundamental property f(t+u) = f(t)f (u)
together with one value, f(1) = 2, to get us started.
From this we wish to deduce as much as we can about f .

It is a nice exercise to show that the two conditions
we have placed on f determine the value of f at every
rational number, at least if f is assumed to be positive.
For instance, to show that f(0) should be 1, we note
that f(0)f (1) = f(1), and we have already shown that
f(3/2)must be

√
8. The rest of the proof is in a similar

spirit to these arguments, and the conclusion is that
f(p/q) must be the qth root of 2p . More generally, the
only sensible definition of ap/q is the qth root of ap .

We have now extracted everything we can from the
functional equation, but we have made sense of at only

if t is a rational number. Can we give a sensible defini-
tion when t is irrational? For example, what would be
the most natural definition of 2

√
2? Since the functional

equation alone does not determine what 2
√

2 should
be, the way to answer a question like this is to look
for some natural additional property that f might have
that would, together with the functional equation, spec-
ify f uniquely. It turns out that there are two obvious
choices, both of which work. The first is that f should
be an increasing function: that is, if s is less than t, then
f(s) is less than f(t). Alternatively, one can assume
that f is continuous [I.3 §5.2].

Let us see how the first property can in principle be
used to work out 2

√
2. The idea is not to calculate it

directly but to obtain better and better estimates. For
instance, since 1.4 <

√
2 < 1.5 the order property tells

us that 2
√

2 should lie between 27/5 and 23/2, and in gen-
eral that if p/q <

√
2 < r/s then 2

√
2 should lie between

2p/q and 2r/s . It can be shown that if two rational num-
bers p/q and r/s are very close to each other, then 2p/q

and 2r/s are also close. It follows that as we choose frac-
tionsp/q and r/s that are closer and closer together, so
the resulting numbers 2p/q and 2r/s converge to some
limit, and this limit we call 2

√
2.

2 The Exponential Function

One of the hallmarks of a truly important concept in
mathematics is that it can be defined in many dif-
ferent but equivalent ways. The exponential function
exp(x) very definitely has this property. Perhaps the
most basic way to think of it, though for most purposes
not the best, is that exp(x) = ex , where e is a number
whose decimal expansion begins 2.7182818. Why do
we focus on this number? One property that singles it
out is that if we differentiate the function exp(x) = ex ,
then we obtain ex again—and e is the only number for
which that is true. Indeed, this leads to a second way of
defining the exponential function: it is the only solution
of the differential equation f ′(x) = f(x) that satisfies
the initial condition f(0) = 1.

A third way to define exp(x), and one that is often
chosen in textbooks, is as the limit of a power series:

exp(x) = 1+ x + x
2

2!
+ x

3

3!
+ · · · ,

known as the Taylor series of exp(x). It is not immedi-
ately obvious that the right-hand side of this definition
gives us some number raised to the power x, which
is why we are using the notation exp(x) rather than
ex . However, with a bit of work one can verify that it
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yields the basic properties exp(x+y) = exp(x) exp(y),
exp(0) = 1, and (d/dx) exp(x) = exp(x).

There is yet another way to define the exponential

function, and this one comes much closer to telling us

what it really means. Suppose you wish to invest some

money for ten years and are given the following choice:

either you can add 100% to your investment (that is,

double it) at the end of the ten years, or each year you

can take whatever you have and increase it by 10%.

Which would you prefer?

The second is the better investment because in the

second case the interest is compounded: for instance, if

you start with $100, then after a year you will have $110

and after two years you will have $121. The increase of

$11 in the second year breaks down as 10% interest on

the original $100 plus a further dollar, which is 10%

interest on the interest earned in the first year. Under

the second scheme, the amount of money you end up

with is $100 times (1.1)10, since each year it multiplies

by 1.1. The approximate value of (1.1)10 is 2.5937, so

you will get almost $260 instead of $200.

What if you compounded your interest monthly?

Instead of multiplying your investment by 1 1
10 ten

times, you would multiply it by 1 1
120 120 times. By the

end of ten years your $100 would have been multiplied

by (1+ 1
120 )

120, which is approximately 2.707. If you

compounded it daily, you could increase this to approx-

imately 2.718, which is suspiciously close to e. In fact,

e can be defined as the limit, as n tends to infinity, of

the number (1+ 1
n)
n.

It is not instantly obvious that this expression really

does tend to a limit. For any fixed power m, the limit

of (1+ 1
n)
m as n tends to infinity is 1, while for any

fixed n, the limit as m tends to infinity is ∞. When it

comes to (1+ 1
n)
n, the increase in the power just com-

pensates for the decrease in the number 1+ 1
n and we

get a limit between 2 and 3. Ifx is any real number, then

(1+ x
n)
n also converges to a limit, and this we define

to be exp(x).
Here is a sketch of an argument that shows that if we

define exp(x) this way, then exp(x) exp(y) = exp(x +
y), the main property we need if our definition is to be

a good one. Let us take a very large n and look at the

number (
1+ x

n

)n(
1+ y

n

)n
,

which equals (
1+ x

n
+ y
n
+ xy
n2

)n
.

Now the ratio of 1+x/n+y/n+xy/n2 to 1+x/n+
y/n is smaller than 1+xy/n2, and (1+xy/n2)n can
be shown to converge to 1 (as here the increase in n
is not enough to compensate for the rapid decrease in
xy/n2). Therefore, for large n the number we have is
very close to (

1+ x +y
n

)n
.

Letting n tend to infinity, we deduce the result.

3 Extending the Definition to
Complex Numbers

If we think of exp(x) as ex , then the idea of generalizing
the definition to complex numbers seems hopeless: our
intuition tells us nothing, the functional equation does
not help, and we cannot use continuity or order rela-
tions to determine it for us. However, both the power
series and the compound-interest definitions can be
generalized easily. If z is a complex number, then the
most usual definition of exp(z) is

1+ z + z
2

2!
+ z

3

3!
+ · · · .

Setting z = iθ, for a real number θ, and splitting the
resulting expression into its real and imaginary parts,
we obtain

1− θ
2

2!
+ θ

4

4!
+ · · · + i

(
θ − θ

3

3!
+ θ

5

5!
− · · ·

)
,

which, using the power-series expansions for cos(θ)
and sin(θ), tells us that exp(iθ) = cos(θ) + i sin(θ),
the formula for the point with argument θ on the unit
circle in the complex plane. In particular, if we take
θ = π , we obtain the famous formula eiπ = −1 (since
cos(π) = −1 and sin(π) = 0).

This formula is so striking that one feels that it ought
to hold for a good reason, rather than being a mere
fact that one notices after carrying out some formal
algebraic manipulations. And indeed there is a good
reason. To see it, let us return to the compound-interest
idea and define exp(z) to be the limit of (1+ z/n)n as
n tends to infinity. Let us concentrate just on the case
where z = iπ : why should (1 + iπ/n)n be close to −1
when n is very large?

To answer this, let us think geometrically. What is
the effect on a complex number of multiplying it by
1+ iπ/n? On the Argand diagram this number is very
close to 1 and vertically above it. Because the vertical
line through 1 is tangent to the circle, this means that
the number is very close indeed to a number that lies on
the circle and has argument π/n (since the argument
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of a number on the circle is the length of the circular
arc from 1 to that number, and in this case the circular
arc is almost straight). Therefore, multiplication by 1+
iπ/n is very well approximated by rotation through an
angle ofπ/n. Doing thisn times results in a rotation by
π , which is the same as multiplication by −1. The same
argument can be used to justify the formula exp(iθ) =
cos(θ)+ i sin(θ).

Continuing in this vein, let us see why the derivative
of the exponential function is the exponential function.
We know already that exp(z +w) = exp(z) exp(w), so
the derivative of exp at z is the limit as w tends to
zero of exp(z)(exp(w) − 1)/w. It is therefore enough
to show that exp(w) − 1 is very close to w when w
is small. To get a good idea of exp(w) we should take
a large n and consider (1 + w/n)n. It is not hard to
prove that this is indeed close to 1+w, but here is an
informal argument instead. Suppose that you have a
bank account that offers a tiny rate of interest over a
year, say 0.5%. How much better would you do if you
could compound this interest monthly? The answer is
not very much: if the total amount of interest is very
small, then the interest on the interest is negligible.
This, in essence, is why (1 + w/n)n is approximately
1+w when w is small.

One can extend the definition of the exponential
function yet further. The main ingredients one needs
are addition, multiplication, and the possibility of lim-
iting arguments. So, for example, if x is an element of a
banach algebra [III.12] A, then exp(x) makes sense.
(Here, the power series definition is the easiest, though
not necessarily the most enlightening.)

4 The Logarithm Function

Natural logarithms, like exponentials, can be defined in
many ways. Here are three.

(i) The function log is the inverse of the function
exp. That is, if t is a positive real number, then
the statement u = log(t) is equivalent to the
statement t = exp(u).

(ii) Let t be a positive real number. Then

log(t) =
∫ t

1

dx
x
.

(iii) If |x| < 1 then log(1+x) = x − 1
2x

2 + 1
3x

3 − · · · .
This defines log(t) for 0 < t < 2. If t � 2 then
log(t) can be defined as − log(1/t).

The most important feature of the logarithmic func-
tion is a functional equation that is the reverse of the

functional equation for exp, namely log(st) = log(s)+
log(t). That is, whereas exp turns addition into multi-
plication, log turns multiplication into addition. A more
formal way of putting this is that R forms a group
under addition, and R+, the set of positive real num-
bers, forms a group under multiplication. The func-
tion exp is an isomorphism from R to R+, and log,
its inverse, is an isomorphism from R+ to R. Thus, in
a sense the two groups have the same structure, and
the exponential and logarithmic functions demonstrate
this.

Let us use the first definition of log to see why log(st)
must equal log(s) + log(t). Write s = exp(a) and t =
exp(b). Note that a = log(s) and b = log(t). Then
log(s) = a, log(t) = b, and

log(st) = log(exp(a) exp(b))

= log(exp(a+ b))
= a+ b.

The result follows.

In general, the properties of log closely follow those
of exp. However, there is one very important differ-
ence, which is a complication that arises when one
tries to extend log to the complex numbers. At first
it seems quite easy: every complex number z can be
written as reiθ for some nonnegative real number r
and some θ (the modulus and argument of z, respec-
tively). If z = reiθ then log(z), one might think, should
be log(r) + iθ (using the functional equation for log
and the fact that log inverts exp). The problem with
this is that θ is not uniquely determined. For instance,
what is log(1)? Normally we would like to say 0, but
we could, perversely, say that 1 = e2π i and claim that
log(1) = 2π i.

Because of this difficulty, there is no single best way
to define the logarithmic function on the entire com-
plex plane, even if 0, a number that does not have a
logarithm however you look at it, is removed. One con-
vention is to write z = reiθ with r > 0 and 0 � θ < 2π ,
which can be done in exactly one way, and then define
log(z) to be log(r) + iθ. However, this function is not
continuous: as you cross the positive real axis, the
argument jumps by 2π and the logarithm jumps by
2π i.

Remarkably, this difficulty, far from being a blow
to mathematics, is an entirely positive phenomenon
that lies behind several remarkable theorems in com-
plex analysis, such as Cauchy’s residue theorem, which
allows one to evaluate very general path integrals.
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III.26 The Fast Fourier Transform

If f is a periodic function with period 1, then one can
obtain a great deal of useful information about f by
calculating its Fourier coefficients (see the fourier
transform [III.27] for a discussion of why). This is true
for both theoretical and practical reasons, and because
of the latter it is highly desirable to have a good way of
computing Fourier coefficients quickly.

The r th Fourier coefficient of f is given by the
formula

f̂ (r) =
∫ 1

0
f(x)e−2π irx dx.

If we do not have an explicit formula for the integral
(as would be the case, for instance, if f were derived
from some physical signal rather than a mathemati-
cal formula), then we will want to approximate this
integral numerically, and a natural way to do that is
to discretize it: that is, turn it into a sum of the form
N−1

∑N−1
n=0 f(n/N)e−2π irn/N . If f is not too wildly oscil-

lating and r is not too big, then this should be a good
approximation.

The sum above will be unchanged if we add a mul-
tiple of N to r , so we now care only about the values
of f at points of the form n/N . Moreover, the period-
icity of f tells us that adding a multiple of N to n also
makes no difference. So we can regard both n and r as
belonging to the group ZN of integers modN (see mod-
ular arithmetic [III.60]). Let us change our notation
to one that reflects this. Given a function g defined on
ZN we define the discrete Fourier transform of g to be
the function ĝ, also defined on ZN , which is given by
the formula

ĝ(r) = N−1
∑
n∈ZN

g(n)ω−rn, (1)

where we are writing ω for e2π i/N , so that ω−rn =
e−2π irn/N . Note that the sum over n could be regarded
as a sum from 0 to N − 1 just as above; the other nota-
tional change is that we have written g(n) instead of
f(n/N).

The discrete Fourier transform can be thought of
as multiplying a column vector (corresponding to the
function g) by an N ×N matrix (with entries N−1ω−rn

for each r and n). Therefore it can be calculated using
about N2 arithmetical operations. The fast Fourier
transform arises from the observation that the sum in
(1) has symmetry properties that allow it to be calcu-
lated much more efficiently. This is most easily seen
when N is a power of 2, and to make it even easier we

shall look at the case N = 8. The sums to be evaluated
are then

g(0)+ωrg(1)+ω2r g(2)+ · · · +ω7r g(7)

for each r between 0 and 7. Now a sum like this can be
rewritten as

g(0)+ω2r g(2)+ω4r g(4)+ω6r g(6)

+ωr(g(1)+ω2r g(3)+ω4r g(5)+ω6r g(7)),

which is interesting because

g(0)+ω2r g(2)+ω4r g(4)+ω6r g(6)

and
g(1)+ω2r g(3)+ω4r g(5)+ω6r g(7)

are themselves values of discrete Fourier transforms.
For instance, if we set h(n) = g(2n) for 0 � n � 3,
and write ψ for ω2 = e2π i/4, then the first expression
equals h(0)+ψrh(1)+ψ2rh(2)+ψ3rh(3). If we think
of h as being defined on Z4, then this is precisely the
formula for ĥ(r).

A similar remark applies to the second expression,
so if we can calculate the discrete Fourier transforms
of the “even part” of g and the “odd part” of g, then it
will be very straightforward to obtain each value of the
Fourier transform of g itself: it will be a linear combi-
nation of values of the transforms of the two parts of
g. Thus, if N is even and we write F(N) for the number
of operations needed to calculate the discrete Fourier
transform of a function defined on ZN , we obtain a
recurrence of the form

F(N) = 2F(N/2)+ CN.
The interpretation of this is that in order to work out
the N values of the transform of a function on ZN , it is
enough to work out two such transforms for functions
on ZN/2 and work out N linear combinations.

If N is a power of 2, then we can iterate this: F(N/2)
will be at most 2F(N/4) + CN/2, and so on. It is not
hard to show as a result that F(N) is at most CN logN
for some constant C , a considerable improvement on
CN2. If N is not a power of 2, then the above argu-
ment does not work, but there are modifications of
the method that do, and that lead to similar efficiency
gains. (Indeed, this is true for the Fourier transform on
an arbitrary finite Abelian group.)

Once we can calculate Fourier transforms efficiently,
there are other calculations that immediately become
easy as well. A simple example is the inverse Fourier
transform, which has a formula very similar to that
of the Fourier transform and can therefore be calcu-
lated in a similar way. Another calculation that becomes
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easy is the convolution of two sequences, which is

defined as follows. If a = (a0, a1, a2, . . . , am) and b =
(b0, b1, b2, . . . , bn) are two sequences, then their convo-

lution is the sequence c = (c0, c1, c2, . . . , cm+n), where

each cr is defined to be a0br + a1br−1 + · · · + arb0.

This sequence is denoted by a ∗ b. One of the most

important properties of Fourier transforms is that they

“convert convolutions into multiplication.” That is, if

we find a suitable way of regarding a and b as func-

tions on ZN , then the Fourier transform of a∗ b is the

function r �→ â(r)b̂(r). Therefore, to work out a∗b we

can work out â and b̂, multiply them together for each

r , and take the inverse Fourier transform of the result.

All stages of this calculation are quick, so calculating

convolutions is quick.

This immediately leads to a quick way of multiply-

ing the two polynomials a0 + a1x + · · · + amxm and

b0+b1x+· · ·+bnxn together, since the coefficients of

the product are given by the sequence c = a∗ b. If all

theai are between 0 and 9, it is a quick process to evalu-

ate the product polynomial at x = 10 (since none of the

coefficients cr will have many digits), so we also have

a method of multiplying two n-digit integers together

that is far faster than long multiplication. These are

two of the huge number of applications of the fast

Fourier transform. A more direct source of applications

occurs in engineering, where one frequently wishes to

analyze a signal by looking at its Fourier transform. A

very surprising application is to quantum computa-

tion [III.76]: a famous result of Peter Shor is that one

can use a quantum computer to factorize large integers

very quickly; this algorithm depends in an essential way

on the fast Fourier transform, but uses the power of

quantum computing in an almost miraculous way to

divide the N logN steps into N lots of logN steps that

can be carried out “in parallel.”

III.27 The Fourier Transform
Terence Tao

Let f be a function from R to R. Typically, there is

not much that one can say about f , but certain func-

tions have useful symmetry properties. For instance,

f is called even if f(−x) = f(x) for every x, and it

is called odd if f(−x) = −f(x) for every x. Further-

more, every function f can be written as a superposition

of an even part, fe, and an odd part, fo. For instance,

the function f(x) = x3 + 3x2 + 3x + 1 is neither even

nor odd, but it can be written as fe(x) + fo(x), where

fe(x) = 3x2 + 1 and fo(x) = x3 + 3x. For a gen-
eral function f , the decomposition is unique and is
given by the formulas fe(x) = 1

2 (f (x) + f(−x)) and
fo(x) = 1

2 (f (x)− f(−x)).
What are the symmetry properties enjoyed by even

and odd functions? A useful way to regard them is as
follows. We have a group of two transformations of the
real line: one is the identity map ι : x �→ x and the
other is the reflection ρ : x �→ −x. Now any transfor-
mation φ of the real line gives rise to a transforma-
tion of the functions defined on the real line: given a
function f , the transformed function is the function
g(x) = f(φ(x)). In the case at hand, if φ = ι then the
transformed function is just f(x), while if φ = ρ then
it is f(−x). If f is either even or odd, then both the
transformed functions are scalar multiples of the orig-
inal function f . In particular, when φ = ρ, the trans-
formed function is f(x) when f is even (so the scalar
multiple is 1) and −f(x) when f is odd (so the scalar
multiple is −1).

The procedure just described can be thought of as
a very simple prototype of the general notion of a
Fourier transform. Very broadly speaking, a Fourier
transform is a systematic way to decompose “generic”
functions into a superposition of “symmetric” func-
tions. These symmetric functions are usually quite
explicitly defined: for instance, one of the most impor-
tant examples is a decomposition into the trigono-
metric functions [III.94] sin(nx) and cos(nx). They
are also often related to physical concepts such as fre-
quency or energy. The symmetry will usually be asso-
ciated with a group [I.3 §2.1] G, which is usually Abe-
lian. (In the case considered above, it is the two-element
group.) Indeed, the Fourier transform is a fundamental
tool in the study of groups, and more precisely in the
representation theory [IV.12] of groups, which con-
cerns different ways in which a group can be regarded
as a group of symmetries. It is also related to topics in
linear algebra, such as the representation of a vector as
linear combinations of an orthonormal basis [III.37],
or as linear combinations of eigenvectors [I.3 §4.3] of
a matrix or linear operator [III.52].

For a more complicated example, let us fix a positive
integer n and let us define a systematic way of decom-
posing functions from C to C, that is, complex-valued
functions defined on the complex plane. If f is such a
function and j is an integer between 0 and n− 1, then
we say that f is a harmonic of order j if it has the fol-
lowing property. Let ω = e2π i/n, so that ω is a primi-
tive nth root of 1 (meaning thatωn = 1 but no smaller
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positive power of ω gives 1). Then f(ωz) = ωjf(z)
for every z ∈ C. Notice that if n = 2, then ω = −1, so
when j = 0 we recover the definition of an even func-
tion and when j = 1 we recover the definition of an odd
function. In fact, inspired by this, we can give a gen-
eral formula for a decomposition of f into harmonics,
which again turns out to be unique. If we define

fj(z) = 1
n

n−1∑
k=0

f(ωkz)ω−jk,

then it is a simple exercise to prove that

f(z) =
n−1∑
j=0

fj(z)

for every z (use the fact that
∑
jω−jk = n if k = 0

and 0 otherwise), and that fj(ωz) =ωjfj(z) for every
z. Thus, f can be decomposed as a sum of harmon-
ics. The group associated with this Fourier transform
is the multiplicative group of the nth roots of unity
1,ω, . . . ,ωn−1, or the cyclic group of order n. The root
ωj is associated with the rotation of the complex plane
through an angle of 2πj/n.

Now let us consider infinite groups. Let f be a
complex-valued function defined on the unit circle T =
{z ∈ C : |z| = 1}. To avoid technical issues we shall
assume that f is smooth—that is, it is infinitely dif-
ferentiable. Now if f is a function of the simple form
f(z) = czn for some integer n and some constant
c, then f will have rotational symmetry of order n.
That is, if ω = e2π i/n again, then f(ωz) = f(z) for
all complex numbers z. After our earlier examples, it
should come as no surprise that an arbitrary smooth
function f can be expressed as a superposition of such
rotationally symmetric functions. Indeed, one can write

f(z) =
∞∑

n=−∞
f̂ (n)zn,

where the numbers f̂ (n), called the Fourier coefficients
of f at the frequencies n, are given by the formula

f̂ (n) = 1
2π

∫ 2π

0
f(eiθ)e−inθ dθ.

This formula can be thought of as the limiting case n→
∞ of the previous decomposition, restricted to the unit
circle. It can also be regarded as a generalization of the
Taylor series expansion of a holomorphic function
[I.3 §5.6]. If f is holomorphic on the closed unit disk
{z ∈ C : |z| � 1}, then one can write

f(z) =
∞∑
n=0

anzn,

where the Taylor coefficient an is given by the formula

an = 1
2π i

∫
|z|=1

f(z)
zn+1

dz.

In general, there are very strong links between Fourier

analysis and complex analysis.

When f is smooth, then its Fourier coefficients decay

to zero very quickly and it is easy to show that the

Fourier series
∑∞
n=−∞ f̂ (n)zn converges. The issue

becomes more subtle if f is not smooth (for instance,

if it is merely continuous). Then one must be careful to

specify the precise sense in which the series converges.

In fact, a significant portion of harmonic analysis

[IV.18] is devoted to questions of this kind, and to

developing tools for answering them.

The group of symmetries associated with this ver-

sion of Fourier analysis is the circle group T. (Notice

that we can think of the number eiθ both as a point in

the circle and as a rotation through an angle of θ. Thus,

the circle can be identified with its own group of rota-

tional symmetries.) But there is a second group that is

important here as well, namely the additive group Z of

all integers. If we take two of our basic symmetric func-

tions, zm and zn, and multiply them together, then we

obtain the function zm+n, so the map n→ zn is an iso-

morphism from Z to the set of all these functions under

multiplication. The group Z is known as the Pontryagin

dual to T.

In the theory of partial differential equations and in

related areas of harmonic analysis, the most important

Fourier transform is defined on the Euclidean space Rd.

Among all functions f : Rd → C, the ones considered to

be “basic” are the plane waves f(x) = cξe2π ix·ξ , where

ξ ∈ Rd is a vector (known as the frequency of the plane

wave), x · ξ is the dot product between the position

x and the frequency ξ, and cξ is a complex number

(whose magnitude is the amplitude of the plane wave).

Notice that sets of the form Hλ = {x : x · ξ = λ} are

(hyper)planes orthogonal to ξ, and on each such set the

value of f(x) is constant. Moreover, the value taken by

f on Hλ is always equal to the value taken on Hλ+2π .

This explains the name “plane waves.” It turns out that

if a function f is sufficiently “nice” (e.g., smooth and

rapidly decreasing as x gets large), then it can be rep-

resented uniquely as the superposition of plane waves,

where a “superposition” is now interpreted as an inte-

gral rather than a summation. More precisely, we have
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the formulas1

f(x) =
∫

Rd
f̂ (ξ)e2π ix·ξ dξ,

where

f̂ (ξ) =
∫

Rd
f (x)e−2π ix·ξ dx.

The function f̂ (ξ) is known as the Fourier transform
of f , and the second formula is known as the Fourier
inversion formula. These two formulas show how to
determine the Fourier-transformed function from the
original function and vice versa. One can view the quan-
tity f̂ (ξ) as the extent to which the function f contains
a component that oscillates at frequency ξ. As it turns
out, there is no difficulty in justifying the convergence
of these integrals when f is sufficiently nice, though
the issue again becomes more subtle for functions that
are somewhat rough or slowly decaying. In this case,
the underlying group is the Euclidean group Rd (which
can also be thought of as the group of d-dimensional
translations); note that both the position variable x and
the frequency variable ξ are contained in Rd, so Rd is
also the Pontryagin dual group in this setting.2

One major application of the Fourier transform lies in
understanding various linear operations on functions,
such as, for instance, the Laplacian on Rd. Given a func-
tion f : Rd → C, its Laplacian ∆f is defined by the
formula

∆f(x) =
d∑
j=1

∂2f
∂x2

j
,

where we think of the vector x in coordinate form, x =
(x1, . . . , xd), and of f as a function f(x1, . . . , xd) of d
real variables. To avoid technicalities let us consider
only those functions that are smooth enough for the
above formula to make sense without any difficulty.

In general, there is no obvious relationship between a
function f and its Laplacian ∆f . But when f is a plane
wave such as f(x) = e2π ix·ξ , then there is a very simple
relationship:

∆e2π ix·ξ = −4π2|ξ|2e2π ix·ξ.

That is, the effect of the Laplacian on the plane wave
e2π ix·ξ is to multiply it by the scalar −4π2|ξ|2. In

1. In some texts, the Fourier transform is defined slightly dif-
ferently, with factors such as 2π and −1 being moved to other
places. These notational differences have some minor benefits and
drawbacks, but they are all equivalent to each other.

2. This is because of our reliance on the dot product; if one did
not want to use this dot product, the Pontryagin dual would instead
be (Rd)∗, the dual vector space to Rd. But this subtlety is not too
important in most applications.

other words, the plane wave is an eigenfunction3 for
the Laplacian ∆, with eigenvalue −4π2|ξ|2. (More gen-
erally, plane waves will be eigenfunctions for any lin-
ear operation that commutes with translations.) There-
fore, the Laplacian, when viewed through the lens of the
Fourier transform, is very simple: the Fourier transform
lets one write an arbitrary function as a superposition
of plane waves, and the Laplacian has a very simple
effect on each plane wave. To be explicit about it,

∆f(x) = ∆
∫

Rd
f̂ (ξ)e2π ix·ξ dξ

=
∫

Rd
f̂ (ξ)∆e2π ix·ξ dξ

=
∫

Rd
(−4π2|ξ|2)f̂ (ξ)e2π ix·ξ dξ,

which gives us a formula for the Laplacian of a gen-
eral function. Here we have interchanged the Laplacian
∆ with an integral; this can be rigorously justified for
suitably nice f , but we omit the details.

This formula represents ∆f as a superposition of
plane waves. But any such representation is unique, and
the Fourier inversion formula tells us that

∆f(x) =
∫

Rd
∆̂f(ξ)e2π ix·ξ dξ.

Therefore,

∆̂f(ξ) = (−4π2|ξ|2)f̂ (ξ),
a fact that can also be derived directly from the def-
inition of the Fourier transform using integration by
parts. This identity shows that the Fourier transform
diagonalizes the Laplacian: the operation of taking the
Laplacian, when viewed using the Fourier transform, is
nothing more than multiplication of a function F(ξ) by
the multiplier −4π2|ξ|2. The quantity −4π2|ξ|2 can be
interpreted as the energy level associated4 with the fre-
quency ξ. In other words, the Laplacian can be viewed
as a Fourier multiplier, meaning that to calculate the
Laplacian you take the Fourier transform, multiply by
the multiplier, and then take the inverse Fourier trans-
form again. This viewpoint allows one to manipulate
the Laplacian very easily. For instance, we can iterate
the above formula to compute higher powers of the
Laplacian:

∆̂nf(ξ) = (−4π2|ξ|2)nf̂ (ξ) for n = 0,1,2, . . . .

Indeed, we are now in a position to develop more gen-
eral functions of the Laplacian. For instance, we can

3. Strictly speaking, this is a generalized eigenfunction, as plane
waves are not square-integrable on Rd.

4. When taking this view, it is customary to replace∆ by−∆ in order
to make the energies positive.
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take a square root as follows:√̂
−∆f(ξ) = 2π|ξ|f̂ (ξ).

This leads to the theory of fractional differential oper-
ators (which are in turn a special case of pseudodiffer-
ential operators), as well as the more general theory
of functional calculus [IV.19 §3.1], in which one
starts with a given operator (such as the Laplacian) and
then studies various functions of that operator, such
as square roots, exponentials, inverses, and so forth.

As the above discussion shows, the Fourier transform
can be used to develop a number of interesting oper-
ations, which have particular importance in the theory
of differential equations. To analyze these operations
effectively, one needs various estimates on the Fourier
transform. For instance, it is often important to know
how the size of a function f , as measured by some
norm, relates to the size of its Fourier transform, as
measured by a possibly different norm. For a further
discussion of this point, see function spaces [III.29].
One particularly important and striking estimate of this
type is the Plancherel identity,∫

Rd
|f(x)|2 dx =

∫
Rd
|f̂ (ξ)|2 dξ,

which shows that the L2-norm of a Fourier transform is
actually equal to the L2-norm of the original function.
The Fourier transform is therefore a unitary operation,
so one can view the frequency-space representation of
a function as being in some sense a “rotation” of the
physical-space representation.

Developing further estimates related to the Fourier
transform and associated operators is a major compo-
nent of harmonic analysis. A variant of the Plancherel
identity is the convolution formula:∫

Rd
f (y)g(x −y)dy =

∫
Rd
f̂ (ξ)ĝ(ξ)e2π ix·ξ dξ.

This formula allows one to analyze the convolution
f ∗ g(x) = ∫Rd f (y)g(x −y)dy of two functions f , g
in terms of their Fourier transform; in particular, if
the Fourier coefficients of f or g are small, then we
expect the convolution f ∗ g to be small as well. This
relationship means that the Fourier transform controls
certain correlations of a function with itself and with
other functions, which makes the Fourier transform
an important tool in understanding the randomness
and uniform distribution properties of various objects
in probability theory, harmonic analysis, and number
theory. For instance, one can pursue the above ideas
to establish the central limit theorem, which asserts
that the sum of many independent random variables

will eventually resemble a Gaussian distribution (see
probability distributions [III.73 §5]); one can even
use such methods to establish vinogradov’s theo-
rem [V.29], that every sufficiently large odd number is
the sum of three primes.

There are many directions in which to generalize the
above set of ideas. For instance, one can replace the
Laplacian by a more general operator and the plane
waves by (generalized) eigenfunctions of that operator.
This leads to the subject of spectral theory [III.88]
and functional calculus; one can also study the alge-
bra of Fourier multipliers (and of convolution) more
abstractly, which leads to the theory of C∗-algebras
[IV.19 §3]. One can also go beyond the theory of lin-
ear operators and study bilinear, multilinear, or even
fully nonlinear operators. This leads in particular to
the theory of paraproducts, which are generalizations
of the pointwise product operation (f (x), g(x)) �→
fg(x) that are of importance in differential equations.
In another direction, one can replace Euclidean space
Rd by a more general group, in which case the notion
of a plane wave is replaced by the notion of a char-
acter (if the group is Abelian) or a representation (if
the group is non-Abelian). There are other variants of
the Fourier transform, such as the Laplace transform
or the Mellin transform (for more about other trans-
forms, see the article transforms [III.93]), which are
very similar algebraically to the Fourier transform and
play similar roles (for instance, the Laplace transform is
also useful in analyzing differential equations). We have
already seen that Fourier transforms are connected to
Taylor series; there is also a connection to some other
important series expansions, notably Dirichlet series,
as well as expansions of functions in terms of special
polynomials [III.87] such as orthogonal polynomials
or spherical harmonics [III.89].

The Fourier transform decomposes a function ex-
actly into many components, each of which has a pre-
cise frequency. In some applications it is more use-
ful to adopt a “fuzzier” approach, in which a func-
tion is decomposed into fewer components but each
component has a range of frequencies rather than con-
sisting purely of a single frequency. Such decomposi-
tions can have the advantage of being less constrained
by the uncertainty principle, which asserts that it is
impossible for both a function and its Fourier trans-
form to be concentrated in very small regions of Rd.
This leads to some variants of the Fourier transform,
such as wavelet transforms [VII.3], which are bet-
ter suited to a number of problems in applied and
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computational mathematics, and also to certain ques-
tions in harmonic analysis and differential equations.
The uncertainty principle, being fundamental to quan-
tum mechanics, also connects the Fourier transform to
mathematical physics, and in particular to the connec-
tions between classical and quantum physics, which
can be studied rigorously using the methods of geo-
metric quantization and microlocal analysis.

III.28 Fuchsian Groups
Jeremy Gray

One of the most basic objects in geometry is the torus:
a surface that has the shape of the surface of a bagel.
If you want to construct one, you can do so by tak-
ing a square and gluing opposite edges together. When
you glue the top and bottom edges together you have
a cylinder, and when you glue the other two edges
together, which have now become circles, you obtain
your torus.

A more mathematical way of making a torus is as fol-
lows. We start with the usual (x,y) coordinate plane
and the square in it with vertices at (0,0), (1,0), (1,1),
and (0,1), which consists of the points whose coordin-
ates satisfy 0 � x � 1, 0 � y � 1. This square can be
moved around horizontally and vertically. If we shift it
m units horizontally and n units vertically, where m
and n are integers, we get the square that consists of
the points whose coordinates satisfy m � x � m + 1,
n � y � n+1. Asm andn run through all the integers,
we see that the copies of the square cover the whole
plane, with four squares coming together at each point
with integer coordinates. The plane is said to be tiled
or tessellated (from the Latin word for a marble chip in
a mosaic), and it is easy to see that you can color the
squares alternately black and white and get an infinite
checkerboard pattern.

To make the torus we “identify” points. We say that
the points (x,y) and (x′, y′) correspond to the same
point in a certain new figure if x − x′ and y − y′ are
both integers. To see what the new figure looks like,
we observe that any point in the plane corresponds to
a point inside, or on the edge of, our original square.
Moreover, the point (x,y) corresponds to exactly one
point inside the square provided that neither x nor y
is an integer. So our new space looks a lot like our origi-
nal square. But what about the points ( 1

4 ,0) and ( 1
4 ,1)?

They correspond to the same point in our new space, as
do any corresponding pairs of points on the upper and
lower edges of our square. So those edges are identified

in our new space. By a similar argument, so too are the
left and right edges. The result is that, after points are
identified according to our rule, we obtain the torus.

If we make the torus in this way, we can draw small
figures on it just by drawing them in the original square;
lengths in the square will then correspond exactly to
lengths on the torus. This is how old-fashioned print-
ing on a drum works: an inked figure on a cylinder is
rolled over the paper to make exact copies of the figure.
Thus, as far as small figures are concerned, the geom-
etry of the torus is exactly like Euclidean geometry. In
mathematical language we say that the geometry on the
torus is induced from the geometry on the plane, and
therefore that it is locally Euclidean. Globally, of course,
it is different, because one can draw curves on the torus
that cannot be shrunk to a point, whereas one cannot
do so on the plane.

Notice, too, that we have brought in a group to do
the bulk of the work for us. In this case the group is
the set of all pairs (m,n) where m and n are integers,
with (m,n)+ (m′, n′) defined to be (m+m′, n+n′).

The torus and the sphere are but two of an infinite
class of surfaces that are closed (they have no bound-
ary) and compact (they do not in any sense go off to
infinity). Other surfaces include the two-holed torus,
and more generally the n-holed torus (the surfaces of
genus 2,3,4, . . . ). To create these in a similar way, we
need Fuchsian groups.

It is natural to expect that we can get other sur-
faces by using polygons with more than four sides. It
turns out that if you use a polygon with eight sides,
for example a regular octagon, and glue sides 1 and 3
together, 2 and 4 together, 5 and 7 together, and 6 and
8 together, you get the two-holed torus. How can we use
a group to achieve the same result, as we did with the
torus? For that we need a way of fitting lots of copies
of the octagon together so that they overlap only along
edges. The problem is that one cannot tile the plane
with octagons: the angles of an octagon are 135◦, and
that is far too big because we need eight octagons to fit
together at each vertex.

The way forward here is to use hyperbolic geom-
etry [I.3 §6.6] instead of Euclidean geometry. But we
can also work with our bare hands. Take the unit disk
in the complex plane, D = {z : |z| � 1}. Take the
group of what are called Möbius transformations, which
are maps of the form z �→ (az + b)/(cz + d). It is a
routine calculation to show that these maps send cir-
cles and straight lines to circles and straight lines (they
mix the two types up, sometimes sending a circle to a
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straight line and vice versa) and that they map angles
to equal but opposite angles, just like the more famil-
iar Euclidean reflections. If we now select just those
Möbius transformations that map D to itself, then we
have a group that we shall callG. Indeed, we very nearly
have a Fuchsian group.

We need to find a shape that will play the role that
the square played in the Euclidean plane. Our group
G has the property that it maps diameters of D and
arcs of circles perpendicular to the boundary of D to
diameters of D and arcs of circles perpendicular to
the boundary of D, so we let these play the role of
straight lines and use eight of them as the edges of
a (non-Euclidean) octagon. We find that we can do this
in many ways, so we pick one with the highest degree
of symmetry to make things easy for ourselves. That
is, we draw a “regular octagon” centered on the center
of the disk D. This still leaves us with some choice: thePUP: I can confirm
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bigger the octagon, the smaller its angles. So we draw
the octagon with angles of π/4, which allows eight of
them to cluster at each vertex, and then we can fit them
together as we want. If we identify points that lie in cor-
responding places in different copies of the polygon,
then the resulting space is a riemann surface [III.81]
of genus 2.

A Fuchsian group is a subgroup of the group G
(of Möbius transformations that map D to itself) that
moves some polygon around “en bloc” and thereby tiles
the disk. Just as with the torus, we have a notion of
equivalent points (ones that are in the corresponding
place in different tiles) and when we identify equiva-
lent points we get the space that we would also have
obtained by identifying the edges of the polygon in
pairs, which is the space we wanted.

All this can be described in the language of hyper-
bolic geometry. The disk model is defined by means of
a riemannian metric [I.3 §6.10] on D, the differential
of which is given by

ds = |dz|√
1− |z|2 .

The elements of G move figures around in D in a way
that preserves hyperbolic distances. It follows that the
geometry on the surface that we obtain by identifying
points in the manner just described is locally hyper-
bolic, just as that of the torus was locally Euclidean.

It turns out that if we carry out the above construc-
tion starting with a regular 4n-sided figure (withn > 2),
then we obtain a Riemann surface of genusn. But math-
ematicians can do much more. If you go back to the

plane and start not with a square but with a rectan-
gle, or still more generally a parallelogram, it is rea-
sonably easy to see that the same construction can be
carried out. Indeed, if you just watch the original con-
struction from an appropriate angle, instead of from
vertically above the plane, then the square will turn into
any parallelogram you choose (possibly enlarged or
contracted). When you use a parallelogram, you again
obtain a torus, but it differs from the original one in the
same way that the square and the parallelogram differ:
angles are distorted. It is a not entirely trivial exercise
to show that the only angle-preserving maps from one
parallelogram to another are similarities (uniform scal-
ing by the same amount in two, and therefore all, direc-
tions). So the resulting tori have a different sense of
what angles are: that is, they have different conformal
structures.

The same happens in the hyperbolic disk. If one picks
a 4n-sided polygon (its sides are parts of geodesics)
whose edges come in pairs of equal length, and one
finds a group that moves this polygon around en bloc
and matches the edges exactly, then a Riemann sur-
face is once again obtained, but if the polygons are
not conformally equivalent, then neither are the cor-
responding surfaces; they have the same genus, n, but
different conformal structures. We can even go further
and allow some of the vertices of the polygon to lie
on the boundary of the disk, in which case the corre-
sponding sides of the polygon are infinitely long with
respect to the hyperbolic metric. The space we then
construct is a “punctured” Riemann surface, and again
mathematicians can vary its conformal structure.

The fundamental importance of Fuchsian groups
derives from the uniformization theorem, which says
that all but the simplest Riemann surfaces arise from
some Fuchsian group in the fashion described above.
This includes every Riemann surface of genus greater
than 1, and those of genus 1 with at least one puncture,
with any possible conformal structure.

The name Fuchsian group was given to these groups
by poincaré [VI.61] in 1881, who discovered them in
the course of work on the hypergeometric equation and
related differential equations, which had been inspired
by the work of the German mathematician Lazarus
Fuchs. klein [VI.57] protested to him that a better pro-
cedure might have been to name them after Schwarz,
and Poincaré was willing to agree once he read the rele-
vant paper by Schwarz, but by then Fuchs had given his
approval to the name. When Klein protested too much
(in Poincaré’s view), Poincaré publicly gave the name
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Kleinian groups to the analogous class of groups that
arise in the study of conformal transformations of the
three-dimensional unit ball. The names have stuck ever
since, but the study of Kleinian groups is much more
difficult and neither Poincaré nor Klein could do much
with the concept. However, the idea that every Riemann
surface might arise from either the sphere, the Euclid-
ean plane, or the hyperbolic plane was something they
both came to conjecture. Rigorous proofs of this state-
ment, the uniformization theorem, were to be given
only in 1907, by Poincaré and Koebe independently.

The formal definition of a Fuchsian group is as fol-
lows. A subgroupH of the group of all Möbius transfor-
mations is said to act discontinuously if, for every com-
pact set K in the disk D the sets h(K) and K are disjoint
except for finitely many h ∈ H. A Fuchsian group is a
subgroupH of the group of all Möbius transformations
that acts discontinuously on the disk D.

III.29 Function Spaces
Terence Tao

1 What Is a Function Space?

When one works with real or complex numbers, there
is a natural notion of the magnitude of a number x,
namely its modulus |x|. One can also use this notion
of magnitude to define a distance |x −y| between two
numbers x and y and thereby say in a quantitative way
which pairs of numbers are close and which ones are
far apart.

The situation becomes more complicated, however,
when one deals with objects with more degrees of
freedom. Consider for instance the problem of deter-
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mining the “magnitude” of a three-dimensional rect-
angular box. There are several candidates for such a
magnitude: length, width, height, volume, surface area,
diameter (the length of a long diagonal), eccentric-
ity, and so forth. Unfortunately, these magnitudes do
not give equivalent comparisons: for example, box A
may be longer and have a greater volume than box B,
but box B may be wider and have a greater surface
area. Because of this, one abandons the idea that there
should be only one notion of “magnitude” for boxes,
and instead accepts that there is a multiplicity of such
notions and that they can all be useful: for some appli-
cations one may wish to distinguish the large-volume
boxes from the small-volume boxes, while in others one
may wish to distinguish the eccentric boxes from the
round boxes. Of course, there are several relationships

between the different notions of magnitude (e.g., the
isoperimetric inequality [IV.24] allows one to place
an upper limit on the possible volume if one knows the
surface area), so the situation is not as disorganized as
it may at first appear.

Now let us turn to functions with a fixed domain
and range. (A good case to have in mind is functions
f : [−1,1]→ R from the interval [−1,1] to the real line
R.) These objects have infinitely many degrees of free-
dom, so it should not be surprising that there are now
infinitely many distinct notions of “magnitude,” which
all provide different answers to the question “how large
is a given function f ?” (or to the closely related ques-
tion “how close together are two functions f and g?”).
In some cases, certain functions may have infinite mag-
nitude by one measure and finite magnitude by another
(similarly, a pair of functions may be very close by one
measure and very far apart by another). Again, this
situation may seem chaotic, but it simply reflects the
fact that functions have many distinct characteristics—
some are tall, some are broad, some are smooth, some
are oscillatory, and so forth—and that, depending on
the application at hand, one may need to give more
weight to one of these characteristics than to others. In
analysis, these characteristics are embodied in a vari-
ety of standard function spaces and their associated
norms, which are available to describe functions both
qualitatively and quantitatively.

Formally, a function space is a normed space [III.64]
X, the elements of which are functions (with some fixed
domain and range). A majority (but certainly not all)
of the standard function spaces considered in analysis
are not just normed spaces but also banach spaces
[III.64]. The norm ‖f‖X of a function f in X is the func-
tion space’s way of measuring how large f is. It is com-
mon, though not universal, for the norm to be defined
by a simple formula and for the space X to consist pre-
cisely of those functions f for which the resulting def-
inition ‖f‖X makes sense and is finite. Thus, the mere
fact that a function f belongs to a function space X can
already convey some qualitative information about that
function. For example, it may imply some regularity,1

decay, boundedness, or integrability on the function f .
The actual value of the norm ‖f‖X makes this informa-
tion quantitative. It may tell us how regular f is, how
much decay it has, by which constant it is bounded, or
how large its integral is.

1. The more smoothly a function varies, the more “regular” it is
considered to be.
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2 Examples of Function Spaces

We now present a sample of commonly used function
spaces. For simplicity we shall consider only spaces of
functions from [−1,1] to R.

2.1 C0[−1, 1]

This is the space of all continuous functions
[I.3 §5.2] from [−1,1] to R, and is sometimes denoted
C[−1,1]. Continuous functions are regular enough to
allow one to avoid many of the technical subtleties
associated with very rough functions. Continuous func-
tions on a compact [III.9] interval such as [−1,1] are
bounded, so the most natural norm to place on this
space is the supremum norm, denoted ‖f‖∞, which
is the largest possible value of |f(x)|. (Formally, it is
defined to be sup{|f(x)| : x ∈ [−1,1]}, but for con-
tinuous functions on [−1,1] the two definitions are
equivalent.)

The supremum norm is the norm associated with uni-
form convergence: a sequence f1, f2, . . . converges uni-
formly to f if and only if ‖fn − f‖∞ tends to 0 as n
tends to ∞. The space C0[−1,1] has the useful prop-
erty that one can multiply functions together as well as
adding them. This makes it a basic example of a Banach
algebra.

2.2 C1[−1, 1]

This is a space that has a more restricted member-
ship than C0[−1,1]: not only must a function f in
C1[−1,1] be continuous but it must also have a deriva-
tive that is continuous. The supremum norm here is
no longer a natural one, because a sequence of con-
tinuously differentiable functions can converge in this
norm to a nondifferentiable function. Instead, the right
norm here is the C1-norm ‖f‖C1[−1,1], which is defined
to be ‖f‖∞ + ‖f ′‖∞.

Notice that the C1-norm measures both the size of
a function and the size of its derivative. (Merely con-
trolling the latter would be unsatisfactory, since it
would give constant functions a norm of zero.) Thus
it is a norm that forces a greater degree of regular-
ity than the supremum norm. One can similarly define
the space C2[−1,1] of twice continuously differen-
tiable functions, and so forth, all the way up to the
space C∞[−1,1] of infinitely differentiable functions.
(There are also “fractional” versions of these spaces,
such as C0,α[−1,1], the space of α-Hölder continuous
functions. We will not discuss these variants here.)

2.3 The Lebesgue Spaces Lp[−1, 1]

The supremum norm ‖f‖∞ mentioned earlier gives
simultaneous control on the size of |f(x)| for all x ∈
[−1,1]. However, this means that if there is a tiny set
of x for which |f(x)| is very large, then ‖f‖∞ is very
large, even if a typical value of |f(x)| is much smaller.
It is sometimes more advantageous to work with norms
that are less influenced by the values of a function on
small sets. The Lp-norm of a function f is

‖f‖p =
(∫ 1

−1
|f(x)|p dx

)1/p
.

This is defined for 1 � p <∞ and for any measurable f .
The function space Lp[−1,1] is the class of measurable
functions for which the above norm is finite. The norm
‖f‖∞ of a measurable function f is its essential supre-
mum: roughly speaking this means the largest value of
|f(x)| if you ignore sets of measure zero. It turns out
to be the limit of the norms ‖f‖p as p tends to infin-
ity. The space L∞[−1,1] consists of those measurable
functions f for which ‖f‖∞ is finite. While the L∞ norm
is concerned solely with the “height” of a function, the
Lp norms are instead concerned with a combination of
the “height” and “width” of a function.

Particularly important among these norms is the
L2-norm, since L2[−1,1] is a hilbert space [III.37].
This space is exceptionally rich in symmetries: there
is a wide variety of unitary transformations, that is,
invertible linear maps T defined on L2[−1,1] such that
‖Tf‖2 = ‖f‖2 for every function f ∈ L2[−1,1].

2.4 The Sobolev Spaces Wk,p[−1, 1]

The Lebesgue norms control, to some extent, the height
and width of a function, but say nothing about regu-
larity; there is no reason why a function in Lp should
be differentiable or even continuous. To incorporate
such information one often turns to the Sobolev norms
‖f‖Wk,p[−1,1], defined for 1 � p �∞ and k � 0 by

‖f‖Wk,p[−1,1] =
k∑
j=0

∥∥∥∥djf
dxj

∥∥∥∥
p
.

The Sobolev spaceWk,p[−1,1] is the space of functions
for which this norm is finite. Thus, a function lies in
Wk,p[−1,1] if it and its first k derivatives all belong to
Lp[−1,1]. There is one subtlety: we do not require f to
be k times differentiable in the usual sense, but in the
weaker sense of distributions [III.18]. For instance,
the function f(x) = |x| is not differentiable at zero,
but it does have a natural weak derivative: the function
f ′(x) which is −1 when x < 0 and +1 when x > 0.
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This function lies in L∞[−1,1] (since the set {0} has
measure zero, we do not need to specify f ′(0)), and
therefore f lies in W1,∞[−1,1] (which turns out to be
the space of Lipschitz-continuous functions). We need
to consider these generalized differentiable functions
because without them the spaceWk,p[−1,1] would not
be complete.

Sobolev norms are particularly natural and useful
in the analytical study of partial differential equations
and mathematical physics. For instance, theW1,2 norm
can be interpreted as (the square root of) an “energy”
associated with a function.

3 Properties of Function Spaces

There are many ways in which knowledge of the struc-
ture of function spaces can assist in the study of func-
tions. For instance, if one has a good basis for the func-
tion space, so that every function in the space is a (pos-
sibly infinite) linear combination of basis elements, and
one has some quantitative estimates on how this linear
combination converges to the original function, then
this allows one to represent that function efficiently in
terms of a number of coefficients, and also allows one
to approximate that function by smoother functions.
For instance, one basic result about L2[−1,1] is the
Plancherel theorem, which asserts, among other things,
that there are numbers (an)∞n=−∞ such that∥∥∥∥f −

N∑
n=−N

aneπ inx
∥∥∥∥

2
→ 0 as N →∞.

This shows that any function in L2[−1,1] can be
approximated to any desired accuracy in L2 by a
trigonometric polynomial: that is, an expression of the
form

∑N
n=−N aneπ inx . The numberan is thenth Fourier

coefficient f̂ (n) of f . It is given by the formula

f̂ (n) = 1
2

∫ 1

−1
f(x)e−π inx dx.

One can regard this result as saying that the func-
tions eπ inx form a very good basis for L2[−1,1]. (They
are in fact an orthonormal basis: they have norm 1 and
the inner product of two different ones is always zero.)

Another very basic fact about function spaces is
that certain function spaces embed into others, so
that a function from one space automatically also
belongs to other spaces. Furthermore, there is often
some inequality that gives an upper bound for one
norm in terms of another. For instance, a function in a
high-regularity space such as C1[−1,1] automatically
belongs to a low-regularity space such as C0[−1,1],

and a function in a high-integrability space such as
L∞[−1,1] automatically belongs to a low-integrability
space such as L1[−1,1]. (This statement is no longer
true if one replaces the interval [−1,1] by a set of infi-
nite measure, such as the real line R.) These inclusions
cannot be reversed; however, one does have the Sobolev
embedding theorem, which allows one to “trade” regu-
larity for integrability. This result tells us that spaces
with lots of regularity but low integrability can be
embedded into spaces with low regularity but high
integrability. A sample estimate of this type is

‖f‖∞ � ‖f‖W 1,1[−1,1],

which tells us that if the integrals of |f(x)| and |f ′(x)|
are both finite, then f must be bounded (which is a
far stronger integrability condition than the finiteness
of ‖f‖1).

Another very useful concept is that of duality
[III.19]. Given a function space X, one can define the
dual space X∗, which is formally defined as the class
of all continuous linear functionals on X, or more pre-
cisely all maps ω : X → R (or ω : X → C, if the function
space is complex valued) that are linear and continuous
with respect to the norm of X. For example, it turns out
that every linear functional ω on the space Lp[−1,1]
is of the form

ω(f) =
∫ 1

−1
f(x)g(x)dx

for some function g in Lq[−1,1], where q is the dual
or conjugate exponent of p, defined by the equation
1/p + 1/q = 1.

One can sometimes analyze functions in a function
space by looking instead at how the linear function-
als in the dual space act on those functions. Similarly,
one can often analyze a continuous linear operator
T : X → Y from one function space to another by
first considering the adjoint operator T∗ : Y∗ → X∗,
defined for all linear functionals ω : Y → R by letting
T∗ω be the functional on X defined by the formula
T∗ω(x) =ω(Tx).

We mention one more important fact about func-
tion spaces, which is that certain function spaces X
“interpolate” between two other function spacesX0 and
X1. For example, there is a natural sense in which the
spaces Lp[−1,1] with 1 < p < ∞ “lie between” the
spaces L1[−1,1] and L∞[−1,1]. The precise definition
of interpolation is too technical for this article, but its
usefulness lies in the fact that the “extreme” spaces X0

and X1 are often easier to deal with than the “inter-
mediate” spaces X. For this reason, it is sometimes
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possible to prove difficult results about X by proving
much easier results about X0 and X1 and “interpolat-
ing” between them. For instance, it can be used to give
a short proof of Young’s inequality, which is the follow-
ing statement. Let 1 � p,q, r � ∞ satisfy the equation
1/p + 1/q = 1/r + 1, let f and g belong to Lp(R) and
Lq(R), respectively, and let f∗g be the convolution of f
and g: that is, f ∗ g(x) = ∫∞−∞ f(y)g(x −y)dy . Then

(∫∞
−∞
|f ∗ g(x)|r dx

)1/r

�
(∫∞
−∞
|f(x)|p dx

)1/p(∫∞
−∞
|g(x)|q dx

)1/q
.

Interpolation is useful here because the inequality is
easy to prove in the extreme cases when p = 1, when
q = 1, or when r = ∞. It is much harder to prove this
result without the help of interpolation theory.

III.30 Galois Groups

Given a polynomial function f , the splitting field of f
is defined to be the smallest field [I.3 §2.2] that con-
tains all rational numbers and all the roots of f . The
Galois group of f is the group of all automorphisms
[I.3 §4.1] of the splitting field. Each such automorphism
permutes the roots of f , so the Galois group can be
thought of as a subset of the group of all permuta-
tions [III.70] of these roots. The structure and proper-
ties of the Galois group are closely connected with the
solubility of the polynomial: in particular, the Galois
group can be used to show that not all polynomials
are solvable by radicals (that is, solvable by means of a
formula that involves the usual arithmetic operations
together with the extraction of roots). This theorem,
spectacular as it is, is by no means the only application
of Galois groups: they play a central role in modern
algebraic number theory.

For more details, see the insolubility of the quin-
tic [V.24] and algebraic numbers [IV.3 §20].

III.31 The Gamma Function
Ben Green

If n is a positive integer, then its factorial, written n!, is
the number 1× 2× · · · ×n: that is, the product of all
positive integers up to n. For example, the first eight
factorials are 1, 2, 6, 24, 120, 720, 5040, and 40 320.
(The exclamation mark was introduced by Christian
Kramp 200 years ago as a convenience to the printer:
it is perhaps also intended to convey some alarm at

the rapidity with which n! grows. An obsolete nota-
tion, which can still be found in some twentieth-century
texts, is n .) From this definition, it might appear to be
impossible to make sense of the idea of the factorial of
a number that is not a positive integer, but, as it turns
out, it is not just possible to do so, but also extremely
useful.

The gamma function, written Γ , is a function that
agrees with the factorial function at positive integer
values, but that makes sense for any real number, and
even for any complex number. Actually, for various rea-
sons it is natural to define Γ so that Γ (n) = (n−1)! for
n = 2,3, . . . . Let us start by writing

Γ (s) =
∫∞

0
xs−1e−x dx, (1)

without paying too much attention to whether the inte-
gral converges. If we integrate by parts, then we find
that

Γ (s) = [−xs−1e−x]∞0 +
∫∞

0
(s − 1)xs−2e−x dx. (2)

As x tends to infinity, xs−1e−x tends to zero, and if
s is, for example, a real number greater than 1, then
xs−1 = 0 when x = 0. Therefore, for such s, we can
ignore the first term in the above expression. But the
second one is simply the formula for Γ (s − 1), so we
have shown that Γ (s) = (s − 1)Γ (s − 1), which is just
what we need if we want to think of Γ (s) as something
like (s − 1)!.

It is not hard to show that the integral is in fact con-
vergent whenever s is a complex number and Re(s) (the
real part of s) is positive. Moreover, it defines a holo-
morphic function [I.3 §5.6] in that region. When the
real part of s is negative, the integral does not converge
at all, and so the formula (1) cannot be used to define
the gamma function in its entirety. However, we can
instead use the property Γ (s) = (s−1)Γ (s−1) to extend
the definition. For example, when −1 < Re(s) � 0, we
know that the definition does not work directly, but it
does work for s + 1, since Re(s + 1) > 0. We would like
Γ (s+1) to equal sΓ (s), so it makes sense to define Γ (s)
to be Γ (s + 1)/s. Once we have done this, we can turn
our attention to values of s with −2 < Re(s) � −1, and
so on.

The reader may object that in defining Γ (0) (for
example), we have divided by zero. This is perfectly
permissible, however, if all we require of Γ is that it
should be meromorphic [V.34], because meromorphic
functions are allowed to take the “value”∞. Indeed, it is
not hard to see that Γ , as we have defined it, has simple
poles at 0,−1,−2, . . . .
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There are in fact many functions that share the use-
ful properties of Γ . (For instance, because cos(2πs) =
cos(2π(s + 1)) for any s, and cos(2πn) = 1 for every
integer n, the function F(s) = Γ (s) cos(2πs) also has
the property F(s) = (s−1)F(s−1) and F(n) = (n−1)!.)
Nevertheless, for a variety of reasons, the function Γ ,
as we have defined it, is the most natural meromorphic
extension of the factorial function. The most persua-
sive reason is the fact that it arises so often in natural
contexts, but it is also, in a certain sense, the smoothest
interpolation of the factorial function to all positive
real values. In fact, if f : (0,∞) → (0,∞) is such that
f(x + 1) = xf(x), f(1) = 1, and log f is convex, then
f = Γ .

There are many interesting formulas involving Γ ,
such as Γ (s)Γ (1 − s) = π/ sin(πs). There is also the
famous result Γ ( 1

2 ) =
√
π , which is essentially equiva-

lent to the fact that the area under the “normal distri-
bution curve” h(x) = (1/√2π)e−x2/2 is 1 (this can be
seen by making the substitution x = u2/2 in (1)). A
very important result concerning Γ is the Weierstrass
product expansion, which states that

1
Γ (z)

= zeγz
∞∏
n=1

(
1+ z

n

)
e−z/n

for all complex z, where γ is Euler’s constant:

γ = lim
n→∞

(
1+ 1

2
+ · · · + 1

n
− logn

)
.

This formula makes it clear that Γ never vanishes, and
that it has simple poles at 0 and the negative integers.

Why is the gamma function important? Reason
enough is its frequent occurrence in many parts of
mathematics, but one can attempt to explain why this
should be so. One reason is that Γ , as defined in (1), is
the Mellin transform of the unarguably natural func-
tion f(x) = e−x . The Mellin transform is a type of
fourier transform [III.27], but it is defined for func-
tions on the group (R+,×) rather than (R,+) (which is
the habitat of the most familiar type of Fourier trans-
form). For this reason, Γ is often seen in number theory,
particularly analytic number theory [IV.4], where
multiplicatively defined functions are often studied by
taking Fourier transforms.

One appearance of Γ in a number-theoretical con-
text is in the functional equation for the riemann zeta
function [IV.4 §3], namely,

Ξ(s) = Ξ(1− s),
where

Ξ(s) = Γ (s/2)π−s/2ζ(s). (3)

The ζ function has a well-known product representa-
tion

ζ(s) =
∏
p
(1− p−s)−1,

where the product is over primes and the representa-
tion is valid for Re(s) > 1. The extra factor Γ (s/2)π−s/2

in (3) may be regarded as coming from the “prime at
infinity” (a term which may be rigorously defined).

Stirling’s formula is a very useful tool in dealing with
the gamma function: it provides a rather accurate esti-
mate for Γ (z) in terms of simpler functions. A very
rough (but often useful) approximation forn! is (n/e)n,
which tells us that log(n!) is about n(logn − 1). Stir-
ling’s formula is a sharper version of this crude esti-
mate. Let δ > 0 and suppose that z is a complex num-
ber that has modulus at least 1 and argument between
−π + δ andπ − δ. (This second condition keeps z away
from the negative real axis, where the poles are.) Then
Stirling’s formula states that

log Γ (z) = (z − 1
2 ) logz − z + 1

2 log 2π + E,
where the error E is at most C(δ)/|z|. Here, C(δ)
stands for a certain positive real number that depends
on δ. (The smaller you make δ, the larger you have to
make C(δ).) Using this, one may confirm that Γ decays
exponentially as Imz → ∞ in any fixed vertical strip in
the complex plane. In fact, if α < σ < β, then

|Γ (σ + it)| � C(α,β)|t|β−1e−π|t|/2

for all |t| > 1, uniformly in σ .

III.32 Generating Functions

Suppose that you have defined a combinatorial struc-
ture, and for each nonnegative integer n you wish to
understand how many examples of this structure there
are of size n. If an denotes this number, then the
object that you are trying to analyze is the sequence
a0, a1, a2, a3, . . . . If the structure is quite complicated,
then this may be a very hard problem, but one can
sometimes make it easier by considering a different
object, the generating function of the sequence, which
contains the same information.

To define this function, one simply regards the
sequence an as the sequence of coefficients in a
power series. That is, the generating function f of the
sequence is given by the formula

f(x) = a0 + a1x + a2x2 + a3x3 + · · · .
The reason this can be useful is that one can some-
times derive a succinct expression for f and analyze it
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without reference to the individual numbers an. For
example, one important generating function has the
formula f(x) = (1−√1− 4x)/2x. In such cases, one
can deduce properties of the sequence a0, a1, a2, . . .
from properties of f , rather than the other way round.

For more on generating functions, see enumerative
and algebraic combinatorics [IV.22] and trans-
forms [III.93].

III.33 Genus

The genus is a topological invariant of surfaces: that
is, a quantity associated with a surface that does not
change when the surface is continuously deformed.
Roughly speaking, it corresponds to the number of
holes of that surface, so a sphere has genus 0, a torus
has genus 1, a pretzel shape (that is, the surface of a
blown-up figure of eight) has genus 2, and so on. If one
triangulates an orientable surface and counts the num-
ber of vertices, edges, and faces in the triangulation,
denoting them V , E, and F , respectively, then the Euler
characteristic is defined to be V−E+F . It can be shown
that if g is the genus and χ is the Euler characteristic,
then χ = 2− 2g. See [I.4 §2.2] for a fuller discussion.

A famous result of poincaré [VI.61] states that for
every nonnegative integer g there is precisely one ori-
entable surface of genus g. (Moreover, genus can also
be defined for nonorientable surfaces, where a similar
result holds.) See differential topology [IV.9 §2.3]
for more about this theorem.

One can associate an orientable surface, and there-
fore a genus, with a smooth algebraic curve. An ellip-
tic curve [III.21] can be defined as a smooth curve of
genus 1. See algebraic geometry [IV.7 §10] for more
details.

III.34 Graphs

A graph is one of the simplest of all mathematical struc-
tures: it consists of some elements called vertices (of
which there are usually just finitely many), some pairs
of which are deemed to be “joined” or “adjacent.” It is
customary to represent the vertices by points in a plane
and to join adjacent points by a line. The line is referred
to as an edge (though how the line is drawn or visual-
ized is irrelevant: all that is important is whether or not
two points are joined).

For example, the rail network of a country can be rep-
resented by a graph: we can use vertices to represent

the stations, and we can join two vertices if they repre-
sent consecutive stations along some rail line. Another Query for PUP:

how would an
American say this?example Another example is provided by the Internet:

the vertices are all the world’s computers, and two are
adjacent if there is a direct link between them.

Many questions in graph theory take the form of ask-
ing what some structural property of graphs can tell
you about its other properties. For example, suppose
that we are trying to find a graph with n vertices that
does not contain a triangle (defined to be a set of three
vertices that are mutually joined). How many edges can
the graph have? Clearly 1

4n
2 is possible, at least if n is

even, since one can then divide up the n vertices into
two equal classes and join all vertices in one class to all
vertices in the other. But can there be more edges than
that?

Here is another example of a typical question about
graphs. Let k be a positive integer. Must there exist an
n such that every graph withn vertices always contains
either k vertices that are all joined to each other or k
vertices none of which are joined to each other? This
question is quite easy for k = 3 (where n = 6 suffices),
but already for k = 4 it is not obvious that such an n
exists.

For more on these problems (the first is the found-
ing problem of “extremal graph theory,” while the sec-
ond is the founding problem of “Ramsey theory”) and
on the study of graphs in general, see extremal and
probabilistic combinatorics [IV.23].

III.35 Hamiltonians
Terence Tao

At first glance, the many theories and equations of
modern physics exhibit a bewildering diversity: com-
pare, for instance, classical mechanics with quan-
tum mechanics, nonrelativistic physics with relativistic
physics, or particle physics with statistical mechanics.
However, there are strong unifying themes connecting
all of these theories. One of these is the remarkable
fact that in all of them the evolution of a physical sys-
tem over time (as well as the steady states of that sys-
tem) is largely controlled by a single object, the Hamil-
tonian of that system, which can often be interpreted
as describing the total energy of any given state in that
system. Roughly speaking, each physical phenomenon
(e.g., electromagnetism, atomic bonding, particles in a
potential well, etc.) may correspond to a single Hamil-
tonianH, while each type of mechanics (classical, quan-
tum, statistical, etc.) corresponds to a different way
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of using that Hamiltonian to describe a physical sys-

tem. For instance, in classical physics, the Hamiltonian

is a function (q,p) �→ H(q,p) of the positions q and

momenta p of the system, which then evolve according

to Hamilton’s equations:

dq
dt
= ∂H
∂p
,

dp
dt
= −∂H

∂q
.

In (nonrelativistic) quantum mechanics, the Hamilto-

nian H becomes a linear operator [III.52] (which

is often a formal combination of the position opera-

tors q and momenta operators p), and the wave func-

tion ψ of the system then evolves according to the

schrödinger equation [III.85]:

i�
d
dt
ψ = Hψ.

In statistical mechanics, the Hamiltonian H is a func-

tion of the microscopic state (or microstate) of a system,

and the probability that a system at a given tempera-

ture T will lie in a given microstate is proportional to

e−H/kT . And so on and so forth.

Many fields of mathematics are closely intertwined

with their counterparts in physics, and so it is not sur-

prising that the concept of a Hamiltonian also appears

in pure mathematics. For instance, motivated by clas-

sical physics, Hamiltonians (as well as generalizations

of Hamiltonians, such as moment maps) play a major

role in dynamical systems, differential equations, Lie

group theory, and symplectic geometry. Motivated by

quantum mechanics, Hamiltonians (as well as gener-

alizations, such as observables or pseudo-differential

operators) are similarly prominent in operator alge-

bras, spectral theory, representation theory, differen-

tial equations, and microlocal analysis.

Because of their presence in so many areas of physics

and mathematics, Hamiltonians are useful for build-

ing bridges between seemingly unrelated fields: for

instance, between classical mechanics and quantum

mechanics, or between symplectic mechanics and oper-

ator algebras. The properties of a given Hamiltonian

often reveal much about the physical or mathematical

objects associated with that Hamiltonian. For example,

the symmetries of a Hamiltonian often induce corre-

sponding symmetries in objects described using that

Hamiltonian. While not every interesting feature of a

mathematical or physical object can be read off directly

from its Hamiltonian, this concept is still fundamental

to understanding the properties and behavior of such

objects.

See also vertex operator algebras [IV.13 §2.1],
mirror symmetry [IV.14 §§2.1.3, 2.2.1], and symplec-
tic manifolds [III.90 §2.1].

III.36 The Heat Equation
Igor Rodnianski

The heat equation was first proposed by fourier
[VI.25] as a mathematical description of the trans-
fer of heat in solid bodies. Its influence has subse-
quently been felt in many corners of mathematics:
it provides explanations for such disparate phenom-
ena as the formation of ice (the Stefan problem), the
theory of incompressible viscous fluids (the navier–
stokes equation [III.23]), geometric flows (e.g., curve
shortening, and the harmonic-map heat flow prob-
lem), brownian motion [IV.25], liquid filtration in
porous media (the Hele-Shaw problem), index theorems
(e.g., the Gauss–Bonnet–Chern formula), the price of
stock options (the black–scholes formula [VII.9 §2]),
and the topology of three-dimensional manifolds (the
poincaré conjecture [V.28]). But the bright future of
the heat equation could have been predicted at its birth:
after all, another small event that accompanied it was
the creation of fourier analysis [III.27].

The propagation of heat is based on a simple conti-
nuity principle. The change in the quantity of heat u in
a small volume ∆V over a small interval of time ∆t is
approximately

CD
∂u
∂t
∆t∆V,

where C is the heat capacity of the substance and
D is its density; but it is also given by the amount
of heat entering and exiting through ∆V , which is
approximately

K∆t
∫
∂∆V

∂u
∂n
,

where K is the heat conductivity constant and n is the
unit normal to the boundary of ∆V .

Thus, setting the values of all physical constants to 1,
dividing through by ∆t and ∆V , and letting them tend
to zero, we find that the evolution of the amount of heat
(that is, the temperature) in a three-dimensional solid
Ω is governed by the following classical heat equation,
where u(t,x) is the temperature at time t at the point
x = (x,y, z):

∂
∂t
u(t,x)−∆u(t,x) = 0. (1)

Here

∆ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
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is the three-dimensional Laplacian; ∆u is the limit as

the diameter of ∆V tends to zero of the quantity

1
∆V

∫
∂∆V

∂u
∂n
.

To determine u(t,x), equation (1) needs to be com-

plemented by the initial distribution u0(x) = u(0,x)
and boundary conditions on the solid interface ∂Ω. For

example, for a solid unit cube C with surface main-

tained at zero temperature, the heat equation is consid-

ered as a problem with Dirichlet boundary conditions

and, as was proposed by Fourier, u(t,x) can be found

by the method of separation of variables by expanding

u0(x) into its Fourier series

u0(x,y, z) =
∞∑

k,m,l=0

Ckml sin(πkx)

× sin(πmy) sin(πlz),

which leads to the solution

u(t,x,y, z) =
∞∑

k,m,l=0

e−π
2(k2+m2+l2)tCkml sin(πkx)

× sin(πmy) sin(πlz).

This simple example already illuminates a fundamen-

tal property of the heat equation: the tendency of its

solutions to converge to an equilibrium state. In this

case it reflects a physically intuitive fact that the tem-

perature u(t,x) converges to the constant distribution

u∗(x) = C000.PUP: I can confirm
that ‘000’ is
deliberate here. Propagation of heat in an insulated body corresponds

to the choice of the Neumann boundary conditions, in

which the normal derivative of u (normal, that is, to

the boundary ∂Ω) is set to vanish. Its solutions can be

constructed in a similar fashion.

The reason that Fourier analysis is intimately con-

nected with the heat equation is that the trigonometric

functions are eigenfunctions [I.3 §4.3] of the Lapla-

cian. A variety of more general heat equations can be

obtained if one replaces the Laplacian by a more general

linear, self-adjoint [III.52 §3.2], nonnegative hamil-

tonian [III.35] H with a discrete set of eigenvalues

λn and corresponding eigenfunctions ψn. That is, one

considers the heat flow

∂
∂t
u+Hu = 0.

The solution u(t) is given by the formula u(t) =
e−tHu0, where e−tH is the heat semigroup generated

by H, which also takes the more explicit form

u(t,x) =
∞∑
n=0

e−λntCnψn(x).

Here the coefficients Cn are the Fourier coefficients of
u0 relative to H: that is, they are the coefficients that
arise when we write u0 as a sum

∑∞
n=0 Cnψn. (The

existence of such a decomposition follows from the
spectral theorem [III.52 §3.4] for self-adjoint opera- T&T note:

cross-references
for the spectral
theorem all need
to be checked at
the end of the
process as there
are a number of
places that they
could all point.

tors. In a similar way, heat flows can also be gener-
ated by self-adjoint operators with a continuous spec-
trum.) In particular, the asymptotic behavior of u(t,x)
as t → +∞ is completely determined by the spectrum
of H.

Although explicit, representations like this do not
provide very good quantitative descriptions of the
behavior of the heat equation. To obtain such descrip-
tions one has to abandon the idea of constructing solu-
tions explicitly and look instead for principles and
methods that apply to general classes of solutions
while also being sufficiently robust to be useful in the
analysis of more complicated heat equations.

The first methods of this type are called energy iden-
tities. To derive an energy identity, one multiplies the
heat equation by a certain quantity, which may depend
on the given solution, and integrates by parts. The sim-
plest two identities of this type are the conservation of
total heat of an insulated body,

d
dt

∫
Ω
u(t,x)dx = 0,

and the energy identity,

∫
Ω
u2(t,x)dx + 2

∫ t
0

∫
Ω
|∇u(s,x)|2 dx ds

=
∫
Ω
u2(0,x)dx.

The second identity already captures a fundamental
smoothing property of the heat equation: since all three
integrands are nonnegative and the first and third inte-
grals are finite, the average of the mean-square gradient
of u is finite, even if the initial mean-square gradient is
infinite, and it even decreases to zero with t. In fact,
away from the boundary of Ω an arbitrary amount of
smoothing takes place, and not just on average but at
every time t > 0.

The second fundamental principle of the heat equa-
tion is the global maximum principle

max
x∈Ω,0�t�T

u(t,x)

� max
(
u(0,x), max

x∈∂Ω,0�t�T
u(t,x)

)
,

which tells us the familiar fact that the hottest spot in
the body, over all time, is either on its boundary or in
the initial distribution.
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Finally, the diffusive properties of the heat equa-
tion in Rn are captured by the Harnack inequality for
nonnegative solutions u. It tells us that

u(t2,x2)
u(t1,x1)

�
(
t1
t2

)n/2
e−|x2−x1|2/4(t2−t1)

when t2 > t1. This tells us that if the temperature at x1

at time t1 takes a certain value, then the temperature
at x2 at time t2 cannot be too much smaller.

This form of the Harnack inequality features a very
important object in the study of the heat equation,
called the heat kernel:

p(t,x,y) = 1
(4πt)n/2

e−|x−y|
2/4t .

One of its many uses is that it allows one to construct
solutions of the heat equation in the whole of space
(that is, in Rn) from initial data u0, by the formula

u(t,x) =
∫

Rn
p(t,x,y)u0(y)dy.

It also shows that after a time t initial point dis-
turbances become distributed in a ball of radius

√
t

around the point of the original disturbance. This sort
of relation between spatial scales and timescales is the
characteristic parabolic scaling of the heat equation.

As was shown by Einstein, the heat equation is inti-
mately connected with the diffusion process of Brown-
ian motion. In fact, the mathematical description of
Brownian motion is in terms of a random process
Bt with transitional probability densities given by the
heat kernel p(t,x,y). For the n-dimensional Brownian
motion Bxt starting at x, the function

u(t,x) = E[u0(
√

2Bxt )]

computed with the help of expectation value E is pre-
cisely the solution of the heat equation in Rn with initial
data u0(x). This connection is the start of a mutually
beneficial relationship between the theory of the heat
equation and probability. Among the most profitable
applications of this relationship is the Feynman–Kac
formula

u(t,x) = E

[
exp

(
−
∫ t

0
V(
√

2Bxs )ds
)
u0(
√

2Bxt )
]
,

which connects Brownian motion with solutions of the
heat equation

∂
∂t
u(t,x)−∆u(t,x)+ V(x)u(t,x) = 0

with initial data u0(x).
The three fundamental principles of the heat equa-

tion described above are remarkably robust, in the
sense that they, or weaker versions of them, hold even

for very general variants of the classical equation. For
instance, they can be applied to the question of the
continuity of solutions of the heat equation

∂
∂t
u−

n∑
i,j=1

∂
∂xi

(
aij(x)

∂
∂xj

u
)
= 0,

where all that is assumed of the coefficients aij is that
they are bounded and that they satisfy the ellipticity
condition λ|ξ|2 � aijξiξj � Λ|ξ|2. One can even look
at the equations in “nondivergence form”:

∂
∂t
u−

n∑
i,j=1

aij(x)
∂
∂xi

∂
∂xj

u = 0.

Here, the connection between the heat equation and the
corresponding stochastic diffusion process turns out to
be particularly helpful. This analysis has led to beauti-
ful applications in the calculus of variations [III.96]
and in fully nonlinear problems.

The same principles also hold for the heat equations
on riemannian manifolds [I.3 §6.10]. The appropri-
ate analogue of the Laplacian for a manifold M is the
Laplace–Beltrami operator ∆M , and the heat equation
for M is

∂
∂t
u−∆Mu = 0.

If the Riemannian metric is g, then in local coordinates
∆M takes the form

∆M = 1√
detg(x)

n∑
i,j=1

∂
∂xi

(
gij(x)

√
detg(x)

∂
∂xj

)
.

In this case, a version of the Harnack inequality holds
for the heat equation on a manifold that has ricci cur-
vature [III.80] bounded from below. Interest in the
heat equations on manifolds is in part motivated by
nonlinear geometric flows and attempts to understand
their long-term behavior. One of the earliest geometric
flows was the harmonic map flow

∂
∂t
Φ −∆NMΦ = 0,

which describes a deformation of the map Φ(t, ·)
between two compact Riemannian manifoldsM and N .
The operator ∆NM is a nonlinear Laplacian that is con-
structed by projecting ∆M onto the tangent space of N .
This is a gradient flow associated with the energy

E[U] = 1
2

∫
M
|dU|2N ;

it measures the stretching of the map U betweenM and
N . Under the assumption that the sectional curvature
of N is nonpositive, it can be shown that the harmonic
map heat flow is regular and converges, as t → +∞, to
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a harmonic map between M and N , which is a critical

point of the energy functional E[U]. This heat equation

is used to establish the existence of harmonic maps

and to construct a continuous deformation of a given

map Φ(0, ·) to a harmonic map Φ(+∞, ·). The curva-

ture assumption on the target manifold N is responsi-

ble for the crucial monotonicity properties of the har-

monic map heat flow, which come to light through the

use of the energy estimates.

An even more spectacular application of a defor-

mation principle of this kind appears in the three-

dimensional ricci flow [III.80]

∂
∂t
gij = −2Ricij(g),

which is a quasilinear heat evolution of a family of

metrics gij(t) on a given manifold M . In this case the

flow is not necessarily regular; nonetheless, it can be

extended as a flow with “surgeries” in such a way that

the structure of the surgeries and the long-term behav-

ior of the flow can be precisely analyzed. This analy-

sis shows in particular that any three-dimensional sim-

ply connected manifold is diffeomorphic to a three-

dimensional sphere, which gives the proof of the

Poincaré conjecture.

The long-term behavior of the heat equation is also

important in the analysis of reaction–diffusion sys-

tems and associated biological phenomena. This was

suggested already in the work of turing [VI.94] in

his attempt to understand morphogenesis (the for-

mation of inhomogeneous patterns such as animal-

coat patterns from a nearly homogeneous initial state)

by means of exponential instabilities in the reaction–

diffusion equations

∂
∂t
u = µ∆u+ f(u,v), ∂

∂t
v = ν∆v + g(u,v).

These examples emphasize the long-term behavior of

the heat equation, and in particular the tendency of its

solutions to converge to an equilibrium, or alternatively

to develop exponential instabilities. However, it turns

out that the short-term behavior of the heat equation

on a manifoldM is of the utmost importance in connec-

tion with the geometry and topology ofM . This connec-

tion is twofold: first, one seeks to establish a relation-

ship between the spectrum of ∆M and the geometry of

M ; second, one can use an analysis of the short-term

behavior to prove index theorems. The former aspect,

in the context of planar domains, is captured by Marc

Kac’s well-known question, “Can one hear the shape of

a drum?” For manifolds it begins with the Weyl formula
∞∑
i=0

e−tλi = 1
(4πt)n/2

(Vol(M)+O(t))

as t tends to 0. The left-hand side of the identity is the
trace of the heat kernel of ∆M . That is,

PUP: I can confirm
that the repetition
of x in ‘(t, x,x)’ is
OK.

∞∑
i=0

e−tλi = tr e−t∆M =
∫
M
p(t,x,x)dx,

where p(t,x,y) is such that any solution of the heat
equation ∂u/∂t − ∆Mu = 0 with u(0, x) = u0(x) is
given by the expression

u(t,x) =
∫
M
p(t,x,y)u0(y)dy.

The right-hand side of the Weyl identity reflects the
short-term asymptotics of the heat kernel p(t,x,y).

The heat-flow approach to the proof of the index the-
orems can be viewed as a refinement of both sides of
the Weyl identity. The trace on the left-hand side is
replaced by a more complicated “super-trace,” while
the right-hand side involves full asymptotics of the
heat kernel, which requires one to understand subtle
cancelations. The simplest example of this kind is the
Gauss–Bonnet formula

χ(M) = 2π
∫
M
R,

which connects the Euler characteristic of a two-dimen-
sional manifold M and the integral of its scalar curva-
ture. The Euler characteristic χ(M) arises from a linear
combination of traces of the heat flows associated with
the Hodge Laplacian (d + d∗)2 restricted to the space
of exterior differential 0-forms, 1-forms, and 2-forms.
A proof of a general atiyah–singer index theorem
[V.2] involves heat flows associated with an operator
given by the square of a Dirac operator.

III.37 Hilbert Spaces

The theory of vector spaces [I.3 §2.3] and linear
maps [I.3 §4.2] underpins a large part of mathematics.
However, angles cannot be defined using vector space
concepts alone, since linear maps do not in general pre-
serve angles. An inner product space can be thought of
as a vector space with just enough extra structure for
the notion of angle to make sense.

The simplest example of an inner product on a vector
space is the standard scalar product defined on Rn, the
space of all real sequences of length n, as follows. If
v = (v1, . . . , vn) and w = (w1, . . . ,wn) are two such
sequences, then their scalar product, denoted 〈v,w〉,
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is the sum v1w1 + v2w2 + · · · + vnwn. (For example,
the scalar product of (3,2,−1) and (1,4,4) is 3 × 1 +
2× 4+ (−1)× 4 = 7.)

Among the properties that the scalar product has are
the following two.

(i) It is linear in each variable separately. That is,
〈λu + µv,w〉 = λ〈u,w〉 + µ〈v,w〉 for any three
vectors u, v , and w and any two scalars λ and µ,
and similarly 〈u,λv + µw〉 = λ〈u,v〉 + µ〈u,w〉.

(ii) The scalar product 〈v,v〉 of any vector v with
itself is always a nonnegative real number, and is
zero only if v is zero.

In a general vector space, any function 〈v,w〉 of pairs of
vectors v andw that has these two properties is called
an inner product, and a vector space with an inner prod-
uct is called an inner product space. If the vector space
has complex scalars, then instead of (i) one must use
the following modification.

(i′) For any three vectors u, v , and w and any two
scalars λ and µ, 〈λu+µv,w〉 = λ〈u,w〉+µ〈v,w〉,
and 〈u,λv + µw〉 = λ̄〈u,v〉 + µ̄〈u,w〉. That is,
the inner product is conjugate-linear in the second
variable.

The reason this has anything to do with angles is that
in R2 and R3 the scalar product of two vectors v and
w works out as the length of v times the length of w
times the cosine of the angle between them. In particu-
lar, since a vector v makes an angle of zero with itself,
〈v,v〉 is the square of the length of v .

This gives us a natural way to define length and angle
in an inner product space. The length, or norm, of a
vector v , denoted ‖v‖, is

√〈v,v〉. Given two vectors v
and w, the angle between them is defined by the fact
that it lies between 0 and π (or 180◦) and its cosine is
〈v,w〉/‖v‖‖w‖. Once length has been defined, we can
also talk about distance: the distance d(v,w) between
v and w is the length of their difference, or ‖v −w‖.
This definition of distance satisfies the axioms for a
metric space [III.58]. From the notion of angle, we can
say what it is for v and w to be orthogonal to each
other: this simply means that 〈v,w〉 = 0.

The usefulness of inner product spaces goes far
beyond their ability to represent the geometry of two-
and three-dimensional space. Where they really come
into their own is if they are infinite dimensional. Then it
becomes convenient if they satisfy the additional prop-
erty of completeness, which is briefly discussed at the

end of [III.64]. A complete inner product space is called

a Hilbert space.

Two important examples of Hilbert spaces are the

following.

(i) �2 is the natural infinite-dimensional generaliza-

tion of Rn with the standard scalar product. It is

the set of all infinite sequences (a1, a2, a3, . . . )
such that the infinite sum |a1|2 + |a2|2 +
|a3|2 + · · · converges. The inner product of

(a1, a2, a3, . . . ) and (b1, b2, b3, . . . ) is a1b1 +
a2b2+a3b3+· · · (which can be shown to converge

by the cauchy–schwarz inequality [V.22].)

(ii) L2[0,2π] is the set of all functions f defined on

the interval [0,2π] of all real numbers between 0

and 2π , such that the integral
∫ 2π
0 |f(x)|2 dx

makes sense and is finite. The inner product

of two functions f and g is defined to be∫ 2π
0 f(x)g(x)dx. (For technical reasons, this defi-

nition is not quite accurate, as a nonzero function

can have norm zero, but this problem can easily

be dealt with.)

The second of these examples is central to Fourier

analysis. A trigonometric function is a function of the

form cos(mx) or sin(nx). The inner product of any

two different trigonometric functions is zero, so they

are all orthogonal. Even more importantly, the trigono-

metric functions serve as a coordinate system for the

space L2[0,2π], in that every function f in the space

can be represented as an (infinite) linear combination

of trigonometric functions. This allows Hilbert spaces

to model sound waves: if the function f represents a

sound wave, then the trigonometric functions are the

pure tones that are its constituent parts.

These properties of trigonometric functions illus- PUP note: this
paragraph added
since proofreading
proof was sent.

trate a very important general phenomenon in the

theory of Hilbert spaces: that every Hilbert space has

an orthonormal basis. This means a set of vectors ei
with the following three properties:

• ‖ei‖ = 1 for every i;
• 〈ei, ej〉 = 0 whenever i �= j; and

• every vector v in the space can be expressed as a

convergent sum of the form
∑
i λiei.

The trigonometric functions do not quite form an

orthonormal basis of L2[0,2π] but suitable multiples

of them do. There are many contexts besides Fourier

analysis where one can obtain useful information about
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a vector by decomposing it in terms of a given orthonor-
mal basis, and many general facts that can be deduced
from the existence of such bases.

Hilbert spaces (with complex scalars) are also cen-
tral to quantum mechanics. The vectors of a Hilbert
space can be used to represent possible states of a
quantum mechanical system, and observable features
of that system correspond to certain linear maps.

For this and other reasons, the study of linear oper-
ators [III.52] on Hilbert spaces is a major branch of
mathematics: see operator algebras [IV.19]

III.38 Holomorphic Functions

A function f defined on some region D of the complex
plane is called holomorphic if it is differentiable. This
has the meaning one would expect: for every z in D the
quantity (f (z + w) − f(z))/w should tend to a limit
asw tends to 0. This limit is denoted by f ′(z), and the
function f ′ is called the derivative of f .

However, this bare definition hides the fact that com-
plex differentiability is very different from real differ-
entiability, roughly speaking because the linear approx-
imations it gives are all of a special kind, namely
“multiply by the complex number λ.” This has the effectPUP: I can confirm

that this sentence
is correct as it
stands.

of making complex differentiability a far stronger prop-
erty than the differentiability of functions defined on
R or R2. For example, if f is holomorphic, then f ′ is
automatically holomorphic as well: the analogue of this
statement for real functions is very definitely false.

Holomorphic functions are discussed in more detail
in some fundamental mathematical definitions
[I.3 §5.6].

III.39 Homology and Cohomology

If X is a topological space [III.92], then one can asso-
ciate with it a sequence of groups Hn(X,R), where R is
a commutative ring [III.83 §1] such as Z or C. These
groups, the homology groups of X (with coefficients
in R), are a powerful invariant: powerful because they
contain a great deal of information about X but are
nevertheless easy to compute, at least compared with
some other invariants. The closely related cohomology
groups Hn(X,R) are more useful still because they can
be made into a ring: to oversimplify slightly, an ele-
ment of the cohomology group Hn(X) is an equiva-
lence class [I.2 §2.3] [Y] of a subspace Y of codimen-
sion n. (Of course, for this to make true sense X should
be a fairly nice space such as a manifold [I.3 §6.9].)

Then, if [Y] and [Z] belong toHn(X,R) andHm(X,R),
respectively, their product is [Y ∩Z]. Since Y ∩Z “typ-
ically” has codimension n +m, the equivalence class
[Y ∩Z] belongs to Hn+m(X,R). Homology and cohom-
ology groups are described in more detail in algebraic
topology [IV.10].

The concepts of homology and cohomology have
become far more general than the above discussion
suggests, and are no longer tied to topological spaces:
for instance, the notion of group cohomology is of great
importance in algebra. Even within topology, there are
many different homology and cohomology theories. In
1945, Eilenberg and Steenrod devised a small number
of axioms that greatly clarified the area: a homology
theory is any association of groups with topological
spaces that satisfies these axioms, and the fundamen-
tal properties of homology theories follow from the
axioms.

III.40 Homotopy Groups

If X is a topological space [III.92], then a loop in X is
a path that begins and ends at the same point; or, more
formally, a continuous function f : [0,1]→ X such that
f(0) = f(1). The point where the path begins and ends
is called the base point. If two loops have the same base
point, they are called homotopic if one can be continu-
ously deformed to the other, with all the intermediate
paths living in X and beginning and ending at the given
base point. For example, if X is the plane R2, then any
two paths that begin and end at (0,0) are homotopic,
whereas if X is the plane with the origin removed, then
whether or not two paths (that begin and end at some
other point) are homotopic depends on whether or not
they go around the origin the same number of times.

Homotopy is an equivalence relation [I.2 §2.3],
and the equivalence classes of paths with base point x
form the fundamental group of X, relative to x, which
is denoted byπ1(X,x). IfX is connected, then this does
not depend on x and we can write π1(X) instead. The
group operation is “concatenation”: given two paths
that begin and end at x, their “product” is the com-
bined path that goes along one and then the other, and
the product of equivalence classes is then defined to
be the equivalence class of the product. This group is a
very important invariant (see for instance geometric
and combinatorial group theory [IV.11 §7]); it is
the first in a sequence of higher-dimensional homotopy
groups, which are described in algebraic topology
[IV.10 §§2, 3].
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III.41 The Hyperbolic Plane

The parallel postulate of euclid [VI.2] states that for
any straight line L in the plane and any point x not on L
there is exactly one straight lineM that passes through
x and does not meet L. For over 2000 years a central
problem in mathematics was to decide whether this
statement could be deduced from the other axioms of
Euclidean geometry. Eventually, gauss [VI.26], bolyai
[VI.34], and lobachevskii [VI.31] developed hyperbolic
geometry, in which all the other axioms hold, but the
parallel postulate is false because there can be more
than one line through x that does not meet L. The
history of this discovery is explained in geometry
[II.2].

The hyperbolic plane can be defined in several ways.
Two of the most popular are called the half-plane
model and the disk model, which are riemannian met-
rics [I.3 §6.10] defined on the upper half-plane and
the unit disc, respectively. Almost all the familiar con-
cepts of Euclidean geometry can be defined for hyper-
bolic geometry, but their properties are different. For
example, the angles of a hyperbolic triangle always
add up to less than π . More details about the hyper-
bolic plane and how it is constructed can be found
in some fundamental mathematical definitions
[I.3 §§6.6, 6.10].

III.42 The Ideal Class Group

the fundamental theorem of arithmetic [V.16]
asserts that every positive integer can be written in
exactly one way (apart from reordering) as a product of
primes. Analogous theorems are true in other contexts
as well: for example, there is a unique factorization the-
orem for polynomials, and another one for Gaussian
integers, that is, numbers of the form a + ib where a
and b are integers.

However, for most number fields [III.65], the asso-
ciated “ring of integers” does not have the unique-
factorization property. For example, in the ring
[III.83 §1] of numbers of the form a + b√−5 with a
and b integers, one can factorize 6 either as 2 × 3 or
as (1+√−5)(1−√−5).

The ideal class group is a way of measuring how badly
unique factorization fails. Given any ring of integers of
a number field, one can define a multiplicative structure
on its set of ideals [III.83 §2], for which unique fac-
torization holds. The elements of the ring itself corre-

spond to so-called “principal ideals,” so if every ideal is

principal, then unique factorization holds for the ring.

If there are nonprincipal ideals, then one can define

a natural equivalence relation [I.2 §2.3] on them

in such a way that the equivalence classes, which are

called ideal classes, form a group [I.3 §2.1]. This group

is the ideal class group. All principal ideals belong to

the class that forms the identity of this group, so the

larger and more complex the ideal group is, the further

the ring is from having the unique-factorization prop-

erty. For more details, see algebraic numbers [IV.3],

and in particular section 7.

III.43 Irrational and Transcendental
Numbers
Ben Green

An irrational number is one that cannot be written as

a/b with both a and b integers. A great many naturally

occurring numbers, such as
√

2, e, and π , are irrational.

The following proof that
√

2 is irrational is one of the

best-known arguments in all of mathematics. Suppose

that
√

2 = a/b; since common factors can be canceled,

we may assume that a and b have no common factor;

we have a2 = 2b2, which means that a must be even;

write a = 2c; but then 4c2 = 2b2, which implies that

2c2 = b2, and hence b must be even too; this, how-

ever, is contrary to our assumption that a and b were

coprime.

Several famous conjectures in mathematics ask

whether certain specific numbers are rational or not.

For example, π + e and πe are not known to be

irrational, and neither is Euler’s constant:

γ = lim
n→∞

(
1+ 1

2
+ · · · + 1

n

)
− logn ≈ 0.577215 . . . .

It is known that ζ(3) = 1+2−3+3−3+· · · is irrational.

Almost certainly, ζ(5), ζ(7), ζ(9), . . . are all irrational

as well. However, although it has been shown that

infinitely many of these numbers are irrational, no

specific one is known to be.

A classic proof is that of the irrationality of e. If

e =
∞∑
j=0

1
j!

were equal to p/q, then we would have

p(q − 1)! =
∞∑
j=0

q!
j!
.
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The left-hand side and the terms of the sum with j � q
are all integers. Therefore the quantity∑

j�q+1

q!
j!
= 1
q + 1

+ 1
(q + 1)(q + 2)

+ · · ·

is also an integer. But it is not hard to show that this
quantity lies strictly between 0 and 1, a contradiction.

The principle used here, that a nonzero integer must
have absolute value at least one, is surprisingly pow-
erful in the theory of irrational and transcendental
numbers.

Some numbers are more irrational than others. In a
sense, the most irrational number is τ = 1

2 (1+
√

5), the
golden ratio, because the best rational approximations
to it, which are ratios of consecutive Fibonacci num-
bers, approach it rather slowly. There is also a very
elegant proof that τ is irrational. This is based on the
observation that the τ × 1 rectangle R may be divided
into a square of side 1 and a 1/τ × 1 rectangle. If τ
were rational, then we would be able to create a rect-
angle with integer sides that was similar to R. From
this we could remove a square, and we would be left
with a smaller rectangle with integer sides that would
still be similar to R. We could continue this process ad
infinitum, which is clearly impossible.

A transcendental number is one which is not alge-
braic, that is to say, is not the root of a polynomial
equation with integer coefficients. Thus

√
2 is not tran-

scendental, since it solves x2 − 2 = 0, and neither is√
7+√17.
Are there, in fact, any transcendental numbers? ThisPUP note: this

paragraph and the
following four
have been
rewritten and
rearranged.

question was answered by liouville [VI.39] in 1844,
who showed that various numbers were transcenden-
tal, of which

κ =
∑
n�1

10−n!

= 0.1100010000000000000000010 . . .

is a well-known example. This is not algebraic, because
it can be approximated more accurately by ratio-
nals than any algebraic number can. For example, the
rational approximation 110 001/1 000 000 is very close
indeed to κ, but its denominator is not particularly
large.

Liouville showed that if α is a root of a polynomial
of degree n, then ∣∣∣∣α− aq

∣∣∣∣ > C
qn

for all integers a and q and for some constant C de-
pending on α. In words, α cannot be too well approxi-
mated by rationals. Roth later proved that the exponent

n here can actually be replaced by 2+ ε for any ε > 0.
(For more on these topics, see liouville’s theorem
and roth’s theorem [V.25].)

A completely different approach to the existence of
transcendental numbers was discovered by cantor
[VI.54] thirty years later. He proved that the set of
algebraic numbers is countable [III.11], which means,
roughly speaking, that they may be listed in order. More
precisely, there is a surjective map from N, the set of
natural numbers, to the set of algebraic numbers.

By contrast, the real numbers R are not countable.
Cantor’s famous proof of this uses a diagonalization
argument to show that any listing of all the real num-
bers must be incomplete.

There must, therefore, be real numbers that are not
algebraic.

It is generally rather difficult to prove that a spe-
cific number is transcendental. For instance, it is by
no means the case that all transcendental numbers are
very well approximated by rationals; this merely pro-
vides a useful sufficient condition. There are other ways
to establish that numbers are transcendental. Both e
and π are known to be transcendental, and it is known
that |e − a/b| > C(ε)/b2+ε for all ε > 0, so e is not
all that well approximated by rationals. Since ζ(2m) is
always a rational multiple of π2m, it follows that the
numbers ζ(2), ζ(4), . . . are all transcendental.

The modern theory of transcendental numbers con-
tains a wealth of beautiful results. An early one is
the Gel’fond–Schneider theorem, which says that αβ PUP: (odd)

apostrophe is OK
here.is transcendental if α ≠ 0,1 is algebraic, and if β is

algebraic but not rational. In particular,
√

2
√

2 is tran-
scendental. There is also the six-exponentials theorem,
which states that if x1, x2 are two linearly independent
complex numbers, and if y1, y2, y3 are three linearly
independent complex numbers, then at least one of the
six numbers

ex1y1 , ex1y2 , ex1y3 , ex2y1 , ex2y2 , ex2,y3

is transcendental. Related to this is the (as yet unsolved)
four-exponentials conjecture: if x1 and x2 are two lin-
early independent complex numbers, and if y1 and y2

are linearly independent, then at least one of the four
exponentials

ex1y1 , ex1y2 , ex2y1 , ex2y2

is transcendental.

III.44 The Ising Model
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The Ising model is one of the fundamental models of
statistical physics. It was originally designed as a model
for the behavior of a ferromagnetic material when it is
heated up, but it has since been used to model many
other phenomena.

The following is a special case of the model. Let Gn
be the set of all pairs of integers with absolute value
at most n. A configuration is a way of assigning to
each point x in Gn a number σx , which equals 1 or
−1. The points represent atoms and σ(x) represents
whether x has “spin up” or “spin down.” With each
configuration σ we associate an “energy” E(σ), which
equals −∑σxσy , where the sum is taken over all pairs
of neighboring points x and y . Thus, the energy is high
if many points have different signs from some of their
neighbors, and low if Gn is divided into large clusters
of points with the same sign.

Each configuration is assigned a probability, which
is proportional to e−E(σ)/T . Here, T is a positive real
number that represents temperature. The probability
of a given configuration is therefore higher when it has
small energy, so there is a tendency for a typical config-
uration to have clusters of points with the same sign.
However, as the temperature T increases, this clus-
tering effect becomes smaller since the probabilities
become more equal.

The two-dimensional Ising model with zero potential
is the limit of this model as n tends to infinity. For a
more detailed discussion of the general model and of
the phase transition associated with it, see probabilis-
tic models of critical phenomena [IV.26 §5].

III.45 Jordan Normal Form

Suppose that you are presented with an n×n real or
complex matrix [I.3 §4.2] A and would like to under-
stand it. You might ask how it behaves as a linear map
[I.3 §4.2] on Rn or Cn, or you might wish to know what
the powers of A are. In general, answering these ques-
tions is not particularly easy, but for some matrices it
is very easy. For example, if A is a diagonal matrix (that
is, one whose nonzero entries all lie on the diagonal),
then both questions can be answered immediately: if
x is a vector in Rn or Cn, then Ax will be the vector
obtained by multiplying each entry of x by the corre-
sponding diagonal element of A, and to compute Am

you just raise each diagonal entry to the power m.
So, given a linear map T (from Rn to Rn or from Cn

to Cn), it is very nice if we can find a basis with respect
to which T has a diagonal matrix; if this can be done,

then we feel that we “understand” the linear map. Say-

ing that such a basis exists is the same as saying there

is a basis consisting of eigenvectors [I.3 §4.3]: a linear

map is called diagonalizable if it has such a basis. Of

course, we may apply the same terminology to a matrix

(since a matrix A determines a linear map on Rn or Cn,

by mappingx toAx). So a matrix is also called diagonal-

izable if it has a basis of eigenvectors, or equivalently

if there is an invertible matrix P such that P−1AP is

diagonal.

Is every matrix diagonalizable? Over the reals, the

answer is no for uninteresting reasons, since there need

not even be any eigenvectors: for example, a rotation in

the plane clearly has no eigenvectors. So let us restrict

our attention to matrices and linear maps over the

complex numbers.

If we have a matrix A, then its characteristic polyno-

mial, namely det(A − tI), certainly has a root, by the

fundamental theorem of algebra [V.15]. If λ is such

a root, then standard facts from linear algebra tell us

that A − λI is singular, and therefore that there is a

vector x such that (A − λI)x = 0, or equivalently that

Ax = λx. So we do have at least one eigenvector. Unfor-

tunately, however, there need not be enough eigenvec-

tors to form a basis. For example, consider the linear

map T that sends (1,0) to (0,1) and (0,1) to (0,0). The

matrix of this map (with respect to the obvious basis)

is ( 0 0
1 0 ). This matrix is not diagonalizable. One way of

seeing why not is the following. The characteristic poly-

nomial turns out to be t2, of which the only root is 0.

An easy computation reveals that if Ax = 0 then x has

to be a multiple of (0,1), so we cannot find two lin-

early independent eigenvectors. A rather more elegant

method of proof is to observe that T 2 is the zero matrix

(since it maps each of (1,0) and (0,1) to (0,0)), so that

if T were diagonalizable, then its diagonal matrix would

have to be zero (since any nonzero diagonal matrix has

a nonzero square), and therefore T would have to be

the zero matrix, which it is not.

The same argument shows that any matrix A such

that Ak = 0 for some k (such matrices are called

nilpotent) must fail to be diagonalizable, unless A is

itself the zero matrix. This applies, for example, to any

matrix that has all of its nonzero entries below the main

diagonal.

What, then, can we say about our nondiagonalizable

matrix T above? In a sense, one feels that (1,0) is

“nearly” an eigenvector, since we do have T 2(1,0) =
(0,0). So what happens if we extend our point of view
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by allowing such vectors? One would say that a vec-
tor x is a generalized eigenvector of T , with eigen-
value λ, if some power of T − λ maps x to zero. For
instance, in our example above the vector (1,0) is a
generalized eigenvector with eigenvalue 0. And, just as
we have an “eigenspace” associated with each eigen-
value λ (defined to be the space of all eigenvectors with
eigenvalue λ), we also have a “generalized eigenspace,”
which consists of all generalized eigenvectors with
eigenvalue λ.

Diagonalizing a matrix corresponds exactly to de-
composing the vector space (Cn) into eigenspaces. So
it is natural to hope that one could decompose the vec-
tor space into generalized eigenspaces for any matrix.
And this turns out to be true. The way of breaking up
the space is called Jordan normal form, which we shall
now describe in more detail.

Let us pause for a moment and ask: what is the very
simplest situation in which we get a generalized eigen-
vector? It would surely be the obvious generalization
of the above example to n dimensions. In other words,
we have a linear map T that sends e1 to e2, e2 to e3, and
so on, until en−1 is sent to en, with en itself mapped to
zero. This corresponds to the matrix⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Although this matrix is not diagonalizable, its behavior
is at least very easy to understand.

The Jordan normal form of a matrix will be a diagonal
sum of matrices that are easily understood in the way
that this one is. Of course, we have to consider eigen-
values other than zero: accordingly, we define a block
to be any matrix of the form⎛

⎜⎜⎜⎜⎜⎜⎜⎝

λ 0 0 · · · 0 0

1 λ 0 · · · 0 0

0 1 λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that this matrix A, with λI subtracted, is precisely
the matrix above, so that (A−λI)n is indeed zero. Thus,
a block represents a linear map that is indeed easy to
understand, and all its vectors are generalized eigen-
vectors with the same eigenvalue. The Jordan normal
form theorem tells us that every matrix can be decom-
posed into such blocks: that is, a matrix is in Jordan

normal form if it is of the form⎛
⎜⎜⎜⎜⎜⎝

B1 0 · · · 0

0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bk

⎞
⎟⎟⎟⎟⎟⎠ .

Here, the Bi are blocks, which can have different sizes,

and the 0s represent submatrices of the matrix with

sizes depending on the block sizes. Note that a block

of size 1 simply consists of an eigenvector.

Once a matrix A is put into Jordan normal form, we

have broken up the space into subspaces on which it

is easy to understand the action of A. For example,

suppose that A is the matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 0 0 0 0 0 0

1 4 0 0 0 0 0

0 1 4 0 0 0 0

0 0 0 4 0 0 0

0 0 0 1 4 0 0

0 0 0 0 0 2 0

0 0 0 0 0 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is made out of three blocks, of sizes 3, 2, and

2. Then we can instantly read off a great deal of infor-

mation about A. For instance, consider the eigenvalue

4. Its algebraic multiplicity (its multiplicity as a root of

the characteristic polynomial) is 5, since it is the sum

of the sizes of all the blocks with eigenvalue 4, while its

geometric multiplicity (the dimension of its eigenspace)

is 2, since it is the number of such blocks (because

in each block we only have one actual eigenvector).

And even the minimum polynomial of the matrix (the

smallest-degree polynomial P(t) such that P(A) = 0) is

easy to write down. The minimum polynomial of each

block can be written down instantly: if the block has

size k and generalized eigenvalue λ, then it is (t − λ)k.
The minimum polynomial of the whole matrix is then

the “lowest common multiple” of the polynomials for

the individual blocks. For the matrix above, we get

(t − 4)3, (t − 4)2, and (t − 2)2 for the three blocks,

so the minimum polynomial of the whole matrix is

(t − 4)3(t − 2)2.

There are some generalizations of Jordan normal

form, away from the context of linear maps acting on

vector spaces. For example, there is an analogue of the

theorem that applies to Abelian groups, which turns

out to be the statement that every finite Abelian group

can be decomposed as a direct product of cyclic groups.
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III.46 Knot Polynomials
W. B. R. Lickorish

1 Knots and Links

A knot is a curve in three-dimensional space that is
closed (in other words, it stops where it began) and
never meets itself along its way. A link is several such
curves, all disjoint from one another, which are called
the components of the link. Some simple examples of
knots and links are the following:

unknot trefoil figure eight

unlink Hopf link Whitehead link

Two knots are equivalent or “the same” if one can
be moved continuously, never breaking the “string,” to
become the other. Isotopy is the technical term for such
movement. For example, the following knots are the
same:

The first problem in knot theory is how to decide
if two knots are the same. Two knots may appear to
be very different but how does one prove that they
are different? In classical geometry two triangles are
the same (or congruent ) if one can be moved rigidly
on to the other. Numbers that measure side-lengths
and angles are assigned to each triangle to help deter-
mine if this is the case. Similarly, mathematical entities
called invariants can be associated with knots and links
in such a way that if two links have different invari-
ants, then they cannot be the same link. Many invari-
ants relate to the geometry or topology of the com-
plement of a link in three-dimensional space. The fun-
damental group [IV.10 §2] of this complement is an
excellent invariant, but algebraic techniques are then
needed to distinguish the groups. The polynomial of
J. W. Alexander (published in 1926) is a link invari-
ant derived from distinguishing such groups. Although
rooted in algebraic topology [IV.10], the Alexander

polynomial has long been known to satisfy a skein rela-
tion (see below). The HOMFLY polynomial of 1984 gen-
eralizes the Alexander polynomial and can be based on
the simple combinatorics of skein theory alone.

1.1 The HOMFLY Polynomial

Suppose that links are oriented so that directions, indi-
cated by arrows, are given to all components. To each
oriented link L is assigned its HOMFLY polynomial
P(L), a polynomial with integer coefficients in two vari-
ables v and z (allowing both positive and negative
powers of v and z). The polynomials are such that

P(unknot) = 1 (1)

and there is a linear skein relation

v−1P(L+)− vP(L−) = zP(L0). (2)

This means that whenever three links have identical
diagrams except near one crossing, where they are as
follows

L+ L− L0 ,

then this equation holds.
This turns out to be good notation, although one

could in principle use x and y in place of v−1 and −v .
Although Alexander’s polynomial satisfied a particular
instance of (2), it took almost sixty years and the discov-
ery of the Jones polynomial for it to be realized that this
general linear relation can be used. Note that there are
two possible types of crossing in a diagram of an ori-
ented link. A crossing is positive if, when approaching
the crossing along the under-passing arc in the direc-
tion of the arrow, the other directed arc is seen to cross
over from left to right. If the over-passing arc crosses
from right to left, the crossing is negative. When inter-
preting the skein relation at a crossing of a link L, it is
vital that L be regarded as L+ if the crossing is positive
and as L− if it is negative.

The theorem that underpins this theory, which is
not at all obvious, is that it is possible to assign such
polynomials to oriented links in a coherent fashion,
uniquely, independent of any choice of a link’s diagram.
A proof of this is given in Lickorish (1997).

1.2 HOMFLY Calculations

In a diagram of a knot it is always possible to change
some of the crossings, from over to under, to achieve a
diagram of the unknot. Links can be undone similarly.
Using this, the polynomial of any link can be calculated
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from the above equations, though the length of the cal-
culation is exponential in the number of crossings. The
following is a calculation of P(trefoil). Firstly, consider
the following instance of the skein relation:

v−1P( )− vP( ) = zP( ).

Substituting the polynomial 1 for the polynomials of
the two unknots, this shows that the HOMFLY polyno-
mial of the two-component unlink is z−1(v−1 − v). A
second usage of the skein relation is

v−1P
( )

− vP
( )

= zP
( )

.

Substituting the previous answer for the unlink shows
that the HOMFLY polynomial of the Hopf link is
z−1(v−3 − v−1)− zv−1. Finally, consider the following
instance of the skein relation:

v−1P
( )

− vP
( )

= zP
( )

.

Substitution of the polynomial for the Hopf link already
calculated and, of course, the value 1 for the unknot
shows that

P(trefoil) = −v−4 + 2v−2 + z2v−2.

A similar calculation shows that

P(figure eight) = v2 − 1+ v−2 − z2.

The trefoil and the figure eight thus have different poly-
nomials; this proves they are different knots. Experi-
mentally, if a trefoil is actually made from a necklace
(using the clasp to join the ends together) it is indeed
found to be impossible to move it to the configuration
of a figure eight knot. Note that the polynomial of a
knot is not dependent on the choice of its orientation
(but this is not so for links).

Reflecting a knot in a mirror is equivalent to chang-
ing every crossing in a diagram of the knot from an
over-crossing to an under-crossing and vice versa (con-
sider the plane of the diagram to be the mirror). The
polynomial of the reflection is always the same as that
of the original knot except that every occurrence of v
must be replaced by one of −v−1. Thus the trefoil and
its reflection,

,

have polynomials

−v−4 + 2v−2 + z2v−2 and − v4 + 2v2 + z2v2.

As these polynomials are not the same, the trefoil and
its reflection are different knots.

2 Other Polynomial Invariants

The HOMFLY polynomial was inspired by the discov-

ery in 1984 of the polynomial of V. F. R. Jones. For

an oriented link L, the Jones polynomial V(L) has just

one variable t (together with t−1). It is obtained from

P(L) by substituting v = t and z = t1/2 − t−1/2, where

t1/2 is just a formal square root of t. The Alexan-

der polynomial is obtained by the substitution v = 1,

z = t−1/2 − t1/2. This latter polynomial is well under-

stood in terms of topology, by way of the fundamental

group, covering spaces, and homology theory, and can

be calculated by various methods involving determi-

nants. It was J. H. Conway who, in discussing in 1969 his

normalized version of the Alexander polynomial (the

polynomial in one variable z obtained by substituting

v = 1 into the HOMFLY polynomial), first developed

the theory of skein relations.

There is one more polynomial (due to L. H. Kauff-

man) based on a linear skein relation. The relation

involves four links with unoriented diagrams differing

as follows:

.

There are examples of pairs of knots that the Kauffman

polynomial but not the HOMFLY polynomial can distin-

guish and vice versa; some pairs are not distinguished

by any of these polynomials.

2.1 Application to Alternating Knots

For the Jones polynomial there is a particularly simple

formulation, by means of “Kauffman’s bracket polyno-

mial,” that leads to an easy proof that the Jones (but not

the HOMFLY) polynomial is coherently defined. This

approach has been used to give the first rigorous con-

firmation of P. G. Tait’s (1898) highly believable pro-

posal that a reduced alternating diagram of a knot has

the minimal number of crossings for any diagram of

that knot. Here “alternating” means that in going along

the knot the crossings go: … over, under, over, under,

over, … . Not every knot has such a diagram. “Reduced”

means that there are, adjacent to each crossing, four

distinct regions of the diagram’s planar complement.

Thus, for example, any nontrivial reduced alternating

diagram is not a diagram of the unknot. Also, the fig-

ure eight knot certainly has no diagram with only three

crossings.
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2.2 Physics

Unlike that of Alexander, the HOMFLY polynomial has

no known interpretation in terms of classical algebraic

topology. It can, however, be reformulated as a col-

lection of state sums, summing over certain labelings

of a knot diagram. This recalls ideas from statistical

mechanics; an elementary account is given in Kauffman

(1991). An amplification of the whole HOMFLY poly-

nomial theory leads into a version of conformal field

theory called topological quantum field theory.

Further Reading

Kauffman, L. H. 1991. Knots and Physics. Singapore: World
Scientific.

Lickorish, W. B. R. 1997. An Introduction to Knot Theory.
Graduate Texts in Mathematics, volume 175. New York:
Springer.

Tait, P. G. 1898. On knots. In Scientific Papers, volume I,
pp. 273–347. Cambridge: Cambridge University Press.

III.47 K-Theory

K-theory concerns one of the most important invari-

ants of a topological space [III.92]X, a pair of groups

called the K-groups of X. To form the group K0(X) one

takes all (equivalence classes of) vector bundles on X,

and uses the direct sum as the group operation. This

leads not to a group but to a semigroup. However, from

the semigroup one can easily construct a group in the

same way that one constructs Z out of N: by taking

equivalence classes of expressions of the form a−b. If i
is a positive integer, then there is a natural way of defin-

ing a group K−i(X): it is closely related to the group

K0(Si × X). The very important Bott periodicity theo-

rem says that Ki(X) depends only on the parity of i, so

there are in fact just two distinct K-groups, K0(X) and

K1(X). See algebraic topology [IV.10 §6] for more

details.

If X is a topological space such as a compact mani-

fold, then one can associate with it the C∗-algebra C(X)
of all continuous functions from X to C. It turns out to

be possible to define the K-groups in terms of this alge-

bra in such a way that it applies to algebras that are not

of the form C(X). In particular, it applies to algebras

where multiplication is not commutative. For instance,

K-theory provides important invariants of C∗-algebras.

See operator algebras [IV.19 §4.4].

Lagrange Multipliers
See optimization and lagrange

multipliers [III.66]

III.48 The Leech Lattice

To define a lattice in Rd one chooses d linearly inde-
pendent vectors v1, . . . , vd and takes all combinations
of the form a1v1 + · · · + advd, where a1, . . . , ad are
integers. For example, to define the hexagonal lattice
in R2 one can take v1 and v2 to be (1,0) and ( 1

2 ,
√

3
2 ),

respectively. Notice that v2 is v1 rotated by π/3, and
also that v2 − v1 is v2 rotated by π/3. Continuing this
process, one can generate all the points in a regular
hexagon about the origin.

The hexagonal lattice is unusual, among lattices in
R2, in that it has a rotational symmetry of order 6. This
makes it the “best” lattice in many ways. (For exam-
ple, bees arrange their hives in hexagonal lattices, soap
bubbles of similar sizes naturally organize themselves
into hexagonal lattices, and so on.) The Leech lattice
plays a similar role in twenty-four dimensions: it is the
“most symmetrical” of all twenty-four-dimensional lat-
tices, with a degree of symmetry that is quite extraor-
dinary. It is discussed in more detail in the general
goals of mathematical research [I.4 §4].

III.49 L-Functions
Kevin Buzzard

1 How Can We “Package”
a Sequence of Numbers?

Suppose we are given a sequence of numbers such as

π,
√

2, 6.023× 1023, . . . .

How can we package up this sequence into one object
that remembers everything about the sequence, and
that might even give us new insights into the sequence?
One standard technique is to use a generating func-
tion [III.32], but here is another way, which has proved
very fruitful in number theory and elsewhere. Given a
sequence a1, a2, a3, . . . , we define the Dirichlet series

L(s) = a1

1s
+ a2

2s
+ a3

3s
+ · · ·

=
∑
n�1

an/ns.

Here, s could be a positive integer, or a real number, for
example. As long as our sequence a1, a2, . . . does not
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grow too quickly (which we shall henceforth assume),
the series L(s) will converge for all sufficiently large
values of s. Moreover, it may be a very “rich” object,
even if the initial sequence is simple. For example, if
an = 1 for all n, then the resulting function L(s) is
the famous riemann zeta function [IV.4 §3] ζ(s) =
1−s +2−s +3−s +· · · , which converges when s > 1 and
was shown by Euler to satisfy the following identities,
among others (there is one for each even number):

ζ(2) = π2/6, ζ(4) = π4/90,

ζ(12) = 691π12

638 512 875
.

Thus, even a sequence as simple as 1,1,1, . . . leads us
to some natural questions that cry out to be answered.

The zeta function is the prototypical example of an
L-function. However, not every Dirichlet series deserves
to be called an L-function. We will mention below some
“good” properties that the zeta function has: roughly
speaking, a Dirichlet series is considered to be an
L-function if it has these good properties. This is not
a formal definition of course, but in fact there is no
formal definition of “an L-function.” (People have tried
to give one, but there is no real consensus about what
the right definition should be.) What happens in prac-
tice is that a mathematician finds a way of associating
a sequence a1, a2, . . . of numbers with a mathemati-
cal object X, and if evidence then emerges to suggest
that the associated Dirichlet series L(s) shares the good
properties of the zeta function, then L(s) will be called
the L-function of X.

2 What Good Properties Might L(s) Have?

One can check that the zeta function can also be
expressed as an infinite product over primes ζ(s) =∏
p(1 − p−s)−1. The product is usually referred to as

an Euler product, and if a Dirichlet series is to deserve
the title of L-function, then it should have some kind
of analogous product expansion. The existence of such
an expansion is closely related to, but a little stronger
than, the property that the sequence a1, a2, . . . should
be multiplicative, which means that amn = aman
whenever m and n are coprime.

To go further we must expand our horizons. It is not
hard to show that our definition of L(s) makes sense
even when s is a complex number, as long as it has a
sufficiently large real part. Moreover, it defines a holo-
morphic function [I.3 §5.6] in the region of the com-
plex plane where the sum converges. For example, the
Dirichlet series defining the zeta function converges for

every s such that Re(s) > 1. A standard fact about the
zeta function is that it has a unique extension to a holo-
morphic function of s for any complex number s ≠ 1.
This phenomenon is known as meromorphic continua-
tion of the zeta function. It is similar to the fact that the
infinite sum 1+x+x2+x3+· · · converges only when
|x| < 1 but, when rewritten as 1/(1−x), has a natural
interpretation for any complex number x other than 1.
A meromorphic continuation is another of the proper-
ties that one would expect of a general L-function. It is
important to stress, however, that extending a Dirich-
let series to a function on the whole complex plane is
not a “purely formal” technique: for a random sequence
a1, a2, . . . there is no reason at all for the associated
Dirichlet series L(s) to have a natural extension beyond
the region where the series converges. The existence
of a meromorphic continuation is somehow a rigorous
way of asserting the existence of subtle symmetries in
the series.

While on the subject of meromorphic continuation,
we should briefly mention the riemann hypothesis
[V.33], a conjecture which states that, once one has
extended ζ(s) to a function on the whole complex
plane, the complex numbers s such that 0 < Re(s) < 1
and ζ(s) = 0 all have real part equal to 1

2 . There are
analogous Riemann hypotheses for many L-functions,
almost all of which are open problems.

The final property we shall emphasize is that there is
a relatively simple formula relating ζ(s) and ζ(1− s).
This relation is called the functional equation of the
zeta function, and any Dirichlet series worthy of the
name L-function should also have an analogous prop-
erty. (In general one looks for a relation between L(s)
and L̄(k − s), where k is some real number and L̄(s)
is the Dirichlet series associated with the series of
complex conjugates a1, a2, . . . .)

There are many examples of Dirichlet series arising
in number theory that do have, or are at least conjec-
tured to have, these three key properties: an Euler prod-
uct, meromorphic continuation, and a functional equa-
tion. These are the Dirichlet series that have come to be
known as L-functions. For example, if A and B are inte-
gers such that the three roots of the cubic polynomial
x3 +Ax + B are distinct, then the equation

y2 = x3 +Ax + B (1)

defines an elliptic curve [III.21], and there is a
natural sequence a1, a2, . . . associated with it (an is
related to the number of solutions of (1) modulo n,
at least when n is prime—see arithmetic geometry
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[IV.6 §5.1] for more details). However, it was an open
problem for years to establish the existence of a mero-
morphic continuation of the associated Dirichlet series
L(s) to the complex plane: it is now known to exist (and
indeed to have no poles) as a consequence of the work
of Wiles, Taylor, and others that grew out of the proof
of fermat’s last theorem [V.12].

3 What Is the Point of L-Functions?

One of the first uses of L-functions was by dirich-
let [VI.36] himself, who used them to prove that there
are infinitely many primes in a general arithmetic pro-
gression (see analytic number theory [IV.4 §4]). In
fact, although the Riemann hypothesis is still an open
problem, even partial results about the locations of
the zeros of the Riemann zeta function have deep
consequences in the theory of distribution of prime
numbers.

However, over the last hundred years mathemati-
cians have realized a second use for them: if X is
a mathematical object and L(s) is its associated L-
function, then there are deep conjectures relating the
arithmetic of X to the values that L(s) assumes, typi-
cally at points where the Dirichlet series defining L(s)
does not converge! Hence, one can investigate X by
investigating its L-function. One basic example of this
phenomenon is the birch–swinnerton-dyer conjec-
ture [V.4], a weak form of which states that the L-
function associated with equation (1) should vanish at
s = 1 if and only if (1) has infinitely many solutions
such that both x and y are rational numbers. Much is
known about this conjecture, and it has been vastly gen-
eralized by work of Deligne, Belinson, Bloch, and Kato.
However, at the time of writing it remains open.

III.50 Lie Theory
Mark Ronan

1 Lie Groups

Why are groups important in mathematics? One major
reason is that it is often possible to understand a math-
ematical structure by understanding its symmetries,
and the symmetries of a given mathematical structure
form a group. Some mathematical structures are so
symmetrical that they have not just a finite number
of symmetries, but a continuous family of them. When
this is the case, we find ourselves in the realms of Lie
groups and Lie theory.

One of the simplest “continuous” groups is the group
SO(2), which consists of all rotations of the plane R2

about the origin. With each element of SO(2) one can
associate an angle θ: the angle of the rotation in ques-
tion. If we write Rθ for the counterclockwise rotation
by θ, then the group operation is given by RθRϕ =
Rθ+ϕ, whereR2π is understood to equalR0, the identity
element of the group.

The group SO(2) is not just a continuous group, but
also a Lie group. Roughly speaking, this means that it is
a group in which one can meaningfully define the con-
cept of a smooth curve (that is, a curve that is not just
continuous but differentiable as well). Given any two
elements Rθ and Rϕ of SO(2), one can easily define a
smooth path from Rθ to Rϕ by smoothly modifying θ
until it becomesϕ. (The most obvious such path would
be given in parametric form by R(1−t)θ+tϕ, as t goes
from 0 to 1.) It is not always the case that every pair of
points in a Lie group can be connected by a path: when
they can, the Lie group is said to be connected. An exam-
ple of a Lie group that is not connected is O(2), which
consists of SO(2) together with all reflections of the
plane about lines through the origin. Any two rotations
can be linked by a path, as can any two reflections, but
there is no continuous way of changing a rotation into
a reflection.

Lie groups were introduced by sophus lie [VI.53] in
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order to create an analogue of galois theory [V.24]
for differential equations. Lie groups that consist of
invertible linear transformations of Rn or Cn, like the
examples above, are called linear Lie groups, and they
are an important subclass. For linear Lie groups it is
fairly easy to work out what terms such as “continu-
ous,” “differentiable,” or “smooth” should mean. How-
ever, one can also consider more abstract Lie groups
(both real and complex), with elements that are not
given as linear transformations. In order to give a
proper definition of Lie groups in their full generality,
one needs the concept of a smooth manifold [I.3 §6.9].
However, for simplicity we shall mostly restrict atten-
tion to linear Lie groups.

A very common way to create a Lie group is to
collect all transformations of a given space that pre-
serve one or more specified geometric structures. For
instance, the general linear group GLn(R) is defined to
be the group of all invertible linear transformations
from Rn to Rn. Inside this group is the special lin-
ear group SLn(R), in which we retain only those linear
transformations that preserve volume and orientation
(or equivalently those with determinant [III.15] equal



�

III.50. Lie Theory 233

to 1). If instead we retain the linear transformations
that preserve distance, then we obtain the orthogonal
group O(n); if we retain linear transformations that
preserve both distance and orientation we obtain the
special orthogonal group SO(n), which is easily seen
to equal SLn(R) ∩ O(n). The Euclidean group E(n) of
rigid motions of Rn (that is, all transformations that
preserve distances and angles, such as rotations, reflec-
tions, and translations) is generated by the orthogonal
group O(n), together with the group of translations
(which is isomorphic to Rn). There are analogues of
all of the above groups in which the real numbers R

are replaced by the complex numbers C. For instance,
GLn(C) is the group of all invertible complex-linear
transformations of Cn, and the complex analogue of
the orthogonal group O(n) is the unitary group U(n).
There are also the symplectic groups Sp(2n), which are
analogues of O(n) and U(n) over the quaternions
[III.78]. These are all manifestly linear Lie groups except
for E(n), and in fact it is not difficult to describe a linear
Lie group that is isomorphic to E(n) as well.

Many important examples of Lie groups are finite
dimensional, which roughly means that they can be
described using a finite number of continuous parame-
ters. (Infinite-dimensional Lie groups, while important,
are more difficult to handle and will not be discussed
in detail here.) For example, the group SO(3), of rota-
tions of R3 that fix the origin, is three dimensional. Each
rotation can be specified using three parameters, which
could, for instance, be taken as rotations around the
x-axis, y-axis, and z-axis. These particular parameters
are known to airline pilots as roll, pitch, and yaw, where
the x-axis is in the direction of the airplane. Another
way of specifying each rotation is by its axis and angle
of rotation. Two parameters are needed to specify the
axis (using spherical coordinates for example), and one
parameter is needed to specify the angle of rotation.
Let us take this angle to be between 0 and π (a rota-
tion by an angle greater than π has the same effect as
a rotation by an angle less than π from the opposite
direction).

We can represent SO(3) geometrically as follows. Let
B be a ball of radius π centered at the origin. Given any
noncentral point P of B, associate with it the rotation
of R3 about the axis OP (where O is the origin) through
an angle that is given in radians by the distance from
O to P. With O itself we associate the identity map, so
the only ambiguity is that a rotation through π radi-
ans is associated with two opposite points P and P′ on
the surface of B. We can remove this ambiguity by glu-

ing all such pairs of points together. This tells us what
SO(3) looks like as a topological space [III.92]: it is
equivalent to the three-dimensional projective space
[I.3 §6.7] RP3. The group SO(2), by comparison, is much
simpler, and is topologically equivalent to a circle.

Lie groups arise naturally in any subject that involves
continuous motion. For instance, they appear in ap-
plied topics such as the design of guidance systems
and also in very pure topics such as geometry or differ-
ential equations. Lie groups, and the closely related Lie
algebras discussed below, also frequently arise in many
types of algebra, particularly in the algebraic structures
that appear in quantum mechanics and other related
branches of physics.

2 Lie Algebras

As the examples above show, Lie groups are often
“curved” and have some nontrivial topology. However,
one can profitably analyze a Lie group by associating
with it a flat space known as a Lie algebra. This idea
is similar to the idea of studying a symmetric object
such as a sphere by first studying its relationship to
one of its tangent planes. The Lie algebra uses the tan-
gent space to the Lie group at the identity element, and
one can view it as a “logarithm” of the Lie group.

To see how Lie algebras arise, let us consider a lin-
ear Lie group. The elements of the group can be viewed
as linear transformations on a vector space, or equiv-
alently (when we have selected a coordinate basis) as
square matrices. In general, two matrices A and B do
not commute (that is, AB does not have to equal BA),
but the situation becomes simpler if one looks at matri-
ces that are very close to the identity matrix I. If A =
I + εX and B = I + εY for some very small positive ε
and two fixed matrices X and Y , then

AB = I + ε(X + Y)+ ε2XY

and

BA = I + ε(X + Y)+ ε2YX.

Thus, if we ignore the terms containing ε2, we see
that A and B “almost commute,” and that multiplica-
tion of A and B “almost corresponds to” addition of X
and Y : indeed, one can view X and Y as analogous to
“logarithms” of A and B respectively.

Let us now informally define the Lie algebra g of a lin-
ear Lie group G to be the space of all matrices X such
that, for sufficiently small ε, the matrix I + εX lies in
G, up to errors of size ε2. For example, the Lie algebra
gln(C) of the general linear group GLn(C) is the space of
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all n×n complex matrices. One can view the Lie alge-

bra as describing all possible instantaneous directions

and speeds within the group G, and a more precise def-

inition is the collection of all derivatives R′0 of smooth

curves ε �→ Rε in G that pass through the identity ele-

ment R0. This definition can also be extended to more

abstract Lie groups without much difficulty. (To return

to the example of the airplane pilot, an element of the

Lie group SO(3) could be used to describe the current

orientation of the aircraft with respect to a fixed coor-

dinate system, whereas an element of the Lie algebra

so(3) could be used to describe the current rate of roll,

pitch, and yaw that the pilot is applying to the aircraft

to smoothly change its orientation.)

As we have just seen, the Lie algebra gln(C) of the

general linear group GLn(C) is the space of all n×n
complex matrices. The Lie algebra sln(C) of the special

linear group SLn(C) is the subspace of all matrices with

trace zero. This is because det(I + εX) = 1+ ε trX, up

to errors of size ε2, so if ε �→ I + εX is a path in the

group, then trX = 0. The Lie algebra so(n) of SO(n) is

equal to the Lie algebra o(n) of O(n), and both are equal

to the space of all antisymmetric matrices. Similarly,

both the Lie algebra su(n) of SU(n) and the Lie algebra

u(n) of U(n) are equal to the space of skew-Hermitian

matrices. (A matrix is skew-Hermitian if it equals minus

the complex conjugate of its transpose.)

The fact that a Lie group is closed under multiplica-

tion can be used to show that its Lie algebra is closed

under addition. Thus, a Lie algebra is a (real) vector

space. However, it has some additional structure that

makes it far more than just a vector space. For instance,

let A and B be two elements of the Lie group G that are

very close to the identity. Then we can write A ≈ I+εX
and B ≈ I + εY for some very small ε and some ele-

ments X and Y of the Lie algebra g. A little matrix alge-

bra shows that the commutator ABA−1B−1 of A and B,

which is the element of G that measures the extent to

which A and B fail to commute, can be approximated

by I+ε2[X, Y], where [X, Y] = XY −YX. This quantity

[X, Y] is called the Lie bracket of X and Y . Informally, it

represents the net direction of motion if one first moves

an infinitesimal amount in the X direction, then in the

Y direction, then back in the X direction and back in

the Y direction, in that order. The resulting new direc-

tion may be quite different from the original directions

X and Y .

The Lie bracket obeys a number of nice identities,

such as the antisymmetric identity [X, Y] = −[Y ,X]

and the Jacobi identity

[[X, Y], Z]+ [[Y , Z],X]+ [[Z,X], Y] = 0.

One can in fact use such identities to define Lie algebras

in a completely abstract fashion, without any reference

to matrices or Lie groups, in much the same way that

other algebraic objects such as groups, rings, and fields

can be defined using a handful of algebraic identities as

axioms, but we shall not focus on the abstract approach

to Lie algebras here. A familiar example of a Lie alge-

bra is R3 with the Lie bracket [x,y] defined to be the

cross-product x × y . Notice that the Lie bracket does

not satisfy the associative law (unless it is trivial).

We have seen that a linear Lie group G naturally gen-

erates the bracket operation [· , ·] on its Lie algebra

g. Conversely, if the Lie group is connected, one can

almost reconstruct it from the Lie algebra, with its addi-

tion, scalar multiplication, and Lie bracket operation.

More precisely, every element A of the Lie group can

be written as an exponential [III.25] exp(X) of an ele-

ment X of the Lie algebra. For example, if the Lie group

is SO(2), then we can identify it with the unit circle in C.

The tangent to this circle at 1 is a vertical line, so we can

identify the Lie algebra with the set iR of purely imag-

inary numbers. (Normally, however, we would just say

that the Lie algebra is R.) The rotation through an angle

θ can then be written as exp(iθ). Note that this repre-

sentation is not unique, since exp(iθ) = exp(i(θ+2π)).
It is not hard to see that the Lie group R also has R as its

Lie algebra (to make sense of this it helps to replace R

by the multiplicative group of positive real numbers,

which is isomorphic to R), and that in this case the

representation of a group element as an exponential

is unique. In general, if two connected Lie groups have

the same Lie algebra, then those Lie groups share the

same universal cover, and are therefore closely related

to one another.

In the case of linear Lie groups, the exponential can

be described by the familiar formula

exp(X) = lim
n→∞

(
I + 1

n
X
)n
.

For more abstract Lie groups, the exponential is best

described in the language of ordinary differential equa-
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tions,1 using a suitable generalization of the identity

d
dt

etX = XetX

from single-variable calculus. However, owing to the
noncommutativity of the Lie group, it is not quite
true that exp(X + Y) equals exp(X) exp(Y); instead,
the correct identity is the Baker–Campbell–Hausdorff
formula

exp(X) exp(Y) = exp(X + Y)+ 1
2 [X, Y]+ · · · ,

where the missing terms consist of a moderately com-
plicated infinite series involving the Lie bracket. The
exponential map that connects Lie algebras and Lie
groups is closely related to the Lie bracket, and because
of this it is possible to study and classify Lie groups by
first studying and classifying Lie algebras with their Lie
bracket operation.

3 Classification

It is always of interest when a mathematical structure
can be classified, but especially so if the structure is
important and the classification is not straightforward.
By these criteria, the results that have been obtained
concerning the classification of Lie algebras are unde-
niably interesting, and they are regarded as one of the
great mathematical achievements from around the turn
of the twentieth century.

It turns out to be easier to classify complex Lie alge-
bras: that is, Lie algebras such as sln(C) that have
the structure of a complex vector space. Each real Lie
algebra embeds in a complex Lie algebra of twice the
(real) dimension, known as the complexification of the
original algebra. However, a complex Lie algebra may
arise as the complexification of several different real
Lie algebras (known as real forms of the complex Lie
algebra).

In classifying Lie groups and Lie algebras, the first
step is to restrict attention to simple Lie groups and Lie
algebras; these are analogous to prime numbers in the
sense that they cannot be “factored” into smaller com-
ponents. For instance, the Euclidean group E(n) con-
tains the translation group Rn as a connected normal
subgroup. If we factor out this group, then we obtain
the orthogonal group O(n), so E(n) is not simple. More

1. Indeed, Lie groups and Lie algebras are an excellent tool for
describing the algebraic aspects of ordinary and partial differential
equations; the evolution of such equations through time can be mod-
eled using a Lie group, and the differential operators used to describe
an equation can be modeled on the associated Lie algebra. However,
we will not discuss this important connection between Lie theory and
differential equations here.

formally, a Lie group is simple if it contains no proper
connected normal subgroups, and a Lie algebra is sim-
ple if it contains no proper ideals [III.83 §2]. In this
sense, the Lie group SLn(C) and its Lie algebra sln(C)
are simple for every n. Finite-dimensional, complex,
simple Lie algebras were classified by Wilhelm Killing
and Élie cartan [VI.69] in 1888–94.

This classification is often placed in the context of so-
called semisimple Lie algebras, which can be factored in
a unique way (up to rearrangement) as a direct sum of
simple Lie algebras, just as a natural number can be
factored uniquely as a product of prime numbers. Fur-
thermore, a theorem of Levi shows that a general finite-
dimensional Lie algebra g can be expressed as a combi-
nation (or, more precisely, a “semidirect product”) of a
semisimple algebra (called a Levi subalgebra of g) and
a solvable subalgebra (known as the radical of g). Solv-
able Lie algebras, which are related to the concept of a
solvable group [V.24] in group theory, are difficult to
classify, but in many applications one can restrict atten-
tion to semisimple Lie algebras, and hence to simple Lie
algebras.

A simple Lie algebra g splits into smaller subalge-
bras, which are not ideals but which are related to one
another in particularly nice ways. The case of sln+1

is typical and we shall use it to explain the general
theory. It comprises all (n+ 1)× (n+ 1) matrices of
trace zero, and splits as a direct sum in the following
way:

sln+1 = n+ ⊕ h⊕ n−,

where h is the set of diagonal matrices of trace zero,
and n+ and n− are, respectively, the sets of upper and
lower triangular matrices with 0s on the diagonal. Two
diagonal matrices X and Y commute with one another,
so their Lie bracket [X, Y] = XY − YX is 0. In other
words, if X and Y belong to h, then [X, Y] = 0. A Lie
algebra in which [X, Y] = 0 for any two elements X and
Y is called Abelian.

Each simple Lie algebra g has a similar decomposi-
tion where the subspace h is a maximal Abelian subal-
gebra called a Cartan subalgebra. (For Lie algebras that
are not simple, the definition of Cartan subalgebras is
more complicated.) Cartan subalgebras are important
because their action on the rest of the Lie algebra can be
simultaneously diagonalized. What this means is that a
complement to h can be split up into one-dimensional
components gα, known as root spaces, that are invari-
ant under the action of h. To put this another way, if X
belongs to h, and Y belongs to a root space, then [X, Y]
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is a scalar multiple of Y . (The diagonalization requires
the fundamental theorem of algebra [V.15], which
is why we need to work with complex Lie algebras.)

For sln+1 this works as follows. Each root space gij is
the one-dimensional space of matrices whose entries
are 0 except for a single entry in the ith row and jth
column. If X ∈ h (that is, if X is a diagonal matrix of
trace zero) and Y ∈ gij , then it is not hard to check
that [X, Y] also lies in gij . In fact,

[X, Y] = (Xii −Xjj)Y .
If we identify the diagonal matrix X with the vector
whose n coordinates appear down its diagonal, and
if we write ei for the vector that is 1 in the ith posi-
tion and 0 elsewhere, then Xii − Xjj can be rewritten
as 〈ei − ej,X〉. We refer to the vectors ei − ej as root
vectors.

In general, a complex semisimple Lie algebra g can

PUP: complex is
being used in a
mathematical
sense here and all
the other times
when the
proofreader
queried the
combination of
‘complex’ and
‘simple’. They are
all OK.

be completely described by its root vectors α and cor-
responding root spaces gα. The rank of g equals the
dimension of the Cartan subalgebra h, and also equals
the dimension of the vector space spanned by the root
vectors. For example, sln+1 has rank n, and its root vec-
tors are the vectors ei − ej , as we have just seen. Sets
of root vectors are far from arbitrary: they must obey
some simple but quite restrictive geometric properties.
For instance, if a root vector α is reflected in the hyper-
plane perpendicular to another root vector β, the result
must be a third root vector sβ(α), where sβ is the reflec-
tion concerned. (To make the notion of “perpendicular”
precise, one needs to define a special inner product on
the Cartan subalgebra, known as the Killing form, but
we shall not discuss this here.) The group generated
by these reflections is called the Weyl group of the Lie
algebra.

The root vectors form what is called a root system,
and the geometric properties mentioned above allow
one to classify all root systems, and hence all complex
semisimple Lie algebras. This classification is given by
some very simple diagrams called Dynkin diagrams,
which are shown in figure 1.

The nodes of the diagram correspond to so-called
simple roots. Every root is a linear combination of sim-
ple roots with coefficients that are either all nonnega-
tive or all nonpositive. The nature of the bond (or lack
thereof) between two nodes determines the inner prod-
uct of the corresponding simple roots. If there is no
bond, then the inner product is 0; if there is a single
bond, then the root vectors have the same length and
the angle between them is 120◦. In diagrams that have

Bn

Cn

An

Dn

E6

E7

E8

F4

G2

Figure 1 Dynkin diagrams.

only single bonds, the root vectors span a set of lines
in Rn in which the angle between any two lines is either
90◦ or 60◦. In the diagrams Bn, Cn, F4, and G2 there are
arrows between certain pairs of nodes. The direction of
an arrow is from a long root to a short root: the ratio of
the root lengths is

√
2 in the first three cases and

√
3 in

the case of G2. In these cases there are exactly two root
lengths, but in the single-bond cases all roots have the
same length.

TheAn diagram is the one for sln+1. The simple roots
are ei−ei+1 for 1 � i � n, going from left to right on the
diagram. Notice that the inner product of two simple
roots is 0 unless they are adjacent on the diagram, in
which case it is −1. Each root ei− ej is a sum of simple
roots with coefficients all 1 or all −1 on a connected
segment of the diagram.

The four infinite families An Bn, Cn, and Dn corre-
spond to the classical Lie algebras, of which sln+1(R),
so(2n + 1), sp(2n), and so(2n) are real forms. These
are the algebras associated with the classical Lie groups
SLn(R), SO(2n+ 1), Sp(2n), and SO(2n), respectively. T&T note: Tim

checking with
author whether ‘n’
should be ‘n+ 1’
here.

As mentioned earlier, a simple Lie algebra g of rank n
decomposes as the direct sum of a Cartan subalgebra of
dimension n plus a set of one-dimensional root spaces,
one for each root. It follows that

dim g = the rank of g+ the number of roots.

Here are the dimensions of the simple Lie algebras:

dimAn = n+n(n+ 1) = n(n+ 2),

dimBn = n+ 2n2 = n(2n+ 1),

dimCn = n+ 2n2 = n(2n+ 1),

dimDn = n+ 2n(n− 1) = n(2n− 1),
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dimG2 = 2+ 12 = 14,

dimF4 = 4+ 48 = 52,

dimE6 = 6+ 72 = 78,

dimE7 = 7+ 126 = 133,

dimE8 = 8+ 240 = 248.

Each node of the diagram corresponds to a simple
root, and hence to a reflection across the hyperplane
perpendicular to that root. This set of reflections gen-
erates the Weyl groupW in a particularly elegant way. If
si denotes the reflection corresponding to node i, then
W is generated by elements si of order 2, subject only
to the relations

(sisj)mij = 1,

where mij is the order of sisj (see [IV.11 §2] for a dis-
cussion of generators and relations). These orders are
determined by the diagram according to the following
rules:

(i) sisj has order 2 if there is no bond;
(ii) sisj has order 3 if there is a single bond;

(iii) sisj has order 4 if there is a double bond; and
(iv) sisj has order 6 if there is a triple bond.

For example, the Weyl group of type An is isomor-
phic to the symmetric group [III.70] Sn+1, and one
can take s1, . . . , sn to be the transpositions (1 2), (2 3),
. . . , (n n+ 1). Notice that the Dynkin diagrams for the

T&T note: check
linebreak before
CRC. PUP note: I
can confirm that
spacing is
intentional (and
correct) here.

Bn and Cn root systems yield the same Weyl group.
In principle, this classification of root systems leads

to a classification of all semisimple finite-dimensional
Lie algebras and Lie groups. However, there are many
fundamental questions about simple Lie algebras and
Lie groups that remain only partly understood. For
instance, one particularly important aim of Lie theory is
to understand the linear representations of a given Lie
group or Lie algebra; roughly speaking, a linear repre-
sentation is a way of interpreting an abstract Lie group
or Lie algebra as a linear Lie group or Lie algebra by
assigning a matrix to each of its elements. While the
representations of all the simple Lie algebras and Lie
groups have been classified and described explicitly,
these descriptions are not always easy to work with,
and answering basic questions (such as how a given rep-
resentation decomposes into simpler representations)
often requires some sophisticated tools from algebraic
combinatorics.

The theory of root systems outlined above can also be
extended to an important class of infinite-dimensional
Lie algebras, namely the Kac–Moody algebras. Such

algebras arise in several areas of physics (such as are
described in vertex operator algebras [IV.13]) and
algebraic combinatorics.

III.51 Linear and Nonlinear Waves and
Solitons
Richard S. Palais

1 John Scott Russell and the
Great Wave of Translation

To the world at large, John Scott Russell is known
as the naval architect who designed The Great East-
ern, a steamship larger than any built before. But long
after The Great Eastern has been forgotten, Russell will
be remembered by mathematicians as the man who,
despite limited mathematical training and background,
was the first person to recognize the highly impor-
tant mathematical concept known as a soliton, which
he referred to as “the great wave of translation.” Here
is his oft-quoted passage in which he describes how he
first became acquainted with it:

I was observing the motion of a boat which was rapidly
drawn along a narrow channel by a pair of horses, when
the boat suddenly stopped—not so the mass of water
in the channel which it had put in motion; it accumu-
lated round the prow of the vessel in a state of violent
agitation, then suddenly leaving it behind, rolled for-
ward with great velocity, assuming the form of a large
solitary elevation, a rounded, smooth and well-defined
heap of water, which continued its course along the
channel apparently without change of form or diminu-
tion of speed. I followed it on horseback, and over-
took it still rolling on at a rate of some eight or nine
miles an hour, preserving its original figure some thirty
feet long and a foot to a foot and a half in height. Its
height gradually diminished, and after a chase of one
or two miles I lost it in the windings of the channel.
Such, in the month of August 1834, was my first chance
interview with that singular and beautiful phenomenon
which I have called the Wave of Translation.

Russell (1844)

You may feel that there is nothing unusual about what
Russell describes here, and indeed many before and
since have watched this same scenario play out with-
out noticing anything out of the ordinary. But Russell
was very familiar with wave phenomena and had a sci-
entist’s keenly observant eye. What struck him was the
remarkable stability of the bow wave as it traveled over
a long distance. He knew that if one tried to create
a traveling water wave on, say, a calm lake, it would
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soon disperse into a train of smaller wavelets—it would
not just go marching along as a single “heap” over a
long distance. There was clearly something very special
about water waves traveling in a narrow and shallow
channel.

Russell became fascinated—even a little obsessed—
with his discovery. He built a wave tank behind his
home and proceeded to do extensive experiments,
recording the results as data and sketches in his note-
books. He found, for example, that the speed of a soli-
ton depended on its height, and he was even able to dis-
cover the correct formula for the speed as a function
of height. More surprising still, in Russell’s notebooks
one finds remarkable sketches of a two-soliton inter-
action—something that would evoke amazement when
it was rediscovered as a rigorous solution to the KdV
equation (see section 3 below) more than a hundred
years later.

However, as we shall see, solitons are very much a
nonlinear phenomenon, and when some of the best
mathematicians of Russell’s day, notably Stokes and
Airy, tried to understand Russell’s observations using
the linearized theory of water waves that was then
available, they failed to find any trace of soliton-like
behavior and expressed doubts that what Russell had
seen was real.

It was only after Russell’s death, with the more
sophisticated nonlinear mathematical treatment by
Boussinesq in 1871 and by Korteweg and de Vries in
1895, that Russell’s careful observations and experi-
ments were at last seen to be in complete agreement
with mathematical theory. And it took another seventy
years before the full importance of the great wave of
translation was recognized, after which it became an
object of intensive study for the rest of the twentieth
century.

2 The Korteweg–de Vries Equation

Korteweg and de Vries were the first to derive
the appropriate differential equation to describe the
motion of a wave in a shallow channel. We can write
their equation, usually called the KdV equation, in a
succinct form as follows:

ut +uux + δ2uxxx = 0.

Here, u is a function of two variables, x and t, which
represent space and time, respectively. “Space” is one
dimensional, so x is a real number, and u(x, t) repre-
sents the height of the wave at x at time t. The nota-

tion ut is shorthand for ∂u/∂t; similarly, ux stands for
∂u/∂x and uxxx stands for ∂3u/∂x3.

This is an example of an evolution equation: if, for
each t, we write u(t) for the function from R to R that
takes x to u(x, t), then it describes how the function
u(t) “evolves” over time. The Cauchy problem for an
evolution equation is the problem of determining this
evolution from knowledge of its initial value u(0).

2.1 Some Model Equations

To put the KdV equation into perspective, it is useful
to think briefly about three other evolution equations.
The first is the classic wave equation [I.3 §5.4]

utt − c2uxx = 0.

To solve the Cauchy problem for this equation, we
factor the wave operator (∂2/∂t2) − c2(∂2/∂x2) as a
product ((∂/∂t) − c(∂/∂x))((∂/∂t) + c(∂/∂x)). Then
we transform to so-called characteristic coordinates
ξ = x − ct, η = x + ct. The equation becomes
∂2u/∂ξ∂η = 0, which clearly has the general solu-
tion u(ξ,η) = F(ξ) + G(η). Transforming back to
“laboratory coordinates” x, t, the general solution is
u(x, t) = F(x − ct) + G(x + ct). If the initial shape
of the wave is u(x,0) = u0(x) and its initial velocity
is ut(x,0) = v(x,0) = v0(x), then an easy algebraic
computation gives the following very explicit formula:

u(x, t) = 1
2 [u0(x − ct)+u0(x + ct)]

+ 1
2c

∫ x+ct
x−ct

v0(ξ)dξ,

which is known as “d’Alembert’s solution” of the
Cauchy problem for the wave equation.

Note the geometric interpretation in the important
“plucked string” case, v0 = 0; the initial profile u0

breaks up into the sum of two “traveling waves,” both
with the same profile 1

2u0, one traveling to the right,
and the other to the left, both with speed c. It is an
easy exercise to derive d’Alembert’s solution using the
following hint: since u0(x) = F(x) + G(x), u′0(x) =
F ′(x) + G′(x), while v0(x) = ut(x,0) = −cF ′(x) +
cG′(x).

The next equation to think about is

ut = −uxxx, (1)

which we can obtain from the KdV equation if we drop
the nonlinear termuux . This equation is not just linear
but also translation invariant (meaning that if u(x, t)
is a solution, then so is u(x − x0, t − t0) for any con-
stants x0 and t0). Such equations can be solved using
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the fourier transform [III.27]. Let us try to find a
“plane-wave” solution of the formu(x, t) = ei(kx−ωt). If
we substitute this into (1), then we obtain the equation

−iωei(kx−ωt) = ik3ei(kx−ωt),

and therefore the simple algebraic equationω+k3 = 0.
This is called the dispersion relation of (1): with the
help of the Fourier transform it is not hard to show
that every solution is a superposition of solutions of
the form ei(kx−ωt), and the dispersion relation tells us
how the “wave number” k is related to the “angular
frequency” ω in each of these elementary solutions.

The function ei(kx−ωt) represents a wave that trav-
els at a speed of ω/k, which we have just shown to be
equal to −k2. Therefore, the different plane-wave com-
ponents of the solution travel at different speeds: the
higher the angular frequency, the greater the speed. For
this reason, the equation (1) is called dispersive.

What happens if instead we omit the uxxx term from
the KdV equation? Then we obtain the inviscid Burgers
equation

ut +uux = 0. (2)

The term uux can be rewritten as (∂/∂x)( 1
2u

2). Let us
consider the integral

∫∞
−∞u(x, t)dx, which is a function

of t. The derivative of this function is
∫∞
−∞ut dx, which

equation (2) tells us is equal to

−
∫∞
−∞

∂
∂x
( 1

2u
2)dx,

which equals [− 1
2u(x, t)

2]∞−∞. Therefore, if 1
2u(x, t)

2

vanishes at infinity, then the original expression∫∞
−∞u(x, t)dx is a “constant of the motion.” We say

that the inviscid Burgers equation is a conservation law.
(The argument we have just used can be used for any
equation of the formut = (F(u))x , where F is a smooth
function of u and its partial derivatives with respect to
x. This is known as the general conservation law. For
example, taking F(u) = −( 1

2u
2 + δ2uxx) gives rise to

the KdV equation.)
The inviscid Burgers equation (and other conserva-

tion laws where F is a function just of u) can be solved
using the method of characteristics. The idea of this
method is to look for smooth curves (x(s), t(s)) in the
xt-plane along which the solution to the Cauchy prob-
lem is constant. Suppose that s0 is such that t(s0) = 0,
and write x0 for x(s0). Then the constant value that
the solution u(x, t) will have to take along this curve is
u(x0,0), which we also write as u0(x0). The deriva-
tive of u along this so-called characteristic curve is
(d/ds)u(x(s), t(s)) = uxx′ + utt′, so if we want the
solution to be constant along the curve, then we need

this to be 0. Therefore, using the fact that ut = −uux ,
we find that

dx
dt
= x

′(s)
t′(s)

= − ut
ux
= u(x(s), t(s)) = u0(x0),

so the characteristic curve is a straight line of slope
u0(x0). In other words, u has the constant value
u0(x0) along the line x = x0 +u0(x0)t.

Note the following geometric interpretation of this
last result: to find the wave profile at time t (i.e., the
graph of the map x �→ u(x, t)), we translate each
point (x,u0(x)) of the initial profile to the right by the
amount u0(x)t. Suppose we look at a portion of the
initial profile where u0 is decreasing. Then the earlier,
and higher, parts of the initial wave are translated at a
greater speed (since u0(x) is larger), so that the nega-
tive slope of the wave becomes more negative. Indeed,
after a finite time the earlier part of the wave “catches
up” with the later part, which means that we no longer
have a graph of a function. The first time at which this
sort of problem happens is called the “breaking time,”
since one can visualize it as the breaking of a wave. This
process is usually referred to as shock formation, or
steepening and breaking of the wave profile: once again,
the phenomenon occurs for many other conservation
laws.

2.2 Split-Stepping

Now let us return to the KdV equation itself, in the form
ut = −uux − uxxx . Why is it that this equation gives
rise to the remarkable stability of the solutions that
was observed experimentally by Russell? Intuitively,
the reason is that there is a balance between the dis-
persing effect of the uxxx term and the shock-forming
effect of the uux term.

There turns out to be a very general technique
for analyzing balances of this kind. In the pure-
mathematics community it is usually called the Trot-
ter product formula, while in the applied-mathematics
and numerical-analysis communities it is called split-
stepping. The rough idea is simple: as t increases to
t + ∆t, you first change u to u−uxxx∆t, as would be
required by the equation ut = −uxxx , and then you
take a further step to u− uxxx∆t − uux∆t, the small
change required by the equation ut = −uux . To work
out the functionu(t,x), you start at the initial function
u0 and take a succession of alternating small steps of
this form. You then take the limit as the step size tends
to zero.

Split-stepping suggests a way to understand the
mechanism by which dispersion from uxxx balances
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shock formation from uux in KdV. If we imagine the
evolution of the wave profile as made up of a succession
of pairs of small steps in this way, then whenu,ux , and
uxxx are not too large, the steepening mechanism will
dominate. But as the time t approaches the breaking
time TB,u remains bounded (since it is made out of hor-
izontally translated parts of u0). It is not hard to prove
that the maximum slope (that is, the maximum value of
ux ) blows up like the function (TB − t)−1, while at the
same place, uxxx blows up like the function (TB− t)−5.
Thus, near the breaking time, and breaking point, the
uxxx term will dwarf the nonlinearity and will disperse
the incipient shock. Thus, the stability is caused by a
kind of negative feedback. Computer simulations show
just such a scenario playing out.

3 Solitons and Their Interactions

We have just seen that the KdV equation expresses a
balance between dispersion from its third-derivative
term and the shock-forming tendency of its nonlin-
ear term, and in fact many models of one-dimensional
physical systems that exhibit mild dispersion and weak
nonlinearity lead to KdV as the controlling equation at
some level of approximation.

In their 1894 paper, Korteweg and de Vries intro-
duced the KdV equation and gave a convincing mathe-
matical argument that this was the equation that gov-
erned wave motion in a shallow canal. They also showed
by explicit computation that it admitted traveling-wave
solutions that had exactly the properties that had been
described by Russell, including the relation of height to
speed that Russell had determined experimentally with
the help of his wave tank.

But it was only much later that further remarkable
properties of the KdV equation became evident. In
1954, Fermi, Pasta, and Ulam (FPU) used one of the very
first digital computers to perform numerical exper-
iments on an elastic string with a nonlinear restor-
ing force, and their results contradicted the then cur-
rent expectations of how energy should distribute itself
among the normal modes of such a system. A decade
later, Zabusky and Kruskal reexamined the FPU results
in a famous paper in which they showed that the FPU
string was well approximated by the KdV equation.
They then did their own computer experiments, solv-
ing the Cauchy problem for KdV with initial conditions
corresponding to those used in the FPU experiments.
In the results of these simulations they observed the
first example of a “soliton,” a term that they coined

to describe a remarkable particle-like behavior (elastic
scattering) exhibited by certain KdV solutions. Zabusky
and Kruskal showed how the coherence of solitons
explained the anomalous results observed by Fermi,
Pasta, and Ulam. But in solving that mystery they had
uncovered a larger one: the behavior of KdV solitons
was unlike anything seen before in applied mathemat-
ics, and the search for an explanation of their remark-
able behavior led to a series of discoveries that changed
the course of applied mathematics for the next thirty
years. We shall now fill in some of the mathemati-
cal details behind the above sketch, beginning with a
discussion of explicit solutions to the KdV equation.

To find the traveling-wave solutions of KdV is
straightforward. First, we substitute a traveling wave
u(x, t) = f(x − ct) into KdV, obtaining the ordinary
differential equation −cf ′ + 6ff ′ + f ′′′. If we add as
a boundary condition that f should vanish at infin-
ity, then a routine computation leads to the following
two-parameter family of traveling-wave solutions:

u(x, t) = 2a2 sech2(a(x − 4a2t + d)).
These are the solitary waves seen by Russell, and they
are now usually referred to as the 1-soliton solutions of
KdV. Note that their amplitude, 2a2, is just half their
speed, 4a2, while their “width” is proportional to a−1.
Thus, taller solitary waves are thinner and move faster.

Next, following Toda, we will “derive”1 the 2-soliton
solutions of KdV. Rewrite the 1-soliton solution as
u(x, t) = 2(∂2/∂x2) log cosh(a(x − 4a2t + δ)), or
u(x, t) = 2(∂2/∂x2) logK(x, t), where K(x, t) = (1 +
e2a(x−4a2t+δ)). We now try to generalize, looking for
solutions of the form u(x, t) = 2(∂2/∂x2) logK(x, t),
with K(x, t) = 1+A1e2η1 +A2e2η2 +A3e2(η1+η2), where
ηi = ai(x−4a2

i t+di), and we shall choose the Ai and
di by substituting into KdV and seeing what works. One
can check that KdV is satisfied for u(x, t) of this form
and arbitrary A1, A2, a1, a2, d1, d2, provided that we
define A3 = ((a2−a1)/(a1+a2))2A1A2, and solutions
of KdV arising in this way are called the KdV 2-soliton
solutions.

It can now be shown that for these choices of a1 and
a2,

u(x, t) = 12
3+ 4 cosh(2x − 8t)+ cosh(4x − 64t)
[cosh(3x − 36t)+ 3 cosh(x − 28t)]2

.

In particular,u(x,0) = 6 sech2(x),u(x, t) is asymptot-
ically equal to 2 sech2(x−4t−φ)+8 sech2(x−16t+ 1

2φ)

1. This is a complete swindle! Only knowledge of the form of the
solutions allows us to make the clever choice of K.
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when t is large and negative, and u(x, t) is asymptoti-
cally equal to 2 sech2(x−4t+φ)+8 sech2(x−16t− 1

2φ)
when t is large and positive, where φ = 1

3 log(3).
Note what this says. If we follow the evolution from

−T to T (where T is large and positive), we first see the
superposition of two 1-solitons: a larger and thinner
one to the left of, and catching up with, a shorter, fatter,
and slower-moving one to the right. Around t = 0 they
merge into a single lump (with the shape 6 sech2(x)),
and then they separate again, with their original shapes
restored—but now the taller and thinner one is to the
right. It is almost as if they had passed right through
each other. The only effect of their interaction is the
pair of phase shifts: the slower one is retarded slightly
from where it would have been, and the faster one is
slightly ahead of where it would have been. Except for
these phase shifts, the final result is what we might
expect from a linear interaction. It is only if we look
closely at the interaction as the two solitons meet that
we can detect its highly nonlinear nature. (Note, for
example, that at time t = 0, the maximum amplitude,
6, of the combined wave is actually less than the max-
imum amplitude, 8, of the taller wave when they are
separated.) But of course the really striking fact is the
resilience of the two individual solitons: their ability
to put themselves back together after the collision. Not
only is no energy radiated away, but their actual shapes
are preserved. (Remarkably, Russell (1844, p. 384) gives
a sketch of a 2-soliton interaction experiment that he
had carried out in his wave tank!)

Now back to the computer experiment of Zabusky
and Kruskal. For numerical reasons, they chose to deal
with the case of periodic boundary conditions: in effect,
studying the KdV equation ut + uux + δ2uxxx = 0
(which they label (1)) on the circle instead of on the
line. For their published report, they chose δ = 0.022
and used the initial condition u(x,0) = cos(πx). With
the above background in mind, it is interesting to read
the following extract from their 1965 report, which
contains the first use of the term “soliton”:

(I) Initially the first two terms of Eq. (1) dominate and
the classical overtaking phenomenon occurs; that is u
steepens in regions where it has negative slope. (II) Sec-
ond, after u has steepened sufficiently, the third term
becomes important and serves to prevent the forma-
tion of a discontinuity. Instead, oscillations of small
wavelength (of order δ) develop on the left of the front.
The amplitudes of the oscillations grow, and finally
each oscillation achieves an almost steady amplitude
(that increases linearly from left to right) and has the
shape of an individual solitary-wave of (1). (III) Finally,

each “solitary wave pulse” or soliton begins to move
uniformly at a rate (relative to the background value
of u from which the pulse rises) which is linearly pro-
portional to its amplitude. Thus, the solitons spread
apart. Because of the periodicity, two or more solitons
eventually overlap spatially and interact nonlinearly.
Shortly after the interaction they reappear virtually
unaffected in size or shape. In other words, solitons
“pass through” one another without losing their iden-
tity. Here we have a nonlinear physical process in which
interacting localized pulses do not scatter irreversibly.

Zabusky and Kruskal (1965)
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III.52 Linear Operators and Their
Properties

1 Some Examples of Linear Operators

A linear map [I.3 §4.2] between vector spaces
[I.3 §2.3] V andW is a function T : V → W that satisfies
the condition T(λ1v1 + λ2v2) = λ1Tv1 + λ2Tv2. Two
phrases that are used almost interchangeably with “lin-
ear map” are “linear transformation” and “linear opera-
tor.” The former is often used when one wishes to draw
attention to the effect of a linear map on some other
object; for example, one might well choose to use the
word “transformation” to describe geometrical opera-
tions such as reflections or rotations. As for “operator,”
it tends to be the word of choice when the linear map is
between infinite-dimensional spaces, especially when it
is just one of an ensemble of linear maps that form an
algebra. It is these maps that we shall discuss here.

Let us begin with some examples of linear operators.
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(i) If X is a banach space [III.64] whose elements are
infinite sequences, then we can define a “shift” S fromX
to X, which takes the sequence (a1, a2, a3, . . . ) to the
sequence (0, a1, a2, a3, . . . ). (In other words, it puts a
0 at the beginning and shifts the other values of the
sequence one place to the right.) The map S is linear,
and if the norm on X is not too pathological, then S will
be a continuous function from X to X.

(ii) If X is a space of functions [III.29] defined on the
closed interval [0,1] andw is some fixed function, then
the mapM that takes the function f to the product fw
(which is shorthand for the function x �→ f(x)w(x)) is
linear, and, providedw is small enough in some appro-
priate sense,M is a continuous linear map from X to X.
Such maps are called multipliers. (Note that the prop-
erty of “being a multiplier” depends not just on the
space X and the map M but also on the way we choose
to represent X as a space of functions, so it is not an
intrinsic property of the map itself.)

(iii) Another important way of defining linear operators
on function spaces is to use a kernel. This is a function
K of two variables, which can be used to define a linear
map in a way that is similar to the way a matrix can be
used to define a map between finite-dimensional vector
spaces. The following formula uses K to define a linear
map T :

Tf(x) =
∫
K(x,y)f(y)dy. (1)

Note the formal similarity between this and the formula

(Av)i =
∑
j
Aijvj,

which defines the product of a matrix with a column
vector. Once again, K will have to satisfy appropriate
conditions in order for (1) to define a continuous linear
map.

A good example of a linear operator defined by a ker-
nel is the fourier transform [III.27]F , which takes a
function in L2(R) to another such function. It is defined
by the formula

(Ff)(α) =
∫∞
−∞
f(x)e−iαx dx.

The kernel in this case is the function K(α,x) = e−iαx .

(iv) If f is a differentiable function defined on R, say,
and we write Df for its derivative, then we can think of
D as a linear map, since D(λf + µg) = λDf + µDg. In
order to regard D as an operator, we need to require f
to belong to a suitable function space. The best way
of doing this varies from context to context: choos-
ing a good function space can be very important and

can raise subtle questions. One way is not to insist
that D is defined for every function in the space, but
just on a dense set of functions, and not to require
that D is continuous. Similarly, many partial differen-
tial operators, such as the gradient [I.3 §5.3] and the
laplacian [I.3 §5.4], are linear operators when viewed
appropriately.

2 Algebras of Operators

Although individual operators can be important, linear
operators would not be as interesting as they are if it
were not for the fact that they can be formed into fam-
ilies. If X is a Banach space, then the set B(X) of all
continuous linear operators from X to itself forms a
structure known as a Banach algebra. Roughly speak-
ing, this means that it is a Banach space (the norm of
an operator T is defined to be the supremum of ‖Tx‖
over all x such that ‖x‖ � 1) in which the elements can
be multiplied as well as added. The product of T1 and
T2 is defined to be the composition T1T2, and it is easily
seen to satisfy the inequality ‖T1T2‖ � ‖T1‖‖T2‖. This
algebra is particularly important when X is a hilbert
space [III.37] H: subalgebras of B(H) have a very rich
structure, which is discussed in operator algebras
[IV.19].

3 Properties of Operators
Defined on a Hilbert Space

Unlike a general Banach space, a Hilbert space H has
an inner product. It is therefore natural to ask that a
continuous linear operator from H to H should relate
to the inner product somehow. This basic idea leads to
several different definitions, each of which picks out an
important class of operators.

3.1 Unitary and Orthogonal Maps

Perhaps the most obvious condition one might require
of an operator T is that it should preserve the inner
product, in the sense that 〈Tx, Ty〉 should equal 〈x,y〉
for any two vectors x and y . In particular, this implies
that ‖Tx‖ = ‖x‖ for every x, and therefore that T is
an isometry (that is, a map that preserves distances). If
in addition, T is invertible, which it will be if its image
is the whole of H, then T is a unitary map. The uni-
tary maps form a group. If H is n dimensional, then
this group is an important lie group [III.50 §1] called
U(n). If H is a real Hilbert space (as opposed to a com-
plex one), then the word “orthogonal” is used instead
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of “unitary” and the corresponding Lie group is called
O(n). When n = 3, orthogonal maps are rotations and
reflections, so O(n) is the generalization of the group
of rotations and reflections to n dimensions.

3.2 Hermitian and Self-Adjoint Maps

Given any operator T from H to H, there is an opera-
tor T∗ from H to H with the property that 〈Tx,y〉 =
〈x,T∗y〉 for every x and y . This operator is unique,
and it is called the adjoint of T . A second property
that T can have is that of equaling its own adjoint,
which is the case if and only if 〈Tx,y〉 = 〈x,Ty〉 for
every x and y . Such operators are called Hermitian or,
when the scalars are real, self-adjoint. A simple source
of examples of Hermitian maps is multipliers on the
space L2[0,1], where the function one multiplies by is
bounded and real-valued. As we shall see in a moment,
there is a sense in which these are the only examples.

3.3 Properties of Matrices

If H is a finite-dimensional space with an orthonormal
basis, then we can form the matrix A of T with respect
to that basis. The various properties of T discussed
above then turn out to be equivalent to properties of the
matrixA. The transpose ofA is the matrixAT defined by
(AT)ij = Aji, and the conjugate transpose is the matrix
A∗ defined by (AT)ij = Aji. An n×n matrix is unitary
if AA∗ is the identity, orthogonal if it is real and AAT

is the identity, Hermitian if A = A∗, and self-adjoint if
A = AT (in which case we say that A is symmetric). The
operator T has one of these four properties if and only
its matrix A has the corresponding property.

3.4 The Spectral Theorem

Notice that the adjoint of a unitary operator is the
inverse of that operator. In particular, both unitary and
Hermitian operators commute with their adjoints. An
operator with this property is called normal. Normal
operators are important because of the famous spec-
tral theorem. If T is a normal operator on a finite-
dimensional spaceH, then the spectral theorem asserts
that H has an orthonormal basis [III.37] of eigenvec-
tors of T . In other words, there is a basis ofH consisting
of orthogonal unit vectors, with the property that the
matrix of T with respect to this basis is diagonal. This
is an extremely useful theorem in linear algebra. In gen-
eral, if T is a normal operator on a Hilbert spaceH, then
the spectral theorem tells us that there is something

like a “basis” for H, with respect to which T is a multi-
plier. To put this slightly differently, there is an isomet-
ric isomorphismφ fromH to a Hilbert spaceH′ of func-
tions that are square-integrable with respect to some
measure [III.57], and the map φTφ−1 is a multiplier
on H′.

3.5 Projections

Another important class of maps on a Hilbert space is
the set of orthogonal projections. In general, an element
T of an algebra is an idempotent if it has the property
that T 2 = T . If the algebra is an algebra of operators on
a space X, then T is called a projection. To see why this
name is appropriate, note that every x is mapped to the
subspace TX of X, and all points in that subspace are
left fixed by T (since T(Tx) = T 2x = Tx). A projection
is orthogonal if Tx is always orthogonal to x−Tx. This
tells us that T is a projection on to some subspace Y of
H, and that it takes each vector to the nearest point in
Y , so that the vector x−Tx is orthogonal to the whole
of the subspace Y .

III.53 Local and Global in
Number Theory
Fernando Q. Gouvêa

Analogy is a powerful tool. When one can see parallels
between two different theories, this often allows one to
transport insights from one to the other. The idea of
studying something “locally” comes from the theory of
functions. Imported into number theory by way of an
analogy between functions and numbers, it leads us to
a whole new kind of number, the p-adic numbers, and
to the local–global principle, which has become one of
the guiding ideas of modern number theory.

1 Studying Functions Locally

Suppose that we have a polynomial such as

f(x) = −18+ 21x − 26x2 + 22x3 − 8x4 + x5.

From the very way the polynomial is written down, we
can see certain things about it. For example, we can
see at once that if we plug in x = 0, we get f(0) =
−18. Other things are less apparent. For example, to
decide what f(2) or f(3) are, we would have to do some
arithmetic. But if we were to rewrite the polynomial as

f(x) = 5(x − 2)− 6(x − 2)2 − 2(x − 2)3

+ 2(x − 2)4 + (x − 2)5,
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we could see at once that f(2) = 0. (Of course, one
needs to check that those two expressions really are
equal!) Similarly, we can check that

f(x) = 10(x − 3)2 + 16(x − 3)3 + 7(x − 3)4 + (x − 3)5

and see at once that f(3) is also zero, and in fact that
the polynomial has a double root at x = 3.

One way to think about this is to describe the first
expression as “local at x = 0,” because it privileges the
value 0 over all others. Then the other two expressions
are local at 2 and local at 3, respectively. On the other
hand, a formula like

f(x) = (x − 2)(x − 3)2(x2 + 1)

(which is also correct) is clearly more “global.” It tells
us where all the roots are: at 2, 3, and ±√−1, with the
3 being a double root.

The same ideas extend to functions that are not poly-
nomials, as long as we allow the expressions to be
infinite. So, for example, let us take

g(x) = x2 − 5x + 2
x3 − 2x2 + 2x − 4

.

Locally at 0, we can write this as

g(x) = − 1
2 + x + 1

2x
2 − 3

8x
3 − 3

16x
4 + 7

32x
5 + · · · .

Or we can write it locally at 2:

g(x) = − 2
3 (x − 2)−1 + 5

18 + 5
54 (x − 2)

− 35
324 (x − 2)2 + 55

972 (x − 2)3

− 115
5832 (x − 2)4 + 65

17496 (x − 2)5 + · · · .
Notice that this time we had to use a negative power of
(x − 2), because plugging in x = 2 makes the denomi-
nator zero. Nevertheless, the expansion tells us that the
“badness” at 2 is not too bad. Specifically, we can see
that while g(2) is undefined, (x − 2)g(2) makes sense
and is equal to − 2

3 .

It is easy to keep going. To handle general functions
locally at a, we may sometimes need to use fractional
powers of (x−a), but it does not get much worse than
that. Such expansions are a very powerful tool in the
theory of functions. One of the motivations for the dis-
covery of the p-adic numbers was to find a similarly
powerful tool for the study of numbers.

2 Numbers Are Like Functions

It was dedekind [VI.50] and Heinrich Weber who first
realized that an analogy could be drawn between num-
bers and functions. In their scheme, positive whole

numbers were compared to polynomials, while frac-
tions were analogous to quotients of polynomials such
as the function g(x) above. More complicated func-
tions were like more complicated kinds of number.
elliptic functions [V.34], for example, were similar to
certain kinds of algebraic number. On the other hand,
functions like sin(x) were more like transcendental
numbers [III.43] such as e or π .

Dedekind and Weber pushed the idea that “functions
are like numbers” in order to understand functions
better. In particular, they showed that the techniques
developed to study algebraic numbers could be used
to study a whole class of functions, which came to
be known as algebraic functions. It was Kurt Hensel,
however, who saw that if functions are like numbers,
then numbers must be like functions. In particular,
he set out to find an analogue, for numbers, of the
local expansions that were so useful in the theory of
functions.

To get to Hensel’s idea, let us start by noticing that
the way we usually represent numbers already points in
the right direction. After all, an expression like 34 291
really means

34 291 = 1+9 ·10+2 ·102 +4 ·103 +3 ·104 +3 ·105.

If we allow ourselves to think of 10 as being something
like the variable x, this looks exactly like a polynomial.
What is more, just as we can expand a polynomial in
terms of different expressions (x − a), we can write
numbers in other bases. For example,

34 291 = 4+ 4 · 11+ 8 · 112 + 3 · 113 + 2 · 114.

It is easy to see how to find this expansion. First, divide
34 291 by 11, and look at the remainder. It is 4. That
is our first term. Next, subtract 4 from the original
number to get something divisible by 11:

34 291− 4 = 34 287 = 3117 · 11.

Now divide 3117 by 11 to find the next remainder,
which will give the second term. Keep repeating this
process, and you will find the base-11 expansion.

That sounds very promising, but there is one little
insight missing. The fact is that 10 is not really like
(x − 2), because 10 can be factored, while (x − 2) can-
not. So expanding a number in base 10 is a little like try-
ing to express a polynomial in powers of (x2−3x+2),
which factors as (x−1)(x−2). Such an expansion is not
really local, since it is looking at two possible values of
x at once. Similarly, the base-10 expansion mixes infor-
mation about 2 and information about 5. The upshot is
that we should always use a prime number as our base.
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Just to fix ideas, let us choose p = 11. We already
know that we can write positive numbers in base 11,
i.e., as “polynomials in powers of 11.” What happens if
we try it with a fraction? Let us take 1

2 . The first step
is to find the remainder, that is, to find a number r
(positive, between 0 and 10) such that 1

2 − r is divisible
by 11. Well, 1

2 − 6 = − 11
2 = − 1

2 · 11. So the first term is
6. (To see what is meant by divisibility here, consider
what would have happened if we had taken r = 4. Then
1
2 − r would have been − 7

2 , and if we divide that by 11
we get− 7

22 , which has a factor of 11 in the denominator.
It is this that is not allowed and that does not happen
when r = 6.)

Now we repeat with the quotient, which was − 1
2 . We

see that − 1
2 − 5 = − 11

2 = − 1
2 · 11. So the second term

will be 5 · 11. But now we find ourselves having to do
− 1

2 again! So we will do this again and again, and all
of the remaining terms will have coefficient 5. In other
words,
1
2 = 6+5 ·11+5 ·112+5 ·113+5 ·114+5 ·115+· · · .
It is not clear quite what the equals sign means here,
but in any case we have obtained an infinite expansion
in powers of 11. It is called the 11-adic expansion of 1

2 .
Furthermore, the expansion “works” when we do arith-
metic with it. For example, if we multiply it by 2 and do
all the rearranging (2 × 6 = 12 = 1 + 11, so carry a 1,
etc.) we do end up with 1.

Hensel showed that one can do this with all algebraic
numbers as long as one allows infinite expansions, a
finite number of negative powers of 11 (so that one
can handle 5

33 and similar things), and, in certain cases,
fractional powers of 11. He argued that we should view
such expansions as giving information “locally at 11.”
The same happens with all of the prime numbers. So if
we have a prime number p we can consider our num-
bers “locally at p” by taking their expansions in powers
of p. These we call their p-adic expansions. Just as in
the case of functions, such expansions immediately tell
us how divisible by p a number is, while hiding all the
information about other primes; in that sense, they are
truly “local.”

3 p-adic Numbers

The best answers always raise new questions. Hav-
ing discovered that any rational number has a p-adic
expansion, and that one can “do arithmetic” directly
with the expansions, it is inevitable to ask whether we
have therefore enlarged the world of numbers under
consideration. Once we have chosen the prime p, any

rational number gives us a p-adic expansion. But does
every such expansion come from a rational number?

Not a chance. It is easy to see that the set of all expan-
sions is much bigger than the set of all rational num-
bers. Hensel’s next move, then, was to point out that
the set Qp of all possible p-adic expansions is a new
realm of numbers, which he called the p-adic numbers.
It includes not only all the rational numbers, but also a
lot more.

The best way to think of Qp is by analogy with the set
R of all real numbers. Real numbers are usually given by
their decimal expansions. When we write e = 2.718 . . . ,
what we mean is that

e = 2+ 7 · 10−1 + 1 · 10−2 + 8 · 10−3 + · · · .
The set of all such expansions is the set of all real num-
bers. It contains all the rational numbers, but is much
bigger.

Of course, except for the fact that both contain the
rationals, these two realms are almost completely dif-
ferent. For example, in both Qp and R there is a nat-
ural notion of “distance between two numbers.” But
these distances are completely different, even when the
numbers in question are rational. So, in the reals, 2 is
very close to 2001/1000. In the 5-adics, however, the
distance between these two numbers is quite large!

It turns out that we can do calculus with p-adic num-
bers, just as we do it with reals. Many other math-
ematical ideas also extend. So Hensel’s ideas led to
a system of “parallel (numerical) universes”—one for
each prime, plus the real numbers—in which we can do
mathematics.

4 The Local–Global Principle

At first, most mathematicians seem to have found
Hensel’s new numbers interesting in a formal way, but
also to have wondered what the point of them was.
One does not adopt a new number system just for fun;
it needs to be useful for something. Hensel was fas-
cinated by his numbers and kept writing about them,
but to begin with he had trouble demonstrating their
usefulness. He showed, for example, that they could be
used to develop the basics of algebraic number theory
in a new way—but most folks seemed happy with the
old way.

One can demonstrate the power of a new idea by
giving a beautiful and easy proof of a difficult result.
Hensel wrote a paper purporting to do just that: he
gave an easy and elegant p-adic proof that the num-
ber e is transcendental. This did get people’s attention.
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Unfortunately, when they looked hard at the proof they
realized that it contained a subtle error. As a result,
mathematicians’ attitude of suspicion about Hensel’s
strange new numbers was reinforced.

The tide was turned by Helmut Hasse. He had been
studying in Göttingen. At one point, he walked into a
used bookstore and found a copy of Hensel (1913), a
book written a few years earlier. Hasse was fascinated,
and moved to Marburg to study with Hensel. A cou-
ple of years later, in 1920, he found the idea that was
to make the p-adic numbers a crucial tool for number
theorists.

What Hasse showed was that it was possible to
answer some questions in number theory by answer-
ing them “locally.” Here is a (not very important, but
fairly easy to follow) example. Suppose x is a rational
number that is a square of some other rational number
y , sox = y2. Since all rational numbers are also p-adic,
it is true that for every prime number p the number x,
thought of as a p-adic number, is a square. And simi-
larly, the real number x is a square. In other words, the
rational number y is a kind of “global” square root, in
that it serves as a square root in each local setting.

So far, so boring. But now reverse the thing. Suppose
that we know that for every prime number p the num-
ber x, thought of as a p-adic number, is the square of
some p-adic number (which may depend on p), and also
that x, thought of as a real number, is the square of
some real number. A priori, these local square roots of
x could all be different! But it turns out that under these
assumptions x must be the square of some rational
number, so that in fact all the local roots must come
from a “global” root.

This leads us to think of the rational numbers as
“global” and of the various Qp and of R as “local.”
Then the previous paragraph claims that the property
of “being a square” is true globally if and only if it is
true “everywhere locally.” This turns out to be a pow-
erful and illuminating idea, and it has become known
as the Hasse principle or the local–global principle.

Our example, of course, demonstrates the principle
in its strongest case: solve a problem locally in all cases,
and you have solved it globally. That is often too much
to hope for. Nevertheless, attacking a problem locally
and then putting the local pieces together has become
a fundamental technique in modern number theory. It
has been used to simplify older proofs, as in class
field theory [V.30], and also to obtain new results,
as in Wiles’s proof of fermat’s last theorem [V.12].
So Hensel was right after all: his new numbers have

earned their place along with the real numbers in every
number theorist’s heart.
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The Logarithmic Function
See the exponential and logarithmic

functions [III.25]

III.54 The Mandelbrot Set

Suppose we have a complex polynomial f defined by
a formula f(z) = z2 + C for some complex number C .
Then for any choice of complex number z0 we can form
a sequence z0, z1, z2, . . . by iterating, that is, repeatedly
applying, the function f . So we let z1 = f(z0), z2 =
f(z1), and so on. Sometimes the resulting sequence will
tend to infinity, but sometimes it remains bounded—
that is, it stays within a fixed distance from 0. For exam-
ple, if we take C = 2 and start with z0 = 1, then
the sequence goes 1,3,11,123,15 131, . . . and clearly
tends to infinity, whereas if we start with z0 = 1

2 (1 −
i
√

6), then we find that z1 = z2
0+2 = z0 so the sequence

is bounded since all its terms are equal to z0. The Julia
set associated with the constant C is the set of all z0 for
which the sequence remains bounded. Julia sets often
have a fractal shape (see [IV.15 §2.5]).

To define a Julia set, one fixes C and considers dif-
ferent possibilities for z0. What happens if one fixes z0

and considers different possibilities for C? The result
is the Mandelbrot set. The precise definition is that it
is the set of all C such that the sequence is bounded
if you take z0 = 0. (One could consider other values
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of z0, but the resulting sets are not interestingly differ-
ent because they are related to each other by a simple
change of variables.)

The Mandelbrot set also has an intricate fractal
shape—one that has captured the popular imagina-
tion. The detailed geometry of the Mandelbrot set is
not yet fully understood; some of the resulting open
problems are of major importance because they encode
very general information about dynamical systems. See
dynamics [IV.15 §2.8] for more details.

III.55 Manifolds

The surface of a sphere has the property that if you look
at a very small portion of it then that portion will look
like part of a plane. More generally, a d-dimensional
manifold, or d-manifold, is a geometrical object that
looks “locally” like d-dimensional euclidean space
[I.3 §6.2]. Thus, 2-manifolds are smooth surfaces such
as those of a sphere or a torus. Higher-dimensional
manifolds are harder to visualize, but are a major
topic of research. The basics of manifolds are set out
in some fundamental mathematical definitions
[I.3 §§6.9, 6.10]. More advanced ideas are discussed in
differential topology [IV.9] and algebraic topol-
ogy [IV.10]. See also algebraic geometry [IV.7], mod-
uli spaces [IV.8], and ricci flow [III.80]. (Even this is
far from a complete list of articles in which manifolds
feature.)

III.56 Matroids
Dominic Welsh

The original aim of Hassler Whitney when he intro-
duced the concept of a matroid in 1935 was to produce
an abstract notion that would capture the main ingre-
dients of the structure of a set of vectors in a vector
space [I.3 §2.3], while avoiding any explicit mention of
linear independence.

To do this he singled out two fundamental proper-
ties and postulated that any family of subsets that pos-
sessed these properties was the collection of “indepen-
dent sets” of a “matroid.” The first of these properties
was an obvious one: any subset of a linearly indepen-
dent set is also linearly independent. The second prop-
erty was more subtle: if A and B are two linearly inde-
pendent sets and B contains more elements than A,
then there exists some element of B that is not in A
but which, when added to A, gives a set that is still lin-
early independent. Finally, in order to avoid trivialities

he insisted that in every matroid the empty set must be
independent.

Thus, formally, a matroid is defined to be a finite set
E together with a family of subsets of E which are called
the independent sets and which satisfy the following
axioms.

(i) The empty set is independent.
(ii) Every subset of an independent set is independent.

(iii) If A and B are independent sets, with the number
of elements of A being one less than the number
of elements of B, then there is some x in B that is
not in A such that A∪ {x} is also independent.

Property (iii) is called the exchange axiom. The most
fundamental example of a matroid is a set of vectors
in a vector space with the “independent sets” being
the usual linearly independent ones: in this case the
exchange axiom is known as Steinitz’s exchange lemma.
However, there are many examples of matroids that are
not subsets of vector spaces.

Here, for example, is an important class of matroids
that arise from graph theory. A cycle in a graph is a
collection of edges of the form (v1, v2), (v2, v3), …,
(vk−1, vk), (vk, v1), where the vi are distinct vertices.
Take any graph and call a subset of edges “indepen-
dent” if it contains no cycle.

So here we are thinking of a cycle among the edges
as being in some way similar to a linear dependence
among some vectors. It is obvious that any subset of
an independent set will also not contain a cycle, so con-
dition (ii) is satisfied. Slightly less obvious is that if A
and B are sets of t and t + 1 edges, respectively, nei-
ther containing a cycle, then there will be at least one
edge in B but not in A which can be added to A without
creating a cycle. So we see that this is another example
of a matroid, even though it arises in a very different
context from the vector space one.

As it turns out, there is a way of identifying the edges
of a graph with a set of vectors in a vector space over
the field F2 of integers mod 2 (see modular arith-
metic [III.60]). If G has n vertices and one associates
with each vertex a basis element of F

n
2 , then one can

associate with each edge the vector that is given by the
sum of the basis elements corresponding to its two end-
points. A set of edges will then be independent if and
only if the corresponding vectors in F

n
2 are linearly inde-

pendent. However, as we shall see, there are important
examples of matroids that are not even isomorphic to
sets of vectors.
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G: H:a c

b

d

a c

b

d

Figure 1 Two graphs giving rise to the same matroid.

Note that the collection of the independent sets (in a

graph) conveys part of the information present in the

graph, but by no means all of it. For example, consider

the graphs G and H in figure 1. As graphs, G and H
are distinct, but both give the same matroid on the set

{a,b, c, d} (the independent sets are all subsets of size

less than or equal to 3, except for {a,b, c}). Note that

this matroid is also the same as the matroid formed by

the columns of the matrix

a b c d

A =

⎛
⎜⎜⎝

1 0 1 1

0 1 1 1

0 0 0 1

⎞
⎟⎟⎠ .

However, it turns out that most matroids do not come

from either graphs or matrices.

Although a matroid is defined by very simple axioms,

many basic results from both linear algebra and graph

theory can be extended to the wider setting of matroids.

For example, suppose that T is a connected graph. It is

not hard to prove that if B is a maximal independent

set of the matroid on G, then B is a tree which is inci-

dent with every vertex of G. Such a tree is called a span-

ning tree of G. All spanning trees of a connected graph

have the same number of edges, namely, one less than

the number of vertices. Similarly, in a vector space, or

indeed in any subset of vectors, all maximal linearly

independent sets have the same size. Both of these are

special cases of the general result that in any matroid

all maximal independent sets have the same size. This

common size is called the rank of the matroid and, by

analogy with vector spaces, a maximal independent set

in a matroid is called a base.

Matroids arise naturally in many parts of mathemat-

ics, and they often turn up unexpectedly. For example,PUP: Tim definitely
prefers ‘and’ here.
OK? consider the minimum connector problem: a company

needs to connect a number of cities by links, such as

railways or phone cables, and wishes to minimize the

total cost. This is clearly equivalent to the following

problem. Given a connected graph G, with each edge e
having a nonnegative weight w(e), find a set of edges

that has the minimum total weight but that connects allPUP: Tim prefers
‘but’ here. OK?

a

b

c

d

e

f  

1

2

3 5

67

8

9

3

Figure 2 A graph with edge-weights.

the vertices of G. It is not hard to see that this problem
reduces to finding a spanning tree of minimum weight.

For this there is a classical algorithm. It is the sim-
plest possible algorithm one could imagine for the
problem, and it works as follows. Start by choosing an
edge of minimum weight, and at each subsequent step
add an edge of minimum weight to your chosen set
provided that at no stage a cycle is formed.

For example, consider the graph in figure 2. The algo- PUP: I can confirm
that the
numbering of the
lines in the figure
is OK as it stands.

rithm would successively select the edges (a, b), (b, c),
(d, f ), (e, f ), (c, d), giving a spanning tree of total
weight 1+ 2+ 3+ 5+ 7 = 18. Because of the way it T&T note: change

made here has to
be ratified by Imre
and/or the author
at some point.

works, the algorithm is known as a greedy algorithm.
At first sight, it seems rather unlikely that this algo-

rithm could work, as it denies the possibility that
choosing a suboptimal edge now might have a payoff
later. However, it is not hard to show that the algorithm
is actually correct. In fact, it extends in almost exactly
the same way to matroids in general: what it gives is
a (rather fast) algorithm for selecting a base of mini-
mum weight in a matroid in which each element has a
nonnegative weight.

Somewhat more surprisingly, matroids are the only
structures for which the greedy algorithm works. More
precisely, suppose that I is a family of subsets of a set
E with the property that if A ∈ I and B ⊆ A, then B ∈ I .
Now let w be any weight function and suppose that
the problem is to select a member B of I which has
maximum weight, where the weight of a set is just the
sum of the weights of its elements. As above, the greedy
algorithm starts by choosing an element e of maximum
weight and then successively picks elements of maxi-
mum weight from the remaining elements subject to
the proviso that at each stage, the set of elements cho-
sen is a member of I . It turns out that the following
is true: the greedy algorithm works on I for all weight
functions w if and only if I is the collection of indepen-
dent sets of a matroid. Thus, matroids form a “natural
home” for many optimization problems. Moreover, the
concept is genuinely useful, since many of the matroids
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that arise in such problems are not derived from either

vector spaces or graphs.

III.57 Measures

To understand measure theory, and to see why it is use-

ful and important, it is instructive to start with a prob-

lem about lengths. Suppose that we have a sequence

of intervals in [0,1] (the closed interval from 0 to 1),

of total length less than 1. Can they cover [0,1]? In

other words, given intervals [a1, b1], [a2, b2], . . . , with∑
(bn − an) < 1, is it possible that their union equals

[0,1]?
One is tempted to answer “no, as the total length is

too small.” But this is just to restate the question. After

all, why should “total length less than 1” actually imply

that the intervals cannot cover [0,1]? Another tempt-

ing answer is to say “just rearrange the intervals so that

they go from the left to the right, and then we never get

to the right-hand end of [0,1].” In other words, if the

nth interval has length bn−an = dn, then just translate

the intervals to be the intervals [0, d1], [d1, d1+d2], . . . .
In this rearrangement, it is indeed true that we never

cover any point beyond
∑
dn, and so do not cover

all of [0,1], but why does this imply that the original

intervals do not cover [0,1]?
It is quite easy to see that this rearrangement argu-

ment works for a finite number of intervals, but it does

not work in general. Indeed, suppose we ask the same

question, but for the rationals: that is, let us replace

the interval [0,1] by the rational interval [0,1] ∩ Q. If

our intervals have lengths 1
4 ,

1
8 ,

1
16 , . . . , for example, so

that the total length is only 1
2 , then certainly the left-

to-right intervals will cover only the interval [0, 1
2 ]∩Q,

but it is possible for the original intervals to cover all

of [0,1]∩Q, since we can just enumerate the rationals

as q1, q2, . . . (see countable and uncountable sets

[III.11]), and then put an interval of length 1
4 around q1,

one of length 1
8 around q2, and so on.

This observation shows that the answer to our prob-

lem must involve properties of the reals that are not

shared by the rationals—which wrecks any kind of “it

is obvious” argument. In fact, the result is true for the

reals, but its proof is a good exercise.

Why is this an important fact? It stems from a wish

to define “length” for general sets of reals (for simplic-

ity, we will concentrate on [0,1], just to avoid some

technicalities about “infinite length”). What should the

“length” of a set be? For intervals the answer is clear,

and it is also clear for finite unions of intervals. But

what about sets like { 1
2 ,

1
3 ,

1
4 , . . . }, or Q itself?

A natural first attempt would be to use finite unions

of intervals: one could take the length of a set A to be

the least value of the length of a finite union of inter-

vals that covers A. More precisely, one could define

the length of A to be the infimum of (b1 − a1) +
· · ·+(bn−an), taken over all finite unions of intervals

[a1, b1]∪ · · · ∪ [an, bn] that cover A.

Unfortunately, this definition has some very undesir-

able properties. For example, the length of the set of all

rational numbers in the interval [0,1] would then be 1,

as would the length of all irrational numbers in [0,1].
We would thus have two disjoint sets (and very natural

ones at that) such that the length of their union is not

the sum of their lengths. So this form of “length” is not

really well-behaved for such sets.

What we want is a notion of length that applies to all

the sets we know and are used to, and is additive, mean-

ing that the length ofA∪B is the sum of the lengths ofA
and B whenever A and B are disjoint. Remarkably, this

can be achieved, and the key idea is to allow countable

covers. That is, we modify the above definition as fol-

lows: the length (or measure, to give it its usual name) of

a setA is the infimum of (b1−a1)+(b2−a2)+· · · , taken

over all unions of intervals [a1, b1]∪[a2, b2]∪· · · that

cover A. Note that, thanks to the puzzle discussed ear-

lier, the measure of the interval [a, b] is b − a, just as

we would hope.

It is also not hard to see that the measure of the

set of rationals in [0,1] is zero, and it turns out that

the measure of the irrationals in [0,1] is 1. Indeed, any

countable set has measure zero. In many contexts, sets

of measure zero are regarded as “negligible” or “of no

importance.” It is worth mentioning that there are also

sets of measure zero that are uncountable (an example

is the cantor set [III.17]).

It turns out that, even with this definition, there are

pairs of disjoint sets A and B such that the measure

of A ∪ B is not the sum of the measures of A and B.

However, it can be shown that for all “reasonable” sets

the measure is additive. More precisely, one says that a

subset of [0,1] is measurable if the measures of it and

its complement add up to 1, as they should. If A and B
are disjoint measurable sets, then the measure of their

union is the sum of their measures.

This is a very useful fact, since it can be shown that

every set that arises naturally in mathematics, or that

has an explicit definition, is measurable: intervals, finite
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unions of intervals, countable unions of intervals, Can-
tor sets, things involving rationals or irrationals, and so
on. In fact, the union of any countable family of measur-
able sets is again measurable (one says that the measur-
able sets form a sigma-algebra). Even better, for mea-
surable sets the measure is countably additive, mean-
ing that the measure of a disjoint union of countably
many measurable sets is the sum of the measures of
the individual sets.

More generally, in many other settings, one wants to
end up with a sigma-algebra, containing all the sets
one is interested in, on which we can define a count-
ably additive measure, or “length function.” The above
example is called Lebesgue measure on [0,1]. In gen-
eral, whenever one wishes to define a countably addi-
tive measure, one always needs a result like the puzzle
above in order to get started.

Here is another example: we could work in [0,1]2

(the unit square in the plane), and base our ideas upon
rectangles instead of intervals. So we would define the
measure of a set as the least total area of a sequence of
rectangles that covers the set. This gives an elegant and
powerful approach to integration: the integral of a func-
tion f (defined on [0,1], say, and taking values in [0,1])
is just defined to be the “area under its graph”: that
is, the measure of the set {(x,y) : y � f(x)}. Many
complicated-looking functions can now be integrated:
for example, the function f that is 1 on the rationals
and 0 on the irrationals is easily checked to have an
integral, namely 0, whereas in earlier theories such as
Riemann integration that function would be too rapidly
varying to be integrable.

This approach to integration gives rise to the so-
called Lebesgue integral (further discussed in the arti-
cle on lebesgue [VI.72]), which is one of the funda-
mental concepts in mathematics. It allows one to inte-
grate a wide range of functions that are not Riemann
integrable, but the main reason for its importance is
not so much this as the fact that the Lebesgue inte-
gral has very good limiting properties that the Riemann
integral lacks. For example, if f1, f2, . . . is a sequence
of Lebesgue-integrable functions from [0,1] to [0,1]
and fn(x) converges to f(x) for every x, then f is
Lebesgue-integrable and the Lebesgue integrals of the
functions fn converge to the Lebesgue integral of f .

III.58 Metric Spaces

There are many contexts in mathematics, especially
in analysis, where one would like to say that two

mathematical objects are close, and understand pre-
cisely what that means. If the two objects are the
points (x1, x2) and (y1, y2) in a plane, then the
task is straightforward: the distance between them is√
(y1 − x1)2 + (y2 − x2)2, by the Pythagorean theorem,

and it makes sense to say that the points are close if this
distance is small.

Now suppose that we have two points in n-di-
mensional space, (x1, . . . , xn) and (y1, . . . , yn). It is
a simple matter to generalize the formula just given
when n = 2 and define the distance between them to
be √

(y1 − x1)2 + (y2 − x2)2 + · · · + (yn − xn)2.
Of course, the fact that the formula can be easily gen-
eralized is not in itself a guarantee that the resulting
notion is a sensible definition of distance. And this
raises the question of what properties we would like
a definition to have for it to count as sensible. A metric
space is an abstract notion that results from thinking
about this question.

LetX be a set of “points.” Suppose that, given any two
of these points, x andy say, we have a way of assigning
a real number d(x,y) that we wish to regard as the
distance between them. The following three properties
are ones that it would be highly desirable for this idea
of distance to have.

PUP: list items
changed to (P1),
(P2), (P3) here and
(i), (ii), (iii) below –
OK?

(P1) d(x,y) � 0 with equality if and only if x = y .
(P2) d(x,y) = d(y,x) for any two points x and y .
(P3) d(x,y)+d(y, z) � d(x, z) for any three points x,

y , and z.

The first of these properties says that the distance
between two points is always positive, except when the
two points are the same, when it is zero. The second
says that distance is a symmetric notion: the distance
from x to y is the same as the distance from y to x.
The third is called the triangle inequality: if you imagine
x, y , and z as the vertices of a triangle, it says that the
length of any side never exceeds the sum of the lengths
of the other two sides.

A function d defined on pairs of points (x,y) from
a set X is called a metric if it has properties (P1)–(P3)
above. In that case, X and d together form a metric
space. This abstraction of the usual notion of distance
is very useful, and there are many important examples
of metrics that are not necessarily derived from the
Pythagorean theorem. Here are a few examples.

(i) Let X be n-dimensional space, that is, the set Rn

of all sequences (x1, . . . , xn) of n real numbers.
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It can be shown that the formula derived above
from the Pythagorean theorem gives a notion of
distance that does indeed satisfy properties (P1)–
(P3). This metric is called the Euclidean distance
and the resulting metric space is called Euclid-
ean space. Euclidean spaces are perhaps the single
most basic and important class of metric spaces in
mathematics.

(ii) Information is often transmitted digitally in
the form of a string of 0s and 1s, such as
000111010010. The Hamming distance between
two such strings is defined to be the number of
places where the strings are different. For exam-
ple, the Hamming distance between the strings
00110100 and 00100101 is 2, since the strings dif-
fer in the fourth and eighth places only. This idea
of distance also satisfies properties (P1)–(P3).

(iii) If you are driving from one town to another, then
the distance you care about is not the distance as
the crow flies but the length of the shortest route
along the network of available roads. Similarly, if
you wish to travel from London to Sydney, then
what matters is the length of the shortest path
(known as a geodesic) along the Earth’s surface,
rather than the “actual” distance through the Earth
itself. Many useful metrics come from this gen-
eral idea of a shortest route, which guarantees that
property (P3) will hold.

(iv) An important feature of Euclidean distance is
its rotational symmetry: in other words, rotating
the plane, or space, does not alter the Euclid-
ean distances between points. There are other
metrics that also have a great deal of symme-
try, and these have great geometrical significance.
In particular, the discovery of the hyperbolic
metric [I.3 §§6.6, 6.10] in the early nineteenth
century demonstrated that the parallel postulate
could not be proved using Euclid’s other axioms.
This resolved a question that had been open
for thousands of years. See riemannian metrics
[I.3 §6.10].

III.59 Models of Set Theory

A model of set theory is, roughly speaking, a struc-
ture in which the usual axioms of set theory (ZF, or
ZFC) hold. To explain what this means, let us think first
about groups. The axioms of group theory mention cer-
tain operations (such as multiplication and inversion),

and a model of group theory is a set, equipped with

such operations, such that the axioms hold. In other

words, a model of group theory is nothing other than a

group. So what does a “model of ZF” mean? The axioms

of ZF mention one relation, namely “is an element of,”

or “∈.” A model of ZF is a set M , on which there is a

relation E, such that all the axioms of ZF hold in S if we

replace “∈” by “E.”

However, there is one very important difference

between these two sorts of model. When one first meets

groups, one starts with some very simple examples,

such as cyclic groups, or groups of symmetries of regu-

lar polygons, and one then builds up to more sophisti-

cated examples such as the symmetric and alternat-

ing groups [III.70], and beyond. But this gentle pro-

cess is not available for models of ZF. Indeed, since all

of mathematics can be formulated in the language of

ZF, it follows that every model of ZF has to contain a

“copy” of the whole world of mathematics. This makes

studying models of ZF rather difficult.

One aspect that is often found puzzling is the fact

that a model of ZF is a set. This might seem to mean

that there is a “universal” set (a set that has every set

as a member), but from russell’s paradox [II.7 §2.1] it

is easy to see that there can be no such set. The answer

to this apparent problem is that the modelM is indeed

a set in the real mathematical universe, but that inside

the model there is no universal set—in other words,

there is no element x ofM such that yEx for every ele-

ment y ofM . Thus, from the perspective of the model,

the statement “there is no universal set” is true.

See model theory [IV.2] for more about models in

general, and set theory [IV.1] for more about models

of set theory.

III.60 Modular Arithmetic
Ben Green

Is there a square number whose decimal expansion

ends . . .7? Is 438 345 divisible by 9? For which posi-

tive integers n is n2−5 a power of two? Is n7−77 ever

a Fibonacci number?

These questions, and more, can be answered using

modular arithmetic. Let us look at the first question.

Listing the first few squares, 1,4,9,16, . . . , one does not

find any whose final digit is 7. In fact, writing down just

the final digits, one gets the sequence

PUP: thanks to the
proofreader for
spotting strange
mistake here!

1,4,9,6,5,6,9,4,1,0,1,4,9,6,5,6, . . . ,
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which seems to repeat (and thus never contain the
number 7).

An explanation of this phenomenon is as follows. Let
n be a number to be squared. We can always write n as
a multiple of 10 plus a remainder; that is, n = 10q+ r ,
where r ∈ {0,1, . . . ,9}. Now, if we square n we get

n2 = (10q + r)2
= 100q2 + 20qr + r2

= 10(10q2 + 2r)+ r2.

The only part of this expression that affects the
final digit is the r2, which immediately explains why
the sequence of last digits of squares repeats with
period 10, and hence contains no 7s.

Modular arithmetic is essentially just a notation for
writing down arguments of this sort. If two numbers
(like n and r ) leave the same remainder on division
by 10, then we say that they are congruent modulo 10
and write n ≡ r mod 10. What we proved above is the
statement that, if n ≡ r mod 10, then n2 ≡ r2 mod 10.

Everything we have just said applies equally well if
we replace 10 by an arbitrary modulus m: if n and r
leave the same remainder on division by m, then we
say that n and r are congruent modulom and we write
n ≡ r modm. Equivalently, n and r are congruent
modulo m if m divides n− r . (An integer a is said to
divide another integer b if b is an integer multiple of
a.) The above argument is just one instance of the fol-
lowing general fact, which is not hard to prove: if a ≡
a′ modm and b ≡ b′ modm, then ab ≡ a′b′ modm
and a+ b ≡ a′ + b′ modm.

Now observe that 10 ≡ 1 mod 9. It follows that 10×
10 ≡ 1 × 1 ≡ 1 mod 9, and in fact that 10d ≡ 1 mod 9
for any d ∈ N. Suppose that we have a numberN whose
decimal expansion is adad−1 · · ·a2a1a0. This means
that

N = ad10d + ad−110d−1 + · · · + a110+ a0.

Applying the rules of modular arithmetic, we get

N ≡ ad + · · · + ad−1 + · · · + a1 + a0 mod 9.

This gives the well-known test for divisibility by 9: sim-
ply add up the digits of the number in base 10, and
see if the result is divisible by 9. For the example N =
438 345 the sum of the digits is 27, which is divisible
by 9. So N is a multiple of 9 (in fact N = 9× 48 905).

If m is a modulus and n is an integer, then there is
precisely one value of r between 0 andm−1 such that
n ≡ r modm. This number r is often called the least
residue or simply the residue of n to the modulus m.

Now let us consider the third question posed at the
beginning of this article, namely the matter of when
n2 − 5 is a power of two. When n = 3, 32 − 5 = 4 is
a power of two, but a little experimentation does not
reveal any further examples. What aspect of the prob-
lem changes asn becomes larger than 3? The key obser-
vation is that n2 − 5 is now greater than 4, and so if it
were a power of 2, then it would have to be divisible
by 8. That would mean that n2 ≡ 5 mod 8, but this is
never the case. Indeed, the residues of the first eight
squares are 1, 4, 1, 0, 1, 4, 1, 0, and we know that the
sequence will repeat with period 8 (actually, it repeats
with period 4). Thus it never contains a 5.

Modular arithmetic should be used with care.
Although the rules for addition and subtraction are
simple, division is somewhat more subtle. For exam-
ple, if one has an equation ac ≡ bc modm, it is not, in
general, permissible to divide by c and conclude that
a ≡ b modm: consider, for instance, the case a = 2,
b = 4, c = 3, m = 6.

Let us examine what has just gone wrong. To say
that ac ≡ bc modm means that m divides ac − bc =
(a−b)×c. But this clearly does not mean thatm divides
a− b, since m could divide c (or at least have a com-
mon factor with it). However, ifm has no factor in com-
mon with c, then it must divide a− b, so in this case
we do indeed have a ≡ b modm. In particular, for
any prime number p we have the very useful cance-
lation law: if ac ≡ bc modp and c �≡ 0 modp, then
a ≡ b modp.

The examples so far may have suggested that the
principal uses of modular arithmetic are to do with spe-
cific moduli such as 10 and 8. However, this is far from
true, and the subject really comes into its own when
one looks at more general m. For example, one of the
basic results in number theory is Fermat’s little theo-
rem, which states that if p is a prime and a �≡ 0 modp,
then ap−1 ≡ 1 modp. Let us quickly prove this. Con-
sider the numbers a,2a,3a, . . . , (p − 1)a modp. If
ra ≡ sa modp, then from the cancelation law we can
deduce that r ≡ s modp, from which it follows that
a,2a, . . . , (p − 1)a are all different modulo p. Further-
more, none of these numbers is 0 modp. We are thus
forced to conclude that the numbers a,2a,3a, . . . , (p−
1)a modp are simply a rearrangement of the num-
bers 1,2,3, . . . , p−1 modp. In particular, the products
of the numbers in these two sets are the same, which
implies that

ap−1(p − 1)! ≡ (p − 1)! modp.
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Since (p − 1)! is not a multiple of p, we can apply the

cancelation law again and divide both sides by (p−1)!.
This implies the result.

Euler’s theorem is a generalization of Fermat’s lit-

tle theorem to composite moduli. It states that if m
is a positive integer and a is another positive integer

that is coprime to m (this means that a and m have

no common factor), then aφ(m) ≡ 1 modm. Here φ
is Euler’s totient function: φ(m) is the number of inte-

gers less than m that are coprime to m. For instance,

if m = 9, then the integers less than m and coprime

to m are 1, 2, 4, 5, 7, and 8, so φ(9) = 6 and we can

deduce from Euler’s theorem that 56 ≡ 1 mod 9. Let us

check this directly: 56 = 15 625, so the sum of its digits

is 19, which is indeed congruent to 1 mod 9. For further

discussion of the Fermat–Euler theorem, see mathe-

matics and cryptography [VII.7], computational

number theory [IV.5], and the weil conjectures

[V.38].

The final question from above—whether n7 − 77 is

ever a Fibonacci number—is left as an exercise to the

reader.

III.61 Modular Forms
Kevin Buzzard

1 A Lattice in the Complex Numbers

When one first learns about the complex numbers, one

is taught to think of them as a two-dimensional space,

with one real and one imaginary dimension: a complex

number z = x + iy has real part x and imaginary part

y , where i is a square root of −1.

Now let us consider what the complex numbers that

have integers for their real and imaginary parts look

like. These complex numbers, such as 3 + 4i or −23i,

form a “lattice” in the complex plane (see figure 1).

By definition, every element of this lattice is of the

form m + ni for some pair of integers m and n. We

say that the lattice is generated by 1 and i, and use

the notation Z + Zi for it. Note that this lattice can be

generated in plenty of other ways. For example, it is also

generated by the pair (1,−i), the pair (1,100+i) or even

the pair (101+ i,100+ i). In fact, one can easily check

that this lattice is generated by the pair (a+bi, c +di)
(meaning that every element of the lattice is an integer

combination of a+ bi and c + di) if and only if a, b, c,

and d are integers and ad− bc = ±1.

2 + i

0

Figure 1 A lattice.

0

w

v

Figure 2 A general lattice.

2 More General Lattices

Now let v and w be any two complex numbers and
consider the set of complex numbers of the form av +
bw, again with a and b integers (see figure 2).

A lattice is exactly such a thing: a grid Zv+Zw in the
complex plane generated by two complex numbers v
and w, with the provisos that neither v nor w is zero
and that v/w is not real (this is just to ensure that v
and w do not both lie on one line).

If τ = x + iy is a complex number with y ≠ 0, then
there is a standard lattice associated with τ , namely
Zτ+Z. We call this latticeΛτ and note thatΛτ = Λ−τ . In
general, however, distinct complex numbers τ give rise
to distinct lattices—and furthermore there are plenty
of lattices that are not equal to Λτ for any τ , for the
simple reason that 1 belongs to Λτ for every τ .

3 Relations between Lattices

IfΛ is a lattice generated byv andw, andα is a nonzero
complex number, then one can multiply the entire situ-
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ation by α and deduce that αΛ is the lattice generated
by αv and αw. Geometrically, this says that one can
rotate and rescale lattices.

If Λ is a lattice generated by v and w, and we scale
it by dividing everything by w, then we get a new lat-
tice (1/w)Λ, which is generated by v/w andw/w = 1.
In particular, this new lattice is equal to Λτ for the
complex number τ = v/w.

It may seem like an odd thing to do, but one can apply
this scaling trick toΛτ itself. The latticeΛτ is generated
by (τ,1) but also by any pair (v,w) = (aτ+b, cτ+d),
if a, b, c, and d are integers such that ad − bc = ±1.
If we divide by cτ + d and set σ = (aτ + b)/(cτ + d),
then we see that

1
cτ + dΛτ = Λσ . (1)

4 Modular Forms as Functions on Lattices

The formal definition of a modular form is rather unen-
lightening: it is a function that obeys certain bound-
edness conditions and transformation properties. One
way of seeing where the transformation properties
come from is to think about lattices. If k is an integer,
then a modular form of weight k is a function f that
associates a complex number f(Λ) with any lattice Λ,
and has the property that

f(αΛ) = α−kf (Λ). (2)

The function also has to satisfy some other properties
(a differentiability condition and a boundedness condi-
tion), but the crucial property is the one above. If k is
even and at least 4, then an example of a modular form
of weight k is the Eisenstein series Gk defined by the
formula

Gk(Λ) =
∑

0≠λ∈Λ
λ−k.

The assumption that k is at least 4 guarantees that the
sum converges, and the evenness of k ensures that the
function is nonzero.

We have seen that any lattice can be scaled so that
it takes the form Λτ for some τ , so (2) implies that a
modular form will be determined by its values on such
lattices. If H denotes the complex numbers with pos-
itive imaginary part, then, because Λτ = Λ−τ , a modu-
lar form is in fact determined by its values on Λτ for
τ ∈H .

However, an arbitrary function on H does not give
us a modular form: equation (1) tells us that if f is a
modular form and F is the function on H defined by

F(τ) = f(Λτ), then F must satisfy the equation

F
(
aτ + b
cτ + d

)
= (cτ + d)kF(τ) (3)

for every a,b, c, d ∈ Z such that ad − bc = 1. (The

reason we exclude the case ad−bc = −1 is that (aτ +
b)/(cτ+d)would not be in the upper half-plane in this

case.) This is the equation at the heart of the definition

of a modular form.

Over the years, mathematicians have isolated other

desirable properties that F should have in order to give

a useful theory. Nowadays, modular forms are required

to obey the additional properties that F is holomor-

phic [I.3 §5.6] and that F(x + iy) does not grow too

quickly as y goes to +∞; these assumptions imply that

the vector space of weight k modular forms is finite

dimensional. The Eisenstein series above do have these

additional properties, and are the first basic examples

of modular forms.

5 Why Modular Forms?

Modular forms have links with arithmetic, geom-

etry, representation theory, and even physics. Modular

forms also played a key role in the Taylor–Wiles proof

of fermat’s last theorem [V.12]. Why is this? One

general reason is that there are links between modular

forms and other mathematical objects: here we briefly

explain one of the links.

Lattices in the complex plane are related to elliptic

curves [III.21]: the quotient of the complex numbers

by a lattice is an elliptic curve, and every elliptic curve

arises in this way. Hence to study elliptic curves, or fam-

ilies of elliptic curves, one can instead study families

of lattices. One way of studying an object is by study-

ing the functions on that object, and a modular form

is precisely that: a function on the collection of all lat-

tices. And indeed, automorphic forms, which are gen-

eralizations of modular forms, have been used to great

effect in studying a wide variety of families of algebraic

objects in this way.

III.62 Moduli Spaces

An important general problem in mathematics is clas-

sification (see the general goals of mathematical

research [I.4 §2]). Often, one has a set of mathematical

structures and a notion of equivalence, and one would

like to describe the equivalence classes [I.2 §2.3].

For example, two (compact, orientable) surfaces are
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often regarded as equivalent if each can be continu-

ously deformed into the other. Each equivalence class

is then fully described by the genus [III.33], or “number

of holes,” in the surface.

Topological equivalence is rather “crude,” in the

sense that it is relatively easy for two surfaces to be

equivalent. As a result, the equivalence classes are

parametrized by a fairly simple set: the set of all posi-

tive integers. But there are many geometrical contexts

in which finer notions of equivalence are important.

For example, in several contexts one wishes to regard

two two-dimensional lattices [III.61] as equivalent if

one is a rotation and enlargement of the other. Equiv-

alence relations such as this one often lead to param-

eter sets that themselves have an interesting geomet-

rical structure. Such sets are called moduli spaces. For

details, see [IV.8] and also [V.26].

III.63 The Monster Group

the classification of finite simple groups [V.8] is

one of the landmarks of twentieth-century mathemat-

ics. As its name suggests, it gives a complete descrip-

tion of all finite simple groups, which can be thought of

as the building blocks for all finite groups. It states that

each finite simple group belongs to one of eighteen

infinite families, or else is one of twenty-six “sporadic”

examples. The Monster group is the largest of the spo-

radic simple groups, and has 808 017 424 794 512 875

886 459 904 961 710 757 005 754 368 000 000 000

elements.

T&T note: difficult
to fix this
paragraph but will
do it before CRC.

As well as having a starring role in the classification

theorem, the Monster group has remarkable and deep

connections with other areas of mathematics. Most

notably, the smallest dimension of a faithful represen-

tation [IV.12] of the Monster group is 196 883, while

the coefficient of e2π iz in the important and famous

“j-function” (see algebraic numbers [IV.3 §8]) is 196

884. Far from being an amusing coincidence, the fact

that these two numbers differ by just 1 is a manifesta-

tion of a very deep connection between the two. See

vertex operator algebras [IV.13 §4.2] for further

details.

The Navier–Stokes Equation
See the euler and navier–stokes

equations [III.23]

III.64 Normed Spaces and Banach
Spaces

It is often useful to approximate a function f by a
polynomial P . For example, if you are designing a
pocket calculator and want it to calculate logarithms
[III.25 §4], you cannot expect it to do so exactly, since
a calculator cannot handle infinitely many digits, so
instead you will get it to calculate a different func-
tion P(x) that approximates log(x) well. Polynomials
are a good choice, because they can be built up from
the basic operations of addition and multiplication.
This idea raises two questions: which functions can
you hope to approximate, and what counts as a good
approximation?

Clearly, the answer to the second question deter-
mines the answer to the first, but there is no single right
answer to the second: it is up to you what you would like
to declare to be a good approximation. However, not
all decisions are equally natural. Suppose that P and Q
are polynomials, f and g are more general functions,
and x is a real number. If P(x) is close to f(x) and
Q(x) is close to g(x), then P(x) +Q(x) will be close
to f(x) + g(x). Also, if λ is a real number and P(x)
is close enough to f(x), then λP(x) will be close to
λf(x). This informal argument suggests that the func-
tions that we can approximate well will form a vector
space [I.3 §2.3].

We have arrived, by one of many possible routes, at
the following general situation: we are given a vector
space V (consisting, in our case, of certain functions)
and we would like to be able to say, in a precise way,
what it is for two elements of the vector space to be
close.

The notion of closeness is captured by metric
spaces [III.58], so the obvious approach is to define a
metric d on the space V . Now a general principle, when
putting two structures together (in this case, the linear
structure of the vector space and the distance struc-
ture of the metric), is that the two structures should
relate to one another in a natural way. In our case,
there are two natural properties that one should ask
for. The first is translation invariance. If u and v are
two vectors and we translate them by adding w to
both, then their distance should not change: that is,
d(u+w,v+w) = d(u,v). The second is that the met-
ric should scale correctly. For example, if one doubles
two vectors u and v , then the distance between them
should double. More generally, if one multiplies u and
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v by a scalar λ, then the distance between them should
multiply by |λ|: that is, d(λu,λv) = |λ|d(u,v).

If a metric has the first of these properties, then, set-
ting w = −u, we find that d(u,v) = d(0, v −u). It fol-
lows that if we know distances from 0, then we know
all distances. Let us write ‖v‖ instead of d(0, v). Then
what we have just shown is that d(u,v) = ‖v−u‖. The
expression ‖·‖ is called a norm, and ‖v‖ is the norm
of v . The following two properties of norms are easy
to deduce from the fact that d is a metric that scales
properly.

(i) For any vector v , ‖v‖ � 0. Moreover, ‖v‖ = 0 only
if v = 0.

(ii) For any vector v and any scalar λ, ‖λv‖ = |λ|‖v‖.

We also have the so-called triangle inequality.

(iii) ‖u+v‖ � ‖u‖+‖v‖ for any two vectors u and v .

This follows from translation invariance and the trian-
gle inequality for metric spaces, since

‖u+ v‖ = d(0, u+ v) � d(0, u)+ d(u,u+ v)
= d(0, u)+ d(0, v) = ‖u‖ + ‖v‖.

In general, any function ‖·‖ on a vector space V that
has properties (i)–(iii) is called a norm on V . A vector
space with a norm on it is called a normed space. Given
a normed space V , we can say that two vectors u and
v are close if their distance ‖v −u‖ is small.

There are many important examples of normed
spaces, several of which are discussed elsewhere in this
volume. One class of examples that stands out is that
of hilbert spaces [III.37], which can be thought of as
norms given by distances that stay the same not just
when you translate but also when you rotate. Other
examples are discussed in function spaces [III.29].

Let us return to the problem of how to discuss
approximation by polynomials. The most commonly
given answers to the two questions that arose earlier
are as follows. The functions that one can approxi-
mate well are all continuous functions defined on some
closed interval [a, b] of real numbers. These functions
form a vector space which is denoted C[a,b]. To make
the notion of good approximation precise, we introduce
a norm on this space: ‖f‖ is defined to be the largest
value of |f(x)| for any x in the interval (that is, for
any x between a and b). With this definition, the dis-
tance ‖f − g‖ between two functions f and g will be
small if and only if |f(x)−g(x)| is small for every x in
the interval. In this situation one says that f uniformly

approximates g. It is not obvious that every continu-
ous function on [a, b] can be uniformly approximated
by a polynomial: the statement that it can is called the
Weierstrass approximation theorem.

Here is a different way in which normed spaces arise.
For most partial differential equations [I.3 §5.4] it
is not possible to write down a tidy formula that solves
them. However, there are many techniques for prov-
ing that solutions exist, and they usually involve limit-
ing arguments. For example, sometimes one can gen-
erate a sequence of functions f1, f2, . . . and show that
these functions “converge” to some “limiting function”
f , which, owing to the way we constructed the sequence
f1, f2, . . . , must be a solution to the equation. Again, if
we want to make sense of this, we must know what it
is for two functions to be close, which means that the
functions fn should belong to a normed space.

How can we show that these functions converge to a
limit f if we cannot already describe f ? The answer is
that most interesting normed spaces, including Hilbert
spaces and most important function spaces, have an
additional property, called completeness, which guar-
antees, under certain conditions, that limits do indeed
exist. Informally, it says that if the vectors in a sequence
v1, v2, . . . all get very close to each other when you go
far enough along the sequence, then they must con-
verge to a limit, v , that belongs to the normed space as
well. A complete normed space is known as a Banach
space, after the Polish mathematician stefan banach
[VI.84], who developed much of the general theory of
such spaces. Banach spaces have many useful proper-
ties that normed spaces do not have in general: the
completeness property can be thought of as ruling out
pathological examples.

The theory of Banach spaces is sometimes known
as linear analysis, since by mixing vector spaces and
metric spaces it mixes linear algebra and analysis.
Banach spaces arise throughout modern analysis: see,
for example, the articles in this volume on partial
differential equations [IV.16], harmonic analysis
[IV.18], and operator algebras [IV.19].

III.65 Number Fields
Ben Green

A number field K is a “finite-degree field extension” of
Q, the field of rational numbers. This means that K is
a field [I.3 §2.2] that is finite dimensional when one
regards it as a vector space [I.3 §2.3] over Q. The fol-
lowing alternative description is somewhat more con-
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crete. Take finitely many algebraic numbers α1, . . . , αk
(that is, roots of polynomials with integer coefficients)
and consider the field K of all rational functions in
the αi. (In other words, K consists of numbers like
α2

1α3/(α2
2 + 7).) Then it turns out that K is a number

field (the one thing that is not completely obvious is
that it has finite degree over Q), which we denote by
Q(α1, . . . , αk). Conversely, every number field is of this
form.

The simplest number fields are perhaps the quad-
ratic fields. These are fields of the form Q(

√
d) = {a +

b
√
d : a,b ∈ Q}, where d is an integer (which, it is

important to stress, may be negative) that is square-
free. This last condition tells us that d has no nontriv-
ial square factors. It is there for convenience so that
all the Q(

√
d) will be distinct. (For example, Q(

√
12),

if we were to allow it, would equal Q(
√

3), since
√

12 =
2
√

3.) Among the other important number fields are the
cyclotomic fields. Here we take a primitive mth root of
unity ζm (which, for concreteness, one could take to be
e2π i/m) and “adjoin” it to Q, obtaining the field Q(ζm).

Why consider number fields? Historically, an impor-
tant reason is that they allow us to factorize certain
Diophantine equations. For example, the Ramanujan–
Nagell equation x2 = 2n − 7 may be factorized as

(x +√−7)(x −√−7) = 2n

if we allow coefficients in the field Q(
√−7), while the

Fermat equation xn +yn = zn is equivalent to

xn = (z −y)(z − ζny) · · · (z − ζn−1
n y) (1)

if we allow coefficients in the field Q(ζn).
Before one can start thinking about whether such fac-

torizations are useful, it is necessary to understand the
notion of integer in a number field K. A number α ∈ K
is an (algebraic) integer if it is a root of a monic poly-
nomial with coefficients in Z: that is, a polynomial with
leading coefficient 1. For simple fields like Q(

√
d) with

d squarefree, the integers can be described quite explic-
itly. They are all the numbers of the form a+ b√d for
integers a and b, unless d ≡ 1 (mod 4), in which case
we must include more numbers: we get all numbers of
the form a+ b( 1

2 (1+
√
d)), again for integers a and b.

The set of integers in K is often denoted by OK , and it
forms a ring [III.83 §1].

Unfortunately, factorizations such as (1) are not as
helpful as they seem at first sight: OK turns out not
to be OK, at least if one expects familiar properties
of the ring Z to carry over unchanged. In particular,
unique factorization into primes fails to hold: for exam-
ple, 2·3 = (1+√−5)(1−√−5) in the field Q(

√−5). The

numbers on both sides are integers in this field, and it

is not possible to decompose any of them any further.

Amazingly, unique factorization may be restored

by embedding OK into a larger set, which consists

of objects called ideals [III.83 §2]. There is a natural

equivalence relation [I.2 §2.3] that one can place on

these ideals, and the number of equivalence classes,

called the class number and written h(K), is one of

the most important invariants in number theory: in a

certain sense, it measures “the extent to which unique

factorization fails” in the number field K. (See alge-

braic numbers [IV.3 §7] for more details.) The fact that

it is finite is one of the two basic finiteness theorems in

algebraic number theory.

When h(K) = 1, the integers OK themselves enjoy

unique factorization, without the need for extra ide-

als. This does not happen particularly often; among the

fields Q(
√−d)with d positive and squarefree, only nine

have this property, namely d = 1, 2, 3, 7, 11, 19, 43,

67, and 163. The problem of determining these num-

bers was posed by gauss [VI.26] and finally solved by

Heegner in 1952.

The fact that h(Q(
√−163)) = 1 is closely related to

some remarkable facts. For example, the polynomial

x2 + x + 41 takes prime values when x = 0,1, . . . ,39

(observe that 4×41 = 163+1), and the number eπ
√

163

is within 10−12 of an integer.

It is a well-known open problem to decide whether or

not there are infinitely many fields Q(
√
d), d > 0, with

class number 1. Gauss and many subsequent authors

have conjectured that there are.

The second basic finiteness result in algebraic num-

ber theory is Dirichlet’s unit theorem. A unit is sim-

ply some x ∈ OK such that there exists y ∈ OK with

xy = 1. The numbers 1 and −1 are always units, but

there can certainly be others: for example, 17 − 12
√

2

is a unit in Q(
√

2) (since its reciprocal is 17 + 12
√

2).

The units form an Abelian group UK under multipli-

cation. Dirichlet’s theorem states that this group has

finite rank, which means that it is generated by finitely

many of its elements.

If d > 0 is squarefree and if K = Q(
√
d), then UK

has rank 1. When d ≠ 1 (mod 4), the fact that it has

rank at least 1 is equivalent to the statement that the

Pell equation x2 − dy2 = 1 always has a nontrivial

solution. This is because the Pell equation factors as

(x−y√d)(x+y√d) = 1. The unit 17−12
√

2 in Q(
√

2)
corresponds to the solution x = 17, y = 12 of the

equation x2 − 2y2 = 1.
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For more about some of the topics discussed in this
article, see fermat’s last theorem [V.12].

III.66 Optimization and Lagrange
Multipliers
Keith Ball

1 Optimization

Soon after being introduced to calculus, most students
learn of its application to optimization: that is, to the
problem of finding the largest or smallest value of a
given differentiable function, which is usually referred
to as the objective function. A very helpful observation
is that if f is an objective function that is maximized
or minimized at x, then the tangent to the graph at
the point (x, f (x)) will be horizontal, since otherwise
we can find some value x′ close to x for which f(x′) is
higher. This means that we can narrow down the search
for the maximum and minimum values of f by looking
just at the values of f(x) for which f ′(x) = 0.

Now suppose that we have an objective function
of more than one variable, such as, for example, the
function

F(x,y) = 2x + 10y − x2 + 2xy − 3y2.

The “graph” of F is obtained by plotting the values
F(x,y) of F as heights above the corresponding points
(x,y) of the plane, so now it is a surface instead of a
curve. A smooth surface possesses not a tangent line
at each point, but a tangent plane. If F has a maximum
value, it will occur at a point where the tangent plane
is horizontal.

The tangent plane at each point (x,y) is the graph
of the linear function that best approximates F near
(x,y). For small values of h and k, F(x+h,y +k) will
be approximately equal to F(x,y) plus a function of
the form

(h, k) �→ ah+ bk,
that is, F(x,y) plus a linear function of h and k. As
explained in some fundamental mathematical def-
initions [I.3 §5.3], the derivative of F at (x,y) is this
linear map. The map can be represented by the pair
of numbers (a, b), which can in turn be thought of as
a vector in R2. This derivative vector is usually called
the gradient of the function F at the point (x,y) and
is written ∇F(x,y). In vector notation (writing x for
(x,y) and h for (h, k)), the approximation to F near
(x,y) is

F(x + h) ≈ F(x)+ h ·∇F. (1)

Thus, ∇F points in the direction in which F increases
most rapidly if you start at x, and the magnitude of∇F
is the slope of the “graph” of F in this direction.

The componentsa and b of the gradient can be calcu-
lated using partial differentiation. The number a tells
us how quickly F(x,y) changes as we vary x while
keeping y fixed: so to find a, we differentiate F(x,y) =
2x+10y−x2+2xy−3y2 with respect to x, treating y
as a constant. In this case we get the partial derivative

a = ∂F(x,y)
∂x

= 2− 2x + 2y.

Similarly,

b = ∂F(x,y)
∂y

= 10+ 2x − 6y.

Now, if we want to locate points where the tangent
plane is horizontal, then we want to find the points at
which the gradient is zero: that is, the points at which
the vector (a, b) is the zero vector. So we solve the pair
of simultaneous equations

2− 2x + 2y = 0,

10+ 2x − 6y = 0

to get x = 4, y = 3. Thus the only candidate for the
maximum is the point (4,3), where F takes the value 19.
It can be checked that 19 is indeed the maximum value
of F .

2 The Gradient and Contours

One of the most common ways of representing surfaces
(landscapes on maps, for example) is by means of con-
tour lines, or curves of constant height. In thexy-plane,
we plot several curves of the form F(x,y) = V , for var-
ious “representative” values of V . For the function we
considered earlier,

F(x,y) = 2x + 10y − x2 + 2xy − 3y2,

the values 0, 8, 14, 18, 19 yield the contour plot shown
in figure 1. The 14 contour, for example, contains all
the points at which the surface has height 14. The fig-
ure indicates that this particular surface is an elliptical
hump whose peak occurs at (4,3) and has height 19.

There is a simple geometrical relationship between
the contour lines and the gradient vector. The vector
equation (1) shows that the direction h in which F is
instantaneously constant is the direction which makes
the scalar product h ·∇F equal to 0: the direction per-
pendicular to ∇F . At each point, the gradient vector is
perpendicular to the contour through that point. This
fact underlies the method of Lagrange multipliers that
we shall discuss in the next section.
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Figure 1 A contour plot.
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Figure 2 Constrained optimization.

3 Constrained Optimization
and Lagrange Multipliers

It often happens that we are interested in the maxi-
mum or minimum value of an objective function that
depends upon several variables whose values are con-
strained to satisfy certain equations or inequalities.
Consider, for example, the following problem.

Find the maximum value of

F(x,y) = 4y − x
over all pairs (x,y) satisfying the constraint

G(x,y) = x2 − xy +y2 − x +y − 4 = 0. (2)

Figure 2 shows the curve in the xy-plane defined by
G(x,y) = 0 (an ellipse), and also a number of contour
lines of the function 4y − x. Our aim is to find the

largest that 4y − x can be if (x,y) is a point on the
curve. So we want to find the largest value of V for
which the corresponding contour 4y −x = V contains
a point on the curve. The value of V increases as the
lines move up the diagram, and the uppermost line that
touches the curve is the one labeled 4y −x = 7. So the
maximum value we are looking for is 7, and it occurs at
the point where the line 4y −x = 7 touches the curve.
It is easy to check that this point is (1,2).

How could we locate this point algebraically, rather
than by drawing? The important thing to notice is that
the optimizing line is tangent to the curve: the line and
the curve are parallel at their common point. The line
was chosen to be a contour of the function F . The curve
is also a contour: the 0 contour of G. From the discus-
sion in the previous section we know that these con-
tours are perpendicular to the gradients of F and G,
respectively (at the point in question). So the two gradi-
ent vectors are parallel to one another and are therefore
multiples of one another: ∇F = λ∇G, say.

We thus have a way to hunt for solutions to the
constrained optimization problem

maximize F(x,y) subject to G(x,y) = 0.

We look for a point (x,y) and a number λ such that

∇F(x,y) = λ∇G(x,y) and G(x,y) = 0. (3)

For our example (2), the gradient equation gives two
partial derivative equations,

−1 = λ(2x −y − 1), 4 = λ(−x + 2y + 1),

from which we conclude that

x = 2+ λ
3λ

, y = 7− λ
3λ

. (4)

If we substitute these values into the equation
G(x,y) = 0, then we obtain

13(1− λ2)
3λ2

= 0,

which has two solutions: λ = 1 and λ = −1. If we sub-
stitute λ = 1 into (4), we get the point (1,2) where F is
at its maximum. (λ = −1 yields the minimum.)

The number λ that we introduced to solve the prob-
lem is called a Lagrange multiplier. It is possible to
reformulate the problem by defining the Lagrangian

L(x,y, λ) = F(x,y)− λG(x,y)
and then condensing the equations (3) into a single
equation

∇L = 0.

The reason this works is that if we differentiate L with
respect to λ, then we obtain G(x,y), so requiring this
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partial derivative to be zero is equivalent to requiring
G(x,y) to be zero. And asking for the other two par-
tial derivatives to be zero is equivalent to requiring
that ∇F = λ∇G. The remarkable fact about this refor-
mulation is that it has turned a constrained optimiza-
tion problem involving x and y into an unconstrained
problem involving x, y , and λ.

4 The General Method of Lagrange Multipliers

In real problems we may wish to optimize a func-
tion F of many variables x1, . . . , xn under many con-
straints G1(x1, . . . , xn) = 0, G2(x1, . . . , xn) = 0, . . . ,
Gm(x1, . . . , xn) = 0. In this case we introduce a
Lagrange multiplier for each constraint and define the
Lagrangian L by the formula

L(x1, . . . , xn, λ1, . . . , λm)

= F(x1, . . . , xn)−
m∑
1

λiGi(x1, . . . , xn).

The partial derivative of L with respect to λi is zero if
and only if Gi(x1, . . . , xn) = 0. And the partial deriva-
tives with respect to the xi will all be zero if and only if
∇F =∑m1 λi∇Gi. This tells us that any direction that is
perpendicular to all the gradients ∇Gi (and therefore
lies in all their “contour hypersurfaces”) will be perpen-
dicular to the gradient ∇F as well, so we cannot find a
direction in which F increases while all the constraints
are satisfied.

Problems of this kind occur frequently in economics,
where the objective function F is a cost (which we are
probably trying to minimize), and the constraints force
us to allocate spending among different items so as to
satisfy certain overall demands. For instance, we might
want to minimize the total cost of supplies of various
different foodstuffs that between them had to satisfy
various nutritional demands. In this case, the Lagrange
multipliers have an interpretation as “notional prices.”
As we have just seen, at the optimum point we have an
equation of the form∇F =∑m1 λi∇Gi. This tells us how
much F will vary as we vary the Gi by small amounts:
that is, it tells us the costs associated with increasing
the various demands.

For a further use of Lagrange multipliers, see the
mathematics of traffic in networks [VII.4].

III.67 Orbifolds

If you take a quotient [I.3 §3.3] of the plane R2 by a
group of symmetries, then you may obtain a manifold

[I.3 §6.9]. For instance, if the group consists of all trans-
lations by an integer vector, then two points (x,y) and
(z,w) are equivalent if and only if z−x andw −y are
both integers, and the quotient space is a torus. How-
ever, if you take instead the group of all rotations about
the origin through a multiple of π/3, then every point
apart from the origin is equivalent to exactly five others,
while the origin is equivalent only to itself. The result
in this case is not a manifold, because the exceptional
behavior at the origin results in a singularity. However,
it is a well-understood kind of singularity. An orbifold
is, roughly speaking, just like a manifold, except that
whereas manifolds are locally like Rn, orbifolds are
locally like quotients of Rn by groups of symmetries,
and can therefore have a few singularities. See alge-
braic geometry [IV.7 §7] and also mirror symmetry
[IV.14 §7].

III.68 Ordinals

Loosely speaking, the ordinals are what we get if, start-
ing with 0, we use the following two procedures. We
can add 1 to whatever we have, and we can “collect
together” (or “take the limit of”) whatever we have so
far. So from 0 we would get 1, then 2, then 3, and so
on. After all of those, we could take their “limit” (i.e.,
the limit of 0,1,2,3, . . . ), which is called ω. Then we
can add 1, obtaining ω+1, then ω+2, and so on. And
then we can take the limit of all of those, to obtain an
ordinal we could write as ω+ω. And so on. Note that
this final “and so on” carries quite a lot inside it. For
example, the ordinals do not just consist of finite sums
ofωs and natural numbers, since we can take the limit
of ω,ω+ω,ω+ω+ω, . . . , which we might call ω2.

Ordinals arise in two ways (which turn out to be
closely related). First, they give a measure of the “size”
of a well-ordering. A well-ordering on a set is an order-
ing in which every (nonempty) subset has a least ele-
ment. For example, the set { 1

2 ,
2
3 ,

3
4 , . . . } ∪ { 3

2 ,
5
3 ,

7
4 , . . . }

in the reals is well-ordered, while the set {. . . , 1
4 ,

1
3 ,

1
2}

is not. The first set is order isomorphic to the ordinals
less than ω+ω, meaning that there is a bijection that
preserves the order. So one says that that set has order
type ω+ω.

Ordinals also commonly arise when one wishes to
index transfinite processes. Here “transfinite” means
“going beyond finite.” As an example, suppose that we
wish to “count, in increasing order” the elements of the
well-ordered set above. How would we do it? We would
start with 1

2 , then 2
3 , then 3

4 , and so on. But, at the end of
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all time, we would still not have reached elements like
3
2 or 5

3 . So we would start again: “at time ω” we would
count 3

2 , then at time ω+ 1 we would count 5
3 , and so

on. Thus our counting is complete by time ω+ω.
For a more detailed explanation of ordinals, includ-

ing more examples and more on how they arise in
mathematics, see set theory [IV.1 §2].

III.69 The Peano Axioms

Everyone knows what the natural numbers are: 0, 1, 2,
3, and so on. But how would we make that “and so on”
precise? Can we look at the way that we reason about
natural numbers and isolate a few basic principles, or
axioms, whose consequences do complete justice to our
intuitive picture of what the natural numbers should
be? To put it another way, when we are proving some-
thing about the natural numbers, what assumptions do
we need in order to get started?

To answer this question, let us strip things down to
the bare minimum: we have an object called 0, and
an operation s, called the successor function, which
we think of intuitively as “adding 1.” In this pared-
down language, we would like to say two things: that
all the numbers 0, s(0), s(s(0)), . . . are distinct natural
numbers, and that there are no others.

One simple way is to use the following two axioms.
The first says that 0 is not a successor:

(i) For all x, s(x) ≠ 0.

The second says that distinct elements stay distinct
when you take their successors:

(ii) For all x and y , if x ≠ y , then s(x) ≠ s(y).

Note that this implies, for example, that s(s(s(0))) ≠
s(0), for if they were equal, then, from rule (ii), we could
deduce that s(s(0)) = 0, contradicting rule (i).

Now, how can we say that there are no other natural
numbers? One would like to say that, for every x, either
x = 0 or x = s(0) or x = s(s(0)) or · · · , but that is an
infinitely long statement, and those are definitely not
allowed. After the failure of that very natural attempt,
one might guess that there is no way to achieve the goal,
but in fact there is a brilliant solution: induction. Here
is an axiom that expresses the principle of induction.

(iii) Let A be any subset of the natural numbers with
the following properties: 0 ∈ A, and s(x) ∈ A
whenever x ∈ A. Then A must be the set of all
natural numbers.

Note that this does express our intuitive idea that there
are no “extra” natural numbers, since we can take A to
be the set of all the numbers 0, s(0), s(s(0)), . . . that
were on our list.

Rules (i), (ii), and (iii) are called the Peano axioms for
the natural numbers. As explained above, they “charac-
terize” the natural numbers, in the sense that all rea-
soning about the natural numbers may be reduced or
rewritten in such a way that the only assumptions one
needs are the Peano axioms.

There is a related system used in logic, called the first-
order Peano axioms. The idea here is that we want to
express the Peano axioms in the language of first-order
logic. This means that we are allowed variables (that
are interpreted as ranging over the natural numbers),
as well as the symbols 0 and s, logical connectives, and
the like, but nothing more: so there is no “member of”
symbol, and no sets are allowed. (However, for technical
reasons one does allow symbols for “plus” and “times.”)

To give an idea of what is allowed and what is not,
consider the statements “there are infinitely many per-
fect squares” and “every infinite set of positive inte-
gers contains either infinitely many odd numbers or
infinitely many even numbers.” With a little effort, we
can express the first of these statements in first-order
logic, as follows:

(∀m)(∃n)(∃x) xx =m+n.
In words, this says that for everym you can find a per-
fect square of the formm+n (which is how we express
the fact that it is larger than m). However, in order to
express the second statement, we find ourselves want-
ing to write (∀A), where A ranges over all possible sub-
sets of the natural numbers, rather than all possible
elements: this is the main thing that is not allowed in
first-order logic.

By this criterion, rules (i) and (ii) are fine, but rule
(iii) is not. Instead, we have to use an “axiom scheme,”
which is an infinite set of axioms, one for each first-
order statement p(x). So our version of rule (iii) is this:
for each statement p(x), we have an axiom saying that
if p(0) is true, and p(x) implies p(s(x)), then p(x) is
true for all x.

Note that these axioms do not have the full strength
of the usual Peano axioms. For instance, there are only
countably many possible formulas p(x), whereas there
are uncountably many sets A. It turns out that in fact
there are “nonstandard” models of these axioms, mean-
ing structures other than the natural numbers that
satisfy the axioms of first-order Peano arithmetic.
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Actually, one also allows parameters in the state-
ments p(x); for example, p(x) could be the statement
“there exists zwithx = y+z,” which would correspond
to the set of all natural numbers greater than or equal
to y , and would therefore depend on y . And one also
adds some axioms saying how plus and times behave
(for example, commutativity of addition). This whole
collection of axioms is known as Peano arithmetic, or
PA for short.

See model theory [IV.2] for more on some of the
topics discussed in this article.

III.70 Permutation Groups
Martin W. Liebeck

Let S be a set. A permutation of S is a function from
S to S that is both injective and surjective—in other
words, a function that “rearranges” the elements of S.
For example, if S = {1,2,3}, then the function a : S → S
that sends 1 to 3, 2 to 1, and 3 to 2 is a permutation of
S; so is the function b that sends 1 to 3, 2 to 2, and 3 to
1; whereas the function c that sends 1 to 3, 2 to 1, and 3
to 1 is not a permutation. An example of a permutation
of the set of real numbers R is the function x �→ 8− 2x.

From the point of view of finite group theory, the
most important permutations to study are those of the
set In = {1,2, . . . , n}, where n is a positive integer.
Let Sn denote the set of all permutations of In. So, for
example, the permutations a and b defined in the pre-
vious paragraph lie in S3. To count how many permuta-
tions there are altogether in Sn, observe that, for a per-
mutation f : In → In, there are n choices for f(1), then
n− 1 choices for f(2) (we can choose anything differ-
ent from f(1)), then n−2 for f(3), and so on, until we
have just 1 choice for f(n). Therefore the total number
of permutations in Sn is n(n− 1)(n− 2) · · ·1 = n!.

If f and g are permutations of a set S, their composi-
tion f ◦g is defined by f ◦g(s) = f(g(s)) for all s ∈ S,
and it is quite easy to see that f ◦ g is also a permuta-
tion of S. It is usual to drop the “◦” symbol and write
just fg instead of f ◦ g. For example, if a,b ∈ S3 are
as in the first paragraph, then ab ∈ S3 sends 1 to 2, 2
to 1, and 3 to 3, while ba sends 1 to 1, 2 to 3, and 3 to
2. Notice that ab �= ba.

For any set S, the identity function ι : S → S, defined
by ι(s) = s for all s ∈ S, is a permutation of S; and if f
is a permutation of S, then there is an inverse permu-
tation f−1 that sends everything back to where it came
from and therefore satisfies ff−1 = f−1f = ι. For
example, the inverse of the above permutation a ∈ S3

is the permutation that sends 1 to 2, 2 to 3, and 3 to
1. Also, for any permutations f , g, h of S, we have
f(gh) = (fg)h, since both sides send any s ∈ S to
f(g(h(s))).

Thus, the set of all permutations of S, together with
the binary operation [I.2 §2.4] of composition, satis-
fies the axioms for a group [I.3 §2.1]. In particular, Sn is
a finite group of size n!, known as the symmetric group
of degree n.

There is a neat way of representing permutations suc-
cinctly, known as the cycle notation. It is best explained
with an example. Let d ∈ S6 be the permutation 1 �→ 3,
2 �→ 5, 3 �→ 6, 4 �→ 4, 5 �→ 2, 6 �→ 1. We can represent
this more economically by writing 1 �→ 3 �→ 6 �→ 1, and
4 �→ 4. We say the symbols 1, 3, 6 form a cycle of d (of
length 3); similarly, 2, 5 form a cycle of length 2, and
4 a cycle of length 1. We then compress our notation
even further and write d = (1 3 6) (2 5) (4), indicating
that each number 1, 3, 6 in the first cycle is sent to the
next one, except for the last which is sent back to the
first, and likewise for the second and third cycles. This
is the cycle notation for d; notice that the cycles have
no symbols in common—they are called disjoint cycles.
It is not too hard to see that every permutation in Sn
can be expressed as a product of disjoint cycles; this
is what we mean by the cycle notation for a permu-
tation. For example, in cycle notation, the six permu-
tations of S3 are ι, (1 2) (3), (1 3) (2), (2 3) (1), (1 2 3),
and (1 3 2). (The permutations a and b in the first para-
graph are (1 3 2) and (1 3) (2), respectively.) You might
like to while away a few minutes by working out the
multiplication table of S3.

The cycle-shape of a permutation g is the sequence
of numbers we get by writing down the lengths of the
disjoint cycles in the cycle notation for g, in decreasing
order. For example, the cycle-shape of the permutation
(1 6 3) (2 4) (5 8) (7) (9) in S9 is (3,2,2,1,1), or more
succinctly (3,22,12).

One can define the powers of a permutation f ∈ Sn
in a natural way—namely, f 1 = f , f 2 = ff , f 3 = f 2f ,
and so on. For example, if e = (1 2 3 4) ∈ S4, then
e2 = (1 3) (2 4), e3 = (1 4 3 2), and e4 = ι. The order
of a permutation f ∈ Sn is defined to be the smallest
positive integer r such that f r = ι: that is, the smallest
number of times we have to do f to send everything
back to where it came from. So the order of the 4-cycle
e above is 4. In general, the order of an r -cycle (i.e., a
cycle of length r ) is equal to r , and the order of a per-
mutation in cycle notation is equal to the least common
multiple of the lengths of the (disjoint) cycles.
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It is often useful to be able to work out the order of
a permutation. Here is one such instance. Suppose we
shuffle a pack of eight cards in the following way: the
pack is divided into two equal parts and then “inter-
laced,” so that if the original order was 1,2,3,4, . . . ,
the new order is 1,5,2,6, . . . . How many times must
this shuffle be repeated before the cards are again in
the original order? Well, the shuffle gives the permu-
tation of the eight card positions sending 1 to 1, 2
to 5, 3 to 2, 4 to 6, and so on, which in cycle nota-
tion is (1) (2 5 3) (4 6 7) (8). This has order 3, so the
cards return to their original order after three shuffles.
Things get quite interesting if we consider the same
problem for different numbers of cards—you might like
to try it yourself with fifty-two cards, for instance.

There is one slightly more subtle aspect of permu-
tations which is important for group theory: namely,
the theory of even and odd permutations. Again, this
is best illustrated by example. Take n = 3, and let x1,
x2, x3 be three variables. Let us think of the permu-
tations in S3 as moving these variables around rather
than the numbers 1, 2, and 3. So, for instance, we
shall take the permutation (1 3 2) to send x1 to x3,
x2 to x1, and x3 to x2. Now let ∆ be the expression
∆ = (x1 − x2)(x1 − x3)(x2 − x3). We can apply per-
mutations in S3 to ∆ in an obvious way: for example,
(1 2 3) sends ∆ to (x2 − x3)(x2 − x1)(x3 − x1). Notice
that this is just the expression for ∆ with two of the
brackets, (x1 − x2) and (x1 − x3), reversed. So (1 2 3)
sends ∆ to ∆. However, if we apply (1 2) (3) to ∆, we
get (x2 − x1)(x2 − x3)(x1 − x3) = −∆. You can see
that each permutation in S3 sends ∆ to either +∆ or
−∆. Call those permutations that send ∆ to +∆ even
permutations and those that send ∆ to −∆ odd permu-
tations. Check that ι, (1 2 3), and (1 3 2) are even, while
(1 2) (3), (1 3) (2), and (2 3) (1) are odd.

The definition of even and odd permutations for gen-
eral n is very similar to this example. Let x1, . . . , xn
be variables, and take the permutations in Sn to
move these variables around rather than the symbols
1,2, . . . , n. Define ∆ to be the product of all xi −xj for
i < j. Just as in the example, we can apply any per-
mutation g ∈ Sn to ∆, and the result will be either
+∆ or −∆. Define the signature of g to be the num-
ber sgn(g) ∈ {+1,−1} such that g(∆) = sgn(g)∆. This
defines the signature function sgn : Sn → {+1,−1}.
Then a permutation g ∈ Sn is even if sgn(g) = +1, and
is odd if sgn(g) = −1.

It follows easily from the definition that

sgn(gh) = sgn(g) sgn(h)

for any g,h ∈ Sn, and also that the signature of any
2-cycle is −1. Since an r -cycle (a1 a2 · · · ar ) can be
expressed as a product (a1 ar )(a1 ar−1) · · · (a1 a2) of
2-cycles, the signature of the r -cycle is (−1)r−1. Hence,
if g ∈ Sn has cycle-shape (r1, r2, . . . , rk), then

sgn(g) = (−1)r1−1(−1)r2−1 · · · (−1)rk−1.

This makes it easy to work out the signature of any per-
mutation. For example, the even permutations in S5 are
those that have cycle-shape (15), (22,1), (3,12), or (5).
If you count these, you will find that there are sixty even
permutations in S5 altogether, which is exactly half of
the total of 5! = 120 permutations in S5. In general, the
number of even permutations in Sn is 1

2n!.

So what is the point of this complicated definition?
The answer is that the set of all even permutations in Sn
forms a subgroup of size 1

2n!, known as the alternating
group of degree n, and written as An. The alternating
groups are very important examples of finite groups,
because of the fact that, for n � 5, An is a simple
group—that is, its only normal subgroups [I.3 §3.3]
are the identity subgroup and An itself (see the clas-
sification of finite simple groups [V.8]). For exam-
ple, A5 is a simple group of size 60, and in fact is the
smallest non-Abelian finite simple group.

III.71 Phase Transitions

If you heat up a block of ice, then it turns into water.
This very familiar phenomenon is actually rather mys-
terious, because it shows that the properties of the
chemical H2O do not depend continuously on temper-
ature: the block of ice goes straight from a solid to a
liquid, rather than doing so by a process of gradual
softening.

This is an example of a phase transition. Phase transi-
tions tend to occur in systems that involve a large num-
ber of particles with “local” interactions—that is, where
the behavior of one particle is directly influenced only
by the particles in its immediate vicinity.

Such systems can be modeled mathematically, and
the study of these models belongs to the area known as
statistical physics. For further discussion of such mod-
els, see probabilistic models of critical phenom-
ena [IV.26].

III.72 π

What makes one number more fundamental and impor-
tant, mathematically speaking, than another? Why, for
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instance, would almost everybody agree that 2 is more
important than 43

32 ? One possible answer is that what
really matters about a number is its properties, and in
particular any interesting properties it might have that
distinguish it from all other numbers. Of course, we
now have to decide what counts as an interesting prop-
erty: for example, why do we not regard it as interesting
that 43

32 is the only number that gives you 43
16 when you

double it? An obvious reason is that there is an analo-
gous property for every number x you might care to
choose: x is the only number that gives you 2x when
you double it. By contrast, the property “is the smallest
prime number” does not mention any specific number
and is easily stated in terms of a concept, that of “prime
number,” whose importance is itself easy to explain.
This property must apply to exactly one number, so it
is likely that that number will have an important part to
play in mathematics, and indeed it does. (As it happens,
43
32 is conjectured to be an important critical exponent
in statistical physics, which means that it can be sin-
gled out as an interesting number, though still nothing
like as fundamental as 2.)

Everybody agrees thatπ is one of the most important
numbers in mathematics, and it is easy to justify this
assessment by the criterion of the previous paragraph,
because π has an abundance of properties—so many
that when π appears unexpectedly in a calculation, one
is not unduly surprised. For example, the following is
a famous theorem of Euler:

∞∑
n=1

1
n2
= 1+ 1

4
+ 1

9
+ 1

16
+ 1

25
+ · · · = π

2

6
.

What on earth, one might wonder, has π to do with
adding up reciprocals of squares? This is a perfectly
legitimate question, but the idea that there could in
principle be a connection is not, to an experienced
mathematician, a surprise. A very common way to
prove mathematical identities is to show that the two
sides of the identity are different ways of evaluating
the same quantity. In this case, one can use a basic
fact from fourier analysis [III.27], known as Parse-
val’s identity, which states the following. If f : R→ C is
a periodic function with period 2π , and for every inte-
ger n (positive or negative) we define its nth Fourier
coefficient an by the formula

an = 1
2π

∫ π
−π
f(x)einx dx,

then
1

2π

∫ π
−π
|f(x)|2 dx =

∞∑
n=−∞

|an|2.

If you now take as f the function that is 1 whenever x
is between (2n− 1

2 )π and (2n+ 1
2 )π for some integer

n, and 0 otherwise, then you find that the left-hand side
works out as 1

2 . You also find, after a small calculation,
that |an|2 = 1/πn2 when n is odd, that |a0|2 = 1

4 ,
and that |an|2 = 0 whenever n is even and nonzero.
Therefore,

1
2
= 1

4
+ 1
π2

∑
nodd

1
n2
.

Bearing in mind that n2 = (−n)2, we can deduce easily
that

π2

8
= 1+ 1

32
+ 1

52
+ 1

72
+ · · · .

This closely resembles the identity we were trying to
prove, which we can get by noticing that the right-hand
side is equal to

∑
n 1/n2 −∑n 1/(2n)2, which is three

quarters of
∑
n 1/n2. Therefore,

∑
n 1/n2 = π2/6.

Now we have a reason for the appearance of π : it
comes up in the formula for the Fourier coefficients.
What is more, its appearance there can be explained as
well. A periodic function on R is more naturally thought
of as a function defined on the unit circle. The Fourier
coefficient an is a certain average defined on the unit
circle, so we have to divide by the length of the circle,
which is 2π .

What, then, is π? Well, we have just seen what is per-
haps the most elementary definition: it is the ratio of
the circumference of a circle to its diameter. But what
makes π so interesting is that it has many different
defining properties. Here are a few more of them.

(i) Define a function sinx to be equal to the sum of
the power series

x − x
3

3!
+ x

5

5!
− · · · .

Thenπ is the smallest positive numberx such that
sinx = 0. (For more on sinx, see trigonometric
functions [III.94].)

(ii) π =
∫ 1

−1

dx√
1− x2

.

(iii)
π
2
=
∫ 1

−1

√
1− x2 dx.

(iv)
π
4
=
(

1− 1
3
+ 1

5
− 1

7
+ 1

9
− · · ·

)
.

(v)
√

2π =
∫∞
−∞

e−x
2

dx.

(vi) π =
∞∑
k=0

1
16k

(
4

8k+ 1
− 2

8k+ 4

− 1
8k+ 5

− 1
8k+ 6

)
.
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The integrals on the right-hand sides of the second

and third properties above are expressions for half

the circumference of the unit circle and half its area,

respectively. So those definitions are analytical expres-

sions of the geometrical facts that a unit circle has

circumference 2π and area π , respectively.

The fifth property tells us what constant to put in

front of e−x2
to make it into the famous normal dis-

tribution [III.73 §5]. (Why should π come into it? One

can give several reasons. One is that the function e−x2

has a special role in Fourier analysis, and so does π .

Another fundamental property of e−x2
is that the func-

tion f(x,y) = e−(x2+y2) is rotationally invariant, and

rotations involve circles, which involve π .)

The last formula above is a remarkable recent discov-

ery of David Bailey, Peter Borwein, and Simon Plouffe.

The presence of the factor 1/16k leads to a way of calcu-

lating hexadecimal digits ofπ (that is, digits to base 16),

without needing to work out all the earlier digits first. It

has been used to work out digits that are astonishingly

far along the hexadecimal expansion: for example, it is

known that the trillionth hexadecimal digit is 8.

A fact that seems paradoxical to many nonmathe-

maticians is that a number as natural as π turns out

to be irrational, and also transcendental [III.43].PUP: the article
called ‘Irrational
and
Transcendental
Numbers’ is being
cross-referenced
here, so rather
than repeat [III.43],
I’ve just put
‘irrational’ in
smallcaps. OK?

However, this is not surprising at all: the defining prop-

erties of π are simple, but they do not lead to solutions

of polynomial equations, so it would be extraordinary

if π were not transcendental. Similarly, it would be a

major surprise if one could find any pattern in the dec-

imal digits of π . Indeed, π is conjectured to be normal

to base 10, meaning that every sequence of digits occurs

with about the frequency you would expect: for exam-

ple, if you look at pairs of consecutive digits, then you

expect 35 to occur about a hundredth of the time. How-

ever, this conjecture seems to be very hard, and it has

not even been proved that the decimal expansion of π
contains all the digits from 0 to 9 infinitely often.

III.73 Probability Distributions
James Norris

1 Discrete Distributions

When we toss a coin, we have no idea whether it will

land heads or tails. However, there is a different sense

in which the behavior of the coin is highly predictable:

if it is tossed many times, then the proportion of heads

is very likely to be close to 1
2 .

In order to study this phenomenon mathematically,
we need to model it, and this is done by defining a
sample space, which represents the set of possible out-
comes, and a probability distribution on that space,
which tells you their probabilities. In the case of a coin,
the natural sample space is the set {H,T}, and the obvi-
ous distribution assigns the number 1

2 to each element.
Alternatively, since we are interested in the number of
heads, we could use the set {0,1} instead: after one
toss, there is a probability of 1

2 that the number of
heads is 0 and a probability of 1

2 that it is 1. More
generally, a (discrete) sample space is simply a set Ω,
and a probability distribution on Ω is a way of assign-
ing a nonnegative real number to each element of Ω in
such a way that the sum of all these numbers is 1. The
number assigned to a particular element of Ω is then
interpreted as the probability that some corresponding
outcome will occur, the total probability being 1.

If Ω is a set of size n, then the uniform distribution
onΩ is the probability distribution that assigns a prob-
ability of 1/n to each element ofΩ. However, it is often
more appropriate to assign different probabilities to
different outcomes. For example, given any real num-
ber p between 0 and 1, the Bernoulli distribution with
parameter p on the set {0,1} is the distribution that
assigns the number p to 1 and 1 − p to 0. This can be
used to model the toss of a biased coin.

Suppose now that we toss an unbiased coin n times.
If we are interested in the outcome of every toss, then
we would choose the sample space consisting of all pos-
sible sequences of 0s and 1s of lengthn. For instance, if
n = 5, a typical element of the sample space is 01101.
(This particular element represents the outcome tails,
heads, heads, tails, heads, in that order.) Since there are
2n such sequences and they are all equally likely, the
appropriate distribution on this space will be the uni-
form one, which assigns a probability of 1/2n to each
sequence.

But what if we are interested not in the particular
sequence of heads and tails but just in the total number
of heads? In that case, we could take as our sample
space the set {0,1,2, . . . , n}. The probability that the
total number of heads is k is 2−n times the number of
sequences of 0s and 1s that contain exactly k 1s. This
number is (

n
k

)
= n!
k!(n− k)! ,

so the probability we assign to k is pk =
(
n
k

)
2−n.

More generally, for a sequence of n independent
experiments, each with the same probability p of suc-
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cess, the probability of a given sequence of k successes

and n − k failures is pk(1 − p)n−k. So, the probability

of having exactly k successes is pk =
(
n
k

)
pk(1− p)n−k.

This is called the binomial distribution with parameters

n and p. It models the number of heads if you toss a

biased coin n times, for example.PUP: while I too
find it confusing,
Tim has convinced
me that the use of
‘biased coin’ and
‘unbiased coin’ in
this article is
correct. OK?

Suppose we perform such experiments for as long

as we need to in order to obtain one success. When k
experiments are performed, the probability of getting

k−1 failures followed by a success is pk = (1−p)k−1p.

Therefore, this formula gives us the distribution of the

number of experiments up to the first success. It is

called the geometric distribution of parameter p. In par-

ticular, the number of tosses of a fair coin needed to get

the first head has a geometric distribution of parame-

ter 1
2 . Notice that our sample space is now the set of

all nonnegative integers—in particular, it is infinite. So

in this case the condition that the probabilities add up

to 1 is requiring that a certain infinite series (the series∑∞
k=1 pk) converges to 1.

Now let us imagine a somewhat more complicated

experiment. Suppose we have a radioactive source that

occasionally emits an alpha particle. It is often reason-

able to suppose that these emissions are independent

and equally likely to occur at any time. If the average

number of emissions per minute is λ, say, then what is

the probability that during any given minute there will

be k particles emitted?

One way to think about this question is to divide up

the minute into n equal intervals, for some large n. If n
is large enough, then the probability of two emissions

occurring in the same interval is so small that it can

be ignored, and therefore, since the average number of

emissions per minute is λ, the probability of an emis-

sion during any given interval must be approximately

λ/n. Let us call this number p. Since the emissions are

independent, we can now regard the number of emis-

sions as the number of successes when we do n trials,

each with probability p of success. That is, we have the

binomial distribution with parameters n and p, where

p = λ/n.

Notice that as n gets larger, p gets smaller. Also, the

approximations just made become better and better. It

is therefore natural to let n tend to infinity and study

the resulting “limiting distribution.” It can be checked

that, in the limit as n → ∞, the binomial probabilities

converge to pk = e−λλk/k!. These numbers define a dis-

tribution on the set of all nonnegative integers, known

as the Poisson distribution of parameter λ.

2 Probability Spaces

Suppose that I throw a dart at a dartboard. Not being

very good at darts, I am not able to say very much about

where the dart will land, but I can at least try to model

it probabilistically. The obvious sample space to take

consists of a circular disk, the points of which represent

where the dart lands. However, now there is a problem:

if I look at any particular point in the disk, the prob-

ability that the dart will land at precisely that point is

zero. So how do I define a probability distribution?

A clue to the answer lies in the fact that it seems to

be perfectly easy to make sense of a question such as

“What is the probability that I will hit the bull’s-eye?”

In order to hit the bull’s-eye, the dart has to land in

a certain region of the board, and the probability of

this happening does not have to be zero. It might, for

instance, be equal to the area of the bull’s-eye region

divided by the total area of the board.

What we have just observed is that even if we cannot

assign probabilities to individual points in the sample

space, we can still hope to give probabilities to subsets.

That is, ifΩ is a sample space andA is a subset ofΩ, we

can try to assign a number P(A) between 0 and 1 to the

set A. This represents the probability that the random

outcome belongs to the set A, and can be thought of as

something like a notion of “mass” for the set A.

For this to work, we need P(Ω) to be 1 (since the

probability of getting something in the sample space

must be 1). Also, if A and B are disjoint subsets of Ω,

then P(A∪B) should be P(A)+P(B). From this it follows

that if A1, . . . , An are all disjoint, then P(A1∪· · ·∪An)
is equal to P(A1)+· · ·+P(An). Actually, it turns out to

be important that this should be true not just for finite

unions but even for countably infinite [III.11] ones

as well. (Related to this point is the fact that one does

not attempt to define P(A) for every subset A of Ω but

just for measurable subsets [III.57]. For our purposes,

it is sufficient to regard P(A) as given whenever A is a

set we can actually define.)

A probability space is a sample spaceΩ together with

a function P, defined on all “sensible” subsets A of Ω,

that satisfies the conditions mentioned in the previ-

ous two paragraphs. The function P itself is known as

a probability measure or probability distribution. The

term probability distribution is often preferred when we

specify P concretely.
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3 Continuous Probability Distributions

There are three particularly important distributions
defined on subsets of R, of which two will be discussed
in this section. The first is the uniform distribution on
the interval [0,1]. We would like to capture the idea
that “all points in [0,1] are equally likely.” In view of
the problems mentioned above, how should we do this?

A good way is to take seriously the “mass” metaphor.
Although we cannot calculate the mass of an object by
adding up the masses of all the infinitely small points
that make up the object, we can assign to those points a
density and integrate it. That is exactly what we shall do
here. We assign a probability density of 1 to each point
in the interval [0,1]. Then we determine the probability
of a subinterval, [ 1

3 ,
1
2 ] say, by calculating the integral

P([ 1
3 ,

1
2 ]) =

∫ 1/2
1/3 1 dx = 1

6 . More generally, the probabil-
ity associated with an interval [a, b] will just be its
length b − a. The probability of a union of intervals
will then be the sum of the lengths of those intervals,
and so on.

This “continuous” uniform distribution sometimes
arises naturally from requirements of symmetry, just
like its discrete counterpart. It can also arise as a lim-
iting distribution. For instance, suppose that a hermit
lives deep in a cave, away from any clocks or sources
of natural light, and that each “day” he spends lasts
for a random length of time between twenty-three and
twenty-five hours. To start with, he will have some idea
of what the time is, and be able to make statements
such as, “I’m having lunch now, so it’s probably light
outside,” but after a few weeks of this regime, he will
no longer have any idea: any outside time will be just
as likely as any other.

Now let us look at a rather more interesting density
function, which depends on the choice of a positive con-
stant λ. Consider the density function f(x) = λe−λx ,
defined on the set of all nonnegative real numbers. To
work out the probability associated with an interval
[a, b], we now calculate∫ b

a
f(x)dx =

∫ b
a
λe−λx dx = e−λa − e−λb.

The resulting probability distribution is called the expo-
nential distribution with parameter λ. The exponen-
tial distribution is appropriate if we are modeling the
time T of a spontaneous event, such as the time it
takes for a radioactive nucleus to decay, or for the next
spam email to arrive. The reason for this is based on
the assumption of memorylessness: for example, if we
know that the nucleus remains intact at time s, the

probability that it will remain intact until a later time

s+t is the same as the original probability that it would

remain intact to time t. Let G(t) represent the prob-

ability that the nucleus remains intact up to time t.
Then the probability that it remains intact up to time

s + t given that it has remained intact up to time s is

G(s + t)/G(s), so this has to equal G(t). Equivalently,

G(s + t) = G(s)G(t). The only decreasing functions

that have this property are exponential functions

[III.25], that is, functions of the form G(t) = e−λt for

some positive λ. Since 1 − G(t) represents the proba-

bility that the nucleus decays before time t, this should

equal
∫ t
0 f(x)dx, from which it is easy to deduce that

f(x) = λe−λx .

We shall come to the third, and most important,

distribution below.

4 Random Variables, Mean, and Variance

Given a probability space, an event is defined to be a

(sufficiently nice) subset of that space. For example, if

the probability space is the interval [0,1] with the uni-

form distribution, then the interval [ 1
2 ,1] is an event: it

represents a randomly chosen number between 0 and

1 turning out to be at least 1
2 . It is often useful to think

not just about random events, but also about random

numbers associated with a probability space. For exam-

ple, let us look once again at a sequence of tosses of a

biased coin that has probability p of coming up heads.

The natural sample space associated with this exper-

iment is the set Ω of all sequences ω of 0s and 1s.

Earlier, we showed that the probability of obtaining k
heads is pk =

(
n
k

)
pk(1 − p)k, and we described that

as a distribution on the sample space {0,1,2, . . . , n}.
However, it is in many ways more natural, and often

far more convenient, to regard the original setΩ as the

sample space and to define a function X from Ω to R

to represent the number of heads: that is, X(ω) is the

number of 1s in the sequence ω. We then write

P(X = k) = pk =
(
n
k

)
pk(1− p)k.

A function like this is called a random variable. If X is a

random variable and it takes values in a set Y , then the

distribution of X is the function P defined on subsets

of Y by the formula

P(A) = P(X ∈ A) = P({ω ∈ Ω : X(ω) ∈ A}).
It is not hard to see that P is indeed a probability

distribution on Y .
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For many purposes, it is enough to know the distri-

bution of a random variable. However, the notion of a

random variable defined on a sample space captures

our intuition of a random quantity, and it allows us to

ask further questions. For example, if we were to ask

for the probability that there were k heads given that

the first and last tosses had the same outcome, then

the distribution of X would not provide the answer,

whereas our richer model of regarding X as a function

defined on sequences would do so. Furthermore, we

can talk of independent random variables, X1, . . . , Xn
say, meaning that the subset of Ω where Xi(ω) ∈ Ai
for all i has probability given by the product P(X1 ∈
A1) × · · · × P(Xn ∈ An) for all possible sets of values

Ai.
Associated with a random variable X are two impor-

tant numbers that begin to characterize it, called the

mean or expectation E(X) and the variance var(X).
Both these numbers are determined by the distribu-

tion of X. If X takes integer values, with distribution

P(X = k) = pk, then

E(X) =
∑
k
kpk, var(X) =

∑
k
(k− µ)2pk,

where µ = E(X). The mean tells us how big X is on

average. The variance, or more precisely its square root,

the standard deviation σ = √var(X), tells us how far

away X lies, typically, from its mean. It is not hard to

derive the following useful alternative formula for the

variance:

var(X) = E(X2)− E(X)2.

To understand the meaning of the variance, considerNote for PUP: from
here to the end of
this section has
changed
significantly since
the proofreading
proof, but the rest
of the article is
unchanged.

the following situation. Suppose that one hundred peo-

ple take an exam and you are told that their average

mark is 75%. This gives you some useful information,

but by no means a complete picture of how the marks

are distributed. For example, perhaps the exam con-

sisted of four questions of which three were very easy

and one almost impossible, so that all the marks were

clustered around 75%. Or perhaps about fifty people got

full marks and fifty got around half marks. To model

this situation let the sample space Ω consist of the

hundred people and let the probability distribution be

the uniform distribution. Given a random personω, let

X(ω) be that person’s mark. Then in the first situation,

the variance will be small, since almost everybody’s

mark is close to the mean of 75%, whereas in the second

it is close to 252 = 625, since almost everybody’s mark

was about 25 away from the mean. Thus, the variance

helps us to understand the difference between the two
situations.

As we discussed at the start of this article, it is known
from experience that the “expected” number of heads
in a sequence of n tosses of a fair coin is around 1

2n,
in the sense that the proportion is usually close to 1

2 .
It is not hard to work out that, if X models the num-
ber of heads in n tosses, that is, if X is binomially dis-
tributed with parameters n and 1

2 , then E(X) = 1
2n.

The variance of X is 1
4n, so the natural distance scale

with which to measure the spread of the distribution
is σ = 1

2

√
n. This allows us to see that X/n is close to

1
2 with probability close to 1 for large n, in accordance
with experience.

More generally, ifX1, X2, . . . , Xn are independent ran-
dom variables, then var(X1+· · ·+Xn) = var(X1)+· · ·+
var(Xn). It follows that if all the Xi have the same dis-
tribution with mean µ and variance σ2, then the vari-
ance of the sample average X̄ = n−1(X1 + · · · +Xn) is
n−2(nσ2) = 1

2σ
2, which tends to zero as n tends to

infinity. This observation can be used to prove that, for
any ε > 0, the probability that |X̄ − µ| is greater than ε
tends to zero as n tends to infinity. Thus, the sample
average “converges in probability” to the mean µ.

This result is called the weak law of large num-
bers. The argument sketched above implicitly assumes
that the random variables have finite variance, but this
assumption turns out not to be necessary. There is also
a strong law of large numbers, which states that, with
probability 1, the sample average of the first n vari-
ables converges to µ as n tends to infinity. As its name
suggests, the strong law is stronger than the weak law,
in the sense that the weak law can be deduced from
the strong law. Notice that these laws make long-term
predictions of a statistical kind about the real events
that we have chosen to model using probability theory.
Moreover, these predictions can be checked experimen-
tally, and the experimental evidence confirms them.
This provides a convincing scientific justification for
our models.

5 The Normal Distribution and
the Central Limit Theorem

As we have seen, for the binomial distribution with
parameters n and p, the probability pk is given by the
formula

(
n
k

)
pk(1− p)n−k. If n is large and you plot the

points (k,pk) on a graph, then you will notice that they
lie in a bell-shaped curve that has a sharp peak around
the mean np. The width of the tall part of the curve has
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order of magnitude
√
np(1− p), the standard deviation

of the distribution. Let us assume for simplicity thatnp
is an integer, and define a new probability distribution

qk by qk = pk+np . The points (k, qk) peak at k = 0. If

you now rescale the graph, compressing horizontally

by a factor of
√
np(1− p) and expanding vertically by

the same factor, then the points will all lie close to the

graph of

f(x) = 1√
2π

e−x
2/2.

This is the density function of a famous distribution

known as the standard normal distribution on R. It is

also often called the Gaussian distribution.

To put this differently, if you toss a biased coin a large

number of times, then the number of heads, minus its

mean and divided by its standard deviation, is close to

a standard normal random variable.

The function (1/
√

2π)e−x2/2 occurs in a huge variety

of mathematical contexts, from probability theory to

fourier analysis [III.27] to quantum mechanics. Why

should this be? The answer, as it is for many such ques-

tions, is that there are properties that this function has

that are shared by no other function.

One such property is rotational invariance. Suppose

once again that we are throwing a dart at a dartboard

and aiming for the bull’s-eye. We could model this as

the result of adding two independent normal distri-

butions at right angles to each other: one for the x-

coordinate and one for the y-coordinate (each having

mean 0 and variance 1, say). If we do this, then the two-

dimensional “density function” is given by the formula

(1/2π)e−x2/2e−y2/2, which can conveniently be written

as (1/2π)e−r 2/2, where r denotes the length of (x,y).
In other words, the density function depends only on

the distance from the origin. (This is why it is called

“rotationally invariant.”) This very appealing property

holds in more dimensions as well. And it turns out to

be quite easy to check that (1/2π)e−r 2/2 is the only

such function: more precisely, it is the only rotation-

invariant density function that makes the coordinates

x and y into independent random variables of vari-

ance 1. Thus, the normal distribution has a very special

symmetry property.

Properties like this go some way toward explaining

the ubiquity of the normal distribution in mathemat-

ics. However, the normal distribution has an even more

remarkable property, which leads to its appearance

wherever mathematics is used to model disorder in

the real world. The central limit theorem states that,

for any sequence of independent and identically dis-
tributed random variables X1, X2, . . . (with finite mean
µ and nonzero finite variance σ2), we have

lim
n→∞P(X1 + · · · +Xn � nµ +√nσx)

=
∫ x
−∞

1√
2π

e−y
2/2 dy

for every real number x. The expected value of X1 +
· · · + Xn is nµ and its standard deviation is

√
nσ , so

another way of thinking about this is to let Yn = (X1 +
· · ·+Xn−nµ)/√nσ . This rescalesX1+· · ·+Xn to have
mean 0 and variance 1, and the probability becomes
the probability that Yn � x. Thus, whatever distribu-
tion we start with, the limiting distribution of the sum
of many independent copies is normal (after appro-
priate rescaling). Many natural processes can realisti-
cally be modeled as accumulations of small indepen-
dent random effects, and this is why many distributions
that one observes, such as the distribution of heights
of adults in a given town, have a familiar bell-shaped
curve.

A useful application of the central limit theorem
is to simplify what look like impossibly complicated
calculations. For example, when the parameter n is
large, the calculation of binomial probabilities becomes
prohibitively complicated. But if X is a binomial ran-
dom variable, with parameters n and 1

2 , for instance,
then we can write X as a sum Y1 + · · · + Yn, where
Y1, . . . , Yn are independent Bernoulli random variables
with parameter 1

2 . Then, by the central limit theorem,

lim
n→∞P(X � 1

2n+ 1
2

√
nx) =

∫ x
−∞

1√
2π

e−y
2/2 dy.

III.74 Projective Space

The real projective plane can be defined in various ways.
One way is to use three homogeneous coordinates: a typ-
ical point is represented as (x,y, z), where not all of x,
y , and z are equal to 0, with the convention that if λ is
a nonzero constant, then (x,y, z) and (λx, λy,λz) are
regarded as equal. Notice that for each (x,y, z) the set
of all points of the form (λx, λy,λz) is the line through
the origin and (x,y, z), and indeed a more geometrical
definition of the real projective plane is that it is the set
of all lines in R3 that pass through the origin. Each such
line meets the unit sphere in exactly two points, which
are opposite each other, and a third way of defining
the real projective plane is to define opposite points in
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the unit sphere to be equivalent and to take the quo-

tient [I.3 §3.3] of the unit sphere by this equivalence

relation [I.2 §2.3]. A fourth way to define the projec-

tive plane is to start with the usual Euclidean plane and

to add one “point at infinity” for each possible slope

that a line can have. With an appropriate topology, this

defines the projective plane as a compactification

[III.9] of the Euclidean plane.

Taking the third definition, a line in the projective

plane is defined to be a great circle with its opposite

points identified. It is then not hard to see that any

two lines meet in exactly one point (since any two great

circles meet in exactly two opposite points) and that

any two points are contained in exactly one line. This

property can be used to define much more abstract

generalizations of the notion of a projective plane.

Similar definitions hold for other fields besides

R and in higher dimensions. For instance, complex

projective n-space is the set of all points of the

form (z1, z2, . . . , zn+1), where not every zi is 0, with

(z1, z2, . . . , zn+1) equivalent to (λz1, λz2, . . . , λzn+1) if

λ is a nonzero complex scalar. This is the set of all

“complex lines” in Cn+1 that pass through the origin.

See some fundamental mathematical definitions

[I.3 §6.7] for more details about projective geometry.

III.75 Quadratic Forms
Ben Green

A quadratic form is a homogeneous polynomial of

degree 2 in some finite set of unknowns x1, x2, . . . , xn:

an example is q(x1, x2, x3) = x2
1 − 3x1x2 + 4x2

3. Here,

the coefficients 1, −3, and 4 are integers, but the idea

generalizes straightforwardly from Z to any ring R.

Since linear functions are undeniably important and 2

is the next positive integer after 1, one might expect

quadratic forms to be important as well, and indeed

they are, in many different branches of mathematics,

including linear algebra itself.

Here are two theorems about quadratic forms.

Theorem 1. If x, y, and z are three points in Rd,

then the distances between them satisfy the triangle

inequality

|x − z| � |x −y| + |y − z|.

Theorem 2. An odd prime p can be written as the sum

of two squares if and only if it leaves remainder 1 on

division by 4.

It is not at first sight clear why theorem 1 has any-
thing to do with quadratic forms. The reason is that the
square of the Euclidean distance

|x| =
√
x2

1 + · · · + x2
d

is a quadratic form over the real numbers R (here, the
xi are the coordinates of x). This form is derived from
the inner product

〈x,y〉 = x1y1 + · · · + xdyd
by taking |x|2 to be 〈x,x〉. The inner product satisfies
the relations

(i) 〈x,x〉 � 0 for all x ∈ Rd, with equality if and only
if x = 0.

(ii) 〈x,y + z〉 = 〈x,y〉 + 〈x,z〉 for all x,y,z ∈ Rd.
(iii) 〈λx,y〉 = 〈x, λy〉 = λ〈x,y〉 for all λ ∈ R and

x,y ∈ Rd.
(iv) 〈x,y〉 = 〈y,x〉 for all x,y ∈ Rd.

More generally, any function φ(x,y) that satisfies
these relations is called an inner product. The triangle
inequality is a consequence of arguably the most impor-
tant inequality in mathematics, the cauchy–schwarz
inequality [V.22]

|〈x,y〉| � |x| |y|.
Not all quadratic forms on Rd come from inner prod-

ucts, but they do all come from symmetric bilinear
forms g : Rd × Rd → R. These are functions of two
variables that satisfy all the axioms of an inner prod-
uct except possibly (i), the positivity criterion. Given
a quadratic form q(x) = g(x,x), one may recover g
using the polarization identity

g(x,y) = 1
2 (q(x +y)− q(x)− q(y)).

This correspondence between quadratic forms and
symmetric bilinear forms works just as well when R

is replaced by any field k, except that there are some
serious technical issues when k has characteristic two
(due to the presence of the fraction 1

2 in the above
formula). In linear algebra one often defines quadratic
forms by first discussing symmetric bilinear forms. The
advantage of this more abstract approach over the con-
crete definition we gave at the beginning is that it is not
necessary to specify a basis for Rd.

If one makes a good choice of basis, then the quad-
ratic form can be made to look particularly pleasant:
we may always choose a basis in such a way that

q(x) = x2
1 + · · · + x2

s − x2
s+1 − · · · − x2

t
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for some s and t satisfying 0 � s � t � d. Here
x1, . . . , xt are the coefficients of x with respect to the
basis we have carefully chosen. The quantity s − t is
called the signature of the form. When s = d (as is
the case for the form defining the Euclidean distance)
the form is said to be positive definite. Forms that are
not positive definite occur very commonly. For exam-
ple, the form x2 + y2 + z2 − t2 is used to define
minkowski space [I.3 §6.8], which plays a key role in
special relativity.

We turn now to examples of quadratic forms in num-
ber theory, beginning with two very famous theorems
about quadratic forms over the integers Z. The first is
theorem 2, mentioned at the start of the article. It is
due to fermat [VI.12]. There are many related results
for other binary quadratic forms such as x2 +2y2 and
x2 + 3y2. In general, however, the question of which
primes are represented by x2+ny2 is extremely subtle
and interesting, and leads one to class field theory
[V.30].

In 1770 lagrange [VI.22] showed that every number
n can be written as a sum of four squares. In fact, the
number of such representations of n, r4(n), is given by
the formula

r4(n) =
∑
d|n
4�d

d.

This formula can be explained using the theory of mod-
ular forms [III.61], one of the most important topics
in number theory. Indeed, the generating series

f(z) =
∞∑
n=0

r4(n)e2π inz

is a theta series, as a result of which it satisfies certain
transformations that identify it as a modular form.

A remarkable theorem of Conway and Schneeberger
states that if a quadratic form a1x2

1 + a2x2
2 + a3x2

3 +
a4x2

4 with a1, . . . , a4 ∈ N represents all the positive
integers less than or equal to 15, then it represents
all positive integers. ramanujan [VI.82] listed fifty-five
such forms; actually, one of his forms did not repre-
sent 15, but the remaining fifty-four forms constitute
the complete list. For example, every positive integer
can be written as x2

1 + 2x2
2 + 4x2

3 + 13x2
4.

Quadratic forms in three variables are more difficult
to treat. gauss [VI.26] proved that n = x2

1 + x2
2 + x2

3

if and only if n does not have the form 4t(8k + 7) for
integers t and k. It is still not known exactly which inte-
gers can be written as x2

1 +x2
2 +10x2

3 (this is known as
Ramanujan’s ternary form).

From the point of view of prime number theory,
quadratic forms in one variable are the hardest to
understand. For example, are there infinitely many
primes of the form x2 + 1?

Let us mention one final topic, where quadratic forms
over R are studied but where the unknowns x1, . . . , xn
are replaced by integers. In particular, let us mention
a beautiful result of Margulis, which confirmed a con-
jecture of Oppenheim. One instance of the result is the
following: for any ε > 0, one may find integers x1, x2,
and x3 such that

0 < |x2
1 + x2

2

√
2− x2

3

√
3| < ε.

The proof uses techniques from ergodic theory
[V.11], which in related contexts are proving very influ-
ential at the forefront of research today. No explicit
bounds are known on how large x1, x2, and x3 need
to be.

III.76 Quantum Computation

A quantum computer is a theoretical device that makes
use of the phenomenon of “superposition” in quantum
mechanics to carry out certain computations in a way
that is fundamentally different from any known classi-
cal methods, and in a few important cases remarkably
efficient. In classical physics, if there is some property
that a particle could have, then either it has it or it does
not. But according to quantum mechanics, it can exist
in a sort of indeterminate state that is a linear com-
bination of several states, in some of which it might
have the property in question and in others not. The
coefficients in this linear combination are called prob-
ability amplitudes: the modulus squared of the coeffi-
cient associated with a state tells you the probability
of finding that the particle is in that state if you do a
measurement.

Exactly what happens when you take a measurement
is puzzling, and the subject of much debate among
physicists and philosophers. Fortunately, however, one
can understand quantum computation without solving
the measurement problem, as it is called: indeed, one
can get away with not understanding quantum mechan-
ics at all. (Similarly, and for similar reasons, one could
in principle do significant work in theoretical com-
puter science without having the slightest idea what a
transistor is or how it works.)

To understand quantum computation it is helpful to
look at two other models of computation. The notion of
a classical computation is a mathematical distillation of
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what actually goes on inside your computer. The “state”
of a computer at any one time is modeled by an n-bit
string: that is, a sequence of 0s and 1s of length n. Let
us write σ for a typical string and σ1, σ2, . . . , σn for the
bits that make it up. A “computation” is a sequence of
very simple operations performed on the initial string.
For example, one operation might be to choose three
numbers i, j, and k, all less than n, and change the kth
bit σk of the current state σ to 1 if σi = σj = 1 and
to 0 otherwise. What makes an operation such as this
“simple” is that it is local in character: what it does to
σ depends on, and affects, just a bounded number of
bits of σ (in this case it depends on two bits and affects
one). The “state space” of a classical computer, in this
model, is the set {0,1}n of all possible n-bit strings,
which we shall denote by Qn.

After a certain number of stages, we declare the com-
putation to have finished. At this point we perform a
simple sequence of “measurements” on the final state,
which consist in looking at the bits of the string we havePUP: Tim would

like to keep
‘consist in’ here.
OK?

ended up with. If our problem is a “decision problem,”
then we will typically organize the computation so that
all we need to look at is a single bit: if it is 0 then the
answer is no and if it is 1 then the answer is yes.

If the ideas of the last two paragraphs are unfamiliar
to you, then you are strongly advised to read the first
few sections of computational complexity [IV.21]
before continuing with this article.

The next model we shall consider is probabilistic com-
putation. This is just like classical computation except
that at each stage we are allowed to toss a (possibly
biased) coin and let the simple operation we perform
depend on the outcome of the toss. For instance, we
might again choose three numbers i, j, and k, but this
time proceed as follows: with probability 2

3 we perform
the operation described earlier, and with probability
1
3 we change σk to 1 − σk. Remarkably, introducing
randomness into algorithms can be extremely helpful.
(Equally remarkably, there are strong theoretical rea-
sons for believing that all algorithms that use random-
ness can in fact be “derandomized.” See [IV.21 §7.1] for
details.)

Suppose that we allow our randomized probabilis-
tic computation to run for k steps and that we do not
examine the result. How should we model the current
state of the computer? We could use exactly the same
definition as in the classical case—a state is an n-bit
string—and simply say that the computation is in a
state that we cannot know until we do a measurement.
But the state of the computer is not a complete mystery:

for each n-bit string σ there will be some probability
pσ that the state is σ . In other words, it is better to
think of the state of the computer as a probability
distribution [III.73] on Qn. This probability distribu-
tion will depend on the initial string, and therefore it
can in principle give us useful information about that
string.

Here is how to use a randomized computation to
solve a decision problem. Let us write P(σ) for the
probability that a certain bit (without loss of general- PUP: Tim confirms

that readers will
understand this.ity the first) is 1 at the end of the computation, when

the initial string is σ . Suppose we can arrange for P(σ)
to be at least a for all strings σ for which the answer is
yes, and at most some smaller number b for all strings
σ for which the answer is no. Let c be the average of
a and b. Now run the computation m times for some
largem. With very high probability, if the answer is yes
then when we have finished the first bit will have been
1 more than cm times, and if the answer is no then it
will have been 1 fewer than cm times. So we can solve
the decision problem, not with certainty, but at least
with a negligibly small chance of error.

The “state space” of a probabilistic computer con-
sists of all possible probability distributions on Qn,
or equivalently all possible functions p : Qn → [0,1]
such that

∑
σ∈Qn pσ = 1. The state space of a quan-

tum computer also consists of functions defined on
Qn, but there are two differences. First, they can take
complex as well as real values. Second, if λ : Qn → C

is a state, then the requirement on the size of λ is
that

∑
σ∈Qn |λ|2 = 1. In other words, λ is a unit vec-

tor in the hilbert space [III.37] �2(Qn,C) rather than
a nonnegative unit vector in the banach space [III.64]
�1(Qn,R). The scalars λσ are the probability ampli-
tudes mentioned earlier. We shall explain what this
means later.

Among the possible states of a quantum computer
are the “basis states,” which are the functions that take
the value 1 at one string and 0 everywhere else. It is
customary to use Dirac’s “bra” and “ket” notation for
these, writing |σ〉 if the string in question is σ . Other
“pure states” are then linear combinations of these, and
Dirac’s notation is again used. For instance, if n = 5,
then one fairly simple state that the computer could be
in is |ψ〉 = (1/√2)|01101〉 + (i/√2)|11001〉.

To get from one state to another, we again apply
“local” operations, but adapted to the new, Hilbert
space context. Suppose first that we have a basis state
|σ〉. Again we look at a very small number of bits. If, for
instance, we look at three bits, at i, j, and k, then there
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are eight possibilities for the triple τ = (σ1, σ2, σ3),
which we could think of as the basis states in a much
smaller state space: the space of all functions µ : Q3 →
C such that

∑
τ∈Q3

|µτ |2 = 1. The obvious operations
that take unit vectors to unit vectors in a complex
Hilbert space are the unitary maps [III.52 §3.1], and
these are indeed what are used.

Let us illustrate this with an example. Suppose that
n = 5, and that i, j, and k are 1, 2, and 4. One possi-
ble operation on these three bits would send |000〉 to
(|000〉 + i|111〉)/√2 and |111〉 to (i|000〉 + |111〉)/√2,
leaving all other three-bit sequences as they are. If
our initial basis state is |01000〉, then the first, sec-
ond, and fourth bits are in the state |000〉, so the
resulting state at the end of the operation would be
(|01000〉 + i|11110〉)/√2.

Now that we have explained what a basic operation
does to a basis state, we have in fact explained what
it does in general, since the basis states form a basis
of the state space. In other words, if you start with a
linear combination (or superposition) of basis states,
you apply the operation described above to each basis
state and take the corresponding linear combination of
the results.

Thus, an elementary operation of quantum computa-
tion consists in acting on the state space by means of
a very special sort of unitary map. If the operation is
on k bits (where k is typically very small indeed), then
the matrix of this map will be a diagonal sum of 2n−k

copies of the 2k × 2k unitary matrix used to manipu-
late those k bits (if the basis elements are appropri-
ately ordered). A quantum computation is a sequence
of these elementary operations.

Measuring the result of a quantum computation is
more mysterious. The basic idea is simple: we do a cer-
tain number of elementary operations and then look at
one of the bits of the resulting state. But what does this
mean, when the state is not a basis state but rather a
superposition of such states? The answer is that when
we “measure” the r th bit of the output, we are doing a
probabilistic process that is somewhat different from
the measurement of a probabilistic computation: if the
output state is

∑
σ∈Qn λσ |σ〉, then the probability that

we observe 1 is the sum of all |λσ |2 such that the kth
bit of σ is 1, and the probability that we observe 0 is
the same sum but over those σ for which the kth bit
is 0. This is why the numbers λσ are called probabil-
ity amplitudes. In order to get a useful answer from a
quantum computation, one runs it several times, just
as with a probabilistic computation.

Note the following two important differences be-
tween a quantum computation and a probabilistic com-
putation. We described the state of a probabilistic com-
putation as a probability distribution onQn, which one
could also call a convex combination of basis states. But
this probability distribution is not telling us what is in
the computer: that is a basis state. Rather, it is describ-
ing our knowledge about what is in the computer. By
contrast, the state of a quantum computer really is a
unit vector in a 2n-dimensional Hilbert space. So in a
certain sense a huge amount of computation can go
on in parallel: this is what gives quantum computation
its power. Although we cannot know much about the
computation, since a single measurement causes it to
“collapse,” we can hope to organize it so that different
parts of it “interfere” with each other. This “interfer-
ence” is related to the second main difference, which is
the fact that we deal with probability amplitudes rather
than probabilities. Roughly speaking, a quantum com-
putation can “split up” and “reassemble itself,” whereas
once a probabilistic computation splits up it stays split
up. Crucial to the reassembly process in a quantum
computation is cancelation of probability amplitudes:
to give an extreme example, if you multiply a typi-
cal unitary matrix by its inverse, then there is a huge
amount of cancelation to get all the off-diagonal entries
of the resulting matrix to be zero.

All this raises two obvious questions: what are quan-
tum computers good for, and can they actually be built?
It turns out that a quantum computer can carry out
classical and probabilistic computations, so the first
question is asking whether they can do anything fur-
ther.1 One might think so, since the state space is so
much bigger than it is for a classical computation (it is
2n dimensional rather than merely n dimensional), and
the reassembly process means that we can potentially
afford to visit remote parts of the state space, where all
coefficients might be of very similar (and small) mag-
nitudes, and come back again to a state where a useful
measurement can be made. However, the very vastness
of this space means that most states are completely
inaccessible unless one is prepared to use a vast num-
ber of basic operations. Additionally, it is important
that at the end of the computation the output should
not be a “typical” state, since only very special states
give rise to useful measurements.

1. It is also possible to simulate a quantum computation classically,
but it would take an absurdly long time to do so: quantum computers
cannot calculate noncomputable functions, but they may be far more
efficient at calculating some computable ones.
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These arguments show that if a quantum compu-
tation is to be useful, then it will have to be very
carefully (and cleverly) organized. However, there is a
spectacular example of just such a computation: Peter
Shor’s use of a quantum computer to calculate fast
fourier transforms [III.26] extremely rapidly. The
fast Fourier transform has a symmetry that allows the
calculation to be split up and carried out “in paral-
lel” (it might be better to say “in superposition”) in
a way that is ideally suited to a quantum computer.
A super-fast Fourier transform can then be used to
solve (by classical methods) some famous computa-
tional problems, such as the discrete logarithm prob-
lem and the factorization of large integers. The latter
can then be used to break a public-key cryptosystem,
the encryption method that lies at the heart of modern
computer security. (See mathematics and cryptog-
raphy [VII.7 §5] and computational number theory
[IV.5 §3] for further discussion of these problems.)

Can a machine be built that would actually be able
to do this? There are formidable problems to over-
come, arising from a phenomenon in quantum mechan-
ics known as “decoherence,” which makes it very hard
to stop a complicated state from “collapsing” to a sim-
pler one that is no longer of use. Some progress has
been made, but it is too early to say whether, or when, a
quantum computer will be built that can factorize large
numbers quickly.

Nevertheless, the theoretical challenges raised by the
notion of a quantum computer are fascinating. Perhaps
the most interesting one is very simple: find an applica-
tion of quantum computers that is significantly differ-
ent from the few that have already been found. The fact
that quantum computers can factorize large numbers
is strong evidence that they are more powerful, but it
would be good to have a better understanding of why.
(It is known that quantum computers are better for
some other uses, such as communication complex-
ity [IV.21 §5.1.4].) Is there a much simpler task that
is easy for quantum computers and difficult for clas-
sical computers, at least if some well-known plausible
hypothesis is true about what classical computers can-
not do? Can quantum computers solve np-complete
[IV.21 §4] problems? The majority opinion is that they
cannot, and indeed the statement that they cannot is
becoming another of the many “plausible hypotheses”
of complexity theory, but it would be good to have
stronger reasons for believing in this statement, such as
a proof subject to already-known plausible hypotheses
in classical computation.

III.77 Quantum Groups
Shahn Majid

There are at least three different paths that lead to the
objects known today as quantum groups. They could
be summarized briefly as quantum geometry, quantum
symmetry, and self-duality. Any one of them would be
a great reason to invent quantum groups and each of
them had a role in the development of the modern
theory.

1 Quantum Geometry

One of the great discoveries in physics in the twen-
tieth century was that classical mechanics should
be replaced by quantum mechanics, in which the
space of possible positions and momenta of a par-
ticle is replaced by the formulation of position and
momentum as mutually noncommuting operators. This
noncommutativity underlies Heisenberg’s “uncertainty
principle,” but it also suggests the need for a more gen-
eral notion of geometry in which coordinates need not
commute. One approach to noncommutative geometry
is discussed in operator algebras [IV.19 §5]. How-
ever, another approach is to note that geometry really
grew out of examples such as spheres, tori, and so
forth, which are lie groups [III.50 §1] or objects closely
related to Lie groups. If one wants to “quantize” geom-
etry, one should first think about how to generalize
basic examples like this: in other words, one should
try to define “quantum Lie groups” and associated
“quantum” homogeneous spaces.

The first step is to consider geometrical structures
not so much in terms of their points but in terms of
corresponding algebras. For example, the group SL2(C)
is defined as the set of 2× 2 matrices ( α βγ δ ) of com-
plex numbers such that αδ − βγ = 1. We can think
of this as a subset of C4, and indeed not just a subset
but a variety [III.97]. The natural class of functions
associated with this variety is the set of polynomials
in four variables (which are defined on C4) restricted
to the variety. However, if two polynomials take equal
values on the variety, then we identify them. In other PUP: I can confirm

that this is OK.
words, we take the algebra of polynomials in four vari-
ables a, b, c, and d and quotient [I.3 §3.3] by the
ideal [III.83 §2] generated by all polynomials of the
form ad − bc − 1. (This construction is discussed in
detail in arithmetic geometry [IV.6].) Let us call the
resulting algebra C[SL2].



�

III.77. Quantum Groups 275

We can do the same for any subset X ⊂ Cn that
is defined by polynomial relations. This gives us a
precise one-to-one correspondence between subsets of
this type and certain commutative algebras equipped
with n generators. Let us write C[X] for the algebra
that corresponds to X. As with many similar construc-
tions (see, for example, the discussion of adjoint maps
in duality [III.19]), a suitable map from X to Y gives
rise to a map from C[Y] to C[X]. More precisely, the
map φ from X to Y has to be polynomial (in a suitable
sense) and the resulting map from C[Y] to C[X] is an
algebra homomorphism φ∗ that satisfies the formula
φ∗(p)(x) = p(φx) for every x ∈ X.

Going back to our example, the set SL2(C) has a group
structure SL2(C) × SL2(C) → SL2(C) defined by the
matrix product. The set SL2(C)× SL2(C) is a variety in
C8 and the matrix product depends in a polynomial way
on the entries in the matrices, so we obtain an algebra
homomorphism ∆ : C[SL2]→ C[SL2]⊗C[SL2], which is
known as the coproduct. (The algebra C[SL2] ⊗ C[SL2]
is isomorphic to C[SL2× SL2].) It turns out that ∆ can
be expressed by the formula

∆
(
a b
c d

)
=
(
a b
c d

)
⊗
(
a b
c d

)
.

This formula needs a word or two of explanation: the
variables a, b, c, and d are the four generators of the
algebra of polynomials in four variables (and hence of
its quotient by ad − bc − 1), and the right-hand side
is a shorthand way of saying that ∆a = a ⊗ a + b ⊗ c,
and so on. Thus, ∆ is defined on the generators by a
sort of mixture of tensor products [III.91] and matrix
multiplication.

One can then show that the associativity of matrix
multiplication in SL2 is equivalent to the assertion
that (∆ ⊗ id)∆ = (id⊗∆)∆. To understand what these
expressions mean, bear in mind that ∆ takes elements
of C[SL2] to elements of C[SL2] ⊗ C[SL2]. Thus, when
we apply the map (∆ ⊗ id)∆, for example, we begin
by applying ∆, and thereby creating an element of
C[SL2] ⊗ C[SL2]. This element will be a linear combi-
nation of elements of the form p⊗q, each of which will
then be replaced by ∆p ⊗ q.

Similarly, one can express the rest of the group struc-
ture of SL2(C) equivalently in terms of the algebra
C[SL2]. There is a counit map ε : C[SL2] → k, which
corresponds to the group identity, and an antipode map
S : C[SL2] → C[SL2], which corresponds to the group
inversion. The group axioms appear as equivalent prop-
erties of these maps, making C[SL2] into a “Hopf alge-

bra” or “quantum group.” The formal definition is as
follows.

Definition. A Hopf algebra over a field k is a quadruple
(H,∆, ε, S), where

(i) H is a unital algebra over k;
(ii) ∆ : H → H ⊗ H, ε : H → k are algebra homo-

morphisms such that (∆ ⊗ id)∆ = (id⊗∆)∆ and
(ε⊗ id)∆ = (id⊗ε)∆ = id;

(iii) S : H → H is a linear map such thatm(id⊗S)∆ =
m(S⊗id)∆ = 1ε, wherem is the product operation
on H.

There are two great things about this formulation.
The first is that the notion of a Hopf algebra makes
sense over any field. The second is that nowhere did
we demand that H was commutative. Of course, if H is
derived from a group, then it certainly is commutative
(since multiplying two polynomials is commutative), so
if we can find a noncommutative Hopf algebra, then we
have obtained a strict generalization of the notion of
a group. The great discovery of the past two decades
is that there are indeed many natural noncommutative
examples.

For example, the quantum group Cq[SL2] is defined
as the free associative noncommutative algebra on
symbols a, b, c, and d modulo the relations

ba = qab, bc = cb, ca = qac, dc = qcd,
db = qbd, da = ad+ (q − q−1)bc, ad− q−1bc = 1.

This forms a Hopf algebra with ∆ given by the same
formula as it is for C[SL2] and with suitable maps ε and
S. Here q is a nonzero element of C, and as q → 1 one
obtains C[SL2]. This example generalizes to canonical
examples Cq[G] for all complex simple Lie groups G.

Much of group theory and Lie group theory can be
generalized to quantum groups. For example, Haar inte-
gration is a linear map

∫
: H → k that is translation

invariant in a certain sense that involves ∆. If it exists,
it is unique up to a scalar multiple, and it does indeed
exist in most cases of interest, including all finite-
dimensional Hopf algebras. Likewise, the notion of a
complex of differential forms [III.16] (Ω,d) makes
sense over any algebra H as a proxy for a differential
structure. Here, Ω =⊕n Ωn is required to be an asso-
ciative algebra generated by Ω0 = H and Ω1, but one
does not assume that it is graded-commutative as in
the classical case. When H is a Hopf algebra one can
ask that Ω is translation invariant, again in a certain
sense that involves the coproduct∆. In this case bothΩ
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and its cohomology [IV.10 §4] as a complex are super
(or graded) quantum groups. The axioms of a (graded)
Hopf algebra were originally introduced by Heinz Hopf
in 1947 precisely to express the structure of the cohom-
ology ring of a group, so this result brings us back
full circle to the origins of the subject. For most quan-
tum groups, including all the Cq[G], one has a natural
minimal complex (Ω,d). Thus, a “quantum group” is
not merely a Hopf algebra but has additional structure
analogous to that of a Lie group.

There are many other quantum groups that are not
related to q-deformations. There are also applications
of the theory to finite groups. If G is a finite group, one
has a corresponding algebra k(G) of all functions on G
with pointwise product and a coproduct (∆f)(g,h) =
f(gh) for f ∈ k(G) and g,h ∈ G. Here we identify
k(G)⊗k(G) and k(G×G), which makes ∆f into a func-
tion of two variables, and one may check even more
simply that this is a Hopf algebra. There can never be
an interesting classical differential structure on a finite
set, but if we use the methods developed for quantum
groups, then we have one or more translation-invariant
complexes (Ω1,d) on any finite group. Applying fur-
ther parts of the theory of quantum group differen-
tial geometry, one finds, for example, that the alternat-
ing group A4 is naturally Ricci-flat, while the symmet-
ric group S3 naturally has constant curvature [III.13],
much like a 3-sphere.

2 Quantum Symmetry

Symmetry in mathematics is usually expressed as the
action of a group or Lie algebra of finite or infinitesimal
transformations of some structure. If you have a col-
lection of transformations that is closed under inver-
sion and composition, then you necessarily have an
ordinary group. So how might one generalize this? The
answer is that one begins by observing that a group G
can act on several objects at the same time. If a group
acts on two objects X and Y , then it also acts on their
direct product X × Y , with g(x,y) = (gx,gy). Here
we are making implicit use of a diagonal or “duplica-
tion” map ∆ : G → G × G, which duplicates a group
element so that one copy can act on the first object
and the other on the second object. In order to gener-
alize this it once again pays to replace the notion of
a group G by that of an algebra. This time we use the
group algebra kG, which is the set of all formal linear
combinations

∑
i λigi, where the gi are elements of G

and the λi are scalars from the field k. The elements

of G (considered as particularly simple linear combina-

tions of this kind) form a basis of kG and we multiply

them as we would in G itself. One then extends this

definition to products of more general linear combi-

nations in the obvious way. We also extend ∆ linearly

from ∆g = g ⊗ g on the basis elements to a map from

kG to kG ⊗ kG. Together with some associated maps

ε and S, this makes kG into a Hopf algebra. Note that

this is a completely different use of the coproduct from

the one in the previous section, since the group prod-

uct has already gone into the algebra. One has a similar

story for the “enveloping algebra” U(g) associated with

any Lie algebra g; this is generated by a basis of g with

certain relations and becomes a Hopf algebra with the

coproduct ∆ξ = ξ ⊗ 1+ 1⊗ ξ “sharing out” an element

ξ ∈ g for the purposes of acting on a tensor product of

objects on which g acts.

Extrapolating from these two examples, a general

“quantum symmetry” means an algebra H equipped

with further structure ∆ that allows one to form a ten-

sor product V ⊗W of any two representations V , W of

the algebra in an associative manner. An elementh ∈ H
acts as h(v ⊗w) = (∆h)(v ⊗w), where one part of ∆h
acts on v ∈ V and another part on w ∈ W . This is

a second route to the Hopf algebra axioms we gave in

the previous section.

Note that, in the examples just given, ∆ has had a

symmetric output. As a consequence, if V and W are

representations of a group or Lie algebra, then V ⊗W
and W ⊗ V are isomorphic via the obvious map that

takes v ⊗w to w ⊗ v . In general, however, V ⊗W and

W⊗V may be unrelated, so it is now the tensor product

that is being made noncommutative. In nice examples it

may be the case that V⊗W � W⊗V , but not necessarily

by the obvious map. Instead, there may be a nontriv-

ial isomorphism for every pair V , W , which may nev-

ertheless obey some reasonable conditions. This hap-

pens for a large class of examples, denoted by Uq(g)
and associated with all complex simple Lie algebras.

For these examples, the isomorphism obeys the braid

or Yang–Baxter relations among any three representa-

tions (see braid groups [III.4]). As a result, these quan-

tum groups lead to knot and 3-manifold invariants

[III.46] (the Jones knot invariant comes from the exam-

ple Uq(sl2), where sl2 is the Lie algebra of the group

SL2(C)). The parameter q can usefully be regarded here

as a formal variable, and these examples can be thought

of as some kind of deformation of the classical envelop-

ing algebras U(g). They arose originally in work of Drin-
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feld and of Jimbo in the theory of quantum integrable
systems.

3 Self-duality

A third point of view is that Hopf algebras are the next
simplest category [III.8] after Abelian groups of struc-
tures that admit a fourier transform [III.27]. It is not
immediately obvious, but the axioms (i)–(iii) in the def-
inition we gave earlier have a certain symmetry. One
can write out the requirement (i) of a unital algebra H
in terms of linear maps m : H ⊗H → k and η : k → H
(here η specifies the identity element of H as the image
of 1 ∈ k) that have to obey some straightforward com-
mutative diagrams. If you reverse all the arrows in
these diagrams, then you have the axioms displayed in
(ii), obtaining what could be called a “coalgebra.” The
requirement that the coalgebra structures ∆ and ε are
algebra maps is given by a collection of diagrams that
is invariant under arrow reversal. Finally, the axioms
in (iii), as commutative diagrams, are invariant under
arrow reversal in the above sense.

Thus, the axioms of a Hopf algebra have the spe-
cial property of being symmetric under arrow rever-
sal. A practical consequence is that if H is a finite-
dimensional Hopf algebra, then so is H∗, with all
structure maps defined as the adjoints of those of
H (which necessarily reverses arrows). In the infinite-
dimensional case one needs a suitable topological dual,
or one can just speak of two Hopf algebras as dually
paired to each other. For instance, Cq[SL2] and Uq(sl2)
above are dually paired, while ifG is finite then (kG)∗ =
k(G), the Hopf algebra of functions on G.

As an application, let H be finite dimensional with
basis {ea}, let H∗ have a dual basis {fa}, and let

∫
denote a right-translation-invariant integral on H. The
Fourier transform F : H → H∗ is defined as

F(h) =
∑
a

(∫
eah

)
fa

and has many remarkable properties. A special case is
a Fourier transform F : k(G)→ kG for any finite group
G, which does not have to be Abelian. If G happens to
be Abelian, then kG � k(Ĝ), where Ĝ is the group of
characters, and we recover the usual Fourier transform
for finite Abelian groups. The point is that in the non-
Abelian case, kG is not commutative and hence not the
algebra of functions on any usual “Fourier dual” space.

This point of view is responsible for the second
main class of genuine quantum groups to have been
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field theory
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Heyting
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algebras

Abelian
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Group
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Quantum
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Monoidal
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Riemannian
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Figure 1 Putting quantum groups in context. Self-dual
categories are shown on the horizontal axis.

discovered, namely the “bicrossproduct” ones of self-
dual form. They are simultaneously “coordinate” and
“symmetry” algebras, and are truly connected with
quantum mechanics. An example, which is written
C[R3>�R]λ��U(so(1,3)), is the so-called Poincaré

T&T note: check
two symbols here
before CRC.quantum group of a certain noncommutative spacetime

with coordinates x, y , z, t, where t does not commute
with the other variables. This quantum group can also
be interpreted as the quantization of a particle moving
in a curved geometry with black-hole-like features. In
essence, the self-duality of quantum groups provides a
paradigm for “toy models” of the unification of gravity
(as spacetime geometry) and quantum theory.

This is part of a wider picture indicated in figure 1. PUP: ‘Quantales’ is
indeed OK in the
figure.A category of objects with a coherent notion of “tensor

product” is called a monoidal (or tensor ) category, and
we have seen that this is the case for representations
of quantum groups. There, one also has a “forgetful
functor” to the category of vector spaces, which for-
gets the quantum group action. This embeds quantum
groups into the next most general self-dual category (in
a representation-theoretic sense), namely that of func-
tors between monoidal categories. Over on the right,
I have included Boolean algebras as primitive struc-
tures with (de Morgan) duality. However, the connec-
tion between duality here and the other dualities is
speculative.

Further Reading

Majid, S. 2002. A Quantum Groups Primer. London Math-
ematical Society Lecture Notes, volume 292. Cambridge:
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Cambridge University Press.

III.78 Quaternions, Octonions, and
Normed Division Algebras

Mathematics took a leap forward in sophistication with
the introduction of the complex numbers [I.3 §1.5]. To
define these, one suspends one’s disbelief, introduces a
new number i, and declares that i2 = −1. A typical com-
plex number is of the form a + ib, and the arithmetic
of complex numbers is easy to deduce from the nor-
mal rules of arithmetic for real numbers. For example,
to calculate the product of 1+ 2i and 2+ i one simply
expands some brackets:

(1+ 2i)(2+ i) = 2+ 5i + 2i2 = 5i,

the last equality following from the fact that i2 = −1.
One of the great advantages of the complex numbers
is that, if complex roots are allowed, every polynomial
can be factorized into linear factors: this is the famous
fundamental theorem of algebra [V.15].

Another way to define a complex number is to say
that it is a pair of real numbers. That is, instead of writ-
ing a+ ib one writes simply (a, b). To add two complex
numbers is simple, and exactly what one does when
adding two vectors: (a, b)+(c, d) = (a+c, b+d). How-
ever, it is less obvious how to multiply: the product of
(a, b) and (c, d) is (ac − bd,ad + bc), which seems
an odd definition unless one goes back to thinking of
(a, b) and (c, d) as a+ ib and c + id.

Nevertheless, the second definition draws our atten-
tion to the fact that the complex numbers are formed
out of the two-dimensional vector space [I.3 §2.3] R2

with a carefully chosen definition of multiplication.
This immediately raises a question: could we do the
same for higher-dimensional spaces?

As it stands, this question is not wholly precise, since
we have not been clear about what “the same” means.
To make it precise, we must ask what properties this
multiplication should have. So let us return to R2 and
think about why it would be a bad idea to define the
product of (a, b) and (c, d) in a simple-minded way as
(ac, bd). Of course, part of the reason is that the prod-
uct of a+ ib and c+ id is not ac+ ibd, but why should
we not also be interested in other ways of multiplying
vectors in R2?

The trouble with this alternative definition is that
it allows zero divisors, that is, pairs of nonzero num-
bers that multiply together to give zero. For example,

it gives us (1,0)(0,1) = (0,0). If we have zero divi-

sors, then we cannot have multiplicative inverses, since

if every nonzero number in a number system has a mul-

tiplicative inverse, and if xy = 0, then either x = 0 or

y = x−1xy = x−10 = 0. And if we do not have multi-

plicative inverses, then we cannot define a useful notion

of division.

Let us return then to the usual definition of the com-

plex numbers and try to think how we can go beyond it.

One way we might try to “do the same” as we did before

is to do to the complex numbers what we did to the real

numbers. That is, why not define a “super-complex”

number to be an ordered pair (z,w) of complex num-

bers? Since we still want to have a vector space, we will

continue to define the sum of (z,w) and (u,v) to be

(z+u,w+v), but we need to think about the best way

of defining their product. An obvious guess is to use

precisely the expression that worked before, namely

(zu−wv,zv+wu). But if we do that, then the product

of (1, i) and (1,−i)works out to be (1+i2, i−i) = (0,0),
so we have zero divisors.

This example came from the following thought. The

modulus of a complex number z = a + ib, which mea-

sures the length of the vector (a, b), is the real number

|z| = √a2 + b2. This can also be written as
√
z̄z, where

z̄ is the complex conjugate a − ib of z. Now if a and

b are allowed to take complex values, then there is no

reason for a2+b2 to be nonnegative, so we may not be

able to take its square root. Moreover, if a2 + b2 = 0

it does not follow that a = b = 0. The example above

came from taking a = 1 and b = i and multiplying the

number (1, i) by its “conjugate” (1,−i).
There is, nevertheless, a natural way to define the

modulus of a pair (z,w) that works even when z andw
are complex numbers. The number |z|2 + |w|2 is guar-

anteed to be nonnegative, so we can take its square

root. Moreover, if z = a + ib and w = c + id, then

we will obtain the number (a2+b2+c2+d2)1/2, which

is the length of the vector (a, b, c, d).
This observation leads to another: the complex con-

jugate of a real number is the number itself, so, if we

want to “use the same formula” for the complex num-

bers as we used for the reals, we are free to introduce

complex conjugates into that formula. Before we try to

do that, let us think about what we might mean by the

“conjugate” of a pair (z,w). We expect (z,0) to behave

like the complex number z, so its conjugate should be

(z̄,0). Similarly, if z and w are real, then the conjugate

of (z,w) should be (z,−w). This leaves us with two
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reasonable possibilities for a general pair (z,w): either

(z̄,−w̄) or (z̄,−w). Let us consider the second of these.

We would like the product of (z,w) and its conjugate,

which we are defining as (z̄,−w), to be (|z|2+|w|2,0).
We want to achieve this by introducing complex conju-

gates into the formula

(z,w)(u,v) = (zu−wv,zv +wu).
An obvious way of getting the result we want is to take

(z,w)(u,v) = (zu− w̄v, z̄v +wu),
and this modified formula, it turns out, defines an asso-

ciative binary operation [I.2 §2.4] on the set of pairs

(z,w). If you try the other definition of conjugate, you

will find that you end up with zero divisors. (A first

indication of trouble is that, under the other definition,

the pair (0, i) is its own conjugate.)

We have just defined the quaternions, a set H of

“numbers” that form a four-dimensional real vector

space, or alternatively a two-dimensional complex vec-

tor space. (The letter “H” is in honor of William Rowan

Hamilton, their discoverer. See hamilton [VI.37] for

the story of how the discovery was made.) But why

should we have wished to do that? This question

becomes particularly pressing when we notice that the

notion of multiplication that we have defined is not

commutative. For example, (0,1)(i,0) = (0, i), while

(i,0)(0,1) = (0,−i).
To answer it, let us take a step back and think about

the complex numbers again. The most obvious justifi-

cation for introducing those is that one can use them to

solve all polynomial equations, but that is by no means

the only justification. In particular, complex numbers

have an important geometrical interpretation, as rota-

tions and enlargements. This connection becomes par-

ticularly clear if we choose yet another way of writing

the complex number a+ ib, as the matrix ( a −bb a ). Multi-

plication by the complex number a+ ib can be thought

of as a linear map [I.3 §4.2] on the plane R2, and this is

the matrix of that linear map. For example, the complex

number i corresponds to the matrix ( 0 −1
1 0 ), which is the

matrix of a counterclockwise rotation through 1
2π , and

this rotation is exactly what multiplying by i does to

the complex plane.

If complex numbers can be thought of as linear maps

from R2 to R2, then quaternions should have an inter-

pretation as linear maps from C2 to C2. And indeed

they do. Let us associate with the pair (z,w) the matrix

( z w̄
−w z̄ ). Now let us consider the product of two such

matrices:(
z w̄
−w z̄

)(
u v̄
−v ū

)
=
(
zu− w̄v zv̄ + w̄ū
−z̄v −wu z̄ū−wv̄

)
.

This is precisely the matrix associated with the pair
(zu −wv̄, zv +wū), which is the quaternionic prod-
uct of (z,w) and (u,v)! As an immediate corol-
lary, we have a proof of a fact mentioned earlier:
that quaternionic multiplication is associative. Why?
Because matrix multiplication is associative. (And that
is true because the composition of functions is associa-
tive: see [I.3 §3.2].)

Notice that the determinant [III.15] of the matrix
( z w̄
−w z̄ ) is |z|2+|w|2, so the modulus of the pair (z,w)

(which is defined to be
√|z|2 + |w|2) is just the determi-

nant of the associated matrix. This proves that the mod-
ulus of the product of two quaternions is the product of
their moduli (since the determinant of a product is the
product of determinants). Notice also that the adjoint
of the matrix (that is, the complex conjugate of the
transpose matrix) is ( z̄ −w̄w z ), which is the matrix asso-
ciated with the conjugate pair (z̄,−w). Finally, notice
that if |z|2 + |w|2 = 1, then(

z w̄
−w z̄

)(
z̄ −w̄
w z

)
=
(

1 0

0 1

)
,

which tells us that the matrix is unitary [III.52 §3.1].
Conversely, any unitary 2×2 matrix with determinant 1
can easily be shown to have the form ( z w̄

−w z̄ ). There-
fore, the unit quaternions (that is, the quaternions
of modulus 1) have a geometrical interpretation: they
correspond to the “rotations” of C2 (that is, the uni-
tary maps of determinant 1), just as the unit complex
numbers correspond to the rotations of R2.

The group of unitary transformations of C2 of deter-
minant 1 is an important lie group [III.50 §1] called
the special unitary group SU(2). Another important Lie
group is the group SO(3), of rotations of R3. Surpris-
ingly, the unit quaternions can be used to describe this
group as well. To see this, it is convenient to present
the quaternions in another, more conventional, way.

Quaternions, as they are usually introduced, are a
system of numbers where −1 has not just one square
root but three, called i, j, and k. Once one knows that
i2 = j2 = k2 = −1, and also that ij = k, jk = i, and
ki = j, one has all the information one needs to multiply
two quaternions. For example, ji = jjk = −k. A typical
quaternion takes the form a+ ib+ jc+kd, which corre-
sponds to the pair of complex numbers (a+ic, b+id) in
our previous way of thinking about quaternions. Now
if we want, we can think of this quaternion as a pair
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(a,v), where a is a real number and v is the vector

(b, c, d) in R3. The product of (a,v) and (b,w) then

works out to be (ab − v ·w, aw + bv + v ∧w), where

v ·w and v∧w are the scalar and vector products of v
and w.

If q = (a,u) is a quaternion of modulus 1, then a2 +
‖u‖2 = 1, so we can write q in the form (cosθ,v sinθ)
with v a unit vector. This quaternion corresponds to

a counterclockwise rotation R about an axis in direc-

tion v through an angle of 2θ. This angle is not what

one might at first expect, and neither is the way the

correspondence works. If w is another vector, we can

represent it as the quaternion (0,w). We would now

like a neat expression for the quaternion (0, Rw); it

turns out that (0, Rw) = q(0,w)q∗, where q∗ is the

conjugate (cosθ,−v sinθ) of q, which is also its multi-

plicative inverse, as q has modulus 1. So to do the rota-

tion R, you do not multiply by q but rather you con-

jugate by q. (This is a different meaning of the word

“conjugate,” referring to multiplying on one side by

q and on the other side by q−1.) Now if q1 and q2

are quaternions corresponding to rotations R1 and R2,

respectively, then

q2q1(0,w)q∗1 q
∗
2 = q2q1(0,w)(q2q1)∗,

from which it follows that q2q1 corresponds to the rota-

tion R2R1. This tells us that quaternionic multiplication

corresponds to composition of rotations.

The unit quaternions form a group, as we have

already seen—it is SU(2). It might appear that we have

shown that SU(2) is the same as the group SO(3) of

rotations of R3. However, we have not quite done this,

because for each rotation of R3 there are two unit

quaternions that give rise to it. The reason is simple:

a counterclockwise rotation through θ about a vector

v is the same as a counterclockwise rotation through

−θ about −v. In other words, if q is a unit quaternion,

then q and −q give rise to the same rotation of R3. So

SU(2) is not isomorphic to SO(3); rather, it is a double

cover of SO(3). This fact has important ramifications in

mathematics and physics. In particular, it lies behind

the notion of the “spin” of an elementary particle.

Let us return to the question we were considering

earlier: for which n is there a good way of multiplying

vectors in Rn? We now know that we can do it forn = 1,

2, or 4. When n = 4 we had to sacrifice commutativity,

but we were amply rewarded for this, since quaternion

multiplication gives a very concise way of representing

the important groups SU(2) and SO(3). These groups

are not commutative, so it was essential to our suc-
cess that quaternion multiplication should also not be
commutative.

One obvious thing we can do is continue the process
that led to the quaternions. That is, we can consider
pairs (q, r) of quaternions, and multiply these pairs by
the formula

(q, r)(s, t) = (qs − r∗t, q∗t + rs).
Since the conjugate q∗ of a quaternion q is the ana-
logue of the complex conjugate z̄ of a complex number
z, this is basically the same formula that we used for
multiplication of pairs of complex numbers—that is,
for quaternions.

However, we need to be careful: multiplication of
quaternions is not commutative, so there are in fact
many formulas we could write down that would be
“basically the same” as the earlier one. Why choose the
above one, rather than, say, replacing q∗t by tq∗?

It turns out that the formula suggested above leads
to zero divisors. For example, (j, i)(l,k) works out to be
(0,0). However, the modified formula

(q, r)(s, t) = (qs − tr∗, q∗t + sr),
which one can discover fairly quickly if one bears in
mind that one would like (q, r)(q∗,−r) to work out
as (|q|2 + |r |2,0), does produce a useful number sys-
tem. It is denoted O and its elements are called the
octonions (or sometimes the Cayley numbers). Unfor-
tunately, multiplication of octonions is not even asso-
ciative, but it does have two very good properties:
every nonzero octonion has a multiplicative inverse,
and two nonzero octonions never multiply together to
give zero. (Because octonion multiplication is not asso-
ciative, these two properties are no longer obviously
equivalent. However, any subalgebra of the octonions
generated by two elements is associative, and this is
enough to prove the equivalence.)

So now we have number systems when n = 1, 2, 4, or
8. It turns out that these are the only dimensions with
good notions of multiplication. Of course, “good” has
a technical meaning here: matrix multiplication, which
is associative but gives zero divisors, is for many pur-
poses “better” than octonion multiplication, which has
no zero divisors but is not associative. So let us finish
by seeing more precisely what it is that is special about
dimensions 1, 2, 4, and 8.

All the number systems constructed above have a
notion of size given by a norm [III.64]. For real and com-
plex numbers z, the norm of z is just its modulus. For
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a quaternion or octonion x, it is defined to be
√
x∗x,

where x∗ is the conjugate of x (a definition that works
for real and complex numbers as well). If we write ‖x‖
for the norm of x, then the norms constructed have
the property that ‖xy‖ = ‖x‖‖y‖ for every x and y .
This property is extremely useful: for example, it tells
us that the elements of norm 1 are closed under mul-
tiplication, a fact that we used many times when dis-
cussing the geometric importance of complex numbers
and quaternions.

The feature that distinguishes dimensions 1, 2, 4, and
8 from all other dimensions is that these are the only
dimensions for which one can define a norm ‖·‖ and a
notion of multiplication with the following properties.

(i) There is a multiplicative identity: that is, a num-
ber 1 such that 1x = x1 = x for every x.

(ii) Multiplication is bilinear, meaning that x(y+z) =
xy+xz, and x(ay) = a(xy) whenever a is a real
number.

(iii) For any x and y , ‖xy‖ = ‖x‖‖y‖ (and therefore
there are no zero divisors).

A normed division algebra is a vector space Rn together
with a norm and a method of multiplying vectors that
satisfy the above properties. So normed division alge-
bras exist only in dimensions 1, 2, 4, and 8. Further-
more, even in these dimensions, R, C, H, and O are the
only examples.

There are various ways to prove this fact, which is
known as Hurwitz’s theorem. Here is a very brief sketch
of one of them. The idea is to prove that if a normed
division algebra A contains one of the above examples,
then either it is that example, or it contains the next one
in the sequence. So either A is one of R, C, H, and O orPUP: Tim wants to

keep ‘and’ – OK?
A contains the algebra produced by doing to O the pro-
cess we used to construct H from C and O from H, a pro-
cess known as the Cayley–Dickson construction. How-
ever, if one applies the Cayley–Dickson construction to
O, one obtains an algebra with zero divisors.

To see how such an argument might work, let us
imagine, for the sake of example, that A contains O

as a proper subalgebra. It turns out that the norm on
A must be a euclidean norm [III.37]—that is, a norm
derived from an inner product. (Roughly speaking, this
is because multiplication by an element of norm 1 does
not change the norm, which gives A so many symme-
tries that the norm on A has to be the most symmetric
of all, namely Euclidean.) Let us call an element of A
imaginary if it is orthogonal to the element 1. Then

we can define a conjugation operation on A by tak-

ing 1∗ to be 1 and x∗ to be −x when x is imaginary,

and extending linearly. This operation can be shown

to have all the properties one would like. In particular,

aa∗ = a∗a = ‖a‖2 for every element a of A. Let us

choose a norm-1 element of A that is orthogonal to all

of O and call it i. Then i∗ = −i, so 1 = i∗i = −i2, so

i2 = −1. Now take the algebra generated by i and the

copy of O that lies in A. With some algebraic manip-

ulation, one can demonstrate that this consists of ele-

ments of the form x+ iy , with x and y belonging to O.

Moreover, the product of x + iy and z + iw turns out

to be xz −wy∗ + i(x∗w + zy), which is exactly what

the Cayley–Dickson construction gives.

For further details about quaternions and octo-

nions, there are two excellent sources: a discus-

sion by John Baez at http://math.ucr.edu/home/baez/

octonions and a book, On Quaternions and Octonions:

Their Geometry, Arithmetic, and Symmetry, by J. H.

Conway and D. A. Smith (2003; Wellesley, MA: AK

Peters).

III.79 Representations

A linear representation of a finite group [I.3 §2.1] G is

a way of associating a linear map Tg , from some vec-

tor space [I.3 §2.3] V to itself, with each element g of

G. Of course, this association must reflect the group

structure of G, so TgTh should equal Tgh, and if e is

the identity of G, then Te should be the identity map

on V .

One useful aspect of linear representations is that

the dimension of the vector space V may be consider-

ably smaller than the size of G. If this is the case, then

the representation packages the information about G
in a particularly efficient way. For example, the alter-

nating group [III.70] A5, which has sixty elements, is

isomorphic to the group of rotational symmetries of

an icosahedron, and can therefore be thought of as

a group of transformations of R3 (or, equivalently, of

3× 3 matrices).

A more fundamental reason for representations

being useful is that every representation can be decom-

posed into building blocks known as irreducible repre-

sentations. It turns out that a great deal of information

about G can be deduced from a few basic facts about

its irreducible representations.

These ideas can be generalized to infinite groups

as well, and are particularly important in the case of
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lie groups [III.50 §1]. Since Lie groups have a differ-
entiable structure, the representations of interest are
those where the homomorphism g �→ Tg reflects this
structure (for example, by being differentiable).

Representations are discussed in much greater detail
in representation theory [IV.12]. See also operator
algebras [IV.19 §2].

III.80 Ricci Flow
Terence Tao

Ricci flow is a technique that allows one to take an arbi-
trary riemannian manifold [I.3 §6.10] and smooth
out the geometry of that manifold to make it look more
symmetric. It has proven to be a very useful tool in
understanding the topology of such manifolds.

Ricci flow can be defined for Riemannian manifolds
of any dimension, but for the sake of exposition we
restrict ourselves here to two-dimensional manifolds
(i.e., surfaces) as they are easy to visualize. From our
everyday experience with three-dimensional space R3,
we are familiar with many surfaces, such as spheres,
cylinders, planes, tori (the shape of the surface of a
doughnut), and so forth. This is an extrinsic way to
think about surfaces: as subsets of a larger ambient
space, which in this case is three-dimensional Euclid-
ean space. On the other hand, one can think about
surfaces in a more abstract intrinsic manner: by con-
sidering how the points in the surface stand in rela-
tion to each other, but not in relation to any exter-
nal space. (For instance, the Klein bottle makes perfect
sense as a surface from an intrinsic viewpoint, but can-
not be viewed extrinsically in three-dimensional Euclid-
ean space R3, although it can be viewed extrinsically
in four-dimensional Euclidean space R4.) It turns out
that the two viewpoints are mostly equivalent to each
other, but it will be more convenient here to adopt the
intrinsic perspective.

A good example of a surface is the surface of Earth.
Extrinsically, this is a subset of a three-dimensional
space R3. But we can also view this surface two dimen-
sionally by using an atlas: a collection of maps or charts
that describe various regions of this surface by identi-
fying them with a subset of a two-dimensional plane.
As long as we have enough charts to cover the origi-
nal surface, this atlas is sufficient to describe the sur-
face. This way of thinking of a surface is not completely
intrinsic, because there is more than one atlas that one
could associate with this surface, and they may differ in
various minor ways. For instance, in one atlas the city

of Los Angeles might be on the boundary of one of the

charts, whereas in another atlas it might be in the inte-

rior of every chart that it appears in. However, there are

many facts one can deduce from an atlas that do not

depend on the choice of atlas; for instance, using any

accurate atlas of Earth one can see that it is impossible

to travel from Los Angeles to Sydney without crossing

at least one ocean. If a fact regarding a surface does not

depend on which atlas one uses, we say that it is intrin-

sic or coordinate-independent. It will turn out that Ricci

flow is an intrinsic flow on surfaces; it can be defined

without any knowledge of charts or of some external

space.

We have informally described the mathematical con-

cept of a surface, or two-dimensional manifold. But to

describe Ricci flow we need the more sophisticated con-

cept of a Riemannian surface (or two-dimensional Rie-

mannian manifold). This is a surface M with an addi-

tional (intrinsic) object, a Riemannian metric g, which

specifies the distance d(x,y) between any two points

x, y on the surface. This metric allows one to define

the angle ∠γ1, γ2 that any two curves γ1, γ2 on the sur-

face make where they intersect; for instance, the Earth’s

equator intersects any longitude at right angles. And it

can also be used to define the area |A| of any given set

A on the surface (e.g., the area of Australia). There are a

number of properties that these concepts of distance,

angle, and area have to satisfy, but the most important

property can be stated informally as follows: the geom-

etry of a Riemannian surface has to be very close to the

geometry of the Euclidean plane at small length scales.

To give an example of what the above statement

means, take any point x in the surface M , and pick

any positive radius r . Because the Riemannian metric

g specifies a notion of distance, we can define the disk

B(x, r) of radius r centered at x to be the set of all

points y whose distance d(x,y) to x is less than r .

Because the Riemannian metric g defines a notion of

area, we can then discuss the area of this disk B(x, r).
In the Euclidean plane, this area would of course be

πr 2. In a Riemannian surface, this need not be the case:

for instance, the total area of the surface of Earth (and

hence of all disks within this surface) is finite, even

thoughπr2 can be arbitrarily large as r goes to infinity.

However, we do require that, when r is very small, the

area of the disk B(x, r) becomes increasingly close to

πr2; more precisely, we require that the ratio between

the area and πr2 converges to 1 in the limit as r tends

to 0.
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This brings us to the notion of scalar curvature R(x).
In some cases, such as on the sphere, the area |B(x, r)|
of a small disk B(x, r) is actually a little bit smaller
than πr2; when this is the case, we say that the sur-
face has positive scalar curvature at x. In some other
cases, such as on a saddle, the area |B(x, r)| of a small
disk B(x, r) is a bit larger than πr2; then we say that
the surface has negative scalar curvature at x. In other
cases again, such as on a cylinder, the area |B(x, r)|
of a small disk B(x, r) is equal (or very nearly equal)
to πr2; in this case we say the surface has vanishing
scalar curvature at x. (This is despite the cylinder being
“curved” when viewed extrinsically as a subset of three-
dimensional space.) Note that on a complicated surface
it is perfectly possible to have positive scalar curvature
at some points of the surface and negative or vanish-
ing scalar curvature at other points. The scalar curva-
ture R(x) at any given point x can be defined more
precisely by the formula

R(x) = lim
r→0

πr2 − |B(x, r)|
πr4/24

.

(For surfaces in an external space, this intrinsic concept
of scalar curvature is almost identical to the extrinsic
concept of Gauss curvature, which we will not discuss
here.)

One can refine this notion to that of Ricci cur-
vature Ric(x)(v,v). Consider now an angular sector
A(x, r , θ, v) inside a small disk B(x, r) of small angu-
lar aperture θ (measured in radians) about some direc-
tion v (a unit vector) emanating from x. This sector is
well-defined, basically because the Riemannian metric
gives us the appropriate notions of distance and angle.
In Euclidean space, the area |A(x, r , θ, v)| of this sec-
tor is 1

2ωr
2. But on a surface, the area |A(x, r , θ, v)|

might be slightly less (respectively, slightly more) than
1
2θr

2. In these cases we say that the surface has posi-
tive (respectively, negative) Ricci curvature at x in the
direction v . More precisely, we have

Ric(x)(v,v) = lim
r→0

lim
ω→0

1
2ωr

2 − |A(x, r ,ω,v)|
ωr4/24

.

Now it turns out that for surfaces, this more com-
plicated notion of curvature is in fact equal to half
the scalar curvature: Ric(x)(v,v) = 1

2R(x). In partic-
ular, the direction v plays no role in Ricci curvature
in two dimensions. However, it is possible to extend
all of the above concepts to other dimensions. (For
instance, to define scalar and Ricci curvature for three-
dimensional manifolds, one would use balls and solid
sectors instead of disks and angular sectors, as well as

making other necessary adjustments, such as replacing

the expressionπr2 with 4
3πr

3.) In higher dimensions it

turns out that the Ricci curvature is more complicated

than the scalar curvature. For instance, in three dimen-

sions it is possible for a point x to have positive Ricci

curvature in one direction but negative Ricci curvature

in another; intuitively, this means that narrow sectors

in the former direction “curve inward,” whereas narrow

sectors in the latter direction “curve outward.”

Now we can describe Ricci flow informally as the pro-

cess of stretching the metric g in directions of negative

Ricci curvature, and contracting the metric in directions

of positive Ricci curvature. The stronger the curvature,

the faster the stretching or contracting of the metric.

The concepts of stretching and contracting will not be

defined formally here, but they increase or decrease

the distance between points along these directions. By

changing the notion of distance, one also affects the

notions of angle and volume (though it turns out that

Ricci flow in two dimensions is conformal, which means

that the notion of angle remains unaffected by the

flow; this fact is closely related to the previously men-

tioned fact that in two dimensions the Ricci curvature

is the same in all directions). Ricci flow can be described

succinctly and precisely by the equation

d
dt
g = −2 Ric,

although we will not define here exactly what it means

to differentiate the metric g with respect to the time

variable t, or what it means for that derivative to equal

the Ricci curvature multiplied by −2.

In principle, one could perform Ricci flow on a mani-

fold for as long a period of time as one wished. In prac-

tice, however, it is possible (especially in the presence

of positive curvature) for the Ricci flow to cause a man-

ifold to develop singularities: points where it ceases

to look like a manifold, and where the geometry may

stop resembling Euclidean geometry even at very small

scales. For example, if one starts with a perfectly round

sphere and performs Ricci flow, what happens is that

the sphere contracts at a steady rate until it becomes

a point, which is no longer a two-dimensional mani-

fold. In three dimensions, more complicated singular-

ities are possible: for instance, one can have a neck

pinch, in which a cylinder-like “neck” of the manifold

shrinks under Ricci flow, until at one or more places

along the neck, the cylinder has tapered down to a

point. The types of possible singularity formations for

three-dimensional Ricci flow were only classified com-
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pletely in a recent and very important paper of Grigori

Perelman.

Some years ago, Richard Hamilton made the funda-

mental observation that Ricci flow is an excellent tool

for simplifying the structure of a manifold: generally

speaking, it compresses all the positive-curvature parts

of the manifold into nothingness, while expanding the

negative-curvature parts of the manifold until they

become very homogeneous, in the sense that the man-

ifold begins to look much the same no matter which

vantage point one selects inside it. Indeed, the flow

seems to separate the manifold into extremely symmet-

ric components. For instance, in two dimensions the

Ricci flow always ends up endowing the manifold with

a metric of constant curvature, which could be positive

(as in the sphere), zero (as in the cylinder), or negative

(as in hyperbolic space); the fact that such a constant-

curvature metric can always be found is known as

the uniformization theorem [V.37] and is of funda-

mental importance in the theory of surfaces. In higher

dimensions, the Ricci flow can develop singularities

before perfect symmetry is attained, but it turns out

that it is possible to perform “surgeries” (see differ-

ential topology [IV.9 §§2.3, 2.4]) on the singularities

that develop this way, so that the manifold becomes

smooth again and one can restart the Ricci flow pro-

cess. (The surgery may, however, change the topology

of the manifold: for instance, it can convert a connected

manifold into two disconnected pieces.) In three dimen-

sions it has recently been shown by Perelman that Ricci

flow, when augmented by surgery to remove the sin-

gularities, does indeed convert an arbitrary manifold

(obeying some mild assumptions) into a finite union of

some very symmetric and explicitly describable pieces;

the precise statement of this conclusion was known as

the geometrization conjecture of Thurston. One conse-

quence of this conjecture, which is now a rigorous theo-

rem proved by Perelman, is the poincaré conjecture

[V.28]: any compact three-dimensional manifold that is

simply connected (meaning that any closed loop on the

manifold can be contracted smoothly to a point with-

out ever leaving the manifold) can in fact be smoothly

deformed into a 3-sphere (which is to four-dimensional

Euclidean space as the usual two-dimensional sphere

is to three-dimensional Euclidean space). The proof of

PUP: please note
that article titled
“Riemannian
Metrics” has been
dropped since the
proofreading was
done.

Poincaré’s conjecture is one of the most impressive

recent achievements of modern mathematics.

III.81 Riemann Surfaces
Alan F. Beardon

Let D be a region (that is, a connected open set) in
the complex plane. If f is a complex-valued function
defined on D, then we can define its derivative just as
we would for real-valued functions defined on subsets
of R: the derivative of f at w is the limit as z tends to
w of the “difference quotient” (f (z)− f(w))/(z−w).
Of course, this limit does not necessarily exist, but if it
exists for every w in D, then f is said to be analytic,
or holomorphic, onD. Analytic functions have amazing
properties; for example, if a function is analytic in a
region, then it automatically has a Taylor-series expan-
sion at each point of the region, from which one can
deduce that it is infinitely differentiable. This is in stark
contrast to the theory of real functions of a real vari-
able, where, for example, a function may be once dif-
ferentiable but not twice differentiable at some point
x, yet three-times differentiable at some other point y .
Complex analysis is the study of analytic functions. Per-
haps more than any other mathematical topic, it is both
immensely useful in a practical sense and profound
and beautiful in a theoretical sense. (See also some
fundamental mathematical definitions [I.3 §5.6].)

In general, group theorists do not distinguish be-
tween isomorphic groups, and topologists do not
distinguish between homeomorphic spaces. Similarly,
complex analysts do not distinguish between two
regions D and D′ if there is an analytic bijection
between D and D′. When this is the case, we say that
D and D′ are conformally equivalent. Conformal equiv-
alence is, as its name suggests, an equivalence rela-
tion [I.2 §2.3]: the proof depends on the surprising fact
that if f is an analytic bijection from D to D′, then
its inverse f−1 : D′ → D is also analytic. Again, this
contrasts with real analysis. If D and D′ are confor-
mally equivalent, then “interesting” properties of ana-
lytic functions on D are transferred automatically to
corresponding properties of analytic functions defined
on D′. Indeed, this statement can almost be taken as a
definition of “interesting” properties (although admit-
tedly this conflicts with the numerical side of com-
plex analysis, because purely numerical statements do
not usually transfer under such maps). Naturally, we
would like to know which properties of analytic func-
tions are “interesting” in this sense. One such prop-
erty is that (except at certain isolated points) the angle
between two intersecting curves in D is preserved
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under an analytic map: this is the origin of the term
“conformal.” It is less well-known that if a bijection
(which is not assumed to be differentiable) preserves
the angles between curves (that is, both their magni-
tude and whether they are measured clockwise or coun-
terclockwise), then it is analytic. Thus, loosely speak-
ing, the preservation of angles implies the existence of
a Taylor series!

The impact of complex analysis on other topics is
so great that it is natural to try to find the most gen-
eral type of surface on which we can study analytic
functions. This leads to the definition of a Riemann
surface (after bernhard riemann [VI.49], who intro-
duced the idea in his doctoral dissertation). In order
to put a coordinate system on a surface S we try to
map S bijectively onto a plane region D; if we succeed,
then we can transfer the coordinates from D to S. For
many surfaces (for example, a sphere) it is not possible
to find such a map, and we have to be satisfied with
local coordinates. This means that at each point w of
S, we map a neighborhood N of w onto a plane region,
and so obtain coordinates that are restricted to N . As
there are usually infinitely many ways to do this, we are
forced to consider the class of transition maps; that is,
the maps from one coordinate system at w to another.
The surface is a Riemann surface precisely when each
such transition map is an analytic bijection. This defi-
nition resembles that of a two-dimensional manifold
[I.3 §6.9], but the requirement that the transition maps
should be analytic is much stronger, so by no means
every 2-manifold is a Riemann surface.

It is not difficult to construct Riemann surfaces. Con-
sider, for example, a sphere S resting on a horizontal
table. If we imagine a light source at the highest point
P of the sphere, then each point of S except P casts a
“shadow” on the table: since the table has a simple coor-
dinate system, we can use these “shadows” to define a
coordinate system on all of S except the point P. Sim-
ilarly, a light source at the point Q of tangency with
the table casts a shadow onto the (horizontal) tangent
plane at P, and this gives a coordinate system valid
throughout S except at Q. It can be shown that if the
second coordinate system is composed with a reflec-
tion, then the sphere does have the structure of a Rie-
mann surface. This is an extremely important exam-
ple, because it allows one to handle questions involving
infinity in a satisfactory way; it is known as the Riemann
sphere.

For another example, consider a cube C , and (for sim-
plicity only) remove the eight vertices. Given a face F of

C (without its bounding edges), we can find a Euclidean
rigid motion that maps F into C, so we can easily define
a coordinate system on F . If w is an interior point of
an edge E of C , we can “open” the two faces that meet
at E to make a planar region that contains E, and then
map this region into C by a Euclidean rigid motion. In
this way we see that C (less its vertices) is a Riemann
surface. The problem with the vertices can be solved by
technical means, and this method can then be general-
ized to show that any polyhedron (even one with holes,
such as a “square” torus) is a Riemann surface. These
are known as compact surfaces. It is a deep but fascinat-
ing classical result that each such surface corresponds
bijectively to an irreducible polynomial P(z,w) in two
complex variables. To give an idea of how the corre-
spondence works, let us consider an equation such as
w3+wz+z2 = 0. For each z this can be solved to give
three values of w, say w1, w2, and w3; as we allow z
to vary in C, the values wj vary, and as they do so they
create a Riemann surface W , which can be shown to
be connected. This surface can be thought of as lying
“above” C, and for all but a finite set of z in C there are
exactly three points on W that are “above” z.

As we have mentioned, Riemann surfaces are impor-
tant because they are the most general surfaces on
which one can study analytic functions, with all of their
remarkable properties. It is easy to define what we
mean by an analytic function f on a Riemann surface R.
Given a coordinate system on part of R, we can think of
f as a function of the coordinates, and we then regard
f as analytic if and only if it depends analytically on the
coordinates. Because the transition maps are analytic,
f will be analytic with respect to one coordinate system
if and only if it is analytic with respect to all the other
coordinate systems defined at the point in question.

This simple property—that if something holds in one
coordinate system, then it holds in all of them—is one
of the crucial features of the theory. For example, sup-
pose that we have two curves crossing on an (abstract)
Riemann surface. If we transfer the two curves to plane
regions using different local coordinate systems at the
crossing point, and then measure the angle of intersec-
tion in each case, we must get the same result (since
the transition from one coordinate system to another
preserves angles). It follows that the angle between
intersecting curves on an abstract Riemann surface is
a well-defined concept.

It turns out that analysis on Riemann surfaces goes
beyond analytic functions. Harmonic functions (solu-
tions of laplace’s equation [I.3 §5.4]) are intimately
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connected to analytic functions, since the real part of an
analytic function is harmonic and any harmonic func-
tion is (locally) the real part of an analytic function.
Thus, on a Riemann surface, complex analysis merges
almost imperceptibly with potential theory (which is
the study of harmonic functions).

Perhaps the most profound theorem of all about Rie-
mann surfaces is the uniformization theorem [V.37].
Roughly speaking, this says that every Riemann surface
is obtained from either Euclidean, spherical, or hyper-
bolic geometry (see some fundamental mathemati-
cal definitions [I.3 §§6.2, 6.5, 6.6]) by taking a poly-
gon in that geometry and gluing its sides together, in
the same way that one obtains a torus by gluing oppo-
site sides of a rectangle together. (See also fuchsian
groups [III.28].) Remarkably, only very few Riemann
surfaces come from the Euclidean or spherical geome-
tries; essentially, every Riemann surface can be con-
structed in this way from (and only from) the hyper-
bolic plane. This means that virtually every region in
the complex plane comes equipped with a natural and
intrinsic geometry whose character is hyperbolic and
not, as one might expect, Euclidean. The Euclidean char-
acter of a generic plane region comes from its embed-
ding in C, and not from its own intrinsic hyperbolic
geometry.

III.82 The Riemann Zeta FunctionPUP: please note
that this article
was called ‘The
Zeta Function’ and
appeared as the
last article in the
part, but this is
definitely a better
name for it and
therefore a better
position.

The Riemann zeta function ζ is a function defined on
the complex numbers that encapsulates in a remark-
able way many of the most important properties about
the distribution of prime numbers. If s is a complex
number with real part greater than 1, then ζ(s) is
defined to be

∑∞
n=1n−s . The condition that Re(s) > 1

is needed to ensure that this series converges. How-
ever, because the resulting function is holomorphic
[I.3 §5.6], it is possible to extend the definition by
means of analytic continuation. The result is a func-
tion that is defined everywhere on the complex plane
(though it takes the value ∞ at 1).

A first clue to why this function is related to the
distribution of primes is Euler’s product formula:

ζ(s) =
∏
p
(1− p−s)−1.

Here, the product on the right-hand side is over all
primes. The formula can be proved by writing (1 −
p−s)−1 as 1+p−s+p−2s+· · · , expanding out the prod-
uct, and using the fundamental theorem of arith-
metic [V.16]. Deeper connections were discovered by

riemann [VI.49], who formulated the famous riemann
hypothesis [IV.4 §3].

The Riemann zeta function is just one of a family
of functions that encode important number-theoretic
information. For example, Dirichlet L-functions are
closely related to the distribution of primes in arith-
metic progressions. For more details about these and
about the Riemann zeta function itself, see analytic
number theory [IV.4]. Some more sophisticated zeta
functions are described in the weil conjectures
[V.38]. See also L-functions [III.49].

III.83 Rings, Ideals, and Modules

1 Rings

A ring, like a group [I.3 §2.1] or a field [I.3 §2.2], is
an algebraic structure that satisfies certain axioms. To
remember the axioms for both rings and fields at the
same time, it is helpful to think of two simple examples:
with the two operations of addition and multiplication,
the set Z of all integers forms a ring and the set Q of
all rational numbers forms a field. In general, a ring is a
set R with two binary operations [I.2 §2.4], denoted
by “+” and “×”, which satisfies all the field axioms apart
from the one that says that nonzero elements have
multiplicative inverses.

Although the integers are the prototypical example
of a ring, the notion arose historically as an abstraction
from several sources, one of which was polynomials.
Like integers, polynomials (with real coefficients, say)
can be added and multiplied, and these operations have
all the properties one might expect, such as the fact
that multiplication is distributive over addition, so the
space of such polynomials forms a ring. Other exam-
ples include the integers modulo n (for any positive
integer n), the rationals (or indeed any other field), and
the set Z[i] of all complex numbers a+ bi such that a
and b are integers.

Sometimes the assumptions that multiplication is
commutative and has an identity element are dropped.
This leads to a more complicated theory, but it does
encompass important examples such as the set of all
n×n matrices (with elements in a given field, or even
just a ring).

As with other algebraic structures, there are several
ways of forming new rings from old ones: for instance,
we can take subrings and direct products of two rings.
Slightly less obviously, we can start with a ring R and
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form the ring of all polynomials with coefficients in R.
We can also take quotients [I.3 §3.3], but in order to
discuss these we must introduce the notion of an ideal.

2 Ideals

A typical quotient construction for an algebraic struc-
tureAwill identify some substructure B and regard two
elements of A as “equivalent” if they “differ by an ele-
ment of B.” If A is a group or a vector space [I.3 §2.3],
then B will be a subgroup or a subspace. However, the
situation for rings is slightly different.

We can see why if we think about quotients in another
way: as images of homomorphisms [I.3 §4.1]. The sub-
structures that we like to quotient by are the kernels
of these homomorphisms, so we should ask ourselves
what the kernel of a ring homomorphism (that is, the
set of elements that map to 0) will be like.

If φ : R → R′ is a homomorphism between two rings,
and φ(a) = φ(b) = 0, then φ(a + b) = 0. Also, if
r is any element of R, then φ(ra) = φ(r)φ(a) = 0.
Thus, the kernel of a homomorphism is closed under
addition, and also under multiplication by any element
of the ring. These two properties define the notion of an
ideal. For example, the set of all even integers is an ideal
in Z. In interesting cases, ideals are not subrings, since
if an ideal contains 1 then it must contain r for every
r in the ring. (An example that makes the difference
very clear is the subset of the ring of all polynomials
that consists of all constant polynomials. The constants
form a subring, but they certainly do not form an ideal.)

It is not hard to show that for any ideal I in a ring
R there is a homomorphism that has I as its kernel,
namely the quotient map from R to the quotient R/I.
Here R/I is a construction that as usual we think of as
“R, but with two elements considered the same if they
differ by an element of I.”

Quotients of rings are extremely useful in alge-
braic number theory [IV.3] because they allow us to
rephrase questions about algebraic numbers as ques-
tions about polynomials. To get an idea of how this is
done, consider the ring Z[X] of all polynomials with
integer coefficients, and the ideal that consists of all
multiples (by integer polynomials) of the polynomial
X2 + 1. In the quotient of Z[X] by this ideal, we regard
two polynomials as the same if they differ by a multiple
of X2 + 1. In particular, X2 is the same as −1. In other
words, in this quotient ring we have a square root of
−1, and in fact the quotient ring is isomorphic to the
ring Z[i] that we met earlier.

One of the things we like to do to integers is fac-

torize them, and we can try to do the same in rings

as well. However, it turns out that, while it is usually

possible to factorize an element of a ring into “irre-

ducible” ones that cannot be factorized further (like

the primes in Z), in many cases the factorization is not

unique. At first, this might be rather unexpected, and

indeed it was a stumbling block for many early workers

(in the eighteenth and nineteenth centuries). Here is an

example: in the ring Z[
√−3], which consists of all com-

plex numbers a + b√−3, where a and b are integers,

the number 4 may be factorized as 2× 2 and also as

(1+√−3)× (1−√−3).

3 Modules

Modules are to rings as vector spaces are to fields. In

other words, they are algebraic structures where the

basic operations are addition and scalar multiplication,

but now the scalars are allowed to come from a ring

rather than a field. For an example of a module over

a ring that is not a field, take any Abelian group G.

This can be turned into a module over Z, with addi-

tion given by the group operation and scalar multiplica-

tion defined in the obvious way: for instance, 3g means

g + g + g, and −2g means the inverse of g + g.

The simplicity of this definition masks the fact that

the structure of modules is in general far more subtle

than that of vector spaces. For example, we can define

a basis of a module to be a linearly independent set of

elements that spans the module. However, many use-

ful facts about bases in vector spaces do not hold for

modules. For instance, in Z, which we may consider as

a module over itself, the set {2,3} spans the module

but does not contain a basis, and similarly the set {2} is

linearly independent but cannot be extended to a basis.

In fact, modules may be very far from having a basis:

for example, if we consider the integers modulo n as a

module over Z, then even a single element x fails to be

linearly independent, since nx = 0.

The following example of a module is an important

one. Let V be a complex vector space and let α be a lin-

ear map from V to V . This can be made into a module

over the ring C[X]: if v ∈ V and P is a complex polyno-

mial, then Pv is defined to be P(α)v . (For instance, if P
is the polynomial x2+1, then Pv = α2v+v .) Applying

general structural results about modules to this exam-

ple, one obtains a proof of the jordan normal form

theorem [III.45].
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III.84 Schemes
Jordan S. Ellenberg

One frequently finds in the history of mathematics
that a definition thought to be completely general
was in fact too restrictive to treat certain problems
of interest. The notion of “number,” for instance, has
been expanded again and again—most notably to incor-
porate irrationalities and complex numbers, the for-
mer arising from problems in geometry and the lat-
ter needed in order to describe solutions to arbitrary
algebraic equations. In a similar way, algebraic geom-
etry, which was once understood as the study of alge-
braic varieties, or solution sets of algebraic equations
in some finite-dimensional space, has grown to encom-
pass more general objects known as “schemes.” As a
very meager example one might consider the two equa-
tions x + y = 0 and (x + y)2 = 0. The two equations
have the same set of solutions in the plane, so they
describe the same variety; but the schemes attached to
the two objects are completely different. The reformu-
lation of algebraic geometry in the language of schemes
was a tremendous project spearheaded by Alexander
Grothendieck in the 1960s. As the above example sug-
gests, the scheme-theoretic viewpoint tends to empha-
size the algebraic aspects of the subject (equations)
rather than the traditionally geometric ones (solution
sets of equations). This viewpoint has made a reality
of the long-hoped-for unification of algebraic num-
ber theory [IV.3] and algebraic geometry, and, indeed,
much recent progress in number theory would have
been impossible without the geometric insight supplied
by the theory of schemes.

Even schemes are not enough to handle all the
problems of current interest, and still more general
notions (stacks, “noncommutative varieties,” derived
categories of sheaves, etc.) are brought to bear when
necessary. These can appear exotic, but to our suc-
cessors they will no doubt be second nature, just as
schemes are to us. For more on algebraic geometry in
general, see algebraic geometry [IV.7]. Schemes are
discussed at greater length in arithmetic geometry
[IV.6].

III.85 The Schrödinger Equation
Terence Tao

In mathematical physics, the Schrödinger equation
(and the closely related Heisenberg equation) are the

most fundamental equations in nonrelativistic quan-
tum mechanics, playing the same role as Hamilton’s
laws of motion (and the closely related Poisson equa-
tion) in nonrelativistic classical mechanics. (In relativis-
tic quantum mechanics, the equations of quantum field
theory take over the role of Heisenberg’s equation,
while Schrödinger’s equation does not have a natural
direct analogue.) In pure mathematics, the Schrödinger
equation, together with its variants, is one of the basic
equations studied in the field of partial differen-
tial equations [IV.16], and has applications to geom-
etry, to spectral and scattering theory, and to integrable
systems.

The Schrödinger equation can be used to describe the
quantum dynamics of many-particle systems under the
influence of a variety of forces, but for simplicity let us
consider just a single particle, of mass m > 0, moving
about in n-dimensional space Rn subject to the influ-
ence of a potential, which we shall take to be a function
V : Rn → R. To avoid technicalities we shall assume that
all the functions we discuss are smooth.

In classical mechanics, this particle would have a
specific position q(t) ∈ Rn and a specific momentum
p(t) ∈ Rn for each time t. (Eventually we shall observe
the familiar law p(t) = mv(t), where v(t) = q′(t) is
the velocity of the particle.) Thus the state of this sys-
tem at any given time t is described by the element
(q(t), p(t)) of the space Rn × Rn, which is known as
phase space. The energy of this state is described by
the hamiltonian function [III.35] H : Rn × Rn → R

on phase space, defined in this case by

H(q,p) = |p|
2

2m
+ V(q).

(Physically, the quantity |p|2/2m = 1
2m|v|2 represents

kinetic energy, while V(q) represents potential energy.)
The system then evolves according to Hamilton’s equa-
tions of motion:

q′(t) = ∂H
∂p
, p′(t) = −∂H

∂q
, (1)

where we keep in mind that p and q are vectors, so that
these derivatives are gradients [I.3 §5.3]. Hamilton’s
equations of motion are valid for any classical system,
but in our specific case of a particle in a “potential well,”
they become

q′(t) = 1
m
p(t), p′(t) = −∇V(q). (2)

The first equation is asserting that p = mv , while the
second equation is basically Newton’s second law of
motion.
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From (1) we can easily derive Poisson’s equation of
motion

d
dt
A(q(t), p(t)) = {H,A}(q(t), p(t)) (3)

for any classical observable A : Rn × Rn → R, where

{H,A} = ∂H
∂p

∂A
∂q
− ∂A
∂p

∂H
∂q

is the Poisson bracket of H and A. Setting A = H, we
have in particular the conservation-of-energy law :

H(q(t), p(t)) = E (4)

for all t ∈ R and some quantity E independent of t.
Now we analyze the quantum mechanical analogue of

the above classical system. We need a small1 parameter
� > 0, known as Planck’s constant. The state of the par-
ticle at a time t is no longer described by a single point
(q(t), p(t)) in phase space, but is instead described by
a wave function, which is a complex-valued function
of position that evolves over time: that is, for each t
we have a function ψ(t) from Rn to C. It is required
to obey the normalization condition 〈ψ(t),ψ(t)〉 = 1,
where 〈· , ·〉 denotes the inner product

〈φ,ψ〉 =
∫

Rn
φ(q)ψ(q)dq.

Unlike a classical particle, a wave function ψ(t) does
not necessarily have a specific position q(t). However,
it does have an average position 〈q(t)〉, defined as

〈q(t)〉 = 〈Qψ(t),ψ(t)〉 =
∫

Rn
q|ψ(t, q)|2 dq.

Here, we have written ψ(t, q) for the value of ψ(t) at
the point q, and Q is the position operator, defined
by (Qψ)(t, q) = qψ(t, q): that is, Q is the operator
that multiplies pointwise by q. Similarly, while ψ does
not have a specific momentum p(t), it does have an
average momentum 〈p(t)〉, defined as

〈p(t)〉 = 〈Pψ(t),ψ(t)〉 = �

i

∫
Rn
(∇qψ(t, q))ψ(t, q)dq,

where the momentum operator P is defined by Planck’s
law

Pψ(t, q) = �

i
∇qψ(t, q).

Note that the vector 〈p(t)〉 is real-valued because all the
components of P are self-adjoint [III.52 §3.2]. More
generally, given any quantum observable, by which
we mean a self-adjoint operator [III.52] A acting on
the space L2(Rn) of complex-valued square integrable

1. In many applications it is convenient to normalize � (and m) to
equal 1.

functions, we can define the average value 〈A(t)〉 of A
at time t by the formula

〈A(t)〉 = 〈Aψ(t),ψ(t)〉.
The analogue of Hamilton’s equations of motion (1) is

now the time-dependent Schrödinger equation:

i�
∂ψ
∂t
= Hψ, (5)

where H is now a quantum observable rather than a

classical one. More precisely,

H = |P |
2

2m
+ V(Q).

In other words, we have

i�
∂ψ
∂t
(t, q) = Hψ(t, q)

= − �2

2m
∆qψ(t, q)+ V(q)ψ(t, q),

where

∆qψ =
n∑
j=1

∂2ψ
∂q2

j
ψ

is the Laplacian of ψ. The analogue of Poisson’s equa-

tion of motion (3) is the Heisenberg equation

d
dt
〈A(t)〉 =

〈
i
�
[H(t),A(t)]

�
(6)

for any observable A, where [A, B] = AB − BA is the

commutator or Lie bracket of A and B. (The quantity

(i/�)[A, B] is occasionally referred to as the quantum

Poisson bracket of A and B.)

If the quantum state ψ oscillates in time accord-

ing to the formula ψ(t, q) = e(E/i�)tψ(0, q) for some

real number E (known as the energy level or eigen-

value), then one has the time-independent Schrödinger

equation:

Hψ(t) = Eψ(t) for all times t (7)

(compare this with (4)). More generally, the impor-

tant subject of spectral theory provides many links

between the time-dependent equation (5) and the time-

independent equation (7).

There are several strong analogies between the equa-

tions of classical mechanics and those of quantum

mechanics. For instance, from (6) one has the equations

d
dt
〈q(t)〉 = 1

m
〈p(t)〉, d

dt
〈p(t)〉 = −〈∇qV(q)(t)〉,

which should be compared with (2). Also, given any

classical solution t �→ (q(t), p(t)) to Hamilton’s equa-

tion of motion, one can construct a corresponding
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family of approximate solutions ψ(t) to Schrödinger’s
equation, for instance by the formula2

ψ(t, q) = e(i/�)L(t)e(i/�)p(t)·(q−q(t))ϕ(q − q(t)),
where

L(t) =
∫ t

0

p(s)2

2m
− V(q(s))ds

is the classical action and ϕ is any slowly vary-
ing function that is normalized in the sense that∫
Rn |ϕ(q)|2 dq = 1. One can verify that ψ solves (5)

except for some errors that are small when � is small.
In physics, this fact is an example of the correspon-
dence principle, which asserts that classical mechanics
can be used to approximate quantum mechanics accu-
rately if Planck’s constant is small and one is working
at macroscopic scales (which is what allows us to usePUP: this is indeed

OK as written.
slowly varying functionsϕ). In mathematics (and more
precisely in the fields of microlocal analysis and semi-
classical analysis), there are a number of formalizations
of this principle that allow us to use knowledge about
the behavior of Hamilton’s equations of motion in order
to analyze the Schrödinger equation. For example, if the
classical equations of motion have periodic solutions,
then the Schrödinger equation often has nearly peri-
odic solutions, whereas if the classical equations have
very chaotic solutions, then the Schrödinger equation
typically does as well (this phenomenon is known as
quantum chaos or quantum ergodicity).

There are many aspects of the Schrödinger equa-
tion that are of interest. We mention just one of them
here for illustration, namely that of scattering theory.
If the potential function V decays sufficiently quickly
at infinity, and k ∈ Rn is a nonzero frequency vec-
tor, then, setting the energy level as E = �2|k|2/2m,
the time-dependent Schrödinger equation Hψ = EψPUP: Tim has

checked this
against usage
earlier in article
and confirms it’s
OK.

admits solutions ψ(q) that behave asymptotically (as
|q| → ∞) as

ψ(q) ≈ eik·q + f
(
q
|q| , k

)
ei|k||q|

r (n−1)/2

for some canonical function f : Sn−1×Rn → C, which is
known as the scattering amplitude function. This scat-
tering amplitude depends (in a nonlinear fashion) on
the potential V , and the map from V to f is known as

2. Intuitively, this functionψ(t, q) is localized in position near q(t)
and localized in momentum near p(t), and is thus localized near
(q(t), p(t)) in phase space. Such a localized function, exhibiting such
“particle-like” behavior as having a reasonably well-defined position
and velocity, is sometimes known as a “wave packet.” A typical solu-
tion of the Schrödinger equation does not behave like a wave packet,
but can be decomposed as a superposition or linear combination of
wave packets; such decompositions are a useful tool in analyzing
general solutions of such equations.

the scattering transform. The scattering transform can
be viewed as a nonlinear variant of the fourier trans-
form [III.27]; it is connected to many areas of partial
differential equations, such as the theory of integrable
systems.

There are many generalizations and variants of the
Schrödinger equation; one can generalize to many-
particle systems, or add other forces such as mag-
netic fields or even nonlinear terms. One can also
couple this equation to other physical equations such
as maxwell’s equations [IV.17 §1.1] of electromag-
netism, or replace the domain Rn by another space
such as a torus, a discrete lattice, or a manifold. Alter-
natively, one could place some impenetrable obstacles
in the domain (thus effectively removing those regions
of space from the domain). The study of all of these
variants leads to a vast and diverse field in both pure
mathematics and in mathematical physics.

III.86 The Simplex Algorithm
Richard Weber

1 Linear Programming

The simplex algorithm is the preeminent tool for solv-
ing some of the most important mathematical prob-
lems arising in business, science, and technology. In
these problems, which are called linear programs, we
are to maximize (or minimize) a linear function sub-
ject to linear constraints. An example is the diet prob-
lem posed by the U.S. Air Force in 1947: find quantities
of seventy-seven differently priced foodstuffs (cheese,
spinach, etc.) to satisfy a man’s minimum daily require-
ments for nine nutrients (protein, iron, etc.) at least
cost. Further applications occur in choosing the ele-
ments of an investment portfolio, rostering an airline’s
crew, and finding optimal strategies in two-person
games. The study of linear programming has inspired
many of the central ideas of optimization theory, such
as duality [III.19], the importance of convexity, and
computational complexity [IV.21].

The input data of a linear program (LP) consists of
two vectors b ∈ Rm and c ∈ Rn, and an m×n matrix
A = (aij). The problem is to find values for n non-
negative decision variables, x1, . . . , xn, to maximize the
objective function c1x1+· · ·+cnxn, subject tom con-
straints, ai1x1 + · · · + ainxn � bi, i = 1, . . . ,m. In the
diet problem, n = 77 and m = 9. In the following sim-
ple example (not a diet problem), n = 2 and m = 3. In
serious real-life problems, n andm can be greater than
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C
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E

B

O x1

x2

P

Figure 1 Feasible region “P” of an LP.

100 000.

Maximize x1 + 2x2

subject to − x1 + 2x2 � 2,
x1 + x2 � 4,

2x1 − x2 � 5,

x1, x2 � 0.

The constraints define a feasible region for (x1, x2),
a convex polygon that is depicted by the shaded region

“P” in figure 1. The two dotted lines mark those x where

the value of the objective function value is 4 and where

it is 6. Clearly, it is maximized at point C.

The general story is similar to that of the example.

If the feasible region P = {x : Ax � b, x � 0} is

nonempty, then it is a convex polytope in Rn, and an

optimal solution can be found at one of its vertices.

It is helpful to introduce “slack variables” x3, x4, x5 �
0 to take up the slack on the left of the inequality

constraints. We can write

−x1 + 2x2 + x3 = 2,

x1 + x2 + x4 = 4,

2x1 − x2 + x5 = 5.

We now have three equations in five variables, so we

can set any two of the variables x1, . . . , x5 equal to 0,

and solve the equations for the other three variables

(or solve a perturbation of them if they happen not

to be independent). There are ten ways to choose two

variables from five. Not all of the ten corresponding

solutions satisfy x1, x2, x3, x4, x5 � 0, but five of them

do. These are called basic feasible solutions (BFSs), and

correspond to the vertices of P marked O, B, C, D, E.

2 How the Algorithm Works

George Dantzig invented the simplex algorithm in 1947

as a means of solving the Air Force’s diet problem men-

tioned at the start. The word “program” was not yet

used to mean computer code, but was a military term

for a logistic plan or schedule. The fundamental fact on

which the algorithm relies is that if an LP has a bounded

optimal solution, then the optimum value is attained at

a BFS, i.e., at a vertex (or so-called “extreme point”) of

the polytope of feasible points, P. Another name for

the feasible polytope is “simplex,” which is where the

algorithm gets its name. It works as follows.

Step 0. Pick a BFS.

Step 1. Test whether this BFS is optimal.

If so, stop. If not, go to step 2.

Step 2. Find a better BFS.

Repeat from step 1.

Since there are only finitely many BFSs (i.e., vertices

of P), the algorithm must stop.

Now that we have an overview, let us look at the

details. Suppose that at step 0 we pick the BFS of

x = (x1, x2, x3, x4, x5) = (0,0,2,4,5), corresponding

to vertex O. At step 1 we wish to know if the objec-

tive function can be increased if x1 or x2 is increased

from 0. So we write x3, x4, x5, and the objective func-

tion cTx in terms of x1 and x2, and display this as

dictionary 1.

Dictionary 1

x3 = 2+ x1 − 2x2,

x4 = 4− x1 − x2,

x5 = 5− 2x1 + x2,

cTx = x1 + 2x2.

The last equation in the dictionary shows that we can

increase the value of cTx by increasing either x1 or x2

from 0. Suppose that we increase x2. The first and sec-

ond equations show that x3 and x4 must decrease, and

we cannot increase x2 beyond 1, at which point x3 = 0

and x4 = 3, x5 = 6. Increasing x2 as much as pos-

sible, we complete step 2 and arrive at a new BFS of

x = (0,1,0,3,6), which is vertex B. Now we are ready

for step 1 again, and so we write x2, x4, x5, and cTx in

terms of the variables that are now zero, namely x1, x3,

to give dictionary 2.
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Dictionary 2

x2 = 1+ 1
2x1 − 1

2x3,

x4 = 3− 3
2x1 + 1

2x3,

x5 = 6− 3
2x1 − 1

2x3,

cTx = 2+ 2x1 − x3.

Dictionary 3

x1 = 2+ 1
3x3 − 2

3x4,

x2 = 2− 1
3x3 − 1

3x4,

x5 = 3− x3 + x4,

cTx = 6− 1
3x3 − 4

3x4.

This shows that cTx can be increased by increasing
x1 from 0, but that x1 can increase no further than 2
because at that point x4 = 0. This brings us to a new
solution (2,2,0,0,3), which is vertex C. Once more, we
are ready for step 1, and so compute dictionary 3, now
writing things in terms of x3 and x4, which are 0. The
algorithm now stops because, as we require x3, x4 � 0,
the bottom line of dictionary 3 proves that cTx � 6 for
all feasible x.

There is other important information in the final
dictionary. If b is changed to b + ε, for small εT =
(ε1, ε2, ε3), then the maximum value of cTx will change
to 6+ 1

3ε1 + 4
3ε2. The coefficient 1

3 is called a “shadow
price,” because it is what we should be willing to pay
per unit increase in b1.

3 How the Algorithm Performs

In running the simplex algorithm the serious work
comes in computing the dictionaries. To find dictio-
nary 2, we could use the first equation of dictionary 1
to rewrite x2 in terms of x1 and x3, and then substitute
for x2 in the other equations. Versions of the simplex
algorithm have been invented that reduce the comput-
ing effort by taking advantage of special structure in
the matrix A, such as the fact that most of its entries
are zero. The dictionary data is often held in a so-called
tableau of coefficients.

There are many other practical and theoretical issues.
One concerns the selection of the pivot, that is, the vari-
able that is to be increased from 0. Starting at O, and
depending on which of x1 and x2 we choose as the first
variable to increase from zero, the path to C can be O,
E, D, C or O, B, C. There is no known way to guarantee
that the algorithm takes the shortest path.

The question of how many steps the simplex algo-
rithm really needs is related to the famous Hirsch con-
jecture: that for any bounded n-dimensional polytope
with m faces, the diameter (defined as the maximum
number of edges on the shortest edge-traversing path
between any two vertices) is at mostm−n. If this were
true, it would suggest that some version of the sim-
plex algorithm might run in a number of steps that

grows only linearly in the numbers of variables and

constraints. However, Klee and Minty (1972) have given

an example based on a perturbed n-dimensional cube

(m = 2n faces and diameter n), in which if the algo-

rithm selects among possible pivots by choosing the

one for which the objective function increases at the

greatest rate per unit increase in that variable, then

it visits all 2n vertices before reaching the optimum.

Indeed, for most deterministic pivot selection rules,

examples are known in which the number of steps

grows exponentially in n.

Fortunately, things are usually much better in prac-

tical problems than in worst-case examples. Typically,

only O(m) steps are needed to solve a problem with

m constraints. Moreover, Khachian (1979) proved (by

analysis of the so-called ellipsoid algorithm) that linear

programs can in principle be solved by an algorithm

whose running time grows only polynomially inn. Thus

linear programming is much easier than “integer linear

programming,” in which x1, . . . , xn are required to be

integers and for which no algorithm with polynomial

running time is known.

Karmarkar (1984) pioneered development of “inte-

rior” methods for linear programming problems. These

move through the interior of the polytope P, rather than

among its vertices, and can sometimes solve large LPs

more quickly than the simplex algorithm. Modern com-

puter software uses both methods and can easily solve

LPs with millions of variables and constraints.

Further Reading

Dantzig, G. 1963. Linear Programming and Extensions.
Princeton, NJ: Princeton University Press.

Karmarkar, N. 1984. A new polynomial-time algorithm for
linear programming. Combinatorica 4:373–95.

Khachian, L. G. 1979. A polynomial algorithm in linear
programming. Soviet Mathematics Doklady 20:191–94.

Klee, V., and G. Minty. 1972. How good is the simplex algo-
rithm? In Inequalities III, edited by O. Shisha, volume 16,
pp. 159–75. New York: Academic Press.

Solitons
See linear and nonlinear waves and

solitons [III.51]

III.87 Special Functions
T. W. Körner



�

III.87. Special Functions 293

Suppose that the only functions we have come across
are quotients of polynomials and that we are asked to
solve the differential equation

f ′(x) = 1/x (1)

for all x > 0, subject to the condition f(1) = 0.
If we try f(x) = P(x)/Q(x), where P and Q are

polynomials with no common factors, then we find that

x(Q(x)P ′(x)− P(x)Q′(x)) = Q(x)2.
By comparing coefficients we can show that Q(0) =
P(0) = 0, which shows that, contrary to our assump-
tions, both P(x) and Q(x) are divisible by x. Thus, we
cannot solve equation (1) in terms of known functions.
However, the fundamental theorem of calculus
[I.3 §5.5] tells us that equation (1) does indeed have a
solution, namely

F(x) =
∫ x

1

1
t

dt.

Further study shows that the function F has many
useful properties. For example, using the substitution
u = t/a, we find that

F(ab) =
∫ a

1

1
t

dt +
∫ ab
a

1
t

dt

=
∫ a

1

1
t

dt +
∫ b

1

1
u

du

= F(a)+ F(b),
and, using the formula for differentiating an inverse
function, we find that F−1 is the solution of the differ-
ential equation

g′(x) = g(x).
We therefore give the function a name (the logarithm)
and add it to our list of standard functions.

At a more advanced level, integration by parts shows
that the gamma function [III.31] (introduced by euler
[VI.19])

Γ (x) =
∫∞

0
tx−1e−t dt,

defined for all x > 0, has the property that

Γ (x) = (x − 1)Γ (x − 1)

for all x > 1, and therefore Γ (n) = (n − 1)! for all
integers n � 1 (since Γ (1) = 1). As one might expect
from its association with factorials, the gamma func-
tion turns out to be very useful in number theory and
statistics.

In practice, a “special function” is any function that,
like the logarithm and the gamma function, has been
extensively studied and has turned out to be useful.
Some authors use the phrase “special functions” in a

more restricted sense, meaning something like “func-
tions that turn up in the solution of physical problems”
or “functions other than those generally provided by a
pocket calculator,” but these restrictions do not seem
to be very useful.

In spite of this apparent generality, the theory of spe-
cial functions is linked in the minds of many mathe-
maticians to a collection of particular ideas and meth-
ods. Indeed, it is often linked to particular books like
Whittaker and Watson’s A Course of Modern Analysis
(which was first published in 1902 and is still sell-
ing well) and Abramowitz and Stegun’s Handbook of
Mathematical Functions. These connections may sim-
ply be accidents of history, but the phrase “special
functions” is often associated with other phrases like
“equations of mathematical physics,” “beautiful formu-
las,” and “sheer ingenuity.” We illustrate this and other
themes in the particular case of Legendre polynomials.
(The next paragraph involves more advanced mathe-
matics and glosses over several long calculations, but
the reader may simply glance over its contents and
resume careful reading thereafter.)

Suppose that we wish to examine the gravita-
tional potential ψ of Earth by looking at solutions of
laplace’s equation [I.3 §5.4] ∆ψ = 0. Since Earth is
more or less spherical, we use spherical polar coordin-
ates (r , θ,φ) and, noting that Earth is symmetric about
its axis of rotation, we may suppose that φ depends
only on r and θ. Under these assumptions, Laplace’s
equation takes the form

sinθ
∂
∂r

(
r2 ∂ψ
∂r

)
+ ∂
∂θ

(
sinθ

∂ψ
∂θ

)
= 0. (2)

Following the standard technique of separation of vari-
ables, we look for solutions of the form ψ(r , θ) =
R(r)Θ(θ). After a little calculation, equation (2) yields

1
R(r)

d
dr
(r2R′(r)) = − 1

sinθΘ(θ)
d

dθ
(sinθΘ′(θ)). (3)

Since one side of equation (3) depends on r alone
and the other on θ alone, both sides must equal some
constant k. The equation

1
R(r)

d
dr
(r2R′(r)) = k

has the solution R(r) = r l whenever l(l + 1) = k. The
corresponding equation for Θ is then

1
sinθΘ(θ)

d
dθ
(sinθΘ′(θ)) = −l(l+ 1). (4)

We now make the substitution x = cosθ, y(x) = Θ(θ)
to convert (4) to Legendre’s equation

(1− x2)y′′(x)− 2xy′(x)+ l(l+ 1)y(x) = 0. (5)
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Routine equating of coefficients reveals that, if we seek

nontrivial solutions of the form f(x) = ∑∞
j=0 ajxj ,

then, unless l is an integer, f(x) is unbounded as x
approaches 1 (that is, as θ approaches 0), so these solu-

tions are not useful physically. However, if l is a positive

integer, then there is a polynomial solution of degree

l. (If l is a negative integer, the same polynomials reap-

pear.) In fact, we have the following stronger statement:

if l is a positive integer, then there exists a unique poly-

nomial Pl of degree l satisfying Legendre’s equation (5)

such that Pl(1) = 1. We call Pl the lth Legendre polyno-

mial. Returning to our original problem, we see that it

has solutions of the form

ψ(r , θ) =
∞∑
n=0

An
Pn(cosθ)
rn+1

.

It is obvious to the physicist, and can be proved by the

mathematician, that this is the most general solution if

we also demand that φ(r , θ)→ 0 as r →∞. Notice that

if r is large, then only the first few terms will contribute

much to the final answer.

There are many different ways of obtaining the

Legendre polynomials. The reader is invited to verify

that, if we define Qn inductively by setting Q0(x) = 1

and Q1(x) = x, and using the “three-term recurrence

relation”

(n+ 1)Qn+1(x)− (2n+ 1)xQn(x)+nQn−1(x) = 0,

then Qn(1) = 1 and Qn is a polynomial that satis-

fies Legendre’s equation (5) (with l = n), from which it

follows thatQn is the Legendre polynomial of degreen.

If we set vn(x) = (x2 − 1)n, then

(x2 − 1)v′n(x) = 2nxv(x).

Differentiating both sides of this equation n+ 1 times

using Leibniz’s rule, we see that v(n)n satisfies Legen-

dre’s equation (5) with l = n. Differentiating vn(x) =
(x − 1)n(x + 1)n n times using Leibniz’s rule and

noting that all but one of the resulting terms vanish

when x = 1, we see that vnn is a polynomial with

v(n)n (1) = 2nn!. Putting all this information together,

we obtain Rodriguez’s formula

Pn(x) = 1
2nn!

v(n)n (x) = 1
2nn!

d
dx
(x2 − 1)n.

Equation (5) is an example of a Sturm–Liouville equa-

tion. Setting l = n and y = Pn and rewriting slightly,

we obtain the equation

d
dx
((1− x2)P ′n(x))+n(n+ 1)Pn(x) = 0. (6)

If m and n are positive integers, then, using (6) and
integrating by parts, we obtain

−n(n+ 1)
∫ 1

−1
Pn(x)Pm(x)dx

=
∫ 1

−1

(
d

dx
((1− x2)P ′n(x))

)
Pm(x)dx

= [(1− x2)P ′n(x)Pm(x)]1−1

+
∫ 1

−1
(1− x2)P ′n(x)P ′m(x)dx

=
∫ 1

−1
(1− x2)P ′n(x)P ′m(x)dx.

Thus, by symmetry,

n(n+ 1)
∫ 1

−1
Pn(x)Pm(x)dx

=m(m+ 1)
∫ 1

−1
Pn(x)Pm(x)dx,

and, if m ≠ n, ∫ 1

−1
Pn(x)Pm(x)dx = 0. (7)

The “orthogonality relation” given by (7) has impor-
tant consequences. Since Pr is a polynomial of degree
exactly r , we know that any polynomial Q of degree
n− 1 or less can be written

Q(x) =
n−1∑
r=0

arPr (x)

and so∫ 1

−1
Pn(x)Q(x)dx =

n−1∑
r=0

ar
∫ 1

−1
Pn(x)Pr (x)dx = 0.

(8)
Thus, Pn is orthogonal to all polynomials of lower
degree.

Suppose that Pn(x) changes sign at the pointsα1, α2,
. . . , αm on the interval [−1,1]. Then, if we write

Q(x) = (x −α1)(x −α2) · · · (x −αm),
we know that P(x)Q(x) does not change sign on
[−1,1] and so ∫ 1

−1
Pn(x)Q(x)dx ≠ 0.

By equation (8) this means that the degreem of Q is at
least n and so (since a polynomial of degree n can have
at most n zeros) Pn must have exactly n distinct zeros
on [−1,1].

gauss [VI.26] made use of these facts to obtain a pow-
erful method of numerical integration. Suppose that
x1, x2, . . . , xn+1 are distinct points on [−1,1]. If we set

ej(x) =
∏
i≠j

x − xi
xi − xj ,
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then ej(x) is a polynomial of degree n that takes the
value 1 when x = xj and 0 when x = xk with k ≠ j.
Thus, if R is any polynomial of degree at most n, the
polynomial Q given by

Q(x) = R(x1)e1(x)+ R(x2)e2(x)+ · · ·
+ R(xn+1)en+1(x)− R(x)

has degree at most n, and R −Q vanishes at the n+ 1
points xj . It follows that R = Q, so

R(x) = R(x1)e1(x)+ R(x2)e2(x)+ · · ·
+ R(xn+1)en+1(x).

If we write aj =
∫ 1
−1 ej(x)dx, then∫ 1

−1
R(x)dx = a1R(x1)+a2R(x2)+ · · · +anR(xn+1).

It is natural to hope that the approximation∫ 1

−1
f(x)dx ≈ a1f(x1)+ a2f(x2)+ · · · + anf(xn+1),

(9)
which is an exact equality when f is a polynomial of
degree n or less, will work well for other well-behaved
functions.

Gauss observed that we can make a major improve-
ment by taking the xj to be the n+ 1 roots of the
(n+ 1)st Legendre polynomial. Suppose that P is a
polynomial of degree at most 2n+ 1. Then we can write

P(x) = Q(x)Pn+1(x)+ R(x),
whereQ andR are polynomials of degree at mostn and
Pn+1 is the (n+ 1)st Legendre polynomial. Now Pn+1 is
orthogonal to polynomials over lower degree (and, in
particular, to Q), Pn+1(xj) = 0 by the definition of xj ,
and the approximation (9) is an equality for R. Thus,∫ 1

−1
P(x)dx =

∫ 1

−1
Pn+1(x)Q(x)dx +

∫ 1

−1
R(x)dx

= 0+
n+1∑
j=1

ajR(xj)

=
n+1∑
j=1

aj(Pn+1(xj)Q(xj)+ R(xj))

=
n+1∑
j=1

ajP(xj).

We have shown that the “quadrature formula” (9) is
actually exact for all polynomials of degree at most
2n+ 1, provided we choose the xj to be the num-
bers suggested by Gauss. Unsurprisingly, this choice
gives an extremely good way of estimating integrals
numerically. “Gaussian quadrature” is one of the two

main methods used to evaluate integrals on computers
today.

We conclude with a brief look at a few other special
functions.

Consider de Moivre’s formula

cosnθ + i sinnθ = (cosθ + i sinθ)n.

Using the binomial expansion, we see that

cosnθ + i sinnθ =
n∑
r=0

(
n
r

)
(i)r cosn−r θ sinr θ,

and, taking real parts,

cosnθ =
n∑
r=0

(
n
2r

)
(−1)r cosn−2r θ sin2r θ.

Since sin2 θ = 1− cos2 θ, we have

cosnθ =
n∑
r=0

(
n
2r

)
(−1)r cosn−2r (1− cos2 θ)r

= Tn(cosθ),

where Tn is a polynomial of degree n called the nth
Chebyshev polynomial. The Chebyshev polynomials
play an important role in numerical analysis.

The next collection of functions requires us to calcu-
late with infinite sums. Readers may treat our calcula-
tions as plausible or justify them rigorously according
to taste. Observe first that

h(x) =
∞∑

n=−∞

1
(x −nπ)2

is well-defined for all real noninteger x. Note also that
h(x + π) = h(x) and h( 1

2π − x) = h( 1
2π + x). Set

f(x) = h(x) − cosec2(πx). By showing that there are
constants K1 and K2 such that

0 <
∞∑
n=1

1
(x −nπ)2 < K1

and

0 < cosec2 x − 1
x2

< K2

for all 0 < x � 1
2π , we deduce that there is a con-

stant K such that |f(x)| < K for all 0 < x < π . Simple
calculations show that

f(x) = 1
4 (f (

1
2x)+ f( 1

2 (x +π))). (10)

A single application of (10) shows that |f(x)| < 1
2K

for all 0 < x < π , and repeated applications show that
f(x) = 0. Thus

cosec2 x =
∞∑

n=−∞

1
(x −nπ)2
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for all real noninteger x.

If we seek analogues in the complex plane, we are led
to functions of the type

F(z) =
∞∑

n=−∞

∞∑
m=−∞

1
(z −n−mi)3 .

Observe that, while the real function cosec2 x satisfies
cosec2(x +π) = cosec2(x) and is periodic with period
π , the complex function F just defined satisfies

F(z + 1) = F(z), F(z + i) = F(z)
and is doubly periodic with periods 1 and i. Functions
like F are called elliptic functions and have a theory
that parallels that of the trigonometric functions
[III.94].

The function E(x) = (2π)−1/2e−x2/2 is called the
Gaussian (see [III.73 §5]) or normal function and
appears in probability and the study of diffusion pro-
cesses. The partial differential equation

∂2φ
∂x2

(x, t) = K ∂φ
∂t
(x, t)

withx corresponding to distance and t to time provides
a reasonable model for diffusion. It is easy to check that
φ(x, t) = ψ(x, t) = (Kt)−1/2E(x(Kt)−1/2) is a solu-
tion. By sketching a graph of ψ(x, t) as a function of x
for various values of t, readers will see that ψ can be
considered as the response to a disturbance at x = 0
when t = 0. By considering the behavior of ψ(x, t) as
a function of t for a given value of x, they will see that
“the effect at x of a disturbance at the origin becomes
noticeable only after a time of the order x1/2.” Living
cells depend on diffusion processes and the result just
given suggests (correctly) that such processes are very
slow over long distances. It is plausible that this sets a
limit on the size of a single cell: a large organism must
be multi-celled.

Statisticians constantly use the related error function

erf(x) = 2
π1/2

∫ x
0

exp(−t2)dt.

There is a famous theorem of liouville [VI.39] that
shows that erf(x) cannot be expressed as a composi-
tion of elementary functions (such as quotients of poly-
nomials, trigonometric functions, and exponential
functions [III.25]).

We have been able to look at only a few properties
of a few special functions in this article, but even this
small sample shows how much interesting mathemat-
ics arises when we study one function or a class of
particular functions rather than functions in general.

III.88 The Spectrum
G. R. Allan

In the theory of linear maps [I.3 §4.2], or operators,
on a vector space [I.3 §2.3], the notions of eigen-
value and eigenvector [I.3 §4.3] play an important
role. Recall that if V is a vector space (over R or C) and
if T : V → V is a linear mapping, then an eigenvector
of T is a nonzero vector e in V such that T(e) = λe for
some scalar λ; then λ is the eigenvalue corresponding
to the eigenvector e. If V is finite dimensional, then the
eigenvalues are also the roots of the characteristic poly-
nomial χ(t) = det(tI − T) of T . Because every noncon-
stant complex polynomial has a root (the so-called fun-
damental theorem of algebra [V.15]), it follows that
every linear operator on a finite-dimensional, complex
vector space has at least one eigenvalue. If the scalar
field is R, then not all operators have eigenvectors (e.g.,
consider a rotation about the origin in R2).

The linear operators that arise in analysis usually
act on infinite-dimensional spaces (see [III.52]). We con-
sider continuous linear operators acting on a complex
banach space [III.64]; these will be referred to simply
as operators (even though not all linear operators on
an infinite-dimensional Banach space are continuous).
We shall now see that, for X infinite dimensional, not
every such operator has an eigenvalue.

Example 1. Let X be the Banach space C[0,1], consist-
ing of all continuous, complex-valued functions on the
closed interval [0,1] of the real line. The vector-space
structure is the “natural” one (e.g., for f , g ∈ X the sum
f +g is defined by setting (f +g)(t) = f(t)+g(t) for
each t and the norm is the supremum norm, that is, the
largest value of any |f(t)|).

Now let u be a continuous complex-valued function
on [0,1]. We can associate with it a multiplication oper-
ator Mu on C[0,1] as follows. Given a function f , let
Mu(f) be the function that takes t to u(t)f(t). It is
clear thatMu is linear and continuous. We shall see that
whether Mu has an eigenvalue depends on the choice
of u. We consider two simple cases.

(i) Let u be the constant function u(t) ≡ k. Then
evidentlyMu has the single eigenvalue k and every
(nonzero) function f in X is an eigenvector.

(ii) Let u(t) = t for all t. Suppose that the complex
number λ is an eigenvalue of Mu. Then there is
some f ∈ C[0,1], not identically zero, such that
u(t)f(t) = λf(t) and so (t − λ)f(t) = 0 for all
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t. But then f(t) = 0 for all t �= λ, so that, since
f is continuous, f(t) ≡ 0, contrary to hypothesis.
So, for this choice of u, the operator Mu has no
eigenvalue.

Let X be a complex Banach space and let T be an
operator on X. Then T is said to be invertible if and
only if there is some operator S on X for which ST =
TS = I (here, ST is the composition of S and T , and I
is the identity operator on X). It can be shown that T is
invertible if and only if T is both injective (i.e., T(x) = 0
only for x = 0) and surjective (i.e., T(X) = X). The part
here that is not just simple algebra is to show that if T
is both injective and surjective, then the linear inverse
T−1 is a continuous operator. A complex number λ is
an eigenvalue of T precisely if T − λI is not injective.

If V is a finite-dimensional space, then an injective
operator T : V → V is necessarily also surjective,
and hence invertible. For X infinite dimensional this
implication is no longer valid.

Example 2. Let H be the hilbert space [III.37] �2 that
consists of all sequences (ξn)n�1 of complex numbers
such that

∑
n�1 |ξn|2 <∞. Let S be the “right-shift”

operator defined by S(ξ1, ξ2, ξ3, . . . ) = (0, ξ1, ξ2, . . . ).
Then S is injective but not surjective. The “reverse
shift” S∗, defined by S∗(ξ1, ξ2, ξ3, . . . ) = (ξ2, ξ3, . . . ),
is surjective but not injective.

With this example in mind, we make the following
definition.
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Definition 3. Let X be a complex Banach space and let
T be an operator on X. The spectrum of T , denoted by
SpT (or σ(T)), is the set of all complex numbers λ such
that T − λI is not invertible.

The following remarks should be clear.

(i) If X is finite dimensional, then SpT is just the set
of eigenvalues of T .

(ii) For general X, SpT includes the set of eigenvalues
of T , but may be larger (e.g., in example 2, 0 is
not an eigenvalue of S, but 0 does belong to the
spectrum of S).

It is easy to show that the spectrum is always a
bounded and closed (i.e., compact [III.9]) subset of C.
A rather deeper fact is that it is never empty: that is,
there will always be some λ for which T − λI is not
invertible. That is proved by applying liouville’s the-
orem [I.3 §5.6] to the analytic operator-valued function
λ �→ (λI−T)−1, defined for λ not in the spectrum of T .

Example 1 continued. We have already seen that not
all multiplication operators have eigenvalues. However,
they do have an easily described spectrum. Let Mu be
such an operator and let S be the set of all values u(t)
taken by the function u. Let µ = u(t0) be one of these
values and consider the operator Mu − µI. Given any
function f in C[0,1], the value of (Mu − µI)f at t0 is
u(t0)f (t0)− µf(t0) = 0. It follows that Mu − µI is not
surjective (for instance, the range of Mu − µI does not
contain any nonzero constant function) and therefore
µ belongs to the spectrum of Mu. Thus S is contained
in the spectrum of Mu; it is not hard to show that the
two are in fact equal.

We may easily generalize this example to show that if
K is any nonempty compact subset of C, then there is
a linear operator T with K as its spectrum. Let X be the
space of continuous complex-valued functions defined
on K, for each z ∈ K, let u(z) = z, and let T be the
multiplication operator Mu, defined as it was when K
was the set [0,1].

The spectrum is central to most aspects of operator
theory. We shall briefly mention a result about Hilbert-
space operators, known as the spectral theorem (there
are a number of variations).

Let H be a Hilbert space with inner product 〈x,y〉. A
continuous linear operator T on H is called Hermitian
if 〈Tx,y〉 = 〈x,Ty〉 (x,y ∈ H).
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Examples 4.

(i) If H is finite dimensional, then a linear operator
S on H is Hermitian if and only if, with respect
to some (and hence every) orthonormal basis
[III.37], S is represented by a Hermitian matrix (i.e.,
a matrix A with A = ĀT).

(ii) On the Hilbert space L2[0,1], let Mu be the oper-
ator of multiplication by a continuous function u
(just as in example 1, but now we applyMu to func-
tions in L2[0,1] rather than just C[0,1]). ThenMu
is Hermitian if and only if u is real-valued.

If H is finite dimensional and T is a Hermitian oper-
ator on H, then H has an orthonormal basis consist-
ing of eigenvectors of T (a “diagonal basis”). Equiva-
lently, T =∑kj=1 λjPj , where {λ1, . . . , λk} are the dis-
tinct eigenvalues of T and Pj is the orthogonal projec-
tion of H onto the eigenspace Ej ≡ {x ∈ H : Tx =
λjx}.

IfH is infinite dimensional and T is a Hermitian oper-
ator on H, then it is not generally true that H has a
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basis of eigenvectors. But, very importantly, the rep-
resentation T =∑λjPj does generalize to a represen-
tation T = ∫ λdP , a kind of integral with respect to a
“projection-valued measure” on the spectrum of T .

There is an intermediate case, for so-called compact
Hermitian operators, “compactness” being a kind of
strong continuity, of great importance in applications.
The technicalities are much simpler than in the general
case, involving an infinite sum, rather than an integral.
A very readable introduction may be found in Young
(1988).

Further Reading

Young, N. 1988. An Introduction to Hilbert Space. Cam-
bridge: Cambridge University Press.

III.89 Spherical Harmonics

The starting point for fourier analysis [III.27] is the
observation that a wide class of periodic functions
f(θ) with period 2π can be decomposed as infinite
linear combinations of the trigonometric functions
[III.94] sinnθ and cosnθ, or, equivalently, as sums of
the form

∑∞
n=−∞ aneinθ .

A useful way to think of a periodic function f defined
on the real line is as an equivalent function F defined on
T, the unit circle in the complex plane. A typical point
on the circle has the form eiθ , and we define F(eiθ) to
be f(θ). (Note that if we add 2π to θ then F(eiθ) does
not change because eiθ = ei(θ+2π) and f(θ) does not
change because f is periodic with period 2π .)

If f(θ) = ∑∞
n=−∞aneinθ and z = eiθ , then

F(z) = ∑∞
n=−∞anzn. Therefore, if we consider func-

tions defined on T rather than periodic functions
defined on R, then Fourier analysis decomposes our
functions into infinite linear combinations of the func-
tions zn, where n can be any integer.

What is special about the functions zn? The answer is
that they are the characters of T, which means that they
are the only nonzero continuous complex-valued func-
tions defined on T that satisfy the relation φ(zw) =
φ(z)φ(w) for every z and w in T.

Now imagine that F is a function defined not on T

but on the two-dimensional set S2, which is the unit
sphere in R3 (defined as the set of points (x,y, z) such
that x2+y2+z2 = 1). More generally, how about func-
tions F defined on Sd−1 (defined as the set of points
(x1, . . . , xd) such that x2

1+· · ·+x2
d = 1)? Is there a nat-

ural way of decomposing such an F , at least if it is suffi-

ciently nice? That is, is there a good way of generalizing
Fourier analysis to higher-dimensional spheres?

There is an important and initially discouraging dif-
ference between the sphere S2 and the circle S1 = T. We
defined T as a set of complex numbers rather than as a
set of points in the plane R2 because that way it forms a
multiplicative group. The sphere, by contrast, does not
have a useful group structure (for a clue about why,
see quaternions, octonions, and normed division
algebras [III.78]), so we cannot talk about characters.
This makes it less obvious what the “nice” functions
should be, into which we might hope to decompose
more general functions.

However, there is another way of explaining why the
trigonometric functions arise naturally, one that does
not involve complex numbers. We can write a typical
point in S1 as (x,y) with x2 + y2 = 1, or equiva-
lently as (cosθ, sinθ) for some real number θ. Then our
basic functions, if we wish to avoid complex numbers,
are cosnθ and sinnθ, but these can also be written in
terms of x and y . For instance, cosθ and sinθ are x
and y , respectively, cos 2θ = cos2 θ−sin2 θ = x2−y2,
and so on. (Note that x2 − y2 = 2x2 − 1 = 1 − 2y2,
since x2 + y2 = 1.) In general, cosnθ and sinnθ can
always be written as polynomials in cosθ and sinθ, so
the basic trigonometric functions can be thought of as
restrictions to the unit circle of certain polynomials.

What are these polynomials? It turns out that they are
harmonic and homogeneous. A harmonic polynomial
p(x,y) is one that satisfies the laplace equation
[I.3 §5.4] ∆p = 0, where ∆p stands for

∂2p
∂x2

+ ∂
2p
∂y2

.

For instance, if p(x,y) = x2 − y2, then ∂2p/∂x2 = 2
and ∂2p/∂y2 = −2, so x2 − y2 is, as we would hope,
a harmonic polynomial. Since the Laplacian ∆ is a lin-
ear operator, the harmonic polynomials form a vector
space. A homogeneous polynomial of degree n is one
in which the total degree of each term is n, or equiv-
alently a polynomial p(x,y) such that p(λx,λy) is
always equal to λnp(x,y). For example, x3 − 3xy2

is homogeneous of degree 3 (and also harmonic). The
homogeneous harmonic polynomials of degree n form
a subspace of the space of all harmonic polynomials. It
has dimension 1 when n = 0 and 2 when n > 0. (When
n > 0 it corresponds to the space of functions of the
form A cosnθ + B sinnθ. The polynomial x3 − 3xy2,
for instance, corresponds to the function cos 3θ.)

The notion of a harmonic polynomial generalizes
very easily to higher dimensions. For example, in three
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dimensions a harmonic polynomial is a polynomial
p(x,y, z) such that

∂2p
∂x2

+ ∂
2p
∂y2

+ ∂
2p
∂z2

= 0.

A spherical harmonic of order n and dimension d is the
restriction to the sphere Sd−1 of a harmonic polynomial
in d variables that is homogeneous of degree n.

Here are some of the properties of spherical har-
monics that make them particularly useful and closely
analogous to the trigonometric polynomials on the cir-
cle. We shall fix a dimension d and use the notation dµ
to denote Haar measure on the unit sphere S = Sd−1.
Basically, this means that if f is an integrable function
from S to R, then

∫
S f (x)dµ is its average.

(i) Orthogonality. If p and q are spherical harmon-
ics of dimension d and different degrees, then∫
S p(x)q(x)dµ = 0.

(ii) Completeness. Every function f : S → R that
belongs to L2(S, µ) (meaning that

∫
S |f(x)|2 dµ exists

and is finite) can be written as a sum
∑∞
n=0Hn (with

convergence in L2(S, µ)), where Hn is a spherical
harmonic of order n.

(iii) Finite-dimensionality of decomposition. For each
T&T: check spacing
here before page
make-up. d and n, the vector space of spherical harmonics of

dimension d and order n is finite dimensional.

From these three properties it follows easily that
L2(S, µ) has an orthonormal basis [III.37] consisting
of spherical harmonics.

Why are spherical harmonics natural, and why are
they useful? Both questions can be given several
answers: here is one for each.

The Laplace operator ∆, which operates on functions
defined on Rn, can be generalized to functions defined
on any riemannian manifold [I.3 §6.10] M . The gen-
eralization, denoted ∆M , is called the Laplace–Beltrami
operator for M , and its behavior gives one a great
deal of information about the geometry of M . In par-
ticular, the Laplace–Beltrami operator can be defined
for the sphere Sd−1, where it is called simply the Bel-
trami operator. It turns out that the spherical harmon-
ics are the eigenvectors [I.3 §4.3] of the Beltrami oper-
ator. More precisely, a spherical harmonic of dimen-
sion d and order n is an eigenvector with eigenvalue
−n(n + d − 2). (Notice that the second derivative of
cosnθ is −n2 cosnθ, which corresponds to the case
d = 2.) This gives an alternative, more natural (but less
elementary) definition of spherical harmonics. This def-
inition, combined with the fact that the Laplace opera-

tor is self-adjoint, explains many of the important prop-
erties of spherical harmonics. (See linear operators
and their properties [III.52 §3] for an amplification
of this remark.)

One reason for the importance of Fourier analysis is
that many important linear operators become diago-
nal, and hence particularly easy to understand, when
they are applied to the Fourier transform of a func-
tion. For example, if f is a smooth periodic function
and we write it as

∑
n∈Z aneinθ , then its derivative is∑

n∈Znaneinθ . Writing f̂ (n) for the nth Fourier coeffi-
cient of f , we deduce that f̂ ′(n) = nf̂ (n), which tells
us that to differentiate a function f all we have to do
is multiply its Fourier transform pointwise by the func-
tion g(n) = n. This provides a very useful technique
for solving differential equations.

As has already been mentioned, spherical harmon-
ics are eigenvalues of the Laplacian, but they also diag-
onalize several other linear operators. A good exam-
ple is the spherical Radon transform, which is defined
as follows. If f is a function from Sd−1 to R, then its
spherical Radon transformRf is another function from
Sd−1 to R, and the value of Rf at a point x is the aver-
age value of f over all points y that are orthogonal
to x. This is closely related to the more usual Radon
transform, which replaces a function defined on the
plane by its averages over lines; inverting the Radon
transform is important for creating images from the
outputs of medical scanners. The spherical harmonics
turn out to be eigenfunctions for the spherical Radon
transform. More generally, any transform T of the form
Tf(x) = ∫S w(x ·y)f(y)dµ(y), wherew is a suitable
function (or generalized function), is diagonalized by
spherical harmonics. The eigenvalue associated with
a given spherical harmonic can be calculated by the
so-called Funk–Hecke formula.

Spherical harmonics give a way of linking cheby-
shev and legendre polynomials [III.87], and show-
ing that both of them are natural concepts. The Cheby-
shev polynomials are those polynomials in x that are
also spherical harmonics of dimension 2: that is, that
are equal on S1 to homogeneous harmonic polynomials
in two variables. For instance, because x2 +y2 = 1 for
every (x,y) in the circle S1, the function x3 − 3xy2

that we considered earlier is equal on S1 to the func-
tion 4x3 − 3x, so 4x3 − 3x is a Chebyshev polyno-
mial. The Legendre polynomials are those polynomials
in x that are equal to spherical harmonics of dimen-
sion 3. For example, if p(x,y, z) = 2x2 −y2 − z2 then
∆p = 0, and p(x,y, z) = 3x2 − 1 everywhere on S2,
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since x2+y2+z2 = 1. Therefore, 3x2−1 is a Legendre
polynomial.

Here is a sketch of a proof that these polynomials
are equal to the Chebyshev and Legendre polynomials
as they are usually defined. The usual definition is that
they are sequences of polynomials, one for each degree,
that are uniquely determined by certain orthogonal-
ity relations. Because spherical harmonics of different
orders are orthogonal, the polynomials just described
also satisfy certain orthogonality relations. When one
works out what these are, one discovers that they are
precisely the relations that define the Chebyshev and
Legendre polynomials.

III.90 Symplectic Manifolds
Gabriel P. Paternain

Symplectic geometry is the geometry that governs clas-
sical physics, and more generally plays an important
role in helping us to understand the actions of groups
on manifolds. It shares some features with Riemannian
geometry and complex geometry, and there is an impor-
tant special class of manifolds, the Kähler manifolds, in
which all three geometric structures are unified.

1 Symplectic Linear Algebra

Just as riemannian geometry [I.3 §6.10] is based
on euclidean geometry [I.3 §6.2], symplectic geom-
etry is based on the geometry of the so-called linear
symplectic space (R2n,ω0).

Given two vectors v = (q,p) and v′ = (q′, p′)
in the plane R2, the signed area ω0(v, v′) of the
parallelogram spanned by v and v′ is given by the
formula

ω0(v, v′) = det

(
q′ q
p′ p

)
= pq′ − qp′.

It can also be written using matrices and inner products
as ω0(v, v′) = v′ · Jv , where J is the 2× 2 matrix

J =
(

0 1

−1 0

)
.

If a linear transformation A : R2 → R2 is area preserv-
ing and orientation preserving, then ω0(Av,Av′) =
ω0(v, v′) for every v and v′.

Symplectic geometry studies two-dimensional signed
area measurements like this, as well as transformations
that preserve these measurements, but it applies to
general spaces of dimension 2n rather than just to the
plane.

If we split R2n up as Rn×Rn, then we can write a vec-
tor v in R2n as v = (q,p), where q and p each belong to
Rn. The standard symplectic form ω0 : R2n × R2n → R

is defined by the formula

ω0(v, v′) = p · q′ − q · p′,
where “·” denotes the usual inner product in Rn. Geo-
metrically, ω0(v, v′) can be interpreted as the sum of
the signed areas of the parallelograms spanned by the
projections of v and v′ to the qipi-planes. In terms of
matrices, we can write

ω0(v, v′) = v′ · Jv, (1)

where J is the 2n× 2n matrix

J =
(

0 I
−I 0

)
(2)

and I is the n×n identity matrix.
A linear map A : R2n → R2n that preserves the prod-

uct ω0 of any two vectors (that is, ω0(Av,Av′) =
ω0(v, v′) for all v,v′ ∈ R2n) is called a symplectic
linear transformation; equivalently, a 2n × 2n matrix
A is symplectic if and only if ATJA = J, where AT

is the transpose of A. Symplectic linear transforma-
tions are to symplectic geometry as rigid motions are
to Euclidean geometry. The set of all symplectic linear
transformations of (R2n,ω0) is one of the classical lie
groups [III.50 §1] and is denoted by Sp(2n). One can
show that symplectic matrices A ∈ Sp(2n) always have
determinant [III.15] 1, and are thus volume preserv-
ing. However, the converse does not hold when n � 2.
For instance, if n = 2, the linear map

(q1, q2, p1, p2) �→ (aq1, q2/a,ap1, p2/a)

has determinant 1 for any a ≠ 0, but it is symplectic
only if a2 = 1.

The standard symplectic form ω0 has three proper-
ties worth noting. First, it is bilinear : the expression
ω0(v, v′) varies linearly in v when v′ is held fixed,
and vice versa. Second, it is antisymmetric : we have
ω0(v, v′) = −ω0(v′, v) for all v and v′, and in partic-
ular ω0(v, v) = 0. Finally, it is nondegenerate, which
means that for every nonzero v there is a nonzero
v′ such that ω0(v, v′) ≠ 0. The standard symplectic
form ω0 is not the only form that obeys these three
properties; however, it turns out that any form with
these three properties can be converted into the stan-
dard form ω0 after an invertible linear change of vari-
ables. (This is a special case of Darboux’s theorem.)
Thus (R2n,ω0) is essentially the “only” linear symplec-
tic geometry in 2n dimensions. There are no symplectic
forms in odd-dimensional spaces.
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2 Symplectic Diffeomorphisms of (R2n, ω0)

In Euclidean geometry, all rigid motions are automat-
ically linear (or affine) transformations. However, in
symplectic geometry there are many more symplec-
tic maps than just the symplectic linear transforma-
tions. These nonlinear symplectic maps in (R2n,ω0)
are one of the principal objects of study in symplectic
geometry.

Let U ⊂ R2n be an open set. Recall that a map φ :
U → R2n is called smooth if it has continuous partial
derivatives of all orders. A diffeomorphism is a smooth
map with smooth inverse.

A smooth nonlinear map φ : U → R2n is said to
be symplectic if, for every x ∈ U , the Jacobian matrix
φ′(x) of first derivatives of φ is a symplectic linear
transformation. Informally, a symplectic map is one
that behaves like a symplectic linear transformation
at infinitesimally small scales. Since symplectic linear
transformations have determinant 1, we can conclude
using several-variable calculus that a symplectic map
is always locally volume preserving and locally invert-
ible; roughly speaking, this means that the map φ :
A → φ(A) is invertible whenever A is a sufficiently
small subset of U , and φ(A) has the same volume as
A. However, the converse is not true when n � 2; the
class of symplectic maps is much more restricted than
that of volume-preserving maps. In fact, Gromov’s non-
squeezing theorem (see below) shows how striking this
difference can be.

Symplectic maps have been around for quite a long
time in Hamiltonian mechanics under the name of
canonical transformations. We briefly explain this in the
next subsection.

2.1 Hamilton’s Equations

How can we produce nonlinear symplectic maps? Let
us begin by exploring a familiar example. Consider the
motion of a simple pendulum with length l and mass
m and let q(t) be the angle it makes with the vertical
at time t. The equation of motion is

d2q
dt2

+ g
l

sinq = 0,

where g is the acceleration due to gravity. If we define
the momentum p as p = ml2q̇, then we may trans-
form this second-order differential equation into a
first-order system in the phase plane R2, namely

d
dt
(q,p) = X(q,p), (3)

where the vector field X : R2 → R2 is given by

the formula X(q,p) = (p/ml2,−mgl sinq). For each

(q(0), p(0)) ∈ R2 there is a unique solution (q(t), p(t))
to (3) with initial condition (q(0), p(0)). Then for any

fixed time t we obtain an evolution map (or flow) φt :

R2 → R2 given by φt(q(0), p(0)) = (q(t), p(t)), which

has the remarkable property of being area preserving.

This can be deduced from the observation that X is

divergence free, or in other words that

d
dq

p
ml2

+ d
dp
(−mgl sinq) = 0.

In fact, for every time t, φt is a symplectic map on

(R2,ω0).
More generally, any system in classical mechanics

with finitely many degrees of freedom can be refor-

mulated in a similar fashion, so that the evolution

maps φt are always symplectic maps; in this con-

text, they are also known as canonical transformations.

The Irish mathematician william rowan hamilton

[VI.37] showed us how to do this in general more than

170 years ago. Given any smooth function H : R2n →
R (called the Hamiltonian), the system of first-order

differential equations given by

dqi
dt
= ∂H
∂pi

, i = 1, . . . , n, (4)

dpi
dt
= − ∂H

∂qi
, i = 1, . . . , n, (5)

will (under some mild growth assumptions onH, which

we ignore here) give rise to evolution operators φt :

R2n → R2n, which are symplectic maps on (R2n,ω0) for

every time t. To see the connection with the symplectic

formω0, observe that we may rewrite (4) and (5) in the

following equivalent form:

dx
dt
= J∇H(x), (6)

where ∇H is the usual gradient [I.3 §5.3] of H and J
was defined in (2). From (6), (1), and the antisymmetry

property of ω0, it is then not difficult to verify that

φt is a diffeomorphism for every t (the main trick is

to compute the derivative of ω0(φ′t(x)v,φ
′
t(x)v′) in

t and check that it equals zero).

We have already pointed out that symplectic maps

are volume preserving. The preservation of volume by

Hamiltonian systems (a result known as Liouville’s theo-

rem) attracted considerable attention in the nineteenth

century and it was a driving force in the development

of ergodic theory [V.11], which studies recurrence

properties of measure-preserving transformations.
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Symplectic maps or canonical transformations play
an important role in classical physics, as they allow
one to replace a complicated system by an equivalent
system that is simpler to analyze.

2.2 Gromov’s Nonsqueezing Theorem

What is the difference between a symplectic map and a
volume-preserving map? In order to answer this ques-
tion, suppose that we have two connected open sets U
and V in R2n and that we wish to embed one into the
other using a symplectic map. This means that we are
looking for a symplectic map φ : U → V such that φ
is a homeomorphism onto its image. We know such a
φ must be volume preserving, so we clearly have the
restriction that the volume of U should be at most
the volume of V , but is this restriction all that mat-
ters? Consider the open ball B(R) = {x ∈ R2n : |x| <
R}, which has radius R and center at the origin, and
clearly has finite volume. It is not hard to embed it
symplectically into the infinite-volume cylinder given
by

C(r) = {(q,p) ∈ R2n : q2
1 + q2

2 < r
2}

for any positive R and r . Indeed, the linear symplectic

PUP: difference
between this
display and the
one after next is
indeed deliberately
different.

map

(q,p) �→ (aq1, aq2, q3, . . . , qn,p1/a,p2/a,p3, . . . , pn)

will do the trick when a is sufficiently small and pos-
itive. However, the situation is radically different if
instead we consider the infinite-volume cylinder

Z(r) = {(q,p) ∈ R2n : q2
1 + p2

1 < r
2}.

We could try with a similar linear map like

(q,p) �→ (aq1, q2/a, q3, . . . , qn, ap1, p2/a,p3, . . . , pn).

This map is volume preserving (it has determinant 1)
and for a small it embeds B(R) into Z(r). However, it
is symplectic only if a = 1, so it will give a symplectic
embedding only ifR � r . One is tempted to think that if
R > r , then there should still be a nonlinear symplectic
embedding squeezing B(R) into Z(r), but a remarkable
theorem of Gromov from 1985 asserts that it is not
possible to find such a map.

In spite of this deep result of Gromov, and other
results that followed it, we still do not know much
about how sets in R2n embed into one another.

3 Symplectic Manifolds

Recall from differential topology [IV.9] that a man-
ifold of dimension d is a topological space [III.92]

such that each point has a neighborhood that is home-

omorphic to an open set in Euclidean space Rd. One

can think of Rd as a local model for this manifold, in

the sense that it describes what the manifold looks

like at very small distance scales. Recall also that a

smooth manifold is one for which the “transition func-

tions” are smooth. This means that if ψ : U → Rd and

ϕ : V → Rd are coordinate charts, then the transition

function ψ ◦ϕ−1 between the open sets φ(U ∩V) and

ψ(U ∩ V) is smooth.

A symplectic manifold is defined similarly, but now

the local model is the linear symplectic space (R2n,ω0).
More precisely, a symplectic manifold M is a manifold

of dimension 2n that can be covered with domains

of coordinate charts whose transition functions are

symplectic diffeomorphisms of (R2n,ω0).
Of course, any open set in (R2n,ω0) is a symplectic

manifold. An example of a compact symplectic man-

ifold is the torus T2n, which is obtained as the quo-

tient of R2n by the action of Z2n. In other words, two

points x,y ∈ R2n are equivalent if x − y has inte-

ger coordinates. Other important examples of symplec-

tic manifolds include riemann surfaces [III.81], com-

plex projective space [III.74], and cotangent bundles

[IV.10 §5]. However, it is a wide open problem to deter-

mine, given a compact manifold, whether it can be

assigned a system of coordinate charts that makes it

symplectic.

We have seen that in (R2n,ω0), one can assign an

“area”ω0(v, v′) to any parallelogram in the space R2n.

In a symplectic manifoldM , one can similarly assign an

areaωp(v,v′), but only to infinitesimal parallelograms

based at a point p ∈ M . The axes of such a parallelo-

gram are two infinitesimal vectors (or more precisely

tangent vectors) v and v′. There is a unique way to do

this so that all the coordinate charts for M are sym-

plectic diffeomorphisms. In the language of differen-

tial forms [III.16], the map p �→ ωp is an antisym-

metric nondegenerate 2-form, which can then be used

to compute the “area”
∫
S ω of noninfinitesimal two-

dimensional surfaces S in M . One can show that for

any sufficiently small closed surface S, the integral
∫
S ω

vanishes, so ω is a closed form. Indeed, one can define

a symplectic manifold more abstractly (without refer-

ence to charts) as a smooth manifold equipped with a

closed, antisymmetric nondegenerate 2-formω; a clas-

sical theorem of Darboux asserts that this abstract def-

inition is equivalent to the more concrete definition

using coordinate charts.
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Finally, a special class of symplectic manifolds is
given by Kähler manifolds. These are symplectic mani-
folds that are also complex manifolds, in such a way that
the two structures are naturally compatible, a condition
that generalizes the relationship (1). Observe that if one
identifies points (q,p) in R2n with points p + iq in Cn,
then the linear transformation J : R2n → R2n becomes
the operation of multiplication by i:

J : (z1, . . . , zn) �→ (iz1, . . . , izn).

Thus the identity (1) relates the symplectic structure
(as given by ω0), the complex structure (as given by J),
and the Riemannian structure (as given by the dot prod-
uct “·”). A complex manifold is a manifold that at small
distance scales looks like regions of Cn, with the tran-
sition functions required to be holomorphic [I.3 §5.6].
(A smooth map f : U ⊂ Cn → Cn is said to be holomor-
phic if each coordinate component of f(z1, . . . , zn) is
holomorphic in each variable zk.) On a complex mani-
fold we can multiply tangent vectors by i. This gives us
at each pointp ∈ M a linear map Jp such that J2

pv = −v
for all tangent vectors v at p. A Kähler manifold is
a complex manifold M with a symplectic structure ω
(which computes signed areas of infinitesimal parallel-
ograms) and a Riemannian metric g (which computes
an inner product gp(v,v′) of any two tangent vectors
v , v′ at p); these two structures are linked together by
the analogue of (1), namely

ωp(v,v′) = gp(v′, Jpv).
Examples of Kähler manifolds include complex vector
spaces Cn, Riemann surfaces, and complex projective
spaces CPn.

An example of a compact symplectic manifold that is
not Kähler can be obtained by taking the quotient of R4

by a symplectic action of a group that looks like Z4 but
with a group operation that differs from the usual one.
The change in the group structure manifests itself as
a topological property (an odd first Betti number) that
prevents the quotient being Kähler.

Further Reading

Arnold, V. I. 1989. Mathematical Methods of Classical
Mechanics, 2nd edn. Graduate Texts in Mathematics, vol-
ume 60. New York: Springer.

McDuff, D., and D. Salamon. 1998. Introduction to Symplec-
tic Topology, 2nd edn. Oxford Mathematical Monographs.
Oxford: Clarendon Press/Oxford University Press.

III.91 Tensor Products

If U , V , and W are vector spaces [I.3 §2.3] over some
field, then a bilinear map from U × V to W is a map φ
obeying the rules

φ(λu+ µu′, v) = λφ(u,v)+ µφ(u′, v)
and

φ(u,λv + µv′) = λφ(u,v)+ µφ(u,v′).
That is, it is linear in each variable separately.

Many important maps, such as inner products
[III.37], are bilinear. The tensor product U ⊗ V of two
vector spaces U and V is a way of capturing the idea
of the “most general” bilinear map that we can define
on U × V . To get an idea of what this might mean,
let us try to imagine a “completely arbitrary” bilin-
ear map from U × V to a “completely arbitrary” vector
space W , and let us use the notation u⊗ v instead of
φ(u,v). Now because our linear map is perfectly gen-
eral, all we know about it is what we can deduce from
the fact that it is bilinear. For example, we know that
u⊗v1+u⊗v2 = u⊗(v1+v2). This example might sug-
gest that all elements of U ⊗ V are of the form u⊗ v ,
but that is certainly not the case: for instance, in gen-
eral there is no way of simplifying an expression such
as u1 ⊗v1 +u2 ⊗v2. (This reflects the fact that the set
of values taken by a bilinear map from U × V to W is
not in general a subspace of W .)

Thus, a typical element of U ⊗ V is a linear combina-
tion of elements of the form u⊗ v , with the rule that
different linear combinations give the same element of
U ⊗ V whenever they are forced to by the bilinearity
property: for instance, (u1+2u2)⊗(v1−v2)will always
be equal to

u1 ⊗ v1 + 2u2 ⊗ v1 −u1 ⊗ v2 − 2u2 ⊗ v2.

A more formal way of expressing the above ideas is
to say that U ⊗ V has a universal property. (See groups
and geometry [IV.11] for some other examples of
universal properties. See also categories [III.8].) The
property in question is the following: given any bilinear
map φ from U × V to a space W , we can find a linear
map α from U ⊗ V to W such that φ(u,v) = α(u⊗ v)
for everyu and v . That is, every bilinear mapφ defined
on U × V is naturally associated with a linear map
defined on U ⊗ V . (This linear map takes u ⊗ v to
φ(u,v): the identifications made in the definition of
the tensor product ensure that we can extend this to
linear combinations of such elements in a consistent
way.)

It is not hard to show that if U and V are finite dimen-
sional, with bases u1, . . . , um and v1, . . . , vn, then the
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vectorsui ⊗ vj form a basis forU ⊗ V . Other important

properties of the tensor product are that it is commu-

tative and associative, in the sense that U ⊗ V is natu-

rally isomorphic to V ⊗U and U ⊗ (V ⊗W) is naturally

isomorphic to (U ⊗ V)⊗W .

We have been discussing tensor products of vector

spaces, but the definition can easily be generalized to

any algebraic structure for which some notion of bilin-

earity makes sense, such as a module [III.83 §3] or a

C∗-algebra [IV.19 §3]. Sometimes the tensor product

of two structures is not what you would immediately

expect. For instance, let Zn be the set of integers modN ,

and consider both Zn and Q as modules over Z. Then

their tensor product is zero. This reflects the fact that

every bilinear map from Zn ×Q must be the zero map.

Tensor products occur in many mathematical con-

texts. For a good example, see quantum groups

[III.77].

Transcendental Numbers
See irrational and transcendental

numbers [III.43]

III.92 Topological Spaces
Ben Green

A topological space is the most basic context in which

one can understand the notion of a continuous func-

tion [I.3 §5.2].

Let us recall a standard definition of what it means

for a function f : R → R to be continuous. Suppose

that f(x) = y . Then f is continuous at x provided

that f(x′) is close to y whenever x′ is close to x. Of

course, to make this a mathematically rigorous notion

we have to be precise about the meaning of “close.” We

could say that f(x′) is close to y if |f(x′)−f(x)| < ε,
where ε > 0 is some small positive constant. And we

could deem x to be close to x′ whenever |x − x′| < δ,

where δ is another positive constant.

We say that f is continuous at x if an appropriate δ
can be found, regardless of how small ε was chosen to

be (δ is allowed, of course, to depend on ε). And f is

said to be continuous if it is continuous at every point

x on the real line.

How might we generalize this notion, replacing R

by an arbitrary set X? Our existing definition makes

sense only if we can decide when two points x,x′ ∈ X
are close. For a general set, which might not be nicely

embedded in Euclidean space, this is impossible with-
out the addition of further structure. (When such struc-
ture is added one has the notion of a metric space
[III.58]: metric spaces are less general than topological
spaces.)

If the notion of closeness is unavailable, how should
one define continuity? The answer may be found in the
notion of an open set. A set U ⊂ R is said to be open
if for any point x in U there is an interval (a, b) that
contains x (that is, a < x < u) and is contained in U .

It is an amusing exercise to check that if f : R → R

is continuous, and if U is open, then f−1(U) is open.
Conversely, if f−1(U) is open for every open setU , then
f is continuous. Thus, at least for functions from R to
R, one may characterize continuity purely in terms of
open sets. The notion of closeness is used only when it
comes to defining what an open set is.

We now turn to the formal definition. A topological
space is a set X together with a collectionU of subsets
of X (called the “open sets”) satisfying the following
axioms.

• The empty set ∅ and the set X are both open.
• U is closed under taking arbitrary unions (so if
(Ui)i∈I is a collection of open sets, then so is⋃
i∈I Ui).

• U is closed under taking finite intersections (so if
U1, . . . , Uk are open sets, then so is U1 ∩· · ·∩Uk).

The collection U is called a topology on X. It is easy
to verify that the usual open subsets of R satisfy the
above axioms: thus, R forms a topological space with
these sets.

A subset of a topological space is called closed if and
only if its complement is open. Note that “closed” does
not mean “not open”: for example, in the space R, the
half-open interval [0,1) is neither open nor closed, and
the empty set is both open and closed.

Note that we do not demand many properties from
our open sets: this makes the notion of topological
space a rather general one. Indeed, under many circum-
stances the concept is a little too general: then it can be
convenient to assume that a topological space has fur-
ther properties. For instance, a topological space X is
called Hausdorff if, for any two distinct points x1 and
x2 in X, there are disjoint open sets U1 and U2 that
contain x1 and x2, respectively. Hausdorff topological
spaces (of which R is an obvious example) have many
useful properties that general topological spaces do not
necessarily have.
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We saw earlier that for functions from R to R the
notion of continuity could be formulated entirely in
terms of open sets. This means that we can define con-
tinuity for functions between topological spaces: if X
and Y are two topological spaces and if f : X → Y
is a function between them, then we simply define f
to be continuous if f−1(U) is open for every open set
U ⊂ Y . Remarkably, we have found a useful definition
of continuity that does not rely on a notion of distance.

A continuous map that has a continuous inverse is
known as a homeomorphism. If there is a homeomor-
phism between two spaces X and Y , then they are
regarded as equivalent from the point of view of topol-
ogy. In topology texts one will often see it said that a
topologist is unable to distinguish between a dough-
nut and a teacup because each can be continuously
deformed into the other (imagine that they are both
made of modeling clay).

If X is a topological space, then a very useful way of
describing the topology on X is by giving a basis for it.
This is a subcollection B ⊆ U with the property that
every open set (that is, every element of U) is a union
of open sets in B. A basis for R with the usual topology
is the collection of open intervals {(a, b) : a < b}, and
a basis for R2 is the collection of open balls: that is, sets
of the form {Bδ(x) = {y : |x −y| < δ}}.

Let us give some examples.

The discrete topology. LetX be any set whatsoever, and
take U to be the collection of all subsets of X. It is a
simple matter to check that the axioms for a topological
space are satisfied.

Euclidean spaces. Let X = Rd, and letU contain all sets
that are open in the Euclidean metric. That is, U ⊆ X
is open if, for every u ∈ U , there is δ > 0 such that
Bδ(u) is contained in U . It is only slightly more taxing
to check that the axioms are satisfied in this case. More
generally, for any metric space the open sets can be
defined in a similar way and they form a topological
space.

Subspace topology. If X is a topological space and if
S ⊆ X, then we may make S a topological space. We
declare the open sets in S to be all sets of the form
S ∩U , where U ∈ U is an open set in X.

The Zariski topology. This is used in algebraic geom-
etry [IV.7]. It is specified by giving its closed sets (and
hence, by complementation, its open sets)—these are
the zero loci of systems of polynomial equations. On

C2, for example, these closed sets are precisely the sets
of the form

{(z1, z2) : f1(z1, z2) = f2(z1, z2)

= · · · = fk(z1, z2) = 0},
where f1, . . . , fk are polynomials. To show that this
defines a topology is somewhat nontrivial, the diffi-
culty being to show that an arbitrary intersection of
closed sets is closed (which is equivalent to the asser-
tion that an arbitrary union of open sets is open). This
is a consequence of Hilbert’s basis theorem.

The notion of topological space is a very good exam-
ple of the power of abstraction in mathematics. The
definition is simple and covers a wide variety of nat-
ural situations, yet it has enough content that one
can make interesting definitions and prove theorems
purely within the world of topological spaces. It is often
fun to take a familiar concept, that applies to R or R2,
say, and try to find an analogue of it in the world of
general topological spaces. We give two examples.

Connectedness. The rough idea of connectedness is
that a connected set is one that does not break up into
pieces in an obvious way. Most people would imagine
that they could discern, from a list of pictures of rea-
sonably sensible subsets of R2, which were connected
and which were not. But can one give a precise math-
ematical definition that applies to all sets, including
potentially very wild ones, and says whether they are
connected or not? For example, is the space

S = ((Q× R)∪ (R×Q)) \ (Q×Q)

of lines with exactly one rational coordinate (with the
subspace topology) connected or not? It turns out that
a definition can indeed be given, and moreover that it
applies not just to R2 but to general topological spaces.
We say that a space X is connected if there is no decom-
position X = U1∪U2 of X into two disjoint, nonempty,
open sets. We leave it to the reader to decide whether
S is connected or not.

Compactness. This is one of the most important con-
cepts in all of mathematics, but it can appear strange
at first sight. It comes from attempting to abstract the
notion of a closed and bounded set (in R2, say) to a
general topological space. We say that X is compact if,
given any collection C of open sets U that cover X (i.e.,
whose union is X), we may find a finite subcollection
{U1, . . . , Uk} ⊆ C that still covers X. Specializing this
definition to R2 with the usual topology, it can indeed
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be proved that a set S ⊆ R2 is compact (in the subspace
topology) if and only if it is closed and bounded. See
compactness and compactification [III.9] for more
information.

III.93 Transforms
T. W. Körner

T&T note: this
article could
certainly be
reduced if and
when we get
desperate.

If we have a finite sequence a0, a1, . . . , an of real num-
bers (written briefly as a), then we can look at the
polynomial

Pa(t) = a0 + a1t + · · · + antn.
Conversely, given a polynomial Q of degree m � n, we
can recover a unique sequence b0, b1, . . . , bn such that

Pb(t) = b0 + b1t + · · · + bntn

by, for example, taking bk = Q(k)(0)/k!.
We observe that if a0, a1, . . . , an and b0, b1, . . . , bn

are finite sequences with ar = br = 0 for r > 1
2n,

then
Pa(t)Pb(t) = Pa∗b(t),

where a∗ b = c is a sequence c0, c1, . . . , c2n given by

ck = a0bk + a1bk−1 + · · · + akb0,

where we interpretai and bi as 0 if i > n. This sequence
is called the convolution of the sequences a and b.

To see the kind of use that one can make of this
observation, consider what happens when we throw
two dice, the first of which has probability au of show-
ing u and the second of which has probability bv of
showing v . The probability that their sum is k is given
by the number ck defined above. If we take both au and
b(u) to be the probability of throwing u with an ordi-
nary fair die (so they are equal to 1

6 if 1 � u � 6, and 0
otherwise), then

Pc(t) = Pa(t)Pb(t)
= ( 1

6 (t + t2 + · · · + t6))2.

This polynomial can be rewritten as
1
36 (t(t + 1)(t4 + t2 + 1))(t(t2 + t + 1)(t3 + 1))

= 1
36 (t(t + 1)(t2 + t + 1))(t(t4 + t2 + 1)(t3 + 1))

= PA(t)PB(t),
where A and B are two different sequences, given by
A1 = A4 = 1

6 , A2 = A3 = 2
6 , and Au = 0 otherwise,

and B1 = B3 = B4 = B5 = B6 = B8 = 1
6 , and Bv = 0

otherwise. Thus, if we take two fair dice A and B and
number A so that it has 2 on two faces, 3 on two faces,
1 on one face, and 4 on the remaining face, and we

number B so that it has 1, 3, 4, 5, 6, and 8 on its faces,
then the probability of throwing a sum k is the same as
with an ordinary pair of dice. It is not hard to show, by
considering the roots of the polynomial t+t2+· · ·+t6,
that this is the only nonstandard labeling of dice with
strictly positive integers that has this property.

These general ideas are easily extended to infinite
sequences. If a is the sequence a0, a1, . . . , we can define
an “infinite polynomial” (Ga)(t) to be

∑∞
r=0 ar tr . For

the moment, we shall proceed formally, without worry-
ing in what sense the sum exists. Observe that, much
as before,

(Ga)(t)(Gb)(t) = (G(a∗ b))(t),
where the infinite sequence c = a∗ b is given by

ck = a0bk + a1bk−1 + · · · + akb0.

(Again, we call this the convolution of a and b.)
There is a well-known problem in which we are asked

how many ways there are of making change for r units
of currency using notes of given denominations. (For
example, we can ask how many ways there are of mak-
ing $43 out of $1 and $5 bills.) If we can make r units
in ar ways using one set of denominations and br ways
using a completely different set, then it is not hard to
see that, if we are allowed to use both sets of denomi-
nations, we can make up k units in ck ways, where ck
is again the number defined earlier.

Let us see how this applies in the simple case where
ar is the number of ways of making up r dollars using
$1 bills and br is the number of ways of making up
r dollars using $2 bills. We observe that

(Ga)(t) =
∞∑
r=0

tr = 1
1− t ,

(Gb)(t) =
∞∑
r=0

t2r = 1
1− t2

,

and so, using partial fractions,

(Gc)(t) = (G(a∗ b))(t) = (Ga)(t)(Gb)(t)
= 1
(1− t)(1− t2)

= 1
(1− t)2(1+ t)

= 1
2(1− t)2 +

1
4(1+ t) −

1
4(1− t)

= 1
2

∞∑
r=0

(r + 1)tr + 1
4

∞∑
r=0

(−1)r tr − 1
4

∞∑
r=0

tr

=
∞∑
r=0

2r + 1+ (−1)r

2
tr .

Thus we can make change for r dollars in 1
2 (r+1)ways

when r is odd and 1
2 (r +2) ways when r is even. In this
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simple case it is easy to obtain the result directly but the
method indicated works automatically in all cases. (The
calculations can be made easier if we allow ourselves to
work with complex roots.)

We have produced a “generating function transform”
or “G-transform,” which takes a sequence a0, a1, . . .
into a Taylor series

∑∞
r=0 arxr . (These names are

not standard: most mathematicians would simply talk
about generating functions [IV.22 §§2.4, 3].) The
next two examples show how we can use G-transforms
to restate problems about sequences as problems about
Taylor series. Consider first the problem of finding a
sequence un such that u0 = 0, u1 = 1, and

un+2 − 5un+1 + 6un = 0

for all n � 0. Observe that we must have

un+2tn+2 − 5un+1tn+2 + 6untn+2 = 0

for all n � 0, so that summing over all n � 0 yields

((Gu)(t)−u1t−u0)−5(t(Gu)(t)−u0)+6t2(Gu)(t) = 0.

Recalling that u0 = 0, u1 = 1, and rearranging, we
obtain

(6t2 − 5t + 1)(Gu)(t) = t.
Thus, using partial fractions, we obtain

(Gu)(t) = t
6t2 − 5t + 1

= t
(1− 2t)(1− 3t)

= −1
1− 2t

+ 1
1− 3t

= −
∞∑
r=0

(2t)r +
∞∑
r=0

(3t)r

=
∞∑
r=0

(3r − 2r )tr .

It follows that ur = 3r − 2r .

Next consider the rather trivial problem of finding a
sequence un such that u0 = 1 and

(n+ 1)un+1 +un = 0

for all n � 0. For every t we have

(n+ 1)un+1tn +untn = 0

and so, summing over alln and assuming that the usual
laws of differentiation apply to infinite sums, we obtain

(Gu)′(t)+ (Gu)(t) = 0.

This differential equation gives (Gu)(t) = Ae−t for
some constant A. Setting t = 0, we obtain

1 = u0 = (Gu)(0) = Ae0 = A.

Thus

(Gu)(t) = e−t =
∞∑
r=0

(−1)r

r !
tr ,

so ur = (−1)r /r !.
We can write down some of the correspondences

between sequences and their G-transforms:

(a0, a1, a2, . . . )←→ (Ga)(t),
(a0 + b0, a1 + b1, a2 + b2, . . . )←→ (Ga)(t)+ (Gb)(t),

a∗ b ←→ (Ga)(t)(Gb)(t),
(0, a0, a1, a2, . . . )←→ t(Ga)(t),
(a1,2a2,3a2, . . . )←→ (Ga)′(t).

It is also important that we can recover the sequence a
from its G-transform. One way of seeing this is to note
that

ar = (Ga)
(r)(0)
r !

.

We can use these rules, as in the examples above,
to convert problems about sequences into problems
about functions and vice versa. In textbooks and exam-
inations, the effect of such a transformation is to make
things simpler. In real life, it will usually convert your
problem into a more complicated problem. However,
occasionally you strike lucky and it is these occasions
that make transforms such a valuable weapon in the
mathematician’s armory.

Up to now we have handled G-transforms formally.
However, if we wish to use the methods of analysis,
we need to know that

∑∞
r=0 ar tr converges, at least

when |t| is small. Provided that the ar do not increase
too rapidly, this will always be the case. However, we
run into difficulties when we try to extend our ideas to
“two-sided sequences” (ar ), where r runs through all
integers rather than just the positive ones, and to the
resulting sums

∑∞
r=−∞ ar tr . If |t| is small, then |tr | is

large when r is large and negative, while if |t| is large,
then |tr | is large when r is large and positive. In many
cases, the best we can hope for is that

∑∞
r=0 ar tr might

converge when t = −1 and t = 1. It is not very useful
to talk about functions defined at only two points, but
we save the situation by moving from R to C.

If we have a well-behaved sequence (ar ) of com-
plex numbers where r runs through all integers, then
we consider the sum

∑∞
r=−∞ arzr , where the complex

number z belongs to the unit circle (or, in other words,
|z| = 1). Since any such z can be written

z = eiθ = cosθ + i sinθ

with θ ∈ R, it is more usual to talk about the 2π -
periodic function

∑∞
r=−∞ ar eirθ . We thus have the
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“Fourier series transform” (once again, the name is
nonstandard)H given by

(Ha)(θ) =
∞∑

r=−∞
ar eirθ.

The H -transform takes a two-sided sequence a to
a 2π -periodic complex-valued function f = Ha on
the real line, but historically mathematicians have been
more interested in reversing the process and obtaining
a from f . If

f(θ) =
∞∑

r=−∞
ar eirθ,

then, arguing formally,

1
2π

∫ π
−π
f(θ)e−ikθ dθ = 1

2π

∫ π
−π

∞∑
r=−∞

ar ei(r−k)θ dθ

=
∞∑

r=−∞

ar
2π

∫ π
−π

ei(r−k)θ dθ

=
∞∑

r=−∞

ar
2π

∫ π
−π

cos(r − k)θ + i sin(r − k)θ dθ = ak.

If we write

f̂ (k) = 1
2π

∫ π
−π
f(θ)e−ikθ dθ,

then we obtain the celebrated Fourier sum formula

f(θ) =
∞∑

r=−∞
f̂ (r)eirθ. (1)

dirichlet [VI.36] proved that this formula holds in
its natural interpretation for reasonably well-behaved
functions, but the question of the appropriate inter-
pretation and proof for wider classes of functions took
much longer to settle (see carleson’s theorem [V.5]).
Aspects of the question are still open today.

It is worth noting that we can obtain qualitative infor-
mation about a sequence from its H -transform and
vice versa without explicit calculation. For example, if
arrm+3 forms a bounded sequence, then the rules for
term-by-term differentiation show thatHa is continu-
ously m times differentiable, and if f is m times con-
tinuously differentiable, then repeated integration by
parts shows that the numbers rmf̂ (r) form a bounded
sequence.

Suppose that f represents a signal fed into a “black
box,” such as a telephone system, which gives rise to
a resultant signal Tf . Many important black boxes in
physics and engineering have the “infinite linearity”
property that

T
( ∞∑
r=−∞

crgr
)
(θ) =

∞∑
r=−∞

crTgr (θ)

for all well-behaved function gr and constants cr . Many
such systems also have the key property that

Tek(θ) = γkek(θ)
for some constant γk, where we have written ek(θ) for
the quantity e−ikθ . In other words, the functions ek are
eigenfunctions [I.3 §4.3] for T . We can use the Fourier
sum formula to obtain the formula

Tf(θ) =
( ∞∑
r=−∞

f̂ (r)Ter
)
(θ)

=
∞∑

r=−∞
γr f̂ (r)er (θ).

In this context, it makes sense to think of f as the
weighted sum of simple signals ek of frequency k.

Mathematicians are always interested to see what
happens if sums are replaced by integrals. In this case
we obtain the classical Fourier transform. If F is a rea-
sonably well-behaved function F : R → C, then we
define its Fourier transform FF by the formula

FF(λ) =
∫∞
−∞
F(t)e−iλs ds.

Much of the analysis that is typically taught in the first
year or two of a university mathematics course was
developed in the context of this transform and related
topics. Using that analysis, it is not hard to obtain the
correspondences

F(t)←→ (FF)(λ),
F(t)+G(t)←→ (FF)(λ)+ (FG)(λ),
F ∗G(t)←→ (FF)(λ)(FG)(λ),
F(t +u)←→ e−iuλ(FF)(λ),

F ′(t)←→ iλFF(λ).
In this context we define the convolution of F and G by

F ∗G(t) =
∫∞
−∞
F(t − s)G(s)ds.

There is an element of truth in the saying that the
importance of the Fourier transform is that it converts
convolution to multiplication and the importance of
convolution is that it is the operation that is trans-
formed to multiplication by the Fourier transform. Just
as we can use the G-transform to solve difference equa-
tions, we can use the F -transform to solve important
classes of partial differential equations [I.3 §5.4]
that occur in physics and some parts of probability
theory. For more on the Fourier transform, see [III.27].

By rescaling the Fourier sum formula (1), we obtain
the formula

F(t) =
∞∑

r=−∞

1
2πN

∫ πN
−πN

F(s)e−irs/N dseirt/N



�

III.93. Transforms 309

when |t| < πN . If we let N → ∞, we obtain, more or
less formally,

F(t) = 1
2π

∫∞
−∞
(FF)(s)eist ds,

which translates to the marvelous formula

(FFF)(t) = 2πF(−t).
Like the Fourier sum formula, this Fourier inversion
formula can be proved under a wide range of circum-
stances, though often at the price of reinterpreting the
formula in novel ways.

Beautiful though the Fourier inversion formula is, it
should be noted that, both in practice and in theory,
we often need only the observation that FF = FG
implies F = G. The uniqueness of the Fourier trans-
form is often easier to prove and more convenient to
use, and it holds over a wider range of conditions than
the inversion formula. A similar observation holds for
other transforms.

When we talked about the Fourier sums associated
with 2π -periodic functions, we said that f̂ (r) mea-
sured the proportion of the signal f with frequency
2πr . In the same way, (FF)(λ) gives a measure of the
proportion of F composed of frequencies close to λ.
There is a family of inequalities, known generically as
Heisenberg uncertainty principles, which say, in effect,
that if most of FF is concentrated in a narrow band,
then the signal F must be very spread out. This fact
places strong restrictions on our ability to manipulate
signals and occupies a central place in quantum theory.

At the beginning of this article we talked about trans-
formations of sequences and saw that it was easier to
handle one-sided sequences than two-sided sequences.
In the same way, we can apply Fourier transforms to
a wider range of functions F : R → C if we know that
F(t) = 0 for t < 0. More specifically, if F is such a one-
sided function, and if it does not grow too fast, then we
can compute the Laplace transform

(LF)(x + iy) =
∫∞
∞
F(s)e−(x+iy)s ds

=
∫∞

0
F(s)e−(x+iy)s ds

whenever x and y are real and x is sufficiently large. If
we use the more natural notation

(LF)(z) =
∫∞
∞
F(s)e−zs ds,

we see that LF can be considered as a weighted aver-
age of holomorphic [I.3 §5.6] (that is, complex dif-
ferentiable) functions and this can be used to show
that LF is holomorphic. The Laplace transform shares

many of the properties of the Fourier transform and
we can use these, as well as the extensive collection of
results on holomorphic functions, whenever we manip-
ulate Laplace transforms. Many of the deepest results
in number theory, such as the prime number theorem
[V.33], are most easily obtained by clever uses of the
Laplace transform.

The transforms we have discussed all belong to the
same family, as is indicated by the fact that they all
take convolution to multiplication. The general idea of
a transform has been developed in several different
directions, generally by concentrating on some aspects
of the “classical transforms” and being prepared to lose
others.

One of the most important of these new transforms is
the Gelfand transform, which gives a concrete represen-
tation of the abstract commutative Banach algebras. It
is discussed in operator algebras [IV.19 §3.1]. Other
integral transforms extend the integral definition of the
Fourier transform by setting up a correspondence

F(t)←→
∫∞
−∞
F(s)K(λ− s)ds

or, more generally,

F(t)←→
∫∞
−∞
F(s)κ(s, λ)ds.

Another interesting transform is the Radon or x-
ray transform. We shall consider the three-dimensional
case and talk very informally. Suppose we shine a beam
of radiation through a body in direction u. Suppose
also that f is a function defined on R3 that represents
how much radiation is absorbed by different parts of
the body. What we can measure is the amount of radi-
ation absorbed along any given straight line. We might
present some of this information in the form of a two-
dimensional image, which could represent the amount
absorbed by all lines in the direction u. In general, we
can use f to define a new function

(Rf)(u,v) =
∫∞
−∞
f(tu+ v)dt,

which tells us how much radiation is absorbed along
the line in direction u that goes through a vector v per-
pendicular to u. The tomography problem deals with
the recovery of f from Rf .

Because the idea of a transform has been devel-
oped in so many different directions, any attempt to
give a general definition results in something too gen-
eral to be useful. The most that we can say about
the various transforms is that they present a more
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or less distant analogy to the classical Fourier trans-

forms and that this analogy has been found useful

by those who developed them. (See also the fourier

transform [III.27], spherical harmonics [III.89], rep-

resentation theory [IV.12 §3], and wavelets and

applications [VII.3].)

III.94 Trigonometric Functions
Ben Green

The basic trigonometric functions “sin” and “cos,” as

well as the four related functions “tan,” “cot,” “sec,”

and “cosec,” will probably be familiar to most readers

in some form. One way to define the sine function sin :

R→ [−1,1] is as follows.

In almost all branches of mathematics one measures

angles using radians, which are defined in terms of arc-

length: to say that the angle ∠AOB in figure 1 is θ radi-

ans is to say that the arc AB of the circle has length θ.

This definition makes sense when 0 � θ < 2π . One

then defines sinθ to be the length PB, where P is the

foot of the perpendicular from B to OA. It is very impor-

tant that this length be taken with the correct sign. If

0 < θ < π then we take the positive sign, whereas if

π < θ < 2π we take the negative sign. In other words,

sinθ is the y-coordinate of the point B.

The sine function is, at the moment, defined on the

interval [0,2π). To define it on all of R one simply

insists that it be periodic with period 2π (that is, that

it satisfies the relation sinθ = sin(2πn + θ) for any

integer n).

There is one problem with our definition of sine.

What do we mean by the length of the arc AB? The

only really satisfactory way of understanding this is

to use calculus. The equation of the unit circle is

y = √1− x2, at least if (x,y) lies in the upper-right

quadrant. (Otherwise one must be careful about sign.)

The formula for the arc-length of a curve y = f(x)
between y = a and y = b is

S =
∫ b
a

√
1+ (dx/dy)2 dy.

(This may be thought of as a definition, though the

motivation for the definition comes from pictures.) For

the circle,
√

1+ (dy/dx)2 = 1
/√

1−y2. Since the arc-

length of the circle between the points P = (x, sinθ)
and A = (1,0) is θ, this gives the formula∫ sinθ

0

dy√
1−y2

= θ (1)

x

y

θ

B

A
PO

(0,−1)

(−1,0)

(0,1)

Figure 1 Interpreting trigonometric functions
geometrically.

for 0 � θ � π/2 (we do not care about what x is). This
can be regarded as giving a precise, even if implicit,
definition of sinθ for 0 � θ < π/2.

As with many of the most natural concepts in mathe-
matics, sin may be defined in a multitude of equivalent
ways. Another definition (whose equivalence to the first
one is not obvious) is

sinz = z − z
3

3!
+ z

5

5!
− z

7

7!
+ · · · . (2)

This infinite series converges for all real z. The result-
ing definition has a distinct advantage over (1), in that
it also makes sense when z is an arbitrary complex
number (that is why we replaced the letter θ by z). It
therefore allows us to extend sin to a holomorphic
function [I.3 §5.6] on C.

If the sine function is analytic, then what is its deriva-
tive? The answer is the cosine function cosz, which may
be defined in much the same way as sin: either geo-
metrically or using a power series. The power series
is

cos(z) = z
2

2!
− z

4

4!
+ z

6

6!
− · · · , (3)

which may be obtained by differentiating the series for
sin term by term (naturally, this is an operation that
must be properly justified, but it can be).

If one differentiates again, one gets the formula
(d2/dz2) sinz = − sinz. In fact, it is possible to define
sin : R→ [−1,1] as the unique solution y to the differ-
ential equation y′′ = −y that also satisfies the initial
value conditions y(0) = 0, y′(0) = 1. This is a very
sensible way of proving that the two definitions (1) and



�

III.95. Universal Covers 311

(2) are equivalent (it is a good calculus exercise to prove
that sin′′ = − sin using (1)).

Ultimately, the power series expansions (2) and (3)
display the most important side of sin and cos, which is
their relation with the exponential function [III.25]:

ez = 1+ z + z
2

2!
+ z

3

3!
+ · · · .

Comparing this with (2) and (3), one gets the famous
formula

eiθ = cosθ + i sinθ.

The exponential functions θ �→ einθ are characters, that
is, homomorphisms [I.3 §4.1] from R/2πZ to the unit
circle S1 (which form groups under addition mod 2π
and multiplication, respectively). This makes them thePUP: Tim thinks

that the context
will indeed be
clear to the reader.

natural objects with which to do a fourier analysis
[III.27] of 2π -periodic functions on R. Because sin and
cos are real-valued, it is convenient to try to decompose
such a function f(x) not into exponentials, but as a
series

a0 + a1 cosx + b1 sinx + a2 cos 2x + b2 sin 2x + · · · .
Under favorable circumstances (if the function f is suf-
ficiently smooth, say) one can recover the coefficients
ai, bi by using orthogonality relations such as

1
π

∫ 2π

0
cosnx cosmx dx

=
⎧⎨
⎩0 for all n,m � 0, n ≠m,

1 n =m,
and

PUP: I can confirm
that cos and then
sin is OK here.

1
π

∫ 2π

0
cosnx sinmx dx = 0 for all n,m � 0.

Thus, for example, we have

an = 1
π

∫ 2π

0
f(x) cosnx dx.

Such decompositions into trigonometric functions ulti-
mately underlie devices like compact disk players and
mobile phones.

Let us conclude by remarking that there is a whole
zoo of formulas concerning sin, cos, and the other four
trigonometric functions (which we have not discussed
here), as well as integrals involving these functions. It is
these formulas that make the trigonometric functions
an indispensable tool in classical Euclidean geometry.
There are many further formulas in that setting. To
mention just one beautiful example, the area of a tri-
angle inscribed in a unit circle with angles A, B, and C
is exactly 2 sinA sinB sinC .

Uncountable Sets
See countable and uncountable sets

[III.11]

III.95 Universal Covers
PUP: whole article
added after first
proof of this part
sent. Please check
carefully.

Let X be a topological space [III.92]. A loop in X
can be defined as a continuous function f from the
closed interval [0,1] to X such that f(0) = f(1). A
continuous family of loops is a continuous function F
from [0,1]2 to X such that F(t,0) = F(t,1) for every
t; the idea is that for each t we can define a loop ft
by taking ft(s) to be F(t, s), and if we do this then the
loops ft “vary continuously” with t. A loop f is con-
tractible if it can be continuously shrunk to a point:
more formally, there should be a continuous family of
loops F(t, s) with F(0, s) = f(s) for every s and with all
values of F(1, s) equal. If all loops are contractible, then
X is said to be simply connected . For instance, a sphere
is simply connected, but a torus is not because there
are loops that “go around” the torus and therefore can-
not be contracted (since any continuous deformation
of a loop that goes around the torus goes around the
same number of times).

Given any path-connected space (that is, a space X
such that any two points in X are linked by a continu-
ous path), we can define a closely related simply con-
nected space X̃ as follows. First, we pick an arbitrary
“base point” x0 in X. We then take the set of all con-
tinuous paths f from [0,1] to X such that f(0) = x0

(but we do not necessarily ask for f(1) to be x0). Next,
we regard two of these paths f and g as equivalent,
or homotopic, if f(1) = g(1) and there is a continu-
ous family of paths that begins with f and ends with g
and always has the same beginning point and endpoint.
That is, f and g are homotopic if there is a continuous
function F from [0,1]2 to X such that F(t,0) = x0 and
F(t,1) = f(1) = g(1) for every t, and F(0, s) = f(s)
and F(1, s) = g(s) for every s. Finally, we define the
universal cover X̃ of X to be the space of all homotopy
classes of paths: that is, it is the quotient [I.3 §3.3] of
the space of all continuous paths that start at x0 by the
equivalence relation [I.2 §2.3] of homotopy.

Let us see how this works in practice. As mentioned
earlier, the torus is not simply connected, so what is
its universal cover? To answer this question, it helps to
think of the torus in a slightly artificial way: fix a point
x0 and define the torus to be the set of all continuous
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paths that begin at x0, with two of these paths regarded
as equivalent if they have the same endpoint. If we do
this, then for each path, “all we care about” is where
it ends, and the set of endpoints is clearly the torus
itself. But this was not the definition of the universal
cover. There we cared not just about the endpoint of
a path but also about how we reached the endpoint.
For instance, if the path happens to be a loop, in which
case the endpoint is x0 itself, then we care about how
many times that loop goes around the torus, and in
what manner it goes around.

The torus can be defined as the quotient of R2 by
the equivalence relation where we define two points
as equivalent if their difference belongs to Z2. Then
any point in R2 maps to a point in the torus (by the
quotient map). Any continuous path on the torus then
“lifts” uniquely to the plane in the following sense. Fix
a point u0 in R2 that maps to x0 in the torus. Then
if you trace out any continuous path in the torus that
starts at x0, there will be exactly one way of tracing out
a path in R2 such that each point in that path maps to
the appropriate point in the path in the torus.

Now suppose that we have two paths in the torus
that start at x0 and end at the same point x1. Then
the “lifts” of those paths both start at u0 but all we
know about their endpoints is that they are equivalent :
we do not know that they are the same. Indeed, if the
first path is a contractible loop and the second is a loop
that goes once around the torus, then their lifts will
end at different points. It turns out (and if you try to
visualize this then you will see that the result is very
natural and plausible) that the “lifts” of two paths will
end at the same point if and only if the original paths
are homotopic. In other words, there is a one-to-one
correspondence between homotopy classes of paths in
the torus and points in R2. This shows that R2 is the
universal cover of the torus. In a sense, the operation
of passing from a space to its universal cover “unfolds”
the quotienting operation that we use to get from the
universal cover to the space.

As its name suggests, the universal cover has a uni-
versal property. Roughly speaking, a cover of a space
X is a space Y and a continuous surjection from Y to
X such that the inverse image of a small neighborhood
in X is a disjoint union of small neighborhoods in Y . If
U is the universal cover of X and Y is any other cover
of X, then U can be made into a cover of Y in a natural
way. For instance, one can define a cover of the torus
by an infinite cylinder by wrapping the cylinder around,
and the cylinder can in turn be covered by the plane.

An example of the use of universal covers can
be found in geometric and combinatorial group
theory [IV.11 §§7, 8].

III.96 Variational Methods
Lawrence C. Evans

The calculus of variations is both a theory in itself and
a toolbox of techniques for studying certain kinds of
(often extremely nonlinear) ordinary and partial differ-
ential equations. These equations, which arise when we
seek critical points of appropriate “energy” function-
als, are usually far more tractable than other nonlinear
problems.

1 Critical Points

Let us begin with a simple observation from first-
year calculus, where we learn that if f = f(t) is a
smooth function defined on the real line R and if f
has a local minimum (or maximum) at a point t0, then
(df/dt)(t0) = 0.

The calculus of variations vastly extends this insight.
The basic object to be considered is a functional F ,
which is applied not to real numbers but to functions,
or rather to certain admissible classes of functions.
That is, F takes functions u to real numbers F(u).
If u0 is a minimizer of F (that is, F(u0) � F(u) for
all admissible functions u), then we can expect that
“the derivative of F at u0 is zero.” Of course, this idea
has to be made precise, which one might expect to be
tricky since the space of admissible functions is infinite
dimensional. But in practice these so-called variational
methods end up using just standard calculus, and they
provide deep insights into the nature of minimizing
functions u0.

2 One-Dimensional Problems

The simplest situation to which variational techniques
apply involves functions of a single variable. Let us see
why minimizers of appropriate functionals in this set-
ting must automatically satisfy certain ordinary differ-
ential equations.

2.1 Shortest Distance

As a warmup problem, we shall show that the shortest
path between two points in the plane is a line segment.
Of course, this is obvious, but the methods we develop
can be applied to much more interesting situations.
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Suppose, then, that we are given two points x and y
in the plane. We take as our class of admissible func-
tions all smooth, real-valued functions u, defined on
some interval I = [a, b], such that u(a) = x and
u(b) = y . The length of this curve is

F[u] =
∫
I
(1+ (u′)2)1/2 dx, (1)

where u = u(x) and a prime denotes differentiation
with respect to x. Now suppose that some particular
curve u0 minimizes the length. We want to deduce that
the graph of u0 is a line segment, which we will do by
“setting the derivative of F to zero” at the minimizer
u0.

To make sense of this idea, select any other smooth
function w that is defined on our interval I and that
vanishes at its endpoints. For each t define f(t) to be
F[u0 + tw]. Since the graph of the function u0 + tw
connects the given endpoints, and since u0 gives the
minimum length, it follows that the function f , which
is just an ordinary function from R to R, has a minimum
at t = 0. Therefore, (df/dt)(0) = 0. But we can explic-
itly compute (df/dt)(0) by differentiating under the
integral sign and then integrating by parts. This gives∫

I

u′0w′

(1+ (u′0)2)1/2
dx = −

∫
I

( u′0
(1+ (u′0)2)1/2

)
′w dx.

This identity holds for all functionsw with the proper-
ties specified above, and consequently( u′0

(1+ (u′0)2)1/2
)
′ = u′′0

(1+ (u′0)2)3/2
= 0 (2)

everywhere on the interval I.
To summarize the discussion so far: if the graph

of u0 minimizes the distance between the given end-
points, then u′′0 identically equals zero, and therefore
the shortest path is a line segment. This conclusion
may not seem too exciting, but even this simple case
has an interesting feature. The calculus of variations
automatically focuses our attention on the expression

κ = u′′

(1+ (u′)2)3/2 ,

which turns out to be the curvature of the graph of
u. The graph of the minimizer u0 has zero curvature
everywhere.

2.2 Generalization: The Euler–Lagrange Equations

It turns out that the technique we used for the previ-

ous example is extremely powerful and can be vastly

generalized.

One useful extension is to replace the length func-

tional (1) by a more general functional of the form

F[u] =
∫
I
L(u′, u,x)dx, (3)

where L = L(v, z,x) is a given function, sometimes

called the Lagrangian. Then F[u] can be interpreted as

the “energy” (or “action”) of a given function u defined

on the interval I.
Suppose next that a particular curve u0 is a mini-

mizer of F , subject to certain fixed boundary condi-

tions. We want to extract information about the behav-

ior of u0, and to do so we proceed as in our first exam-

ple. We select a smooth function w as above, define

f(t) = F[u0+tw], observe that f has a minimum at t =
0, and consequently deduce that (df/dt)(0) = 0. As

in the previous calculation, we then explicitly compute

this derivative:

df
dt
(0) =

∫
I
Lvw′ + Lzw dx =

∫
I
(−(Lv)′ + Lz)w dx.

Here, Lv and Lz stand for the partial derivatives ∂L/∂v
and ∂L/∂z, evaluated at (u′0, u0, x). This expression

equals zero for all functions w satisfying the given

conditions. Therefore,

−(Lv(u′0, u0, x))′ + Lz(u′0, u0, x) = 0 (4)

everywhere on the interval I. This nonlinear ordinary

differential equation for the function u0 is called the

Euler–Lagrange equation. The key point is that any min-

imizer of our functional F must be a solution of this

differential equation, which often contains important

geometrical or physical information.

For example, take L(v, z,x) = 1
2mv

2 −W(z), which

we interpret as the difference between the kinetic

energy and the potential energy W of a particle of

massmmoving along the real line. The Euler–Lagrange

equation (4) is then

mu′′0 = −W ′(u0),

which is Newton’s second law of motion. The calculus

of variations provides us with an elegant derivation of

this fundamental law of physics.

2.3 Systems

We can generalize further, by taking

F[u] =
∫
I
L(u′,u, x)dx, (5)

where now we are taking vector-valued functionsu that

map the interval I into Rm. If u0 is a minimizer in
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some appropriate class of functions, then one can com-
pute the Euler–Lagrange equation using ideas similar to
those discussed above. We obtain the equations

−(Lvk(u′0,u0, x))′ + Lzk(u′0,u0, x) = 0, (6)

one for each k. Here Lvk and Lzk represent the partial
derivatives of L with respect to the kth variables of u′

and u, evaluated at (u′0,u0, x). These equations form
a system of coupled ordinary differential equations for
the components of u0 = (u1

0, . . . , u
m
0 ).

For a geometric example, put

L(v, z,x) = (
m∑
i,j=1

gij(z)vivj)1/2,

so that F[u] is the length of the curve u in the rieman-
nian metric [I.3 §6.10] determined by the gij . Whenu0

is a curve of constant unit speed, the Euler–Lagrange
system of equations (6) can be rewritten, after some
work, to read

(uk0)
′′ +

m∑
i,j=1

Γ kij(u
i
0)
′(uj0)

′ = 0 (k = 1, . . . ,m)

for certain expressions Γ kij , called Christoffel symbols,
that can be computed in terms of the gij . Solutions
of this system of ordinary differential equations are
called geodesics. Thus, we have deduced that length-
minimizing curves are geodesics.

A physical example is L(v, z,x) = 1
2m|v|2 − W(z),

for which the Euler–Lagrange equation is

mu′′0 = −∇W(u0).

This is Newton’s second law of motion for a parti-
cle in Rm moving under the influence of the potential
energy W .

3 Higher-Dimensional Problems

Variational methods also apply to expressions involv-
ing functions of several variables, in which case the
resulting Euler–Lagrange equations are partial differ-
ential equations (PDEs).

3.1 Least Area

A first example extends our earlier examination of
shortest curves. For this problem we are given a region
U in the plane, with boundary ∂U , and a real-valued
function g defined on the boundary. We then look at
a class of admissible real-valued functions u, defined
on U , with the condition that u should equal g on the

boundary. We can think of the graph of u as a two-
dimensional curved surface with a boundary equal to
the graph of g. The area of this surface is

F[u] =
∫
U
(1+ |∇u|2)1/2 dx. (7)

Let us assume that a particular function u0 minimizes
the area among all other surfaces with the given bound-
ary. What can we deduce about the geometric behavior
of this so-called minimal surface?

Yet again we proceed by writing f(t) = F[u0 + tw],
differentiating with respect to t, and so on. After some
calculation we eventually discover that

div
( ∇u0

(1+ |∇u0|2)1/2
)
= 0 (8)

within the regionU , where “div” denotes the divergence
operator. This nonlinear PDE is the minimal surface
equation. The left-hand side turns out to be a formula
for (twice) the mean curvature of the graph of u0. Con-
sequently, we have shown that a minimal surface has
zero mean curvature everywhere.

Minimal surfaces are sometimes regarded physically
as the surfaces formed by soap films when they are
stretched between a fixed wire frame that traces out
the boundary specified by the function g.

3.2 Generalization: The Euler–Lagrange Equations

It is now straightforward, and sometimes very prof-
itable, to replace the area functional (7) by the general
expression

F[u] =
∫
U
L(∇u,u,x)dx, (9)

in which we now take U to be a region in Rn. Assum-
ing that u0 is a minimizer, subject to given boundary
conditions, we deduce the Euler–Lagrange equation

−div(∇vL(∇u0, u0, x))+ Lz(∇u0, u0, x) = 0. (10)

This is a nonlinear PDE that a minimizer must satisfy.
A given PDE is called variational if it has this form.

If, for example, we take L(v, z,x) = 1
2 |v|2 + G(z),

the corresponding Euler–Lagrange equation is the non-
linear Poisson equation

∆u = g(u),
where g = G′ and ∆u = ∑n

k=1uxkxk is the lapla-
cian [I.3 §5.4] of u. We have shown that this impor-
tant PDE is variational. This is a valuable insight, since
we can then find solutions by constructing minimiz-
ers (or other critical points) of the functional F[u] =∫
U

1
2 |∇u|2 +G(u)dx.
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4 Further Issues in the Calculus of Variations

Our examples have shown pretty convincingly how
useful our simple method, called computing the first
variation, can be when applied to the right geomet-
rical and physical problems. And indeed, variational
principles and methods appear in several branches
of mathematics and physics. Many of the objects
that mathematicians consider most important have
an underlying variational principle of some kind. The
list is impressive and, besides the examples we have
discussed, includes Hamilton’s equations, the Yang–
Mills and Selberg–Witten equations, various nonlinear
wave equations, Gibbs states in statistical physics, and
dynamic programming equations from optimal control
theory.

Many issues remain. For example, if f = f(t) has a
local minimum at a point t0, then we know not only
that (df/dt)(t0) = 0, but also that (d2f/dt2)(t0) � 0.
The attentive reader will correctly guess that a gener-
alization of this observation, called computing the sec-
ond variation, is important for the calculus of varia-
tions. It provides an insight into appropriate convex-
ity conditions that are needed to ensure that critical
points are in fact stable minimizers. Even more fun-
damental is the question of the existence of minimiz-
ers or other critical points. Here mathematicians have
devoted great ingenuity to designing appropriate func-
tion spaces within which “generalized” solutions can be
found. But these weak solutions need not be smooth,
and so the further question of their regularity and/or
possible singularities must then be addressed.

However, these are all highly technical mathemat-
ical issues, far beyond the scope of this article. We
end our discussion here, in the hope that our exces-
sive demands upon the reader’s attention have been
minimized.

III.97 Varieties

Two simple examples of varieties are the circle and
the parabola, which can be defined by the polynomial
equations x2 + y2 = 1 and y = x2, respectively.
With one qualification, a variety is the solution set of
a system of polynomial equations. The qualification is
that there are certain examples that we do not want to
include. For instance, the set of solutions to the equa-
tion x2 − y2 = 0 is the union of the two lines x = y
and x = −y , which naturally splits into two pieces. So
the solution set to a system of polynomial equations

is called an algebraic set, and it is called a variety if it

cannot be written as a union of smaller algebraic sets.

The examples just given were subsets of the plane

R2. However, the concept is much more general: vari-

eties can live in Rn for any n, and also in Cn for any n.

Indeed, the definitions make sense, and are interesting

and important, in Fn, where F can be any field.

The varieties defined so far have been affine vari-

eties. For many purposes it is more convenient to

deal with projective varieties. The definition is similar,

but now they live inside a projective space [III.74],

and the polynomials used to define them must be

homogeneous—that is, any multiple of a solution must

still be a solution.

See algebraic geometry [IV.7] and arithmetic

geometry [IV.6] for more information.

III.98 Vector Bundles

Let X be a topological space [III.92]. A vector bun-

dle over X is, roughly speaking, a way of associating a

vector space with each point x of X in such a way that

these spaces “vary continuously” as you vary x. As an

example, consider a smooth surfaceX in R3. Associated

with each pointx is the tangent plane atx, which varies

continuously with x and can be identified in a natural

way with a two-dimensional vector space. A more pre-

cise definition is as follows: a vector bundle of rank n
over X is a topological space E, together with a con-

tinuous map p : E → X, such that the inverse image

p−1(x) of each point x (that is, the set of points in E
that map to x) is an n-dimensional vector space. The

most obvious vector bundle of rank n over X is the

space Rn × X with the map p(v,x) = x; this is called

the trivial bundle. However, the interesting bundles are

the nontrivial ones, such as the tangent bundle of the

2-sphere. One can learn a great deal about a topological

space by understanding its vector bundles. For this rea-

son, vector bundles are central to algebraic topology.

See algebraic topology [IV.10 §5] for more details.

III.99 Von Neumann Algebras

A unitary representation of a group [I.3 §2.1] G is a

homomorphism [I.3 §4.1] that associates with each ele-

ment g of G a unitary map [III.52 §3.1] Ug defined on

some hilbert space [III.37] H. A von Neumann alge-

bra is a special kind of C∗-algebra [III.12], intimately

connected with the theory of unitary representations.
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There are several equivalent ways of defining von Neu-
mann algebras. One is as follows. It can be checked
that, given any unitary representation, its commutant,
defined to be the set of all operators [III.52] in B(H)
that commute with every single unitary map Ug in the
representation, forms aC∗-algebra. Von Neumann alge-
bras are algebras that arise in this way. They can also
be defined abstractly as follows: a C∗-algebra A is a
von Neumann algebra if there is a banach space [III.64]
X such that the dual [III.19 §4] of X is A (when A is
itself considered as a Banach space).

The basic building blocks of von Neumann algebras
are special kinds of von Neumann algebras called fac-
tors. The classification of factors is a major topic of
research, which includes some of the most celebrated
theorems of the second half of the twentieth century.
See operator algebras [IV.19 §2] for more details.

III.100 Wavelets

If you wish to send a black and white picture from one
computer to another, then an obvious way of doing it is
to encode it pixel by pixel: 0 for black and 1 for white.
However, for certain pictures this would obviously be
extremely inefficient. For instance, if the picture is a
square, the left half of which is entirely white and the
right half of which is entirely black, then it is clearly
much better to send a set of instructions for recon-
structing the picture than a list of every single pixel.
Furthermore, the precise details of the pixels usually do
not matter: if you want a patch of gray, then it is enough
to put in black and white pixels in the right proportion
and make sure that they are evenly distributed.

However, finding a good way of encoding pictures is
difficult, and an important area of research in engineer-
ing. A picture can be thought of as a function from
a rectangle to R. The set of all such functions forms
a vector space [I.3 §2.3], and a natural way to try to
come up with a good encoding is to find a good basis
for this space. Here “good” means that the functions
one is interested in (that is, ones that correspond to
the kinds of pictorial representations one might wish to
send) are determined by just a few of their coefficients,
apart from minor variations that are not detectable by
the human eye.

Wavelets are a particularly good basis for many pur-
poses. In some ways they are like fourier transforms
[III.27], but they are much better suited to encoding
details such as sharp boundaries, and patterns that are
“localized,” rather than spread throughout the picture.

For more details, see wavelets and applications
[VII.3].

III.101 The Zermelo–Fraenkel Axioms

The Zermelo–Fraenkel, or ZF, axioms are a collection of
axioms that provide a foundation for set theory. They
may be viewed in two ways. The first is as a list of the
“allowed operations” on sets. For example, there is an
axiom that states that, given sets x and y , there exists
a “pair set,” whose members are precisely x and y .

One of the reasons the ZF axioms are important is
that it is possible to reduce all of mathematics to set
theory, so the ZF axioms can be regarded as a founda-
tion for mathematics as a whole. Of course, for this to
be the case it is vital that the operations allowed by the
ZF axioms do indeed allow one to perform all of the
usual mathematical constructions. Some of the axioms
are rather subtle as a result.

The other way to view the ZF axioms is as giving us
just what we need to “build up” the world of all sets,
starting with just the empty set. One can look at the
various ZF axioms and see that each one plays an essen-
tial role as we create the set-theoretic universe. Equiva-
lently, they are “closure rules” that any universe of sets,
or more precisely any model of set theory, should obey.
So, for example, there is an axiom that says that every
set has a power set (the set of all its subsets), and this
axiom allows us to build up a huge collection of sets
starting with just the empty set: one obtains the power
set of the empty set, the power set of the power set
of the empty set, and so on. Indeed, the universe of all
sets could (in a sense) be described as the closure of
the empty set under all the allowable operations of ZF.

The ZF axioms are written in the language of first-
order logic [IV.2 §1]. So each axiom can mention vari-
ables (which are interpreted as ranging over all sets),
as well as the usual logical operations, and also one
“primitive relation,” namely membership. For example,
the pair-set axiom above would be formally written as

(∀x)(∀y)(∃z)(∀t)(t ∈ z ⇐⇒ t = x or t = y).
By convention, the ZF axioms do not include the

axiom of choice [III.1]; when one does includes the
axiom of choice, the axioms are usually called the “ZFC
axioms.”

For a more detailed discussion of the ZF axioms see
set theory [IV.1 §3.1].
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Part IV

Branches of Mathematics

IV.1 Algebraic Numbers
Barry Mazur

The roots of our subject go back to ancient Greece while
its branches touch almost all aspects of contemporary
mathematics. In 1801 the Disquisitiones Arithmeticae
of carl friedrich gauss [VI.26] was first published, aT&T note: check

style later.
“founding treatise,” if ever there was one, for the mod-
ern attitude toward number theory. Many of the still
unachieved aims of current research can be seen, at
least in embryonic form, as arising from Gauss’s work.

This article is meant to serve as a companion to the
reader who might be interested in learning, and think-
ing about, some of the classical theory of algebraic
numbers. Much can be understood, and much of the
beauty of algebraic numbers can be appreciated, with a
minimum of theoretical background. I recommend that
readers who wish to begin this journey carry in their
backpacks Gauss’s Disquisitiones Arithmeticae as well
as Davenport’s The Higher Arithmetic (1992), which is
one of the gems of exposition of the subject, and which
explains the founding ideas clearly and in depth using
hardly anything more than high-school mathematics.

1 The Square Root of 2

The study of algebraic numbers and algebraic integers
begins with, and constantly reverts back to, the study of
ordinary rational numbers and ordinary integers. The
first algebraic irrationalities occurred not so much as
numbers but rather as obstructions to simple answers
to questions in geometry.

That the ratio of the diagonal of a square to the length
of its side cannot be expressed as a ratio of whole num-
bers is purported to be one of the vexing discoveries
of the early Pythagoreans. But this very ratio, when
squared, is 2:1. So we might—and later mathematicians
certainly did—deal with it algebraically. We can think
of this ratio as a cipher, about which we know nothing

beyond the fact that its square is 2 (a viewpoint taken
toward algebraic numbers by kronecker [VI.48], as we
shall see below). We can write

√
2 in various forms, e.g.,

√
2 = |1− i|, (1)

and we can think of 1− i = 1−e2π i/4 as the world’s sim-
plest trigonometric sum; we shall see generalizations of
this for all quadratic surds below. We can also view

√
2

as a limit of various infinite sequences, one of which is
given by the elegant continued fraction [III.22]

√
2 = 1+ 1

2+ 1
2+. . .

. (2)

Directly connected to this continued fraction (2) is the
Diophantine equation

2X2 − Y 2 = ±1 (3)

known as the Pell equation. There are infinitely many
pairs of integers (x,y) satisfying this equation, and
the corresponding fractionsy/x are precisely what you
get by truncating the expression in (2). For example, the
first few solutions are (1,1), (2,3), (5,7), and (12,17),
and

3
2 = 1+ 1

2 = 1.5,

7
5 = 1+ 1

2+ 1
2

= 1.4,

17
12 = 1+ 1

2+ 1
2+ 1

2

= 1.416 . . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

Replace the ±1 on the right-hand side of (3) by zero
and you get 2X2 − Y 2 = 0, an equation all of whose
positive real-number solutions (X, Y) have the ratio
Y/X = √2, so it is easy to see that the sequence of
fractions (4) (these being alternately larger and smaller
than

√
2 = 1.414 . . . ) converges to

√
2 in the limit. Even

more striking is that (4) is a list of fractions that best
approximate

√
2. (A rational number a/d is said to

be a best approximant to a real number α if a/d is
closer to α than any rational number of denomina-
tor smaller than or equal to d.) To deepen the pic-
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Figure 1 The outer rectangle has its height-to-width ratio
equal to the golden mean. If you remove a square from it as
indicated in the figure, you are left with a rectangle that has
the golden mean as its width-to-height ratio. This procedure
is of course repeatable.

ture, consider another important infinite expression,
the conditionally convergent series

log(
√

2+ 1)√
2

= 1− 1
3 − 1

5 + 1
7 + 1

9 + · · · ± 1
n + · · · . (5)

Here the n range over positive odd numbers, and the
sign of the term ±1/n is plus if n has a remainder ofPUP: a comma

before this ‘is’
would not be good. 1 or 7 when divided by 8, and it is minus if n has a

remainder of 3 or 5. This elegant formula (5), which you
are invited to “check out” at least to one digit accuracy
with a calculator, is an instance of the powerful and
general theory of analytic formulas for special values
of L-functions [III.49], which plays the role of a bridge
between the more algebraic and the more analytic sides
of the story. When we allude to this, below, we will call
it “the analytic formula,” for short.

2 The Golden Mean

If you are looking for quadratic irrationalities that have
been the subject of geometric fascination through the
ages, then

√
2 has a strong competitor in the num-

ber 1
2 (1 +

√
5), known as the golden mean. The ratio

1
2 (1 +

√
5):1 gives the proportions of a rectangle with

the property that when you remove a square from it, as
in figure 1, you are left with a smaller rectangle whose

sides are in the same proportion. Its corresponding
trigonometric sum description is

1
2 (1+

√
5) = 1

2 + cos 2
5π − cos 4

5π. (6)

Its continued-fraction expansion is

1
2 (1+

√
5) = 1+ 1

1+ 1
1+. . .

, (7)

where the sequence of fractions obtained by successive
truncations of this continued fraction,

y
x = 1

1 ,
2
1 ,

3
2 ,

5
3 ,

8
5 ,

13
8 ,

21
13 ,

34
21 , . . . , (8)

is a sequence of best rational-number approximants to
1
2 (1+

√
5) = 1.618033988749894848 . . . ,

where “best” has the sense already mentioned. For
example, the fraction

34
21
= 1+ 1

1+ 1
1+ 1

1+ 1

1+ 1

1+ 1

1+ 1
1

equals 1.619047619047619047 . . . and is closer to the
golden mean than any fraction with denominator less
than 21.

Nevertheless, the exclusive appearance of 1s in this
continued fraction1 can be used to show that, among
all irrational real numbers, the golden mean is the
number that is, in a specific technical sense, least well
approximated by rational numbers.

Readers familiar with the sequence of Fibonacci num-
bers will recognize them in the successive denomina-
tors of (8), and in the numerators as well. The analogue
to equation (3) is PUP: big thanks to

proofreader for
spotting incorrect
equation
cross-references in
this article.

X2 +XY − Y 2 = ±1. (9)

This time, if you replace the ±1 on the right-hand side
of the equation by 0, you get the equation X2 + XY −
Y 2 = 0, whose positive real-number solutions (X, Y)
have the ratio Y/X = 1

2 (1 +
√

5), that is, the golden
mean. And now the numerators and denominatorsy , x
that appear in (8) run through the positive integral
solutions of (9). The analogue of formula (5) (the “ana-
lytic formula”) for the golden mean is the conditionally
convergent infinite sum

2 log( 1
2 (1+

√
5))√

5
= 1− 1

2 − 1
3 + 1

4 + 1
6 + · · · ± 1

n + · · · ,
(10)

where the n range over positive integers not divisible
by 5, and the sign of ±1/n is plus if n has a remainder PUP: again, the

proofreader’s
suggested comma
would definitely
not be a good
addition before
this ‘is’.

1. The continued-fraction expansion of any real quadratic algebraic
number has an eventually recurring pattern in its entries, as is vividly
exhibited by the two examples (2) and (7) given above.
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of ±1 when divided by 5, and minus otherwise.

What governs the choice of the plus terms and minus

terms is whether or not n is a quadratic residue mod-

ulo 5. Here is a brief explanation of this terminology.

Ifm is an integer, two integers a, b are said to be con-

gruent modulo m (in symbols we write a ≡ b modm)

if the difference a−b is an integral multiple ofm; if a,

b, and m are positive numbers, it is equivalent to ask

that a and b have the same “remainder” (sometimes

also called “residue”) when each is divided by m (see

modular arithmetic [III.60]). An integer a relatively

prime tom is called a quadratic residue modulom if a
is congruent to the square of some integer, modulom;

otherwise it is called a quadratic nonresidue modulom.

So, 1,4,6,9, . . . are quadratic residues modulo 5, while

2,3,7,8, . . . are quadratic nonresidues modulo 5.

A generalization of equations (5) and (10) (the “ana-

lytic formula for the L-function attached to quadratic

Dirichlet characters”) gives a very surprising formula

for the conditionally convergent sum of terms ±1/n,

wheren runs through positive integers relatively prime

to a fixed integer and the sign of ±1/n corresponds to

whethern is a quadratic residue, or nonresidue modulo

that integer.

3 Quadratic Irrationalities

The quadratic formula

X = −b ±
√
b2 − 4ac
2a

gives the solutions (usually two) to the general quad-

ratic polynomial equation aX2+bX+c = 0 as a rational

expression of the number
√
D, where D = b2 − 4ac

is known as the discriminant of the polynomial aX2 +
bX+ c, or, equivalently, of the corresponding homoge-

neous quadratic form [III.75] aX2+bXY +cY 2. This

formula introduces many irrational numbers: Plato’s

dialogue “Theaetetus” has the young Theaetetus cred-

ited with the discovery that
√
D is irrational whenever

D is a natural number that is not a perfect square. The

curious switch, from initially perceiving an obstruction

to a problem to eventually embodying this obstruction

as a number or an algebraic object of some sort that we

can effectively study, is repeated over and over again,

in different contexts, throughout mathematics. Much

later, complex quadratic irrationalities also made their

appearance. Again these were not at first regarded as

“numbers as such,” but rather as obstructions to the

solution of problems. Nicholas Chuquet, for example,

in his 1484 manuscript, Le Triparty, raised the ques-
tion of whether or not there is a number whose triple
is four plus its square and he comes to the conclu-
sion that there is no such number because the quad-
ratic formula applied to this problem yields “impossi-
ble” numbers, i.e., complex quadratic irrationalities in
our terminology.2

For any real quadratic (“integral”) irrationality there
is a discussion along similar lines to the ones we
have just given (expressions (1)–(5) for

√
2 and expres-

sions (6)–(10) for 1
2 (1+

√
5)). For complex irrational-

ities, there is also such a theory, but with interest-
ing twists. For one thing, we do not have anything
directly comparable to continued-fraction expansions
for a complex quadratic irrationality. In fact, the sim-
ple, but true, answer to the problem of how to find an
infinite number of rational numbers that converge to
such an irrationality is that you cannot! Correspond-
ingly, the analogue of the Pell equation has only finitely
many solutions. As a consolation, however, the appro-
priate “analytic formula” has a simpler sum, as we will
see below.

Let d be any square-free integer, positive or negative.
Associated with d is a particularly important number
τd, defined as follows. If d is congruent to 1 mod 4 (that
is, if d− 1 is a multiple of 4), then τd = 1

2 (1 +
√
d);

otherwise, τd =
√
d. We will refer to these quadratic

irrationalities τd as fundamental algebraic integers of
degree 2. The general notion of an “algebraic integer”
is defined in section 11. An algebraic integer of degree
two is simply a root of a quadratic polynomial of the
form X2 + aX + b with a, b ordinary integers. In the
first case (when d ≡ 1 modulo 4), τd is a root of the
polynomial X2 −X + 1

4 (1− d) and in the second it is
a root of X2 − d. The reason special names are given
to these quadratic irrationalities is that any quadratic
algebraic integer is a linear combination (with ordi-
nary integers as coefficients) of 1 and one of these
fundamental quadratic algebraic integers.

4 Rings and Fields

I think that one of the big early advances in mathe-
matics is the now-current, universal recognition of the
importance of studying the properties of collections of
mathematical objects, and not just the objects in iso-
lation. A ring R of complex numbers is a collection of

2. bombelli [VI.8], in the sixteenth century, would refer to irrational
square roots, of positive or of negative numbers, as “deaf” (reminis-
cent of the word surd that is still in use) and as “numbers impossible
to name.”



�

4 IV. Branches of Mathematics

−2 + i −1 + i + i 1 + i 2 + i

−2 − i −1 − i − i 1 − i 2 − i

−2 −1 0 1 2

Figure 2 The Gaussian integers are the vertices of
this lattice of squares tiling the complex plane.

them that contains 1 and is closed under the opera-
tions of addition, subtraction, and multiplication. That
is, if a, b are any two numbers in R, a±b and ab must
also be in R. If such a ring R has the further property
that it is closed under division by nonzero elements
(i.e., if a/b is again in R whenever a and b are, and
b �= 0), then we say that R is a field. (These concepts
are discussed further in fields [I.3 §2.2] and rings,
ideals, and modules [III.83].) The ring Z of ordinary
integers, {0,±1,±2, . . . } is our “founding example” of a
ring; visibly, it is the smallest ring of complex numbers.

The collection of all real or complex numbers that are
integral linear combinations of 1 and τd is closed under
addition, subtraction, and multiplication, and is there-
fore a ring, which we denote by Rd. That is, Rd is the
set of all numbers of the form a+ bτd where a and b
are ordinary integers. These ringsRd are our first, basic,
examples of rings of algebraic integers beyond that pro-
totype, Z, and they are the most important rings that
are receptacles for quadratic irrationalities. Every quad-
ratic irrational algebraic integer is contained in exactly
one Rd.

For example, when d = −1 the corresponding ring
R−1, usually referred to as the ring of Gaussian integers,
consists of the set of complex numbers whose real and
imaginary parts are ordinary integers. These complex
numbers may be visualized as the vertices of the infi-
nite tiling of the complex plane by squares whose sides
have length 1 (see figure 2).

When d = −3 the complex numbers in the corre-
sponding ring R−3 may be visualized as the vertices of

−1 +   −3τ −3τ

−1 0 +1

1 −   −3τ−   −3τ

Figure 3 The elements of the ring R−3 are the vertices of
this lattice of hexagons tiling the complex plane.

the regular hexagonal tiling of the complex plane (see
figure 3).

With the rings Rd in hand, we may ask ring-theoretic
questions about them, and here is some of the stan-
dard vocabulary useful for this. A unit u in a given ring
R of complex numbers is a number in R whose recip-
rocal 1/u is also in R; a prime (or synonymously, an
irreducible) element in R is a nonunit that cannot be
written as the product of two nonunits in R. A ring of
complex numbers R has the unique factorization prop-
erty if every nonzero, nonunit, algebraic number in R
can be expressed as a product of prime elements in
exactly one way (where two factorizations are counted
as the same if one can be obtained from the other by
rearranging the order in which the primes appear and
multiplying them by units).

In the prototype ring Z of ordinary integers, the only
units are ±1. The fundamental fact that any ordinary
integer greater than 1 can be uniquely expressed as
a product of (positive) prime numbers (that is, that Z

enjoys the unique factorization property) is crucial for
much of the number theory done with ordinary inte-
gers. That this unique factorization property for inte-
gers actually required proof was itself a hard-won real-
ization of Gauss, who also provided its proof (see the
fundamental theorem of arithmetic [V.16]).

It is easy to see that there are only four units in the
ring R−1 of Gaussian integers, namely ±1 and ±i; mul-
tiplication by any of these units effects a symmetry
of the infinite square tiling (figure 2 above). There are
only six units in the ring R−3, namely ±1, ± 1

2 (1+
√−3)

and ± 1
2 (1−

√−3); multiplication by any of these units
results in a symmetry of the infinite hexagonal tiling
(figure 3 above).
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Fundamental to understanding the arithmetic of Rd
is the following question: which ordinary prime num-
bers p remain prime in Rd and which ones factorize
into products of primes in Rd? We will see shortly that
if a prime number does factorize in Rd, it must be
expressible as the product of precisely two prime fac-
tors. For example, in the ring of Gaussian integers, R−1,
we have the factorizations

2 = (1+ i)(1− i),

5 = (1+ 2i)(1− 2i),

13 = (2+ 3i)(2− 3i),

17 = (1+ 4i)(1− 4i),

29 = (2+ 5i)(2− 5i),
...

where all the Gaussian integer factors in brackets abovePUP: again we’d
like to keep
‘brackets’ here,
instead of
changing to
‘parentheses’. OK?

are prime in the ring of Gaussian integers.
Let us say that an odd prime p splits in R−1 if it

factorizes into a product of at least two primes and
remains prime if it does not do so. As we shall soon
see, the officially agreed-upon definitions of splitting
and remaining prime for more general rings of alge-
braic integers (even ones of the form Rd) are worded
slightly, but very significantly, differently from the way
we have just defined these concepts in the ring R−1

of Gaussian integers. (Note that we have excluded the
prime p = 2 from the above dichotomy. This is because
2 ramifies in R−1; for a discussion of this concept see
section 7 below.) In any event, there is an elementary
computable rule that tells us, for any Rd, which primes
p split and which remain prime in this agreed sense.
The rule depends upon the residue of p modulo 4d:
the reader is invited to guess it for the ring of Gaussian
integers given the data just displayed above. In general,
an elementary computable rule that says which primes
split and which do not in a ring of algebraic integers
such as Rd is referred to as a splitting law for the ring
of algebraic integers in question.

5 The Rings Rd of Quadratic Integers

There is a very important “symmetry,” or automor-
phism [I.3 §4.1], defined on the ring Rd. It sends

√
d to

−√d, keeps all ordinary integers fixed, and more gener-
ally, for rational numbersu andv , it sendsα = u+v√d
to what we may call its algebraic conjugate α′ = u −
v
√
d. (The word “algebraic” is to remind you that this

is not necessarily the same as the complex-conjugate
symmetry of the complex numbers!)

You can immediately work out the formulas for this
algebraic conjugation operation on the fundamental
quadratic irrationalities τd: if d is not congruent to 1
modulo 4, then τd =

√
d, so obviously τ′d = −τd, while

if d is congruent to 1 modulo 4, then τd = 1
2 (1 +

√
d)

and τ′d = 1
2 (1 −

√
d) = 1 − τd. This symmetry α �→ α′

respects all algebraic formulas. For example, to work
out the algebraic conjugate of a polynomial expression
like αβ + 2γ2, where α, β, and γ are numbers in Rd,
you just replace each individual number by its algebraic
conjugate, obtaining the expression α′β′ + 2γ′2.

The most telling integer quantity attached to a num-
berα = x+yτd inRd is its normN(α), which is defined
to be the product αα′. This equals x2 − dy2 when
τd =

√
d andx2+xy− 1

4 (d−1)y2 when τd = 1
2 (1+

√
d).

The norm turns out to be multiplicative, meaning that
N(αβ) = N(α)N(β), as you can directly check by mul-
tiplying out the formula for the norm of each factor and
comparing with the norm of the product. This gives us
a useful tactic for trying to factorize algebraic num-
bers in Rd, and offers criteria for determining whether
a number α in Rd is a unit, and whether it is prime in
Rd. In fact, an element α ∈ Rd is a unit if and only if
N(α) = αα′ = ±1; in other words, the units are given
by the integral solutions to the equations

X2 − dY 2 = ±1 (11)

or
X2 +XY − 1

4 (d− 1)Y 2 = ±1 (12)

following the two cases. Here is the proof of this. If
α = x+yτd is a unit in Rd, then its reciprocal, β = 1/α,
must also be in Rd, and, of course, we have αβ = 1.
Applying the norm to both sides of this equation and
using the multiplicative property discussed above, we
see that N(α) and N(β) are reciprocal ordinary inte-
gers. Therefore, they are either both equal to +1 or
both equal to −1. This shows that (x,y) is a solution
to whichever of equation (11) or (12) is appropriate. In
the other direction, ifN(α) = αα′ = ±1, then the recip-
rocal of α is simply ±α′. This is in Rd so α is indeed a
unit in Rd.

These homogeneous quadratic forms, the left-hand
sides of equations (11) and (12) (which generalize for-
mulas (3) and (9)), play an important role; let us refer
to whichever of them is relevant to Rd as the funda-
mental quadratic form for Rd, and to its discriminant
D as the fundamental discriminant. (D is equal to d
if d is congruent to 1 modulo 4 and to 4d otherwise.)
When d is negative there are only finitely many units
(if d < −3 the only ones are ±1) but when d is positive,
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so that Rd consists entirely of real numbers, there are
infinitely many. The ones that are greater than 1 are
powers of a smallest such unit, εd, and this is called
the fundamental unit.

For example, when d = 2 the fundamental unit, ε2,
is 1 + √2, and when d = 5 it is the golden mean, ε5 =
1
2 (1 +

√
5). Since any power of a unit is again a unit,

we immediately have a machine for producing infinitely
many units from any single one. For example, taking
powers of the golden mean, we get

ε5 = 1
2 (1+

√
5), ε2

5 = 1
2 (3+

√
5),

ε3
5 = 2+√5, ε4

5 = 1
2 (7+ 3

√
5),

ε5
5 = 1

2 (11+ 5
√

5),

all of which are units in R5. The study of these fun-
damental units was already under way in the twelfth
century in India, but in general their detailed behavior
as d varies still holds mysteries for us today. For exam-
ple, there is a deep theorem of Hua (1942) that tells
us that εd < (4e2d)

√
d (for a proof of it along with a

historical discussion of such estimates, see chapters 3
and 8 in Narkiewicz (1973)). There are examples of d
that come close to attaining that bound, but we still
do not know whether or not there is a positive number
η and an infinity of square-free d for which εd > dd

η
.

(The answer to this question would be yes if, for exam-
ple, there were an infinity of Rd satisfying the unique
factorization property! This follows from a famous the-
orem of Brauer (1947) and Siegel (1935); for a proof of
the Brauer–Siegel theorem, see theorem 8.2 of chapter 8
in Narkiewicz (1973) or Lang (1970).)

6 Binary Quadratic Forms and the
Unique Factorization Property

The principle of unique factorization is an all-impor-
tant fact for the ring of ordinary integers Z. The ques-
tion of whether this principle does or does not hold
for a given ring Rd is central to the algebraic num-
ber theory. There are helpful, analyzable, obstructions
to the validity of unique factorization in Rd. These
obstructions, in turn, connect with profound arithmetic
issues, and have become the focus of important study
in their own right. One such mode of expressing the
obstruction to unique factorization is already promi-
nent in Gauss’s Disquisitiones Arithmeticae (1801), in
which much of the basic theory of Rd was already laid
down.

This “obstruction” has to do with how many “essen-
tially different” binary quadratic forms aX2 + bXY +

cY 2 there are with discriminant equal to the fundamen-

tal discriminant D of Rd. (Recall that the discriminant

of aX2 + bXY + cY 2 is b2 − 4ac, and that D equals 4d
unless d ≡ 1 mod 4, in which case it equals d.)

In order to define a binary quadratic form aX2 +
bXY + cY 2 of discriminant D, what you need to pro-

vide is simply a triplet of coefficients (a, b, c) such that

b2−4ac = D. Given such a form, one can use it to define

other ones. For example, if we make a small linear

change of the variables, replacing X by X−Y and keep-

ing Y fixed, then we get a(X − Y)2 + b(X − Y)Y + cY 2,

which simplifies to aX2 + (b− 2a)XY + (c − b+a)Y 2.

That is, we get a new binary quadratic form whose

triplet of coefficients is (a, b−2a, c−b+a), and which

(as can easily be checked) has the same discriminant

D. We can “reverse” this change by replacing X by

X + Y and keeping Y fixed. If we do this reversal and

perform the corresponding simplification then we get

back our original binary quadratic form. Because of this

reversibility, these two quadratic forms take exactly

the same set of integer values as X and Y vary: it is

therefore reasonable to think of them as equivalent.

More generally, then, one says that two binary quad-

ratic forms are equivalent if one can be turned into the

other (or minus the other) by any “reversible” linear

change of variables with integer coefficients. That is,

one chooses integers r , s, u, v such that rv−su = ±1,

replaces X and Y by the linear combinations X′ =
rX + sY , Y ′ = uX + vY , and simplifies the resulting

expression to get a new triplet of coefficients. The con-

dition rv − su = ±1 guarantees that by a similar oper-

ation we can get back to our original binary quadratic

form, and also that the new binary quadratic form has

the same discriminantD as the old one. So when we talk

of “essentially different” binary quadratic forms of dis-

criminant D we mean that we cannot turn one into the

other by this kind of change of variables.

Here is the surprising obstruction to unique factor-

ization that Gauss discovered.

The unique factorization principle is valid in Rd if

and only if every homogeneous quadratic form aX2 +
bXY + cY 2 with discriminant equal to the fundamen-

tal discriminant of Rd is equivalent to the fundamental

quadratic form of Rd.

Furthermore, the collection of inequivalent quadratic

forms whose discriminant is the fundamental discrim-

inant of Rd expresses in concrete terms the degree to

which Rd “enjoys unique factorization.”
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If you have never seen this theory of binary quadratic

forms before, try your hand at working with quadratic

forms in the case where D = −23. The idea is to start

with some particular quadratic form aX2 +bXY + cY 2

of your choice with discriminant D = b2 − 4ac =
−23. Then, using a sequence of carefully chosen linear

changes of variables you reduce the size of the coeffi-

cients a, b, and c until you can go no further. Eventually

you should end up with one of the two (inequivalent)

quadratic forms that there are with discriminant −23:

the fundamental form X2 + XY + 6Y 2, or the form

2X2 + XY + 3Y 2. For example, can you see that the

binary quadratic form X2 + 3XY + 8Y 2 is equivalent

to X2 +XY + 6Y 2?

This type of exercise offers a small hint of the role

that the geometry of numbers will play in the even-

tual theory. As you might expect from the venerability

of these ideas, elegant streamlined methods have been

discovered for making such calculations. Nevertheless,

it is an open secret that any working mathematician,

contemporary or ancient, engaged in this subject or

nearby subjects, has done a myriad of straightforward

simple hand computations along the lines of the above

exercise.

If you try a few examples of this exercise, as I hope

you do, here is one way of organizing your calcula-

tions. First, find a simple reversible linear change of

variables to turn your form into an equivalent one with

a,b, c � 0. (You may also have to multiply the whole

form by −1.)

The cleanest way of writing down all binary quadratic

forms given by triplets (a, b, c) of discriminant −23 is

to list the triplets in increasing order of b, which will

now be an odd positive integer. For each value of b you

can then choose a and c in such a way that their prod-

uct is 1
4 (b

2 + 23). At this point the aim is to build up a

repertoire of moves that tend to decrease b (which will

keep a and c within bounds as well). A big clue, and aid,

here is that for any pair of relatively prime integersx,y
if you evaluate your quadratic form aX2+bXY+cY 2 at

(X, Y) = (x,y) to get the integera′ = ax2+bxy+cy2,

you can find, for appropriate b′ and c′, a quadratic form

a′X2+b′XY +c′Y 2 equivalent to yours, with first coef-

ficient a′. So, one tactic is to look for small integers

represented by your quadratic form. Also the “exam-

ple” linear change of variables X �→ X − Y , Y �→ Y will

lead you to be able to reduce the coefficient b to an inte-

ger smaller than 2a. Can you check that X2+XY +6Y 2

and 2X2 +XY + 3Y 2 are inequivalent?

Now, as we have just discussed, it follows from the
general theory that R−23 does not have the unique fac-
torization property. We can also see this directly. For
example,

τ−23 · τ′−23 = 2 · 3,

and all four of the factors in this equation are irre-
ducible in R−23. To be a faithful companion, I should at
this point give at least a hint at what connection there
might be between this specific “failure of unique factor-
ization” and the previous discussion. It may become a
bit clearer in the next paragraph, but the underlying
tension in the equation τ−23 ·τ′−23 = 2 ·3 is that all the
factors in our ring are prime: we are missing any ele-
ments in our ring R−23 that could factorize it further.
We lack, for example, elements that play the role of
the greatest common divisor of factors of this equation.
The general theory regarding these matters (which we
are not entering into here, but see euclid’s algorithm
[III.22]) tells us that what is missing is some element γ
in R−23 that is both a linear combination of the num-
bers τ−23 and 2 (with coefficients in the ring R−23) and
also a common divisor of τ−23 and 2 in the ring R−23,
i.e., such that τ−23/γ and 2/γ are both in R−23. There is
no such element, for its norm must divide N(τ−23) = 6
and N(2) = 4, and therefore be equal to 2, which can
easily be shown to be impossible. But we are interested,
rather, in the phenomenon that inequivalence of certain
binary quadratic forms will indeed show this, so let us
go on.

First, check that any linear combination

α · τ−23 + β · 2

with α, β elements of R−23 can also be written as
u·τ−23+v·2, whereu and v are ordinary integers. Now
compute the binary quadratic form given by systemat-
ically taking the norms of these linear combinations,
and viewing these norms as functions of the integer
coefficients u, v :

N(u · τ−23 + v · 2) = (τ−23u+ 2v)(τ′−23u+ 2v)

= 6u2 + 2uv + 4v2.

Viewing theu and the v as variables, and dubbing them
U and V to emphasize their status as variables, we can
say that the norm quadratic form obtained from the
collection of linear combinations of τ−23 and 2 is

6U2 + 2UV + 4V2 = 2 · (3U2 +UV + 2V2).

Now suppose that, contrary to fact, there were a com-
mon divisor, γ, as above; in particular, the multiples of
γ in the ring R−23 would then be precisely the linear
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combinations of the numbers τ−23 and 2. We would
then have another way of describing those linear combi-
nations; namely, for any pair of ordinary integers (u,v)
there would be a pair of ordinary integers (r , s) such
that

u · τ−23 + v · 2 = γ · (rτ−23 + s) = rγτ−23 + sγ.
Taking norms, as above, we would get

N(γ · (rτ−23 + s)) = N(rγτ−23 + sγ)
= N(γ)(6r2 + rs + s2).

Again, thinking of r and s as variables and renaming
them R and S we would have the corresponding norm
quadratic form:

N(γ) · (6R2 + RS + S2) = 2 · (6R2 + RS + S2).

Given the above facts—dependent, of course, on the
contrary-to-fact hypothesis that there is a γ as above—
the key idea is that there would be linear changes of
variables from (U,V) to (R, S) and back that would
establish an equivalence between the two quadratic
forms 2 · (3U2+UV +2V2) and 2 · (6R2+RS+S2). But
these quadratic forms are not equivalent! Their inequiv-
alence therefore shows that the putative γ does not
exist and factorization in the ring R−23 is not unique.

7 Class Numbers and the Unique
Factorization Property

In the previous section we saw that the collection
of inequivalent quadratic forms of discriminant equal
to the fundamental discriminant provides us with an
obstruction to unique factorization. Somewhat later,
a more articulated version of this obstruction arose,
known as the ideal class group Hd of Rd. As its name
implies, to describe this we must use the vocabulary of
ideals [III.83 §2] and groups [I.3 §2.1]. A subset I of
Rd is an ideal if it has the following closure properties:
if α belongs to I, so do −α and τdα, and if α and β
belong to I, so does α + β. (The first and third prop-
erties imply together that any integer combination of
α and β belongs to I.) The basic example of such an
ideal is the set of all multiples of some fixed, nonzero
element γ of Rd, where by a multiple of γ we mean the
product of γ and an element of Rd. We denote this set
tersely as (γ), or, slightly more expressively, as γ · Rd.
An ideal of this sort, i.e., one that can be expressed as
the set of all multiples of a single nonzero element γ, is
called a principal ideal. For example, the ring Rd itself
is an ideal (it consists, after all, of all linear combina-
tions of 1 and τd) and is even a principal ideal: in our

laconic terminology, it can be denoted (1) = 1·Rd = Rd.
Strictly speaking, the singleton {0} is also an ideal, but
the ones that will interest us are the nonzero ideals.

As a direct counterpart to the obstruction principle
involving binary quadratic forms that was described in
the previous section, we have the following obstruction
principle involving ideals.

The unique factorization principle is valid in Rd if and
only if every ideal in Rd is principal.

Reflecting on this, you can get a sense of why the word
“ideal” might have been chosen. Every principal ideal
in Rd is of the form γ · Rd for some number γ in Rd
(which is uniquely determined apart from multiplica-
tion by units), but sometimes there are more general
ideals. These arise if you ever have two elements of Rd
(think of τ−23 and 2, as in the previous section) such
that the set of all their integer combinations cannot be
expressed as the set of multiples of some fixed num-
ber γ in Rd. This phenomenon is a sign that we may be
missing numbers in Rd that provide fine enough factor-
izations to make the arithmetic in Rd as smooth going
as one might hope for. Just as a principal ideal γ · Rd
corresponds to the number γ, ideals of this more gen-
eral kind (think of the set of all integer combinations
of τ−23 and 2) can be thought of as corresponding to
“ideal numbers” that should, “by rights,” be present in
our ring, but happen not to be.

Once we think of ideals as standing for ideal num-
bers it makes some sense to try to multiply them: if I,
J are two ideals in Rd, we let I · J denote the set of all
finite sums of products α · β in which α is in I and β
is in J. The product of two principal ideals (γ1) · (γ2)
is the principal ideal (γ1 · γ2) so, just as one would
hope, multiplication of principal ideals corresponds to
multiplication of the corresponding numbers. Multipli-
cation of any ideal I by the ideal (1) leaves I unchanged:
(1) · I = I; we therefore refer to the ideal (1) as the unit
ideal. With this new notion of multiplication of ideals we
can now give the general definition of what it means for
a prime number p to split or to remain prime in a ring
Rd, the definition we promised in section 4.

The idea behind the definition is to use multiplication
of ideals rather than of numbers. So if we are think-
ing about a prime p, the first thing we do is turn our
attention to the principal ideal (p) in Rd. If this can
be factorized as a product of two different ideals (not
necessarily principal ideals, this is the whole point) in
Rd, and if neither of these is the unit ideal (1) = Rd,
then we say that p splits in Rd. If, on the other hand,
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no factorization of the ideal (p) can be made without

one of the factors being the ideal (1) = Rd, then we

say that p remains prime in Rd. There is also a third

important definition: if the principal ideal (p) can be

expressed as the square of another ideal I, then we say

that p ramifies in Rd. Continuing with the momentum

of this definition, we may say that an ideal P is a prime

ideal if P cannot be “factorized” as the product of two

ideals neither of which is the unit ideal. This defini-

tion makes sense whether or not P is principal, so we

are subtly shifting our attention from the multiplicative

arithmetic of the numbers in Rd to the ideals.

By definition, two ideals are in the same ideal class

if when you multiply each by an appropriate principal

ideal you get the same ideal as a result. This is a nat-

ural equivalence relation [I.2 §2.3] on ideals. It is

also one that respects products, meaning that if I and

J are two ideals, then the ideal class of their product

I · J depends only on the ideal classes of I and J. (In

other words, if I′ is in the same ideal class as I and

J′ is in the same ideal class as J′, then I′ · J′ is in the

same ideal class as I · J.) We can therefore say what we

mean by multiplication of ideal classes: to multiply two

classes, pick an ideal from each, multiply those, and

take the ideal class of the resulting product. The set

Hd of ideal classes of Rd, given this operation of multi-

plication, forms an Abelian group, in the sense that the

multiplication law we have just defined is associative

and commutative, and there are inverses. The identity

element is the principal ideal Rd itself. This group Hd,

the ideal class group, directly measures the extent to

which the ideals of the ring Rd are principal: roughly

speaking it is what you get if you take the multiplicative

structure of all ideals and “divide out” by the principal

ones.

As was mentioned in section 6, there is a close con-

nection between ideal classes and binary quadratic

forms. To begin to see this, take an ideal I of Rd and

write it as the set of all integer combinations of two

elements α, β of Rd. Then consider the norm function

on the elements of I, that is,

N(xα+yβ) = (xα+yβ)(xα′ +yβ′)
= αα′x2 + (αβ′ +α′β)xy + ββ′y2.

This is a binary quadratic form in the variable coeffi-

cients x and y . If you start with a different choice of α,

β that generate I you get a different form, but the two

forms are scalar multiples of two forms with discrimi-

nant D that are equivalent to one another. Even better,

the equivalence class of these forms depends only on

the ideal class of I.
It can be shown that there are only a finite number of

distinct ideal classes of Rd; that is, the ideal class group

Hd is finite. The number of its elements is denoted hd
and called the class number of Rd. So, the obstruction

to unique factorization of Rd is given by the nontrivial-

ity of the group Hd; equivalently, unique factorization

holds for Rd if and only if its class number is 1. But

whether or notHd is trivial, its detailed group-theoretic

structure is profoundly related to the arithmetic of Rd.

The class number enters into the generalizations of

formulas (5) and (10) of section 1; that is, the analytic

formulas we alluded to in that section. These formu-

las represent just the beginning of one of the ongoing

chapters of our subject, and form a bridge between the

world of discrete arithmetical issues and that of calcu-

lus, infinite series, and volumes of spaces, all of which

can be attacked by the methods of complex analysis

[I.3 §5.6]. Here is a sample of them.

(i) If d > 0 is a square-free integer and D is either

d or 4d according to whether d is congruent to 1

modulo 4 or not, then

hd · log εd√
D
=
∑
n�0

± 1
n
,

where the integers n run through those that are

relatively prime to D and the signs ± are chosen

in a way that depends only on the residue class of

n modulo D.

(ii) If d < 0 we have a somewhat simpler formula:

there is no fundamental unit εd in Rd to contend

with, but when d = −1 or −3, there are more roots

of unity than merely±1. Ifwd denotes the number

of roots of unity in Rd, thenw−1 = 4,w−3 = 6 and

otherwise wd = 2, and then one has a formula of

the following type:

hd
wd
√
D
=
∑
n�0

± 1
n
.

As d tends to −∞ the class number hd tends to

infinity.

We have effective lower bounds for the growth of hd
but these lower bounds are probably still far from the

actual growth (cf. Goldfeld 1985). The effective lower

bounds that are known are exceedingly weak. They fol-

low, however, from beautiful work of Goldfield, and

of Gross and Zagier: for every real number r < 1
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there is a computable constant C(r) such that hd >
C(r) log |D|r . Here is a sample:

hd >
1

55

∏
p|D

(
1− 2

√p
p + 1

)
· log |D|

if (D,5077) = 1.

It is a striking lacuna in our theory that, even today,
nobody knows how to prove that there are infinitely
many values of d > 0 for which Rd enjoys the unique
factorization property—particularly since we expect
that more than three quarters of them do! Our expec-
tations are even more precise than that, thanks to
Henri Cohen and Hendrik Lenstra, who make use of
certain probabilistic expectations (now known as the
Cohen–Lenstra heuristics) to conjecture that the density
of positive fundamental discriminants of class num-
ber 1 among all positive fundamental discriminants is
0.75446 . . . .

8 The Elliptic Modular Function and
the Unique Factorization Property

A different obstruction to unique factorization in Rd is
available when d is negative. Now Rd may be thought
of as a lattice in the complex plane (see figure 3), which
makes a wonderful tool available for us: the classical
elliptic modular function of klein [VI.57],

j(z) = e−2π iz + 744+ 196 884 e2π iz

+ 21 493 760 e4π iz + 864 299 970 e6π iz + · · · .
(13)

This function, also colloquially referred to as the
“j-function,” converges for complex numbers z = x +
iy with y > 0. If z = x + iy and z′ = x′ + iy′ are two
such complex numbers, then j(z) = j(z′) if and only if
the lattice generated by z and 1 in the complex plane is
the same as the lattice generated by z′ and 1 (or, equiv-
alently, z′ = (az + b)/(cz + d), where a, b, c, and d
are ordinary integers such that ad − bc = 1). We can
paraphrase this by saying that the value j(z) depends
only on, and characterizes, the lattice generated by z
and 1.

It turns out (by a theorem of Schneider) that if an
algebraic number α = x + iy with y > 0 has the prop-
erty that j(α) is also algebraic, then α is a (complex)
quadratic irrationality; and the converse is also true. In
particular, since α = τd is such a complex quadratic
irrationality when d is negative, the value, j(τd), of the
j-function on τd is an algebraic number—in fact, an
algebraic integer. This will be of some importance for

our story. First, since the ring Rd as situated in the com-

plex plane is simply the lattice generated by τd and 1,

it follows from the previous paragraph that this value

j(τd) will be the same if we replace τd by any element

α ofRd, as long as the lattice generated byα and 1 is the

entire ring Rd. More importantly, j(τd) is an algebraic

integer of degree roughly comparable with the class

number of Rd. In particular, it is an ordinary integer

if and only if the ring Rd has the unique factorization

property. (This result is one of the great applications

of a classical theory known as complex multiplication.)

In brief, here is yet another answer to the question of

when the unique factorization principle holds for Rd
when d is negative: if j(τd) is an ordinary integer, the

answer is yes; otherwise it is no.

The search for the full list of negative values of d
for which Rd has the unique factorization property

makes a marvelous tale: there are precisely nine val-

ues of d for which it occurs (see below), but for over

two decades number theorists, while knowing these

nine, could prove only that there were no more than

ten. The history of how the nonexistence of a possible

tenth value of d was established, and reestablished, is

one of the thrilling chapters in our subject. K. Heeg-

ner, in an article published in 1934, provided what he

claimed was a proof of the nonexistence of the possible

tenth value of d. However, Heegner’s proof was framed

in somewhat unfamiliar language and was not under-

stood by the mathematicians of the time. His paper

and his purported proof were largely forgotten until

the late 1960s, when the nonexistence of the tenth

field was established (to the mathematical community’s

satisfaction) by Stark (1967) and independently, via a

different method, by Baker (1971). It was only then

that mathematicians took a second and closer look at

Heegner’s original article and discovered that he had

indeed proven exactly what he claimed. Moreover, his

proof offered an elegant direct conceptual road to an

understanding of the underlying issue.

Here are the nine values of d:

d = −1, −2, −3, −7, −11, −19, −43, −67, −163.

And here are the corresponding nine values of j(τd):
PUP: I can confirm
that the fact that
the second
number is greater
than the first in
the sequence is OK
here.

j(τd) = 2633, 2653, 0, −3353, −215, −21533,

− 2183353, −2153353113, −2183353233293.

As Stark once pointed out, if, for some of these val-

ues of d, you simply “plug” τd into the power series

expansion for j, you get rather surprising formulas. For
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example, when d = −163, then

e−2π iτd = −eπ
√

163

is the first term of the power series for j(τ−163) (see
formula (13)). Since j(τ−163) = −2183353233293 and
since all the terms e2πnτd (n > 0) that appear in the
power series for the j-function are relatively small, we
find that eπ

√
163 is incredibly close to an integer. Indeed,

it is 2183353233293 + 744 + · · · , which works out as
262 537 412 640 768 744 − ε, where the error term ε is
less than 7.5× 10−13.

9 Representations of Prime Numbers
by Binary Quadratic Forms

More often than you might expect, it turns out to be
possible to translate difficult and/or somewhat artifi-
cial problems about ordinary integers into natural and
tractable problems about larger rings of algebraic inte-
gers. My favorite elementary example of this type is the
theorem due to fermat [VI.12] that if a prime numberp
may be expressed as a sum of two squares, p = a2+b2

with 0 < a � b, then it has only one such expression.
(For example, 12+102 is the only way of expressing the
prime number 101 as the sum of two squares.) More-
over, a prime number p can be expressed as a sum of
two squares if and only if p = 2 or p is of the form
4k + 1. (The “only if” part of this is easy to see: since
any square is congruent either to 0 or to 1 mod 4, an
odd integer that is a sum of two squares is necessarily
congruent to 1 mod 4.) These statements about ordi-
nary integers can be translated into basic statements
about the ring of Gaussian integers. For if we write
a2 + b2 = (a + ib)(a − ib), with i = √−1, then we can
view a2 + b2 as the norm of the (conjugate) elements
a ± ib in the ring of Gaussian integers. So, if p is a
prime number that admits an expression as a sum of
squares, p = a2 + b2, it follows that each of the ele-
ments a ± ib has norm a prime integer. It is easy to
deduce that p is itself a prime in the ring of Gauss-
ian integers. Indeed, any factorization of a ± ib into a
product of two Gaussian integers would have the prop-
erty that the norms of the factors are ordinary integers
which multiply out to be the prime p, and this severely
limits their possibilities: one of them has to be a unit.

In other words, whenever p = a2 + b2, then

p = (a+ ib)(a− ib)

is a factorization of the ordinary integer prime p into
a product of two Gaussian integer primes. The unique-
ness part of Fermat’s theorem then follows from (in

fact, it is readily seen to be equivalent to) the unique
factorization property of the ring R−1 of Gaussian inte-
gers. That any prime number p of the form 4k + 1
admits such an expression as a sum of two squares
follows from the splitting law for primes p in the ring
of Gaussian integers: an odd prime number p is a
norm, and hence splits into the product of two dis-
tinct primes, in the ring of Gaussian integers if and
only if p is congruent to 1 mod 4. This result is just
the beginning of an immense chapter of arithmetic.

10 Splitting Laws and the Race
between Residues and Nonresidues

The simple splitting law for ordinary prime integers p
in the ring of Gaussian integers, which states that p
splits if p ≡ 1 mod 4 and not if p ≡ −1 mod 4, invites
us to ask how often each of these cases occurs (see fig-
ure 4). dirichlet [VI.36] proved a famous theorem that
says that there are infinitely many primes in the arith-
metic progression c,m + c,2m + c, . . . if the integers
m and c are relatively prime. A more precise version of
his result gives a clear asymptotic answer to the ques-
tion we have just asked: as x goes to infinity, the ratio
of the number of primes less than x that split to the
number that do not tends to 1. (See analytic number
theory [IV.2 §4] for a further discussion of Dirichlet’s
theorem.)

For fun, one might ask a fussier question: which
type of prime less than x is actually in greater abun-
dance, the nonsplit primes or the split ones (see fig-
ure 4)? To put some perspective on this, let us widen
our query: for q equal either to 4 or to an odd prime,
let A(x) be the number of primes 	 < x that are quad-
ratic residues modulo q and let B(x) be the number
of primes 	 < x that are quadratic nonresidues mod-
ulo q. Let D(x) = A(x)− B(x) be the difference; what
does D(x) look like?

For an absorbing account of the history and status PUP: what do you
think of this
sentence? The full
reference details
are available so
perhaps I should
add this to the
further reading of
this article and
reword here
instead, but this is
how the author
would prefer this
to be cited.

of this problem, see the article “Prime number races”
by Andrew Granville and Greg Martin in American
Mathematical Monthly.

11 Algebraic Numbers and Algebraic Integers

Now that we have seen the algebraic integers j(τd) for
negative values of d, and have touched on trigonomet-
ric sums, we have a few hints that, as with ordinary inte-
gers, the deep structure of these rings of quadratic inte-
gers may be better understood within a larger context
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Figure 4 The higher of the two graphs in the figure repre-
sents the number of primes less than X that remain prime
in the ring of Gaussian integers, and the lower represents
the number of primes less than X that split in the ring
of Gaussian integers. The third graph hovering around the
x-axis represents the difference between the two numbers.
We thank William Stein for this data.

of algebraic numbers. So now let us deal with algebraic
numbers in full generality.

By a monic polynomial, we mean a polynomial of the
form

P(X) = Xn + a1Xn−1 + · · · + an−1X + an,
i.e., a polynomial of degree n such that the coefficient
of Xn is 1. In general, the other coefficients are just
assumed to be complex numbers. If P(X) = Xn +
a1Xn−1 + · · · + an−1X + an is such a polynomial, and
if Θ is a complex number such that P(Θ) = 0, or,
equivalently, if Θ satisfies the polynomial equation

Θn + a1Θn−1 + · · · + an−1Θ + an = 0,

we say that Θ is a root of the polynomial P(X). the
fundamental theorem of algebra [V.15], initially
proved by Gauss, guarantees that any such polyno-
mial of degree n factors into a product of n linear
polynomials. That is,

P(X) = (X −Θ1)(X −Θ2) · · · (X −Θn)
for some complex numbers Θ1, Θ2, . . . , Θn that are in
fact precisely the roots of the polynomial P(X).

If Θ is a root of such a polynomial P(X) = Xn +
a1Xn−1+· · ·+an−1X+an and if in addition the coeffi-

cients ai are rational numbers, thenΘ is called an alge-

braic number. If the coefficients are not just rational

but are in fact integers, then Θ is called an algebraic

integer. So, for example, the square root of any rational

number is an algebraic number and the square root of

any “ordinary” integer is an algebraic integer. The same

holds true fornth roots of ordinary integers, or of alge-

braic integers, for any natural number n. For an exam-

ple of a different sort, we have already mentioned the

theorem that the values of the j-function on complex

quadratic irrational integers are algebraic integers. For

a (random) particular case of that theorem, the complex

number j(τ−23) is a root of the monic polynomial

X3 + 3 491 750X2 − 5 151 296 875X

+ 12 771 880 859 375.

An exercise: show that any algebraic number can be

expressed as an algebraic integer divided by an ordi-

nary integer.

12 Presentation of Algebraic Numbers

In dealing with any mathematical concept, we confront,

in one way or another, the dual problem of the various

forms in which it comes to us when it arises in our

work, and the various ways we can present it so as to

deal with it effectively. We have already seen a bit of

this at the outset of this article, in our discussion of

quadratic surds, and we will continue to see it in our

treatment of them below, where the various modes in

which quadratic surds can be presented—as radicals, as

eventually recurrent continued fractions, or as trigono-

metric sums—come together, all contributing to their

unified theory.

This issue of presentation is all the more of a problem

with algebraic numbers in general, which may come to

us in a multitude of ways. For example, they can arise as

the coordinates of points on specific algebraic varieties

whose defining equations may not be easily available,

or as special values of functions like the j-function. It

is natural, then, to look for some uniform way of pre-

senting algebraic numbers, and the history of the sub-

ject shows how much effort has been devoted to such

a search. For example, consider the focus on iterated

radical expressions, as in the famous formula for the

solution to the general cubic equation X3 = bX + c
given by

X =
(
c
2
+
√
c2

2
− b

3

27

)1/3
+
(
c
2
−
√
c2

2
− b

3

27

)1/3
, (14)
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or the corresponding general solution to the fourth-
degree equation. These were major achievements of six-
teenth-century Italian algebra, and they culminated in
the proof that the general fifth-degree algebraic num-
ber could not be so expressed, which was a major
achievement of the early nineteenth century (see the
insolubility of the quintic [V.24]). The challenge
to give some analytic expression for such fifth-degree
algebraic numbers was the source of a classic book by
Klein, The Icosahedron, written in the late nineteenth
century. Kronecker wrote that it was the “dream of his
youth” (his Jugendtraum) to establish a uniform mode
of presentation for a class of algebraic numbers that
interested him, by expressing them as values of certain
analytic functions.

13 Roots of Unity

A central role in the theory of algebraic numbers is
played by the roots of unity, that is, the n complex solu-
tions of the equation Xn = 1, or equivalently the n
roots of the polynomial Xn − 1. If we let ζn = e2π i/n,
then these roots are precisely ζn and its powers, so in
particular they are algebraic integers. They give us the
factorization

Xn − 1 = (X − 1)(X − ζn)(X − ζ2
n) · · · (X − ζn−1

n ).

Now the powers of ζn form the vertices of a regular n-
gon in the complex plane, centered at the origin. This
has the following consequence, noticed by Gauss in
his youth. It can be shown that compass and straight-
edge constructions allow us, in effect, to extract square
roots, so whenever ζn can be given as an expression
built out of just square roots and the usual arithmeti-
cal operations, we have, implicitly, a ruler-and-compass
construction of the regular n-gon, and conversely.

To get some idea of why square roots are so closely
connected with these constructions, consider this. If we
have given ourselves a unit measure, which we can view
as the distance between the numbers 0 and 1 in the
(complex) plane, and if we have already constructed,
by whatever device, a specific point, x say, between 0
and 1 on the horizontal axis of the plane, we can first
“construct”x/2 by straightedge and compass, and then
go on to form a right-angled triangle with hypotenuse
of length 1 + x/2 and one of its other sides of length
1−x/2 (again using a straightedge and compass). The
Pythagorean theorem gives us that the third side of
that triangle is of length

√
x. If one follows this line of

thought (but adapts it to deal with complex quantities

as well as the real number x as in the example we have
just discussed), then one can see that the equations

ζ3 = 1
2 (1+ i

√
3),

ζ4 =
√

i,

ζ5 = 1
4 (
√

5− 1)+ i 1
8

(√
5+√5

)
,

ζ6 = − 1
2 (1+ i

√
3)

provide (implicit) constructions of the equilateral tri-
angle, the square, the regular pentagon, and the reg-
ular hexagon, respectively. By contrast, ζ7 cannot be
expressed solely in terms of the arithmetical operations
and square roots (it is the root of a quadratic equation
with coefficients that are rational expressions in the
roots of the irreducible cubic polynomial X3 − 7

3X +
7

27 ), which already suggests that the regular heptagon
might fail to be constructible by the standard classi-
cal means—and indeed it does fail without some act of
“angle trisection.” (In principle, though, the reader can
work out an expression for ζ7 in terms of square roots
and cube roots by means of the information provided in
the parenthetical phrase above, together with equation
(14).)

Gauss showed that if n > 2 is a prime number then
the regularn-gon is classically constructible if and only
if n is a Fermat prime, that is, a prime number of the
form 22a + 1. So, for example, the 11-gon and 13-gon
are not constructible by classical means, but since ζ17

is expressible as nested rational expressions of square
roots, the 17-gon is, famously, constructible.

So, not all roots of unity can be expressed as iter-
ated rational expressions of square roots. However, this
inhospitability is not mutual, since all square roots of
integers can be expressed as integer combinations of
roots of unity. More mysteriously, the elusive funda-
mental units εd (for d positive), for which there is no
known formula, are intimately related to a unit cd in
Rd which is an explicit rational expression of roots
of unity. (See below: it is called a circular unit.) This
satisfies the elegant formula

cd = εhdd , (15)

which establishes yet another explicit test of unique
factorization: the equality cd = εd is a “litmus” require-
ment for the unique factorization principle to hold in
Rd.

To give the flavor of the formulas involved, let p be
an odd prime number and let a be an integer not divis-
ible by p. Then define σp(a) to be +1 if a is a quad-
ratic residue modulo p, that is, if a is congruent to
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the square of an integer modulo p, and −1 if not. The
simple trigonometric sums of (1) and (6) generalize to
quadratic Gauss sums:

±i(p−1)/2√p = ζp + σp(2)ζ2
p + σp(3)ζ3

p + · · ·
+ σp(p − 2)ζp−2

p + σp(p − 1)ζp−1
p .

(16)

This formula is not too hard to prove, apart from deter-
mining which sign is correct in the initial ±, but after
considerable efforts Gauss managed to work this out
too. To see the connection between, say, formula (6)
and (16) note that when p = 5, the left-hand side of
(16) is

√
5 and the right-hand side is

ζ5 +−ζ2
5 − ζ−2

5 + ζ−1
5 = 2 cos 2

5π − 2 cos 4
5π.

As for the circular unit cp , it is defined to be

(p−1)/2∏
a=1

(ζap − ζ−ap )σp(a) =
(p−1)/2∏
a=1

sin(πa/p)σp(a),

and this leads to further formulas. For example, when
p = 5, we have εp = τ5 = 1

2 (1+
√

5), and since h5 = 1,
formula (6) for p = 5 tells us that

1+√5
2

= ζ5 − ζ−1
5

ζ2
5 − ζ−2

5

= sin 1
5π

sin 2
5π
.

14 The Degree of an Algebraic Number

If Θ is an algebraic integer that is also a rational num-
ber, then Θ is an “ordinary” integer. Here is the proof
of this fact. If Θ is a rational number, then we may
write Θ = C/D as a fraction in lowest terms. If Θ
is also an algebraic integer, then it is the root of a
monic polynomial with rational integer coefficients,
Θn + a1Θn−1 + · · · + an, so we have an equation

(C/D)n + a1(C/D)n−1 + · · · + an−1(C/D)+ an = 0.

Multiplying through by Dn we get

Cn + a1Cn−1D + · · · + an−1CDn−1 + anDn = 0,

where all terms are (ordinary) integers, and all but the
first one is divisible by D. If D > 1 then it has some
prime factor p, so all terms apart from the first are also
divisible by p. Since the terms add up to zero, it follows
thatp dividesCn, which implies thatp dividesC , which
contradicts the assertion that the fraction C/D is in its
lowest terms. This in turn contradicts the hypothesis
that Θ can be expressed as a ratio of whole numbers in
the first place. As the reader may like to verify, this fact
implies the result attributed to Theaetetus above, that√
A is irrational if and only if A is not a perfect square.

The degree of an algebraic number Θ is defined to
be the smallest degree, n, of any polynomial relation
Θn + a1Θn−1 + · · · + an−1Θ + an = 0 that Θ satisfies,
where the coefficients ai are rational numbers. The cor-
responding polynomial, P(X) = Xn + a1Xn−1 + · · · +
an−1X + an is unique, since if there were two of them
then their difference would be of smaller degree and
would also have Θ as a root. (One could make it monic
by dividing it through by the leading coefficient.) Let
us call P(X) the minimal polynomial of Θ. The mini-
mal polynomial is irreducible over the field of rational
numbers: that is, it cannot be factored as a product
of two polynomials, each of smaller degree and hav-
ing rational numbers as coefficients. (If it could, then
it would not be of minimal degree, since one of its fac-
tors would have Θ as a root.) The minimal polynomial
P(X) of Θ is a factor of any monic polynomial G(X)
with rational coefficients that has Θ as root. (The great-
est common divisor of P and G is another monic poly-
nomial with rational coefficients that has Θ as a root,
so it cannot be of degree smaller than that of P and it
must therefore be P .) The minimal polynomial P(X) of
Θ has distinct roots. (If P(X) had multiple roots, then
a little elementary calculus shows that it would share
a nontrivial factor with its derivative, P ′(X). Since the
derivative is of lower degree than P(X) and again has
rational coefficients, the greatest common divisor of P
and P ′ would provide a nontrivial factorization of P(X),
contradicting its irreducibility.)

A fundamental result due to Gauss is that the nth
root of unity ζn = e2π i/n is an algebraic integer of
degree precisely φ(n), where φ is Euler’s φ-function.
For example, if p is prime, the minimal polynomial of
ζp is

Xp − 1
X − 1

= Xp−1 +Xp−2 + · · · +X + 1,

which is of degree φ(p) = p − 1.

15 Algebraic Numbers as Ciphers Determined
by Their Minimal Polynomials

We have expressly insisted that our algebraic numbers
are complex numbers (of a certain sort). But another
possible attitude toward an algebraic number, Θ, an
attitude at times promoted by Kronecker, among oth-
ers, is to deal with Θ as an unknown satisfying only the
algebraic relations implied by the fact that it is a root
of its (unique monic) minimal polynomial with rational
coefficients. For example, if the minimal polynomial of
Θ is P(X) = X3 − X − 1, then, according to this view,
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Θ is just an algebraic symbol that comes with the rule
that any occurrence of Θ3 may be replaced by Θ + 1
(rather as the complex number i can be regarded as
a symbol with the property that i2 may be replaced
by −1). Any root of the minimal polynomial of Θ sat-
isfies all the same polynomial relations with rational
coefficients that Θ satisfies; these roots are called con-
jugates of Θ. If Θ is an algebraic number of degree n,
then Θ has n distinct conjugates, all of them again, of
course, algebraic numbers.

16 A Few Remarks about the
Theory of Polynomials

Central to the theory of polynomials in one variable—
and, therefore, particularly to the theory of algebraic
numbers—is the general relationship that roots have
to coefficients:

n∏
i=1

(X − Ti) = Xn +
n−1∑
j=0

(−1)jAj(T1, T2, . . . , Tn)Xn−j .

The polynomial Aj(T1, T2, . . . , Tn) is homogeneous of
degree j (this means that every monomial in it has total
degree j), has integer coefficients, and is symmetric in
(i.e., unchanged by any permutation of) the variables
T1, T2, . . . , Tn.

The constant term is the product of the roots:

An(T1, T2, . . . , Tn) = T1 · T2 · · · · · Tn,
which is known as the norm form. The coefficient of
Xn−1 is the sum of the roots:

A1(T1, T2, . . . , Tn) = T1 + T2 + · · · + Tn,
and this is the trace form.

When n = 2 the norm and trace are all the symmetric
polynomials in the list. Forn = 3, beyond the norm and
trace we also have the symmetric polynomial of degree
two:

A2(T1, T2, T3) = T1T2 + T2T3 + T3T1

= 1
2{(T1 + T2 + T3)2 − (T 2

1 + T 2
2 + T 2

3 )}.
It is of major importance to this theory, and more
specifically to galois theory [V.24], that the symme-
try properties of the conjugate roots are nicely reflected
in these symmetric polynomials. In particular, we have
the fundamental result that any symmetric polyno-
mial in T1, T2, . . . , Tn with rational coefficients can be
expressed as a polynomial with rational coefficients in
the symmetric polynomials Aj(T1, T2, . . . , Tn), and sim-
ilarly with integral coefficients. For example, the equa-
tion above shows that T 2

1 + T 2
2 + T 2

3 can be expressed

as

A1(T1, T2, T3)2 − 2A2(T1, T2, T3).

17 Fields of Algebraic Numbers
and Rings of Algebraic Integers

The inverse of a nonzero algebraic number is again an
algebraic number; the sum, difference, and product of
two algebraic numbers are algebraic numbers; the sum,
difference, and product of two algebraic integers are
algebraic integers. The neat proofs of these (latter) facts
are a good demonstration of the power of linear alge-
bra, and in particular of Cramer’s rule. This states that
any matrix with integer coefficients (and therefore also
any linear transformation of a finite-dimensional vec-
tor space that preserves an integer lattice) satisfies a
monic polynomial identity with integer coefficients.

To see just how useful this remark is for finding poly-
nomial relations, and more specifically for showing that
the collections of algebraic numbers and algebraic inte-
gers are closed under sums and products, try your hand
at showing that

√
2+√3 is an algebraic integer. One

way to do it is to search for the monic fourth-degree
polynomial equation that it satisfies. But this is hardly a
beautiful calculation! If, however, you are familiar with
linear algebra, then a less painful route is to form the
four-dimensional vector space over the rational num-
bers, generated by 1,

√
2,
√

3, and
√

6 (which are linearly
independent when the scalars are rational). Multiplica-
tion by

√
2+√3 defines a linear transformation T of

this vector space, and one can compute its character-
istic polynomial P . The Cayley–Hamilton theorem says
that P(T) = 0, and this translates into the statement
that

√
2+√3 is a root of P .

These “closure properties” we have just discussed
lead us to study, in complete generality, fields of alge-
braic numbers and rings of algebraic integers. A num-
ber field is a field that is generated (as a field) by finitely
many algebraic numbers. A standard result tells us that
any number field K can in fact be generated by a sin-
gle carefully chosen algebraic number. The degree of
this algebraic number equals the degree of K, which is
defined to be the dimension of K when K is viewed as a
vector space over the field Q of rational numbers. One
of the main introductory observations of Galois theory
is that if K is a number field of degree n, then there
are exactly n distinct ring homomorphisms (“imbed-
dings”) ι : K → C from K into the field of complex
numbers. (This means that ι sends 1 to 1 and respects
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the addition and multiplication laws within K. That is,

ι(x+y) = ι(x)+ ι(y) and ι(x ·y) = ι(x) · ι(y).) From

these imbeddings, we can construct some very useful

rational-valued functions on K. For any element x in K,

we form the n complex numbers x1, x2, . . . , xn that are

the images of x under the n different imbeddings of K
into C. We then let

aj(x) = Aj(x1, x2, . . . , xn),

where Aj(X1, X2, . . . , Xn) is the jth symmetric polyno-

mial of section 14 above. (Because the polynomials Aj
are symmetric, we do not have to worry about the order

of the images x1, x2, . . . , xn in the above expression.) It

is not immediately obvious that the values of aj are

rational numbers, but there is a theorem that tells us

this.

If an algebraic number Θ in K generates K (as a

field), then the rational numbers aj(Θ) are the coef-

ficients of its minimal polynomial; in general they are

the coefficients of a power of its minimal polynomial.

The most prominent of these functions are the multi-

plicative function an(x) = x1 · x2 · · · · · xn, called the
PUP: I can confirm
that the use of
‘an(x)’ and
‘a1(x)’ is OK. norm function, usually denoted x �→ NK/Q(x), and the

additive function a1(x) = x1+x2+· · ·+xn, called the

trace function, usually denoted x �→ traceK/Q(x).
The trace function can be used to define a fundamen-

tal symmetric bilinear form on the Q-vector space K,

〈x,y〉 = traceK/Q(x ·y),
which turns out to be nondegenerate. This nondegener-

acy, together with the fact that ifx,y are both algebraic

integers, then 〈x,y〉 is an ordinary integer, can be used

to show that the ringO(K) of all algebraic integers in K
is finitely generated as an additive group. More specifi-

cally, there is a basis of algebraic integers in K, that is,

a finite set {Θ1, Θ2, . . . , Θn}, such that any other alge-

braic integer in K can be expressed as an “ordinary”

integer combination of the numbers Θi.
Let us summarize this structure. The number field

K is a finite-dimensional vector space over Q and

comes equipped with a nondegenerate bilinear sym-

metric form (x,y) �→ 〈x,y〉, and also with a lattice

O(K) ⊂ K. Moreover, the restriction of the bilinear form

to O(K) takes on integral values.

The discriminant ofK, denotedD(K), is defined to be

the determinant [III.15] of the matrix whose ij-entry

is 〈Θi,Θj〉, for {Θ1, Θ2, . . . , Θn} a basis of the lattice

O(K); this determinant does not depend on the basis

chosen.

The discriminant represents important information
about the number field K. For one thing, there is a nat-
ural generalization to any number field of the notions
of splitting and ramification that we discussed for quad-
ratic fields, and the prime divisors p of D(K) are pre-
cisely those prime numbers that ramify in the field
extension K. By a theorem of minkowski [VI.64], the
absolute value of the discriminant D(K) of a number
field K of degree n is always greater than(

π
4

)n
·
(
nn

n!

)2

.

This is greater than 1 unless K is the field of rational
numbers. It follows that any nontrivial extension of the
field of rational numbers has some prime that ramifies
in it, a result that would be very hard to prove with-
out the help of the algebraic structures we have just
defined. This integer D(K) really is quite a discrimi-
nating “tag” for our number field K, for, by a theorem
of hermite [VI.47], given any integer D there are only
finitely many different number fields with discriminant
equal to D. (Not all integers can be discriminants: as is
true for quadratic number fields, the integersD that are
discriminants are either divisible by 4 or else congruent
to 1 modulo 4.)

18 On the Size(s) of the Absolute Values of
All Conjugates of an Algebraic Integer

As we have just seen, the coefficients of the minimal
polynomial for an algebraic integer Θ are given by the
ordinary integers aj(Θ1, Θ2, . . . , Θn), where the num-
bersΘi are all the conjugates ofΘ. The sizes of all these
coefficients must therefore all be less than some univer-
sal numberM that depends only on the degree ofΘ and
the largest absolute value of any of its conjugates. As
a consequence, given any n and any positive number
B, there are only finitely many algebraic integers Θ of
degree less than n such that the absolute values of Θ
and its conjugates are all less than B. (This is because
for any n and M there are only finitely many polyno-
mials of degree less than or equal tonwith the absolute
values of all their integer coefficients at most M .) This
finiteness result is the key to the following observation,
due to Kronecker: if Θ is an algebraic number and if
the absolute values of Θ and of all of its conjugates are
equal to 1, thenΘ is a root of unity. Indeed, all the pow-
ers of Θ have degree at most that of Θ, and they enjoy
the same property: their absolute value, and that of all
their conjugates, is equal to 1. Consequently, there are
only finitely many such algebraic numbers, from which



�

IV.1. Algebraic Numbers 17

it follows that there must be at least one coincidence
of the form Θa = Θb for different a and b. But this can
happen only if Θ is a root of unity.

19 Weil Numbers

To follow this thread for just a bit, let us generalize
the hypothesis of Kronecker’s observation, and define
a Weil number3 of absolute value r to be a nonzero
algebraic integer such that it and all of its conjugates
have the same absolute value r . By the discussion in
the previous section there are only finitely many dis-
tinct Weil numbers of given degree and absolute value.
By Kronecker’s theorem, which we have just described,
the Weil numbers of absolute value 1 are precisely the
roots of unity. Here are further basic facts that you
might try to prove. First, the quadratic Weil numbers
ω are precisely those quadratic algebraic integers such
that |trace(ω)| � 2

√|N(ω)| = 2
√|ωω′|, where ω′ is

the (algebraic) conjugate of ω. Second, if p is prime
then a quadratic Weil numberω of absolute value

√p is
a prime element of the (unique) ring of quadratic inte-
gers Rd that contains ω, and therefore gives a prime
factorization ωω′ = ±p of the integer p in that ring.

Weil numbers of absolute value pν/2, where p is
again a prime number and ν is a natural number, are
extremely important in arithmetic: they hold the key
to counting numbers of rational solutions of systems
of polynomial equations over finite fields. For just one
concrete example, the Gaussian integerω = −1+ i and
its algebraic conjugate (which, in this instance, is also
its complex conjugate) ω̄ = −1− i are Weil numbers (of
absolute value 2) that control the number of solutions
of the equation y2 −y = x3 −x over all finite fields of
size a power of 2. Specifically, the number of solutions
of that equation over a field of order 2ν is given by the
formula

2ν − (−1− i)ν − (−1+ i)ν

(which is an ordinary integer). This leads to another
immense chapter of mathematics.

20 Epilogue

The single symmetry α �→ α′, the algebraic conjuga-
tion in the rings Rd that we have discussed, gave birth,
thanks to abel [VI.33] and galois [VI.41] in the begin-
ning of the nineteenth century, to the rich study of

3. This is a weaker condition than is usually required for Weil num-
bers but our deviation from standard usage should not be the cause
of too much confusion.

(Galois) groups of symmetries of general number fields
(see the insolubility of the quintic [V.24]). This
study continues with great intensity, since these Galois
groups and their linear representations hold the key
to a very detailed understanding of number fields. In
its modern dress, algebraic number theory is closely
connected with what is often called arithmetic geom-
etry [IV.5]. Kronecker’s dream of getting explicit con-
trol of a wealth of algebraic number theoretic material
by expressing algebraic numbers in terms of natural
analytic functions has not yet been fully realized. Nev-
ertheless, the scope of this dream (and, one might also
add, the supply of natural analytic and algebraic func-
tions) has expanded substantially: the full range of alge-
braic geometry and group representation theory is now
being brought to bear on it. This is done, for example,
by the Langlands program, which among other things
works with objects known as Shimura varieties. On the
one hand, these varieties have close connections with
the theory of group representations and classical alge-
braic geometry, which greatly helps us to understand
them. On the other hand, they are a rich source of con-
crete linear representations of Galois groups of number
fields. This program, one of the glories of current math-
ematics, will, I expect, make a terrific chapter for a Com-
panion to Mathematics to be written at the beginning of
the next century.
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IV.2 Analytic Number Theory
Andrew Granville

1 Introduction

What is number theory? One might have thought that it
was simply the study of numbers, but that is too broad
a definition, since numbers are almost ubiquitous in
mathematics. To see what distinguishes number theory
from the rest of mathematics, let us look at the equa-
tion x2+y2 = 15 925, and consider whether it has any
solutions. One answer is that it certainly does: indeed,
the solution set forms a circle of radius

√
15 925 in the

plane. However, a number theorist is interested in inte-
ger solutions, and now it is much less obvious whether
any such solutions exist.

A useful first step in considering the above question
is to notice that 15 925 is a multiple of 25: in fact, it is
25× 637. Furthermore, the number 637 can be decom-
posed further: it is 49×13. That is, 15 925 = 52×72×13.
This information helps us a lot, because if we can find
integers a and b such that a2 + b2 = 13, then we can
multiply them by 5×7 = 35 and we will have a solution
to the original equation. Now we notice that a = 2 and
b = 3 works, since 22+32 = 13. Multiplying these num-
bers by 35, we obtain the solution 702 + 1052 = 15 925
to the original equation.

As this simple example shows, it is often useful to
decompose positive integers multiplicatively into com-
ponents that cannot be broken down any further. These
components are called prime numbers, and the fun-
damental theorem of arithmetic [V.16] states that
every positive integer can be written as a product of
primes in exactly one way. That is, there is a one-to-one
correspondence between positive integers and finite
products of primes. In many situations we know what
we need to know about a positive integer once we have
decomposed it into its prime factors and understood
those, just as we can understand a lot about molecules
by studying the atoms of which they are composed. For
example, it is known that the equation x2+y2 = n has
an integer solution if and only if every prime of the form
4m+3 occurs an even number of times in the prime fac-
torization ofn. (This tells us, for instance, that there are
no integer solutions to the equation x2 +y2 = 13 475,
since 13 475 = 52 × 72 × 11, and 11 appears an odd
number of times in this product.)

Once one begins the process of determining which
integers are primes and which are not, it is soon appar-
ent that there are many primes. However, as one goes
further and further, the primes seem to consist of a
smaller and smaller proportion of the positive integers.
They also seem to come in a somewhat irregular pat-
tern, which raises the question of whether there is any
formula that describes all of them. Failing that, can one
perhaps describe a large class of them? We can also ask
whether there are infinitely many primes. If there are,
can we quickly determine how many there are up to
a given point? Or at least give a good estimate for this
number? Finally, when one has spent long enough look-
ing for primes, one cannot help but ask whether there
is a quick way of recognizing them. This last question is
discussed in computational number theory [IV.3];
the rest motivate the present article.

Now that we have discussed what marks number
theory out from the rest of mathematics, we are ready
to make a further distinction: between algebraic and
analytic number theory. The main difference is that
in algebraic number theory (which is the main topic
of algebraic numbers [IV.1]) one typically considers
questions with answers that are given by exact formu-
las, whereas in analytic number theory, the topic of
this article, one looks for good approximations. For the
sort of quantity that one estimates in analytic num-
ber theory, one does not expect an exact formula to
exist, except perhaps one of a rather artificial and unil-
luminating kind. One of the best examples of such a
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quantity is one we shall discuss in detail: the number
of primes less than or equal to x.

Since we are discussing approximations, we will need
terminology that allows us to give some idea of the
quality of an approximation. Suppose, for example, that
we have a rather erratic function f(x) but are able to
show that, once x is large enough, f(x) is never big-
ger than 25x2. This is useful because we understand
the function g(x) = x2 quite well. In general, if we
can find a constant c such that |f(x)| � cg(x) for
every x, then we write f(x) = O(g(x)). A typical usage
occurs in the sentence “the average number of prime
factors of an integer up to x is log logx + O(1)”; in
other words, there exists some constant c > 0 such
that |the average− log logx| � c once x is sufficiently
large.

We write f(x) ∼ g(x) if limx→∞ f(x)/g(x) = 1; and
also f(x) ≈ g(x)when we are being a little less precise,
that is, when we want to say that f(x) and g(x) come
close when x is sufficiently large, but we cannot be, or
do not want to be, more specific about what we mean
by “come close.”

It is convenient for us to use the notation
∑

for sums
and

∏
for product. Typically we will indicate beneathPUP: point taken

about ‘beneath’
not being entirely
unproblematic, but
this couldn’t
confuse anyone
who has read this
far and is true
most of the time
(when these
symbols appear in
displays), so we’d
prefer to leave it
as it is. OK?

the symbol what terms the sum, or product, is to be
taken over. For example,

∑
m�2 will be a sum over all

integersm that are greater than or equal to 2, whereas∏
p prime will be a product over all primes p.

2 Bounds for the Number of Primes

Ancient Greek mathematicians knew that there were
infinitely many primes. Their beautiful proof by con-
tradiction goes as follows. Suppose that there are only
finitely many primes, say k of them, which we will
denote by p1, p2, . . . , pk. What are the prime factors of
p1p2 · · ·pk + 1? Since this number is greater than 1 it
must have at least one prime factor, and this must be
pj for some j (since all primes are contained among
p1, p2, . . . , pk). But then pj divides both p1p2 · · ·pk
andp1p2 · · ·pk+1, and hence their difference, 1, which
is impossible.

Many people dislike this proof, since it does not actu-
ally exhibit infinitely many primes: it merely shows that
there cannot be finitely many. It is more or less possi-
ble to correct this deficiency by defining the sequence
x1 = 2, x2 = 3, and xk+1 = x1x2 · · ·xk + 1 for each
k � 2. Then each xk must contain at least one prime
factor, qk say, and these prime factors must be distinct,
since if k < 	, then qk divides xk which divides x	 − 1,

while q	 divides x	. This gives us an infinite sequence
of primes.

In the eighteenth century euler [VI.19] gave a dif-
ferent proof that there are infinitely many primes, one
that turned out to be highly influential in what was
to come later. Suppose again that the list of primes
is p1, p2, . . . , pk. As we have mentioned, the funda-
mental theorem of arithmetic implies that there is a
one-to-one correspondence between the set of all inte-
gers and the set of products of the primes, which, if
those are the only primes, is the set {pa1

1 p
a2
2 · · ·pakk :

a1, a2, . . . , ak � 0}. But, as Euler observed, this implies
that a sum involving the elements of the first set should
equal the analogous sum involving the elements of the
second set:∑

n�1
n a positive integer

1
ns

=
∑

a1,a2,...,ak�0

1

(pa1
1 p

a2
2 · · ·pakk )s

=
( ∑
a1�0

1

(pa1
1 )s

)( ∑
a2�0

1

(pa2
2 )s

)
· · ·

( ∑
ak�0

1

(pakk )s

)

=
k∏
j=1

(
1− 1

pjs

)−1

.

The last equality holds because each sum in the second-
last line is the sum of a geometric progression. Euler
then noted that if we take s = 1, the right-hand side
equals some rational number (since each pj > 1)
whereas the left-hand side equals ∞. This is a contra-
diction, so there cannot be finitely many primes. (To see
why the left-hand side is infinite when s = 1, note that
(1/n) �

∫n+1
n (1/t)dt since the function 1/t is decreas-

ing, and therefore
∑N−1
n=1 (1/n) �

∫N
1 (1/t)dt = logN

which tends to ∞ as N →∞.)

During the proof above, we gave a formula for
∑
n−s

under the false assumption that there are only finitely
many primes. To correct it, all we have to do is rewrite
it in the obvious way without that assumption:

∑
n�1

n a positive integer

1
ns
=

∏
p prime

(
1− 1

ps

)−1

. (1)

Now, however, we need to be a little careful about
whether the two sides of the formula converge. It is
safe to write down such a formula when both sides are
absolutely convergent, and this is true when s > 1. (An
infinite sum or product is absolutely convergent if the
value does not change when we take the terms in any
order we want.)
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Like Euler, we want to be able to interpret what hap-
pens to (1) when s = 1. Since both sides converge and
are equal when s > 1, the natural thing to do is con-
sider their common limit as s tends to 1 from above.
To do this we note, as above, that the left-hand side of
(1) is well approximated by∫∞

1

dt
ts
= 1
s − 1

,

so it diverges as s → 1+. We deduce that∏
p prime

(
1− 1

p

)
= 0. (2)

Upon taking logarithms and discarding negligible
terms, this implies that∑

p prime

1
p
= ∞. (3)

So how numerous are the primes? One way to get an
idea is to determine the behavior of the sum analo-
gous to (3) for other sequences of integers. For instance,∑
n�1 1/n2 converges, so the primes are, in this sense,

more numerous than the squares. This argument works
if we replace the power 2 by any s > 1, since then, as
we have just observed, the sum

∑
n�1 1/ns is about

1/(s − 1) and in particular converges. In fact, since∑
n�1 1/n(logn)2 converges, we see that the primes

are in the same sense more numerous than the num-
bers {n(logn)2 : n � 1}, and hence there are infinitely
many integers x for which the number of primes less
than or equal to x is at least x/(logx)2.

Thus, there seem to be primes in abundance, but
we would also like to verify our observations, made
from calculations, that the primes constitute a smaller
and smaller proportion of the integers as the integers
become larger and larger. The easiest way to see this is
to try to count the primes using the “sieve of Eratos-
thenes.” In the sieve of Eratosthenes one starts with all
the positive integers up to some number x. From these,
one deletes the numbers 4, 6, 8 and so on—that is, all
multiples of 2 apart from 2 itself. One then takes the
first undeleted integer greater than 2, which is 3, and
deletes all its multiples—again, not including the num-
ber 3 itself. Then one removes all multiples of 5 apart
from 5, and so on. By the end of this process, one is left
with the primes up to x.

This suggests a way to guess at how many there are.
After deleting every second integer up to x other than
2 (which we call “sieving by 2”) one is left with roughly
half the integers up to x; after sieving by 3, one is left
with roughly two thirds of those that had remained;

continuing like this we expect to have about

x
∏
p�y

(
1− 1

p

)
(4)

integers left by the time we have sieved with all the
primes up to y . Once y = √x the undeleted integers
are 1 and the primes up to x, since every composite
has a prime factor no bigger than its square root. So, is
(4) a good approximation for the number of primes up
to x when y = √x?

To answer this question, we need to be more precise
about what the formula in (4) is estimating. It is sup-
posed to approximate the number of integers up to x
that have no prime factors less than or equal to y , plus
the number of primes up to y . The so-called inclusion–
exclusion principle can be used to show that the approx-
imation given in (4) is accurate to within 2k, where k is
the number of primes less than or equal to y . Unless k
is very small, this error term of 2k is far larger than the
quantity we are trying to estimate, and the approxima-
tion is useless. It is quite good if k is less than a small
constant times logx, but, as we have seen, this is far
less than the number of primes we expect up to y if
y ≈ √x. Thus it is not clear whether (4) can be used
to obtain a good estimate for the number of primes up
to x. What we can do, however, is use this argument to
give an upper bound for the number of primes up to
x, since the number of primes up to x is never more
than the number of integers up to x that are free of
prime factors less than or equal to y , plus the number
of primes up to y , which is no more than 2k plus the
expression in (4).

Now, by (2), we know that as y gets larger and larger
the product

∏
p�y(1− 1/p) converges to zero. There-

fore, for any small positive number ε we can find a
y such that

∏
p�y(1− 1/p) < ε/2. Since every term in

this product is at least 1/2, the product is at least 1/2k.
Hence, for any x � 22k our error term, 2k, is no bigger
than the quantity in (4), and therefore the number of
primes up to x is no larger than twice (4), which, by our
choice of y , is less than εx. Since we were free to make
ε as small as we liked, the primes are indeed a vanishing
proportion of all the integers, as we predicted.

Even though the error term in the inclusion–exclu-
sion principle is too large for us to use that method to
estimate (4) when y = √x, we can still hope that (4) is
a good approximation for the number of primes up to
x: perhaps a different argument would give us a much
smaller error term. And this turns out to be the case:
in fact, the error never gets much bigger than (4). How-
ever, when y = √x the number of primes up to x is
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actually about 8/9 times (4). So why does (4) not give
a good approximation? After sieving with prime p we
supposed that roughly 1 in every p of the remaining
integers were deleted: a careful analysis yields that this
can be justified when p is small, but that this becomes
an increasingly poor approximation of what really hap-
pens for larger p; in fact (4) does not give a correct
approximation oncey is bigger than a fixed power of x.
So what goes wrong? In the hope that the proportion
is roughly 1/p lies the unspoken assumption that the
consequences of sieving by p are independent of what
happened with the primes smaller than p. But if the
primes under consideration are no longer small, then
this assumption is false. This is one of the main rea-
sons that it is hard to estimate the number of primes
up to x, and indeed similar difficulties lie at the heart
of many related problems.

One can refine the bounds given above but they do
not seem to yield an asymptotic estimate for the primes
(that is, an estimate which is correct to within a fac-
tor that tends to 1 as x gets large). The first good
guesses for such an estimate emerged at the begin-
ning of the nineteenth century, none better than what
emerges from an observation of gauss [VI.26], made
when studying tables of primes up to three million
at sixteen years of age, that “the density of primes at
around x is about 1/ logx.” Interpreting this, we guess
that the number of primes up to x is about

x∑
n=2

1
logn

≈
∫ x

2

dt
log t

.

Let us compare this prediction (rounded to the nearest
integer) with the latest data on numbers of primes, dis-
covered by a mixture of ingenuity and computational
power. Table 1 shows the actual numbers of primes
up to various powers of 10 together with the differ-
ence between these numbers and what Gauss’s formula
gives. The differences are far smaller than the num-
bers themselves, so his prediction is amazingly accu-
rate. It does seem always to be an overcount, but since
the width of the last column is about half that of the
central one it appears that the difference is something
like

√
x.

In the 1930s, the great probability theorist, Cramér,
gave a probabilistic way of interpreting Gauss’s predic-
tion. We can represent the primes as a sequence of 0s
and 1s: Putting a “1” each time we encounter a prime,
and a “0” otherwise, we obtain, starting from 3, the
sequence 1,0,1,0,1,0,0,0,1,0,1, . . . . Cramér’s idea is
to suppose that this sequence, which represents the

Table 1 Primes up to various x, and
the overcount in Gauss’s prediction.

Overcount:

x π(x) = #{primes � x}
∫ x

2

dt
log t

−π(x)

108 5 761 455 753
109 50 847 534 1 700
1010 455 052 511 3 103
1011 4 118 054 813 11 587
1012 37 607 912 018 38 262
1013 346 065 536 839 108 970
1014 3 204 941 750 802 314 889
1015 29 844 570 422 669 1 052 618
1016 279 238 341 033 925 3 214 631
1017 2 623 557 157 654 233 7 956 588
1018 24 739 954 287 740 860 21 949 554
1019 234 057 667 276 344 607 99 877 774
1020 2 220 819 602 560 918 840 222 744 643
1021 21 127 269 486 018 731 928 597 394 253
1022 201 467 286 689 315 906 290 1 932 355 207

primes, has the same properties as a “typical” sequence
of 0s and 1s, and to use this principle to make pre-
cise conjectures about the primes. More precisely, let
X3, X4, . . . be an infinite sequence of random vari-
ables [III.73 §4] taking the values 0 or 1, and let the
variable Xn equal 1 with probability 1/ logn (so that
it equals 0 with probability 1 − 1/ logn). Assume also
that the variables are independent, so for eachm know-
ledge about the variables other than Xm tells us noth-
ing about Xm itself. Cramér’s suggestion was that any
statement about the distribution of 1s in the sequence
that represents the primes will be true if and only if it is
true with probability 1 for his random sequences. Some
care is needed in interpreting this statement: for exam-
ple, with probability 1 a random sequence will contain
infinitely many even numbers. However, it is possible
to formulate a general principle that takes account of
such examples.

Here is an example of a use of the Gauss–Cramér
model. With the help of the central limit theorem
[III.73 §5] one can prove that, with probability 1, there
are ∫ x

2

dt
log t

+O(√x logx)

1s among the first x terms in our sequence. The model
tells us that the same should be true of the sequence
representing primes, and so we predict that

#{primes up to x} =
∫ x

2

dt
log t

+O(√x logx), (5)
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just as the table suggests.
The Gauss–Cramér model provides a beautiful way

to think about distribution questions concerning the
prime numbers, but it does not give proofs, and it does
not seem likely that it can be made into such a tool;
so for proofs we must look elsewhere. In analytic num-
ber theory one attempts to count objects that appear
naturally in arithmetic, yet which resist being counted
easily. So far, our discussion of the primes has con-
centrated on upper and lower bounds that follow from
their basic definition and a few elementary properties—
notably the fundamental theorem of arithmetic. Some
of these bounds are good and some not so good. To
improve on these bounds we shall do something that
seems unnatural at first, and reformulate our question
as a question about complex functions. This will allow
us to draw on deep tools from analysis.

3 The “Analysis” in Analytic Number Theory

These analytic techniques were born in an 1859 memoir
of riemann [VI.49], in which he looked at the function
that appears in the formula (1) of Euler, but with one
crucial difference: now he considered complex values
of s. To be precise, he defined what we now call the
Riemann zeta function as follows:

ζ(s) =
∑
n�1

1
ns
.

It can be shown quite easily that this sum converges
whenever the real part of s is greater than 1, as we
have already seen in the case of real s. However, one of
the great advantages of allowing complex values of s is
that the resulting function is holomorphic [I.3 §5.6],
and we can use a process of analytic continuation to
make sense of ζ(s) for every s apart from 1. (A simi-
lar but more elementary example of this phenomenon
is the infinite series

∑
n�0 zn, which converges if and

only if |z| < 1. However, when it does converge, it
equals 1/(1 − z), and this formula defines a holomor-
phic function that is defined everywhere except z = 1.)
Riemann proved the remarkable fact that confirming
Gauss’s conjecture for the number of primes up to x
is equivalent to gaining a good understanding of the
zeros of the function ζ(s), that is, of the values of s
for which ζ(s) = 0. Riemann’s deep work gave birth to
our subject, so it seems worthwhile to at least sketch
the key steps in the argument linking these seemingly
unconnected topics.

Riemann’s starting point was Euler’s formula (1). It is
not hard to prove that this formula is valid when s is

complex, as long as its real part is greater than 1, so we
have

ζ(s) =
∏

p prime

(
1− 1

ps

)−1

.

If we take the logarithm of both sides and then differ-
entiate, we obtain the equation

−ζ
′(s)
ζ(s)

=
∑

p prime

logp
ps − 1

=
∑

p prime

∑
m�1

logp
pms

.

We need some way to distinguish between primes p �
x and primes p > x; that is, we want to count those
primes p for which x/p � 1, but not those with x/p <
1. This can be done using the step function that takes
the value 0 for y < 1 and the value 1 for y > 1 (so
that its graph looks like a step). At y = 1, the point of
discontinuity, it is convenient to give the function the
average value, 1

2 . Perron’s formula, one of the big tools
of analytic number theory. describes this step function
by an integral, as follows. For any c > 0,

1
2π i

∫
s:Re(s)=c

ys

s
ds =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if 0 < y < 1,
1
2 if y = 1,

1 if y > 1.

The integral is a path integral along a vertical line in the
complex plane: the line consisting of all points c + it
with t ∈ R. We apply Perron’s formula with y = x/pm,
so that we count the term corresponding to pm when
pm < x, but not when pm > x. To avoid the “ 1

2 ,”
assume that x is not a prime power. In that case we
obtain ∑

p prime, m�1
pm�x

logp

= 1
2π i

∑
p prime, m�1

logp
∫
s:Re(s)=c

(
x
pm

)s ds
s

= − 1
2π i

∫
s:Re(s)=c

ζ′(s)
ζ(s)

xs

s
ds. (6)

We can justify swapping the order of the sum and
the integral if c is taken large enough, since every-
thing then converges absolutely. Now the left-hand side
of the above equation is not counting the number of
primes up tox but rather a “weighted” version: for each
prime p we add a weight of logp to the count. It turns
out, though, that Gauss’s prediction for the number of
primes up to x follows so long as we can show that
x is a good estimate for this weighted count when x
is large. Notice that the sum in (6) is exactly the loga-
rithm of the lowest common multiple of the integers
less than or equal to x, which perhaps explains why
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this weighted counting function for the primes is a nat-

ural function to consider. Another explanation is that

if the density of primes near p is indeed about 1/ logp,

then multiplying by a weight of logpmakes the density

everywhere about 1.

If you know some complex analysis, then you will

know that Cauchy’s residue theorem allows one to eval-

uate the integral in (6) in terms of the “residues” of

the integrand (ζ′(s)/ζ(s))(xs/s), that is, the poles of

this function. Moreover, for any function f that is ana-

lytic except perhaps at finitely many points, the poles

of f ′(s)/f (s) are the zeros and poles of f . Each pole of

f ′(s)/f (s) has order 1, and the residue is simply the

order of the corresponding zero, or minus the order of

the corresponding pole, of f . Using these facts we can

obtain the explicit formula

∑
p prime, m�1

pm�x

logp = x −
∑

ρ:ζ(ρ)=0

xρ

ρ
− ζ

′(0)
ζ(0)

. (7)

Here the zeros of ζ(s) are counted with multiplicity:

that is, if ρ is a zero of ζ(s) of order k, then there are k
terms for ρ in the sum. It is astonishing that there can

be such a formula, an exact expression for the number

of primes up to x in terms of the zeros of a complicated

function: you can see why Riemann’s work stretched

people’s imagination and had such an impact.

Riemann made another surprising observation which

allows us to easily determine the values of ζ(s) on the

left-hand side of the complex plane (where the function

is not naturally defined). The idea is to multiply ζ(s) by

some simple function so that the resulting product ξ(s)
satisfies the functional equation

ξ(s) = ξ(1− s) for all s. (8)

He determined that this can be done by taking ξ(s) =
1
2 s(s − 1)π−s/2Γ ( 1

2 s)ζ(s). Here Γ (s) is the famous

gamma function [III.31], which equals the factorial

function at positive integers (that is, Γ (n) = (n − 1)!),
and is well-defined and continuous for all other s.

A careful analysis of (1) reveals that there are no

zeros of ζ(s) with Re(s) > 1. Then, with the help of

(8), we can deduce that the only zeros of ζ(s) with

Re(s) < 0 lie at the negative even integers −2,−4, . . .
(the “trivial zeros”). So, to be able to use (7), we need to

determine the zeros inside the critical strip, the set of

all s such that 0 � Re(s) � 1. Here Riemann made yet

another extraordinary observation which, if true, would

allow us tremendous insight into virtually every aspect

of the distribution of primes.

The Riemann hypothesis. If 0 � Re(s) � 1 and ζ(s) =
0, then Re(s) = 1

2 .

It is known that there are infinitely many zeros on the

line Re(s) = 1
2 , crowding closer and closer together as

we go up the line. The Riemann hypothesis has been

verified computationally for the ten billion zeros of

lowest height (that is, with |Im(s)| smallest), it can be

shown to hold for at least 40% of all zeros, and it fits

nicely with many different heuristic assertions about

the distribution of primes and other sequences. Yet, for

all that, it remains an unproved hypothesis, perhaps the

most famous and tantalizing in all of mathematics.

How did Riemann think of his “hypothesis”? Rie-

mann’s memoir gives no hint as to how he came up

with such an extraordinary conjecture, and for a long

time afterwards it was held up as an example of the

great heights to which humankind could ascend by

pure thought alone. However, in the 1920s Siegel and

weil [VI.93] got hold of Riemann’s unpublished notes

and from these it is evident that Riemann had been

able to determine the lowest few zeros to several dec-

imal places through extensive hand calculations—so

much for “pure thought alone”! Nevertheless, the Rie-

mann hypothesis is a mammoth leap of imagination

and to have come up with an algorithm to calculate

zeros of ζ(s) is a remarkable achievement. (See com-

putational number theory [IV.3] for a discussion of

how zeros of ζ(s) can be calculated.)

If the Riemann hypothesis is true, then it is not hard

to prove the bound∣∣∣∣xρρ
∣∣∣∣ � x1/2

|Im(ρ)| .

Inserting this into (7) one can deduce that∑
p prime
p�x

logp = x +O(√x log2 x). (9)

This, in turn, can be “translated” into (5). In fact these

estimates hold if and only if the Riemann hypothesis is

true.

The Riemann hypothesis is not an easy thing to

understand, nor to fully appreciate. The equivalent, (5),

is perhaps easier. Another version, which I prefer, is

that, for every N � 100,

|log(lcm[1,2, . . . , N])−N| �
√
N(logN)2.

To focus on the overcount in Gauss’s guesstimate for

the number of primes up to x, we use the following

approximation, which can be deduced from (7) if, and
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only if, the Riemann hypothesis is true:

∫ x
2 (1/ log t)dt − #{primes � x}√

x/ logx

≈ 1+ 2
∑

all real numbers γ>0
such that 1

2+iγ
is a zero of ζ(s)

sin(γ logx)
γ

. (10)

The right-hand side here is the overcount in Gauss’s

prediction for the number of primes up to x, divided

by something that grows like
√
x. When we looked at

the table of primes it seemed that this quantity should

be roughly constant. However, that is not quite true as

we see upon examining the right-hand side. The first

term on the right-hand side, the “1,” corresponds to

the contribution of the squares of the primes in (7).

The subsequent terms correspond to the terms involv-

ing the zeros of ζ(s) in (7); these terms have denom-

inator γ so the most significant terms in this sum are

those with the smallest values of γ. Moreover, each of

these terms is a sine wave, which oscillates, half the

time positive and half the time negative. Having the

“logx” in there means that these oscillations happen

slowly (which is why we hardly notice them in the table

above), but they do happen, and indeed the quantity in

(10) does eventually get negative. No one has yet deter-

mined a value of x for which this is negative (that is, a

value of x for which there are more than
∫ x
2 (1/ log t)dt

primes up to x), though our best guess is that the first

time this happens is for

x ≈ 1.398× 10316.

How does one arrive at such a guess given that the table

of primes extends only up to 1022? One begins by using

the first thousand terms of the right-hand side of (10)

to approximate the left-hand side; wherever it looks

as though it could be negative, one approximates with

more terms, maybe a million, until one becomes pretty

certain that the value is indeed negative.

It is not uncommon to try to understand a given func-

tion better by representing it as a sum of sines and

cosines like this; indeed this is how one studies the

harmonics in music, and (10) becomes quite compelling

from this perspective. Some experts suggest that (10)

tells us that “the primes have music in them” and

thus makes the Riemann hypothesis believable, even

desirable.

To prove unconditionally that

#{primes � x} ∼
∫ x

2

dt
log t

,

the so-called prime number theorem, we can take the
same approach as above but, since we are not asking for
such a strong approximation to the number of primes
up to x, we need to show only that the zeros near to
the line Re(s) = 1 do not contribute much to the for-
mula (7). By the end of the nineteenth century this task
had been reduced to showing that there are no zeros
actually on the line Re(s) = 1: this was eventually estab-
lished by de la vallée poussin [VI.67] and hadamard
[VI.65] in 1896.

Subsequent research has provided wider and wider
subregions of the critical strip without zeros of ζ(s)
(and thus improved approximations to the number of
primes up to x), without coming anywhere near to
proving the Riemann hypothesis. This remains as an
outstanding open problem of mathematics.

A simple question like “How many primes are there
up to x?” deserves a simple answer, one that uses ele-
mentary methods rather than all of these methods of
complex analysis, which seem far from the question at
hand. However, (7) tells us that the prime number the-
orem is true if and only if there are no zeros of ζ(s)
on the line Re(s) = 1, and so one might argue that it
is inevitable that complex analysis must be involved in
such a proof. In 1949 Selberg and Erdős surprised the
mathematical world by giving an elementary proof of
the prime number theorem. Here, the word “elemen-
tary” does not mean “easy” but merely that the proof
does not use advanced tools such as complex analysis—
in fact, their argument is a complicated one. Of course
their proof must somehow show that there is no zero
on the line Re(s) = 1, and indeed their combinator-
ics cunningly masks a subtle complex analysis proof
beneath the surface (read Ingham’s discussion (1949)
for a careful examination of the argument).

4 Primes in Arithmetic Progressions

After giving good estimates for the number of primes
up to x, which from now on we shall denote by π(x),
we might ask for the number of such primes that are
congruent to a mod q. (If you do not know what this
means, see modular arithmetic [III.60].) Let us write
π(x;q,a) for this quantity. To start with, note that
there is only one prime congruent to 2 mod 4, and
indeed there can be no more than one prime in any
arithmetic a,a + q,a + 2q, . . . if a and q have a com-
mon factor greater than 1. Letφ(q) denote the number
of integers a, 1 � a � q, such that (a, q) = 1. (The
notation (a, q) stands for the highest common factor
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of a and q.) Then all but a small finite number of the
infinitely many primes belong to the φ(q) arithmetic
progressions a,a + q,a + 2q, . . . with 1 � a < q and
(a, q) = 1. Calculation reveals that the primes seem to
be pretty evenly split between these φ(q) arithmetic
progressions, so we might guess that in the limit the
proportion of primes in each of them is 1/φ(q). That
is, whenever (a, q) = 1, we might conjecture that, as
x →∞,

π(x;q,a) ∼ π(x)
φ(q)

. (11)

It is far from obvious even that the number of primes
congruent to a mod q is infinite. This is a famous the-
orem of dirichlet [VI.36]. To begin to consider such
questions we need a systematic way to identify integers
n that are congruent to amod q, and this Dirichlet pro-
vided by introducing a class of functions now known
as (Dirichlet) characters. Formally, a character mod q
is a function χ from Z to C with the following three
properties (in ascending order of interest):

(i) χ(n) = 0 whenever n and q have a common factor
greater than 1;

(ii) χ is periodic mod q (that is, χ(n + q) = χ(n) for
every integer n);

(iii) χ is multiplicative (that is, χ(mn) = χ(m)χ(n) for
any two integersm and n).

An easy but important example of a character mod q
is the principal character χq, which takes the value 1 if
(n, q) = 1 and 0 otherwise. If q is prime, then another
important example is the Legendre symbol ( ·q ): one sets

PUP: although
there was nothing
wrong here, the
proofreader’s
comment
prompted Tim to
suggest a change
in notation here, to
match that in
another article. It
is all OK now.

(nq ) to be 0 if n is a multiple of q, 1 if n is a quadratic
residue mod q, and −1 if n is a quadratic nonresidue
mod q. (An integern is called a quadratic residue mod q
ifn is congruent mod q to a perfect square.) If q is com-
posite, then a function known as the Legendre–Jacobi
symbol ( ·q ), which generalizes the Legendre symbol,
is also a character. This too is an important example
that helps us, in a slightly less direct way, to recognize
squares mod q.

These characters are all real-valued, which is the
exception rather than the rule. Here is an example
of a genuinely complex-valued character in the case
q = 5. Set χ(n) to be 0 if n ≡ 0 (mod 5), i if n ≡
2, −1 if n ≡ 4, −i if n ≡ 3, and 1 if n ≡ 1. To
see that this is a character, note that the powers of
2 mod 5 are 2,4,3,1,2,4,3,1, . . . , while the powers of
i are i,−1,−i,1, i,−1,−i,1, . . . .

It can be shown that there are preciselyφ(q) distinct
characters mod q. Their usefulness to us comes from

the properties above, together with the following for-
mula, in which the sum is over all characters mod q
and χ̄(a) denotes the complex conjugate of χ(a):

1
φ(q)

∑
χ
χ̄(a)χ(n) =

⎧⎨
⎩1 if n ≡ a (modq),

0 otherwise.

What is this formula doing for us? Well, understand-
ing the set of integers congruent to a mod q is equiva-
lent to understanding the function that takes the value
1 if n ≡ a (mod q) and 0 otherwise. This function
appears on the right-hand side of the formula. How-
ever, it is not a particularly nice function to deal with,
so we write it as a linear combination of characters,
which are much nicer functions because they are mul-
tiplicative. The coefficient associated with the character
χ in this linear combination is the number χ̄(a)/φ(q).

From the formula, it follows that∑
p prime, m�1

pm�x
pm≡a(modq)

logp

= 1
φ(q)

∑
χ (modq)

χ̄(a)
∑

p prime,m�1
pm�x

χ(pm) logp.

The sum on the left-hand side is a natural adaptation of
the sum we considered earlier when we were counting
all primes. And we can estimate it if we can get good
estimates for each of the sums∑

p prime, m�1
pm�x

χ(pm) logp.

We approach these sums much as we did before, obtain-
ing an explicit formula, analogous to (7), (10), now in
terms of the zeros of the Dirichlet L-function:

L(s, χ) =
∑
n�1

χ(n)
ns

.

This function turns out to have properties closely
analogous to the main properties of ζ(s). In particular,
it is here that the multiplicativity of χ is all-important,
since it gives us a formula similar to (1):

∑
n�1

χ(n)
ns

=
∏

p prime

(
1− χ(p)

ps

)−1

. (12)

That is, L(s, χ) has an Euler product. We also believe
the “generalized Riemann hypothesis” that all zeros ρ
of L(ρ, χ) = 0 in the critical strip satisfy Re(ρ) = 1

2 .
This would imply that the number of primes up to x
that are congruent to a mod q can be estimated as

π(x;q,a) = π(x)
φ(q)

+O(√x log2(qx)). (13)
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Therefore, the generalized Riemann hypothesis implies
the estimate we were hoping for (formula (11)), pro-
vided that x is a little bigger than q2.

In what range can we prove (11) unconditionally—
that is, without the help of the generalized Riemann
hypothesis? Although we can more or less translate the
proof of the prime number theorem over into this new
setting, we find that it gives (11) only when x is very
large. In fact, x has to be bigger than an exponential
in a power of q, which is a lot bigger than the “x is a
little larger than q2” that we obtained from the general-
ized Riemann hypothesis. We see a new type of problem
emerging here, in which we are asking for a good start-
ing point for the range of x for which we obtain good
estimates, as a function of the modulus q; this does not
have an analogy in our exploration of the prime num-
ber theorem. By the way, even though this bound “x is a
little larger than q2” is far out of reach of current meth-
ods, it still does not seem to be the best answer; calcu-
lations reveal that (11) seems to hold when x is just
a little bigger than q. So even the Riemann hypothesis
and its generalizations are not powerful enough to tell
us the precise behavior of the distribution of primes.

Throughout the twentieth century much thought was
put in to bounding the number of zeros of Dirichlet L-
functions near to the 1-line. It turns out that one can
make enormous improvements in the range of x for
which (11) holds (to “halfway between polynomial in
q and exponential in q”) provided there are no Siegel
zeros. These putative zeros β of L(s, ( ·q )) would be real
numbers with β > 1− c/√q; they can be shown to be
extremely rare if they exist at all.

That Siegel zeros are rare is a consequence of
the Deuring–Heilbronn phenomenon: that zeros of L-
functions [III.49] repel each other, rather like simi-
larly charged particles. (This phenomenon is akin to
the fact that different algebraic numbers repel one
another, part of the basis of the subject of Diophantine
approximation.)

How big is the smallest prime congruent to a mod q
when (a, q) = 1? Despite the possibility of the existence
of Siegel zeros, one can prove that there is always such
a prime less than q5.5 if q is sufficiently large. Obtain-
ing a result of this type is not difficult when there are
no Siegel zeros. If there are Siegel zeros, then we go
back to the explicit formula, which is similar to (7) but
now concerns zeros of L(s, χ). If β is a Siegel zero, then
it turns out that in the explicit formula there are now
two obviously large terms:x/φ(q) and−(aq )xβ/βφ(q).
When (aq ) = 1 it appears that they might almost cancel

(since β is close to 1), but with more care we obtain

x − a
q
xβ

β
= (x − xβ)+ xβ

(
1− 1

β

)
∼ x(1− β) logx.

This is a smaller main term than before, but it is not
too hard to show that it is bigger than the contribu-
tions of all of the other zeros combined, because the
Deuring–Heilbronn phenomenon implies that the Siegel
zero repels those zeros, forcing them to be far to the
left. When (aq ) = −1, the same two terms tell us that
if (1 − β) logx is small, then there are twice as many
primes as we would expect up to x that are congruent
to a mod q.

There is a close connection between Siegel zeros
and class numbers, which are defined and discussed in
algebraic numbers [IV.1 §7]. Dirichlet’s class number
formula states that L(1, ( ·q )) = πh−q/

√q for q > 6,
where h−q is the class number of the field Q(√−q). A
class number is always a positive integer, so this result
immediately implies that L(1, ( ·q )) � π/√q. Another
consequence is that h−q is small if and only if L(1, ( ·q ))
is small. The reason this gives us information about
Siegel zeros is that one can show that the derivative
L′(σ , ( ·q )) is positive (and not too small) for real num-
bers σ close to 1. This implies that L(1, ( ·q )) is small
if and only if L(s, ( ·q )) has a real zero close to 1, that
is, a Siegel zero β. When h−q = 1, the link is more
direct: it can be shown that the Siegel zero β is approx-
imately 1−6/(π√q). (There are also more complicated
formulas for larger values of h−q.)

These connections show that getting good lower
bounds on h−q is equivalent to getting good bounds
on the possible range for Siegel zeros. Siegel showed
that for any ε > 0 there exists a constant cε > 0
such that L(1, ( ·q )) � cεq−ε . His proof was unsatis-
factory because by its very nature one cannot give an
explicit value for cε . Why not? Well, the proof comes
in two parts. The first assumes the generalized Rie-
mann hypothesis, in which case an explicit bound fol-
lows easily. The second obtains a lower bound in terms
of the first counterexample to the generalized Riemann
hypothesis. So if the generalized Riemann hypothesis is
true but remains unproved, then Siegel’s proof cannot
be exploited to give explicit bounds. This dichotomy,
between what can be proved with an explicit constant
and what cannot be, is seen far and wide in analytic
number theory—and when it appears it usually stems
from an application of Siegel’s result, and especially its
consequences for the range in which the estimate (11)
is valid.
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A polynomial with integer coefficients cannot always
take on prime values when we substitute in an inte-
ger. To see this, note that if p divides f(m) then p
also divides f(m + p), f (m + 2p), . . . . However, there
are some prime-rich polynomials, a famous example
being the polynomial x2 + x + 41, which is prime for
x = 0,1,2, . . . ,39. There are almost certainly quadratic
polynomials that take on more consecutive prime val-
ues, though their coefficients would have to be very
large. If we ask the more restricted question of when the
polynomial x2+x+p is prime for x = 0,1,2, . . . , p−2,
then the answer, given by Rabinowitch, is rather sur-
prising: it happens if and only if h−q = 1, where q =
4p − 1. Gauss did extensive calculations of class num-
bers and predicted that there are just nine values of q
with h−q = 1, the largest of which is 163 = 4× 41− 1.
Using the Deuring–Heilbronn phenomenon researchers
showed, in the 1930s, that there is at most one q with
h−q = 1 that is not already on Gauss’s list; but as usual
with such methods, one could not give a bound on the
size of the putative extra counterexample. It was not
until the 1960s that Baker and Stark proved that there
was no tenth q, both proofs involving techniques far
removed from those here (in fact Heegner gave what
we now understand to have been a correct proof in the
1950s but he was so far ahead of his time that it was dif-
ficult for mathematicians to appreciate his arguments
and to believe that all of the details were correct). In the
1980s Goldfeld, Gross, and Zagier gave the best result
to date, showing that h−q � 1

7700 logq this time using
the Deuring–Heilbronn phenomenon with the zeros of
yet another type of L-function to repel the zeros of
L(s, ( ·q )).

This idea that primes are well-distributed in arith-
metic progressions except for a few rare moduli was
exploited by Bombieri and Vinogradov to prove that
(11) holds “almost always” when x is a little bigger than
q2 (that is, in the same range that we get “always” from
the generalized Riemann hypothesis). More precisely,
for given large x we have that (11) holds for “almost
all” q less than

√
x/(logx)2 and for all a such that

(a, q) = 1. “Almost all” means that, out of all q lessPUP: text OK here
and slight reword
on next page as a
reaction to
proofreader’s
comment.

than
√
x/(logx)2, the proportion for which (11) does

not hold for everyawith (a, q) = 1 tends to 0 asx →∞.
Thus, the possibility is not ruled out that there are
infinitely many counterexamples. However, since this
would contradict the generalized Riemann hypothesis,
we do not believe that it is so.

The Barban–Davenport–Halberstam theorem gives a
weaker result, but it is valid for the whole feasible

range: for any given large x, the estimate (11) holds
for “almost all” pairs q and a such that q � x/(logx)2

and (a, q) = 1.

5 Primes in Short Intervals

Gauss’s prediction referred to the primes “around” x,
so it perhaps makes more sense to interpret his state-
ment by considering the number of primes in short
intervals at around x. If we believe Gauss, then we
might expect the number of primes between x and
x + y to be about y/ logx. That is, in terms of the
prime-counting function π , we might expect that

π(x +y)−π(x) ∼ y
logx

(14)

for |y| � x/2. However, we have to be a little careful
about the range for y . For example, if y = 1

2 logx, then
we certainly cannot expect to have half a prime in each
interval. Obviously we need y to be large enough that
the prediction can be interpreted in a way that makes
sense; indeed, the Gauss–Cramér model suggests that
(14) should hold when |y| is a little bigger than (logx)2.

If we attempt to prove (14) using the same methods
we used in the proof of the prime number theorem,
we find ourselves bounding differences between ρth
powers as follows:∣∣∣∣ (x +y)ρ − xρρ

∣∣∣∣ =
∣∣∣∣
∫ x+y
x

tρ−1 dt
∣∣∣∣

�
∫ x+y
x

tRe(ρ)−1 dt

� y(x +y)Re(ρ)−1.

With bounds on the density of zeros of ζ(s) well to
the right of 1

2 , it has been shown that (14) holds for y
a little bigger than x7/12; but there is little hope, even
assuming the Riemann hypothesis, that such methods
will lead to a proof of (14) for intervals of length

√
x or

less.

In 1949 Selberg showed that (14) is true for “almost
all” x when |y| is a little bigger than (logx)2, assum-
ing the Riemann hypothesis. Once again, “almost all”
means with density tending to 1, rather than “all,” and
it is feasible that there are infinitely many counter-
examples, though at that time it seemed highly unlikely.
It therefore came as a surprise when Maier showed, in
1984, that, for any fixed A > 0, the estimate (14) fails
for infinitely many integers x, with y = (logx)A. His
ingenious proof rests on showing that the small primes
do not always have as many multiples in an interval as
one might expect.
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Table 2 The largest known gaps between primes.

pn pn+1 − pn pn+1 − pn
log2 pn

113 14 0.6264
1 327 34 0.6576

31 397 72 0.6715
370 261 112 0.6812

2 010 733 148 0.7026
20 831 323 210 0.7395

25 056 082 087 456 0.7953
2 614 941 710 599 652 0.7975

19 581 334 192 423 766 0.8178
218 209 405 436 543 906 0.8311

1 693 182 318 746 371 1132 0.9206

Let p1 = 2 < p2 = 3 < · · · be the sequence

of primes. We are now interested in the size of the

gaps pn+1 − pn between consecutive primes. Since

there are about x/ logx primes up to x, the average

difference is logx and we might ask how often the

difference between consecutive primes is about aver-

age, whether the differences can get really small, and

whether the differences can get really large. The Gauss–

Cramér model suggests that the proportion of n for

which the gap between consecutive primes is more than

λ times the average, that is pn+1 − pn > λ logpn, is

approximately e−λ; and, similarly, the proportion of

intervals [x,x + λ logx] containing exactly k primes

is approximately e−λλk/k!, a suggestion which, as we

shall see, is supported by other considerations. By

looking at the tail of this distribution, Cramér conjec-

tured that lim supn→∞(pn+1 − pn)/(logpn)2 = 1, and

the evidence we have seems to support this (see table 2).

The Gauss–Cramér model does have a big drawback:

it does not “know any arithmetic.” In particular, as we

noted earlier, it does not predict divisibility by small

primes. One manifestation of this failing is that it pre-

dicts that there should be just about as many gaps

of length 1 between primes as there are of length 2.

However, there is only one gap of length 1, since if

two primes differ by 1, then one of them must be

even, whereas there are many examples of pairs of

primes differing by 2, and there are believed to be

infinitely many. For the model to make correct conjec-

tures about prime pairs, we must consider divisibility

by small primes in the formulation of the model, which

makes it rather more complicated. Since there are these

glaring errors in the simpler model, Cramér’s conjec-

ture for the largest gaps between consecutive primes

must be treated with a degree of suspicion. And in
fact, if one corrects the model to account for divis-
ibility by small primes, one is led to conjecture that
lim supn→∞(pn+1 − pn)/(logpn)2 is greater than 9

8 .
Finding large gaps between primes is equivalent to

finding long sequences of composite numbers. How
about trying to do this explicitly? For example, we know
that n!+ j is composite for 2 � j � n, as it is divisi-
ble by j. Therefore we have a gap of length at least
n between consecutive primes, the first of which is
the largest prime less than or equal to n!+ 1. How-
ever, this observation is not especially helpful, since
the average gap between primes around n! is log(n!),
which is approximately equal to n logn, whereas we
are looking for gaps that are larger than the average.
However, it is possible to generalize this argument and
show that there are indeed long sequences of consec-
utive integers, each with a small prime factor. In the
1930s, Erdős reformulated the question as follows. Fix
a positive integer z, and for each prime p � z choose
an integer ap in such a way that, for as large an integer
y as possible, every positive integer n � y satisfies at
least one of the congruences n ≡ ap (mod p). Now let
X be the product of all the primes up to z (which means,
by the prime number theorem, that logX is about z),
and let x be the integer between X and 2X such that
x ≡ −ap (mod p) for every p � z. (This integer exists,
by the Chinese remainder theorem.) If m is an integer
between x + 1 and x + y , then m − x is a positive
integer less than y , so m − x ≡ ap (mod p) for some
prime p � z. Since x ≡ −ap (mod p), it follows that
m is divisible by p. Thus, all the integers from x + 1
to x + y are composite. Using this basic idea, it can
be shown that there are infinitely many primes pn for
which pn+1−pn is about (logpn)(log logpn), which is
significantly larger than the average but nowhere close
to Cramér’s conjecture.

6 Gaps between Primes that Are
Smaller than the Average

We have just seen how to show that there are in-
finitely many pairs of consecutive primes whose dif-
ference is much bigger than the average: that is,
lim supn→∞(pn+1 − pn)/(logpn) = ∞. We would now
like to show that there are infinitely many pairs of con-
secutive primes whose difference is much smaller than
the average: that is, lim infn→∞(pn+1 − pn)/(logpn) =
0. Of course, it is believed that there are infinitely many
pairs of primes that differ by 2, but this question seems
intractable for now.
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Until recently researchers had very little success with
the question of small gaps; the best result before 2000
was that there are infinitely many gaps of size less
than one-quarter of the average. However, a recent
method of Goldston, Pintz, and Yıldırım, which counts
primes in short intervals with simple weighting func-
tions, proves that lim infn→∞(pn+1 − pn)/(logpn) = 0,
and even that there are infinitely many pairs of con-
secutive primes with difference no larger than about√

logpn. Their proof, rather surprisingly, rests on esti-
mates for primes in arithmetic progressions; in par-
ticular, that (11) holds for almost all q up to

√
x (as

discussed earlier). Moreover, they obtain a conditional
result of the following kind: if in fact (11) holds for
almost all q up to a little larger than

√
x, then it follows

that there exists an integer B such that pn+1 − pn � B
for infinitely many primes pn.

7 Very Small Gaps between Primes

There appear to be many pairs of primes that differ by
two, like 3 and 5, 5 and 7, . . . , the so-called twin primes,
though no one has yet proved that there are infinitely
many. In fact, for every even integer 2k there seem to
be many pairs of primes that differ by 2k, but again no
one has yet proved that there are infinitely many. This
is one of the outstanding problems in the subject.

In a similar vein is Goldbach’s conjecture from the
1760s: is it true that every even integer greater than 2
is the sum of two primes? This is still an open ques-
tion, and indeed a publisher recently offered a million
dollars for its solution. We know it is true for almost
all integers, and it has been computer tested for every
even integer up to 4×1014. The most famous result on
this question is due to Chen (1966), who showed that
every even integer can be written as the sum of a prime
and a second integer that has at most two prime factors
(that is, it could be a prime or an “almost-prime”).

In fact, goldbach [VI.17] never asked this question.
He asked Euler, in a letter in the 1760s, whether every
integer greater than 1 can be written as the sum of at
most three primes, which would imply what we now call
the “Goldbach conjecture.” In the 1920s Vinogradov
showed that every sufficiently large odd integer can be
written as the sum of three primes (and thus every suf-
ficiently large even integer can be written as the sum of
four primes). We actually believe that every odd inte-
ger greater than 5 is the sum of three primes but the
known proofs only work once the numbers involved are
large enough. In this case we can be explicit about “suf-
ficiently large”—at the moment the proof needs them

to be at least e5700, but it is rumored that this may soon
be substantially reduced, perhaps even to 7.

To guess at the precise number of prime pairs
q, q + 2 with q � x we proceed as follows. If we do
not consider divisibility by the small primes, then the
Gauss–Cramér model suggests that a random integer
up to x is prime with probability roughly 1/ logx, so
we might expect x/(logx)2 prime pairs q, q + 2 up
to x. However, we do have to account for the small
primes, as the q, q + 1 example shows, so let us con-
sider 2-divisibility. The proportion of random pairs of
integers that are both odd is 1

4 , whereas the proportion
of random q such that q and q + 2 are both odd is 1

2 .
Thus we should adjust our guess x/(logx)2 by a factor
( 1

2 )/(
1
4 ) = 2. Similarly, the proportion of random pairs

of integers that are both not divisible by 3 (or indeed by
any given odd prime p) is ( 2

3 )
2 (and (1−1/p)2, respec-

tively), whereas the proportion of random q such that
q and q+2 are both not divisible by 3 (or by prime p) is
1
3 (and (1− 2/p), respectively). Adjusting our formula
for each prime p we end up with the prediction

#{q � x : q and q + 2 both prime}

∼ 2
∏

p an odd prime

(1− 2/p)
(1− 1/p)2

x
(logx)2

.

This is known as the asymptotic twin-prime conjecture.
Despite its plausibility there do not seem to be any
practical ideas around for turning the heuristic argu-
ment above into something rigorous. The one good
unconditional result known is that the number of twin
primes less than or equal to x is never more than four
times the quantity we have just predicted. One can
make a more precise prediction replacing x/(logx)2

by
∫ x
2 (1/(log t)2)dt, and then we expect that the dif-

ference between the two sides is no more than c
√
x

for some constant c > 0, a guesstimate that is well
supported by computational evidence.

A similar method allows us to make predictions for
the number of primes in any polynomial-type patterns.
Let f1(t), f2(t), . . . , fk(t) ∈ Z[t] be distinct irreducible
polynomials of degree greater than or equal to 1 with
positive leading coefficient, and define ω(p) to be the
number of integers n (mod p) for which p divides
f1(n)f2(n) · · ·fk(n). (In the case of twin primes above
we have f1(t) = t, f2(t) = t + 2 with ω(2) = 1 and
ω(p) = 2 for all odd primes p.) If ω(p) = p then p
always divides at least one of the polynomial values,
so they can be simultaneously prime just finitely often
(an example of this is when f1(t) = t, f2(t) = t + 1, in
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which case ω(2) = 2). Otherwise we have an admissi-
ble set of polynomials for which we predict that the
number of integers n less than x for which all of
f1(n), f2(n), . . . , fk(n) are prime is about

∏
p prime

(1−ωf(p)/p)
(1− 1/p)k

× x
log |f1(x)| log |f2(x)| · · · log |fk(x)| (15)

oncex is sufficiently large. One can use a similar heuris-
tic to make predictions in Goldbach’s conjecture, that
is, for the number of pairs of primes p, q for which
p + q = 2N . Again, these predictions are very well
matched by the computational evidence.

There are just a few cases of conjecture (15) that have
been proved. Modifications of the proof of the prime
number theorem give such a result for admissible poly-
nomials qt+a (in other words, for primes in arithmetic
progressions) and for admissible at2 + btu + cu2 ∈
Z[t,u] (as well as some other polynomials in two vari-
ables of degree two). It is also known for a certain type
of polynomial inn variables of degreen (the admissible
“norm-forms”).

There was little improvement on this situation dur-
ing the twentieth century until quite recently, when,
by very different methods, Friedlander and Iwaniec
broke through this stalemate showing such a result
for the polynomial t2 + u4, and then Heath-Brown did
so for any admissible homogeneous polynomial in two
variables of degree three.

Another truly extraordinary breakthrough occurred
recently with a result of Green and Tao, proved in 2004,
which states that for every k there are infinitely many
k-term arithmetic progressions of primes: that is, pairs
of integersa, d such thata,a+d,a+2d, . . . , a+(k−1)d
are all prime. Green and Tao are currently hard at work
attempting to show that the number of k-term arith-
metic progressions of primes is indeed well approxi-
mated by (15). They are also extending their results to
other families of polynomials.

8 Gaps between Primes Revisited

In the 1970s Gallagher deduced from the conjectured
prediction (15) (with fj(t) = t + aj ) that the propor-
tion of intervals [x,x+λ logx] which contain exactly k
primes is close to e−λλk/k! (as was also deduced, in sec-
tion 5 above, from the Gauss–Cramér heuristics). This
has recently been extended to support the prediction
that, as we vary x from X to 2X, the number of primes
in the interval [x,x + y] is normally distributed with

mean
∫ x+y
x (1/ log t)dt and variance (1 − δ)y/ logx,

where δ is some constant strictly between 0 and 1 and
we take y to be xδ.

When y >
√
x the Riemann zeta function supplies

information on the distribution of primes in intervals
[x,x+y) via the explicit formula (7). Indeed, when we
compute the “variance”

1
X

∫ 2X

X

( ∑
p prime,

x <p�x+y

logp −y
)2

dx

using the explicit formula we obtain a sum of terms
of the form

∫ 2X
X xi(γj−γk) dx. Here we are assuming the

Riemann hypothesis and writing the zeros of ζ(s) as
1
2 ± iγn with 0 < γ1 < γ2 < · · · . This sum is domi-
nated by the terms corresponding to those pairs γj , γk
for which |γj − γk| is small (in which case there is lit-
tle cancellation in the integral). Therefore, in order to
understand the variance for the distribution of primes
in short intervals we need to understand the distribu-
tion of the zeros of ζ(s) in short intervals. In 1973
Montgomery investigated this and suggested that the
proportion of pairs of zeros of ζ(s)whose difference is
less than α times the average gap between consecutive
zeros is given by the integral∫ α

0

(
1−

(
sinπθ
πθ

)2)
dθ, (16)

and he proved an equivalent form of this in a lim-
ited range. If the zeros were placed “randomly,” then
(16) would be replaced by α. In fact (16) is about 1

9α
3

for small α, which is far smaller than α. This means
that there are far fewer pairs of zeros of ζ(s) that are
close together than one might expect, which we express
informally by saying that the zeros of ζ(s) repel one
another.

In a now-famous conversation that took place at the
Institute for Advanced Study in Princeton, Montgomery
mentioned his ideas to the physicist Freeman Dyson.
Dyson immediately recognized (16) as a function that
comes up in modeling energy levels in quantum chaos.
Believing that this was unlikely to be a coincidence, he
suggested that the zeros of the Riemann zeta function
are distributed, in all aspects, like energy levels, which
are in turn modeled on the distribution of eigenvalues
[I.3 §4.3] of random hermitian matrices [III.52 §3].
There is now substantial computational and theoret-
ical evidence that Dyson’s suggestion is correct and can
be extended to Dirichlet L-functions, as well as other
types of L-functions, and even to other statistics about
L-functions.
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One note of caution. Few of the conjectured conse-
quences of this new “random matrix theory” have been
unconditionally proved, or seem likely to be in the fore-
seeable future. It simply provides a tool to make pre-
dictions where that was too difficult to do before. How-
ever, there is at least one key question about which we
still cannot make a well-substantiated prediction: how
big does ζ(s) get on the 1

2 -line? One can show that
log |ζ( 1

2 + it)| gets larger than
√

logT for values of t
close to T , and that it gets no larger than logT . How-
ever, it is unclear, even if we do not insist on a rigorous
proof, whether the true maximal order is nearer the
upper or lower bound.

9 Sieve Methods

Almost all of our discussion so far has been about
developments of Riemann’s approach to counting
primes. This approach is very delicate and not as adapt-
able as one might wish to many natural questions (such
as counting k-tuples of primesn+a1, n+a2, . . . , n+ak).
However, one can go back to sieve methods, which are
modifications of the sieve of Eratosthenes, and at least
get upper bounds. For example, suppose we want to
find an upper bound for the number of prime pairs
n, n+ 2 with N < n � 2N . One possibility would be
to fix a number y and determine for how many pairs
n, n+ 2 with N < n � 2N it is the case that neither n
norn+ 2 has a prime factor less thany . If we tooky to
be (2N)1/2, then this method would exactly count the
twin primes, but it seems to be far too difficult to imple-
ment. But it turns out that if instead we take y to be a
small power of N , then the calculations become much
easier and there are ways of obtaining good bounds.
(However, these bounds become less accurate as the
power gets closer to 1

2 .)

In the 1920s Brun showed how to make the principle
of inclusion–exclusion into a useful tool in this type of
question. This principle is best exhibited when count-
ing the number of integers n in a set S that are coprime
to given integer m. We begin with the number of inte-
gers in S, which is obviously more than the quantity we
seek. Next, we subtract, for each prime p dividing m,
the number of integers in S that are divisible by p. If
n ∈ S is divisible by exactly r prime factors ofm, then
we have counted 1+ r × (−1) for the contribution of n
so far, which is less than or equal to 0, and less than 0
for r � 2; whereas we wanted to count 0 when r � 2
(since n is not coprime tom). Thus we obtain a number
that is less than the quantity we seek. To compensate

for that, we add back in the number of integers in S
divisible by pq for each pair of primes p < q which
dividem. We have now counted 1+ r × (−1)+

(
r
2

)
× 1

for the contribution ofn, which is greater than or equal
to 0, and greater than 0 for r � 3. Similarly, we subtract
the number of integers divisible by pqr , etc.

For each n ∈ S we end up counting (1 − 1)r for
n, where r is the number of distinct prime factors
of (m,n). Expanding this sum with the binomial the-
orem we may reexpress this identity as follows. Let
χm(n) = 1 if (n,m) = 1 and 0 otherwise. Then

χm(n) =
∑

d|(m,n)
µ(d),

where µ(m), the Möbius function, equals 0 if m is
divisible by the square of a prime and equals (−1)ω(m)

otherwise, whereω(m) is the number of distinct prime
factors ofm.

The inclusion–exclusion inequalities just discussed
may be obtained from∑

d|(m,n)
ω(d)�2k+1

µ(d) � χm(n) �
∑

d|(m,n)
ω(d)�2k

µ(d),

which holds for any k � 0, by summing over all n ∈ S.
The reason for using these abbreviated sums rather

than the complete sum is that there are far fewer terms
and thus, when one sums over values of n, there will be
far fewer rounding errors (remember that it was round-
ing errors that sank our attempt to estimate the number
of primes up to x using the sieve of Eratosthenes). On
the other hand, they have the disadvantage that they
cannot possibly give the exact answer, since they are
missing many appropriate terms. However, with a judi-
cious choice of k the missing terms do not contribute
much to the complete sum and we get a good answer.

Minor variants work well for many questions. In the
“combinatorial sieve” one selects which d are part of
the upper and lower bound sums, not by counting the
total number of prime factors they contain but instead
using other criteria, such as the numbers of prime fac-
tors of d in each of several intervals. Using such a
method, Brun showed that there cannot be too many
twin primes p, p + 2; indeed, the sum of 1/p, over all
primes p for which p + 2 is also prime, converges, in
contrast with (3).

In the “Selberg upper bound sieve” one comes up
with some numbers λd that are nonzero only when
d � D (where D is chosen to be not too large), with
the property that

χm(n) �
( ∑
d|n
λd
)2

for all n.
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Summing over the appropriate n one then finds the
optimal solution by minimizing the resulting quad-
ratic form. Lower bounds can also be obtained out
of Selberg’s methods. It was by using such methods
that Chen was able to prove there are infinitely many
primes p for which p + 2 has at most two prime fac-
tors, and that Goldston, Pintz, and Yıldırım were able to
establish that there are sometimes short gaps between
primes. These methods are also an essential ingredient
in the work of Green and Tao. One can also get good
upper bounds on the number of primes in arithmetic
progressions and short intervals:

• there are never more than 2y/ logy primes in any
interval of length y ;

• there are never more than 2x/φ(q) log(x/q)
primes up to x in an arithmetic progression
mod q.

Notice that in each case the log in the denominator
is of the number of integers being considered (y and
x/q, respectively), not logx as expected, though this
will only make a significant difference if the number
of integers being considered is small. Otherwise these
inequalities are bigger than the expected quantity by a
factor of 2. Can this “2” be improved? It will be difficult
because we showed earlier that if there are Siegel zeros
then we get twice as many primes as expected in certain
arithmetic progressions. Therefore, if we can improve
the “2” in these two formulas, then we can deduce that
there are no Siegel zeros!

10 Smooth Numbers

An integer is y-smooth if all of its prime factors are
less than or equal to y . A proportion 1 − log 2 of the
integers up to x are

√
x-smooth, and indeed, for any

fixed u > 1 there exists some number ρ(u) > 0 such
that if x = yu, then a proportion ρ(u) of the integers
up to x are y-smooth. This proportion does not seem
to have any easy definition in general. For 1 � u � 2 we
have ρ(u) = 1− logu, but for larger u it is best defined
as

ρ(u) = 1
u

∫ 1

0
ρ(u− t)dt,

an integral delay equation. Such an equation is typical
when we give precise estimates for questions that arise
in sieve theory.

Questions about the distribution of smooth numbers
arise frequently in the analysis of algorithms, and have
consequently been the focus of a lot of recent research.

(See computational number theory [IV.3 §3] for an
example of the use of smooth numbers.)

11 The Circle Method

Another method of analysis that plays a prominent role
in this subject is the so-called circle method, which goes
back to hardy [VI.73] and littlewood [VI.79]. This
method uses the fact that, for any integer n,

∫ 1

0
e2iπnt dt =

⎧⎨
⎩1 if n = 0,

0 otherwise.

For example, if we wish to count the number, r(n), of
solutions to the equation p+q = n with p and q prime,
we can express it as an integral as follows:

r(n) =
∑

p,q�n
both prime

∫ 1

0
e2iπ(p+q−n)t dt

=
∫ 1

0
e−2iπnt

( ∑
p prime, p�n

e2iπpt
)2

dt.

The first equality holds because the integrand is 0 when
p + q �= n and 1 otherwise, and the second is easy to
check.

At first sight it looks more difficult to estimate the
integral than it is to estimate r(n) directly, but this
is not the case. For instance, the prime number theo-
rem for arithmetic progressions allows us to estimate
P(t) =∑p�n e2iπpt when t is a rational 	/m with m
small. For in this case,

P
(
	
m

)
=

∑
(a,m)=1

e2iπa	/m
∑
p�n,

p≡a (mod m)

1

≈
∑

(a,m)=1

e2iπa	/m π(n)
φ(m)

= µ(m) π(n)
φ(m)

.

If t is sufficiently close to 	/m, then P(t) ≈ P(	/m);
such values of t are called the major arcs and we believe
that the integral over the major arcs gives, in total, a
very good approximation to r(n); indeed, we get some-
thing very close to the quantity one predicts from some-
thing like (15). Thus to prove the Goldbach conjecture
we need to show that the contribution to the integral
from the other values of t (that is, from the minor arcs)
is small. In many problems one can successfully do this,
but no one has yet succeeded in doing so for the Gold-
bach problem. Also useful is the “discrete analogue” of
the above: using the identity

1
m

m−1∑
j=0

e2iπjn/m dt =
⎧⎨
⎩1 if n ≡ 0 (mod m),

0 otherwise
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(which holds for any given integerm � 1), we have that

r(n) =
∑

p,q�n
both prime

1
m

m−1∑
j=0

e2iπj(p+q−n)/m

=
m−1∑
j=0

e−2iπjn/mP(j/m)2

provided m > n. A similar analysis can be used here
but working mod m sometimes has advantages, as it
allows us to use properties of the multiplicative group
modm.

Sums like P(j/m) in the paragraph above or more
simple sums like

∑
n�N e2iπnk/m are called exponential

sums. They play a central role in many of the calcu-
lations one does in analytic number theory. There are
several techniques for investigating them.

(1) It is easy to sum the geometric progression∑
n�N e2iπn/m. With higher-degree polynomials one can

often reduce to this case; for example, by writing n1 −
n2 = h we have∣∣∣∣ ∑

n�N
e2iπn2/m

∣∣∣∣2

=
∑

n1,n2�N
e2iπ(n2

1−n2
2)/m

=
∑
|h|�N

e2iπh2/m
∑

max{0,−h}<n2
�min{N,N−h}

e4iπhn2/m,

and the inner sum is now a geometric progression.

(2) The work of Weil and Deligne, which gives very accu-
rate results on the number of solutions to equations
mod p, is ideally suited to many applications in ana-
lytic number theory. For example, the “Kloosterman
sum”

∑
a1a2···ak≡b (mod p)e

2iπ(a1+a2+···+ak)/p , where the
ai run over the integers mod p and (b, q) = 1, appears
naturally in many questions; Deligne showed that it
has absolute value less than or equal to kp(k−1)/2, an
extraordinary amount of cancellation in this sum which
has about pk−1 summands, each of absolute value 1.
(See the weil conjectures [V.38].)

(3) We discussed earlier the fact that the values of ζ(s)
satisfy a symmetry about the line Re(s) = 1

2 , given by
the “functional equation.” There are other functions
(called “modular functions”) that also have symme-
tries in the complex plane; typically the value of the
function at s is related to the value of the function at
(αs + β)/(γs + δ), for some integers α, β, γ, δ satisfy-
ing αδ−βγ = 1. Sometimes an exponential sum can be

related to the value of a modular function, and subse-
quently to the value of that modular function at another
point, using the symmetry of the function.

12 More L-Functions

There are many types of L-functions beyond Dirich-
let L-functions, some of which are well understood,
some not. The type that has received the most atten-
tion recently is a class of L-functions that can be asso-
ciated with elliptic curves (see arithmetic geometry
[IV.5 §5.1]). An elliptic curve E is given by an equation
of the form y2 = x3 + ax + b, where the discrimi-
nant 4a3+27b2 is nonzero. The associated L-function
L(E, s) is most easily described in terms of its Euler
product:

L(E, s) =
∏
p

(
1− ap

ps
+ p
p2s

)−1

. (17)

Here ap is an integer which, for primes p not dividing
4a3+27b2, is defined to bepminus the number of solu-
tions (x,y) (mod p) to the equation y2 ≡ x3+ax+b
(mod p). It can be shown that each |ap| is less than
2
√p, so the Euler product above converges absolutely

when Re(s) > 3
2 . Therefore, (17) is a good definition for

these values of s. Can we now extend it to the whole of
the complex plane, as we did for ζ(s)? This is a very
deep problem—the answer is yes; in fact, it is the cele-
brated theorem of Andrew Wiles that implied fermat’s
last theorem [V.12].

Another interesting question is to understand the
distribution of values of ap/2

√p as we range over
primes p. These all lie in the interval [−1,1]. One might
expect them to be uniformly distributed in the inter-
val, but in fact this is never the case. As discussed in
algebraic numbers [IV.1] one can write ap = αp+ ᾱp ,
where |αp| = √p, and αp is called the Weil number. If
we writeα = √pe±iθp , then ap = 2

√p cos(θp) for some
angle θp ∈ [0, π]. We can then think of θp as belong-
ing to the upper half of a circle. The surprise is that
for almost all elliptic curves the θp are not uniformly
distributed, which would mean the proportion in a cer-
tain arc would be proportional to the length of that arc.
Rather, they are distributed in such a way that the pro-
portion of them in any given arc is proportional to the
area under that arc. This is a recent result of Richard
Taylor.

The correct analogue of the Riemann hypothesis for
L(E, s) turns out to be that all the nontrivial zeros lie
on the line Re(s) = 1. This is believed to be true. More-
over, it is believed that they, like the zeros of ζ(s),
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are distributed according to the rules that govern the

eigenvalues of randomly chosen matrices.

These L-functions often have zeros at s = 1 (which

is linked to the birch–swinnerton-dyer conjec-

ture [V.4]) and these zeros repel zeros of Dirichlet L-

functions (which is what was used by Goldfeld, Gross,

and Zagier, as mentioned in section 4, to get their lower

bound on h−q).
L-functions arise in many areas of arithmetic geom-

etry, and their coefficients typically describe the num-

ber of points satisfying certain equations mod p. The

Langlands program seeks to understand these connec-

tions at a deep level.

It seems that every “natural” L-function has many

of the same analytic properties as those discussed

in this article. Selberg has proposed that this phe-

nomenon should be even more general. Consider sums

A(s) =∑n�1 an/ns that

• are well-defined when Re(s) > 1,

• have an Euler product
∏
p(1+ bp/ps + bp2/p2s +

· · · ) in this (or an even smaller) region,

• have coefficients an that are smaller than any

given power of n, once n is sufficiently large,

• satisfy |bn| < κnθ for some constants θ < 1
2 and

κ > 0.

Selberg conjectures that we should be able to give a

good definition to A(s) on the whole complex plane,

and that A(s) should have a symmetry connecting the

value ofA(s)withA(1−s). Furthermore, he conjectures

that the Riemann hypothesis should hold for A(s)!
The current wishful thinking is that Selberg’s family

of L-functions is precisely the same as those considered

by Langlands.

13 Conclusion

In this article we have described current thinking on

several key questions about the distribution of primes.

It is frustrating that after centuries of research so little

has been proved, the primes guarding their mysteries

so jealously. Each new breakthrough seems to require

brilliant ideas and extraordinary technical prowess. As

euler [VI.19] wrote in 1770:

Mathematicians have tried in vain to discover some
order in the sequence of prime numbers but we have
every reason to believe that there are some mysteries
which the human mind will never penetrate.

Further Reading
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duction to the heart of analytic number theory is the
masterful book by Davenport (2000). Everything you
have ever wanted to know about the Riemann zeta
function is in Titchmarsh (1986). Finally, there are
two recently released books by modern masters of the
subject (Iwaniec and Kowalski 2004; Montgomery and
Vaughan 2006) that introduce the reader to the key
issues of the subject.
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IV.3 Computational Number Theory
Carl Pomerance

1 Introduction

Historically, computation has been a driving force in
the development of mathematics. To help measure the
sizes of their fields, the Egyptians invented geometry.
To help predict the positions of the planets, the Greeks
invented trigonometry. Algebra was invented to deal
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with equations that arose when mathematics was used
to model the world. The list goes on, and it is not just
historical. If anything, computation is more important
than ever. Much of modern technology rests on algo-
rithms that compute quickly: examples range from the
wavelets [VII.3] that allow CAT scans, to the numerical
extrapolation of extremely complex systems in order to
predict weather and global warming, and to the com-
binatorial algorithms that lie behind Internet search
engines (see the mathematics of algorithm design
[VII.5 §6]).

In pure mathematics we also compute, and many
of our great theorems and conjectures are, at root,
motivated by computational experience. It is said that
gauss [VI.26], who was an excellent computationalist,
needed only to work out a concrete example or two
to discover, and then prove, the underlying theorem.
While some branches of pure mathematics have per-
haps lost contact with their computational origins, the
advent of cheap computational power and convenient
mathematical software has helped to reverse this trend.

One mathematical area where the new emphasis on
computation can be clearly felt is number theory, and
that is the main topic of this article. A prescient call-to-
arms was issued by Gauss as long ago as 1801:

The problem of distinguishing prime numbers from
composite numbers, and of resolving the latter into
their prime factors, is known to be one of the most
important and useful in arithmetic. It has engaged the
industry and wisdom of ancient and modern geometers
to such an extent that it would be superfluous to dis-
cuss the problem at length. Nevertheless we must con-
fess that all methods that have been proposed thus far
are either restricted to very special cases or are so labo-
rious and difficult that even for numbers that do not
exceed the limits of tables constructed by estimable
men, they try the patience of even the practiced cal-
culator. And these methods do not apply at all to
larger numbers. . . . Further, the dignity of the science
itself seems to require that every possible means be
explored for the solution of a problem so elegant and
so celebrated.

Factorization into primes is a very basic issue in
number theory, but essentially all branches of num-
ber theory have a computational component. And in
some areas there is such a robust computational liter-
ature that we discuss the algorithms involved as math-
ematically interesting objects in their own right. In this
article we will briefly present a few examples of the
computational spirit: in analytic number theory (the
distribution of primes and the Riemann hypothesis);

in Diophantine equations (Fermat’s last theorem and
the ABC conjecture); and in elementary number theory
(primality and factorization). A secondary theme that
we shall explore is the strong and constructive inter-
play between computation, heuristic reasoning, and
conjecture.

2 Distinguishing Prime Numbers
from Composite Numbers

The problem is simple to state. Given an integer n > 1,
decide if n is prime or composite. And we all know an
algorithm. Divide n by each positive integer in turn.
Either we find a proper factor, in which case we know
that n is composite, or we do not, in which case we
know that n is prime. For example, take n = 269. It is
odd, so it has no even divisors. It is not a multiple of 3,
so it has no divisor which is a multiple of 3. Continuing,
we rule out 5, 7, 11, and 13. The next possibility, 17, has
a square that is greater than 269, which means that if
269 were a multiple of 17, then it would also have to be
a multiple of some number less than 17. Since we have
ruled that out, we can stop our trial division at 13 and
conclude that 269 is prime. (If we were actually carrying
out the algorithm, we might try dividing 269 by 17, in
which case we would discover that 269 = 15× 17+ 14.
At that point we would notice that the quotient, 15,
is less than 17, which is what would tell us that 172

was greater than 269. Then we could stop.) In general,
since a composite number n has a proper factor d with
d � √n, one can give up on the trial dividing once one
passes

√
n, at which point we know that n is prime.

This straightforward method is excellent for men-
tal computation with small numbers, and for machine
computation for somewhat larger numbers. But it
scales poorly, in that if you double the number of digits
of n, then the time for the worst case is squared; it is
therefore an “exponential time” algorithm. One might
tolerate such an algorithm for twenty-digit inputs, but
think how long it would take to establish the primality
of a forty-digit number! And you can forget about num-
bers with hundreds or thousands of digits. The issue
of how the running time of an algorithm scales when
one goes to larger inputs is absolutely paramount in
measuring one algorithm against another. In contrast
to the exponential time it takes to use trial division to
recognize primes, consider the problem of multiplying
two numbers. The school method of multiplication is
to take each digit of one number in turn and multiply
it by the other number, forming a parallelogram array.
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One then performs an addition to obtain the answer.
If you now double the number of digits in each num-
ber, then the parallelogram becomes twice as large in
each dimension, so the running time grows by a factor
of about 4. Multiplication of two numbers is an exam-
ple of a “polynomial time” algorithm; its running time
scales by a constant factor when the input length is
doubled.

One might then rephrase Gauss’s call to arms as fol-
lows. Is there a polynomial time algorithm that distin-
guishes prime numbers from composite numbers? Is
there a polynomial time algorithm that can produce a
nontrivial factor of a composite number? It might not
be apparent at this point that these are two different
questions, since trial division does both. We will see,
though, that it is convenient to separate them, as did
Gauss.

Let us focus on recognizing primes. What we would
like is a simply computed criterion that primes satisfy
and composites do not, or vice versa. An old theorem
of Wilson might just fit the bill. Note that 6! = 720,
which is just one less than a multiple of 7. Wilson’s
theorem asserts that if n is prime, then (n − 1)! ≡ −1
(mod n). (The meaning of this and similar statements
is explained in modular arithmetic [III.60].) This can-
not hold when n is composite, for if p is a prime
factor of n and is smaller than n, then it is a fac-
tor of (n− 1)!, so it cannot possibly be a factor of
(n − 1)! + 1. Thus, we have an ironclad criterion for
primality. However, the Wilson criterion does not meet
the standard of being simply computed, since we know
no especially rapid way of computing factorials mod-
ulo another number. For example, Wilson predicts that
268! ≡ −1 (mod 269), as we have already seen that
269 is prime. But if we did not know this already, how
in the world could we quickly find the remainder when
268! is divided by 269? We can work out the product
268! one factor at a time, but this would take many
more steps than trying divisors up to 17. It is hard to
prove that something cannot be done, and in fact there
is no theorem that says we cannot compute a! mod b
in polynomial time. We do know some ways of speed-
ing up the computation over the totally naive method,
but all methods known so far take exponential time.
So, Wilson’s theorem initially seems promising, but in
fact it is no help at all unless we can find a fast way to
compute a! modb.

How about fermat’s little theorem [III.60]? Note
that 27 = 128, which is 2 more than a multiple of 7. Or
take 35 = 243, which is 3 mod 5. Fermat’s little theorem

tells us that if n is prime and a is any integer, then
an ≡ a (mod n). If computing a large factorial modulo
n is hard, perhaps it is also hard to compute a large
power modulo n.

It cannot hurt to try it out for some moderate exam-
ple to see if any ideas pop up. Takea = 2 andn = 91, so
that we are trying to compute 291 mod 91. A powerful
idea in mathematics is that of reduction. Can we reduce
this computational problem to a smaller one? Notice
that if we had already computed 245 mod 91, obtaining
a remainder r1, say, then 291 ≡ 2r2

1 (mod 91). That is,
it is just a short additional calculation to get to our goal,
yet the power 45 is only half as big. How to continue
is clear: we further reduce to the exponent 22, which is
less than half of 45. If 222 mod 91 = r2, then 245 ≡ 2r2

2

(mod 91). And of course 222 is the square of 211, and
so on. It is not so hard to “automate” this procedure:
the exponent sequence

1, 2, 5, 11, 22, 45, 91

can be read directly from the binary (base 2) represen-
tation of 91 as 1011011, since the above sequence in
binary is

1, 10, 101, 1011, 10110, 101101, 1011011.

These are the initial strings from the left of 1011011.
And it is plain that the transition from one term to the
next is either the double or the double plus 1.

This procedure scales nicely. When the number of
digits of n is doubled, so is the sequence of expo-
nents, and the time it takes to get from one exponent
to the next, being a modular multiplication, is multi-
plied by 4. (As with naive multiplication, naive divide-
with-remainder also takes four times as long when the
size of the problem is doubled.) Thus, the overall time
is multiplied by 8, yielding a polynomial time method.
We call this the “powermod” algorithm.

So, let us try to illustrate Fermat’s little theorem,
taking a = 2 and n = 91. Our sequence of powers is

21 ≡ 2, 22 ≡ 4, 25 ≡ 32, 211 ≡ 46,

222 ≡ 23, 245 ≡ 57, 291 ≡ 37,

where each congruence is modulo 91, and each term in
the sequence is found by squaring the prior one mod 91
or squaring and multiplying by 2 mod 91.

Wait a second: does Fermat’s little theorem not say
that we are supposed to get 2 for the final residue? Well,
yes, but this is guaranteed only ifn is prime. And as you
have probably already noticed, 91 is composite. In fact,
the computation proves this.
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Quite remarkably, here is an example of a computa-

tion that proves that n is composite, yet it does not

reveal any nontrivial factorization!

You are invited to try out the powermod algorithm

as above, but to change the base of the power from

2 to 3. The answer you should come to is that 391 ≡ 3

(mod 91): that is, the congruence for Fermat’s little the-

orem holds. Since you already know that 91 is compos-

ite, I am sure you would not jump to the false conclu-

sion that it is prime! So, as it stands, Fermat’s little the-

orem can sometimes be used to recognize composites,

but it cannot be used to recognize primes.

There are two interesting further points to be made

regarding Fermat’s little theorem. First, on the nega-

tive side, there are some composites, such as n = 561,

where the Fermat congruence holds for every integer a.

These numbers n are called Carmichael numbers, and

unfortunately (from the point of view of testing pri-

mality) there are infinitely many of them, a result due

to Alford, Granville, and me. But, on the positive side,

if one were to choose randomly among all pairs a, n
for which an ≡ a (mod n), with a < n and n bounded

by a large number x, almost certainly (as x grows) you

would choose a pair with n prime, a result of Erdős and

myself.

It is possible to combine Fermat’s little theorem with

another elementary property of (odd) prime numbers.

If n is an odd prime, there are exactly two solutions

to the congruence x2 ≡ 1 (mod n), namely ±1. Actu-

ally, some composites have this property as well, but

composites divisible by two different odd primes do

not.

Now let us suppose that n is an odd number and that

we wish to determine whether it is prime. Suppose that

we pick some numberawith 1 � a � n−1 and discover

that an−1 ≡ 1 (mod n). If we set x = a(n−1)/2, then

x2 = an−1 ≡ 1 (mod n); so, by the simple property

of primes just mentioned, if n is prime, then x must

be ±1. Therefore, if we calculate a(n−1)/2 and discover

that it is not congruent to ±1 (mod n), then nmust be

composite.

Let us try this idea with a = 2, n = 561. We

know already that 2560 ≡ 1 (mod 561), so what is

2280 mod 561? This too turns out to be 1, so we have

not shown that 561 is composite. However, we can go

further, since now we know that 2140 is also a square

root of 1 and computing this we find that 2140 ≡ 67

(mod 561). So now we have found a square root of 1

that is not ±1, which proves that 561 is composite. (Of

course, for this particular number, it is obviously divis-
ible by 3, so there was not really any mystery about
whether it was prime or composite. But the method can
be used in much less obvious cases.) In practice, there
is no need to backtrack from a higher exponent to a
smaller one. Indeed, in order to calculate 2560 mod 561
by the efficient method outlined earlier, one calculates
the numbers 2140 and 2280 along the way, so that this
generalization of the earlier test is both quicker and
stronger.

Here is the general principle that we have illustrated.
Suppose that n is an odd prime and let a be an integer
not divisible by n. Write n − 1 = 2st, where t is odd.
Then

either at ≡ 1 (modn) or a2it ≡ −1 (modn)

for some i = 0,1, . . . , s − 1. Call this the strong Fer-
mat congruence. The wonderful thing here is that, as
proved independently by Monier and Rabin, there is no
analogue of a Carmichael number. They showed that if
n is an odd composite, then the strong Fermat congru-
ence fails for at least three quarters of the choices for
a with 1 � a � n− 1.

If you want only to be able to distinguish between
primes and composites in practice, and you do not
insist on proof, then you have read enough. Namely,
given a large odd number n, choose twenty values of
a at random from [1, n− 1], and begin trying to verify
the strong Fermat congruence with these bases a. If it
should ever fail, you may stop: the number n must be
composite. And if the strong Fermat congruence holds,
we might surmise that n is actually prime. Indeed, if
n were composite, the Monier–Rabin theorem says that
the chance that the strong Fermat congruence would
hold for twenty random bases is at most 4−20, which
is less than one chance in a trillion. Thus we have a
remarkable probabilistic test for primality. If it tells us
that n is composite, then we know for sure that n is
composite; if it tells us thatn is prime, then the chances
that n is not prime are so small as to be more or less
negligible.

If three quarters of the numbers a in [1, n− 1] pro-
vide the key to an easily checkable proof that the odd
composite number n is indeed composite, surely it
should not be so hard to find just one! How about
checking small numbers a, in order, until one is found?
Excellent, but when do we stop? Let us think about this
for a moment. We have given up the power of random-
ness and are forcing ourselves to choose sequentially
among small numbers for the trial bases a. Can we
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argue heuristically that they continue to behave as if
they were random choices? Well, there are some con-
nections among them. For example, if takinga = 2 does
not result in a proof that n is composite, then neither
will taking any power of 2. It is theoretically possible for
2 and 3 not to give proofs that n is composite but for
6 to work just fine, but this turns out not to be very
common. So let us amend the heuristic and assume
that we have independence for prime values of a. Up
to logn log logn there are about logn primes (via the
prime number theorem [V.29] discussed later in this
article); so, heuristically, the probability that n is com-
posite, but that none of these primes help us to prove it,
is about 4− logn < n−4/3. Since the infinite sum

∑
n−4/3

converges, perhaps a stopping point of logn log logn
is sufficient, at least for large n.

Miller was able to prove the slightly weaker result
that a stopping point of c(logn)2 is adequate, but
his proof assumes a generalization of the riemann
hypothesis [V.29]. (We discuss the Riemann hypoth-
esis below; the generalization that Miller assumes is
beyond the scope of this article.) In further work, Bach
was able to show that we may take c = 2 in this
last result. Summarizing, if this generalized Riemann
hypothesis holds, and if the strong Fermat congruence
holds for every positive integer a � 2(logn)2, then n
is prime. So, provided that a famous unproved hypoth-
esis in another field of mathematics is correct, one can
decide in polynomial time, via a deterministic algo-
rithm, whether n is prime or composite. (It has been
tempting to use this conditional test, for if it should
ever lie to you and tell you that a particular compos-
ite number is prime, then this failure—if you were able
to detect it—would be a disproof of one of the most
famous conjectures in mathematics. Perhaps this is not
too disastrous a failure!)

After Miller’s test in the 1970s, the question con-
tinually challenging us was whether it is possible to
test for primality in polynomial time without assuming
unproved hypotheses. Recently, Agrawal et al. (2004)
answered this question with a resounding yes. Their
idea begins with a combination of the binomial theo-
rem and Fermat’s little theorem. Given an integer a,
consider the polynomial (x + a)n and expand it in the
usual way through the binomial theorem. Each interme-
diate term between the leading xn and the trailing an

has the coefficient n!/(j!(n − j)!) for some j between
1 and n− 1. If n is prime, then this coefficient, which
is an integer, is divisible by n because n appears as
a factor in the numerator that is not canceled by any

factors in the denominator. That is, the coefficient is
0 (mod n). For example, (x + 1)7 is equal to

x7 + 7x6 + 21x5 + 35x4 + 35x3 + 21x2 + 7x + 1,

and we see each internal coefficient is a multiple of 7.
Thus, we have (x + 1)7 ≡ x7 + 1 (mod 7). (Two poly-
nomials are congruent mod n if corresponding coeffi-
cients are congruent mod n.) In general, if n is prime
and a is any integer, then via this binomial-theorem
idea and Fermat’s little theorem we have

(x + a)n ≡ xn + an ≡ xn + a (modn).

It is an easy exercise to show that this congruence in the
simple case a = 1 is actually equivalent to primality.
But as with the Wilson criterion we know no way of
quickly verifying that all these coefficients are indeed
divisible by n.

However, one can do more with polynomials than
raise them to powers. We can also divide one poly-
nomial by another to find a quotient and a remain-
der, just as we do with integers. It makes sense, for
example, to say that g(x) ≡ h(x) (mod f(x)), mean-
ing that g(x) and h(x) leave the same remainder
when divided by f(x). We will write g(x) ≡ h(x)
(mod n,f(x)) if the remainders upon division by f(x)
are congruent mod n. As with the powermod algo-
rithm for integer congruences, we can quickly compute
g(x)n (mod n,f(x)), provided the degree of f(x) is
not too big. This is exactly what Agrawal et al. propose.
They have an auxiliary polynomial f(x) of not-too-high
degree such that, if

(x + a)n ≡ xn + a (modn,f(x))

for eacha = 1,2, . . . , B, for a not-too-high bound B, then
nmust be in a set that contains the primes and certain
composites that are easily recognized as composites.
(Not all composites are hard to recognize as such, e.g.,
any number with a small prime factor is easy to rec-
ognize.) These ideas put together form the primality
test of Agrawal et al. To give the argument in full detail
one has to specify the auxiliary polynomial f(x) that
is used and what the bound B is, and one has to prove
rigorously that it is exactly the primes which pass the
test.

Agrawal et al. (2004) show that the auxiliary poly-
nomial f(x) can be taken to be the beautifully sim-
ple xr − 1, with an elementary upper bound for r of
about (logn)5. Doing this leads to a time bound of
about (logn)10.5 for the algorithm. Using a numeri-
cally ineffective tool, they bring the time bound down
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to (logn)7.5. Recently, Lenstra and I presented a not-so-
simple but numerically effective method of bringing the
exponent on logn down to 6. We did this by expand-
ing the set of polynomials used beyond those of the
form xr −1: in particular we used polynomials that are
related to Gauss’s famous algorithm for construction of
certain regular n-gons with straightedge and compass
(see algebraic numbers [IV.1 §13]). It was indeed sat-
isfying to us to bring in a famous tool of Gauss to say
something about his problem of distinguishing prime
numbers from composite numbers.

Are the new polynomial-time primality tests good in
practice? So far, the answer is no, the competition is
just too tough. For example, using the arithmetic of
elliptic curves [III.21] we can come up with bona fide
proofs of primality for huge numbers. This algorithm
is conjectured to run in polynomial time but we have
not even proved that it always terminates. If, at the end
of the day, or in this case the end of the run, we have a
legitimate proof, then perhaps we can tolerate the situ-
ation of not being sure that it would work out when we
started! The method, pioneered by Atkin and Morain,
has recently proved the primality of a number that has
over 20 000 decimal digits, and is not of some special
form such as 2n − 1 that makes testing for primality
easier. The record for the new breed of polynomial-time
tests is a measly 300 digits.

For numbers of certain special forms there are much
faster primality tests. Mersenne primes comprise the
most famous of these forms; these are primes that are
1 less than a power of 2. It is suspected that there are
infinitely many examples, but we seem to be very far
from a proof of this. Just forty-three Mersenne primes
are known, the record example being 230402457 − 1, a
prime with more than 9.15 million decimal digits.

For much more on primality testing, and for ref-
erences to various other sources, see Crandall and
Pomerance (2005).

3 Factoring Composite Numbers

Compared with what we know about testing primality,
our ability to factor large numbers is still in the dark
ages. In fact this imbalance between the two problems
forms the bulwark for the security of electronic com-
merce on the Internet. (See mathematics and cryp-
tography [VII.7] for an account of why.) This is a very
important application of mathematics, but also an odd
one, and not something to brag about, since it depends
on the inability of mathematicians to efficiently solve a
basic problem!

Nevertheless, we do have our tricks. Part of the land-

scape is euclid’s algorithm [III.22] for computing the

greatest common divisor (GCD) of two numbers. One

might naively think that, to find the GCD of two posi-

tive integersm and n, one should find all of their divi-

sors and pick the largest one common to the two. But

Euclid’s algorithm is much more efficient: the number

of arithmetic steps is bounded by the logarithm of the

smaller number, so not only does it run in polynomial

time, it is in fact quite speedy.

So, if we can build up a special number m that may

be likely to have a nontrivial factor in common with n,

we can use Euclid’s algorithm to discover this factor.

For example, Pollard and Strassen (independently) used

this idea, together with fast subroutines for multipli-

cation and polynomial evaluation, to enhance the trial

division method discussed in the last section. Some-

what miraculously, one can take the integers up ton1/2,

break them into n1/4 subintervals of length n1/4, and

for each subinterval calculate the GCD of n with the

product of all the integers in the subinterval, spending

only about n1/4 elementary steps in total. If n is com-

posite, then at least one GCD will be larger than 1, and

then a search over the first such subinterval will locate

a nontrivial factor of n. To date, this algorithm is the

fastest rigorous and deterministic method of factoring

that we know.

Most practical factoring algorithms are based on

unproved but reasonable-seeming hypotheses about

the natural numbers. Although we may not know how

to prove rigorously that these methods will always pro-

duce a factorization, or do so quickly, in practice they

do. This situation resembles the experimental sciences,

where hypotheses are tested against experiments. Our

experience with certain factoring algorithms is now so

overwhelming that a scientist might claim that a phys-

ical law is involved. As mathematicians, we still search

for proof, but fortunately the numbers we factor do not

feel the need to wait for us.

I often mention a contest problem from my high

school years: factor 8051. The trick is to notice that

8051 = 902 − 72 = (90 − 7)(90 + 7), from which

the factorization 83 · 97 can be read off. In fact every

odd composite can be factored as the difference of

two squares, an idea that goes back to fermat [VI.12].

Indeed, if n has the nontrivial factorization ab, then let

u = 1
2 (a + b) and v = 1

2 (a − b), so that n = u2 − v2,

and a = u+v , b = u−v . This method works very well

if n has a divisor very close to n1/2, as n = 8051 does,
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but in the worst case, the Fermat method is slower than
trial division.

My quadratic sieve method (which follows work of
Kraitchik, Brillhart–Morrison, and Schroeppel) tries to
efficiently extend Fermat’s idea to all odd composites.
For example, take n = 1649. We start just above n1/2

with j = 41, and consider the numbers j2 − 1649. As j
runs, we will eventually hit a value where j2 − 1649 is
a square, and so be able to use Fermat’s method. Let’s
try it:

412 − 1649 = 32,

422 − 1649 = 115,

432 − 1649 = 200,

...

Well, no squares yet, which is not surprising, since the
Fermat method is often very poor. But wait, do the
first and third lines not multiply together to give a
square? Yes they do, 32·200 = 802. So, multiplying the
first and third lines, and treating them as congruences
mod 1649, we have

(41 · 43)2 ≡ 802 (mod 1649).

That is, we have a pair u, v with u2 ≡ v2 (mod 1649).
This is not quite the same as havingu2−v2 = 1649, but
we do have 1649 a divisor of u2−v2 = (u−v)(u+v).
Now maybe 1649 divides one of these factors, but if
it does not, then it is split between them, and so a
computation of the GCD of u − v (or u + v) with
1649 will reveal a proper factor. Now v = 80 and
u = 41 ·43 ≡ 114 (mod 1649), and so we see instantly
that u �≡ ±v (mod 1649), so we are in business. The
GCD of 114−80 = 34 with 1649 is 17. Dividing, we see
that 1649 = 17 · 97, and we are done.

Can we generalize this? In trying to factor n = 1649
we considered consecutive values of the quadratic poly-
nomial f(j) = j2 −n for j starting just above

√
n, and

viewed these as congruences j2 ≡ f(j) (mod n). Then
we found a set M of numbers j with

∏
j∈M f(j) equal

to a square, say v2. We then let u =∏j∈M j, so that
u2 ≡ v2 (mod n). Since u �≡ ±v (mod n), we could
split n via the GCD of u− v and n.

There is another lesson that we can learn from our
small example with n = 1649. We used 32 and 200 to
form our square, but we ignored 115. If we had thought
about it, we might have noticed from the start that 32
and 200 were more likely to be useful than 115. The
reason is that 32 and 200 are smooth numbers (mean-
ing that they have only small prime factors), while 115

is not smooth, having the relatively large prime factor
23. Say you have k+ 1 positive integers that involve
in their prime factorizations only the first k primes.
It is an easy theorem that some nonempty subset of
these numbers has product a square. The proof has
us associate with each of these numbers, which can be
written in the form pa1

1 p
a2
2 · · ·pakk , an exponent vec-

tor (a1, a2, . . . , ak). Since squares are detected by all
even exponents, we really only care whether the expo-
nents ai are odd or even. Thus, we think of these vec-
tors as having coordinates 0 and 1, and when we add
them (which corresponds to multiplying the underlying
numbers), we do so mod 2. Since we have k+1 vectors,
each with only k coordinates, an easy matrix calculation
leads quickly to a nonempty subset that adds up to the
0-vector. The product of the corresponding integers is
then a square.

In our toy example with n = 1649, the first and
third numbers, which are 32 = 253050 and 200 =
233052, have exponent vectors (5,0,0) and (3,0,2),
which reduce to (1,0,0) and (1,0,0), so we see that
the sum of them is (0,0,0), which indicates that we
have a square. We were lucky that we could make do
with just two vectors, instead of the four that the above
argument shows would be sufficient.

In general with the quadratic sieve, one finds smooth
numbers in the sequence j2 − n, forms the expo-
nent vectors mod 2, and then uses a matrix to find a
nonempty subset which adds up to the 0-vector, which
then corresponds to a setM for which

∏
j∈M f(j) is a

square.
In addition, the “sieve” in the quadratic sieve comes

in with the search for smooth values of f(j) = j2 −n.
These numbers are the consecutive values of a (quad-
ratic) polynomial, so those divisible by a given prime
can be found in regular places in the sequence. For
example, in our illustration, j2 − 1649 is divisible by 5
precisely when j ≡ 2 or 3 (mod 5). A sieve very much
like the sieve of Eratosthenes can then be used to effi-
ciently find the special numbers j where j2 − n is
smooth. A key issue, though, is how smooth a value
f(j) has to be for us to decide to accept it. If we choose
a smaller bound for the primes involved, we do not
have to find all that many of them to use the matrix
method. But such very smooth values might be very
rare. If we use a larger bound for the primes involved,
then smooth values of f(j) may be more common,
but we will need many of them. Somewhere between
smaller and larger is just right! In order to make the
choice, it would help to know how frequently values of



�

IV.3. Computational Number Theory 41

an irreducible quadratic polynomial are smooth. Unfor-
tunately, we do not have a theorem that tells us, but we
can still make a good choice by assuming that this fre-
quency is about that for a random number of the same
size, an assumption that is probably correct even if it
is hard to prove.

Finally, note that if the final GCD yields only a trivial
factor withn, one can continue just a bit longer and find
more linear dependencies, each with a fresh chance at
splitting n.

These thoughts lead us to a time bound of about

exp
(√

logn log logn
)

for the quadratic sieve to factor n. Instead of being
exponential in the number of digits of n, as with trial
division, this is exponential in about the square root
of the number of digits of n. This is certainly a huge
improvement, but it is still a far cry from polynomial
time.

Lenstra and I actually have a rigorous random fac-
toring method with the same time complexity as that
above for the quadratic sieve. (It is random in the sense
that a coin is flipped at various junctures, and decisions
on what to do next depend on the outcomes of these
flips. Through this process, we expect to get a bona fide
factorization within the advertised time bound.) How-
ever, the method is not so computer practical, and if
you had to choose in practice between the two, then
you should go with the nonrigorous quadratic sieve. A
triumph for the quadratic sieve was the 1994 factor-
ization of the 129-digit RSA cryptographic challenge
first published in Martin Gardner’s column in Scientific
American in 1977.

The number field sieve, which is another sieve-based
factoring algorithm, was discovered in the late 1980s
by Pollard for integers close to powers, and later devel-
oped by Buhler, Lenstra, and me for general integers.
The method is similar in spirit to the quadratic sieve,
but assembles its squares from the product of certain
sets of algebraic integers. The number field sieve has a
conjectured time complexity of the type

exp(c(logn)1/3(log logn)2/3),

for a value of c slightly below 2. For composite numbers
beyond 100 digits or so that have no small prime factor,
it is the method of choice, with the current record being
200 decimal digits.

The sieve-based factorization methods share the
property that if you use them, then all composite num-
bers of about the same size are equally hard to fac-
tor. For instance, factoring n will be about as difficult

if n is a product of five primes each roughly near the
fifth root of n as it will be if n is a product of two
primes roughly near the square root of n. This is quite
unlike trial division, which is happiest when there is
a small prime factor. We will now describe a famous
factorization method due to Lenstra that detects small
prime factors before large ones, and beyond baby cases PUP: I can confirm

that this jargon is
OK here.is much superior to trial dividing. This is his elliptic

curve method.
Just as the quadratic sieve searches for a number

m with a nontrivial GCD with n, so does the elliptic
curve method. But where the quadratic sieve painstak-
ingly builds up to a successfulm from many small suc-
cesses, the elliptic curve method hopes to hit upon m
with essentially one lucky choice.

Choosing random numbersm and testing their GCD
with n can also have instant success, but you can well
imagine that if n has no small prime factors, then the
expected time for success would be enormous. Instead,
the elliptic curve method involves considerably more
cleverness.

Consider first the “p−1 method” of Pollard. Suppose
you have a number n you wish to factor and a certain
large number k. Unbeknownst to you, n has a prime
factor p with p − 1 a divisor of k, and another prime
factor q with q − 1 not a divisor of k. You can use this
imbalance to split n. First of all, by Fermat’s little the-
orem there are many numbers u with uk ≡ 1 (mod p)
and uk �≡ 1 (mod q). Say you have one of these, and let
m be uk−1 reduced mod n. Then the GCD ofm and n
is a nontrivial factor of n; it is divisible by p but not by
q. Pollard suggests taking k as the least common mul-
tiple of the integers to some moderate bound so that it
has many divisors and perhaps a decent chance that it
is divisible by p − 1. The best case of Pollard’s method
is when n has a prime factor p with p − 1 smooth (has
all small prime factors—see the quadratic sieve discus-
sion above). But if n has no prime factors p with p − 1
smooth, Pollard’s method fares poorly.

What is going on here is that corresponding to the
prime p we have the multiplicative group [I.3 §2.1] of
the p − 1 nonzero residues mod p. Furthermore, when
doing arithmetic mod n with numbers relatively prime
to n, we are, whether we realize it or not, doing arith-
metic in this group. We are exploiting the fact that uk

is the group identity mod p, but not mod q.
Lenstra had the brilliant idea of using the Pollard

method in the context of elliptic curve groups. There
are many elliptic curve groups associated with the
prime p, and therefore many chances to hit upon one
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where the number of elements is smooth. Of great
importance here are theorems of Hasse and Deuring.
An elliptic curve [III.21] mod p (for p > 3) can be
taken as the set of solutions to the congruence y2 ≡
x3 + ax + b (mod p), for given integers a, b with
the property that x3 + ax + b does not have repeated
roots mod p. There is one additional “point at infin-
ity” thrown in (see below). A fairly simple addition law
(but not as simple as adding coordinatewise!) makes
the elliptic curve into a group, with the point at infinity
as the identity (see rational points on curves and
the mordell conjecture [V.32]). Hasse, in a result
later generalized by weil [VI.93] with his famous proof
of the “Riemann hypothesis for curves,” showed us
that the number of elements in the elliptic curve group
always lies between p + 1− 2

√p and p + 1+ 2
√p (see

the weil conjectures [V.38])). And Deuring proved
that every number in this range is indeed associated
with some elliptic curve mod p.

Say we randomly choose integers x1, y1, a, and then
choose b so that y2

1 is congruent to x3
1 + ax1 + b

(mod n). This gives us the curve with coefficients a, b
and a point P = (x1, y1) on the curve. One can then
mimic the Pollard strategy, with a number k as before
with many divisors, and with the point P playing the
role of u. Let kP denote the k-fold sum of P added to
itself using elliptic curve addition. If kP is the point at
infinity on the curve considered mod p (which it will be
if the number of points on the curve is a divisor of k),
but not on the curve considered mod q, then this gives
us a numberm whose GCD with n is divisible by p and
not by q. We will have factored n.

To see where m comes from it is convenient to con-
sider the curve projectively: we take solutions (x,y, z)
of the congruence y2z ≡ x3 + axz2 + bz3 (mod p).
The triple (cx, cy, cz) when c �= 0 is considered to be
the same as (x,y, z). The mysterious point at infinity
is now demystified; it is just (0,1,0). And our point P is
(x1, y1,1). (This is the mod p version of classical pro-
jective geometry [I.3 §6.7].) Say we work mod n and
compute the point kP = (xk,yk, zk). Then the candi-
date for the number m is just zk. Indeed, if kP is the
point at infinity mod p, then zk ≡ 0 (mod p), and if it
is not the point at infinity mod q, then zk �≡ 0 (mod q).

When Pollard’s p−1 method fails, our only recourse
is to raise k or give up. With the elliptic curve method, if
things do not work for our randomly chosen curve, we
can pick another. Corresponding to the hidden prime p
in n, we are actually picking new elliptic curve groups
mod p, and so gaining a fresh chance for the number of

elements in the group to be smooth. The elliptic curve
method has been quite successful in factoring numbers
which have a prime factor up to about fifty decimal dig-
its, and occasionally even somewhat larger primes have
been discovered.

We conjecture that the expected time for the elliptic
curve method to find the least prime factor p of n is
about

exp
(√

2 logp log logp
)

arithmetic operations mod n. What is holding us back
from proving this conjecture is not lack of knowledge
about elliptic curves, but rather lack of knowledge of
the distribution of smooth numbers.

For more on these and other factorization meth-
ods, the reader is referred to Crandall and Pomerance
(2005).

4 The Riemann Hypothesis and
the Distribution of the Primes

As a teenager looking at a modest table of primes,
Gauss conjectured that their frequency decays loga-
rithmically and that li(x) = ∫ x2 (1/ log t)dt should be a
good approximation for π(x), the number of primes
between 1 and x. Sixty years later, riemann [VI.49]
showed how Gauss’s conjecture can be proved if one
assumes that the Riemann zeta function ζ(s) =∑n n−s
has no zeros in the complex half-plane where the real
part of s is greater than 1

2 . The series for ζ(s) converges
only for Re s > 1, but it may be analytically continued to
Re s > 0, with a simple pole at s = 1. (For a brief descrip-
tion of the process of analytic continuation, see some
fundamental mathematical definitions [I.3 §5.6].)
This continuation may be seen quite concretely via the
identity ζ(s) = s/(s − 1)− s ∫∞1 {x}x−s−1 dx, with {x}
the fractional part of x (so that {x} = x − [x]): note
that this integral converges quite nicely in the half-
plane Re s > 0. In fact, via Riemann’s functional equa-
tion mentioned below, ζ(s) can be continued to a mero-
morphic function in the whole complex plane, with the
single pole at s = 1.

The assertion that ζ(s) �= 0 for Re s > 1
2 is known

as the riemann hypothesis [IV.2 §3]; arguably it is
the most famous unsolved problem in mathematics.
Though hadamard [VI.65] and de la vallée poussin
[VI.67] were able in 1896 to prove (independently) a
weak form of Gauss’s conjecture known as the prime
number theorem [V.29], the apparent breathtaking
strength of the approximation li(x) toπ(x) is uncanny.
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For example, take x = 1022. We have

π(1022) = 201 467 286 689 315 906 290

exactly, and, to the nearest integer, we have

li(1022) ≈ 201 467 286 691 248 261 497.

As you can plainly see, Gauss’s guess is right on the

money!

The numerical computation of li(x) is simple via

numerical methods for integration, and it is directly

obtainable in various mathematics computing pack-

ages. However, the computation of π(1022) (due to

Gourdon) is far from trivial. It would be far too labo-

rious to count these approximately 2 × 1020 primes

one by one, so how are they counted? In fact, we have

various combinatorial tricks to count without listing

everything. For example, one does not need to count

one by one to see that there are exactly 2[1022/6] + 1

integers in the interval from 1 to 1022 that are rela-

tively prime to 6. Rather, one thinks of these numbers

grouped in blocks of six, with two in each block coprime

to 6. (The “+1” comes from the partial block at the end.)

Building on early ideas of Meissel and Lehmer, Lagarias,

Miller, and Odlyzko presented an elegant combinato-

rial method for computing π(x) that takes about x2/3

elementary steps. The method was refined by Deléglise

and Rivat, and then Gourdon found a way to distribute

the computation to many computers.

From work of von Koch, and later Schoenfeld, we

know that the Riemann hypothesis is equivalent to the

assertion that

|π(x)− li(x)| < √x logx (1)

for all x � 3 (see Crandall and Pomerance 2005, exer-

cise 1.37). Thus, the mammoth calculation of π(1022)
might be viewed as computational evidence for the Rie-

mann hypothesis—in fact, if the count had turned out

to violate (1), we would have had a disproof.

It may not be obvious what (1) has to do with the loca-

tion of the zeros ofζ(s). To understand the connection,

let us first dismiss the so-called “trivial” zeros, which

occur at each negative even integer. The nontrivial

zerosρ are known to be infinite in number, and, as men-

tioned above, are conjectured to satisfy Reρ � 1
2 . There

are certain symmetries among these zeros: indeed, if ρ
is a zero, then so are ρ̄, 1− ρ, and 1− ρ̄. Therefore, the

Riemann hypothesis is the assertion that every nontriv-

ial zero has real part equal to 1
2 . (The symmetry with

ρ and 1− ρ, which follows from Riemann’s functional

equation ζ(1 − s) = 2(2π)−s cos( 1
2πs)Γ (s)ζ(s), per-

haps provides some heuristic support for the Riemann
hypothesis.)

The connection to prime numbers begins with the
fundamental theorem of arithmetic [V.16], which
yields the identity

ζ(s) =
∞∑
n=1

n−s =
∏

p prime

∞∑
j=0

p−js

=
∏

p prime

(1− p−s)−1,

a product that converges when Re s > 1. Thus, taking
the logarithmic derivative (that is, taking the logarithm
of both sides and then differentiating), we have

ζ′(s)
ζ(s)

= −
∑

p prime

logp
ps − 1

= −
∑

p prime

∞∑
j=1

logp
pjs

.

That is, if we define Λ(n) to be logp if n = pj for a
prime p and an integer j � 1, and Λ(n) = 0 if n is not
of this form, then we have the identity

∞∑
n=1

Λ(n)
ns

= −ζ
′(s)
ζ(s)

.

Through various relatively routine calculations, one can
then relate the function

ψ(x) =
∑
n�x

Λ(n)

to the residues at the poles of ζ′/ζ, which correspond
to the zeros (and single pole) of ζ. In fact, as Riemann
showed, we have the following beautiful formula:

ψ(x) = x −
∑
ρ

xρ

ρ
− log(2π)− 1

2 log(1− x−2)

if x itself is not a prime or prime power, and where the
sum over the nontrivial zeros ρ of ζ is to be understood
in the symmetric sense where we sum over those ρ with
|Imρ| < T and let T → ∞. Through elementary manip-
ulations, an understanding of the function ψ(x) read-
ily gives an equivalent understanding of π(x), and it
should be clear now that ψ(x) is intimately connected
to the nontrivial zeros ρ of ζ.

The function ψ(x) defined above has a simple inter-
pretation. It is the logarithm of the least common mul-
tiple of the integers in the interval [1, x]. As with
(1) we have an elementary translation of the Riemann
hypothesis: it is equivalent to the assertion that

|ψ(x)− x| < √x log2 x

for all x � 3. This inequality involves only the ele-
mentary concepts of least common multiple, natural



�

44 IV. Branches of Mathematics

logarithm, absolute value, and square root, yet it is
equivalent to the Riemann hypothesis.

A number of nontrivial zeros ρ of ζ(s) have actually
been calculated and it has been verified that they lie on
the line Re s = 1

2 . One might wonder how someone can
computationally verify that a complex number ρ has
Reρ = 1

2 . For example, suppose that we are carrying
calculations to (an unrealistically large) 1010 significant
digits, and suppose we come across a zero with real
part 1

2 + 10−10100
. It would be far beyond the precision

of the calculation to be able to distinguish this num-
ber from 1

2 itself. Nevertheless, we do have a method
for seeing if particular zeros ρ satisfy Reρ = 1

2 . There
are two ideas involved, one of which comes from ele-
mentary calculus. If we have a continuous real-valued
function f(x) defined on the real numbers, we can
sometimes use the intermediate value theorem to count
zeros. For example, say f(1) > 0, f(1.7) < 0, f(2.3) >
0. Then we know for sure that f has at least one zero
between 1 and 1.7, and at least one zero between 1.7
and 2.3. If we know for other reasons that f has exactly
two zeros, then we have accounted for both of them.
To locate zeros of the complex function ζ(s), a real-
valued function g(t) is constructed with the property
that ζ( 1

2 + it) = 0 if and only if g(t) = 0. By looking at
sign changes for g(t) for 0 < t < T , we can get a lower
bound for the number of zeros ρ of ζ with Reρ = 1

2
and 0 < Imρ < T . In addition, we can use the so-called
argument principle from complex analysis to count the
exact number of zeros with 0 < Imρ < T . If we are
lucky and this exact count is equal to our lower bound,
then we have accounted for all of ζ’s zeros here, show-
ing that they all have real part 1

2 (and, in addition, that
they are all simple zeros). If the counts did not match,
it would not be a disproof of the Riemann hypothesis,
but certainly it would indicate a region where we should
be checking the data more closely. So far, whenever
we have tried this approach, the counts have matched,
though sometimes we have been forced to evaluateg(t)
at very closely spaced points.

The first few nontrivial zeros were computed by Rie-
mann himself. The famous cryptographer and early
computer scientist alan turing [VI.94] also computedT&T note: check

style later.
some zeta zeros. The current record for this kind of
calculation is held by Gourdon, who has shown that
the first 1013 zeta zeros with positive imaginary part
all have real part equal to 1

2 , as predicted by Riemann.
Gourdon’s method is a modification of that pioneered
by Odlyzko and Schönhage (1988), who ushered in the
modern age of zeta-zero calculations.

Explicit zeta-function calculations can lead to highly

useful explicit prime number estimates. If pn is the

nth prime, then the prime number theorem implies

that pn ∼ n logn as n → ∞. Actually, there is a sec-

ondary term of order n log logn, and so for all suffi-

ciently large n, we have pn > n logn. By using explicit

zeta estimates, Rosser was able to put a numerical

bound on the “sufficiently large” in this statement, and

then, by checking small cases, was able to prove that

in fact pn > n logn for every n. The paper of Rosser

and Schoenfeld (1962) is filled with highly useful and

numerically explicit inequalities of this kind.

Let us imagine for a moment that the Riemann

hypothesis had been proved. Mathematics is never

“used up,” as there is always that next problem around

the bend. Even if we know that all of zeta’s nontriv-

ial zeros lie on the line Im s = 1
2 , we can still ask how

they are distributed on this line. We have a fairly con-

cise understanding of how many zeros there should

be up to a given height T . In fact, as already found by

Riemann, this count is about (1/2π)T logT . Thus, on

average, the zeros would tend to get closer and closer

with about (1/2π) logT of them in a unit interval near

height T .

This tells us the average distance, or spacing,

between one zeta zero and the next, but there is much

more that one can ask about how these spacings are

distributed. In order to discuss this question, it is very

convenient to “normalize” the spacings, so that the

average (normalized) gap between consecutive zeros

is 1. By Riemann’s result, together with our assump-

tion of the Riemann hypothesis, this can be done if

we multiply a gap near T by (1/2π) logT , or, equiv-

alently, if for each zero ρ we replace its imaginary

part t = Imρ by (1/2π)t log t. In this way we arrive

at a sequence δ1, δ2, . . . of normalized gaps between

consecutive zeros, which on average are about 1.

Checking numerically, we see that some δn are large,

with others close to 0; it is just the average that is 1.

Mathematics is well equipped to study random phe-

nomena, and we have names for various probability

distributions [III.73], such as Poisson, Gaussian, etc.

Is this what is happening here? These zeta zeros are

not random at all, but perhaps thinking in terms of

randomness has promise.

In the early twentieth century, hilbert [VI.63] and

Pólya suggested that the zeros of the zeta function

might correspond to the eigenvalues [I.3 §4.3] of some

operator [III.52]. Now this is provocative! But what
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Figure 1 Nearest-neighbor spacing
and the Gaudin distribution.

operator? Some fifty years later in a now famous con-

versation between Dyson and Montgomery at the Insti-

tute for Advanced Study, it was conjectured that the

nontrivial zeros behave like the eigenvalues of a ran-

dom matrix from the so-called Gaussian unitary ensem-

ble. This conjecture, now known as the GUE conjecture,

can be numerically tested in various ways. Odlyzko has

done this, and found persuasive evidence for the con-

jecture: the higher the batches of zeros one looks at, the

more closely their distribution corresponds to what the

GUE conjecture predicts.

For example, take the 1 041 417 089 numbers δn with

n starting at 1023 + 17 368 588 794. (The imaginary

parts of these zeros are around 1.3 × 1022.) For each

interval (j/100, (j + 1)/100] we can compute the pro-

portion of these normalized gaps that lie in this inter-

val, and plot it. If we were dealing with eigenvalues

from a random matrix from the GUE, we would expect

these statistics to converge to a certain distribution

known as the Gaudin distribution (for which there is

no closed formula, but which is easily computable).

Odlyzko has kindly supplied me with the graph in fig-

ure 1, which plots the Gaudin distribution against the

data just described (but leaves out every second data

point to avoid clutter). Like pearls on a necklace! The

fit is absolutely remarkable.

The vital interplay of thought experiments and

numerical computation has taken us to what we feel is

a deeper understanding of the zeta function. But where

do we go next? The GUE conjecture suggests a con-
nection to random matrix theory, and pursuing further
connections seems promising to many. It may be that
random matrix theory will allow us only to formulate
great conjectures about the zeta function, and will not
lead to great theorems. But then again, who can deny
the power of a glimpse at the truth? We await the next
chapter in this development.

5 Diophantine Equations
and the ABC Conjecture

Let us move now from the Riemann hypothesis to fer-
mat’s last theorem [V.12]. Until the last decade it
too was one of the most famous unsolved problems
in mathematics, once even having a mention on an
episode of Star Trek. The assertion is that the equa-
tion xn+yn = zn has no solutions in positive integers
x, y , z, n, where n � 3. This conjecture had remained
unproved for three and a half centuries until Andrew
Wiles published a proof in 1995. In addition, perhaps
more important than the solution of this particular
Diophantine equation (that is, an equation where the
unknowns are restricted to the integers), the centuries-
long quest for a proof helped establish the field of
algebraic number theory [IV.1]. And the proof itself
established a long-sought and wonderful connection
between modular forms [III.61] and elliptic curves.

But do you know why Fermat’s last theorem is true?
That is, just in case you are not an expert on all of the
intricacies of the proof, are you surprised that there
are in fact no solutions? In fact, there is a fairly simple
heuristic argument that supports the assertion. First
note that the case n = 3, namely x3 + y3 = z3, can be
handled by elementary methods, and this in fact had
already been done by euler [VI.19]. So, let us focus on
the cases when n � 4.1 Let Sn be the set of positive nth
powers of integers. How likely is it that the sum of two
members of Sn is itself a member of Sn? Well, not at
all likely, since Wiles has proved that this never occurs!
But recall that we are trying to think naively.

Let us try to mimic our situation by replacing the set
Sn with a random set. In fact, we will throw all of the
powers together into one set. Following an idea of Erdős
and Ulam (1971) we create a setR by a random process:
each integer m is considered independently, and the
chance it gets thrown into R is proportional tom−3/4.

1. Actually, Fermat himself had a simple proof in the case n = 4,
but we ignore this.
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This process would typically give us about x1/4 num-
bers inR in the interval [1, x], or at least this would be
the order of magnitude. Now the total number of fourth
and higher powers between 1 and x is also about x1/4,
so we can take our random set R as modeling the sit-
uation for these powers, namely the union of all sets
Sn for n � 4. We ask how likely it is to have a+ b = c
where a, b, and c all come from R.

The probability that a numbermmay be represented
as a + b with 0 < a < b < m and a,b ∈ R is propor-
tional to

∑
0<a<m/2 a−3/4(m− a)−3/4, since for each a

less thanm the probability that a andm−a both lie in
R is a−3/4(m−a)−3/4. Actually, there is a minor caveat
when m is even, since then a = m − a when a = 1

2m:
to cover this, we add the single term ( 1

2m)
−3/4 to the

above sum. Replacing eachm−a in the sum with 1
2m,

we get a larger sum that is easy to estimate and turns
out to be proportional to m−1/2. That is, the chance
that a random number m is a sum of two members of
R is at most a certain quantity that is proportional to
m−1/2. Now the events that would have to occur for
m to be given as such a sum involve numbers smaller
than m, so the event that m itself is in R is indepen-
dent of these. Therefore, the probability that m is not
only the sum of two members of R, but also itself a
member of R, is at most a quantity proportional to
m−1/2m−3/4 =m−5/4. So now we can count how many
times we should expect a sum of two members ofR to
itself be a member ofR. This is at most a constant times∑
mm−5/4. But this sum is convergent, so we expect

only finitely many examples. Further, since the tail of
a convergent series is tiny, we do not expect any large
examples.

Thus, this argument suggests that there are at most
finitely many positive integer solutions to

xu +yv = zw, (2)

where the exponents u, v , w are at least 4. Since Fer-
mat’s last theorem is the special case when u = v = w,
we would have at most finitely many counterexamples
to that as well.

This seems tidy enough, but now we get a surprise!
There are actually infinitely many solutions to (2) in pos-
itive integers with u, v , w all at least 4. For example,
note that 174+344 = 175. This is the case a = 1, b = 2,
u = 4 of a more general identity: ifa, b are positive inte-
gers, and c = au + bu, we have (ac)u + (bc)u = cu+1.
Another way to get infinitely many examples is to build
on the possible existence of just one example. If x, y ,
z, u, v ,w are positive integers satisfying (2), then with

the same exponents, we may replace x,y , z with avwx,

auwy , auvz for any integer a, and so get infinitely

many solutions.

The point is that events of the kind that we are con-

sidering—that a given integer is a power—are not quite

independent. For instance, ifA and B are bothuth pow-

ers, then so is AB, and this idea is exploited in the

infinite families just mentioned.

So how do we neatly bar these trivialities and come to

the rescue of our heuristic argument? One simple way

to do this is to insist that the numbers x, y , z in (2) be

relatively prime. This gives no restriction whatsoever in

the Fermat case of equal exponents, since a solution to

xn+yn = zn with d the greatest common divisor of x,

y , z leads to the coprime solution (x/d)n + (y/d)n =
(z/d)n.

Concerning Fermat’s last theorem, one might ask

how far it had actually been verified before the final

proof by Wiles. The paper by Buhler et al. (1993) reports

a verification for all exponents n up to 4 000 000. This

type of calculation, which is far from trivial, has its

roots in nineteenth-century work of kummer [VI.40]

and early-twentieth-century work of Vandiver. In fact,

Buhler et al. (1993) also verify in the same range

a related conjecture of Vandiver dealing with cyclo-

tomic fields, but this conjecture may in fact be false

in general.

The probabilistic thinking above, combined with

computation of small cases, can carry us deeply into

some very provocative conjectures. The above prob-

abilistic argument can easily be extended to suggest

that (2) has at most finitely many relatively prime solu-

tions x, y , z over all possible exponent triples u, v ,

w with 1/u + 1/v + 1/w < 1. This conjecture has

come to be known as the Fermat–Catalan conjecture,

since it contains within it essentially Fermat’s last the-

orem and also the Catalan conjecture (recently proved

by Mihăilescu) that 8 and 9 are the only consecutive

powers.

It is good that we do allow for the possibility that

there are some solutions, and this is where our main

topic of computing comes in. For example, since 1+8 =
9, we have a solution to x7 + y3 = z2, where x = 1,

y = 2, and z = 3. (The exponent 7 is chosen to insure

that the reciprocal sum of the exponents is less than 1.

Of course, we could replace 7 by any larger integer, but

since in each case the power involved is the number

1, they should all together be considered as just one
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example.) Here are the known solutions to (2):

1n + 23 = 32,

25 + 72 = 34,

132 + 73 = 29,

27 + 173 = 712,

35 + 114 = 1222,

338 + 1 549 0342 = 15 6133,

14143 + 2 213 4592 = 657,

92623 + 15 312 2832 = 1137,

177 + 76 2713 = 21 063 9282,

438 + 96 2223 = 30 042 9072.

The larger members were found in an exhaustive com-

puter search by Beukers and Zagier. Perhaps this is the

complete list of all solutions, or perhaps not—we have

no proof.

However, for particular choices of u, v , w, more can

be said. Using results from a famous paper of Faltings,

Darmon and Granville (1995) have shown that for any

fixed choice of u, v , w with reciprocal sum at most 1,

there are at most finitely many coprime triples x, y ,

z solving (2). For a particular choice of exponents, one

might try to actually find all of the solutions. If it can

be handled at all, this task can involve a delicate inter-

play between arithmetic geometry [IV.5], effective

methods in transcendental number theory, and good

hard computing. In particular, the exponent triple sets

{2,3,7}, {2,3,8}, {2,3,9}, and {2,4,5} are known to

have all their solutions in the above table. See Poonen

et al. (2007) for the treatment of the case {2,3,7} and

links to other work.

the abc conjecture [V.1] of Oesterlé and Masser

is deceptively simple. It involves positive integer solu-

tions to the equation a + b = c, hence the name. To

put some meaning into a + b = c, we define the radi-

cal of a nonzero integer n as the product of the primes

that divide n, denoting this as rad(n). So, for exam-

ple, rad(10) = 10, rad(72) = 6, and rad(65 536) = 2.

In particular, high powers have small radicals in com-

parison to the number itself, and so do many other

numbers. Basically, the ABC conjecture asserts that if

a+ b = c, then the radical of abc cannot be too small.

More specifically we have the following.

The ABC conjecture. For each ε > 0 there are at most

finitely many relatively prime positive integer triples a,

b, c with a+ b = c and rad(abc) < c1−ε .

Note that the ABC conjecture immediately solves the
Fermat–Catalan problem. Indeed, ifu, v ,w are positive
integers with 1/u + 1/v + 1/w < 1, then it is easily
found that we must have 1/u + 1/v + 1/w � 41/42.
Suppose we have a coprime solution to (2). Then x �
zw/u and y � zw/v , so that

rad(xuyvzw) � xyz � (zw)41/42.

Thus, the ABC conjecture with ε = 1/42 implies that
there are at most finitely many solutions.

The ABC conjecture has many other marvelous con-
sequences; for a delightful survey, see Granville and
Tucker (2002). In fact, the ABC conjecture and its gen-
eralizations can be used to prove so many things that I
have joked that it is beginning to resemble a false state-
ment, since a false statement implies everything. But
probably the ABC conjecture is true. Indeed, though a
bit harder to see, the Erdős–Ulam probabilistic argu-
ment can be modified to provide heuristic evidence for
it too.

Basic to this argument is a perfectly rigorous result
on the distribution of integers n for which rad(n)
is below some bound. These ideas, which lead to a
more explicit version of the ABC conjecture, are worked
through in the thesis of van Frankenhuijsen and by
Stewart and Tenenbaum. Here is a slightly weaker state-
ment: if a+b = c are relatively prime positive integers
and c is sufficiently large, then we have

rad(abc) > c1−1/
√

log c. (3)

One might wonder how the numerical evidence
stacks up against (3). This inequality asserts that if
rad(abc) = r , then log(c/r)/

√
log c < 1. So, let

T(a, b, c) denote the test statistic log(c/r)/
√

log c. A
Web site maintained by Nitaj (www.math.unicaen.fr/

˜nitaj/abc.html) contains a wealth of information
about the ABC conjecture. Checking the data, there are
quite a few examples with T(a, b, c) � 1, the champion
so far being

a = 72 · 412 · 3113 = 2 477 678 547 239

b = 1116 · 132 · 79 = 613 474 843 408 551 921 511

c = 2 · 33 · 523 · 953 = 613 474 845 886 230 468 750

r = 2 · 3 · 5 · 7 · 11 · 13 · 41 · 79 · 311 · 953

= 28 828 335 646 110,

so that

T(a, b, c) = log(c/r)√
log c

= 2.43886 . . . .

Is it always true that T(a, b, c) < 2.5?
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One can get carried away with heuristics, forgetting
that one is not actually proving a theorem, but mak-
ing a guess. Heuristics are often based on the idea of
randomness, and all bets are off if there is some under-
lying structure. But how do we know that there is no
underlying structure? Consider the case of an “abcd
conjecture.” Here we consider integers a, b, c, and d
with a+b+ c +d = 0. The condition that the terms be
relatively prime now takes on two possible meanings:
pairwise relatively prime or no nontrivial common divi-
sor of all four numbers. The first condition seems more
in the spirit of the three-term conjecture, but may be a
tad too strong in that it disallows using any even num-
bers. So say we take the four terms with no pair having
a common factor greater than 2. Under this condition,
our heuristics seem to suggest that for each ε > 0, we
have

rad(abcd)1+ε <max{|a|, |b|, |c|, |d|} (4)

for at most finitely many cases. But consider the poly-
nomial identity

(x + 1)5 = (x − 1)5 + 10(x2 + 1)2 − 8

(suggested to me by Granville). If we take x as a mul-
tiple of 10, the four terms involved in the identity are
pairwise relatively prime except for the last two, which
have a common factor of 2. Let x = 11k − 1, which is
a multiple of 10. The largest of the four terms is 115k,
and the radical of the product of the four terms is at
most

110(11k − 2)((11k − 1)2 + 1) < 110 · 113k.

The heuristics are saying that this cannot be, yet here
it is right before our eyes!

What is happening is that the polynomial identity is
supplying an underlying structure. For the four-term
abcd conjecture, Granville conjectures that for each
ε > 0, all counterexamples to (4) come from at most
finitely many polynomial families. And the number of
polynomial families grows to infinity as ε shrinks to 0.

We have looked here at only a small portion of
the field of Diophantine equations, and then we have
looked mainly at the dynamic relationship between
heuristics and computational searches for small solu-
tions. For much more on the subject of computational
Diophantine methods, see Smart (1998).

Heuristic arguments often assume that the objects
of study behave as if they were random, and we have
visited several cases where it is useful to think this
way. Other examples include the twin-prime conjecture
(there are infinitely many primes p such that p + 2

is prime), Goldbach’s conjecture (every even number
larger than 2 is the sum of two primes), and countless
other conjectures in number theory. Often the compu-
tational evidence for the probabilistic view is striking,
even overwhelming, and we become convinced of the
truth of our model. But on the other hand, if it is this
pseudo-proof that is all we have to go on, we may still
be very far from the truth. Nevertheless, the interplay
of computations and heuristic thinking forms an indis-
pensable part of our arsenal, and mathematics is the
richer for it.

Remarks and Acknowledgments

I would like to recommend to the reader the book by
Cohen (1993) for a discussion of computational alge-
braic number theory, a subject that is neglected in this
article. I am grateful to the following people, who gener-
ously shared their expertise: X. Gourdon, A. Granville,
A. Odlyzko, E. Schaefer, K. Soundararajan, C. Stewart,
R. Tijdeman, and M. van Frankenhuijsen. I am also
thankful to A. Granville and D. Pomerance for help-
ful suggestions with the exposition. I was supported
in part by NSF grant DMS-0401422.

Further Reading

Agrawal, M., N. Kayal, and N. Saxena. 2004. PRIMES is in P.
Annals of Mathematics 160:781–93.

Buhler, J., R. Crandall, R. Ernvall, and T. Metsänkylä. 1993.
Irregular primes and cyclotomic invariants to four mil-
lion. Mathematics of Computation 61:151–53.

Cohen, H. 1993. A Course in Computational Algebraic Num-
ber Theory. Graduate Texts in Mathematics, volume 138.
New York: Springer.

Crandall, R., and C. Pomerance. 2005. Prime Numbers: A
Computational Perspective, 2nd edn. New York: Springer.

Darmon, H., and A. Granville. 1995. On the equations zm =
F(x,y) and Axp + Byq = Czr . Bulletin of the London
Mathematical Society 27:513–43.
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IV.4 Algebraic Geometry
János Kollár

1 Introduction

Succinctly put, algebraic geometry is the study of geom-
etry using polynomials and the investigation of polyno-
mials using geometry.

Many of us were taught the beginnings of algebraic
geometry in high school, under the name “analytic
geometry.” When we say that y =mx + b is the equa-
tion of a line L, or that x2+y2 = r2 describes a circle C
of radius r , we establish a basic connection between
geometry and algebra.

If we want to find the points where the line L and
the circle C intersect, we just substitute mx + b for
y in the circle equation to get x2 + (mx + b)2 = r2

and solve the resulting quadratic equation to obtain the
x coordinates of the two intersection points.

This simple example encapsulates the method of
algebraic geometry: a geometric problem is translated
into algebra, where it is readily solvable; conversely, we
get insight into algebra problems by using geometry.
It is hard to guess the solutions of systems of poly-
nomial equations, but once a corresponding geometric
picture is drawn, we start to have a qualitative under-
standing of them. The precise quantitative answer is
then provided by algebra.

2 Polynomials and Their Geometry

Polynomials are the expressions one can put together
from variables and numbers by addition and multipli-
cation. The most familiar are one-variable polynomials
such as x3 − x + 4, but we can use two or three vari-
ables to get, for instance, 2x5 − 3xy2 +y3 (which has
degree 5 in two variables) or x5−y7+x2z8−xyz+1
(which has degree 10 in three variables). In general, one
can use n variables, in which case they are frequently
denoted by x1, x2, . . . , xn, and we write f(x1, . . . , xn),
f(x) or simply f to denote an unspecified polynomial.

Polynomials are the only functions that computers
can work with. (Although your pocket calculator is

Figure 1 A hyperboloid intersecting a plane.

likely to have a button for logarithms, it is secretly com-

puting a polynomial whose value at a number b agrees

with logb up to many decimal places.)

We can slightly rewrite the equations we gave earlier

for the line L and the circle C : as y −mx − b = 0 and

x2+y2−r2 = 0. We can then describe L and C as zero

sets: L is the zero set of y −mx − b (that is, the set of

all points (x,y) such that y−mx−b = 0) and C is the

zero set of x2 +y2 − r2.

Similarly, the zero set of 2x2+3y2−z2−7 in 3-space

is a hyperboloid, the zero set of z−x−y in 3-space is a

plane, and the common zero set of these two equations

in 3-space is the intersection of the hyperboloid and the

plane, which is an ellipse (see figure 1).

The set of common zeros of a system of polyno-

mial equations in any number of variables is called an

algebraic set. These are the basic objects of algebraic

geometry.

Most people feel that geometry ends in 3-space. Very

few have a feeling for 4-space, also called space-time,

and 5-space is by and large inconceivable to almost

everyone. So what is the meaning of geometry in many

variables?

Algebra comes to our rescue here. While I have great

difficulty visualizing what a four-dimensional sphere of

radius r in 5-space should be, I can easily write down

its equation,

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − r2 = 0,

and work with it. This equation is also something a

computer can handle, which is immensely useful in

applications.
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I will, nonetheless, stick to two or three variables

for the rest of this article. This is where all geometry

starts and there are plenty of interesting questions and

results.

The importance of algebraic geometry derives from

the fact that significant interactions between algebra

and geometry happen very frequently. Let us look at

two examples, just for illustration.

3 Most Shapes Are Algebraic

Shapes that occur frequently enough to have their own

name, for instance, lines, planes, circles, ellipses, hyper-

bolas, parabolas, hyperboloids, paraboloids, ellipsoids,

are almost all algebraic. Even the more esoteric con-

choid (or shell curve) of Dürer, the trident of newton

[VI.14], and the folium of Kepler are algebraic.

Some shapes cannot be described by polynomial

equations, but they can be described by polynomial

inequalities. For instance, the inequalities 0 � x � a
and 0 � y � b together describe a rectangle with side

lengths a, b. Shapes described by polynomial inequali-

ties are called semi-algebraic, and every polyhedron is

semi-algebraic.

Not everything is an algebraic set, though. Look, for

example, at the graph of the sine function y = sinx.

This crosses the x-axis infinitely many times (at multi-

ples ofπ ). If f(x) is any polynomial, then it has at most

as many roots as its degree, soy = f(x)will never look

like y = sinx.

We can, however, get very close to sinx with a poly-

nomial if we concentrate on values of x that are not too

large. For instance, the degree-7 Taylor polynomial

x − 1
6x

3 + 1
120x

5 − 1
5040x

7

differs from sinx by an error of at most 0.1 for −π <
x < π . This is a very special case of a basic theo-

rem of Nash that says that every “reasonable” geomet-

ric shape is algebraic if we ignore what happens very

far from the origin. So, what is reasonable? Certainly

not everything. Fractals seem profoundly nonalgebraic.

The nicest shapes are manifolds [I.3 §6.9], and all of

these can be described by polynomials.

Nash’s theorem. Let M be any manifold in Rn. Fix any

large number R. Then there is a polynomial f whose

zero set is as close to M as we want, at least inside a

ball of radius R around the origin.

4 Codes and Finite Geometries

Consider the equation x2 + y2 = z2, which describes
a double cone in 3-space (see figure 4). If we confine
ourselves to natural numbers, then the solutions of
x2 + y2 = z2 are the Pythagorean triples, correspond-
ing to right-angled triangles where all sides have inte-
ger lengths, of which the two best-known examples are
(3,4,5) and (5,12,13).

Let us now look at the same equation, but declare that
we care only about the parities of the two sides (that is,
whether they are even or odd). For instance, 32+152 and
42 are both even, so we say that 32 + 152 ≡ 42 (mod 2)
(see modular arithmetic [III.60]). The parities of x2+
y2 and of z2 depend only on those of x, y , and z, so
we can pretend that x, y , and z are all either 0 (the
even case) or 1 (the odd case). Our equation modulo 2
therefore has four solutions:

000, 011, 101, 110.

These look like code words in a computer mes-
sage. It was quite a surprise when it was discovered
that using polynomials and their solutions modulo 2
is a great—probably the best—way of constructing
error-correcting codes (see reliable transmission of
information [VII.6]).

There is something very substantial and new happen-
ing here. Let us think for a moment about what 3-space
is for us. For many it is an amorphous everything, but
for algebraic geometers (with descartes [VI.11] as our
ancestor) it is simply a collection of points described
by three numbers, the x, y , and z coordinates. Let us
make a jump here, and declare that “3-space modulo 2”
is the collection of all “points” given by three coordin-
ates modulo 2. Four of these are listed above, and there
are four more. The beauty of algebra is that suddenly
we can talk about lines, planes, spheres, cones in this
“3-space having only eight points.”

We do not need to stop here, and one can work mod-
ulo any integer. For example, working modulo 7, we
have 0, 1, 2, 3, 4, 5, 6 as possible coordinates, and so
“3-space modulo 7” has 73 = 343 points.

Talking about geometry in these spaces is very
intriguing, but also technically difficult. Its great reward
is that one can view this process as a “discretization”
of ordinary space. Working modulo n for large n (espe-
cially when n is a prime number) gets very close to the
usual geometry.

This approach is especially fruitful in number-theo-
retic questions. It was, for instance, instrumental in
Wiles’s proof of Fermat’s last theorem.
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For more on these topics, see arithmetic geometry

[IV.5].

5 Snapshots of Polynomials

Consider the equation x2 + y2 = R. If R > 0, then the

real solutions form a circle of radius
√
R; if R = 0, we

get only the origin; and if R < 0, we get the empty set.

Thus, if R > 0, then the geometry of the solution set

determines what R is, but otherwise it does not. We

can of course look at complex solutions, and the com-

plex solutions always determine R. (For instance, the

intersection points with the x-axis are (±√R,0).)
If R is a rational number, we can ask about rational

solutions of x2 + y2 = R, and if R is an integer, we

can also look for solutions in the “plane modulo m”

for anym.

One can even look for solutions where x = x(t),
y = y(t) are themselves polynomials in a variable t.
(Most generally, we can ask for solutions where x, y
are elements of any ring containing the number R.)

To my mind, the polynomial is the central object, and

each time we look at solution sets we are taking a “snap-

shot” of the polynomial. Some snapshots are good (like

the above real snapshot for R > 0) and some are bad

(like the above real snapshot for R < 0).

How good can snapshots be? Can we determine a

polynomial from its snapshots?

One frequently talks about “the” equation of a hyper-

bola, but “an” equation would be more correct. Indeed,

the hyperbola x2 − y2 − R = 0 can also be given by

an equation cx2 − cy2 − cR = 0, for any c ≠ 0. We can

also use the equation (x2−y2−R)2 = 0, which we may

well not recognize in its expanded form. Higher powers

can also be used. What about the equation f(x,y) =
(x2 − y2 − R)(x2 + y2 + R2) = 0? If we look only

at real solutions, this is still just the hyperbola since

x2 +y2 +R2 is always positive for x, y real. However,

as with one-variable polynomials, one should look at all

complex roots to understand everything. Then we see

that f(
√−1R,0) = 0, but the complex point (

√−1R,0)
is not on the hyperbola x2 − y2 − R = 0. In general,

as long as R ≠ 0, we get that if f(x,y) is a polynomial

that has exactly the same complex roots as x2−y2−R,

then f = c(x2 −y2 − R)m for somem and c ≠ 0.

Why is the R = 0 case different? The reason is that

for R ≠ 0 the polynomial x2−y2−R is irreducible (that

is, it cannot be written as the product of other polyno-

mials), while x2 − y2 = (x + y)(x − y) is reducible

with irreducible factors x + y and x − y . In the lat-
ter case one gets that if g(x,y) is a polynomial that
has exactly the same complex roots as x2 − y2, then
f = c · (x +y)m(x −y)n for somem, n and c ≠ 0.

The analogous question for systems of equations
is answered by the fundamental theorem of algebraic
geometry. It is sometimes called Hilbert’s theorem on
the zeros, but its German name is used most of the
time. For simplicity, we state only the case of one
equation.

Hilbert’s Nullstellensatz. Two complex polynomials f
and g have the same complex solutions if and only if
they have the same irreducible factors.

We can do even better for polynomials with integer
coefficients. For instance, x2 − y2 − 1 = 0 and 2(x2 −
y2 − 1) = 0 have the same solutions over the real or
complex numbers, and the same solutions modulo p
for any odd prime p, but they have different solutions
modulo 2. The general result in this case is easy and
simple.

Arithmetic Nullstellensatz. Two polynomials with in-
teger coefficients f and g have the same solutions
modulom for everym if and only if f = ±g.

6 Bézout’s Theorem and Intersection Theory

If h(x) is a polynomial of degree n, then it has n
complex roots, at least when they are counted with
multiplicity. What happens with a system f(x,y) =
g(x,y) = 0? Geometrically we see two curves in the
plane, so we expect that there will typically be finitely
many intersection points.

If f , g are both linear, we have two lines in the plane.
These usually intersect in a single point, but they can
be parallel and they can coincide. The first case leads
to the classical declaration that “parallel lines meet at
infinity” and the definition of projective planes and
projective spaces [III.74]. (The introduction of projec-
tive spaces and the corresponding projective varieties
is a key step in algebraic geometry. It is somewhat tech-
nical so we shall skip it here, but it is indispensable even
at the most basic level.)

Next, consider two polynomials of degree 2, that is,
two plane conics. Two smooth conics usually intersect
in at most four points (just try this by drawing two
ellipses). There are also some rather degenerate cases.
Two conics may coincide, or, if they are both reducible,
they can have a common line. In any case, we are ready
to formulate a basic result, dating back to 1779.
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Bézout’s theorem. Let f1(x), . . . , fn(x) be n polyno-

mials in n variables, and for each i let di be the degree

of fi. Then either

(i) the equation(s) f1(x) = · · · = fn(x) = 0 have at

most d1d2 · · ·dn solutions; or

(ii) the fi vanish identically on an algebraic curve C ,

and so there is a continuous family of solutions.

As an example, the second alternative happens for

the system of equations xz − y2 = y3 − z2 = x3 −
z = 0, which has (t, t2, t3) as a solution for any t. This

case is actually quite rare. If we pick the coefficients of

the polynomials fi randomly, then the first alternative

happens with probability 1.

Ideally, we would like to make the stronger claim that

if the first alternative happens, then there are exactly

d1d2 · · ·dn solutions, but counted “with multiplicity.”

This actually works, and gives us our first example of

an extremely useful feature of algebraic geometry. Even

in very degenerate situations it is possible to define

and count the multiplicities easily. This is frequently

of great help since the typical (or “generic”) cases are

usually very hard to compute. To get around this prob-

lem, we can sometimes find a special, degenerate case

where we know that the answer will be the same, but

the computations are much easier.

There are two ways to think about multiplicity: one

algebraic and one geometric. The algebraic definition

is computationally very efficient, but somewhat techni-

cal. The geometric interpretation is easier to explain, so

that is the one we shall give here, but it would be hard

to compute with in practice.

If x = p is an isolated solution of the equations

f1(x) = · · · = fn(x) = 0 with multiplicity m, then

the perturbed system

f1(x)+ ε1 = · · · = fn(x)+ εn = 0

has exactlym solutions near x = p for almost all small

values of the εi.
Intersection theory is the branch of algebraic geom-

etry that deals with generalizations of Bézout’s the-

orem. Above, we looked at intersections of hypersur-

faces—that is, of zero sets of single polynomials—but

we may wish to look at intersections of more general

algebraic sets. Also, even when the second alternative

holds, we may want to count the number of isolated

intersection points; this can be very tricky but also very

useful.

x

y

Figure 2 A smooth cubic: y2 = x3 − x.

7 Varieties, Schemes, Orbifolds, and Stacks

Consider the systemxz = yz = 0 in 3-space. It consists
of two pieces, the z = 0 plane and the x = y = 0
line. It is easy to see that neither the plane nor the line
can be written as the union of algebraic sets (except by
nitpickers who point out that the line is the union of
the line itself and of any point on the line). In general,
any algebraic set can be written in exactly one way as
the union of smaller algebraic sets that in turn cannot
be decomposed further. These basic building blocks are
called irreducible algebraic sets or algebraic varieties.

Sometimes this is not exactly what one would naively
expect. For instance, the curve in figure 2 has two con-
nected components. The two parts are, however, not
algebraic sets.

An explanation is provided by looking at the com-
plex solutions of this equation. We shall see later that
these form a connected set, namely a torus (with a miss-
ing point at infinity). We see two components when
we look at the real solutions because we are taking a
cross-section of this torus.

In general, the zero set f = 0 is irreducible as an alge-
braic set if and only if f is irreducible as a polynomial
(or if it is the power of an irreducible polynomial). The
implication in one direction is easy to see: if f = gh,
then the zero set of f is the union of the zero set of g
and of the zero set of h.

For many questions, keeping track only of the zero
set is not enough. For instance, look at the polynomial
f = x2(x − 1)(x − 2)3. It has degree 6 and three roots
at x = 0,1,2. These roots behave differently, however,
and one usually says that f has a double root at x = 0
and a triple root at x = 2. If we perturb f by adding
a small number ε to it, then the perturbed equation
f(x) + ε = 0 has two (complex) solutions near 0, one
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solution near 1 and three (complex) solutions near 2.

Thus, these multiplicities carry important geometric

meaning about the perturbation of the equation.

Similarly, it is natural to say that while x2y = 0 and

xy3 = 0 define the same algebraic set (consisting of the

two axes), the first “assigns multiplicity 2” to the y-axis

and the other “assigns multiplicity 3” to the x-axis.

More complicated things can happen for systems of

equations. Consider the systems x = y2 = 0 and

x3 = y = 0 in 3-space. Both define the z-axis and it is

reasonable to say that the first does so with multiplic-

ity 2, the second with multiplicity 3. There is, however,

a further difference. In the first case the multiplicity

seems to “go in the y-direction” and in the second case

it seems to go in the x-direction. We can also look at

other systems, like x − cy = y3 = 0, if we want to see

more complicated behavior.

Roughly speaking, a scheme is an algebraic set where

we also keep track of the multiplicities and of the

directions they occur in.

Consider the xy-plane and consider the map that

reflects across the origin. Thus a point (x,y) is mapped

to (−x,−y). Let us try to glue each point (x,y) to its

image (−x,−y). What do we get? The right half-plane

x � 0 is mapped to the left half-plane x � 0, so it is

enough to work out what happens with the right half-

plane. The positive y-axis is glued to the negative y-

axis, and the resulting surface is a dunce cap (but less

pointy).

Algebraically, it is one half of the cone z2 = x2 +y2.

This cone looks nice and smooth except at the ver-

tex. There it is more complicated, but the above con-

struction shows that it can be obtained from a plane

by a reflection across a point. More generally, suppose

we take the n-dimensional space Rn and finitely many

symmetries of it. If we glue together points that move

into each other, we again get an algebraic variety, most

of whose points are smooth, but some of which are

more complicated. A variety made up of pieces like

these is called an orbifold. (When this is defined more

precisely, we also keep track of which symmetries have

been used.) In practice, such varieties occur frequently;

that is why they deserve a separate name.

Finally, if we marry a scheme to an orbifold, the out-

come is a stack. The study of stacks is strongly recom-

mended to people who would have been flagellants in

earlier times.

8 Curves, Surfaces, Threefolds

As with any geometric object, one of the simplest ques-
tions one can ask about a variety is: what is its dimen-
sion? As expected, a curve in the plane has dimen-
sion 1, and a surface in 3-space has dimension 2. This
seems quite simple until one writes down examples like
S = (x4 + y4 + z4 = 0), which is only the origin in R3.
This example is, nonetheless, still two dimensional: the
explanation is that we were looking at the wrong snap-
shot. Using complex numbers we can solve the equa-
tion as z = 4

√
−x4 −y4, so the complex solutions of

x4 + y4 + z4 = 0 can be described by two indepen-
dent variables x, y and a dependent variable z. Thus,
it is quite reasonable to say that S is two dimensional.

This idea works more generally. If X is any variety in
some complex space Cn, then choose a random set of
n independent directions to serve as a basis, or coor-
dinate system, for Cn, and hence for X. With proba-
bility 1 (i.e., except in degenerate cases) one finds that
there is some d such that the first d coordinates of
a point x in X can vary independently, while the rest
depend on them. This number d depends onX only and
is called the dimension (or, to be precise, the algebraic
dimension) of X.

If X is a variety and f is a polynomial, then the inter-
section X∩ (f = 0) has dimension one less than dimX
(unless f vanishes identically on X or never takes the
value zero on X).

If X is a subset of Rn defined by real equations,
and if it is smooth (see the next section for a discus-
sion of smoothness), then its topological dimension
(see dimension [III.17]) is the same as its algebraic
dimension.

For complex varieties, the topological dimension is
twice the algebraic dimension. Thus, for an algebraic
geometer, Cn has dimension n. In particular, for us
C is the “complex line,” whereas everybody else calls
this the “complex plane.” Our “complex plane” is, of
course, C2.

A variety of dimension 1 is called a curve. A surface
is a variety of dimension 2, and a threefold is a variety
of dimension 3.

The theory of algebraic curves is a very well devel-
oped and beautiful subject. We shall see later how one
can start to get an overview of all algebraic curves. Sur-
faces have been intensively studied for the last century,
and now we have reached a reasonably complete under-
standing of them. This is a much more complicated
theory than for curves. Still very little is known for
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(a)

(b) y

y

x

x

Figure 3 Singular cubics: (a) y2 = x3 +x2 and (b) y2 = x3.

varieties of dimension 3 and up. At least conjecturally,
all these dimensions behave in roughly the same way.
Despite some progress, especially in dimension 3, many
questions are wide open.

9 Singularities and Their Resolutions

If we look at the simplest examples of algebraic curves
in figure 3, we see that most points of a curve are
smooth, but that there may be a finite set of more com-
plicated singular points. Let us compare these with the
curve in figure 2.

All three curves pass through the origin, since their
equation has no constant term. The equation of figure 2
has a linear term and the curve looks nice and smooth
at the origin, whereas the equations of figure 3 contain
no linear term and the curves are more complicated at
the origin. This is not an accident. For small values of x,
the higher powers x2, x3, . . . are much smaller than x
in absolute value, so near the origin the linear terms
dominate. If we have only linear terms ax + by = 0,
we get a line through the origin, and an algebraic curve
ax+by+cx2+gxy+ey2+· · · = 0 is close to the line
ax + by = 0, at least for very small values of x and y .

The study of a curve near another point with coordin-
ates (p, q) can be reduced to the case (p, q) = (0,0) via
the coordinate change (x,y) �→ (x − p,y − q).

In general, if f(0) = 0 and f has a (nonzero) lin-
ear term L(f), the hypersurface f = 0 is very close to
the hyperplane L(f) = 0. This is the so-called implicit
function theorem. Such points are called smooth. Points
that are not smooth are called singular. One can easily
show that the singular points of X form an algebraic
set, defined by the vanishing of all partial derivatives
∂f/∂xi. A random hypersurface will, with probability 1,
be smooth, but there are many singular hypersurfaces
as well.

The smooth and singular points of an arbitrary vari-
ety of dimension d can be defined analogously by
comparing X with d-dimensional linear subspaces.

Singularities also occur in other geometric fields,
such as topology and differential geometry, but by and
large these fields shy away from their study (with the
notable exception of catastrophe theory). By contrast,
algebraic geometry provides very powerful tools for
their investigation.

Let us start with singularities of hypersurfaces, or
equivalently with critical points of functions. When
thinking about these it is natural to work not just with
polynomials but with more general power series, that
is, functions f(x1, . . . , xn) that can be written as “poly-
nomials of infinite degree.” For simplicity of notation
we shall assume that f(0) = 0. Two functions f , g
are considered to be equivalent if there is a coordinate
change xi �→ φi(x), where each φi is given by a power
series, such that f(φ1(x), . . . ,φn(x)) = g(x).

In the one-variable case, any f can be written as

f = xm(am + am+1x + · · · ),
where am ≠ 0. The (inverse of the) substitution

x �→ x m√am + am+1x + · · ·
then shows that f is equivalent to xm. The functions
xm are inequivalent for different values ofm, so in this
particular case the lowest-degree monomial occurring
in f determines f up to equivalence. (Note that even if
f is a polynomial, the above change of variable involves
an infinite power series: it is because we cannot invert
polynomials, even locally, that it is more convenient to
consider general power series.)

In general, the lowest-degree terms of a power series
do not determine the singularity, but taking more terms
is usually enough to do so, because of the following
result.

Algebraization of analytic singularities. Given a power
series f , let f�N denote the polynomial obtained from
f by deleting all monomials of degree greater than N .
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If 0 is an isolated singular point of the hypersurface
(f = 0), then f is equivalent to f�N for sufficiently
large N .

To see an example of a nonisolated singularity at 0,
take

g(x,y, z) =
(
y + x

1− x
)2

− z3

= (y + x + x2 + x3 + · · · )2 − z3.

It has singular points not just at 0, but everywhere
along the curve y + (x/(1− x)) = z = 0. On the other
hand, one can easily check that all truncations g�N do
have an isolated singular point at 0.

If we have two power series, f and g, we can view
functions of the form f + εg as perturbations of f .
A very fruitful question of singularity theory asks:
what can we say about the perturbations of a given
polynomial or power series f ?

For instance, in the one-variable case, the polynomial
xm can be perturbed as xm + εxr , which is equivalent
to xr if r < m. Every perturbation contains xm, so
if r > m, then no perturbation of xm will be equiv-
alent to xr (because near the origin xm will be much
larger than xr ). Hence, up to equivalence, the set of all
possible perturbations of xm is {xr : r �m}.

On the other hand, it is not hard to see that for any
given ε, there are only twenty-four different values of η
for which the polynomials xy(x2−y2)+εy2(x2−y2)
andxy(x2−y2)+ηy2(x2−y2) are equivalent. (Indeed,
both polynomials describe four lines through the ori-
gin. The first one gives the lines y = 0, x = y , x = −y ,
and x = −εy , and the second gives the same lines
except that η replaces ε. The linear part of any sup-
posed equivalence gives a linear transformation map-
ping the first set of four lines to the second. There are
twenty-four ways to assign which line goes to which
line.) Thus xy(x2 − y2) has a continuous family of
inequivalent perturbations.

Simple singularities. Suppose that the polynomial
or power series f(x1, . . . , xn) has only finitely many
inequivalent perturbations. Then f is equivalent to one
of the following normal forms:

Am xm+1
1 + x2

2 + · · · + x2
n (m � 1),

Dm x2
1x2 + xm−1

2 + x2
3 + · · · + x2

n (m � 4),

E6 x3
1 + x4

2 + x2
3 + · · · + x2

n,

E7 x3
1 + x1x3

2 + x2
3 + · · · + x2

n,

E8 x3
1 + x5

2 + x2
3 + · · · + x2

n.

Figure 4 A resolution of the cone.

The names should bring to mind the classification

of lie groups [III.50]. The connections are numerous

but not easy to explain. When n = 3, these are also

called Du Val singularities or rational double points.

Consider again the cone z2 = x2 + y2. Earlier, we

described a two-to-one parametrization of it. Here is

another, and for many purposes better, parametriza-

tion over the real numbers.

In the (u,v,w)-space consider the smooth cylinder

u2 + v2 = 1. The map (u,v,w) �→ (uw,vw,w) maps

the cylinder onto the cone (see figure 4). The map is one-

to-one away from the vertex, the preimage of which is

the circle u2 + v2 = 1 in the (w = 0)-plane.

(Sharp-eyed readers will have noticed that this map

is not so nice if we use complex numbers. In general,

we want parametrizations that work both for real and

complex numbers, but that would be quite a bit more

complicated to describe.)

The advantage of the cylinder over the cone is that

it does not have a singularity. Parametrizations of vari-

eties in terms of smooth varieties are very useful, and

there is a major result that tells us that they always

exist, at least when the varieties are real or complex.

(The corresponding result is still unknown for the finite

geometries considered earlier.)

Resolution of singularities (Hironaka). For any variety

X there is another smooth variety Y and a polynomi-

ally defined surjective map π : Y → X such that π is

invertible at all smooth points of X.
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(In the cone example above, one can take the whole
cylinder, but the cylinder minus finitely many points in
the collapsed circle would also work. In order to avoid
such silly cases, we require π to be surjective in a very
strong sense: if a sequence of smooth points xi ∈ X
converges to a limit in X, then a subsequence of their
preimages π−1(xi) converges to a limit in Y .)

10 Classification of Curves

In order to get an idea of how the classification of alge-
braic varieties should proceed, let us look at hyper-
surfaces of degree d in n-space. These are given by
a degree-d polynomial f(x1, . . . , xn) = 0. The set of
all polynomials of degree at most d forms a vector
space Vn,d. Thus hypersurfaces have two obvious dis-
crete invariants, the dimension and the degree, and one
can move between hypersurfaces of the same dimen-
sion and degree by varying the coefficients of f continu-
ously. Moreover, the entire set Vn,d is itself an algebraic
variety. Our aim is to develop a similar understanding
for all varieties, which can be done in two steps.

The first step is to define some integers, naturally
attached to varieties, which stay the same if we change
a variety continuously. Such integers are called discrete
invariants. The simplest example is the dimension.

The second is to show that the set of all varieties
with the same discrete invariant is parametrized by
another algebraic variety, called the moduli space
[IV.8]. Moreover, we would like the variety used for this
parametrization to be chosen as economically as pos-
sible. We will look at this in more detail in the next
section.

Let us see how it is accomplished for curves. Here
there is only one more discrete invariant besides the
dimension, known as the genus of the curve. This
has many different definitions: one of the simplest is
through topology. Let E be a smooth curve and let us
look at its complex points. Locally, this set looks like C,
so it is a topological surface. After patching up some
holes at infinity, we get a compact surface. Multiplica-
tion by

√−1 gives an orientation, so basic topology tells
us that we get a sphere with a certain number of han-
dles attached (see differential topology [IV.7]). The
genus of the curve is defined to be the number of these
handles (that is, the genus of the corresponding sur-
face). To see what this means in practice, let us look at
some examples.

A line in 2-space is like the complex numbers, which
can be viewed as a sphere minus a point. This sphere,

C plus the point at infinity, is also called the Riemann

sphere. So the genus is zero.

Next, we look at conics. Here it is better to use some

projective geometry. Take any tangent of the conic and

move this so that it becomes the line at infinity. Then we

get a parabola, which, in suitable coordinates, is given

by an equation y = x2. The polynomial map t �→ (t, t2),
with its inverse (x,y) �→ x, shows that this parabola is

isomorphic to a line, so again has genus 0.

Cubics are quite a bit more complicated. A first warn-

ing is that y = x3 is the wrong cubic to look at. It is

smooth (and has genus 0) but it is singular at infinity.

(The earlier expediency of keeping silent about projec-

tive geometry starts to bite us!) In any case, the cor-

rect thing to do is to choose the tangent line of the

cubic at an inflection point and move that to infinity.

After some computation we obtain a much-simplified

equation y2 = f(x), where f has degree 3. What is the

genus?

Consider the special case y2 = x(x − 1)(x − 2).
We try to understand the two-to-one projection to the

(complex) x-axis, but it is better to do this when the

x-axis has already had the point at infinity added, so

that it is the Riemann sphere. If we remove the interval

0 � x � 1 and the half line 2 � x � +∞ from the Rie-

mann sphere, then the function y = √x(x − 1)(x − 2)
has two branches. (This means that y takes two differ-

ent values for each x, the positive and negative square

roots of x(x−1)(x−2), but if one moves x about, one

can let y vary in a continuous way.) The sphere minus

two slits is topologically like a cylinder, hence the com-

plex cubic is glued together from two cylinders. So we

get the torus and the genus is 1.

It turns out that a smooth plane curve of degree d
has genus 1

2 (d− 1)(d− 2), but I find this hard to see

directly topologically.

It is a (probably hopeless) dream of algebraic geome-

ters to give a similarly simple description of the

discrete invariants for higher-dimensional varieties.

Unfortunately, the topological invariants of the com-

plex points are not good enough, and they probably

mislead more than help.

As a further illustration of the approach to the clas-

sification of curves, here is a list of all curves of low

genus.

Genus 0. There is only one curve of genus 0. As we

saw, it can be realized as a line or as a conic in the

plane.
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Genus 1. Every curve of genus 1 is a plane cubic, and
it can be given by an equation of the form y2 =
f(x), where f has degree 3. Genus-1 curves are usu-
ally called elliptic curves [III.21], since they first
appeared (in the guise of elliptic integrals) in connec-
tion with the arc length of ellipses. We look at these
in more detail later.

Genus 2. Every curve of genus 2 can be given by an
equation of the form y2 = f(x), where f has
degree 5. (These curves are singular at infinity.) More
generally, if f has degree 2g + 1 or 2g + 2, then the
curve y2 = f(x) has genus g. For g � 3, such curves,
called hyperelliptic, are rather special.

Genus 3. Every curve of genus 3 can be realized as a
plane curve of degree 4 (or it is hyperelliptic).

Genus 4. Every curve of genus 4 can be presented as
a space curve given by two equations of degrees 2
and 3 (or it is hyperelliptic).

It should be emphasized that hyperelliptic curves do
not form a separate family. One can move continuously
from any hyperelliptic curve to a general curve of the
kind described above. This can be seen through more-
complicated representations.

One can continue in this manner a bit longer, up to
about genus 10, but no such explicit construction is
possible when the genus is large.

11 Moduli Spaces

Let us go back to plane cubics, which we parametrized
by the vector space V2,3 of degree-3 polynomials in
two variables. This is not very economical. For instance,
x3 + 2y3 + 1 and 3x3 + 6y3 + 3 are different polyno-
mials, but define the same curve. Furthermore, there
is not much reason to distinguish x3 + 2y3 + 1 from
2x3 + y3 + 1, since they are obtained from each other
by switching the two coordinate axes. More generally,
as we have seen in the previous section, any cubic
curve can be transformed into one given by an equation
y2 = f(x), where f = ax3 + bx2 + cx + d.

This is better but not yet optimal, and there are
two more steps to take. First, one can set the leading
coefficient of f to be 1. Indeed, substitute y = √ay1

and then divide the whole equation by a to get y2
1 =

x3 + · · · . Second, we can make a substitution x =
ux1 + v to get another elliptic curve with equation
y2 = f(ux1 + v) = f1(x1), where f1 is easy to write
down explicitly. One can see that these are the only
coordinate changes that we can make without messing
up the form y2 = (cubic polynomial).

It is still not very clear what happens. To get a better
answer, look at the three roots of f , so f(x) = (x −
r1)(x−r2)(x−r3). (Again, complex numbers inevitably
appear.) If we make the substitution x �→ (r2 − r1)x +
r1, we get a new polynomial f1(x), two of whose roots
are 0 and 1. Thus our elliptic curve is transformed into
y2 = x(x − 1)(x − λ). So instead of the four unknown
coefficients of f , we are down to only one unknown, λ.

This form is still not completely unique. In our trans-
formation we sent r1, r2 to 0, 1, but we could have used
any two roots. For instance, we can substitutex �→ 1−x,
sending λ �→ 1 − λ, or x �→ λx, sending λ �→ λ−1. All
together, the six values

λ,
1
λ
, 1− λ, 1

1− λ ,
−λ

1− λ ,
1− λ
−λ

give “the same” elliptic curve. Most of the time these
six values are different, but there may be coincidences.
For instance, we get only three different values if
λ = −1. This corresponds to the fact that the ellip-
tic curve y2 = x(x − 1)(x + 1) has four symme-
tries: (x,y) �→ (−x,±√−1y) and (x,y) �→ (x,±y).
(An unusual feature of elliptic curves is that they all
have the second pair of symmetries. At λ = 1 we pick
up 4/2 new symmetries, which corresponds to halving
the number of different values above.)

The best way to think about it is to view this as
an action of the symmetric group S3 (the group of
permutations of a three-element set) on the set C \
{0,1}.

It is not at all obvious that we have run out of tricks,
but we have in fact reached the final result.

Moduli of elliptic curves. The set of all elliptic curves
is in a natural one-to-one correspondence with the
points of the quotient orbifold (C \ {0,1})/S3. The orb-
ifold points correspond to the elliptic curves with extra
automorphisms.

This is the simplest illustration of a general phe-
nomenon.

Moduli principle. In most cases of interest, the set of
all algebraic varieties with fixed discrete invariants is
in a natural one-to-one correspondence with the points
of an orbifold. The orbifold points correspond to the
varieties with extra automorphisms.

The moduli orbifold (also called the moduli space) of
smooth curves of genus g is denoted byMg . These are
among the most intensely studied orbifolds in algebraic
geometry, especially since the recent discovery of their
fundamental position in string theory [IV.17 §2] and
mirror symmetry [IV.16].
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12 Effective Nullstellensatz

In order to show that there are still interesting ele-
mentary questions in algebraic geometry, let us try to
decide when m given polynomials f1, . . . , fm have no
common complex zero. The classical answer is given
by the following result, which tells us that an obviously
necessary condition is in fact sufficient.

Weak Nullstellensatz. The polynomials f1, . . . , fm
have no common complex zero if and only if there are
polynomials g1, . . . , gm such that

g1f1 + · · · + gmfm = 1.

Let us now make a guess that we can find gj with
degree at most 100. We can then write

gj =
∑

i1+···+in�100

aj,i1,...,inx
i1
1 · · ·xinn ,

where the aj,i1,...,in are indeterminates. If we write
g1f1 + · · · + gmfm as a polynomial in the variables
x1, . . . , xn, then all the coefficients must vanish, save
the constant term which must equal 1. Thus we get
a system of linear equations in the indeterminates
aj,i1,...,in . The solvability of systems of linear equations
is well-known (with good computer implementations).
Thus we can decide if there is a solution with deggj �
100. Of course it is possible that 100 was too small
a guess, and we may have to repeat the process with
larger and larger degree bounds. Will this ever end?
The answer is given by the following result, which was
proved only recently.

Effective Nullstellensatz. Let f1, . . . , fm be polyno-
mials of degree less than or equal to d in n variables,
where d � 3, n � 2. If they have no common zero,
then g1f1 + · · · + gmfm = 1 has a solution such that
deggj � dn − d.

For most systems, one can find solutions with
deggj � (n−1)(d−1), but in general the upper bound
dn − d cannot be improved.

As explained above, this provides a computational
method for deciding whether or not a system of polyno-
mial equations has a common solution. Unfortunately,
this is rather useless in practice as we end up with
exceedingly large linear systems. We still do not have a
computationally effective and foolproof method.

13 So, What Is Algebraic Geometry?

To me algebraic geometry is a belief in the unity of
geometry and algebra. The most exciting and profound

developments arise from the discovery of new connec-
tions. We have seen hints of some of these; many more
were left unmentioned. Born with Cartesian coordin-
ates, algebraic geometry is now intertwined with cod-
ing theory, number theory, computer-aided geometric
design, and theoretical physics. Several of these con-
nections have emerged in the last decade, and I hope
to see many more in the future.

Further Reading

Most of the algebraic geometry literature is very tech-
nical. A notable exception is Plane Algebraic Curves
(Birkhäuser, Boston, MA, 1986), by E. Brieskorn and
H. Knörrer, which starts with a long overview of alge-
braic curves through arts and sciences since antiquity,
with many nice pictures and reproductions. A Scrap-
book of Complex Curve Theory (American Mathemat-
ical Society, Providence, RI, 2003), by C. H. Clemens,
and Complex Algebraic Curves (Cambridge University
Press, Cambridge, 1992), by F. Kirwan, also start at an
easily accessible level, but then delve more quickly into
advanced subjects.

The best introduction to the techniques of algebraic
geometry is Undergraduate Algebraic Geometry (Cam-
bridge University Press, Cambridge, 1988), by M. Reid.
For those wishing for a general overview, An Invitation
to Algebraic Geometry (Springer, New York, 2000), by
K. E. Smith, L. Kahanpää, P. Kekäläinen, and W. Traves, is
a good choice, while Algebraic Geometry (Springer, New
York, 1995), by J. Harris, and Basic Algebraic Geometry,
volumes I and II (Springer, New York, 1994), by I. R.
Shafarevich, are suitable for more systematic readings.

IV.5 Arithmetic Geometry
Jordan S. Ellenberg

1 Diophantine Problems, Alone and in Teams

Our goal is to sketch some of the essential ideas of
arithmetic geometry; we begin with a problem which,
on the face of it, involves no geometry and only a bit of
arithmetic.

Problem. Show that the equation

x2 +y2 = 7z2 (1)

has no solution in nonzero rational numbers x, y , z.

(Note that it is only in the coefficient 7 that (1) differs
from the Pythagorean equation x2 + y2 = z2, which
we know has infinitely many solutions. It is a feature of
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arithmetic geometry that modest changes of this kind
can have drastic effects!)

Solution. Suppose x, y , z are rational numbers satis-
fying (1); we will derive from this a contradiction.

If n is the least common denominator of x, y , z, we
can write

x = a/n, y = b/n, z = c/n
such that a, b, c, and n are integers. Our original
equation (1) now becomes(

a
n

)2

+
(
b
n

)2

= 7
(
c
n

)2

,

and multiplying through by n2 one has

a2 + b2 = 7c2. (2)

If a, b, and c have a common factor m, then we can
replace them by a/m, b/m, and c/m, and (2) still holds
for these new numbers. We may therefore suppose that
a, b, and c are integers with no common factor.

We now reduce the above equation modulo 7 (see
modular arithmetic [III.60]). Denote by ā and b̄ the
reductions of a and bmodulo 7. The right-hand side of
(2) is a multiple of 7, so it reduces to 0. We are left with

ā2 + b̄2 = 0. (3)

Now there are only seven possibilities for ā, and seven
possibilities for b̄. So the analysis of the solutions of
(3) amounts to checking the forty-nine choices of ā, b̄
and seeing which ones satisfy the equation. A few min-
utes of calculation are enough to convince us that (3) is
satisfied only if ā = b̄ = 0.

But saying that ā = b̄ = 0 is the same as saying that
a and b are both multiples of 7. This being the case,
a2 and b2 are both multiples of 49. It follows that their
sum, 7c2, is a multiple of 49 as well. Therefore, c2 is
a multiple of 7, and this implies that c itself is a mul-
tiple of 7. In particular, a, b, and c share a common
factor of 7. We have now arrived at the desired contra-
diction, since we chose a, b, and c to have no common
factor. Thus, the hypothesized solution leads us to a
contradiction, so we are forced to conclude that there
is not, in fact, any solution to (1) consisting of nonzero
rational numbers.1

In general, the determination of rational solutions to
a polynomial equation like (2) is called a Diophantine
problem. We were able to dispose of (2) in a paragraph,

1. Exercise: why does our argument not obtain a contradiction from
the solution x = y = z = 0?

but that turns out to be the exception: in general, Dio-

phantine problems can be extraordinarily difficult. For

instance, we might modify the exponents in (2) and

consider the equation

x5 +y5 = 7z5. (4)

I do not know whether (4) has any solutions in nonzero

rational numbers or not; one can be sure, though, that

determining the answer would be a substantial piece

of work, and it is quite possible that the most powerful

techniques available to us are insufficient to answer this

simple question.

More generally, one can take an arbitrary commuta-

tive ring [III.83] R, and ask whether a certain polyno-

mial equation has solutions in R. For instance, does

(2) have a solution with x, y , z in the polynomial

ring C[t]? (The answer is yes. We leave it as an exercise

to find some solutions.) We call the problem of solving

a polynomial equation over R a Diophantine problem

over R. The subject of arithmetic geometry has no pre-

cise boundary, but to a first approximation one may say

that it concerns the solution of Diophantine problems

over subrings of number fields [III.65]. (To be honest,

a problem is usually called Diophantine only when R is

a subring of a number field. However, the more general

definition suits our current purposes.)

With any particular equation like (2), one can asso-

ciate infinitely many Diophantine problems, one for

each commutative ring R. A central insight—in some

sense the basic insight—of modern algebraic geometry

is that this whole gigantic ensemble of problems can

be treated as a single entity. This widening of scope

reveals structure that is invisible if we consider each

problem on its own. The aggregate we make of all these

Diophantine problems is called a scheme. We will return

to schemes later, and will try, without giving precise

definitions, to convey some sense of what is meant by

this not very suggestive term.

A word of apology: I will give only the barest sketch

of the immense progress that has taken place in arith-

metic geometry in recent decades—there is simply too

much to cover in an article of the present scope. I have

chosen instead to discuss at some length the idea of

a scheme, assuming, I hope, minimal technical know-

ledge on the part of the reader. In the final section,

I shall discuss some outstanding problems in arith-

metic geometry with the help of the ideas developed

in the body of the article. It must be conceded that the

theory of schemes, developed by Grothendieck and his
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collaborators in the 1960s, belongs to algebraic geom-
etry as a whole, and not to arithmetic geometry alone.
I think, though, that in the arithmetic setting, the use
of schemes, and the concomitant extension of geomet-
ric ideas to contexts that seem “nongeometric” at first
glance, is particularly central.

2 Geometry without Geometry

Before we dive into the abstract theory of schemes, let
us splash around a little longer among the polynomial
equations of degree 2. Though it is not obvious from
our discussion so far, the solution of Diophantine prob-
lems is properly classified as part of geometry. Our goal
here will be to explain why this is so.

Suppose we consider the equation

x2 +y2 = 1. (5)

One can ask: which values of x,y ∈ Q satisfy (5)? This
problem has a flavor very different from that of the pre-
vious section. There we looked at an equation with no
rational solutions. We shall see in a moment that (5),
by contrast, has infinitely many rational solutions. The
solutions x = 0, y = 1 and x = 3

5 , y = − 4
5 are rep-

resentative examples. (The four solutions (±1,0) and
(0,±1) are the ones that would be said, in the usual
mathematical parlance, to be “staring you in the face.”)

Equation (5) is, of course, immediately recognizable
as “the equation of a circle.” What, precisely, do we
mean by that assertion? We mean that the set of pairs of
real numbers (x,y) satisfying (5) forms a circle when
plotted in the Cartesian plane.

So geometry, as usually construed, makes its en-
trance in the figure of the circle. Now suppose that we
want to find more solutions to (5). One way to proceed
is as follows. Let P be the point (1,0), and let L be a
line through P of slope m. Then we have the following
geometric fact.

(G) The intersection of a line with a circle consists of
either zero, one, or two points; the case of a single
point occurs only when the line is tangent to the
circle.

From (G) we conclude that, unless L is the tangent line
to the circle at P, there is exactly one point other than
P where the line intersects the circle. In order to find
solutions (x,y) to (5), we must determine coordinates
for this point. So suppose L is the line through (1,0)
with slope m, which is to say it is the line Lm whose
equation is y = m(x − 1). Then in order to find the

x-coordinates of the points of intersection between Lm
and the circle, we need to solve the simultaneous equa-
tions y =m(x − 1) and x2 + y2 = 1; that is, we need
to solve x2 +m2(x − 1)2 = 1 or, equivalently,

(1+m2)x2 − 2m2x + (m2 − 1) = 0. (6)

Of course, (6) has the solutionx = 1. How many other
solutions are there? The geometric argument above
leads us to believe that there is at most one solution
to (6). Alternatively, we can use the following algebraic
fact, which is analogous2 to the geometric fact (G).

(A) The equation (1+m2)x2 − 2m2x + (m2 − 1) = 0
has either zero, one, or two solutions in x.

Of course, the conclusion of statement (A) holds for
any nontrivial quadratic equation in x, not just (6); it
is a consequence of the factor theorem.

In this case, it is not really necessary to appeal to any
theorem; one can find by direct computation that the
solutions of (6) are x = 1 and x = (m2 − 1)/(m2 +
1). We conclude that the intersection between the unit
circle and Lm consists of (0,1) and the point Pm with
coordinates (

m2 − 1
m2 + 1

,
−2m
m2 + 1

)
. (7)

Equation (7) establishes a correspondence m �→ Pm,
which associates with each slopem a solution Pm to (5).
What is more, since every point on the circle, other than
(1,0) itself, is joined to (1,0) by a unique line, we find
that we have established a one-to-one correspondence
between slopes m and solutions, other than (1,0), to
equation (5).

A very nice feature of this construction is that it
allows us to construct solutions to (5) not only over
R but over smaller fields, like Q: it is evident that, when
m is rational, so are the coordinates of the solution
yielded by (7). For example, taking m = 2 yields the
solution ( 3

5 ,− 4
5 ). In fact, not only does (7) show us that

(5) admits infinitely many solutions over Q, it also gives
us an explicit way to parametrize the solutions in terms
of a variablem. We leave it as an exercise to prove that
the solutions of (5) over Q, apart from (1,0), are in one-
to-one correspondence with rational values ofm. Alas,
rare is the Diophantine problem whose solutions can
be parametrized in this way! Still, polynomial equations
like (5) with solutions that can be parametrized by one

2. Note that (A), unlike (G), contains no mention of tangency; that is
because the notion of tangency is more subtle in the algebraic setting,
as we will see in section 4 below.
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or more variables play a special role in arithmetic geom-
etry; they are called rational varieties and constitute by
any measure the best-understood class of examples in
the subject.

I want to draw your attention to one essential fea-
ture of this discussion. We relied on geometric intu-
ition (e.g., our knowledge of facts like (G)) to give us
ideas about how to construct solutions to (5). On the
other hand, now that we have erected an algebraic jus-
tification for our construction, we can kick away our
geometric intuition as needless scaffolding. It was a
geometric fact about lines and circles that suggested
to us that (6) should have only one solution other than
x = 1. However, once one has had that thought, one can
prove that there is at most one such solution by means
of the purely algebraic statement (A), which involves no
geometry whatsoever.

The fact that our argument can stand without any ref-
erence to geometry means that it can be applied in sit-
uations that might not, at first glance, seem geometric.
For instance, suppose we wished to study solutions to
(5) over the finite field F7. Now this solution set would
not seem rightfully to be called “a circle” at all—it is
just a finite set of points! Nonetheless, our geometri-
cally inspired argument still works perfectly. The pos-
sible values of m in F7 are 0, 1, 2, 3, 4, 5, 6, and the
corresponding solutions Pm are (−1,0), (0,−1), (2,2),
(5,5), (5,2), (2,5), (0,1). These seven points, together
with (1,0), form the whole solution set of (5) over F7.

We have now started to reap the benefits of consid-
ering a whole bundle of Diophantine problems at once;
in order to find the solutions to (5) over F7, we used
a method that was inspired by the problem of find-
ing solutions to (5) over R. Similarly, in general, meth-
ods suggested by geometry can help us solve Diophan-
tine problems. And these methods, once translated into
purely algebraic form, still apply in situations that do
not appear to be geometric.

We must now open our minds to the possibility that
the purely algebraic appearance of certain equations is
deceptive. Perhaps there could be a sense of “geometry”
that was general enough to include entities like the
solution set of (5) over F7, and in which this particular
example had every right to be called a “circle.” And why
not? It has properties a circle has: most importantly for
us, it has either zero, one, or two intersection points
with any line. Of course, there are features of “circle-
ness” which this set of points lacks: infinitude, continu-
ity, roundness, etc. But these latter qualities turn out to
be inessential when we are doing arithmetic geometry.

From our viewpoint the set of solutions of (5) over F7

has every right to be called the unit circle.
To sum up, you might think of the modern point of

view as an upending of the traditional story of Carte-
sian space. There, we have geometric objects (curves,
lines, points, surfaces) and we ask questions such as,
“What is the equation of this curve?” or “What are the
coordinates of that point?” The underlying object is the
geometric one, and the algebra is there to tell us about
its properties. For us, the situation is exactly reversed:
the underlying object is the equation, and the various
geometric properties of solution sets of the equation
are merely tools that tell us about the equation’s alge-
braic properties. For an arithmetic geometer, “the unit
circle” is the equationx2 +y2 = 1. And the round thing
on the page? That is just a picture of the solutions to
the equation over R. It is a distinction that makes a
remarkable difference.

3 From Varieties to Rings to Schemes

In this section, we will attempt to give a clearer answer
to the question, “What is a scheme?” Instead of trying to
lay out a precise definition—which requires more alge-
braic apparatus than would fit comfortably here—we
will approach the question by means of an analogy.

3.1 Adjectives and Qualities

So let us think about adjectives. Any adjective, such as
“yellow” for instance, picks out a set of nouns to which
the adjective applies. For each adjective A, we might
call this set of nouns Γ (A). For instance, Γ (“yellow”) is
an infinite set that might look like {lemon,school bus,
banana,sun, . . . }.3 And anyone would agree that Γ (A)
is an important thing to know about A.

Now suppose that, moved by a desire for lexical par-
simony, a theoretician among us suggested that adjec-
tives could in fact be dispensed with entirely. If, instead
of A, we spoke only of Γ (A), we could get by with a
grammatical theory involving only nouns.

Is this a good idea? Well, there are certainly some
obvious ways that things could go wrong. For instance,
what if lots of different adjectives were sent to the same
set of nouns? Then our new viewpoint would be less
precise than the old one. But it certainly seems that if
two adjectives apply to exactly the same set of nouns,

3. Of course, in real life, there are nouns whose relationship with
“yellow” is not so clear-cut, but since our goal is to make this look like
mathematics, let us pretend that every object in the world is either
definitively yellow or definitively not yellow.
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then it is fair to say that the adjectives are the same, or

at least synonymous.

What about relationships between adjectives? For

instance, we can ask of two adjectives whether one

is stronger than another, in the way that “gigantic”

is stronger than “large.” Is this relationship between

adjectives still visible on the level of sets of nouns? The

answer is yes: it seems fair to say that A is “stronger

than” B precisely when Γ (A) is a subset of Γ (B). In other

words, what it means to say that “gigantic” is stronger

than “large” is that all gigantic things are large, though

some large things may not be gigantic.

So far, so good. We have paid a price in technical diffi-

culty: it is much more cumbersome to speak of infinite

sets of nouns than it was to use simple, familiar adjec-

tives. But we have gained something, too: the oppor-

tunity for generalization. Our theoretician—whom we

may now call a “set-theoretic grammarian”—observes

that there is, perhaps, nothing special about the sets

of nouns that happen to be of the form Γ (A) for some

already known adjective A. Why not take a conceptual

leap and redefine the word “adjective” to mean “a set of

nouns”? To avoid confusion with the usual meaning of

“adjective,” the theoretician might even use a new term,

like “quality,” to refer to his new objects of study.

Now we have a whole new world of qualities to play

with. For example, there is a quality {“school bus”,

“sun”} which is stronger than “yellow,” and a quality

{“sun”} (not the same thing as the noun “sun”!) which is

stronger than the qualities “yellow,” “gigantic,” “large,”

and {“school bus”, “sun”}.
I may not have convinced you that, on balance, this

reconception of the notion of “adjective” is a good

idea. In fact, it probably is not, which is why set-theo-

retic grammar is not a going concern. The correspond-

ing story in algebraic geometry, however, is quite a

different matter.

3.2 Coordinate Rings

A warning: the next couple of sections will be difficult

going for those not familiar with rings and ideals—such

readers can either skip to section 4, or try to follow the

discussion after reading rings, ideals, and modules

[III.83] (see also algebraic numbers [IV.1]).

Let us recall that a complex affine variety (from now

on, just “variety”) is the set of solutions over C to some

finite set of polynomial equations. For instance, one

variety V we could define is the set of points (x,y)

in C2 satisfying our favorite equation

x2 +y2 = 1. (8)

Then V is what we called in the previous section “the
unit circle,” though in fact the shape of the set of
complex solutions of (8) is a sphere with two points
removed. (This is not supposed to be obvious.) It is a
question of general interest, given some variety X, to
understand the ring of polynomial functions that take
points on X to complex numbers. This ring is called the
coordinate ring of X, and is denoted Γ (X).

Certainly, given any polynomial in x and y , we can PUP: Tim prefers
the current
wording to that
suggested by the
proofreader. OK?

regard it as a function defined on our particular vari-
ety V . So is the coordinate ring of V just the polyno-
mial ring C[x,y]? Not quite. Consider, for instance, the
function f = 2x2+2y2+5. If we evaluate this function
at various points on V ,

f(0,1) = 7, f (1,0) = 7,

f (1/
√

2,1/
√

2) = 7, f (i,
√

2) = 7, . . . ,

we notice that f keeps taking the same value; indeed,
since x2 + y2 = 1 for all (x,y) ∈ V , we see that f =
2(x2 + y2) + 5 takes the value 7 at every point on V .
So 2x2+2y2+5 and 7 are just different names for the PUP: Tim thinks

the two sentences
in a row that start
with ‘So’ are OK as
it fits with the
author’s
conversational
style. OK?

same function on V .
So Γ (V) is smaller than C[x,y]; it is the ring obtained

from C[x,y] by declaring two polynomials f and g
to be the same function whenever they take the same
value at every point of V . (More formally, we are defin-
ing an equivalence relation [I.2 §2.3] on the set of
complex polynomials in two variables.) It turns out that
f and g have this property precisely when their differ-
ence is a multiple of x2+y2−1. Thus, the ring of poly-
nomial functions on V is the quotient of C[x,y] by the
ideal generated by x2 +y2 − 1. This ring is denoted by
C[x,y]/(x2 +y2 − 1).

We have shown how to attach a ring of functions to
any variety. It is not hard to show that, if X and Y are
two varieties, and if their coordinate rings Γ (X) and
Γ (Y) are isomorphic [I.3 §4.1], then X and Y are in
a sense the “same” variety. It is a short step from this
observation to the idea of abandoning the study of vari-
eties entirely in favor of the study of rings. Of course,
we are here in the position of the set-theoretic gram-
marian in the parable above, with “variety” playing the
part of “adjective” and “coordinate ring” the part of “set
of nouns.”

Happily, we can recover the geometric properties of
a variety from the algebraic properties of its coordinate
ring; if this were not the case, the coordinate ring would
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not be such a useful object! The relationship between
geometry and algebra is a long story—and much of it
belongs to algebraic geometry in general, not arithmetic
geometry in particular—but to give the flavor, let us
discuss some examples.

A straightforward geometric property of a variety is
irreducibility. We say a variety X is reducible if X can
be expressed as the union of two varieties X1 and X2,
neither of which is the whole of X. For example, the
variety

x2 = y2 (9)

in C2 is the union of the lines x = y andx = −y . A vari-PUP: this sentence
is fine.

ety is called irreducible if it is not reducible. All varieties
are thus built up from irreducible varieties: the relation-
ship between irreducible varieties and general varieties
is rather like the relationship between prime numbers
and general positive integers.

Moving from geometry to algebra, we recall that a
ring R is called an integral domain if, whenever f , g
are nonzero elements of R, their product fg is also
nonzero; the ring C[x,y] is a good example.

Fact. A variety X is irreducible if and only if Γ (X) is an
integral domain.

Experts will note that we are glossing over issues of
“reducedness” here.

We will not prove this fact, but the following exam-
ple is illustrative: consider the two functions f = x−y
and g = x + y on the variety X defined by (9). Nei-
ther of these functions is the zero function; note, for
instance, that f(1,−1) is nonzero, as is g(1,1). Their
product, however, is x2 −y2, which is equal to zero
on X; so Γ (X) is not an integral domain. Notice that
the functions f and g that we chose are closely related
to the decomposition of X as the union of two smaller
varieties.

Another crucial geometric notion is that of functions
from one variety to another. (It is common practice to
call such functions “maps” or “morphisms”; we will use
the three words interchangeably.) For instance, sup-
pose that W is the variety in C3 determined by the
equation xyz = 1. Then the map F : C3 → C2 defined
by

F(x,y, z) =
(

1
2
(x +yz), 1

2i
(x −yz)

)

maps points of W to points of V .
It turns out that knowing the coordinate rings of

varieties makes it very easy to see the maps between
the varieties. We merely observe that if G : V1 → V2

is a map between varieties V1 and V2, and if f is a

polynomial function on V2, then we have a polynomial
function on V1 that sends every point v to f(G(v)).
This function on V1 is denoted by G∗(f ). For exam-
ple, if f is the function x +y on V , and F is the map
above, F∗(f ) = 1

2 (x +yz)+ (1/2i)(x −yz). It is easy
to check that G∗ is a C-algebra homomorphism (that is,
a homomorphism of rings that sends each element of
C to itself) from Γ (V2) to Γ (V1). What is more, one has
the following theorem.

Fact. For any pair of varieties V , W , the correspon-
dence sending G to G∗ is a bijection between the poly-
nomial functions sending W to V and the C-algebra
homomorphisms from Γ (V) to Γ (W).

You would not be far off in thinking of the statement
“there is an injective map from V to W” as analogous
to “quality A is stronger than quality B.”

The move to transform geometry into algebra is
not something one undertakes out of sheer love of
abstraction, or hatred of geometry. Instead, it is part
of the universal mathematical instinct to unify seem-
ingly disparate theories. I cannot put it any better
than Dieudonné (1985) does in his History of Algebraic
Geometry :

. . . from [the 1882 memoirs of] Kronecker and Dede-
kind–Weber dates the awareness of the profound
analogies between algebraic geometry and the theory
of algebraic numbers, which originated at the same
time. Moreover, this conception of algebraic geometry
is the most simple and most clear for us, trained as
we are in the wielding of “abstract” algebraic notions:
rings, ideals, modules, etc. But it is precisely this
“abstract” character that repulsed most contempo-
raries, disconcerted as they were by not being able
to recover the corresponding geometric notions eas-
ily. Thus the influence of the algebraic school remained
very weak up until 1920. . . . It certainly seems that Kro-
necker was the first to dream of one vast algebraico-
geometric construction comprising these two theories
at once; this dream has begun to be realized only
recently, in our era, with the theory of schemes.

Let us therefore move on to schemes.

3.3 Schemes

We have seen that each variety X gives rise to a ring
Γ (X), and furthermore that the algebraic study of these
rings can stand in for the geometric study of varieties.
But just as not every set of nouns corresponds to an
adjective, not every ring arises as the coordinate ring
of a variety. For example, the ring Z of integers is not
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the coordinate ring of a variety, as we can see by the
following argument: for every complex number a and
every variety V , the constant function a is a function on
V , and therefore C ⊂ Γ (V) for every variety V . Since Z

does not contain C as a subring, it is not the coordinate
ring of any variety.

Now we are ready to imitate the set-theoretic gram-
marian’s coup de grâce. We know that some, but not all,
rings arise from geometric objects (varieties); and we
know that the geometry of these varieties is described
by algebraic properties of these special rings. Why not,
then, just consider every ring R to be a “geometric
object” whose geometry is determined by algebraic
properties of R? The grammarian needed to invent a
new word, “quality,” to describe his generalized adjec-
tives; we are in the same position with our rings-that-
are-not-coordinate-rings; we will call them schemes.

So, after all this work, the definition of scheme is
rather prosaic—schemes are rings! (In fact, we are hid-
ing some technicalities; it is correct to say that affine
schemes are rings. Restricting our attention to affine
schemes will not interfere with the phenomena that
we are aiming to explain.) More interesting is to ask
how we can carry out the task whose difficulty “dis-
concerted” the early algebraic geometers—how can we
identify “geometric” features of arbitrary rings?

For instance, if R is supposed to be an arbitrary geo-
metric object, it ought to have “points.” But what are
the “points” of a ring? Clearly we cannot mean by this
the elements of the ring; for in the case R = Γ (X), the
elements of R are functions onX, not points onX. What
we need, given a point p on X, is some entity attached
to the ring R that corresponds to p.

The key observation is that we can think of p as a
map from Γ (X) to C: given a function f from Γ (X)
we map it to the complex number f(p). This map is a
homomorphism, called the evaluation homomorphism
at p. Since points on X give us homomorphisms on
Γ (X), a natural way to define the word “point” for the
ring R = Γ (X), without using geometry, is to say that
a “point” is a homomorphism from R to C. It turns out
that the kernel of such a homomorphism is a prime
ideal. Moreover, with the exception of the zero ideal,
every prime ideal of R arises from a point p of X. So a
very concise way to describe the points of X might be
to say that they are the nonzero prime ideals of R.

The definition we have arrived at makes sense for
all rings R, and not just those of the form R = Γ (X).
So we might define the “points” of a ring R to be its
prime ideals. (Considering all prime ideals, rather than

only the nonzero ones, turns out to be a wiser technical
choice.) The set of prime ideals of R is given the name
SpecR, and it is SpecR that we call the scheme associ-
ated with R. (More precisely, SpecR is defined to be a
“locally ringed topological space” whose points are the
prime ideals of R, but we will not need the full power
of this definition for our discussion here.)

We are now in a position to elucidate our claim,
made in the first section, that a scheme incorporates
into one package Diophantine problems over many dif-
ferent rings. Suppose, for instance, that R is the ring
Z[x,y]/(x2+y2−1). We are going to catalog the homo-
morphisms f : R → Z. To specify f , I merely have to
tell you the values of f(x) and f(y) in Z. But I cannot
choose these values arbitrarily: since x2 +y2 − 1 = 0
in R, it must be the case that

f(x)2 + f(y)2 − 1 = 0

in Z. In other words, the pair (f (x), f (y)) constitutes a
solution over Z to the Diophantine equation x2 +y2 =
1. What is more, the same argument shows that, for any
ring S, a homomorphism f : R → S yields a solution
over S to x2 +y2 = 1, and vice versa. In summary,

for each S, there is a one-to-one correspondence be-
tween the set of ring homomorphisms from R to S,
and solutions over S to x2 +y2 = 1.

This behavior is what we have in mind when we say that
the ring R “packages” information about Diophantine
equations over different rings.

It turns out, just as one might hope, that every inter-
esting geometric property of varieties can be computed
by means of the coordinate ring, which means it can be
defined, not only for varieties, but for general schemes.
We have already seen, for instance, that a variety X is
irreducible if and only if Γ (X) is an integral domain.
Thus, we say in general that a scheme SpecR is irre-
ducible if and only if R is an integral domain (or, more
precisely, if the quotient of R by its nilradical is an inte-
gral domain). One can speak of the connectedness of a
scheme, its dimension, whether it is smooth, and so
forth. All these geometric properties turn out, like irre-
ducibility, to have purely algebraic descriptions. In fact,
to the arithmetic geometer’s way of thinking, all these
are, at bottom, algebraic properties.

3.4 Example: Spec Z, the Number Line

The first ring we encounter in our mathematical
education—and the ring that is the ultimate subject of
number theory—is Z, the ring of integers. How does it
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fit into our picture? The scheme Spec Z has as its points

the set of prime ideals of Z, which come in two flavors:

there are the principal ideals (p), with p a prime num-

ber; and there is the zero ideal. (The fact that these are

the only prime ideals of Z is not a triviality; it can be

derived from the euclidean algorithm [III.22].)

We are supposed to think of Z as the ring of “func-

tions” on Spec Z. How can an integer be a function? Well,

I merely need to tell you how to evaluate an integern at

a point of Spec Z. If the point is a nonzero prime ideal

(p), then the evaluation homomorphism at (p) is pre-

cisely the homomorphism whose kernel is (p); so the

value of n at (p) is just the reduction of n modulo p.

At the point (0), the evaluation homomorphism is the

identity map Z→ Z; so the value of n at (0) is just n.

4 How Many Points Does a Circle Have?

We now return to the method of section 2, paying

particular attention to the case where the equation

x2 +y2 = 1 is considered over a finite field Fp .

Let us write V for the scheme of solutions of x2 +
y2 = 1. For any ring R, we will denote by V(R) the set

of solutions of x2 +y2 = 1.

If R is a finite field Fp , the set V(Fp) is a subset of F2
p .

In particular, it is a finite set. So it is natural to wonder

how large this set is: in other words, how many points

does a circle have?

In section 2, guided by our geometric intuition, we

observed that, for everym ∈ Q, the point

Pm =
(
m2 − 1
m2 + 1

,
−2m
m2 + 1

)

lies on V .

The algebraic computation showing that Pm satisfies

the equation x2 + y2 = 1 is no different over a finite

field. So we might be inclined to think that V(Fp) con-

sists of p + 1 points: namely, the points Pm for each

m ∈ Fp , together with (1,0).
But this is not right: for instance, when p = 5 it is

easy to check that the four points (0,1), (0,−1), (1,0),
(−1,0) make up all of V(F5). Computing Pm for vari-

ous m, we quickly discover the problem; when m is 2

or 3, the formula for Pm does not make sense, because

the denominator m2 + 1 is zero! This is a wrinkle we

did not see over Q, wherem2 + 1 was always positive.

What is the geometric story here? Consider the inter-

section of the line L2, that is, the line y = 2(x − 1),
with V . If (x,y) belongs to this intersection, then we

have

x2 + (2(x − 1))2 = 1,

5x2 − 8x + 3 = 0.

Since 5 = 0 and 8 = 3 in F5, the above equation can
be written as 3− 3x = 0; in other words, x = 1, which
in turn implies that y = 0. In other words, the line L2

intersects the circle V at only one point!
We are left with two possibilities, both disturbing to

our geometric intuition. We might declare that L2 is tan-
gent to V ; but this means that V would have multiple
tangents at (1,0), since the vertical line x = 1 should
surely still be considered a tangent. The alternative is
to declare that L2 is not tangent to V ; but then we
are in the equally unsavory situation of having a line
which, while not tangent to the circle V , intersects it
at only one point. You are now beginning to see why I
did not include an algebraic definition of “tangent” in
statement (A) above!

This quandary illustrates the nature of arithmetic
geometry nicely. When we move into novel contexts,
like geometry over Fp , some features stay fixed (such
as “a line intersects a circle in at most two points”),
while others have to be discarded (such as “there exists
exactly one line, which we may call the tangent line to
the circle at (1,0), that intersects the circle at (1,0) and
no other point”4).

Notwithstanding these subtleties, we are now ready
to compute the number of points in V(Fp). First of
all, when p = 2 one can check directly that (0,1)
and (1,0) are the only two points in V(F2). (Another
common refrain in arithmetic geometry is that fields
of characteristic 2 often impose technical annoyances,
and are best dealt with separately.) Having treated this
case, we assume for the rest of this section that p
is odd. It follows from basic number theory that the
equation m2 + 1 = 0 has a solution in Fp if and only
if p ≡ 1 (mod 4), in which case there are exactly two
suchm. So, if p ≡ 3 (mod 4), then every line Lm inter-
sects the circle at a point other than (1,0), and we have
p + 1 points in all. If p ≡ 1 (mod 4), there are two
choices of m for which Lm intersects V only at (1,0);
eliminating these two choices of m yields a total of
p − 1 points in V(Fp).

We conclude that |V(Fp)| is equal to 2 when p = 2,
to p − 1 when p ≡ 1 (mod 4), and to p + 1 when p ≡ 1
(mod 4). The interested reader will find the following

4. In this case, the right attitude to adopt is that L2 is not tangent to
V , but that there are certain nontangent lines that intersect the circle
at a single point.
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exercises useful: how many solutions are there to x2 +
3y2 = 1 over Fp? What about x2 +y2 = 0?

More generally, let X be the scheme of solutions of
any system of equations

F1(x1, . . . , xn) = 0, F2(x1, . . . , xn) = 0, . . . , (10)

where the Fi are polynomials with integral coeffi-
cients. Then one can associate with F a list of integers
N2(X),N3(X),N5(X), . . . , where Np(X) is the number
of solutions to (10) with x1, . . . , xn ∈ Fp . This list of
integers turns out to contain a surprising amount of
geometric information about the scheme X; even for
the simplest schemes, the analysis of these lists is a
deep problem of intense current interest, as we will see
in the next section.

5 Some Problems in Classical and
Contemporary Arithmetic Geometry

In this section I will try to give an impression of a few of
arithmetic geometry’s great successes, and to gesture
at some problems of current interest for researchers in
the area.

A word of warning is in order. In what follows, I will
be trying to give brief and nontechnical descriptions
of some mathematics of extreme depth and complex-
ity. Consequently, I will feel very free to oversimplify.
I will try to avoid making assertions that are actually
false, but I will often use definitions (like that of the
L-function attached to an elliptic curve) that do not
exactly agree with those in the literature.

5.1 From Fermat to Birch–Swinnerton-Dyer

The world is not lacking in expositions of the proof of
fermat’s last theorem [V.12] and I will not attempt
to give another one here, although it is without ques-
tion the most notable contemporary achievement in
arithmetic geometry. (Here I am using the mathemati-
cian’s sense of “contemporary,” which, as the old joke
goes, means “theorems proved since I entered graduate
school.” The shorthand for “theorems proved before I
entered graduate school” is “classical.”) I will content
myself with making some comments about the struc-
ture of the proof, emphasizing connections with the
parts of arithmetic geometry we have discussed above.

Fermat’s last theorem (rightly called “Fermat’s con-
jecture,” since it is almost impossible to imagine that
fermat [VI.12] proved it) asserts that the equation

A	 + B	 = C	, (11)

where 	 is an odd prime, has no solutions in positive
integers A, B, C .

The proof uses the crucial idea, introduced indepen-
dently by Frey and Hellegouarch, of associating with
any solution (A, B,C) of (11) a certain variety XA,B ,
namely the curve described by the equation

y2 = x(x −A	)(x + B	).
What can we say about Np(XA,B)? We begin with a sim-
ple heuristic. There are p choices for x in Fp . For each
choice of x, there are either zero, one, or two choices
for y , depending on whether x(x − A	)(x + B	) is
a quadratic nonresidue, zero, or a quadratic residue
in Fp . Since there are equally many quadratic residues
and nonresidues in Fp , we might guess that those two
cases arise equally often. If so, there would on average
be one choice of y for each of the p choices of x, which
inclines us to make the estimate Np(XA,B) ∼ p. Define
ap to be the error in this estimate: ap = p −Np(XA,B).
It is worth remembering that when X was the scheme
attached to x2 + y2 = 1, the behavior of p − Np(X)
was very regular; in particular, this quantity took the
value 1 at primes congruent to 1 mod 4 and −1 at
primes congruent to 3 mod 4. (We note, in particular,
that the heuristic estimate Np(X) ∼ p is quite good in
this case.) Might one hope that ap displays the same
kind of regularity?

In fact, the behavior of the ap is very irregular, as a
famous theorem of Mazur shows; not only do the ap
fail to vary periodically, even their reductions modulo
various primes are irregular!

Fact (Mazur). Suppose that 	 is a prime greater than 3,
and let b be a positive integer. It is not the case that
ap takes the same value (mod 	) for all primes p
congruent to 1 (modb).5

On the other hand—if I may compress a 200-page
paper into a slogan—Wiles proved that, when A, B, C
is a solution to (11), the reductions mod 	 of the ap
necessarily behaved periodically, contradicting Mazur’s
theorem when 	 > 3. The case 	 = 3 is an old theorem
of euler [VI.19]. This completes the proof of Fermat’s
conjecture, and, I hope, bolsters our assertion that the
careful study of the values Np(X) is an interesting way
to study a variety X!

5. The theorem proved by Mazur is stated by him in a very different
and much more general way: he proves that certain modular curves
do not possess any rational points. This implies that a version of the
fact above is true, not only for XA,B , but for any equation of the form
y2 = f(x), where f is a cubic polynomial without repeated roots. We
will leave it to the other able treatments of Fermat to develop that
point of view.
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But the story does not end with Fermat. In general,
if f(x) is a cubic polynomial with coefficients in Z and
no repeated roots, the curve E defined by the equation

y2 = f(x) (12)

is called an elliptic curve [III.21] (note well that an
elliptic curve is not an ellipse). The study of rational
points on elliptic curves (that is, pairs of rational num-
bers satisfying (12)) has been occupying arithmetic
geometers since before our subject existed as such;
a decent treatment of the story would fill a book, as
indeed it does fill the book of Silverman and Tate
(1992). We can define ap(E) to be p −Np(E) as above.
First of all, if our heuristic Np(E) ∼ p is a good esti-
mate, we might expect that ap(E) is small compared
with p; and, in fact, a theorem of Hasse from the 1930s
shows that ap(E) � 2

√p for all but finitely many p.
It turns out that some elliptic curves have infinitely

many rational points, and some only finitely many. One
might expect that an elliptic curve with many points
over Q would tend to have more points over finite fields
as well, since the coordinates of a rational point can be
reduced mod p to yield a point over the finite field Fp .
Conversely, one might imagine that, by knowing the list
of numbers ap , one could draw conclusions about the
points of E over Q.

In order to draw such conclusions, one needs a nice
way to package the information of the infinite list of
integers ap . Such a package is given by the L-function
[III.49] of the elliptic curve, defined to be the following
function of a variable s:

L(E, s) =
∏′
p(1− app−s + p1−2s)−1. (13)

The notation
∏′ means that this product is evaluated

over all primes apart from a finite set, which is easy
to determine from the polynomial f . (As is often the
case, we are oversimplifying; what I have written here
differs in some irrelevant-to-us respects from what is
usually called L(E, s) in the literature.) It is not hard to
check that (13) is a convergent product when s is a real
number greater than 3

2 . Not much deeper is the fact
that the right-hand side of (13) is well-defined when s
is a complex number whose real part exceeds 3

2 . What
is much deeper—following from the theorem of Wiles,
together with later theorems of Breuil, Conrad, Dia-
mond, and Taylor—is that we can extend L(E, s) to
a holomorphic function [I.3 §5.6] defined for every
complex number s.

A heuristic argument might suggest the following
relationship between the values of Np(E) and the

value of L(E,1). If the ap are typically negative (corre-
sponding to the Np(E) typically being greater than p)
the terms in the infinite product tend to be smaller
than 1; when the ap are positive, the terms in the
product tend to be larger than 1. In particular, one
might expect the value of L(E,1) to be closer to 0
when E has many rational points. Of course, this
heuristic should be taken with a healthy pinch of salt,
given that L(E,1) is not in fact defined by the infi-
nite product on the right-hand side of (13)! Nonethe-
less, the birch–swinnerton-dyer conjecture [V.4],
which makes precise the heuristic prediction above,
is widely believed, and supported by many partial
results and numerical experiments. We do not have the
space here to state the conjecture in full generality.
However, the following conjecture would follow from
Birch–Swinnerton-Dyer.

Conjecture. The elliptic curve E has infinitely many
points over Q if and only if L(E,1) = 0.

Kolyvagin proved one direction of this conjecture
in 1988: that E has finitely many rational points if
L(E,1) ≠ 0. (To be precise, he proved a theorem that
yields the assertion here once combined with the later
theorems of Wiles and others.) It follows from a the-
orem of Gross and Zagier that E has infinitely many
rational points if L(E, s) has a simple zero at s = 1. That
more or less sums up our present knowledge about the
relationship between L-functions and rational points
on elliptic curves. This lack of knowledge has not, how-
ever, prevented us from constructing a complex of ever
more rarefied conjectures in the same vein, of which
the Birch–Swinnerton-Dyer conjecture is only a tiny and
relatively down-to-earth sliver.

Before we leave the subject of counting points be-
hind, we will pause and point out one more beauti-
ful result: the theorem of andré weil [VI.93] bound- T&T note: check

style of CR later.
ing the number of points on a curve over a finite field.
(Because we have not introduced projective geometry,
we will satisfy ourselves with a somewhat less beauti-
ful formulation than the usual one.) Let F(x,y) be an
irreducible polynomial in two variables, and let X be
the scheme of solutions of F(x,y) = 0. Then the com-
plex points of X define a certain subset of C2, which we
call an algebraic curve. Since X is obtained by impos-
ing one polynomial condition on the points of C2, we
expect that X has complex dimension 1, which is to say
it has real dimension 2. Topologically speaking,X(C) is,
therefore, a surface. It turns out that, for almost all
choices of F , the surface X(C) will have the topology
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of a “g-holed doughnut” with d points removed, for
some nonnegative integers g and d. In this case we say
that X is a curve of genus g.

In section 2 we saw that the behavior of schemes over
finite fields seemed to “remember” facts arising from
our geometric intuition over R and C: our example there
was the fact that circles and lines intersect in at most
two points.

The theorem of Weil reveals a similar, though much
deeper, phenomenon.

Fact. Suppose the scheme X of solutions of F(x,y)
is a curve of genus g. Then, for all but finitely many
primes p, the number of points of X over Fp is at most
p + 1+ 2g√p and at least p + 1− 2g√p − d.

Weil’s theorem illustrates the startlingly close bonds
between geometry and arithmetic. The more compli-
cated the topology of X(C), the further the number of
Fp-points can vary from the “expected” answer of p.
What is more, it turns out that knowing the size of
the set X(Fq) for every finite field Fq allows us to
determine the genus of X. In other words, the finite
sets of points X(Fq) somehow “remember” the topol-
ogy of the space of complex points X(C)! In modern
language, we say that there is a theory applying to gen-
eral schemes, called étale cohomology, which mimics
the theory of cohomology applying to the topology of
varieties over C.

Let us return for a moment to our favorite curve, by
taking the polynomial F(x,y) = x2 + y2 − 1. In this
case, it turns out that X(C) has g = 0 and d = 2:
our previous result that X(Fp) contains either p + 1 or
p − 1 points therefore conforms exactly with the Weil
bounds. We also remark that elliptic curves always have
genus 1; so the theorem of Hasse alluded to above is a
special case of Weil’s theorem as well.

Recall from section 2 that the solutions to x2 +
y2 = 1, over R, over Q, or over various finite fields,
could be parametrized by the variable m. It was this
parametrization that enabled us to determine a sim-
ple formula for the size of X(Fp) in this case. We
remarked earlier that most schemes could not be so
parametrized; now we can make that statement a bit
more precise, at least for algebraic curves.

Fact. If X is a genus-0 curve, then the points of X can
be parametrized by a single variable.

The converse of this fact is more or less true as well
(though stating it properly requires us to say more than
we can here about “singular curves”). In other words, a

thoroughly algebraic question—whether the solutions

of a Diophantine equation can be parametrized—is

hereby given a geometric answer.

5.2 Rational Points on Curves

As we said above, some elliptic curves (which are curves

of genus 1) have finitely many rational points, and

others have infinitely many. What is the situation for

algebraic curves of other flavors?

We have already encountered a curve of genus 0 with

infinitely many points: namely, the curve x2 +y2 = 1.

On the other hand, the curve x2 + y2 = 7 also has

genus 0, and a simple modification of the argument of

the first section shows that this curve has no rational

points. It turns out these are the only two possibilities.

Fact. If X is a curve of genus 0, then X(Q) is either

empty or infinite.

Genus-1 curves are known to fall into a similar

dichotomy, thanks to the theorem of Mazur we alluded

to earlier.

Fact. If X is a genus-1 curve, then either X has at most

sixteen rational points or it has infinitely many rational

points.

What about curves of higher genus? In the early

1920s, Mordell made the following conjecture.

Conjecture. If X is a curve of genus greater than 2,

then X has finitely many rational points.

This conjecture was proved by Faltings in 1983;

in fact, he proved a more general theorem of which

this conjecture is a special case. It is worth remark-

ing that the work of Faltings involves a great deal of

importation of geometric intuition to the study of the

scheme Spec Z.

When you prove that a set is finite, it is natural to

wonder whether you can bound its size. For example, if

f(x) is a degree 6 polynomial with no repeated roots,

the curve y2 = f(x) turns out to have genus 2; so by

Faltings’s theorem there are only finitely many pairs of

rational numbers (x,y) satisfying y2 = f(x).

Question. Is there a constant B such that, for all

degree 6 polynomials with coefficients in Q and no

repeated roots, the equation y2 = f(x) has at most

B solutions?
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This question remains open, and I do not think there
is a strong consensus about whether the answer will be
yes or no. The current world record is held by the curve

PUP: the
proofreader wrote,
‘The reader will get
the context here?
To this non-
mathematician,
this reads like a
non-sequitur.’
Neither Tim nor I
can see the
problem – please
explain.

y2 = 378 371 081x2(x2 − 9)2 − 229 833 600(x2 − 1)2,

constructed by Keller and Kulesz, which has 588
rational points.

Interest in the above question comes from its rela-
tion to a conjecture of Lang, which involves points
on higher-dimensional varieties. Caporaso, Harris, and
Mazur showed that Lang’s conjecture implies a posi-
tive answer to the question above. This suggests a nat-
ural attack on the conjecture: if one can find a way to
construct an infinite sequence of degree 6 polynomials
f(x) so that the equations y = f(x) have ever more
numerous rational solutions, then one has a disproof
of Lang’s conjecture! No one has yet been successful
at this task. If one could prove that the answer to the
question above was affirmative, it would probably bol-
ster our faith in the correctness of Lang’s conjecture,
though of course it would bring us no nearer to turning
the conjecture into a theorem.

In this article we have seen only a glimpse of the
modern theory of arithmetic geometry, and perhaps I
have overemphasized mathematicians’ successes at the
expense of the much larger territory of questions, like
Lang’s conjecture above, about which we remain wholly
ignorant. At this stage in the history of mathematics,
we can confidently say that the schemes attached to
Diophantine problems have geometry. What remains
is to say as much as we can about what this geom-
etry is like, and in this respect, despite the progress
described here, our understanding is still quite unsat-
isfactory when compared with our knowledge of more
classical geometric situations.

Further Reading

Dieudonné, J. 1985. History of Algebraic Geometry. Mon-
terey, CA: Wadsworth.

Silverman, J., and J. Tate. 1992. Rational Points on Elliptic
Curves. New York: Springer.

IV.6 Algebraic Topology
Burt Totaro

Introduction

Topology is concerned with the properties of a geomet-
ric shape that are unchanged when we continuously
deform it. In more technical terms, topology tries to

classify topological spaces [III.92], where two spaces
are considered the same if they are homeomorphic.
Algebraic topology assigns numbers to a topological
space, which can be thought of as the “number of holes”
in that space. These holes can be used to show that
two spaces are not homeomorphic: if they have differ-
ent numbers of holes of some kind, then one cannot
be a continuous deformation of the other. In the happi-
est cases, we can hope to show the converse statement:
that two spaces with the same number of holes (in some
precise sense) are homeomorphic.

Topology is a relatively new branch of mathematics,
with its origins in the nineteenth century. Before that,
mathematics usually sought to solve problems exactly:
to solve an equation, to find the path of a falling body,
to compute the probability that a game of dice will
lead to bankruptcy. As the complexity of mathemati-
cal problems grew, it became clear that most problems
would never be solved by an exact formula: a classic
example is the problem, known as the three-body
problem [V.36], of computing the future movements
of Earth, the Sun, and the Moon under the influence of
gravity. Topology allows the possibility of making qual-
itative predictions when quantitative ones are impossi-
ble. For example, a simple topological fact is that a trip
from New York to Montevideo must cross the equator
at some point, although we cannot say exactly where.

1 Connectedness and Intersection Numbers

Perhaps the simplest topological property is one called
connectedness. This can be defined in various ways, as
we shall see in a moment, but once we have a notion of
what it means for a space to be connected we can then
divide a topological space up into connected pieces,
called components. The number of these pieces is a sim-
ple but useful invariant [I.4 §2.2]: if two spaces have
different numbers of connected components, then they
are not homeomorphic.

For nice topological spaces, the different definitions
of connectedness are equivalent. However, they can be
generalized to give ways of measuring the number of
holes in a space; these generalizations are interestingly
different and all of them are important.

The first interpretation of connectedness uses the
notion of a path, which is defined to be a continuous
mapping f from the unit interval [0,1] to a given space
X. (We think of f as a path from f(0) to f(1).) Let us
declare two points of X to be equivalent if there is a
path from one to the other. The set of equivalence
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classes [I.2 §2.3] is called the set of path components

of X and is written π0(X). This is a very natural way of

defining the “number of connected pieces” into which

X breaks up. One can generalize this notion by con-

sidering mappings into X from other standard spaces

such as spheres: this leads to the notion of homotopy

groups, which will be the topic of section 2.

A different way of thinking about connectedness is

based on functions from X to the real line rather than

functions from a line segment into X. Let us assume

that we are in a situation where it makes sense to dif-

ferentiate functions on X. For example, X could be an

open subset of some Euclidean space, or more gener-

ally a smooth manifold [I.3 §6.9]. Consider all the real-

valued functions on X whose derivative is everywhere

equal to zero: these functions form a real vector space

[I.3 §2.3], which we call H0(X,R) (the “zeroth cohom-

ology group of X with real coefficients”). Calculus tells

us that if a function defined on an interval has deriva-

tive zero, then it must be constant, but that is not true

when the domain has several connected pieces: all we

can say then is that the function is constant on each

connected piece of X. The number of degrees of free-

dom of such a function is therefore equal to the num-

ber of connected pieces, so the dimension of the vector

space H0(X,R) is another way to describe the number

of connected components of X. This is the simplest

example of a cohomology group. Cohomology will be

discussed in section 4.

We can use the idea of connectedness to prove a seri-

ous theorem of algebra: every real polynomial of odd

degree has a real root. For example, there must be some

real number x such that x3 + 3x − 4 = 0. The basic

observation is that when x is a large positive number

or a highly negative number, the termx3 is much bigger

(in absolute value) than the other terms of the polyno-

mial. Since this top term is an odd power of x, we have

f(x) > 0 for some positive number x and f(x) < 0 for

some negative number x. If f were never equal to zero,

then it would be a continuous mapping from the real

line into the real line minus the origin. But the real line

is connected, while the real line minus the origin has

two connected components, the positive and negative

numbers. It is easy to show that a continuous map from

a connected space X to another space Y must map X
into just one connected component of Y : in our case,

this contradicts the fact that f takes both positive and

negative values. Therefore f must be equal to zero at

some point, and the proof is complete.

B A

(a) (b)

A

C

Figure 1 Intersection numbers:
(a) A · B = 1; (b) A · C = −1.

This argument can be phrased in terms of the “inter-

mediate value theorem” of calculus, which is indeed

one of the most basic topological theorems. An equiv-

alent reformulation of this theorem states that a con-

tinuous curve that goes from the lower half-plane to

the upper half-plane must cross the horizontal axis at

some point. This idea leads to intersection numbers,

one of the most useful concepts in topology. Let M
be a smooth oriented manifold. (Roughly speaking, a

manifold is oriented if you cannot continuously slide

a shape about inside it and end up with a reflection

of that shape. The simplest nonoriented manifold is a

Möbius strip: to reflect a shape, slide it around the strip

an odd number of times.) Let A and B be two closed

oriented submanifolds of M with dimensions adding

up to the dimension of M . Finally, suppose that A and

B intersect transversely, so that their intersection has

the “correct” dimension, namely 0, and is therefore a

collection of separated points.

Now let p be one of these points. There is a way of

assigning a weight of +1 or −1 to p, which depends

in a natural way on the relationship between the ori-

entations of A, B, and M (see figure 1). For example,

if M is a sphere, A is the equator of M , B is a closed

curve, and appropriate directions are given to A and

B, then the weight of p will tell you whether B crosses

A upwards or downwards at p. If A and B intersect in

only finitely many points, then we can define the inter-

section number of A and B, written A ·B, to be the sum

of the weights (+1 or −1) at all the intersection points.

In particular, this will happen if M is compact [III.9]

(that is, we can think of it as a closed bounded subset

of RN for some N).

The important point about the intersection number

is that it is an invariant, in the following sense: if you

move A and B about in a continuous way, ending up

with another pair of transverse submanifolds A′ and

B′, then the intersection number A′ · B′ is the same as

A · B, even though the number of intersection points

can change. To see why this might be true, consider

again the case where A and B are curves and M is two
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B B

A A+1 +1 +1
–1

Figure 2 Moving a submanifold.

Figure 3 A surface bounded by a knot.

dimensional: if A and B meet at a point with weight

1, we can wiggle one of them to turn that point into

three points with weights 1, −1, and 1, but the total

contribution to the intersection number is unchanged.

This is illustrated in figure 2. As a result, the intersec-

tion number A ·B is defined for any two submanifolds

of complementary dimension: if they do not intersect

transversely, one can move them until they do and use

the definition we have just given.

In particular, if two submanifolds have nonzero inter-

section number, then they can never be moved to be dis-

joint from each other. This is another way to describe

the earlier arguments about connectedness. It is easy

to write down one curve from New York to Montevideo

whose intersection number with the equator is equal to

1. Therefore, no matter how we move that curve (pro-

vided that we keep the endpoints fixed: more generally,

if either A or B has a boundary, then that boundary

should be kept fixed), its intersection number with the

equator will always be 1, and in particular it must meet

the equator in at least one point.

One of many applications of intersection numbers in

topology is the idea of linking numbers, which comes

from knot theory [III.46]. A knot is a path in space

that begins and ends at the same point, or, more for-

mally, a closed connected one-dimensional submani-

fold of R3. Given any knot K, it is always possible to

find a surface S in R3 with K as its boundary (see fig-

B
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X X

A

B

X
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Figure 4 Multiplication in the fundamental
group and in higher homotopy groups.

ure 3). Now let L be a knot that is disjoint from K. The
linking number of K with L is defined to be the inter-
section number of L with the surface S. The properties
of intersection numbers imply that if the linking num-
ber of K with L is nonzero, then the knots K and L are
“linked,” in the sense that it is impossible to pull them
apart.

2 Homotopy Groups

If we remove the origin from the plane R2, then we
obtain a new space that is different from the plane in a
fundamental way: it has a hole in it. However, we cannot
detect this difference by counting components, since
both the plane and the plane without the origin are con-
nected. We begin this section by defining an invariant
called the fundamental group, which does detect this
kind of hole.

As a first approximation, one could say that the ele-
ments of the fundamental group of a space X are loops,
which can be formally defined as continuous functions
f from [0,1] to X such that f(0) = f(1). However,
this is not quite accurate, for two reasons. The first
reason, which is extremely important, is that two loops
are regarded as equivalent if one can be continuously
deformed to the other while all the time staying inside
X. If this is the case, we say that they are homotopic. To
be more formal about this, let us suppose that f0 and
f1 are two loops. Then a homotopy between f0 and f1

is a collection of loops fs in X, one for each s between
0 and 1, such that the function F(s, t) = fs(t) is a con-
tinuous function from [0,1]2 to X. Thus, as s increases
from 0 to 1, the loop fs moves continuously from f0 to
f1. If two loops are homotopic, then we count them as
the same. So the elements of the homotopy group are
not actually loops but equivalence classes, or homotopy
classes, of loops.

Even this is not quite correct, because for technical
reasons we need to impose an extra condition on our
loops: that they all start from (and therefore end at)
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a given point, called the base point. If X is connected,
it turns out not to matter what this base point is, but
we need it to be the same for all loops. The reason for
this is that it gives us a way to multiply two loops: if x
is the base point and A and B are two loops that start
and end at x, then we can define a new loop by going
around A and then going around B. This is illustrated
in figure 4. We regard this new loop as the product of
the loopsA and B. It is not hard to check that the homo-
topy class of this product depends only on the homo-
topy classes of A and B, and that the resulting binary
operation turns the set of homotopy classes of loops
into a group [I.3 §2.1]. It is this group that we call the
fundamental group of X. It is denoted π1(X).

The fundamental group can be computed for most of
the spaces we are likely to encounter. This makes it an
important way to distinguish one space from another.
First of all, for anyn the fundamental group of Rn is the
trivial group with just one element, because any loop in
Rn can be continuously shrunk to its base point. On the
other hand, the fundamental group of R2\{0}, the plane
with the origin removed, is isomorphic to the group Z

of the integers. This tells us that we can associate with
any loop in R2 \ {0} an integer that does not change
if we modify the loop in a continuous way. This inte-
ger is known as the winding number. Intuitively, the
winding number measures the total number of times
that the mapping goes around the origin, with coun-
terclockwise circuits counting positively and clockwise
ones negatively. Since the fundamental group of R2\{0}
is not the trivial group, R2 \ {0} cannot be homeomor-
phic to the plane. (It is an interesting exercise to try to
find an elementary proof of this result—that is, a proof
that does not use, or implicitly reconstruct, any of the
machinery of algebraic topology. Such proofs do exist,
but it is tricky to find them.)

A classic application of the fundamental group is
to prove the fundamental theorem of algebra
[V.15], which states that every nonconstant polyno-
mial with complex coefficients has a complex root. (The
proof is sketched in the article just cited, though the
fundamental group is not explicitly mentioned there.)

The fundamental group tells us about the number
of “one-dimensional holes” that a space has. A basic
example is given by the circle, which has fundamental
group Z, just as R2 \ {0} does, and for essentially the
same reason: given a path in the circle that begins and
ends at the same point, we can see how many times it
goes around the circle. In the next section we shall see
some more examples.

Before we think about higher-dimensional holes, we
first need to discuss one of the most important topolog-
ical spaces: the n-dimensional sphere. For any natural
number n, this is defined to be the set of points in Rn+1

at distance 1 from the origin. It is denoted Sn. Thus, the
0-sphere S0 consists of two points, the 1-sphere S1 is
the circle, and the 2-sphere S2 is the usual sphere, like
the surface of Earth. Higher-dimensional spheres take a
little bit of getting used to, but we can work with them
in the same way that we can with lower-dimensional
spheres. For example, we can construct the 2-sphere
from a closed two-dimensional disk by identifying all
the points on the boundary circle with each other. In
the same way, the 3-sphere can be obtained from a solid
three-dimensional ball by identifying all the points on
the boundary 2-sphere. A related picture is to think
of the 3-sphere as being obtained from our familiar
three-dimensional space R3 by adding one point “at
infinity.”

Now let us think about the familiar sphere S2. This
has trivial fundamental group, since any loop drawn
on the sphere can be shrunk to a point. However, this
does not mean that the topology of S2 is trivial. It just
means that in order to detect its interesting properties
we need a different invariant. And it is possible to base
such an invariant on the observation that even if loops
can always be shrunk, there are other maps that cannot.
Indeed, the sphere itself cannot be shrunk to a point.
To say this more formally, the identity map from the
sphere to itself is not homotopic to a map from the
sphere to just one point.

This idea leads to the notion of higher-dimensional
homotopy groups of a topological space X. The rough
idea is to measure the number of “n-dimensional holes”
in X, for any natural number n, by considering all the
continuous mappings from the n-sphere to X. We want
to see whether any of these spheres wrap around a hole
in X. Once again, we consider two mappings from Sn

to X to be equivalent if they are homotopic. And the
elements of the nth homotopy group πn(X) are again
defined to be the homotopy classes of these mappings.

Let f be a continuous map from [0,1] to X with
f(0) = f(1) = x. If we like we can turn the interval
[0,1] into the circle S1 by “identifying” the points 0
and 1: then f becomes a map from S1 to X, with one
specified point in S1 mapping tox. In order to be able to
define a group operation for mappings from a higher-
dimensional Sn, we similarly fix a point s in Sn and a
base point x in X and look just at maps that send s
to x.
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Let A and B be two continuous mappings from Sn to
X with this property. The “product” mappingA·B from
Sn to X is defined as follows. First “pinch” the equator
of Sn down to a point. When n = 1, the equator con-
sists of just two points and the result is a figure eight.
Similarly, for general n, we end up with two copies of
Sn that touch each other, one made out of the northern
hemisphere and one out of the southern hemisphere of
the original unpinched copy of Sn. We now use the map
A to map the bottom half into X and the map B to map
the top half into X, with the equator mapping to the
base point x. (For both halves, the pinched equator is
playing the part of the point s.)

As in the one-dimensional case, this operation makes
the set πn(X) into a group, and this group is the nth
homotopy group of the space X. One can think of it
as measuring how many “n-dimensional holes” a space
has.

These groups are the beginning of “algebraic” topol-
ogy: starting from any topological space, we construct
an algebraic object, in this case a group. If two spaces
are homeomorphic, then their fundamental groups
(and higher homotopy groups) must be isomorphic.
This is richer than the original idea of just measur-
ing the number of holes, since a group contains more
information than just a number.

Any continuous function from Sn into Rm can be con-
tinuously shrunk to a point in a straightforward way.
This shows that all the higher homotopy groups of Rm

are also trivial, which is a precise formulation of the
vague idea that Rm has no holes.

Under certain circumstances one can show that two
different topological spaces X and Y must have the
same number of holes of all types. This is clearly true if
X and Y are homeomorphic, but it is also true if X and
Y are equivalent in a weaker sense, known as homotopy
equivalence. Let X and Y be topological spaces and let
f0 and f1 be continuous maps from X to Y . A homo-
topy from f0 to f1 is defined more or less as it was for
spheres: it is a continuous family of continuous maps
from X to Y that starts with f0 and ends with f1. As
then, if such a homotopy exists, we say that f0 and f1

are homotopic. Next, a homotopy equivalence from a
space X to a space Y is a continuous map f : X → Y
such that there is another continuous map g : Y → X
with the property that the composition g ◦f : X → X is
homotopic to the identity map on X, and f ◦g : Y → Y
is homotopic to the identity map on Y . (Notice that if we
replaced the word “homotopic” with “equal,” we would
obtain the definition of a homeomorphism.) When there

Figure 5 Some spaces that are
homotopy equivalent to the circle.

is a homotopy equivalence from X to Y , we say that X
and Y are homotopy equivalent, and also that X and Y
have the same homotopy type.

A good example is when X is the unit circle and Y
is the plane with the origin removed. We have already
observed that these have the same fundamental group,
and commented that it was “for essentially the same
reason.” Now we can be more precise. Let f : X → Y
be the map that takes (x,y) to (x,y) (where the first
(x,y) belongs to the circle and the second to the plane).
Let g : Y → X be the map that takes (u,v) to(

u√
u2 + v2

,
v√

u2 + v2

)
.

(Note thatu2+v2 is never zero because the origin is not
contained in Y .) Then g ◦ f is easily seen to equal the
identity on the unit circle, so it is certainly homotopic to
the identity. As for f ◦g, it is given by the same formula
as g itself. More geometrically, it takes the points on
each radial line to the point where that line intersects
the unit circle. It is not hard to show that this map is
homotopic to the identity on Y . (The basic idea is to
“shrink the radial lines down” to the points where they
intersect the circle.)

Very roughly speaking, two spaces are homotopy
equivalent if they have the same number of holes of
all types. This is a more flexible notion of “having the
same shape” than the notion of homeomorphism. For
example, Euclidean spaces of different dimensions are
not homeomorphic to each other, but they are all homo-
topy equivalent. Indeed, they are all homotopy equiva-
lent to a point: such spaces are called contractible, and
one thinks of them as the spaces that have no hole of
any sort. The circle is not contractible, but it is homo-
topy equivalent to many other natural spaces: the plane
R2 minus the origin (as we have seen), the cylinder
S1 × R, the compact cylinder S1 × [0,1], and even the
Möbius strip (see figure 5). Most invariants in algebraic T&T note: PUP

figure needs
shading. Will
speak to Dimitri
about it in due
course.

topology (such as homotopy groups and cohomology
groups) are the same for any two spaces that are homo-
topy equivalent. Thus, knowing that the fundamental
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a b

Figure 6 One-point union of two circles.

group of the circle is isomorphic to the integers tells us

that the same is true for the various homotopy equiva-

lent spaces just mentioned. Roughly speaking, this says

that all these spaces have “one basic one-dimensional

hole.”

3 Calculations of the Fundamental Group
and Higher Homotopy Groups

To give some more feeling for the fundamental group,

let us review what we already know and look at a

few more examples. The fundamental group of the 2-

sphere, or indeed of any higher-dimensional sphere, is

trivial. The two-dimensional torus S1 × S1 has funda-

mental group Z2 = Z×Z. Thus, a loop in the torus deter-

mines two integers, which measure how many times it

winds around in the meridian direction and how many

in the longitudinal direction.

The fundamental group can also be non-Abelian; that

is, we can have ab ≠ ba for some elements a and b
of the fundamental group. The simplest example is a

space X built out of two circles that meet at a sin-

gle point (see figure 6). The fundamental group of X
is the free group [IV.10 §2] on two generators a and

b. Roughly speaking, an element of this group is any

product you can write down using the generators and

their inverses, such as abaab−1a, except that if a and

a−1 or b and b−1 appear next to each other, you cancel

them first. (So instead of abb−1bab−1 one would sim-

ply write abab−1, for example.) The generators corre-

spond to loops around each of the two circles. The free

group is in a sense the most highly non-Abelian group.

In particular, ab is not equal to ba, which in topolog-

ical terms tells us that going around loop a and then

loop b in the space X is not homotopic to the loop that

goes around loop b and then loop a.

This space may seem somewhat artificial, but it is

homotopy equivalent to the plane with two points

removed, which appears in many contexts. More gener-

ally, the fundamental group of the plane with d points

removed is the free group on d generators: this is a pre-

B

A

A

B

A

B A

B

Figure 7 Proof that π2 of any space is Abelian.

cise sense in which the fundamental group measures
the number of holes.

In contrast with the fundamental group, the higher
homotopy groups πn(X) are Abelian when n is at least
2. Figure 7 gives a “proof without words” in the case
n = 2, the proof being the same for any larger n. In
the figure, we view the 2-sphere as the square with its
boundary identified to a point. So any elements A and
B of π2(X) are represented by continuous maps of the
square to X that map the boundary of the square to
the base point x. The figure exhibits (several steps of)
a homotopy from AB to BA, with the shaded regions
and the boundary of the square all mapping to the
base point x. The picture is reminiscent of the sim-
plest nontrivial braid, in which one string is twisted
around another; this is the beginning of a deep con-
nection between algebraic topology and braid groups
[III.4].

The fundamental group is especially powerful in low
dimensions. For example, every compact connected
surface (or two-dimensional manifold) is homeomor-
phic to one of those on a standard list (see differen-
tial topology [IV.7 §2.3]), and we compute that all the
manifolds on this list have different (nonisomorphic)
fundamental groups. So, when you capture a closed sur-
face in the wild, computing its fundamental group tells
you exactly where it fits in the classification. Moreover,
the geometric properties of the surface are closely tied
to its fundamental group. The surfaces with a rieman-
nian metric [I.3 §6.10] of positive curvature [III.13]
(the 2-sphere and real projective plane [I.3 §6.7]) are
exactly the surfaces with finite fundamental group; the
surfaces with a metric of curvature zero (the torus and
Klein bottle) are exactly the surfaces with a fundamen-
tal group that is infinite but “almost Abelian” (there is
an Abelian subgroup of finite index); and the remaining
surfaces, those that have a metric of negative curvature,
have “highly non-Abelian” fundamental group, like the
free group (see figure 8).

After more than a century of studying three-dimen-
sional manifolds, we now know, thanks to the advances
of Thurston and Perelman, that the picture is almost
the same for these as it is for 2-manifolds: the fun-
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Sphere One-holed torus Two-holed torus

. . .

Figure 8 A sphere, a torus, and a surface of genus 2.

damental group controls the geometric properties of
the 3-manifold almost completely (see differential
topology [IV.7 §2.4]). But this is completely untrue for
4-manifolds and in higher dimensions: there are many
different simply connected manifolds, meaning mani-
folds with trivial fundamental group, and we need more
invariants to be able to distinguish between them. (To
begin with, the 4-sphere S4 and the product S2 × S2

are both simply connected. More generally, we can take
the connected sum of any number of copies of S2×S2,
obtained by removing 4-balls from these manifolds and
identifying the boundary 3-spheres. These 4-manifolds
are all simply connected, and yet no two of them are
homeomorphic or even homotopy equivalent.)

An obvious approach to distinguishing different
spaces would be to use higher homotopy groups, and
indeed this works in simple cases. For example, π2 of
the connected sum of r copies of S2 × S2 is isomor-
phic to Z2r . Also, we can show that the sphere Sn of
any dimension is not contractible (although it is simply
connected for n � 2) by computing that πn(Sn) is iso-
morphic to the integers (rather than the trivial group).
Thus, each continuous map from the n-sphere to itself
determines an integer, called the degree of the map,
which generalizes the notion of winding number for
maps from the circle to itself.

In general, however, the homotopy groups are not a
practical way of distinguishing one space from another,
because they are amazingly hard to compute. A first
hint of this was Hopf’s 1931 discovery that π3(S2)
is isomorphic to the integers: it is clear that the 2-
sphere has a two-dimensional hole, as measured by
π2(S2) � Z, but in what sense does it have a three-
dimensional hole? This does not correspond to our
naive view of what such a hole should be. The problem
of computing the homotopy groups of spheres turns
out to be one of the hardest in all of mathematics:
some of what we know is shown in table 1, but despite
massive efforts the homotopy groups πi(S2), for exam-
ple, are known only for i � 64. There are tantalizing
patterns in these calculations, with a number-theoretic
flavor, but it seems impossible to formulate a precise

guess for the homotopy groups of spheres in general.
And computing the homotopy groups for spaces more
complex than spheres is even more complicated.

To get an idea of the difficulties involved, let us define
the so-called Hopf map from S3 to S2, which turns out
to represent a nonzero element of π3(S2). There are
in fact several equivalent definitions. One of them is to
regard a point (x1, x2, x3, x4) in S3 as a pair of complex
numbers (z1, z2) such that |z1|2 + |z2|2 = 1. This we
do by setting z1 = x1 + ix2 and z2 = x3 + ix4. We then
map the pair (z1, z2) to the complex number z1/z2.
This may not look like a map to S2, but it is because
z2 may be zero, so in fact the image of the map is not C

but the Riemann sphere C∪∞, which can be identified
with S2 in a natural way.

Another way of defining the Hopf map is to regard
points (x1, x2, x3, x4) in S3 as unit quaternions. In the
article on quaternions in this volume [III.78], it is shown
that each unit quaternion can be associated with a rota-
tion of the sphere. If we fix some point s in the sphere
and map each unit quaternion to the image of s under
the associated rotation, then we get a map from S3 to
S2 that is homotopic to the map defined in the previous
paragraph.

The Hopf map is an important construction, and will
reappear more than once later in this article.

4 Homology Groups and
the Cohomology Ring

Homotopy groups, then, can be rather mysterious and
very hard to calculate. Fortunately, there is a different
way to measure the number of holes in a topological
space: homology and cohomology groups. The defini-
tions are more subtle than the definition of homotopy
groups, but the groups turn out to be easier to compute
and are for this reason much more commonly used.

Recall that elements of the nth homotopy group
πn(X) of a topological space X are represented by
continuous maps from the n-sphere to X. Let X be a
manifold, for simplicity. There are two key differences
between homotopy groups and homology groups. The
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Table 1 The first few homotopy groups of spheres.

S1 S2 S3 S4 S5 S6 S7 S8 S9

π1 Z 0 0 0 0 0 0 0 0
π2 0 Z 0 0 0 0 0 0 0
π3 0 Z Z 0 0 0 0 0 0
π4 0 Z/2 Z/2 Z 0 0 0 0 0
π5 0 Z/2 Z/2 Z/2 Z 0 0 0 0
π6 0 Z/4× Z/3 Z/4× Z/3 Z/2 Z/2 Z 0 0 0
π7 0 Z/2 Z/2 Z× Z/4× Z/3 Z/2 Z/2 Z 0 0
π8 0 Z/2 Z/2 Z/2× Z/2 Z/8× Z/3 Z/2 Z/2 Z 0
π9 0 Z/3 Z/3 Z/2× Z/2 Z/2 Z/8× Z/3 Z/2 Z/2 Z

π10 0 Z/3× Z/5 Z/3× Z/5 Z/8× Z/3× Z/3 Z/2 0 Z/8× Z/3 Z/2 Z/2

first is that the basic objects of homology are more
general than n-dimensional spheres: every closed ori-
ented n-dimensional submanifold A of X determines
an element of the nth homology group of X, Hn(X).
This might make homology groups seem much big-
ger than homotopy groups, but that is not the case,
because of the second major difference between homo-
topy and homology. As with homotopy, the elements of
the homology groups are not the submanifolds them-
selves but equivalence classes of submanifolds, but
the definition of the equivalence relation for homol-
ogy makes it much easier for two of these submani-
folds to be equivalent than it is for two spheres to be
homotopic.

We shall not give a formal definition of homology, but
here are some examples that convey some of its flavor.
Let X be the plane with the origin removed and let A be
a circle that goes around the origin. If we continuously
deform this circle, we will obtain a new curve that is
homotopic to the original circle, but with homology we
can do more. For instance, we can start with a continu-
ous deformation that causes two of its points to touch
and turns it into a figure eight. One half of this figure
eight will have to contain the origin, but we can leave
that still and slide the other part away. The result is
then two closed curves, with the origin inside one and
outside the other. This pair of curves, which together
form a 1-manifold with two components, is equivalent
to the original circle. It can be seen as a continuous
deformation of a more general kind.

A second example shows how natural it is to include
other manifolds in the definition of homology. This
time let X be R3 with a circle removed, and let A be a
sphere that contains the circle in its interior. Suppose
that the circle is in the XY -plane and that both it and
the sphere A are centered at the origin. Then we can

A

Figure 9 The circle A represents zero
in the homology of the surface.

pinch the top and bottom of A toward the origin until
they just touch. If we do so, then we obtain a shape
that looks like a torus, except that the hole in the mid-
dle has been shrunk to zero. But we can open up this
hole with the help of a further continuous deformation
and obtain a genuine torus, which is a “tube” around
the original circle. From the point of view of homology,
this torus is equivalent to the sphere A.

A more general rule is that if X is a manifold and B is
a compact oriented (n+ 1)-dimensional submanifold
of X with a boundary, then this boundary ∂B will be
equivalent to zero (which is the same as saying that
[∂B] = 0 in Hn(X)): see figure 9.

The group operation is easy to define: if A and B are
two disjoint submanifolds of X, giving rise to homol-
ogy classes [A] and [B], then [A] + [B] is the homol-
ogy class of [A ∪ B]. (More generally, the definition of
homology allows us to add up any collection of sub-
manifolds, whether or not they overlap.) Here are some
simple examples of homology groups, which, unlike
the fundamental group, are always Abelian. The homol-
ogy groups of a sphere, Hi(Sn), are isomorphic to the
integers Z for i = 0 and for i = n, and 0 otherwise.
This contrasts with the complicated homotopy groups
of the sphere, and better reflects the naive idea that
the n-sphere has one n-dimensional hole and no other
holes. Note that the fundamental group of the circle,
the group of integers, is the same as its first homology
group. More generally, for any path-connected space,
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the first homology group is always the “Abelianization”
of the fundamental group (which is formally defined to
be its largest Abelian quotient). For example, the funda-
mental group of the plane with two points removed is
the free group on two generators, while the first homol-
ogy group is the free Abelian group on two generators,
or Z2.

The homology groups of the two-dimensional torus
Hi(S1×S1) are isomorphic to Z for i = 0, to Z2 for i = 1,
and to Z for i = 2. All of this has geometric meaning.
The zeroth homology group of any space is isomorphic
to Zr for a space X with r connected components. So
the fact that the zeroth homology group of the torus is
isomorphic to Z means that the torus is connected. Any
closed loop in the torus determines an element of the
first homology group Z2, which measures how many
times the loop winds around the meridian and longitu-
dinal directions of the torus. And finally, the homology
of the torus in dimension 2 is isomorphic to Z because
the torus is a closed orientable manifold. That tells us
that the whole torus defines an element of the second
homology group of the torus, which is in fact a gen-
erator of that group. By contrast, the homotopy group
π2(S1 × S1) is the trivial group: there are no interest-
ing maps from the 2-sphere to the 2-torus, but homol-
ogy shows that there are interesting maps from other
closed 2-manifolds to the 2-torus.

As we have mentioned, calculating homology groups
is much easier than calculating homotopy groups. The
main reason for this is the existence of results that tell
you the homology groups of a space that is built up
from smaller pieces in terms of the homology groups of
those pieces and their intersections. Another important
property of homology groups is that they are “functo-
rial” in the sense that a continuous map f from a space
X to a space Y leads in a natural way to a homomor-
phism f∗ from Hi(X) to Hi(Y) for each i: f∗([A]) is
defined to be [f (A)]. In other words, f∗([A]) is the
equivalence class of the image of A under f .

We can define the closely related idea of “cohom-
ology” simply by a different numbering. Let X be
a closed oriented n-dimensional manifold. Then we
define the ith cohomology group Hi(X) to be the
homology groupHn−i(X). Thus, one way to write down
a cohomology class (an element of Hi(X)) is by choos-
ing a closed oriented submanifold S of codimension i
in X. (This means that the dimension of S is n− i.) We
write [S] for the corresponding cohomology class.

For more general spaces than manifolds, cohomology
is not just a simple renumbering of homology. Infor-

mally, if X is a topological space, then we think of an
element of Hi(X) as being represented by a codimen-
sion-i subspace of X that can move around freely in
X. For example, suppose that f is a continuous map
from X to an i-dimensional manifold. If X is a manifold
and f is sufficiently “well-behaved,” then the inverse
image of a “typical” point in the manifold will be an i-
codimensional submanifold of X, and as we move the
point about, this submanifold will vary continuously,
and will do so in a way that is similar to the way that a
circle became two circles and a sphere became a torus
earlier. IfX is a more general topological space, the map
f still determines a cohomology class in Hi(X), which
we think of as being represented by the inverse image
in X of any point in the manifold.

However, even when X is an oriented n-dimensional
manifold, cohomology has distinct advantages over
homology. This may seem odd, since the cohomology
groups are the homology groups with different names.
However, this renumbering allows us to give very useful
extra algebraic structure to the cohomology groups of
X: not only can we add cohomology classes, we can mul-
tiply them as well. Furthermore, we can do so in such a
way that, taken together, the cohomology groups of X
form a ring [III.83 §1]. (Of course, we could do this for
the homology groups, but the cohomology groups form
a so-called graded ring. In particular, if [A] ∈ Hi(X)
and [B] ∈ Hj(X), then [A] · [B] ∈ Hi+j(X).)

The multiplication of cohomology classes has a rich
geometric meaning, especially on manifolds: it is given
by the intersection of two submanifolds. This gener-
alizes our discussion of intersection numbers in sec-
tion 1: there we considered zero-dimensional intersec-
tions of submanifolds, whereas we are now considering
(cohomology classes of) higher-dimensional intersec-
tions. To be precise, let S and T be closed oriented sub-
manifolds of X, of codimension i and j, respectively.
By moving S slightly (which does not change its class
in Hi(X)) we can assume that S and T intersect trans-
versely, which implies that the intersection of S and
T is a smooth submanifold of codimension i+ j in X.
Then the product of the cohomology classes [S] and
[T] is simply the cohomology class of the intersection
S ∩ T in Hi+j(X). (In addition, the submanifold S ∩ T
inherits an orientation from S, T , and X: this is needed
to define the associated cohomology class.)

As a result, to compute the cohomology ring of a
manifold, it is enough to specify a basis for the cohom-
ology groups (which, as we have already discussed, are
relatively easy to determine) using some submanifolds
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Figure 10 A2 = A ·A′ = 0, A · B = [point],
and B2 = B · B′ = 0.

and to see how these submanifolds intersect. For exam-
ple, we can compute the cohomology ring of the 2-
torus as shown in figure 10. For another example, it
is not hard to show that the cohomology of the com-
plex projective plane [III.74] CP2 has a basis given
by three basic submanifolds: a point, which belongs
to H4(CP2) because it is a submanifold of codimen-
sion 4; a complex projective line CP1 = S2, which
belongs toH2(CP2); and the whole manifold CP2, which
is in H0(CP2) and represents the identity element 1 of
the cohomology ring. The product in the cohomology
ring is described by saying that [CP1][CP1] = [point],
because any two distinct lines CP1 in the plane meet
transversely in a single point.

This calculation of the cohomology ring of the com-
plex projective plane, although very simple, has several
strong consequences. First of all, it implies Bézout’s
theorem on intersections of complex algebraic curves
(see algebraic geometry [IV.4 §6]). An algebraic curve
of degree d in CP2 represents d times the class of a line
CP1 in H2(CP2). Therefore, if two algebraic curves D
and E of degrees d and e meet transversely, then the
cohomology class [D ∩ E] equals

[D] · [E] = (d[CP1])(e[CP1]) = de[point].

For complex submanifolds of a complex manifold,
intersection numbers are always+1, not−1, and so this
means that D and E meet in exactly de points.

We can also use the computation of the cohomology
ring of CP2 to prove something about the homotopy
groups of spheres. It turns out that CP2 can be con-
structed as the union of the 2-sphere and the closed
four-dimensional ball, with each point of the boundary
S3 of the ball identified with a point in S2 by the Hopf
map, which was defined in the previous section.

A constant map from one space to another, or a map
homotopic to a constant map, gives rise to the zero
homomorphism between the homology groups Hi, at
least when i > 0. The Hopf map f : S3 → S2 also
induces the zero homomorphism because the nonzero
homology groups of S3 and S2 are in different dimen-

Figure 11 Fibers of the Hopf map.

sions. Nonetheless, we will show that f is not homo-

topic to the constant map. If it were, then the space

CP2 obtained by attaching a 4-ball to the 2-sphere using

the map f would be homotopy equivalent to the space

obtained by attaching a 4-ball to the 2-sphere using a

constant map. The latter space Y is the union of S2 and

S4 identified at one point. But in fact Y is not homotopy

equivalent to the complex projective plane, because

their cohomology rings are not isomorphic. In partic-

ular, the product of any element of H2(Y) with itself is

zero, unlike what happens in CP2 where [CP1][CP1] =
[point]. Therefore f is nonzero in π3(S2). A more care-

ful version of this argument shows that π3(S2) is iso-

morphic to the integers, and the Hopf map f : S3 → S2

is a generator of this group.

This argument shows some of the rich relations

between all the basic concepts of algebraic topology:

homotopy groups, cohomology rings, manifolds, and

so on. To conclude, here is a way to visualize the non-

triviality of the Hopf map f : S3 → S2. Look at the sub-

set of S3 that maps to any given point of the 2-sphere.

These inverse images are all circles in the 3-sphere. To

draw them, we can use the fact that S3 minus a point

is homeomorphic to R3; so these inverse images form a

family of disjoint circles that fills up three-dimensional

space, with one circle being drawn as a line (the circle

through the point we removed from S3). The striking

feature of this picture is that any two of this huge fam-

ily of circles have linking number 1 with each other:

there is no way to pull any two of them apart (see

figure 11). PUP: Tim thinks
that the use of
‘fibers’ in the
caption is not
likely to confuse
the reader.
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5 Vector Bundles and Characteristic Classes

We now introduce another major topological idea: fiber

bundles. If E and B are topological spaces, x is a point

in B, and p : E → B is a continuous map, then the fiber

of p over x is the subspace of E that maps to x. We say

that p is a fiber bundle, with fiber F , if every fiber of p is

homeomorphic to the same space F . We call B the base

space and E the total space. For example, any product

space B×F is a fiber bundle over B, called the trivial F -

bundle over B. (The continuous map in this case is thePUP: these words
added instead of
proofreader’s
suggestion as the
proofreader had
misunderstood.
OK?

map that takes (x,y) to x.) But there are many nontriv-

ial fiber bundles. For example, the Möbius strip is a fiber

bundle over the circle with fiber a closed interval. This

example helps to explain the old name “twisted prod-

uct” for fiber bundles. Another example: the Hopf map

makes the 3-sphere the total space of a circle bundle

over the 2-sphere.

Fiber bundles are a fundamental way to build up com-

plicated spaces from simple pieces. We will focus on the

most important special case: vector bundles. A vector

bundle over a space B is a fiber bundle p : E → B whose

fibers are all real vector spaces of some dimension n.

This dimension is called the rank of the vector bun-

dle. A line bundle means a vector bundle of rank 1; for

example, we can view the Möbius strip (not including

its boundary) as a line bundle over the circle S1. It is a

nontrivial line bundle; that is, it is not isomorphic to the

trivial line bundle S1×R. (There are many ways of con-

structing it: one is to take the strip {(x,y) : 0 � x � 1}
and identify each point (0, y) with the point (1,−y).
The base space of this line bundle is the set of all points

(x,0), which is a circle since (0,0) and (1,0) have been

identified.)

IfM is a smooth manifold of dimensionn, its tangent

bundle TM → M is a vector bundle of rank n. We can

easily define this bundle by considering M as a sub-

manifold of some Euclidean space RN . (Every smooth

manifold can be embedded into Euclidean space.) Then

TM is the subspace ofM ×RN of pairs (x,v) such that

the vector v is tangent to M at the point x; the map

TM → M sends a pair (x,v) to the point x. The fiber

over x then has the form of the set of all pairs (x,v)
with v belonging to an affine subspace of RN of dimen-

sion equal to that of M . For any fiber bundle, a section

means a continuous map from the base space B to the

total space E that maps each point x in B to some point

in the fiber over x. A section of the tangent bundle of

a manifold is called a vector field. We can draw a vector

Figure 12 Trivializations of the tangent
bundle for the circle and the torus.

Figure 13 The hairy ball theorem.

field on a given manifold by putting an arrow (possibly
of zero length) at every point of the manifold.

In order to classify smooth manifolds, it is impor-
tant to study their tangent bundles, and in particular
to see whether they are trivial or not. Some manifolds,
like the circle S1 and the torus S1 × S1, do have trivial
tangent bundle. The tangent bundle of an n-manifold
M is trivial if and only if we can find n vector fields that
are linearly independent at every point ofM . So we can
prove that the tangent bundle is trivial just by writing
down such vector fields; see figure 12 for the circle or
the torus. But how can we show that the tangent bundle
of a given manifold is nontrivial?

One way is to use intersection numbers. Let M be a
closed oriented n-manifold. We can identifyM with the
image of the “zero-section” inside the tangent bundle
TM , the section that assigns to every point of M the
zero vector at that point. Since the dimension of TM is
precisely double that of M , the discussion of intersec-
tion numbers in section 1 gives a well-defined integer
M2 = M ·M , the self-intersection number of M inside
TM ; this is called the Euler characteristic χ(M). By the
definition of intersection numbers, for any vector field
v on M that meets the zero-section transversely, the
Euler characteristic ofM is equal to the number of zeros
of v , counted with signs.

As a result, if the Euler characteristic of M is not
zero, then every vector field on M must meet the zero-
section; in other words, every vector field on M must
equal zero somewhere. The simplest example occurs
when M is the 2-sphere S2. We can easily write down
a vector field (for example, the one pointing toward



�

80 IV. Branches of Mathematics

the east along circles of latitude, which vanishes at
the north and south poles) whose intersection number
with the zero-section is 2. Therefore the 2-sphere has
Euler characteristic 2, and so every vector field on the
2-sphere must vanish somewhere. This is a famous the-
orem of topology known as the “hairy ball theorem”:
it is impossible to comb the hair on a coconut (see
figure 13).

This is the beginning of the theory of characteristic
classes, which measure how nontrivial a given vector
bundle is. There is no need to restrict ourselves to the
tangent bundle of a manifold. For any oriented vector
bundle E of rank n on a topological space X, we can
define a cohomology class χ(E) in Hn(X), the Euler
class, which vanishes if the bundle is trivial. Intuitively,
the Euler class of E is the cohomology class represented
by the zero set of a general section of E, which (for
example, if X is a manifold) should be a codimension-
n submanifold of X, since X has codimension n in E.
If X is a closed oriented n-manifold, then the Euler
class of the tangent bundle in Hn(X) = Z is the Euler
characteristic of X.

One inspiration for the theory of characteristic
classes was the Gauss–Bonnet theorem, generalized to
all dimensions in the 1940s. The theorem expresses the
Euler characteristic of a closed manifold with a Rieman-
nian metric as the integral over the manifold of a cer-
tain curvature function. More broadly, a central goal
of differential geometry is to understand how the geo-
metric properties of a Riemannian manifold such as its
curvature are related to the topology of the manifold.

The characteristic classes for complex vector bundles
(that is, bundles where the fibers are complex vector
spaces) turn out to be particularly convenient: indeed,
real vector bundles are often studied by constructing
the associated complex vector bundle. If E is a com-
plex vector bundle of rankn over a topological spaceX,
the Chern classes of E are a sequence c1(E), . . . , cn(E)
of cohomology classes on X, with ci(E) belonging to
H2i(X), which all vanish if the bundle is trivial. The
top Chern class, cn(E), is simply the Euler class of E:
thus, it is the first obstruction to finding a section of
E that is everywhere nonzero. The more general Chern
classes have a similar interpretation. For any 1 � j � n,
choose j general sections of E. The subset of X over
which these sections become linearly dependent will
have codimension 2(n+ 1− j) (assuming, for example,
that X is a manifold). The Chern class cn+1−j(E) is pre-
cisely the cohomology class of this subset. Thus the
Chern classes measure in a natural way the failure of a

given complex vector bundle to be trivial. The Pontrya-
gin classes of a real vector bundle are defined to be the
Chern classes of the associated complex vector bundle.

A triumph of differential topology is Sullivan’s 1977
theorem that there are only finitely many smooth
closed simply connected manifolds of dimension at
least 5 with any given homotopy type and given Pon-
tryagin classes of the tangent bundle. This statement
fails badly in dimension 4, as Donaldson discovered in
the 1980s (see differential topology [IV.7 §2.5]).

6 K-Theory and Generalized
Cohomology Theories

The effectiveness of vector bundles in geometry led to
a new way of measuring the “holes” in a topological
space X: looking at how many different vector bundles
over X there are. This idea gives a simple way to define
a cohomology-like ring associated to any space, known
as K-theory (after the German word “Klasse,” since the
theory involves equivalence classes of vector bundles).
It turns out that K-theory gives a very useful new angle
by which to look at topological spaces. Some problems
that could be solved only with enormous effort using
ordinary cohomology became easy with K-theory. The
idea was created in algebraic geometry by Grothendieck
in the 1950s and then brought into topology by Atiyah
and Hirzebruch in the 1960s.

The definition of K-theory can be given in a few lines.
For a topological space X, we define an Abelian group
K0(X), the K-theory of X, whose elements can be writ-
ten as formal differences [E]− [F], where E and F are
any two complex vector bundles over X. The only rela-
tions we impose in this group are that [E⊕F] = [E]+[F]
for any two vector bundles E and F over X. Here E ⊕ F
denotes the direct sum of the two bundles; if Ex and Fx
denote the fibers at a given point x in X, the fiber of
E ⊕ F at x is simply Ex × Fx .

This simple definition leads to a rich theory. First of
all, the Abelian group K0(X) is in fact a ring: we mul-
tiply two vector bundles on X by forming the tensor
product [III.91]. In this respect, K-theory behaves like
ordinary cohomology. The analogy suggests that the
group K0(X) should form part of a whole sequence of
Abelian groups Ki(X), for integers i, and indeed these
groups can be defined. In particular, K−i(X) can be
defined as the subgroup of those elements ofK0(Si×X)
whose restriction to K0(point×X) is zero.

Then a miracle occurs: the groups Ki(X) turn out to
be periodic of order 2: Ki(X) = Ki+2(X) for all integers
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i. This is a famous phenomenon known as Bott peri-
odicity. So there are really only two different K-groups
attached to any topological space: K0(X) and K1(X).

This may suggest that K-theory contains less infor-
mation than ordinary cohomology, but that is not so.
Neither K-theory nor ordinary cohomology determines
the other, although there are strong relations between
them. Each brings different aspects of the shape of a
space to the fore. Ordinary cohomology, with its num-
bering, shows fairly directly the way a space is built
up from pieces of different dimensions. K-theory, hav-
ing only two different groups, looks cruder at first (and
is often easier to compute as a result). But geometric
problems involving vector bundles often involve infor-
mation that is subtle and hard to extract from ordinary
cohomology, whereas this information is brought to the
surface by K-theory.

The basic relation between K-theory and ordinary
cohomology is that the group K0(X) constructed from
the vector bundles on X “knows” something about all
the even-dimensional cohomology groups of X. To be
precise, the rank of the Abelian group K0(X) is the sum
of the ranks of all the even-dimensional cohomology
groups H2i(X). This connection comes from associat-
ing with a given vector bundle on X its Chern classes.
The odd K-group K1(X) is related in the same way to
the odd-dimensional ordinary cohomology.

As we have already hinted, the precise group K0(X),
as opposed to just its rank, is better adapted to some
geometric problems than ordinary cohomology. This
phenomenon shows the power of looking at geomet-
ric problems in terms of vector bundles, and thus ulti-
mately in terms of linear algebra. Among the classic
applications of K-theory is the proof, by Bott, Ker-
vaire, and Milnor, that the 0-sphere, the 1-sphere, the
3-sphere, and the 7-sphere are the only spheres whose
tangent bundles are trivial. This has a deep algebraic
consequence, in the spirit of the fundamental theorem
of algebra: the only dimensions in which there can be
a real division algebra (not assumed to be commuta-
tive or even associative) are 1, 2, 4, and 8. There are
indeed division algebras of all four types: the real num-
bers, complex numbers, quaternions, and octonions
(see quaternions, octonions, and normed division
algebras [III.78]).

Let us see why the existence of a real division alge-
bra of dimension n implies that the (n− 1)-sphere has
trivial tangent bundle. In fact, let us merely assume that
we have a finite-dimensional real vector space V with a
bilinear map V × V → V , which we call the “product,”

such that if x and y are vectors in V with xy = 0,
then either x = 0 or y = 0. For convenience, let us
also assume that there is an identity element 1 in V ,
so 1 · x = x · 1 = x for all x ∈ V ; one can, how-
ever, do without this assumption. If V has dimension
n, then we can identify V with Rn. Then, for each point
x in the sphere Sn−1, left multiplication by x gives a
linear isomorphism from Rn to itself. By scaling the
output to have length 1, left multiplication by x gives
a diffeomorphism from Sn−1 to itself which maps the
point 1 (scaled to have length 1) to x. Taking the deriva-
tive of this diffeomorphism at the point 1 gives a lin-
ear isomorphism from the tangent space of the sphere
at the point 1 to the tangent space at x. Since the
point x on the sphere is arbitrary, a choice of basis for
the tangent space of the sphere at the point 1 deter-
mines a trivialization of the whole tangent bundle of
the (n− 1)-sphere.

Among other applications, K-theory provides the
best “explanation” for the low-dimensional homotopy
groups of spheres, and in particular for the number-
theoretic patterns that are seen there. Notably, denom-
inators of Bernoulli numbers appear among those
groups (such as πn+3(Sn) � Z/24 for n at least 5), and
this pattern was explained using K-theory by Milnor,
Kervaire, and Adams.

the atiyah–singer index theorem [V.2] provides
a deep analysis of linear differential equations on
closed manifolds using K-theory. The theorem has
made K-theory important for gauge theories and string
theories in physics. K-theory can also be defined for
noncommutative rings, and is in fact the central con-
cept in “noncommutative geometry” (see operator
algebras [IV.15 §5]).

The success of K-theory led to a search for other
“generalized cohomology theories.” There is one other
theory that stands out for its power: complex cobor-
dism. The definition is very geometric: the complex
cobordism groups of a manifold M are generated by
mappings of manifolds (with a complex structure on
the tangent bundle) into M . The relations say that any
manifold counts as zero if it is the boundary of some
other manifold. For example, the union of two circles
would count as zero if you could find a cylinder whose
ends were those circles.

It turns out that complex cobordism is much richer
than either K-theory or ordinary cohomology. It sees
far into the structure of a topological space, but at
the cost of being difficult to compute. Over the past
thirty years, a whole series of cohomology theories,
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such as elliptic cohomology and Morava K-theories,
have been constructed as “simplifications” of complex
cobordism: there is a constant tension in topology
between invariants that carry a lot of information and
invariants that are easy to compute. In one direction,
complex cobordism and its variants provide the most
powerful tool for the computation and understand-
ing of the homotopy groups of spheres. Beyond the
range where Bernoulli numbers appear, we see deeper
number theory such as modular forms [III.61]. In
another direction, the geometric definition of complex
cobordism makes it useful in algebraic geometry.

7 Conclusion

The line of thought introduced by pioneering topolo-
gists like riemann [VI.49] is simple but powerful. Try to
translate any problem, even a purely algebraic one, into
geometric terms. Then ignore the details of the geom-
etry and study the underlying shape or topology of the
problem. Finally, go back to the original problem and
see how much has been gained. The fundamental topo-
logical ideas such as cohomology are used throughout
mathematics, from number theory to string theory.

Further Reading

From the definition of topological spaces to the fun-
damental group and a little beyond, I like M. A. Arm-
strong’s Basic Topology (Springer, New York, 1983).
The current standard graduate textbook is A. Hatcher’s
Algebraic Topology (Cambridge University Press, Cam-
bridge, 2002). Two of the great topologists, Bott and
Milnor, are also brilliant writers. Every young topolo-
gist should read R. Bott and L. Tu’s Differential Forms
in Algebraic Topology (Springer, New York, 1982), J. Mil-
nor’s Morse Theory (Princeton University Press, Prince-
ton, NJ, 1963), and J. Milnor and J. Stasheff’s Character-
istic Classes (Princeton University Press, Princeton, NJ,
1974).

IV.7 Differential Topology
C. H. Taubes

1 Smooth Manifolds

This article is about classifying certain objects called
smooth manifolds, so I need to start by telling you what
they are. A good example to keep in mind is the sur-
face of a smooth ball. If you look at a small portion of
it from very close up, then it looks like a portion of a

flat plane, but of course it differs in a radical way from

a flat plane on larger distance scales. This is a general

phenomenon: a smooth manifold can be very convo-

luted, but must be quite regular in close-up. This “local

regularity” is the condition that each point in a mani-

fold belongs to a neighborhood that looks like a portion

of standard Euclidean space in some dimension. If the

dimension in question is d for every point of the mani-

fold, then the manifold itself is said to have dimension

d. A schematic of this is shown in figure 1.

What does it mean to say that a neighborhood “looks

like a portion of standard Euclidean space”? It means

that there is a “nice” one-to-one mapφ from the neigh-

borhood into Rd (with its usual notion of distance (see

metric spaces [III.58])). One can think of φ as “iden-

tifying” points in the neighborhood with points in Rd:

that is, x is identified withφ(x). If we do this, then the

functionφ is called a coordinate chart of the neighbor-

hood, and any chosen basis for the linear functions on

the Euclidean space is called a coordinate system. The

reason for this is thatφ allows us to use the coordinates

in Rd to label points in the neighborhood: if x belongs

to the neighborhood, then one can label it with the

coordinates ofφ(x). For example, Europe is part of the

surface of a sphere. A typical map of Europe identifies

each point in Europe with a point in flat, two-dimen-

sional Euclidean space, that is, a square grid labeled

with latitude and longitude. These two numbers give

us a coordinate system for the map, which can also be

transferred to a coordinate system for Europe itself.

Now, here is a straightforward but central observa-

tion. Suppose thatM andN are two neighborhoods that

intersect, and suppose that functions φ : M → Rd and

ψ : N → Rd are used to give them each a coordinate

chart. Then the intersection M ∩N is given two coordi-

nate charts, and this gives us an identification between

the open regions φ(M ∩N) and ψ(M ∩N) of Rd: given

a point x in the first region, the corresponding point

in the second is ψ(φ−1(x)). This composition of maps

is called a transition function, and it tells you how the

coordinates from one of the charts on the intersecting

region relate to those of the other. The transition func-

tion is a homeomorphism [III.92] between the regions

φ(M ∩N) and ψ(M ∩N).
Suppose that you take a rectangular grid in the first

Euclidean region and use the transition function ψφ−1

to map it to the second one. It is possible that the image

will again be a rectangular grid, but in general it will be

somewhat distorted. An illustration is given in figure 2.
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Figure 1 Small portions of a manifold
resemble regions in a Euclidean space.

Figure 2 A transition function from a rectangular
grid to a distorted rectangular grid.

The proper term for a space whose points are sur-

rounded by regions that can be identified with parts

of Euclidean space is a topological manifold. The word

“topological” is used in order to indicate that there

are no constraints on the coordinate-chart transition

functions apart from the basic one that they should

be continuous. However, some continuous functions

are quite unpleasant, so one typically introduces extra

constraints in order to limit the distorting effect that

the transition functions can have on a rectangular

coordinate grid.

Of prime interest here is the case where the transition

functions are required to be differentiable to all orders.

If a manifold has a collection of charts for which all the

transition functions are infinitely differentiable, then

it is said to have a smooth structure, and it is called

a smooth manifold. Smooth manifolds are especially

interesting because they are the natural arena for cal-

culus. Roughly speaking, they are the most general con-

text in which the notion of differentiation to any order

makes intrinsic sense.

A function f , defined on a manifold, is said to be dif-
ferentiable if, given any of its coordinate chartsφ : N →
Rd, the function g(y) = f(φ−1(y)) (which is defined
on a region of Rd) is differentiable [I.3 §5.3]. Calculus
is impossible on a manifold if it does not admit charts
with differentiable transition functions, because a func-
tion that might appear differentiable in one chart will
not, in general, be differentiable when viewed from a
neighboring chart.

Here is a one-dimensional example to illustrate this
point. Consider the following two coordinate charts of
a neighborhood of the origin in the real line. The first is
the obvious chart that simply represents a real number
x by itself. (Formally speaking, one is taking the func-
tion φ to be defined by the simple formula φ(x) = x.)
The second represents x by the point x1/3. (Here the
cube root of a negative number x is defined to be minus
the cube root of −x.) What is the transition function
between these two charts? Well, if t is a point in the
region of R used for the first chart, then φ−1(t) = t, so
ψ(φ−1(t)) = ψ(t) = t1/3. This is a continuous function
of t but it is not differentiable at the origin.

Now consider the simplest possible function defined
on the region used for the second chart, the function
h(s) = s, and let us work out the corresponding func-
tion f on the manifold itself. The value of f at x should
be the value of h at the point s corresponding to x.
This point is ψ(x) = x1/3, so f(x) = h(x1/3) = x1/3.
Finally, since the point x in the manifold corresponds
to the point t = φ(x) = x in the first region, the cor-
responding function on the first region is g(t) = t1/3.
(This is the same function as f only becauseφ happens
to be the very special map that takes each number to
itself.) Thus, the eminently differentiable function h on
one coordinate chart translates into the continuous but
not differentiable function g on the other.

Suppose one is given a topological manifold M with
two sets of charts, both of which have infinitely differ-
entiable transition functions. Then each set of charts
gives us a smooth structure on the manifold. Of great
importance is the fact that these two smooth structures
can be fundamentally different.

To see what this means, let us call the sets of charts
K and L. Given a function f , let us call it K-differen-
tiable if it is differentiable from the viewpoint of K,
and L-differentiable if it is differentiable from the view-
point of L. It may easily happen that a function is
K-differentiable without being L-differentiable or vice
versa. However, we can say that K and L give the
same smooth structure on M when there is a map, F ,
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from M to itself with the following three properties.
First, F is invertible and both F and F−1 are contin-
uous. Second, the composition of F with any func-
tion that is K-differentiable is L-differentiable. Third,
the composition of the inverse of F−1 with any func-
tion that is L-differentiable is K-differentiable. Loosely
speaking, F turns the K-differentiable functions into
L-differentiable ones and F−1 turns them back again.
If no such function F exists, then the smooth struc-
tures given by K and L are considered to be genuinely
different.

To see how this plays out, let us look at the one-
dimensional example again. As noted previously, the
functions that you deem to be differentiable if you use
the φ-chart are not the same as those you deem to
be differentiable if you use the ψ-chart. For example,
the function x �→ x1/3 is not φ-differentiable but it is
ψ-differentiable. Even so, the φ-differentiable and ψ-
differentiable sets of functions define the same smooth
structure for the line, since any ψ-differentiable func-
tion becomes φ-differentiable once you compose it
with the self-map F : t �→ t3.

It is very far from obvious that any manifold can
have more than one smooth structure, but this turns
out to be the case. There are also manifolds that are
entirely lacking in smooth structures. These two facts
lead directly to the central concern of this essay, the
long-sought quest for the two holy grails of differential
topology.

• A list of all smooth structures on any given topo-
logical manifold.

• An algorithm to identify any given smooth struc-
ture on any given topological manifold with the
corresponding structure from the list.

2 What Is Known about Manifolds?

Much has been accomplished as of the writing of this
article with respect to the two points listed above. This
said, the task for this part of the article is to summarize
the state of affairs at the beginning of the twenty-first
century. Various examples of manifolds are described
along the way.

The story here requires a brief, preliminary digres-
sion to set the stage. If you have two manifolds and
you set them side by side without their touching, then
technically speaking they can be regarded as a single
manifold that happens to have two components. In
such a case, one can study the components individually.
Therefore, in this article I shall talk exclusively about

connected manifolds: that is, manifolds with just one
component. In a connected manifold, one can get from
any point to any other point without ever leaving the
manifold.

A second technical point is that it is useful to distin-
guish between manifolds such as the sphere, which are
bounded in extent, and manifolds such as the plane,
which go off to infinity. More precisely, I am talking
about the distinction between compact [III.9] and non-
compact manifolds: a compact manifold can be thought
of as one that can be expressed as a closed bounded
subset of Rn for some n. The discussion that fol-
lows will be almost entirely about compact manifolds.
As some of the examples below will demonstrate, the
story for compact manifolds is less convoluted than
the analogous story for noncompact ones. For sim-
plicity I shall often use the word “manifold” to mean
“compact manifold”; it will be clear from the context if
noncompact manifolds are also being discussed.

2.1 Dimension 0

There is only one dimension-0 manifold. It is a single
point. The period at the end of this sentence looks,
from afar, like a connected, dimension-0 manifold. Note
that the distinction between topological and smooth is
irrelevant here.

2.2 Dimension 1

There is only one compact, connected, one-dimensional
topological manifold, namely the circle. Moreover, the
circle has just one smooth structure. Here is one way to
represent this structure. Take as a representative cir-
cle the unit circle in the xy-plane, that is, the set of
all points (x,y) with x2 + y2 = 1. This can be cov-
ered by two overlapping intervals, each of which cov-
ers slightly more than half of the circle. The intervals
U1 and U2 are drawn in figure 3. Each interval consti-
tutes a coordinate chart. The one on the left, U1, can
be parametrized in a continuous fashion by taking the
angle of a given point as measured counterclockwise
from the positive x-axis. For example, the point (1,0)
has angle 0, and the point (−1,0) has angle π . In order
to parametrize U2 by angle, you will have to start with
angle π at the negative x-axis. If you move around U2,
varying this angle continuously, then when you reach
the point (1,0) you will have parametrized it as a point
in U2 using the angle 2π .

As you can see, the arcs U1 and U2 intersect in two
separated, smaller arcs; these are labeled V1 and V2 in
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Figure 3 Two charts that cover the circle.

y

xV1 V2

Figure 4 The intersection of the arcs U1 and U2.

Figure 5 A knotted loop in 3-space.

figure 4. The transition function on V1 is the identity
map, since the U1 angle of any given point in V1 is the
same as itsU2 angle. By contrast, theU2 angle of a point
in V2 is obtained from the U1 angle by adding 2π . Thus,
the transition function on V2 is not the identity map but
the map that adds 2π to the coordinate function.

This one-dimensional example brings up a number of
important issues, all related to a particularly troubling
question. To state it, consider first that there are lots of
closed loops in the plane that can be taken as model cir-
cles. Indeed, the word “lots” considerably understates
the situation. Moreover, why should we restrict our
attention to circles in the plane? There are closed loops
galore in 3-space too: see figure 5, for example. For
that matter, any manifold of dimension greater than 1

has smooth loops. Earlier, it was asserted that there is
just one smooth, compact, connected, one-dimensional
manifold, so all of these loops must be considered the
“same.” Why is this?

Here is the answer. We often think of a manifold as
it might appear were it sitting in some larger space.
For example, we might imagine a circle sitting in the
plane, or sitting knotted in three-dimensional Euclid-
ean space. However, the notion of “smooth manifold”
introduced above is an intrinsic one, in the sense that it
does not depend on how the manifold is placed inside
a higher-dimensional space. Indeed, it is not even nec-
essary for there to be a higher-dimensional space at all.
In the case of the circle, this can be said in the following
way. The circle can be placed as a loop in the plane, or as
a knot in 3-space, or whatever. Each view of the circle in
a higher-dimensional Euclidean space defines a collec-
tion of functions that are considered differentiable: one
just takes the differentiable functions of the coordin-
ates of the big Euclidean space and restricts them to the
circle. As it turns out, any one such collection defines
the same smooth structure on the circle as any other.
Thus, the smooth structures that are provided by these
different views of a circle are all the same, even though
there are many interesting ways of placing a circle in a
given higher-dimensional space. (In fact, the classifica-
tion of knots in 3-space is a fascinating, vibrant topic
in its own right: see knot polynomials [III.46].)

How is it proved that there is only one smooth struc-
ture for the circle? For that matter, how is it proved
that there is but a single compact topological manifold
in dimension 1? Since this article is not meant to pro-
vide proofs, these questions are left as serious exer-
cises with the following advice. Think hard about the
definitions and, for the smooth-manifold question, use
some calculus.

2.3 Dimension 2

The story for two-dimensional, connected, compact
manifolds is much richer than that for dimension 1.
In the first place, there is a basic dichotomy between
two kinds of manifold: orientable and nonorientable.
Roughly speaking, this is the distinction between man-
ifolds that have two sides and those that have just
one. To give a more formal definition, a two-dimen-
sional manifold is called orientable if every loop in
the manifold that does not cross itself or have any
kinks has two distinct sides. This is to say that there
is no path from one side of the loop to the other
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Figure 6 A Möbius strip has just one side.

Figure 8 Cutting and gluing.

that avoids the loop yet remains very close to it. The
Möbius strip (see figure 6) is not orientable because
there are paths from one side of the central loop to
the other that do not cross the central loop yet remain
very close to it. The orientable, compact, connected,
topological, two-dimensional manifolds are in one-to-
one correspondence with a collection of fundamental
foods: the apple, the doughnut, the two-holed pretzel,
the three-holed pretzel, the four-holed pretzel, and so
on (see figure 7). Technically, they are classified by anPUP: can I

double-check that
you confirm that
the slight leakage
of grey on the
left-hand side of
the two-holed
torus is OK? T&T
note: ensure that
the double-column
figure does not
appear out of
sequence at page
make-up stage.

integer, called the genus. This is 0 for the sphere, 1 for
the torus, 2 for the two-holed torus, etc. The genus
counts the number of holes that appear in a given exam-
ple from figure 7. To say that this classifies them is to
say that two such manifolds are the same if and only
if they have the same genus. This is a theorem due to
poincaré [VI.61].

As it turns out, every topological two-dimensional
manifold has exactly one smooth structure, so the list
in figure 7 is the same as the list of the smooth ori-
entable two-dimensional manifolds. Here one should
keep in mind that the notion of a smooth manifold is
intrinsic, and therefore independent of how the man-
ifold is represented as a surface in 3-space, or in any
other space. For example, the surfaces of an orange,
a banana, and a watermelon each represent embed-
ded images of the two-dimensional sphere, the leftmost
example in figure 7.

The shapes illustrated in figure 7 suggest an idea that
plays a key role when it comes to classifying manifolds
of higher dimensions. Notice that the two-holed torus
can be viewed as the result of taking two one-holed tori,

cutting disks out of both, gluing the results together
across their boundary circles, and then smoothing the
corners. This operation is depicted in figure 8. This sort PUP: use of

‘corners’ is OK
here and below.of cutting and gluing operation is an example of what

is called a surgery. The analogous surgery can also be
done with a one-holed torus and a two-holed torus to
obtain a three-holed torus. And so on. Thus, all of the
oriented two-dimensional manifolds can be built using
standard surgeries on copies of just two fundamental
building blocks: the one-holed torus and the sphere.
Here is a nice exercise to test your understanding of
this process. Suppose that you perform a surgery, as
in figure 8, on a sphere and another manifold M . Prove
that the resulting manifold is the same, with regard to
its topological and smooth structure, as M .

As it turns out, all of the nonorientable two-dimen-
sional manifolds can be built using a version of surgery
that first cuts a disk out of an orientable two-dimen-
sional manifold and then glues on a Möbius strip.
To be more precise, note that the Möbius strip has
a circle as its boundary. Cut a disk out of any given
orientable, two-dimensional manifold and the result
also has a circular boundary. Glue the latter circular
boundary to the Möbius strip boundary, smooth the
corners, and the result is a smooth manifold that is
nonorientable. Every nonorientable, topological (and
thus every nonorientable, smooth), two-dimensional
manifold is obtained in this way. Moreover, the man-
ifold you get depends only on the number of holes (the
genus) of the orientable manifold that is used.

The manifold obtained from the surgery of a Möbius
strip with a sphere is called the projective plane. The
one that uses the Möbius strip and the torus is called
the Klein bottle. These shapes are illustrated in figure 9.
No nonorientable example can be put into three-dimen-
sional Euclidean space in a clean way; any such place-
ment is forced to have portions that pass through other
portions, as can be seen in the illustration of the Klein
bottle.

How does one prove that the list given above ex-
hausts all two-dimensional manifolds? One method
uses versions of the geometric techniques that are
discussed below in the three-dimensional context.

2.4 Dimension 3

There is now a complete classification of all smooth,
three-dimensional manifolds; this is a very recent
achievement. There has been for some time a conjec-
tured list of all three-dimensional manifolds, and a con-
jectured procedure for telling one from the other. The
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Sphere One-holed torus Two-holed torus

. . .

Figure 7 The orientable manifolds of dimension 2.

Projective plane Klein bottle

Figure 9 Two nonorientable surfaces. To form the projec-
tive plane, one identifies the boundary of the Möbius strip
with the boundary of the hemisphere.

proof of these conjectures was recently completed by
Grisha Perelman; this is a much-celebrated event in
the mathematics community. The proof uses geometry
about which more is said in the final part of this article.
Here I shall concentrate on the classification scheme.

Before getting to the classification scheme, it is nec-
essary to introduce the notion of a geometric structure
on a manifold. Roughly speaking, this means a rule for
defining the lengths of paths on the manifold. This
rule must satisfy the following conditions. The con-
stant path that simply stays at one point has length 0,
but any path that moves at all has positive length. Sec-
ond, if one path starts where another ends, the length
of their concatenation (that is, the result of putting the
two paths together) is the sum of their lengths.

Note that a rule of this sort for path lengths leads nat-
urally to a notion of distance d(x,y) between any two
points x and y on the manifold: one takes the length of
the shortest path between them. It turns out to be par-
ticularly interesting when d(x,y)2 varies as a smooth
function of x and y .

As it happens, there is nothing special about having
a geometric structure. Manifolds have them in spades.
The following are three very useful geometric struc-
tures for the interior of the ball of radius 2 about the
origin in n-dimensional Euclidean space. In these for-

mulas, the given path is viewed as if drawn in real time
by some hyper-dimensional artist, with x(t) denoting
the position of the pencil tip on the path at time t. Here,
t ranges over some interval of the real line:

length =
∫
|ẋ(t)|dt;

length =
∫
|ẋ(t)| 1

1+ 1
4 |x(t)|2

dt;

length =
∫
|ẋ(t)| 1

1− 1
4 |x(t)|2

dt.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

In these formulas, ẋ denotes the time-derivative of the
path t → x(t).

The first of these geometric structures leads to the
standard Euclidean distance between pairs of points.
For this reason it is called the Euclidean geometry for
the ball. The second defines what is called spherical
geometry because the distance between any two points
is the angle between certain corresponding points in
the sphere of radius 1 in (n+ 1)-dimensional Euclid-
ean space. The correspondence comes from an (n+ 1)-
dimensional version of the stereographic projection
that is used for maps of the Earth’s polar regions. The
third distance function defines what is called the hyper-
bolic geometry on the ball. This arises when the ball
of radius 2 in n-dimensional Euclidean space is iden-
tified in a certain way with a particular hyperbola in
(n+ 1)-dimensional Euclidean space.

The geometric structures that are depicted in (1) turn
out to be symmetrical with respect to rotations and
certain other transformations of the unit ball. (You
can read more about Euclidean, spherical, and hyper-
bolic geometry in some fundamental mathematical
definitions [I.3 §§6.2, 6.5, 6.6].)

As was remarked above, there are very many geo-
metric structures on any given manifold and so one
might hope to find one that has some particularly desir-
able properties. With this goal in mind, suppose that I
have specified some “standard” geometric structure S
for the ball in Rn to serve as a model of an exception-
ally desirable structure. This could be one of the ones
I have just defined or some other favorite. This leads
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to a corresponding notion of the structure S for a com-
pact manifold. Roughly speaking, one says that a geo-
metric structure on a manifold is of the type S if every
point in the manifold feels as though it belongs to the
unit ball with the structure S, that is, if one can use the
structure S on the ball to provide coordinate charts that
respect the geometric structure on the manifold. To be
more precise, suppose that I am defining a coordinate
system in a small neighborhood N of x by means of a
function φ : N → Rd. If I can always do this in such a
way that the image φ(N) lies inside the ball, and such
that the distance between any two points x and y in
N equals the distance between their images φ(x) and
φ(y), defined in terms of the structure S on the ball,
then I will say that the manifold has structure of type S.
In particular, a geometric structure is said to be Euclid-
ean, spherical, or hyperbolic when the structure on the
ball is Euclidean, spherical, or hyperbolic, respectively.

For example, the sphere in any dimension has a
spherical geometric structure (as it should!). As it turns
out, every two-dimensional manifold has a geometric
structure that is either spherical, Euclidean, or hyper-
bolic. Moreover, if it has a structure of one of these
types, then it cannot have one of a different type. In par-
ticular, the sphere has a spherical structure, but not a
Euclidean or hyperbolic structure. Meanwhile, the torus
in dimension 2 has a Euclidean geometric structure but
only a Euclidean one, and all of the other manifolds
listed in figure 7 have hyperbolic geometric structures
and only hyperbolic ones.

William Thurston had the great insight to realize
that three-dimensional manifolds might be classifiable
using geometric structures. In particular, he made what
was known as the geometrization conjecture, which
says, roughly speaking, that every three-dimensional
manifold is made up of “nice” pieces:

Every smooth three-dimensional manifold can be cut in
a canonical fashion along a predetermined set of two-
dimensional spheres and one-holed tori so that each of
the resulting parts has precisely one of a list of eight
possible geometric structures.

The eight possible structures include the spherical,
Euclidean, and hyperbolic ones. These plus the other
five are, in a sense that can be made precise, those
that are maximally symmetric. The other five are associ-
ated with various lie groups [III.50 §1], as are the listed
three.

Since its proof by Perelman, the geometrization con-
jecture has come to be known as the geometrization

theorem. As I shall explain in a moment, this provides
a satisfactory resolution of the three-dimensional part
of the quest set out at the end of section 1. This is
because a manifold with one of the eight geometric
structures can be described in a canonical fashion using
group theory. As a result, the geometrization theorem
turns the classification issue for manifolds into a ques-
tion that group theory can answer. What follows is an
indication of how this comes about.

Each of the eight geometric structures has an associ-
ated model space which has the given geometric struc-
ture. For example, in the case of the spherical struc-
ture, the model space is the three-dimensional sphere.
For the Euclidean structure, the model space is the
three-dimensional Euclidean space. For the hyperbolic
structure, it is the hyperbola in the four-dimensional
Euclidean space, where the coordinates (x,y, z, t) obey
t2 = 1+x2+y2+z2. In all of the eight cases, the model
space has a canonical group of self-maps that preserve
the distance between any two pairs of points. In the
Euclidean case, this group is the group of translations
and rotations of the three-dimensional Euclidean space.
In the spherical case, it is the group of rotations of the
four-dimensional Euclidean space, and in the hyper-
bolic case, it is the group of Lorentz transformations
of four-dimensional Minkowski space. The associated
group of self-maps is called the isometry group for the
given geometric structure.

The connection between manifolds and group theory
arises because a certain set of discrete subgroups of the
isometry group of any one of the eight model spaces
determines a compact manifold with the correspond-
ing geometric structure. (A subgroup is called discrete
if every point in the subgroup is isolated, meaning that
it belongs to a neighborhood that contains no other
points from the subgroup.) This compact manifold is
obtained as follows. Two points x and y in the model
space are declared to be equivalent if there is an isom-
etry T , belonging to the subgroup, such that Tx = y .
In other words, x is equivalent to all its images under
isometries from the subgroup. It is easy to check that
this notion of equivalence is a genuine equivalence
relation [I.2 §2.3]. The equivalence classes are then
in one-to-one correspondence with the points of the
associated compact manifold.

Here is a one-dimensional example of how this works.
Think of the real line as a model space whose isometry
group is the group of translations. The set of transla-
tions by integer multiples of 2π forms a discrete sub-
group of this group. Given a point t in the real line, the
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Figure 10 A link formed out of two knots.

possible images under translations from the subgroup

are all the numbers of the form t + 2nπ , where n is an

integer, so one regards two real numbers as equivalent

if they differ by a multiple of 2π , and the equivalence

class of t is {t + 2nπ : n ∈ Z}. One can associate with

this equivalence class the point (x,y) = (cos t, sin t) in

the circle, since adding a multiple of 2π to t does not

affect either its sine or its cosine. (Intuitively speaking,

if you regard each t as equivalent to t + 2π , then you

are wrapping the real line around and around a circle.)

This association between certain subgroups of the

isometry group and compact manifolds with the given

geometric structure goes in the other direction as well.

That is, the subgroup can be recovered from the man-

ifold in a relatively straightforward fashion using the

fact that each point in the manifold lies in a coordinate

chart where its distance function is the same as that of

the associated model space.

Even before Perelman’s work there was a tremendous

amount of evidence for the validity of the geometriza-

tion conjecture, much of it supplied by Thurston. In

order to discuss this evidence, a small digression is

required to give some of the background. First, I need

to bring in the notion of a link in the three-dimensional

sphere. A link is the name given to a finite disjoint

union of knots. Figure 10 depicts an example of one

that is made out of two knots.

I also need the notion of surgery on a link. To this end,

thicken the link so as to view it as a union of knotted,

solid tubes. (Think of the knot as the copper in an insu-

lated wire and view the solid tube as the copper plus

the surrounding insulation.) Notice that the boundary

of any given component tube is really a copy of our

one-holed torus from figure 7. Therefore, removing any

one of the tubes leaves a tubular-shaped missing region

from the three-dimensional sphere whose boundary is

a torus.

Now, to define a surgery, imagine removing a knotted
tube and then gluing it back in a different way. That is,
imagine gluing the boundary of the tube to the bound-
ary of the resulting missing region using an identifica-
tion that is not the same as the original. For example,
take the “unknot,” a standard round circle in a given
plane, here viewed as living inside a coordinate chart
of the three-dimensional sphere. Take out the solid
tube around it, and then replace the tube by gluing the
boundary in the “wrong” way, as follows. Consider the
leftmost torus in figure 11 as the boundary of the com-
plement of the tube in R3. Consider the middle torus
as the inside of the tube. The “wrong” gluing identifies
the circles marked “R” and “L” on the leftmost torus
with their counterparts on the middle torus. The result-
ing space is a three-dimensional manifold which turns
out to be the product of the circle with the two-dimen-
sional sphere. That is to say, it is the set of ordered
pairs (x,y), where x is a point in the circle and y is
a point in the two-dimensional sphere. There are many
other possible ways to glue the boundary torus, and
almost all of the corresponding surgeries give rise to
distinct three-dimensional manifolds. One of these is
illustrated in the rightmost part of figure 11.

In general, given any link one can construct a count-
ably infinite set of distinct, smooth three-dimensional
manifolds by using surgeries on it. Furthermore, Ray-
mond Lickorish proved that every three-dimensional
manifold can be obtained by using surgery on some
link in the three-dimensional sphere. Unfortunately,
this characterization of three-dimensional manifolds
via surgeries on links does not provide a satisfactory
resolution to the central quest of classifying smooth
structures because the process is far from unique: for
any given manifold there is a bewildering assortment
of links and surgeries that can be used to produce it.
Moreover, as of this writing, there is no known way
to classify knots and links in the three-dimensional
sphere.

In any event, here is a taste of Thurston’s evidence
for his geometrization conjecture. Given any link, all
but finitely many of the three-dimensional manifolds
you can produce from it by surgery satisfy the conclu-
sions of the geometrization conjecture. Thurston also
proved that, given any knot apart from the unknot, all
but finitely many surgeries on it produce a manifold
with a hyperbolic geometric structure.

By the way, Perelman’s proof of the geometrization
theorem gives as a special case a proof of the Poincaré
conjecture, proposed by Poincaré in 1904. To state this
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Figure 11 Different ways of gluing a tube into a tube-shaped hole.

we need the notion of a simply connected manifold. This

is a manifold with the property that any closed loop in

it can be shrunk down to a point. To be more precise,

designate a point in the manifold as the “base point.”

Then any path in the manifold that starts and ends at

the chosen base point can be continuously deformed

in such a way that at each stage of the deformation

the path still starts and ends at the base point, and so

that the end result is the trivial path that starts at the

base point and just stays there. For example, the two-

dimensional sphere is simply connected, but the torus

is not, since a loop that goes “once around” the torus

(for example, any of the loops R or L in the various

tori of figure 11) cannot be shrunk to a point. In fact,

a sphere is the only two-dimensional manifold that is

simply connected, and spheres are simply connected in

all dimensions greater than 1.

The Poincaré conjecture. Every compact, simply con-

nected, three-dimensional manifold is the three-dimen-

sional sphere.

2.5 Dimension 4

This is the weird dimension. Nobody has managed to

formulate a useful and viable conjecture for the clas-

sification of smooth, compact, four-dimensional man-

ifolds. On the other hand, the classification story for

many categories of topological four-dimensional man-

ifolds is well-understood. For the most part, this work

is by Michael Freedman.

Some of the topological manifolds in dimension 4 do

not admit smooth structures. The so-called “ 11
8 con-

jecture” proposes necessary and sufficient conditions

for a four-dimensional, topological manifold to have

at least one smooth structure. The fraction 11
8 here

refers to the absolute value of the ratio of the rank

to the signature of a certain symmetric, bilinear form

that appears in the four-dimensional story. The case 0
0

excepted, the conjecture asserts that a smooth struc-

ture exists if and only if this ratio is at least 11
8 . The

bilinear form in question is obtained by counting with

signed weights the intersection points between vari-

ous two-dimensional surfaces inside the given four-

dimensional manifold. In this regard, note that a typi-

cal pair of two-dimensional surfaces in four dimensions

will intersect at finitely many points. This is a higher-

dimensional analogue of a fact that is rather easier to

visualize: that a typical pair of loops in the two-dimen-

sional plane will intersect at finitely many points. Not

surprisingly, the bilinear form here is called the inter-

section form; it plays a prominent role in Freedman’s

classification theorems.

Meanwhile, the problem of listing all smooth struc-

tures is wide open in four dimensions: there are no

cases of a topological manifold with at least one

smooth structure where the list of distinct struc-

tures is known to be complete. Some topological four-

dimensional manifolds are known to have (countably)

infinitely many distinct smooth structures. For oth-

ers there is only one known structure. For example,

the four-dimensional sphere has one obvious smooth

structure and this is the only one known. However,

the underlying topological manifold may, for all any-

one knows, have many distinct smooth structures. By

the way, the story for noncompact manifolds in dimen-

sion 4 is truly bizarre. For example, it is known that

there are uncountably many smooth manifolds that

are homeomorphic to the standard, four-dimensional

Euclidean space. But even here, our understanding is

less than optimal since there is no known explicit

construction of a single one of these “exotic” smooth

structures.

Simon Donaldson provided a set of geometric invari-

ants that have the power to distinguish smooth struc-

tures on a given topological 4-manifold. Donaldson’s

invariants were recently superseded by a suite of more

computable invariants; these were proposed by Edward

Witten and are called the Seiberg–Witten invariants.

More recently still, Peter Oszvath and Zoltan Szabo

designed a possibly equivalent set of invariants that

are even easier to use. Do the Seiberg–Witten invariants

(broadly defined) distinguish all smooth structures? No
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one knows. A bit more is said about these invariants in
the final part of this article.

Note that Freedman’s results include the topologi-
cal version of the four-dimensional Poincaré conjecture
that follows.

The four-dimensional sphere is the only compact, topo-
logical 4-manifold with the following property: every
based map from either a one-dimensional circle or a
two-dimensional sphere can be continuously deformed
so that the result maps onto the base point.

The smooth version of this conjecture has not been
resolved.

Is there a four-dimensional version of the geometri-
zation conjecture/theorem?

2.6 Dimensions 5 and Greater

Surprisingly enough, the issues raised at the end of
the first section have more or less been resolved in
all dimensions that are greater than 4. This was done
some time ago by Stephen Smale with input from John
Stallings. In these higher dimensions it is also possi-
ble to say what conditions need to hold in order for a
topological manifold to admit a smooth structure. For
example, John Milnor and others determined that the
respective number of smooth structures on the spheres
of dimensions 5–18 are as follows: 1, 1, 28, 2, 8, 6, 992,
1, 3, 2, 16 256, 2, 16, 16.

At first sight, it is surprising that the dimensions
greater than 4 are easier to deal with than dimen-
sions 3 and 4. However, there is a good reason for this.
It turns out that there is more room to maneuver in
these higher-dimensional spaces and this extra room
makes all the difference. To get a sense for this, let n
be a positive integer, and let Sn denote the n-dimen-
sional sphere. To make this more concrete, view Sn as
the set of points (x1, . . . , xn+1) in the Euclidean space
Rn such that x2

1 + · · · + x2
n+1 = 1. Now consider the

product manifold, Sn × Sn. This is the set of pairs of
points (x,y), where x is in one copy of Sn and y is
in another. This product manifold has dimension 2n.
A standard picture of Sn × Sn has two distinguished
copies of Sn inside it, one consisting of all points of
the form (x,y) with y = (1,0, . . . ) and the other con-
sisting of all points (x,y) with x = (1,0, . . . ). Let us
call the first copy SR and the second one SL. Of partic-
ular interest here is the fact that SR and SL intersect in
precisely one point, the point ((1,0, . . . ), (1,0, . . . )).

By the way, in the n = 1 case, the space S1 × S1 is
the doughnut in figure 7. The one-dimensional spheres

SR and SL inside it are the circles that are drawn in the
leftmost diagram in figure 11.

If you are with me so far, suppose now that an
advanced alien en route from Arcturus to the galactic
center kidnaps you and drops you into some unknown,
2n-dimensional manifold. You suspect that it is Sn×Sn,
but are not sure. One reason that you suspect this to
be the case is that you have found a pair of n-dimen-
sional spheres in it, one you call MR and the other you
call ML. Unfortunately, they intersect in 2N + 1 points,
whereN > 0. You would be less nervous about things if
you could find a pair of different spheres that intersect
precisely once. So you wonder whether perhaps you can
pushML around a bit so as to remove the 2N unwanted
intersection points.

The surprise here is that the issue of removing inter-
section points in any dimension concerns only certain
zero-, one-, and two-dimensional manifolds that live
inside your 2n-dimensional one. This is an old observa-
tion due to Hassler Whitney. In particular, Whitney dis-
covered that in the 2n-dimensional manifold you must
be able to find a disk of dimension two whose bound-
ary loop lies half in ML and half in MR. This boundary
loop must hit two of the intersection points (one when
it passes from ML to MR and one when it passes back
again). The disk must also stick out orthogonally toML

and MR where it touches them. If its interior is disjoint
from both ML and MR, and if there are no points where
the disk comes back to intersect itself, then you can
push the part ofML that is very near the disk along the
disk while stretching the remaining part to keep things
from tearing. If you extend the disk a bit past MR, then
you will have removed two of the intersection points
when you have pushed past the end of the disk. Fig-
ure 12 is a schematic of this. This pushing operation
(the Whitney trick) can be performed in any manifold
of any dimension if you can find the required disk. The
problem is to find the disk. Figure 13 is a drawing of a
cross-sectional slice showing a “good” disk on the left
and some badly chosen disks in the middle and on the
right. If you have a badly chosen disk that neverthe-
less satisfies the required boundary conditions, then
you might hope to find a tiny wiggle of its interior that
makes it better. You would like the new disk to have no
self-intersection points and you would like its interior
to be disjoint from both ML and MR. No wiggle along a
direction that is parallel to the disk itself will help, for
any such wiggle only changes the position of the inter-
section point in the disk. Likewise, a wiggle in a direc-
tion parallel to the offending ML or MR is useless since
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Figure 12 The Whitney trick.
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Figure 13 Some possible Whitney disks.

it only changes the position of the intersection point

in the latter space. Thus, 2 + n of the 2n dimensions

are useless when it comes to wiggling a disk. However,

there are 2n−(n+2) = n−2 remaining dimensions to

work with, which is a positive number when 2n > 4. In

fact, when this is true a generic wiggle in any of these

extra dimensions does the trick.

Now, when 2n = 4 (so n = 2) there are no extra

dimensions, and, consequently, no small wiggle can

make a new disk without intersection points. So if a

given candidate disk intersects MR, then the Whitney

trick just trades the old pair of intersection points for

a new collection. If the disk intersects either itself or

ML, then the new version of ML has self-intersection

points: that is, points where one part has come around

to intersect another.

This failure of the Whitney trick is the bane of four-

dimensional topology. Thus, a major lemma for Michael

Freedman’s classification theorem about topological

four-dimensional manifolds describes ubiquitous cir-

cumstances where a topologically (but not smoothly!)

embedded disk can be found for use in the Whitney

trick.

3 How Geometry Enters the Fray

Much of our current understanding about smooth man-

ifolds in dimensions 4 or less has come via what

might be called geometric techniques. The search for a

canonical geometric structure on a given three-dimen-

sional manifold is an example. Perelman’s proof of the

geometrization theorem proceeds in this manner. The

idea is to choose any convenient geometric structure

on a given three-dimensional manifold and then con-

tinuously deform it by some well-defined rule. If one

views the deformation as a time-dependent process,

then the goal is to design the deformation rule to make

the geometric structure ever more symmetric as time

goes on.

A rule introduced and much studied by Richard

Hamilton and then used by Perelman specifies the time-

derivative of the geometric structure at any given time

in terms of certain of its properties at that time. It is

a nonlinear version of the classical heat equation

[I.3 §5.4]. For those unfamiliar with the latter, the sim-

plest version modifies functions on the real line and

will now be described. Let τ denote the time parame-

ter, and let f(x) denote a given function on the line,

representing the initial distribution of heat. The result-

ing time-dependent family of functions associates with

any given positive value for τ a function, Fτ(x), which

represents the distribution of heat at time τ . The partial

derivative of Fτ(x) with respect to τ is equal to its sec-

ond partial derivative with respect to x, and the initial

condition is that F0(x) = f(x). If the initial function f
is zero outside some interval, then one can write down

a formula for Fτ :

Fτ(x) = 1
(2πτ)1/2

∫∞
−∞

e−(x−y)
2/2τf (y)dy. (2)
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One can see from (2) that Fτ(x) tends uniformly to zero
in x as τ tends to infinity. In particular, this limit is
completely ignorant of the starting function f ; and,
being identically zero, it is also the most symmetric
function possible. The representation for Fτ in (2) indi-
cates how this comes about. The value of Fτ at any given
point is a weighted average of the values of the original
function. Moreover, as τ increases, this average looks
more like the standard average over ever-larger regions
of the line. Physically this is very plausible as well: the
heat spreads itself out more and more thinly as time
goes on.

The time-dependent family of geometric structuresT&T note: need to
check all index
entries to
‘geometric
structure’ as some
of them should be
‘geometric
structure on a
manifold’, some
should be
‘geometric
structure on a
group’, and so on.

that Hamilton introduced and Perelman used is defined
by an equation that relates the time-derivative of the
geometric structure at any given time to its Ricci cur-
vature, a certain natural substitute in the context of
geometric structures for the second derivatives that
enter the heat equation for the functions Fτ above. The
idea much studied by Hamilton and then by Perelman is
to let the evolving geometric structure decompose the
manifold into the canonical pieces that are predicted
to exist by the geometrization conjecture. Perelman
proved that the pieces required by the geometrization
conjecture emerge as regions whose points stay rela-
tively close together (as measured by a certain rescal-
ing of the distance function) while the points in distinct
regions move farther and farther apart.

The equation used by Perelman and Hamilton for the
time-evolution of a geometric structure is rather com-
plicated. Its standard incarnation involves the notion
of a riemannian metric [I.3 §6.10]. This appears in
any given coordinate chart on an n-dimensional man-
ifold as a symmetric, positive-definite n × n matrix
whose entries are functions of the coordinates. The var-
ious components of this matrix are traditionally written
as {gij}1�i, j�n. The matrix determines the geometric
structure and can in turn be derived from it.

Hamilton and Perelman study a time-dependent fam-
ily of Riemannian metrics, τ → gτ , where the rule
for the time dependence is obtained using an equa-
tion for the τ-derivative of gτ that has the schematic
form ∂τ(gτ)ij = −2Rij[gτ], where {Rij}1�i, j�n are
the components of the aforementioned Ricci curva-
ture, a certain symmetric matrix that is determined at
any given τ by the metric gτ . Every Riemannian met-
ric has a Ricci curvature; its components are standard
(nonlinear) functions of the components of the matrix
and their first- and second-order partial derivatives in
the coordinate directions. The Ricci curvatures for the

metrics that define the respective Euclidean, spherical,
and hyperbolic geometries have the particularly simple
form Rij = cgij , where c is 0, 1, or −1, respectively. For
more about these ideas, see ricci flow [III.80].

As was mentioned at the beginning of this part of the
article, geometry has also played a central role in the
developments in the classification program for smooth,
four-dimensional manifolds. In this case, geometrically
defined data are used to distinguish smooth structures PUP: OK that this

author definitely
wanted to keep his
use of ‘data’ as the
plural use,
whereas in most
places we are
using it as a
singular noun?

on topologically equivalent manifolds. What follows is
a very brief sketch of how this is done.

To begin with, the idea is to introduce a geometric
structure on the manifold and then to use the latter to
define a canonical system of partial differential equa-
tions. In any given coordinate chart, these equations are
for a particular set of functions. The equations state
that certain linear combinations of the collection of
first derivatives of the functions from the set are equal
to terms that are linear and quadratic in the values of
the functions themselves. In the case of the Donald-
son invariants, and also of the newer Seiberg–Witten
invariants, the relevant equations are nonlinear gener-
alizations of the maxwell equations [IV.13 §1.1] for
electricity and magnetism.

In any event, one then counts the solutions with alge-
braic weights. The purpose of the algebraic weighting
of the count is to obtain an invariant [I.4 §2.2], that
is, a count that does not change if the given geomet-
ric structure is changed. The point here is that the
naive count will typically depend on the structure, but a
suitably weighted count will not. Imagine, for example,
that one has a continuously varying family of geomet-
ric structures, and that new solutions appear and old
ones disappear only in pairs, where one solution has
been assigned weight +1 and the other −1.

The following toy model illustrates this appearance
and disappearance phenomenon. The equation in ques-
tion is for a single function on the circle. That is, it will
concern a function, f , of one variable, x, that is peri-
odic with period 2π . For example, take the equation
∂f/∂x + τf − f 3 = 0, where τ is a constant that is
specified in advance. Varying τ can now be viewed as
a model for the variation of the geometric structure.
When τ > 0 there are exactly three solutions: f ≡ 0,
f ≡ τ , and f ≡ −τ . However, when τ � 0, the only solu-
tion is f ≡ 0. Thus, the number of solutions changes
as τ crosses zero. Even so, a suitable weighted count is
independent of τ .

Let us return now to the four-dimensional story. If
the weighted sum is independent of the chosen geo-
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metric structure, then it depends only on the underly-
ing smooth structure. Therefore, if two geometric struc-
tures on a given topological manifold provide distinct
sums, then the underlying smooth structures must be
distinct.

As I remarked earlier, Oszvath and Szabo have
defined invariants for four-dimensional manifolds that
are easier to use than the Seiberg–Witten invariants, but
probably equivalent to them. These are also defined as
the number of solutions to a particular system of differ-
ential equations, counted in a creative way. In this case,
the equations are analogues of the cauchy–riemann
equations [I.3 §5.6], and the arena is a space that can
be defined after cutting the 4-manifold into simpler
pieces. There are myriad ways to slice a 4-manifold
in the prescribed manner, but a suitably creative, alge-
braic count of solutions provides the same number for
each.

With hindsight, one can see that the use of differ-
ential equations to distinguish smooth structures on a
given topological manifold makes good sense, since a
smooth structure is needed to take a derivative in the
first place. Even so, this author is constantly amazed by
the fact that the Donaldson/Seiberg–Witten/Oszvath–
Szabo strategy of algebraically counting differential
equation solutions yields counts that are both tractable
and useful. (Getting the same count in all cases is no
help at all.)

Further Reading

Those who wish to learn more about manifolds in gen-
eral can consult J. Milnor’s book Topology from the
Differentiable Viewpoint (Princeton University Press,
Princeton, NJ, 1997) or the book Differential Topol-
ogy (Prentice Hall, Englewood Cliffs, NJ, 1974), by
V. Guillemin and A. Pollack. A good introduction to
the classification problem in dimensions 2 and 3 is
the book Three-Dimensional Geometry and Topology
(Princeton University Press, Princeton, NJ, 1997), by
W. Thurston. This book also has a nice discussion
of geometric structures. A full account of Perelman’s
proof of the Poincaré conjecture can be found in Ricci
Flow and the Poincaré Conjecture, by J. Morgan and
G. Tian (American Mathematical Society, Providence, RI,
2007). The story for topological 4-manifolds is told in
the book by M. Freedman and F. Quinn titled Topology
of 4-Manifolds (Princeton University Press, Princeton,
NJ, 1990). There are no books available that serve as
general introductions to the smooth 4-manifold story.

A book that does introduce the Seiberg–Witten invari-
ants is The Seiberg–Witten Equations and Applications
to the Topology of Smooth Four-Manifolds (Princeton
University Press, Princeton, NJ, 1995), by J. Morgan.
Meanwhile, the Donaldson invariants are discussed in
detail in the book by Donaldson and P. Kronheimer
titled Geometry of Four-Manifolds (Oxford University
Press, Oxford, 1990). Finally, parts of the story for
dimensions greater than 4 are told in Lectures on
the h-Cobordism Theorem (Princeton University Press,
Princeton, NJ, 1965), by J. Milnor, and Foundational
Essays on Topological Manifolds, Smoothings and Tri-
angulations (Princeton University Press, Princeton, NJ,
1977), by R. Kirby and L. Siebenman.

IV.8 Moduli Spaces
David D. Ben-Zvi

Many of the most important problems in mathemat-
ics concern classification [I.4 §2]. One has a class of
mathematical objects and a notion of when two objects
should count as equivalent. It may well be that two
equivalent objects look superficially very different, so
one wishes to describe them in such a way that equiva-
lent objects have the same description and inequivalent
objects have different descriptions.

Moduli spaces can be thought of as geometric solu-
tions to geometric classification problems. In this arti-
cle we shall illustrate some of the key features of mod-
uli spaces, with an emphasis on the moduli spaces of
riemann surfaces [III.81]. In broad terms, a moduli
problem consists of three ingredients.

Objects: which geometric objects would we like to
describe, or parametrize?

Equivalences: when do we identify two of our objects
as being isomorphic, or “the same”?

Families: how do we allow our objects to vary, or
modulate?

In this article we will discuss what these ingredients sig-
nify, as well as what it means to solve a moduli problem,
and we will give some indications as to why this might
be a good thing to do.

Moduli spaces arise throughout algebraic geom-
etry [IV.4], differential geometry, and algebraic
topology [IV.6]. (Moduli spaces in topology are often
referred to as classifying spaces.) The basic idea is to
give a geometric structure to the totality of the objects
we are trying to classify. If we can understand this geo-
metric structure, then we obtain powerful insights into
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the geometry of the objects themselves. Furthermore,
moduli spaces are rich geometric objects in their own
right. They are “meaningful” spaces, in that any state-
ment about their geometry has a “modular” interpreta-
tion, in terms of the original classification problem. As a
result, when one investigates them one can often reach
much further than one can with other spaces. Moduli
spaces such as the moduli of elliptic curves [III.21]
(which we discuss below) play a central role in a vari-
ety of areas that have no immediate link to the geom-
etry being classified, in particular in algebraic num-
ber theory [IV.1] and algebraic topology. Moreover,
the study of moduli spaces has benefited tremendously
in recent years from interactions with physics (in par-
ticular with string theory [IV.17 §2]). These interac-
tions have led to a variety of new questions and new
techniques.

1 Warmup: The Moduli Space
of Lines in the Plane

Let us begin with a problem that looks rather simple,
but that nevertheless illustrates many of the important
ideas of moduli spaces.

Problem. Describe the collection of all lines in the real
plane R2 that pass through the origin.PUP: this is a

different object

from ‘RP
1’

discussed below.
All text is OK.

To save writing, we are using the word “line” to mean
“line that passes through the origin.” This classification
problem is easily solved by assigning to each line L an
essential parameter, or modulus, a quantity that we can
calculate for each line and that will help us tell different
lines apart. All we have to do is take standard Cartesian
coordinates x,y on the plane and measure the angle
θ(L) between the line L and the x-axis, taken in coun-
terclockwise fashion. We find that the possible values
of θ are those for which 0 � θ < π , and that for every
such θ there is exactly one line L that makes an angle
of θ with the x-axis. So as a set, we have a complete
solution to our classification problem: the set of lines
L, known as the real projective line RP1, is in one-to-one
correspondence with the half-open interval [0, π).

However, we are seeking a geometric solution to the
classification problem. What does this entail? We have
a natural notion of when two lines are near each other,
which our solution should capture—in other words, the
collection of lines has a natural topology [III.92]. So
far, our solution does not reflect the fact that lines
L for which the angle θ(L) is close to π are almost
horizontal: they are therefore close to the x-axis (for

which θ = 0) and to the lines L with θ(L) close to zero.
We need to find some way of “wrapping around” the
interval [0, π) so that π becomes close to 0.

One way to do this is to take not the half-open inter-
val [0, π) but the closed interval [0, π], and then to
“identify” the points 0 and π . (This idea can easily be
made formal by defining an appropriate equivalence
relation [I.2 §2.3].) If π and 0 are regarded as the
same, then numbers close to π are close to numbers
close to 0. This is a way of saying that if you attach the
two ends of a line segment together, then, topologically
speaking, you obtain a circle.

A more natural way of achieving the same end is sug-
gested by the following geometric construction of RP1.
Consider the unit circle S1 ⊂ R2. To each point s ∈ S1,
there is an obvious way of assigning a line L(s): take
the line that passes through s and the origin. Thus, we
have a family of lines parametrized by S1, that is, a map
(or function) s �→ L(s) that takes points in S1 to lines
in our set RP1. What is important about this is that we
already know what it means for two points in S1 to be
close to each other, and the map s �→ L(s) is continu-
ous. However, this map is a two-to-one function rather
than a bijection, since s and −s always give the same
line. To remedy this, we can identify each s in the cir-
cle S1 with its antipodal point −s. We then have a one-
to-one correspondence between RP1 and the resulting
quotient space [I.3 §3.3] (which again is topologically
a circle), and this correspondence is continuous in both
directions.

The key feature of the space RP1, considered as the
moduli space of lines in the plane, is that it captures
the ways in which lines can modulate, or vary continu-
ously in families. But when do families of lines arise?
A good example is provided by the following construc-
tion. Whenever we have a continuous curve C ⊂ R2 \ 0
in the plane, we can assign to each point c in C the line
L(c) that passes through 0 and c. This gives us a family
of lines parametrized by C . Moreover, the function that
takes c to L(c) is a continuous function from C to RP1,
so the parametrization is a continuous one.

Suppose, for example, thatC is a copy of R realized as
the set of points (x,1) at height 1. Then the map from
C to RP1 gives an isomorphism between R and the set
{L : θ(L) ≠ 0}, which is the subset of RP1 consisting
of all lines apart from the x-axis. Put more abstractly,
we have an intuitive notion of what it means for a col-
lection of lines through the origin to depend continu-
ously on some parameters, and this notion is captured
precisely by the geometry of RP1: for instance, if you
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tell me you have a continuous 37-parameter family of
lines in R2, this is the same as saying that you have a
continuous map from R37 to RP1, which sends a point
v ∈ R37 to a line L(v) ∈ RP1. (More concretely, we
could say that the real function v �→ θ(L(v)) on R37

is continuous away from the locus where θ is close to
π . Near this locus we could use instead the function φ
that measures the angle from the y-axis.)

1.1 Other Families

The idea of families of lines leads to various other geo-
metric structures on the space RP1, and not just its
topological structure. For example, we have the notion
of a differentiable family of lines in the plane, which
is a family of lines for which the angles vary differen-
tiably. (The same ideas apply if we replace “differen-
tiable” by “measurable,” “C∞,” “real analytic,” etc.) To
parametrize such a family appropriately, we would like
RP1 to be a differentiable manifold [I.3 §6.9], so that
we can calculate derivatives of functions on it. Such a
structure on RP1 can be specified by using the angle
functions θ and φ defined in the previous section. The
function θ gives us a coordinate for lines that are not
too close to the x-axis, and φ gives us a coordinate for
lines that are not too close to the y-axis. We can cal-
culate derivatives of functions on RP1 by writing them
in terms of these coordinates. One can justify this dif-
ferentiable structure on RP1 by checking that for any
differentiable curve C ⊂ R2 \0 the map c �→ L(c) comes
out as differentiable. This means that if L(c) is not close
to the x-axis, then the function x �→ θ(L(x)) is differ-
entiable at x = c, and similarly for φ and the y-axis.
The functions x �→ θ(L(x)) and �→ φ(L(x)) are called
pullbacks, because they are the result of converting, or
“pulling back,” θ and φ from functions defined on RP1

to functions defined on C .

We now can state the fundamental property of RP1

as a differentiable space.

A differentiable family of lines in R2 parametrized by a
differentiable manifold X is the same thing as a func-
tion from X to RP1, taking a point x to a line L(x),
such that the pullbacks x �→ θ(L(x)) and x �→ φ(L(x))
of the functions θ, φ are differentiable functions.

We say that RP1 (with its differentiable structure) is
the moduli space of (differentiably varying families of)
lines in R2. This means that RP1 carries the universal
differentiable family of lines. From the very definition,
we have assigned to each point of RP1 a line in R2, and

these lines vary differentiably as we vary the point. The
above assertion says that any differentiable family of
lines, parametrized by a space X, is described by giv-
ing a map f : X → RP1 and assigning to x ∈ X the
line L(f(x)).

1.2 Reformulation: Line Bundles

It is interesting to reformulate the notion of a (continu-
ous or differentiable) family of lines as follows. LetX be
a space and let x �→ L(x) be an assignment of lines to
points in X. For each point x ∈ X, we place a copy of R2

at x; in other words, we consider the Cartesian product
X ×R2. We may now visualize the line L(x) as living in
the copy of R2 that lies over x. This gives us a contin-
uously varying collection of lines L(x) parametrized
by x ∈ X, otherwise known as a line bundle over X.
Moreover, this line bundle is embedded in the “trivial”
vector bundle [IV.6 §5] X ×R2, which is the constant
assignment that takes each x to the plane R2. In the
case when X is RP1 itself, we have a “tautological” line
bundle: to each point s ∈ RP1, which we can think of as
a line Ls in R2, it assigns that very same line Ls .

Proposition. For any topological space X there is a
natural bijection between the following two sets:

(i) the set of continuous functions f : X → RP1; and
(ii) the set of line bundles on X that are contained in

the trivial vector bundle X × R2.

This bijection sends a function f to the correspond-
ing pullback of the tautological line bundle on RP1.
That is, the function f is mapped to the line bundle
x �→ Lf(x). (This is a pullback because it converts L
from a function defined on RP1 to a function defined
on X.)

Thus, the space RP1 carries the universal line bun-
dle that sits in the trivial R2 bundle—any time we have
a line bundle sitting in the trivial R2 bundle, we can
obtain it by pulling back the universal (tautological)
example on RP1.

1.3 Invariants of Families

Associated with any continuous function f from the
circle S1 to itself is an integer known as its degree.
Roughly speaking, the degree of f is the number of
times f(x) goes around the circle when x goes around
once. (If it goes backwardsn times, then we say that the
degree is −n.) Another way to think of the degree is as
the number of times a typical point in S1 is passed by
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f(x) as x goes around the circle, where we count this
as +1 if it is passed in the counterclockwise direction
and −1 if it is passed in the clockwise direction.

Earlier, we showed that the circle S1, which we
obtained by identifying the endpoints of the closed
interval [0, π], could be used to parametrize the mod-
uli space RP1 of lines. Combining this with the notion
of degree, we can draw some interesting conclusions.
In particular, we can define the notion of winding num-
bers. Suppose that we are given a continuous function
γ from the circle S1 into the plane R2 and suppose that
it avoids 0. The image of this map will be a closed loop
C (which may cross itself). This defines for us a map
from S1 to itself: first do γ to obtain a point c in C ,
then work out L(c), which belongs to RP1, and finally
use the parametrization of RP1 to associate with L(c) a
point in S1 again. The degree of the resulting compos-
ite map will be twice the number of times that γ, and
hence C , winds around 0, so half this number is defined
to be the winding number of γ.

More generally, given a family of lines in R2 parame-
trized by some space X, we would like to measure the
“manner in whichX winds around the circle.” To be pre-
cise, given a function φ from X to RP1, which defines
the parametrized family of lines, we would like to be
able to say, for any map f : S1 → X, what the wind-
ing number is of the composition φf , which takes a
point x in S1 to its image f(x) in X and from there
to the corresponding line φ(f(x)) in the family. Thus,
the map φ gives us a way of assigning to each func-
tion f : S1 → X an integer, the winding number of
φf . The way this assignment works does not change if
φ is continuously deformed: that is, it is a topological
invariant of φ. What it does depend on is the class that
φ belongs to in the first cohomology group [IV.6 §4]
of X, H1(X,Z). Equivalently, to any line bundle on a
space X which is contained in the trivial R2-bundle,
we have associated a cohomology class, known as the
Euler class of the bundle. This is the first example of
a characteristic class [IV.6 §5] for vector bundles.
It demonstrates that if we understand the topology of
moduli spaces of classes of geometric objects, then we
can define topological invariants for families of those
objects.

2 The Moduli of Curves
and Teichmüller Spaces

We now turn our attention to perhaps the most famous
examples of moduli spaces, the moduli spaces of

curves, and their first cousins, the Teichmüller spaces.
These moduli spaces are the geometric solution to the
problem of classification of compact Riemann surfaces,
and can be thought of as the “higher theory” of Rie-
mann surfaces. The moduli spaces are “meaningful
spaces,” in that each of their points stands for a Rie-
mann surface. As a result, any statement about their
geometry tells us something about the geometry of
Riemann surfaces.

We turn first to the objects. Recall that a Riemann
surface is a topological surface X (connected and ori-
ented) to which a complex structure has been given.
Complex structures can be described in many ways,
and they enable us to do complex analysis, geometry,
and algebra on the surface X. In particular, they enable
us to define holomorphic [I.3 §5.6] (complex-analytic)
and meromorphic functions [V.34] on open subsets
of X. To be precise, X is a two-dimensional manifold,
but the charts are thought of as open subsets of C

rather than of R, and the maps that glue them together
are required to be holomorphic. An equivalent notion
is that of a conformal structure on X, which is the
structure needed to make it possible to define angles
between curves in X. Yet another important equivalent
notion is that of algebraic structure on X, making X
into a complex-algebraic curve (leading to the persis-
tent confusion in terminology: a Riemann surface is two
dimensional, and therefore a surface, from the point of
view of topology or the real numbers, but one dimen-
sional, and therefore a curve, from the point of view of
complex analysis and algebra). An algebraic structure is
what allows us to speak of polynomial, rational, or alge-
braic functions on X, and is usually specified by real-
izing X as the set of solutions to polynomial equations
in complex projective space [III.74] CP2 (or CPn).

In order to speak of a classification problem, let alone
a moduli space, for Riemann surfaces we must next
specify when we regard two Riemann surfaces as equiv-
alent. (We postpone the discussion of the final ingre-
dient, the notion of families of Riemann surfaces, to
section 2.2.) To do this, we must give a notion of iso-
morphism between Riemann surfaces: when should two
Riemann surfaces X and Y be “identified,” or thought PUP: ‘identified’ is

an essential piece
of jargon and is
being used
correctly in that
sense here.
Addition of quote
marks hopefully
mitigates the
problem?

of as giving two equivalent realizations of the same
underlying object of our classification? This issue was
hidden in our toy example of classifying lines in the
plane: there we simply identified two lines if and only
if they were equal as lines in the plane. This naive
option is not available to us with the more abstractly
defined Riemann surfaces. If we considered Riemann
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surfaces realized concretely as subsets of some larger
space—for example, as solution sets to algebraic equa-
tions in complex projective space—we could similarly
choose to identify surfaces only if they were equal as
subsets. However, this is too fine a classification for
most applications: what we care about is the intrinsic
geometry of Riemann surfaces, and not incidental fea-
tures that result from the particular way we choose to
realize them.

At the other extreme, we might choose to ignore the
extra geometric structure that makes a surface into a
Riemann surface. That is, we could identify two Rie-
mann surfaces X and Y if they are topologically equiva-
lent, or homeomorphic (the “coffee mug is a doughnut”
perspective). The classification of compact Riemann
surfaces up to topological equivalence is captured by a
single positive integer, the genus g (“number of holes”)
of the surface. Any surface of genus zero is homeomor-
phic to the Riemann sphere CP1 � S2, any surface of
genus 1 is homeomorphic to a torus S1×S1, and so on.
Thus, in this case there is no issue of “modulation”—
the classification is solved by giving a list of possible
values of a single discrete invariant.

However, if we are interested in Riemann surfaces
as Riemann surfaces rather than simply as topological
manifolds, then this classification is too crude: it com-
pletely ignores the complex structure. We would now
like to refine our classification to remedy this defect. To
this end, we say that two Riemann surfaces X and Y are
(conformally, or holomorphically) equivalent if there is
a topological equivalence between them that preserves
the geometry, i.e., a homeomorphism that preserves the
angles between curves, or takes holomorphic functions
to holomorphic functions, or takes rational functions
to rational functions. (These conditions are all equiv-
alent.) Note that we still have at our disposal our dis-
crete invariant—the genus of a surface. However, as we
shall see, this invariant is not fine enough to distinguish
between all inequivalent Riemann surfaces. In fact, it is
possible to have families of inequivalent Riemann sur-
faces that are parametrized by continuous parameters
(but we cannot make proper sense of this idea until we
have said precisely what is meant by a family of Rie-
mann surfaces). Thus, the next step is to fix our discrete
invariant and to try to classify all the different isomor-
phism classes of Riemann surfaces with the same genus
by assembling them in a natural geometric fashion.

An important step toward this classification is the
uniformization theorem [V.37]. This states that any
simply connected Riemann surface is holomorphically

isomorphic to one of the following three: the Riemann
sphere CP1, the complex plane C, or the upper half-
plane H (equivalently, the unit disk D). Since the uni-
versal covering space [III.95] of any Riemann sur-
face is a simply connected Riemann surface, the uni-
formization theorem provides an approach to clas-
sifying arbitrary Riemann surfaces. For instance, any
compact [III.9] Riemann surface of genus zero is sim-
ply connected, and in fact homeomorphic to the Rie-
mann sphere, so the uniformization theorem already
solves our classification problem in genus zero: up to
equivalence, CP1 is the only Riemann surface of genus
zero, and so in this case the topological and conformal
classifications agree.

2.1 Moduli of Elliptic Curves

Next, we consider Riemann surfaces whose universal
cover is C, which is the same as saying that they are
quotients of C. For example, we can look at a quotient
of C by Z, which means that we regard two complex
numbers z and w as equivalent if z −w is an integer.
This has the effect of “wrapping C around” into a cylin-
der. Cylinders are not compact, but to get a compact
surface we could take a quotient by Z2 instead: that
is, we could regard z and w as equivalent if their dif-
ference is of the form a+ bi, where a and b are both
integers. Now C is wrapped around in two directions
and the result is a torus with a complex (or, equiva-
lently, conformal or algebraic) structure. This is a com-
pact Riemann surface of genus 1. More generally, we
can replace Z2 by any lattice L, regarding z and w as
equivalent if z −w belongs to L. (A lattice L in C is an
additive subgroup of C with two properties. First, it is
not contained in any line. Second, it is discrete, which
means that there is a constant d > 0 such that the dis-
tance between any two points in L is at least d. Lattices
are also discussed in the general goals of mathe-
matical research [I.4 §4]. A basis for a lattice L is a
pair of complex numbers u and v belonging to L such
that every z in L can be written in the form au + bv
with a and b integers. Such a basis will not be unique:
for example, if L = Z⊕Z, then the obvious basis isu = 1
and v = i, but u = 1 and v = 1 + i would do just as
well.) If we take a quotient of C by a lattice, then we
again obtain a torus with complex structure. It turns
out that any compact Riemann surface of genus 1 can
be produced in this way.

From a topological point of view, any two tori are the
same, but once we consider the complex structure we
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start to find that different choices of lattice may lead
to different Riemann surfaces. Certain changes to L do
not have an effect: for example, if we multiply a lat-
tice L by some nonzero complex number λ, then the
quotient surface C/L will not be affected. That is, C/L
is naturally isomorphic to C/λL. Therefore, we need
only worry about the difference between lattices when
one is not a multiple of the other. Geometrically, this
says that one cannot be obtained from the other by a
combination of rotation and dilation.

Notice that by taking the quotient C/L we obtain not
just a “naked” Riemann surface, but one equipped with
an “origin,” that is, a distinguished point e ∈ E, which
is the image of the origin 0 ∈ C. In other words, we
obtain an elliptic curve:

Definition. An elliptic curve (over C) is a Riemann sur-
face E of genus 1, equipped with a marked point e ∈ E.
Elliptic curves, up to isomorphism, are in bijection with
lattices L ⊂ C up to rotation.

Remark. In fact, since L ⊂ C is a subgroup of the Abe-
lian group C, the elliptic curve E = C/L is naturally an
Abelian group, with e as its identity element. This is
an important motivation for keeping e as part of the
data that defines an elliptic curve. A more subtle rea-
son for remembering the location of e when we speak
of E is that it helps us to define E more uniquely. This
is useful, because any surface E of genus 1 has lots
of symmetries, or automorphisms [I.3 §4.1]: there is
always a holomorphic automorphism of E taking any
point x to any other given point y . (If we think of E
as a group, these are achieved by translations.) Thus,
if someone hands us another genus-1 surface E′, there
may be no way to identify E with E′, or there may be
infinitely many ways: we can always compose a given
isomorphism between them with a self-symmetry of E.
As we will discuss later, automorphisms haunt almost
every moduli problem, and are crucial when we con-
sider the behavior of families. It is usually convenient
to “rigidify” the situation somewhat, so that the pos-
sible isomorphisms between different objects are less
“floppy” and more uniquely determined. In the case of
elliptic curves, distinguishing the point e achieves this
by reducing the symmetry of E. Once we do that, there
is usually at most one way to identify two elliptic curvesPUP: Tim would

like to keep this
sentence as it is.
OK?

(one way, that is, that takes origin to origin).

We see that Riemann surfaces of genus 1 (with the
choice of a marked point) can be described by concrete
“linear algebra data”: a lattice L ⊂ C, or rather the equiv-
alence class consisting of all nonzero scalar multiples

λL of L. This is the ideal setting to study a classifica-
tion, or moduli, problem. The next step is to find an
explicit parametrization of the collection of all lattices,
up to multiplication, and to decide in what sense we
have obtained a geometric solution to the classification
problem.

In order to parametrize the collection of lattices, we
follow a procedure used for all moduli problems: first
parametrize lattices together with the choice of some
additional structure, and then see what happens when
we forget this choice. For every lattice L we choose a
basis ω1,ω2 ∈ L: that is, we represent L as the set
of all integer combinations aω1 + bω2. We do this in
an oriented fashion: we require that the fundamental
parallelogram spanned byω1 andω2 is positively ori-
ented. (That is, the numbers 0,ω1,ω1+ω2, andω2 list
the vertices of the parallelogram in a counterclockwise
order. From the geometric point of view of the elliptic
curve E, L is the fundamental group [IV.6 §2] of E,
and the orientation condition says that we generate L
by two loops, or “meridians,” A = ω1, B = ω2, which
are oriented, in that their oriented intersection num-
ber A ∩ B is equal to +1 rather than −1.) Since we are
interested in lattices only up to multiplication, we can
multiply L by a complex number so as to turn ω1 into
1 and henceω2 intoω =ω2/ω1. The orientation con-
dition now says thatω is in the upper half-plane H: i.e.,
its imaginary part is positive, Imω > 0. Conversely, any
complex number ω ∈ H in the upper half-plane deter-
mines a unique oriented lattice L = Z1 ⊕ Zω (that is,
the set of all integer combinations a+ bω of 1 andω)
and no two of these lattices are related by a rotation.

What does this tell us about elliptic curves? We saw
earlier that an elliptic curve is defined by a lattice L and
an identity e. Now we have seen that if we give L some
extra structure, namely an oriented basis, then we can
parametrize it by a complex numberω ∈ H. This makes
precise for us the “additional structure” that we want
to place on elliptic curves. We say that a marked elliptic
curve is an elliptic curve E, e together with the choice
of an oriented basis ω1,ω2 for the associated lattice
(fundamental group) L of E. The point is that any lattice
has infinitely many different bases, which lead to many
automorphisms of E. By “marking” one of these bases,
we stop them being automorphisms.

2.2 Families and Teichmüller Spaces

With our new definition, we can summarize the earlier
discussion by saying that marked elliptic curves are in
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bijection with points ω ∈ H of the upper half-plane.
The upper half-plane is, however, much more than just
a set of points: it carries a host of geometric structures,
in particular a topology and a complex structure. In
what sense do these structures reflect geometric prop-
erties of marked elliptic curves? In other words, in what
sense is the complex manifold H, known in this context
as the Teichmüller space T1,1 of genus-1 Riemann sur-
faces with one marked point, a geometric solution to
the problem of classifying marked elliptic curves?

In order to answer this question, we need the notion
of a continuous family of Riemann surfaces, and also
the notion of a complex-analytic family. A continuous
family of Riemann surfaces parametrized by a topolog-
ical space S, such as the circle S1, for example, is a “con-
tinuously varying” assignment of a Riemann surface Xs
to every point s of S. In our example of the moduli
of lines in the plane, a continuous family of lines was
characterized by the property that the angles between
the lines and the x-axis or y-axis defined continuous
functions of the parameters. Geometrically defined col-
lections of lines, such as those produced by a curve
C in the plane, then gave rise to continuous families.
More abstractly, a continuous family of lines defined a
line bundle over the parameter space. A good criterion
for a family of Riemann surfaces is likewise that any
“reasonably defined” geometric quantity that we can
calculate for every Riemann surface should vary con-
tinuously in the family. For example, a classical con-
struction of Riemann surfaces of genus g comes from
taking 4g-gons and gluing opposite sides together. The
resulting Riemann surface is fully determined by the
edge-lengths and angles of the polygon. Therefore, a
continuous family of Riemann surfaces described in
this fashion should be precisely a family such that the
edge-lengths and angles give continuous functions of
the parameter set.

In more abstract topological terms, if we have a col-
lection {Xs, s ∈ S} of Riemann surfaces depending
on points in a space S and we wish to make it into
a continuous family, then we should give the union⋃
s∈S Xs itself the structure of a topological space X,

which should simultaneously extend the topology on
each individual Xs . The result is called a Riemann sur-
face bundle. Associated with X is the map that takes
each point x to the particular s for which x belongs to
Xs . We should demand that this map is continuous, and
perhaps more (it could be a fibration, or fiber bundle).
This definition has the advantage of great flexibility.
For example, if S is a complex manifold, then in just

the same way we can speak of a complex-analytic fam-
ily of Riemann surfaces {Xs, s ∈ S} parametrized by S:
now we ask for the union of the Xs to carry not just a
topology but a complex structure (i.e., it should form
a complex manifold), extending the complex struc-
ture on the fibers and mapping holomorphically to
the parameter set. The same holds with “complex-
analytic” replaced by “algebraic.” These abstract def-
initions have the property that if our Riemann sur-
faces are described in a concrete way—cut out by equa-
tions, glued from coordinate patches, etc.—then the
coefficients of our equations or gluing data will vary
as complex-analytic functions in our family precisely
when the family is complex analytic (and likewise for
continuous or algebraic families).

As a reality check, note that a (continuous, analytic,
or other) family of Riemann surfaces parametrized by
a single point s = S is indeed just a single Riemann
surface Xs . Just as in this simple case we wish to con-
sider Riemann surfaces only up to equivalence, so there
is a notion of equivalence or isomorphism of two ana-
lytic families {Xs} and {X′s} parametrized by the same
space S. We simply regard the families as equivalent if
the surfaces Xs and X′s are isomorphic for every s, and
if the isomorphism depends analytically on s.

Armed with the notion of family, we can now for-
mulate the characteristic property that the upper half-
plane possesses when we think of it as the moduli space
of marked elliptic curves. We define a continuous or
analytic family of marked elliptic curves to be a fam-
ily where the underlying genus-1 surfaces vary contin-
uously or analytically, while the choice of basepoint
es ∈ Es and the basis of the lattice Ls vary continuously.

The upper half-plane H plays a role for marked ellip-
tic curves that is similar to the role played by RP1 for
lines in the plane. The following theorem makes this
statement precise.

Theorem. For any topological space S, there is a one-
to-one correspondence between continuous maps from
S to H and isomorphism classes of continuous families
of marked elliptic curves parametrized by S. Similarly,
there is a one-to-one correspondence between analytic
maps from any complex manifold S to H and isomor-
phism classes of analytic families of marked elliptic
curves parametrized by S.

If we apply the theorem in the case where S is a single
point, it simply tells us that the points of H are in bijec-
tion with the isomorphism classes of marked elliptic
curves, as we already knew. However, it contains more
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information: it says that H, with its topology and com-
plex structure, embodies the structure of marked ellip-
tic curves and the ways in which they can modulate. At
the other extreme, we could take S = H itself, mapping
S to H by the identity map. This expresses the fact that
H itself carries a family of marked elliptic curves, i.e.,
the collection of Riemann surfaces defined byω ∈ H fit
together into a complex manifold fibering over H with
elliptic curve fibers. This family is called the universal
family, since by the theorem any family is “deduced”
(or pulled back) from this one universal example.

2.3 From Teichmüller Spaces to Moduli Spaces

We have arrived at a complete and satisfying picture
for the classification of elliptic curves when we choose
in addition a marking (that is, an oriented basis of the
associated lattice L = π1(E)). What can we say about
elliptic curves themselves, without the choice of mark-
ing? We somehow need to “forget” the marking, by
regarding two points of H as equivalent if they corre-
spond to two different markings of the same elliptic
curve.

Now, given any two bases of the group (or lattice)
Z ⊕ Z, there is an invertible 2× 2 matrix with integer
entries that takes one basis to the other. If the two bases
are oriented, then this matrix will have determinant 1,
which means that it is an element

A =
(
a b
c d

)
∈ SL2(Z)

of the group of invertible unimodular matrices over
Z. Similarly, given any two oriented bases (ω1,ω2)
and (ω′1,ω

′
2) of a lattice L, which can be thought of

as oriented identifications of L with Z ⊕ Z, there is a
matrix A ∈ SL2(Z) such that ω′1 = aω1 + bω2 and
ω′2 = cω1 + dω2. If we now consider the normal-
ized bases (1,ω) and (1,ω′), where ω = ω1/ω2 and
ω′ = ω′1/ω′2, then we obtain a transformation of the
upper half-plane. It is given by the formula

ω′ = aω+ b
cω+ d .

That is, the group SL2(Z) is acting on the upper half-
plane by linear fractional (or Möbius) transformations
with integer coefficients, and two points in the upper
half-plane correspond to the same elliptic curve if one
can be turned into the other by means of such a trans-
formation. If this is the case, then we should regard
the two points as equivalent: that is how we formalize
the idea of “forgetting” the marking. Note also that the
scalar matrix− Id in SL2(Z), which negates bothω1 and

ω2, acts trivially on the upper half-plane, so that we in

fact get an action of PSL2(Z) = SL2(Z)/{± Id} on H.

So we come to the conclusion that elliptic curves (up

to isomorphism) are in bijection with orbits of PSL2(Z)
on the upper half-plane, or equivalently with points of

the quotient space H/PSL2(Z). This quotient space has

a natural quotient topology, and in fact can be given a

complex-analytic structure, which, it turns out, identi-

fies it with the complex plane C itself. To see this one

uses the classical modular function [IV.1 §8] j(z),
a complex-analytic function on H which is invariant

under the modular group PSL2(Z) and which therefore

defines a natural coordinate H/PSL2(Z)→ C.

It appears that we have solved the moduli prob-

lem for elliptic curves: we have a topological, and

even complex-analytic, space M1,1 = H/PSL2(Z)whose

points are in one-to-one correspondence with isomor-

phism classes of elliptic curves. This already qualifies

M1,1 as the coarse moduli space for elliptic curves,

which means it is as good a moduli space as we can

hope for. However, M1,1 fails an important test for a

moduli space thatT1,1 passed (as we saw in section 2.2):

it is not true, even for the circle S = S1, that every con-

tinuous family of elliptic curves over S corresponds to

a map from S to M1,1.

The reason for this failure is the problem of automor-

phisms. These are equivalences from E to itself: that is,

complex-analytic maps from E to E that preserve the

basepoint e. Equivalently, they are given by complex-

analytic self-maps of C that preserve 0 and the lattice

L. Such a map must be a rotation: that is, multiplication

by some complex number λ of modulus 1. It is easy to

check that for most lattices L in the plane, the only rota-

tion that sends L to itself is multiplication by λ = −1.

Note that this is the same −1 that we quotiented out

by to pass from SL2(Z) to PSL2(Z). However, there are PUP: I can confirm
that this sentence
is correct as
written.

two special lattices that have greater symmetry. These

are the square lattice L = Z · 1⊕ Z · i, corresponding to

the fourth root of unity i, and the hexagonal lattice

L = Z · 1⊕ Z · e2π i/6, corresponding to a sixth root of

unity. (Note that the hexagonal lattice is also repre-

sented by the point ω = e2π i/3.) The square lattice,

which corresponds to the elliptic curve formed by glu-

ing the opposite sides of a square, has as its symmetries

the group Z/4Z of rotational symmetries of the square.

The hexagonal lattice, which corresponds to the ellip-

tic curve formed by gluing the opposite sides of a reg-

ular hexagon, has as its symmetries the group Z/6Z of

rotational symmetries of a hexagon.
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We see that the number of automorphisms of an ellip-
tic curve jumps discontinuously at the special points
ω = i andω = e2π i/6. This already suggests that some-
thing might be wrong with M1,1 as a moduli space.
Note that we avoided this problem with the moduli
T1,1 of marked elliptic curves, since there are no auto-
morphisms of an elliptic curve that also preserve the
marking. Another place we might have observed this
problem with M1,1 is when we passed to the quotient
H/PSL2(Z). We avoided the automorphism λ = −1
by quotienting by PSL2(Z) rather than SL2(Z). However,PUP: again, all fine

here.
the two special points i and e2π i/6 are preserved by
integer Möbius transformations of H other than the
identity, and they are the only points with that prop-
erty. This means that the quotient H/PSL2(Z) naturally
comes with conical singularities at the points corre-
sponding to these two orbits: one looks like a cone with
angle π , and the other like a cone with angle 2

3π . (To
see why this is plausible, imagine the following simpler
instance of the same phenomenon. If for every complex
number z you identify z with −z, then the result is to
wrap the complex plane around into a cone with a sin-
gularity at 0. The reason 0 is singled out is that it is pre-
served by the transformation z �→ −z. Here the angle
would be π because the identification of points is two-
to-one away from the singularity and π is half of 2π .)
It is possible to massage these singularities away using
the j-function, but they are indicating a basic difficulty.

So why do automorphisms form an obstacle to the
existence of “good” moduli spaces? We can demon-
strate the difficulty by considering an interesting con-
tinuous family of marked elliptic curves parametrized
by the circle S = S1. Let E(i) be the “square” elliptic
curve that we considered earlier, based on the lattice
of integer combinations of 1 and i. Next, for every t
between 0 and 1, let Et be a copy of E(i). Thus, we have
taken the constant, or “trivial,” family of elliptic curves
over the closed unit interval [0,1], where every curve in
the family is E(i). Now we identify the elliptic curves at
the two ends of this family, not in the obvious way, but
by using the automorphism given by a 90◦ rotation, or
multiplication by i. This means that we are looking at
the family of elliptic curves over the circle where each
member of the family is a copy of the elliptic curve E(i),
but these copies twist by 90◦ as we go around the circle.

It is easy to see that there is no way to capture this
family of elliptic curves by means of a map from S1 to
the space M1,1. Since all of the members of the family
are isomorphic, each point of the circle should map to
the same point in M1,1 (the equivalence class of i in

H). But the constant map S1 → {i} ∈ M1,1 classifies
the trivial family S1 ×Ei of elliptic curves over S1, that
is, the family where every curve is equal to E(i) but
the curves do not twist as we go around! Thus, there
are more families of elliptic curves than there are maps
to M1,1; the quotient space H/PSL2(Z) cannot handle
the complications caused by automorphisms. A variant
of this construction applies to complex-analytic fami-
lies with S1 replaced by C×. This is a very general phe-
nomenon in moduli problems: whenever objects have
nontrivial automorphisms, we can imitate the construc-
tion above to get nontrivial families over an interesting
parameter set, all of whose members are the same. As
a result, they cannot be classified by a map to the set
of all isomorphism classes.

What do we do about this problem? One approach
is to resign ourselves to having coarse moduli spaces,
which have the right points and right geometry but do
not quite classify arbitrary families. Another approach
is the one that leads to T1,1: we can fix markings of
one kind or another, which “kill” all automorphisms.
In other words, we choose enough extra structure on
our objects so that there do not remain any (nontriv-
ial) automorphisms that preserve all this decoration.
In fact, one can be far more economical than picking
a basis of the lattice L and obtaining the infinite cov-
ering T1,1 of M1,1: one can fix a basis of L only up
to some congruence (for example, of L/2L). Finally, we
can simply learn to come to terms with the automor-
phisms, keeping them as part of the data, resulting in
“spaces” where points have internal symmetries. This is
the notion of an orbifold [IV.4 §7], or stack [IV.4 §7],
which is flexible enough to deal with essentially all
moduli problems.

3 Higher-Genus Moduli Spaces
and Teichmüller Spaces

We would now like to generalize as much as possi-
ble of the picture of elliptic curves and their mod-
uli to higher-genus Riemann surfaces. For each g we
would like to define a space Mg , called the moduli
space of curves of genus g, that classifies compact Rie-
mann surfaces of genus g and tells us how they modu-
late. Thus, the points of Mg should correspond to our
objects, compact Riemann surfaces of genus g, or, to
be more accurate, equivalence classes of such surfaces,
where two surfaces are considered to be equivalent
if there is a complex-analytic isomorphism between
them. In addition, we would like Mg to do the best
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it can to embody the structure of continuous fami-
lies of genus-g surfaces. Likewise, there are spaces
Mg,n parametrizing “n-punctured” Riemann surfaces
of genus g. This means we consider not “bare” Riemann
surfaces, but Riemann surfaces together with a “deco-
ration” or “marking” byn distinct labeled points (punc-
tures). Two of these are considered to be equivalent if
there is a complex-analytic isomorphism between them
that takes punctures to punctures and preserves labels.
Since there are Riemann surfaces with automorphisms,
we do not expect Mg to be able to classify all families
of Riemann surfaces: that is, we will expect examples
similar to the twisted square-lattice construction dis-
cussed earlier. However, if we consider Riemann sur-
faces with enough extra markings, then we will be able
to obtain a moduli space in the strongest sense. One
way to choose such markings is to consider Mg,n with
n large enough (for fixed g). Another approach will be
to mark generators of the fundamental group, leading
to the Teichmüller spaces Tg and Tg,n. We now outline
this process.

To construct the space Mg , we return to the uni-
formization theorem. Any compact surface X of genus
g > 1 has as its universal cover the upper half-plane
H, so it is represented as a quotient X = H/Γ , where Γ
is a representation of the fundamental group of X as a
subgroup of conformal self-maps of H. The group of all
conformal automorphisms of H is PSL2(R), the group of
linear fractional transformations with real coefficients.
The fundamental groups of all compact genus-g Rie-
mann surfaces are isomorphic to a fixed abstract group
Γg , with 2g generators Ai, Bi (i = 1, . . . , g) and one rela-
tion: that the product of all commutators AiBiA−1

i B
−1
i

is the identity. A subgroup Γ ⊂ PSL2(R) that acts on H in
such a way that the quotient H/Γ is a Riemann surface
(technically, the action should have no fixed points and
should be properly discontinuous) is known as a fuch-
sian group [III.28]. Thus, the analogue of the represen-
tation of elliptic curves by lattices L � Z⊕Z in the plane
is the representation of higher-genus Riemann surfaces
as H/Γ , where Γ is a Fuchsian group.

The Teichmüller space Tg of genus-g Riemann sur-
faces is the space that solves the moduli problem
for genus-g surfaces when they come with a mark-
ing of their fundamental group. This means that our
objects are genus-g surfaces X plus a set of generators
Ai, Bi of π1(X), which give an isomorphism between
π1(X) and Γg , up to conjugation.1 Our equivalences

1. Note that while the fundamental group of X depends on the
choice of a basepoint, π1(X,x) and π1(X,y) may be identified by

are complex-analytic maps that preserve the markings.
Finally, our continuous (respectively, complex-analytic)
families are continuous (complex-analytic) families of
Riemann surfaces with continuously varying markings
of the fundamental group. In other words, we are
asserting the existence of a topological space/complex
manifold Tg , with a complex-analytic family of marked
Riemann surfaces over it, and the following strong
property.

The characteristic property of Tg . For any topologi-
cal space (respectively, complex manifold) S, there is a
bijection between continuous maps (respectively, holo-
morphic maps) S → Tg and isomorphism classes of
continuous (respectively, complex-analytic) families of
marked genus-g surfaces parametrized by S.

3.1 Digression: “Abstract Nonsense”

It is interesting to note that, while we have yet to
see why such a space exists, it follows from general,
nongeometric principles—category theory [III.8] or
“abstract nonsense”—that it is completely and uniquely
determined, both as a topological space and as a com-
plex manifold, by this characteristic property. In a very
abstract way, every topological spaceM can be uniquely
reconstructed from its set of points, the set of paths
between these points, the set of surfaces spanning
these paths, and so on. To put it differently, we can
think of M as a “machine” that assigns to any topolog-
ical space S the set of continuous maps from S to M .
This machine is known as the “functor of points ofM .”
Similarly, a complex manifold M provides a machine
that assigns to any other complex manifold S the set of
complex-analytic maps from S to M . A curious discov-
ery of category theory (the Yoneda lemma) is that for
very general reasons (having nothing to do with geom-
etry), these machines (or functors) uniquely determine
M as a space, or a complex manifold.

Any moduli problem in the sense we have described
(giving objects, equivalences, and families) also gives
such a machine, where to S we assign the set of all fam-
ilies over S, up to isomorphism. So just by setting up the
moduli problem we have already uniquely determined
the topology and complex structure on Teichmüller
space. The interesting part then is to know whether or
not there actually exists a space giving rise to the same

choosing a path from x to y , and the different choices are related by
conjugation by a loop. Thus, if we are willing to identify sets of gener-
ators Ai, Bi when they differ only by a conjugation, then we can ignore
the choice of a basepoint.
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machine we have constructed, whether we can con-
struct it explicitly, and whether we can use its geometry
to learn interesting facts about Riemann surfaces.

3.2 Moduli Spaces and Representations

Coming back to earth, we discover that we have a fairly
concrete model of Teichmüller space at our disposal.
Once we have fixed the marking π1(X) � Γg , we are
simply looking at all ways to represent Γg as a Fuch-
sian subgroup of PSL2(R). Ignoring the Fuchsian condi-
tion for a moment, this means finding 2g real matrices
(up to ± Id) Ai, Bi ∈ PSL2(R) satisfying the commuta-
tor relation of Γg . This gives an explicit set of (alge-
braic!) equations for the entries of the 2g matrices,
which determine the space of all representations Γg →
PSL2(R). We must now quotient out by the action of
PSL2(R) that simultaneously conjugates all 2gmatrices
to obtain the representation variety Rep(Γg,PSL2(R)).
This is analogous to considering lattices in C up to rota-
tion, and is motivated by the fact that the quotients
of H by two conjugate subgroups of PSL2(R) will be
isomorphic.

Once we have described the space of all representa-
tions of Γg into PSL2(R), we can then single out Teich-
müller space as the subset of the representation vari-
ety that consists of Fuchsian representations of Γg into
PSL2(R). Luckily this subset is open in the represen-
tation variety, which gives a nice realization of Tg as
a topological space—in fact, Tg is homeomorphic to
R6g−6. (This can be seen very explicitly in terms of
the Fenchel–Nielsen coordinates, which parametrize a
surface in Tg via a cut-and-paste procedure involving
3g − 3 lengths and 3g − 3 angles.) We may now try to
“forget” the marking π1(X) � Γg , to obtain the mod-
uli space Mg of unmarked Riemann surfaces. In other
words, we would like to take Tg and identify any two
points that represent the same underlying Riemann
surface with different markings. This identification is
achieved by the action of a group, the genus-gmapping
class group MCGg or Teichmüller modular group, on
Tg , which generalizes the modular group PSL2(Z) that
acts on H = T1,1. (The mapping class group is defined
as the group of all self-diffeomorphisms of a genus-g
surface—remember that all such surfaces are topolog-
ically the same—modulo those diffeomorphisms that
act trivially on the fundamental group.) As in the case of
elliptic curves, Riemann surfaces with automorphisms
correspond to points in Tg fixed by some subgroup of
MCGg , and give rise to singular points in the quotient
Mg = Tg/MCGg .

Representation varieties, or moduli spaces of repre-
sentations, are an important and concrete class of mod-
uli spaces that arise throughout geometry, topology,
and number theory. Given any (discrete) group Γ , we
ask (for example) for a space that parametrizes homo-
morphisms of Γ into the group of n×n matrices. The
notion of equivalence is given by conjugation by GLn,
and that of families by continuous (or analytic, or alge-
braic, etc.) families of matrices. This problem is inter-
esting even when the group Γ is Z. Then we are sim-
ply considering invertible n×n matrices (the image
of 1 ∈ Z) up to conjugacy. It turns out that there is
no moduli space for this problem, even in the coarse
sense, unless we consider only “nice enough” matri-
ces: for example, matrices that consist of only a single
Jordan block. This is a good example of a ubiquitous
phenomenon in moduli problems: one is often forced
to throw out some “bad” (unstable) objects in order to
have any chance of obtaining a moduli space. (See the
paper by Mumford and Suominen (1972) for a detailed
discussion.)

3.3 Moduli Spaces and Jacobians

The upper half-plane H = T1,1, together with the action
of PSL2(Z), gives an appealingly complete picture of the
moduli problem for elliptic curves and its geometry.
The same cannot be said, unfortunately, for the pic-
ture of Tg as an open subset of the representation vari-
ety. In particular, the representation variety does not
even carry a natural complex structure, so we cannot
see from this description the geometry of Tg as a com-
plex manifold. This failure reflects some of the ways
in which the study of moduli spaces is more compli-
cated for genus greater than 1. In particular, the mod-
uli spaces of higher-genus surfaces are not described
purely by linear algebra plus data about orientation, as
is the case in genus 1.

Part of the blame for this complexity lies with the fact
that the fundamental group Γg � π1(X) (g > 1) is no
longer Abelian, and in particular it is no longer equal to
the first homology group H1(X,Z). A related problem is
that X is no longer a group. A beautiful solution to this
problem is given by the construction of the Jacobian
Jac(X), which shares with elliptic curves the properties
of being a torus (homeomorphic to (S1)2g), an Abelian
group, and a complex (in fact complex-algebraic) man-
ifold. (The Jacobian of an elliptic curve is the elliptic
curve itself.) The Jacobian captures the “Abelian” or
“linear” aspects of the geometry of X. There is a mod-
uli spaceAg for such complex-algebraic tori (known as
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Abelian varieties), which does share all of the nice prop-
erties and linear algebraic description of the moduli of
elliptic curves M1,1 = A1. The good news—the Torelli
theorem—is that by assigning to each Riemann surface
X its Jacobian we embed Mg as a closed, complex-
analytic subset ofAg . The interesting news—the Schot-
tky problem—is that the image is quite complicated
to characterize intrinsically. In fact, solutions to this
problem have come from as far afield as the study of
nonlinear partial differential equations!

3.4 Further Directions

In this section we give hints at some interesting ques-
tions about, and applications of, moduli spaces.

Deformations and degenerations. Two of the main top-
ics in moduli spaces ask which objects are very near
to a given one, and what lies very far away. Deforma-
tion theory is the calculus of moduli spaces: it describes
their infinitesimal structure. In other words, given an
object, deformation theory is concerned with describ-
ing all its small perturbations (see Mazur (2004) for a
beautiful discussion of this). At the other extreme, we
can ask what happens when our objects degenerate?
Most moduli spaces, for example the moduli of curves,
are not compact, so there are families “going off to
infinity.” It is important to find “meaningful” compact-
ifications of moduli spaces, which classify the possi-
ble degenerations of our objects. Another advantage of
compactifying moduli spaces is that we can then calcu-
late integrals over the completed space. This is crucial
for the next item.

Invariants from moduli spaces. An important applica-
tion of moduli spaces in geometry and topology is
inspired by quantum field theory, where a particle,
rather than following the “best” classical path between
two points, follows all paths with varying probabilities
(see mirror symmetry [IV.16 §2.2.4]). Classically, one
calculates many topological invariants by picking a geo-
metric structure (such as a metric) on a space, calculat-
ing some quantity using this structure, and finally prov-
ing that the result of the calculation did not depend on
the structure we chose. The new alternative is to look
at all such geometric structures, and integrate some
quantity over the space of all choices. The result, if
we can show convergence, will manifestly not depend
on any choices. String theory has given rise to many
important applications of this idea, in particular by
giving a rich structure to the collection of integrals

obtained in this way. Donaldson and Seiberg–Witten

theories use this philosophy to give topological invari-

ants of four-manifolds. Gromov–Witten theory applies

it to the topology of symplectic manifolds [III.90],

and to counting problems in algebraic geometry, such

as, How many rational plane curves of degree 5 pass

through fourteen points in general position? (Answer:

87 304.)

Modular forms. One of the most profound ideas in

mathematics, the Langlands program, relates number

theory to function theory (harmonic analysis) on very

special moduli spaces, generalizing the moduli space

of elliptic curves. These moduli spaces (Shimura vari-

eties) are expressible as quotients of symmetric spaces

(such as H) by arithmetic groups (such as PSL2(Z)).
modular forms [III.61] and automorphic forms are

special functions on these moduli spaces, described

by their interaction with the large symmetry groups

of the spaces. This is an extremely exciting and active

area of mathematics, which counts among its recent tri-

umphs the proof of fermat’s last theorem [V.12] and

the Shimura–Taniyama–Weil conjecture (Wiles, Taylor–

Wiles, Breuil–Conrad–Diamond–Taylor).

Further Reading

For historical accounts and bibliographies on moduli

spaces, the following articles are highly recommended.

A beautiful and accessible overview of moduli spaces,

with an emphasis on the notion of deformations, is

given by Mazur (2004). The articles by Hain (2000) and

Looijenga (2000) give excellent introductions to the

study of the moduli spaces of curves, perhaps the old-

est and most important of all moduli problems. The

article by Mumford and Suominen (1972) introduces

the key ideas underlying the study of moduli spaces

in algebraic geometry.
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IV.9 Representation Theory
Ian Grojnowski

1 Introduction

It is a fundamental theme in mathematics that many
objects, both mathematical and physical, have sym-
metries. The goal of group [I.3 §2.1] theory in gen-
eral, and representation theory in particular, is to study
these symmetries. The difference between representa-
tion theory and general group theory is that in repre-
sentation theory one restricts one’s attention to sym-
metries of vector spaces [I.3 §2.3]. I will attempt here
to explain why this is sensible and how it influences our
study of groups, causing us to focus on groups with
certain nice structures involving conjugacy classes.

2 Why Vector Spaces?

The aim of representation theory is to understand how
the internal structure of a group controls the way it acts
externally as a collection of symmetries. In the other
direction, it also studies what one can learn about a
group’s internal structure by regarding it as a group of
symmetries.

We begin our discussion by making more precise
what we mean by “acts as a collection of symmetries.”
The idea we are trying to capture is that if we are given
a group G and an object X, then we can associate with
each element g ofG some symmetry ofX, which we call
φ(g). For this to be sensible, we need the composition
of symmetries to work properly: that is,φ(g)φ(h) (the
result of applying φ(h) and then φ(g)) should be the
same symmetry asφ(gh). IfX is a set, then a symmetry
of X is a particular kind of permutation [III.70] of its
elements. Let us denote by Aut(X) the group of all per-
mutations of X. Then an action of G on X is defined to
be a homomorphism from G to Aut(X). If we are given
such a homomorphism, then we say that G acts on X.

The image to have in mind is that G “does things” to
X. This idea can often be expressed more conveniently
and vividly by forgetting about φ in the notation: thus,
instead of writing φ(g)(x) for the effect on x of the
symmetry associated with g, we simply think of g itself

A B

CD

Figure 1 A square and its diagonals.

as a permutation and write gx. However, sometimes we
do need to talk about φ as well: for instance, we might
wish to compare two different actions of G on X.

Here is an example. Take as our object X a square in
the plane, centered at the origin, and let its vertices be
A, B, C, and D (see figure 1). A square has eight symme-
tries: four rotations by multiples of 90◦ and four reflec-
tions. Let G be the group consisting of these eight sym-
metries; this group is often called D8, or the dihedral
group of order 8. By definition, G acts on the square.
But it also acts on the set of vertices of the square:
for instance, the action of the reflection through the
y-axis is to switch A with B and C with D. It might seem
as though we have done very little here. After all, we
defined G as a group of symmetries so it does not take
much effort to associate a symmetry with each element
ofG. However, we did not defineG as a group of permu-
tations of the set {A,B,C,D}, so we have at least done
something.

To make this point clearer, let us look at some other
sets on which G acts, which will include any set that
we can build sufficiently naturally from the square.
For instance, G acts not only on the set of vertices
{A,B,C,D}, but on the set of edges {AB,BC,CD,DA}
and on the set of cross-diagonals {AC,BD} as well.
Notice in the latter case that some of the elements of
G act in the same way: for example, a clockwise rota-
tion through 90◦ interchanges the two diagonals, as
does a counterclockwise rotation through 90◦. If all the
elements of G act differently, then the action is called
faithful.

Notice that the operations on the square (“reflect
through the y-axis,” “rotate through 90◦,” and so on)
can be applied to the whole Cartesian plane R2. There-
fore, R2 is another (and much larger) set on which G
acts. To call R2 a set, though, is to forget the very
interesting fact that the elements in R2 can be added
together and multiplied by real numbers: in other
words, R2 is a vector space. Furthermore, the action
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of G is well-behaved with respect to this extra struc-
ture. For instance, if g is one of our symmetries and v1

and v2 are two elements of R2, then g applied to the
sum v1 + v2 yields the sum g(v1)+ g(v2). Because of
this, we say that G acts linearly on the vector space R2.
When V is a vector space, we denote by GL(V) the set
of invertible linear maps from V to V . If V is the vec-
tor space Rn, this group is the familiar group GLn(R)
of invertible n×nmatrices with real entries; similarly,
when V = Cn it is the group of invertible matrices with
complex entries.

Definition. A representation of a group G on a vector
space V is a homomorphism from G to GL(V).

In other words, a group action is a way of regarding
a group as a collection of permutations, while a repre-
sentation is the special case where these permutations
are invertible linear maps. One sometimes sees repre-
sentations referred to, for emphasis, as linear repre-
sentations. In the representation of D8 on R2 that we
described above, the homomorphism from G to GL2(R)
took the symmetry “clockwise rotation through 90◦” to
the matrix ( 0 1

−1 0 ) and the symmetry “reflection through
the y-axis” to the matrix (−1 0

0 1 ).
Given one representation of G, we can produce oth-

ers using natural constructions from linear algebra. For
example, if ρ is the representation ofG on R2 described
above, then detρ (see determinants [III.15]) is a homo-
morphism from G to R∗ (the group of nonzero real
numbers under multiplication), since

det(ρ(gh)) = det(ρ(g)ρ(h)) = det(ρ(g))det(ρ(h)),

by the multiplicative property of determinants. This
makes detρ a one-dimensional representation, since
each nonzero real number t can be thought of as the
element “multiply by t” of GL1(R). If ρ is the represen-
tation of D8 just discussed, then under detρ we find
that rotations act as the identity and reflections act as
multiplication by −1.

The definition of “representation” is formally very
similar to the definition of “action,” and indeed, since
every linear automorphism of V is a permutation on
the set of vectors in V , the representations of G on V
form a subset of the actions of G on V . But the set of
representations is in general a much more interesting
object. We see here an instance of a general principle:
if a set comes equipped with some extra structure (as
a vector space comes with the ability to add elements
together), then it is a mistake not to make use of that
structure; and the more structure the better.

In order to emphasize this point, and to place rep-
resentations in a very favorable light, let us start by
considering the general story of actions of groups on
sets. Suppose, then, that G is a group that acts on a set
X. For each x, the set of all elements of the form gx, as
g ranges over G, is called the orbit of x. It is not hard
to show that the orbits form a partition of X.

Example. Let G be the dihedral group D8 acting on
the set X of ordered pairs of vertices of the square, of
which there are sixteen. Then there are three orbits of
G on X, namely {AA,BB,CC,DD}, {AB,BA,BC,CB,CD,
DC,DA,AD}, and {AC,CA,BD,DB}.

An action of G on X is called transitive if there is just
one orbit. In other words, it is transitive if for every
x and y in X you can find an element g such that
gx = y . When an action is not transitive, we can con-
sider the action of G on each orbit separately, which
effectively breaks up the action into a collection of
transitive actions on disjoint sets. So in order to study
all actions of G on sets it suffices to study transitive
actions; you can think of actions as “molecules” and
transitive actions as the “atoms” into which they can
be decomposed. We shall see that this idea of decom-
posing into objects that cannot be further decomposed
is fundamental to representation theory.

What are the possible transitive actions? A rich
source of such actions comes from subgroups H of G.
Given a subgroup H of G, a left coset of H is a set of
the form {gh : h ∈ H}, which is commonly denoted by
gH. An elementary result in group theory is that the
left cosets form a partition of G (as do the right cosets,
if you prefer them). There is an obvious action of G on
the set of left cosets of H, which we denote by G/H: if
g′ is an element of G, then it sends the coset gH to the
coset (g′g)H.

It turns out that every transitive action is of this form!
Given a transitive action of G on a set X, choose some
x ∈ X and let Hx be the subgroup of G consisting of
all elements h such that hx = x. (This set is called the
stabilizer of x.) Then one can check that the action of G
on X is the same1 as that of G on the left cosets of Hx .
For example, the action of D8 on the first orbit above is
isomorphic to the action on the left cosets of the two-
element subgroup H generated by a reflection of the
square through its diagonal. If we had made a different

1. By “the same” we mean “isomorphic as sets with G-action.” The
casual reader may read this as “the same,” while the more careful
reader should stop here and work out, or look up, precisely what is
meant.
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choice of x, for example the point x′ = gx, then the
subgroup of G fixing x′ would just be gHxg−1. This is
a so-called conjugate subgroup, and it gives a different
description of the same orbit, this time as left cosets of
gHxg−1.

It follows that there is a one-to-one correspondence
between transitive actions of G and conjugacy classes
of subgroups (that is, collections of subgroups conju-
gate to some given subgroup). If G acts on our original
set X in a nontransitive way, then we can break X up
into a union of orbits, each of which, as a result of this
correspondence, is associated with a conjugacy class of
subgroups. This gives us a convenient “bookkeeping”
mechanism for describing the action of G on X: just
keep track of how many times each conjugacy class of
subgroups arises.

Exercise. Check that in the example earlier the three
orbits correspond (respectively) to a two-element sub-
group R generated by reflection through a diagonal, the
trivial subgroup, and another copy of the group R.

This completely solves the problem of how groups
act on sets. The internal structure that controls the
action is the subgroup structure of G.

In a moment we will see the corresponding solution
to the problem of how groups act on vector spaces.
First, let us just stare at sets for a while and see why,
though we have answered our question, we should not
feel too happy about it.2

The problem is that the subgroup structure of a
group is just horrible.

For example, any finite group of ordern is a subgroup
of the symmetric group [III.70] Sn (this is “Cayley’s
theorem,” which follows by considering the action of
G on itself), so in order to list the conjugacy classes of
subgroups of the symmetric group Sn one must under-
stand all finite groups of size less than n.3 Or considerPUP: appearance of

both 1/16 and 1/6
in the footnote is
OK.

the cyclic group Z/nZ. The subgroups correspond to
the divisors of n, a subtle property of n that makes
the cyclic groups behave quite differently as n varies.
If n is prime, then there are very few subgroups, while
if n is a power of 2 there are quite a few. So number
theory is involved even if all we want to do is under-
stand the subgroup structure of a group as simple as a
cyclic group.

2. Exercise: go back to the example of D8 and list all the possible
transitive actions.

3. the classification of finite simple groups [V.8] does at least
allow us to estimate the number γn of subgroups of Sn up to conju-
gacy: it is a result of Pyber that 2((1/16)+o(1))n2 � γn � 24((1/6)+o(1))n2

.
Equality is expected for the lower bound.

With some relief we now turn our attention back
to linear representations. We will see that, just as
with actions on sets, one can decompose represen-
tations into “atomic” ones. But, by contrast with the
case of sets, these atomic representations (called “irre-
ducibles”) turn out to exhibit quite beautiful regulari-
ties.

The nice properties of representation theory come
largely from the following fact. While elements of the
symmetric group Sn can be multiplied together, ele-
ments of GL(V), being matrices, can be added as well
as multiplied. (But beware: the sum of two elements of
GL(V) is not necessarily an element of GL(V), because
it may not be invertible. It is, however, an element of the
endomorphism algebra End(V). When V = Cn, End(V)
is just the familiar algebra of all n×n matrices with
complex entries, both invertible and not.)

To see the difference it makes to be able to add, con-
sider the cyclic group G = Z/nZ. For each ω ∈ C with
ωn = 1, we get a representation χω of G on C by asso-
ciating the element r ∈ Z/nZ with multiplication by
ωr , which we think of as a linear map from the one-
dimensional space C to itself. This gives us n differ-
ent one-dimensional representations, one for each nth
root of unity, and it turns out that there are no others.
Moreover, if ρ : G → GL(V) is any representation of
Z/nZ, then we can write it as a direct sum of these rep-
resentations by imitating the formula for finding the
Fourier mode of a function. Using the representation
ρ, we associate with each r in Z/nZ a linear map ρ(r).
Now let us define a linear map pω : V → V by the
formula

pω = 1
n

∑
0�r<n

ω−r ρ(r).

Then pω is an element of End(V), and one can check
that it is actually a projection [III.52 §3.5] onto a sub-
space Vω of V . In fact, this subspace is an eigenspace
[I.3 §4.3]: it consists of all vectors v such that ρ(1)v =
ωv , which implies, since ρ is a representation, that
ρ(r)v =ωrv . The projection pω should be thought of
as the analogue of thenth fourier coefficient [III.27]
an(f) of a function f(θ) on the circle; note the formal
similarity of the above formula to the Fourier expansion
formula an(f) =

∫
e−2π inθf(θ)dθ.

Now the interesting thing about the Fourier series of
f is that, under favorable circumstances, it adds up to
f itself: that is, it decomposes f into trigonometric
functions [III.94]. Similarly, what is interesting about
the subspaces Vω is that we can use them to decom-
pose the representation ρ. The composition of any two
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distinct projectionspω is 0, from which it can be shown
that

V =
⊕
ω
Vω.

We can write each subspace Vω as a sum of one-
dimensional spaces, which are copies of C, and the
restriction of ρ to any one of these is just the sim-
ple representation χω defined earlier. Thus, ρ has beenPUP: this was

indeed defined
earlier so this is
OK.

decomposed as a combination of very simple “atoms”
χω.4

This ability to add matrices has a very useful conse-
quence. Let a finite group G act on a complex vector
space V . A subspace W of V is called G-invariant if
gW = W for every g ∈ G. Let W be a G-invariant sub-
space, and let U be a complementary subspace (that is,
one such that every element v of V can be written in
exactly one way as w +u with w ∈ W and u ∈ U ). Let
φ be an arbitrary projection onto U . Then it is a simple
exercise to show that the linear map 1/|G|∑g∈G gφ is
also a projection onto a complementary subspace, but
with the added advantage that it isG-invariant. This lat-
ter fact follows because applying an element g′ to the
sum just rearranges its terms.

The reason this is so useful is that it allows us to
decompose an arbitrary representation into a direct
sum of irreducible representations, which are represen-
tations without a G-invariant subspace. Indeed, if ρ is
not irreducible, then there is a G-invariant subspace
W . By the above remark, we can write G = W ⊕ W ′
with W ′ also G-invariant. If either W or W ′ has a fur-
ther G-invariant subspace, then we can decompose it
further, and so on. We have just seen this done for
the cyclic group: in that case the irreducible repre-
sentations were the one-dimensional representations
χω.

The irreducible representations are the basic build-
ing blocks of arbitrary complex representations, just
as the basic building blocks for actions on sets are the
transitive actions. It raises the question of what the irre-
ducible representations are, a question that has been
answered for many important examples, but which is
not yet solvable by any general procedure.

To return to the difference between actions and rep-
resentations, another important observation is that any
action of a group G on a finite set X can be linearized
in the following sense. If X has n elements, then we can

4. To summarize the rest of this article: the similarity to the Fourier
transform is not just analogy—decomposing a representation into its
irreducible summands is a notion that includes both this example and
the Fourier transform.

look at the hilbert space [III.37] L2(X) of all complex-

valued functions defined on X. This has a natural basis

given by the “delta functions” δx , which sendx to 1 and

all other elements of X to 0. Now we can turn the action

of G on X into an action of G on the basis in an obvious

way: we just define gδx to be δgx . We can extend this

definition by linearity, since an arbitrary function f is a

linear combination of the basis functions δx . This gives

us an action of G on L2(X), which can be defined by a

simple formula: if f is a function in L2(X), then gf is

the function defined by (gf)(x) = f(g−1x). Equiva-

lently, gf does to gx what f does to x. Thus, an action

on sets can be thought of as an assignment of a very

special matrix to every group element, namely a matrix

with only 0s and 1s and precisely one 1 in each row

and each column. (Such matrices are called permutation

matrices.) By contrast, a general representation assigns

an arbitrary invertible matrix.

Now, even when X itself is a single orbit under the

action of G, the above representation on L2(X) can

break up into pieces. For an extreme example of this

phenomenon, consider the action of Z/nZ on itself by

multiplication. We have just seen that, by means of the

“Fourier expansion” above, this breaks up into a sum

of n one-dimensional representations.

Let us now consider the action of an arbitrary group

G on itself by multiplication, or, to be more precise, left

multiplication. That is, we shall associate with each ele-

ment g the permutation of G that takes each h in G to

gh. This action is obviously transitive. As an action on

a set it cannot be decomposed any further. But when

we linearize this action to a representation of G on the

vector space L2(G), we have much greater flexibility to

decompose the action. It turns out that, not only does

it break up into a direct sum of many irreducible rep-

resentations, but every irreducible representation ρ of

G occurs as one of the summands in this direct sum,

and the number of times that ρ appears is equal to the

dimension of the subspace on which it acts.

The representation we have just discussed is called

the left regular representation of G. The fact that

every irreducible representation occurs in it so regu-

larly makes it extremely useful. Notice that it is easier to

decompose representations on complex vector spaces

than on real vector spaces, since every automorphism

of a complex vector space has an eigenvector. So it is

simplest to begin by studying complex representations.

The time has now come to state the fundamental the-

orem about complex representations of finite groups.
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This theorem tells us how many irreducible representa-

tions there are for a finite group, and, more colorfully,

that representation theory is a “non-Abelian analogue

of Fourier decomposition.”

Let ρ : G → End(V) be a representation of G. The

character χρ of ρ is defined to be its trace: that is, χρ is

a function from G to C and χρ(g) = tr(ρ(g)) for each g
in G. Since tr(AB) = tr(BA) for any two matrices A and

B, we have χρ(hgh−1) = χρ(g). Therefore, χV is very

far from an arbitrary function on G: it is a function that

is constant on each conjugacy class. Let KG denote the

vector space of all complex-valued functions on G with

this property; it is called the representation ring of G.

The characters of the irreducible representations of

a group form a very important set of data about the

group, which it is natural to organize into a matrix. The

columns are indexed by the conjugacy classes, the rows

by the irreducible representations, and each entry is the

value of the character of the given representation at the

given conjugacy class. This array is called the character

table of the group, and it contains all the important

information about representations of the group: it is

our periodic table. The basic theorem of the subject is

that this array is a square.

Theorem (the character table is square). Let G be

a finite group. Then the characters of the irreducible

representations form an orthonormal basis of KG.

When we say that the basis of characters is orthonor-

mal we mean that the Hermitian inner product defined

by

〈χ,ψ〉 = |G|−1
∑
g∈G

χ(g)ψ(g)

is 1 when χ = ψ and 0 otherwise. The fact that it

is a basis implies in particular that there are exactly

as many irreducible representations as there are con-

jugacy classes in G, and the map from isomorphism

classes of representations to KG that sends each ρ to

its character is an injection. That is, an arbitrary rep-

resentation is determined up to isomorphism by its

character.

The internal structure of a groupG that controls how

it can act on vector spaces is the structure of conju-

gacy classes of elements of G. This is a much gentler

structure than the set of all conjugacy classes of sub-

groups of G. For example, in the symmetric group Sn
two permutations belong to the same conjugacy class

if and only if they have the same cycle type. Therefore,

in that group there is a bijection between conjugacy
classes and partitions of n.5

Furthermore, whereas it is completely unclear how to
count subgroups, conjugacy classes are much easier to
handle. For instance, since they partition the group, we
have the formula |G| =∑C a conjugacy class|C|. On the rep-
resentation side, there is a similar formula, which arises
from the decomposition of the regular representation
L2(G) into irreducibles: |G| = ∑

V irreducible(dimV)2. It
is inconceivable that there might be a similarly simple
formula for sums over all subgroups of a group.

We have reduced the problem of understanding the
general structure of the representations of a finite
group G to the problem of determining the character
table of G. When G = Z/nZ, our description of the n
irreducible representations above implies that all the
entries of this matrix are roots of unity. Here are the
character tables for D8 (on the left), the group of sym-
metries of the square, and, just for contrast, for the
group Z/3Z (on the right):

1 1 1 1 1

1 1 1 −1 −1

1 1 −1 1 −1

1 1 −1 −1 1

2 −2 0 0 0

1 1 1

1 z z2

1 z2 z

where z = exp(2π i/3).
The obvious question—Where did the first table come

from?—indicates the main problem with the theorem:
though it tells us the shape of the character table, it
leaves us no closer to understanding what the actual
character values are. We know how many representa-
tions there are, but not what they are, or even what
their dimensions are. We do not have a general method
for constructing them, a kind of “non-Abelian Fourier
transform.” This is the central problem of representa-
tion theory.

Let us see how this problem can be solved for the
group D8. Over the course of this article, we have
already encountered three irreducible representations
of this group. The first is the “trivial” one-dimensional
representation: the homomorphism ρ : D8 → GL1 that
takes every element ofD8 to the identity. The second is
the two-dimensional representation we wrote down in
the first section, where each element of D8 acts on R2

5. Not only is the set of all partitions a sensible combinatorial
object, it is far smaller than the set of all subgroups of Sn: hardy
[VI.73] and ramanujan [VI.82] showed that the number of partitions

of n is about (1/4n
√

3)eπ
√
(2n/3).
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in the obvious way. The determinant of this represen-
tation is a one-dimensional representation that is not
trivial: it sends the rotations to 1 and the reflections to
−1. So we have constructed the first three rows of the
character table above. There are five conjugacy classes
inD8 (trivial, reflection through axis, reflection through
diagonal, 90◦ rotation, 180◦ rotation), so we know that
there are just two more rows.

The equality |G| = 8 = 22 + 1 + 1 + (dimV4)2 +
(dimV5)2 implies that these missing representations
are one dimensional. One way of getting the missing
character values is to use orthogonality of characters.

A slightly (but only slightly) less ad hoc way is to
decompose L2(X) for small X. For example when X is
the pair of diagonals {AC,BD}, we have L2(X) = V4⊕C,
where C is the trivial representation.

We are now going to start pointing the way toward
some more modern topics in representation theory. Of
necessity, we will use language from fairly advanced
mathematics: the reader who is familiar with only some
of this language should consider browsing the remain-
ing sections, since different discussions have different
prerequisites.

In general, a good, but not systematic, way of find-
ing representations is to find objects on which G acts,
and “linearize” the action. We have seen one exam-
ple of this: when G acts on a set X we can consider
the linearized action on L2(X). Recall that the irre-
ducible G-sets are all of the form G/H, forH some sub-
group of G. As well as looking at L2(G/H), we can con-
sider, for every representationW ofH, the vector space
L2(G/H,W) = {f : G → W | f(gh) = h−1f(g), g ∈
G, h ∈ H}; in geometric language, for those who pre-
fer it, this is the space of sections of the associated
W -bundle on G/H. This representation of G is called
the induced representation of W from H to G.

Other linearizations are also important. For example,
if G acts continuously on a topological space X, we can
consider how it acts on homology classes and hence
on the homology groups [IV.6 §4] of X.6 The simplest
case of this is the map z → z̄ of the circle S1. Since
this map squares to the identity map, it gives us an
action of Z/2Z on S1, which becomes a representation
of Z/2Z on H1(S1) = R (which represents the identity
as multiplication by 1 and the other element of Z/2Z as
multiplication by −1).

6. The homology groups discussed in the article just referred to
consist of formal sums of homology classes with integer coefficients.
Here, where a vector space is required, we are taking real coefficients.

Methods like these have been used to determine the
character tables of all finite simple groups [I.3 §3.3],
but they still fall short of a uniform description valid
for all groups.

There are many arithmetic properties of the charac-
ter table that hint at properties of the desired non-
Abelian Fourier transform. For example, the size of a
conjugacy class divides the order of the group, and
in fact the dimension of a representation also divides
the order of the group. Pursuing this thought leads to
an examination of the values of the characters mod p,
relating them to the so-called p-local subgroups. These
are groups of the formN(Q)/Q, whereQ is a subgroup
of G, the number of elements of Q is a power of p, and
N(Q) is the normalizer of Q (defined to be the largest
subgroup of G that contains Q as a normal subgroup).
When the so-called “p-Sylow subgroup” of G is Abe-
lian, beautiful conjectures of Broué give us an essen-
tially complete picture of the representations of G. But
in general these questions are at the center of a great
deal of contemporary research.

3 Fourier Analysis

We have justified the study of group actions on vector
spaces by explaining that the theory of representations
has a nice structure that is not present in the theory
of group actions on sets. A more historically based
account would start by saying that spaces of functions
very often come with natural actions of some group
G, and many problems of traditional interest can be
related to the decomposition of these representations
of G.

In this section we will concentrate on the case where
G is a compact lie group [III.50 §1]. We will see that in
this case many of the nice features of the representa-
tion theory of finite groups persist.

The prototypical example is the space L2(S1) of
square-integrable functions on the circle S1. We can
think of the circle as the unit circle in C, and thereby
identify it with the group of rotations of the circle
(since multiplication by eiθ rotates the circle by θ). This
action linearizes to an action on L2(S1): if f is a square-
integrable function defined on S1 andw belongs to the
circle, then (w · f)(z) is defined to be f(w−1z). That
is, w · f does to wz what f does to z.

Classical Fourier analysis expands functions in
L2(S1) in terms of a basis of trigonometric functions:
the functions zn for n ∈ Z. (These look more “trigono-
metric” if one writes eiθ for z and einθ for zn.) If we
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fix w and write φn(z) = zn, then (w · φn)(z) =
φn(w−1z) = w−nφn(z). In particular,w ·φn is a mul-
tiple of φn for each w, so the one-dimensional sub-
space generated by φn is invariant under the action of
S1. In fact, every irreducible representation of S1 is of
this form, as long as we restrict attention to continuous
representations.

Now let us consider an innocuous-looking general-
ization of the above situation: we shall replace 1 by n
and try to understand L2(Sn), the space of complex-
valued square-integrable functions on the n-sphere Sn.
The n-sphere is acted on by the group of rotations
SO(n+1). As usual, this can be converted into a rep-
resentation of SO(n+1) on the space L2(Sn), which
we would like to decompose into irreducible repre-
sentations; equivalently, we would like to decompose
L2(Sn) into a direct sum of minimal SO(n+1)-invariant
subspaces.

This turns out to be possible, and the proof is very
similar to the proof for finite groups. In particular, a
compact group such as SO(n+1) has a natural proba-
bility measure [III.73 §2] on it (called Haar measure)
in terms of which we can define averages. Roughly
speaking, the only difference between the proof for
SO(n+1) and the proof in the finite case is that we
have to replace a few sums by integrals.

The general result that one can prove by this method
is the following. If G is a compact group that acts con-
tinuously on a compact space X (in the sense that each
permutation φ(g) of X is continuous, and also that
φ(g) varies continuously with g), then L2(X) splits
up into an orthogonal direct sum of finite-dimensional
minimal G-invariant subspaces; equivalently, the lin-
earized action of G on L2(X) splits up into an orthog-
onal direct sum of irreducible representations, all of
which are finite dimensional. The problem of finding a
Hilbert space basis of L2(X) then splits into two sub-
problems: we must first determine the irreducible rep-
resentations of G, a problem which is independent of
X, and then determine how many times each of these
irreducible representations occurs in L2(X).

When G = S1 (which we identified with SO(2)) and
X = S1 as well, we saw that these irreducible repre-
sentations were one dimensional. Now let us look at
the action of the compact group SO(3) on S2. It can be
shown that the action of G on L2(S2) commutes with
the Laplacian, the differential operator ∆ on L2(S2)
defined by

∆ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.

That is, g(∆f) = ∆(gf) for any g ∈ G and any
(sufficiently smooth) function f . In particular, if f is
an eigenfunction for the Laplacian (which means that
∆f = λf for some λ ∈ C), then for each g ∈ SO(3) we
have

∆gf = g∆f = gλf = λgf ,
so gf is also an eigenfunction for ∆. Therefore, the
space Vλ of all eigenvectors for the Laplacian with
eigenvalue λ is G-invariant. In fact, it turns out that
if Vλ is nonzero then the action of G on Vλ is an irre-
ducible representation. Furthermore, each irreducible
representation of SO(3) arises exactly once in this way.
More precisely, we have a Hilbert space direct sum,

L2(S2) =
⊕
n�0

V2n(2n+2),

and each eigenspace V2n(2n+2) has dimension 2n + 1.
Note that this is a case where the set of eigenvalues
is discrete. (These eigenspaces are discussed further in
spherical harmonics [III.89].)

The nice feature that each irreducible representation
appears at most once is rather special to the exam-
ple L2(Sn). (For an example where this does not hap-
pen, recall that with the regular representation L2(G)
of a finite group G each irreducible representation ρ
occurs dimρ times in L2(G).) However, other features
are more generic: for example, when a compact Lie
group acts differentiably on a space X, then the sum of
all the G-invariant subspaces of L2(X) corresponding
to a particular representation is always equal to the set
of common eigenvectors of some family of commuting
differential operators. (In the example above, there was
just one operator, the Laplacian.)

Interesting special functions [III.87], such as solu-
tions of certain differential equations, often admit rep-
resentation-theoretic meaning, for example as matrix
coefficients. Their properties can then easily be de-
duced from general results in functional analysis and
representation theory rather than from any calculation.
Hypergeometric equations, Bessel equations, and many
integrable systems arise in this way.

There is more to say about the similarities between
the representation theory of compact groups and that
of finite groups. Given a compact group G and an
irreducible representation ρ of G, we can again take
its trace (since it is finite dimensional) and thereby
define its character χρ . Just as before, χρ is constant
on each conjugacy class. Finally, “the character table
is square,” in the sense that the characters of the irre-
ducible representations form an orthonormal basis of
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the Hilbert space of all square-integrable functions that
are conjugation invariant in this sense. (Now, though,
the “square matrix” is infinite.) When G = S1 this is the
Fourier theorem; when G is finite this is the theorem of
section 2.

4 Noncompact Groups, Groups in
Characteristic p, and Lie Algebras

The “character table is square” theorem focuses our
attention on groups with nice conjugacy-class struc-
ture. What happens when we take such a group but
relax the requirement that it be compact?

A paradigmatic noncompact group is the real num-
bers R. Like S1, R acts on itself in an obvious way
(the real number t is associated with the translation
s �→ s+t), so let us linearize that action in the usual way
and look for a decomposition of L2(R) into R-invariant
subspaces.

In this situation we have a continuous family of irre-
ducible one-dimensional representations: for each real
number λ we can define the function χλ by χλ(x) =
e2π iλx . These functions are not square integrable, but
despite this difficulty classical Fourier analysis tells us
that we can write an L2-function in terms of them.
However, since the Fourier modes now vary in a con-
tinuous family, we can no longer decompose a func-
tion as a sum: rather we must use an integral. First,
we define the Fourier transform f̂ of f by the formula
f̂ (λ) = ∫ f(x)e2π iλx dx. The desired decomposition of
f is then f(x) = ∫

f̂ (λ)e−2π iλx dλ. This, the Fourier
inversion formula, tells us that f is a weighted integral
of the functions χλ. We can also think of it as some-
thing like a decomposition of L2(R) as a “direct inte-
gral” (rather than direct sum) of the one-dimensional
subspaces generated by the functions χλ. However,
we must treat this picture with due caution since the
functions χλ do not belong to L2(R).

This example indicates what we should expect in gen-
eral. If X is a space with a measure and G acts continu-
ously on it in a way that preserves the measures of sub-
sets of X (as translations did with subsets of R), then
the action of G on X gives rise to a measure µX defined
on the set of all irreducible representations, and L2(X)
can be decomposed as the integral over all irreducible
representations with respect to this measure. A theo-
rem that explicitly describes such a decomposition is
called a Plancherel theorem for X.

For a more complicated but more typical example,
let us look at the action of SL2(R) (the group of real

2× 2 matrices with determinant 1) on R2 and see how
to decompose L2(R2). As we did when we looked at
functions defined on S2, we shall make use of a differ-
ential operator. This involves the small technicality that
we should look at smooth functions, and we do not ask
for them to be defined at the origin. The appropriate
differential operator this time turns out to be the Euler
vector field x(∂/∂x)+y(∂/∂y). It is not hard to check
that if f satisfies the condition f(tx, ty) = tsf (x,y)
for every x, y , and t > 0, then f is an eigenfunction
of this operator with eigenvalue s, and indeed all func-
tions in the eigenspace with this eigenvalue, which we
shall denote by Ws , are of this form. We can also split
Ws up as W+s ⊕W−s , where W+s and W−s consist of the
even and odd functions in Ws , respectively.

The easiest way of analyzing the structure ofWs is to
compute the action of the lie algebra [III.50 §2] sl2.
For those readers unfamiliar with Lie algebras, we will
say only that the Lie algebra of a Lie group G keeps
track of the action of elements of G that are “infinites-
imally close to the identity,” and that in this case the
Lie algebra sl2 can be identified with the space of 2× 2
matrices of trace 0, with ( a b

c −a ) acting as the differential
operator (−ax − by)(∂/∂x)+ (−cx + ay)(∂/∂y).

Every element ofWs is a function on R2. If we restrict
these functions to the unit circle, then we obtain a map
from Ws to the space of smooth functions defined on
S1, which turns out to be an isomorphism. We already
know that this space has a basis of Fourier modes zm,
which we can now think of as (x+ iy)m, defined when
x2+y2 = 1. There is a unique extension of this from a
function defined on S1 to a function in Ws , namely the
function wm(x,y) = (x + iy)m(x2 +y2)(s−m)/2. One
can then check the following actions of simple matri-
ces on these functions (to do so, recall the association
of the matrices with differential operators given in the
previous paragraph):(

0 −i

i 0

)
·wm =mwm,

(
1 i

i −1

)
·wm = (m− s)wm+2,

(
1 −i

−i −1

)
·wm = (−m− s)wm−2.

It follows that if s is not an integer, then from any func-
tion wm in W+s we can produce all the others using
the action of SL2(R). Therefore, SL2(R) acts irreducibly
on W+s . Similarly, it acts irreducibly on W−s . We have
therefore encountered a significant difference between



�

114 IV. Branches of Mathematics

this and the finite/compact case: when G is not com-
pact, irreducible representations of G can be infinite
dimensional.

Looking more closely at the formulas for Ws when
s ∈ Z, we see more disturbing differences. In order to
understand these, let us distinguish carefully between
representations that are reducible and representations
that are decomposable. The former are representations
that have nontrivial G-invariant subspaces, whereas
the latter are representations where one can decom-
pose the space on which G acts into a direct sum of
G-invariant subspaces. Decomposable representations
are obviously reducible. In the finite/compact case, we
used an averaging process to show that reducible rep-
resentations are decomposable. Now we do not have
a natural probability measure to use for the aver-
aging, and it turns out that there can be reducible
representations that are not decomposable.

Indeed, if s is a nonnegative integer, then the sub-
spaces W+s and W−s give us an example of this phe-
nomenon. They are indecomposable (in fact, this is true
even when s is a negative integer not equal to −1) but
they contain an invariant subspace of dimension s + 1.
Thus, we cannot write the representation as a direct
sum of irreducible representations. (One can do some-
thing a little bit weaker, however: if we quotient out
by the (s + 1)-dimensional subspace, then the quotient
representation can be decomposed.)

It is important to understand that in order to produce
these indecomposable but reducible representations
we worked not in the space L2(R2) but in the space of
smooth functions on R2 with the origin removed. For
instance, the functions wm above are not square inte-
grable. If we look just at representations of G that act
on subspaces of L2(X), then we can split them up into
a direct sum of irreducibles: given a G-invariant sub-
space, its orthogonal complement is also G-invariant.
It might therefore seem best to ignore the other, rather
subtle representations and just look at these ones. But
it turns out to be easier to study all representations
and only later ask which ones occur inside L2(X). For
SL2(R), the representations we have just constructed
(which were subquotients of W±s ) exhaust all the irre-
ducible representations,7 and there is a Plancherel for-
mula for L2(R2) that tells us which ones appear in

7. To make this precise requires some care about what we mean
by “isomorphic.” Because many different topological vector spaces
can have the same underlying sl2-module, the correct notion is of
infinitesimal equivalence. Pursuing this notion leads to the category of
Harish-Chandra modules, a category with good finiteness properties.

L2(R2) and with what multiplicity:

L2(R2) =
∫∞
−∞
W−1+ite

it dt.

To summarize: if G is not compact, then we can no
longer take averages over G. This has various conse-
quences:

Representations occur in continuous families. The
decomposition of L2(X) takes the form of a direct
integral, not a direct sum.

Representations do not split up into a direct sum of
irreducibles. Even when a representation admits a
finite composition series, as with the action of SL2(R)
on W±s , it need not split up into a direct sum. So
to describe all representations we need to do more
than just describe the irreducibles—we also need to
describe the glue that holds them together.

So far, the theory of representations of a noncom-
pact group G seems to have none of the pleasant fea-
tures of the compact case. But one thing does survive:
there is still an analogue of the theorem that the char-
acter table is square. Indeed, we can still define charac-
ters in terms of the traces of group elements. But now
we must be careful, since the irreducible representa-
tion may be on an infinite-dimensional vector space, so
that its trace cannot be defined so easily. In fact, char-
acters are not functions on G, but only distributions
[III.18]. The character of a representation determines
the semisimplification of a representation ρ: that is, it
tells us which irreducible representations are part of ρ,
but not how they are glued together.8

These phenomena were discovered by Harish-Chan-
dra in the 1950s in an extraordinary series of works that
completely described the representation theory of Lie
groups such as the ones we have discussed (the precise
condition is that they should be real and reductive—
a concept that will be explained later in this article)
and the generalizations of classical theorems of Fourier
analysis to this setting.9

Independently and slightly earlier, Brauer had inves-
tigated the representation theory of finite groups on
finite-dimensional vector spaces over fields of char-
acteristic p. Here, too, reducible representations need
not decompose as direct sums, though in this case the

8. It is a major theorem of Harish-Chandra that the distribution that
defines a character is given by analytic functions on a dense subset of
the semisimple elements of the group.

9. The problem of determining the irreducible unitary represen-
tations for real reductive groups has still not been solved; the most
complete results are due to Vogan.
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problem is not lack of compactness (obviously, since

everything is finite) but an inability to average over the

group: we would like to divide by |G|, but often this

is zero. A simple example that illustrates this is the

action of Z/pZ on the space F2
p that takes x to the 2× 2

matrix ( 1 x
1 0 ). This is reducible, since the column vec-

tor ( 1
0 ) is fixed by the action, and therefore generates

an invariant subspace. However, if one could decom-

pose the action, then the matrices ( 1 x
1 0 ) would all be

diagonalizable, which they are not.

It is possible for there to be infinitely many indecom-

posable representations, which again may vary in fam-

ilies. However, as before, there are only finitely many

irreducible representations, so there is some chance of

a “character table is square” theorem in which the rows

of the square are parametrized by characters of irre-

ducible representations. Brauer proved just such a the-

orem, pairing the characters with p-semisimple conju-

gacy classes in G: that is, conjugacy classes of elements

whose order is not divisible by p.

We will draw two crude morals from the work of

Harish-Chandra and of Brauer. The first is that the cat-

egory of representations of a group is always a reason-

able object, but when the representations are infinite

dimensional it requires serious technical work to set it

up. Objects in this category do not necessarily decom-

pose as a direct sum of irreducibles (one says that the

category is not semisimple), and can occur in infinite

families, but irreducible objects pair off in some precise

way with certain “diagonalizable” conjugacy classes in

the group—there is always some kind of analogue of

“the character table is square” theorem.

It turns out that when we consider representations

in more general contexts—Lie algebras acting on vec-

tor spaces, quantum groups, p-adic groups on infinite-

dimensional complex or p-adic vector spaces, etc.—

these qualitative features stay the same.

The second moral is that we should always hope

for some “non-Abelian Fourier transform”: that is, a

set that parametrizes irreducible representations and

a description of the character values in terms of this

set.

In the case of real reductive groups Harish-Chandra’s

work provides such an answer, generalizing the Weyl

character formula for compact groups; for arbitrary

groups no such answer is known. For special classes

of groups, there are partially successful general princi-

ples (the orbit method, Broué’s conjecture), of which

the deepest are the extraordinary circle of conjec-

tures known as the Langlands program, which we shall
discuss later.

5 Interlude: The Philosophical Lessons of
“The Character Table Is Square”

Our basic theorem (“the character table is square”) tells
us to expect that the category of all irreducible rep-
resentations of G is interesting when the conjugacy-
class structure of G is in some way under control. We
will finish this essay by explaining a remarkable fam-
ily of examples of such groups—the rational points of
reductive algebraic groups—and their conjectured rep-
resentation theory, which is described by the Langlands
program.

An affine algebraic group is a subgroup of some
group GLn that is defined by polynomial equations in
the matrix coefficients. For example, the determinant
of a matrix is a polynomial in the matrix coefficients,
so the group SLn, which consists of all matrices in GLn
with determinant 1, is such a group. Another is SOn,
which is the set of matrices with determinant 1 that
satisfy the equation AAT = I.

The above notation did not specify what sort of coef-
ficients we were allowing for the matrices. That vague-
ness was deliberate. Given an algebraic group G and
a field k, let us write G(k) for the group where the
coefficients are taken to have values in k. For exam-
ple, SLn(Fq) is the set of n×n matrices with coeffi-
cients in the finite field Fq and determinant 1. This
group is finite, as is SOn(Fq), while SLn(R) and SOn(R)
are Lie groups. Moreover, SOn(R) is compact, while
SLn(R) is not. So among affine algebraic groups over
fields one already finds all three types of groups we
have discussed: finite groups, compact Lie groups, and
noncompact Lie groups.

We can think of SLn(R) as the set of matrices in
SLn(C) that are equal to their complex conjugates.
There is another involution on SLn(C) that is a sort
of “twisted” form of complex conjugation, where we
send a matrix A to the complex conjugate of (A−1)T.
The fixed points of this new involution (that is, the
determinant-1 matrices A such that A equals the com-
plex conjugate of (A−1)T) form a group called SUn(R).
This is also called a real form of SLn(C),10 and it is
compact.

10. When we say that SLn(R) and SUn(R) are both “real forms” of
SLn(C), what is meant more precisely is that in both cases the group
can be described as a subgroup of some group of real matrices that
consists of all solutions to a set of polynomial equations, and that
when the same set of equations is applied instead to the group of
complex matrices the result is isomorphic to SLn(C).
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The groups SLn(Fq) and SOn(Fq) are almost simple
groups;11 the classification of finite simple groups tells
us, mysteriously, that all but twenty-six of the finite
simple groups are of this form. A much, much easier
theorem tells us that the connected compact groups are
also of this form.

Now, given an algebraic group G, we can also con-
sider the instances G(Qp), where Qp is the field of
p-adic numbers, and alsoG(Q). For that matter, we may
consider G(k) for any other field k, such as the func-
tion field of an algebraic variety [V.33]. The les-
son of section 4 is that we may hope for all of these
many groups to have a good representation theory,
but that to obtain it there will be serious “analytic” or
“arithmetic” difficulties to overcome, which will depend
strongly on the properties of the field k.

Lest the reader adopt too optimistic a viewpoint, we
point out that not every affine algebraic group has a
nice conjugacy-class structure. For example, let Vn be
the set of upper triangular matrices in GLn with 1s
along the diagonal, and let k be Fq. For large n, the con-
jugacy classes in Vn(Fq) form large and complex fami-
lies: to parametrize them sensibly one needs more than
n parameters (in other words, they belong to families
of dimension greater than n, in an appropriate sense),
and it is not in fact known how to parametrize them
even for a smallish value of n, such as 11. (It is not
obvious that this is a “good” question though.)

More generally, solvable groups tend to have horrible
conjugacy-class structure, even when the groups them-
selves are “sensible.” So we might expect their repre-
sentation theory to be similarly horrible. The best we
can hope for is a result that describes the entries of
the character table in terms of this horrible structure—
some kind of non-Abelian Fourier integral. For certain
p-groups Kirillov found such a result in the 1960s, as
an example of the “orbit method,” but the general result
is not yet known.

On the other hand, groups that are similar to con-
nected compact groups do have a nice conjugacy-class
structure: in particular, finite simple groups do. An
algebraic group is called reductive if G(C) has a com-
pact real form. So, for instance, SLn is reductive by the
existence of the real form SUn(R). The groups GLn and
SOn are also reductive, but Vn is not.12

11. Which is to say that the quotient of these groups by their center
is simple.

12. The miracle, not relevant for this discussion, is that compact
connected groups can be easily classified. Each one is essentially a
product of circles and non-Abelian simple compact groups. The latter

Let us examine the conjugacy classes in the group
SUn. Every matrix in SUn(R) can be diagonalized, and
two conjugate matrices have the same eigenvalues, up
to reordering. Conversely, any two matrices in SUn(R)
with the same eigenvalues are conjugate. Therefore, the
conjugacy classes are parametrized by the quotient of
the subgroup of all diagonal matrices by the action of
Sn that permutes the entries.

This example can be generalized. Any compact con-
nected group has a maximal torus T , that is, a maximal
subgroup isomorphic to a product of circles. (In the pre-
vious example it was the subgroup of diagonal matri-
ces.) Any two maximal tori are conjugate in G, and any
conjugacy class inG intersects T in a uniqueW -orbit on
T , where W is the Weyl group, the finite group N(T)/T
(where N(T) is the normalizer of T ).

The description of conjugacy classes in G(k̄), for an
algebraically closed field k̄, is only a little more compli-
cated. Any element g ∈ G(k̄) admits a jordan decom-
position [III.45]: it can be written as g = su = us,
where s is conjugate to an element of T(k̄) and u is
unipotent when considered as an element of GLn(k̄).
(A matrix A is unipotent if some power of A − I is
zero.) Unipotent elements never intersect compact sub-
groups. When G = GLn this is the usual Jordan decom-
position; conjugacy classes of unipotent elements are
parametrized by partitions of n, which, as we men-
tioned in section 2, are precisely the conjugacy classes
ofW = Sn. For general reductive groups, unipotent con-
jugacy classes are again almost the same thing as con-
jugacy classes in W .13 In particular, there are finitely
many, independent of k̄.

Finally, when k is not algebraically closed, one
describes conjugacy classes by a kind of Galois descent;
for example, in GLn(k), semisimple classes are still
determined by their characteristic polynomial, but the
fact that this polynomial has coefficients in k con-
strains the possible conjugacy classes.

The point of describing the conjugacy-class structure
in such detail is to describe the representation theory
in analogous terms. A crude feature of the conjugacy-
class structure is the way it decouples the field k from
finite combinatorial data that is attached to G but inde-
pendent of k—things like W , the lattice defining T ,
roots, and weights.

are parametrized by dynkin diagrams [III.50 §3]. They are SUn, Sp2n,
SOn, and five others, denoted E6, E7, E8, F4, and G2. That is it!

13. They are different, but related. Precisely, they are given by com-
binatorial data, Lusztig’s two-sided cells for the corresponding affine
Weyl group.
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The “philosophy” suggested by the theorem that the
character table is square suggests that the represen-
tation theory should also admit such a decoupling: it
should be built out of the representation theory of
k∗, which is the analogue of the circle, and out of
the combinatorial structure of G(k̄) (such as the finite
groups W ). Moreover, representations should have a
“Jordan decomposition”:14 the “unipotent” represen-
tations should have some kind of combinatorial com-
plexity but little dependence on k, and compact groups
should have no unipotent representations.

The Langlands program provides a description along
the lines laid out above, but it goes beyond any of the
results we have suggested in that it also describes the
entries of the character table. Thus, for this class of
examples, it gives us (conjecturally) the hoped-for “non-
Abelian Fourier transform.”

6 Coda: The Langlands Program

And so we conclude by just hinting at statements.
If G(k) is a reductive group, we want to describe an
appropriate category of representations for G(k), or at
least the character table, which we may think of as a
“semisimplification” of that category.

Even when k is finite, it is too much to hope that con-
jugacy classes in G(k) parametrize irreducible repre-
sentations. But something not so far off is conjectured,
as follows.

To a reductive group G over an algebraically closed
field, Langlands attaches another reductive group LG,
the Langlands dual, and conjectures that representa-
tions ofG(k)will be parametrized by conjugacy classes
in LG(C).15 However, these are not conjugacy classes
of elements of LG(C), as before, but of homomorphisms
from the Galois group of k to LG. The Langlands dual
was originally defined in a combinatorial manner, but
there is now a conceptual definition. A few examples
of pairs (G, LG) are (GLn,GLn), (SO2n+1, Sp2n), andPUP: I can confirm

that the identical
terms are OK here. (SLn,PGLn).

In this way the Langlands program describes the rep-
resentation theory as built out of the structure ofG and
the arithmetic of k.

14. The first such theorems were proved for GLn(Fq) by Green and
Steinberg. However, the notion of Jordan decomposition for charac-
ters originates with Brauer, in his work on modular representation
theory. It is part of his modular analogue of the “character table is
square” theorem, which we mentioned in section 3.

15. The C here is because we are looking at representations on com-
plex vector spaces; if we were looking at representations on vector
spaces over some field F, we would take LG(F).

Though this description indicates the flavor of the

conjectures, it is not quite correct as stated. For

instance, one has to modify the Galois group16 in such

a way that the correspondence is true for the group

GL1(k) = k∗. When k = R, we get the representation

theory of R∗ (or its compact form S1), which is Fourier

analysis; on the other hand, when k is a p-adic local

field, the representation theory of k∗ is described by

local class field theory. We already see an extraordinary

aspect of the Langlands program: it precisely unifies

and generalizes harmonic analysis and number theory.

The most compelling conjectural versions of the

Langlands program are “equivalences of derived cat-

egories” between the category of representations and

certain geometric objects on the spaces of Lang-

lands parameters. These conjectural statements are the

hoped-for Fourier transforms.

Though much progress has been made, a large part of

the Langlands program remains to be proved. For finite

reductive groups, slightly weaker statements have been

proved, mostly by Lusztig. As all but twenty-six of the

finite simple groups arise from reductive groups, and

as the sporadic groups have had their character tables

computed individually, this work already determines

the character tables of all the finite simple groups.

For groups over R, the work of Harish-Chandra and

later authors again confirms the conjectures. But for

other fields, only fragmentary theorems have been

proved. There is much still to be done.

Further Reading

A nice introductory text on representation theory is

Alperin’s Local Representation Theory (Cambridge Uni-

versity Press, Cambridge, 1993). As for the Langlands

program, the 1979 American Mathematical Society vol-

ume titled Automorphic Forms, Representations, and

L-functions (but universally known as “The Corvallis

Proceedings”) is more advanced, and as good a place

to start as any.

IV.10 Geometric and Combinatorial
Group Theory
Martin R. Bridson

16. The appropriately modified Galois group is called the Weil–
Deligne group.



�

118 IV. Branches of Mathematics

1 What Are Combinatorial and
Geometric Group Theory?

Groups and geometry are ubiquitous in mathematics,
groups because the symmetries (or automorphisms
[I.3 §4.1]) of any mathematical object in any context
form a group and geometry because it allows one to
think intuitively about abstract problems and to orga-
nize families of objects into spaces from which one may
gain some global insight.

The purpose of this article is to introduce the reader
to the study of infinite, discrete groups. I shall discuss
both the combinatorial approach to the subject that
held sway for much of the twentieth century and the
more geometric perspective that has led to an enor-
mous flowering of the subject in the last twenty years. I
hope to convince the reader that the study of groups is
a concern for all of mathematics rather than something
that belongs particularly to the domain of algebra.

The principal focus of geometric group theory is the
interaction of geometry/topology and group theory,
through group actions and through suitable transla-
tions of geometric concepts into group theory. One
wants to develop and exploit this interaction for the
benefit of both geometry/topology and group theory.
And, in keeping with our assertion that groups are
important throughout mathematics, one hopes to illu-
minate and solve problems from elsewhere in mathe-
matics by encoding them as problems in group theory.

Geometric group theory acquired a distinct identity
in the late 1980s but many of its principal ideas have
their roots in the end of the nineteenth century. At
that time, low-dimensional topology and combinato-
rial group theory emerged entwined. Roughly speak-
ing, combinatorial group theory is the study of groups
defined in terms of presentations, that is, by means of
generators and relations. In order to follow the rest of
this introduction the reader must first understand what
these terms mean. Since their definitions would require
an unacceptably long break in the flow of our discus-
sion, I will postpone them to the next section, but I
strongly advise the reader who is unfamiliar with the
meaning of the expression Γ = 〈a1, . . . , an | r1, . . . , rm〉
to pause and read that section before continuing with
this one.

The rough definition of combinatorial group theory
just given misses the point that, like many parts of
mathematics, it is a subject defined more by its core
problems and its origins than by its fundamental defi-
nitions. The initial impetus for the subject came from

the description of discrete groups of hyperbolic isome-
tries and, most particularly, the discovery of the fun-
damental group [IV.6 §2] of a manifold [I.3 §6.9] by
poincaré [VI.61] in 1895. The group-theoretic issues
that emerged were brought into sharp focus by the
work of Tietze and Dehn in the first decade of the twen-
tieth century and drove much of combinatorial group
theory for the remainder of the century.

Not all of the epoch-defining problems came from
topology: other areas of mathematics threw up funda-
mental questions as well. Here are some of the forms
they took: Does there exist a group of the following
type? Which groups have the following property? What
are the subgroups of …? Is the following group infinite?
When can one determine the structure of a group from
its finite quotients? In the sections that follow I shall
attempt to illustrate the mathematical culture associ-
ated with questions of this kind, but let me immedi-
ately mention some easily stated but difficult classical
problems. (i) Let G be a group that is finitely gener-
ated and suppose that there is some positive integer n
such that xn = 1 for every x in G. Must G be finite?
(ii) Is there a finitely presented group Γ and a surjec-
tive homomorphism φ : Γ → Γ such that φ(γ) = 1 for
some γ ≠ 1? (iii) Does there exist a finitely presented,
infinite, simple group [I.3 §3.3]? (iv) Is every countable
group isomorphic to a subgroup of a finitely generated
group, or even a finitely presented group?

The first of these questions was asked by Burnside
in 1902 and the second by Hopf in connection with
his study of degree-1 maps between manifolds. I shall
present the answers to all four questions (in section 5) PUP: proofreader

asked for more
specific
cross-reference,
but I think that
was due to a
misunderstanding
that we’re
referring here to
section 5 of this
article. I
mistakenly used
the section symbol
before. Now using
the word, and in
paragraph below,
so OK now?

to illustrate an important aspect of both combinatorial
and geometric group theory: one develops techniques
that allow the construction of explicit groups with pre-
scribed properties. Such constructions are of particular
interest when they illustrate the diversity of possible
phenomena in other branches of mathematics.

Another kind of question that raises basic issues
in combinatorial group theory takes the form: Does
there exist an algorithm to determine whether or not
a group (or given elements of a group) has such-and-
such a property? For example, does there exist an algo-
rithm that can take any finite presentation and decide
in a finite number of steps whether or not the group
presented is trivial? Questions of this type led to a
profound and mutually beneficial interaction between
group theory and logic, given full voice by the Hig-
man embedding theorem, which we shall discuss in
section 6. Moreover, via the conduit of combinatorial
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group theory, logic has influenced topology as well:
one uses group-theoretic constructions to show, for
example, that there is no algorithm to determine which
pairs of compact triangulated manifolds are homeo-
morphic in dimensions 4 and above. This shows that
certain kinds of classification results that have been
obtained in two and three dimensions do not have
higher-dimensional analogues.

One might reasonably regard combinatorial group
theory as the attempt to develop algebraic techniques
to solve the types of questions described above, and in
the course of doing so to identify classes of groups that
are worthy of particular study. This last point, the ques-
tion of which groups deserve our attention, is tackled
head-on in the final section of this article.

Some of the triumphs of combinatorial group theory
are intrinsically combinatorial in nature, but many
more have had their true nature revealed by the intro-
duction of geometric techniques in the past twenty
years. A fine example of this is the way in which Gro-
mov’s insights have connected algorithmic problems in
group theory to so-called filling problems in Rieman-
nian geometry. Moreover, the power of geometric group
theory is by no means confined to improving the tech-
niques of combinatorial group theory: it naturally leads
one to think about many other issues of fundamental
importance. For example, it provides a context in which
one can illuminate and vastly extend classical rigidity
theorems [V.26], such as that of Mostow. The key to
applications such as this is the idea that finitely gen-
erated groups can usefully be regarded as geometric
objects in their own right. This idea has its origins in
the work of cayley [VI.46] (1878) and Dehn (1905) but
its full force was recognized and promoted by Gromov,
starting in the 1980s. It is the key idea that underpins
the later sections of this article.

2 Presenting Groups

How should one describe a group? An example will
illustrate the standard way of doing so and give some
idea of why it is often appropriate.

Consider the familiar tiling of the Euclidean plane
by equilateral triangles. How might you describe the
full group Γ∆ of symmetries of this tiling, i.e., the rigid
motions of the plane that send tiles to tiles? Let us focus
on a single tile T and a particular edge e of T , and use
this to pick out three symmetries. The first, which we
shall call α, is the reflection of the plane in the line that
contains e and the other two, β and γ, are the reflec-
tions in the lines that join the endpoints of e to the

midpoints of the opposite edges in T . With some effort
one can convince oneself that every symmetry of the
tiling can be obtained by performing these three oper-
ations repeatedly in a suitable order. One expresses this
by saying that the set {α,β, γ} generates the group Γ∆.

A further useful observation is that if one performs
the operation α twice, the tiling is returned to its origi-
nal position: that is, α2 = 1. Likewise, β2 = γ2 = 1. One
can also verify that (αβ)6 = (αγ)6 = (βγ)3 = 1.

It turns out that the group Γ∆ is completely deter-
mined by these facts alone, a statement that we sum-
marize by the notation

Γ∆ = 〈α,β, γ | α2, β2, γ2, (αβ)6, (αγ)6, (βγ)3〉.
The aim of the rest of this section is to say in more
detail what this means.

To begin with, notice that from the facts we are given
we can deduce others: for example, bearing in mind that
β2 = γ2 = (βγ)3 = 1, we can show that

(γβ)3 = (γβ)3(βγ)3 = 1

as well (where the last equality follows after repeat-
edly canceling pairs of the form ββ or γγ). We wish
to convey the idea that in Γ∆ there are no relationships
between the generators except those that follow from
the facts above by this kind of argument.

Now let us try to say this more formally. We define
a set of generators for a group Γ to be a subset S ⊂ Γ
such that every element of Γ is equal to some product of
elements of S and their inverses. That is, every element
can be written in the form sε1

1 s
ε2
2 · · · sεnn , where each si

is an element of S and each εi is 1 or −1. We then call
a product of this kind a relation if it is equal to the
identity in Γ .

There is an awkward ambiguity here. When we talk
about “the product” of some elements of Γ , it sounds
as though we are referring to another element of Γ , but
we certainly did not mean this at the end of the last
paragraph: a relation is not the identity element of Γ
but rather a string of symbols such as ab−1a−1bc that
yields the identity in Γ when you interpret a, b, and c
as generators in the set S. In order to be clear about
this, it is useful to define another group, known as the
free group F(S).

For concreteness we shall describe the free group
with three generators, taking our set S to be {a,b, c}.
A typical element is a “word” in the elements of S
and their inverses, such as the expression ab−1a−1bc
considered in the previous paragraph. However, we
sometimes regard two words as the same: for instance,
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abcc−1ac and abab−1bc are the same because they

become identical when we cancel out the inverse pairs

cc−1 and b−1b. More formally, we define two such

words to be equivalent and say that the elements of the

free group are the equivalence classes [I.2 §2.3]. To

multiply words together, we just concatenate them: for

instance, the product of ab−1 and bcca is ab−1bcca,

which we can shorten to acca. The identity is the

“empty word.” This is the free group on three genera-

torsa, b, and c. It should be clear how to generalize it to

an arbitrary set S, though we shall continue to discuss

the set S = {a,b, c}.
A more abstract way of characterizing the free group

ona, b, and c is to say that it has the following universal

property : if G is any group and φ is any function from

S = {a,b, c} to G, then there is a unique homomor-

phismΦ from F(S) toG that takes a toφ(a), b toφ(b),
and c to φ(c). Indeed, if we want Φ to have these prop-

erties, then our definition is forced upon us: for exam-

ple, Φ(ab−1ca) will have to be φ(a)φ(b)−1φ(c)φ(a),
by the definition of a homomorphism. So the unique-

ness is obvious. The rough reason that this definition

really does give rise to a well-defined homomorphism

is that the only equations that are true in F(S) are ones

that are true in all groups: in order for Φ not to be a

homomorphism, one would need a relation to hold in

F(S) that did not hold in G, but this is impossible.

Now let us return to our example Γ∆. We would like

to prove that it is (isomorphic to) the “freest” group

with generators α, β, and γ that satisfies the relations

α2 = β2 = γ2 = (αβ)6 = (αγ)6 = (βγ)3 = 1. But

what exactly is this “freest” group that we are claiming

is isomorphic to Γ∆?

To avoid confusion about the meaning of α, β, and

γ (are they elements of Γ∆ or of the group that we

are trying to construct that will turn out to be iso-

morphic to Γ∆?) we shall use the letters a, b, and c
when we answer this question. Thus, we are trying to

build the “freest” group with generators a, b, and c
that satisfies the relations a2 = b2 = c2 = (ab)6 =
(ac)6 = (bc)3 = 1, which we denote by G = 〈a,b, c |
a2, b2, c2, (ab)6, (ac)6, (bc)3〉.

There are two ways of going about this task. One is

to imitate the above discussion of the free group itself,

except that now we say that two words are equivalent

if you can get from one to the other by inserting or

deleting not just inverse pairs but also one of the words

a2, b2, c2, (ab)6, (ac)6, or (bc)3. For example, ab2c is

equivalent to ac in this group. G is then defined to be

the set of equivalence classes of words with the product
coming from concatenation.

A neater way to obtain G is more conceptual and ex-
ploits the universal property of the free group. As G
is to be generated by a, b, and c, the universal prop-
erty of the free group F(S) tells us that there will
have to be a unique homomorphism Φ from F(S) to G
such that Φ(a) = a, Φ(b) = b, and Φ(c) = c. More-
over, we require that all of a2, b2, c2, (ab)6, (ac)6,
and (bc)3 must map to the identity element in G. It
follows that the kernel [I.3 §4.1] of Φ is a normal
subgroup [I.3 §3.3] of F(S) that contains the set R =
{a2, b2, c2, (ab)6, (ac)6, (bc)3}. Let us write 〈〈R〉〉 for
the smallest normal subgroup of F(S) that contains
R (or equivalently the intersection of all normal sub-
groups of F(S) that contain R). Then there is a sur-
jective homomorphism from the quotient [I.3 §3.3]
F(S)/〈〈R〉〉 to any group that is generated by a, b, and
c and satisfies the relations a2 = b2 = c2 = (ab)6 =
(ac)6 = (bc)3 = 1. This quotient itself is the group we
are looking for: it is the largest group generated by a,
b, and c that satisfies the relations in R.

Our assertion about Γ∆ is that it is isomorphic to the
group G = 〈a,b, c | a2, b2, c2, (ab)6, (ac)6, (bc)3〉 that
we have just described (in two ways). More precisely,
the map from F(S)/〈〈R〉〉 to Γ∆ that takes a to α, b to β,
and c to γ is an isomorphism.

The above construction is very general. If we are given
a group Γ , then a presentation of Γ is a set S that gener-
ates Γ , together with a set R ⊂ F(S) of relations, such
that Γ is isomorphic to the quotient F(S)/〈〈R〉〉. If both
S and R are finite sets, one says that the presentation
is finite. A group is finitely presented if it has a finite PUP: Tim says that

readers won’t
mind this
seemingly
tautological
sentence.

presentation.
We can also define presentations in the abstract,

without mentioning a group Γ in advance: given any
set S and any subset R ⊂ F(S), we just define 〈S | R〉
to be the group F(S)/〈〈R〉〉. This is the “freest” group
generated by S that satisfies the relations in R: the only
relations that hold in 〈S | R〉 are the ones that can be
deduced from the relations R.

A psychological advantage of switching to this more
abstract setting is that, whereas previously we began
with a group Γ and asked how we might present it, we
can now write down group presentations at will, start-
ing with any set S and prescribing a set of words R in
the symbols S±1. This gives us a very flexible way of
constructing a wide variety of groups. We might, for
example, use a group presentation to encode a ques-
tion from elsewhere in mathematics. We could then ask
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about the properties of the group thus defined, and see
what they had to tell us about our original problem.

3 Why Study Finitely Presented Groups?

Groups arise across the whole of mathematics as
groups of automorphisms. These are maps from an
object to itself that preserve all of the defining struc-
ture: two examples are the invertible linear maps
[I.3 §4.2] from a vector space [I.3 §2.3] to itself,
and the homeomorphisms from a topological space
[III.92] to itself. Groups encapsulate the essence of sym-
metry and for this reason demand our attention. We
are driven to understand their general nature, identify
groups that deserve particular attention, and develop
techniques for constructing new groups (from old ones,
or from new ideas). And, reversing the process of
abstraction, when given a group, we want to find con-
crete instances of it. For example, we might like to
realize it as the group of automorphisms of some
interesting object, with the aim of illuminating the
nature of both the object and the group. (See the arti-
cle on representation theory [IV.9] for more on this
theme.)

3.1 Why Present Groups in Terms of

Generators and Relations?

The short answer is that this is the form in which
groups often “appear in nature.” This is particularly
true in topology. Before looking at a general result that
illustrates this point, let us examine a simple example.
Consider the group D of all isometries of R that are
generated by the reflections at the points 0, 1, and 2:
that is, the group generated by the three functions α0,
α1, and α2, which take x to−x, 2−x, and 4−x, respec-
tively. You may recognize this group to be the infinite
dihedral group, and you may notice that the generator
α2 is superfluous, since it can be generated from α0

and α1. But let us close our eyes to these observations
as we let a presentation emerge from the action.

To this end, we choose an open interval U with the
property that the images of U under the maps in D
cover the whole of the real line, say U = (− 1

2 ,
3
2 ). Now

let us record two pieces of data: the only elements of
D (apart from the identity) that fail to move U com-
pletely off itself are α0 and α1, and, among all prod-
ucts of length at most 3 in those two letters, the only
nontrivial ones that act as the identity on R are α2

0 and
α2

1. You may like to prove that 〈α0, α1 | α2
0, α

2
1〉 is a

presentation of D.

This is in fact a special case of a general result, which
we now state. (The proof of it is somewhat involved.) Let
X be a topological space that is both path connected
[IV.6 §1] and simply connected [III.95], and let Γ be a
group of homeomorphisms from X to itself. Then any
choice of path-connected open subset U ⊂ X such that
the images of U cover all of X gives rise to a presenta-
tion Γ = 〈S | R〉, where S = {γ ∈ Γ | γ(U) ∩ U �= ∅}
and R consists of all wordsw ∈ F(S) of length at most
3 such that w = 1 in Γ . Thus, the identification of a
suitable subset U provides one with a presentation of
Γ , and the task of a group theorist is to determine the
nature of the group from this information.

To see how difficult this task is, you might like to
consider the groups

Gn = 〈a1, . . . , an | a−1
i ai+1aia−2

i+1, i = 1, . . . , n〉,
where we interpret i+1 as 1 when i = n. One of G3 and
G4 is trivial and the other is infinite. Can you decide
which is which?

To illustrate a more subtle point, let us consider a
finitely presented group that we perhaps feel we under-
stand: the group Γ∆ that we were discussing earlier. If
we want to describe this group to a blind friend unfa-
miliar with the triangular tiling of the plane, what can
we say to make her understand the group, or at least
convince her that we understand the group?

Our friend might reasonably ask us to list the ele-
ments of our group, so we begin to describe them as
products (words) in the given generators. But as we
begin to do so we hit a problem: we do not want to
list any element more than once and in order to avoid
redundancy we have to know which pairs of words
w1,w2 represent the same element of Γ∆; equivalently,
we must be able to recognize which words w−1

1 w2 are
relations in the group. Determining which words are
relations is called the word problem for the group. Even
in Γ∆ this takes some work, and in the groups Gn we
quickly find ourselves at a loss.

Note that as well as allowing one to list the elements
of the group effectively, a solution to the word prob-
lem also allows one to determine the multiplication
table, since deciding whether w1w2 = w3 is the same
as deciding whether w1w2w−1

3 = 1.

3.2 Why Finitely Presented Groups?

The packaging of infinite objects into finite amounts
of data arises throughout mathematics in the vari-
ous guises of compactness [III.9]. Finite presentation
is basically a compactness condition: a group can be
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finitely presented if and only if it is the fundamental
group of a reasonable compact space, as we shall see
later.

Another good reason for studying finitely presented
groups is that the Higman embedding theorem (to be
discussed later) allows us to encode questions about
arbitrary turing machines [IV.20 §1.1] as questions
about such groups and their subgroups.

4 The Fundamental Decision Problems

In exploring the geometry and topology of low-dimen-
sional manifolds at the beginning of the twentieth cen-
tury, Max Dehn saw that many of the problems that
he was wrestling with could be “reduced” to questions
about finitely presented groups. For example, he gave
a simple formula for associating with a knot diagram
[III.46] a finite presentation of a group. There was one
relation for each crossing in the diagram and he argued
that the resulting group would be isomorphic to Z if
and only if the knot was the unknot: that is, if and only
if it could be continuously deformed into a circle. It
is extremely hard to tell by staring at a knot diagram
whether it is actually the unknot, so this seems like a
useful reduction until one realizes that it can be just as
hard to tell whether a finitely presented group is iso-
morphic to Z. For example, here is the presentation of
Z that Dehn’s recipe associates with one of smallest
possible pictures of the unknot, namely a diagram with
just four crossings:

〈a1, a2, a3, a4, a5 |
a−1

1 a3a−1
4 , a2a−1

3 a1, a3a−1
4 a

−1
2 , a4a−1

5 a4a−1
3 〉.

Thus Dehn’s investigations led him to understand
how difficult it is to extract information from a group
presentation. In particular, he was the first to identify
the fundamental role of the word problem, which we
alluded to earlier, and he was one of the first to begin to
understand that there are fundamental problems asso-
ciated with the challenge of developing algorithms that
extract knowledge from well-defined objects such as
group presentations. In his famous article of 1912 Dehn
writes:

The general discontinuous group is given by n gener-
ators andm relations between them. … Here there are
above all three fundamental problems whose solution
is very difficult and which will not be possible without
a penetrating study of the subject.

1. The identity [word] problem: An element of the
group is given as a product of generators. One

is required to give a method whereby it may be
decided in a finite number of steps whether this
element is the identity or not.

2. The transformation [conjugacy] problem: Any two
elements S and T of the group are given. A method
is sought for deciding the question whether S and
T can be transformed into each other, i.e., whether
there is an element U of the group satisfying the
relation

S = UTU−1.

3. The isomorphism problem: Given two groups, one
is to decide whether they are isomorphic or not (and
further, whether a given correspondence between
the generators of one group and elements of the
other is an isomorphism or not).

We shall take these problems as the starting point
for three lines of enquiry. First, we shall work toward
an outline of the proof that all of these problems are, in
a strict sense, unsolvable for general finitely presented
groups.

The second use that we shall make of Dehn’s prob-
lems is to hold them up as fundamental measures of
complexity for each of the classes of groups that we
subsequently encounter. If we can prove, for example,
that the isomorphism problem is solvable in one class
of groups but not in another, then we will have given
genuine substance to previously vague assertions to the
effect that the second class is “harder.”

Finally, I want to make the point that geometry lies
at the heart of the fundamental issues in combinato-
rial group theory: it may not be immediately obvious,
but its implicit presence is nonetheless a fundamental
trait of group theory and not something imposed for
reasons of taste. To illustrate this point I shall explain
how the study of the large-scale geometry of least-
area disks in riemannian manifolds [I.3 §6.10] is inti-
mately connected with the study of the complexity of
word problems in arbitrary finitely presented groups.

5 New Groups from Old

Suppose that you have two groups,G1 andG2, and want
to combine them to form a new group. The first method
that is taught in a typical course on group theory is
to take the Cartesian product G1 × G2: a typical ele-
ment has the form (g,h) with g ∈ G1 and h ∈ G2,
and the product of (g,h) with (g′, h′) is defined to be
(gg′, hh′). The set of elements of the form (g, e) (where
e is the identity of G2) is a copy of G1 inside G1 × G2,
and similarly the set of elements of the form (e,h) is a
copy of G2.
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These copies have nontrivial relations between their
elements: for example, (e,h)(g, e) = (g, e)(e,h). We
would now like to take two groups Γ1 and Γ2 and com-
bine them in a different way to form a group called the
free product Γ1 ∗ Γ2, which contains copies of Γ1 and
Γ2 and as few additional relations as possible. That is,
we would like there to be embeddings ij : Γj ↪→ Γ1 ∗ Γ2
so that i1(Γ1) and i2(Γ2) generate Γ1 ∗ Γ2 but they are
not intertwined in any way. This requirement is neatly
encapsulated by the following universal property: given
any group G and any two homomorphisms φ1 : Γ1 → G
and φ2 : Γ2 → G, there should be a unique homomor-
phism Φ : Γ1∗ Γ2 → G such that Φ ◦ ij = φj for j = 1,2.
(Less formally, Φ behaves like φ1 on the copy of Γ1 and
behaves like φ2 on the copy of Γ2.)

It is easy to check that this property characterizes
Γ1 ∗ Γ2 up to isomorphism, but it leaves open the
question of whether Γ1 ∗ Γ2 actually exists. (These are
the standard pros and cons of defining an object by
means of a universal property.) In the present setting,
existence is easily established using presentations: let
〈A1 | R1〉 be a presentation of Γ1 and let 〈A2 | R2〉 be
a presentation of Γ2, with A1 and A2 disjoint, and then
define Γ1∗Γ2 to be 〈A1�A2 | R1�R2〉 (where� denotes
a union of disjoint sets).

More intuitively, one can define Γ1 ∗ Γ2 to be the set
of alternating sequences a1b1 · · ·anbn with each ai
belonging to Γ1 and each bj belonging to Γ2, with the
extra condition that none of the ai and bj equals the
identity, except possibly a1 or bn. The group opera-
tions in Γ1 and Γ2 extend to this set in an obvious
way: for example, (a1b1a2)(a′1b

′
1) = a1b1a′2b

′
1, where

a′2 = a2a′1, except that if a2a′1 = 1 then the product
cancels down to a1b′2, where b′2 = b1b′1.

Free products occur naturally in topology: if one has
topological spaces X1, X2 with marked points p1 ∈ X1,
p2 ∈ X2, then the fundamental group [IV.6 §2] of
the space X1 ∨ X2 obtained from X1 � X2 by mak-
ing the identification p1 = p2 is the free product
of π1(X1, p1) and π1(X2, p2). The Seifert–van Kam-
pen theorem tells one how to present the fundamental
group of a space obtained by gluing X1 and X2 along
larger subspaces. If the inclusion of the subspaces gives
rise to an injection of fundamental groups, then one
can express the fundamental group of the resulting
space as an amalgamated free product, which we now
define.

Let Γ1 and Γ2 be two groups. If some other group
contains copies of Γ1 and Γ2, then the intersection of
those copies must contain the identity element. The

free product Γ1 ∗ Γ2 was the freest group we could
build that was subject to this minimal constraint. Now
we shall insist that the copies of Γ1 and Γ2 intersect
nontrivially, specify which of their subgroups must lie
in the intersection, and build the freest group that
satisfies this constraint.

Suppose, then, that A1 is a subgroup of Γ1 and thatφ
is an isomorphism from A1 to a subgroup A2 of Γ2. As
in the example of the free product, one can define the
“freest product that identifies A1 and A2” by means
of a universal property. Again, one can establish the
existence of such a group using presentations: if Γ1 =
〈S1 | R1〉 and Γ2 = 〈S2 | R2〉, the group we seek takes
the form

PUP: thanks to the
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〈S1 � S2 | R1 � R2 � T〉.
Here, T = {uav−1

a | a ∈ A1}, where ua is some word
that represents a in (the presentation of) Γ1 and va is
a word that represents φ(a) in Γ2.

This group is called the amalgamated free product of
Γ1 and Γ2 along A1 and A2. It is often described by the
casual and ambiguous notation Γ1 ∗A1=A2 Γ2, or even
Γ1 ∗A Γ2, where A � Aj is an abstract group.

Unlike with free products, it is no longer obvious that PUP: Tim tried
rewriting this but
couldn’t find a
better form of
words. OK as it is?

the maps Γi → Γ1∗A Γ2 implicit in this construction are
injective, but they do turn out to be, as was shown by
Schreier in 1927.

A related construction of Higman, Neumann, and
Neumann in 1949 answers the following question:
given a group Γ and an isomorphism ψ : B1 → B2

between subgroups of Γ , can one always embed Γ in
a bigger group so that ψ becomes the restriction to B1

of a conjugation?

By now, having seen the idea in the context of
both free products and amalgamated free products,
the reader may guess how one goes about answering
this question: one writes down the presentation of a
universal candidate for the desired enveloping group,
denoted Γ∗ψ, and then one sets about proving that the
natural map from Γ to Γ∗ψ (which takes each word
to itself) is injective. Thus, given Γ = 〈A | R〉, we intro-
duce a symbol t ∉ A (usually called the stable letter ), we
choose for each b ∈ B1 words b̂, b̃ ∈ F(A) with b̂ = b
and b̃ = ψ(b) in Γ , and we define

Γ∗ψ = 〈A, t | R, tb̂t−1b̃−1 (b ∈ B1)〉.
This is the freest group we can build from Γ by adjoin-
ing a new element t and requiring it to satisfy all the
equations we want it to, namely tb̂t−1 = b̃ for every
b ∈ B1 (which we can think of as saying that tbt−1 =
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ψ(b)). This group is called an HNN extension of Γ (after
Higman, Neumann, and Neumann).

Now we must show that the natural map from Γ to
Γ∗φ is injective. That is, if you take an element γ of Γ
and regard it as an element of Γ∗ψ, you should not be
able to use t and the relations in Γ∗ψ to cancel γ down
to the identity. This is proved with the help of the fol-
lowing more general result known as Britton’s lemma.
Suppose thatw is a word in the free group F(A, t). Then
the only circumstances under which it can give rise to
the identity in the group Γ∗ψ are if either it does not
involve t and represents the identity in Γ or it involves
t but can be simplified in an obvious way by contain-
ing a “pinch.” A pinch is a subword of the form tbt−1,
where b is a word in F(A) that represents an element
of B1 (in which case we can replace it by ψ(b)), or one
of the form t−1b′t, where b′ represents an element of
B2 (in which case we can replace it by ψ−1(b′)). Thus,
if you are given a word that involves t and contains
no pinches, then you know that it cannot be canceled
down to the identity.

A similar noncancellation result holds for the amal-
gamated free product Γ1 ∗A1=A2 Γ2. If g1, . . . , gn belong
to Γ1 but not to A1 and h1, . . . , hn belong to Γ2 but not
to A2, then the word g1h1g2h2 · · ·gnhn cannot equal
the identity in Γ1 ∗A1=A2 Γ2.

These noncancellation results do far more than show
that the natural homomorphisms we have been con-
sidering are injective: they also demonstrate further
aspects of freeness in amalgamated free products andPUP: this technical

term has to stay as
it is. HNN extensions. For example, suppose that in the amal-

gamated free product Γ1 ∗A1=A2 Γ2 we can find an ele-
ment g of Γ1 that generates an infinite group that inter-
sectsA1 in the identity and an element h of Γ2 that does
the same forA2. Then the subgroup of Γ1 ∗A1=A2 Γ2 gen-
erated by g and h is the free group on those two gen-
erators. With a little more effort, one can deduce that
any finite subgroup of Γ1 ∗A1=A2 Γ2 has to be conjugate
to a subgroup of the obvious copy of either Γ1 or Γ2.
Similarly, the finite subgroups of Γ∗ψ are conjugates
of subgroups of Γ . We shall exploit these facts in thePUP: ‘of’ is correct

here.
constructions that follow.

There are many ways of combining groups that I
have not mentioned here. I have chosen to focus on
amalgamated free products and HNN extensions partly
because they lead to transparent solutions of the basic
problems discussed below but more because of their
primitive appeal and the way in which they arise nat-
urally in the calculation of fundamental groups. They
also mark the beginning of arboreal group theory,

which we will discuss later. If space allowed, I would go
on to describe semidirect and wreath products, which
are also indispensable tools of the group theorist.

Before turning to some applications of HNN exten-
sions and amalgamated free products, I want to return
to the Burnside problem, which asks if there exist
finitely generated infinite groups all of whose ele-
ments have a given finite order. This question gener-
ated important developments throughout the twenti-
eth century, particularly in Russia. It is appropriate to
mention it here because it provides another illustration
of the fact that it can be useful to study a universal
object in order to solve a general question.

5.1 The Burnside Problem

Given an exponentm, one clarifies the problem at hand
by considering the free Burnside group Bn,m given by
the presentation 〈a1, . . . , an | Rm〉, where Rm consists
of all mth powers in the free group F(a1, . . . , an). It is
clear that Bn,m maps onto any group with at most n
generators in which every element has order dividing
m. Therefore, there exists a finitely generated infinite
group with all elements of the same finite order if and
only if, for suitable values of n andm, the group Bn,m
is infinite. Thus, a question that takes the form, Does
there exist a group such that …?, becomes a question
about just one group.

Novikov and Adian showed in 1968 that Bn,m is infi-
nite when n � 2 and m � 667 is odd. Determining
the exact range of values for which Bn,m is infinite is
an active area of research. Of far greater interest is the
open question of whether there exist finitely presented
infinite groups that are quotients of Bn,m. Zelmanov
was awarded the Fields Medal for proving that each
Bn,m has only finitely many finite quotients.

5.2 Every Countable Group Can Be Embedded in a

Finitely Generated Group

Given a countable group G we list its elements,
g0, g1, g2, . . . , taking g0 to be the identity. We then take
a free product ofG with an infinite cyclic group 〈s〉 � Z.
Let Σ1 be the set of all elements of G ∗ Z of the form
sn = gnsn with n � 1. Then the subgroup 〈Σ1〉 gener-
ated by Σ1 is isomorphic to the free group F(Σ1). Sim-
ilarly, if we let Σ2 = {s2, s3, . . . } (so it is Σ1 with the
element s1 = g1s removed), then 〈Σ2〉 is isomorphic to
F(Σ2). It follows that the mapψ(sn) = sn+1 gives rise to
an isomorphism from 〈Σ1〉 to 〈Σ2〉. Now take the HNN
extension (G∗ Z)∗ψ, whose stable letter we denote by
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t. This group contains a copy of G, as we noted before.
Moreover, since we have ensured that tsnt−1 = sn+1 for
every n � 1, it can be generated by just the three ele-
ments s1, s, and t. Thus, we have embedded an arbitrary
countable group into a group with three generators. (We
leave the reader to think about how one can vary this
construction to produce a group with two generators.)

5.3 There Are Uncountably Many Nonisomorphic

Finitely Generated Groups

This was proved by B. H. Neumann in 1932. Since there
are infinitely many primes, there are uncountably many
nonisomorphic groups of the form

⊕
p∈P Zp , where P

is an infinite set of primes. We have seen that each of
these groups can be embedded in a finitely generated
group, and our earlier comments on finite subgroups
of HNN extensions show that no two of the resulting
finitely generated groups are isomorphic.

5.4 An Answer to Hopf’s Question

A group G is called Hopfian if every surjective homo-
morphism from G to G is an isomorphism. Most
familiar groups have this property: for example, finite
groups obviously do, as do Zn (as you can prove using
linear algebra) and free groups. So too do groups
of matrices such as SLn(Z), as we shall discuss in
a moment. An example of a non-Hopfian group is
the group of all infinite sequences of integers (under
pointwise addition), since the function that takes
(a1, a2, a3, . . . ) to (a2, a3, a4, . . . ) is a surjective homo-
morphism that contains (1,0,0, . . . ) in its kernel. But
is there a finitely presented example? The answer is
yes, and Higman was the first to construct one. The
following examples are due to Baumslag and Solitar.

Let p � 2 be an integer and identify Z with the free
group 〈a〉 generated by a single generator a. Then the
subgroups pZ and (p+1)Z of Z are identified with the
powers of ap and ap+1, respectively. Let ψ be the iso-
morphism between these subgroups that takes ap to
ap+1 and consider the corresponding HNN extension
B. This has presentation B = 〈a, t | ta−pt−1ap+1〉. The
homomorphism ψ : B → B defined by t �→ t, a �→ ap
is clearly a surjection but its kernel contains, for exam-
ple, the element c = ata−1t−1a−2tat−1a, which does
not contain a pinch and is therefore not equal to the
identity, by Britton’s lemma. (If you want to convince
yourself how useful this lemma is, set p = 3 and try to
prove directly that c is not equal to the identity in the
group B just defined.)

5.5 A Group that Has No Faithful

Linear Representation

One can show that a finitely generated group G of
matrices over any field is residually finite, which means
that for each nontrivial element g ∈ G there exists a
finite group Q and a homomorphism π : G → Q with
π(g) ≠ 1. For example, if you are given an element
g ∈ SLn(Z), then you can pick an integerm bigger than
the absolute values of all the entries in g (which is an
n × n matrix) and consider the homomorphism from
SLn(Z) to SLn(Z/mZ) that reduces the matrix entries
modm. The image of g in the finite group SLn(Z/mZ)
is clearly nontrivial.

Non-Hopfian groups are not residually finite, and
hence are not isomorphic to a group of matrices over
any field. One can see that the non-Hopfian group B
defined above is not residually finite by considering
what happens to the nontrivial element c. We saw that
there was a surjective homomorphism ψ : B → B with
ψ(c) = 1. Let cn be an element such that ψn(cn) = c
(which exists since ψ is a surjection). If there were
a homomorphism π from B to a finite group Q with
π(c) �= 1, then we would have infinitely many distinct
homomorphisms from B to Q, namely the composi-
tions π ◦ψn; these are distinct because π ◦ψm(cn) = 1
if m > n and π ◦ ψn(cn) = π(c) �= 1. This is a con-
tradiction, since a homomorphism from a finitely gen-
erated group to a finite group is determined by what
it does to the generators, so there can only be finitely
many such homomorphisms.

5.6 Infinite Simple Groups

Britton’s lemma actually tells us more than that c ≠ 1:
the subgroup Λ of B generated by t and c is in fact
a free group on those generators. Thus we may form
the amalgamated free product Γ of two copies of B,
denoted B1 and B2, by gluing together the two copies
of Λ with the isomorphism c1 �→ t2, t1 �→ c2. We have
seen that in any finite quotient of Γ = B1∗Λ B2, the ele-
ments c1 (= t2) and c2 (= t1) must have trivial image,
and it is easy to deduce from this that in fact the quo-
tient must be trivial. Thus Γ is an infinite group with no
finite quotients. It follows that the quotient of Γ by any
maximal proper normal subgroup is also infinite (and
it is simple by maximality).

The simple group that we have constructed is infinite
and finitely generated but it is not finitely presentable.
Finitely presented infinite simple groups do exist, but
they are much harder to construct.
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6 Higman’s Theorem and Undecidability

We have seen that there are uncountably many (non-
isomorphic) finitely generated groups. But as there are
only countably many finitely presented groups, only
countably many finitely generated groups can be sub-
groups of finitely presented groups. Which ones are
they?

A complete answer to this question is provided by a
beautiful and deep theorem proved by Graham Higman
in 1961, which says, roughly, that the groups that arise
are all those that are algorithmically describable. (If you
have no idea what this means, even roughly, then you
might like to read the insolubility of the halting
problem [V.23] before continuing with this section.)

A set S of words over a finite alphabet A is called
recursively enumerable if there is some algorithm (or
more formally, Turing machine) that can produce a
complete list of the elements of S. A case of particu-
lar interest is when A is just a singleton, in which case
a word is determined by its length and we can think
of S as a set of nonnegative integers. The elements of
S need not be listed in a sensible order, so having an
algorithm that produces an exhaustive list of S does
not mean that one can use the algorithm to determine
that some given word w does not belong to S: if you
imagine standing by your computer as it enumerates
S, there will not in general come a time when you can
say to yourself, “If it was going to appear, then it would
have done so by now,” and therefore be certain that it
is not in S. If you want an algorithm with this further
property, then you need the stronger notion of a recur-
sive set, which is a set S such that S and its complement
are both recursively enumerable. Then you can list all
the elements that belong to S and you can also list all
the elements that do not belong to S.

A finitely generated group is said to be recursively
presentable if it has a presentation with a finite num-
ber of generators and a recursively enumerable set of
defining relations. In other words, such a group is not
necessarily finitely presented, but at least the presen-
tation of the group is “nice” in the sense that it can be
generated by some algorithm.

Higman’s embedding theorem states that a finitely
generated groupG is recursively presentable if and only
if it is isomorphic to a subgroup of a finitely presented
group.

To get a feeling for how nonobvious this is, you might
consider the following presentation of the group of all
rationals under addition, in which the generator an

corresponds to the fraction 1/n!:

Q = 〈a1, a2, · · · | ann = an−1 ∀n � 2〉.
Higman’s theorem tells us that Q can be embedded
in a finitely presented group, but no truly explicit
embedding is known.

The power of Higman’s theorem is illustrated by the
ease with which it implies the celebrated undecidabil-
ity results that were rightly regarded as watersheds
of twentieth-century mathematics. In order to make
this case convincingly, I shall give a complete proof
(except that I shall assume some of the facts men-
tioned earlier) that there exist finitely presented groups
with unsolvable word problems, and also that there are
sequences of finitely presented groups among which
one cannot decide isomorphism. We shall also see how
these group-theoretic results can be used to translate
undecidability phenomena into topology.

The basic seed of undecidability comes from the fact
that there are recursively enumerable subsets S ⊂ N

that are not recursive. Using this fact one can read-
ily construct finitely generated groups with an unsolv-
able word problem: given such a set of integers S we
consider

J = 〈a,b, t | t(bnab−n)t−1 = bnab−n ∀n ∈ S〉.
This is the HNN extension of the free group F(a, b)
associated with the identity map L → L, where
L is the subgroup generated by {bnab−n : n ∈
S}. Britton’s lemma tells us that the word wm =
t(bmab−m)t−1(bma−1b−m) equals 1 ∈ J if and only
if m ∈ S, and by definition there is no algorithm to
decide ifm ∈ S, so we cannot decide which of the wm
are relations. Thus J has an unsolvable word problem.

That there exist finitely presented groups for which
the word problem is unsolvable is a much deeper fact,
but with Higman’s embedding theorem at hand the
proof becomes almost trivial: Higman tells us that J can
be embedded in a finitely presented group Γ , and it is a
relatively straightforward exercise to show that if one
cannot decide which words in the generators of J rep-
resent the identity, then one cannot decide for arbitrary
words in the generators of Γ either.

Once one has a finitely presented group with an
unsolvable word problem, it is easy to translate unde-
cidability into all manner of other problems. For exam-
ple, suppose that Γ = 〈A | R〉 is a finitely presented
group with an unsolvable word problem, where A =
{a1, . . . , an} and no ai equals the identity in Γ . For each
wordw made out of the letters in A and their inverses,
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define a group Γw to have presentation

〈A, s, t | R, t−1(siais−i)t(siws−i), i = 1, . . . , n〉.
It is not hard to show that if w = 1 in Γ then Γw is the
free group generated by s and t. If w �= 1, then Γw is
an HNN extension. In particular, it contains a copy of
Γ , and hence has an unsolvable word problem, which
means that it cannot be a free group. Thus, since there
is no algorithm to decide whether w = 1 in Γ , one can-
not decide which of the groups Γw are isomorphic to
which others.

A variant of this argument shows that there is no
algorithm to determine whether or not a given finitely
presented group is trivial.

We shall see in a moment that every finitely pre-
sented groupG is the fundamental group of some com-
pact four-dimensional manifold. By following a stan-
dard proof of this theorem with considerable care,
Markov proved in 1958 that in dimensions 4 and above
there is no algorithm to decide which compact mani-
folds (presented as simplicial complexes, for example)
are homeomorphic. His basic idea was to show that if
there were an algorithm to determine which triangu-
lated 4-manifolds are homeomorphic, then one could
use it to determine which finitely presented groups are
trivial, which we know is impossible. In order to imple-
ment this idea one has to be careful to arrange that the
4-manifolds associated with different presentations of
the trivial group are homeomorphic: this is the delicate
part of the argument.

Strikingly, there does exist an algorithm to decide
which compact three-dimensional manifolds are iso-
morphic. This is an extremely deep theorem that relies
in particular on Perelman’s solution to thurston’s
geometrization conjecture [IV.7 §2.4].

7 Topological Group Theory

Let us change perspective now and look at the sym-
bols P ≡ 〈a1, . . . , a2 | r1, . . . , rm〉 through the eyes of
a topologist. Instead of interpreting P as a recipe for
constructing a group, we regard it as a recipe for con-
structing a topological space [III.92], or more specif-
ically a two-dimensional complex. Such spaces consist
of points, called vertices, some of which are linked by
directed paths, called edges, or 1-cells. If a collection of
such 1-cells forms a cycle, then it can be filled in with
a face, or 2-cell : topologically speaking, each face is a
disk with a directed cycle as its boundary.

To see what this complex is, let us first consider the
standard presentation P ≡ 〈a,b | aba−1b−1〉 of Z2.

(This is generated by a and b and the relation tells
us that ab = ba.) We begin with a graph K1 that
has a single vertex and two edges (which are loops)
that are directed and labeled a and b. Next, we take a
square [0,1]×[0,1], the sides of which are directed and
labeled a, b, a−1, b−1 as we proceed around the bound-
ary. Imagine gluing the boundary of the square to the
graph so as to respect the labeling of edges: with a bit
of thought, you should be able to see that the result
is a torus, that is, a surface in the shape of a bagel.
An observation that turns out to be important is that
the fundamental group of the torus is Z2, the group we
started with.

The idea of “gluing” is made precise by the use of
attaching maps: we take a continuous map φ from the
boundary of the square S to the graph K1 that sends
the corners of the square to the vertex of K1 and sends
each side (minus its vertices) homeomorphically onto
an open edge. The torus is then the quotient of K1 � S
by the equivalence relation that identifies each x in the
boundary of the square with its image φ(x).

With this more abstract language in hand, it is easy to
see how the above construction generalizes to arbitrary
presentations: given a presentation P ≡ 〈a1, . . . , an |
r1, . . . , rm〉, one takes a graph with a single vertex and
n oriented loops, which are labeled a1, . . . , an. Then
for each rj one attaches a polygonal disk by gluing its
boundary circuit to the sequence of oriented edges that
traces out the word rj .

In general, the result will not be a surface as it was for
〈a,b | aba−1b−1〉. Rather, it will be a two-dimensional
complex with singularities along the edges and at the
vertex. You may find it instructive to do some more
examples. From 〈a | a2〉 one gets the projective plane;
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from 〈a,b, c, d | aba−1b−1, cdc−1d〉 one gets a torus
and a Klein bottle stuck together at a point. Picturing
the 2-complex for 〈a,b | a2, b3, (ab)3〉 is already rather
difficult.

The construction of K(P) is the beginning of topo-
logical group theory. The Seifert–van Kampen theorem
(mentioned earlier) implies that the fundamental group
of K(P) is the group presented by P . But the group
no longer sits inertly in the form of an inscrutable
presentation—now it acts on the universal covering
[III.95] of K(P) by homeomorphisms known as “deck
transformations.” Thus, through the simple construc-
tion of K(P) (and the elegant theory of covering spaces
in topology) we achieve our aim of realizing an abstract
finitely presented group as the group of symmetries of
an object with a potentially rich structure, on which we
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can bring global geometric and topological techniques
to bear.

To obtain an improved topological model for our
group, we can embed K(P) in R5 (just as one can embed
a finite graph [III.34] in R3) and consider the compact
four-dimensional manifold M obtained by taking all
points that are a small fixed distance from the image.
(I am assuming that the embedding is suitably “tame,”
which one can arrange.) The mental picture to strive for
here is a higher-dimensional analogue of the surface
(sleeve) one gets by taking the points in R3 that are a
small fixed distance from an embedded graph. The fun-
damental group ofM is again the group presented by P ,
so now we have our arbitrary finitely presented group
acting on a manifold (the universal cover of M). This
allows us to use the tools of analysis and differential
geometry.

The constructions of K(P) and M establish the more
difficult implication of the theorem, promised earlier,
that a group can be finitely presented if and only if
it is the fundamental group of a compact cell com-
plex and of a compact 4-manifold. This result raises
several natural questions. First, are there better, more
informative, topological models for an arbitrary finitely
presented group Γ ? And if not, then what can one
say about the classes of groups defined by the natu-
ral constraints that arise when one tries to improve
the model? For example, we would like to construct
a lower-dimensional manifold with fundamental group
Γ , enabling us to exploit our physical insight into three-
dimensional geometry. But it turns out that the fun-
damental groups of compact three-dimensional man-
ifolds are very special; this observation lies near the
heart of a great deal of mathematics at the end of
the twentieth century. Other interesting fields open up
when one asks which groups arise as the fundamen-
tal groups of compact spaces satisfying curvature
[III.13] conditions, or constraints coming from complex
geometry.

A particularly rich set of constraints comes from the
following question. Can one arrange for an arbitrary
finitely presented group to be the fundamental group
of a compact space (a complex or manifold, perhaps)
whose universal cover is contractible [IV.6 §2]? This
is a natural question from the point of view of topology
because a space with a contractible universal cover is,
up to homotopy [IV.6 §2], completely determined by
its fundamental group. If the fundamental group is Γ ,
then such a space is called a classifying space for Γ and
its homotopy-invariant properties provide a rich array

of invariants for the group Γ (getting away from the
gross dependence that K(P) has on P rather than Γ ).

If our earlier discussion of how hard it is to recognize
Γ from P has left you very skeptical about whether this
dependence can actually be removed, then your skep-
ticism is well-founded: there are many obstructions to
the construction of compact classifying spaces for an
arbitrary finitely presented group; the study of them
(under the generic name finiteness conditions) is a rich
area at the interface of modern group theory, topology,
and homological algebra.

One aspect of this area is the search for natural
conditions that ensure the existence of compact clas-
sifying spaces (not necessarily manifolds). This is one
of several places where manifestations of nonpositive
curvature play a fundamental role in modern group
theory. More combinatorial conditions also arise. For
example, Lyndon proved that for any presentation P ≡
〈A | r〉 where the single defining relation r ∈ F(A) is
not a nontrivial power, the universal cover of K(P) is
contractible.

A neighboring and highly active area of research con-
cerns questions of uniqueness and rigidity for classi-
fying spaces. (Here, as is common, the word rigidity
is used to describe a situation in which requiring two
objects to be equivalent in an apparently weak sense
forces them to be equivalent in an apparently stronger
sense.) For example, the (open) Borel conjecture asserts
that if two compact manifolds have isomorphic funda-
mental groups and contractible universal covers, then
those manifolds must be homeomorphic.

I have been talking mostly about realizing groups as
fundamental groups, which led to certain free actions.
That is, we could interpret the elements of the group
as symmetries of a topological space and none of these
symmetries had any fixed points. Before moving on to
geometric group theory I should point out that there
are many situations in which the most illuminating
actions of a group are not free: one instead allows well-
understood stabilizers. (The stabilizer of a point is the
set of all symmetries in the group that leave that point
fixed.) For example, the natural way in which to study
Γ∆ is by its action on the triangulated plane, each vertex
of which is left unmoved by twelve symmetries.

A deeper illustration of the merits of seeking insight
into algebraic structure through nonfree actions on
suitable topological spaces comes from the Bass–Serre
theory of groups acting on trees, which subsumes the
theory of amalgamated free products and HNN exten-
sions, whose potency we saw earlier. (This theory and
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its extensions often go under the heading of arboreal

group theory.)

A tree is a connected graph that has no circuits in it.

It is helpful to regard it as a metric space [III.58] in

which each edge has length 1. The group actions that

one allows on trees are those that take edges to edges

isometrically, never flipping an edge.

If a group Γ acts on a set X (in other words, if it can

be regarded as a group of symmetries of X), then the

orbit of a point x ∈ X is the set of all its images gx with

g ∈ Γ . A group Γ can be expressed as an amalgamated

free productA∗CB if and only if it acts on a tree in such

a way that there are two orbits of vertices, one orbit of

edges, and stabilizers A, B, C (where A and B are the

stabilizers of adjacent vertices and intersect inC , which

is the edge stabilizer). HNN extensions correspond to

actions with one orbit of vertices and one orbit of edges.

Thus, amalgamated free products and HNN extensions

appear as graphs of groups, which are the basic objects

of Bass–Serre theory. These objects allow one to recover

groups acting on trees from the quotient data of the

action, i.e., the quotient space (which is a graph) and

the pattern of edge and vertex stabilizers.

An early benefit of Bass–Serre theory is a transparent

and instructive proof that any finite subgroup ofA∗C B
is conjugate to a subgroup of eitherA or B: given any set

V of vertices in a tree, there is a unique vertex or mid-

point x minimizing max{d(x,v) | v ∈ V}; one applies

this observation with V an orbit of the finite subgroup;

x provides a fixed point for the action of the subgroup;

and any point stabilizer is conjugate to a subgroup of

either A or B.

Arboreal group theory goes much deeper than this

first application suggests. It is the basis for a decompo-

sition theory of finitely presented groups from which

it emerges, for example, that there is an essentially

canonical maximal splitting of an arbitrary finitely pre-

sented group as a graph of groups with cyclic edge

stabilizers. This provides a striking parallel with the

decomposition theory of 3-manifolds, a parallel that

extends far beyond a mere analogy and accounts for

much of the deepest work in geometric group theory

in the past ten years. If you want to learn more about

this, search the literature for JSJ decompositions. You

may also want to search for complexes of groups, which

provide the appropriate higher-dimensional analogue

for graphs of groups.

8 Geometric Group Theory

Let us refresh the image of K(P) in our mind’s eye
by thinking again about the presentation P ≡ 〈a,b |
aba−1b−1〉 of Z. The complex K(P), as we saw earlier,
is a torus. Now the torus can be defined as the quotient
of the Euclidean plane R2 by the action of the group
Z2 (where the point (m,n) ∈ Z2 acts as the translation
(x,y) �→ (x +m,y +n)): in fact, R2, with an appropri-
ate square tiling, is the universal cover of the torus. If
we look at the orbit of the point 0 under this action,
it forms a copy of Z2, and one can thereby see the
large-scale geometry of Z2 laid out for us. We can make
the idea of the “geometry of Z2” precise by decreeing
that edges of the tiling have length 1 and defining the
graph distance between vertices to be the length of the
shortest path of edges connecting them.

As this example shows, the construction of K(P)
involves the two main (intertwined) strands of geomet-
ric group theory. In the first and more classical strand,
one studies actions of groups on metric and topologi-
cal spaces in order to elucidate the structures of both
the space and the group (as with the action of Z2 on the
plane in our example, or the action of the fundamental
group of K(P) on its universal cover in general). The
quality of the insights that one obtains varies accord-
ing to whether the action has or does not have certain
desirable properties. The action of Z2 on R2 consists of
isometries on a space with a fine geometric structure,
and the quotient (the torus) is compact. Such actions
are in many ways ideal, but sometimes one accepts
weaker admission criteria in order to obtain a more
diverse class of groups, and sometimes one demands
even more structure in order to narrow the focus and
study groups and spaces of an exceptional, but for that
reason interesting, character.

This first strand of geometric group theory mingles
with the second. In the second strand, one regards
finitely generated groups as geometric objects in their
own right equipped with word metrics, which are
defined as follows. Given a finite generating set S for
a group Γ , one defines the Cayley graph of Γ by joining
each element γ ∈ Γ by an edge to each element of the
form γs or γs−1 with s ∈ S (which is the same as the
graph formed by the edges of the universal covering
of K(P)). The distance dS(γ1, γ2) between γ1 and γ2 is
then the length of the shortest path from γ1 to γ2 if all
edges have length 1. Equivalently, it is the length of the
shortest word in the free group on S that is equal to
γ−1

1 γ2 in Γ .
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The word metric and the Cayley graph depend on the
choice of generating set but their large-scale geometry
does not. In order to make this idea precise, we intro-
duce the notion of a quasi-isometry. This is an equiva-
lence relation that identifies spaces that are similar on
a large scale. If X and Y are two metric spaces, then a
quasi-isometry from X to Y is a function φ : X → Y
with the following two properties. First, there are pos-
itive constants c, C , and ε such that cd(x,x′) − ε �
d(φ(x),φ(x′)) � Cd(x,x′) + ε: this says that φ dis-
torts sufficiently large distances by at most a constant
factor. Second, there is a constantC′ such that for every
y ∈ Y there is some x ∈ X for which d(φ(x),y) � C′:
this says thatφ is a “quasi-surjection” in the sense that
every element of Y is close to the image of an element
of X.

Consider for example the two spaces R2 and Z2,
where the metric on Z2 is given by the graph distance
defined earlier. In this case the map φ : R2 → Z2

that takes (x,y) to (�x�, �y�) (where �x� denotes the
largest integer less than or equal to x) is easily seen to
be a quasi-isometry: if the Euclidean distanced between
two points (x,y) and (x′, y′) is at least 10, say, then
the graph distance between (�x�, �y�) and (�x′�, �y′�)
will certainly lie between 1

2d and 2d. Notice how lit-
tle we care about the local structure of the two spaces:
the map φ is a quasi-isometry despite not even being
continuous.

It is not hard to check that if φ is a quasi-isometry
from X to Y , then there is a quasi-isometryψ from Y to
X that “quasi-inverts” φ, in the sense that every x in X
is at most a bounded distance fromψφ(x) and everyy
in Y is at most a bounded distance from φψ(y). Once
one has established this, it is easy to see that quasi-
isometry is an equivalence relation.

Returning to Cayley graphs and word metrics, it turns
out that if you take two different sets of generators for
the same group, then the resulting Cayley graphs will be
quasi-isometric. Thus, any property of a Cayley graph
that is invariant under quasi-isometry will be a property
not just of the graph but of the group itself. When deal-
ing with such invariants we are free to think of Γ itself
as a space (since we do not care which Cayley graph we
form), and we can replace it by any metric space that
is quasi-isometric to it, such as the universal cover of a
closed Riemannian manifold with fundamental group Γ
(whose existence we discussed earlier). Then the tools
of analysis can be brought to bear on it.

A fundamental fact, discovered independently by
many people and often called the Milnor–Švarc lemma,

provides a crucial link between the two main strands
of geometric group theory. Let us call a metric space
X a length space if the distance between each pair of
points is the infimum of the lengths of paths joining
them. The Milnor–Švarc lemma states that if a group Γ
acts nontrivially as a set of isometries of a length space
X, and if the quotient is compact, then Γ is finitely gen-
erated and quasi-isometric to X (for any choice of word
metric).

We have seen an example of this already: Z2 is quasi-
isometric to the Euclidean plane. Less obviously, the
same is true of Γ∆. (Consider the map that takes each
element α of Γ∆ to the point of Z2 nearest α(0).)

The fundamental group of a compact Riemannian
manifold is quasi-isometric to the universal cover of
that manifold. Therefore, from the point of view of
quasi-isometry invariants, the study of such manifolds
is equivalent to the study of arbitrary finitely presented
groups. In a moment we will discuss some nontriv-
ial consequences of this equivalence. But first let us
reflect on the fact that, when finitely generated groups
are considered as metric objects in the framework of
large-scale geometry, they present us with a new chal-
lenge: we should classify finitely generated groups up to
quasi-isometry.

This is an impossible task, of course, but neverthe-
less serves as a beacon in modern geometric group
theory, one that has guided us toward many beauti-
ful theorems, particularly under the general heading of
rigidity. For example, suppose that you come across a
finitely generated group Γ that is reminiscent of Zn on
a large scale: in other words, quasi-isometric to it. We
are not necessarily given any algebraically defined map
between this mystery group and Zn, and yet it tran-
spires that such a group must contain a copy of Zn as
a subgroup of finite index.

At the heart of this result is Gromov’s polynomial
growth theorem, a landmark theorem published in
1981. This theorem concerns the number of points
within a distance r of the identity in a finitely generated
group Γ . This will be a function f(r), and Gromov was
interested in how the function f(r) grows as r tends
to infinity, and what that tells us about the group Γ .

If Γ is an Abelian group with d generators, then it is
not hard to see that f(r) is at most (2r + 1)d (since
each generator is raised to a power between −r and r ).
Thus, in this case f(r) is bounded above by a polyno-
mial in r . At the other extreme, if Γ is a free group with
two generators a and b, say, then f(r) is exponentially
large, since all sequences of length r that consist of as
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and bs (and not their inverses) give different elements
of Γ .

Given this sharp contrast in behavior, one might won-
der whether requiring f(r) to be bounded above by
a polynomial forces Γ to exhibit a great deal of com-
mutativity. Fortunately, there is a much-studied defi-
nition that makes this idea precise. Given any group
G and any subgroup H of G, the commutator [G,H]
is the subgroup generated by all elements of the form
ghg−1h−1, where g belongs to G and h belongs toH. If
G is Abelian, then [G,H] contains just the identity. If G
is not Abelian, then [G,G] forms a group G1 that con-
tains other elements besides the identity, but it may be
that [G,G1] is trivial. In that case, one says that G is a
two-step nilpotent group. In general, a k-step nilpotent
groupG is one where, if you form a sequence by setting
G0 = G and Gi+1 = [G,Gi] for each i, then you even-
tually reach the trivial group, and the first time you do
so is at Gk. A nilpotent group is a group that is k-step
nilpotent for some k.

Gromov’s theorem states that a group has polyno-
mial growth if and only if it has a nilpotent subgroup of
finite index. This is a quite extraordinary fact: the poly-
nomial growth condition is easily seen to be indepen-
dent of the choice of word metric and to be an invariant
of quasi-isometry. Thus the seemingly rigid and purely
algebraic condition of having a nilpotent subgroup of
finite index is in fact a quasi-isometry invariant, and
therefore a flabby, robust characteristic of the group.PUP: ‘flabby’

means ‘not brittle’
here and this
combination of
words is OK.

In the past fifteen years quasi-isometric rigidity the-
orems have been established for many other classes
of groups, including lattices in semisimple Lie groups
and the fundamental groups of compact 3-manifolds
(where the classification up to quasi-isometry involves
more than algebraic equivalences), as well as various
classes defined in terms of their graph of group decom-
positions. In order to prove theorems of this type, one
must identify nontrivial invariants of quasi-isometry
that allow one to distinguish and relate various classes
of spaces. In many cases such invariants come from
the development of suitable analogues of the tools of
algebraic topology, modified so that they behave well
with respect to quasi-isometries rather than continuous
maps.

9 The Geometry of the Word Problem

It is time to explain the comments I made earlier
about the geometry inherent in the basic decision prob-
lems of combinatorial group theory. I shall concentrate
exclusively on the geometry of the word problem.

Gromov’s filling theorem describes a startlingly inti-
mate connection between the highly geometric study
of disks with minimal area in riemannian geometry
[I.3 §6.10] and the study of word problems, which
seems to belong more to algebra and logic.

On the geometric side, the basic object of study is
the isoperimetric function FillM(l) of a smooth compact
manifoldM . Given any closed path of length l, there is a
disk of minimal area that is bounded by that path. The
largest such area, over all closed paths of length l, is
defined to be FillM(l). Thus, the isoperimetric function
is the smallest function of which it is true to say that
every closed path of length l can be filled by a disk of
area at most FillM(l).

The image to have in mind here is that of a soap film:
if one twists a circular wire of length l in Euclidean
space and dips it in soap, the film that forms has area at
most l2/4π , whereas if one performs the same experi-
ment in hyperbolic space [I.3 §6.6], the area of the film
is bounded by a linear function of l. Correspondingly,
the isoperimetric functions of En and Hn (and quo-
tients of them by groups of isometries) are quadratic
and linear, respectively. In a moment we shall discuss
what types of isoperimetric functions arise when one
considers other geometries (more precisely, compact
Riemannian manifolds).

To state the filling theorem we need to think about
the algebraic side as well. Here, we identify a function
that measures the complexity of a direct attack on the
word problem for an arbitrary finitely presented group
Γ = 〈A | R〉. If we wish to know whether a word w
equals the identity in Γ and do not have any further
insight into the nature of Γ , then there is not much we
can do other than repeatedly insert or remove the given
relations r ∈ R.

Consider the simple example Γ = 〈a,b | b2a,baba〉.
In this group aba2b represents the identity. How do we
prove this? Well,

aba2b = a(b2a)ba2b = ab(baba)ab
= abab = a(baba)a−1 = aa−1 = 1.

Now let us think about the proof geometrically, via the
Cayley graph. Since aba2b = 1 in the group Γ , we
obtain a cycle in this graph if we start at the identity
and go along edges labeled a, b, a, a, b, in that order
(in which case we visit the vertices 1, a, ab, aba, aba2,
aba2b = 1). The equalities in the proof can be thought
of as a way of “contracting” this cycle down to the iden-
tity by means of inserting or deleting small loops: for
instance, we could insert b, a, b, a into the list of edge
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directions, since baba is a relation, or we could delete
a trivial loop of the form a, a−1. This contraction can
be given a more topological character if we turn our
Cayley graph into a two-dimensional complex by filling
in each small loop with a face. Then the contraction of
the original cycle consists in gradually moving it across
these small faces.

Thus, the difficulty of demonstrating that a word w
equals the identity is intimately connected with the
area of w, denoted Area(w), which can be thought of
algebraically as the smallest sequence of relations you
need to insert and delete to turnw into the identity, or
geometrically as the smallest number of faces you need
to make a disk that fills the cycle represented by w.

The Dehn function δΓ : N → N bounds Area(w) in
terms of the length |w| of the word w: δΓ (n) is the
largest area of any word of length at most n that equals
1 in Γ . If the Dehn function grows rapidly, then the
word problem is hard, since there are short words that
are equal to the identity, but their area is very large,
so that any demonstration that they are equal to the
identity has to be very long. Results bounding the Dehn
function are called isoperimetric inequalities.

The subscript on δΓ is somewhat misleading since
different finite presentations of the same group will
in general yield different Dehn functions. This ambi-
guity is tolerated because it is tightly controlled: if the
groups defined by two finite presentations are isomor-
phic, or just quasi-isometric, then the corresponding
Dehn functions have similar growth rates. More pre-
cisely, they are equivalent, with respect to what is some-
times called the standard equivalence relation “�” of
geometric group theory: given two monotone functions
f , g : [0,∞)→ [0,∞), one writes f � g if there exists a
constant C > 0 such that f(l) � Cg(Cl+C)+Cl+C for
all l � 0, and f � g if f � g and g � f ; and one extends
this relation to include functions from N to [0,∞).

You will have noticed a resemblance between the
definitions of FillM(l) and δΓ (n). The filling theorem
relates them precisely: it states that if M is a smooth
compact manifold, then FillM(l) � δΓ (l), where Γ is the
fundamental group π1M of M .

For example, since Z2 is the fundamental group of
the torus T = R2/Z2, which has Euclidean geometry,
δZ2(l) is quadratic.

9.1 What Are the Dehn Functions?

We have seen that the complexity of word problems
is related to the study of isoperimetric problems in

Riemannian and combinatorial geometry. Such insights
have, in the last fifteen years, led to great advances in
the understanding of the nature of Dehn functions. For
example, one can ask for which numbers ρ the func-
tion nρ is a Dehn function. The set of all such numbers,
which can be shown to be countable, is known as the
isoperimetric spectrum, denoted IP, and it is now largely
understood.

Following work by many authors, Brady and Brid-
son proved that the closure of IP is {1} ∪ [2,∞). The
finer structure of IP was described by Birget, Rips,
and Sapir in terms of the time functions of Tur-
ing machines. A further result by the same authors
and Ol’shanskii explains how fundamental Dehn func-
tions are to understanding the complexity of arbitrary
approaches to the word problem for finitely generated
groups Γ : the word problem for Γ lies in NP if and only if
Γ is a subgroup of a finitely presented group with poly-
nomial Dehn function. (Here, NP is the class of prob-
lems in the famous “P versus NP” question: see compu-
tational complexity [IV.20 §3] for a description of
this class.)

The structure of IP raises an obvious question: What
can one say about the two classes of groups singled out
as special—those with linear Dehn functions and those
with quadratic ones? The true nature of the class of
groups with a quadratic Dehn function remains obscure
for the moment but there is a beautifully definitive
description of those with a linear Dehn function: they
are the word hyperbolic groups, which we shall discuss
in the next section.

Not all Dehn functions are of the form nα: there
are Dehn functions such as nα logn, for example,
and others that grow more quickly than any iterated
exponential, for example that of

〈a,b | aba−1bab−1a−1b−2〉.
If Γ has unsolvable word problem, then δΓ (n)will grow
faster than any recursive function (indeed this serves
as a definition of such groups).

9.2 The Word Problem and Geodesics

A closed geodesic on a Riemannian manifold is a loop
that locally minimizes distance, such as a loop formed
by an elastic band when released on a perfectly smooth
surface. Examples such as the great circles on a sphere
or the waist of an hourglass show that manifolds may
contain closed geodesics that are null-homotopic : that
is, they can be moved continuously until they are
reduced to a point. But can one construct a compact
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topological manifold with the property that no matter
what metric one puts on it there will always be infinitely
many such geodesics? (Technically, if you go around a
geodesic loopn times, then you get a geodesic; we avoid
this by counting only “primitive” geodesics.)

From a purely geometric point of view this is a daunt-
ing problem: all specific metric information has been
stripped away and one has to deal with an arbitrary
metric on the floppy topological object left behind. But
group theory provides a solution: if the Dehn function
of the fundamental group π1M grows at least as fast as
22n , then in any Riemannian metric on M there will be
infinitely many closed geodesics that are null-homotopic.
The proof of this is too technical to sketch here.

10 Which Groups Should One Study?

Several special classes of groups have emerged from
our previous discussion, such as nilpotent groups, 3-
manifold groups, groups with linear Dehn functions,
and groups with a single defining relation. Now we shall
change viewpoint and ask which groups present them-
selves for study as we set out to explore the universe of
all finitely presented groups, starting with the easiest
ones.

The trivial group comes first, of course, followed by
the finite groups. Finite groups are discussed in vari-
ous other places in this volume, so I shall ignore them
in what follows and adopt the approach of large-scale
geometry, blurring the distinction between groups that
have a common subgroup of finite index.

The first infinite group is surely Z, but what comes
next is open to debate. If one wants to retain the
safety of commutativity, then finitely generated Abe-
lian groups come next. Then, as one slowly relin-
quishes commutativity and control over growth and
constructibility, one passes through the progressively
larger classes of nilpotent, polycyclic, solvable, and ele-
mentary amenable groups. We have already met nil-
potent groups in our discussion of Gromov’s polyno-
mial-growth theorem. They crop up in many contexts as
the most natural generalization of Abelian groups and
much is known about them, not least because one can
prove a great deal by induction on the k for which they
are k-step nilpotent. One can also exploit the fact that
G is built from the finitely generated Abelian groups
Gi/Gi+1 in a very controlled way. The larger class of
polycyclic groups is built in a similar way, while finitely
generated solvable groups are built in a finite number
of steps from Abelian groups that need not be finitely

generated. This last class is not only larger but wilder;
the isomorphism problem is solvable among polycyclic
groups, for example, but unsolvable among solvable
groups. By definition a group G is solvable if its derived
series, defined inductively by G(n) = [G(n−1), G(n−1)] PUP: this is fine.

with G(0) = G, terminates in a finite number of steps.
The concept known as amenability forms an impor-

tant link between geometry, analysis, and group theory.
Solvable groups are amenable but not vice versa. It is
not quite the case that a finitely presented group is
amenable if and only if it does not contain a free sub-
group of rank 2, but for a novice this serves as a good
rule of thumb.

Now, let us return to Z in a more adventurous frame
of mind, throw away the security of commutativity, and
start taking free products instead. In this more liber-
ated approach, finitely generated free groups appear
after Z as the first groups in the universe. What comes
next? Thinking geometrically, we might note that free
groups are precisely those groups that have a tree as a
Cayley graph and then ask which groups have Cayley
graphs that are tree-like.

A key property of a tree is that all of its triangles are
degenerate: if you take any three points in the tree and
join them by shortest paths, then every point in one of
these paths is contained in at least one other path as
well. This is a manifestation of the fact that trees are
spaces of infinite negative curvature. To get a feeling
for why, consider what happens when one rescales the
metric on a space of bounded negative curvature such
as the hyperbolic plane H2. If we replace the standard
distance function d(x,y) by (1/n)d(x,y) and let n
tend to∞, then the curvature of this space (in the clas-
sical sense of differential geometry) tends to −∞. This
is captured by the fact that triangles look increasingly
degenerate: there is a constant δ(n), with δ(n) → 0
as n→∞, such that any side of a triangle in the scaled
hyperbolic space (H2, (1/n)d) is contained in the δ(n)-
neighborhood of the union of the other two sides. More
colloquially, triangles in H2 are uniformly thin and get
increasingly thin as one rescales the metric.

With this picture in mind, one might move a little
away from trees by asking which groups have Cayley
graphs in which all triangles are uniformly thin. (It
makes little sense to specify the thinness constant δ
since it will change when one changes generating set.)
The answer is Gromov’s hyperbolic groups. This is a
fascinating class of groups that has many equivalent
definitions and arises in many contexts. For example,
we have already met it as the class of groups that have
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linear Dehn functions. (It is not at all obvious that these

two definitions are equivalent.)

Gromov’s great insight is that because the thin-tri-

angles condition encapsulates so much of the essence

of the large-scale geometry of negatively curved mani-

folds, hyperbolic groups share many of the rich proper-

ties enjoyed by the groups that act nicely by isometries

on such spaces. Thus, for example, hyperbolic groups

have only finitely many conjugacy classes of finite sub-

groups, contain no copy of Z2, and (after accounting

for torsion) have compact classifying spaces. Their con-

jugacy problems can be solved in less than quadratic

time, and Sela showed that one can even solve the

isomorphism problem among torsion-free hyperbolic

groups. In addition to their many fascinating proper-

ties and natural definition, a further source of interest

in hyperbolic groups is the fact that in a precise sta-

tistical sense, a random finitely presented group will be

hyperbolic.

Spaces of negative and nonpositive curvature have

played a central role in many branches of mathemat-

ics in the last twenty years. There is no room even to

begin to justify this assertion here but it does guide us

in where to look for natural enlargements of the class

of hyperbolic groups: we want nonpositively curved

groups, defined by requiring that their Cayley graphs

enjoy a key geometric feature that cocompact groups

of isometries inherit from simply connected spaces of

nonpositive curvature (“CAT(0) spaces”). But in con-

trast to the hyperbolic case, the class of groups that one

obtains varies considerably when one perturbs the def-

inition, and delineating the resulting classes and their

(rich) properties has been the subject of much research.

The added complications that one encounters when

one moves from negative to nonpositive curvature are

exemplified by the fact that the isomorphism problem

is unsolvable in one of the most prominent classes that

arises: the so-called combable groups.

Let us now return to free groups and ask which

hyperbolic groups are the immediate neighbors of free

groups. Remarkably, this vague question has a convinc-

ing answer.

One of the great triumphs of arboreal group theory

is the proof that there is a finite description of the

set Hom(G, F) of homomorphisms from an arbitrary

finitely generated group G to a free group F . The basic

building blocks in this description are what Sela calls

limit groups. One of the many ways of defining a limit

group L is that for each finite subset X ⊂ L there

should exist a homomorphism to a finitely generated
free group that is injective on X.

Limit groups can also be defined as those whose
first-order logic [IV.23 §1] resembles that of a free
group in a precise sense. To see how first-order logic
can be used to say something nontrivial about a group,
consider the sentence

∀x,y, z
(xy ≠ yx)∨ (yz ≠ zy)∨ (xz = zx)∨ (y = 1).

A group with this property is commutative transitive: if
x commutes with y ≠ 1, and y commutes with z, then
x commutes with z. Free groups and Abelian groups
have this property but a direct product of non-Abelian
free groups, for example, does not.

It is a simple exercise to show that free Abelian
groups are limit groups. But if one restricts attention
to groups that have precisely the same first-order logic
as free groups, one gets a smaller class consisting only
of hyperbolic groups. The groups in this class are the
subject of intense scrutiny at the moment. They all have
negatively curved two-dimensional classifying spaces,
built from graphs and hyperbolic surfaces in a hierar-
chical manner. The fundamental groups Σg of closed
surfaces of genus g � 2 lie in this class, lending sub-
stance to the traditional opinion in combinatorial group
theory that, among nonfree groups, it is the groups Σg
that resemble free groups Fn most closely.

Incorporating this opinion into our earlier discus-
sion, we arrive at the view that the groups Zn, the
free groups Fn, and the groups Σg are the most basic
of infinite groups. This is the start of a rich vein of
ideas involving the automorphisms of these groups.
In particular, there are many striking parallels between
their outer automorphism groups GLn(Z), Out(Fn), and
Modg � Out(Σg) (the mapping class group). These
three classes of groups play a fundamental role across
a broad spectrum of mathematics. I have mentioned
them here in order to make the point that, beyond the
search for knowledge about natural classes of groups,
there are certain “gems” in group theory that merit a
deep and penetrating study in their own right. Other
groups that people might suggest for this category
include Coxeter groups (generalized reflection groups,
for which Γ∆ is a prototype) and Artin groups (particu-
larly braid groups [III.4], which again crop up in many
branches of mathematics).

I have thrown classes of groups at you thick and
fast in this last section. Even so, there are many fas-
cinating classes of groups and important issues that
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I have ignored completely. But so it must be, for as
Higman’s theorem assures us, the challenges, joys, and
frustrations of finitely presented groups can never be
exhausted.
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IV.11 Harmonic Analysis
Terence Tao

1 Introduction

Much of analysis tends to revolve around the study of
general classes of functions [I.2 §2.2] and operators
[III.52]. The functions are often real-valued or complex-
valued, but may take values in other sets, such as a
vector space [I.3 §2.3] or a manifold [I.3 §6.9]. An
operator is itself a function, but at a “second level,”
because its domain and range are themselves spaces of
functions: that is, an operator takes a function (or per-
haps more than one function) as its input and returns a
transformed function as its output. Harmonic analysis
focuses in particular on the quantitative properties of
such functions, and how these quantitative properties
change when various operators are applied to them.1

What is a “quantitative property” of a function? Here
are two important examples. First, a function is said
to be uniformly bounded if there is some real number
M such that |f(x)| � M for every x. It can often be
useful to know that two functions f and g are “uni-
formly close,” which means that their difference f − g

1. Strictly speaking, this sentence describes the field of real-vari-
able harmonic analysis. There is another field called abstract harmonic
analysis, which is primarily concerned with how real- or complex-
valued functions (often on very general domains) can be studied using
symmetries such as translations or rotations (for instance, via the
Fourier transform and its relatives); this field is of course related to
real-variable harmonic analysis, but is perhaps closer in spirit to rep-
resentation theory and functional analysis, and will not be discussed
here.

is uniformly bounded with a small bound M . Second,

a function is called square integrable if the integral∫ |f(x)|2 dx is finite. The square integrable functions

are important because they can be analyzed using the

theory of hilbert spaces [III.37].

A typical question in harmonic analysis might then

be the following: if a function f : Rn → R is square

integrable, its gradient ∇f exists, and all the n compo-

nents of∇f are also square integrable, does this imply

that f is uniformly bounded? (The answer is yes when

n = 1, and no, but only just, when n = 2; this is a spe-

cial case of the Sobolev embedding theorem, which is

of fundamental importance in the analysis of partial

differential equations [IV.12].) If so, what are the

precise bounds one can obtain? That is, given the inte-

grals of |f |2 and |(∇f)i|2, what can you say about the

uniform bound M that you obtain for f ?

Real and complex functions are of course very famil-

iar in mathematics, and one meets them in high school.

In many cases one deals primarily with special func-

tions [III.87]: polynomials, exponentials, trigonomet-

ric functions, and other very concrete and explicitly

defined functions. Such functions typically have a very

rich algebraic and geometric structure, and many ques-

tions about them can be answered exactly using tech-

niques from algebra and geometry.

However, in many mathematical contexts one has to

deal with functions that are not given by an explicit

formula. For example, the solutions to ordinary and

partial differential equations often cannot be given in

an explicit algebraic form (as a composition of famil-

iar functions such as polynomials, exponential func-

tions [III.25], and trigonometric functions [III.94]).

In such cases, how does one think about a function?

The answer is to focus on its properties and see what

can be deduced from them: even if the solution of a

differential equation cannot be described by a useful

formula, one may well be able to establish certain basic

facts about it and be able to derive interesting conse-

quences from those facts. Some examples of proper-

ties that one might look at are measurability, bound-

edness, continuity, differentiability, smoothness, ana-

lyticity, integrability, or quick decay at infinity. One is

thus led to consider interesting general classes of func-

tions: to form such a class one chooses a property and

takes the set of all functions with that property. Gen-

erally speaking, analysis is much more concerned with

these general classes of functions than with individual

functions. (See also function spaces [III.29].)
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This approach can in fact be useful even when one
is analyzing a single function that is very structured
and has an explicit formula. It is not always easy, or
even possible, to exploit this structure and formula in
a purely algebraic manner, and then one must rely (at
least in part) on more analytical tools instead. A typical
example is the Airy function

Ai(x) =
∫∞
−∞

ei(xξ+ξ3) dξ.

Although this is defined explicitly as a certain integral,
if one wants to answer such basic questions as whether
Ai(x) is always a convergent integral, and whether this
integral goes to zero as x → ±∞, it is easiest to proceed
using the tools of harmonic analysis. In this case, one
can use a technique known as the principle of station-
ary phase to answer both these questions affirmatively,
although there is the rather surprising fact that the Airy
function decays almost exponentially fast as x → +∞,
but only polynomially fast as x → −∞.

Harmonic analysis, as a subfield of analysis, is par-
ticularly concerned not just with qualitative proper-
ties like the ones mentioned earlier, but also with
quantitative bounds that relate to those properties. For
instance, instead of merely knowing that a function
f is bounded, one may wish to know how bounded
it is. That is, what is the smallest M � 0 such that
|f(x)| � M for all (or almost all) x ∈ R; this num-
ber is known as the sup norm or L∞-norm of f , and
is denoted ‖f‖L∞ . Or instead of assuming that f is
square integrable one can quantify this by introducing
the L2-norm ‖f‖L2 = (∫ |f(x)|2 dx)1/2; more generally
one can quantify pth-power integrability for 0 < p <∞
via the Lp-norm ‖f‖Lp = (

∫ |f(x)|p dx)1/p . Similarly,
most of the other qualitative properties mentioned
above can be quantified by a variety of norms [III.64],
which assign a nonnegative number (or +∞) to any
given function and which provide some quantitative
measure of one characteristic of that function. Besides
being of importance in pure harmonic analysis, quanti-
tative estimates involving these norms are also useful
in applied mathematics, for instance in performing an
error analysis of some numerical algorithm.

Functions tend to have infinitely many degrees of
freedom, and it is thus unsurprising that the number
of norms one can place on a function is infinite as well:
there are many ways of quantifying how “large” a func-
tion is. These norms can often differ quite dramatically
from each other. For instance, if a function f is very
large for just a few values, so that its graph has tall,
thin “spikes,” then it will have a very large L∞-norm,

but
∫ |f(x)|dx, its L1-norm, may well be quite small.

Conversely, if f has a very broad and spread-out graph,

then it is possible for
∫ |f(x)|dx to be very large even

if |f(x)| is small for every x: such a function has a

large L1-norm but a small L∞-norm. Similar examples

can be constructed to show that the L2-norm some-

times behaves very differently from either the L1-norm

or the L∞-norm. However, it turns out that the L2-norm

lies “between” these two norms, in the sense that if one

controls both the L1-norm and the L∞-norm, then one

also automatically controls the L2-norm. Intuitively, the

reason is that if the L∞-norm is not too large then one

eliminates all the spiky functions, and if the L1-norm is

small then one eliminates most of the broad functions;

the remaining functions end up being well-behaved in

the intermediate L2-norm. More quantitatively, we have

the inequality

‖f‖L2 � ‖f‖1/2
L1 ‖f‖1/2

L∞ ,

which follows easily from the trivial algebraic fact that

if |f(x)| � M , then |f(x)|2 � M|f(x)|. This inequality

is a special case of hölder’s inequality [V.22], which

is one of the fundamental inequalities in harmonic

analysis. The idea that control of two “extreme” norms

automatically implies further control on “intermedi-

ate” norms can be generalized tremendously and leads

to very powerful and convenient methods known as

interpolation, which is another basic tool in this area.

The study of a single function and all its norms

eventually gets somewhat tiresome, though. Nearly all

fields of mathematics become a lot more interesting

when one considers not just objects, but also maps

between objects. In our case, the objects in question

are functions, and, as was mentioned in the introduc-

tion, a map that takes functions to functions is usually

referred to as an operator. (In some contexts it is also

called a transform [III.93].) Operators may seem like

fairly complicated mathematical objects—their inputs

and outputs are functions, which in turn have inputs

and outputs that are usually numbers—but they are in

fact a very natural concept since there are many sit-

uations where one wants to transform functions. For

example, differentiation can be thought of as an oper-

ator, which takes a function f to its derivative df/dx.

This operator has a well-known (partial) inverse, inte-

gration, which takes f to the function F that is defined

by the formula

F(x) =
∫ x
−∞
f(y)dy.
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A less intuitive, but particularly important, example
is the fourier transform [III.27]. This takes f to a
function f̂ , given by the formula

f̂ (x) =
∫∞
−∞

e−2π ixyf(y)dy.

It is also of interest to consider operators that take
two or more inputs. Two particularly common exam-
ples are the pointwise product and convolution. If f and
g are two functions, then their pointwise product fg
is defined in the obvious way:

(fg)(x) = f(x)g(x).
The convolution, denoted f ∗ g, is defined as follows:

f ∗ g(x) =
∫∞
−∞
f(y)g(x −y)dy.

This is just a very small sample of interesting opera-
tors that one might look at. The original purpose of
harmonic analysis was to understand the operators
that were connected to Fourier analysis, real analysis,
and complex analysis. Nowadays, however, the subject
has grown considerably, and the methods of harmonic
analysis have been brought to bear on a much broader
set of operators. For example, they have been partic-
ularly fruitful in understanding the solutions of vari-
ous linear and nonlinear partial differential equations,
since the solution of any such equation can be viewed
as an operator applied to the initial conditions. They
are also very useful in analytic and combinatorial num-
ber theory, when one is faced with understanding the
oscillation present in various expressions such as expo-
nential sums. Harmonic analysis has also been applied
to analyze operators that arise in geometric measure
theory, probability theory, ergodic theory, numerical
analysis, and differential geometry.

A primary concern of harmonic analysis is to obtain
both qualitative and quantitative information about
the effects of these operators on generic functions.
A typical example of a quantitative estimate is the
inequality

‖f ∗ g‖L∞ � ‖f‖L2‖g‖L2 ,

which is true for all f , g ∈ L2. This result, which is a
special case of Young’s inequality, is easy to prove: one
just writes out the definition of f ∗ g(x) and applies
the cauchy–schwarz inequality [V.22]. As a conse-
quence, one can draw the qualitative conclusion that
the convolution of two functions in L2 is always con-
tinuous. Let us briefly sketch the argument, since it is
an instructive one.

A fundamental fact about functions in L2 is that any
such function f can be approximated arbitrarily wellPUP: this word is

needed.

(in the L2-norm) by a function f̃ that is continuous and
compactly supported. (The second condition means that
f̃ takes the value zero everywhere outside some inter-
val [−M,M].) Given any two functions f and g in L2, let
f̃ and g̃ be approximations of this kind. It is an exercise
in real analysis to prove that f̃ ∗ g̃ is continuous, and
it follows easily from the inequality above that f̃ ∗ g̃ is
close to f ∗ g in the L∞-norm, since

f ∗ g − f̃ ∗ g̃ = f ∗ (g − g̃)+ (f − f̃ )∗ g̃.
Therefore, f ∗ g can be approximated arbitrarily well
in the L∞-norm by continuous functions. A standard
result in basic real analysis (that a uniform limit of con-
tinuous functions is continuous) now tells us that f ∗ g
is continuous.

Notice the general structure of this argument, which
occurs frequently in harmonic analysis. First, one iden-
tifies a “simple” class of functions for which one can
easily prove the result one wants. Next, one proves that
every function in a much wider class can be approxi-
mated in a suitable sense by simple functions. Finally,
one uses this information to deduce that the result
holds for functions in the wider class as well. In our
case, the simple functions were the continuous func-
tions of finite support, the wider class consisted of
square-integrable functions, and the suitable sense of
approximation was closeness in the L2-norm.

We shall give some further examples of qualita-
tive and quantitative analysis of operators in the next
section.

2 Example: Fourier Summation

To illustrate the interplay between quantitative and
qualitative results, we shall now sketch some of the
basic theory of summation of Fourier series, which his-
torically was one of the main motivations for studying
harmonic analysis.

In this section, we shall consider functions f that are
periodic with period 2π : that is, functions such that
f(x+2π) = f(x) for all x. An example of such a func-
tion is f(x) = 3 + sin(x) − 2 cos(3x). A function like
this, which can be written as a finite linear combina-
tion of functions of the form sin(nx) and cos(nx), is
called a trigonometric polynomial. The word “polyno-
mial” is used here because any such function can be
expressed as a polynomial in sin(x) and cos(x), or
alternatively, and somewhat more conveniently, as a
polynomial in eix and e−ix . That is, it can be written
as
∑N
n=−N cneinx for some N and some choice of coef-

ficients (cn : −N � n � N). If we know that f can
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be expressed in this form, then we can work out the
coefficient cn quite easily: it is given by the formula

cn = 1
2π

∫ 2π

0
f(x)e−inx dx.

It is a remarkable and very important fact that we
can say something similar about a much wider class of
functions—if, that is, we now allow infinite linear com-
binations. Suppose that f is a periodic function that is
also continuous (or, more generally, that f is absolutely
integrable, meaning that the integral of |f(x)| between
0 and 2π is finite). We can then define the Fourier coef-
ficients f̂ (n) of f , using exactly the formula we had
above for cn:

f̂ (n) = 1
2π

∫ 2π

0
f(x)e−inx dx.

The example of trigonometric polynomials now sug-
gests that one should have the identity

f(x) =
∞∑

n=−∞
f̂ (n)einx,

expressing f as a sort of “infinite trigonometric poly-
nomial,” but this is not always true, and even when it is
true it takes some effort to justify it rigorously, or even
to say precisely what the infinite sum means.

To make the question more precise, let us introduce
for each natural number N the Dirichlet summation
operator SN . This takes a function f to the function
SNf that is defined by the formula

SNf(x) =
N∑

n=−N
f̂ (n)einx.

The question we would like to answer is whether SNf
converges to f as N → ∞. The answer turns out to
be surprisingly complicated: not only does it depend
on the assumptions that one places on the function f ,
but it also depends critically on how one defines “con-
vergence.” For example, if we assume that f is con-
tinuous and ask for the convergence to be uniform,
then the answer is very definitely no: there are exam-
ples of continuous functions f for which SNf does not
even converge pointwise to f . However, if we ask for
a weaker form of convergence, the answer is yes: SNf
will necessarily converge to f in the Lp topology for
any 0 < p < ∞, and even though it does not have
to converge pointwise, it will converge almost every-
where, meaning that the set ofx for which SNf(x) does
not converge to x has measure [III.57] zero. If instead
one assumes only that f is absolutely integrable, then
it is possible for the partial sums SNf to diverge at
every single point x, as well as being divergent in the

Lp topology for every p such that 0 < p � ∞. The
proofs of all of these results ultimately rely on very
quantitative results in harmonic analysis, and in par-
ticular on various Lp-type estimates on the Dirichlet
sum SNf(x), as well as estimates connected with the
closely related maximal operator, which takes f to the
function supN>0 |SNf(x)|.

As these results are a little tricky to prove, let us first
discuss a simpler result, in which the Dirichlet summa-
tion operators SN are replaced by the Fejér summation
operators FN . For each N , the operator FN is the aver-
age of the first N Dirichlet operators: that is, it is given
by the formula

FN = 1
N
(S0 + · · · + SN−1).

It is not hard to show that if SNf converges to f , then
so does FNf . However, by averaging the SNf we allow
cancellations to take place that sometimes make it pos-
sible for FNf to converge to f even when SNf does not.
Indeed, here is a sketch of a proof that FNf converges
to f whenever f is continuous and periodic—which, as
we have seen, is far from true of SNf .

In its basic structure, the argument is similar to the
one we used when showing that the convolution of
two functions in L2 is continuous. Note first that the
result is easy to prove when f is a trigonometric poly-
nomial, since then SNf = f for every N from some
point onward. Now the Weierstrass approximation the-
orem says that every continuous periodic function f
can be uniformly approximated by trigonometric poly-
nomials: that is, for every ε > 0 there is a trigonomet-
ric polynomial such that ‖f − g‖L∞ � ε. We know that
FNg is close to g for large N (since g is a trigonometric
polynomial), and would like to deduce the same for f .

The first step is to use some routine trigonometric
manipulation to prove the identity

FNf(x) =
∫ π
−π

sin2( 1
2Ny)

N sin2( 1
2y)

f(x −y)dy.

The precise form of this expression is less important
than two properties of the function

u(y) = sin2( 1
2Ny)

N sin2( 1
2y)

that we shall use. One is that u(y) is always nonneg-
ative and the other is that

∫π
−π u(y)dy = 1. These two

facts allow us to say that

FNh(x) =
∫ π
−π
u(y)h(x −y)dy

� ‖h‖L∞
∫ π
−π
u(y)dy = ‖h‖L∞ .
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That is, ‖FNh‖L∞ � ‖h‖L∞ for any bounded function h.
To apply this result, we choose a trigonometric poly-

nomial g such that ‖f − g‖L∞ � ε and let h = f − g.
Then we find that ‖FNh‖L∞ = ‖FNf − FNg‖L∞ � ε as
well. As mentioned above, if we chooseN large enough,
then ‖FNg − g‖L∞ � ε, and then we use the triangle
inequality [V.22] to say that

‖FNf − f‖L∞
� ‖FNf − FNg‖L∞ + ‖FNg − g‖L∞ + ‖g − f‖L∞ .

Since each term on the right-hand side is at most ε,
this shows that ‖FNf − f‖L∞ is at most 3ε. And since
ε can be made arbitrarily small, this shows that FNf
converges to f .

A similar argument (using Minkowski’s integral
inequality [V.22] instead of the triangle inequality)
shows that ‖FNf‖Lp � ‖f‖Lp for all 1 � p � ∞,
f ∈ Lp , and N � 1. As a consequence, one can mod-
ify the above argument to show that FNf converges
to f in the Lp topology for every f ∈ Lp . A slightly
more difficult result (relying on a basic result in har-
monic analysis known as the Hardy–Littlewood maxi-
mal inequality) asserts that, for every 1 < p �∞, there
exists a constant Cp such that one has the inequality
‖supN |FNf |‖Lp � Cp‖f‖Lp for all f ∈ Lp ; as a conse-
quence, one can show that FNf converges to f almost
everywhere for every f ∈ Lp and 1 < p � ∞. A
slight modification of this argument also allows one
to treat the endpoint case when f is merely assumed
to be absolutely integrable; see the discussion on the
Hardy–Littlewood maximal inequality at the end of this
article.

Now let us return briefly to Dirichlet summation.
Using fairly sophisticated techniques in harmonic
analysis (such as Calderón–Zygmund theory) one can
show that when 1 < p < ∞ the Dirichlet operators SN
are bounded in Lp uniformly in N . In other words, for
every p in this range there exists a positive real num-
ber Cp such that ‖SNf‖Lp � Cp‖f‖Lp for every func-
tion f in Lp and every nonnegative integer N . As a con-
sequence, one can show that SNf converges to f in
the Lp topology for all f in Lp and every p such that
1 < p < ∞. However, the quantitative estimate on SN
fails at the endpoints p = 1 and p = ∞, and from this
one can also show that the convergence result also fails
at these endpoints (either by explicitly constructing a
counterexample or by using general results such as the
so-called uniform boundedness principle).

What happens if we ask for SNf to converge to
f almost everywhere? Almost-everywhere convergence

does not follow from convergence in Lp when p <
∞, so we cannot use the above results to prove it. It
turns out to be a much harder question, and was a
famous open problem, eventually answered by car-
leson’s theorem [V.5] and an extension of it by Hunt.
Carleson proved that one has an estimate of the form
‖supN |SNf |‖Lp � Cp‖f‖Lp in the case p = 2, and Hunt
generalized the proof to cover all p with 1 < p < ∞.
This result implies that the Dirichlet sums of an Lp

function do indeed converge almost everywhere when
1 < p �∞. On the other hand, this estimate fails at the
endpoint p = 1, and there is in fact an example due to
kolmogorov [VI.88] of an absolutely integrable func-
tion whose Dirichlet sums are everywhere divergent.
These results require a lot of harmonic analysis theory.
In particular they use many decompositions of both
the spatial variable and the frequency variable, keep-
ing the Heisenberg uncertainty principle in mind. They
then carefully reassemble the pieces, exploiting various
manifestations of orthogonality.

To summarize, quantitative estimates such as Lp

estimates on various operators provide an important
route to establishing qualitative results, such as con-
vergence of certain series or sequences. In fact there are
a number of principles (notably the uniform bounded-
ness principle and a result known as Stein’s maximal
principle) which assert that in certain circumstances
this is the only route, in the sense that a quantitative
estimate must exist in order for the qualitative result
to be true.

3 Some General Themes in Harmonic Analysis:
Decomposition, Oscillation, and Geometry

One feature of harmonic analysis methods is that they
tend to be local rather than global. For instance, if one
is analyzing a function f it is quite common to decom-
pose it as a sum f = f1+· · ·+fk, with each function fi
“localized” in the sense that its support (the set of val-
ues x for which fi(x) �= 0) has a small diameter. This
would be called localization in the spatial variable. One
can also localize in the frequency variable by applying
the process to the Fourier transform f̂ of f . Having
split f up like this, one can carry out estimates for
the pieces separately and then recombine them later.
One reason for this “divide and conquer” strategy is
that a typical function f tends to have many differ-
ent features—for example, it may be very “spiky,” “dis-
continuous,” or “high frequency” in some places, and
“smooth” or “low frequency” in others—and it is diffi-
cult to treat all of these features at once. A well-chosen
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decomposition of the function f can isolate these fea-
tures from each other, so that each component has only
one salient feature that could cause difficulty: the spiky
part can go into one fi, the high-frequency part into
another, and so on. In reassembling the estimates from
the individual components, one can use crude tools
such as the triangle inequality or more refined tools,
for instance those relying on some sort of orthogonal-
ity, or perhaps a clever algorithm that groups the com-
ponents into manageable clusters. The main drawback
of the decomposition method (other than an aesthetic
one) is that it tends to give bounds that are not quite
optimal; however, in many cases one is content with an
estimate that differs from the best possible one by a
multiplicative constant.

To give a simple example of the method of decompo-
sition, let us consider the Fourier transform f̂ (ξ) of a
function f : R→ C, defined (for suitably nice functions
f ) by the formula

f̂ (ξ) =
∫

R
f(x)e−2π ixξ dx.

What we can say about the size of f̂ , as measured by
suitable norms, if we are given information about the
size of f , as measured by other norms?

Here are two simple observations in response to this
question. First, since the modulus of e−2π ixξ is always
equal to 1, it follows that |f̂ (ξ)| is at most

∫
R |f(x)|dx.

This tells us that ‖f̂‖L∞ � ‖f‖L1 , at least if f ∈ L1. In
particular, f̂ ∈ L∞. Secondly, the Plancherel theorem, a
very basic fact of Fourier analysis, tells us that ‖f̂‖L2 is
equal to ‖f‖L2 if f ∈ L2. Therefore, if f belongs to L2

then so does f̂ .
We would now like to know what happens if f lies in

an intermediate Lp space. In other words, what happens
if 1 < p < 2? Since Lp is not contained in either L1

or L2, one cannot use either of the above two results
directly. However, let us take a function f ∈ Lp and
consider what the difficulty is. The reason f may not
lie in L1 is that it may decay too slowly: for instance,
the function f(x) = (1+ |x|)−3/4 tends to zero more
slowly than 1/x as x → ∞, so its integral is infinite.
However, if we raise f to the power 3/2 we obtain the
function (1+ |x|)−9/8 which decays quickly enough to
have a finite integral, so f does belong to L3/2. Similar
examples show that the reason f may fail to belong to
L2 is that it can have places where it tends to infinity
slowly enough for the integral of |f |p to be finite but
not slowly enough for the integral of |f |2 to be finite.

Notice that these two reasons are completely differ-
ent. Therefore, we can try to decompose f into two

pieces, one consisting of the part where f is large and
the other consisting of the part where f is small. That
is, we can choose some threshold λ and define f1(x) to
be f(x) when |f(x)| < λ and 0 otherwise, and define
f2(x) to be f(x) when |f(x)| � λ and 0 otherwise.
Then f1 + f2 = f , and f1 and f2 are the “small part”
and “large part” of f , respectively.

Because |f1(x)| < λ for every x, we find that

|f1(x)|2 = |f1(x)|2−p|f1(x)|p < λ2−p|f1(x)|p.
Therefore, f1 belongs to L2 and ‖f1‖L2 � λ2−p‖f1‖Lp .
Similarly, because |f2(x)| � λ whenever f2(x) �= 0, we
have the inequality |f2(x)| � |f2(x)|p/λp−1 for every
x, which tells us that f2 belongs to L1 and that ‖f2‖L1 �
‖f2‖Lp/λp−1.

From our knowledge about the L2-norm of f1 and
the L1-norm of f2 we can obtain upper bounds for
the L2-norm of f̂1 and the L∞-norm of f̂2, by our
remarks above. By using this strategy for every λ and
combining the results in a clever way, one can obtain
the Hausdorff–Young inequality, which is the following
assertion. Let p lie between 1 and 2 and let p′ be the
dual exponent of p, which is the number p/(p − 1).
Then there is a constant Cp such that, for every func-
tion f ∈ Lp , one has the inequality ‖f̂‖Lp′ � Cp‖f‖Lp .
The particular decomposition method we have used to
obtain this result is formally known as the method of
real interpolation. It does not give the best possible
value of Cp , which turns out to be p1/2p/(p′)1/2p′ , but
that requires more delicate methods.

Another basic theme in harmonic analysis is the
attempt to quantify the elusive phenomenon of oscilla-
tion. Intuitively, if an expression oscillates wildly, then
we expect its average value to be relatively small in
magnitude, since the positive and negative parts, or in
the complex case the parts with a wide range of differ-
ent arguments, will cancel out. For instance, if a 2π -
periodic function f is smooth, then for large n the
Fourier coefficient

f̂ (n) = 1
2π

∫ π
−π
f(x)e−inx

will be very small since
∫π
−π e−inx = 0 and the com-

paratively slow variation in f(x) is not enough to
stop the cancellation occurring. This assertion can eas-
ily be proved rigorously by repeated integration by
parts. Generalizations of this phenomenon include the
so-called principle of stationary phase, which among
other things allows one to obtain precise control on
the Airy function Ai(x) discussed earlier. It also yields
the Heisenberg uncertainty principle, which relates the
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decay and smoothness of a function to the decay and
smoothness of its Fourier transform.

A somewhat different manifestation of oscillation
lies in the principle that if one has a sequence of func-
tions that oscillate in different ways, then their sum
should be significantly smaller than the bound that
follows from the triangle inequality. Again, this is the
result of cancellation that is simply not noticed by the
triangle inequality. For instance, the Plancherel theo-
rem in Fourier analysis implies, among other things,
that a trigonometric polynomial

∑N
n=−N cneinx has an

L2-norm of(
1

2π

∫ 2π

0

∣∣∣∣
N∑

n=−N
cneinx

∣∣∣∣2)1/2
=
( N∑
n=−N

|cn|2
)1/2

.

This bound (which can also be proved by direct calcu-
lation) is smaller than the upper bound of

∑N
n=−N |cn|

that would be obtained if we simply applied the trian-
gle inequality to the functions cneinx . This identity can
be viewed as a special case of the Pythagorean theo-
rem, together with the observation that the harmonics
einx are all orthogonal to each other with respect to the
inner product [III.37]

〈f , g〉 = 1
2π

∫ 2π

0
f(x)g(x)dx.

This concept of orthogonality has been generalized in
a number of ways. For instance, there is a more general
and robust concept of “almost orthogonality,” which
roughly speaking means that the inner products of a
collection of functions are small but not necessarily 0.

Many arguments in harmonic analysis will, at some
point, involve a combinatorial statement about certain
types of geometric objects such as cubes, balls, or
boxes. For instance, one useful such statement is the
Vitali covering lemma, which asserts that, given any col-
lection B1, . . . , Bk of balls in Euclidean space Rn, there
will be a subcollection Bi1 , . . . , Bim of balls that are dis-PUP: it’s the balls

that are disjoint,
not the collection,
so sentence OK?

joint, but that nevertheless contain a significant frac-
tion of the volume covered by the original balls. To be
precise, one can choose the disjoint balls so that

vol
( m⋃
j=1

Bij
)

� 5−n vol
( k⋃
j=1

Bj
)
.

(The constant 5−n can be improved, but this will not
concern us here.) This result is obtained by a “greedy
algorithm”: one picks balls one by one, at each stage
choosing the largest ball among the Bj that is disjoint
from all the balls already selected.

One consequence of the Vitali covering lemma is
the Hardy–Littlewood maximal inequality, which we will

briefly describe. Given any function f ∈ L1(Rn), any
x ∈ Rn, and any r > 0, we can calculate the average
of |f | in the n-dimensional sphere B(x, r) of center x
and radius r . Next, we can define the maximal function
F of f by letting F(x) be the largest of all these aver-
ages as r ranges over all positive real numbers. (More
precisely, one takes the supremum.) Then, for each pos-
itive real number λ one can define a set Xλ to be the set
of all x such that F(x) > λ. The Hardy–Littlewood max-
imal inequality asserts that the volume of Xλ is at most
5n‖f‖L1/λ.2

To prove it, one observes that Xλ can be covered by
balls B(x, r) on each of which the integral of |f | is at
least λ vol(B(x, r)). To this collection of balls one can
then apply the Vitali covering lemma, and the result
follows. The Hardy–Littlewood maximal inequality is
a quantitative result, but it has as a qualitative con-
sequence the Lebesgue differentiation theorem, which
asserts the following. If f is any absolutely integrable
function defined on Rn, then for almost every x ∈ Rn

the averages

1
vol(B(x, r))

∫
B(x,r)

f (y)dy

of f over the Euclidean balls about x tend to f(x)
as r → 0. This example demonstrates the impor-
tance of the underlying geometry (in this case, the
combinatorics of metric balls) in harmonic analysis.
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IV.12 Partial Differential Equations
Sergiu Klainerman

Introduction

Partial differential equations (or PDEs) are an impor-
tant class of functional equations: they are equations,
or systems of equations, in which the unknowns are

2. This version of the Hardy–Littlewood inequality looks somewhat
different from the one mentioned briefly in the previous section, but
one can deduce that inequality from this one by the real interpolation
method discussed earlier.
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functions of more than one variable. As a very crude
analogy, PDEs are to functions as polynomial equa-
tions (such as x2 + y2 = 1, for example) are to num-
bers. The distinguishing feature of PDEs, as opposed to
more general functional equations, is that they involve
not only unknown functions, but also various partial
derivatives of those functions, in algebraic combina-
tion with each other and with other, fixed, functions.
Other important kinds of functional equations are inte-
gral equations, which involve various integrals of the
unknown functions, and ordinary differential equations
(ODEs), in which the unknown functions depend on
only one independent variable (such as a time variable
t) and the equation involves only ordinary derivatives
d/dt,d2/dt2,d3/dt3, . . . of these functions.

Given the immense scope of the subject the best I can
hope to do is to give a very crude perspective on some
of the main issues and an even cruder idea of the mul-
titude of current research directions. The difficulty one
faces in trying to describe the subject of PDEs starts
with its very definition. Is it a unified area of mathe-
matics, devoted to the study of a clearly defined set
of objects (in the way that algebraic geometry studies
solutions of polynomial equations or topology studies
manifolds, for example), or is it rather a collection of
separate fields, such as general relativity, several com-
plex variables, or hydrodynamics, each one vast in its
own right and centered on a particular, very difficult,
equation or class of equations? I will attempt to argue
below that, even though there are fundamental difficul-
ties in formulating a general theory of PDEs, one can
nevertheless find a remarkable unity between various
branches of mathematics and physics that are centered
on individual PDEs or classes of PDEs. In particular, cer-
tain ideas and methods in PDEs have turned out to be
extraordinarily effective across the boundaries of these
separate fields. It is thus no surprise that the most suc-
cessful book ever written about PDEs did not mention
PDEs in its title: it was Methods of Mathematical Physics
by courant [VI.83] and hilbert [VI.63].

As it is impossible to do full justice to such a huge
subject in such limited space I have been forced to leave
out many topics and relevant details; in particular, I
have said very little about the fundamental issue of
breakdown of solutions, and there is no discussion of
the main open problems in PDEs. A longer and more
detailed version of the article, which includes these
topics, can be found atPUP: is there a

definitive
Companion URL
yet? If not I will
keep a note here
that we need to
add one later.

http://press.princeton.edu/????

1 Basic Definitions and Examples

The simplest example of a PDE is the laplace equa-
tion [I.3 §5.4]

∆u = 0. (1)

Here,∆ is the Laplacian, that is, the differential operator
that transforms functions u = u(x1, x2, x3) defined
from R3 to R according to the rule

∆u(x1, x2, x3)

= ∂2
1u(x1, x2, x3)+∂2

2u(x1, x2, x3)+∂2
3u(x1, x2, x3),

where ∂1, ∂2, ∂3 are standard shorthand for the par-
tial derivatives ∂/∂x1, ∂/∂x2, ∂/∂x3. (We will use this
shorthand throughout the article.) Two other funda-
mental examples (also described in [I.3 §5.4]) are the
heat equation and the wave equation:

−∂tu+ k∆u = 0, (2)

−∂2
t u+ c2∆u = 0. (3)

In each case one is asked to find a function u that
satisfies the corresponding equations. For the Laplace
equation u will depend on x1, x2, and x3, and for the
other two it will depend on t as well. Observe that equa-
tions (2) and (3) again involve the symbol ∆, but also PUP: ‘but also’ has

to stay as a
contrast is being
expressed with the
Laplace equation.
OK?

partial derivatives with respect to the time variable t.
The constants k (which is positive) and c are fixed and
represent the rate of diffusion and the speed of light,
respectively. However, from a mathematical point of
view they are not important, since if u(t,x1, x2, x3) is
a solution of (3), for example, then v(t, x1, x2, x3) =
u(t,x1/c,x2/c,x3/c) satisfies the same equation with
c = 1. Thus, when one is studying the equations one
can set these constants to be 1. Both equations are
called evolution equations because they are supposed
to describe the change of a particular physical object
as the time parameter t varies. Observe that (1) can be
interpreted as a particular case of both (2) and (3): if
u = u(t,x1, x2, x3) is a solution of either (2) or (3) that
is independent of t, then ∂tu = 0, so umust satisfy (1).

In all three examples mentioned above, we tacitly
assume that the solutions we are looking for are suffi-
ciently differentiable for the equations to make sense.
As we shall see later, one of the important develop-
ments in the theory of PDEs was the study of more
refined notions of solutions, such as distributions
[III.18], which require only weak versions of differen-
tiability.

Here are some further examples of important PDEs.
The first is the schrödinger equation [III.85],

i∂tu+ k∆u = 0, (4)
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where u is a function from R × R3 to C. This equation

describes the quantum evolution of a massive particle,

k = �/2m, where � > 0 is Planck’s constant and m is

the mass of the particle. As with the heat equation, one

can set k to equal 1 after a simple change of variables.

Though the equation is formally very similar to the heat

equation, it has very different qualitative behavior. This

illustrates an important general point about PDEs: that

small changes in the form of an equation can lead to

very different properties of solutions.

A further example is the Klein–Gordon equation

−∂2
t u+ c2∆u−

(
mc2

�

)2

u = 0. (5)

This is the relativistic counterpart to the Schrödinger

equation: the parameter m has the physical interpre-

tation of mass and mc2 has the physical interpreta-

tion of rest energy (reflecting Einstein’s famous equa-

tion E =mc2). One can normalize the constants c and

mc2/� so that they both equal 1 by applying a suitable

change of variables to time and space.

Though all five equations mentioned above first

appeared in connection with specific physical phenom-

ena, such as heat transfer for (2) and propagation of

electromagnetic waves for (3), they have, miraculously,

a range of relevance far beyond their original applica-

tions. In particular there is no reason to restrict their

study to three space dimensions: it is very easy to

generalize them to similar equations in n variables

x1, x2, . . . , xn.

All the PDEs listed so far obey a simple but funda-

mental property called the principle of superposition: if

u1 and u2 are two solutions to one of these equations,

then any linear combination a1u1+a2u2 of these solu-

tions is also a solution. In other words, the space of all

solutions is a vector space [I.3 §2.3]. Equations that

obey this property are known as homogeneous linear

equations. If the space of solutions is an affine space

(that is, a translate of a vector space) rather than a vec-

tor space, we say that the PDE is an inhomogeneous

linear equation; a good example is Poisson’s equation:

∆u = f , (6)

where f : R3 → R is a function that is given to us and

u : R3 → R is the unknown function. Equations that are

neither homogeneous linear nor inhomogeneous linear

are known as nonlinear. The following equation, the

minimal-surface equation [III.96 §3.1], is manifestly

nonlinear:

∂1

(
∂1u

(1+ |∂1u|2 + |∂2u|2)1/2
)

+ ∂2

(
∂2u

(1+ |∂1u|2 + |∂yu|2)1/2
)
= 0. (7)

The graphs of solutions u : R2 → R of this equation are
area-minimizing surfaces (like soap films).

Equations (1), (2), (3), (4), (5) are not just linear: they
are all examples of constant-coefficient linear equations.
This means that they can be expressed in the form

P[u] = 0, (8)

where P is a differential operator that involves lin-
ear combinations, with constant real or complex coef-
ficients, of mixed partial derivatives of f . (Such oper-
ators are called constant-coefficient linear differential
operators.) For instance, in the case of the Laplace equa-
tion (1), P is simply the Laplacian ∆, while for the wave
equation (3), P is the d’Alembertian

P = � = −∂2
t + ∂2

1 + ∂2
2 + ∂2

3 .

The characteristic feature of linear constant-coefficient
operators is translation invariance. Roughly speaking,
this means that if you translate a function u, then you
translate Pu in the same way. More precisely, if v(x) is
defined to be u(x−a) (so the value of u at x becomes
the value of v at x +a; note that x and a belong to R3

here), then Pv(x) is equal to Pu(x − a). As a conse-
quence of this basic fact we infer that solutions to the
homogeneous, linear, constant-coefficient equation (8)
are still solutions when translated.

Since symmetries play such a fundamental role in
PDEs we should stop for a moment to make a general
definition. A symmetry of a PDE is any invertible opera-
tion T : u �→ T(u) from functions to functions that pre-
serves the space of solutions, in the sense that u solves
the PDE if and only if T(u) solves the same PDE. A PDE
with this property is then said to be invariant under the
symmetry T . The symmetry T is often a linear opera-
tion, though this does not have to be the case. The com-
position of two symmetries is again a symmetry, as is
the inverse of a symmetry, and so it is natural to view a
collection of symmetries as forming a group [I.3 §2.1]
(which is typically a finite- or infinite-dimensional lie
group [III.50 §1]).

Because the translation group is intimately con-
nected with the fourier transform [III.27] (indeed,
the latter can be viewed as the representation theory
of the former), this symmetry strongly suggests that
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Fourier analysis should be a useful tool to solve
constant-coefficient PDEs, and this is indeed the case.

Our basic constant-coefficient linear operators, the
Laplacian ∆ and the d’Alembertian �, are formally
similar in many respects. The Laplacian is fundamen-
tally associated with the geometry of euclidean space
[I.3 §6.2] R3 and the d’Alembertian is similarly associ-
ated with the geometry of minkowski space [I.3 §6.8]
R1+3. This means that the Laplacian commutes with
all the rigid motions of the Euclidean space R3, while
the d’Alembertian commutes with the corresponding
class of Poincaré transformations of Minkowski space-
time. In the former case this simply means that invari-
ance applies to all transformations of R3 that preserve
the Euclidean distances between points. In the case
of the wave equation, the Euclidean distance has to
be replaced by the spacetime distance between points
(which would be called events in the language of rela-
tivity): if P = (t, x1, x2, x3) and Q(s,y1, y2, y3), then
the distance between them is given by the formula

dM(P,Q)2

= −(t − s)2 + (x1 −y1)2 + (x2 −y2)2 + (x3 −y3)2.

As a consequence of this basic fact we infer that all
solutions to the wave equation (3) are invariant under
translations and lorentz transformations [I.3 §6.8].

Our other evolution equations (2) and (4) are clearly
invariant under rotations of the space variables x =
(x1, x2, x3) ∈ R3, when t is fixed. They are also
Galilean invariant, which means, in the particular case
of the Schrödinger equation (4), that whenever u =
u(t,x) is a solution so is the function uv(t, x) =
ei(x·v)eit|v|2(t, x−vt) for any vector v ∈ R3.

Poisson’s equation (6), on the other hand, is an
example of a constant-coefficient inhomogeneous linear
equation, which means that it takes the form

P[u] = f (9)

for some constant-coefficient linear differential opera-
tor P and known function f . To solve such an equation
requires one to understand the invertibility or other-
wise of the linear operator P: if it is invertible then u
will equal P−1f , and if it is not invertible then either
there will be no solution or there will be infinitely many
solutions. Inhomogeneous equations are closely related
to their homogeneous counterpart; for instance, if u1,
u2 both solve the inhomogeneous equation (9) with
the same inhomogeneous term f , then their differ-
ence u1 − u2 solves the corresponding homogeneous
equation (8).

Linear homogeneous PDEs satisfy the principle of

superposition but they do not have to be translation

invariant. For example, suppose that we modify the

heat equation (2) so that the coefficient k is no longer

constant but rather an arbitrary, positive, smooth func-

tion of (x1, x2, x3). Such an equation models the flow

of heat in a medium in which the rate of diffusion

varies from point to point. The corresponding space

of solutions is not translation invariant (which is not

surprising as the medium in which the heat flows is

not translation invariant). Equations like this are called

linear equations with variable coefficients. It is more

difficult to solve them and describe their qualitative

features than it is for constant-coefficient equations.

(See, for example, stochastic processes [IV.24 §5.2]

for an approach to equations of type (2) with variable

k.) Finally, nonlinear equations such as (7) can often

still be written in the form (8), but the operator P is

now a nonlinear differential operator. For instance, the

relevant operator for (7) is given by the formula

P[u] =
2∑
i=1

∂i
(

1
(1+ |∂u|2)1/2 ∂iu

)
,

where |∂u|2 = (∂1u)2+(∂2u)2. Operators such as these

are clearly not linear. However, because they are ulti-

mately constructed from algebraic operations and par-

tial derivatives, both of which are “local” operations,

we observe the important fact that P is at least still

a “local” operator. More precisely, if u1 and u2 are

two functions that agree on some open set D, then the

expressions P[u1] and P[u2] also agree on this set. In

particular, if P[0] = 0 (as is the case in our example),

then whenever u vanishes on a domain, P[u] will also

vanish on that domain.

So far we have tacitly assumed that our equations

take place in the whole of a space such as R3, R+ × R3,

or R × R3. In reality one is often restricted to a fixed

domain of that space. Thus, for example, equation (1) is

usually studied on a bounded open domain of R3 sub-

ject to a specified boundary condition. Here are some

basic examples of boundary conditions.

Example. The Dirichlet problem for Laplace’s equation

on an open domain of D ⊂ R3 is the problem of finding

a function u that behaves in a prescribed way on the

boundary of D and obeys the Laplace equation inside.

More precisely, one specifies a continuous function

u0 : ∂D → R and looks for a continuous function u,

defined on the closure D̄ of D, that is twice continu-



�

IV.12. Partial Differential Equations 145

ously differentiable inside D and solves the equations

∆u(x) = 0 for all x ∈ D,
u(x) = u0(x) for all x ∈ ∂D.

⎫⎬
⎭ (10)

A basic result in PDEs asserts that if the domain D has
a sufficiently smooth boundary, then there is exactly
one solution to the problem (10) for any prescribed
function u0 on the boundary ∂D.

Example. The Plateau problem is the problem of find-
ing the surface of minimal total area that bounds a
given curve.

When the surface is the graph of a function u on
some suitably smooth domain D, in other words a set
of the form {(x,y,u(x,y)) : (x,y) ∈ D}, and the
bounding curve is the graph of a function u0 over
the boundary ∂D of D, then this problem turns out
to be equivalent to the Dirichlet problem (10), but
with the linear equation (1) replaced by the nonlin-
ear equation (7). For the above equations, it is also
often natural to replace the Dirichlet boundary condi-
tion u(x) = u0(x) on the boundary ∂D with another
boundary condition, such as the Neumann boundary
condition n(x)·∇xu(x) = u1(x) on ∂D, where n(x) is
the outward normal (of unit length) toD at x. Generally
speaking, Dirichlet boundary conditions correspond to
“absorbing” or “fixed” barriers in physics, whereas Neu-
mann boundary conditions correspond to “reflecting”
or “free” barriers.

Natural boundary conditions can also be imposed for
our evolution equations (2)–(4). The simplest one is to
prescribe the values of u when t = 0. We can think of
this more geometrically. We are prescribing the values
of u at each spacetime point of form (0, x,y, z), and
the set of all such points is a hyperplane in R1+3: it is
an example of an initial time surface.

Example. The Cauchy problem (or initial-value prob-
lem, sometimes abbreviated to IVP) for the heat equa-
tion (2) asks for a solution u : R+ × R3 → R on the
spacetime domain R+ × R3 = {(t, x) : t > 0, x ∈ R3},
which equals a prescribed function u0 : R3 → R on the
initial time surface {0} × R3 = ∂(R+ × R3).

In other words, the Cauchy problem asks for a suf-
ficiently smooth function u, defined on the closure
of R+ × R3 and taking values in R, that satisfies the
conditions

−∂tu(t, x)+ k∆u(t,x) = 0
for every (t, x) ∈ R+ × R3,

u(0, x) = u0(x) for every x ∈ R3.

⎫⎪⎪⎬
⎪⎪⎭ (11)

The function u0 is often referred to as the initial con-

ditions, or initial data, or just data, for the problem.

Under suitable smoothness and decay conditions, one

can show that this equation has exactly one solution

u for each choice of data u0. Interestingly, this asser-

tion fails if one replaces the future domain R+ × R3 =
{(t, x) : t > 0, x ∈ R3} by the past domain R− × R3 =
{(t, x) : t < 0, x ∈ R3}.

A similar formulation of the IVP holds for the Schrö-

dinger equation (4), though in this case we can solve

both to the past and to the future. However, in the case

of the wave equation (3) we need to specify not just the

initial position u(0, x) = u0(x) on the initial time sur-

face t = 0, but also an initial velocity ∂tu(0, x) = u1(x),
since equation (3) (unlike (2) or (4)) cannot formally

determine ∂tu in terms of u. One can construct unique

smooth solutions (both to the future and to the past of

the initial hyperplane t = 0) to the IVP for (3) for very

general smooth initial conditions u0, u1.

Many other boundary-value problems are possible.

For instance, when analyzing the evolution of a wave

in a bounded domain D (such as a sound wave), it is

natural to work with the spacetime domain R×D and

prescribe both Cauchy data (on the initial boundary

0 × D) and Dirichlet or Neumann data (on the spatial

boundary R × ∂D). On the other hand, when the phys-

ical problem under consideration is the evolution of a

wave outside a bounded obstacle (for example, an elec-

tromagnetic wave), one considers instead the evolution

in R× (R3 \D) with a boundary condition on D.

The choice of boundary condition and initial condi-

tions for a given PDE is very important. For equations

of physical interest these arise naturally from the con-

text in which they are derived. For example, in the case

of a vibrating string, which is described by solutions of

the one-dimensional wave equation ∂2
t u − ∂2

xu = 0 in

the domain (a, b)×R, the initial conditions u = u0 and

∂tu = u1 at t = t0 amount to specifying the original

position and velocity of the string. The boundary con-

dition u(a) = u(b) = 0 is what tells us that the two

ends of the string are fixed.

So far we have considered just scalar equations.

These are equations where there is only one unknown

function u, which takes values either in the real num-

bers R or in the complex numbers C. However, many

important PDEs involve either multiple unknown scalar

functions or (equivalently) functions that take values

in a multidimensional vector space such as Rm. In

such cases, we say that we have a system of PDEs. An
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important example of a system is that of the cauchy–
riemann equations [I.3 §5.6]:

∂1u2 − ∂2u1 = 0, ∂1u1 + ∂2u2 = 0, (12)

where u1, u2 : R2 → R are real-valued functions on the
plane. It was observed by cauchy [VI.29] that a com-
plex functionw(x+iy) = u1(x,y)+iu2(x,y) is holo-
morphic [I.3 §5.6] if and only if its real and imaginary
parts u1, u2 satisfy the system (12). This system can
still be represented in the form of a constant-coefficient
linear PDE (8), but u is now a vector ( u1

u2 ), and P is
not a scalar differential operator, but rather a matrix
of operators (−∂2 ∂1

∂1 ∂2
).

The system (12) contains two equations and two
unknowns. This is the standard situation for a deter-
mined system. Roughly speaking, a system is called
overdetermined if it contains more equations than
unknowns and underdetermined if it contains fewer
equations than unknowns. Underdetermined equations
typically have infinitely many solutions for any given
set of prescribed data; conversely, overdetermined
equations tend to have no solutions at all, unless some
additional compatibility conditions are imposed on the
prescribed data.

Observe also that the Cauchy–Riemann operator P
has the following remarkable property:

P2[u] = P[P[u]] =
(
∆u1

∆u2

)
.

Thus P can be viewed as a square root of the two-
dimensional Laplacian ∆. One can define a similar type
of square root for the Laplacian in higher dimensions
and, more surprisingly, even for the d’Alembertian
operator � in R1+3. To achieve this we need to have
four 4× 4 complex matrices γ0, γ1, γ3, γ4 that satisfy
the property

γαγβ + γβγα = −2mαβI.

Here, I is the unit 4× 4 matrix andmαβ = 1
2 when α =

β = 1, − 1
2 when α = β �= 1, and 0 otherwise. Using

the γ matrices we can introduce the Dirac operator as
follows. If u = (u1, u2, u3, u4) is a function in R1+3

with values in C4, then we set Du = iγα∂αu. It is easy
to check that, indeed, D2u = �u. The equation

Du = ku (13)

is called the Dirac equation and it is associated with a
free, massive, relativistic particle such as an electron.

One can extend the concept of a PDE further to cover
unknowns that are not, strictly speaking, functions

taking values in a vector space, but are instead sec-
tions of a vector bundle [IV.6 §5], or perhaps a map
from one manifold [I.3 §6.9] to another; such gener-
alized PDEs play an important role in geometry and
modern physics. A fundamental example is given by
the einstein field equations [IV.13]. In the simplest,
“vacuum,” case, they take the form

Ric(g) = 0, (14)

where Ric(g) is the ricci curvature [III.80] tensor of
the spacetime manifold M = (M,g). In this case the
spacetime metric itself is the unknown to be solved for.
One can often reduce such equations locally to more
traditional PDE systems by selecting a suitable choice of
coordinates, but the task of selecting a “good” choice of
coordinates, and working out how different choices are
compatible with each other, is a nontrivial and impor-
tant one. Indeed, the task of selecting a good set of
coordinates in order to solve a PDE can end up being a
significant PDE problem in its own right.

PDEs are ubiquitous throughout mathematics and
science. They provide the basic mathematical frame-
work for some of the most important physical theo-
ries: elasticity, hydrodynamics, electromagnetism, gen-
eral relativity, and nonrelativistic quantum mechanics,
for example. The more modern relativistic quantum
field theories lead, in principle, to equations in an infi-
nite number of unknowns, which lie beyond the scope
of PDEs. Yet, even in that case, the basic equations pre-
serve the locality property of PDEs. Moreover, the start-
ing point of a quantum field theory [IV.17 §2.1.4] is
always a classical field theory, which is described by
systems of PDEs. This is the case, for example, in the
standard model of weak and strong interactions, which
is based on the so-called Yang–Mills–Higgs field theory.
If we also include the ordinary differential equations
of classical mechanics, which can be viewed as one-
dimensional PDEs, we see that essentially all of physics
is described by differential equations. As examples of
PDEs underlying some of our most basic physical theo-
ries we refer to the articles that discuss the euler and
navier–stokes equations [III.23], the heat equa-
tion [III.36], the schrödinger equation [III.85], and
the einstein equations [IV.13].

An important feature of the main PDEs is their appar-
ent universality. Thus, for example, the wave equation,
first introduced by d’alembert [VI.20] to describe the
motion of a vibrating string, was later found to be
connected with the propagation of sound and electro-
magnetic waves. The heat equation, first introduced by
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fourier [VI.25] to describe heat propagation, appears

in many other situations in which dissipative effects

play an important role. The same can be said about the

Laplace equation, the Schrödinger equation, and many

other basic equations.

It is even more surprising that equations that were

originally introduced to describe specific physical phe-

nomena have played a fundamental role in several areas

of mathematics that are considered to be “pure,” such

as complex analysis, differential geometry, topology,

and algebraic geometry. Complex analysis, for exam-

ple, which studies the properties of holomorphic func-

tions, can be regarded as the study of solutions to

the Cauchy–Riemann equations (12) in a domain of R2.

Hodge theory is based on studying the space of solu-

tions to a class of linear systems of PDEs on manifolds

that generalize the Cauchy–Riemann equations: it plays

a fundamental role in topology and algebraic geometry.

the atiyah–singer index theorem [V.2] is formu-

lated in terms of a special class of linear PDEs on mani-

folds, related to the Euclidean version of the Dirac oper-

ator. Important geometric problems can be reduced to

finding solutions to specific PDEs, typically nonlinear.

We have already seen one example: the Plateau prob-

lem of finding surfaces of minimal total area that pass

through a given curve. Another striking example is the

uniformization theorem [V.37] in the theory of sur-

faces, which takes a compact Riemannian surface S (a

two-dimensional surface with a riemannian metric

[I.3 §6.10]) and, by solving the PDE

∆Su+ e2u = K (15)

(which is a nonlinear variant of the Laplace equation

(1)), uniformizes the metric so that it is “equally curved”

at all points on the surface (or, more precisely, has

constant scalar curvature [III.80]) without changing

the conformal class of the metric (i.e., without distort-

ing any of the angles subtended by curves on the sur-

face). This theorem is of fundamental importance to

the theory of such surfaces: in particular, it allows one

to give a topological classification of compact surfaces

in terms of a single number χ(S), which is called the

euler characteristic [I.4 §2.2] of the surface S. The

three-dimensional analogue of the uniformization the-

orem, the geometrization conjecture [IV.7 §2.4] of

Thurston, has recently been established by Perelman,

who did so by solving yet another PDE; in this case, the

equation is the ricci flow [III.80] equation

∂tg = 2 Ric(g), (16)

which can be transformed into a nonlinear version of
the heat equation (2) after a carefully chosen change
of coordinates. The proof of the geometrization con-
jecture is a decisive step toward the total classifica-
tion of all three-dimensional compact manifolds, in
particular establishing the well-known poincaré con-
jecture [IV.7 §2.4]. To overcome the many technical
details in establishing this conjecture, one needs to
make a detailed qualitative analysis of the behavior
of solutions to the Ricci flow equation, a task which
requires just about all the advances made in geometric
PDEs in the last hundred years.

Finally, we note that PDEs arise not only in physics
and geometry but also in many fields of applied sci-
ence. In engineering, for example, one often wants to
control some feature of the solution u to a PDE by care-
fully selecting whatever components of the given data
one can directly influence; consider, for instance, how
a violinist controls the solution to the vibrating string
equation (closely related to (3)) by modulating the force
and motion of a bow on that string in order to produce a
beautiful sound. The mathematical theory dealing with
these types of issues is called control theory.

When dealing with complex physical systems, one
cannot possibly have complete information about the
state of the system at any given time. Instead, one
often makes certain randomness assumptions about
various factors that influence it. This leads to the very
important class of equations called stochastic differen-
tial equations (SDEs), where one or more components of
the equation involve a random variable [III.73 §4] of
some sort. An example of this is in the black–scholes
model [VII.9 §2] in mathematical finance. A general dis-
cussion of SDEs can be found in stochastic processes
[IV.24 §6].

The plan for the rest of this article is as follows. In
section 2 I shall describe some of the basic notions
and achievements of the general theory of PDEs. The
main point I want to make here is that, in contrast
with ordinary differential equations, for which a gen-
eral theory is both possible and useful, partial differen-
tial equations do not lend themselves to a useful gen-
eral theoretical treatment because of some important
obstructions that I shall try to describe. One is thus
forced to discuss special classes of equations such as
elliptic, parabolic, hyperbolic, and dispersive equations.
In section 3 I will try to argue that, despite the impossi-
bility of developing a useful general theory that encom-
passes all, or most, of the important examples, there is
nevertheless an impressive unifying body of concepts
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and methods for dealing with various basic equations,
and this gives PDEs the feel of a well-defined area of
mathematics. In section 4 I develop this further by try-
ing to identify some common features in the derivation
of the main equations that are dealt with in the subject.
An additional source of unity for PDEs is the central
role played by the issues of regularity and breakdown
of solutions, which is discussed only briefly here. In the
final section we shall discuss some of the main goals
that can be identified as driving the subject.

2 General Equations

One might expect, after looking at other areas of math-
ematics such as algebraic geometry or topology, that
there was a very general theory of PDEs that could be
specialized to various specific cases. As I shall argue
below, this point of view is seriously flawed and very
much out of fashion. It does, however, have important
merits, which I hope to illustrate in this section. I shall
avoid giving formal definitions and focus instead on
representative examples. The reader who wants more
precise definitions can consult the online version of
this article.

For simplicity we shall look mostly at determined
systems of PDEs. The simplest distinction, which we
have already made, is between scalar equations, such
as (1)–(5), which consist of only one equation and one
unknown, and systems of equations, such as (12) and
(13). Another simple but important concept is that of
the order of a PDE, which is defined to be the highest
derivative that appears in the equation; this concept is
analogous to that of the degree of a polynomial. For
instance, the five basic equations (1)–(5) listed earlier
are second order in space, although some (such as (2)
or (4)) are only first order in time. Equations (12) and
(13), as well as the Maxwell equations, are first order.1

We have seen that PDEs can be divided into linear and
nonlinear equations, with the linear equations being
divided further into constant-coefficient and variable-
coefficient equations. One can also divide nonlinear
PDEs into several further classes depending on the
“strength” of the nonlinearity. At one end of the scale,
a semilinear equation is one in which all the nonlinear
components of the equation have strictly lower order
than the linear components. For instance, equation (15)
is semilinear, because the nonlinear component eu is

1. There is a simple trick, well-known in ordinary differential equa-
tions, for converting higher-order equations into a lower-order (or
even first-order) system of equations by increasing the number of
unknowns. See the discussion in dynamics [IV.14 §1.2].

of zero order, i.e., it contains no derivatives, whereas
the linear component ∆Su is of second order. These
equations are close enough to being linear that they can
often be effectively viewed as perturbations of a linear
equation. A more strongly nonlinear class of equations
is that of quasilinear equations, in which the highest-
order derivatives of u appear in the equation only in
a linear manner but the coefficients attached to those
derivatives may depend in some nonlinear manner on
lower-order derivatives. For instance, the second-order
equation (7) is quasilinear, because if one uses the
product rule to expand the equation, then it takes the
quasilinear form

F11(∂1u, ∂2u)∂2
1u+ F12(∂1u, ∂2u)∂1∂2u

+ F22(∂1u, ∂2u)∂2
2u = 0

for some explicit algebraic functions F11, F12, F22 of the PUP: another good
spot by the
proofreader here –
thanks!

lower-order derivatives of u. While quasilinear equa-
tions can still sometimes be analyzed by perturbative
techniques, this is generally more difficult to accom-
plish than it is for an analogous semilinear equation.
Finally, we have fully nonlinear equations, which exhibit
no linearity properties whatsoever. A typical example is
the Monge–Ampere equation

det(D2u) = F(x,u,Du),
where u : Rn → R is the unknown function, Du is the
gradient [I.3 §5.3] of u, D2u = (∂i∂ju)1�i,j�n is the
Hessian matrix of u, and F : Rn × R × Rn → R is a
given function. This equation arises in many geometric
contexts, ranging from manifold-embedding problems
to the complex geometry of calabi–yau manifolds
[III.6]. Fully nonlinear equations are among the most
difficult and least well-understood of all PDEs.

Remark. Most of the basic equations of physics, such
as the Einstein equations, are quasilinear. However,
fully nonlinear equations arise in the theory of char-
acteristics of linear PDEs, which we discuss below, and
also in geometry.

2.1 First-Order Scalar Equations

It turns out that first-order scalar PDEs in any num-
ber of dimensions can be reduced to systems of first-
order ODEs. As a simple illustration of this impor-
tant fact consider the following equation in two space
dimensions:

a1(x1, x2)∂1u(x1, x2)+a2(x1, x2)∂2u(x1, x2)

=f(x1, x2), (17)
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where a1, a2, f are given real functions in the variables

x = (x1, x2) ∈ R2. We associate with (17) the first-order

2× 2 system

dx1

ds
(s) = a1(x1(s), x2(s)),

dx2

ds
= a2(x1(s), x2(s)).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (18)

To simplify matters, let us assume that f = 0.

Suppose now that x(s) = (x1(s), x2(s)) is a solution

of (18), and let us consider how u(x1(s), x2(s)) varies

as s varies. By the chain rule we know that

d
ds
u = ∂1u

d
ds

dx1

ds
+ ∂2u

dx2

ds
,

and equations (17) and (18) imply that this equals zero

(by our assumption that f = 0). In other words, any

solution u = u(x1, x2) of (17) with f = 0 is con-

stant along any parametrized curve of the form x(s) =
(x1(s), x2(s)) that satisfies (18).

Thus, in principle, if we know the solutions to (18),

which are called characteristic curves for the equation

(17), then we can find all solutions to (17). I say “in prin-

ciple” because, in general, the nonlinear system (18) is

not so easy to solve. Nevertheless, ODEs are simpler to

deal with, and the fundamental theorem of ODEs, which

we will discuss later in this section, allows us to solve

(18) at least locally and for a small interval in s.
The fact thatu is constant along characteristic curves

allows us to obtain important qualitative information

even when we cannot find explicit solutions. For exam-

ple, suppose that the coefficients a1, a2 are smooth (or

real analytic) and that the initial data is smooth (or real

analytic) everywhere on the set H where it is defined,

except at some pointx0 where it is discontinuous. Then

the solution u remains smooth (or real analytic) at

all points except along the characteristic curve Γ that

starts at x0, or, in other words, along the solution to

(18) that satisfies the initial condition x(0) = x0. That

is, the discontinuity at x0 propagates precisely along

Γ . We see here the simplest manifestation of an impor-

tant principle, which we shall explain in more detail

later: singularities of solutions to PDEs propagate along

characteristics (or, more generally, hypersurfaces).

One can generalize equation (17) to allow the coeffi-

cients a1, a2, and f to depend not only on x = (x1, x2)
but also on u:

a1(x,u(x))∂1u(x)+a2(x,u(x))∂2u(x) = f(x,u(x)).
(19)

The associated characteristic system becomes

dx1

ds
(s) = a1(x(s),u(s, x(s))),

dx2

ds
(s) = a2(x(s),u(s, x(s))).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (20)

As a special example of (19) consider the scalar
equation in two space dimensions,

∂tu+u∂xu = 0, u(0, x) = u0(x), (21)

which is called the Burger equation. Here we have set
a1(x,u(x)) = 1 and a2(x,u(x)) = u(x). With this
choice of a1, a2, we can take x1(s) to be s in (20). Then,
renaming x2(s) as x(s), we derive the characteristic
equation in the form

dx
ds
(s) = u(s,x(s)). (22)

For any given solution u of (21) and any characteristic
curve (s, x(s)) we have (d/ds)u(s, x(s)) = 0. Thus, in
principle, knowing the solutions to (22) should allow us
to determine the solutions to (21). However, this argu-
ment seems worryingly circular, since u itself appears
in (22).

To see how this difficulty can be circumvented, con-
sider the IVP for (21): that is, look for solutions that
satisfy u(0, x) = u0(x). Consider an associated char-
acteristic curve x(s) such that, initially, x(0) = x0.
Then, sinceu is constant along the curve, we must have
u(s,x(s)) = u0(x0). Hence, going back to (22), we infer
that dx/ds = u0(x0) and thus x(s) = x0+su0(x0). We
thus deduce that

u(s,x0 + su0(x0)) = u0(x0), (23)

which implicitly gives us the form of the solution u.
We see once more, from (23), that if the initial data is
smooth (or real analytic) everywhere except at a point
x0 of the line t = 0, then the corresponding solution
is also smooth (or real analytic) everywhere in a small
neighborhood V of x0, except along the characteristic
curve that begins at x0. The smallness of V is neces-
sary here because new singularities can form at large
scales. Indeed, u has to be constant along the lines
x+ su0(x), whose slopes depend on u0(x). At a point
where these lines cross we would obtain different val-
ues ofu, which is impossible unlessu becomes singular
by this point. This blow-up phenomenon occurs for any
smooth, nonconstant initial data u0.

Remark. There is an important difference between the
linear equation (17) and the quasilinear equation (19).
The characteristics of the first depend only on the coef-
ficients a1(x), a2(x), while the characteristics of the
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second depend explicitly on a particular solution u of
the equation. In both cases, singularities can only prop-
agate along the characteristic curves of the equation.
For nonlinear equations, however, new singularities can
form at large distance scales, whatever the smoothness
of the initial data.

The above procedure extends to fully nonlinear
scalar equations in Rd such as the Hamilton–Jacobi
equation

∂tu+H(x,Du) = 0, u(0, x) = u0(x), (24)

whereu : R×Rn → R is the unknown function, Du is the
gradient of u, and the hamiltonian [III.35] H : Rd ×
Rd → R and the initial data u0 : Rd → R are given. For
instance, the eikonal equation ∂tu = |Du| is a special
instance of a Hamilton–Jacobi equation. We associate
with (24) the ODE system

dxi

dt
= ∂
∂pi
H(x(t), p(t)),

dpi
dt
= − ∂

∂xi
H(x(t), p(t)),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (25)

where i runs from 1 to d. The equations (25) are known
as a Hamiltonian system of ODEs. The relationship
between this system and the corresponding Hamilton–
Jacobi equation is a little more involved than in the
cases discussed above. Briefly, we can construct a solu-
tion u to (24) based only on the knowledge of the solu-
tions (x(t), p(t)) to (25), which are called the bichar-
acteristic curves of the nonlinear PDE. Once again,
singularities can only propagate along bicharacteristic
curves (or hypersurfaces). As in the case of the Burger
equation, singularities will occur for more or less any
smooth data. Thus, a classical, continuously differen-
tiable solution can only be constructed locally in time.
Both Hamilton–Jacobi equations and Hamiltonian sys-
tems play a fundamental role in classical mechanics as
well as in the theory of the propagation of singularities
in linear PDEs. The deep connection between Hamil-
tonian systems and first-order Hamilton–Jacobi equa-
tions played an important role in the introduction of
the Schrödinger equation into quantum mechanics.

2.2 The Initial-Value Problem for ODEs

Before we can continue with our general presentation
of PDEs we need first to discuss, for the sake of com-
parison, the IVP for ODEs. Let us start with a first-order
ODE

∂xu(x) = f(x,u(x)) (26)

subject to the initial condition

u(x0) = u0. (27)

Let us also assume for simplicity that (26) is a scalar
equation and that f is a well-behaved function of x and
u, such as f(x,u) = u3−u+1+sinx. From the initial
data u0 we can determine ∂xu(x0) by substituting x0

into (26). If we now differentiate the equation (26) with
respect to x and apply the chain rule, we derive the
equation

∂2
xu(x) = ∂xf(x,u(x))+ ∂uf(x,u(x))∂xu(x),

which for the example just defined works out to be
cosx + 3u2(x)∂xu(x)− ∂xu(x). Hence,

∂2
xu(x0) = ∂xf(x0, u0)+ ∂uf(x0, u0)∂xu0,

and since ∂xu(x0) has already been determined we
find that ∂2

xu(x0) can also be explicitly calculated
from the initial data u0. This calculation also involves
the function f and its first partial derivatives. Taking
higher derivatives of the equation (26) we can recur-
sively determine ∂3

xu(x0), as well as all other higher
derivatives of u at x0. Therefore, one can in principle
determine u(x) with the help of the Taylor series

u(x) =
∑
k�0

1
k!
∂kxu(x0)(x − x0)k

= u(x0)+ ∂xu(x0)(x − x0)

+ 1
2!
∂2
x(x0)(x − x0)2 + · · · .

We say “in principle” because there is no guarantee
that the series converges. There is, however, a very
important theorem, called the Cauchy–Kowalewski the-
orem, which asserts that if the function f is real ana-
lytic, as is certainly the case for our function f(x,u) =
u3 − u + 1 + sinx, then there will be some neighbor-
hood J of x0 where the Taylor series converges to a
real-analytic solution u of the equation. It is then easy
to show that the solution thus obtained is the unique
solution to (26) that satisfies the initial condition (27).
To summarize: if f is a well-behaved function, then the
initial-value problem for ODEs has a solution, at least
in some time interval, and that solution is unique.

The same result does not always hold if we consider
a more general equation of the form

a(x,u(x))∂xu = f(x,u(x)), u(x0) = u0. (28)

Indeed, the recursive argument outlined above breaks
down in the case of the scalar equation (x −x0)∂xu =
f(x,u) for the simple reason that we cannot even
determine ∂xu(x0) from the initial condition u(x0) =



�

IV.12. Partial Differential Equations 151

u0. A similar problem occurs for the equation (u −
u0)∂xu = f(x,u). An obvious condition that allows
us to extend our previous recursive argument to (28)
is to insist that a(x0, u0) ≠ 0. Otherwise, we say that
the IVP (28) is characteristic. If both a and f are also
real analytic, the Cauchy–Kowalewski theorem applies
again and we obtain a unique, real-analytic solution of
(28) in a small neighborhood of x0. In the case of an
N ×N system,

A(x,u(x))∂xu = F(x,u(x)), u(x0) = u0,

A = A(x,u) is an N ×N matrix, and the noncharacter-
istic condition becomes

detA(x0, u0) ≠ 0. (29)

It turns out, and this is extremely important in the
development of the theory of ODEs, that, while the
nondegeneracy condition (29) is essential to obtain a
unique solution of the equation, the analyticity con-
dition is not at all important: it can be replaced by a
simple local Lipschitz condition for A and F . It suffices
to assume, for example, that their first partial deriva-
tives exist and that they are locally bounded. This is
always the case if the first derivatives of A and F are
continuous.

Theorem (the fundamental theorem of ODEs). If the
matrix A(x0, u0) is invertible and if A and F are con-
tinuous and have locally bounded first derivatives, then
there is some time interval J ⊂ R that containsx0, and a
unique solution2 u defined on J that satisfies the initial
conditions u(x0) = u0.

The proof of the theorem is based on the Picard iter-
ation method. The idea is to construct a sequence of
approximate solutions u(n)(x) that converge to the
desired solution. Without loss of generality we can
assume A to be the identity matrix.3 One starts by
setting u(0)(x) = u0 and then defines, recursively,

∂xu(n)(x) = F(x,u(n−1)(x)), u(n−1)(x0) = u0.

Observe that at every stage all we need to solve is a very
simple linear problem, which makes Picard iteration
easy to implement numerically. As we shall see below,
variations of this method are also used for solving
nonlinear PDEs.

Remark. In general, the local existence theorem is
sharp, in the sense that its conditions cannot be

2. Since we are not assuming that A and F are analytic, the solution
may not be analytic, but it does have continuous first derivatives.

3. Since A is invertible we can multiply both sides of the equation
by the inverse matrix A−1.

relaxed. We have seen that the invertibility condition
for A(x0, u0) is necessary. Also, it is not always pos-
sible to extend the interval J in which the solution
exists to the whole of the real line. As an example,
consider the nonlinear equation ∂xu = u2 with ini-
tial data u = u0 at x = 0, for which the solution
u = u0/(1 − xu0) becomes infinite in finite time: in
the terminology of PDEs, it blows up.

In view of the fundamental theorem and the example
mentioned above, one can define the main goals of the
mathematical theory of ODEs as follows.

(i) Find criteria for global existence. In the case of
blow-up describe the limiting behavior.

(ii) In the case of global existence describe the asymp-
totic behavior of solutions and families of solu-
tions.

Though it is impossible to develop a general theory
that achieves both goals (in practice one is forced to
restrict oneself to special classes of equations moti-
vated by applications), the general local existence and
uniqueness theorem mentioned above provides a pow-
erful unifying theme. It would be very helpful if a
similar situation were to hold for general PDEs.

2.3 The Initial-Value Problem for PDEs

In the one-dimensional situation one specifies initial
conditions at a point. The natural higher-dimensional
analogue is to specify them on hypersurfacesH ⊂ Rd,
that is, (d− 1)-dimensional subsets (or, to be more pre-
cise, submanifolds). For a general equation of order k,
that is, one that involves k derivatives, we need to spec-
ify the values of u and of its first k− 1 derivatives in
the direction normal to H . For example, in the case
of the second-order wave equation (3) and the initial
hyperplane t = 0 we need to specify initial data for u
and ∂tu.

If we wish to use initial data of this kind to start
obtaining a solution, it is important that the data
should not be degenerate. (We have already seen this
in the case of ODEs.) For this reason, we make the
following general definition.

Definition. Suppose that we have a kth-order quasi-
linear system of equations, and the initial data comes
in the form of the first k− 1 normal derivatives that a
solution u must satisfy on a hypersurface H . We say
that the system is noncharacteristic at a point x0 ofH
if we can use the initial data to determine formally all
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the other higher partial derivatives of u at x0, in terms
of the data.

As a very rough picture to have in mind, it may be
helpful to imagine an infinitesimally small neighbor-
hood of x0. If the hypersurface H is smooth, then its
intersection with this neighborhood will be a piece of
a (d− 1)-dimensional affine subspace. The values of
u and the first k− 1 normal derivatives on this inter-
section are given by the initial data, and the problem
of determining the other partial derivatives is a prob-
lem in linear algebra (because everything is infinitesi-
mally small). To say that the system is noncharacteris-
tic at x0 is to say that this linear algebra problem can
be uniquely solved, which is the case provided that a
certain matrix is invertible. This is the nondegeneracy
condition referred to earlier.

To illustrate the idea, let us look at first-order equa-
tions in two space dimensions. In this caseH is a curve
Γ , and since k − 1 = 0 we must specify the restriction
of u to Γ ⊂ R2 but we do not have to worry about any
derivatives. Thus, we are trying to solve the system

a1(x,u(x))∂1u(x)+ a2(x,u(x))∂2u(x)

= f(x,u(x)), u|Γ = u0, (30)

where a1, a2, and f are real-valued functions of x
(which belongs to R2) and u. Assume that in a small
neighborhood of a point p the curve Γ is described
parametrically as the set of points x = (x1(s), x2(s)).
We denote by n(s) = (n1(s),n2(s)) a unit normal to Γ .

As in the case of ODEs, which we looked at earlier, we
would like to find conditions on Γ such that for a given
point in Γ we can determine all derivatives of u from
the data u0, the derivatives of u along Γ , and the equa-
tion (30). Out of all possible curves Γ we distinguish
in particular the characteristic ones we have already
encountered above (see (20)):

dx1

ds
= a1(x(s),u(x(s))),

dx2

ds
= a2(x(s),u(x(s))),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ x(0) = p.

One can prove the following fact:

Along a characteristic curve, the equation (30) is degen-
erate. That is, we cannot determine the first-order
derivatives of u uniquely in terms of the data u0.

In terms of the rough picture above, at each point
there is a direction such that if the hypersurface, which
in this case is a line, is along that direction, then the

resulting matrix is singular. If you follow this direction,
then you travel along a characteristic curve.

Conversely, if the nondegeneracy condition

a1(p,u(p))n1(p)+ a2(p,u(p))n2(p) ≠ 0 (31)

is satisfied at some point p = x(0) ∈ Γ , then we can
determine all higher derivatives of u at x0 uniquely in
terms of the data u0 and its derivatives along Γ . If the
curve Γ is given by the equation ψ(x1, x2) = 0, with
nonvanishing gradient Dψ(p) ≠ 0, then the condition
(31) takes the form

a1(p,u(p))∂1ψ(p)+ a2(p,u(p))∂2ψ(p) ≠ 0.

With a little more work one can extend the above
discussion to higher-order equations in higher dimen-
sions, and even to systems of equations. Particularly
important is the case of a second-order scalar equation
in Rd,

d∑
i,j=1

aij(x)∂i∂ju = f(x,u(x)), (32)

together with a hypersurface H in Rd defined by the
equation ψ(x) = 0, where ψ is a function with non-
vanishing gradient Dψ. Define the unit normal at a
point x0 ∈ H to be n = Dψ/|Dψ|, or, in compo-
nent form, ni = ∂iψ/|∂ψ|. As initial conditions for
(32) we prescribe the values of u and its normal deriva-
tive n[u](x) = n1(x)∂1u(x) + n2(x)∂2u(x) + · · · +
nd(x)∂du(x) onH :

u(x) = u0(x), n[u](x) = u1(x), x ∈H .
It can be shown that H is noncharacteristic (with
respect to equation (32)) at a point p (that is, we can
determine all derivatives ofu at p in terms of the initial
data u0, u1) if and only if

d∑
i,j=1

aij(p)∂iψ(p)∂jψ(p) ≠ 0. (33)

On the other hand,H is a characteristic hypersurface
for (32) if

d∑
i,j=1

aij(x)∂iψ(x)∂jψ(x) = 0 (34)

for every x inH .

Example. If the coefficients a of (32) satisfy the condi-
tion

d∑
i,j=1

aij(x)ξiξj > 0, ∀ξ ∈ Rd, ∀x ∈ Rd, (35)

then clearly, by (34), no surface in Rd can be charac-
teristic. This is the case, in particular, for the Laplace
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equation ∆u = f . Consider also the minimal-surface
equation (7) written in the form∑

i,j=1,2
hij(∂u)∂i∂ju = 0, (36)

with h11(∂u) = 1 + (∂2u)2, h22(∂u) = 1 + (∂1u)2,
h12(∂u) = h21(∂u) = −∂1u∂2u. It is easy to check
that the quadratic form associated with the symmetric
matrix hij(∂u) is positive definite for every ∂u. Indeed,

hij(∂u)ξiξj
= (1+ |∂u|2)−1/2(|ξ|2 − (1+ |∂u|2)−1(ξ · ∂u)2) > 0.

Thus, even though (36) is not linear, we see that all
surfaces in R2 are noncharacteristic.

Example. Consider the wave equation �u = f in R1+d.
All hypersurfaces of the form ψ(t,x) = 0 for which

(∂tψ)2 =
d∑
i=1

(∂iψ)2 (37)

are characteristic. This is the famous eikonal equation,
which plays a fundamental role in the study of wave
propagation. Observe that it splits into two Hamilton–
Jacobi equations (see (24)):

∂tψ = ±
( d∑
i=1

(∂iψ)2
)1/2

. (38)

The bicharacteristic curves of the associated Hamiltoni-
ans are called bicharacteristic curves of the wave equa-
tion. As particular solutions of (37) we find ψ+(t, x) =
(t − t0) + |x − x0| and ψ−(t, x) = (t − t0) − |x − x0|,
whose level surfacesψ± = 0 correspond to forward and
backward light cones with their vertex at p = (t0, x0).
These represent, physically, the union of all light rays
emanating from a point source at p. The light rays are
given by the equation (t− t0)ω = (x−x0), forω ∈ R3

with |ω| = 1, and are precisely the (t, x) components
of the bicharacteristic curves of the Hamilton–Jacobi
equations (38). More generally, the characteristics of
the linear wave equation

a00(t, x)∂2
t u−

∑
i,j
aij(t, x)∂i∂ju = 0, (39)

with a00 > 0 and aij satisfying (35), are given by the
Hamilton–Jacobi equations:

−a00(t, x)(∂tψ)2 + aij(x)∂iψ∂jψ = 0

or, equivalently,

∂tψ = ±
(
(a00)−1

∑
i,j
aij(x)∂iψ∂jψ

)1/2
. (40)

The bicharacteristics of the corresponding Hamiltonian
systems are called bicharacteristic curves of (39).

Remark. In the case of the first-order scalar equations
(17) we have seen how knowledge of characteristics
can be used to find, implicitly, general solutions. We
have also seen that singularities propagate only along
characteristics. In the case of second-order equations
the characteristics are not sufficient to solve the equa-
tions, but they continue to provide important infor-
mation, such as how the singularities propagate. For
example, in the case of the wave equation �u = 0 with
smooth initial data u0, u1 everywhere except at a point
p = (t0, x0), the solution u has singularities present at
all points of the light cone −(t − t0)2 + |x − x0|2 = 0
with vertex at p. A more refined version of this fact
shows that the singularities propagate along bicharac-
teristics. The general principle here is that singularities
propagate along characteristic hypersurfaces of a PDE.
Since this is a very important principle, it pays to give
it a more precise formulation that extends to general
boundary conditions, such as the Dirichlet condition
for (1).

Propagation of singularities. If the boundary condi-
tions or the coefficients of a PDE are singular at some
point p, and otherwise smooth (or real analytic) every-
where in some small neighborhood V of p, then a solu-
tion of the equation cannot be singular in V except
along a characteristic hypersurface passing through p.
In particular, if there are no such characteristic hyper-
surfaces, then any solution of the equation must be
smooth (or real analytic) at every point of V other
than p.

Remarks. (i) The heuristic principle mentioned above
is invalid, in general, at large scales. Indeed, as we have
shown in the case of the Burger equation, solutions to
nonlinear evolution equations can develop new singu-
larities whatever the smoothness of the initial condi-
tions. Global versions of the principle can be formu-
lated for linear equations based on the bicharacteristics
of the equation. See (iii) below.

(ii) According to the principle, it follows that any solu-
tion of the equation ∆u = f , satisfying the bound-
ary condition u|∂D = u0 with a boundary value u0 that
merely has to be continuous, is automatically smooth
everywhere in the interior of D provided that f itself is
smooth there. Moreover, the solution is real analytic if
f is real analytic.

(iii) More precise versions of this principle, which plays
a fundamental role in the general theory, can be given
for linear equations. In the case of the general wave
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equation (39), for example, one can show that singular-
ities propagate along bicharacteristics. These are the
bicharacteristic curves associated with the Hamilton–
Jacobi equation (40).

2.4 The Cauchy–Kowalewski Theorem

In the case of ODEs we have seen that a noncharacteris-
tic IVP always admits solutions locally (that is, in some
time interval about a given point). Is there a higher-
dimensional analogue of this fact? The answer is yes,
provided that we restrict ourselves to the real-analytic
situation, which is covered by an appropriate exten-
sion of the Cauchy–Kowalewski theorem. More pre-
cisely, one can consider general quasilinear equations,
or systems, with real-analytic coefficients, real-analytic
hypersurfaces H , and appropriate real-analytic initial
data onH .

Theorem (Cauchy–Kowalewski (CK)). If all the real-
analyticity conditions made above are satisfied and if
the initial hypersurface H is noncharacteristic at x0,4

then in some neighborhood of x0 there is a unique
real-analytic solution u(x) that satisfies the system of
equations and the corresponding initial conditions.

In the special case of linear equations, an important
companion theorem, due to Holmgren, asserts that the
analytic solution given by the CK theorem is unique in
the class of all smooth solutions and smooth nonchar-
acteristic hypersurfaces H . The CK theorem shows
that, given the noncharacteristic condition and the ana-
lyticity assumptions, the following straightforward way
of finding solutions works: look for a formal expansion
of the kind u(x) =∑αCα(x−x0)α by determining the
constants Cα recursively from simple algebraic formu-
las arising from the equation and initial conditions on
H . More precisely, the theorem ensures that the naive
expansion obtained in this way converges in a small
neighborhood of x0 ∈H .

It turns out, however, that the analyticity conditions
required by the CK theorem are much too restrictive,
and therefore the apparent generality of the result
is misleading. A first limitation becomes immediately
apparent when we consider the wave equation �u = 0.
A fundamental feature of this equation is finite speed of
propagation, which means, roughly speaking, that if at
some time t a solution u is zero outside some bounded
set, then the same must be true at all later times.

4. For second-order equations of the kind of (32), this is precisely
condition (33).

However, analytic functions cannot have this property
unless they are identically zero (see some fundamen-
tal mathematical definitions [I.3 §5.6]). Therefore,
it is impossible to discuss the wave equation properly
within the class of real-analytic solutions. A related
problem, first pointed out by hadamard [VI.65], con-
cerns the impossibility of solving the Cauchy problem,
in many important cases, for arbitrary smooth nonana-
lytic data. Consider, for example, the Laplace equation
∆u = 0 in Rd. As we have established above, any hyper-
surfaceH is noncharacteristic, yet the Cauchy problem
u|H = u0, n[u]|H = u1, for arbitrary smooth initial
conditions u0, u1, may admit no local solutions in a
neighborhood of any point of H . Indeed, take H to
be the hyperplane x1 = 0 and assume that the Cauchy
problem can be solved for given nonanalytic smooth
data in a domain that includes a closed ball B centered
at the origin. The corresponding solution can also be
interpreted as the solution to the Dirichlet problem in
B, with the values of u prescribed on the boundary ∂B.
But this, according to our heuristic principle (which can
easily be made rigorous in this case), must be real ana-
lytic everywhere in the interior of B, contradicting our
assumptions about the initial data.

On the other hand, the Cauchy problem for the wave
equation �u = 0 in Rd+1 has a unique solution for
any smooth initial data u0, u1 that is prescribed on
a spacelike hypersurface. This means a hypersurface
ψ(t,x) = 0 such that at every point p = (t0, x0) that
belongs to it the normal vector at p lies inside the
light cone (either in the future direction or in the past
direction). To say this analytically,

|∂tψ(p)| >
( d∑
i=1

|∂iψ(p)|2
)1/2

. (41)

This condition is clearly satisfied by a hyperplane of the
form t = t0, but any other hypersurface close to this
is also spacelike. By contrast, the IVP is ill-posed for a
timelike hypersurface, i.e., a hypersurface for which

|∂tψ(p)| <
( d∑
i=1

|∂iψ(p)|2
)1/2

.

That is, we cannot, for general non-real-analytic initial
conditions, find a solution of the IVP. An example of a
timelike hypersurface is given by the hyperplane x1 =
0. Let us explain the term “ill-posed” more precisely.

Definition. A given problem for a PDE is said to be
well-posed if both existence and uniqueness of solu-
tions can be established for arbitrary data that belongs
to a specified large space of functions, which includes
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the class of smooth functions.5 Moreover, the solutions
must depend continuously on the data. A problem that
is not well-posed is called ill-posed.

The continuous dependence on the data is very im-
portant. Indeed, the IVP would be of little use if very
small changes in the initial conditions resulted in very
large changes in the corresponding solutions.

2.5 Standard Classification

The different behavior of the Laplace and wave equa-
tions mentioned above illustrates the fundamental dif-
ference between ODEs and PDEs and the illusory gener-
ality of the CK theorem. Given that these two equations
are so important in geometric and physical applica-
tions, it is of great interest to find the broadest classes
of equations with which they share their main proper-
ties. The equations modeled by the Laplace equation
are called elliptic, while those modeled by the wave
equation are called hyperbolic. The other two impor-
tant models are the heat equation (see (2)) and the
Schrödinger equation (see (4)). The general classes of
equations that they resemble are called parabolic and
dispersive, respectively.

Elliptic equations are the most robust and the eas-
iest to characterize: they are the ones that admit no
characteristic hypersurfaces.

Definition. A linear, or quasilinear, N ×N system with
no characteristic hypersurfaces is called elliptic.

Equations of type (32) whose coefficients aij satisfy
condition (35) are clearly elliptic. The minimal-surface
equation (7) is also elliptic. It is also easy to verify
that the Cauchy–Riemann system (12) is elliptic. As was
pointed out by Hadamard, the IVP is not well-posed for
elliptic equations. The natural way of parametrizing the
set of solutions to an elliptic PDE is to prescribe condi-
tions for u, and some of its derivatives (the number of
derivatives will be roughly half the order of the equa-
tion) at the boundary of a domain D ⊂ Rn. These are
called boundary-value problems (BVPs). A typical exam-
ple is the Dirichlet boundary condition u|∂D = u0 for
the Laplace equation ∆u = 0 in a domain D ⊂ Rn.
One can show that, if the domain D satisfies certain
mild regularity assumptions and the boundary value
u0 is continuous, then this problem admits a unique
solution that depends continuously on u0. We say that

5. Here we are necessarily vague. A precise space can be specified
in each given case.

the Dirichlet problem for the Laplace equation is well-
posed. Another well-posed problem for the Laplace
equation is given by the Neumann boundary condition
n[u]|∂D = f , where n is the exterior unit normal to the
boundary. This problem is well-posed for all continu-
ous functions f defined on ∂D with zero mean aver-
age. A typical problem of general theory is to classify
all well-posed BVPs for a given elliptic system.

As a consequence of our propagation-of-singularities
principle, we deduce, heuristically at least, the follow-
ing general fact:

Classical solutions of elliptic equations with smooth
(or real-analytic) coefficients in a regular domain D are
smooth (or real analytic) in the interior of D, whatever
the degree of smoothness of the boundary conditions.6

Hyperbolic equations are, essentially, those for which
the IVP is well-posed. In that sense, they provide the
natural class of equations for which one can prove
a result similar to the local existence theorem for
ODEs. More precisely, for each sufficiently regular set
of initial conditions there is a unique solution. We can
thus think of the Cauchy problem as a natural way of
parametrizing the set of all solutions to the equations.

The definition of hyperbolicity depends, however,
on the particular hypersurface we are considering as
the initial hypersurface. Thus, in the case of the wave
equation �u = 0, the standard IVP

u(0, x) = u0(x), ∂tu(0, x) = u1

is well-posed. This means that for any smooth initial
data u0, u1 we can find a unique solution of the equa-
tion, which depends continuously onu0,u1. As we have
already mentioned, the IVP for �u = 0 remains well-
posed if we replace the initial hypersurface t = 0 by any
spacelike hypersurface ψ(t,x) = 0 (see (41)). However,
it fails to be well-posed for timelike hypersurfaces,
for which there may be no solution with prescribed,
nonanalytic, Cauchy data.

It is more difficult to give algebraic conditions for
hyperbolicity. Roughly speaking, hyperbolic equations
are at the opposite end of the spectrum from ellip-
tic equations: whereas elliptic equations have no char-
acteristic hypersurfaces, hyperbolic equations have as
many as possible passing through any given point. One
of the most useful classes of hyperbolic equations,

6. Provided that the boundary condition under consideration is
well-posed. Moreover, this heuristic principle holds, in general, only
for classical solutions of a nonlinear equation. There are in fact exam-
ples of well-posed BVPs, for certain nonlinear elliptic systems, with no
classical solutions.
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which includes most of the important known examples,
consists of equations of the form

A0(t, x,u)∂tu+
d∑
i=1

Ai(t, x,u)∂iu = F(t, x,u),
u|H = u0, (42)

where all the coefficients A0, A1, . . . , Ad are symmetric
N ×N matrices and H is given by ψ(t,x) = 0. Such a
system is well-posed provided that the matrix

A0(t, x,u)∂tψ(t, x)+
d∑
i=1

Ai(t, x,u)∂iψ(t, x) (43)

is positive definite. A system (42) that satisfies these
conditions is called symmetric hyperbolic. In the par-
ticular case when ψ(t,x) = t, the condition (43)
becomes

(A0ξ, ξ) � c|ξ|2 ∀ξ ∈ RN.

The following is a fundamental result in the theory
of general hyperbolic equations. It is called the local
existence and uniqueness of solutions for symmetric
hyperbolic systems.

Theorem (fundamental theorem for hyperbolic equa-
tions). The IVP (42) is locally well-posed for symmet-
ric hyperbolic systems with sufficiently smooth A, F ,
andH and sufficiently smooth initial conditions u0. In
other words, if the appropriate smoothness conditions
are satisfied, then for any point p ∈H there is a small
neighborhood D of p7 inside which there is a unique,
continuously differentiable solution u.

Remarks. (i) The local character of the theorem is
essential, just as it was for the general propagation-
of-singularities principle discussed earlier, since the
result cannot be globalized in the particular case of
the Burger equation (21), which fits trivially into the
framework of general nonlinear symmetric hyperbolic
systems. A precise version of the theorem above gives
a lower bound on how large D can be.

(ii) The proof of the theorem is based on a variation of
the Picard iteration method that we encountered earlier
for ODEs. One starts by taking u(0) = u0 in a neighbor-
hood ofH . Then one defines functionsu(n) recursively
as follows:

A0(t, x,u(n−1))∂tu(n) +
d∑
i=1

Ai(t, x,u(n−1))∂iu(n)

= F(t, x,u(n−1)), u(n)|H = u0.

7. By “point” we mean that p is a spacetime point (t, x) ∈ R1+d.
Similarly, D is a set of spacetime points.

Notice that at each stage of the iteration we have to
solve a linear equation. Linearization is an extremely
important tool in studying nonlinear PDEs. We can
almost never understand their behavior without lin-
earizing them around important special solutions.
Thus, almost invariably, hard problems in nonlinear
PDEs reduce to understanding specific problems in
linear PDEs.

(iii) To implement the Picard iteration method we need
to get precise estimates concerning u(n) in terms of
u(n−1). This step requires energy type a priori esti-
mates, which we will discuss in section 3.3.

Another important property of hyperbolic equations
(which is not shared by elliptic, parabolic, or disper-
sive equations) is finite speed of propagation, which
was mentioned earlier in the case of the wave equa-
tion (3). Consider this simple case again. The IVP can
be solved explicitly by the so-called Kirchhoff formula.
The formula allows us to conclude that if the initial
data at t = 0 is zero outside a ball Ba(x0) of radius
a > 0 centered at x0 ∈ R3, then at time t > 0 the
solution u is zero outside the ball Ba+t(x0). In gen-
eral, finite speed of propagation can best be formulated
in terms of domains of dependence and influence of
hyperbolic equations (see the online version for general
definitions).

Hyperbolic PDEs play a fundamental role in physics,
as they are intimately tied to the relativistic nature
of the modern theory of fields. Equations (3), (5), (13)
are the simplest examples of linear field theories, and
they are manifestly hyperbolic. Other basic examples
appear in gauge field theories such as maxwell’s equa-
tions [IV.13 §1.1] ∂αFαβ = 0 or the Yang–Mills equa-
tions DαFαβ = 0. Finally, the Einstein equations (14) are
also hyperbolic.8 Other important examples of hyper-
bolic equations arise in the physics of elasticity and
inviscid fluids. As examples of the latter, the Burger
equation (21) and the compressible Euler equation are
hyperbolic.

Elliptic equations, on the other hand, appear natu-
rally in describing time-independent, or more generally
steady-state, solutions of hyperbolic equations. Elliptic
equations can also be derived, directly, by well-defined
variational principles [III.96].

Finally, a few words about parabolic equations and
Schrödinger-type equations, which are intermediate

8. For gauge theories and Einstein equations the notion of hyper-
bolicity depends on the choice of gauge or coordinates. In the case
of the Yang–Mills equations, for example, one obtains a well-defined
system of nonlinear wave equations only in the Lorentz gauge.
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between the elliptic and hyperbolic ones. Large classes
of useful equations of these types are given by

∂tu− Lu = f (44)

and

i∂tu+ Lu = f , (45)

respectively, where L is an elliptic second-order oper-
ator. One looks for solutions u = u(t,x), defined for
t � t0, with the prescribed initial condition

u(t0, x) = u0(x) (46)

on the hypersurface t = t0. Strictly speaking, this
hypersurface is characteristic, since the order of the
equation is 2 and we cannot determine ∂2

t u at t = t0
directly from the equation. Yet this is not a serious
problem; we can still determine ∂2

t u formally by differ-
entiating the equation with respect to ∂t . Thus, the IVP
(44) (or (45)) with initial condition (46) is well-posed, but
not quite in the same sense as for hyperbolic equations.
For example, the heat equation−∂tu+∆u is well-posed
for positive t but ill-posed for negative t. The heat equa-
tion may also not have unique solutions for the IVP
unless we make assumptions about how fast the initial
data is allowed to grow at infinity. One can also show
that the characteristic hypersurfaces of the equation
(44) are all of the form, and therefore parabolic equa-
tions are quite similar to elliptic equations. For exam-
ple, one can show that if the coefficients aij and f are
smooth (or real analytic), then the solution u must be
smooth (or real analytic in x) for t > t0 even if the ini-
tial data u0 is not smooth, which is consistent with our
propagation-of-singularities principle. The heat equa-
tion smooths out initial conditions. It is for this reason
that the heat equation is useful in many applications. In
physics, parabolic PDEs arise whenever diffusion or dis-
sipation phenomena are important, while in geometry
and calculus of variations, parabolic PDEs often arise
as gradient flows of positive-definite functionals. Ricci
flow (16) can also be viewed as a parabolic PDE, after a
suitable change of coordinates.

Dispersive PDEs, of which the Schrödinger equation
(4) is a fundamental example, are evolution equations
that behave analogously to hyperbolic PDEs in many
respects. For instance, the IVP tends to be locally well-
posed both forward and backward in time. However,
solutions to dispersive PDEs do not propagate along
characteristic surfaces. Instead, they move at speeds
that are determined by their spatial frequency; in gen-
eral, high-frequency waves tend to propagate at much

greater speeds than low-frequency waves, which even-
tually leads to a dispersion of the solution into increas-
ingly large areas of space. In fact, the speed of prop-
agation of solutions is typically infinite. This behav-
ior also differs from that of parabolic equations, which
tend to dissipate the high-frequency components of a
solution (sending them to zero) rather than dispersing
them. In physics, dispersive equations arise in quantum
mechanics: they are the nonrelativistic limit c → ∞ of
relativistic equations and they are also approximations
to model certain types of fluid behavior. For instance,
the korteweg–de vries equation [III.51],

∂tu+ ∂3
xu = 6u∂xu,

is a dispersive PDE that models the behavior of small-
amplitude waves in a shallow canal.

2.6 Special Topics for Linear Equations

The greatest successes of the general theory have been
in connection with linear equations, especially those
with constant coefficients, for which Fourier analysis
provides an extremely powerful tool. While the related
issues of classification, well-posedness, and propaga-
tion of singularities have dominated the study of lin-
ear equations, there are other issues of interest as well,
including the following.

2.6.1 Local Solvability

This is the problem of determining the conditions on
a linear operator P and given data f under which the
equation (9) is locally solvable. The Cauchy–Kowalewski
theorem gives a criterion for local solvability when
f and the coefficients of P are real analytic, but it
is a remarkable phenomenon that when one relaxes
this assumption slightly, asking for f to be smooth
rather than real analytic, serious obstructions to local
solvability appear. For instance, the Lewy operator

P[u](t, z) = ∂u
∂z̄
(t, z)− iz

∂u
∂t
(t, z),

defined on complex-valued functions u : R × C → C,
has the property that equation (9) is locally solvable
for real-analytic f but not for “most” smooth f . The
Lewy operator is intimately connected to the tangential
Cauchy–Riemann equations on the Heisenberg group in
C2. It was discovered in the study of the restriction of
the two-dimensional analogue of the Cauchy–Riemann
operator P to a quadric in C2. This example was the
starting point for the theory of local solvability, whose
goal is to characterize linear equations that are locally
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solvable. The theory of Cauchy–Riemann manifolds—
which has its origin in the study of restrictions of
the Cauchy–Riemann equations (in higher dimensions)
to real hypersurfaces, each of which comes with an
associated “tangential Cauchy–Riemann complex”—is
another extremely rich source of examples of inter-
esting linear PDEs, which do not fit into the standard
classification.

2.6.2 Unique Continuation

This concerns various ill-posed problems where solu-
tions may not always exist, but one still has unique-
ness. A fundamental example is that of analytic con-
tinuation: two holomorphic functions on a connected
domainD that agree on a nondiscrete set (such as a disk
or an interval) must necessarily agree everywhere onD.
This fact can be viewed as a unique continuation result
for the Cauchy–Riemann equations (12). Another exam-
ple in a similar spirit is Holmgren’s theorem, which
asserts that solutions to a linear PDE (9) that has real-
analytic coefficients and data are unique, even in the
class of smooth functions. More generally, the study of
ill-posed problems (such as the wave equation with pre-
scribed data on a timelike surface rather than a space-
like one) arises naturally in connection with control
theory.

2.6.3 Spectral Theory

There is no way I can even begin to give an account
of this theory, which is of fundamental importance
not only to quantum mechanics and other physical
theories, but also to geometry and analytic number
theory [IV.2]. Just as a matrix A can often be analyzed
through its eigenvalues and eigenvectors [I.3 §4.3]
by the tools of linear algebra, one can learn much about
a linear differential operator P and its associated PDE
by understanding that operator’s spectrum [III.88] and
eigenfunctions with the help of tools from functional
analysis [IV.15]. A typical problem in spectral theory
is the eigenvalue problem in Rd:

−∆u(x)+ V(x)u(x) = λu(x).
A function u that is localized in space (for example, by
being bounded in the L2(Rd)-norm) and that satisfies
this equation is mapped by the linear operator −∆+ V
to the function λu: we say that u is an eigenfunction
with eigenvalue λ.

Suppose that we have an eigenfunction u and let
φ(t,x) = e−iλtu(x). It is easy to check that φ is a

solution of the Schrödinger equation

i∂tφ+∆φ− Vφ = 0. (47)

Moreover, it has a very special form. Such solutions are
called bound states of the physical system described
by (47). The eigenvalues λ, which form a discrete set,
correspond to the quantum energy levels of the sys-
tem. They are very sensitive to the choice of potential
V . The inverse spectral problem is also important: can
one determine the potential V from knowledge of the
corresponding eigenvalues? The eigenvalue problem
can be studied in considerable generality by replacing
the operator −∆ + V with other elliptic operators. For
instance, in geometry it is important to study the eigen-
value problem for the Laplace–Beltrami operator, which
is the natural generalization of the Laplace operator
from Rn to general riemannian manifolds [I.3 §6.10].
When the manifold has some arithmetic structure (for
instance, if it is the quotient of the upper half-plane by
a discrete arithmetic group), this problem is of major
importance in number theory, leading, for instance, to
the theory of Hecke–Maas forms. A famous problem
in differential geometry (“can you hear the shape of
a drum?”) is to characterize the metric on a compact
surface from the spectral properties of the associated
Laplace–Beltrami operator.

2.6.4 Scattering Theory

This theory formalizes the intuition from quantum
mechanics that a potential which is small or localized
is largely unable to “trap” a quantum particle, which is
therefore likely to escape to infinity in a manner resem-
bling that of a free particle. In the case of equation (47),
solutions that scatter are those that behave freely as
t → ∞. That is, they behave like solutions to the free
Schrödinger equation i∂tψ + ∆ψ = 0. A typical prob-
lem in scattering theory is to show that, if V(x) tends
to zero sufficiently fast as |x| → ∞, all solutions, except
the bound states, scatter as t →∞.

2.7 Conclusions

In the analytic case, the CK theorem allows us to solve
the IVP locally for very general classes of PDEs. We have
a general theory of characteristic hypersurfaces of PDEs
and a good general understanding of how they relate
to propagation of singularities. We can also distinguish
in considerable generality the fundamental classes of
elliptic and hyperbolic equations and can define gen-
eral parabolic and dispersive equations. The IVP for
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a large class of nonlinear hyperbolic systems can be
solved locally in time, for sufficiently smooth initial
conditions. Similar local-in-time results hold for gen-
eral classes of nonlinear parabolic and dispersive equa-
tions. For linear equations a lot more can be done.
We have satisfactory results concerning the regularity
of solutions for elliptic and parabolic equations and
a good understanding of the propagation of singular-
ities for a large class of hyperbolic equations. Some
aspects of spectral theory and scattering theory and
problems of unique continuation can also be studied
in considerable generality.

The main defect of the general theory concerns the
passage from local to global. Important global features
of special equations are too subtle to fit into a general
scheme. Rather, each important PDE requires special
treatment. This is particularly true for nonlinear equa-
tions: the long-term behavior of solutions is very sen-
sitive to the special features of the equation at hand.
Moreover, general points of view may obscure, through
unnecessary technical complications, the main proper-
ties of the important special cases. A useful general
framework is one that provides a simple and elegant
treatment of a particular phenomenon, as is the case for
symmetric hyperbolic systems and the phenomenon
of local well-posedness and finite speed of propaga-
tion. However, it turns out that symmetric hyperbolic
systems are simply too general for the study of more
refined questions about the important examples of
hyperbolic equations.

3 General Ideas

As one turns away from the general theory, one may
be inclined to accept the pragmatic point of view
described earlier, according to which PDEs is not a
real subject but is rather a collection of subjects such
as hydrodynamics, general relativity, several complex
variables, elasticity, etc., each organized around a spe-
cial equation. However, this rather widespread view-
point has its own serious drawbacks. Even though spe-
cific equations have specific properties, the tools that
are used to derive them are intimately related. In fact,
there is an impressive body of knowledge relevant to all
important equations, or at least large classes of them.
Lack of space does not allow me to do anything more
than enumerate them below.9

9. I fail to mention in the few examples given above some of the
important functional analytic tools connected to Hilbert space meth-
ods, compactness, the implicit function theorems, etc. I also fail to
mention the importance of probabilistic methods and the develop-

3.1 Well-Posedness

As is clear from the previous section, well-posed prob-
lems are at the heart of the modern theory of PDEs.
Recall that these are problems that admit unique solu-
tions for given smooth initial or boundary conditions,
and that the corresponding solutions have to depend
continuously on the data. It is this condition that leads
to the classification of PDEs into elliptic, hyperbolic,
parabolic, and dispersive equations. The first step in
the study of a nonlinear evolution equation is a proof
of a local-in-time existence and uniqueness theorem,
similar to the one for ODEs. Ill-posedness, the coun-
terpart of well-posedness, is also important in many
applications. The Cauchy problem for the wave equa-
tion (3), with data on the timelike hypersurface z = 0, is
a typical example. Ill-posed problems appear naturally
in control theory and inverse scattering.

3.2 Explicit Representations and Fundamental

Solutions

Our basic equations (2)–(5) can be solved explicitly. For
example, the solution to the IVP for the heat equation
in R1+d+ , that is, the problem of finding a functionu that
satisfies

−∂tu+∆u = 0, u(0, x) = u0(x),

for t � 0, is given by

u(t,x) =
∫

Rd
Ed(t, x −y)u0(y)dy

for a certain function Ed, which is called the fundamen-
tal solution of the heat operator −∂t + ∆. This func-
tion can be defined explicitly: when t � 0 it is 0,
and when t > 0 it is given by the formula Ed(t, x) =
(4πt)−d/2e−|x|2/4t . Observe that Ed satisfies the equa-
tion (−∂t + ∆)E = 0 in both regions t < 0 and t > 0,
but it has a singularity at t = 0, which prevents it from
satisfying the equation in the whole of R1+d. In fact, we
can check that for any function10 φ ∈ C∞0 (Rd+1), we
have∫

Rd+1
Ed(t, x)(∂tφ(t, x)+∆φ(t,x))dt dx = φ(0,0).

(48)

In the language of distribution theory [III.18], for-
mula (48) means that Ed, as a distribution, satisfies
the equation (−∂t + ∆)Ed = δ0, where δ0 is the Dirac

ment of topological methods for dealing with global properties of
elliptic PDEs.

10. That is, any function that is smooth and has compact support
in R1+d.
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distribution in R1+d supported at the origin. That is,
δ0(φ) = φ(0,0), ∀φ ∈ C∞0 (Rd+1). A similar notion of
fundamental solution can be defined for the Poisson,
wave, Klein–Gordon, and Schrödinger equations.

A powerful method of solving linear PDEs with con-
stant coefficients is based on the fourier trans-
form [III.27]. For example, consider the heat equation
∂t − ∆u = 0 in one space dimension, with initial con-
dition u(0, x) = u0. Define û(t, ξ) to be the Fourier
transform of u relative to the space variable:

û(t, ξ) =
∫ +∞
−∞

e−ixξu(t, x)dx.

It is easy to see that û(t, ξ) satisfies the differential
equation

∂tû(t, ξ) = −ξ2û(t, ξ), û(0, ξ) = û0(ξ).

This can be solved by a simple integration, which
results in the formula û(t, ξ) = û0(ξ)e−t|ξ|

2
. Thus, with

the help of the inverse Fourier transform, we derive a
formula for u(t,x):

u(t,x) = (2π)−1
∫ +∞
−∞

eixξe−t|ξ|
2
û0(ξ)dξ.

Similar formulas can be derived for our other basic evo-
lution equations. For example, in the case of the wave
equation −∂2

t u + ∆u = 0 in three dimensions, subject
to the initial data u(0, x) = u0, ∂tu(0, x) = 0, we find
that

u(t,x) = (2π)−3
∫

R3
eixξ cos(t|ξ|)û0(ξ)dξ. (49)

After some work, one can reexpress formula (49) in the
form

u(t,x) = ∂t
(
(4πt)−1

∫
|x−y|=t

u0(y)da(y)
)
, (50)

where da is the area element of the sphere |x−y| = t of
radius t centered at x. This is the well-known Kirchhoff
formula. By contrast with (49), the integration here is

T&T note: need to
check whether this
is mentioned by
Fefferman in his
Euler and
Navier–Stokes
article.

with respect to the physical variables t and x only. It is
instructive to compare these two formulas. Using the
Plancherel identity it is very easy to deduce from (49)
the L2 bound∫

R3
|u(t,x)|2 dx � C‖u0‖2

L2(R3),

while the possibility of obtaining such a bound from
(50) seems unlikely since the formula involves a deriva-
tive. On the other hand, (50) is perfect for giving us
information about the domain of influence. Indeed, we
can see immediately from the formula that if u0 is zero
outside the ball Ba = {|x − x0| � a}, then u(t,x) is
zero outside the ball Ba+|t| for any time t. This fact
does not seem at all transparent in the Fourier-based

formula (49). The fact that different representations of
solutions have different, even opposite, strengths and
weaknesses has important consequences for construct-
ing approximate solutions, or parametrices, for more
complicated equations, such as linear equations with
variable coefficients or nonlinear wave equations. There
are two possible types of constructions: those in physi-
cal space, which mimic the physical-space formula (50),
and those in Fourier space, which mimic the formula
(49).

3.3 A Priori Estimates

Most equations cannot be solved explicitly. However,
if we are interested in qualitative information about a
solution, then it is not necessary to derive it from an
exact formula. But how else, one might wonder, can we
extract such information? A priori estimates are a very
important technique for doing this.

The best-known examples are energy estimates, the
maximum principle, and monotonicity arguments. The
simplest example of the first type is the following iden-
tity (which is a very simple example of a so-called
Bochner-type identity):∫

Rd
|∂2u(x)|2 dx =

∫
Rd
|∆u(x)|2 dx.

The left-hand side is shorthand for∫
Rd

∑
1�i,j�d

|∂i∂ju(x)|2 dx

and the identity holds for all functions u that are
twice continuously differentiable and tend to zero as
|x| → ∞. This formula can be justified fairly simply by
integrating by parts. As a consequence of the Bochner
identity, we obtain the a priori estimate that if u is
a smooth solution to the Poisson equation (6) with
square-integrable data f , and if it tends to zero at infin-
ity, then the square integral of its second derivatives is
bounded:∫

Rd
|∂2u(x)|2 dx �

∫
Rd
|f(x)|2 dx <∞. (51)

Thus we obtain the qualitative fact that, on average
(in a mean-square sense), u has “two more degrees
of regularity” than f .11 This is called an energy-type
estimate because, in physical situations, the square of

11. A crucial fact, about which one can read more in the online
version, is that the L2-norms in (51) can be replaced by Lp -norms,
1 < p < ∞, or Hölder-type norms. The first case corresponds
to Calderon–Zygmund estimates, while the second corresponds to
Schauder estimates. Both are extremely important in the study of
regularity properties for solutions to second-order elliptic PDEs.
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the L2-norm can often be interpreted as some type of

kinetic energy.

The Bochner identity can be extended to more gen-

eral Riemannian manifolds than Rd, although one then

picks up some additional lower-order terms involving

the curvature of those manifolds. Such identities play

a major role in the theory of geometric PDEs on these

manifolds.

Energy-type identities and estimates also exist for

parabolic, dispersive, and hyperbolic PDEs. For in-

stance, they play a fundamental role in demonstrat-

ing the local existence, uniqueness, and finite speed

of propagation for hyperbolic PDEs with smooth initial

data. Energy estimates become particularly powerful

when combined with inequalities such as the Sobolev

embedding inequality, which allows one to convert

the “L2” information provided by these estimates into

pointwise (or “L∞”) type information (see function

spaces [III.29 §§2.4, 3]).

While energy identities and L2 estimates (which, as

in the above example, come from integration by parts)

apply to all, or at least major classes of, PDEs, the

maximum principle can be applied only to elliptic and

parabolic PDEs. The following theorem is the simplest

manifestation of it. Note that the theorem provides us

with important quantitative information about solu-

tions to the Laplace equation even in the absence of

any explicit representation for them.

Theorem (maximum principle). Assume that u is a

solution to the Laplace equation (1) on a bounded con-

nected domain D ∈ Rd with a smooth boundary ∂D.

Assume also that u is continuous on the closure of D
and has continuous first and second partial derivatives

in the interior of D. Then umust achieve its maximum

and minimum values on the boundary. Moreover, if the

maximum or minimum is also achieved at an interior

point of D, then u must be constant in D.

The method is very robust and can easily be extended

to a large class of second-order elliptic equations. It can

also be extended to parabolic equations and systems,

and plays a crucial role in, for example, the study of

Ricci flow.

Let us briefly mention some other important classes

of a priori estimates. The Sobolev inequalities, which

are of prime importance in elliptic equations, have

several counterparts in linear and nonlinear hyper-

bolic and dispersive equations, including the Strichartz

estimates and bilinear estimates. In connection with

ill-posed problems and unique continuation, Carle-
man estimates play a fundamental role. Finally, sev-
eral a priori estimates arising from monotonicity for-
mulas12—such as virial identities, Pohozaev identities,
or Morawetz inequalities—can be used to establish the
breakdown of regularity or the blow-up of solutions
to some nonlinear equations, and to guarantee global
existence and decay of solutions to others.

To summarize, it is not much of an exaggeration to
say that a priori estimates play a fundamental role in
more or less every aspect of the modern theory of PDEs.

3.4 Bootstrap and Continuity Arguments

The bootstrap argument is a method, or rather a pow-
erful general philosophy, to derive a priori estimates
for nonlinear equations. According to this philosophy
we start by making educated assumptions about the
solutions we are trying to describe. These assumptions
allow us to think of the original nonlinear problem as
a linear one whose coefficients satisfy properties con-
sistent with the assumptions. We may then use linear
methods, based on other a priori estimates that we
already know, to try to show that the solutions to this
linear problem behave as well as we have postulated—
in fact, even better. One can characterize this powerful
method, which allows us to use linear theory without
actually having to linearize the equation, as a concep-
tual linearization. It can also be regarded as a continu-
ity argument relative to some parameter, which might
be the natural time parameter of an evolution problem,
but it could also be an artificial parameter which we
have the freedom to introduce ourselves. This latter
situation is typical of applications to nonlinear elliptic
equations. In the online version of this article we pro-
vide a few examples to illustrate the method in both
cases.

3.5 The Method of Generalized Solutions

Since a PDE involves differentiation, it might seem obvi-
ous that in any discussion of PDEs we should restrict
our attention to differentiable functions. However, it is
possible to generalize the notion of differentiation so
that it makes sense for a wider class of functions, and
even for function-like objects, such as distributions,
that are not functions at all. This allows us to make

12. Perhaps the most familiar example of a monotonicity phe-
nomenon is the second law of thermodynamics from physics, which
asserts that, for many physical systems, the total entropy of the
system is an increasing function of time.
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sense of a PDE in a broader context, and admits the
possibility of generalized solutions.

The best way to introduce generalized solutions in
PDEs and explain why they are important is through
the Dirichlet principle. This originates in the obser-
vation that, out of all functions that are defined on
a bounded domain D ⊂ Rd, that satisfy prescribed
Dirichlet boundary condition u|∂D = f , and that live in
an appropriate functional space X, the functionsu that
minimize the Dirichlet integral (or Dirichlet functional)

‖u‖2
Dr = 1

2

∫
D
|∇u|2 = 1

2

d∑
i=1

∫
D
|∂iu|2 (52)

are the harmonic functions (that is, solutions of the
equation ∆u = 0). It was riemann [VI.49] who first had
the idea of trying to use this fact to solve the Dirichlet
problem: in order to find a solution u to the problem

∆u = 0, u|∂D = u0, (53)

one should find (by some means other than solving
the Dirichlet problem) a function u that minimizes the
Dirichlet integral while equaling u0 on ∂D. To do this,
one must specify the set by functions, or rather the
function space, over which the minimization is taking
place. The history of how this choice was made is a fas-
cinating one. A natural choice is X = C1(D̄), the space
of continuously differentiable functions on D̄, where
the norm of a function v is

‖v‖C1(D̄) = sup
x∈D
(|v(x)| + |∂v(x)|).

In particular, the Dirichlet norm ‖v‖Dr is finite when
v belongs to this space. In fact, Riemann chose
X = C2(D̄) (a similar space but designed for twice
continuously differentiable functions). This bold but
flawed attempt was followed by a penetrating criticism
by weierstrass [VI.44], who showed that the func-
tional does not have to achieve its minimum in either
C2(D̄) or C1(D̄). However, Riemann’s basic idea was
revived, and it eventually triumphed after a long and
inspiring process that involved defining appropriate
function spaces, introducing the notion of generalized
solutions, and developing a regularity theory for them.
(The precise formulation of the Dirichlet principle also
requires the definition of sobolev spaces [III.29 §2.4].)

Let us briefly summarize the method, which has since
been vastly extended so that it can be applied to a large
class of linear13 and nonlinear elliptic and parabolic
equations. It is based on two steps. In the first step one

13. A notable example for applications in geometry is Hodge theory.

applies a minimization procedure. Although, as Weier-

strass discovered, the natural function spaces may not

contain functions that achieve the minimum, one can

use such a procedure to find a generalized solution

instead. This may not seem very interesting, since we

were looking for a function that solves the Dirichlet

problem (or one of the other problems to which the

method can be applied). But this is where the second

step comes in: it is sometimes possible to show that the

generalized solution must in fact be a classical solu-

tion (that is, an appropriately smooth function) after

all. This is the “regularity theory” mentioned earlier.

In some situations, however, the generalized solution

may turn out to have singularities and therefore not

be regular. Then the challenge is to understand the

nature of these singularities and to prove realistic par-

tial regularity results. For instance, it is sometimes pos-

sible to prove that the generalized solution is smooth

everywhere apart from in a small “exceptional set.”

Though generalized solutions are at their most effec-

tive for elliptic problems, their range of applicability

encompasses all PDEs. For example, we have already

seen that the fundamental solutions to the basic lin-

ear equations have to be interpreted as distributions,

which are examples of generalized solutions.

The notion of generalized solutions has also proved

successful for nonlinear evolution problems, such as

systems of conservation laws in one space dimension.

An excellent example is provided by the Burger equa-

tion (21). As we have seen, solutions to ∂tu + u∂xu =
0 develop singularities in finite time no matter how

smooth the initial conditions are. It is natural to ask

whether solutions continue to make sense, as general-

ized solutions, even beyond the time when these singu-

larities form. A natural notion of generalized solution

is a function u such that∫
R1+1
(∂tu+u∂xu)φ = 0

for every smooth function φ that is zero outside a

bounded set, since one can make sense of the integral

even when u is not a differentiable function. Integrat-

ing this by parts (the first term with respect to t and

the second with respect to x) one obtains the following

formulation:∫
R1+1

u∂tφ+ 1
2

∫
R1+1

u2∂xφ = 0 ∀φ ∈ C∞0 (R1+1).

It can be shown that, under additional conditions called

entropy conditions, the IVP for the Burger equation

admits a unique generalized solution that is global :
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that is, valid for every t ∈ R. Today we have a satis-
factory theory of global solutions to a large class of
hyperbolic systems of one-dimensional “conservation
laws.” These systems, for which the above-mentioned
theory applies, are called strictly hyperbolic.

For more complicated nonlinear evolution equations,
the question of what constitutes a good concept of
a generalized solution, though fundamental, is far
murkier. For higher-dimensional evolution equations
the first concept of a weak solution was introduced by
Leray. Let us call a generalized solution weak if one can-
not prove any type of uniqueness for it. This unsatisfac-
tory situation may be temporary, i.e., the result of our
technical inabilities, or unavoidable, in the sense that
the concept itself is flawed. Leray was able to produce,
by a compactness method, a weak solution of the IVP
for the navier–stokes equations [III.23]. The great
advantage of the compactness method (and its mod-
ern extensions, which can, in some cases, cleverly cir-
cumvent lack of compactness) is that it produces global
solutions for all data. This is particularly important for
supercritical or critical nonlinear evolution equations,
which we will discuss later. For these we expect clas-
sical solutions to develop singularities in a finite time.
The problem, however, is that one has very little con-
trol over such solutions. In particular, we do not know
how to prove their uniqueness.14 Similar types of solu-
tions were later introduced for other important non-
linear evolution equations. In most of the interesting
cases of supercritical evolution equations, such as the
Navier–Stokes equations, the usefulness of the types of
weak solutions discovered so far remains undecided.

3.6 Microlocal Analysis, Parametrices, and

Paradifferential Calculus

One of the fundamental difficulties of hyperbolic and
dispersive equations is the interplay between geo-
metric properties, which concern the physical space,
and other properties, intimately tied to oscillations,
that are best seen in Fourier space. Microlocal analy-
sis is a general still-developing philosophy according
to which one isolates the main difficulties by care-
ful localizations in physical space or Fourier space
or both. An important application of this point of
view is the construction of parametrices for linear
hyperbolic equations and their use in proving results

14. Leray was very concerned about this point. Though, like all
other researchers after him, he was unable to prove uniqueness of
his weak solution, he managed to show that it must coincide with a
classical one as long as the latter does not develop singularities.

about the propagation of singularities. Parametrices,
as we have already mentioned, are approximate solu- PUP: I can confirm

that this statement
is accurate.tions of linear equations with variable coefficients, with

error terms that are smoother. The paradifferential cal-
culus is an extension of microlocal analysis to nonlin-
ear equations. It allows one to manipulate the form of
a nonlinear equation by taking account of how large
and small frequencies interact, and it has achieved a
remarkable technical versatility.

3.7 Scaling Properties of Nonlinear Equations

A PDE is said to have a scaling property if, whenever one
rescales a solution in an appropriate way, one obtains
another solution. Essentially, all basic nonlinear equa-
tions have well-defined scaling properties. Take, for
example, the Burger equation (21), ∂tu + u∂xu = 0. If
u is a solution of this equation, then so is the function
uλ defined by uλ(t, x) = u(λt, λx). Similarly, if u is a
solution of the cubic nonlinear Schrödinger equation in
Rd,

i∂tu+∆u+ c|u|2u = 0, (54)

then so is uλ(t, x) = λu(λ2t, λx). The relationship
between the nonlinear scaling of the equation and
the a priori estimates available for solutions to the
equations leads to an extremely useful classification
of equations into subcritical, critical, and supercritical
equations. This will be discussed in more detail in the
next section. For the moment it suffices to say that sub-
critical equations are those for which the nonlinearity
can be controlled by the existing a priori estimates of
the equation, while supercritical equations are those
for which the nonlinearity appears to be stronger. Crit-
ical equations are borderline. The definition of critical-
ity and its relationship with the issue of regularity play
a very important heuristic role in nonlinear PDEs. One
expects supercritical equations to develop singularities
and subcritical equations not to.

4 The Main Equations

In the previous section we argued that, while there is
no hope of finding a general theory of all PDEs, there is
nevertheless a wealth of general ideas and techniques
that are relevant to the study of almost all important
equations. In this section we indicate how it may be
possible to identify the features that characterize the
equations we call important.

Most of our basic PDEs can be derived from simple
geometric principles, which happen to coincide with
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some of the underlying geometric principles of mod-
ern physics. These simple principles provide a unifying
framework15 for the subject and help endow it with
a sense of purpose and cohesion. They also explain
why a very small number of linear differential opera-
tors, such as the Laplacian and the d’Alembertian, are
all-pervasive.

Let us begin with the operators. The Laplacian is the
simplest differential operator that is invariant under
rigid motions of Euclidean space—a fact that we noted
at the beginning of this article. This is important math-
ematically and physically: mathematically because it
results in many symmetry properties and physically
because many physical laws are themselves invari-
ant under rigid motions. The d’Alembertian is, simi-
larly, the simplest differential operator that is invariant
under the natural symmetries, or Poincaré transforma-
tions, of Minkowski space.

Now let us turn to the equations. From the point of
view of physics, the heat equation is basic because it is
the simplest paradigm for diffusive phenomena, while
the Schrödinger equation can be viewed as the Newto-
nian limit of the Klein–Gordon equation. The geometric
framework of the former is Galilean space, which itself
is simply the Newtonian limit of Minkowski space.16

From a mathematical point of view, the heat, Schrö-
dinger, and wave equations are basic because the corre-
sponding differential operators ∂t −∆, (1/i)∂t −∆, and
∂2
t −∆ are the simplest evolution operators that can be

built out of ∆. The wave operator, as just discussed,
is basic in a deeper way because of the association
between � = −∂2

t + ∆ and the geometry of Minkowski
space R1+n. As for Laplace’s equation, one can view
solutions to ∆φ = 0 as special time-independent solu-
tions to �φ = 0. Appropriate invariant and local def-
initions of square roots of ∆ and �, or � − k2, corre-
sponding to “spinorial representations” of the Lorentz
group, lead to the associated Dirac operators (see (13)).
In the same vein we can associate with every Rie-
mannian or Lorentzian manifold the operator ∆g or
�g , respectively, or the corresponding Dirac operators.
These equations inherit in a straightforward way the
symmetries of the spaces on which they are defined.

15. The scheme sketched below is only an attempt to show that, in
spite of the enormous number of PDEs studied by mathematicians,
physicists, and engineers, there are nevertheless simple basic princi-
ples that unite them. I do not want, by any means, to imply that the
equations discussed below are the only ones worthy of our attention.

16. This is done by starting with the Minkowski metric m =
diag(−1/c2,1,1,1), where c corresponds to the velocity of light, and
letting c →∞.

4.1 Variational Equations

There is a general and extremely effective method for
generating equations with prescribed symmetries that
plays a fundamental role in both physics and geometry.
One starts with a scalar quantity, called a Lagrangian,
such as

L[φ] =
3∑

µ,ν=0

mµν∂µφ∂νφ− V(φ), (55)

with φ a real-valued function defined on R1+3 and V
some real function of φ such as, for example, V(φ) =
φ3. Here ∂µ denotes the partial derivatives with respect
to the coordinates xµ , µ = 0,1,2,3, and mµν = mµν ,
as earlier, denotes the 4× 4 diagonal matrix with diago-
nal entries (−1,1,1,1), associated with the Minkowski
metric. We associate with L[φ] the so-called action
integral :

S[φ] =
∫

R3+1
L[φ].

Notice that both L[φ] and S[φ] are invariant under
translations and Lorentz transformations. In other
words, if T : R1+3 → R1+3 is a function that does not
change the metric and we define a new function by
ψ(t,x) = φ(T(t, x)), then L[φ] = L[ψ] and S[φ] =
S[ψ].

We shall consider a function φ that minimizes the
action integral. From this we wish to deduce that its
derivative, in some appropriate sense, is zero, and
hence to deduce other properties about φ. But φ is
a function that lives in an infinite-dimensional space,
so we cannot talk about derivatives in a completely
straightforward way. To deal with this problem, we
define a compact variation of φ to be a smooth one-
parameter family of functions φ(s) : R1+3 → R, defined
for each s in some interval (−ε, ε), such that φ(0)(x) =
φ(x) for every x ∈ R3 and φ(s)(x) = φ(x) for
every (s, x) outside some bounded subset of R1+3. This
allows us to differentiate with respect to s.

Given such a variation, we denote the derivative
dφ(s)/ds|s=0 by φ̇.

Definition. A field φ is said to be stationary with
respect to S if, for any compact variation φ(s) of φ,
we have

d
ds
S[φ(s)]

∣∣∣∣
s=0
= 0.

The variational principle. The variational principle,
or principle of least action, states that an acceptable
solution of a given physical system must be stationary
with respect to the action integral associated with the
Lagrangian of the system.
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The variational principle enables us to associate with
the given Lagrangian a system of PDEs, obtained from
the fact that φ is stationary, called the Euler–Lagrange
equations. We illustrate this by showing that the non-
linear wave equation in R1+3, namely

�φ− V ′(φ) = 0, (56)

is the Euler–Lagrange equation associated with the
Lagrangian (55). Given a compact variation φ(s) of φ,
we set S(s) = S[φ(s)]. Integration by parts gives

d
ds
S(s)

∣∣∣∣
s=0
=
∫

R3+1
[−mµν∂µφ̇∂νφ− V ′(φ)φ̇]

=
∫

R3+1
φ̇[�φ− V ′(φ)].

In view of the action principle and the arbitrariness of
φ̇ we infer that φmust satisfy equation (56). Thus (56)
is indeed the Euler–Lagrange equation associated with
the Lagrangian L[φ] =mµν∂µφ∂νφ− V(φ).

One can similarly show that the Maxwell equations
of electromagnetism—along with their beautiful exten-
sions to the Yang–Mills equations, wave maps, and
the Einstein equations of general relativity—are also
variational. That is, they too can be derived from a
Lagrangian.

Remark. The variational principle asserts only that
the acceptable solutions of a given system are sta-
tionary: in general, we have no reason to expect that
the desired solutions minimize or maximize the action
integral. Indeed, this fails to be the case for systems
that have a time dependence, such as the Maxwell equa-
tions, Yang–Mills equations, wave maps, and Einstein
equations.

However, there is a large class of variational prob-
lems, corresponding to time-independent physical sys-
tems or geometric problems, for which the desired
solutions do turn out to be extremal. The simplest
example is that of geodesics in a Riemannian mani-
fold M , which are minimizers17 with respect to length.
More precisely, the length functional takes a curve γ
that passes through two fixed points of M and asso-
ciates with it its length L(γ), which plays the role of
an action integral. In this case a geodesic is not just a
stationary point for the functional but a minimum. We
also saw earlier that, according to the Dirichlet prin-
ciple, solutions to the Dirichlet problem (53) minimize
the Dirichlet integral (52). Another example is provided

17. This is true, in general, only for sufficiently short geodesics, i.e.,
ones that pass through two points close to each other.

by the minimal-surface equation (7), the solutions of
which are minimizers of the area integral.

The study of minimizers of various functionals, i.e.,
action integrals, is a venerable subject in mathematics
that goes under the name of calculus of variations (see
variational methods [III.96] for further discussion).

Associated with the variational principle is another
fundamental principle. A conservation law for an evo-
lution PDE is a law that says that some quantity, typ-
ically an integral quantity depending on the solution,
must remain constant over time, for every solution of
the equation.

Noether’s principle. To any continuous one-parameter
group of symmetries of the Lagrangian there corre-
sponds a conservation law for the associated Euler–
Lagrange PDE.

Examples of such conservation laws are the famil-
iar laws of conservation of energy, conservation of
momentum, and conservation of angular momentum,
all of which have important physical meaning. (Here,
the one-parameter group of symmetries is just transla-
tions in time.) For example, in the case of equation (56),
the law of conservation of energy takes the form

E(t) = E(0), (57)

where the quantity E(t), which equals∫
Σt

(
1
2 (∂tφ)

2 + 1
2

3∑
i=1

(∂iφ)2 + V(φ)
)

dx, (58)

is called the total energy at time t. (The notation
Σt stands for the set of all points (t, x,y, z) as
(x,y, z) ranges over R3.) Observe that (57) provides an
extremely important a priori estimate for solutions to
(56) in the case when V � 0. Indeed, if the energy of the
initial data at t = 0 is finite (that is, if E(0) <∞), then∫

Σt

(
(∂tφ)2 +

3∑
i=1

(∂iφ)2
)

� E(0).

We say that the energy identity (57) is coercive, which
means that it leads to an absolute bound on all solu-
tions with finite initial energy.

4.2 The Issue of Criticality

For the most basic evolution equations of mathemati-
cal physics, there are typically no better a priori esti-
mates known than those provided by the energy. Tak-
ing into account the scaling properties of the corre-
sponding equations as well, one is led to the very impor-
tant classification of our basic equations, mentioned
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earlier, into subcritical, critical, and supercritical equa-
tions. To see how this is done, consider again the non-
linear scalar equation �φ−V ′(φ) = 0, and takeV(φ) to
be (1/(p+ 1))|φ|p+1. Recall that the energy integral is
given by (58). If we assign to the spacetime variables the
dimension of length, L, then the spacetime derivatives
have dimension L−1 and therefore � has the dimension
of L−2. To be able to balance the left- and right-hand
sides of the equation �φ = |φ|p−1φ, we need to assign
a length scale toφ; we find this to be L2/(1−p). Thus the
energy integral,

E(t) =
∫

Rd
(2−1|∂φ|2 + |φ|p+1)dx,

has the dimension Lc , c = d−2+(4/(1−p)), with d cor-
responding to the volume element dx = dx1 dx2 · · ·
dxd, which scales like Ld. We say that the equation is
subcritical if c < 0, critical if c = 0, and supercritical
if c > 0. Thus, for example, �φ −φ5 = 0 is critical in
dimension d = 3. The same sort of dimensional analy-
sis can be done for all our other basic equations. An
evolutionary PDE is said to be regular if all smooth
finite-energy initial conditions lead to global smooth
solutions. It is conjectured that all subcritical equa-
tions are regular, but one expects supercritical equa-
tions to develop singularities. Critical equations are
important borderline cases. The heuristic reason for
this is that the nonlinearity tends to produce singu-
larities while the coercive estimates prevent it. In sub-
critical equations the coercive estimates are stronger,
while for supercritical equations it is the nonlinearity
that is stronger. However, there may be other, more
subtle a priori estimates that are not accounted for by
our crude heuristic argument. Thus, some supercritical
equations, such as the Navier–Stokes equations, may
still be regular.

4.3 Other Equations

Many other familiar equations can be derived from
the variational ones described above by the following
procedures.

4.3.1 Symmetry Reductions

Sometimes a PDE is very hard to solve but becomes
much easier if one places additional symmetry con-
straints on solutions. For example, if the PDE is rota-
tion invariant and we look just for rotation-invariant
solutions u(t,x), then we can regard these solutions
as functions of t and r = |x|, effectively reducing the

dimension of the problem. By this procedure of sym-
metry reduction one can then derive a new PDE that
is much simpler than the original one. Another, some-
what more general, way of obtaining simpler equations
is to look for solutions that satisfy some further prop-
erty. For instance, one can assume that they are station-
ary (that is, that they do not depend on the time vari-
able), spherically symmetric, self-similar (which means
that u(t,x) depends only on x/ta), or traveling waves
(which means that u(t,x) depends only on x − vt for
some fixed velocity vector v). Typically, the equations
obtained by such reductions have a variational struc-
ture themselves. In fact, the symmetry reduction can
be applied directly to the original Lagrangian.

4.3.2 The Newtonian Approximation and Other Limits

We can derive a large class of new equations as limits of
the basic ones described above by taking one or more
characteristic speeds to infinity. The most important
example is the Newtonian limit, which is obtained by
letting the velocity of light go to infinity. As we have
already mentioned, the Schrödinger equation can be
derived in this way from the linear Klein–Gordon equa-
tion. Similarly, we can derive the Lagrangians for the
equations of nonrelativistic elasticity, fluid dynamics,
or magnetohydrodynamics. It is an interesting fact that
the nonrelativistic equations tend to look more messy
than the relativistic ones. The simple geometric struc-
ture of the original equations gets lost in the limit. The
remarkable simplicity of the relativistic equations is a
powerful example of the importance of relativity as a
unifying principle.

Once we are in the familiar world of Newtonian
physics we can perform other well-known limiting pro-
cedures. The famous incompressible euler equa-
tions [III.23] are obtained by taking the limit of the
general nonrelativistic fluid equations as the speed
of sound tends to infinity. Various other limits are
obtained relative to other characteristic speeds of the
system or in connection with specific boundary con-
ditions, such as the boundary-layer approximation in
fluids. For example, in the limit as all characteristic
speeds tend to infinity, the equations of elasticity turn
into the familiar equations of a rigid body in classical
mechanics.

4.3.3 Phenomenological Assumptions

Even after taking various limits and making symmetry
reductions, the equations may still remain intractable.
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However, in various applications it makes sense to
assume that certain quantities are sufficiently small to
be neglected. This leads to simplified equations that
could be called phenomenological18 in the sense that
they are not derived from first principles.

Phenomenological equations are “toy equations” that
are used to illustrate and isolate important physical
phenomena in complicated systems. A typical way of
generating interesting phenomenological equations is
to try to write down the simplest model equation that
still exhibits a particular feature of the original sys-
tem. For instance, the self-focusing plane-wave effects
of compressible fluids or elasticity can be illustrated by
the simple-minded Burger equation ut+uux = 0. Non-
linear dispersive phenomena, typical of fluids, can be
illustrated by the famous Korteweg–de Vries equation
ut +uux +uxxx = 0. The nonlinear Schrödinger equa-
tion (54) provides a good model problem for nonlinear
dispersive effects in optics.

If it is well chosen, a model equation can lead to
basic insights into the original equation itself. For this
reason, simplified model problems are also essential
in the day-to-day work of the rigorous researcher into
PDEs, who tests ideas on carefully selected model prob-
lems. It is crucial to emphasize that good results con-
cerning the basic physical equations are rare; a very
large percentage of important rigorous work in PDEs
deals with simplified equations selected, for technical
reasons, to isolate and focus our attention on some
specific difficulties present in the basic equations.

In the above discussion we have not mentioned diffu-
sive equations19 such as the Navier–Stokes equations.
These are in fact not variational, and therefore do
not quite fit into the above description. Though they
could be viewed as phenomenological equations, they
can also be derived from basic microscopic laws such
as those governing the Newtonian–mechanical interac-
tions of a very large number of particles N . In prin-
ciple,20 the equations of continuum mechanics, such
as the Navier–Stokes equations, could be derived by
letting the number of particles N →∞.

Diffusive equations also turn out to be very useful in
connection with geometric problems. Geometric flows

18. I use this term here quite freely; it is typically used in a some-
what different context. Also, some of the equations that I call phe-
nomenological below, e.g., dispersive equations, can be given formal
asymptotic derivations.

19. That is, equations where some of the basic physical quantities,
such as energy, are not conserved and may in fact decrease in time.
These are typically of parabolic type.

20. To establish this rigorously remains a major challenge.

such as mean curvature, inverse mean curvature, har-

monic maps, Gauss curvature, and Ricci flow are some

of the best-known examples. Diffusive equations can

often be interpreted as the gradient flow for an associ-

ated elliptic variational problem. They can be used to

construct nontrivial stationary solutions to the corre-

sponding stationary systems, in the limit as t → ∞, or

to produce foliations with remarkable properties, such

as one that was used recently in the proof of a famous

conjecture of Penrose. As we have already mentioned,

this idea has recently found an extraordinary applica-

tion in the work of Perelman, who has used Ricci flow to

settle the three-dimensional Poincaré conjecture. One

of his main new ideas was to interpret Ricci flow as a

gradient flow.

4.4 Regularity or Breakdown

An additional source of unity for the subject of PDEs

is the central role played by the problem of regularity

or breakdown of solutions to the basic equations. It is

intimately tied to the fundamental mathematical ques-

tion of understanding what we actually mean by solu-

tions and, from a physical point of view, to the issue of

understanding the limits of validity of the correspond-

ing physical theories. Thus, in the case of the Burger

equation, for example, the problem of singularities can

be tackled by extending our concept of solutions to

accommodate shock waves, which are solutions that are

discontinuous across certain curves in the (t, x)-space.

In this case one can define a function space of general-

ized solutions in which the IVP has unique, global solu-

tions. Though the situation for more realistic physical

systems is far less clear and far from being satisfac-

torily solved, the generally held opinion is that shock-

wave-type singularities can be accommodated without

breaking the boundaries of the physical theory at hand.

The situation for singularities in general relativity is

radically different. The singularities one expects there

are such that no continuation of solutions is possible

without altering the physical theory itself. The prevail-

ing opinion here is that only a gravitational quantum

field theory could achieve this.

5 General Conclusions

What, then, is the modern theory of PDEs? As a first

approximation, one could say that it is the pursuit of

the following main goals.
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(i) Understand the problem of evolution for the basic
equations of mathematical physics. The most press-
ing issue in this regard is to understand when and
how the local21 (with respect to time) smooth solutions
of the basic equations develop singularities. A simple-
minded criterion for distinguishing between regular
theories and those that may admit singular solutions is
given by the distinction between subcritical and super-
critical equations. As mentioned earlier, it is widely
believed that subcritical equations are regular and that
supercritical equations are not. Indeed, many subcrit-
ical equations have been proved to be regular even
though we lack a general procedure for establishing
regularity results of this kind. The situation with super-
critical equations is far more subtle. To start with,
an equation that we now call supercritical22 may in
fact turn out to be critical, or even subcritical, upon
the discovery of additional a priori estimates. Thus
an important question concerning the issue of critical-
ity, and consequently that of singular behavior, is: are
there other, stronger, local a priori bounds that can-
not be derived from Noether’s principle? The discov-
ery of such a bound would be a major event in both
mathematics and physics.

Once we understand that the presence of singulari-
ties in our basic evolution equations is unavoidable, we
have to face the question of whether they can somehow
be accommodated by a more general concept of what
a solution is or whether their structure is such that the
equation itself, indeed the physical theory that it under-
lies, becomes meaningless. An acceptable concept of
a generalized solution should, of course, preserve the
deterministic nature of the equations: in other words,
it should be uniquely determined from its Cauchy data.

Finally, once an acceptable concept of generalized
solutions is found, we would like to use it to deter-
mine some important qualitative features, such as long-
term asymptotic behavior. One can formulate a limit-
less number of such questions, the answers to whichPUP: Tim thinks

this is fine. OK?
will vary from equation to equation.

(ii) Understand in a rigorous mathematical fashion the
range of validity of various approximations. The equa-
tions obtained by various limiting procedures or phe-
nomenological assumptions can of course be stud-

21. One of the important achievements of the past century of math-
ematics was the establishment of a general procedure that guaran-
tees the existence and uniqueness of a local-in-time solution to broad
classes of initial conditions and large classes of nonlinear equations,
including all those we have already mentioned above.

22. What we call supercritical depends on the strongest a priori
coercive estimate available.

ied in their own right, as the examples that we have
referred to above are. However, they present us with
additional problems to do with the mechanics of how
they are derived from equations that we regard as
more fundamental. It is entirely possible, for exam-
ple, that the dynamics of a derived system of equa-
tions leads to behavior that is incompatible with the
assumptions made in its derivation. Alternatively, a par-
ticular simplifying assumption, such as spherical sym-
metry in general relativity or zero vorticity for com-
pressible fluids, may turn out to be unstable at large
scales and therefore not a reliable predictor of the gen-
eral case. These and other similar situations lead to
important dilemmas: should we persist in studying the
approximate equations even when, in many cases, we
face formidable mathematical difficulties (some which
may turn out to be quite pathological and are per-
haps related to the nature of the approximation), or
should we abandon them in favor of the original system
or a more suitable approximation? Whatever one may
feel about this in any specific situation, it is clear that
the problem of understanding, rigorously, the range
of validity of various approximations is one of the
fundamental goals in PDEs.

(iii) Devise and analyze the right equation for studying
the specific geometric or physical problem at hand. This
last goal is equally important even though it is neces-
sarily vague. The enormously important role played by
PDEs in various branches of mathematics is more evi-
dent than ever. One looks in awe at how equations such
as the Laplace, heat, wave, Dirac, KdV, Maxwell, Yang–
Mills, and Einstein equations, which were originally
introduced in specific physical contexts, turned out
to have very deep applications to seemingly unrelated
problems in areas such as geometry, topology, alge-
bra, and combinatorics. Other PDEs appear naturally
in geometry when we look for embedded objects with
optimal geometric shapes, such as solutions to isoperi-
metric problems, minimal surfaces, surfaces of least
distortion or minimal curvature, or, more abstractly,
connections, maps, or metrics with distinguished prop-
erties. They are variational in character, just like the
main equations of mathematical physics. Other equa-
tions have been introduced with the goal of allowing
one to deform a general object, such as a map, connec-
tion, or metric, to an optimal one. They usually arise
in the form of geometric, parabolic flows. The most
famous example of this is Ricci flow, first introduced
by Richard Hamilton, who hoped to use it to deform
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Riemannian metrics into Einstein metrics. Similar ideas
were used earlier to construct, for example, stationary
harmonic maps with the help of a harmonic heat flow,
and self-dual Yang–Mills connections with the help of
a Yang–Mills flow. In addition to the successful use
of Ricci flow to settle the Poincaré conjecture in three
dimensions, another remarkable recent example of the
usefulness of geometric flows is that of the inverse
mean flow, first introduced by Geroch, to settle the
so-called Riemannian version of the Penrose inequality.
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IV.13 General Relativity and the
Einstein Equations
Mihalis Dafermos

Einstein’s formulation of general relativity represents
one of the great triumphs of modern physics and pro-
vides the currently accepted classical theory that uni-
fies gravitation, inertia, and geometry. The Einstein
equations are the mathematical embodiment of this
theory.

The definitive form of the equations,

Rµν − 1
2Rgµν = 8πTµν, (1)

was attained in November 1915; this was the final act of
Einstein’s eight-year struggle to generalize his principle
of relativity so as to encompass gravitation, which had
been described in the earlier “Newtonian” theory by the
Poisson equation

∂2φ
∂x2

+ ∂
2φ
∂y2

+ ∂
2φ
∂z2

= 4πµ (2)

for the potential φ and mass density µ.
An obvious contrast between the Einstein equations

(1) and the Poisson equation (2) is that the mysteri-
ous notation of the former makes it far less obvious
what they even mean. This has given the subject of
general relativity a reputation for difficulty and impen-
etrability. However, this reputation is to some extent
unwarranted. Both (1) and (2) represent the culmination
of revolutionary theories whose formulations presup-
pose a complicated conceptual framework. For better
or for worse, however, the structure necessary to for-
mulate Poisson’s equation has been incorporated into
our traditional mathematical notation and school edu-
cation. As a result, R3, with its Cartesian coordinate
system, and notions such as functions, partial deriva-
tives, masses, forces, and so on, are familiar to people
with a general mathematical background, while the con-
ceptual structure of general relativity is much less so,
both with respect to its basic physical notions and with
respect to the mathematical objects that are needed to
model them. However, once one comes to terms with
these, the equations turn out to be more natural and,
one might even dare say, simpler.

Thus, the first task of this article is to explain in
more detail the conceptual structure of general relativ-
ity. Our aim will be to make it clear what the equations
(1) actually denote, and, moreover, why they are in a cer-
tain sense the simplest equations one can write down,
given the general framework of the theory. This in turn
will require us to review special relativity and its impli-
cations for the structure of matter, which will bring
us to the unified concept of stress–energy–momentum,
described by a tensorial object T . Finally, we will join
Einstein in his inspired leap to the notion of a gen-
eral four-dimensional Lorentzian manifold (M,g) that
represents our space-time continuum. We shall see
that equation (1) expresses a relationship between the
tensor T and the geometry of g as expressed in its
so-called curvature.

There is more to truly understanding a theory than
merely knowing how to write down its governing equa-
tions. General relativity is associated with some of
the most spectacular predictions of twentieth-century
physics: gravitational collapse, black holes, space-time
singularities, the expansion of the universe. These phe-
nomena (which were completely unknown in 1915 and
thus played no role in the formulation of the equa-
tions (1)) revealed themselves only when the concep-
tual issues surrounding the problem of global dynamics
of solutions were understood. This took a surprisingly
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long time, though the story is not as well-known as the
heroic struggle to attain (1). The article will conclude
with a very brief glimpse into the fascinating dynamics
of the Einstein equations.

1 Special Relativity

1.1 Einstein, 1905

Einstein’s 1905 formulation of special relativity stipu-
lated that all fundamental laws of physics should be
invariant under Lorentz transformations of the frame
of reference defined by x, y , z, and t. A Lorentz trans-
formation is any composition of translations, rotations,
and the Lorentz boost, which is given by the formulas

x̃ = x − vt√
1− v2/c2

, ỹ = y,

t̃ = t − vx/c2√
1− v2/c2

, z̃ = z,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3)

where c is a certain constant and |v| < c. Thus, Ein-
stein’s stipulation was that if one changes coordinates
by means of a Lorentz transformation, then the form
of all fundamental equations will remain the same.
This set of transformations had already been identi-
fied in the context of the study of the vacuum Maxwell
equations for the electric field E and magnetic field B:

∇ · E = 0, ∇ · B = 0,

c−1∂tB+∇× E = 0, c−1∂tE −∇× B = 0.

⎫⎬
⎭ (4)

Indeed, the Lorentz transformations are precisely the
transformations that keep the form of the above equa-
tions invariant if we also transform E and B appropri-
ately. Their significance was emphasized by poincaré
[VI.61]. However, it was Einstein’s profound insight
to elevate this invariance to the status of funda-
mental physical principle, despite its incompatibil-
ity with what we now usually call Galilean relativity,
which corresponds to taking c → ∞ in (3). A sur-
prising consequence of Lorentz invariance is that the
notion of simultaneity is not absolute but depends on
the observer: given two distinct events that occur at
(t, x,y, z) and (t, x′, y′, z′), it is easy to find a Lorentz
transformation such that the transformed events no
longer have the same t-coordinate.

It follows from a celebrated result in partial differ-
ential equations known as the strong Huygens princi-
ple, applied to (4), that electromagnetic disturbances
in vacuum propagate with speed c, which we thus iden-PUP: author
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tify as the speed of light. In view of Lorentz invariance,
this statement is independent of the frame! A further

postulate of the principle of relativity is that physical
theories should not allow massive particles to move at
speeds (as measured in any frame) greater than or equal
to c.

1.2 Minkowski, 1908

Einstein’s understanding of special relativity was “alge-
braic.” It was minkowski [VI.64] who first understood
its underlying geometric structure, namely, that the
content of the principle was contained in the metric
element

−c2 dt2 + dx2 + dy2 + dz2 (5)

defined on R4 with coordinates (t, x,y, z). We call
R4 endowed with the metric (5) Minkowski space-time
and denote it R3+1. Points of R3+1 are referred to
as events. The expression (5) is classical notation for
the inner product defined on tangent vectors v =
(c−1v0, v1, v2, v3), w = (c−1w0,w1,w2,w3) on R4 by

〈v,w〉 = −v0w0 + v1w1 + v2w2 + v3w3. (6)

The Lorentz transformations constitute precisely the
symmetry group of the geometry defined by (5). Ein-
stein’s principle of relativity could now be understood
as the principle that the fundamental equations of
physics must refer to space-time only through geomet-
ric quantities: that is, quantities that can be defined
purely in terms of the metric. For example, from this
point of view the reason that the notion of absolute
simultaneity is not allowed is that it depends on a priv-
ileged hyperplane through any given point of R3+1.
But there are Lorentz transformations that preserve
the metric and send this hyperplane to another one
through the given point, so nothing in the metric can
pick out one particular hyperplane. Note that if a physi-
cal theory makes use of geometric quantities only, then
it is automatically invariant under Lorentz transfor-
mations: this observation renders many complicated
calculations unnecessary.

Let us explore this geometric point of view further.
Note that nonzero vectors v are naturally classified by
the inner product 〈· , ·〉 into three types, called timelike,
null, and spacelike, according to whether 〈v,v〉 < 0,
〈v,v〉 = 0, or 〈v,v〉 > 0, respectively. Idealized point
particles traverse curves γ through space-time; these
are called the world lines of the corresponding parti-
cles. The postulate (referred to earlier) that speed in
any frame of reference is bounded by the speed of light
c can now be formulated as the following statement: if
γ is the world line of a particle, then the vector dγ/ds
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must be timelike. (Null lines correspond to light rays
in the geometric optics limit of (4).) This statement is
independent of the parameter s ofγ, but for world lines
we shall always assume that dt/ds > 0. To phrase this
more geometrically, 〈dγ/ds, (c−1,0,0,0)〉 < 0, which
we interpret as the statement that γ is future-directed.

We can now define the “length” of the world line of a
particle by

L(γ) =
∫ s2
s1

√
−〈γ̇, γ̇〉ds

=
∫ s2
s1

√
c2

(
dt
ds

)2

−
(

dx
ds

)2

−
(

dy
ds

)2

−
(

dz
ds

)2

ds.

(7)

Classically, the above expression would have been writ-
ten simply as

L(γ) =
∫
γ

√
−(−c2 dt2 + dx2 + dy2 + dz2),

which explains the notation (5). We refer to the quantity
c−1L(γ) as proper time. This is the time that is relevant
in local physical processes; in particular, if you are the
particle traversing the world line γ, then c−1L(γ) is the
time that you will feel.

The metric (5) contains three-dimensional Euclidean
geometry

dx2 + dy2 + dz2,

restricted to t = 0, say. More interestingly, it also
contains non-Euclidean geometry(

1− x
r

)
dx2 +

(
1− y

r

)
dy2 +

(
1− z

r

)
dz2

when it is restricted to the hypersurface t = c−1r =
c−1

√
x2 +y2 + z2. It is hard to overestimate how revo-

lutionary the notion was that the time of physical pro-
cesses (including our very sensations) and the length
of measuring rods are two interdependent aspects of
a geometric structure that naturally lives on a four-
dimensional space-time continuum. Indeed, even Ein-
stein initially rejected Minkowski space-time, prefer-
ring to retain the independent reality of a definite
“space,” albeit a space with a relative notion of simul-
taneity. Only as a result of his search for general rel-
ativity did he realize that this view is fundamentally
untenable. We shall return to this in section 3.

2 Relativistic Dynamics and the Unification
of Energy, Momentum, and Stress

Besides the space-time concept and its geometriza-
tion, the principle of relativity led to a profound

rearrangement and unification of the fundamental con-
cepts of dynamics: mass, energy, and momentum. Ein-
stein’s celebrated relation between mass and energy in
the rest frame,

E0 =mc2, (8)

is the best-known expression of one aspect of this unifi-
cation. This relation arises naturally when one attempts
to generalize Newton’s second law m(dv/dt) = f to a
relation between 4-vectors in Minkowski space.

General relativity has to be formulated in terms of
fields rather than particles. As a first step toward under-
standing it, let us look at continuous media. Now,
instead of particles we consider matter fields; the uni-
fication of dynamical concepts encompasses what is
known as stress, and its complete expression is embod-
ied by the so-called stress–energy–momentum tensor T .
This tensor is fundamental to general relativity, so we
have no choice but to familiarize ourselves with it. It
will be the key to the form of the Einstein equations (1)
as well as to the object on their right-hand side.

For each point q ∈ R3+1, the stress–energy–momen-
tum tensor field T gives us a map

T : R4
q × R4

q → R (9)

defined by the formula

T (w, w̃) =
3∑

α,β=0

Tαβwαw̃β.

Here, Tαβ = Tβα for each α and β. By R4
q we mean the

space of vectors at q. (In Minkowski coordinates, we
often identify R4 with R4

q, but it will be important to dis-
tinguish between the two when considering arbitrary
coordinates in section 3.2.) Bilinear maps of the form
(9) are known as covariant 2-tensors.

If the only matter present is described by what is
known as a perfect fluid, then the components of T are
given by

T00 = (ρ + p)u0u0 − p, T0i = (ρ + p)uiu0,

Tij = (ρ + p)uiuj + pδij,
where u is the 4-velocity, a timelike vector normalized
such that 〈u,u〉 = −c2, ρ is the mass–energy, p is the
pressure, and where δij = 1 if i = j, 0 if i �= j, and i and
j range over 1, 2, 3. Greek indices will range over 0, 1,
2, 3. We identify T00 with energy, T0i with momentum,
and Tij with stress. These notions are clearly frame-
dependent. Finally, observe that T (u,u) = ρc2. This is
the field-theoretic version of the famous equation (8).

In general, T is derived from the totality of all the
matter fields by constitutive functions that depend
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on the nature of the matter fields and their interac-
tions. We need not worry here about such things. But,
regardless of the nature of the matter fields involved,
we always postulate that the following equations are
satisfied:

−∂0T0α +
3∑
i=1

∂iTiα = 0.

Defining ∇0 = −∂0, ∇i = ∂i, and introducing the Ein-
stein summation convention, under which summation
is implicit when an index appears both upstairs and
downstairs, we may rewrite this as

∇µTµν = 0. (10)

These equations are Lorentz invariant.
The above relations embody the conservation of

stress–energy–momentum at a differential level. Inte-
grating (10) between homologous hypersurfaces and
applying the Minkowski-space version of the diver-
gence theorem, one obtains global balance laws. If
one assumes that Tαβ is compactly supported, then,
integrating between t = t1 and t = t2, one obtains∫

t=t2
T0α dx1 dx2 dx3 =

∫
t=t1

T0α dx1 dx2 dx3. (11)

With respect to the chosen Lorentz frame, the zeroth
component of the above equation represents the con-
servation of total energy, while the remaining compo-
nents represent conservation of total momentum.

In the case of a perfect fluid, if we close the sys-
tem (10) by adjoining a conservation law for particle
number

∇α(nuα) = 0

and postulate constitutive relations between ρ, p, par-
ticle number density n, and entropy per particle s,
compatible with the laws of thermodynamics, then we
arrive at the so-called relativistic Euler equations.

3 From Special to General Relativity

With the elements of special relativity at hand, together
with their deep implications for the nature of energy,
momentum, and stress, we can now pass to the formu-
lation of general relativity.

3.1 The Equivalence Principle

Einstein understood as early as 1907 that the most pro-
found aspect of the gravitational force could not be
described within the relativity principle as he had for-
mulated it in 1905. This aspect is what he called the
equivalence principle.

The easiest setting in which to understand this prin-
ciple is that of the “test particle” with velocity v(t) in
a fixed gravitational field φ. In this case, we have that
the classical gravitational force is given by f = −m∇φ,
and we may rewrite Newton’s second lawm(dv/dt) =
f as

dv
dt
= −∇φ. (12)

Notice that the mass m has dropped out! Thus, the
gravitational field accelerates all objects at a given posi-
tion in the same way. This explains the fact, recorded
already in late antiquity by Ioannes Philoponus and
popularized in Western Europe by Galileo, that the
time it takes objects to fall from a given height is
independent of their weight.

It was Einstein who first interpreted this property as
a sort of covariance with respect to transformations
to noninertial, that is to say accelerated, frames. For
instance, in the case of a constant gravitational field,
which corresponds to the case φ(z) = fz, we can pass
to the accelerated frame

z̃ = z + 1
2ft

2

and write (12) as
dv
dt
= 0. (13)

Similarly, one can reverse the argument to “simulate” a
gravitational field when none is present by expressing
(13) in an accelerated frame.

3.2 Vectors, Tensors, and Equations in

General Coordinates

Exactly what the equivalence principle means in gen-
eral is somewhat obscure and has been the subject
of debate ever since Einstein introduced it. Neverthe-
less, the above considerations suggest that, even in the
absence of gravity, it would be useful to know how
various objects and equations appear when expressed
in arbitrary coordinate systems. That is to say, let us
change from our Minkowski coordinates x0, x1, x2, x3

to the most general coordinate system, which we shall
write as x̄µ̄ = x̄µ̄(x0, x1, x2, x3), where µ̄ ranges over
0, 1, 2, 3.

Expressing scalar functions in arbitrary coordinates
poses no problem. But what about vector fields? If v
is a vector field expressed in Minkowski coordinates
as (v0, v1, v2, v3), how do we express v in our new
coordinates x̄µ̄?

One has to think a bit about what a vector field actu-
ally is. The correct point of view is to consider a vec-
tor field v as a first-order differential operator defined
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(using Einstein’s summation convention) by v(f ) =
vµ∂µf . So we seek vµ̄ such that v(f ) = vµ̄∂µ̄f for all
functions f . The chain rule then gives us our answer:

vµ̄ = ∂x̄
µ̄

∂xν
vν. (14)

What about tensors, such as the stress–energy–
momentum tensor T? In view of the definition (9), we
seek Tµ̄ν̄ such that

T (u,v) = Tµ̄ν̄uµ̄vν̄ , (15)

where the numbers uµ̄ are the components of u with
respect to the coordinates x̄µ̄ as we have just calculated
them above. (Note that these components depend on
the pointq. This is why it is now essential to distinguish
R4
q from R4.) Again, the chain rule gives us the answer:

Tµ̄ν̄ = Tµν ∂x
ν

∂x̄ν̄
∂xµ

∂x̄µ̄
.

Classically, we write

T = Tµ̄ν̄ dx̄µ̄ dx̄ν̄ = Tµν dxµ dxν.

One can interpret the above as a shorthand notation for
(15), but it also tells us how to compute Tµ̄ν̄ from Tµν
by formally applying the chain rule to dx̄µ̄ .

There is another covariant symmetric 2-tensor be-
sides T that is relevant here. This is the Minkowski met-
ric itself. Indeed, the classical form of the Minkowski
metric (5) corresponds to the representation

ηµν dxµ dxν,

where the ηµν for Minkowski coordinates xµ are given
by η00 = −1, η0i = 0, ηij = 1 if i = j, and ηij = 0 if
i �= j. To avoid the cumbersome notation 〈· , ·〉, let us
refer to the Minkowski metric as η. Following the above,
we may express η in general coordinates x̄µ̄ by

ηµ̄ν̄ dx̄µ̄ dx̄ν̄ ,

where ηµ̄ν̄ is computed by formal application of the
chain rule.

It is clear that if one tries to transform an equa-
tion such as (10) into general coordinates, then the
components of η and their derivatives will appear in
the equations. Einstein (always thinking “algebraically”)
was seeking laws of motion for both matter and the
gravitational field that would have the same form in
all coordinate systems. As he understood it, this meant
that all objects that appear should transform as ten-
sors and should be considered a priori “unknown.” He
referred to this principle as “general covariance.” This
suggests thatη should be replaced by an unknown sym-
metric 2-tensor. Let us call this 2-tensor g. One can of
course try to write down an equation for the “unknown”

g that forces it to be the “known” Minkowski metric η.
Thus, “general covariance” per se does not force one to
abandon η. But in view of the fact that g and T have
the same number of components, it was a natural step
to consider g as the embodiment of the gravitational
field and to try to look for an equation that related g
and T directly. In this way, the framework of general
relativity was born.

3.3 Lorentzian Geometry

The profound insight of replacing the fixed Minkowski
η with a dynamic g brought Einstein to what we now
call Lorentzian geometry. Lorentzian geometry gener-
alizes Minkowski geometry following the blueprint of
riemann [VI.49]. That is, we replace the Minkowski
metric η by a general map

g : R4
q × R4

q → R.

In other words, we replace η by a symmetric covariant
2-tensor, which is expressed in arbitrary coordinates
xµ by

gµν dxµ dxν.

Moreover, we require that at each point q the bilin-
ear form g(· , ·) can be diagonalized to the Minkowski
form (6). Loosely speaking, a Lorentzian metric is one
that “looks locally like the Minkowski metric,” just as
a riemannian metric [I.3 §6.10] looks locally like the
Euclidean metric.

Just as with the Minkowski metric, the bilinear form
g permits us to classify nonzero vectors vq at a point q
as timelike, null, or spacelike and to define proper times
of world lines γ(s) = (x0(s), x1(s), x2(s), x3(s)) by the
formula (7), but with 〈γ̇, γ̇〉 replaced by gµνẋµẋν . It is
in this sense that we can speak of the geometry of g.

In view of Minkowski’s formulation of the special rel-
ativity principle as the statement that the equations
of physics refer to space-time only through geomet-
ric quantities associated with the Minkowski metric, it
is natural to look for a generalization of this princi-
ple, and indeed a suitable version immediately suggests
itself. It is the principle that the equations of physics
refer to the space-time coordinates only via geometric
quantities naturally associated with g.

The kinematic constraint on “test particles” as
formulated geometrically for the Minkowski metric,
namely that dγ/ds should be timelike, makes sense for
an arbitrary Lorentzian metric. But how does one for-
mulate differential equations? For instance, how does
one formulate an analogue of (10) that refers only to g?
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It turned out that in the Riemannian case, a set of
natural geometric concepts suitable for the task had
already been developed in the nineteenth and early
twentieth centuries by Riemann, Bianchi, Christoffel,
Ricci, and Levi-Civita. These carry over directly to the
Lorentzian case.

One begins by defining the so-called Christoffel sym-
bols Γ λµν by

Γ λµν = 1
2g
λρ(∂µgρν + ∂νgµρ − ∂ρgµν).

Here, the numbers gµν are the components of the
“inverse metric” of g: that is, they are the unique solu-
tion to the equation gµνgνλ = δµλ , where, as usual,
δµλ = 1 if λ = µ and 0 otherwise. (It turns out that gµν

is very useful for the calculational gymnastics that are
typical of tensor analysis when it exploits the Einstein
summation convention.)

One can then define a differential operator ∇µ called
a connection, which acts on vector fields by

∇µvν = ∂µvν + Γ νµλvλ (16)

and on covariant 2-tensors by

∇λTµν = ∂λTµν − Γ σλµTσν − Γ σλνTµσ . (17)

The left-hand sides of (16) and (17) define tensors that
can be expressed in any coordinate system by a formal
application of the chain rule.

With the help of this differential operator, one could
now write the analogue of equations (10) for an arbi-
trary metric g as

∇µTµν = 0, (18)

where ∇µ = gµν∇ν refers to the connection associated
with g.

If we consider a limit as the matter field becomes
concentrated at a point, or rather as the stress–energy–
momentum tensor Tµν is nonzero only on a world line,
then this curve will be a geodesic of g: that is, a
curve that locally maximizes the proper time defined
by g. These are the analogues of straight timelike lines
in Minkowski space. In this limit, the motion of the
matter does not depend on the nature of the stress–
energy–momentum tensor, but only on the geometry
of the metric that defines geodesics. Thus, all objects
fall in the same way. These considerations give a con-
crete realization to the equivalence principle in general
relativity.

Finally, it is important to remark that for a general
metric g, the identity (18) does not imply global conser-
vation laws (11) for “total energy” and “total momen-
tum.” Such laws hold only if g has symmetries. The

fact that the fundamental conservation laws survive in
general only at the infinitesimal level is an important
insight into the nature of these principles in physics.

3.4 Curvature and the Einstein Equations

It remains, then, to give a set of equations for the metric
g that relate it toT . In anticipation of a Newtonian limit,
we expect these equations to be second order, and we
expect them to implement “general covariance” in the
simplest way possible: they should refer to no other
structure but g itself and T .

Again, Riemannian geometry provides ready-made
tensorial objects that are invariantly associated with g.
One can define the Riemann curvature tensor

Rµνλρ dxµ dxν dxλ dxρ

with components given by

Rµνλρ = gµσ (∂ρΓ σνλ − ∂λΓ σνρ + Γ τνλΓ στρ − Γ τνρΓ στλ).
One can also define the Ricci curvature

Rµν dxµ dxν,

a covariant symmetric 2-tensor with components given
by

Rµν = gλρRµνλρ,
and the scalar curvature

R = gµνRµν .
If g were the induced (Riemannian) metric on a 2-
surface in R3, then R would just be twice the Gauss
curvature K. The above expressions should be thought
of as complicated tensorial generalizations of Gauss
curvature to several dimensions.

The final piece of the puzzle for the formulation of
the Einstein equations (1) is provided by the following
constraint that Einstein demanded: whatever the equa-
tion relating the metric and the stress–energy–momen-
tum tensor of matter, (18) (the infinitesimal conser-
vation of stress–energy–momentum) should hold as a
consequence. Now, it turns out that for any metric g,
the so-called Bianchi identities imply that

∇µ(Rµν − 1
2gµνR) = 0. (19)

It is thus natural to postulate a linear relation between
Tµν and the tensor Rµν − 1

2gµνR. The form

Rµν − 1
2gµνR = 8πGc−4Tµν (20)

is then uniquely determined by the requirement that
it should give the correct Newtonian limit when one
makes the identifications

g00 ∼ 1+ 2φ/c2, g0j ∼ 0, gij ∼ (1− 2φ/c2)δij.
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The form (1) corresponds to the usual units G = c = 1.
Note that (1), when written out explicitly, is nonlinear
in the metric components gµν .

Einstein did not stop at the Newtonian limit. By con-
sidering geodesic motion in solutions of the linearized
equations (20), Einstein was able to determine the cor-
rect value for the anomalous precession of the perihe-
lion of Mercury, an effect that Newtonian theory was
unable to explain. Since (20) had no adjustable param-
eters after determining the Newtonian limit, this was
a genuine test of the theory. A few years later the
gravitational “bending” of light was observed. This had
been calculated theoretically in the context of the geo-
metric optics approximation where light rays follow
null geodesics in a fixed space-time background. Post-
Newtonian predictions of (1) have now been verified by
various solar system tests, confirming general relativity
in this regime to a high degree of accuracy.

One special case of (20) is when we postulate that
Tµν = 0. The equations then simplify to

Rµν = 0. (21)

These are known as the vacuum equations. The Min-
kowski metric (5) is a particular solution (but not the
only one!).

The vacuum equations can be derived formally as the
euler–lagrange equations [III.96] corresponding to
the so-called Hilbert Lagrangian:

L(g) =
∫
R
√−g dx0 dx1 dx2 dx3.

(The expression
√−g dx0 dx1 dx2 dx3 denotes the nat-

ural volume form associated with g.) hilbert [VI.63],
who was following closely Einstein’s struggle to formu-
late a theory of gravity with a dynamic metric g, arrived
at his Lagrangian (actually a more general version of
the above yielding the coupled Einstein–Maxwell sys-
tem) very shortly before Einstein obtained the general
equations (20).

Many of the most interesting phenomena that come
from the equations (20) are already present in the vac-
uum case (21). This is somewhat ironic, because it was
the forms of T and (10) that dictated (20). Note, in con-
trast, that in the Newtonian theory (2), the “vacuum”
equations µ = 0 and standard boundary conditions at
infinity implyφ = 0. Thus, the Newtonian theory of the
vacuum is trivial.

The part of the curvature tensor Rµνλρ that is not
forced to vanish from (21) is known as the Weyl cur-
vature. This curvature measures the “tidal” distortion
of families of geodesics. Thus, the “local strength” of

gravitational fields in vacuum regions is related in the
Newtonian limit to the tidal forces on macroscopic test
matter, not the norm of the gravitational force.

3.5 The Manifold Concept

We have been able to get this far without really address-
ing the question of where the metric g is defined. In
passing from the Minkowski metric to a general g,
Einstein did not originally have in mind replacing the
domain R4. But it is clear in the Riemannian case from
the theory of surfaces that the natural object for a
metric to live on is not necessarily R2 but a general
surface. For instance, the metric dθ2 + sinθ dφ2 nat-
urally lives on the sphere S2. In saying this, we are to
understand that one requires several coordinate sys-
tems of the type (θ,φ) to cover all of S2. The n-
dimensional generalization of the object where Rie-
mannian or Lorentzian metrics naturally live is a man-
ifold [I.3 §6.9]. Manifolds are the structures obtained
by consistently smoothly pasting together local coordi-
nate systems.

Thus, general relativity allows the space-time contin-
uum not to be R4 but instead to be a general mani-
fold M, which may very well be topologically inequiv-
alent to R4, just as S2 is inequivalent to R2. We call
the pair (M,g) a Lorentzian manifold. Properly put, the
unknown in the Einstein equations is not just g but the
pair (M,g).

It is interesting that this fundamental fact, namely
that the topology of space-time is not a priori de-
termined by the equations, arises almost as an after-
thought. Moreover, it was a thought that took many
years to be clarified.

3.6 Waves, Gauges, and Hyperbolicity

When written out explicitly in arbitrary coordinates
(try it!), the Einstein equations do not appear to be
of any usual type, such as elliptic (like the poisson
equation [IV.12 §1]), parabolic (like the heat equa-
tion [I.3 §5.4]), or hyperbolic (like the wave equation
[I.3 §5.4]; see [IV.12 §2.5] for more about these differ-
ent classes of PDEs). This is related to the fact that,
given a solution, one can form a “new” solution by com-
posing the old solution with a coordinate transforma-
tion. We can do this for new coordinate systems whose
coordinate transformations differ from the identity
only in a ball. This fact, known as the hole argument,
confused Einstein and his mathematical collaborator
Marcel Grossmann, who were thinking algebraically in
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terms of the form of the equations in coordinates, and
temporarily led them to reject “general covariance.”
The resulting backtracking delayed the final correct for-
mulation of (1) by about two years. The geometric inter-
pretation of the theory immediately suggests the reso-
lution to the dilemma: such solutions are to be consid-
ered “the same” because they are the same from the
point of view of all geometric measurements. In mod-
ern language, a solution to the Einstein vacuum equa-
tions (say) is an equivalence class [I.2 §2.3] of space-
times (M, g), where two space-times are equivalent if
there exists a diffeomorphism φ between them such
that in any open set the metric has the same coordinate
form when one identifies local coordinates by φ.

It turns out that once these conceptual issues are
overcome, the Einstein equations can be viewed as
hyperbolic. The easiest way to do this is to impose a
gauge: that is to say, a certain restriction on the coor-
dinate system. Specifically, one requires the coordinate
functions xα to satisfy the wave equation �gxα = 0,
where the d’Alembertian operator is defined by the
formula

�g = 1√−g ∂µ(
√−ggµν∂ν).

Such coordinates always exist locally and they are tradi-
tionally called harmonic coordinates, although the term
wave coordinates would perhaps be more appropriate.
The Einstein equation can then be written as a system

�ggµν = Nµν({gαβ}, {∂γgαβ}),
where Nµν is a nonlinear expression that is quadratic
in the ∂γgαβ. In view of the Lorentzian signature of
the metric, the above system constitutes what is known
as a second-order nonlinear (but quasilinear) hyperbolic
system.

At this point, it is instructive to make a compari-
son with the Maxwell equations. Suppose we are given
an electric field E and a magnetic field B defined on
Minkowski space. A 4-potential is a vector field A such
that Ei = −∇iA0 − c−1∂tAi, and Bi =

∑3
j,k=1 εijk∂jAk.

(Here ε123 = 1, and εijk is totally antisymmetric, i.e., it
transforms to its negative under permutation of any
two indices.) If one wishes to view A as the fundamen-
tal physical object, then one notices that ifA is replaced
by the field Ã, defined by the formula

Ã = A+ (−c−1∂tψ, ∂1ψ,∂2ψ,∂3ψ),

where ψ is an arbitrary function, then Ã is also a 4-
potential for E and B. One can expect a determined
equation for A only if one imposes further conditions

on it: that is, if one “fixes the gauge.” (The terminol-
ogy “gauge” is originally due to weyl [VI.80].) In the
so-called Lorentz gauge

∇µAµ = 0,

the Maxwell equations can be written

�Aµ = −c−2∂2
t Aµ +

∑
i
∂2
xiAµ = 0,

from which the wave properties are completely man-
ifest. The gauge-symmetric point of view lived on to
later twentieth century glory: the Yang–Mills equations,
which are a nonlinear generalization of the Maxwell
equations with a similar gauge symmetry, are the cen-
tral part of the so-called standard model for particle
physics.

The hyperbolicity property of the Einstein equations
has two important repercussions. The first is that there
should exist gravitational waves. This was noted by Ein-
stein at least as early as 1918, essentially as a result of
a linearized version of the considerations in the above
discussion. The second is that there is a well-posed
initial-value problem [IV.12 §2.4] for the Einstein
equations (1) with the domain-of-dependence property,
when these are coupled with appropriate matter equa-
tions. In particular, this is true in the vacuum case (21).
The proper conceptual framework to formulate the lat-
ter problem took a long time to get right, and was
only completely understood through work of Choquet-
Bruhat and Geroch in the 1950s and 1960s, based on
the fundamental concept of global hyperbolicity due to
Leray. Well-posedness means that one could associate
a unique solution (in the vacuum case, a Lorentzian 4-
manifold (M, g) satisfying (21)) with a suitable notion
of initial data. Of course, “initial data” does not mean
“data at time t = 0,” since the concept of t = 0 is
not geometric. Instead, the data take the form of some
Riemannian 3-manifold (Σ, ḡ) with a symmetric covari-
ant 2-tensor K. The triple (Σ, ḡ, K) has to satisfy the
so-called Einstein constraint equations. But with this
notion, the fundamental problem of general relativity,
despite its revolutionary conceptual structure, is thor-
oughly classical: to determine the relation of the solu-
tion to initial data, that is to say, to determine the future
from knowledge of the “present.” This is the problem
of dynamics.

4 The Dynamics of General Relativity

In this final section we give a taste of our current math-
ematical understanding of the dynamics of the Einstein
equations.
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4.1 Stability of Minkowski Space and the

Nonlinearity of Gravitational Radiation

In any physical theory in which one can formulate the
problem of dynamics, the most basic question is the
stability of the trivial solution. In other words, if we
make a small change to the “initial conditions,” will the
resulting change to the solution be small as well? In the
case of general relativity, this is the question of stabil-
ity of the Minkowski space-time R3+1. This fundamen-
tal result was proven for the vacuum equations (21) in
1993 by Christodoulou and Klainerman.

The proof of the stability of Minkowski space made
it possible to formulate the laws of gravitational radi-
ation rigorously. Gravitational radiation is yet to be
observed directly, but it has been inferred, originally
by Hulse and Taylor, from the energy loss of a binary
system. This work gave them the only Nobel prize
(1993) directly associated with the Einstein equations!
The blueprint for the mathematical formulation of the
radiation problem is based on work of Bondi and later
Penrose. One associates with the space-time (M, g) an
ideal boundary “at infinity,” known as null infinity and
denoted I+. Physically, the points of I+ correspond
to observers who are far away from the isolated self-
gravitating system but who are receiving its signals.
Gravitational radiation can be identified with certain
tensors defined on I+ from rescaled boundary limits of
various geometric quantities. As Christodoulou was to
discover, the laws of gravitational radiation are them-
selves nonlinear, and the nonlinearity is potentially
relevant for observation.

4.2 Black Holes

Perhaps no prediction of general relativity is better
known today than that of black holes.

The story of black holes begins with the so-called
Schwarzschild metric:

−
(

1− 2m
r

)
dt2 +

(
1− 2m

r

)−1

dr2

+ r2(dθ2 + sin2 θ dφ2). (22)

The parameter m here is a positive constant. This is
a solution of the vacuum Einstein equations (21) that
was found in 1916. The original interpretation of (22)
was that it modeled the gravitational field in a vacuum
region outside a star. That is to say, (22) was considered
only in some coordinate range r > R0, for an R0 > 2m,
and the metric was matched at r = R0 to a “static” inte-
rior metric satisfying the coupled Einstein–Euler sys-

tem in the coordinate range r � R0. (This latter metric
is again of the form (22), but withm =m(r) such that
m → 0 as r → 0.)

From the theoretical point of view, a natural problem
poses itself. Suppose we do away with the star alto-
gether and try to consider (22) for all values of r . What
happens then to the metric (22) at r = 2m? In the (r , t)
coordinates, the metric element appears to be singular.
But this turns out to be an illusion! By a simple change
of coordinates, one can easily extend the metric reg-
ularly as a solution of (21) beyond r = 2m. That is,
there exists a manifold M that contains both a region
r > 2m and a region 0 < r < 2m, separated by a reg-
ular (null) hypersurface H+. The metric element (22)
is valid everywhere except on H+, where it must be
rewritten in regular coordinates.

It turns out that the hypersurface H+ can be char-
acterized by an exceptional global property: it defines
the boundary of the region of space-time that can send
signals to null infinity I+, or, in the physical interpreta-
tion, to distant observers. In general, the set of points
that cannot send signals to null infinity I+ is known
as the black hole region of space-time. Thus, the region
0 < r < 2m is the black hole region of M, and H+ is
known as the event horizon.

These issues took a long time to be sorted out,
partly because the language of global Lorentzian geom-
etry was developed long after the original formula-
tion of the Einstein equations. The global geometry of
the extended space-time M was clarified by Synge in
around 1950 and finally by Kruskal in 1960. The name
“black hole” is due to the imaginative physicist John
Wheeler. From their beginnings as a theoretical curios-
ity, black holes have become part of the accepted astro-
physical explanation for a wide variety of phenomena,
and in particular are thought to represent the end-state
for the gravitational collapse of many stars.

4.3 Space-Time Singularities

A second natural problem poses itself in relation to
the Schwarzschild metric (22), now considered in the
region r < 2m of the extended space-time M: what
happens at r = 0?

A computation reveals that as r → 0, the Kretchmann
scalar RµνλρRµνλρ blows up. Since this expression is a
geometric invariant, it follows that, unlike the situation
at r = 2m, the space-time is not regularly extendable
beyond 0. Moreover, timelike geodesics (freely falling
observers in the test particle approximation) entering
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the black hole region reach r = 0 in finite proper time,
so they are “incomplete” in the sense that they can-
not be continued indefinitely. They thus “observe” the
breakdown of the geometry of the space-time metric.
Moreover, macroscopic observers approaching r = 0
are torn apart by the gravitational “tidal forces.”

In the early years of the subject, it was thought that
this seemingly pathological behavior was connected to
the high degree of symmetry of the Schwarzschild met-
ric and that “generic” solutions would not exhibit such
phenomena. That this is not the case was shown by
Penrose’s celebrated incompleteness theorem of 1965.
This states that solutions to the initial-value problem
for the Einstein equations coupled to appropriate mat-
ter will always contain such incomplete timelike or null
geodesics if the initial data hypersurface is noncom-
pact and contains what is known as a closed trapped
surface. The Schwarzschild case may appear to sug-
gest that such incomplete geodesics are associated with
the curvature blowing up. However, the situation can in
fact be very different, as is apparent in the celebrated
Kerr solutions, a remarkable two-parameter family of
solutions to the vacuum equations (21), discovered only
in 1963, which are rotating versions of (22). In the
Kerr solutions, incomplete timelike geodesics meet a
so-called Cauchy horizon, a smooth boundary of the
region of space-time that is uniquely determined by
initial data.

The theorem of Penrose gives rise to two important
conjectures. The first, known as weak cosmic censor-
ship, says roughly that for generic physically plausi-
ble initial data for suitable Einstein-matter systems,
geodesic incompleteness, if it occurs, is always con-
fined to black hole regions. The second, strong cosmic
censorship, says roughly that for generic admissible
initial data, incompleteness of the solution is always
associated with a local obstruction to extendability,
such as the blow-up of curvature. The latter conjecture
would ensure that the unique solution of the initial-
value problem is the only classical space-time that can
arise from the data. That is to say, it would imply that
classical determinism holds for the Einstein equations.

Both conjectures are false if we drop the assumption
that the initial data are generic, and this is one rea-
son for their difficulty. Indeed, Christodoulou has con-
structed spherically symmetric solutions of the cou-
pled Einstein-scalar field system (arising from regular
initial data) that are geodesically incomplete but do not
contain black hole regions. Such space-times are said to
contain naked singularities.

Naked singularities are easy to construct if one does
not require that they arise from the collapse of regu-
lar initial data. An example is the Schwarzschild metric
(22) form < 0. This metric, however, does not admit a
complete asymptotically flat Cauchy hypersurface. This
fact is related to the celebrated positive energy theorem
of Schoen and Yau.

4.4 Cosmology

The space-times (M,g) discussed previously are all
idealized representations of isolated systems. The “rest
of the universe” is excised and replaced by an “asymp-
totically flat end”; far-away observers are placed at an
ideal boundary “at infinity.” But what if we are more
ambitious and consider our space-time (M,g) as rep-
resenting the whole universe? The study of this latter
problem is known as cosmology.

Observations suggest that on very large scales the
universe is approximately homogeneous and isotropic.
This is sometimes known as the Copernican principle.
Interestingly, one cannot solve the Poisson equation (2)
with a constant ∇φ and constant nonzero µ on R4.
Thus, in Newtonian physics, cosmology never became a
rational science.1 General relativity, on the other hand,
does admit homogeneous and isotropic solutions as
well as their perturbations. Indeed, cosmological solu-
tions of the Einstein equations were studied by Einstein
himself, de Sitter, Friedmann, and Lemaitre in the early
years of the subject.

When general relativity was formulated, the prevail-
ing view was that the universe should be static. This
led Einstein to add a term Λgµν to the left-hand side
of his equations, fine-tuned so as to allow for such a
solution. The constant Λ is known as the cosmolog-
ical constant. The expansion of the universe is now
considered to be an observational fact, beginning with
the fundamental discoveries of Hubble. Expanding uni-
verses can be modeled to a first approximation by so-
called Friedmann–Lemaitre solutions to the Einstein–
Euler system, with various values ofΛ. In the past direc-
tion, these solutions are singular: this singular behavior
is often given the suggestive name “the big bang.”

4.5 Future Developments

The plethora of exact solutions of the Einstein equa-
tions gives us a taste of what the qualitative behavior

1. One can study “Newtonian cosmology” by modifying the foun-
dations of the Newtonian theory so as to describe the theory with a
nonmetric connection on, say, T3×R. But this step is of course inspired
by general relativity (see section 3.5).
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of more general solutions may be. But a true qualita-
tive understanding of the nature of general solutions
has been achieved only in a neighborhood of the very
simplest solutions. The question of the stability of the
black hole solutions described above remains unan-
swered, as do the cosmic censorship conjectures and
the nature of the singularities that occur generically in
general relativity. Yet these questions are fundamental
to the physical interpretation of the theory, and indeed
to assessing its very validity.

How likely is it that these questions can ever be
answered by rigorous mathematics? Problems con-
cerning the singular behavior of nonlinear hyperbolic
partial differential equations are notoriously difficult.
The rich geometric structure of the Einstein equations
appears at first as a formidable additional complica-
tion, but it may also turn out to be a blessing. One can
only hope that the Einstein equations will continue to
reveal beautiful mathematical structure that answers
fundamental questions about our physical world.
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IV.14 Dynamics
Bodil Branner

1 Introduction

Dynamical systems are used to describe the way sys-
tems evolve in time, and have their origin in the laws
of nature that newton [VI.14] formulated in Prin-
cipia Mathematica (1687). The associated mathemati-
cal discipline, the theory of dynamics, is closely related
to many parts of mathematics, in particular analy-
sis, topology, measure theory, and combinatorics. It
is also highly influenced and stimulated by problems

from the natural sciences, such as celestial mechan-
ics, hydrodynamics, statistical mechanics, meteorol-
ogy, and other parts of mathematical physics, as well
as reaction chemistry, population dynamics, and eco-
nomics.

Computer simulations and visualizations play an im-
portant role in the development of the theory; they have
changed our views about what should be considered
typical, rather than special and atypical.

There are two main branches of dynamical systems:
continuous and discrete. The main focus of this paper
will be holomorphic dynamics, which concerns dis-
crete dynamical systems of a special kind. These sys-
tems are obtained by taking a holomorphic function
[I.3 §5.6] f defined on the complex numbers and apply-
ing it repeatedly. An important example is when f is a
quadratic polynomial.

1.1 Two Basic Examples

It is interesting to note that both types of dynamical
system, continuous and discrete, can be well illustrated
by examples that date back to Newton.

(i) The N-body problem models the motion in the
solar system of the sun and N − 1 planets, and does so
in terms of differential equations. Each body is repre-
sented by a single point, namely its center of mass, and
the motion is determined by Newton’s universal law
of gravitation—also called the inverse square law. This
says that the gravitational force between two bodies is
proportional to each of their masses and inversely pro-
portional to the square of the distance between them.
Let ri denote the position vector of the ith body,mi its
mass, and g the universal gravitational constant. Then
the force on the ith body due to the jth has magnitude
gmimj/‖rj − ri‖2, and its direction is along the line
from ri to rj . We can work out the total force on the ith
body by adding up all these forces for j �= i. Since a unit
vector in the direction from ri to rj is (rj−ri)/‖rj−ri‖,
we obtain a force of

g
∑
j≠i
mimj

rj − ri
‖rj − ri‖3

.

(There is a cube on the bottom rather than a square
in order to compensate for the magnitude of rj − ri.)
A solution to the N-body problem is a set of differen-
tiable vector functions (r1(t), . . . ,rN(t)), depending on
time t, that satisfy the N differential equations

mir′′i (t) = g
∑
j≠i
mimj

rj(t)− ri(t)
‖rj(t)− ri(t)‖3

,
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which result from Newton’s second law, which states
that force =mass× acceleration.

Newton was able to solve the two-body problem ex-
plicitly. By neglecting the influence of other planets,
he derived the laws formulated by Johannes Kepler,
which describe how each planet moves in an elliptic
orbit around the sun. However, the jump to N > 2
makes an enormous difference to the complication of
the problem: except in very special cases, the system
of equations can no longer be solved explicitly (see
the three-body problem [V.36]). Nevertheless, New-
ton’s equations are of great practical importance when
it comes to guiding satellites and other space missions.

(ii) newton’s method [II.4 §2.3] for solving equa-
tions is quite different and does not involve differen-
tial equations. We consider a differentiable function f
of one real variable and wish to determine a zero of f ,
that is, a solution to the equation f(x) = 0. Newton’s
idea was to define a new function:

Nf (x) = x − f(x)f ′(x)
.

To put this more geometrically, Nf (x) is the x-coordi-
nate of the point where the tangent line to the graph
y = f(x) at the point (x, f (x)) crosses the x-axis.
(If f ′(x) = 0, then this tangent line is horizontal and
Nf (x) is not defined.)

Under many circumstances, if x is close to a zero
of f , then Nf (x) is significantly closer. Therefore, if
we start with some value x0 and form the sequence
obtained by repeated application of Nf , that is, the
sequence x0, x1, x2, . . . , where x1 = Nf (x0), x2 =
Nf (x1), and so on, we can expect that this sequence
will converge to a zero of f . And this is true: if the
initial value x0 is sufficiently close to a zero, then the
sequence does indeed converge toward that zero, and
does so extremely quickly, basically doubling the num-
ber of correct digits in each step. This rapid conver-
gence makes Newton’s method very useful for numeri-
cal computations.

1.2 Continuous Dynamical Systems

We can think of a continuous dynamical system as a sys-
tem of first-order differential equations, which deter-
mine how the system evolves in time. A solution is
called an orbit or trajectory, and is parametrized by
a number t, which one usually thinks of as time, that
takes real values and varies continuously: hence the
name “continuous” dynamical system. A periodic orbit

of period T is a solution that repeats itself after time T ,
but not earlier.

The differential equation x′′(t) = −x(t) is of sec-
ond order, but it is nevertheless a continuous dynam-
ical system because it is equivalent to the system of
two first-order differential equations x′1(t) = x2(t) and
x′2(t) = −x1(t). In a similar way, the system of differ-
ential equations of the N-body problem can be brought
into standard form by introducing new variables. The
equations are equivalent to a system of 6N first-order
differential equations in the variables of the position
vectors ri = (xi1, xi2, xi3) and the velocity vectors
r′i = (yi1, yi2, yi3). Thus, theN-body problem is a good
example of a continuous dynamical system.

In general, if we have a dynamical system consisting
of n equations, then we can write the ith equation in
the form

x′i(t) = fi(x1(t), . . . , xn(t)),

or alternatively we can write all the equations at once
in the form x′(t) = f (x(t)), where x(t) is the vec-
tor (x1(t), . . . , xn(t)) and f = (f1, . . . , fn) is a function
from Rn to Rn. Note that f is assumed not to depend
on t. If it does, then the system can be brought into
standard form by adding the variable xn+1 = t and the
differential equation x′n+1(t) = 1, which increases the
dimension of the system from n to n+ 1.

The simplest systems are linear ones, where f is
a linear map: that is, f (x) is given by Ax for some
constant n×n matrix A. The system above, x′1(t) =
x2(t) and x′2(t) = −x1(t), is an example of a linear
system. Most systems, however, including the one for
the N-body problem, are nonlinear. If the function f
is “nice” (for instance, differentiable), then uniqueness
and existence of solutions are guaranteed for any ini-
tial point x0. That is, there is exactly one solution that
passes through the point x0 at time t = 0. For example,
in the N-body problem there is exactly one solution for
any given set of initial position vectors and initial veloc-
ity vectors. It also follows from uniqueness that any
pair of orbits must either coincide or be totally disjoint.
(Bear in mind that the word “orbit” in this context does
not mean the set of positions of a single point mass,
but rather the evolution of the vector that represents
all the positions and velocities of all the masses.)

Although it is seldom possible to express solutions to
nonlinear systems explicitly, we know that they exist,
and we call the dynamical system deterministic since
solutions are completely determined by their initial
conditions. For a given system and given initial con-
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ditions it is therefore theoretically possible to predict
its entire future evolution.

1.3 Discrete Dynamical Systems

A discrete dynamical system is a system that evolves
in jumps: “time,” in such a system, is best repre-
sented by an integer rather than a real number. A good
example is Newton’s method for solving equations. In
this instance, the sequence of points we saw earlier,
x0, x1, . . . , xk, . . . , where xk = Nf (xk−1), is called the
orbit of x0. We say that it is obtained by iteration of
the function Nf , i.e., by repeated application of the
function.

This idea can easily be generalized to other map-
pings F : X → X, where X could be the real axis,
an interval in the real axis, the plane, a subset of the
plane, or some more complicated space. The impor-
tant thing is that the output F(x) of any input x can
be used as the next input. This guarantees that the
orbit of any x0 in X is defined for all future times.
That is, we can define a sequence, x0, x1, . . . , xk, . . . ,
where xk = F(xk−1) for every k. If the function F
has an inverse F−1, then we can iterate both forwards
and backwards and obtain the full orbit of x0 as the
bi-infinite sequence . . . , x−2, x−1, x0, x1, x2, . . . , where
xk = F(xk−1) and, equivalently, xk−1 = F−1(xk), for all
integer values.

The orbit of x0 is periodic of period k if it repeats
itself after time k, but not earlier, i.e., if xk = x0, but
xj ≠ x0 for j = 1, . . . , k − 1. The orbit is called pre-
periodic if it is eventually periodic, in other words if
there exist 	 � 1 and k � 1 such that x	 is periodic
of period k, but none of the xj for 0 � j < 	 are peri-
odic. The notion of pre-periodicity has no counterpart
in continuous dynamics.

A discrete dynamical system is deterministic, since
the orbit of any given initial point x0 is completely
determined once you know x0.

1.4 Stability

The modern theory of dynamics was greatly influenced
by the work of poincaré [VI.61], and in particular
by his prize-winning memoir on the 3-body problem,
succeeded by three more elaborate volumes on celes-
tial mechanics, all from the late nineteenth century.
The memoir was written in response to a competition
where one of the proposed problems concerned sta-
bility of the solar system. Poincaré introduced the so-
called restricted 3-body problem, where the third body

is assumed to have an infinitely small mass: it does not
influence the motion of the other two bodies but it is
influenced by them. Poincaré’s work became the pre-
lude to topological dynamics, which focuses on topolog-
ical properties of solutions to dynamical systems and
takes a qualitative approach to them.

Of special interest is the long-term behavior of a sys-
tem. A periodic orbit is called stable if all orbits through
points sufficiently close to it stay close to it at all future
times. It is called asymptotically stable if all sufficiently
close orbits approach it as time tends to infinity. Let
us illustrate this by two linear examples in discrete
dynamics. For the real function F(x) = −x, all points
have a periodic orbit: 0 has period 1 and all other x
have period 2. Every orbit is stable, but none is asymp-
totically stable. The real function G(x) = 1

2x has only
one periodic orbit, namely 0. Since G(0) = 0, this orbit
has period 1, and we call it a fixed point. If you take
any number and repeatedly divide it 2, then the result-
ing sequence will approach 0, so the fixed point 0 is
asymptotically stable.

One of the methods introduced by Poincaré during
his study of the 3-body problem was a reduction from
a continuous dynamical system, in dimension n, say,
to an associated discrete dynamical system, a mapping
in dimension n− 1. The idea is as follows. Suppose we
have a periodic orbit of period T > 0 in some continu-
ous system. Choose a point x0 on the orbit and a hyper-
surface Σ through x0, for instance part of a hyperplane,
such that the orbit cuts throughΣ atx0. For any point in
Σ that is sufficiently close to x0, one can follow its orbit
around and see where it next intersects Σ. This defines
a transformation, known as the Poincaré map, which
takes the original point to the next point of intersection
of its orbit with Σ. It follows from the fact that dynam-
ical systems have unique solutions that every Poincaré
map is injective in the neighborhood of x0 (within Σ)
for which the Poincaré map is defined. One can perform
both forwards and backwards iterations. Note that the
periodic orbit of x0 in the continuous system is sta-
ble (respectively, asymptotically stable) exactly when
the fixed point x0 of the Poincaré map in the discrete
system is stable (respectively, asymptotically stable).

1.5 Chaotic Behavior

The notion of chaotic dynamics arose in the 1970s. It
has been used in different settings, and there is no sin-
gle definition that covers all uses of the term. However,
the property that best characterizes chaos is the phe-
nomenon of sensitive dependence on initial conditions.
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Poincaré was the first to observe sensitivity to initial

conditions in his treatment of the 3-body problem.

Instead of describing his observations let us look

at a much simpler example from discrete dynamics.

Take as a dynamical space X the half-open unit inter-

val [0,1), and let F be the function that doubles a num-

ber and reduces it modulo 1. That is, F(x) = 2x when

0 � x < 1
2 and F(x) = 2x − 1 when 1

2 � x < 1. Let x0

be a number in X and let its iterates be x1 = F(x0),
x2 = F(x1), and so on. Then xk is the fractional part of

2kx0. (The fractional part of a real number t is what you

get when you subtract the largest integer less than t.)
A good way to understand the behavior of the se-

quence x0, x1, x2, . . . of iterates is to consider the

binary expansion of x0. Suppose, for example, that this

begins 0.110100010100111 . . . . To double a number

when it is written in binary, all you have to do is shift

every digit to the left (just as one does in the deci-

mal system when multiplying by 10). So 2x0 will have

a binary expansion that begins 1.10100010100111 . . . .
To obtain F(x0), we have to take the fractional part

of this, which we do by subtracting the initial 1. This

gives us x1 = 0.10100010100111 . . . . Repeating the

process we find that x2 = 0.0100010100111 . . . , x3 =
0.100010100111 . . . , and so on. (Notice that when we

calculated x3 from x2 there was no need to subtract 1,

since the first digit after the “decimal point” was a 0.)

Now consider a different choice of initial number, x′0 =
0.110100010110110 . . . . The first nine digits after the

decimal point are the same as the first nine digits of

x0, so x′0 is very close to x0. However, if we apply F
nine times to x0 and x′0, then their respective tenth

digits have shifted leftwards and become the first dig-

its of x9 = 0.00111 . . . and x′9 = 0.10110 . . . . These two

numbers differ by almost 1
2 , so they are not at all close.

In general, if we know x0 to an accuracy of k binary

digits and no more, then after k iterations of the map F
we have lost all information: xk could lie anywhere in

the interval [0,1). Therefore, even though the system is

deterministic, it is impossible to predict its long-term

behavior without knowing x0 with perfect accuracy.

This is true in general: it is impossible to make long-

term predictions in any part of a dynamical system that

shows sensitivity to initial conditions unless the initial

conditions are known exactly. In practical applications

this is never the case. For instance, when applying a

mathematical model to perform weather forecasts, one

does not know the initial conditions exactly, and this is

why reliable long-term forecasting is impossible.

Sensitivity is also important in the notion of so-called

strange attractors. A set A is called an attractor if all

orbits that start in A stay in A and if all orbits through

nearby points get closer and closer to A. In continuous

systems, some simple sets that can be attractors are

equilibrium points, periodic orbits (limit cycles), and

surfaces such as a torus. In contrast to these examples,

strange attractors have both complicated geometry and

complicated dynamics: the geometry is fractal and the

dynamics sensitive. We shall see examples of fractals

later on.

The best-known strange attractor is the Lorenz at-

tractor. In the early 1960s, the meteorologist Edward N.

Lorenz studied a three-dimensional continuous dynam-

ical system that gave a simplified model of heat flow.

While doing so, he noticed that if he restarted his com-

puter with its initial conditions chosen as the output

of an earlier calculation, then the trajectory started to

diverge from the one he had previously observed. The

explanation he found was that the computer used more

precision in its internal calculations than it showed

in its output. For this reason, it was not immediately

apparent that the initial conditions were in fact very

slightly different from before. Because the system was

sensitive, this tiny difference eventually made a much

bigger difference. He coined the poetic phrase “the but-

terfly effect” to describe this phenomenon, suggesting

that a small disturbance such as a butterfly flickering its

wings could in time have a dramatic effect on the long-

term evolution of the weather and trigger a tornado

thousands of miles away. Computer simulations of the

Lorenz system indicate that solutions are attracted to

a complicated set that “looks like” a strange attractor.

The question of whether it actually was one remained

open for a long time. It is not obvious how trustwor-

thy computer simulations are when one is studying

sensitive systems, since the computer rounds off the

numbers in each step. In 1998 Warwick Tucker gave

a computer-assisted proof that the Lorenz attractor

is in fact a strange attractor. He used interval arith-

metic, where numbers are represented by intervals and

estimates can be made precise.

For topological reasons, sensitivity to initial condi-

tions is possible for continuous dynamical systems

only when the dimension is at least 3. For discrete

systems where the map F is injective, the dimension

must be at least 2. However, for noninjective mappings,

sensitivity can occur for one-dimensional systems, as

we saw with the example given earlier. This is one of
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the reasons that discrete one-dimensional dynamical
systems have been intensively studied.

1.6 Structural Stability

Two dynamical systems are said to be topologically
equivalent if there is a homeomorphism (a continuous
map with continuous inverse) that maps the orbits of
one system onto the orbits of the other, and vice versa.
Roughly speaking, this means that there is a continu-
ous change of variables that turns one system into the
other.

As an example, consider the discrete dynamical sys-
tem given by the real quadratic polynomial F(x) =
4x(1 − x). Suppose we were to make the substitution
y = −4x + 2. How could we describe the system in
terms of y? Well, if we apply F , then we change x to
4x(1− x), which means thaty = −4x+2 changes F(x)
to −4F(x)+ 2 = −16x(1− x)+ 2. But

−16x(1− x)+ 2 = 16x2 − 16x + 2

= (−4x + 2)2 − 2

= y2 − 2.

Therefore, the effect of applying the polynomial func-
tion F to x is to apply a different polynomial function
to y , namely Q(y) = y2 − 2. Since the change of vari-
ables from x to −4x + 2 is continuous and invertible,
one says that the functions F and Q are conjugate.

Because F and Q are conjugate, the orbit of any
x0 under F becomes, after the change of variables,
the orbit of the corresponding point y0 = −4x0 + 2
underQ. That is, for every kwe haveyk = −4xk+2. The
two systems are topologically equivalent: if you want to
understand the dynamics of one of them, you can if you
study the other, since its dynamics will be qualitatively
the same.

For continuous dynamical systems the notion of
equivalence is slightly looser in that we allow a homeo-
morphism between two topologically equivalent sys-
tems to map one orbit onto another without respect-
ing the exact time evolution, but for discrete dynami-
cal systems we must demand that the time evolution is
respected as in the example above: in other words, we
insist on conjugacy.

The term dynamical system was coined by Stephen
Smale in the 1960s and has taken off since then. Smale
evolved the theory of robust systems, also named struc-
turally stable systems, a notion that was introduced in
the 1930s by Alexander A. Andronov and Lev S. Pon-
tryagin. A dynamical system is called structurally sta-
ble if all systems sufficiently close to it, belonging to

some specified family of systems, are in fact topolog-
ically equivalent to it. We say that they all have the
same qualitative behavior. An example of the kind of
family one might consider is the set of all real quad-
ratic polynomials of the form x2 + a. This family is
parametrized by a, and the systems close to a given
polynomial x2 + a0 are all the polynomials x2 + a for
which a is close to a0. We shall return to the question
of structural stability when we discuss holomorphic
dynamics later.

If a family of dynamical systems parametrized by a
variable a is not structurally stable, it may still be that
the system with parameter a0 is topologically equiv-
alent to all systems with parameter a in some region
that contains a0. A major goal of research into dynam-
ics is to understand not just the qualitative structure
of each system in the family, but also the structure of
the parameter space, that is, how it is divided up into
such regions of stability. The boundaries that separate
these regions form what is called the bifurcation set :
if a0 belongs to this set, then there will be parameters
a arbitrarily close to a0 for which the corresponding
system has a different qualitative behavior.

A description and classification of structurally stable
systems and a classification of possible bifurcations is
not within reach for general dynamical systems. How-
ever, one of the success stories in the subject, holomor-
phic dynamics, studies a special class of dynamical sys-
tems for which many of these goals have been attained.
It is time to turn our attention to this class.

2 Holomorphic Dynamics

Holomorphic dynamics is the study of discrete dynam-
ical systems where the map to be iterated is a holo-
morphic function [I.3 §5.6] of the complex numbers
[I.3 §1.5]. Complex numbers are typically denoted by z.
In this article, we shall consider iterations of complex
polynomials and rational functions (that is, functions
like (z2+1)/(z3+1) that are ratios of polynomials), but
much of what we shall say about them is true for more
general holomorphic functions, such as exponential
[III.25] and trigonometric [III.94] functions.

Whenever one restricts attention to a special kind
of dynamical system, there will be tools that are spe-
cially adapted to that situation. In holomorphic dynam-
ics these tools come from complex analysis. When we
concentrate on rational functions, there are more spe-
cial tools, and if we restrict further to polynomials, then
there are yet others, as we shall see.
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Why might one be interested in iterating rational

functions? One answer arose in 1879, when cayley

[VI.46] had the idea of trying to find roots of complex

polynomials by extending Newton’s method, which we

discussed in the introduction, from real numbers to

complex numbers. Given any polynomial P , the corre-

sponding Newton function NP is a rational function,

given by the formula

NP(z) = z − P(z)P ′(z)
= zP

′(z)− P(z)
P ′(z)

.

To apply Newton’s method, one iterates this rational

function.

The study of the iteration of rational functions

flourished at the beginning of the twentieth century,

thanks in particular to work of Pierre Fatou and Gas-

ton Julia (who independently obtained many of the

same results). Part of their work concerned the study

of the local behavior of functions in the neighborhoods

of a fixed point. But they were also concerned about

global dynamical properties and were inspired by the

theory of so-called normal families, then recently estab-

lished by Paul Montel. However, research on holomor-

phic dynamics almost came to a stop around 1930,

because the fractal sets that lay behind the results were

so complicated as to be almost beyond imagination.

The research came back to life in around 1980 with the

vastly extended calculating powers of computers, and

in particular the possibility of making sophisticated

graphic visualizations of these fractal sets. Since then,

holomorphic dynamics has attracted a lot of atten-

tion. New techniques continue to be developed and

introduced.

To set the scene, let us start by looking at one of the

simplest of polynomials, namely z2.

2.1 The Quadratic Polynomial z2

The dynamics of the simplest quadratic polynomial,

Q0(z) = z2, plays a fundamental role in the under-

standing of the dynamics of any quadratic polyno-

mial. Moreover, the dynamical behavior of Q0 can be

analyzed and understood completely.

If z = reiθ , then z2 = r2e2iθ , so squaring a complex

number squares its modulus and doubles its argument.

Therefore, the unit circle (the set of complex numbers

of modulus 1) is mapped by Q0 to itself, while a circle

of radius r < 1 is mapped onto a circle closer to the

origin, and a circle of radius r > 1 is mapped onto a

circle farther away.

Let us look more closely at what happens to the

unit circle. A typical point in the circle, eiθ , can be

parametrized by its argument θ, which we can take to

lie in the interval [0,2π). When we square this number,

we obtain e2iθ , which is parametrized by the number

2θ if 2θ < 2π , but if 2θ � 2π , then we subtract 2π so

that the argument, 2θ − 2π , still lies in [0,2π). This is

strongly reminiscent of the dynamical system we con-

sidered in section 1.5. In fact, if we replace the argu-

ment θ by its modified argument θ/2π , which amounts

to writing e2π iθ instead of eiθ , then it becomes exactly

the same system. Therefore, the behavior of z2 on the

unit circle is chaotic.

As for the rest of the complex plane, the origin is an

asymptotically stable fixed point, Q0(0) = 0. For any

point z0 inside the unit circle the iterates zk converge

to 0 as k tends to infinity. For any point z0 outside the

unit circle the distance |zk| between the iterates zk and

the origin tends to infinity as k tends to infinity. The

set of initial points z0 with bounded orbit is equal to

the closed unit disk, i.e., all points for which |z0| � 1.

Its boundary, the unit circle, divides the complex plane

into two domains with qualitatively different dynamical

behavior.

Some orbits of Q0 are periodic. In order to deter-

mine which ones, we first notice that the only possi-

bility outside the unit circle is the fixed point at the ori-

gin, since all other points, when you repeatedly square

them, either get steadily closer and closer to the ori-

gin, or get steadily farther and farther away. So now

let us look at the unit circle, and consider the point

e2π iθ0 , with modified argument θ0. If this point is peri-

odic with period k, we must have 2kθ0 = θ0(mod 1):
that is, (2k − 1)θ0 must be an integer. Because of this,

it is convenient to parametrize a point on the unit circle

by its modified argument. From now on, when we say

“the point θ,” we shall mean the point e2π iθ , and when

we say “argument” we shall mean modified argument.

We have just established that the point θ is peri-

odic with period k only if (2k − 1)θ is an integer. It

follows that there is one point of period 1, namely

θ0 = 0. There are two points of period 2, forming

one orbit, namely 1
3 �→ 2

3 �→ 1
3 . There are six points for

period 3, forming two orbits, namely 1
7 �→ 2

7 �→ 4
7 �→ 1

7

and 3
7 �→ 6

7 �→ 5
7 �→ 3

7 . (At each stage, we double the num-

ber we have, and subtract 1 if that is needed to get us

back into the interval [0,1).) The points of period 4

are fractions with denominator 15, but the converse

is not true: the fractions 3
15 = 1

3 and 6
15 = 2

3 have the
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lower period 2. The periodic points on the unit cir-
cle are dense in the unit circle, meaning that arbitrar-
ily close to any point is a periodic point. This follows
from the observation that all repeating binary expan-
sions, such as 0.1100011000110001100011000 . . . are
periodic, and any finite sequence of 0s and 1s is the
start of a repeating sequence. One can, in fact, show
that the periodic points on the unit circle are exactly
the points whose argument is a fraction p/q in [0,1)
with q odd. Any fraction with even denominator can be
written in the form p/(2	q) for some odd number q.
After 	 iterations, such a fraction will land on a peri-
odic point, so the initial point is pre-periodic. Points
with rational argument in [0,1) have a finite orbit, while
points with irrational argument have an infinite orbit.
The reason for taking modified arguments is now justi-
fied: the behavior of the dynamics depends on whether
θ0 is rational or irrational.

When θ0 is irrational its orbit may or may not be
dense in [0,1). This is another fact that is easy to see
if one considers binary expansions. For instance, a very
special example of a θ0 with a dense orbit is given by
the binary expansion

θ0 = 0.0100011011000001010011100101110111 . . . ,

where one obtains this expansion by simply listing all
finite binary sequences in turn: first the blocks of length
one, 0 and 1, then the blocks of length two, 00, 01, 10,
and 11, and so on. When we iterate, this binary expan-
sion shifts to the left and all possible finite sequences
appear at some time or another at the beginning of
some iterate θk.

2.2 Characterization of Periodic Points

Let z0 be a fixed point of a holomorphic map F . How
do the iterates of points near z0 behave? The answer
depends crucially on a number ρ, called the multiplier
of the fixed point, which is defined to be F ′(z0). To see
why this is relevant, notice that if z is very close to z0,
then F(z) is, to a first-order approximation, equal to
F(z0) + F ′(z0)(z − z0) = z0 + ρ(z − z0). Thus, when
you apply F to a point near z0, its difference from z0

approximately multiplies by ρ. If |ρ| < 1, then nearby
points will get closer to z0, in which case z0 is called
an attracting fixed point. If ρ = 0, then this happens
very quickly and z0 is called super-attracting. If |ρ| > 1,
then nearby points get farther away and z0 is called
repelling. Finally, if |ρ| = 1, then one says that z0 is
indifferent.

If z0 is indifferent, then its multiplier will take the
form ρ = e2π iθ , and near z0 the map F will be approx-
imately a rotation about z0 by an angle of 2πθ. The
behavior of the system depends very much on the pre-
cise value of θ. We call the fixed point rationally or irra-
tionally indifferent if θ is rational or irrational, respec-
tively. The dynamics is not yet completely understood
in all irrational cases.

A periodic point z0 of period kwill be a fixed point of
the kth iterate Fk = F ◦ · · · ◦ F of F . For this reason we
define its multiplier by ρ = (Fk)′(z0). It follows from
the chain rule that

(Fk)′(z0) =
k−1∏
j=0

F ′(zj)

and therefore that the derivative of Fk is the same at all
points of the periodic orbit. This formula also implies
that a super-attracting periodic orbit must contain a
critical point (that is, a point where the derivative of F
is zero): if (Fk)′(z0) = 0, then at least one F ′(zj) must
be 0.

Note that 0 is a super-attracting fixed point of Q0,
and that any periodic orbit of Q0 of period k on the
unit circle has multiplier 2k. All periodic orbits on the
unit circle are therefore repelling.

2.3 A One-Parameter Family of Quadratic

Polynomials

The quadratic polynomial Q0 sits at the center of the
one-parameter family of quadratic polynomials of the
form Qc(z) = z2 + c. (We considered this family ear-
lier, but then z and c were real rather than complex.)
For each fixed complex number c we are interested in
the dynamics of the polynomialQc under iteration. The
reason we do not need to study more general quadratic
polynomials is that they can be brought into this form
by a simple substitution w = az + b, similar to the
substitution in the real example in section 1.6. For any
given quadratic polynomial P we can find exactly one
substitution w = az + b and one c such that

a(P(z))+ b = (az + b)2 + c for all z.

Therefore, if we understand the dynamics of the poly-
nomials Qc , then we understand the dynamics of all
quadratic polynomials.

There are other representative families of quadratic
polynomials that can be useful. One example is the
family Fλ(z) = λz + z2. The substitution w = z + 1

2λ
changes Fλ into Qc , where c = 1

2λ− 1
4λ

2. We shall
return to the expression of c in terms of λ later on. In
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Figure 1 The Riemann sphere.

the family of polynomialsQc , the parameter c = Qc(0)
coincides with the only critical value ofQc in the plane:
as we shall see later, critical orbits play an essential
role in the analysis of the global dynamics. In the fam-
ily of polynomials Fλ the parameter λ is equal to the
multiplier of the fixed point at the origin of Fλ, which
sometimes makes this family more convenient.

2.4 The Riemann Sphere

To understand further the dynamics of polynomials
it is best to regard them as a special case of rational
functions. Since a rational function can sometimes be
infinite, the natural space to consider is not the com-
plex plane C but the extended complex plane, which is
the complex plane together with the point “∞.” This
space is denoted Ĉ = C∪ {∞}. A geometrical picture
(see figure 1) is obtained by identifying the extended
complex plane with the Riemann sphere. This is sim-
ply the unit sphere {(x1, x2, x3) : x2

1 + x2
2 + x2

3 = 1}
in three-dimensional space. Given a number z in the
complex plane, the straight line joining z to the north
pole N = (0,0,1) intersects this sphere in exactly one
place (apart from N itself). This place is the point in
the sphere that is associated with z. Notice that the
bigger |z| is, the closer the associated point is to N . We
therefore regard N as corresponding to the point ∞.

Let us now think of Q0(z) = z2 as a function from
Ĉ to Ĉ. We have seen that 0 is a super-attracting fixed
point of Q0. What about ∞, which is a fixed point as
well? The classification we gave in terms of multipliers
does not work at ∞, but a standard trick in this situa-
tion is to “move”∞ to 0. If one wishes to understand the
behavior of a function f with a fixed point at∞, one can
look instead at the function g(z) = 1/f(1/z), which
has a fixed point at 0 (since 1/f(1/0) = 1/f(∞) =

 

Figure 2 The Douady rabbit. The filled Julia set of Qc0

where c0 is the one root of the polynomial (c2 + c)2 + c
that has positive imaginary part. This corresponds to one
of the three possible c values for which the critical orbit
0 �→ c �→ c2 + c �→ (c2 + c)2 + c = 0 is periodic of period 3.
The critical orbit is marked with three white dots inside the
filled Julia set: 0 in the black, c0 in the light gray, and c2

0+c0

in the gray. The corresponding three attracting basins of
Q3
c0

are marked in black, light gray, and gray, respectively.
The Julia set is the common boundary of the black, light
gray, and gray basins of attraction as well as of Ac0(∞).

1/∞ = 0). When f(z) = z2, g(z) is also z2, so ∞ is
also a super-attracting fixed point of Q0.

In general, if P is any nonconstant polynomial, then
it is natural to define P(∞) to be∞. Applying the above
trick, we obtain a rational function. For example, if
P(z) = z2 + 1, then 1/P(1/z) = z2/(z2 + 1). If P has
degree at least 2, then ∞ is a super-attracting fixed
point.

The connection between Ĉ and rational functions is
expressed by the following fact: a function F : Ĉ → Ĉ

is holomorphic everywhere (with suitable definitions
at ∞) if and only if it is a rational function. This is
not obvious, but is typically proved in a first course
in complex analysis. Among the rational functions, the
polynomials are the ones for which F(∞) = ∞ =
F−1(∞).

A polynomial P of degree d has d− 1 critical points
in the plane (not including ∞). These are the roots of
the derivative P ′, counted with multiplicity. The critical
point at ∞ has multiplicity d− 1, as can again be seen
by looking at the map 1/P(1/z). In particular, quadratic
polynomials have exactly one critical point in the plane.
The degree of a rational function P/Q (where P and Q
have no common roots) is defined to be the maximal
degree of the polynomials P andQ. A rational function
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of degree d has 2d− 2 critical points in Ĉ, as we have

just seen for polynomials.

2.5 Julia Sets of Polynomials

It can be shown that the only invertible holomorphic

maps from C to C are polynomials of degree 1, that is,

functions of the form az + b with a ≠ 0. The dynamical

behavior of these maps is easy to analyze, simple, and

hence not interesting.

From now on, therefore, we shall consider only poly-

nomials P of degree at least 2. For all such polyno-

mials, ∞ is a super-attracting fixed point, from which

it follows that the plane is split into two disjoint sets

with qualitatively different dynamics, one consisting of

points that are attracted to ∞ and the other consist-

ing of points that are not. The attracting basin of ∞,

denoted by AP(∞), consists of all initial points z such

that Pk(z) → ∞ as k → ∞. (Here, Pk(z) stands for the

result of applying P to z k times.) The complement of

AP(∞) is called the filled Julia set, and is denoted by KP .

It can be defined as the set of all points z such that the

sequence z, P(z), P2(z), P3(z), . . . is bounded. (It is not

hard to show that sequences of this kind either tend to

∞ or are bounded.)

The attracting basin of ∞ is an open set and the

filled Julia set is a closed, bounded set (i.e., a com-

pact set [III.9]). The attracting basin of ∞ is always

connected. For this reason the boundary of KP is equal

to the boundary of AP(∞). The common boundary is

called the Julia set of P and is denoted by JP . The

three sets KP , AP(∞), and JP are completely invariant,

i.e., P(KP) = KP = P−1(KP), and so on. If we replace P
by any iterate Pk, then the filled Julia set, the attracting

basin of ∞, and the Julia set of Pk are the same sets as

those of P .

For the polynomial Q0, we showed earlier that the

filled Julia set is the closed unit disk, {z : |z| � 1}; the

attracting basin of ∞ is its complement, {z : |z| > 1};
and the Julia set is the unit circle, {z : |z| = 1}.

The name “filled Julia set” refers to the fact that

KP is equal to JP with all its holes (or, more formally,

the bounded components of its complement) filled in.

The complement of the Julia set is called the Fatou set

and any connected component of it is called a Fatou

component.

Figures 2–6 show different examples of Julia setsNote to PUP: I still
need to send
Dimitri the figures
from this article
(or from The
Companion as a
whole) to see if
any aren’t up to
scratch and need
PUP redrawing. I
will do that this
week.

of quadratic polynomials Qc . For simplicity we set

KQc = Kc , AQc (∞) = Ac(∞), and JQc = Jc . Note that all

 

Figure 3 The Julia set of Q1/4. Every point inside the
Julia set (including the critical point 0) is attracted (under
repeated applications of Q1/4) to the rationally indifferent
fixed point 1

2 with multiplier ρ = 1, which belongs to J1/4.

 

Figure 4 The Julia set of Qc with a so-called Siegel disk
around an irrationally indifferent fixed point of multiplier
ρ = e2π i(

√
5−1)/2. The corresponding c-value is equal to

1
2ρ− 1

4ρ
2. In the Siegel disk, the Fatou component contain-

ing the fixed point, the action of Qc can, after a suitable
change of variables, be expressed as w �→ ρw. The fixed
point is marked and so are some orbits of points in its vicin-
ity. The critical orbit is dense in the boundary of the Siegel
disk.

Julia sets Jc are symmetric around 0, owing to the sym-
metry in the formula: Qc(−z) = Qc(z), which implies
that if a point z belongs to Jc , then so does −z.

2.6 Properties of Julia Sets

In this section we shall list several common properties
of Julia sets. The proofs of these, which are beyond the
scope of this article, mostly depend on the theory of
normal families.
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• The Julia set is the set of points for which the
system displays sensitivity to initial conditions,
i.e., the chaotic subset of the dynamical system.

• The repelling orbits belong to the Julia set and
form a dense subset of the set. That is, any point in
the Julia set can be approximated arbitrarily well
by a repelling point. This is the definition origi-
nally used by Julia. (Of course, the name “Julia set”
was used only later.)

• For any point z in the Julia set, the set of iterated
preimages

⋃∞
k=1 F−k(z) forms a dense subset of

the Julia set. This property is used when one is
making computer pictures of Julia sets.

• In fact, for any point z in Ĉ (with at most one or
two exceptions), the closure of the set of iterated
preimages contains the Julia set.

• For any point z in the Julia set and any neighbor-
hood Uz of z, the iterated images Fk(Uz) cover all
of Ĉ except at most one or two exceptional points.
This property demonstrates an extreme sensitivity
to initial conditions.

• If Ω is a union of Fatou components that is com-
pletely invariant (that is, F(Ω) = Ω = F−1(Ω)),
then the boundary of Ω coincides with the Julia
set. This justifies the definition of the Julia set
of a polynomial as the boundary of the attracting
basin of ∞. Compare also with figure 2, where the
attracting basins of Q3

c0
and Ac0(∞) are examples

of such completely invariant sets.
• The Julia set is either connected or consists of un-PUP: I can confirm

that the caption to
figure 6 and the
text here are not
inconsistent.

countably many connected components. An exam-
ple of the latter is shown in figure 6.

• The Julia set is typically a fractal: when one zooms
in on it, one finds that the complication of the set
is repeated at all scales. It is also self-similar, in the
following sense: for any noncritical point z in the
Julia set, any sufficiently small neighborhood Uz
of z is mapped bijectively onto F(Uz), a neighbor-
hood of F(z). The Julia set in Uz and the Julia set
in F(Uz) look alike.

All but the last two properties can easily be verified
in the example Q0. In this case the exceptional points
are 0 and ∞.

2.7 Böttcher Maps and Potentials

2.7.1 Böttcher Maps

Consider the quadratic polynomial Q−2(z) = z2 − 2.
If z belongs to the interval [−2,2], then z2 belongs to

ψ−2ϕ −2

(a)

(b)

Figure 5 (a) Some equipotentials and external rays R0(θ)
of Q0 in A0(∞), the set of complex numbers of modulus
greater than 1. (b) The corresponding equipotentials and
external raysR−2(θ) of Q−2 in A−2(∞), the set of complex
numbers not in K−2 = J−2 = [−2,2]. The external rays that
are drawn have arguments θ = 1

12p, where p = 0,1, . . . ,11.

the interval [0,4], so Q−2(z) also belongs to the inter-

val [−2,2]. It follows that this interval is contained in

the filled Julia set K−2.

The polynomial Q−2(z) is not topologically equiv-

alent to Q0(w) = w2, but when z is big enough, it

behaves in a similar way, since 2 is small compared
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with z2. We can express this similarity with an appro-
priate holomorphic change of variables. Indeed, sup-
pose that z = w + 1/w. Then when w changes to w2,
z changes to w2 + 1/w2. But this equals

(w + 1/w)2 − 2 = z2 − 2 = Q−2(z).

The reason this does not show that Q0 and Q−2 are
equivalent is that the change of variables cannot be
inverted. However, in a suitable region it can. If z =
w + 1/w, then w2 − wz + 1 = 0. Solving this quad-
ratic equation we find that w = 1

2 (z ±
√
z2 − 4), which

leaves us with the problem of which square root to take.
It can be shown that for one choice |w| < 1 and for the
other choice |w| > 1, as long as z does not lie in the
interval [−2,2]. If we always choose the square root
for which |w| > 1, then it turns out that the resulting
function of z is a continuous function (in fact, holomor-
phic) from the set C \ [−2,2] of complex numbers not
in [−2,2] to the set {w : |w| > 1} of complex numbers
of modulus greater than 1.

Once this is established, it follows that the behavior
of Q−2 on the set C \ [−2,2] is topologically the same
as the behavior of Q0 on the set {w : |w| > 1}. In
particular, points outside C \ [−2,2] have orbits that
tend to infinity under iteration by Q−2. Therefore, the
attracting basin A−2(∞) of Q−2 is C \ [−2,2], and the
filled Julia set K−2 and the Julia set J−2 are both equal
to [−2,2].

Let us write ψ−2(w) for w +1/w. The function ψ−2,
which we used to change variables, maps circles of
radius greater than 1 onto ellipses, and takes radial
lines R0(θ) that consists of all complex numbers of
some given argument θ and modulus greater than 1 to
half-branches of hyperbolas. Since the ratio of ψ−2(w)
to w tends to 1 as w → ∞, each radial line will be the
asymptote of the corresponding hyperbola half-branch
(see figure 5).

It turns out that what we have just done for the
polynomial Q−2 can be done for any quadratic polyno-
mialQc . That is, for sufficiently large complex numbers
there is a holomorphic function, denoted ϕc , called
the Böttcher map, that changes variables in such a way
that Qc turns into Q0, in the sense that ϕc(Qc(z)) =
ϕc(z)2. (The map ψ−2 described above is the inverse
of the Böttcher map in the case c = −2, rather than
the map itself.) After the change of variables, the new
coordinates are called Böttcher coordinates.

More generally, for all monic polynomials P (i.e., poly-
nomials with leading coefficient 1) there is a unique
holomorphic change of variables ϕP that converts P

into the function z �→ zd for large enough z, in the
sense that ϕP(P(z)) = ϕP(z)d, and has the property
that (ϕP(z)/z) → 1 as z → ∞. The inverse of ϕP is
written ψP .

2.7.2 Potentials

As we have noted already, if one repeatedly squares
a complex number z of modulus greater than 1, then
it will escape to infinity. The larger the modulus of z,
the faster the iterates will tend to infinity. If instead
of squaring, one applies a monic polynomial P of
degree d, then for large enough z it is again true
that the iterates z, P(z), P2(z), . . . tend to infinity. It
follows from the formula ϕP(P(z)) = ϕP(z)d that
ϕP(Pk(z)) =ϕP(z)dk . Therefore, the speed at which
the iterates tend to infinity depends not on |z| but
on |ϕP(z)|: the larger the value of |ϕP(z)|, the faster
the convergence. For this reason, the level sets of |ϕP |,
that is, sets of the form {z ∈ C : |ϕP(z)| = r}, are
important.

For many purposes it is useful to look not at the func-
tion ϕP itself but at the function gP(z) = log |ϕP(z)|.
This function is called the potential, or Green’s func-
tion. It has the same level sets as |ϕP(z)|, but has the
advantage that it is a harmonic function [IV.24 §5.1].

Clearly, gP is defined whenever ϕP is defined. But
we can in fact extend the definition of gP to the whole
of the attracting basin AP(∞). Given any z for which
the iterates Pk(z) tend to infinity, one chooses some
k such that ϕP(Pk(z)) is defined and one sets gP(z)
to be d−k log |ϕP(Pk(z))|. Notice that ϕP(Pk+1(z)) =
ϕP(Pk(z))d, so log |ϕP(Pk+1(z))| = d log |ϕP(Pk(z))|,
from which it is easy to deduce that the value of
d−k log |ϕP(Pk(z))| does not depend on the choice
of k.

The level sets of gP are called equipotentials. Notice
that the equipotential of potential gP(z) is mapped
by P onto the equipotential of potential gP(P(z)) =
dgP(z). As we shall see, useful information about the
dynamics of the polynomial P can be deduced from
information about its equipotentials.

If ψP is defined everywhere on the circle Cr of
radius r , for some r > 1, then it maps it to {z :
|ϕP(z)| = r}, which is the equipotential of poten-
tial log r . For large enough r , this equipotential is a
simple closed curve encircling KP , and it shrinks as r
decreases. It is possible for two parts of this curve to
come together so that it forms a figure-of-eight shape
and then splits into two, like an amoeba dividing, but
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Figure 6 The Julia set of a quadratic polynomial Qc
for which the critical point 0 escapes to infinity under
iteration. The Julia set is totally disconnected. The fig-
ure-of-eight-shaped curve with 0 at its intersection point
is the equipotential through 0. The simple closed curve
surrounding it is the equipotential through the critical
value c.

this can happen only if the curve crosses a critical point
of P . Therefore, if all the critical points of P belong to
the filled Julia set KP (as in the example Q−2, where
0 ∈ K−2 = [−2,2]), then it cannot happen. In this case,
the Böttcher mapϕP can be defined on the whole of the
attracting basinAP(∞), and it is a bijection fromAP(∞)
to the attracting basin A0(∞) = {w ∈ C : |w| > 1} of
the polynomial zd. There are equipotentials of poten-
tial t for every t > 0 and they are all simple closed
curves. (Compare with figure 5.) As t approaches 0, the
equipotential of potential t, together with its interior,
forms a shape that gets closer and closer to the filled
Julia set KP . It follows that KP is a connected set, as is
the Julia set JP .

On the other hand, if at least one of the critical points
in the plane belongs to AP(∞), then at a certain point
the image of Cr splits into two or more pieces. In par-
ticular, the equipotential containing the fastest escap-
ing critical point (i.e., the critical point with the high-
est value of the potential gP ) has at least two loops,
as is illustrated in figure 6. The inside of each loop is
mapped by P onto the inside of the equipotential of the
corresponding critical value, which is a simple closed
curve (since the potential of the critical value is greater
than the potential of any critical point). Inside each loop
there must be points from the filled Julia set KP , so this
set must be disconnected. The Böttcher map can always
be defined on the outside of the equipotential of the
fastest escaping critical point and can therefore always
be applied to the fastest escaping critical value.

If Qc is a quadratic polynomial for which 0 escapes
to infinity under iteration, then the filled Julia set turns
out to be totally disconnected, which means that the
connected components of Kc are points. None of these
points is isolated: they can all be obtained as limits of
sequences of other points ofKc . A set which is compact,
totally disconnected, and with no isolated points is
called a cantor set [III.17], since such a set is homeo-
morphic to Cantor’s middle-thirds set. Note that in this
case Kc = Jc . For Qc we have the following dichotomy:
the Julia set Jc is connected if 0 has a bounded orbit,
and it is totally disconnected if 0 escapes to infin-
ity under iteration. We shall return to this dichotomy
when we come to define the Mandelbrot set later in this
article.

2.7.3 External Rays of Polynomials with Connected
Julia Set

We have just obtained information by looking at the
images under ψP of circles of radius greater than 1.
We can obtain complementary information from the
images of radial lines, which cut all these circles at
right angles. If the Julia set is connected, then, as we
saw in the discussion of potentials, the Böttcher map
ϕP is a bijection from the attracting basin AP(∞) to
the attracting basin of zd, which is the complement
{w : |w| > 1} of the closed unit disk. As before, let
R0(θ) denote the half-line that consists of all complex
numbers of argument θ and modulus greater than 1.
Because (ϕP(z)/z) → 1 as z → ∞, the image of R0(θ)
under ψP is a half-infinite curve consisting of points
with arguments getting closer and closer to θ. This
curve is denoted byRP (θ), and is known as the external
ray of argument θ of P . Note thatR0(θ) is the external
ray of argument θ of zd.

One can think of equipotentials as contour lines of
the potential function, and of external rays as the lines
of steepest ascent. Between the two of them, they pro-
vide a parametrization of the attracting basin, just as
modulus and argument provide a parametrization of
{z : |z| > 1}: if you know the potential at a certain
complex number z, and you also know which external
ray it lies on, then you know what z is. Moreover, a ray
of argument θ is mapped by P onto the ray of argu-
ment dθ, just as, when a number z lies on the half-line
R0(θ), then zd lies on the half-line R0(dθ).

We say that an external ray lands if ψP(re2π iθ) con-
verges to a limit as r ↘ 1. If this happens, then the limit
is called the landing point. However, it may happen that
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the end of the ray oscillates so much that there is a con-
tinuum of different limit points. In this case the ray is
nonlanding. It can be shown that all rational rays land.
Since a rational ray is either periodic or pre-periodic
under iteration by P , the landing point of a rational
ray must be either a periodic or a pre-periodic point
in the Julia set. Much of the structure of the Julia set
can be picked up from knowledge about common land-
ing points. In the example illustrated in figure 2, thePUP: Tim confirms

that the figure
does indeed show
what is described
here.

closures of the three Fatou components containing the
critical orbit have one point in common. This point is
a repelling fixed point and the common landing point
of the rays of argument 1

7 , 2
7 , 4

7 . The rays of argument
1
7 and 2

7 are adjacent to the Fatou component contain-
ing the critical value c0. These two arguments will show
up again in the parameter plane and tell us where c0 is
situated.

2.7.4 Local Connectedness

In the example illustrated in figure 5 the inverse of the
Böttcher map (the function ψ−2) is defined on the set
{w : |w| > 1} of all complex numbers w of mod-
ulus greater than 1. However, it can be continuously
extended to a function defined on the larger set {w :
|w| � 1}. If we use the formula ψ−2(w) = w + 1/w,
then we have ψ−2(e2π iθ) = 2 cos(2πθ), which is the
landing point of the external ray R−2(θ). For an arbi-
trary connected filled Julia set KP , we have the fol-
lowing result of Carathéodory: the inverse ψP of the
Böttcher map has a continuous extension from {w :
|w| > 1} to {w : |w| � 1} if and only if KP is locally
connected. To understand what this means, imagine a
set that is shaped like a comb. From any point in this
set to any other point there is a continuous path that
lies in the set, but it is possible for the two points to
be very close and for the shortest path to be very long.
This happens, for example, if the two points are the
ends of neighboring teeth of the comb. A connected
set X is called locally connected if every point has arbi-
trarily small connected neighborhoods. It is possible to
build comb-like sets (with infinitely many teeth) that
contain points for which all connected neighborhoods
have to be large. The filled Julia sets in the examples in
figures 2–5 are locally connected, but there are exam-
ples of filled Julia sets that are not locally connected.
When KP is locally connected, then all external rays
land, and the landing point is a continuous function
of the argument. Under these circumstances, we have a
natural and useful parametrization of the Julia set JP .

2.8 The Mandelbrot Set M

We shall now restrict our attention to quadratic poly-
nomials of the formQc . These are parametrized by the
complex number c, and in this context we shall refer to
the complex plane as the parameter plane, or c-plane.
We would like to understand the family of dynamical
systems that arise when we iterate the polynomialsQc .
Our goal will be to do this by dividing the c-plane into
regions that correspond to polynomials with qualita-
tively the same dynamics. These regions will be sep-
arated by their boundaries, which together form the
so-called bifurcation set. This consists of “unstable”
c-values: that is, values of c for which there are other
values arbitrarily nearby that give rise to qualitatively
different dynamical behavior. In other words, a param-
eter c belongs to the bifurcation set if a small pertur-
bation of c can make an important difference to the
dynamics.

Recall the dichotomy that we stated earlier: the Julia
set Jc is connected if the critical point 0 belongs to
the filled Julia set Kc and is totally disconnected if 0
belongs to the attracting basin Ac(∞). This dichotomy
motivates the following definition: the Mandelbrot set
M consists of the c-values for which Jc is connected.
That is,

M = {c ∈ C | Qkc(0)�∞ as k→∞}.
Since the Julia set represents the chaotic part of the
dynamical system given byQc , the dynamical behavior
is certainly qualitatively affected by whether c belongs
toM or not. We have therefore made a start toward our
goal, but the division of the plane into M and C \ M
is very coarse, and it does not obviously give us the
complete understanding we are looking for.

The important set is in fact not M , but its boundary
∂M , which is illustrated in figure 7. Notice that this set
has a number of “holes” (in fact, infinitely many). The
Mandelbrot set itself is obtained by filling in all these
holes. More precisely, the complement of ∂M consists
of an infinite collection of connected components, of
which one, the outside of the set, stretches off to infin-
ity, while all the others are bounded. The “holes” are
the bounded components.

This definition is similar to the definition of the Julia
set of a polynomial. It is easy to define the filled Julia
set, and the Julia set is then defined as its boundary.
The Julia set provides a lot of structure in the dynam-
ical plane, the z-plane. The Mandelbrot set is similarly
easy to define, and its boundary provides a lot of struc-
ture in the c-plane. Remarkably, even though each Julia
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Figure 7 The boundary ∂M of the Mandelbrot set.

set concerns just one dynamical system, while the Man-
delbrot set concerns an entire family of systems, there
are close analogies between them, as will become clear.

Pioneering work on holomorphic dynamics in general
and quadratic polynomials in particular was carried
out in the early 1980s by Adrien Douady and John H.
Hubbard. They introduced the name “Mandelbrot set”
and proved several results about it. In particular, they
defined a sort of Böttcher map, denoted by ΦM , for the
Mandelbrot set, which is a map from the complement
of the Mandelbrot set to the complement of the closed
unit disk.

The definition of ΦM is actually quite simple: for each
c let ΦM(c) equalϕc(c), whereϕc is the Böttcher map
for the parameter c. However, Douady and Hubbard did
more than merely define ΦM : they proved that it is a
holomorphic bijection with holomorphic inverse.

Once we have ΦM we can make further definitions,
just as we did with the Böttcher map. For instance,
we can define a potential G on the complement of the
Mandelbrot set by setting G(c) = gc(c) = log |ΦM(c)|.
An equipotential is then a level set of ΦM (that is, a
set of the form {c ∈ C : |ΦM(c)| = r} for some
r > 1) and the external ray of argument θ is the set
{c ∈ C : arg(ΦM(c)) = 2πθ} (that is, the inverse image
of a radial lineR0(θ)). The latter is denoted byRM(θ)
and it is asymptotic to the radial line of argument θ. The
rational external rays are known to land (see figure 8).PUP: Tim says that

the caption
adequately
explains what’s
going on and that
all is fine.

It follows from the above that as t approaches zero,
the equipotential of potential t, together with its inte-
rior, gets closer and closer to M : that is, M is the inter-
section of all such sets. Hence,M is a connected, closed,
bounded subset of the plane.

 

Figure 8 Some equipotentials of M and the external rays
of arguments θ of periods 1, 2, 3, and 4. In counterclock-
wise direction the arguments between 0 and 1

2 are 0, 1
15 , 2

15 ,
1
7 , 3

15 , 4
15 , 2

7 , 1
3 , 6

15 , 3
7 , and 7

15 ; and symmetrically in clock-
wise direction they are 1− θ with θ as above. The external
rays of argument 1

7 and 2
7 are landing at the root point of

the hyperbolic component that has c0, the parameter value
of the Douady rabbit in figure 2, as its center. The rays of
argument 3

15 and 4
15 are landing at the root point of the

copy of M shown in figure 9.

2.8.1 J-Stability

As we have mentioned and as figure 7 suggests, the
complement of ∂M has infinitely many connected com-
ponents. These components are of great dynamical sig-
nificance: if c and c′ are two parameters taken from the
same component, then the dynamical systems arising
from Qc and Qc′ can be shown to be essentially the
same. To be precise, they are J-equivalent, which means
that there is a continuous change of variables that con-
verts the dynamics on one Julia set to the dynamics on
the other. If c belongs to the boundary ∂M , then there
are parameter values c′ arbitrarily close to c for which
Qc and Qc′ are not J-equivalent, so ∂M is the “bifurca-
tion set with respect to J-stability.” We shall comment
on the global structural stability later.

2.8.2 Hyperbolic Components

From now on, we shall use the word “component” to
refer to the holes of the Mandelbrot set—that is, to the
bounded components of the complement of ∂M .
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We start by considering the component containing
c = 0, the central component H0. Recall from sec-
tion 2.3 that, after a suitable change of variables, one
can change the polynomial Fλ(z) = λz + z2 into the
polynomial Qc , where the parameters λ and c are
related by the equation c = 1

2λ− 1
4λ

2. The parameter
λ has a dynamical meaning: the origin is a fixed point
of Fλ and λ is its multiplier. This knowledge tells us
that the corresponding Qc has a fixed point of multi-
plier λ; we denote the fixed point by αc . For |λ| < 1 the
fixed point is attracting.

The unit disk {λ : |λ| < 1} corresponds to the central
component H0, and the function that takes a param-
eter c in H0 to the corresponding parameter λ in the
unit disk is called the multiplier map, and is denoted
by ρH0 . Thus, ρH0(c) is the multiplier of the fixed
point αc of the polynomialQc . The multiplier map ρH0

is a holomorphic isomorphism from H0 to the unit
disk. As we have just seen, the inverse map is given by
ρ−1
H0
(λ) = 1

2λ− 1
4λ

2. This map extends continuously to
the unit circle, and thereby gives us a parametrization
of the boundary of the central componentH0 by points
λ of modulus 1. The image of the unit circle under the
map λ �→ 1

2λ− 1
4λ

2 is a cardioid. This explains the heart-PUP: Tim prefers
this sentence as it
is. like shape of the largest part of the Mandelbrot set,

which can be seen in figure 7.
Any quadratic polynomial has two fixed points

counted with multiplicity (in fact, two distinct ones
unless c = 1

4 ). The central componentH0 is character-
ized as the component of c-values for which Qc has an
attracting fixed point. For any c outside the cardioid,
Qc has two repelling fixed points, but it may have an
attracting periodic orbit of a period greater than 1. It is
an important fact that the attracting basin of an attract-
ing periodic orbit always contains a critical orbit. There-
fore, for any quadratic polynomial there can be at most
one attracting periodic orbit.

We call a component H of the Mandelbrot set a
hyperbolic component if, for every parameter c in H ,
the polynomial Qc has an attracting periodic orbit. For
any given hyperbolic component, the periods of the
attracting periodic orbits will be the same. There is
a corresponding multiplier map ρH , from H to the
unit disk, which assigns to each parameter c in H the
multiplier of the attracting periodic orbit. This multi-
plier map is always a holomorphic isomorphism that
extends continuously to the boundary ∂H ofH .

The points ρ−1
H (0) and ρ−1

H (1) are called the center
and the root ofH . The center ofH is the unique c inH
for which the periodic orbit of Qc is super-attracting.

As for the root, if the period of the component is k,
then it will be the landing point for a pair of external
rays of periodic arguments of period k. (For the central
component H0 there is only one ray assigned.) Con-
versely, every external ray with such an argument lands
at the root point of a hyperbolic component of period k.
Thus, the arguments of these rays give addresses to the
hyperbolic components. This can be seen in figure 8,
from which one can read off the mutual positions of all
the components of periods 1–4.

As a consequence of the above, the number of hyper-
bolic components corresponding to a certain period k
can be determined both as the number of roots in the
polynomial Qkc(0) that are not roots in Q	c(0) for some
	 < k and also as the number of pairs of rational
arguments with denominator 2k − 1 that cannot be
expressed with denominator 2	 − 1 for some 	 < k.

For any componentH with center c0 letRM(θ−) and
RM(θ+) be the pair of rays landing at the root point.
Then, in the dynamical plane of Qc0 , the pair of rays
Rc0(θ−) and Rc0(θ+) are adjacent to the Fatou com-
ponent of Qc0 containing c0, and they land at the root
point of that Fatou component.

2.8.3 Structural Stability

Suppose that Qc has a super-attracting periodic orbit
of period k, and let z0 be a point in this orbit. Then
Qkc(z0) = z0, and the derivative of Qkc at z0 is 0. It fol-
lows from the chain rule that there is at least one zi
in the orbit at which the derivative of Qc is 0: that is,
0 belongs to the orbit. Therefore, the center of a hyper-
bolic component cannot be structurally stable, since
the critical orbit of the center-polynomial is finite, but
it is infinite for all nearby polynomials. However, if we
remove from the complex plane not just ∂M but also all
the centers of hyperbolic components, then we obtain
the splitting we have been looking for: any connected
component of the remaining set forms a structurally
stable region. For any pair of parameter values c and c′

in such a component, Qc and Qc′ are conjugate, mean-
ing that there is a continuous change of variables in
the plane that converts the dynamics of one polynomial
into those of the other.

2.8.4 Conjectures

The above discussion raises an obvious question: we
have a good understanding of the hyperbolic compo-
nents of the complement of ∂M , but are there compo-
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nents that are not hyperbolic? The following conjecture

expresses a widely held belief, but it is as yet unproved.

The hyperbolicity conjecture. All the bounded com-

ponents of the complement of ∂M are hyperbolic.

The hyperbolicity conjecture can be stated in greater

generality for rational functions, where it says that

every rational function can be approximated arbitrarily

closely by a hyperbolic rational function. Here, “hyper-

bolic” means that the dynamics is expanding on the

Julia set. We shall not go further into this, but only men-

tion that the dynamics on the Julia set is expanding

for every Qc with c in a hyperbolic component of M ,

and also in the unbounded component, the comple-

ment ofM . The Julia set Jc can in these cases be thought

of as a “strange repeller”: the dynamics is chaotic and

the geometry is fractal (except for c = 0).

The main conjecture about the Mandelbrot set is,

however, the following.

The local connectivity conjecture. The Mandelbrot

set is locally connected.

This conjecture, often referred to as MLC, is impor-

tant for many reasons. To begin with, it is known that

it implies the hyperbolicity conjecture. Second, if M is

locally connected, then ΨM , the inverse of ΦM , which is

a holomorphic bijection from the set outside the closed

unit disk to the complement of the Mandelbrot set, has

a continuous extension to the unit circle, and all exter-

nal rays land in a continuous manner. This would give

us a useful parametrization of ∂M . One can then give

a beautifully simple abstract combinatorial description

of M , despite the fact that ∂M is a complicated fractal.

(Mitsuhiro Shishikura has proved that the hausdorff

dimension [III.17] of ∂M is the maximum possible in

the plane, namely 2.)

2.9 Universality of M

The Mandelbrot set is remarkably ubiquitous. For

example, homeomorphic copies of M appear inside M
itself, as is apparent from figure 9. Inside other fam-

ilies of holomorphic mappings that depend holomor-

phically on some parameter, we again find homeomor-

phic copies of M . For this reason, M is said to be uni-

versal. Douady and Hubbard have captured the rea-

son behind the phenomenon of universality by defin-

ing a notion of a quadratic-like mapping. The kth iter-

ate of a quadratic polynomial is globally a polynomial

 

Figure 9 A copy of M within M . The address of the copy is
given by the arguments of the two external rays that+ land
at the cusp, the root point of the copy. Here the arguments
are 3

15 and 4
15 . Compare with figure 8. The rays are drawn to

indicate where the “decorations” should be cut off in order
to have the bare copy of M .

of degree 2k, but locally it may behave like a quad-

ratic polynomial. The same is true for a rational func-

tion or an iterate of it. By a quadratic-like mapping we

mean a triple (f , V ,W) where V and W are open sim-

ply connected domains (that is, connected open sets

without holes), V̄ ⊂ W , and f is a holomorphic map

that maps V onto W with degree 2. (This means that

every point in W has two preimages, up to multiplic-

ity, in V .) Such a map f has a single critical point ω
in V , and behaves in many ways like a quadratic poly-

nomial. The filled Julia set Kf is defined as the set of

points z in V for which the iterates fk(z) stay in V for

all k � 0. A dichotomy similar to the one for quadratic

polynomials holds for quadratic-like mappings as well:

Kf is connected if and only if the critical point ω is

contained in Kf . For any quadratic-like mapping with a

connected filled Julia set, Douady and Hubbard have

defined a strategy, called straightening, which asso-

ciates with the mapping a unique c-value in M . For a

family of quadratic-like mappings {fλ}λ∈Λ the Mandel-

brot set MΛ is defined as the set of λ for which Kfλ is

connected. We obtain through straightening a mapping

Ξ : MΛ → M , which takes λ to the uniquely associated

c-value.
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In the copy of M shown in figure 9, the “center”
associated with c = 0 in M corresponds to a polyno-
mial Qc0 for which the critical point 0 is periodic of
period 4, and for which a suitable restriction of the
fourth iterate fc0 = Q4

c0
is quadratic-like from V0 to

its image W0. Moreover, there is a neighborhood V0

of c0 in the c-plane such that for any c in V0 the
restriction of fc = Q4

c to V0 is a quadratic-like map
from V0 to its image Wc , and such that the map Ξ is a
homeomorphism from MV0 to M .

The infinitely many copies of M that appear inside
M may suggest that M has a self-similarity property.
However, there is another phenomenon that pulls in
the opposite direction. The c-values for which the crit-
ical point 0 is pre-periodic form a dense subset of ∂M .
If c̃ is one of these special c-values, then there are two
contexts in which one may look at magnifications of
smaller and smaller neighborhoods of c̃: the first is the
Julia set Jc̃ of the polynomial Qc̃ in neighborhoods of
z = c̃, and the second is the Mandelbrot set in neighbor-
hoods of c = c̃. It turns out that the pictures are asymp-
totically similar, which means that the greater the mag-
nification, and the smaller the neighborhood, the more
similar the two pictures become.

This is an extraordinary fact. Indeed, it may even
seem to be impossible, since in any neighborhood of
c̃ the Mandelbrot set contains infinitely many copies
of itself, while the Julia set is known to contain no
such copies. The explanation for the apparent para-
dox is that the copies of the Mandelbrot set get smaller
very quickly as their distance to c̃ decreases. Hence, if
one magnifies a small enough neighborhood, the copies
that are there are practically invisible.

2.10 Newton’s Method Revisited

Let us return briefly to Newton’s method for polyno-
mials. Consider any polynomial P of degree d � 2 that
has only simple roots. Then the Newton function NP is
a rational function of degree d, and each simple root of
P is a super-attracting fixed point of NP . For quadratic
polynomials the number of roots of P coincides with
the number of critical points of NP (since 2d− 2 = 2
when d = 2). For polynomials of degree d > 2 there are
more critical points than the roots can account for.

Cayley considered Newton’s method for quadratic
polynomials with two distinct roots P(z) = (z−r1)(z−
r2). He showed that the function µ(z) = (z − r1)/(z −
r2), which maps the root r1 onto 0 and the root r2

onto ∞, provides a change of variables that turns

NP into the quadratic polynomial Q0 on the Riemann
sphere Ĉ. When one translates the dynamics of Q0 to
the dynamics of Newton’s method one finds that the
unit circle corresponds to the bisector of r1 and r2 and
that all points in the half-plane containing ri, i = 1,2,
are therefore attracted to ri under iteration by NP .

Cayley announced that he would write about New-
ton’s iteration for cubic polynomials. However, it took
about a hundred years before any such paper appeared.
For a cubic polynomial P with three simple roots the
Newton function NP has three super-attracting fixed
points, each of which gives rise to an attracting basin.
The Julia set of NP is the common boundary of these
three basins, and is therefore a complicated fractal set.
Moreover,NP has an extra critical point since 2d−2 = 4
for d = 3. The extra critical point may be attracted to
one of the roots under iteration, or it can have its own
independent behavior. In order to catch the behavior of
all cubic polynomials under Newton’s iteration (except
the one with one root of multiplicity three) it is suffi-
cient to consider the one-parameter family of polyno-
mials Pλ(z) = (z − 1)(z − 1

2 − λ)(z − 1
2 + λ). The extra

critical point for the corresponding Newton function
Nλ then turns out to be at the origin. Suppose that we
associate three colors, for instance red, blue, and green,
with the three roots 1, 1

2+λ, 1
2−λ. We can then color the

λ-plane, which is the parameter plane in this context,
as follows. A parameter value λ is colored red, blue, or
green if the critical point 0 is attracted under iteration
by Nλ to the root of that color. If it is not attracted to
any of the three roots, then we color with a fourth color,
yellow, say. The universality of the Mandelbrot set is
thereby demonstrated: in the λ-plane one can observe
yellow copies of it, which one can explain by showing
that families of suitably restricted iterates of Nλ are
quadratic-like.

3 Concluding Remarks

We have illustrated several results in holomorphic dy-
namics through examples, including the transferring
of definitions and results from the dynamical planes
to the parameter plane. The structures of the filled
Julia sets and the Mandelbrot set are partly under-
stood through analysis of their complements, linked
together via the Böttcher maps ϕc and ΦM . The func-
tions that are used for changing variables in J-stability
and structural stability are examples of so-called quasi-
conformal mappings. This is a concept that was intro-
duced into holomorphic dynamics in the early 1980s by
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Dennis Sullivan. They are indispensable for discussing
change of complex structure, straightening, holomor-
phic motion, surgery, and many other phenomena. The
interested reader is referred to the books listed below.
The first two contain expository papers, the third is
a graduate textbook, and the fourth is a collection of
papers. They all contain many further references.
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IV.15 Operator Algebras
Nigel Higson and John Roe

1 The Beginnings of Operator Theory

We can ask two basic questions about any equation,
or system of equations: is there a solution, and, if
there is, is it unique? Experience with finite systems
of linear equations indicates that the two questions are
interconnected. Consider for instance the equations

2x + 3y − 5z = a,
x − 2y + z = b,

3x +y − 4z = c.
Notice that the left-hand side of the third equation is
the sum of the left-hand sides of the first two. As a
result, no solution to the system exists unless a+b = c.
But if a + b = c, then any solution of the first two
equations is also a solution of the third; and in any
linear system involving more unknowns than equa-
tions, solutions, when they exist, are never unique. In
the present case, if (x,y, z) is a solution, then so is
(x+t,y+t, z+t), for any t. Thus the same phenomenon
(a linear relation among the equations) that prevents

the system from admitting solutions in some cases also
prevents solutions from being unique in other cases.

To make the relation between existence and unique-
ness of solutions more precise, consider a general
system of linear equations of the form

k11u1 + k12u2 + · · · + k1nun = f1,

k21u1 + k22u2 + · · · + k2nun = f2,

...

kn1u1 + kn2u2 + · · · + knnun = fn
consisting of n equations in n unknowns. The scalars
kji form a matrix of coefficients and the problem is to
solve for the ui in terms of the fj . The general theorem
illustrated by our particular numerical example above
is that the number of linear conditions that the fj must
satisfy if a solution is to exist is equal to the number of
arbitrary constants appearing in the general solution
when a solution does exist. To use a more technical
vocabulary, the dimension of the kernel [I.3 §4.1] of
the matrix K = {kji} is equal to the dimension of its
cokernel. In the example, these numbers are both 1.

A little more than a hundred years ago, fredholm
[VI.66] made a study of integral equations of the type

u(y)−
∫
k(y,x)u(x)dx = f(y).

These arose from questions in theoretical physics, and
the problem was to solve for the function u in terms of
the function f . Since an integral can be thought of as a
limit of finite sums, Fredholm’s equation is an infinite-
dimensional counterpart of the finite-dimensional lin-
ear systems considered above, in which vectors with
n components are replaced by functions with values
at infinitely many different points x. (Strictly speaking,
Fredholm’s equation is analogous to a matrix equation
of the type u−Ku = f rather than Ku = f . The altered
form of the left-hand side has no effect on the overall
behavior of the matrix equation, but it does consider-
ably alter the behavior of the integral equation. As we
shall see, Fredholm was fortunate to work with a class
of equations whose behavior mirrors that of matrix
equations very closely.)

A very simple example is

u(y)−
∫ 1

0
u(x)dx = f(y).

To solve this equation, it helps to observe that the quan-
tity

∫ 1
0 u(x)dx, when thought of as a function of y ,

is a constant. Thus in the homogeneous case (f ≡ 0),
the only possible solutions for u(y) are the constant
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functions. On the other hand, for a general function

f , solutions exist if and only if the single linear con-

dition
∫ 1
0 f(y)dy = 0 is satisfied. So in this example

the dimension of the kernel and the dimension of the

cokernel are both 1. Fredholm set out on a systematic

exploration of the analogy between matrix theory and

integral equations that this example suggests. He was

able to prove that, for equations of his type, the dimen-

sions of the kernel and of the cokernel are always finite

and equal.

Fredholm’s work sparked the imagination of hilbert

[VI.63], who made a detailed study of the integral

operators that transform u(y) into
∫
k(y,x)u(x)dx,

in the special case where the real-valued function k
is symmetric, meaning that k(x,y) = k(y,x). The

finite-dimensional counterpart of Hilbert’s theory is the

theory of real symmetric matrices. Now if K is such

a matrix, then a standard result from linear algebra

asserts that there is an orthonormal basis consisting

of eigenvectors [I.3 §4.3] for K, or equivalently that

there is a unitary matrix U such that U−1TU is diago-

nal. (Unitary means that U is invertible and preserves

the lengths of vectors: ‖Uv‖ = ‖v‖ for all vectors v .)

Hilbert obtained an analogous theory for all symmetric

integral operators. He showed that there exist functions

u1(y),u2(y), . . . and real numbers λ1, λ2, . . . such that∫
k(y,x)un(x)dx = λnun(y).

Thus un(y) is an eigenfunction for the integral opera-

tor, with eigenvalue λn.

In most cases it is hard to calculate un and λn
explicitly, but calculation is possible when k(x,y) =
φ(x − y) for some periodic function φ. If the range

of integration is [0,1] and the period of φ is 1, then

the eigenfunctions are cos(2kπy), k = 0,1,2, . . . , and

sin(2kπy), k = 1,2, . . . . In this case, the theory of

fourier series [III.27] tells us that a general function

f(y) on [0,1] can be expanded as the sum of a series∑
(ak cos 2kπy + bk sin 2kπy) of cosines and sines.

Hilbert showed that, in general, there is an analogous

expansion

f(y) =
∑
anun(y)

in terms of the eigenfunctions for any symmetric inte-

gral operator. In other words, the eigenfunctions form

a basis, just as in the finite-dimensional case. Hilbert’s

result is now called the spectral theorem for symmetric

integral operators.

1.1 From Integral Equations to Functional Analysis

Hilbert’s theorem led to an explosion of activity,
since integral operators arise in many different areas
of mathematics (including, for example, the dirich-
let problem [IV.12 §1] in partial differential equa-
tions and the representation theory of compact
groups [IV.9 §3]). It was soon recognized that these
operators are best viewed as linear transformations
on the hilbert space [III.37] of all functions u(y)
such that

∫ |u(y)|2 dy <∞. Such functions are called
square-integrable, and the collection of all of them is
denoted L2[0,1].

With the important concept of Hilbert space avail-
able, it became convenient to examine a much broader
range of operators than the integral operators ini-
tially considered by Fredholm and Hilbert. Since Hilbert
spaces are vector spaces [I.3 §2.3] and metric spaces
[III.58], it made sense to look first at operators from a
Hilbert space to itself that are both linear and continu-
ous: these are usually called bounded linear operators.
The analogue of the symmetry condition k(x,y) =
k(y,x) on integral operators is the condition that a
bounded linear operator T be self-adjoint, which is to
say that 〈Tu,v〉 = 〈u,Tv〉 for all vectors u and v in
the Hilbert space (the angle brackets denote the inner
product). A simple example of a self-adjoint operator
is the multiplication operator by a real-valued function
m(y); this is the operator M defined by the formula
(Mu)(y) = m(y)u(y). (The finite-dimensional coun-
terpart to a multiplication operator is a diagonal matrix
K, which multiplies the jth component of the vector by
the matrix entry kjj .) PUP: repeated ‘j’ is

fine here.

Hilbert’s spectral theorem for symmetric integral
operators tells us that every such operator can be given
a particularly nice form: with respect to a suitable
“basis” of L2[0,1], namely a basis of eigenfunctions,
it will have an infinite diagonal matrix. Moreover, the
basis vectors can be chosen to be orthogonal to each
other. For a general self-adjoint operator, this is not
true. Consider, for instance, the multiplication operator
from L2[0,1] to itself that takes each square-integrable
function u(y) to the function yu(y). This operator
has no eigenvectors [I.3 §4.3], since if λ is an eigen-
value [I.3 §4.3], then we need yu(y) = λu(y) for
every y , which implies that u(y) = 0 for every y not
equal to λ, and hence that

∫ |u(y)|2 dy = 0. However,
this example is not particularly worrying, since a mul-
tiplication operator of this kind is a sort of continuous
analogue of the operator defined by a diagonal matrix.



�

198 IV. Branches of Mathematics

It turns out that if we enlarge our concept of “diagonal”
to include multiplication operators, then all self-adjoint
operators are “diagonalizable,” in the sense that, after a
suitable “change of basis,” they become multiplication
operators.

To make this statement precise, we need the notion
of the spectrum [III.88] of an operator T . This is the set
of complex numbers λ for which the operator T − λI
does not have a bounded inverse (here I is the iden-
tity operator on Hilbert space). In finite dimensions the
spectrum is precisely the set of eigenvalues, but in infi-
nite dimensions this is not always so. Indeed, whereas
every symmetric matrix has at least one eigenvalue, a
self-adjoint operator, as we have just seen, need not.
As a result of this, the spectral theorem for bounded
self-adjoint operators is phrased not in terms of eigen-
values but in terms of the spectrum. One way of for-
mulating it is to state that any self-adjoint operator
T is unitarily equivalent to a multiplication operator
(Mu)(y) =m(y)u(y), where the closure of the range
of the function m(y) is the spectrum of T . Just as in
the finite-dimensional case, a unitary is an invertible
operator U that preserves the lengths of vectors. To
say that T and M are unitarily equivalent is to say that
there is some unitary map U , which we can think of as
an analogue of a change-of-basis matrix, such that T =
U−1MU . This generalizes the statement that any realPUP: ‘generalizes’

definitely better
than ‘generalizes
to’ here.

symmetric matrix is unitarily equivalent to a diagonal
matrix with the eigenvalues along the diagonal.

1.2 The Mean Ergodic Theorem

A beautiful application of the spectral theorem was
found by von neumann [VI.91]. Imagine a checker-
board on which are distributed a certain number of
checkers. Imagine that for each square there is des-
ignated a “successor” square (in such a way that no
two squares have the same successor), and that every
minute the checkers are rearranged by moving each one
to its successor square. Now focus attention on a single
square and each minute record with a 1 or 0 whether
or not there is a piece on the square. This produces a
succession of readings R1, R2, R3, . . . like this:

00100110010110100100 · · · .
We might expect that over time, the average number
of positive readings Rj = 1 will converge to the num-
ber of pieces on the board divided by the number of
squares. If the rearrangement rule is not complicated
enough, then this will not happen. For example, in the
most extreme case, if the rule designates each square

as its own successor, then the readout will be either
00000 · · · or 111111 · · · , depending on whether or not
we chose a square with a piece on it to begin with. But if
the rule is sufficiently complicated, then the “time aver-
age” (1/n)

∑n
j=1 Rj will indeed converge to the num-

ber of pieces on the board divided by the number of
squares, as expected.

The checkerboard example is elementary, since in
fact the only “sufficiently complicated” rules in this
finite case are cyclic permutations of the squares of the
board, and thus all the squares move past our obser-
vation post in succession. However, there are related
examples where one observes only a small fraction of
the data. For instance, replace the set of squares on a
checkerboard with the set of points on a circle, and in
place of the checkers, imagine that a subset S of a cir-
cle is marked as occupied. Let the rearrangement rule
be the rotation of points on the circle through some
irrational number of degrees. Stationed at a point x of
the circle, we record whether x belongs to S, the first
rotated copy of S, the second rotated copy of S, and
so on to obtain a sequence of 0 or 1 readings as before.
One can show that (for nearly every x) the time average
of our observations will converge to the proportion of
the circle occupied by S.

Similar questions about the relationship between
time and space averages had arisen in thermodynamics
and elsewhere, and the expectation that time and space
averages should agree when the rearrangement rule
is sufficiently complex became known as the ergodic
hypothesis.

Von Neumann brought operator theory to bear on
this question in the following way. Let H be the Hilbert
space of functions on the squares of the checkerboard,
or the Hilbert space of square-integrable functions on
the circle. The rearrangement rule gives rise to a unitary
operator U on H by means of the formula

(Uf)(y) = f(φ−1(y)),

where φ is the function describing the rearrangement.
Von Neumann’s ergodic theorem asserts that if no non-
constant function in H is fixed by U (this is one way
of saying that the rearrangement rule is “sufficiently
complicated”), then, for every function f ∈ H, the limit

lim
n→∞

1
n

n∑
j=1

Ujf

exists and is equal to the constant function whose value
everywhere is the average value of f . (To apply this to
our examples, take f(x) to be the function that is 1 if
the point x is occupied and 0 otherwise.)
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Von Neumann’s theorem can be deduced from a spec-
tral theorem for unitary operators that is analogous to
the spectral theorem for self-adjoint operators. Every
unitary operator can be reduced to a multiplication
operator, not by real-valued functions but by functions
whose values are complex numbers of absolute value 1.
The key to the proof then becomes a statement about
complex numbers of absolute value 1: if z is such a
complex number, different from 1, then the expression
(1/n)

∑n
j=1 zj approaches zero as n → ∞. This in turn

is easily proved using the formula for the sum of a geo-
metric series,

∑n
j=1 zj = z(1− zn)/(1− z). (More detail

can be found in ergodic theorems [V.11].)

1.3 Operators and Quantum Theory

Von Neumann realized that Hilbert spaces and their
operators provide the correct mathematical tools to
formalize the laws of quantum mechanics, introduced
in the 1920s by Heisenberg and Schrödinger.

The state of a physical system at any given instant
is the list of all the information needed to determine
its future behavior. If, for instance, the system con-
sists of a finite number of particles, then classically its
state consists of the list of the position and momen-
tum vectors of all the constituent particles. By contrast,
in von Neumann’s formulation of quantum mechan-
ics one associates with each physical system a Hilbert
space H, and a state of the system is represented by a
unit vector u in H. (If u and v are unit vectors and v
is a scalar multiple of u, then u and v determine the
same state.)

Associated with each observable quantity (perhaps
the total energy of the system, or the momentum of one
particle within the system) is a self-adjoint operator Q
on H whose spectrum is the set of all observed values
of that quantity (hence the origin of the term “spec-
trum”). States and observables are related as follows:
when a system is in the state described by a unit vector
u ∈ H, the expected value of the observable quantity
corresponding to a given self-adjoint operator Q is the
inner product 〈Qu,u〉. This may not be a value that
is ever actually measured: rather, it is the average of
values that are obtained from many repeated experi-
ments with the system when it is in the given state u.
The relation between states and observables reflects
the paradoxical behavior of quantum mechanics: it is
possible, and in fact typical, for a system to exist in
a “superposed” state, under which repeated identical
experiments produce distinct outcomes. A measure-

ment of an observable quantity will produce a deter-
minate outcome if and only if the state of the system
is an eigenvector for the operator associated with that
quantity.

A distinctive feature of quantum theory is that the
operators associated with different observables typi-
cally do not commute with one another. If two oper-
ators do not commute, then they will typically have no
eigenvectors in common, and, as a result, simultaneous
measurements of two different observables will typi-
cally not result in determinate values for both of them.
A famous example is provided by the operators P and
Q associated with the position and momentum of a par-
ticle moving along a line. They satisfy the Heisenberg
commutation relation

QP − PQ = i�I,

where � is a certain physical constant. (This is an in-
stance of a general principle which relates the non-
commutativity of observables in quantum mechanics
to the Poisson bracket of the corresponding observ-
ables in classical mechanics: see mirror symmetry
[IV.16 §§2.1.3, 2.2.1].) As a result, it is impossible for the
particle simultaneously to have a determinate momen-
tum and position. This is the uncertainty principle.

It turns out that there is an essentially unique
way of representing the Heisenberg commutation rela-
tion using self-adjoint operators on Hilbert space: the
Hilbert space H must be L2(R); the operator P must be
−i� d/dx; and the operator Q must be multiplication
by x. This theorem allows one to determine explicitly
the observable operators for simple physical systems.
For example, in a system consisting of a particle on a
line subject to a force directed toward the origin which
is proportional to the distance from the origin (as if
the particle were attached to a spring, anchored at the
origin), the operator for total energy is

E = − �2

2m
d2

dx2
+ k

2
x2,

where k is a constant which determines the overall
strength of the force. The spectrum of this operator
is the set

{(n+ 1
2 )�(k/m)

1/2 : n = 0,1,2, . . . }.
These are therefore the possible values for the total
energy of the system. Notice that the energy can
assume only a discrete set of values. This is another
characteristic and fundamental feature of quantum
theory.

Another important example is the operator of total
energy for the hydrogen atom. Like the operator above,
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this may be realized as a certain explicit partial dif-
ferential operator. It can be shown that the eigen-
values of this operator form a sequence proportional
to {−1,− 1

4 ,− 1
9 , . . . }. A hydrogen atom, when disturbed,

may release a photon, resulting in a drop in its total
energy. The released photon will have energy equal to
the difference between the energies of the initial and
final states of the atom, and therefore it is propor-
tional to a number of the form 1/n2 − 1/m2. When
light from hydrogen is passed through a prism or
diffraction grating, bright lines are indeed observed at
wavelengths corresponding to these possible energies.
Spectral observations of this sort provide experimental
confirmation for quantum mechanical predictions.

So far we have discussed states of a quantum sys-
tem only at a single instant. However, quantum systems
evolve in time, just as classical systems do: to describe
this evolution we need a law of motion. The time evo-
lution of a quantum system is represented by a family
of unitary operators Ut : H → H, parametrized by the
real numbers. If the system is in an initial state u, it
will be in the state Utu after t units of time. Because
the passage of s units of time followed by t further
units is the same as the passage of s + t units, the uni-
tary operators Ut satisfy the group law UsUt = Us+t .
An important theorem of Marshall Stone asserts that
there is a one-to-one correspondence between unitary
groups {Ut} and self-adjoint operators E given by the
formula

iE =
(

dUt
dt

)
t=0
= lim
t→0

1
t
(Ut − I).

The quantum law of motion is that the generator E cor-
responding in this way to time evolution is the opera-
tor associated with the observable “total energy.” When
E is realized as a differential operator on a Hilbert
space of functions (as in the examples above), this state-
ment becomes a differential equation, the Schrödinger
equation.

1.4 The GNS Construction

The time-evolution operatorsUt of quantum mechanics
satisfy the law UsUt = Us+t . More generally, we define
a unitary representation of a group [I.3 §2.1] G to be a
family of unitary operators Ug , one for each g ∈ G, sat-
isfying the law Ug1g2 = Ug1Ug2 for all g1, g2 ∈ G. Origi-
nally introduced by frobenius [VI.58] as a tool for the
study of finite groups, representation theory [IV.9]
has become indispensable in mathematics and physics
wherever the symmetries of a system must be taken
into account.

If U is a unitary representation ofG and v is a vector,
then σ : g �→ 〈Ugv,v〉 is a function defined on G. The
law Ug1g2 = Ug1Ug2 implies that σ has an important
positivity property, namely∑

g1,g2∈G
ag1 ag2σ(g

−1
1 g2) =

∥∥∥∑agUgv∥∥∥2
� 0,

for any scalars ag ∈ C. A function defined on G and
having this positivity property is said to be positive
definite. Conversely, from a positive-definite function
one can build a unitary representation. This GNS con-
struction (in honor of Israel Gelfand, Mark Naimark,
and Irving Segal) begins by considering the group ele-
ments themselves as basis vectors in an abstract vector
space. We can attempt to define an inner product on
this vector space by means of the formula

〈g1, g2〉 = σ(g−1
1 g2).

The resulting object may differ from a genuine Hilbert
space in two respects. First, there may be nonzero vec-
tors whose length, as measured by the inner product, is
zero (although the hypothesis thatσ is positive definite
does rule out the possibility that there might be vectors
of negative length). Second, the completeness axiom
[III.64] of Hilbert space theory may not be satisfied.
However, there is a “completion” procedure which fixes
both these deficiencies. Applied in the present case,
it produces a Hilbert space Hσ that carries a unitary
representation of G.

Versions of the GNS construction arise in several
areas of mathematics. They have the advantage that
the functions on which the constructions are based are
easy to manipulate. For instance, convex combinations
of positive-definite functions are again positive defi-
nite, and this allows geometrical methods to be applied
to the study of representations.

1.5 Determinants and Traces

The original works of Fredholm and Hilbert borrowed
heavily from traditional concepts of linear algebra, and
in particular the theory of determinants [III.15]. In
view of the complicated definition of the determinant
even for finite matrices, it is perhaps not surprising that
the infinite-dimensional situation presented extraordi-
nary challenges. Very soon, much simpler alternative
approaches were found that avoided determinants alto-
gether. But it is interesting to note that the determinant,
or to be more exact the related notion of the trace, has
played an important role in recent developments on
which we will report later in this article.
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The trace of an n×n matrix is the sum of its diag-
onal entries. As with the determinant, the trace of a
matrix A is equal to the trace of BAB−1 for any invert-
ible matrix B. In fact, the trace is related to the determi-
nant by the formula det(exp(A)) = exp(tr(A)) (because
of the invariance properties of trace and determinant,
it is enough to check this for diagonal matrices, where
it is easy). In infinite dimensions the trace need not
make sense since the sum of the diagonal entries of
an ∞×∞ matrix may not converge. (The trace of the
identity operator is a case in point: the diagonal entries
are all 1, and if there are infinitely many of them, then
their sum is not well-defined.) One way to address this
problem is to limit oneself to operators for which the
sum is well-defined. An operator T is said to be of
trace class if, for every two sequences {uj} and {vj}
of pairwise orthogonal vectors of length 1, the sum∑∞
j=1〈Tuj, vj〉 is absolutely convergent. A trace-class

operator T has a well-defined and finite trace, namely
the sum

∑∞
j=1〈Tuj,uj〉 (which is independent of the

choice of orthonormal basis {uj}).
Integral operators such as those appearing in Fred-

holm’s equation provide natural examples of trace-
class operators. If k(y,x) is a smooth function, then
the operator Tu(y) = ∫ k(y,x)u(x)dx is of trace
class, and its trace is equal to

∫
k(x,x)dx, which can

be regarded as the “sum” of the diagonal elements of
the “continuous matrix” k.

2 Von Neumann Algebras

The commutant of a set S of bounded linear operators
on a Hilbert spaceH is the collection S′ of all operators
onH that commute with every operator in the set S. The
commutant of any set is an algebra of operators on H.
That is, if T1 and T2 are in the commutant, then so are
T1T2 and any linear combination a1T1 + a2T2.

As mentioned in the previous section, a unitary rep-
resentation of a group G on a Hilbert space H is a col-
lection of unitary operators Ug , labeled by elements of
G, with the property that for any two group elements
g1 and g2 the composition Ug1Ug2 is equal to Ug1g2 .
A von Neumann algebra is any algebra of operators
on a complex Hilbert space H which is the commu-
tant of some unitary representation of a group on H.
Every von Neumann algebra is closed under adjoints
and under limits of nearly every sort. For example, it is
closed under pointwise limits: if {Tn} is a sequence of
operators in a von Neumann algebra M , and if Tnv →
Tv , for every vector v ∈ H, then T ∈ M .

It is easy to check that every von Neumann algebra
M is equal to its own double commutant M′′ (the com-
mutant of the commutant ofM). Von Neumann proved
that if a self-adjoint algebra M of operators is closed
under pointwise limits, then M is equal to the commu-
tant of the group of unitary operators in its commutant,
and is therefore a von Neumann algebra.

2.1 Decomposing Representations

Let g → Ug be a unitary representation of a group G
on a Hilbert space H. If a closed subspace H0 of H
is mapped into itself by all the operators Ug , then it PUP: ‘into’ is

correct here.
is said to be an invariant subspace for the representa-
tion. IfH0 is invariant, then since the operators Ug map
H0 to itself, their restrictions to H0 constitute another
representation of G, called a subrepresentation of the
original.

A subspace H0 is invariant for a representation, and
so determines a subrepresentation, if and only if the
orthogonal projection operator P : H → H0 belongs
to the commutant of that representation. This points
to a close connection between subrepresentations and
von Neumann algebras. In fact, von Neumann algebra
theory can be thought of as the study of the ways in
which unitary representations can be decomposed into
subrepresentations.

A representation is irreducible if it has no nontriv-
ial invariant subspace. A representation that does have
a nontrivial invariant subspace H0 can be divided into
two subrepresentations: those associated with H0 and
those associated with its orthogonal complement H⊥0 .
Unless both the representations H0 and H⊥0 are irre-
ducible, we will be able to divide one or both of them
into still smaller pieces by repeating the process that
was just carried out for H. If the initial Hilbert space
H is finite dimensional, then continuing in this way we
will eventually decompose it into irreducible subrepre-
sentations. In the language of matrices, we will obtain
a basis for H with respect to which all the operators in
the group are simultaneously block diagonal, in such a
way that each block represents an irreducible group of
unitary operators on a smaller Hilbert space.

Reducing a unitary representation on a finite-dimen-
sional Hilbert space into irreducible subrepresenta-
tions is a bit like decomposing an integer into a prod-
uct of prime factors. As with prime factorization, the
decomposition process for a finite-dimensional unitary
representation has only one possible end: there is, up
to ordering, a unique list of irreducible representa-
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tions into which a given unitary representation decom-
poses. But in infinite dimensions the decomposition
process faces a number of difficulties, the most surpris-
ing of which is that there may be two decompositions
of the same representation into entirely different sets
of irreducible subrepresentations.

In the face of this, a different form of decomposi-
tion suggests itself, which is roughly analogous to the
factorization of an integer into prime powers instead
of individual primes. Let us refer to the prime powers
into which an integer is decomposed as its components.
They have two characteristic properties: no two com-
ponents share a common factor, and any two (proper)
factors of the same component do share a common
factor. Similarly, one can decompose a unitary repre-
sentation into isotypical components, which have analo-
gous properties: no two distinct isotypical components
share a common (meaning isomorphic) subrepresen-
tation, and any two subrepresentations of the same
isotypical component have themselves a common sub-
subrepresentation. Any unitary representation (finite
dimensional or not) can be decomposed into isotypical
components, and this decomposition is unique.

In finite dimensions, every isotypical representation
decomposes into a (finite) number of identical irre-
ducible subrepresentations (like the prime factors of
a prime power). In infinite dimensions this is not so.
In effect, much of von Neumann algebra theory is
concerned with analyzing the many possibilities that
arise.

2.2 Factors

The commutant of an isotypical unitary representation
is called a factor. Concretely, a factor is a von Neu-
mann algebraM whose center, the set of all operators in
M that commute with every member of M , consists of
nothing more than scalar multiples of the identity oper-
ator. This is because projections in the center ofM cor-
respond to projections onto combinations of isotypical
subrepresentations. Every von Neumann algebra can be
uniquely decomposed into factors.

A factor is said to be of type I if it arises as the com-
mutant of an isotypical representation that is a multi-
ple of a single irreducible representation. Every type I
factor is isomorphic to the algebra of all bounded oper-
ators on a Hilbert space. In finite dimensions, every fac-
tor is of type I, since as we already noted every isotyp-
ical representation decomposes into a multiple of one
irreducible representation.

The existence of unitary representations with more
than one decomposition into irreducible components is
related to the existence of factors that are not of type I.
Von Neumann, together with Francis Murray, investi-
gated this possibility in a series of papers that mark
the foundation of operator algebra theory. They intro-
duced an order structure on the collection of subrep-
resentations of a given isotypical representation or, to
put it in terms of the commutant, on the collection of
projections in a given factor. If H0 and H1 are subrep-
resentations of the isotypical representation H, then
we write H0 � H1 if H0 is isomorphic to a subrepre-
sentation of H1. Murray and von Neumann proved that
this is a total ordering: either H0 � H1; or H1 � H0;
or both, in which case H0 and H1 are isomorphic. For
example, in a finite-dimensional type I situation, where
H is a multiple of n copies of a single irreducible repre-
sentation, each subrepresentation is the sum ofm � n
copies of the irreducible representation, and the order
structure of the (isomorphism classes of) subrepresen-
tations is the same as the order structure of the integers
{0,1, . . . , n}.

Murray and von Neumann showed that the only order
structures that can arise from factors are the following
very simple ones:

Type I, {0,1,2, . . . , n} or {0,1,2, . . . ,∞};
Type II, [0,1] or [0,∞];
Type III, {0,∞}.

The type of a factor is determined from the order
structure of its projections according to this table.

In the case of factors of type II, the order structure
is that of an interval of real numbers, not integers.
Any subrepresentation of an isotypical representation
of type II can be divided into yet smaller subrepresenta-
tions: we shall never reach an irreducible “atom.” Nev-
ertheless, subrepresentations can still be compared in
size by means of the “real-valued dimension” provided
by Murray and von Neumann’s theorem.

A notable example of a factor of type II may be
obtained as follows. LetG be a group and letH = 	2(G)
be a Hilbert space having basis vectors [g] correspond-
ing to the elements g ∈ G. Then there is a natural rep-
resentation of G on H derived from the group multi-
plication law, called the regular representation: given
an element g of G, the corresponding unitary map Ug
is the linear operator that takes each basis vector [g′]
in 	2(G) to the basis vector [gg′]. The commutant of
this representation is a von Neumann algebra M . If G
is a commutative group, then all the operators Ug are
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in the center of M ; but if G is far enough from com-
mutativity (for instance, if it is a free group), then M
will have trivial center and will therefore be a factor.
It can be shown that this factor is of type II. There is
a simple explicit formula for the real-valued dimension
of a subrepresentation corresponding to an orthogonal
projection P ∈ M . Represent P by an infinite matrix rel-
ative to the basis {[g]} ofH. Because P commutes with
the representation, it is easy to see that the diagonal
elements of P are all the same, equal to some real num-
ber between 0 and 1. This real number is the dimension
of the subrepresentation corresponding to P .

More recently, the Murray–von Neumann dimension
theory has found unexpected applications in topology
[I.3 §6.4]. Many important topological concepts, such
as Betti numbers, are defined as the (integer-valued)
dimensions of certain vector spaces. Using von Neu-
mann algebras, one can define real-valued counterparts
of these quantities that have useful additional prop-
erties. In this way, one can use von Neumann algebra
theory to obtain topological conclusions. The von Neu-
mann algebras used here are typically obtained by
the construction of the previous paragraph from the
fundamental group [IV.6 §2] of some compact space.

2.3 Modular Theory

Type III factors remained rather mysterious for a long
time; indeed, Murray and von Neumann were at first
unable to determine whether any such factors existed.
They eventually managed to do so, but the fundamental
breakthrough in the area came well after their pioneer-
ing work, when it was realized that each von Neumann
algebra has a special family of symmetries, its so-called
modular automorphism group.

To explain the origins of modular theory, let us con-
sider once again the von Neumann algebra obtained
from the regular representation of a group G. We
defined the operators Ug on 	2(G) by multiplying on
the left by elements of G; but we could equally well
have considered a representation defined by multiply-
ing on the right. This would have yielded a different
von Neumann algebra.

So long as we deal only with discrete groups G this
difference is unimportant, because the map S : [g] �→
[g−1] is a unitary operator on H that interchanges the
left and right regular representations. But for certain
continuous groups the problem arises that the function
f(g) may be square-integrable while f(g−1) is not. In
this situation there is no simple unitary isomorphism

analogous to the one for discrete groups. To remedy
this, one must introduce a correction factor called the
modular function of G.

The project of modular theory is to show that some- PUP: Tim wants
these words to
stay. OK?thing analogous to the modular function can be con-

structed for any von Neumann algebra. This object then
serves as an invariant for all factors of type III, whether
or not they are explicitly derived from groups.

Modular theory exploits a version of the GNS con-
struction (section 1.4). Let M be a self-adjoint algebra
of operators. A linear functional φ : M → C is called a
state if it is positive in the sense that φ(T∗T) � 0, for
every T ∈ M (this terminology is derived from the con-
nection described earlier between Hilbert space theory
and quantum mechanics). For the purposes of modular
theory we restrict attention to faithful states, those for
which φ(T∗T) = 0 implies T = 0. If φ is a state, then
the formula

〈T1, T2〉 = φ(T∗1 T2)

defines an inner product on the vector spaceM . Apply-
ing the GNS procedure, we obtain a Hilbert space HM .
The first important fact about HM is that every oper-
ator T in M determines an operator on HM . Indeed, a
vector V ∈ HM is a limit V = limn→∞ Vn of elements in
M , and we can apply an operator T ∈ M to the vector
V using the formula

TV = lim
n→∞TVn,

where on the right-hand side we use multiplication in
the algebraM . Because of this observation, we can think
of M as an algebra of operators on HM , rather than as
an algebra of operators on whatever Hilbert space we
began with.

Next, the adjoint operation equips the Hilbert space
HM with a natural “antilinear” operator S : HM → HM
by the formula1 S(V) = V∗. Since U∗g = Ug−1 for the
regular representation, this is indeed analogous to the
operator S we encountered in our discussion of contin-
uous groups. The important theorem of Minoru Tomita
and Masamichi Takesaki asserts that, as long as the
original state φ satisfies a continuity condition, the
complex powers Ut = (S∗S)it have the property that
UtMU−t = M , for all t.

The transformations of M given by the formula T �→
UtTU−t are called the modular automorphisms of M .
Alain Connes proved that they depend only in a rather
inessential way on the original faithful state φ. To

1. The interpretation of this formula on the completion HM ofM is
a delicate matter.



�

204 IV. Branches of Mathematics

be precise, changing φ changes the modular automor-

phisms only by inner automorphisms, that is, transfor-

mations of the form T �→ UTU−1, where U is a uni-

tary operator in M itself. The remarkable conclusion

is that every von Neumann algebra M has a canonical

one-parameter group of “outer automorphisms,” which

is determined by M alone and not by the state φ that

is used to define it.

The modular group of a type I or type II factor

consists only of the identity transformation; however,

the modular group of a type III factor is much more

complex. For example, the set

{t ∈ R : T �→ UtTU−t is an inner automorphism}

is a subgroup of R and an invariant of M that can

be used to distinguish between uncountably many

different type III factors.

2.4 Classification

A crowning achievement of von Neumann algebra

theory is the classification of factors that are approxi-

mately finite dimensional. These are the factors that are

in a certain sense limits of finite-dimensional algebras.

Besides the range of the dimension function, which sep-

arates factors into types, the sole invariant is the mod-

ule. This is a flow on a certain space that is assembled

from the modular automorphism group.

A lot of attention is currently being given to the long-

standing problem of distinguishing among the type II

factors associated with the regular representations of

groups. Of special interest is the case of free groups

[IV.10 §2], around which has flourished the subject of

free probability theory. Despite intensive effort, some

fundamental questions remain open: at the time of

writing it is unknown whether the factors associated

with the free groups on two and on three generators

are isomorphic.

Another important development has been subfactor

theory, which attempts to classify the ways in which

factors can be realized within other factors. A remark-

able and surprising theorem of Vaughan Jones shows

that, in the type II situation, where continuous values of

dimensions are the norm, the dimensions of subfactors

can in certain situations assume only a discrete range

of values. The combinatorics associated with this result

have also appeared in other apparently quite unrelated

parts of mathematics, notably knot theory [III.46].

3 C∗-Algebras

Von Neumann algebra theory helps describe the struc-
ture of a single representation of a group on a Hilbert
space. But in many situations it is of interest to gain an
understanding of all possible unitary representations.
To shed some light on this problem we turn to a related
but different part of operator algebra theory.

Consider the collection B(H) of all bounded oper-
ators on a Hilbert space H. It has two very differ-
ent structures: algebraic operations, such as addition,
multiplication, and formation of adjoints; and analytic
structures, such as the operator norm

‖T‖ = sup{‖Tu‖ : ‖u‖ � 1}.
These structures are not independent of one another.
Suppose, for instance, that ‖T‖ < 1 (an analytic hypoth-
esis). Then the geometric series

S = I + T + T 2 + T 3 + · · ·
converges in B(H), and its limit S satisfies

S(I − T) = (I − T)S = I.
It follows that I − T is invertible in B(H) (an algebraic
conclusion). One can easily deduce from this that the
spectral radius r(T) of any operator T (defined to be
the greatest absolute value of any complex number in
the spectrum of T ) is less than or equal to its norm.

The remarkable spectral radius formula goes much
further in the same direction. It asserts that r(T) =
limn→∞ ‖Tn‖1/n. If T is normal (TT∗ = T∗T ), and in
particular if T is self-adjoint, then it may be shown that
‖Tn‖ = ‖T‖n. As a result, the spectral radius of T is
precisely equal to the norm of T . There is therefore a
very close connection between the algebraic structure
of B(H), particularly algebraic structure related to the
adjoint operation, and the analytic structure.

Not all the properties of B(H) are relevant to this
connection between algebra and analysis. A C∗-alge-
bra A is an abstract structure that has enough proper-
ties for the argument of the previous two paragraphs to
remain valid. A detailed definition would be out of place
here, but it is worth mentioning that a crucial condition
relating norm, multiplication, and ∗-operation is

‖a∗a‖ = ‖a‖2, a ∈ A,
called the C∗-identity for A. We also note that special
classes of operators on Hilbert space (unitaries, orthog-
onal projections, and so on) all have their counterparts
in a general C∗-algebra. For example, a unitary u ∈ A
satisfies uu∗ = u∗u = 1, and a projection p satisfies
p = p2 = p∗.
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A simple example of a C∗-algebra is obtained by
starting with a single operator T ∈ B(H). The collec-
tion of all operators S ∈ B(H) that can be obtained as
limits of polynomials in T and T∗ is a C∗-algebra said
to be generated by T . The C∗-algebra generated by T
is commutative if and only if T is normal; this is one
reason for the importance of normal operators.

3.1 Commutative C∗-Algebras

If X is a compact [III.9] topological space [III.92],
then the collection C(X) of continuous functions f :
X → C comes with natural algebraic operations (inher-
ited from the usual ones on C) and a norm ‖f‖ =
sup{|f(x)| : x ∈ X}. In fact, these operations make
C(X) into a C∗-algebra. The multiplication in C(X) is
commutative, because the multiplication of complex
numbers is commutative.

A basic result of Gelfand and Naimark asserts that
every commutative C∗-algebra is isomorphic to some
C(X). Given a commutative C∗-algebra A, one con-
structs X as the collection of all algebra homomor-
phisms ξ : A → C, and the Gelfand transform then
associates with a ∈ A the function ξ �→ ξ(a) from X
to C.

The Gelfand–Naimark theorem is a foundational
result of operator theory. For example, a modern proof
of the spectral theorem might proceed as follows. Let T
be a self-adjoint or normal operator on a Hilbert space
H, and let A be the commutative C∗-algebra generated
by T . By the Gelfand–Naimark theorem,A is isomorphic
to C(X) for some space X, which may in fact be identi-
fied with the spectrum of T . If v is a unit vector in H,
then the formula S �→ 〈Sv,v〉 defines a state φ on A.
The GNS space associated with this state is a Hilbert
space of functions on X, and elements of A = C(X)
act as multiplication operators. In particular, T acts as
a multiplication operator. A small additional argument
shows that T is unitarily equivalent to this multiplica-
tion operator, or at least to a direct sum of such opera-
tors (which is itself a multiplication operator on a larger
space).

Continuous functions can be composed: if f and g
are continuous functions (with the range of g contained
in the domain of f ), then f ◦g is also a continuous func-
tion. Since the Gelfand–Naimark theorem tells us that
any self-adjoint element of a C∗-algebra A sits inside
an algebra isomorphic to the continuous functions on
the spectrum of a, we conclude that if a ∈ A is self-
adjoint, and if f is a continuous function defined on the

spectrum of a, then an operator f(a) exists in A. This
functional calculus is a key technical tool in C∗-algebra
theory. For example, suppose that u ∈ A is unitary and
‖u− 1‖ < 2. Then the spectrum of u is a subset of the
unit circle in C that does not contain−1. One can define
a continuous branch of the complex logarithm function
on such a subset, and it follows that there is an element
a = logu of the algebra such that a = −a∗ and u = ea.
The path t �→ eta, 0 � t � 1, is then a continuous path of
unitaries in A connecting u to the identity. Thus every
unitary sufficiently close to the identity is connected to
the identity by a unitary path.

3.2 Further Examples of C∗-Algebras

3.2.1 The Compact Operators

An operator on a Hilbert space has finite rank if its
range is a finite-dimensional subspace. The operators
of finite rank form an algebra, and its closure is a C∗-
algebra called the algebra of compact operators and
denotedK. One can also viewK as a “limit” of matrix
algebras

M1(C)→ M2(C)→ M3(C)→ ·· · ,
where each matrix algebra is included in the next by

A �→
(
A 0

0 0

)
.

Many natural operators are compact, including the inte-
gral operators that arose in Fredholm’s theory. The
identity operator on a Hilbert space is compact if and
only if that Hilbert space is finite dimensional.

3.2.2 The CAR Algebra

The presentation of K as a limit of matrix algebras
leads one to consider other “limits” of a similar sort.
(We shall not attempt a formal definition of these lim-
its here, but it is important to note that the limit of a
sequence A1 → A2 → A3 → ·· · depends on the homo-
morphisms Ai → Ai+1 as well as on the algebras Ai.)
One particularly important example is obtained as the
limit

M1(C)→ M2(C)→ M4(C)→ ·· · ,
where each matrix algebra is included in the next by

A �→
(
A 0

0 A

)
.

This is called the CAR algebra, because it contains ele-
ments that represent the canonical anticommutation
relations that arise in quantum theory.C∗-algebras find



�

206 IV. Branches of Mathematics

several applications to quantum field theory and quan-
tum statistical mechanics which extend von Neumann’s
formulation of quantum theory in terms of Hilbert
space.

3.2.3 Group C∗-Algebras

If G is a group and g �→ Ug is a unitary representation
of G on a Hilbert space H, we can consider the small-
est C∗-algebra of operators on H containing all the Ug ;
this is called the C∗-algebra generated by the repre-
sentation. An important example is the regular repre-
sentation on the Hilbert space 	2(G) generated by G,
which we defined in section 2.2. The C∗-algebra that
it generates is denoted C∗r (G). The subscript “r” refers
to the regular representation. Considering other repre-
sentations leads to other, potentially different, group
C∗-algebras.

Consider, for example, the case G = Z. Since this is
a commutative group, its C∗-algebra is also commuta-
tive, and thus it is isomorphic to C(X) for a suitable X,
by the Gelfand–Naimark theorem. In fact, X is the unit
circle S1, and the isomorphism

C(S1) � C∗r (Z)
takes a function on the circle to its Fourier series.

States defined on group C∗-algebras correspond
to positive-definite functions defined on groups, and
hence to unitary group representations. In this way new
representations may be constructed and studied. For
example, using states of group C∗-algebras it is possi-
ble to give to the set of irreducible representations of
G the structure of a topological space.

3.2.4 The Irrational Rotation Algebra

The algebra C∗(Z) is generated by a single unitary ele-
ment U (corresponding to 1 ∈ Z). Moreover, it is the
universal example of such a C∗-algebra, which is to say
that given any C∗-algebra A and unitary u ∈ A, there is
one and only one homomorphism C∗(Z) → A sending
U to u. In fact, this is nothing other than the functional
calculus homomorphism for the unitary u.

If instead we consider the universal example of a C∗-
algebra generated by two unitaries U , V subject to the
relation

UV = e2π iαVU,

where α is irrational, we obtain a noncommutative C∗-
algebra called the irrational rotation algebra Aα. The
irrational rotation algebras have been studied inten-
sively from a number of points of view. Using K-theory

(see below) it has been shown that Aα1 is isomorphic to
Aα2 if and only if α1 ±α2 is an integer.

It can be shown that the irrational rotation algebra
is simple, which implies that any pair of unitaries U , V
satisfying the commutation relation above will generate
a copy ofAα. (Note the contrast with the case of a single
unitary: 1 is a unitary operator, but it does not generate
a copy of C∗(Z).) This allows us to give a concrete rep-
resentation of Aα on the Hilbert space L2(S1), where U
is the rotation through 2πα and V is multiplication by
z : S1 → C.

4 Fredholm Operators

A Fredholm operator between Hilbert spaces is a
bounded operator T for which the kernel and coker-
nel are finite dimensional. This means that the homo-
geneous equation Tu = 0 admits only finitely many
linearly independent solutions, while the inhomogen-
eous equation Tu = v admits a solution if v satisfies
a finite number of linear conditions. The terminology
arises from Fredholm’s original work on integral equa-
tions; he showed that if K is an integral operator, then
I +K is a Fredholm operator.

For the operators that Fredholm considered, the
dimensions of the kernel and cokernel must be equal,
but in general this need not be so. The unilateral
shift operator S, which maps the infinite “row vec-
tor” (a1, a2, a3, . . . ) to (0, a1, a2, . . . ), is an example.
The equation Su = 0 has only the zero solution, but
the equation Su = v has a solution only if the first
coordinate of the vector v is zero.

The index of a Fredholm operator is defined to be the
integer difference

index(T) = dim(ker(T))− dim(coker(T)).

For example, every invertible operator is a Fredholm
operator of index 0, whereas the unilateral shift is a
Fredholm operator of index −1.

4.1 Atkinson’s Theorem

Consider the two systems of linear equations⎧⎨
⎩

2 ·1x +y = 0

4x + 2y = 0

⎫⎬
⎭ and

⎧⎨
⎩

2x +y = 0

4x + 2y = 0

⎫⎬
⎭ .

Although the coefficients of these equations are very
close, the dimensions of their kernels are quite differ-
ent: the left-hand system has only the zero solution,
whereas the right-hand system has the nontrivial solu-
tions (t,−2t). Thus the dimension of the kernel is an
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unstable invariant of the system of equations. A sim-

ilar remark applies to the dimension of the cokernel.

By contrast, the index is stable, despite its definition as

the difference of two unstable quantities.

An important theorem of Frederick Atkinson gives

precise expression to these stability properties. Atkin-

son’s theorem asserts that an operator T is Fredholm

if and only if it is invertible modulo compact opera-

tors. This implies that any operator that is sufficiently

close to a Fredholm operator is itself a Fredholm oper-

ator with the same index, and that if T is a Fredholm

operator and K is a compact operator, then T + K is

a Fredholm operator with the same index as T . Notice

that, since integral operators are compact operators,

this contains Fredholm’s original theorem as a special

case.

4.2 The Toeplitz Index Theorem

topology [I.3 §6.4] studies those properties of mathe-

matical systems that remain the same when the sys-

tem is (continuously) perturbed. Atkinson’s theorem

tells us that the Fredholm index is a topological quan-

tity. In many contexts it is possible to obtain a for-

mula for the index of a Fredholm operator in terms

of other, apparently quite different, topological quan-

tities. Formulas of this sort often indicate deep con-

nections between analysis and topology and often have

powerful applications.

The simplest example involves the Toeplitz operators.

A Toeplitz operator has a matrix with the special form

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0 b1 b2 b3 · · ·
b−1 b0 b1 b2 · · ·
b−2 b−1 b0 b1 · · ·
b−3 b−2 b−1 b0 · · ·

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In other words, as you go down each diagonal of

the matrix, the entries remain constant. The sequence

of coefficients {bn}∞n=−∞ defines a function f(z) =∑∞
n=−∞ bnz−n on the unit circle in the complex plane,

called the symbol of the Toeplitz operator. It can be

shown that a Toeplitz operator whose symbol is a con-

tinuous function which is never zero is Fredholm. What

is its index?

The answer is given by thinking about the symbol

as a mapping from the unit circle to the nonzero com-

plex numbers: in other words, as a closed path in the

nonzero complex plane. The fundamental topological

invariant of such a path is its winding number : the num-
ber of times it “goes around” the origin in the counter-
clockwise direction. It can be proved that the index of a
Toeplitz operator with nonzero symbol f is minus the
winding number of f . For example, if f is the function
f(z) = z (with winding number +1), then the asso-
ciated Toeplitz operator is the unilateral shift S that
we encountered earlier (with index −1). The Toeplitz
index theorem is a very special case of the atiyah–
singer index theorem [V.2], which gives a topological
formula for the indices of various Fredholm operators
that arise in geometry.

4.3 Essentially Normal Operators

Atkinson’s theorem suggests that compact perturba-
tions of an operator are in some sense “small.” This
leads to the study of properties of an operator that
are preserved by compact perturbation. For instance,
the essential spectrum of an operator T is the set of
complex numbers λ for which T − λI fails to be Fred-
holm (that is, invertible modulo compact operators).
Two operators T1 and T2 are essentially equivalent if
there is a unitary operator U such that UT1U∗ and T2

differ by a compact operator. A beautiful theorem orig-
inally due to weyl [VI.80] asserts that two self-adjoint
or normal operators are essentially equivalent if and
only if they have the same essential spectrum.

One might argue that the restriction to normal opera-
tors in this theorem is inappropriate. Since we are con-
cerned with properties that are preserved by compact
perturbation, would it not be more appropriate to con-
sider essentially normal operators—that is, operators
T for which T∗T − T∗T is compact? This apparently
modest variation leads to an unexpected result. The
unilateral shift S is an example of an essentially nor-
mal operator. Its essential spectrum is the unit circle,
as is the essential spectrum of its adjoint; however, S
and S∗ cannot be essentially equivalent, because S has
index −1 and S∗ has index +1. Thus some new ingredi-
ent, beyond the essential spectrum, is needed to clas-
sify essentially normal operators. In fact, it follows eas-
ily from Atkinson’s theorem that if essentially normal
operators T1 and T2 are to be essentially equivalent,
then not only must they have the same essential spec-
trum but also, for every λ not in the essential spectrum,
the Fredholm index of T1−λImust be equal to the Fred-
holm index of T2 − λI. The converse of this statement
was proved by Larry Brown, Ron Douglas, and Peter
Fillmore in the 1970s, using entirely novel techniques
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that led to a new era of interaction between C∗-algebra
theory and topology.

4.4 K-Theory

A remarkable feature of the Brown–Douglas–Fillmore
work was the appearance within it of tools from alge-
braic topology [IV.6], notably K-theory. Remember
that, according to the Gelfand–Naimark theorem, the
study of (suitable) topological spaces and the study
of commutative C∗-algebras are one and the same; all
the techniques of topology can be transferred, via the
Gelfand–Naimark isomorphism, to commutative C∗-
algebras. Having made this observation, it is natural
to ask which of these techniques can be extended fur-
ther, to provide information about all C∗-algebras,
commutative or not. The first and best example is
K-theory.

In its most basic form, K-theory associates with each
C∗-algebra A an Abelian group K(A), and with each
homomorphism of C∗-algebras a corresponding homo-
morphism of Abelian groups. The building blocks for
K(A) can be thought of as generalized Fredholm oper-
ators associated withA; the generalization is that these
operators act on “Hilbert spaces” in which the complex
scalars are replaced by elements of the C∗-algebra A.
The group K(A) itself is defined to be the collection of
connected components of the space of all such general-
ized Fredholm operators. Thus ifA = C, for instance (so
that we are dealing with classical Fredholm operators),
thenK(A) = Z. This follows from the fact that two Fred-
holm operators are connected by a path of Fredholm
operators if and only if they have the same index.

One of the great strengths of K-theory is that
K-theory classes may be constructed from a variety
of different ingredients. For example, every projection
p ∈ A defines a class in K(A) which can be thought
of as a “dimension” for the range of p. This connects
K-theory to the classification of factors (section 2.2),
and has become an important tool in the effort to clas-
sify various families of C∗-algebras, such as the irra-
tional rotation algebras. (It was at one time thought that
the irrational rotation algebras might not contain any
nontrivial projections at all: the construction of such
projections by Marc Rieffel was an important step in the
development of C∗-algebra K-theory.) Another beauti-
ful example is George Elliott’s classification theorem
for locally finite-dimensional C∗-algebras like the CAR
algebra; they are completely determined by K-theoretic
invariants.

The problem of computing the K-theory groups of
noncommutative C∗-algebras, particularly group C∗-
algebras, has turned out to have important connections
with topology. In fact, some key advances in topol-
ogy have come from C∗-algebra theory in this way,
thereby allowing operator algebraists to repay some of
the debt they owe to the topologists for K-theory. The
principal organizing problem in this area is the Baum–
Connes conjecture, which proposes a description of the
K-theory of group C∗-algebras in terms of invariants
familiar in algebraic topology. Most of the progress on
the conjecture to date is the result of work of Gen-
nadi Kasparov, who dramatically broadened the origi-
nal discoveries of Brown, Douglas, and Fillmore to cover
not just single essentially normal operators but also
noncommuting systems of operators, that is, C∗-alge-
bras. Kasparov’s work is now a central component of
operator algebra theory.

5 Noncommutative Geometry

descartes’s [VI.11] invention of coordinates showed
that one can do geometry by thinking about coordinate
functions rather than directly thinking about points
in space and their interrelationships: these coordinate
functions are the familiar x, y , and z. The Gelfand–
Naimark theorem can be viewed as one expression of
this idea of passing from the “point picture” of a space
X to the “field picture” of the algebra C(X) of func-
tions on it. The success ofK-theory in operator algebras
invites us to ponder whether the field picture might be
more powerful than the point picture, since K-theory
can be applied to noncommutative C∗-algebras which
may not have any “points” (homomorphisms to C) at
all.

One of the most exciting research frontiers in oper-
ator algebra theory is reached along a path which
develops these thoughts. The noncommutative geom-
etry program of Connes takes seriously the idea that a
general C∗-algebra should be thought of as an algebra
of functions on a “noncommutative space,” and goes on
to develop “noncommutative” versions of many ideas
from geometry and topology, as well as completely
new constructions that have no commutative counter-
part. Noncommutative geometry begins with the cre-
ative reformulation of ideas from ordinary geometry in
ways that involve only operators and functions, but not
points.

Consider, for instance, the circle S1. The algebra
C(S1) reflects all the topological properties of S1, but to
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incorporate its metric (distance-related) properties as
well we look not just at C(S1) but at the pair consisting
of the algebra C(S1) and the operatorD = i d/dθ on the
Hilbert space H = L2(S1). Notice that if f is a function
on the circle (considered as a multiplication operator
onH), then the commutatorDf −fD is also a multipli-
cation operator, this time by i df/dθ. It follows that
ordinary measurements of angular distance between
points on the circle can be recovered from C(S1) and
D by the formula

d(p, q) =max{|f(p)− f(q)| : ‖Df − fD‖ � 1}.
Connes argues that operator |D|−1 plays the role of the
“unit of arc-length ds” in this and many other, more
complicated situations.2

Another feature of the examples Connes considers,
also of central importance in noncommutative geom-
etry, is the fact that the operator |D|−k is a trace-
class operator (see section 1.5) when k is large enough.
In the case of the circle, k needs to be bigger than
1. Computations with traces connect noncommutative
geometry to cohomology theory [IV.6 §4]. We now
have two kinds of “noncommutative algebraic topol-
ogy,” namely K-theory and a new variant of homology
called cyclic cohomology ; the connection between the
two is provided by a very general index theorem.

There are several procedures that produce noncom-
mutative C∗-algebras (to which Connes’s methods can
be applied) from classical geometric data. The irra-
tional rotation algebras Aθ are examples; the classi-
cal picture to which they apply is the quotient space
[I.3 §3.3] of the circle by the group of rotations through
multiples of θ. Classical methods of geometry and
topology are unable to handle this quotient space, but
the noncommutative approach via Aθ is much more
successful.

An exciting but speculative possibility is that the
basic laws of physics should be addressed from the
perspective of noncommutative geometry. The tran-
sition to noncommutative C∗-algebras can be viewed
as analogous to the transition from classical to quan-
tum mechanics. However, Connes has argued that non-
commutative C∗-algebras play a role in describing the
physical world even before the transition is made to
quantum physics.

2. The operator D is not quite invertible since it vanishes on con-
stant functions. A small modification must therefore be made before
considering inverse operators. The operator |D| is by definition the
positive square root of D2.
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IV.16 Mirror Symmetry
Eric Zaslow

1 What Is Mirror Symmetry?

Mirror symmetry is a phenomenon found in theoretical
physics that has had profound mathematical applica-
tions. It burst onto the mathematical scene after Cande-
las, de la Ossa, Green, and Parkes exploited the physical
phenomenon to make precise predictions about certain
sequences of numbers describing geometric spaces.
The sequence predicted by those authors began 2875,
609 250, 317 206 375, . . . , and was far beyond the scope
of calculation at the time. The phenomenon of mirror
symmetry is that some physical theories have equiv-
alent, “mirror” theories that lead to the same predic-
tions. If some prediction requires a hard calculation but
is easy to perform in the mirror theory, then you can get
the answer for free! These physical theories do not have
to be realistic models of physics. For instance, begin-
ning students of physics often study point particles
on frictionless planes. Although they are unrealistic,
such toy models can bring the physical concepts into
focus and their analysis can give rise to very interesting
mathematics.

1.1 Exploiting Equivalences

Children at school in the 1950s used slide rules to
exploit the equivalence of multiplication of positive
numbers with addition of real numbers. Given the prob-
lem of multiplying two large numbers a and b, they
would use a table to look up the logarithms log(a)
and log(b) (to a certain number of significant figures),
then add them by hand. They would then use the same
table to find which number had a logarithm equal to
log(a)+ log(b). The answer is ab.

College students sometimes exploit the equivalence
defined by fourier transforms [III.27] to solve dif-
ferential equations. Basically, the Fourier transform is
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a rule that maps one function f(x) to a new func-
tion f̂ (p). What is nice is that the transform of the
derivative f ′(x) relates in a very simple way to f̂ (p):
it is ipf̂ (p), where i is the imaginary number

√−1.
If you want to solve a differential equation such as
f ′(x)+ 2f(x) = h(x), where h(x) is a given function
and you are trying to find f , you can map the equation
to its Fourier transform equation ipf̂ (p) + 2f̂ (p) =
ĥ(p). This is much easier: it is an algebraic equation
rather than a differential equation, and has the solu-
tion f̂ (p) = ĥ(p)/(2 + ip). The solution f(x) is then
the function which has ĥ(p)/(2 + ip) as its Fourier
transform.

Mirror symmetry is like a fancy Fourier transform,
mapping much more information than is contained in
a single function. Every aspect of a physical theory is
involved.

This article will (eventually) focus on the mathemat-
ics of mirror symmetry, but it is crucial to understand
its physical origins. We therefore develop a guide to
physics (see vertex operator algebras [IV.17 §2] for
further discussion of these topics). This is in no way an
adequate treatment—a separate Companion to Physics
would be needed—but we hope to give enough of the
flavor of the subject to help the reader with the later
sections. (A reader familiar with physical theories may
wish to skip the next section and refer back as needed.)

2 Theories of Physics

2.1 Formulations of Mechanics and

Action Principles

2.1.1 Newtonian Physics

Newton’s second law states that a particle moving
through space accelerates1 in proportion to the force
it experiences: F = mẍ. The force is itself the (nega-
tive) gradient of a gravitational potential V(x), so this
equation can be written mẍ + ∇V(x) = 0. Stationary
particles sit at minima of the potential: examples are
a ball in equilibrium at the end of a spring, or a pea
at the bottom of a bowl. In stable situations, there is a
restoring force proportional to some displacement dis-
tance. This means that in some appropriate coordinate,
F ∼ −x, so V(x) = kx2/2, for some k. The solutions
are oscillatory, with period ω = √k/m. This model is
called the simple harmonic oscillator.

1. Acceleration is the second derivative of position with respect to
time. We denote position by x, which is shorthand for a three-com-
ponent position vector, and we denote time derivatives by dots, so
acceleration is denoted by ẍ.

2.1.2 The Least Action Principle

Every major theory can also be formulated by means of
an idea known as the least action principle. Let us see
how it works for the equations of Newtonian mechan-
ics. Consider an arbitrary path of a particle x(t) and
form the quantity

S(x) =
∫
[ 1

2mẋ
2 − V(x)]dt.

Here and below, the notation x may represent more
than one coordinate. If x is used as a point in space-
time, it will include the time coordinate, if that is not
otherwise noted. Likewise, we omit component nota-
tion on most vectors. The notation should be clear from
the context. The quantity S(x), which is known as the
action, equals the kinetic energy minus the potential
energy. One then considers which paths minimize this
action. That is, we ask which paths x(t) have the prop-
erty that, when they are perturbed by a small amount
δx(t), the action is unchanged, to leading order. (So in
fact we require only that the action is unchanged to first
order, and not that it is actually minimized. Solutions of
saddle-point type are allowed.) The answer turns out to
be precisely those paths that satisfymẍ+∇V(x) = 0.2

For example, consider the simple harmonic oscilla-
tor in two dimensions. We can model x as a com-
plex number and set V(x) = k|x|2. The action is then∫ 1

2 [m|ẋ|2−k|x|2]. Note that a phase rotationx → eiθx
leaves the action invariant, and is therefore a symmetry
of the equations of motion.

Lesson. Physical solutions extremize the action.

The principle of least action applies to many other
physical situations, as we shall see below. First, though,
we describe another formulation of mechanics.

2.1.3 The Hamiltonian Formulation of Mechanics

hamilton’s [VI.37] formulation of the equations of
motion also deserves mention. It leads to first-order
equations. Let S be the action and define L by S = ∫ Ldt,
and consider the (typical) case where L is a function of
coordinates x and their time derivatives ẋ. Then set
p = dL/dẋ, a function that can depend both on x and
on ẋ. (In the example L = 1

2mẋ
2 − V(x) that we have

already considered, we find that p =mẋ, or ẋ = p/m.)

2. To see this, replace x by x + δx in the action and keep only
the linear terms in δx and its time derivative. For V the linear terms
are (∇V)δx. One then has to integrate by parts to remove the time
derivative of δx and isolate it as a factor in the integrand. The integral
will be zero for arbitrary variations δx only when the term multiplying
it vanishes. This gives the equation. Try it!
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Now let us consider the function H = pẋ − L, which is
called the hamiltonian [III.35], and change variables
from (x, ẋ) to (x,p) so as to remove all mention of ẋ.
In the example, H works out to be

p2

m
−
(
p2

2m
− V(x)

)
= p2

2m
+ V(x),

which is the total energy. For the simple harmonic
oscillator, H = p2/2m+ kx2/2.

The equations ẋ = ∂H/∂p and ṗ = −∂H/∂x are the
equations of motion in the Hamiltonian formulation;
they can be shown to be equivalent to those obtained
from the action principle. In the example, ẋ = p/m and
ṗ = −∇V . Using the first equation to replace p bymẋ
in the second, we recover the equationmẍ +∇V(x) =
0. More generally, one can consider the time derivative
of some quantity f(x,p) constructed from p and x
and prove—using the chain rule and the equations of
motion—that

ḟ = ∂f
∂x
∂H
∂p
− ∂f
∂p
∂H
∂x
= {H,f}.

The term in the middle is called the Poisson bracket of
H and f , denoted {H,f}.
Lesson. The Hamiltonian controls time dependence
through the Poisson bracket.

Notice that when we plug the coordinates x and p
themselves into the bracket, we derive the identity

{x,p} = −1. (1)

It is also possible to begin with the Hamiltonian view-
point. One considers a space endowed with a bracket
operation on functions, such that there are coordinate
functions (not uniquely determined) obeying {x,p} =
−1. The mechanical model is defined by a function
H(x,p), which determines the dynamics.

2.1.4 Symmetry

A brief remark on symmetry is in order. noether
[VI.76] proved that in the action formulation of me-
chanics, a symmetry of the action results in a con-
served quantity. The prototypical example is transla-
tional or rotational symmetry, where the potential of
a particle is invariant under some direction of trans-
lation or rotation: the corresponding conserved quan-
tity is then momentum or angular momentum. In the
example above, V(x) = k|x|2/2 is independent of θ,
the phase of x. The equation of motion determined by
varying θ is d(m|x|2θ̇)/dt = 0, so in this case it is
the angular momentum m|x|2θ̇ that is conserved. In

the Hamiltonian formulation, since a conserved quan-
tity f(x,p) does not change with time, it must have
zero Poisson bracket with the Hamiltonian: {H,f} = 0.
In particular, the Hamiltonian itself is conserved.

2.1.5 Action Functions for Other Theories

Returning now to action principles, we shall see how
different physical theories are described through dif-
ferent actions. In electricity and magnetism, maxwell’s
equations [IV.13 §1.1] can be formulated in the form
δS = 0, where now the action S takes the form of an
integral over space and time of the electric (E) and mag-
netic (B) fields. In the case where there are no sources,
the action is written

S = 1
8πe2

∫
[E2 − B2]dx dt, (2)

where e is the electric charge of an electron. There
is one important difference from the previous exam-
ple, which is that the variations of the action must be
taken with respect to the fundamental fields, and E and
B are not fundamental as they are derived from the
electromagnetic potential A = (φ,A) by the equations
E = ∇φ − Ȧ, B = ∇ × A. If you rewrite S in terms
of A, vary A by δA, and set δS = 0, then you recover
Maxwell’s equations from the least action principle.

It is clear that the electromagnetic action merely
changes sign under the replacement E → B, B → −E,
and therefore any solution δS = 0 remains a solu-
tion under the transformation. This is an example of
an equivalence of a classical theory of physics. In fact,
this symmetry extends to the case where there are
sources (such as electrons) if we also interchange elec-
tric and magnetic sources. (No magnetic sources have
been observed in the universe, but a theory with such
objects still makes sense.)

Lesson. Physical equivalences act on fields and their
sources.

Electricity and magnetism is a “field theory,” which
means that the degrees of freedom involve functions
that depend on position in space. Contrast this with
Newtonian mechanics, where the spatial degrees of
freedom are just the coordinates of the particle(s). How-
ever, there is not much conceptual distance between
the two, as can be seen in the following toy model.

We will consider the simplest example: a scalar field,
φ. That is, φ is just a function that takes numerical
values. Now imagine that space has just one dimen-
sion, not three, and further that that dimension is a
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circle, which we can describe with an angular coordi-
nate, θ. At any fixed point in time we can use fourier
series [III.27] to write the scalar field as φ(θ) =∑
ncn exp(inθ), where the cn are the Fourier coeffi-

cients, and if we want the values of φ to be real num-
bers then we must insist that c−n = c∗n . We can then
think of φ(θ) not as a function but as an infinite-
dimensional vector (c0, c1, . . . ). The spatial dependence
of φ is completely determined by the coefficients cn.
If we now wish to consider time dependence, then
all we have to do is use time-dependent components
(c0(t), c1(t), . . . ), which looks a lot like an infinite set of
quantum-mechanical particles cn. Thus, the functionφ
has the Fourier expansionφ(θ, t) =∑ncn(t) exp(inθ).

The simplest action for a scalar field φ that allows
wave-like solutions of the equations of motion serves
as a natural analogue of equation (2):

S =
∫

1
2π
[(φ̇)2 − (φ′)2]dθ dt, (3)

where φ′ = ∂φ/∂θ. When we plug the Fourier expan-
sion into the action and perform the θ integration, we
get

S =
∫ ∑
n
[|ċn|2 −n2|cn|2]dt. (4)

Note that the term in brackets is just the action for a
particle cn in a quadratic potential, as in section 2.1.2.
We simply have an infinite number of harmonic oscil-
lators (with the exception of the c0 degree of freedom,
which corresponds to a free particle in no potential).

Lesson. Field theory is like point particle theory with an
infinite number of particles. The particles correspond
to the degrees of freedom of the field. When the action
is just quadratic in the derivatives, the particles have
an interpretation as simple harmonic oscillators.

Even general relativity [IV.13] fits into this frame-
work as a field theory. For a space-time M , the field is
the riemannian metric [I.3 §6.10] on space-time. The
metric is what determines the lengths of paths between
points—so a stretching of space-time, for example, is
represented by a rescaled metric. The action is then
constructed as the integral of the Riemannian curvature
scalar R over space-time: S = ∫MR.3

2.2 Quantum Theory

Mirror symmetry is an equivalence of quantum theo-
ries, so we must develop an understanding of what a

3. In 3-space, the paraboloid z = 1
2ax

2 + 1
2by

2 has curvature ab
at the origin.

quantum theory is and what an equivalence looks like.
There are two formulations of quantum mechanics:
the operator formulation and Feynman’s path-integral
formulation.

Both formulations are probabilistic, meaning that
you cannot predict exactly what will be observed in
a single measurement, but you can make precise pre-
dictions about what will be observed after multiple,
repeated measurements in the same environment. For
instance, your experimental apparatus may involve a
beam of electrons hitting a screen and making a mark.
The beam will contain millions of electrons, so the pat-
tern of marks on the screen can be predicted with great
accuracy. However, we cannot say what will happen to
a single, given electron—all we can do is assign prob-
abilities to the outcomes of various measurements.
These probabilities are encoded in the so-called “wave
function” Ψ of the particle.

2.2.1 Hamiltonian Formulation

In the operator formulation of quantum mechanics, the
positions and momenta of classical mechanics (and any
quantity formed from them) are converted into opera-
tors [III.52] acting on a hilbert space [III.37] accord-
ing to the following rule: replace the Poisson bracket
{· , ·} by i/�[· , ·], where [A, B] = AB−BA is the commu-
tator bracket and � is Planck’s constant. Thus, for exam-
ple, we get from equation (1) the relation [x,p] = i�.
The state of a particle (or system) is now defined not
as a set of values of x and p but as a vector Ψ in the
Hilbert space. Once again, time evolution is determined
by the Hamiltonian, H, but now H is an operator. The
basic dynamical equation is

HΨ = i�
d
dt
Ψ . (5)

This is called the Schrödinger equation.

Lesson. To quantize a classical theory, replace ordi-
nary degrees of freedom by operators on a vector space;
replace Poisson brackets by commutator brackets.

In the case where we have a particle on the real line R,
the Hilbert space is the space of square-integrable func-
tions L2(R), so we write Ψ as Ψ(x). The commutation
relation is obeyed if we think of x as the operator that
sends the function Ψ(x) to the function xΨ(x). Now
the relation [x,p] = i� means that we should repre-
sent p as the operator −i�(d/dx). The values of the
classical quantity associated with an operator corre-
spond to the eigenvalues [I.3 §4.3] of that operator,
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so for example a state with momentum p has the form
Ψ ∼ exp(ipx/�). Unfortunately, this is not square-
integrable on the real line, but it would become so if
we identified x and x+2πR, for some number (radius)
R > 0. Topologically, this compactifies [III.9] R to
a circle, but note that Ψ will be single-valued only if
p = n�/R, where n is an integer. Thus, momentum is
“quantized” in units of �/R.4 The integer label of the
cn of equation (4) can therefore also be thought of as a
momentum.

In the above example, R is the degree of freedom of
the classical coordinate x. In other examples, there is a
copy of L2(R) for each real degree of freedom, whether
or not it represents a geometric location.

Another novelty is that position and momentum
do not commute as operators in quantum mechanics,
meaning they cannot be simultaneously diagonalized:
you cannot specify the position and momentum simul-
taneously. This is a form of Heisenberg’s uncertainty
principle (see operator algebras [IV.15 §1.3]).

2.2.2 Symmetry

As the rules of quantization would suggest, a symme-
try of a quantum theory is an operator A such that
[H,A] = 0. That is, A commutes with the Hamiltonian,
and therefore respects the dynamics.

2.2.3 Example: The Simple Harmonic Oscillator

We now discuss an example that will be useful later
on for understanding quantum field theory and mirror
symmetry: the simple harmonic oscillator in quantum
mechanics. Suppose that the constants are chosen so
that the Hamiltonian is given by H = x2 + p2. If one
defines a = (x + ip)/

√
2 and a† = (x − ip)/

√
2, then

one can show that a† raises the energy of a state by one
unit5 and a lowers the energy by one unit. Invoking the
physical argument that there is a ground state Ψ0 of
lowest energy, this state must obey aΨ0 = 0. One then
finds that all states can be written in terms of the basis

4. We shall occasionally choose our units to make � equal to 1. For
example, we could work in the fictitious time unit of “sqeconds,” one
second equals � sqeconds.

5. Here is the calculation: [a,a†] = 1 and H = a†a + 1
2 . Further,

[H,a†] = a† and [H,a] = −a. These equations have the follow-
ing interpretation. Suppose Ψ is an eigenvector of H with eigenvalue
(energy) E. Then HΨ = EΨ . Consider a†Ψ . One quickly finds that

H(a†Ψ) = (Ha† − a†H + a†H)Ψ = ([H,a†]+ a†H)Ψ
= (a† + a†E)Ψ = (E + 1)(a†Ψ).

We learn that a†Ψ has eigenvalue E+1, so a† has “raised” the energy
by one unit.

vectors Ψn = (a†)nΨ0 with energy n+ 1
2 . Note that Ψ0

has energy 1
2 .6 The basis {Ψn} is called the occupation

number basis, since the interpretation is that Ψn has n
energy “quanta” above the ground state.

2.2.4 Path-Integral Formulation

Feynman’s path integral formulation of quantum me-
chanics builds on the idea of the least action principle.
In this formulation, the probability of an experiment is
calculated through an average over all paths of parti-
cles, and not just the ones which extremize the action.
Each path x(t) is weighted by the factor exp(iS(x)/�),
where S(x) is the action of the path x(t) and � is
Planck’s constant, which is very small compared with
macroscopic action scales. This average can be an imag-
inary number, but the probability of the process is the
square of its absolute value.

Note that exp(iS/�) = cos(S/�) + i sin(S/�), so if S
changes appreciably when we vary x(t), then the real
and imaginary parts will oscillate rapidly, since � is
small. Then, when we integrate over paths x(t), the
positive and negative oscillations will roughly cancel.
As a result, the main contributions to the weighted sum
over paths will come from those paths for which S does
not vary when the path does: the classical paths! How-
ever, if the variations are sufficiently small compared
with �, then nonclassical paths can contribute apprecia-
bly. One typically separates the degrees of freedom into
the classical trajectory piece and the quantum fluctua-
tions near it. Then one can organize the path integral
in a perturbation theory around the parameter �.

We have not yet discussed the integrand of the path
integral, and will not go into the details of this. The
main point is that the theory makes a prediction about
the likelihood of measuring a physical process. Each
process determines a possible integrand. For example,
from our discussion above we learn that the integrand
for measuring the likelihood of a quantum-mechanical
particle going from the point x0 at time t0 to the point
x1 at time t1 gives nonzero weight—determined by the
exponentiated action—to all paths that go from x0 to
x1 as t goes from t0 to t1, and zero weight to all other
paths.

It is illustrative to consider a toy model of a path
integral on a “space-time” that consists of just a single
point. Then the possible “paths” of a scalar field, say,
are simply the values that the field can take at the point,

6. It is instructive to write these equations in terms of the operators
defined by x and p.
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so they are real numbers. The action is then an ordinary
function S(x) on R. For the purposes of this example,
let us consider the case where iS/� = −x2 + λx3. The
possible integrands are (sums of) powers of x, so the
basic path integrals to perform are

∫
xk exp(− 1

2x
2 +

λx3)dx, which we denote by 〈xk〉. The value at λ = 0
is easily calculated.7 For small λ we expand eλx

3
as 1+

λx3+λ2x6/2+· · · , and evaluate each term by the same
methods as for λ = 0. This is how we construct a well-
defined perturbation theory, even when the integral is
not calculable.

As we see from this example, path integrals are eas-
iest when the action is only quadratic in the variables,
just as we found in the operator formulation of quan-
tum mechanics. The mathematical reason for this is
that Gaussian integrals (exponentials of squares) can
be done explicitly, while integrals involving exponen-
tials of cubics or higher are difficult or impossible. For
quadratic actions, the path integral can be evaluated
exactly, but when cubic or higher terms appear, the
perturbation series is necessary.

2.2.5 Quantum Field Theory

The generalization to field theories follows our earlier
pattern. We think of quantum field theories, then, as
being like quantum mechanics with infinite numbers
of particles. In fact, the quantum field theories in which
the fieldsΦ and their derivatives do not have more than
quadratic terms in the action are easily understood in
this way—we had a preview of this in equation (4). The
Fourier components correspond to particles indexed by
their momenta. Each one looks like a simple harmonic
oscillator at some frequency, which will depend on the
Fourier coefficient. The quantum Hilbert space is then
a (tensor) product of lots of different “occupation num-
ber Hilbert spaces,” one for each Fourier component of
each field. Since the occupation number basis is also
an energy eigenbasis, these states have a simple time
evolution under the Hamiltonian H. That is, if H = E
on some state Ψ(t = 0), then that state evolves like

Ψ(t) = exp(iEt/�)Ψ(0).

However, if the action includes terms that are cubic or
higher, then things get interesting: particles can decay!

7. Consider∫
exp(− 1

2x
2 + Jx)dx =

∫
exp(− 1

2 (x + J)2) exp(J2/2)dx

= √2π exp(J2/2).

Now if we differentiate this answer with respect to J, and set J = 0,
we get 〈x〉. Taking k derivatives gives 〈xk〉, and the theory is solved.

This can be seen, for example, from the scalar field of

equation (3) if we include a term φ3 in the action, and

therefore also the Hamiltonian. If we write this using

Fourier components, we get terms involving three oscil-

lators, such as a†3a
†
4a7. To see this, recall that after

we quantize the real field φ, the Fourier components

cn act as harmonic oscillators, and we have written an
for the associated creation and annihilation operators.

Since the Hamiltonian governs time evolution accord-

ing to equation (5), this means that over time one par-

ticle (the 7 mode) can decay into two others (the 3 and

the 4). Such decay processes occur in real life, and it

is a great triumph of quantum field theory that it can

predict such events with astounding accuracy.

In fact, because the space of paths of fields is infinite

dimensional, the path integral in quantum field theory

is not usually defined in a mathematically rigorous way.

However, the perturbation series for producing pre-

dictions can be defined just as for quantum mechan-

ics, and this is how physicists make their predictions

in practice. This perturbation series is organized in

terms of Feynman diagrams (which are discussed in

vertex operator algebras [IV.17]). These diagrams,

and the rules for computing them, completely solve the

perturbation problem.

As in the example of quantum mechanics, different

integrands of the path integral correspond to different

predictions. If Φ is some function of the fields of some

quantum field theory, we write 〈Φ〉 for the path inte-

gral with Φ as an integrand (as we did for 〈xk〉 in the

previous section). We call such a term a “correlation

function.” If Φ = φ1(x1) · · ·φn(xn), the answer will

depend on the action of the theory, the fields φi, and

the space-time points xi.
One might wonder if a symmetry of a classical theory

always remains a symmetry of the same theory after

quantization. The answer is sometimes no. Such a case

is known as an “anomaly.” Roughly speaking, this is

because the measure of integration of the path inte-

gral is not preserved under the symmetry, but this

is a somewhat heuristic explanation because the path

integral has no rigorous definition in general.

Returning to our cubic example, if the interaction

term φ3 has a coefficient λ, so that it is λφ3, then we

organize the perturbation series as a power series in λ.

In terms of paths, probabilities of decay processes can

be evaluated by considering paths that split into two—

like the letter Y—with each leg carrying the label of the

appropriate particle.
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2.2.6 String Theory

Feynman’s perturbation theory has an important gener-
alization in string theory. String theory considers par-
ticles not as points but as loops. Instead of paths of
particles through space-time, we get paths of loops,
which look like two-dimensional surfaces. String theory
amplitudes are computed by summing over all sur-
faces. These sums are organized in a perturbation
series in powers of the so-called string coupling con-
stant, λg . The power of λg in the perturbation series
depends on the number of holes in the surface.

The surfaces are called worldsheets. At each point
of the worldsheet, its location in space-time is deter-
mined by coordinates Xi. These coordinates them-
selves depend on the location on the worldsheet. In
effect, we get an auxiliary theory: a field theory of
coordinates on the two-dimensional surface! In string
theory, even this two-dimensional field theory must
be considered as a quantum field theory. The fields
of the two-dimensional theory are maps from the sur-
face to actual space-time. However, from the point of
view of the worldsheet, the worldsheet itself is a two-
dimensional space-time and the maps are fields on this
space-time with values in some other (target) space.

Mirror symmetry was discovered while studying
these quantum field theories on two-dimensional sur-
faces. Subsequently, the same phenomenon was dis-
covered in the case where the strings were not closed
loops but filaments with endpoints. Both cases play an
important role below.

3 Equivalence in Physics

Mirror symmetry is a particular type of equivalence of
quantum field theories. As we have seen, quantum field
theories are rules for producing probabilities of physi-
cal processes. In the path-integral formulation, prob-
abilities are computed from correlation functions of
fields. According to Feynman, these correlation func-
tions can be thought of as being averages over all paths
of fields. Each path is weighted by exp(iS/�), where S is
the action of the path and � is Planck’s constant. Let us
denote the correlation function of some integrand Φ in
theory A as 〈Φ〉A. Recall that Φ can depend on various
fields φi and points of space-time xi, and the correla-
tion function will depend on all these and the action of
theory A.

Equivalence, then, is a map from all possible fields
φi in a theory A to corresponding fields φ̃i in a theory

B such that

〈Φ〉A = 〈Φ̃〉B.
(For the moment, we deliberately neglect to notate the
dependence on the points xi.) One special correlation
function is 〈1〉, which we call the partition function and
denote by Z . As the field 1 always gets mapped to 1, we
derive the corollary that the partition functions must
be equal: ZA = ZB.

Of course, this all has a description in the operator
formulation of the quantum theory. Each state Ψ and
each operator a in one theory must get mapped to a
corresponding state Ψ̃ and operator ã in the mirror
theory, in such a way that corresponding operators map
corresponding states to states which themselves corre-
spond. Here one sees the sharp analogy with the slide
rule and the operations of multiplication and addition
of numbers.

Each theory is typically described through some
mathematical model, so an equivalence implies a host
of mathematical identities between quantities con-
structed from corresponding models.

More specifically, mirror symmetry refers to an
equivalence of quantum field theories on a two-dimen-
sional surface. The most typical example of mirror sym-
metry is the physical theory whose fields are maps ϕ
from a two-dimensional riemann surface [III.81] Σ to
some target space, M . Such a theory is called a sigma
model. As we saw above, in string theory M plays the
role of actual space-time, but for our purposes we can
even consider the case where M is the real line R, so
that ϕ is an ordinary function. This case has already
been studied in section 2.1.5. The action is given in
equation (4). We can then write the partition function
as

Z = 〈1〉 =
∫
[Dϕ]eiS(ϕ)/�,

where [Dϕ] represents the measure of integration over
all paths.8

One approach to evaluating the partition function Z
is through a process known as Wick rotation. One first
Euclideanizes the time coordinate by writing τ = it
(this is the Wick rotation), which leads to an imaginary
Euclidean action iSE. One then tries to evaluate the path
integral in this framework, hoping that the answer will
be holomorphic [I.3 §5.6]. If it is, then one can use

8. Warning: these expressions represent only the “bosonic” part of
a theory with “supersymmetry,” meaning, in particular, that there are
“fermionic” terms that complete the theory. We omit the fermionic
completions for ease of notation and exposition.
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analytic continuation to work out the answer for ordi-

nary time. The advantage is that the Euclidean expo-

nential weighting becomes exp(−SE/�), so the minima

of SE receive the greatest weighting and the integral

might converge. The nonconstant minima of the Euclid-

ean action are called instantons. After Euclideanizing

equation (4), the action becomes the “energy” SE of the

map ϕ:

SE =
∫
Σ
|∇ϕ|2.

The energy of a map has a conformal symmetry,

meaning that it is independent of local scale transfor-

mations on the Riemann surface, that is, transforma-

tions that can be locally approximated by a combina-

tion of rotations and dilations. Invariance under rescal-

ing by a positive number λ can easily be seen: each of

the two derivatives in |∇ϕ|2 decreases by a factor of

λ, while the area element increases by λ2. Rotational

invariance is clear from the form of |∇ϕ|2. The combi-

nation of the two, along with the fact that this argu-

ment did not depend on the derivatives of the scal-

ing parameter λ, leads to the statement of local scale

invariance.

The conformal symmetry of the action is an example

of a classical symmetry of the action that is not nec-

essarily maintained in the quantum theory. However,

the quantum theory has no anomaly—meaning that the

symmetry is preserved—ifM is chosen to be a complex,

calabi–yau manifold [III.6].

The Calabi–Yau condition can be thought of as a com-

plex notion of orientation. Recall that for an oriented

manifold one can continuously choose, on each patch,

a basis for the tangent space such that, when we move

from patch to patch, the determinant of the change-

of-basis matrix is equal to one. The same is true on

a Calabi–Yau manifold, but now we consider complex

bases for the complex tangent spaces.

When the target manifold is a Calabi–Yau manifold,

the instantons are complex analytic maps from the two-

dimensional surface. Instantons are not “close” to the

constant paths; their effects are therefore not acces-

sible by perturbative methods such as Feynman dia-

grams. They are therefore “nonperturbative” phenom-

ena. An example from quantum mechanics would be

a particle in a double-well potential such as (x2 − 1)2.

The zero-energy minima are the two constant (station-

ary) paths at x = ±1. An instanton path could go from

x = −1 to x = +1, or vice versa. Such trajectories occur

and are known as “quantum tunneling.”

Lesson. Inaccessible by perturbation theory, instan-
tonic effects are notoriously challenging to calculate.

3.1 Mirror Pairs

In the setting above, we considered maps from a two-
dimensional surface Σ to a target (Calabi–Yau) space.
Let us denote this quantum field theory byQ(M), which
is shorthand for the collection of all fields and all pos-
sible correlation functions created from them. In this
setup, we say that the Calabi–Yau manifolds M and
W are “mirror pairs” if Q(M) is equivalent to Q(W).
Through the magic of mirror symmetry, hard problems
inQ(M) involving instantons can be answered inQ(W)
by considering only the much simpler constant paths.

4 Mathematical Distillation

A physical theory contains a tremendous amount of
information. For example, correlation functions can
involve any number of fields, each evaluated at differ-
ent points on the two-dimensional surface. This is typ-
ically too unwieldy a situation to approach mathemati-
cally. Instead, equipped with a symmetry of the theory
called “supersymmetry,” a mathematical distillation
can be performed. The distillation procedure is called
topological twisting, and the resulting “topological field
theory” has correlation functions that are independent
of the positions of points. Because of this indepen-
dence, the correlation functions are certain characteris-
tic numbers associated with the underlying geometric
setup. In fact, there are two types of twisting, typically
called A and B, which capture different aspects of the
manifold in question.

4.1 Complex and Symplectic Geometry

4.1.1 Complex Geometry

To get a feel for the geometric aspect captured by topo-
logical twisting, recall that we can construct the circle
S1 from the real line R by identifying the points θ and
θ+2π , and therefore also θ+2πn, where n is any inte-
ger. What we have done is identified points related by a
lattice of integer translations. We could choose the lat-
tice to consist of multiples of some other real number
r , but since any two such lattices differ only by an over-
all scaling of R, we would effectively get the same space.
In the complex plane C, we can do the same thing with
a two-dimensional lattice of translations generated by
two complex numbers λ1 and λ2, as long as the quo-
tient λ2/λ1 is not real. This space is called a torus and
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has the same topology as any two-dimensional surface
with one hole. It has more structure, however, because
it can be covered by regions described by a complex
coordinate—with different regions related by complex
analytic maps. The pairs (λ1, λ2) and (λ1, λ2 + λ1)
generate the same lattice of translations, as do the
pairs (λ1, λ2) and (λ2,−λ1). In fact, lattices related by
a complex rescaling of C are equivalent, so a better
parametrization of the lattice is the ratio τ = λ2/λ1.

By redefining the direction of one of the λs, we can
assume that the imaginary part of τ is positive, so τ
takes values in the upper half of the complex plane. By
the reasoning above, we note that τ and τ + 1, as well
as −1/τ , all come from the same lattice. The number τ
can also be thought of in the following way. The torus
has two distinct loops, one generated by a straight path
from z to z + λ1, and one generated by a straight path
from z to z+λ2. Then λ1 and λ2 are both the result of
the line integral of the complex differential dz over the
loop. In fact, the loop did not even need to be straight
to lead to this conclusion. The values of such integrals
over subspaces without boundaries (the loops, here) are
more generally called periods.

Although any two tori are topologically equivalent,
one can show that there is no complex analytic map
between two complex tori described by genuinely dif-
ferent values of τ . The parameter τ therefore deter-
mines the complex geometry of the space. Roughly
speaking, we think of this parameter as describing the
shape of the torus. (See moduli spaces [IV.8 §2.1] for a
further discussion of this.)

The topological B-model depends only on the com-
plex geometry of the target spaceM . That is, the theory
depends, continuously, only on the parameter τ .

4.1.2 Symplectic Geometry

Another aspect of geometry is the size of the torus,
which is described simply by an area element. Let us
recall that, topologically, all tori look like R2 with points
identified by the lattice of integer horizontal and verti-
cal translations (but not necessarily in a way that would
respect any complex geometry). The points of the torus
can be thought of as the unit square with opposite
sides glued together. An area element in R2 looks like
ρ dx dy , which then determines the area ρ of the unit
square. These notions of two-dimensional area gener-
alize to two-dimensional subspaces in higher-dimen-
sional spaces. The study of such structures is called
symplectic geometry [III.90], and so we call ρ the
symplectic parameter.

The topological A-model depends only on the sym-
plectic geometry of the target space M . That is, the
theory depends, continuously, only on the parameter ρ.

4.2 Cohomological Theories

As you might imagine, the passage from an ordi-
nary theory to a topological theory involves identifying
many aspects of the physical theory that were previ-
ously distinct, such as different point values of a single
field. Mathematically, a well-established method of pro-
ducing topological aspects of a structure—and one that
involves making identifications—is through a cohom-
ology theory [IV.6 §4]. Cohomology theories follow
the pattern of having an operator δ obeying the equa-
tion δ ◦ δ = 0. We think of this equation as the state-
ment ker(δ) ⊂ image(δ). The cohomology group H(δ)
is formed as the quotient H(δ) = ker(δ)/ image(δ),
which means that we identify any two vectors u and
v satisfying δu = δv = 0, so long as the difference
u− v can be written as δw for some w. Then H(δ) is
just the space of all such vectors, up to identifications.

The topological twisting of physical theories is sim-
ilar. The operator δ is a physical operator acting on a
Hilbert space of states. The presence of supersymme-
try in our theories ensures that δ exists and squares to
zero. The vector states of the topological theory are just
the elements of H(δ), i.e., states in the original theory
Ψ obeying δΨ = 0, up to identification. In many cases,
these states can be identified with ground states.

It is crucial that supersymmetry is a symmetry that
contains the complex translations of points on the two-
dimensional surface. This means that the value of a
field operator φ(z) at one point is identified with its
value φ(z′) at another. In other words, the physics of
the topological theory is independent of the positions
of the operators! In the path-integral formulation, this
means that the correlation functions are independent
of the positions of the fields inserted into the integrand.
What can they depend on, then? They depend on the
particular field or combination of fields inserted, and
they depend on the geometric parameter (such as ρ or
τ) of the space M .

4.2.1 The A-Model and the B-Model

Given a Calabi–Yau space, one can actually construct
two operators, δA and δB, each of which squares to
zero. There are therefore two distinct corresponding
topological twistings and two distinct topological the-
ories that can be constructed from a Calabi–Yau space.
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If M and W are mirror Calabi–Yau pairs, you might
wonder if the topological models constructed from
them will still be equivalent theories. The answer is a
most interesting form of yes: the resulting A-model of
one Calabi–Yau manifoldM is equivalent to the B-model
of the mirror W , and vice versa! The complex and sym-
plectic aspects of the theories get interchanged under
mirror symmetry! In particular, a hard symplectic ques-
tion of M might get mapped to an easy computation
involving the complex geometry of W .

We emphasize here that the two manifolds may
be completely topologically distinct. For example, the
Euler characteristic of one is the negative of the other.

5 Basic Example: T-Duality

Although the circle is not complex, it provides a
very illustrative entry into mirror symmetry that can
be studied quite easily. We will find an equivalence
between two theories constructed from circles. The
equivalence will be very nontrivial, however, as states
of very different kinds will be shown to correspond.

Consider the case where the two-dimensional surface
is a cylinder, with spatial dimension a unit circle, and
one dimension of time, and let us look at the sigma
model (these were introduced in section 3). Suppose
also that the target space is a circle of radius R, which
we denote by S1

R . We think of S1
R as the real line, with

two points identified if they differ by a multiple of 2πR.
Maps from one circle to another can be classified by
their winding number, an integer that tells you how
many (net) times the image of a point goes around the
second circle when the point goes once around the first.
The map θ �→ mRθ from the circle to S1

R has winding
number m. This allows us to write the field ϕ(θ) as a
winding piece, mRθ, plus an honest Fourier series (no
winding): ϕ(θ) = mRθ + x + ∑n≠0cn exp(inθ). Here
we have singled out the constant mode x = c0 of the
Fourier series. We have expanded just the θ depend-
ence in a series, so every continuous parameter (x and
the cn) should be thought of as a function of time, as
well.

The energy, or Hamiltonian, of such a map is com-
puted as in section 2.1.3:

H = (mR)2 + ẋ2 +
∑
n
|ċn|2 +n2|cn|2.

Comparing this with the harmonic oscillator Hamilto-
nian of section 2.1.3, we can see that each degree of
freedom cn(t) plays the role of a (complex) quantum-
mechanical particle in a simple harmonic oscilla-
tor potential. There is an occupation-mode basis for

describing the quantum mechanics of each mode.9 The
full Hilbert space of the quantum theory is the (ten-
sor) product of each of these, plus parts involving the
constant mode and winding number, which we now dis-
cuss. (Remember, each degree of freedom of the clas-
sical theory becomes a particle in the quantum field
theory.)

The constant mode x has energy ẋ2, and there-
fore has no associated potential (it can be anywhere
on the circle). This mode represents a free quantum-
mechanical particle on the circle. Recall that the
momentum of the x particle is represented by the oper-
ator −i(d/dx). This operator has eigenfunctions eipx .
The requirement that these eigenfunctions are invari-
ant under the translation x → x + 2πR means that the
eigenvalues of momentum are “quantized,” and have
the form p = n/R.

In contrast to momentum, the integer winding num-
ber (m) is really a classical label for the possible maps
from a circle to a circle. Although integral, it is clearly
on a different footing from the integern of momentum.
Still, it is also an important label on the Hilbert space.
For each m, we have a space of m-winding configura-
tions which gets quantized to become themth sector of
the Hilbert space. Roughly, this sector Hm comprises
the functions of all the degrees of freedom of all the
m-winding maps. We can consider the winding num-
ber as an operator by simply declaring that the states
with winding numberm have eigenvaluemR.

Ignoring the oscillator modes for the moment, the
state of momentum n/R with winding m has energy
(n/R)2+(mR)2. In particular, the energy is unchanged
if we make the simultaneous switches (m,n)↔ (n,m)
and R ↔ 1/R. Since the oscillator modes an have
energies that are independent of R, and since the
modes are noninteracting particles, this symmetry can
be extended to a full equivalence of the theories with
targets S1

R and S1
1/R , with momentum in one theory

corresponding to winding number in the other.
In this example, the target space S1 is neither com-

plex nor symplectic. As a result, we cannot construct
the topological A- and B-models. Nevertheless, we have
demonstrated the stronger statement that the two
sigma models with target space S1

R and S1
1/R are equiva-

lent. The theories are mirror pairs. In the special case of
circles, mirror symmetry is referred to as T-duality. In
fact, the entire phenomenon of mirror symmetry—even
for noncircles—can be deduced from T-duality.

9. Each a†n = [Re(ċn) − inRe(cn)]/
√

2n is a raising operator, and
similarly for the imaginary parts of the cn.
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5.1 Tori

If we take the product of two circles S1
R1
× S1

R2
, we get a

torus. We can think of the torus as a circle family of cir-
cles, since for each point in S1

R2
we have a circle S1

R1
. As

we have seen in section 4.1.1, this space is complex—
specifically, it is the complex plane C quotiented by a
lattice of translations. A particularly simple lattice is
the one generated by the translations z → z + R1 and
z → z+iR2. As discussed in section 4.1.1 above, the lat-
tice is determined by the complex number τ = iR2/R1,
equal to the ratio of integrals (“periods”) of the complex
form dz over the two nontrivial loops of the torus.

The symplectic data is captured by the area element.
Recall that we can choose coordinates x and y such
that the identifications look like unit translations in
each direction. Then the (normalized) area element of
the torus with radii R1 and R2 is R1R2 dx dy , which
integrates to R1R2 on the unit square. Let us define
the symplectic parameter ρ = iR1R2. We now perform
T-duality for the first circle R1 → 1/R1. We see that
under this substitution, the complex and symplectic
parameters get interchanged:10

τ ←→ ρ.
Lessons. Mirror symmetry interchanges complex and
symplectic parameters. Mirror symmetry is T-duality.

5.2 The General Case

The torus is the only compact one-dimensional Calabi–
Yau space and is therefore the simplest one, but the
discussion above is part of a more general picture. The
Calabi–Yau condition ensures a unique complex vol-
ume element, or orientation (dz, above), whose “peri-
ods” determine, and in turn vary with, the complex
parameters. Though the A- and B-models both turn out
to be rather simple in the case of the torus, what is
important in general is that the B-model is completely
determined by how the periods of the complex volume
element (which were λ1 and λ2 in section 4.1.1) change
with the parameters of the theory (of which there was
just one in section 4.1.1, namely τ). Again, the relation
τ = λ2/λ1 is quite simple for the torus, but more com-
plicated in general. In any case, this data gives all the
information of the B-model. The reason for all of this is
that the instantons of the B-model turn out to be just
the constant maps. Each point of the target space deter-
mines a constant map, and as a result the B-model is

10. The parameters τ and ρ can also have real parts, but we neglect
the details for simplicity.

reduced to (classical) complex geometry of the target
space. This is determined by the periods.

This state of affairs is to be compared with the A-
model. The A-model depends on the symplectic param-
eters ρ, i.e., the areas of two-dimensional surfaces
inside the target space. In contrast to the B-model,
however, the dependence on ρ is very complicated,
in general. The reason for this is that the instantons
of the A-model are area-minimizing surfaces inside
the target space, and their enumeration is a notori-
ously challenging problem. (The problem is not terri-
bly challenging for the torus, however.) Mathematically,
the A-model instantons are described by the theory of
Gromov–Witten invariants, the subject to which we now
turn.

6 Mirror Symmetry and
Gromov–Witten Theory

As we mentioned above, the B-model onW is explained
entirely by the classical complex geometry of W . The
only relevant maps for B-model computations are the
constant ones, so the space of such maps is equal
to W itself, and correlators reduce to (classical) inte-
grals over W . In fact, one of the integrands to be inte-
grated is the complex volume element. Let us call the
parameter for all possible complex volume elements τ .
B-model correlation functions are then determined by
τ-dependent integrals over W . In particular, the parti-
tion function Z(W)B of the B-model on W depends on τ ,
so we write it as Z(W)B (τ).

The main point about topological twisting is that
local variations of the fields are all identified, as they
are related by the operator δ. In particular, varying the
point on the worldsheet is a trivial operation in the
topological theory. It turns out that, for the B-model
on W , only the constant maps contributed, but for the
A-model the situation is a bit more subtle. To give a feel
for the geometry, consider again the winding of a map
from a circle to a circle. Maps with different windings
can never be deformed continuously into one another.
The winding number is a measure of how the first cir-
cle “wraps” (or winds) around the target, according to
the map. Because it is a discrete parameter it cannot
change under continuous variations. Likewise, whenM
is a higher-dimensional space, the two-dimensional sur-
face Σ can “wrap” around two-dimensional subspaces
of M by different amounts. The parameters for wrap-
ping are again discrete. A mapϕ can wrap Σ around the
basic surfaces Ci in M by different integer amounts,
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ki. We say that k = ki labels the “class” of the map
ϕ. (More precisely, ϕ(Σ) is a closed 2-cycle when Σ
is compact, and k labels its homology class.) Differ-
ent classes k contribute through different (Euclidean)
actions Sk(ρ), which depend on the areas ρ and the
class k but not on the continuous details of the map
ϕk. The partition function can have contributions from
all classes. Different classes may contribute differently
not only through the exponential weighting, but also
in accordance with how many minimal surfaces they
contain. (A good example of a minimal surface in three-
dimensional space is a soap film. If you fix the boundary
with a wire, the soap film will seek to find the minimum-
area surface with that boundary.) In our examples, the
space M is actually complex; the minimal surfaces we
speak of in Gromov–Witten theory are complex analytic
maps from Σ. That is, if you have a complex coordinate
for Σ, then the complex coordinates for the surfacesM
can be written as complex analytic functions of Σ.

The difference between the A-model and the B-model
comes from the fact that the topological model is con-
structed from an operator δ, which was guaranteed to
exist by the presence of supersymmetry in our theo-
ries. For the different models, the relevant supersym-
metry operators δA and δB are simply different. As we
saw above, the maps relevant to the A-model are the
instantons, or complex analytic maps from Σ to M .
Roughly, then, A-model correlation functions onM , and
in particular the partition function Z(M)A , are sums over
classes k of surfaces in M and sums over instantons in
each class, each one weighted by its instanton action
exp(−Sk(ρ)). We have explicitly written the depend-
ence on the parameter for the symplectic structure ρ.
For Calabi–Yau manifolds, such maps should be dis-
crete, and it is a conjecture, true in all known cases,
that they are finite in number if we fix the class, k. All
this data is packaged in a function of ρ, and based on
what we have argued, the partition function must take
the general form

Z(M)A (ρ) =
∑
k
nk exp(−Sk(ρ)).

The coefficients nk are called Gromov–Witten invari-
ants.11

Putting things together, if (M,A) is mirror to (W,B),
and if we can identify for each complex parameter τ

11. Though our discussion makes it seem as though thenk are inte-
gers, in fact they are only rational numbers. They can be expressed in
terms of more basic integers, however. These integers are the ones
referred to at the beginning of this article.

for W a corresponding symplectic parameter ρ(τ) for
M , then we have

Z(M)A (ρ) = Z(M)A (ρ(τ)) = Z(W)B (τ). (6)

The first equality means we should rewrite ρ in terms
of τ , and the second says that the answer should be
given by the corresponding B-model on W . Therefore,
all of the information about complex analytic surfaces
in M , which is encapsulated in the coefficients nk, is
completely determined by the classical geometry ofW !

This remarkable predictive power—the computation
of an infinite number of difficult Gromov–Witten invari-
ants through equations such as (6)—is what led to such
intense interest in mirror symmetry at its inception.

7 Orbifolds and Nongeometric Phases

7.1 Nongeometric Theories

Mirror symmetry is about an equivalence of quantum
field theories, and not every such field theory has the
geometric content of a target space as in the sigma
model. The structure involved in mirror symmetry—or
at least its topological version—begins with a quantum
theory with a supersymmetry algebra that allows for
the passage to a topological theory. That is, there is
a Hilbert space of states, a Hamiltonian operator, and
a particular algebra of symmetries, i.e., operators that
commute with the Hamiltonian. There are no dictates
as to how one constructs such a setup, and the sigma
model of maps to a target space is only one such way.
Other methods abound. The geometric case is merely
the one most suited for mathematicization (and exposi-
tion), which is why we have focused on the theory with
a target space.

As an intermediate case—possibly geometric, possi-
bly not—we will discuss the so-called orbifold theories.

7.2 Orbifolds

When space-time is a cylinder S1 × R, with a circle
S1 as its spatial dimension, there is a fascinating con-
struction in quantum field theory known as an orbifold
theory. This is defined as follows. Suppose there is a
finite group G of symmetries (such as a reflection sym-
metry). That is, each group element acts as an opera-
tor on the Hilbert space, so if g ∈ G then it sends a
state Ψ to a state gΨ . Then one defines a new theory
by identifying states related by the symmetry. To con-
struct the theory, let us first consider the ground state
Ψ0 of the original theory. This is assumed to be invari-
ant under the group: that is, gΨ0 = Ψ0 for all group
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elements, g.12 One then constructs the spaceH0 of all
invariant states. This is known as the untwisted sector,
and Ψ0 is the ground state of the untwisted sector. In
the case where G is commutative, a twisted sector is
then constructed for every group element g ∈ G.13 To
construct the twisted sector, first think of the spatial
dimension S1 as being an interval [0,1] with endpoints
0 and 1 identified. Recall that the Hilbert space of states
is constructed from (functions of) all the degrees of
freedom of the possible configurations of fields. The
twisted sectorHg corresponds to additional field con-
figurations Φ that are related at the two ends by the
action of g: so Φ(1) = gΦ(0). Such field configura-
tions represent configurations on the circle S1 since left
and right ends are related by the group, and therefore
get identified. These additional configurations are thus
part of the orbifold theory. One constructs a sectorHg

of the Hilbert space by taking all such states Ψg that
also obey the invariance condition hΨg = Ψg for all
group elements h.

Orbifolds may be geometric, as they are in the case
of the sigma model to a manifold X on which a dis-
crete group G acts. For example, rotations act on the
plane, and we can consider the four-element group gen-
erated by a right-angle rotation. The quotient of the
plane by these rotations looks like a cone. As another
example, the finite groups of symmetries of the pla-
tonic solids (tetrahedron, cube, etc.) act on the two-
dimensional sphere by rotations. When we take X = S2

and G a platonic group, we get an interesting orbifold.
In fact, if we simply take the space of orbits of the
group G, it is topologically just a sphere again, but not
a smooth one—it has cone points. These cone points
would be troublesome in a quantum field theory, but
the “stringy” orbifold is perfectly “smooth.”

The orbifold theory itself carries a symmetry. For
example, if G is the commutative group with two ele-
ments, then there is an untwisted sector and a unique
twisted sector. There is a symmetry corresponding to
multiplication by 1 in the untwisted sector and by −1
in the twisted sector. This symmetry is not geomet-
ric. Orbifold theories with symmetries can often them-
selves be orbifolded in such a way as to recover the
original theory. In fact, the theory and its orbifold are

12. In the case where there are flat directions of a potential, as in
a free particle on a circle (no potential at all), the ground state may
be a superposition of classical values of the field. For the circle, the
constant wave function Ψ = 1 is not associated with a single, classical
location. It is still invariant under any group of rotations, however.

13. The twisted sectors are properly labeled by conjugacy classes,
which are the same as group elements when G is commutative.

also often mirror pairs! Greene and Plesser used such
a construction to create the first examples of mirror
pairs. Furthermore, they used ways of ascribing geo-
metric interpretations to some nongeometrically con-
structed theories so as to identify mirror Calabi–Yau
spaces. To be precise, they took the space of all nonzero
complex 5-vectors X = (X1, X2, X3, X4, X5) satisfying
the equation

X5
1 +X5

2 +X5
3 +X5

4 +X5
5 + τX1X2X3X4X5 = 0,

identifying X with λX for any nonzero complex num-
ber λ. (If X is a solution, then so is λX.) The equation
actually defines a family of complex spaces, since τ ∈ C

is a parameter. The orbifold theory is defined from the
finite group of phase transformations

(X1, X2, X3, X4, X5)

�→ (ωn1X1,ωn2X2,ωn3X3,ωn4X4,ωn5X5),

where ω = e2π i/5 and
∑5
i=1ni is a multiple of 5. This

space and its orbifold are actually the mirror pair about
which Candelas et al. made their famous predictions.

8 Boundaries and Categories

The entire story of mirror symmetry becomes much
richer when we allow the strings to have endpoints.
Strings with ends are called “open strings,” while
“closed strings” refers to loops. Mathematically, allow-
ing ends corresponds to adding boundaries to the
worldsheet surfaces. With this addition, we would like
to perform the same topological twisting. To do so, we
must first ensure that some supersymmetry condition
persists when we put the boundary conditions on the
fields. If we begin with a Calabi–Yau target manifold, we
can ask to preserve the conditions that allow either the
A-twisting or the B-twisting (but not both: the boundary
condition will destroy some symmetry, much as pin-
ning a rope will constrain its degrees of freedom). After
the twist, the boundary topological theory will depend
on symplectic or complex information, respectively.

For the A-model, the endpoints or boundaries must
lie on a Lagrangian subspace. The Lagrangian condition
constrains half the coordinates; for linear spaces it is
like a restriction to the real part of a complex vector
space. For the B-model the boundaries must lie on a
complex space. Locally, a complex space looks like Cn

and a complex subspace is described by complex ana-
lytic equations in the coordinates. A boundary condi-
tion that preserves supersymmetry and allows a chosen
topological twisting is called a brane. (The terminol-
ogy mimics the word “membrane,” but applies to any
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dimension.) In short, A-branes are Lagrangian; B-branes
are complex.

To package all the information of the topological
boundary theory, one appeals to the mathematical
notion of a category [III.8]. A category is a way of
talking about structure: it consists of objects, and for
any pair of objects there is a space of morphisms
from one object to the other. Often the objects are
mathematical structures of some kind and the mor-
phisms from one object to another are the functions
that preserve the relevant structure. For example, if
the objects are (i) sets [I.3 §2.1], (ii) topological
spaces [III.92], (iii) groups [I.3 §2.1], (iv) vector spaces
[I.3 §2.3], or (v) chain complexes, then the morphisms
are, respectively, (i) maps [I.2 §2.2], (ii) continuous
maps [III.92], (iii) homomorphisms [I.3 §4.1], (iv) linear
maps [I.3 §4.2], or (v) chain maps. The morphism spaces
between objects should be thought of as some kind
of relational data. Morphisms themselves interact with
one another, as they can be composed when the end
object of one morphism is the start object of another.
The composition is associative, so whether you com-
pute abc as (ab)c or a(bc) does not matter. A use-
ful image is a directed graph, which is a category with
vertices as objects and paths between two vertices as
morphisms. Composition is defined in this category by
concatenating paths.

In the case of a two-dimensional field theory with
boundary conditions, we construct a category whose
objects are branes (i.e., boundary conditions). The mor-
phisms between two branes α and β are the ground
statesHαβ of the boundary field theory defined on the
infinite strip [0,1]×R, where we put the boundary con-
dition α on the left boundary {0}×R and the condition
β on the right boundary {1} × R. Morphisms are com-
posed by gluing boundaries together, and associativity
is guaranteed by topological invariance.14

Mirror symmetry with boundary conditions then be-
comes the following statement: two manifolds M and
W are mirror pairs if the brane category of the A-twist-
ing of M is equivalent to the brane category of the B-
twisting ofW (and vice versa). The mathematical trans-
lation of this statement is called the homological mir-

14. We speak of associativity of the topological states, which are
themselves cohomology classes. At the “chain” level, before the topo-
logical twisting, there is no associativity. The notion of a category
with morphisms that have a cohomology and compose only “up to
cohomology” is called an A∞ category. One can also imagine a cate-
gorical definition that captures the structure of surfaces with handles
and holes. Indeed, the proper mathematical framework for a complete
understanding of mirror symmetry is still under construction.

ror symmetry conjecture, due to Kontsevich. On the A-
model side, the brane category is the so-called Fukaya
category, and is governed by complex analytic maps
from surfaces with boundaries, where the boundaries
must be mapped to Lagrangian branes. On the B-model
side, the branes form a category determined by com-
plex subspaces, together with complex analytic vector
bundles [IV.6 §5] on them. A complex vector bundle
associates a complex vector space to every point. For
example, the complex circle {x2 + y2 = 1} in C2 has
a complex tangent space at every point. “Complex ana-
lytic” means that this subspace of C2 changes in a com-
plex analytic way. For the complex circle, the space of
tangent vectors at (x,y) consists of all multiples of the
vector (−y,x), an assignment which is clearly complex
analytic. Physically, the bundles arise from allowing
charges on the endpoints of strings.

Kontsevich’s conjecture asserts that these two cate-
gories of branes are equivalent. That statement is nat-
ural from the physics point of view, but by identify-
ing the precise categories that correspond to the phys-
ical picture, this conjecture is a major contribution
to the translation of mirror symmetry from physics
into rigorous mathematics. The equivalence of cate-
gories means that not only is there a corresponding
Lagrangian A-brane of M for every complex B-brane of
W , but that the relationships, or morphisms, between
branes are also in correspondence.

8.1 Example: Torus

Kontsevich’s conjecture can be proven and easily illus-
trated in the example of a 2-torus. Think of the now-
familiar symplectic two-torus as being the two-dimen-
sional plane, with integer lattice translations identified.
We take the torus to have area element Adx dy , so
that the symplectic parameter is the imaginary num-
ber ρ = iA, as in section 4.1.2. Now consider straight
lines on the plane. These will correspond to closed cir-
cles on the torus as long as they have rational slope:
m = d/r , with d and r relatively prime integers. They
are Lagrangian branes of the A-model boundary theory.
The minimal-energy open strings connecting one line of
slopem = d/r to another of slopem′ = d′/r ′ are those
that have zero length. They are therefore the points of
intersection. It is an easy exercise to show that there
are |dr ′ − rd′| such points.

On the mirror side, we again have a torus, but with a
complex parameter τ , and for the two tori to be mirror
pairs, we should set τ = ρ. The objects of the B-model
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brane category are complex vector bundles. It is a the-
orem that the basic bundles are classified by their rank
r and degree d, two integers.15 It is customary to orga-
nize these two numbers into what is known as a “slope,”
m = d/r (the nomenclature preceded this application),
and basic bundles must have d and r relatively prime.

We can now easily guess that under the mirror corre-
spondence we have

slope←→ slope.

This means that a Lagrangian brane of slope m on the
torus with symplectic parameter ρ should correspond
to a complex vector bundle with slope m in the mir-
ror torus with complex parameter ρ. Now suppose we
have the B-model version of our example above, so we
take two vector bundles of slope m and m′. In fact,
the minimum-energy open strings between two com-
plex analytic bundles of slopem andm′ correspond to
complex maps between the bundles, and the riemann–
roch formula [V.34] counts this number as |dr ′ −
rd′|. This is the same result as for our A-model calcu-
lation above! Therefore, corresponding objects relate
in a corresponding way. Beyond the morphism spaces,
one checks finally that the compositions of correspond-
ing morphisms correspond, just as for logarithms and
slide rules. Doing so proves Kontsevich’s conjecture.

8.2 Definition and Conjecture

In fact, Kontsevich’s definition of mirror symmetry is
really a conjecture stating that the boundary notion
of mirror symmetry as an equivalence of categories
is compatible with, and even implies, the traditional
notion of mirror symmetry that relates Gromov–Witten
theory and complex structures.

One way to show this is to try to reconstruct the
Gromov–Witten invariants from the boundary theory.
A heuristic, geometric approach to doing so involves
looking at the diagonal boundary condition in two
copies of a space. A disk mapping into two copies
of a space is described by two maps of a disk into
the space. Further, if the boundary condition is diag-
onal, this means that the maps have to agree on the
boundary. What we have, then, is two disks inside a
space which agree on the boundary. That is exactly
what a sphere is: two disks (or cups) glued together!

15. A vector bundle assigns a vector space to each point of the
torus. The rank is the dimension of that space. The degree is roughly
a measure of the complexity of the bundle. For example, if we have a
two-dimensional surface and consider the bundle that assigns to each
point the tangent space at that point, the degree is equal to 2 − 2g,
where g is the number of holes on the surface.

The disks are the two hemispheres, and they are glued
along the equator. Now the minimal disks are instan-
tons for the open string (with boundary), and by glu-
ing them together along a common boundary, we have
constructed a minimal sphere, or closed-string instan-
ton. Thus the open string on this double theory should
recover the closed string on the original theory.

A more algebraic approach sees the closed-string de-
formations as deformations of the category of branes.
That is, a change in bulk (nonboundary) theory induces
a change in boundary theory. But once equipped with a
category, one can classify its deformations intrinsically.
That is, if one views a category as a fancy algebra,16

then, as the deformations of an algebra are easily clas-
sified through a notion called Hochschild cohomology,
the deformations of a category can be treated simi-
larly. One arrives at the maxim that the closed string
is the Hochschild cohomology of the open string. By
computing the Hochschild cohomology of a brane cat-
egory, one can, in principle, check this maxim, establish
Kontsevich’s conjecture, and then prove the connection
to traditional mirror symmetry and Gromov–Witten
theory.

9 Unifying Themes

How does one find mirror pairs (M,W)? What is the
construction? Although mirror symmetry has spawned
many results and proofs, these basic questions con-
tinue to vex.

On the one hand, Hori and Vafa have given a physics
proof of mirror symmetry, which constructs mirror
pairs but not through an evident mathematical channel.
Of course, one can mathematicize the physical argu-
ment, but that does not seem to lead to insights into
the construction—perhaps because path integrals and
other methods of quantum field theory such as renor-
malization are not very well understood mathemati-
cally.

Batyrev has devised a procedure for constructing
mirror pairs within the context of toric geometry. This
method is a generalization, to a wide class of exam-
ples, of the original construction of Greene and Plesser.
The recipe has been extremely successful in produc-
ing examples of every stripe. However, the underlying
meaning behind the construction is unclear.

As for a geometric construction of mirror pairs, there
is a physical argument that makes contact with math-
ematics, but it has not yet been made rigorous. The

16. An algebra is a category with one object.
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argument uses T-duality. Start with the B-model on M
and consider a point P of M as a zero-dimensional
complex subspace. Then the choice of point P on M
is parametrized by M itself. By mirror symmetry, there
should be a corresponding Lagrangian brane T on the
mirror manifoldW . Furthermore, the choices of T must
equal the choices of P, i.e., the manifold M . Therefore,
if we can find the brane T onW , we can parametrize the
choices of T , and recover M . So we can find the mirror
M of W from W itself.

This construction is geometric and has something
to say about the structure of the Calabi–Yau spaces
involved in mirror symmetry. Specifically, the choices
of a Lagrangian brane always look like a family of tori.
Therefore, M itself should look like a family of tori.
Further, one can argue that by performing T-duality in
families of tori (in a similar way to how one does it for
a single torus), one arrives back at the mirror manifold,
W . This is what we did for the torus, thought of as a cir-
cle family (S1

R2
) of circles S1

R1
. When we T-dualized each

member of the family, we found the mirror torus. So
mirror symmetry is T-duality, and Calabi–Yau spaces
of mirror symmetry should look like families of tori.
This approach also relates to the homological mirror
symmetry construction. Though promising, it remains
mathematically elusive.

Various points of view on mirror symmetry are help-
ful for different applications. To date, no unified under-
standing of the phenomenon has been achieved. To
some extent, we are still “feeling the elephant.”

10 Applications to Physics and Mathematics

As a computational tool in string theory, mirror sym-
metry is unparalleled in its power. When combined with
other physical equivalences, its power is multiplied. For
example, there are certain equivalences in physics that
relate one type of string theory to another.

Without going into the details of string theory, we
can get a flavor of its complexity by returning to mirror
symmetry. Recall that the B-model was able to compute
the difficult instantons on the A-model, yielding a great
simplification of the two-dimensional quantum field
theory on the worldsheet. But this whole quantum field
theory was just an auxiliary tool for computing some
Feynman diagram for the perturbation theory of the
full string theory! Unfortunately, a satisfactory descrip-
tion of the full string theory path integral is, at the
time of writing, way out of reach. String theory instan-
ton effects are mostly unknown to us, unless a string

equivalence or other argument can relate them to a per-
turbative effect in a different string theory. The pertur-
bative string calculation in that other theory may then
be performed by exploiting mirror symmetry. Tracing
through chains of equivalences in such a manner, many
different phenomena in string theory can ultimately be
calculated via mirror symmetry.

In principle, one should be able to calculate all non-
perturbative and perturbative aspects of a single theory
by outsourcing the calculations to equivalent theories
and exploiting mirror symmetry. The barriers to doing
this at the time of writing are largely technological, not
conceptual.

Beyond physics, the rich texture of mirror symmetry
means that there is interesting mathematics to be dis-
covered in the proper formulation of the problem. For
example, defining the precise categories of branes in
full generality remains a challenge.

Yet there are also direct applications to mathemati-
cal questions. We have already discussed how enumer-
ative geometry has been revolutionized by mirror sym-
metry and the counting of instantons. Results in sym-
plectic geometry have also been obtained. Occasionally,
two objects may be proven to be equivalent as B-model
branes. If the A-model mirrors can then be found, one
has the result that the corresponding Lagrangian sub-
spaces of the mirror symplectic space are also equiva-
lent. Of course, to make such an argument, one must
first prove Kontsevich’s version of mirror symmetry for
the mirror pair considered. As a final recent example,
Kapustin and Witten have found a relation of mirror
symmetry to the geometric Langlands program in rep-
resentation theory. This program, loosely stated, is a
correspondence between objects associated with two-
dimensional surfaces and Lie groups. From a surface
Σ and a gauge group G, one constructs the space MH

of solutions to Hitchin’s equations. Central to that pro-
gram are complex analytic objects on MH that behave
nicely under the action of an algebra of operations.
The Langlands correspondence relates two sets of such
objects: one easy to calculate and the other more dif-
ficult. In fact MH is itself a family of tori, and the
easy objects correspond to points. Mirror symmetry
states that the points should turn into the tori under
T-duality, so the hard objects should correspond to
the tori themselves! It is an appealing proposition, and
making it precise mathematics will be difficult—but the
gauntlet has been thrown down.

The discovery that mirror symmetry relates to the
geometric Langlands program has elicited great excite-
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ment among researchers and reveals yet another facet
of this fascinating phenomenon.

Further Reading

The article “Physmatics” (which can be found online
at www.claymath.org/library/senior_scholars/zaslow_
physmatics.pdf) is a general discussion of the rela-
tionship between mathematics and physics, and may
serve as a complement to this article. Readers with a
university-level mathematics background who want to
learn about mirror symmetry in more detail could try
consulting the book Mirror Symmetry (Clay Mathemat-
ics Monographs, volume 1, edited by K. Hori and others
(American Mathematical Society, Providence, RI, 2003)).

IV.17 Vertex Operator Algebras
Terry Gannon

1 Introduction

Algebra is the mathematics that places more empha-
sis on abstract structure than on intrinsic meaning.
The conceptual simplifications that can result when
context is stripped away from structure give algebra
a special power and clarity compared with other areas:
compare, for example, the difficulty of visualizing four-
dimensional space with the triviality of manipulating
quadruples (x1, x2, x3, x4) of real numbers. However,
this abstractness can also blind us. For instance, basic
identities like ab = ba and a(bc) = (ab)c that
are obeyed by numbers can be modified in countless
directions, and each modification defines a new alge-
braic structure, but it is hard to guess from a purely
abstract perspective which of these modifications will
give rise to a rich, accessible, and interesting theory.
For guidance, algebra has traditionally turned to geom-
etry. For example, over a century ago lie [VI.53] sug-
gested that the identities ab = −ba and a(bc) =
(ab)c+b(ac)were worth studying for geometrical rea-
sons: the resulting structures are now called lie alge-
bras [III.50 §2]. More recently, as we shall see, physics
has joined geometry in this guiding role and has had
spectacular success.

The renowned physicist and mathematician Edward
Witten believes that a major theme of twenty-first-
century mathematics will be its reconciliation with the
branch of physics known as quantum field theory.
Conformal field theory (the quantum field theory that
underlies string theory) is an especially symmetric and
well-behaved class of quantum field theories. When this

notion is translated into algebra, the result is a struc-
ture known as a vertex operator algebra (VOA). This
article sketches where VOAs come from, what they are,
and what they are good for.

To aim to explain a VOA in a few pages is almost
as absurd as to aim to explain quantum field theory
in a few pages, but, undaunted, I shall try to do both.
Obviously it will be necessary to gloss over many impor-
tant technicalities and to commit major simplifications;
without question this exposition will raise the ire of
experts and the eyebrows of knowledgeable amateurs,
but I hope that it will at least convey the essence of this
important and beautiful area. Vertex operator algebras
are the algebra of string theory: they should be thought
of as the same sort of gift to the twenty-first century
that Lie algebras were to the twentieth.

2 Where VOAs Come From

The two most revolutionary developments in physics in
the early twentieth century are usually held to be rel-
ativity and quantum mechanics. They are revolution-
ary not just because they have consequences that are
extremely counterintuitive, but also because they pro-
vide very general frameworks that can potentially affect
all physical theories: one can take a theory from classi-
cal physics, such as the theory of the harmonic oscilla-
tor or the theory of electrostatic force, for example, and
one can try to make it “relativistic,” so that it becomes
compatible with relativity, or to “quantize” it, so that it
becomes compatible with quantum mechanics.

Unfortunately, nobody knows how to make relativity
fully compatible with quantum mechanics. To put this
another way, the ultimate concern of relativity is grav-
itation, and a direct application to gravity of the usual
quantizing techniques fails. This ought to mean that
a fundamentally new physics arises at small distance
scales that we are ignoring. Indeed, naive calculations
suggest that the space-time “continuum” at distance
scales of around 10−35 m should deteriorate into some
sort of “quantum foam,” whatever that might mean.
(10−35 m is extremely small: for instance, the order of
magnitude of the size of an atom is 10−10 m.)

Perhaps the most popular and controversial ap-
proach to quantum gravity is string theory. The elec-
tron is a particle, i.e., in principle it can be localized to
a point. In string theory, the fundamental object is a
string, a finite curve of length approximately 10−35 m.
In place of the dozens of kinds of fundamental particles
in the generally accepted quantum field theory, there
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is only one string, whose precise physical properties
(mass, charge, etc.) depend on its current “vibrational
mode.”

As the string moves, it traces out a surface called
a worldsheet. For reasons that we will sketch below,
much of string theory reduces to studying confor-
mal field theory, which is the induced quantum theory
on these surfaces. Probably no other structures have
affected so many areas of “pure” mathematics in so
short a time as string theory and, what is essentially
the same thing, conformal field theory. Indeed, five of
the twelve Fields Medals awarded in the 1990s (namely,
those to Drinfel’d, Jones, Witten, Borcherds, and Kont-PUP: this spelling

is correct.
sevich) were for such work. We shall focus in this arti-
cle on their algebraic impact; see mirror symmetry
[IV.16] for some geometrical implications.

2.1 Physics 101

A quick overview of physics will be useful for the
discussion. Further details can be found in mirror
symmetry [IV.16 §2].

2.1.1 States, Observables, and Symmetries

A physical theory is a set of laws that govern the behav-
ior of some kind of physical system. A state of that
system is a complete mathematical description of the
system at a particular time: for instance, if the system
consists of a single particle, then we could take its state
to be its position x and momentum p = m(d/dt)x
(where m is its mass). An observable is a physically
measurable quantity such as position, momentum, or
energy. It is through observables that a theory is com-
pared with experiment. Of course, for this to be true
we also need to know what an observable is from a
theoretical point of view. In classical physics, this is
easy: an observable is just a numerical function of the
state. For example, our single particle has energy E,
which depends on the position and momentum via a
formula of the form E = (1/2m)p2 +V(x). (This gives
us the kinetic energy plus the potential energy.) Classi-
cal states at different times are related by the equations
of motion, which are usually expressed as differential
equations.

However, string theory and conformal field theory
(CFT) are quantum theories, which are significantly dif-
ferent from classical theories: one can think of them
as “applied linear algebra.” Whereas a classical state
was given by a collection of a few numbers (two, in
the case of the particle above), a quantum state is an

element of a hilbert space [III.37], which for the pur-
poses of discussion we can think of as a column vector
with infinitely many complex entries. As for a quantum
observable, it is a hermitian operator [III.52 §3.2] on
the Hilbert space, which we can think of as an ∞ ×∞
matrix Â. This operator acts on the states by matrix
multiplication. As in classical physics, one of the most
important observables is energy, which is given by the
Hamiltonian operator Ĥ.

It is far from obvious how a linear operator that takes
states to states has anything to do with the notion
of a physical observation, and indeed the relationship
between observables and observation is a major differ-
ence between classical and quantum theories. If Â is
an observable, then the spectral theorem [III.52 §3.4] T&T note: Tim to

think about all
spectral theorem
CRs later.

tells us that the Hilbert space has an orthonormal
basis [III.37] of eigenvectors [I.3 §4.3]. When we do
the experiment that is modeled by the observable Â,
the answer we obtain will be one of the eigenvalues
of Â. However, this answer is usually not fully deter-
mined by the state v . Instead, it is given by a proba-
bility distribution: the probability of obtaining a par-
ticular eigenvalue is proportional to the square of the
norm of the projection of v into the corresponding
eigenspace. Thus, the only circumstances under which
the answer is determined in advance are if the state v
is an eigenvector of Â.

There are two independent ways in which a quan-
tum state can evolve in time: a deterministic evolu-
tion between measurements, governed by the famous
schrödinger equation [III.85], and a probabilistic
and discontinuous one that occurs at the instant when
a measurement is made. For our purposes, only the
deterministic evolution will be relevant.

The symmetries of CFT are extremely rich, as we shall
see. Symmetries in physical theories are highly desir-
able because of two consequences that they have. First,
they lead by noether’s theorem [IV.12 §4.1] to con-
served quantities, i.e., quantities independent of time.
For example, the equations of motion of our particles
are usually invariant under translation: for instance,
the gravitational force between two particles depends
only on the difference between their positions. The cor-
responding conservation law in this case is the conser-
vation of momentum. A second consequence of sym-
metries in quantum theories is that infinitesimal gen-
erators of the symmetries act on the state spaceH (the
Hilbert space to which the states belong), forming a rep-
resentation of the Lie algebra. Both consequences are
important to CFT.
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2.1.2 The Lagrangian Formulation and
Feynman Diagrams

We will need two of the languages in which physics
is written. One is the Lagrangian formalism, which is
responsible for the relationship between string theory
and CFT, as well as for the appearance of modular
functions in string theory. The other is the Hamilto-
nian or Poisson bracket formalism, which is where alge-
bra arises. Vertex operator algebras try to explain the
“miracle” that these two formalisms cohere.

The Lagrangian formalism can be expressed classi-
cally through Hamilton’s action principle. When there
are no forces present, particles travel in straight lines,
which are the curves of shortest length. Hamilton’s
principle explains how this idea generalizes to arbi-
trary forces: instead of minimizing length, the particle
minimizes a related quantity S called the action.

The quantum version of Hamilton’s principle is due
to Feynman. He expresses the probability of measuring
the system in some final (eigen)state |out〉, given that
it was originally in some initial state |in〉, using a “path
integral” of eiS/� over all possible histories that connect
|in〉 and |out〉. The details are not important for us (and
in any case are mathematically dubious in general). The
intuition behind the path integral formulation is that
the particle simultaneously follows every one of those
histories, and each of them contributes to the probabil-
ity. � is called Planck’s constant ; in the “classical limit”
as � → 0, the contribution from the path that satisfies
Hamilton’s principle dominates everything else.

The main use of Feynman’s path integral is in pertur-
bation theory. Finding exact solutions in physics is typi-
cally impossible and rarely useful. In practice, it suffices
to find the first few terms in some Taylor expansion of
the solution. This so-called “perturbative” approach to
quantum theories is particularly transparent in Feyn-
man’s formalism, where each term of the expansion can
be represented pictorially as a graph. See figure 1(a)
for typical examples. The graphs contributing to the
nth-order term in this Taylor expansion will involve
n vertices. Feynman’s rules describe how to convert
these graphs into integral expressions for computing
the individual terms in the Taylor expansion.

In this article we are interested in perturbative string
theory. The string Feynman diagrams (see figure 1(b)PUP: word order is

OK as it is.
for three equivalent ones) are surfaces called world-
sheets; the need for quantum foam is avoided because
these surfaces are much less singular than the particle
graphs (which have singularities at each vertex), and

(a)

(b)

Figure 1 Some Feynman diagrams of
(a) particles and (b) strings.

this is also largely why the mathematics of strings is
so nice. To cut a long story short, each term in the per-
turbative expression for probabilities in string theory
can be calculated from a quantity called a “correla-
tion function” in a CFT that lives on the corresponding
worldsheet. Feynman’s path integral here amounts to
the integral of a quantity that CFT can compute, over
some moduli space [IV.8] of surfaces.

The vertices in a Feynman diagram represent places
where one particle absorbs or emits another. The
corresponding rules of string theory tell us that we
should dissect the worldsheet into “tubular Y-shapes,”
or spheres with three legs, as in figure 2. Since these
spheres with legs play the role of vertices in the Feyn-
man diagram, the factor they contribute to the inte-
grand of the path integral is called a vertex operator,
and now it describes the absorption or emission of
one string by another. A vertex operator algebra is the
“algebra” of these vertex operators.

2.1.3 The Hamiltonian Formulation and Algebra

The Poisson bracket {A,B}P of two classical observ-
ables A and B is defined to be

∂A
∂x
∂B
∂p
− ∂B
∂x
∂A
∂p
.

Note that {A,B}P = −{B,A}P: in other words, the Pois-
son bracket is anti-commutative. It also satisfies the
Jacobi identity

{A, {B,C}P}P + {B, {C,A}P}P + {C, {A,B}P}P = 0,
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Figure 2 Dissecting a surface.

and therefore defines a Lie algebra. The Hamiltonian

formulation of classical physics expresses the evolu-

tion of an observable A by means of the differential

equation Ȧ = {A,H}P, where H is the hamiltonian

[III.35]: that is, the energy observable. The quantum

version of this picture is due to Heisenberg and Dirac:

the observables are now linear operators rather than

smooth functions, and the Poisson bracket is replaced

by the commutator [Â, B̂] = Â ◦ B̂ − B̂ ◦ Â of operators.

This again has the anti-commuting property [Â, B̂] =
−[B̂, Â] and again satisfies the Jacobi identity, so the

process of “quantization” gives rise to a homomor-

phism of Lie algebras. The derivative with respect to

time of a quantum observable Â is then the natural ana-

logue of the classical case: it is proportional to [Â, Ĥ],
where Ĥ is the Hamiltonian operator. Thus the Hamil-

tonian has a dual role: as the energy observable and as

the controller of time evolution. All of physics is stored

in the action of the observables on state space H , as

well as the commutators of these observables with Ĥ.

Let us illustrate this picture with the quantum spring,

also known as the harmonic oscillator. The position and

momentum observables x̂, p̂ are operators acting on

the infinite-dimensional space H of possible spring-

states. It is more convenient to work with certain combi-

nations of them called â and â† (the dagger denotes the

“Hermitian adjoint,” or complex-conjugate transpose),

which obey the commutator relation [â, â†] = I, where

I is the identity operator. It turns out that all other

observables can be built from â and â†. For example,

the Hamiltonian Ĥ is l(â†â+ 1
2 ) for some positive con-

stant l. The vacuum, which is denoted |0〉, is the state

of minimum energy. In other words, the state |0〉 is

an eigenvector of Ĥ with smallest possible eigenvalue:

Ĥ|0〉 = E0|0〉 for some E0 ∈ R and all other eigenvalue

E of Ĥ are greater than E0. It follows from this that

â|0〉 = 0. To see why, consider the effect of Ĥ on â|0〉:
Ĥâ|0〉 = l(â†â+ 1

2 )â|0〉 = l(ââ† − 1
2 )â|0〉

= âl(â†â− 1
2 )|0〉 = â(Ĥ − l)|0〉 = (E0 − l)â|0〉.

Here, we have used the fact that â†â = ââ† − I. (The
observables â and â† are called creation and annihila-
tion operators because, as we shall see later, they can
be interpreted as adding or removing a particle from a
certain n-particle state. Showing this uses the fact that
they produce ±I when you interchange their order.)
This calculation shows that if â|0〉 is not zero, then it
is an eigenvector of Ĥ with an eigenvalue smaller than
E0, which is a contradiction.

Since â|0〉 = 0, it follows that Ĥ|0〉 = 1
2 l|0〉, so E0 =

1
2 l. We now define, for each positive integer n, a state
|n〉 to be (â†)n|0〉 ∈ H . Similar calculations to the one
just given show that |n〉 has energy En = (2n + 1)E0.
For example,

Ĥ|1〉 = l(â†â+ 1
2 )â

†|0〉 = l(â†(â†â+ I)+ 1
2 â
†)|0〉

= 3
2 lâ

†|0〉 = E1|1〉.
(Note that we used the fact that a|0〉 = 0 in the penul-
timate equality above.) We think of the vacuum as the
ground state, and |n〉 as being the state withn quantum
particles. These states |n〉 span all of the state spaceH .
To see how some observable acts on some state, one
writes the observable in terms of the basic observables
â, â† and the state in terms of the basic states |n〉. In
this algebraic way we can recover all of the physics.

This idea of building up the whole spaceH from the
vacuum and the operators is a fruitful one in math-
ematics as well: something similar happens for the
most important modules of most of the important Lie
algebras.

2.1.4 Fields

A classical field is a function of space and time. Its val-
ues can be numbers or vectors, which represent quan-
tities such as air temperature or the current in a river.
The values taken by a quantum field are operators; fur-
thermore, a quantum field is not a function of space and
time, but a more general object called a distribution
[III.18]. The prototypical example of a distribution is the
Dirac delta function δ(x − a). Despite its name, this is
not a function: rather, it is defined by the property that∫

f(x)δ(x − a)dx = f(a) (1)

for any sufficiently well-behaved function f(x). Even
though δ(x − a) is not a function, one can informally
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interpret it as the derivative of a step function, and
one can visualize it as equaling 0 everywhere except
at x = a, where it is infinite, in such a way that the
infinitely tall and infinitely thin rectangle under the
graph has area 1. However, it really only makes sense
inside an integral, as in (1). Similar remarks apply to
distributions in general, so a quantum field can really
only be evaluated inside an integral of space and time,
applied to some “test function” like f above. The value
of such an integral will be an operator on the state space
H .

Dirac deltas appear in classical mechanics when one
takes Poisson brackets of classical fields. Similarly,
commutators of quantum fields involve delta functions
too. For example, in the simplest cases the quantum
fields ϕ satisfy

PUP: brace on
right-hand side is
a way that we
commonly make
clear that two lines
of a display are
both associated
with the same
equation number.
OK?

ϕ(x, t),ϕ(x′, t)] = 0,[
ϕ(x, t),

∂
∂t
ϕ(x′, t)

]
= i�δ(x − x′).

⎫⎪⎬
⎪⎭ (2)

This is a mathematical way of expressing, in the context
of quantum field theory, the cherished physical princi-
ple called locality :1 the only way we can directly affect
something is by nudging it. In order to influence some-
thing not touching us, we must propagate a disturbance
from us to it, such as a ripple in water. The main pur-
pose of both classical and quantum fields is that they
provide a natural vehicle for realizing locality. Locality
is also at the heart of vertex operator algebras.

An important aspect of modern physics is that many
of the central concepts of classical physics become less
central, and are instead derived quantities. For exam-
ple, the basic object of general relativity [IV.13] is
a Lorentzian manifold, and familiar physical quantities
such as mass and gravitational force are, from the point
of view of this manifold, just names (that are not wholly
precise) given to certain of its geometrical features.

Particles are obviously essential to classical physics,
but we have not mentioned them in our brief sketch of
quantum field theory. They arise through the so-called
modes of quantum fields ϕ, which play the role of the
operators â, â† that we met in section 2.1.3. A mode is
the operator that results from hitting the quantum field
with an appropriate test function and integrating—just
as one does when working out a Fourier coefficient,

1. More precisely, for quantum fields, locality takes the form that if
not even light can connect two given space-time points, then the quan-
tum fields at those points must be causally independent. In particular,
measurements at such points can be performed simultaneously with
arbitrary precision. In quantum theories, this requires those operators
to commute. Equation (2) is a generous way to satisfy locality.

in which case the test functions are trigonometric
functions [III.94]. In fact, when viewed appropriately,
modes actually are Fourier coefficients of a certain
kind. The commutators of these modes can be obtained
from the commutators of the fields. Now, recall that
the vertex operators of string theory are related to the
emission and absorption of strings. As we shall see
shortly, these vertex operators are the quantum fields
in a quantum field theory of point particles (namely,
the associated conformal field theory); the modes of
these vertex operators generate the “particles” (or in
more conventional language, the states) in that confor-
mal field theory. Equivalently, they generate the various
vibrational states of a single string in that string theory.

2.2 Conformal Field Theory

A conformal field theory (CFT) is a quantum field theory
with a two-dimensional space-time whose symmetries
include all conformal transformations. We shall explain
what this means in the next paragraphs, but for now it
is enough to know that a CFT is a particularly symmet-
rical kind of quantum field theory. A CFT lives on the
worldsheet Σ traced by a set of strings as they evolve,
sometimes colliding and separating, through time. In
this subsection we shall informally sketch their basic
theory; in section 3.1 we shall be more precise.

CFT, like any quantum field theory in two dimen-
sions, has two almost independent halves. This is eas-
iest to see in the context of string theory: the ripples
on the string are responsible for the physical proper-
ties (charge, mass, etc.) of the corresponding state, but
they can move (at the speed of light) either clockwise
or counterclockwise around the string. When they do
so, they just pass through each other without inter-
acting. These two alternatives, clockwise and counter-
clockwise, yield the two chiral halves of CFT. To study a
CFT, one first analyzes its chiral halves and then splices
them together to form the “bichiral” physical quanti-
ties. Almost all attention in CFT by mathematicians has
focused on the chiral (as opposed to physical) data, and
indeed that is where vertex operator algebras live. For
ease of presentation, we will usually suppress one of
the chiral halves.

A conformal transformation is a transformation that
preserves angles. The simplest reason one can give
for why two dimensions are so special for CFT is that
there are far more conformal transformations in two
dimensions than there are in higher dimensions. When
n > 2 the only examples are the obvious ones: com-
binations of translations, rotations, and enlargements.
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This means that the space of all local conformal trans-

formations in Rn is
(
n+2

2

)
dimensional. However, when

n = 2 the space of local conformal transformations

is far richer: it is infinite dimensional. Indeed, if you

identify R2 with the complex plane C, then any holo-

morphic function [I.3 §5.6] f(z) that does not have

zero derivative at a point z0 is conformal near z0. Since

a CFT is invariant under conformal transformations

and there are many conformal transformations, a CFT

is especially symmetrical: this is what makes CFTs so

interesting mathematically.

Lie algebras arise naturally whenever one has local

symmetries, and indeed one can form an infinite-

dimensional Lie algebra out of the infinitesimal confor-

mal transformations. This algebra has a basis ln,n ∈ Z,

that obeys the Lie-bracket relations

[lm, ln] = (m−n)lm+n. (3)

The algebraic interpretation of the conformal symme-

try of CFT turns out to be that these basis elements ln
act naturally on all the quantities in the theory, as we

shall explain below.

The basic example that underlies all the others is

when space-time Σ is a semi-infinite cylinder corre-

sponding to an incoming string. It is parametrized by

time t < 0 and the angle 0 � θ < 2π around the string.

We can conformally map the cylinder to the punctured

disk in C by z = et−iθ , so t = −∞ corresponds to

z = 0. This allows us to say what we mean by conformal

symmetries of the cylinder.

The quantum fields ϕ(z) of CFT are the vertex oper-

ators of string theory. As always, these quantum fields

ϕ are “operator-valued distributions” on space-time Σ,

acting on the space H of states. Now it is possible for

a field ϕ to be “holomorphic,” in the following sense.

First, you calculate its modes ϕn, one for each n ∈ Z,

which are linear maps from the state spaceH to itself,

given by the formula

ϕn =
∫
ϕ(z)zn−1 dz,

where the integral is around a small circle about the ori-

gin. Then you take these modes as the coefficients of

a formal power series
∑
n∈Zϕnzn. We call ϕ holomor-

phic if this formal power series can be identified with

ϕ, in a sense that we shall discuss more in section 3.1. A

typical fieldϕ(z) is not holomorphic: rather, it is a com-

bination of holomorphic and anti-holomorphic fields,

which make up the two chiral halves of CFT. We will

focus on the space of holomorphic fields ϕ(z), which

we call V . This turns out to form a vertex operator
algebra (as do the anti-holomorphic fields).

For example, the most important vertex operator
comes directly from the conformal symmetry: the
stress-energy tensor T(z) ∈ V is the “conserved cur-
rent” that Noether’s theorem associates with the con-
formal symmetry. Labeling its modes (Noether’s “con-
served charges” here) by Ln =

∫
T(z)z−n−3 dz, so that

T(z) = ∑
n Lnz−n−2, we find that they almost realize

the conformal algebra: instead of (3), however, they
obey the slightly more complicated relations

[Lm,Ln] = (m−n)Lm+n + δn,−mm(m
2 − 1)

12
cI, (4)

where I is the identity. In other words, the operators Ln
and I form an extension of the conformal algebra by I.
The resulting infinite-dimensional Lie algebra is called
the Virasoro algebra Vir. The number c appearing in
(4) is called the central charge of the CFT and is a rough
measure of its size.

The operators Ln do not precisely represent the con-
formal algebra (3). Instead, they form a so-called projec-
tive representation. Projective representations of sym-
metries, such as (4), are common in quantum theories.
The fact that they are not true representations is not a
problem, since one can turn them into true represen-
tations by extending the algebra. In our case, the state
space H carries inside it a true representation of the
Virasoro algebra Vir, which is useful as it means Vir
can be used to organizeH .

Any quantum field theory has what is called a state–
field correspondence: with each field ϕ one associates
its incoming state, which is the limit as the time t tends
to −∞ ofϕ|0〉 (as always, |0〉 is the vacuum state inH
and ϕ acts on states). CFT is unusual in that the state–
field correspondence is a bijection. This means we can
identifyH and V and use states to label all fields.

We want to make V into some sort of algebra,
but the obvious direct approach of taking products
ϕ1(z)ϕ2(z) fails, since distributions, unlike true func-
tions, cannot in general be multiplied. For example,
the Dirac delta δ(x − a) cannot be squared without
causing problems in (1). However, even if the prod-
uct ϕ1(z)ϕ2(z) does not make sense, one can make
sense of ϕ1(z1)ϕ2(z2) as an operator-valued distri-
bution on Σ2. It is then possible to recover most of
the physics of CFT by studying the singular terms as
z2 → z1. By the operator product expansion, we mean
expanding productsϕ1(z1)ϕ2(z2) as sums of the form∑
h(z1 − z2)hOh(z1). The set V is closed under this
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product in the sense that each coefficient Oh(z) lies
in V . A typical example is

T(z1)T(z2) = 1
2c(z1 − z2)−4I + 2(z1 − z2)−2T(z1)

+ (z1 − z2)
d

dz
T(z1)+ · · · .

Physicists call V a chiral algebra; for us it is the proto-
typical example of a vertex operator algebra. It is not an
algebra in the conventional sense though, since, given
vertex operators ϕ1(z) and ϕ2(z), we have not just a
single product ϕ1(z)∗ϕ2(z) in V but infinitely many
products ϕ1(z)∗h ϕ2(z) = Oh(z), all belonging to V .

The Hamiltonian plays a crucial role in any quantum
field theory; here it turns out to be proportional to the
mode L0 discussed earlier. Being an observable, L0 is
diagonalizable on H , which means that any state v ∈
H can be written as a sum

∑
h vh, where vh ∈ H has

energy h: that is, L0vh = hvh.

There is a special class of CFT that is particularly
well-behaved. Let V̄ denote the space of all anti-holo-
morphic fields in the CFT—it is the other chiral half.
Recall that the full CFT consists of V and V̄ spliced
together. We call the CFT rational if V ⊕ V̄ is so
large that it has finite index, in an appropriate sense,
in the full space of quantum fields in the CFT. The
name “rational” arises because the central charge c and
other parameters in a rational CFT have to be rational
numbers.

The mathematics of rational CFT is especially rich.
Let us briefly look at one example. (We will use several
words that will be unfamiliar to most readers, but at
least it will give some idea of which areas are touched
by CFT.) As with everything else, the quantum prob-
abilities arising in CFT are found by first computing
chiral quantities and splicing them together. These chi-
ral quantities are called conformal or chiral blocks, and
are found using simple Feynman-like rules applied to
dissections like figure 2. In rational CFT we get a finite-
dimensional space Fg,n of chiral blocks for any world-
sheet Σ, i.e., for any choice of genus g and number n
of punctures. These spaces carry projective represen-
tations of the mapping class group Γg,n (defined to be
the fundamental group π1 of the moduli space Mg,n).
This Γg,n-representation is the source, for instance, of
Jones’s relation of the braid group [III.4] (and hence
knots [III.46]) to subfactors, Borcherds’s explanation
of “Monstrous Moonshine,” the Drinfel’d–Kohno mon-
odromy theorem, and the modularity of affine Kac–
Moody characters. Some of this we will touch on in
section 4.

The most important example here is the torus, where
the chiral blocks are modular functions, a class of
functions of fundamental mathematical importance. A
modular function is a meromorphic function (that is,
a function that is holomorphic except at a few “poles”
where it can tend to infinity) f(τ) that is defined on
the upper half-plane H = {τ ∈ C | Imτ > 0} and that is
“symmetric” with respect to the group SL2(Z) of 2× 2
matrices with integer entries and determinant 1, in the
sense that for any such matrix ( a bc d ) the function f(τ)
is closely related (though not necessarily exactly equal)
to the function f((aτ +b)/(cτ +d)). We shall discuss
this further in section 3.2.

The appearance of modularity can be understood by
recalling from section 2.1.2 that Feynman’s path inte-
gral in string theory is an integral over moduli spaces.
The moduli space M1,0 for the torus can be written as
the quotient of the half-plane H by the action of SL2(Z).
Therefore, if one lifts the integrand of Feynman’s inte-
gral from M1,0 to H, one obtains a function Z(τ) that
is invariant under SL2(Z) and hence modular. This inte-
grand Z(τ) is a quadratic combination of the chiral
blocks for the torus.

3 What VOAs Are

It is possible to give a fully axiomatic definition of ver-
tex operator algebras. However, when one first encoun-
ters this definition (and not just the first time either)
it can seem very complicated and arbitrary, and one
is given no feel for the importance of VOAs. Our treat-
ment below will be much more informal: this will clarify
their importance even if it hides much of their complex-
ity. Thanks to the previous section, it is possible to give
a quick justification for VOAs: if you concede that CFT
(or equivalently, perturbative string theory) is impor-
tant, and if you have seen how closely related CFT is
to VOAs, then you must concede that VOAs are impor-
tant. However, this is not the whole story, as we shall
see.

3.1 Their Definition

Let us begin by defining them in terms of other con-
cepts that must themselves be defined: a vertex opera- PUP: I can confirm

that this sentence
is OK as written.tor algebra is an algebra of vertex operators, or in other

words the chiral algebra V of a conformal field theory.
The most important thing to understand in this def-

inition is that a vertex operator is a quantum field,
which, as we have seen, is an “operator-valued distribu-
tion of space-time.” So we can think of it informally as a



�

232 IV. Branches of Mathematics

matrix-valued function of space-time, where the matrix
is ∞×∞ and its entries can be generalized functions
like the Dirac delta (1). However, we shall give a much
better description of these vertex operators shortly.

By “space-time” we mean the unit disk in C punc-
tured at z = 0. Recall from section 2.2 that string-theo-
retically this set corresponds to a semi-infinite cylin-
der parametrized by the angle −π < θ � π running
around the string as well as the time −∞ < t < 0
running along the axis: the map from this to the punc-
tured disk was (θ, t) �→ z = et−iθ . We want to restrict
our attention to quantum fields that depend holomor-
phically on z. However, it is not obvious what “holo-
morphic” means for distributions. We touched on this
question in section 2.2: now we shall look at it in more
detail.

To do this, we need a more concrete description of
a vertex operator. The key idea is a very convenient
algebraic interpretation of holomorphic distributions.
Consider the sum

d(z) =
∞∑

n=−∞
zn. (5)

Multiply it by f(z) = 3z−2 − 5z3, say. This gives us

f(z)d(z) = 3
∞∑

n=−∞
zn−2 − 5

∞∑
n=−∞

zn+3

= 3
∞∑

n=−∞
zn − 5

∞∑
n=−∞

zn = −2d(z).

A few more examples like this will convince you that
f(z)d(z) = f(1)d(z) for any polynomial function f
of z and z−1. Therefore, d(z) behaves exactly like the
Dirac delta δ(z − 1), at least for polynomial test func-
tions f . Note that d(z) cannot converge for any z: the
positive powers have a convergent sum only for |z| < 1,
and the negative powers only for |z| > 1. The “func-
tion” d(z) is an example of a formal power series: any
series

∑∞
n=−∞ anzn, where the coefficients an can be

anything and we ignore all convergence issues.

By inspection, these formal power series are “holo-
morphic” throughout the punctured plane: after all,
holomorphic just means that the complex derivative
d/dz exists, and the derivative

∑
n nanzn−1 of a for-

mal power series clearly remains a formal power series.
(By contrast, nonholomorphic series would involve the
complex conjugate z̄.)

So that is what a vertex operator looks like: a for-
mal power series

∑∞
n=−∞ anzn, where each coefficient

an is now an operator (endomorphism) on the spaceV
of states, which is an infinite-dimensional vector space.

Since the vertex operators are in one-to-one correspon-

dence with the states (we called this the “state–field cor-

respondence” above), we can label these vertex opera-

tors with states: the standard convention is to denote

the vertex operator corresponding to state v ∈ V by

Y(v, z) =
∞∑

n=−∞
vnz−n−1. (6)

The symbol “Y ” should remind you of the sphere with

three legs, which as we know is the vertex of string

theory. These coefficients vn are the modes: as in any

quantum field theory, all observables and states in the

theory are built up from them.

The most important state in the theory is the vac-

uum |0〉. It corresponds to the identity vertex operator:

Y(|0〉, z) = I. From the physical point of view, the ver-

tex operator Y(v, z) is the field that created the state

v at time t = −∞, i.e., Y(v,0)|0〉 exists and equals v .

(Recall that in our model z = 0 corresponds to t = −∞.)

Among other things, this means that v−1(|0〉) = v ,

so indeed the modes applied to |0〉 generate V , as is

required in any quantum field theory.

The most important observable in the theory is the

Hamiltonian, or energy operator, which we denote by

L0. It is diagonalizable (so V can be written as a sum

of L0-eigenspaces) and all of its eigenvalues must be

integers. For example, the vacuum |0〉 has 0 energy:

L0|0〉 = 0. Since |0〉 should have the minimum energy,

the L0-decomposition of V is then V = ⊕∞
n=0Vn,

where V0 = C|0〉. Each space Vn turns out to be

finite dimensional, and we can think of L0 as defining

a Z+-grading on state space V .

The most important vertex operator in the theory is

the stress-energy tensor T(z). The corresponding state

is called the conformal vector ω: Y(ω,z) = T(z). This

means that ω has modes ωn = Ln−1 that form a rep-

resentation (4) of the Virasoro algebra Vir. (This is

the algebraic expression for the requirement of con-

formal symmetry.) The conformal vector has energy 2:

ω ∈ V2.

So far our theory is seriously underdetermined. The

most important axiom to help us to pin it down fur-

ther is locality. With a little work, one can show that

this reduces to the condition that the commutator

[Y(u, z), Y(v,w)] of two vertex operators should be a

finite linear combination of the Dirac delta δ(z−w) =
z−1

∑∞
n=−∞(w/z)n and its derivatives (∂k/∂wk)δ(z −

w). Now, (z − w)k+1(∂k/∂wk)δ(z − w) = 0. To see
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this, look at the case k = 1:

(z −w)2 ∂
∂w
δ(z −w)

=
∞∑

n=−∞
(nwn−1z−n+1 − 2nwnz−n +nwn+1z−n−1)

=
∞∑

n=−∞
((n+ 1)− 2n+ (n− 1))wnz−n = 0.

The proof for general k is similar. Therefore, locality
can be recast in an equivalent form as follows: given
any u,v ∈ V , there is a positive number N such that

(z −w)N[Y(u, z), Y(v,w)] = 0. (7)

This equation may look strange. Why can we not simply
divide out the (z−n)N and get that all vertex operators
commute? The reason is that when formal power series
are involved, there can be zero divisors. For example, it
is easy to check that (z − 1)

∑
n∈Z zn = 0. Locality in the

form (7) is at the heart of VOAs; for instance, one can
express it as a triply infinite sequence of identities that
the modes must obey, and this emphasizes just how
restrictive a condition it is, and how correspondingly
interesting it is to find examples of VOAs.

This completes the definition of a VOA. A conse-
quence of these properties is that the modesun respect
the L0-grading that we mentioned earlier. This means
that if u has energy k and v has energy l, then un(v)
has energy k+ l−n−1. The definition followed here is
sometimes called a VOA of CFT-type, for obvious rea-
sons. Sometimes in the literature some of these condi-
tions are weakened or dropped. For example, much of
the theory is independent of the existence of the con-
formal vector ω, although to us it will be crucial, for
reasons that will be explained in the next subsection.

A VOA is simultaneously a physical and a mathemat-
ical object. We have emphasized their physical origins
in order to help explain the motivation for studying
them. We know they should be valuable to mathemat-
ics, simply because CFT is, and indeed this is the case,
as we shall see in section 4. But from a purely math-
ematical point of view, they might appear somewhat
ad hoc, as though we had a list of mathematical ingre-
dients and said to ourselves, “Let’s consider this, and
then have some of these, oh, and perhaps one of those
too, but with the following extra assumption: . . . .” For-
tunately, there are more abstract formulations of VOAs
that make them appear much less arbitrary as mathe-
matical structures. For example, Huang has shown that
they can be regarded as “two-dimensionalized” Lie alge-
bras, in the following sense. If you want to keep track of

the Lie brackets in an expression such as [a, [[b, c], d]]
(which is important since the Lie bracket is not an asso-
ciative operation), you can do so with the help of a
binary tree, and in fact it is easy to formulate Lie alge-
bras in the language of such trees. If one then replaces
binary trees by diagrams made out of spheres with legs,
as we did with Feynman diagrams earlier, one obtains
a structure that is equivalent to a VOA. (Of course, this
is very far from a full explanation of what Huang did:
his proof is extremely long.)

3.2 Basic Properties

We see from the definition sketched in the last subsec-
tion that a VOA is an infinite-dimensional Z+-graded
vector space with infinitely many products (namely
u ∗n v = un(v)), which obey infinitely many identi-
ties. Needless to say, it is not an easy definition, and
there are no easy examples.

However, if we ignore the conformal symmetry (i.e.,
the conformal vector ω), then there are some sim-
ple, though uninteresting, examples. The easiest is the
one-dimensional algebra V = C|0〉. More generally,
a VOA V that obeys (7) with N = 0 is a commuta-
tive associative algebra with a unit 1 = |0〉. It also
has a derivation T = L−1, with respect to the prod-
uct u ∗ v = u−1(v): this means a linear map that
obeys the product rule satisfied by derivatives, namely
T(u∗ v) = (Tu)∗ v +u∗ (Tv). The converse of this
statement is true too: any such algebra is a VOA that
obeys (7) withN = 0. In these simple examples, the role
of the derivation T is to recover the z-dependence of
the vertex operator.

Therefore, we need N not to be zero in (7) if we
want interesting examples. Likewise, the vertex oper-
ators Y(u, z) must be distributions (that is, they must
involve doubly infinite sums) or again the VOA reduces
to a commutative associative algebra.

It is also easy to show that in any VOA (again the
existence of the conformal vector is not needed), the
space V1 is a Lie algebra, with Lie bracket given by
[uv] = u0(v). This is important because each Vn will
carry a representation of this Lie algebra, andV1 gener-
ates continuous symmetries of the VOA (at least when
V1 �= {0}). For a typical VOA V these Lie algebras
are very familiar. For instance, for the VOAs associated
with rational CFT, they are reductive, which means that
they are a direct sum of copies of the trivial Lie algebra
C with simple Lie algebras.

The existence of the conformal vector becomes
important when one starts to consider the represen-
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tation theory of VOAs. A V -module is defined in a

natural way. We shall not give full details here, but,

roughly speaking, it is a space on which V acts in such

a way that as much as possible of the VOA structure

is respected. For example, V will automatically be a

module for itself, just as a group acts on itself in a sim-

ple way. (See representation theory [IV.9 §2] for an

explanation of the latter.) A rational VOA is defined

to be one that has the simplest representation theory:

it has only finitely many irreducible V -modules, and

anyV -module is a direct sum of irreducible ones. They

are called rational VOAs because they are the VOAs

that come from rational CFT. For these VOAs, V acts

irreducibly on itself.

Any irreducible V -module M will inherit from V
an L0-grading by rational numbers, M = ⊕

h Mh, into

finite-dimensional spaces Mh. The character χM(τ) is

defined by

χM(τ) =
∑
h

dimMhe2π iτ(h−c/24), (8)

where c is the central charge. This definition arises nat-

urally in CFT as well as in Lie theory (or affine Kac–

Moody algebras), although the curious “c/24,” needed

for (9) below, is mysterious in Lie theory. (In CFT it has

a natural explanation as a certain topological effect.)

These characters converge for any τ in the upper half-

plane H. They carry a representation of the modular

group SL2(Z):

χM
(
aτ + b
cτ + d

)
=

∑
N∈Φ(V )

ρ
(
a b
c d

)
χN(τ), (9)

where, writing n for the number of irreducibleV -mod-

ules, the matrices ρ( a bc d ) are n×nmatrices with com-

plex entries. The lengthy proof of (9), by Zhu, is per-

haps the high point of VOA theory, and owes much to

the intuitions of rational CFT. In the next section, we

shall get some idea of why it is so important.

4 What Are VOAs Good For?

This section describes what are perhaps the two most

significant applications of VOAs. But let us begin

by listing (without any explanations) a few others.

Inspired by the geometry of string theory, vertex oper-

ator (super)algebras have been assigned to manifolds,

resulting in a powerful, though complicated, alge-

braic invariant of those manifolds that generalizes and

enriches more classical data such as de Rham cohom-

ology. VOAs associated with affine Kac–Moody algebras

at “degenerate” levels k are deeply related to the geo-
metric Langlands program. The modularity of affine
algebra characters, as well as that of, for example, lat-
tice theta functions, are all special cases of Zhu’s theo-
rem, which places these modularities in a much broader
context.

4.1 The Mathematical Formulation of CFT

Starting in the 1970s, quantum field theory has
had considerable success, especially in geometry, by
studying classical structures using infinite-dimensional
methods; this is a theme in particular of Atiyah’s
school. Conformal field theories are a class of excep-
tionally symmetric quantum field theories, and they are
also among the simplest nontrivial quantum field the-
ories known. In the past two decades mathematics has
feasted on this combination of symmetry and (relative)
simplicity, often by “looping” or “complexifying” more
classical structures, and the impact of CFT (or, equiva-
lently, of string theory) has been especially significant
and broad. In hindsight the importance of CFT to math-
ematics is not surprising: it is a coherent and intri-
cate structure that straddles several disparate areas
of mathematics, sprawling across geometry, number
theory, analysis, combinatorics, and indeed algebra.

From this point of view, a crucial application of VOA
theory has been to CFT itself. Quantum field theories
are notoriously difficult to put on a rigorous mathe-
matical footing. But the successful applications suggest
that these difficulties are a symptom of mathemati-
cal profundity and subtlety rather than of irrepara-
ble mathematical incoherence. In this sense the situa-
tion is highly reminiscent of the deep conceptual chal-
lenges to eighteenth-century mathematicians that were
raised by calculus. The definition of a VOA by Richard
Borcherds makes the chiral algebra of a CFT completely
rigorous, as well as concepts like the operator product PUP: Tim thinks

this reads OK as it
makes the
operator product
expansion
rigorous too. OK?

expansion. Subsequent work (especially by Huang and
Zhu) reconstructs from the VOA more and more of the
CFT, in arbitrary genus. The resulting clarity makes the
whole subject more accessible to, and hence exploitable
by, mathematicians. Quantum field theories are here to
stay in mathematics, and thanks to VOAs mathemati-
cians are absorbing a large class of them completely
and explicitly.

4.2 Monstrous Moonshine

In 1978 McKay noticed that 196 884 ≈ 196 883. Why
was this an interesting observation? Well, the number
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on the left is the first meaningful coefficient of the j-
function [IV.1 §8]

j(τ) = q−1 + (744+)196 884q + 21 493 760q2

+ 864 299 970q3 + · · · , (10)

the generator of all modular functions for SL2(Z).
Recall that a modular function is a function f(τ) that
is meromorphic in the upper half-plane H and invariant
under the usual action of SL2(Z). It should also be mero-
morphic at the boundary points Q ∪ {i∞}, which are
called cusps; we did not mention this condition earlier.
The j-function generates these functions in the sense
that any such modular function f(τ) can be written
as a rational function poly(j(τ))/poly(j(τ)). In other
words, j(τ) is a uniformizing function that identifies
(H∪Q∪{i∞})/SL2(Z) with the Riemann sphere C∪∞.
We bracketed the constant term 744 in (10) because
although 744 was the traditional choice it can be freely
replaced with any other number, including 0.

The number on the right in McKay’s observation is
the dimension of the smallest nontrivial representation
of the Monster, the most exceptional of the finite sim-
ple groups [V.8]. This relation between modular func-
tions and the Monster was completely unexpected, as
they seem to occupy completely independent spots in
the mathematical universe. Conway, Norton, and oth-
ers fleshed out and expanded McKay’s original obser-
vation by making a number of conjectures, collectively
called Monstrous Moonshine. For instance, with every
pair (g,h) of commuting elements in the Monster (a
group of size about 8× 1053), we expect there to be
associated a function j(g,h)(τ) that generates all mod-
ular functions for some discrete subgroup Γ(g,h) of
SL2(Z). The j-function would be assigned in the case
g = h = identity.

The first major step toward proving these Moonshine
conjectures was made by Frenkel, Lepowsky, and Meur-
man in the mid 1980s. They constructed an infinite-
dimensional vector space V# out of formal power
series. They were motivated on the one hand by the
vertex operators of string theory, and on the other by
the formally similar distributions used in constructing
affine algebra representations. This seemed a promis-
ing direction since for both string theory and affine
algebra representations modular functions arise nat-
urally. Together with a rich algebraic structure that
came from these “vertex operators,” V# was also acted
on in a natural way by the Monster group. Moreover,
although V# is infinite dimensional, it comes packaged
into finite-dimensional pieces V# =⊕∞

n=−1 V
#
n , and the

“graded dimension”
∑
n dim(V#n)qn equals j − 744. The

action of the Monster sends each V#n to itself; that is,
each space V#n itself carries a representation of the
Monster. Frenkel, Lepowsky, and Meurman proposed
that V# lies at the heart of the Monstrous Moonshine
conjectures.

Borcherds was struck by the formal similarity be-
tween V# and the chiral algebras of CFTs, and by
abstracting out their important algebraic properties he
defined a new structure called a vertex (operator) alge-
bra. His axioms clarified their relationship with (gen-
eralizations of) Kac–Moody algebras, and by 1992 he
had proved the main Conway–Norton conjecture (which
corresponds to the case where g is arbitrary but h is
the identity in the conjecture given earlier). Although
his definition of VOAs required a deep understand-
ing of the physics of CFT, his elaborate proof of this
Moonshine conjecture is purely algebraic.

We would now call V# a rational VOA with only one
irreducible module (namely itself); its symmetry group
is the Monster and its character (8) is j(τ) − 744. The
removal of the constant term 744 from (10) is signifi-
cant as it says that the Lie algebra V#1 is trivial—this is
necessary if the symmetry group is to be finite. It is con-
jectured that V# is the unique VOA with central charge
c = 24, trivial V1, and only one irreducible module.
This is meant to be reminiscent of the leech lattice
[I.4 §4], which is known to be the unique twenty-four-
dimensional even self-dual lattice with no vectors of
length

√
2. Indeed, the Leech lattice plays a crucial role

in the construction of V#.
Most of the Moonshine conjectures are still open and

this deep connection between modular functions and
the Monster is still somewhat mysterious. At the time
of writing, however, VOAs still provide the only serious
approach to the Moonshine conjectures.

Borcherds defined VOAs to clarify the chiral algebra
of CFT and to tackle Monstrous Moonshine. For this
work, he was awarded a Fields Medal in 1998.
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IV.18 Enumerative and Algebraic
Combinatorics
Doron Zeilberger

1 Introduction

Enumeration, otherwise known as counting, is the old-
est mathematical subject, while algebraic combinator-
ics is one of the youngest. Some cynics claim that alge-
braic combinatorics is not really a new subject but just
a new name given to enumerative combinatorics in
order to enhance its (former) poor image, but algebraic
combinatorics is in fact the synthesis of two opposing
trends: abstraction of the concrete and concretization of
the abstract. The former trend dominated the first half
of the twentieth century, starting with Hilbert’s “theo-
logical” proof of the fundamental theorem of invari-
ants, in which he showed by abstract means that cer-
tain invariants existed, but not how to find them. The
latter trend is dominating contemporary mathematics,
thanks to the omnipresence of The Mighty Computer.

The abstraction trend consists of the categorization,
conceptualization, structuralization, and fancification
(in short, “bourbakization” [VI.96]) of mathematics.

Note to PUP:
proofreader
marked a correctly
matched
parenthesis for
deletion here. I
presume it’s OK to
leave it as it is?

Enumeration did not escape this trend, and in the hands
of such giants as Gian-Carlo Rota and Richard Stanley
in America and Marco Schützenberger and Dominique
Foata in France, classical, enumerative combinator-
ics became more conceptual, structural, and algebraic.
However, as algebraic combinatorics has established
itself as a fully fledged and separate mathematical spe-
ciality, the more recent trend toward the explicit, con-
crete, and constructive has left its mark as well. It has
revealed that many algebraic structures have hidden
combinatorial underpinnings; the attempts to unearth
these have led to many fascinating discoveries and
unsolved problems.

1.1 Enumeration

The fundamental theorem of enumeration, indepen-
dently discovered by several anonymous cave dwellers,
states that

|A| =
∑
a∈A

1.

In words: the number of elements in A is the sum over
all elements of A of the constant function 1.

While this formula is still useful after all these years,
enumerating specific finite sets is no longer considered
mathematics. A genuine mathematical fact has to incor-
porate infinitely many facts, and the generic enumera-
tion problem is to enumerate not just one set but all
the sets in an infinite family.

To be precise, given an infinite sequence of sets
{An}∞n=0, where each set An consists of objects sat-
isfying some combinatorial specifications that depend
on the parameter n, answer the question: How many
elements does An have?

In a moment we shall look at some examples. But
before we can learn how to answer this kind of ques-
tion, let us consider a meta-question: What is an
answer?

This was posed, and beautifully answered, by Herbert
Wilf. To give some background to Wilf’s meta-answer,
let us examine answers to some famous instances of
enumeration questions.

In the list below, when we are given a set An (which
will change from example to example), we shall writean
instead of |An|. That is, an will stand for the number
of elements of An.

(i) I Ching. If An is the set of all subsets of {1, . . . , n},
then an = 2n.

(ii) Rabbi Levi Ben Gerson. If An is the set of permu-
tations [III.70] on {1, . . . , n}, then an = n!.

(iii) Catalan. If An is the set of legal bracketings with n
opening brackets and n closing brackets, then an =
(2n)!/(n+1)!n!. (A legal bracketing is a sequence of
n opening brackets and n closing brackets such that
at no point in the sequence has the number of closing
brackets exceeded the number of opening brackets.
For instance, when n = 2 the legal bracketings are
[ ][ ] and [ [ ] ].)

(iv) leonardo of pisa [VI.6]. Let An be the set of
finite sequences that consist only of 1s and 2s and
that sum to n. (For example, when n = 4 the possi-
ble sequences are 1111, 112, 121, 211, and 22.) In this
case, we have three equivalent answers as follows.

(i)

an= 1√
5

((
1+√5

2

)n+1

−
(

1−√5
2

)n+1)
.

(ii)

an =
�n/2�∑
k=0

(
n− k
k

)
.
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(iii) an = Fn+1, where Fn is the sequence defined by
the recurrence Fn = Fn−1+Fn−2, subject to the
initial conditions F0 = 0, F1 = 1.

(v) cayley [VI.46]. If An is the set of labeled trees on
n vertices, then an = nn−2. (A tree is a connected
graph [III.34] without cycles, and it is labeled if the
vertices have distinct names.)

(vi) If An is the set of labeled simple graphs with n
vertices, then an = 2n(n−1)/2. (A graph is simple if it
has neither loops nor multiple edges.)

(vii) IfAn is the set of labeled connected simple graphs
on n vertices (that is, graphs for which every vertex
can be reached from every other by a path), then an
is n! times the coefficient of xn in the power series
expansion of

log
( ∞∑
k=0

2k(k−1)/2

k!
xk
)
.

(viii) If An is the number of Latin squares of size n
(n×n matrices each of whose rows and columns is
a permutation of {1, . . . , n}), then an = ?????.PUP: difficult to get

across the
uncertainty about
this result but
what do you think
of the extra
question marks
here, to make it
clearer that it’s not
just a mistake – we
hope!

In 1982, Wilf defined an answer as follows.

Definition. An answer is a polynomial-time algorithm
(in n) for computing an.

Wilf arrived at this definition after he refereed a
paper proposing a “formula” for the answer to ques-
tion (viii), and realized that its “computational com-
plexity” exceeds that of the caveman’s formula of direct
counting.

What is a “formula”? It is really an algorithm that
inputs n and outputs an. For example, an = 2n is
shorthand for the recursive algorithm

if n = 0 then an = 1,
else an = 2 · an−1,

which takes O(n) steps. However, using the algorithm

if n = 0 then an = 1,
else if n is odd, then an = 2an−1,
else an = a2

n/2

takes O(logn) steps, much faster than Wilf demands.
In other cases, like enumerating self-avoiding walks,
the best algorithm that is known is exponential,
O(cn), and any lowering of the constant c is a major
advance. (A self-avoiding walk is a sequence of points
x0,x1, . . . ,xn in the two-dimensional integer lattice,
where each xi is one of the four neighbors of xi−1

and no two of the xi are equal.) Notwithstanding these

exceptions, Wilf’s meta-answer is a very useful general
guideline for evaluating answers.

The traditional customers of enumeration were
mainly probability and statistics. In fact, discrete prob-
ability is almost synonymous with enumerative com-
binatorics, since the probability of an event E occur-
ring is the ratio of the number of successful cases
divided by the total number. Also, statistical physics is,
by and large, weighted enumeration of lattice models
(see phase transitions and universality [IV.25]).
About fifty years ago, another important customer
came along: computer science. Here one is interested in
the computational complexity [IV.20] of algorithms:
that is, in the number of steps it takes to execute them.

2 Methods

The following tools are indispensable to the enumera-
tive combinatorialist.

2.1 Decomposition

|A∪ B| = |A| + |B| (if A∩ B = ∅).

In words: the size of the union of two disjoint sets
equals the sum of their sizes.

|A× B| = |A| · |B|.
In words: the size of the Cartesian product of two sets
(that is, the set of all pairs (a, b), where a ∈ A and
b ∈ B) equals the product of their sizes.

|AB| = |A||B|.
In words: the size of the set of functions from B to A
equals the size of A raised to the power the size of B.
For example, the number of 0–1 sequences of length n,
which can be viewed as functions from {1,2, . . . , n} to
{0,1}, equals 2n.

2.2 Refinement

If

An =
⋃
k
Bnk (disjoint union),

and if bnk, the number of elements of Bnk, is “nice” (and
even if it is not), then

an =
∑
k
bnk.

The idea here is that it may be possible to take a set An
that is difficult to count, and split it up into disjoint sets
Bnk that are easier to count. For example, consider the
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set An of example (iv). This can be split into a disjoint
union of subsets Bnk, where each Bnk consists of the
sequences in An that have exactly k 2s. If there are k
2s, then there must be n− 2k 1s, so bnk =

(
n−k
k

)
. This

yields answer (ii).

2.3 Recursion

Suppose that An can be decomposed in such a way
that it is a combination of fundamental operations
applied to the setsAn−1, An−2, . . . , A0. Thenan satisfies
a recurrence relation of the form

an = P(an−1, an−2, . . . , a0).

For example, let An be the set of example (iv). If a
sequence in An starts with a 1, then the rest of the
sequence must add up to n− 1, and if it starts with a 2,
then the rest must add up to n− 2. Since when n � 2
exactly one of these possibilities occurs and both are
possible, we can decompose An into 1An−1 and 2An−2,
where 1An−1 is shorthand for the set of all sequences
that begin with a 1 and continue with a sequence in
An−1, and 2An−2 is defined similarly. Since the sizes of
1An−1 and 2An−2 are clearly an−1 and an−2, it follows
that an = an−1 + an−2, which yields answer (iii).

If An is the set of legal bracketings with n pairs
(example (iii)), then a typical legal bracketing can be
written recursively as [L1]L2, where L1 and L2 are
smaller (possibly empty) legal bracketings. For exam-
ple, if the bracketing is [ [ ] [ ] ] [ [ ] ] [ [ ] [ [ ] ] ] then
L1 = [ ] [ ] and L2 = [ [ ] ] [ [ ] [ [ ] ] ]. If L1 has k pairs,
then L2 has n− 1− k pairs. It follows that An can be
identified with the union

⋃n−1
k=0Ak×An−1−k, and, taking

cardinalities, an =
∑n−1
k=0akan−1−k. This is a nonlinear

(in fact, quadratic) and nonlocal recurrence, but it is
nevertheless one that satisfies Wilf’s dictum.

2.4 Generatingfunctionology

According to Wilf, who coined this neologism by mak-
ing it the title of his classic book (a free download from
his Web site, even though it is still in print!):

A generating function is a clothesline on which we hang
up a sequence of numbers for display.

The method of generating functions is one of the
most useful tools of the trade of enumeration. The gen-
erating function of a sequence, sometimes called its z-
transform, is a discrete analogue of the laplace trans-
form [III.93], and indeed goes back to laplace [VI.23]
himself. If the sequence is (an)∞n=0, then its generat-
ing function f(x) is defined to be

∑∞
n=0 anxn. In other

words, the terms of the sequence are regarded as the
coefficients of a power series in x.

Generating functions are so useful because informa-
tion about the sequence (an) translates to information
about f(x) that is often easier to process, and after
some manipulations one often gets additional informa-
tion about f(x) that can be translated back into infor-
mation about the sequence. For example, if a0 = a1 = 1
and an = an−1 +an−2 when n � 2, then we can do the
following manipulations on f(x):

f(x) =
∞∑
n=0

anxn = a0 + a1x +
∞∑
n=2

anxn

= 1+ x +
∞∑
n=2

(an−1 + an−2)xn

= 1+ x +
∞∑
n=2

an−1xn +
∞∑
n=2

an−2xn

= 1+ x + x
∞∑
n=2

an−1xn−1 + x2
∞∑
n=2

an−2xn−2

= 1+ x + x(f(x)− 1)+ x2f(x)

= 1+ (x + x2)f (x).

It follows that

f(x) = 1
1− x − x2

.

If one performs a partial-fraction decomposition, and
expands the two resulting terms in a Taylor series, then
one can obtain answer (i) to example (iv).

3 Weight Enumeration

According to the modern approach, pioneered by Pólya,
Tutte, and Schützenberger, generating functions are
neither “generating,” nor are they functions. Rather,
they are formal power series that are weight enumer-
ators of combinatorial sets. (Usually, but not always,
these sets are infinite: for a finite set the corresponding
“power series” has only finitely many nonzero terms
and is therefore a polynomial.)

A power series
∑∞
n=0 anxn is called formal when one

sheds its analytical connotation as a Taylor series of a
function, and thereby obviates the need to worry about
convergence. For example, the sum

∑
n=0n!n!xn is per-

fectly legal as a formal power series even though it
converges only when x = 0.

As for weight enumerators, consider the following
situation. Suppose that we want to study the age distri-
bution of a finite population. One way of doing this is
to ask 121 questions. For each i between 0 and 120, we



�

IV.18. Enumerative and Algebraic Combinatorics 239

ask those whose age is i to raise their hand. Then we

count each of these age-groups one by one, compiling

a table of ai (0 � i � 120), and finally computing the

generating function

f(x) =
120∑
i=0

aixi.

But if the size of the population is much less than 120, it

is much more efficient, because fewer questions would

be needed, to ask every person their age and then to

declare the weight of a person of age i to be xi. Then

the generating function is the sum of these weights.

That is,

f(x) =
∑

persons
xage(person),

which is a natural extension of the caveman’s formula

of naive counting. Once we know f(x) we can eas-

ily compute statistically interesting quantities, like the

average and the variance, which work out to be µ =
f ′(1)/f (1) and σ2 = f ′′(1)/f (1)+µ−µ2, respectively.

The general scenario is that we have an interesting

(finite or infinite) combinatorial set, let us call it A, and

a certain numerical attribute, α : A → N, which assigns

to each element of A a natural number. (Here we allow

0 as a natural number.) Then the weight enumerator of

A with respect to α is defined by the formula

f(x) =
∑
a∈A

xα(a).

We shall also use the notation |A|x for f(x). Obviously,

this equals
∞∑
n=0

anxn,

where an is the number of members of A whose

α equals n. Hence if we have some kind of explicit

expression for f(x), we immediately have an “explicit”

expression for the actual sequence an assuming, that

is, that one considers the operations needed to calcu-

late the nth coefficient an of f(x) as constituting an

explicit expression for an. Even if one does not, then it

is still often possible to get a “nice” formula for an, or,

failing this, to extract the asymptotics.

The fundamental operations for naive counting also

hold for weighted counting: just replace | · | by | · |x .

For example,

|A∪ B|x = |A|x + |B|x
(if A∩ B = ∅) and

|A× B|x = |A|x · |B|x.

Let us quickly see why the second of these is true. If
the members of A and B are endowed with numeri-
cal attributes α and β, respectively, and one defines an
attribute γ onA×B by letting γ(a,b) equalα(a)+β(b),
then

|A× B|x =
∑

(a,b)∈A×B
xγ(a,b)

=
∑

(a,b)∈A×B
xα(a)+β(b)

=
∑

(a,b)∈A×B
xα(a) · xβ(b)

=
∑
a∈A

∑
b∈B
xα(a) · xβ(b)

=
( ∑
a∈A

xα(a)
)
·
( ∑
b∈B
·xβ(b)

)

= |A|x · |B|x.
Let us see how these facts can be useful. First, con-

sider the infinite set A, of all (finite) sequences of 1s
and 2s, and let the attribute be “sum of entries.” Then
the weight of 1221 is x6, and, in general, the weight of
a sequence (a1 · · ·ar ) is xa1+···+ak . The set A can be
naturally decomposed as

A = {φ} ∪ 1A∪ 2A,

where φ is the empty word, and 1A is short for the set
of all sequences obtained by prefixing a 1 to members
of A, and analogously for 2A. Applying | · |x , we get

|A|x = 1+ x|A|x + x2|A|x,
which, in this simple case, can be solved explicitly, to
yield, once again

|A|x = 1
1− x − x2

.

A legal bracketing L is either empty (in which case
the weight is x0 = 1), or else, as we have already
noted, it can be written as L = [L1]L2, where L1 and
L2 are (shorter) legal bracketings. Conversely, whenever
L1 and L2 are legal bracketings, so is [L1]L2. Let L be
the (infinite) set of all legal bracketings, and define the
weight of a legal bracketing to be xn, where n is the
number of bracket pairs [ ]. For example, the weight of
[ ] is x and the weight of [ [ ] [ [ ] [ ] ] ] is x5. The set L
decomposes naturally as follows:

L = {φ} ∪ ([L]×L),
where φ denotes the empty word and [L]×L denotes
the set of all words of the form [L1]L2 with L1 and
L2 in L. This leads to the nonlinear (in fact, quadratic)
equation

|L|x = 1+ x|L|2x,
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which yields, thanks to the Babylonians, the explicit
expression

|L|x = 1−√1− 4x
2x

.

This in turn gives us the answer to example (iii) above,
via Newton’s binomial theorem.

Legal bracketings are equivalent to so-called binary
trees, that is, unlabeled ordered trees where every
vertex has either no children or exactly two chil-
dren. For instance, when we write the legal bracketing
[ [ ] [ ] ] [ [ ] ] [ [ ] [ [ ] ] ] in the form [L1]L2 we can think
of [ [ ] [ ] ] [ [ ] ] [ [ ] [ [ ] ] ] as the parent, with children
L1 = [ ] [ ] and L2 = [ [ ] ] [ [ ] [ [ ] ] ]. Then L1’s chil-
dren areφ and [ ], while L2’s are [ ] and [ [ ] [ [ ] ] ]. This
process continues until we have reached φ down every
branch of the family.

If we try to count penta-trees instead, where each ver-
tex may only have exactly zero or five children, then the
generating function, alias weight-enumerator, satisfies
the quintic equation

f = x + f 5,

which, according to abel [VI.33] and galois [VI.41], is
not solvable by radicals (see the insolubility of the
quintic [V.24]). However, solvability by radicals is not
everything. More than 200 years ago, lagrange [VI.22]
devised a beautiful and extremely useful formula for
extracting the coefficients of the generating function
from the equation it satisfies, now called the Lagrange
inversion formula. Using it one can easily show that the
number of complete k-ary trees with (k−1)m+1 leaves
is

(km)!
((k− 1)m+ 1)!m!

.

A multivariate generalization of the Lagrange inver-
sion formula, discovered by the great Bayesian proba-
bilist I. J. Good, enables one to enumerate colored trees
and many other extensions.

3.1 Enumeration Ansatzes

If one wants to turn enumerative combinatorics into
a theory rather than a collection of solved problems,
one needs to introduce classification, and enumer-
ation paradigms for counting sequences. But since
“paradigm” is such a pretentious word, let us use the
much humbler German word “ansatz,” which roughly
means “form of solution.”

Let (an)∞n=0 be a sequence, and let

f(x) =
∞∑
n=0

anxn

be its generating function. If we know the “form” of an,
we can often deduce the form of f(x) (and vice versa).

(i) If an is a polynomial in n, then f(x) has the form

f(x) = P(x)
(1− x)d+1

,

where P is a polynomial function and d is the
degree of the polynomial that describes an.

(ii) If an is a quasi-polynomial inn (i.e., there exists an
integer N such that for each r = 0, . . . , N − 1, the
function m �→ amN+r is a polynomial in m), then,
for some (finite) sequence of integers d1, d2, . . .
and some polynomial function P ,

f(x) = P(x)
(1− x)d1(1− x2)d2(1− x3)d3 · · · .

(iii) If an is C-recursive, that is, if it satisfies a linear
recurrence equation with constant coefficients

an = c1an−1 + c2an−2 + · · · + cdan−d
(a good example is the Fibonacci sequence), then
f(x) is a rational function of x: that is, f(x) =
P(x)/Q(x), where P and Q are polynomials.

(iv) If an satisfies a linear recurrence equation of the
form

c0(n)an = c1(n)an−1 + c2(n)an−2

+ · · · + cd(n)an−d,
where the coefficients ci(n) are polynomial in n,
then it is said to be P-recursive. (For example, an =
n! is P-recursive since we have the recurrencean =
nan−1.) If this is the case, then f(x) is D-finite,
which means that it satisfies a linear differential
equation with polynomial coefficients (in x).

In the case of an = n! the recurrence an = nan−1 is
first order. A natural example of a P-recursive sequence
satisfying a higher-order linear recurrence with polyno-
mial coefficients is the sequence that counts the num-
ber of involutions on {1, . . . , n}. (An involution is a per-
mutation that equals its inverse.) Let us call this num-
ber wn. The sequence (wn) satisfies the recurrence
relation

wn = wn−1 + (n− 1)wn−2.

This recurrence follows from the fact that in the per-
mutation n belongs either to a 1-cycle or to a 2-cycle.
The former case accounts for wn−1 of the involutions,
and the latter for (n−1)wn−2 of them. (There are n− 1
ways of choosing the cycle-mate, i, say, of n, and delet-
ing the resulting cycle leaves an involution of the n− 2
elements {1, . . . , i− 1, i+ 1, . . . , n− 1}.)
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4 Bijective Methods

This last argument was a simple example of a bijective
proof, in this case, of a recurrence for the number of
involutions on n objects. Contrast it with the following
proof.

The number of involutions of {1, . . . , n} with exactly
k 2-cycles is (

n
2k

)
(2k)!
k!2k

,

because we must first choose the 2k elements that will
participate in the k 2-cycles, and then match them up
into (unordered) pairs, which can be done in

(2k− 1)(2k− 3) · · ·1 = (2k)!
k!2k

ways. Hence

wn =
∑
k

(
n
2k

)
(2k)!
k!2k

.

Nowadays such sums can be handled completely auto-
matically, and if one inputs this sum to the Maple
package EKHAD (downloadable from my Web site), one
would get the recurrence wn = wn−1 + (n− 1)wn−2

as the output, together with a (completely rigorous!)
proof. While the so-called Wilf–Zeilberger (WZ) method
can handle many such problems, there are many
other cases where one still needs a human proof. In
either case such proofs involve (algebraic, and some-
times analytic) manipulations. The great combinato-
rialist Adriano Garsia derogatorily calls such proofs
“manipulatorics,” and real enumerators do not manip-
ulate, or at least try to avoid it whenever possible. The
preferred method of proof is by bijection [I.2 §2.2].

Suppose one has to prove that |An| = |Bn| for every
n, where An and Bn are combinatorial families. The
“ugly way” is to get, by some means or other, algebraic
or analytic expressions for an = |An| and bn = |Bn|.
Then one manipulates an, getting another expression
a′n, which in turn leads to yet another expression a′′n ,
and if one is patient enough, and clever enough, and in
luck, or if the problem is not too deep, one eventually
arrives at bn, and the result follows.

On the other hand, the nice way of proving that
|An| = |Bn| is by constructing (a preferably nice) bijec-
tion Tn : An → Bn, which immediately implies, as a
corollary, that |An| = |Bn|.

In addition to being more aesthetically pleasing, a
bijective proof is also philosophically more satisfac-
tory. In fact, the notion of (cardinal) number is a highly
sophisticated derived notion based on the much more
basic notion of being in bijection. Indeed, according

to frege [VI.56], the cardinal numbers are equivalence

classes, where the equivalence relation [I.2 §2.3] is

“is in bijective correspondence with.” Saharon Shelah

said that people have been exchanging objects, in a

one-to-one way, since long before they started to count.

Also, a bijective proof explains why the two sets are

equinumerous, as opposed to just certifying the formal

correctness of this fact.

For example, suppose that Noah had wanted to prove

that there were as many male as female creatures in his

Ark. One way of proving this would have been to count

the males and count the females, and check that the two

resulting numbers were indeed the same. But a much

better, conceptual, proof would have been to note that

there is an obvious one-to-one correspondence between

the set M of males and the set F of females: the func-

tion w : M → F defined by w(x) = WifeOf(x) is a

bijection, with inverse h : F → M defined by h(y) =
HusbandOf(y).

A classic example of a bijective proof is Glaisher’s

proof of euler’s [VI.19] “odd equals distinct” partition

theorem. A partition of an integer n is a way of writing

it as a sum of positive integers, where order does not

matter. For example, 6 has eleven partitions: 6, 51, 42,

411, 33, 321, 3111, 222, 2211, 21111, 111111. (Here

3111 is shorthand for the sum 3+1+1+1, and so on.

Since order does not matter, we count 3111 as the same

partition of 6 as 1311, 1131, and 1113. It is convenient

to write the partitions with their numbers in decreasing

order, as we have done.)

A partition is called odd if all its parts are odd,

and it is called distinct if all its parts are distinct. Let

Odd(n) and Dis(n) be the sets of odd and distinct

partitions of n, respectively. For example, Odd(6) =
{51,33,3111,111111} and Dis(6) = {6,51,42,321}.
Euler proved that |Odd(n)| = |Dis(n)| for all n. His

“manipulatorics” proof goes as follows. Let o(n) and

d(n) be the number of odd and distinct partitions of n,

respectively, and let us define the generating functions

f(q) =∑∞n=0 o(n)qn and g(q) =∑∞n=0 d(n)qn. Using

the “multiplication principle” for weighted counting,

Euler showed that

f(q) =
∞∏
i=0

1
1− q2i+1

and g(q) =
∞∏
i=0

(1+ qi).
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Using the algebraic identity 1+ y = (1− y2)/(1− y),
we have

∞∏
i=0

(1+ qi) =
∞∏
i=0

1− q2i

1− qi

=
∏∞
i=0(1− q2i)∏∞

i=0(1− q2i)
∏∞
i=0(1− q2i+1)

=
∞∏
i=0

1
1− q2i+1

.

Hence g(q) = f(q), and the identity o(n) = d(n)
follows by extracting the coefficient of qn.

For a very long time, these kinds of manipulation
were considered to belong to the realm of analysis,
and in order to justify the manipulations of the infi-
nite series and products, one talked about the “region
of convergence,” usually |q| < 1, and every step had
to be justified by the appropriate analytical theorem.
Only relatively recently did people come to realize that
no analysis need be involved: everything makes sense
in the completely elementary and much more rigorous
(from the philosophical viewpoint) algebra of formal
power series. One still needs to worry about conver-
gence, so as to exclude, for example, an infinite product
like

∏∞
i=0(1+ x), but the notion of convergence in the

ring of formal power series is much more user-friendly
than its analytical namesake.

Even though invoking analysis was a red herring,
Euler’s proof, while purely algebraic and elementary,
is nevertheless still manipulatorics. It would be much
nicer to find a direct bijection between the sets Dis(n)
and Odd(n). Such a bijection was given by Glaisher.
Given a distinct partition, write each of its parts as
2r · s, where s is odd, and replace it by 2r copies of s.
(For example, 12 = 4 · 3, so we would replace 12 by
3+3+3+3.) The output is obviously a partition of the
same integer n, but now into odd parts. For example,
the partition (10,5,4) is transformed to the new par-
tition (5,5,5,1,1,1,1). To define the inverse transfor-
mation, take an odd part a and count how many times
it shows up. If it shows up m times, then write m in
binary notation,m = 2s1 + · · · + 2sk , and replace them
copies of a by the k parts: 2s1a, . . . ,2ska. It is not hard
to check that if you do the first transformation to a par-
tition in Dis(n) and then do the second transformation,
you get back to the partition you started with.

When we perform algebraic (and logical, and even
analytical) manipulations, we are really rearranging and
combining symbols, and hence we are doing combina-
torics in disguise. In fact, everything is combinatorics.

All we need to do is to take the combinatorics out of
the closet, and make it explicit. The plus sign turns
into (disjoint) union, the multiplication sign becomes
Cartesian product, and induction turns into recursion.
But what about the combinatorial counterpart of the
minus sign? In 1982, Garsia and Steven Milne filled this
gap by producing an ingenious “involution principle”
that enables one to translate the implication

a = b and c = d ⇒ a− c = b − d
into a bijective argument, in the sense that if C ⊂ A and
D ⊂ B, and there are natural bijections f : A → B and
g : C → D establishing that |A| = |B|, and |C| = |D|,
then it is possible to construct an explicit bijection
between A\C and B\D. Let us define it in terms of peo-
ple. Suppose that in a certain village all the adults are
married, with the result that there is a natural bijec-
tion from the set of married men to the set of mar-
ried women, m �→ WifeOf(m), with its inverse w �→
HusbandOf(w). In addition, some of the people have
extramarital affairs, but only one per person, and all
within the village. There is a natural bijection from the
set of cheating men to the set of cheating women, called
m → MistressOf(m), with its inverse w → LoverOf(w).
It follows that there are as many faithful men as there
are faithful women. But how do we match them up?
(One might imagine, for example, that each faithful man
wants a faithful woman to go to church with him.)

Here is how it is done. A faithful man first asks his
wife to come with him. If she is faithful, she agrees. If
she is not, she has a lover, and that lover has a wife. So
she tells her husband: “Sorry, hubby, I am going to the
pub with my lover, but my lover’s wife may be free.” If
this happens, then the man asks the wife of the lover
of his wife to go with him, and if she is faithful, she
agrees. If she is not he keeps asking the wife of the lover
of the woman who has just rejected his proposal. Since
the village is finite, he will eventually get to a faithful
woman.

The reaction of the combinatorial enumeration com-
munity to the involution principle was mixed. On the
one hand it had the universal appeal of a general prin-
ciple, one that should be useful in many attempts to
find bijective proofs of combinatorial identities. On the
other hand, its universality is also a major drawback,
since involution-principle proofs usually do not give
any insight into the specific structures involved, and
one feels a bit cheated. Such a proof answers the let-
ter of the question, but it misses its spirit. Given a
proof of this kind, one still hopes for a really natural,
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“involution-principle-free proof.” This is the case, for
instance, with the celebrated Rogers–Ramanujan iden-
tity, which states that the number of partitions of an
integer into parts that leave remainder 1 or 4 when
divided by 5 equals the number of partitions of that
integer with the property that the difference between
any two parts is at least 2. For example, if n = 7 the car-
dinalities of {61,4111,1111111} and {7,61,52} are the
same. Garsia and Milne invented their notorious prin-
ciple in order to give a Rogers–Ramanujan bijection,
thereby winning a $50 prize from George Andrews.
However, finding a really nice bijective proof is still an
open problem.

A quintessential example of a bijective proof is
Prüfer’s proof of cayley’s [VI.46] celebrated result that
there are nn−2 labeled trees on n vertices (example (v)
earlier). Recall that a labeled tree is a labeled connected
simple graph without cycles. Every tree has at least
two vertices with only one neighbor (these are called
leaves). A certain mapping called the Prüfer bijection
associates with every labeled tree T a vector of integers
(a1, . . . , an−2), with 1 � ai � n for each i. This vec-
tor is called its Prüfer code. Since there are nn−2 such
vectors, Cayley’s formula follows once we have defined
the mapping f : Trees → Codes and proved that it is
indeed a bijection. This really needs four steps: defining
f , defining its alleged inverse map g, and proving that
g◦f and f ◦g are the identity maps on their respective
domains.

The mapping f is defined recursively as follows. If
the tree has 2 vertices, then its code is the empty
sequence. Otherwise, let a1 be the (sole) neighbor of
the smallest leaf and let (a2, . . . , an−2) be the code of
the smaller tree obtained by deleting that leaf.

5 Exponential Generating Functions

So far, when we have discussed generating functions,
we have been talking about ordinary generating func-
tions (or OGFs). These are ideally suited for count-
ing ordered structures like integer partitions, ordered
trees, and words. But many combinatorial families are
really sets, where the order is immaterial. For these the
natural concept is that of an exponential generating
function (or EGF).

The EGF of a sequence {a(n)}∞n=0 is defined to be
∞∑
n=0

a(n)
n!

xn.

Labeled objects can be often viewed as sets of smaller
irreducible objects. For example, a permutation is the

disjoint union of cycles, a set partition is the disjoint
union of nonempty sets, a (labeled) forest is the disjoint
union of labeled trees, and so on.

Suppose that we have two combinatorial families A
and B, and suppose that there are a(n) labeled objects
of size n in the A family, and b(n) in the B family. We
can construct a new set of labeled objects C = A × B,
where the labels are disjoint and distinct, and define
the size of a pair to be the sum of the sizes of the
components. We have

c(n) =
n∑
k=0

(
n
k

)
a(k)b(n− k),

since we must

(i) decide the size of the first component, k (an inte-
ger between 0 and n), which forces the size of the
second component to be n− k,

(ii) decide which of the n labels go to the first compo-
nent (

(
n
k

)
ways), and

(iii) pick the objects for each component from the A
and B families, respectively, using the available
labels (a(k)b(n− k) ways).

Multiplying both sides by xn/n! and summing from
n = 0 to n = ∞ yields
∞∑
n=0

c(n)
n!
xn =

∞∑
n=0

n∑
k=0

a(k)
k!
xk
b(n− k)
(n− k)! x

n−k

=
( ∞∑
k=0

a(k)
k!
xk
)( ∞∑

n−k=0

b(n− k)
(n− k)! x

n−k
)
.

Hence EGF(C) = EGF(A)EGF(B). Iterating, we get

EGF(A1 ×A2 × · · · ×Ak) = EGF(A1) · · ·EGF(Ak).

In particular, if all the Ai are the same, we have that
the EGF of ordered k-tuples, Ak, equals [EGF(A)]k. But
if “order does not matter,” then the EGF of k-sets of A-
objects is [EGF(A)]k/k!, since there are exactly k! ways
of arranging a k-set into an ordered array (since all
labels are distinct, all these objects are different). Sum-
ming from k = 0 to k = ∞ we get the “fundamental
theorem of exponential generating functions.”

If B is a labeled combinatorial family that can be viewed
as sets of “connected components” that belong to a
combinatorial family A, then

EGF(B) = exp[EGF(A)].

This useful theorem was part of the physics folklore
for many years, and was also implicit in many older
combinatorial proofs. However, it was explicated only
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in the early 1970s. It was fully “categorized” by means
of Joyal’s theory of species, which grew to be a beau-
tiful theory of enumeration in the hands of the école
Québecoise (the Labelle and Bergeron frères, Leroux,
and others).

Here are some venerable examples. Let us try to find
the EGF of set partitions. That is, let us try to figure out
an expression for

∞∑
n=0

b(n)
n!
xn,

where b(n) (so-called Bell numbers) denotes the num-
ber of set partitions of an n-element set.

Recall that a set partition of a setA is a set of pairwise-
disjoint nonempty subsets ofA, {A1, . . . , Ar }, such that
the union of all the Ai equals A. For example, the set
partitions of the 2-element set {1,2} are {{1}, {2}} and
{{1,2}}.

The atomic objects in this example are nonempty sets.
(We think of a set A as being the “trivial” partition of
itself into just one set.) Let a(n) be the number of ways
of partitioning a set of size n into one nonempty set.
Clearly, when n = 0 this cannot be done, so a(0) = 0.
When n = 1 there is exactly one way of doing it, so the
EGF of the sequence a(n) is

A(x) = 0+
∞∑
n=1

1
n!
xn = ex − 1.

It follows immediately from the fundamental theorem
that ∞∑

n=0

b(n)
n!
xn = eex−1, (1)

an identity of Bell. Nowadays, with computer algebra
systems, this can be used immediately to crank out the
first 100 terms of the sequence b(n). For example, in
Maple one simply types

taylor(exp(exp(x)-1),x=0,101);

T&T: check double
space not deleted
here before CRC.

so this is definitely an answer in the Wilfian sense. We
can also easily derive recurrences (albeit ones that need
at least O(n)memory), by differentiating both sides of
(1) and comparing coefficients.

That was really easy, so let us go on and prove some-
thing much deeper. How about an EGF-style proof of
Levi Ben Gerson’s celebrated formula for the number
of permutations on n objects, n! (example (ii) ear-
lier)? Every permutation can be decomposed into a
disjoint union of cycles, so the atomic objects are
now cycles. How many n-cycles are there? The answer
is of course (n − 1)!, since (a1, a2, . . . , an) is the

same as (a2, a3, . . . , an,a1), which is the same as
(a3, . . . , an,a1, a2), etc., which means that we can pick
the first entry arbitrarily, after which we have (n− 1)!
choices for placing the remaining entries. The EGF for
cycles is therefore

∞∑
n=1

(n− 1)!
n!

xn =
∞∑
n=1

1
n
xn

= − log(1− x) = log(1− x)−1.

Using the fundamental theorem, we get that the EGF of
permutations is

exp(log(1− x)−1) = (1− x)−1 =
∞∑
n=0

xn =
∞∑
n=0

n!
n!
xn,

and voilà we have a beautiful new proof that the
number of permutations on n objects is n!.

This argument may not look very impressive. But a
slight modification leads immediately to the (ordinary)
generating function for the number of permutations on
{1, . . . , n} with exactly k cycles, which we shall denote
by c(n, k). Here we are fixing n and letting k vary, so
the generating function is Cn(α) =

∑n
k=0 c(n, k)αk. All

we have to do to calculate this is go from naive count-
ing to weighted counting, and assign to each permu-
tation the weight α#cycles. The fundamental theorem of
exponential generating functions carries over word-for-
word to weighted counting. The weighted EGF for cycles
is α log(1−x)−1, so the weighted EGF for permutations
is

exp(α · log(1− x)−1) = (1− x)−α =
∞∑
n=0

(α)n
n!
xn,

where

(α)n = α(α+ 1) · · · (α+n− 1)

is the so-called rising factorial. We have therefore
derived the far less trivial result that the number of
permutations of {1, . . . , n} with exactly k cycles equals
the coefficient of αk in (α)n.

About ten years ago (Ehrenpreis and Zeilberger 1994)
I used this technique to give a combinatorial proof of
the Pythagorean theorem in the form

sin2 z + cos2 z = 1.

The functions sinz and cosz are the weighted EGFs for
increasing sequences of odd and even lengths, respec-
tively, with weight (−1)[length/2]. Hence the left-hand
side is the weighted EGF for ordered pairs of increasing
sequences

a1 < · · · < ak, b1 < · · · < br ,
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such that k and r have the same parity, the sets
{a1, . . . , ak} and {b1, . . . , br } are disjoint, and the
union of the two sets is {1,2, . . . , k + r}. There is
a killer involution on these sets of pairs defined asPUP: good idea to

remove the
hyphen – thanks. follows.

If ak < br then map the pair to

a1 < · · · < ak < br , b1 < · · · < br−1.

and otherwise map it to

a1 < · · · < ak−1, b1 < · · · < br < ak.
For example, the pair

1,3,5,6 2,4,7,8,9,10,11,12,

whose sign is (−1)2 · (−1)4 = 1, goes to the pair

1,3,5,6,12 2,4,7,8,9,10,11,

whose sign is (−1)2 · (−1)3 = −1 (and vice versa).

Since this mapping changes the sign, and is an involu-
tion, all such pairs can be paired up into mutually can-
celing pairs. But this mapping is undefined for one spe-
cial pair, namely the pair (empty, empty), whose weight
is 1. Therefore, the EGF for the sum of the weights of
all pairs is 1, which explains the right-hand side.

Yet another application of this method is a proof
of André’s generating function for the number of up–
down permutations. A permutation of a1 · · ·an is
called up–down (or sometimes zigzag) if a1 < a2 >
a3 < a4 > a5 < · · · . Let an be the number of up–down
permutations. Then

∞∑
n=0

a(n)
n!

xn = secx + tanx.

This is equivalent to saying that

cosx ·
( ∞∑
n=0

a(n)
n!

xn
)
= 1+ sinx.

Can you find the appropriate set and the killer involu-
tion?

6 Pólya–Redfield Enumeration

Often in enumeration it is easy enough to count labeled
objects, but what about unlabeled ones? For example,
the number of labeled (simple) graphs on n vertices
(example (vi)) is trivially 2n(n−1)/2, but how many un-
labeled graphs are there on n vertices? This is much
harder, and in general there are no “nice” answers, but
the best known way is via a powerful technique initi-
ated by Pólya, which was largely anticipated by Red-
field. Pólya enumeration lends itself very efficiently to

counting chemical isomers, since, for example, all the

carbon atoms “look the same.” Indeed, counting iso-

mers was Pólya’s initial motivation (see mathematics

and chemistry [VII.1 §2.3]).

The main idea is to view unlabeled objects as equiv-

alence classes of easy-to-count labeled objects, and to

count these equivalence classes. But what is the equiv-

alence? The answer is that there is always a symme-

try group [I.3 §2.1] involved, and it leads to a natural

equivalence relation. Let the symmetry group be G, and

let the set of labeled objects be A. Then two objects a
and b of A are regarded as equivalent if b = g(a) for

some member g of the group G. This means that there

is some symmetry g in the group G that transforms a
to b. This is easily seen to be an equivalence relation

and the equivalence classes are the sets

Orbit(a) = {g(a) | g ∈ G}, a ∈ A,
which are known as orbits. Calling each orbit a “family,”

we have the task of counting the number of families.

Note that G is a subgroup of the group of permutations

of the finite set A.

Suppose that there is a picnic consisting of many

families and we want to count the number of families.

One way would be to define some “canonical head” of

each family, say “mother,” and count the number of

mothers. But some daughters look like mothers, so this

is not so easy. On the other hand, you cannot just count

everybody, since then you would count each family sev-

eral times. The problem is that “naive” counting of peo-

ple (or objects) is giving a credit of 1 to each person,

and this is inappropriate if we are trying to count fam-

ilies. If instead we were to ask each person “How big

is your family?” and add to our count the reciprocal

of that number, then the calculation would come out

just right, since a family of size k would get a credit

of 1/k for each of its members, and would therefore

have been counted exactly once by the end. Going back

to counting orbits, we see by the same reasoning that

their number is ∑
a∈A

1
|Orbit(a)| .

The conceptual opposite of “orbit of a” is the subgroup

of members of G that fix a:

Fix(a) = {g ∈ G | g(a) = a}.
(This is sometimes known as the stabilizer of a.) To

each element b = ga in the orbit of a, we can asso-

ciate the left coset g Fix(a) of Fix(a). This association



�

246 IV. Branches of Mathematics

turns out to be a well-defined one-to-one correspon-
dence between the orbit of a and the cosets of Fix(a)
in G, from which it follows that the size of Orbit(a)
is |G/ Fix(a)|. We can therefore substitute |Fix(a)|/|G|
for 1/|Orbit(a)| in the previous formula, which implies
that the number of orbits is

1
|G|

∑
a∈A
|Fix(a)|.

Let us use the notation χ(statement) to stand for 1 if
the statement is true and 0 if it is false. Then

1
|G|

∑
a∈A
|Fix(a)| = 1

|G|
∑
a∈A

∑
g∈G

χ(g(a) = a)

= 1
|G|

∑
g∈G

∑
a∈A

χ(g(a) = a)

= 1
|G|

∑
g∈G

fix(g),

where fix(g) is the number of fixed points of g (when g
is viewed as a permutation of A). We have just proved
what used to be called Burnside’s lemma, but it goes
back to cauchy [VI.29] and frobenius [VI.58]. It states
that the total number of orbits equals the average num-
ber of fixed points of g, over all transformations g in
G. If the group G is the full symmetric group of all the
permutations of A, then the average number of fixed
points equals 1 (since in this trivial case there is only
one orbit!).

Enter Pólya. The objects that he was interested in
counting (e.g., chemical isomers, or colorings of the
faces of the cube) were all naturally functions from an
underlying set to a set of colors (or atoms). Let us call
the underlying set U and the set of colors C . A symme-
try of U gives rise in a natural way to a transformation
of the set of functions f : U → C . Given a function f
one defines a new function gf by g(f)(u) = f(g(u)).
(If we think of f as a coloring, then gf is the new color-
ing that assigns to u the color that f assigned to g(u).)
Now let us think about the number of fixed points of g
in the set of C-colorings ofU . Such a fixed point is a col-
oring f that equals gf : that is, f(u) = f(gu) for every
u. But then f(u) = f(gu) = f(g2u) = · · · , which
means that, given any cycle of g, f must assign the
same color to all members of that cycle. It follows that
the number of fixed colorings of g is c#cycles(g), where
c = |C| is the number of colors.

Applying Burnside’s lemma, we may deduce that the
number of different colorings of U (up to G-equiva-
lence) is

1
|G|

∑
g∈G

c#cycles(g),

since an equivalence class of colorings is simply an
orbit of one of the colorings in that class.

Here is a simple application. How many necklaces
(without a clasp) are there that consist of p beads
(where p is a prime) and that use a different colors?
The underlying set is {0, . . . , p − 1}, and the symme-
try group is Zp , the cyclic group of order p. As usual,
regard the elements of the symmetry group as permu-
tations of the set of beads. Since p is a prime, there are
p − 1 elements of Zp with one cycle (of length p), and
one element (the identity permutation) with p cycles
(all of length 1). It follows that the number of necklaces
is

1
p
((p − 1) · a+ 1 · ap) = a+ a

p − a
p

.

In particular, since this number is necessarily an inte-
ger, we get as a bonus a combinatorial proof of fer-
mat’s little theorem [III.60]: that ap − a is always a
multiple of p. Perhaps one day there will be an equally
nice combinatorial proof of Fermat’s last theorem. All
one has to do is to prove that there is no bijection from
the union of the set of straight necklaces of sizen using
x colors, and the set of such necklaces using y colors,
to the set of necklaces using z colors (with n > 2, of
course).

If one wants to keep track of how many beads there
are of each color, one simply replaces straight counting
by weighted counting, and c#cycles(g) is replaced by

(x1 + · · · + xc)α1 · (x2
1 + · · · + x2

c )α2 · · ·
(assuming that g has α1 1-cycles, α2 2-cycles, etc.).
The resulting expression is the celebrated cycle-index
polynomial.

6.1 The Principle of Inclusion–Exclusion and

Möbius Inversion

Another pillar of enumeration is the principle of inclu-
sion–exclusion (nicknamed PIE). Suppose that there are
n sins, s1, . . . , sn, that a person may succumb to, and
suppose that for each set of sins S, AS is the set of
people who have all the sins in S (and possibly others).
Then the number of good people (without sins) is∑

S
(−1)|S||AS |.

For example, if the set A is the set of all permutations
π of {1, . . . , n} and the ith sin is having π[i] = i,
then |AS | = (n − |S|)!, and we get that the number of
derangements (permutations without fixed points) is

n∑
k=0

(−1)k
(
n
k

)
(n− k)! = n!

n∑
k=0

(−1)k
1
k!
,
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which yields the answer : “closest integer to n!/e.” This
is sometimes called the “umbrella problem”: if on a
rainy day n absent-minded people go to a party and
leave an umbrella by the door, and if on their depar-
ture they each take a random umbrella, then the prob-
ability that nobody ends up with the right umbrella is
about 1/e.

The PIE is a special case of Möbius inversion on gen-
eral partially ordered sets (posets) where the poset hap-
pens to be the Boolean lattice. This realization was pub-
lished in a seminal paper by Rota (1964) and reprinted
in his collected works. It is considered by many to be the
big bang that started modern algebraic combinatorics.
Möbius’s original inversion formula is recovered when
the partially ordered set is N and the partial order is
divisibility.

A contemporary account of enumeration from the
“algebraic” point of view can be found in a marvelous
two-volume set by Stanley (2000), which I strongly
recommend.

7 Algebraic Combinatorics

So far I have described one of the routes to algebraic
combinatorics: abstraction and conceptualization of
classical enumeration. The other route, “concretization
of the abstract,” is almost everywhere dense in math-
ematics, and cannot be described in a few pages. Let
me quote from the preface of the excellent New Per-
spectives in Algebraic Combinatorics by Billera et al.
(1999).

Algebraic combinatorics involves the use of techniques
from algebra, topology, and geometry in the solution
of combinatorial problems, or the use of combinato-
rial methods to attack problems in these areas. Prob-
lems amenable to the methods of algebraic combina-
torics arise in these or other areas of mathematics or
from diverse parts of applied mathematics. Because of
this interplay with many fields of mathematics, alge-
braic combinatorics is an area in which a wide variety
of ideas and methods come together.

7.1 Tableaux

An interesting class of objects that initially came up
in group representation theory, but that turned out
to be useful in many other areas—such as, for exam-
ple, the theory of algorithms—are Young tableaux. They
were first used by Reverend Alfred Young to construct
explicit bases for the irreducible representations
[IV.9 §2] of the symmetric group [III.70]. For any par-
tition λ = λ1 · · ·λk of n, a Young tableau of shape λ is

an array of k left-justified rows with λ1 entries in the
first row, λ2 entries in the second row, and so on, such
that every row and every column is increasing, and the
set of entries is {1,2, . . . , n}. For example, there are two
standard Young tableaux whose shape is 22,

1 2

3 4

1 3

2 4
,

and three of shape 31,

1 2 3

4

1 2 4

3

1 3 4

2
.

Let fλ be the number of standard Young tableaux of
shape λ. For example, for n = 4: f4 = 1, f31 = 3, f22 =
2, f211 = 3, and f1111 = 1. The sum of the squares of
these numbers is 12 + 32 + 22 + 32 + 12 = 24 = 4!.

The number fλ is the dimension of the irreducible
representation parametrized by λ. It follows by a result
in representation theory [IV.9] known as Frobenius
reciprocity that the same is true for all n. In other
words, ∑

λ#n
f 2
λ = n!,

a result known as the Young–Frobenius identity. A gor-
geous bijective proof of this identity, which has many
beautiful properties, was given by Gilbert Robinson
and Craige Schensted and later extended by Donald
Knuth, and is now known as the Robinson–Schensted–
Knuth correspondence. It inputs a permutation π =
π1π2 · · ·πn, and outputs a pair of Young tableaux of
the same shape, thereby proving the identity.

Algebraic combinatorics is currently a very active
field, and as mathematics is becoming more and more
concrete, constructive, and algorithmic, there are going
to be many more combinatorial structures discovered
in all areas of mathematics (and science!) and this
will guarantee that algebraic combinatorialists will stay
very busy for a long time to come.

Further Reading
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sin2 z+ cos2 z = 1. American Mathematical Monthly 101:
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Rota, G.-C. 1964. On the foundations of combinatorial
theory. I. Theory of Möbius functions. Zeitschrift für
Wahrscheinlichkeitstheorie und Verwandte Gebiete 2:340–
68.
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IV.19 Extremal and Probabilistic
Combinatorics
Noga Alon and Michael Krivelevich

1 Combinatorics: An Introduction

1.1 Examples

It is hard to give a rigorous definition of combinatorics.
Instead, let us start with a few examples to illustrate
what the area is about.

(i) While examining friendship between children
some fifty years ago, the Hungarian sociologist Sandor
Szalai observed that among any group of about twenty
children he checked he could always find four children
any two of whom were friends, or else four children
no two of whom were friends. Despite the temptation
to try to draw sociological conclusions, Szalai realized
that this might well be a mathematical phenomenon
rather than a sociological one. Indeed, a brief discus-
sion with the mathematicians Erdős, Turán, and Sós
convinced him this was the case. If X is any set of
size 18 or more, and R is some symmetric relation
[I.2 §2.3] on X, then there is always a subset S of X of
size 4 with the following property: either xRy for any
two distinct elements x, y of S, or xRy for no two dis-
tinct elements x, y of S. In this case, X is a set of chil-
dren and R is the relation “is friends with.” This math-
ematical fact is a special case of Ramsey’s theorem,
which was proved by the economist and mathemati-
cian Frank Plumpton Ramsey in 1930. Ramsey’s theo-
rem led to the development of Ramsey theory, a branch
of extremal combinatorics, which will be discussed in
the next section.

(ii) In 1916, Schur was studying fermat’s last the-
orem [V.12]. It is sometimes possible to prove that a
Diophantine equation has no solutions by showing that
it has no solutions mod p for some prime p (see mod-
ular arithmetic [III.60]). However, Schur proved that
for every integer k and every sufficiently large prime p,
there are three integers a, b, and c, none of them con-
gruent to 0 mod p, such that ak+bk is congruent to ck.
Although this is a result in number theory, it has a rela-
tively simple and purely combinatorial proof, which is
another example of the many applications of Ramsey
theory.

(iii) When studying the number of real zeros of
random polynomials, littlewood [VI.79] and Offord
investigated in 1943 the following problem. Let z1, z2,

T&T note: check
that suboptimal
linebreak does not
fall at a pagebreak
here before CRC.

. . . , zn be n not-necessarily-distinct complex numbers,
each of modulus at least 1. One can form 2n sums
by taking some subset of these numbers and adding
them together (with the convention that if one takes
the empty set, then the sum is 0). Littlewood and Offord
wanted to know how many of these sums there could
conceivably be such that the difference between any
two of them had modulus less than 1. When n = 2
the answer is easily seen to be at most 2. There are
four sums: 0, z1, z2, and z1 + z2. You cannot choose
both of the first two or both of the last two or you
will have a difference of z1, which has modulus at
least 1. Kleitman and Katona proved that in general the
maximum is

(
n

�n/2�
)
. Notice that a simple construction

proves that this maximum can be achieved. Indeed, let
z1 = z2 = · · · = zn and choose all sums of precisely
�n/2� of them. There are

(
n

�n/2�
)

such sums and they
are all equal. The proof that one cannot do better than
this uses tools from another area of extremal combina-
torics, where the basic objects studied are systems of
finite sets.

(iv) Consider a school in which there are m teachers
T1, T2, . . . , Tm and n classes C1, C2, . . . , Cn. The teacher
Ti has to teach the class Cj for a specified number pij
of lessons. What is the minimum possible number of
periods in a complete timetable? Let di denote the total
number of lessons the teacher Ti has to teach, and let
cj denote the total number of lessons the class Cj has
to be taught. Clearly, the number of periods required
for a complete schedule is at least as big as any di or
cj , and thus at least as big as the maximum of all these
numbers, which we denote by d. It turns out that this
obvious lower bound of d is also an upper bound: it
is always possible to fit all the lessons that need to be
taught into d periods. This is a consequence of König’s
theorem, which is a basic result in graph theory. Sup-
pose now that the situation is not so simple: for every
teacher Ti and every class Cj there is some specified
set of d periods in which the teaching has to take place.
Can we always find a feasible timetable with these more
complicated constraints? Recent breakthroughs from a
subject known as list coloring of graphs imply that it is
always possible.

(v) Given a map with several countries represented,
how many colors do you need if you want to color
the countries without giving any two adjacent coun-
tries the same color? Here we assume that each coun-
try forms a connected region in the plane. Of course,
at least four colors may be necessary: think of Belgium,
France, Germany, and Luxembourg, out of which any



�

IV.19. Extremal and Probabilistic Combinatorics 249

two have a common border. The four-color theo-
rem [V.14], proved by Appel and Haken in 1976, asserts
that you never need more than four colors. The study
of this problem led to numerous interesting questions
and results about graph coloring.

(vi) Let S be an arbitrary subset of the two-dimen-
sional lattice Z2. For any two finite subsets A,B ⊂ Z

we can think of the Cartesian product A × B as a sort
of “combinatorial rectangle.” This set has size |A| |B|
(where |X| denotes the size of a set X), and we can
define an obvious notion of the density dS(A, B) of S in
A × B by the formula dS(A, B) = |S ∩ (A × B)|/|A| |B|,
which measures what proportion of the elements of
A× B belong to S. For each k, let d(S, k) be the largest
possible value of dS(A, B) if |A| = |B| = k. What can
we say about d(S, k) as k tends to infinity? One might
guess that almost any behavior is possible, but, remark-
ably, basic results in extremal graph theory (about the
so-called Turán numbers of complete bipartite graphs)
imply that d(S, k) must always tend to 0 or 1.

(vii) Suppose that n basketball teams compete in a
tournament and any two teams play each other exactly
once. The organizers wish to award k prizes at the end
of the tournament. It would be embarrassing if there
ended up being a team that had not won a prize despite
beating all the teams that had won a prize. However,
unlikely though it might sound, it is quite possible that
this will be the case whatever k teams they choose,
at least if n is large enough. To demonstrate this is
easy if one uses the probabilistic method, which is one
of the most powerful techniques in combinatorics. For
any fixed k, and all sufficiently large n, if the results
of all the games are chosen randomly (and uniformly
and independently), then there is a very high proba-
bility that for any k teams there is another team that
beats all of them. Probabilistic combinatorics, which is
one of the most active areas in modern combinatorics,
started with the realization that probabilistic reason-
ing often provides simple solutions to problems of this
type, problems that are often very hard to solve in any
other way.

(viii) If G is a finite group of n elements, and H is a
subgroup of size k in G, then there are n/k left cosets
and n/k right cosets of H. Is there always a set of n/k
elements of G that contains a single representative of
each right coset and a single representative of each left
coset? Hall’s theorem, a basic result in graph theory,
implies that there is. In fact, if H′ is another subgroup
of size k inG, then there is always a set ofn/k elements
of G that contains a single representative of each right

coset ofH and a single representative of each left coset
ofH′. This may sound like a result in group theory, but
it is really a (simple) result in combinatorics.

1.2 Topics

The examples described above illustrate some of the
main themes of combinatorics. The subject, sometimes
also called discrete mathematics, is a branch of math-
ematics that focuses on the study of discrete objects
(as opposed to continuous ones) and their proper-
ties. Although combinatorics is probably as old as
the human ability to count, the field has experienced
tremendous growth during the last fifty years and
has matured into a thriving area with its own set of
problems, approaches, and methodology.

The examples above suggest that combinatorics is a
basic mathematical discipline that plays a crucial role
in the development of many other mathematical areas.
In this essay we discuss some of the main aspects of
this modern field, focusing on extremal and probabilis-
tic combinatorics. (An account of combinatorial prob-
lems with a rather different flavor can be found in alge-
braic and enumerative combinatorics [IV.18].) It is,
of course, impossible to cover the area fully in such
a short article. A detailed account of the subject can
be found in Graham, Grötschel, and Lovász (1995).
Our main intention is to give a glimpse of the topics,
methods, and applications illustrated by representa-
tive examples. The topics we discuss include extremal
graph theory, Ramsey theory, the extremal theory of
set systems, combinatorial number theory, combinato-
rial geometry, random graphs, and probabilistic com-
binatorics. The methods applied in the area include
combinatorial techniques, probabilistic methods, tools
from linear algebra, spectral techniques, and topolog-
ical methods. We also discuss the algorithmic aspects
and some of the many fascinating open problems in the
area.

2 Extremal Combinatorics

Extremal combinatorics deals with the problem of
determining or estimating the maximum or minimum
possible size of a collection of finite objects that sat-
isfies certain requirements. Such problems are often
related to other areas, including computer science,
information theory, number theory, and geometry. This
branch of combinatorics has developed spectacularly
over the last few decades (see, for example, Bollobás
(1978), Jukna (2001), and their many references).
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2.1 Extremal Graph Theory

A graph [III.34] is one of the very basic combinatorial
structures. It consists of a set of points, called vertices,
some of which are linked by edges. One can represent a
graph visually by drawing the vertices as points in the
plane and the edges as lines (or curves). However, for-
mally a graph is more abstract: it is just a set together
with a collection of pairs taken from the set. More pre-
cisely, it consists of a set V , called the vertex set, and a
set E, called the edge set ; the elements of E (the edges)
are sets of the form {u,v}, where u and v are distinct
elements of V . If {u,v} is an edge, we say that u and
v are adjacent. The degree d(v) of a vertex v is the
number of vertices adjacent to it.

Here are a number of simple definitions associated
with graphs that have emerged as important. A path
of length k from u to v in G is a sequence of distinct
vertices u = v0, v1, . . . , vk = v , where vi and vi+1 are
adjacent for all i < k. If v0 = vk (but all vertices vi for
i < k are distinct), this is called a cycle of length k, and
is usually denoted by Ck. A graph G is connected if for
any two verticesu, v ofG there is a path fromu to v . A
complete graph Kr is a graph with r vertices such that
any two of them are adjacent. A subgraph of a graph G
is a graph that contains some of the vertices of G and
some of its edges. A clique in G is a set of vertices in G
such that any two of them are adjacent. The maximum
size of a clique in G is called the clique number of G.
Similarly, an independent set in G is a set of vertices in
G with no two of them adjacent, and the independence
number of G is the maximum size of an independent
set in it.

Extremal graph theory deals with quantitative con-
nections between various parameters of a graph, such
as its numbers of vertices and edges, its clique num-
ber, or its independence number. In many cases a cer-
tain optimization problem involving these parameters
has to be solved (for example, determining how big
one parameter can be if another one is at most some
given size), and its optimal solutions are the extremal
graphs for this problem. Many important optimization
problems that do not explicitly mention graphs can be
reformulated, using the definitions above, as problems
about extremal graphs.

2.1.1 Graph Coloring

Let us return to the map-coloring example discussed in
the introduction. To translate the problem into math-
ematics, we can describe the map-coloring problem in

terms of a graph G, as follows. The vertices of G cor-
respond to the countries on the map, and two vertices
are connected by an edge in G if and only if the cor-
responding countries share a common border. It is not
hard to show that one can draw such a graph in such
a way that no two edges cross each other: such graphs
are called planar. Conversely, any planar graph arises
in this way. Therefore, our problem is equivalent to the
following: if you want to color the vertices of a planar
graph so that no two adjacent vertices receive the same
color, then how many colors do you need? (One can
make the problem yet more mathematical by removing
the nonmathematical notion of color. For example, one
can assign to each vertex a positive integer instead.)
Such a coloring is called proper. In this language, the
four-color theorem states that every planar graph can
be properly colored with four colors.

Here is another example of a graph-coloring problem.
Suppose we must schedule meetings of several parlia-
ment committees. We do not wish to have two com-
mittees meeting at the same time if some parliament
member belongs to both, so how many sessions do we
need?

Again we can model this situation by using a graph
G. The vertices ofG represent the committees, with two
vertices adjacent if and only if the corresponding com-
mittees share a member. A schedule is a function f that
assigns to each committee one of k time slots. More
mathematically, we can think of it as just a function
from V to the set {1,2, . . . , k}. Let us call a schedule
valid if no two adjacent vertices are assigned the same
number. This corresponds to no two committees being
assigned the same time slot if they share a member. The
question then becomes, “What is the minimal value of
k for which a valid schedule exists?”

The answer is called the chromatic number of the
graph G, denoted χ(G): it is the smallest number of
colors in any proper coloring of G. Notice that a color-
ing of a graph G is proper if and only if for each color
the set of vertices of that color is independent. There-
fore, χ(G) can also be defined as the smallest number
of independent sets into which it is possible to par-
tition the vertices of G. A graph is called k-colorable
if it admits a k-coloring, or, equivalently, if it can be
partitioned into k independent sets. Thus, χ(G) is the
minimum k for which G is k-colorable.

Two simple examples are in order. If G is a complete
graph Kn on n vertices, then obviously in any color-
ing of G all vertices get distinct colors, and thus n col-
ors are necessary. Of course, n colors are also suffi-
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cient, so χ(Kn) = n. If G is a cycle C2n+1 on 2n + 1
vertices, then easy parity arguments show that at least
three colors are needed, and three colors are enough:
color the vertices along the cycle alternately by colors
1 and 2, and then color the last vertex by color 3. Thus,
χ(C2n+1) = 3.

It is not hard to prove thatG is 2-colorable if and only
if it does not contain a cycle of odd length. Graphs that
are 2-colorable are usually called bipartite, since they
split into two parts, with all the edges going from one
part to the other. The easy characterization ends here,
and no simple criterion equivalent to k-colorability is
available for k � 3. This is related to the fact that for
each fixed k � 3 the computational problem of decid-
ing whether a given graph is k-colorable is NP-hard,
a notion discussed in computational complexity
[IV.20].

Coloring is one of the most fundamental notions of
graph theory, as a huge array of problems in this field
and in related areas like computer science and oper-
ations research can be formulated in terms of graph
coloring. Finding an optimal coloring of a graph is
known to be a very hard task, both theoretically and
practically.

There are two simple yet fundamental lower bounds
on the chromatic number. First, as every color class in
a proper coloring of a graph G forms an independent
set, it cannot be bigger than the independence num-
ber of G, which is denoted by α(G). Therefore, at least
|V(G)|/α(G) colors are necessary. Secondly, if G con-
tains a clique of size k, then k colors are needed to color
that clique alone, and thus χ(G) � k. This implies that
χ(G) �ω(G), where ω(G) is the clique number of G.

What about upper bounds on the chromatic number?
One of the simplest approaches to coloring a graph is to
do it greedily : put the vertices in some order and color
them one by one, assigning to each one the smallest
positive integer that has not already been assigned to
one of its neighbors. While the greedy algorithm can
sometimes be very inefficient (for example, it can color
bipartite graphs in an unbounded number of colors,
even though two colors are sufficient), it often works
quite well. Observe that when applying the greedy algo-
rithm, a color given to a vertex v is at most one more
than the number of the neighbors of v preceding it in
the chosen order, and is thus at most d(v)+ 1, where
d(v) is the degree of v in G. It follows that, if ∆(G)
is the maximum degree of G, then the greedy algo-
rithm uses at most ∆(G)+ 1 colors. Therefore χ(G) �
∆(G)+ 1. This bound is tight for complete graphs and

odd cycles, and, as shown by Brooks in 1941, those
are the only cases: if G is a graph of maximum degree
∆, then χ(G) � ∆ unless G contains a clique K∆+1, or
∆ = 2 and G contains an odd cycle.

It is also possible to color the edges of a graph,
rather than the vertices. In this case a proper coloring
is defined to be one where no two edges that meet at
a vertex are given the same color. The chromatic index
of G, denoted by χ′(G), is the minimum k for which G
admits a proper edge-coloring with k colors. For exam-
ple, ifG is the complete graphK2n, then χ′(G) = 2n−1.
This turns out to be equivalent to the fact that it is
possible to organize a round-robin tournament with 2n
teams and fit it into 2n − 1 rounds: just ask the man-
ager of a soccer league. It is also not hard to show that
χ′(K2n−1) = 2n− 1. Since in any proper edge-coloring
of G all edges of G that are incident to a vertex v get
distinct colors, the chromatic index is obviously at least
as big as the maximum degree. Equality holds for bipar-
tite graphs, as proved by König in 1931, which implies
the existence of a complete timetable using d periods
in the problem of teachers and classes discussed in the
introduction.

Remarkably, this trivial lower bound of χ′(G) � ∆(G)
is very close to the true behavior of χ′(G). A fundamen-
tal theorem of Vizing from 1964 states that χ′(G) is
always equal either to the maximum degree ∆(G) or to
∆(G)+1. Thus, the chromatic index ofG is much easier
to approximate than its chromatic number.

2.1.2 Excluded Subgraphs

If a graph G has n vertices and contains no triangle
(that is, three vertices all joined to each other) then
how many edges can it contain? If n is even, then you
can split the vertex set into two equal parts A and B of
size n/2 and join every vertex in A to every vertex in
B. The resulting graph G contains no triangles and has
n2/4 edges. Moreover, adding another edge will auto-
matically create a triangle (in fact, several triangles).
But is this the densest possible triangle-free graph? A
hundred years ago the answer was shown to be yes by
Mantel. (A similar theorem holds when n is odd, but
now A and B must have nearly equal sizes (n + 1)/2
and (n− 1)/2.)

Let us look at a more general problem, where the role
of the triangle is played by an arbitrary graph. More
precisely, let H be any graph, withm vertices, say, and
when n �m let us define ex(n,H) to be the maximum
possible number of edges in a graph with n vertices
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that does not contain H as a subgraph. (The notation
“ex” stands for “exclude.”) The function ex(n,H) is usu-
ally called the Turán number of H, for reasons that will
become clear, and finding good approximations for it
has been a central problem in extremal graph theory.

What kind of examples of graphs that do not contain
H can we think of? One observation that gets us started
is that if H has chromatic number r , then it cannot be
a subgraph of a graph G with chromatic number less
than r . (Why not? Because a proper (r − 1)-coloring of
G provides us with a proper (r − 1)-coloring of any sub-
graph of G.) So a promising approach is to look for a
graph G with n vertices, chromatic number r − 1, and
as many edges as possible. This is easy to find. Our con-
straint is that the vertices can be partitioned into r − 1
independent sets. Once we have done that, we may as
well include all edges between those sets. The result is
a complete (r − 1)-partite graph. A routine calculation
shows that in order to maximize the number of edges,
one should partition into sets that have sizes as nearly
equal as possible. (For example, if n = 10 and r = 4,
then we would partition into three sets of sizes 3, 3,
and 4.)

The graph that satisfies this condition is called
the Turán graph Tr−1(n) and its number of edges
is denoted by tr−1(n). We have just argued that
ex(n,H) � tr−1(n), which can be shown to be at least
as big as (1− 1/(r − 1))

(
n
2

)
.

Turán’s contribution to this area was to give an
exact solution, in 1941, for the most important case,
when H is the complete graph Kr on r vertices. He
proved that ex(n,Kr ) is not just at least tr−1(n), but
is actually equal to tr−1(n). Moreover, the only Kr -free
graph with n vertices and ex(n,Kr ) edges is the Turán
graph Tr−1(n). Turán’s paper is generally considered
the starting point of extremal graph theory.

Later, Erdős, Stone, and Simonovits extended Turán’s
theorem by proving that the above simple lower bound
for ex(n,H) is asymptotically tight for any fixed H
with chromatic number at least 3. That is, if r is the
chromatic number of H, then the ratio of ex(n,H) to
tr−1(n) tends to 1 as n tends to infinity.

Thus, the function ex(n,H) is well-understood for all
nonbipartite graphs. Bipartite graphs are rather differ-
ent, because their Turán numbers are much smaller: if
H is bipartite, then ex(n,H)/n2 tends to zero. Deter-
mining the asymptotics of ex(n,H) in this case remains
a challenging open problem with many unsettled ques-
tions. Indeed, the full story is unknown even for the
very simple case when H is a cycle. Partial results

obtained so far use a variety of techniques from differ-
ent fields, including probability theory, number theory,
and algebraic geometry.

2.1.3 Matchings and Cycles

Let G be a graph. A matching in G is a collection of
edges in G of which no two share a vertex. A matching
M in G is called perfect if every vertex belongs to one
of the edges inM . (The idea is that the edges determine
a “match” for each vertex: the match for x is the vertex
y for which xy is an edge of M .) Of course, for G to
have a perfect matching it must have an even number
of vertices.

One of the best-known theorems in graph theory is
Hall’s theorem, which provides a necessary and suffi-
cient condition for the existence of a perfect matching
in a bipartite graph. What kind of condition can this be?
It is very easy to write down a trivial necessary condi-
tion, as follows. Let G be a bipartite graph with vertex
sets A and B of equal size. (If they do not have equal
size, then clearly there is no perfect matching.) Given
any subset S of A, letN(S) denote the set of all vertices
in B that are joined to at least one vertex in S. If there is
to be a matching, then it must be possible to assign to
each vertex in S a distinct “match,” so obviously N(S)
must have at least as many elements as S. Hall’s the-
orem, proved in 1935, asserts that, remarkably, this
obvious necessary condition is also sufficient. That is,
ifN(S) is always at least as big as S, then there will be a
perfect matching. More generally, ifA is smaller than B,
then the same condition guarantees that one can find
a matching that includes every vertex in A (but leaves
some vertices in B unmatched).

There is a useful reformulation of Hall’s theorem
in terms of set systems. Let S1, S2, . . . , Sn be a collec-
tion of sets, and suppose that we would like to find a
system of distinct representatives: that is, a sequence
x1, x2, . . . , xn such that xi is an element of Si and no
two of the xi are the same. Obviously this cannot be
done if the union of some k of the sets Si has size less
than k. Again, this obvious necessary condition is suffi-
cient. It is not hard to show that this assertion is equiv-
alent to Hall’s theorem: let S be the union of the Si and
define a bipartite graph with vertex sets {1,2, . . . , n}
and S, joining i to x if and only if x ∈ Si. Then a match-
ing that includes all of the set {1,2, . . . , n} picks out a
system of distinct representatives: xi is the element of
S that is matched with i.

Hall’s theorem can be applied to solve the problem
of finding a system of representatives for the right and
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left cosets of a subgroup H, mentioned in section 1.1.
Define a bipartite graph F , whose two sides (of size n/k
each) are the left and right cosets ofH. A left coset g1H
is connected by an edge of F to a right cosetHg2 if they
share a common element. It is not difficult to show that
F satisfies the Hall condition, and hence it has a per-
fect matching M . Choosing for each edge (giH,Hgj)
of M a common element of giH and Hgj , we obtain
the required family of representatives.

There is also a necessary and sufficient condition
for the existence of a perfect matching in a general
(not-necessarily-bipartite) graph G. This is a theorem
of Tutte, which we shall not state here.

Recall that Ck denotes a cycle of length k. A cycle is
a very basic graph structure, and, as one might expect,
there are many extremal results concerning cycles.

Suppose that G is a connected graph with no cycles.
If you pick a vertex and look at its neighbors and then
the neighbors of its neighbors, and so on, you will see
that it has a tree-like structure. Indeed, such graphs
are called trees. An easy exercise shows that any tree
with n vertices has exactly n− 1 edges. It follows thatPUP: Tim says in

answer to the
proofreaders’s
comment here,
“It’s the
contrapositive – no
contradiction.”
OK?

every graph G on n vertices with at least n edges has a
cycle. If you want to guarantee that this cycle has cer-
tain extra properties, then you may need more edges.
For example, the theorem of Mantel mentioned earlier
implies that a graph G with n vertices and more than
n2/4 edges contains a triangle C3 = K3. One can also
prove that a graph G = (V , E) with |E| > 1

2k(|V | − 1)
has a cycle of length longer than k (and this is in fact a
sharp result).

A Hamilton cycle in a graph G is a cycle that vis-
its every vertex of G. This term originated in a game,
invented by hamilton [VI.37] in 1857, the objective of
which was to complete a Hamilton cycle in the graph
of the dodecahedron. A graph containing a Hamilton
cycle is called Hamiltonian. This concept is strongly
related to the well-known traveling salesman prob-
lem [VII.5 §2]: you are given a graph with positive
weights assigned to the edges, and you must find a
Hamilton cycle for which the sum of the weights of its
edges is minimized. There are many sufficient criteria
for a graph to be Hamiltonian, quite a few of which are
based on the sequence of degrees. For example, Dirac
proved in 1952 that a graph on n � 3 vertices all of
whose degrees are at least n/2 is Hamiltonian.

2.2 Ramsey Theory

Ramsey theory is a systematic study of the following
general phenomenon. Surprisingly often, a large struc-

ture of a certain kind has to contain a fairly large highly
organized substructure, even if the structure itself is
completely arbitrary and apparently chaotic. As suc-
cinctly put by the mathematician T. S. Motzkin, “Com-
plete disorder is impossible.” One might expect that
the simple and very general form of this paradigm
ensures that it has many diverse manifestations in dif-
ferent mathematical areas, and this is indeed the case.
(One should, however, bear in mind that some natu-
ral statements of this kind are false for nonobvious
reasons.)

A very simple statement, which can be regarded as a
basic prototype for what follows, is the pigeonhole prin-
ciple. This states that if a set X of n objects is colored
with s colors, then there must be a subset of X of size
at least n/s that uses just one color. Such a subset is
called monochromatic.

The situation becomes more interesting if the set X
has some additional structure. It then becomes natural
to ask for a monochromatic subset that keeps some of
the structure of X. However, it also becomes much less
obvious whether such a subset exists. Ramsey theory
consists of problems and theorems of this general kind.
Although several Ramsey-type theorems had appeared
before, Ramsey theory is traditionally regarded as hav-
ing started with Ramsey’s theorem, proved in 1930.
Ramsey took as his set X the set of all the edges in
a complete graph, and the monochromatic subset he
obtained consisted of all the edges of some complete
subgraph. A precise statement of his theorem is as fol-
lows. Let k and l be integers greater than 1. Then there
exists an integer n such that, however you color the
edges of the complete graph with n vertices, using the
two colors red and blue, there will either be k vertices
such that all edges between them are red or l vertices
such that all edges between them are blue. That is, a suf-
ficiently large complete graph colored with two colors
contains a largish complete subgraph that is monochro-
matic. Let R(k, l) denote the minimum number n with
this property. In this language, the observation of Sza-
lai, mentioned in the introduction, is that R(4,4) � 20
(in fact, R(4,4) = 18). Actually, Ramsey’s theorem was
more general, in that he allowed any number of colors,
and the objects colored could be r -tuples of elements
rather than just pairs, as one has when coloring graphs.
The exact computation of small Ramsey numbers turns
out to be a notoriously difficult task: even the value of
R(5,5) is unknown at present.

The second cornerstone of Ramsey theory was laid
by Erdős and Szekeres, who in 1935 wrote a paper
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containing several important Ramsey-type results. In

particular, they proved the recursion R(k, l) � R(k −
1, l) + R(k, l − 1). Combined with the easy boundary

conditions R(2, l) = l, R(k,2) = k, the recursion leads

to the estimate R(k, l) �
(
k+l−2
k−1

)
. In particular, for the

so-called diagonal case k = l we obtain R(k, k) < 4k.

Remarkably, no improvement in the exponent of the

latter estimate has been found so far. That is, nobody

has found an upper bound of the form Ck for some

C < 4. The best lower bound known, which we shall dis-

cuss in section 3.2, is roughly R(k, k) � 2k/2, so there

is a rather substantial gap.

Another Ramsey-type statement, proved by Erdős

and Szekeres, is of a geometric nature. They showed

that for every n � 3 there exists a positive integer N
such that, given any configuration of N points in the

plane in general position (i.e., no three of them are on a

line), there aren that form a convexn-gon. (It is instruc-

tive to prove that if n = 4 then N can be taken to be 5.)

There are several proofs of this theorem, some using

the general Ramsey theorem. It is conjectured that the

smallest value of N that will do in order to ensure a

convex n-gon is 2n−2 + 1.

The classic Erdős–Szekeres paper also contains the

following Ramsey-type result: any sequence of n2 + 1

distinct numbers contains a monotone (increasing or

decreasing) subsequence of length n+1.

This provides a quick lower bound of
√
n for a

well-known problem of Ulam, asking for the typical

length of a longest increasing subsequence of a ran-

dom sequence of length n. A detailed description of

the distribution of this length has recently been given

by Baik, Deift, and Johansson.

In 1927 van der Waerden proved what became known

as van der Waerden’s theorem: for all positive inte-

gers k and r there exists an integer W such that for

every coloring of the set of integers {1, . . . ,W(k, r)}
using r colors, one of the colors contains an arithmetic

progression of length k. The minimum W for which

this is true is denoted by W(k, r). Van der Waerden’s

bounds for W(k, r) are enormous: they grow like an

Ackermann-type function. A new proof of his theorem

was found by Shelah in 1987, and yet another proof

was given by Gowers in 2000, while he was studying the

(much deeper) “density version” of the theorem, which

will be described in section 2.4. These recent proofs

provided improved upper bounds for W(k, r), but the

best-known lower bound for this number, which is only

exponential in k for each fixed r , is much smaller.

Even before van der Waerden, Schur proved in 1916
that for any positive integer r there exists an inte-
ger S(r) such that for every r -coloring of {1, . . . , S(r)}
one of the colors contains a solution of the equation
x +y = z. The proof can be derived rather easily from
the general Ramsey theorem. Schur applied this state-
ment to prove the following result, mentioned in sec-
tion 1.1: for every k and all sufficiently large primes
p, the equation ak + bk = ck has a nontrivial solution
in the integers modulo p. To prove this result, assume
that p � S(k) and consider the field [I.3 §2.2] Zp of
integers mod p. The nonzero elements of Zp form a
group [I.3 §2.1] under multiplication. LetH be the sub-
group of this group consisting of all kth powers: that is,
H = {xk : x ∈ Z∗p}. It is not hard to show that the index
r ofH is the highest common factor of k and p − 1, and
in particular is at most k. The partition of Z∗p into the
cosets ofH can be thought of as an r -coloring of Z∗p . By
Schur’s theorem there exist x,y, z ∈ {1, . . . , p−1} that
all have the same color—that is, they all belong to the
same coset of H. In other words, there exists a residue
d ∈ Z∗p such that x = dak, y = dbk, z = dck, and
dak +dbk = dck modulo p. The desired result follows
if we multiply both sides by d−1.

Many additional Ramsey-type results can be found in
Graham, Rothschild, and Spencer (1990) or in Graham,
Grötschel, and Lovász (1995, chapter 25).

2.3 Extremal Theory of Set Systems

Graphs are one of the fundamental structures stud-
ied by combinatorialists, but there are others too. An
important branch of the subject is the study of set sys-
tems. Most often, these are simply collections of sub-
sets of some n-element set. For example, the collection
of all subsets of the set {1,2, . . . , n} of size at most
n/3 is a good example of a set system. An extremal
problem in this area is any problem where the aim is to
determine, or estimate, the maximum number of sets
there can be in a set system that satisfies certain con-
ditions. For example, one of the first results in the area
was proved by Sperner in 1928. He looked at the follow-
ing question: how large a collection of subsets can one
choose from an n-element set in such a way that no set
from the collection is a subset of any other? A simple
example of a set system satisfying this condition is the
collection of all sets of size r , for some r . From this it
immediately follows that we can obtain a collection as
large as the largest binomial coefficient, which is

(
n
n/2

)
if n is even and

(
n

(n+1)/2

)
if n is odd.
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Sperner showed that this is indeed the maximum pos-
sible size of such a collection. This result supplies a
quick solution to the real analogue of the problem of
Littlewood and Offord described in section 1.1. Sup-
pose that x1, x2, . . . , xn are n not-necessarily-distinct
real numbers, each of modulus at least 1. A first obser-
vation is that we may assume that all the xi are posi-
tive, since if we replace a negative xi by −xi (which is
positive), then we end up with exactly the same set of
sums, but shifted by −xi. (To see this, compare a sum
that used to involvexi with the corresponding sum that
does not involve −xi, and vice versa.) But now, if A is a
proper subset of B, then some xi belongs to B and not
to A, so ∑

i∈B
xi −

∑
i∈A
xi � xi � 1.

Therefore, the total number of subset sums you can
find with any two differing by less than 1 is at most(
n

�n/2�
)
, by Sperner’s theorem.

A set system is called an intersecting family if any two
sets in the system intersect. Since a set and its comple-
ment cannot both belong to an intersecting family of
subsets of {1,2, . . . , n}, we see immediately that such a
family can have size at most 2n−1. Moreover, this bound
is achieved by, for example, the collection of all sets
that contain the element 1. But what happens if we fix
a k and assume in addition that all our sets have size k?
We may assume that n � 2k, as otherwise the solution
is trivial. Erdős, Ko, and Rado proved that the maximum
is
(
n−1
k−1

)
. Here is a beautiful proof discovered later by

Katona. Suppose you arrange the elements randomly
around a circle. Then there are n ways of choosing k
elements that are consecutive in this arrangement, and
it is quite easy to convince yourself that at most k of
these can intersect (if n � 2k). So out of these n sets of
size k, only k of them can belong to any given intersect-
ing family. Now it is also easy to show that every set has
an equal chance of being one of these n sets, and this
proves (by a simple double-counting argument) that the
largest possible proportion of sets in the family is k/n.
Therefore, the family itself has size at most (k/n)

(
n
k

)
,

which equals
(
n−1
k−1

)
. The original proof of Erdős, Ko,

and Rado is more complicated than this, but it is impor-
tant because it introduced a technique known as com-
pression, which was used to solve many other extremal
problems.

Letn > 2k be two positive integers. Suppose that you
wish to color all subsets of the set {1,2, . . . , n} of size
k in such a way that any two sets with the same color
intersect each other. What is the smallest number of

colors you can use? It is not difficult to see thatn−2k+2
colors suffice. Indeed, one color class can be the family
of all subsets of {1,2, . . . ,2k − 1}, which is clearly an
intersecting family. And then, for each i such that 2k �
i � n, you can take the family of all subsets whose
largest element is i. There are n−2k+1 such families,
and any set of size k belongs either to one of them or to
the first family. Therefore, n−2k+2 colors are enough.

Kneser conjectured in 1955 that this bound was tight:
in other words, that if you have fewer than n− 2k+ 2
colors then you will have to give the same color to
some pair of disjoint sets. This conjecture was proved
by Lovász in 1978. His proof is topological, and uses
the Borsuk–Ulam theorem. Several simpler proofs have
been found since, but they are all based on the topolog-
ical idea in the first proof. Since Lovász’s breakthrough,
topological arguments have become an important part
of the armory of researchers in combinatorics.

2.4 Combinatorial Number Theory

Number theory is one of the oldest branches of math-
ematics. At its core are problems about integers, but
a sophisticated array of techniques has been devel-
oped to deal with those problems, and these techniques
have often themselves been the basis for further study
(see, for example, algebraic numbers [IV.1], analytic
number theory [IV.2], and arithmetic geometry
[IV.5]). However, some problems in number theory have
yielded to the methods of combinatorics. Some of these
problems are extremal problems with a combinatorial
flavor, while others are classical problems in number
theory where the existence of a combinatorial solution
has been quite surprising. We describe below a few
examples. Many more can be found in chapter 20 of
Graham, Grötschel, and Lovász (1995), in Nathanson
(1996), and in Tao and Vu (2006).

A simple but important notion in the area is that of a
sumset. IfA and B are two sets of integers, or more gen-
erally are two subsets of an abelian group [I.3 §2.1],
then the sumset A + B is defined to be {a + b : a ∈
A, b ∈ B}. For instance, if A = {1,3} and B = {5,6,12},
then A+ B = {6,7,8,9,13,15}. There are many results
relating the size and structure of A + B to those of A
and B. For example, the Cauchy–Davenport theorem,
which has numerous applications in additive number
theory, is the statement that if p is a prime, and A, B
are two nonempty subsets of Zp , then the size of A+B
is at least the minimum of p and |A|+|B|−1. (Equality
occurs if A and B are arithmetic progressions with the
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same common difference.) cauchy [VI.29] proved this

theorem in 1813, and applied it to give a new proof of a

lemma that lagrange [VI.22] had proved as part of his

well-known 1770 paper that shows that every positive

integer is a sum of four squares. Davenport formulated

the theorem as a discrete analogue of a related conjec-

ture of Khinchin about densities of sums of sequences

of integers. The proofs given by Cauchy and by Daven-

port are combinatorial, but there is also a more recent

algebraic proof, based on some properties of roots of

polynomials. The advantage of the latter is that it pro-

vides many variants that do not seem to follow from

the combinatorial approach. For example, let us define

A⊕B to be the set of alla+b such thata ∈ A, b ∈ B, and

a �= b. Then the smallest possible size ofA⊕B, given the

sizes of A and B, is the minimum of p and |A|+|B|−2.

Further extensions can be found in Nathanson (1996)

and in Tao and Vu (2006).

The theorem of van der Waerden mentioned in sec-

tion 2.2 implies that, however you color the positive

integers with some finite number r of colors, there

must be some color that contains arithmetic progres-

sions of every length. Erdős and Turán conjectured in

1936 that this always holds for the “most popular”

color class. More precisely, they conjectured that for

any positive integer k and for any real number ε > 0,

there is a positive integer n0 such that if n > n0,

any set of at least εn positive integers between 1 and

n contains a k-term arithmetic progression. (Setting

ε = r−1 one can easily deduce van der Waerden’s theo-

rem from this.) After several partial results, this con-

jecture was proved by Szemerédi in 1975. His deep

proof is combinatorial, and applies techniques from

Ramsey theory and extremal graph theory. Furstenberg

gave another proof in 1977, based on techniques of

ergodic theory [V.11]. In 2000 Gowers gave a new

proof, combining combinatorial arguments with tools

from analytic number theory. This proof supplied a

much better quantitative estimate. A related very recent

spectacular result of Green and Tao asserts that there

are arbitrarily long arithmetic progressions of prime

numbers. Their proof combines number-theoretic tech-

niques with the ergodic theory approach. Erdős conjec-

tured that any infinite sequence ni for which the sum∑
i(1/ni) diverges contains arbitrarily long arithmetic

progressions. This conjecture would imply the theorem

of Green and Tao.

2.5 Discrete Geometry

Let P be a set of points and let L be a set of lines in
the plane. Let us define an incidence to be a pair (p, 	),
where p is a point in P , 	 is a line in L, and the point p
lies on the line 	. Suppose that P contains m distinct
points and L contains n distinct lines. How many inci-
dences can there be? This is a geometrical problem, but
again it has a strong flavor of extremal combinatorics.
As such, it is typical of the area known as discrete (or
combinatorial) geometry.

Let us write I(m,n) for the maximum number of inci-
dences there can be betweenm points and n lines. Sze-
merédi and Trotter determined the asymptotic behav-
ior of this quantity, up to a constant factor, for all pos-
sible values ofm andn. There are two absolute positive
constants c1, c2 such that, for allm, n,

c1(m2/3n2/3 +m+n) � I(m,n)
� c2(m2/3n2/3 +m+n).

If m > n2 or n > m2 then one can establish the lower

PUP: I can confirm
that it’s OK that
the parenthetical
term on the LHS of
line 1 is the same
as the
parenthetical term
on the RHS of line
2 here.bound by taking all m points on a single line, or all n

lines through a single point, respectively. In the harder
cases when m and n are closer to each other, one can
prove it by letting P contain all the points of a �√m� by
�√m� grid, and by taking the n most “popular” lines:
that is, the n lines that contain the most points of
P . Establishing the upper bound is more difficult. The
most elegant proof of it is due to Székely, and is based
on the fact that, however you draw a graph withm ver-
tices and more than 4m edges, you must have many
pairs of edges that cross each other. (This is a rather
simple consequence of the famous Euler formula con-
necting the numbers of vertices, edges, and regions in
any drawing of a planar graph.) To bound the number of
incidences between a set of points P and a set of lines L
in the plane, one considers the graph whose vertices are
the points P , and whose edges are all segments between
consecutive points along a line in L. The desired bound
is obtained by observing that the number of crossings
in this graph does not exceed the number of pairs of
lines in L, and yet should be large if there are many
incidences.

Similar ideas can be used to give a partial answer to
the following question: if you taken points in the plane,
how many pairs (x,y) of these points can there be with
the distance from x to y equal to 1? It is not surprising
that the two problems are related: the number of such
pairs is the number of incidences between the given n
points and the n unit circles that are centered at these
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points. Here, however, there is a large gap between the
best known upper bound, which is cn4/3 for some abso-
lute constant c, and the best known lower bound, which
is only n1+c′/ log logn for some constant c′ > 0.

A fundamental theorem of Helly asserts that if you
have a finite family of at least d+ 1 convex sets in Rd,
and if anyd+1 of them have a point in common, then all
sets in the family have a common point. Now let us start
with a weaker assumption: given anyp of the sets, some
d+1 of those p sets have a point in common. (Here p is
some integer greater thand+ 1.) Can one then find a set
X of at most C points such that each set inF contains a
point in X, with C a constant that depends on p but not
on the number of convex sets in the family? This ques-
tion was raised by Hadwiger and Debrunner in 1957
and solved by Kleitman and Alon in 1992. The proof
combines a “fractional version” of Helly’s theorem with
the duality of linear programming (see optimization
and lagrange multipliers [III.66]) and various addi-
tional geometric results. Unfortunately, it gives a very
poor estimate for C : even in two dimensions and with
p = 4 it is not known what the best possible value of C
is.

This is just a small sample of problems and results
in discrete geometry. Such results have been applied
extensively in computational geometry and in com-
binatorial optimization in recent decades. Two good
books on the subject are Pach and Agarwal (1995) and
Matoušek (2002).

2.6 Tools

Many of the basic results in extremal combinatorics
were obtained mainly by ingenuity and detailed rea-
soning. However, the subject has grown out of this
early stage: several deep tools have been developed
that have been essential to much of the recent progress
in the area. In this subsection, we include a very brief
description of some of these tools.

Szemerédi’s regularity lemma is a result in graph
theory that has numerous applications in various areas,
including combinatorial number theory, computational
complexity, and, mainly, extremal graph theory. The
precise statement of the lemma, which can be found,
for example, in Bollobás (1978), is somewhat technical.
The rough statement is that the vertex set of any large
graph can be partitioned into a constant number of
pieces of nearly equal size, so that the bipartite graphs
between most pairs of pieces behave like random bipar-
tite graphs. The strength of this lemma is that it applies

to any graph, providing a rough approximation of its
structure that enables one to extract a lot of informa-
tion about it. A typical application is that a graph with
“few” triangles can be “well-approximated” by a graph
with no triangles. More precisely, for any ε > 0 there
exists δ > 0 such that ifG is a graph withn vertices and
at most δn3 triangles, then one can remove at most εn2

edges from G and make it triangle free. This innocent-
looking statement turns out to imply the case k = 3 of
Szemerédi’s theorem that was mentioned earlier.

Tools from linear and multilinear algebra play an
essential role in extremal combinatorics. The most
fruitful technique of this kind, which is possibly also
the simplest, is the so-called dimension argument. In its
simplest form, the method can be described as follows.
In order to bound the cardinality of a discrete structure
A, one maps its elements to distinct vectors in a vec-
tor space [I.3 §2.3], and proves that those vectors are
linearly independent. It then follows that the size of A
is at most the dimension of the vector space in ques-
tion. An early application of this argument was found
by Larman, Rogers, and Seidel in 1977. They wanted to
know how many points it was possible to find in Rn that
determine at most two distinct differences. An example
of such a system is the set of all points whose coordin-
ates consist ofn−2 0s and two 1s. Notice, however, that
these points all lie in the hyperplane of points whose
coordinates add up to 2. So this actually provides us
with an example in Rn−1. Therefore, we have a simple
lower bound of n(n+1)/2. Larman, Rogers, and Seidel
matched this with an upper bound of (n+1)(n+4)/2.
They did this by associating with each point of such a
set a polynomial in n variables, and by showing that
these polynomials are linearly independent and all lie
in a space of dimension (n+1)(n+4)/2. This has been
improved by Blokhuis to (n+1)(n+2)/2. He did this by
finding n + 1 further polynomials that lie in the same
space in such a way that the augmented set of poly-
nomials is still linearly independent. More applications
of the dimension argument can be found in Graham,
Grötschel, and Lovász (1995, chapter 31).

Spectral techniques, that is, an analysis of eigen- PUP: Tim says that
the singular is
correct here.vectors and eigenvalues [I.3 §4.3], have been used

extensively in graph theory. The link comes through
the notion of an adjacency matrix of a graph G. This
is defined to be the matrix A with entries au,v for
each pair of (not-necessarily-distinct) vertices u and
v , where au,v = 1 if u and v are joined by an edge,
and au,v = 0 otherwise. This matrix is symmetric, and
therefore, by standard results in linear algebra, it has
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real eigenvalues and an orthonormal basis [III.37] of
eigenvectors. It turns out that there is a tight relation-
ship between the eigenvalues of the adjacency matrix
A and several structural properties of the graph G, and
these properties can often be useful in the study of vari-
ous extremal problems. Of particular interest is the sec-
ond largest eigenvalue of a regular graph. Suppose that
every vertex of a graph G has degree d. Then the vec-
tor for which every entry is 1 is easily seen to be an
eigenvector with eigenvalue d, and this is the largest
eigenvalue. If all other eigenvalues have modulus much
smaller thand, then it turns out thatG behaves in many
ways like a random d-regular graph. In particular, the
number of edges inside any set of k of the vertices is
roughly the same (provided k is not too small) as one
would expect with a random graph. It follows easily that
any set of vertices that is not too big has many neigh-
bors among the vertices outside that set. Graphs with
the latter property are called expanders [III.24] and
have numerous applications in theoretical computer
science. Constructing such graphs explicitly is not an
easy matter and was at one time a major open problem.
Now, however, several constructions are known, based
on algebraic tools. See chapter 9 of Alon and Spencer
(2000), and its references, for more details.

The application of topological methods in the study
of combinatorial objects such as partially ordered sets,
graphs, and set systems has already become part of the
mathematical machinery commonly used in combina-
torics. An early example is Lovász’s proof of Kneser’s
conjecture, mentioned in section 2.3. Another example
is a result of which the following is a representative
special case. Suppose you have a piece of string with
10 red beads, 15 blue beads, and 20 yellow beads on
it. Then, no matter what order the beads come in, you
can cut the string in at most 12 places and place the
resulting segments of beaded string into five piles, each
of which contains two red beads, three blue beads, and
four yellow beads. The number 12 is obtained by multi-
plying 4, the number of piles minus 1, by 3, the number
of colors. The general case of this result was proved
by Alon using a generalization of Borsuk’s theorem.
Many additional examples of topological proofs appear
in Graham, Grötschel, and Lovász (1995, chapter 34).

3 Probabilistic Combinatorics

A wonderful development took place in twentieth-cen-
tury mathematics when it was realized that it is some-
times possible to use probabilistic reasoning to prove

mathematical statements that do not have an obvious

probabilistic nature. For example, in the first half of

the century, Paley, Zygmund, Erdős, Turán, Shannon,

and others used probabilistic reasoning to obtain strik-

ing results in analysis, number theory, combinatorics,

and information theory. It soon became clear that the

so-called probabilistic method is a very powerful tool

for proving results in discrete mathematics. The early

results combined combinatorial arguments with fairly

elementary probabilistic techniques, but in recent years

the method has been greatly developed, and now it

often requires one to apply much more sophisticated

techniques. A recent text dealing with the subject is

Alon and Spencer (2000).

The applications of probabilistic techniques in dis-

crete mathematics were initiated by Paul Erdős, who

contributed to the development of the method more

than anyone else. One can classify them into three

groups.

The first deals with the study of certain classes of ran-

dom combinatorial objects, like random graphs or ran-

dom matrices. The results here are essentially results

in probability theory, although most of them are moti-

vated by problems in combinatorics. A typical problem

is the following: if we pick a graph “at random,” what

is the probability that it contains a Hamilton cycle?

The second group consists of applications of the fol-

lowing idea. Suppose you want to prove that a combi-

natorial structure exists with certain properties. Then

one possible method is to choose a structure randomly

(from a probability distribution that you are free to

specify) and estimate the probability that it has the

properties you want. If you can show that this prob-

ability is greater than 0, then such a structure exists.

Surprisingly often it is much easier to prove this than

it is to give an example of a structure that works. For

instance, is there a graph with large girth (meaning it

has no short cycles) and large chromatic number? Even

if “large” means “at least 7,” it is very hard to come up

with an example of such a graph. But their existence is PUP: Tim thinks
the text is fine as it
is. OK?a fairly easy consequence of the probabilistic method.

The third group of applications is perhaps the most

striking of all. There are many examples of statements

that appear to be completely deterministic (even when

one is used to the idea of using probability to give exis-

tence proofs) but that nevertheless yield to probabilis-

tic reasoning. In the remainder of this section we shall

briefly describe some typical examples of each of these

three kinds of application.
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3.1 Random Structures

The systematic study of random graphs was initiated
by Erdős and Rényi in 1960. The most common way
of defining a random graph is to fix a probability p and
then to join each pair of vertices with an edge with prob-
ability p, with all the choices made independently. The
resulting graph is denotedG(n,p). (Formally speaking,
G(n,p) is not a graph but a probability distribution,
but one often talks about it as though it is a graph that
has been produced in a random way.) Given any prop-
erty, such as “contains no triangles,” we can study the
probability that G(n,p) has that property.

A striking discovery of Erdős and Rényi was that
many properties of graphs “emerge very suddenly.”
Some examples are “contains a Hamilton cycle,” “is
not planar,” and “is connected.” These properties are
all monotone, which means that if a graph G has the
property and you add an edge to G, then the resulting
graph still has the property. Let us take one of these
properties and define f(p) to be the probability that
the random graph G(n,p) has it. Because the prop-
erty is monotone, f(p) increases as p increases. What
Erdős and Rényi discovered was that almost all of this
increase happens in a very short time. That is, f(p) is
almost 0 for small p and then suddenly changes very
rapidly and becomes almost 1.

Perhaps the most famous and illustrative example of
this swift change is the sudden appearance of the so-
called giant component. Let us look at G(n,p) when
p has the form c/n. If c < 1, then with high prob-
ability all the connected components of G(n,p) have
size at most logarithmic in n. However, if c > 1, then
G(n,p) almost certainly has one component of size lin-
ear in n (the giant component), while all the rest have
logarithmic size. This is related to the phenomenon of
phase transitions in mathematical physics, which are
discussed in probabilistic models of critical phe-
nomena [IV.25]. A result of Friedgut shows that the
phase transition for a graph property that is “global,”
in a sense that can be made precise, is sharper than the
one for a “local” property.

Another interesting early discovery in the study of
random graphs was that many of the basic parameters
of graphs are highly “concentrated.” A striking exam-
ple that illustrates what this means is the fact that, for
any fixed value of p and for most values of n, almost
all graphs G(n,p) have the same clique number. That
is, there exists some r (depending on p and n) such
that with high probability, when n is large, the clique

number of G(n,p) is equal to r . Such a result cannot

hold for all n, for continuity reasons, but in the excep-

tional cases there is still some r such that the clique

number is almost certainly equal either to r or to r + 1.

In both cases, r is roughly 2 logn/ log(1/p). The proof

of this result is based on the so-called second moment

method : one estimates the expectation and the variance

of the number of cliques of a given size contained in

G(n,p), and applies well-known inequalities of Markov

and chebyshev [VI.45].

The chromatic number of the random graph G(n,p)
is also highly concentrated. Its typical behavior for val-

ues of p that are bounded away from 0 was deter-

mined by Bollobás. A more general result, in which p is

allowed to tend to 0 as n → ∞, was proved by Shamir,

Spencer, Łuczak, Alon, and Krivelevich. In particular, it

can be shown that for every α < 1
2 and every integer-

valued function r(n) < nα, there exists a function

p(n) such that the chromatic number of G(n,p(n)) is

precisely r(n) almost surely. However, determining the

precise degree of concentration of the chromatic num-

ber of G(n,p), even in the most basic and important

case p = 1
2 (in which all labeled graphs on n vertices

occur with equal probability), remains an intriguing

open problem.

Many additional results on random graphs can be

found in Janson, Łuczak, and Ruciński (2000).

3.2 Probabilistic Constructions

One of the first applications of the probabilistic method

in combinatorics was a lower bound given by Erdős

for the Ramsey number R(k, k), which was defined in

section 2.2. He proved that if(
n
k

)
21−(k2) < 1,

then R(k, k) > n. That is, there is a red/blue coloring

of the edges of the complete graph on n vertices such

that no clique of size k is completely red or completely

blue. Notice that the number n = �2k/2� satisfies the

above inequality for all k � 3, so Erdős’s result gives an

exponential lower bound for R(k, k). The proof is sim-

ple: if you color the edges randomly and independently,

then the probability that any fixed set of k vertices has

all its edges of the same color is twice 2−(
k
2). Thus, the

expected number of cliques with this property is(
n
k

)
21−(k2).
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If this is less than 1, then there must be at least
some colorings for which there are no cliques with this
property, and the result is proved.

Note that this proof is completely nonconstructive,
in the sense that it merely proves the existence of
such a coloring, but gives no efficient way of actually
constructing one.

A similar computation yields a solution for the tour-
nament problem mentioned in section 1.1. If the results
of the tournament are random, then the probability, for
any particular k teams, that no other team beats them
all is (1− (1/2k))n−k. From this it follows that if(

n
k

)(
1− 1

2k

)n−k
< 1,

then there is a nonzero probability that for every choice
of k teams, there is another team that beats them all.
In particular, it is possible for this to happen. If n is
larger than about k22k log 2, then the above inequality
holds.

Probabilistic constructions have been very power-
ful in supplying lower bounds for Ramsey numbers.
Besides the bound forR(k, k)mentioned above, there is
a subtle probabilistic proof, due to Kim, that R(3, k) �
ck2/ logk, for some c > 0. This is known to be tight up
to a constant factor, as proved by Ajtai, Komlós, and
Szemerédi, who also used probabilistic methods.

3.3 Proving Deterministic Theorems

Suppose that you color the integers with k colors. Let us
call a set Smulticolored if all k colors appear in S. Straus
conjectured that for every k there is anm with the fol-
lowing property: given any set S withm elements, there
is a coloring of the integers with k colors such that all
translates of S are multicolored. This conjecture was
proved by Erdős and Lovász. The proof is probabilistic,
and applies a tool called the Lovász local lemma, which,
unlike many probabilistic techniques, allows one to
show that certain events hold with nonzero probabil-
ity even when this probability is extremely small. The
assertion of this lemma, which has numerous addi-
tional applications, is, roughly, that for any finite col-
lection of “nearly independent” low-probability events,
there is a positive probability that none of the events
holds. Note that the statement of Straus’s conjecture
has nothing to do with probability, and yet its proof
relies on probabilistic arguments.

A graph G is k-colorable, as we have said, if you can
properly color its vertices with k colors. Suppose now
that instead of trying to use k colors in total, you have

a separate list of k colors for each vertex, and this
time you want to find a proper coloring of G where
each vertex gets a color from its own list. If you can
always do so, no matter what the lists are, then G is
called k-choosable, and the smallest k for which G is
k-choosable is called the choice number ch(G). If all
the lists are the same, then one obtains a k-coloring,
so ch(G) must be at least as big as χ(G). One might
expect ch(G) to be equal to χ(G), since it seems as
though using different lists of k colors for different
vertices would make it easier to find a proper coloring
than using the same k colors for all vertices. However,
this turns out to be far from true. It can be proved that
for any constant c there is a constant C such that any
graph with average degree at least C has choice num-
ber at least c. Such a graph might easily be bipartite
(and therefore have chromatic number 2), so it follows
that ch(G) can be much bigger than χ(G). Somewhat
surprisingly, the proof of this result is probabilistic.

An interesting application of this fact concerns a
graph that arises in Ramsey theory. Its vertices are
all the points in the plane, with two vertices joined
by an edge if and only if the distance between them
is 1. The choice number of this graph is infinite, by the
above result, but the chromatic number is known to be
between 4 and 7.

A typical problem in Ramsey theory asks for a sub-
structure of some kind that is entirely colored with
one color. Its cousin, discrepancy theory, merely asks
that the numbers of times the colors are used are not
too close to each other. Probabilistic arguments have
proved extremely useful in numerous problems of this
general kind. For example, Erdős and Spencer proved
that in any red/blue coloring of the edges of the com-
plete graph Kn there is a subset V0 of vertices such that
the difference between the number of red edges inside
V0 and the number of blue edges inside V0 is at least
cn3/2, for some absolute constant c > 0. This problem
is a convincing manifestation of the power of proba-
bilistic methods, since they can be used in the other
direction as well, to prove that the result is tight up to
a constant factor. Additional examples of such results
can be found in Alon and Spencer (2000).

4 Algorithmic Aspects and Future Challenges

As we have seen, it is one matter to prove that a cer-
tain combinatorial structure exists, and quite another
to construct an example. A related question is whether
an example can be generated by means of an effi-
cient algorithm [IV.20 §2.3], in which case we call it
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explicit. This question has become increasingly impor-
tant because of the rapid development of theoret-
ical computer science, which has close connections
with discrete mathematics. It is particularly interest-
ing when the structures in question have been proved
to exist by means of probabilistic arguments. Efficient
algorithms for producing them are not just interest-
ing on their own, but also have important applica-
tions in other areas. For example, explicit construc-
tions of error-correcting codes that are as good as ran-
dom ones are of major interest in coding and infor-
mation theory [VII.6], and explicit constructions of
certain Ramsey-type colorings may have applications
in derandomization [IV.20 §7.1.1] (the process of
converting randomized algorithms into deterministic
ones).

It turns out, however, that the problem of finding a
good explicit construction is often very difficult. Even
the simple proof of Erdős, described in section 3.2,
that there are red/blue colorings of graphs with �2k/2�
vertices containing no monochromatic clique of size k
leads to an open problem that seems very difficult. Can
we construct, explicitly, such a graph with n � (1+ ε)k
vertices in time that is polynomial in n? Here we allow
ε to be any constant, as long as it is positive. This prob-
lem is still wide open, despite considerable efforts from
many mathematicians.

The application of other advanced tools, such as alge-
braic and analytic techniques, spectral methods, and
topological proofs, also tends to lead in many cases
to nonconstructive proofs. The conversion of these to
algorithmic arguments may well be one of the main
future challenges of the area.

Another interesting recent development is the in-
creased appearance of computer-aided proofs in com-
binatorics, starting with the proof of the four-color
theorem [V.14]. To incorporate such proofs into the
area, without threatening its special beauty and appeal,
is a further challenge.

These challenges, the fundamental nature of the area,
its tight connection to other disciplines, and its many
fascinating open problems ensure that combinatorics
will continue to play an essential role in the general
development of mathematics and science in the future.
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IV.20 Computational Complexity
Oded Goldreich and Avi Wigderson

1 Algorithms and Computation

This article is concerned with what can be computed
efficiently, and what cannot. We will introduce several
important concepts and research areas, such as for-
mal models of computation, measures of efficiency,
the P versus NP question, NP-completeness, circuit
complexity, proof complexity, randomized computa-
tion, pseudorandomness, probabilistic proof systems,
cryptography, and more. Underlying them all are the
related notions of algorithms and computation, and we
begin by discussing these.

1.1 What Is an Algorithm?

Suppose that you are presented with a large positive
integer N and asked to determine whether it is prime.
What should you do? One possibility would be to apply
the method of trial division. That is, first see whether N
is even, then whether it is a multiple of 3, then whether
it is a multiple of 4, and so on through all the numbers
up to

√
N . IfN is composite, then it has a factor between

2 and
√
N , so it is prime if and only if the answer to all

these questions is no.
The trouble with this method is that it is highly ineffi-

cient. Suppose, for instance, thatN has 101 digits. Then√
N is at least 1050, so in order to carry the method

out one would have to answer 1050 questions of the
form, “Is K a factor of N?” This would take far longer
than a human lifetime, even if all the world’s computers
devoted themselves to the task. What, then, is an “effi-
cient procedure”? This question divides into two parts:
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what is a procedure, and what counts as efficient? We
shall look at these two questions in turn.

Three very obvious conditions that a method should
satisfy if it is to count as a procedure for solving this
problem are finiteness—that the procedure should have
a finite description (so, for example, one cannot simply
look up the answer in an infinite list of integers and
their factorizations)—and correctness—that, for every
N , it correctly tells you whether N is prime.

There is also a third, more subtle, condition, which
goes to the heart of what is meant by the word “algo-
rithm.” It is that it should consist of simple steps. This
is needed in order to rule out ridiculous “procedures”
such as, “See whether N has any nontrivial factors;
declare N to be prime if and only if it does not.” The
problem with this is that we cannot see, just like that,
whether N has nontrivial factors. By contrast, all that
the method of trial division asks of us is that we should
do basic arithmetic, such as increasing integers by 1,
comparing them, and doing long division. Moreover,
the procedures of basic arithmetic can be broken down
into yet simpler steps: for instance, it is possible to do
long division by a succession of elementary operations
applied to single digits at a time.

In order to understand this simplicity condition bet-
ter, and to prepare ourselves for a formal definition of
the notion of algorithms, let us look at long division in
slightly more detail. Suppose that you have a piece of
paper in front of you and you want to divide 5 959 578
by 857. You will write the two numbers down, and then,
as the calculation proceeds, you will write other num-
bers as well. For instance, you may wish to start by writ-
ing out all the multiples of 857 up to 9× 857. At some
point early on you will probably find yourself compar-
ing 5999 = 7× 857 with 5959: this you do by scanning
the numbers from left to right and comparing individ-
ual digits. In this case, a difference is first detected in
the third digit. You then write 5142 (which is 6 × 857)
underneath the 5959, subtract (again by scanning num-
bers from left to right and performing single-digit oper-
ations), write down the difference 817, “bring down”
the next digit, 5, of 5 959 578, and repeat the process
with the number 8175.

At each stage in this calculation you are modifying
the piece of paper in front of you. As you do so you
need to keep track of which stage of the procedure you
are at (whether you are writing out the initial table of
multiples of 857, or seeing which one is the largest that
does not exceed another number, or subtracting one
number from another, or bringing down a digit, etc.),

and which symbols on the page you are currently deal-
ing with. What is remarkable is that this information
has a fixed size, in the sense that it does not increase
as the size of the input (that is, the two numbers to be
divided) increases.

Therefore, the procedure can be regarded as making
local changes to some “environment,” using repeated
applications of a fixed rule that does not depend on
the input. (This rule will typically have some internal
structure, such as a list of simpler rules together with
specifications of the circumstances under which they
should be applied.) In general, this is what we mean by
a computation: it modifies an environment by means of
repeated applications of a fixed rule. The rule is usually
referred to as an algorithm. Notice that this descrip-
tion applies to many scientific theories of dynamic
evolution in nature (of weather, chemical reactions, or
biological processes, for example). Thus, these can be
regarded as computational processes, of sorts. Some
of these dynamical systems also demonstrate well the
fact that simple, local rules can result in a very com-
plex modification of the environment if they are iter-
ated many times. (See dynamics [IV.14] for further
discussion of this phenomenon.)

Thoughts such as these lie behind the idea of a Turing
machine, turing’s [VI.94] famous formalization of the
notion of an algorithm. It is interesting that he came
up with his formalization before computers existed.
Indeed, this abstraction and central features of it, most
notably the existence of a “universal” machine, greatly
influenced the actual construction of computers.

It is very important to know that the idea of an algo-
rithm can be formalized, so that one can talk precisely
about whether there are algorithms that will perform
particular tasks, how many steps they need for a given
size of input, and so on. However, there are many
ways of doing this, which all turn out to be equiva-
lent, and for the purposes of understanding this article
it is not necessary to go into the details of any par-
ticular method. (You can, if you like, think of an algo-
rithm as any procedure that can be programmed on a
real computer—slightly idealized so that it has unlim-
ited storage space—and a step of an algorithm as any
change of one of the bits of that computer from a 0 to
a 1 or vice versa.) Nevertheless, just to show roughly
how it is done, here is a brief description of the basic
features of the Turing machine model.

To begin with, one makes the observation that all
computational problems can be encoded as operations
on sequences of 0s and 1s. (This observation is not
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just theoretically useful but also very important for the
actual building of computers.) For example, all num-
bers that occur in the course of a computation can be
converted into their binary representations; one can
also use 1 to stand for “true” and 0 to stand for “false”
and thereby perform the basic logical operations; and
so on. For this reason we can define a very simple “envi-
ronment” for a Turing machine: it is a “tape,” infinitely
long in both directions, that consists of a row of “cells,”
each of which contains either a 0 or a 1. Before the
computation starts, a certain prespecified portion of
this tape is filled with the input, which is a sequence
of 0s and 1s. The algorithm is a little control mecha-
nism. At any one time, this mechanism can be in one
of a finite set of states, and it is located at one of the
cells of the tape. According to the state it is in and the
value, 0 or 1, that it sees at the cell it has reached, it
makes three decisions: whether to change the value in
the cell, whether to move left or right by one cell, and
which state it should next be in.

One of the states of this control mechanism is “halt.”
If this state is reached, then the mechanism stops doing
anything and is said to have halted. At that point, a cer-
tain prespecified portion of the tape will be regarded as
the output of the machine. An algorithm can be thought
of as any Turing machine that halts for every possible
input. And the number of steps of the algorithm is the
number of steps taken by that Turing machine. Remark-
ably, this very simple computational model is enough
to capture the full power of computation: in theory one
could build a Turing machine, out of clockwork, say,
that would be able to do whatever a modern supercom-
puter can do. (However, it would take too long over each
step to be practical for anything but the very simplest
of computations.)

1.2 What Does an Algorithm Compute?

A Turing machine converts a sequence of 0s and 1s
into another sequence of 0s and 1s. If we wish to use
mathematical language to discuss this, then we need
to give a name to the set of {0,1}-sequences. To be
precise, we consider the set of all finite sequences of
0s and 1s, and we call this set I. It is also useful to
write In for the set of all {0,1}-sequences of length n.
If x is a sequence in I, then we write |x| for its length:
for instance, if x is the string 0100101, then |x| = 7.
To say that a Turing machine converts a sequence of
0s and 1s into another such sequence (if it halts) is to
say that it naturally defines a function from I to I. If

M is the Turing machine and fM is the corresponding
function, then we say that M computes fM .

Thus, every function f : I → I gives rise to a com-
putational task, namely that of computing f . We say
that f is computable if this is possible: that is, if there
exists a Turing machineM such that the corresponding
function fM is equal to f . A central early result (due to
Turing and independently to church [VI.89]) is that
some natural functions are not computable. (For more
details, see the insolubility of the halting prob-
lem [V.23].) However, complexity theory deals only with
computable functions, and studies which of these can
be computed efficiently.

Using the notation we have just introduced, we can
formally describe various different kinds of computa-
tional tasks, of which two major examples are search
problems and decision problems. The aim of a search
problem is, informally speaking, to find a mathematical
object with certain properties: for instance, one might
wish to find a solution to a system of equations, and
this solution might not be unique. We can model this by
means of a binary relation [I.2 §2.3] R on the set I: for
a pair (x,y) of strings in I, we say that y is a valid solu-
tion of problem instance x if xRy . (This notation means
that x is related to y in the way specified by R; another
common notation for the same thing is (x,y) ∈ R.) For
example, we might let x and y be binary expansions of
positive integers N and K, respectively, and say that
xRy if and only if N is a composite number and K is a
nontrivial factor of N . Informally, this search problem
would be, “Find a nontrivial factor ofN .” IfM is an algo-
rithm that computes a certain function fM : I→ I, then
we say that M solves the search problem R if fM(x) is
a valid solution of x for every problem instance x that
has a solution. For example, it solves the search prob-
lem just defined if, for every composite number N with
binary expansion x, fM(x) is the binary expansion of a
nontrivial factor K of N .

Notice that in the above example we were interested
in positive integers, but formally speaking an algorithm
is a function of binary strings. This was not a problem,
because there is a convenient and natural way to encode
integers as binary strings—via their usual binary expan-
sions. For the rest of this article, we shall feel free to
blur the distinction between the mathematical objects
we wish to investigate and the strings we use to rep-
resent them in a computation. For instance, it is sim-
pler to think of the algorithm M in the previous para-
graph as computing a function fM : N→ N, and solving
the search problem if, for every composite number N ,
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fM(N) is a nontrivial factor of N . We stress that the
representation of objects by strings is a rather succinct
one: it takes only $log2N% bits to represent the number
N , so the number N is exponentially larger than the
length of its representation.

Now let us turn to decision problems. These are sim-
ply problems where one is looking for a yes/no answer.
The problem with which we opened this article—Is N
a prime number?—is a classic example of a decision
problem. Notice that here and in the paragraph before
last we are using the word “problem” in a slightly
unusual way, to mean a general class of questions
rather than just one. In this example, the question, “Is
443 a prime number?” would be called an instance of
the problem, “Is N a prime number?”

Modeling decision problems is very simple: they are
subsets of I. The idea is that a subset S of I consists of
all the strings where the answer is yes. So if the prob-
lem is to determine primality, then S would consist of
all binary expansions of prime numbers, at least if we
chose the obvious encoding of the problem. When do
we say that a machineM solves the decision problem S?
We would like it to compute a function f that says yes
when the input x belongs to S and says no otherwise.
That is, we say that M solves the problem S if the asso-
ciated function fM is a function from I to the set {0,1}
such that fM(x) = 1 whenever x ∈ S and fM(x) = 0
otherwise.

Most of this article will be focused on decision prob-
lems, but the reader should bear in mind that com-
putational tasks that seem more complicated, includ-
ing search problems, can in fact usually be reduced to
sequences of decision problems. For example, if you
can solve all decision problems and you want to factor-
ize a large composite number N , then you can proceed
as follows. First, determine whether the smallest prime
factor of the number ends in a 1 (in its binary expan-
sion). If the answer is yes, you can look at the next digit
by asking if this factor ends in 11; if it is no, then you
can ask if it ends in 10. You can continue this process,
extending your knowledge of the smallest prime factor
by one bit at a time. The number of queries you will
need to make will be at most the number of digits of N .

2 Efficiency and Complexity

Near the beginning of this article we asked what was
meant by the phrase “efficient procedure.” We have now
discussed the word “procedure” in some depth, but we
have yet to say what we mean by “efficient,” beyond

pointing out that trial division takes too long to be
practical if we have a very large integer and want to
determine whether it is prime.

2.1 Complexity of Algorithms

How can we describe mathematically what it means
for a procedure to “take too long to be practical”? The
Turing-machine formalization is particularly useful for
answering questions like this, because we can say pre-
cisely what a step of a Turing-machine computation is
and this allows us to give a precise definition: an algo-
rithm is a Turing machine, and its complexity is defined
to be the number of steps the machine takes before
halting.

If we look at this definition carefully, we see that what
it defines is not just one number but a function. The
time taken by a Turing machine depends on the input,
so, given a Turing machine M and a string x, we can
define tM(x) to be the number of steps M takes before
halting when x is the input. The function tM : I → N is
the complexity function of the machine M .

Most of the time, we are interested not so much in the
full detail of this complexity function, but in the worst-
case complexity of the machine M . This is a function
TM : N → N defined as follows. Given a positive integer
n, TM(n) is the maximum value of tM(x) over all input
strings x of length n. In other words, we want to know
the longest possible time that our machine might take
when faced with an input of length n. And usually we
do not look for an exact formula for TM(n): for most
purposes it is enough to have a good upper bound.

The function tM(x) is more accurately called the
time complexity of the algorithm M , since it measures
how long M takes given x as its input. But time is
not the only resource that matters in computer sci-
ence. Another is how much memory an algorithm uses,
beyond that needed to store the input, and this too
can be captured in our formal model. Given a Turing
machine M and an input x, we can define sM(x) to be
the number of cells, other than input cells, that are vis-
ited before the machine halts, under the extra condition
that the input cells must be left unchanged.

2.2 Intrinsic Complexity of Problems

Much of this article will be concerned with a very gen-
eral analysis of the power of computation. In particu-
lar, we shall discuss a central subfield of theoretical
computer science known as computational complex-
ity (or complexity theory). The aim of this area is to
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understand the intrinsic complexity of computational
tasks.

Notice that we said “computational tasks” rather
than “algorithms.” This is an important distinction and
it involves a change of focus. Returning to our exam-
ple of primality testing, it is not too hard to estimate
how long various algorithms take, and indeed we had
no trouble in seeing that trial division would take a very
long time indeed. But does that mean that the task of
primality testing is intrinsically hard? Not necessarily,
since there may be other algorithms that do the job
much more quickly.

This idea fits neatly into our formal scheme. What
would be a good definition of the complexity of a com-
putational task? Roughly speaking, the complexity of
such a task should be the smallest complexity of any
algorithm M that solves it. A convenient way of saying
this is as follows. If T : N→ N is some integer function,
we say that the task has complexity at most T if there is
an algorithm M that solves the task such that TM � T
(i.e., TM(n) � T(n) for every n).

If you want to show that a computational task is not
intrinsically hard, then all you have to do is devise an
algorithm with low complexity that solves this task.
But what if you want to show that this task is intrin-
sically hard? Then you have to prove, for every possible
low-complexity algorithmM , thatM does not solve this
task. This is much harder: even after half a century of
intensive work, the best results that are known are very
weak. Notice a big difference between the two kinds of
research: one can find algorithms without knowing how
the concept of “algorithm” is formalized, but to ana-
lyze all algorithms with a certain property, it is essen-
tial to have a precise definition of what an algorithm is.
Fortunately, with Turing’s formalization, we have one.

2.3 Efficient Computation and P
Now we have ways of measuring the complexity of algo-
rithms and computational tasks. But we have not yet
addressed the question of when we should regard an
algorithm as efficient, or a computational task as effi-
ciently solvable. We shall propose a definition of effi-
ciency that seems somewhat arbitrary and then explain
why it is in fact a surprisingly good one.

If M is an algorithm, then we regard it as effi-
cient if and only if it terminates in polynomial time.
This means that there are constants c and k such
that the worst-case complexity TM always satisfies the
inequality TM(n) � cnk. In other words, the time taken

by the algorithm is bounded above by a polynomial
function of the length of the input string. It is not
hard to convince yourself that the familiar methods
for adding or multiplying two n-digit numbers termi-
nate in polynomial time, whereas trial division for pri-
mality testing does not. Other familiar examples of
tasks with efficient algorithms are putting a set of num-
bers in increasing order, computing the determinant
[III.15] of a matrix (provided one uses row operations
rather than substituting the entries directly into the
formula), solving linear equations by Gaussian elimina-
tion, finding the shortest path in a given network, and
more.

Since we are interested in the intrinsic complexity
of computational tasks, we now define such a task to
be efficiently computable if there is an efficient algo-
rithm M that solves it. In our discussion of efficient
computability, we shall focus on decision problems and
consider the class of all decision problems that have
efficient algorithms. Understanding it is the major goal
of computational complexity theory. Here is a formal
definition. We shall use the following convenient piece
of notation: ifM is a Turing machine and x is an input,
then M(x) is the output of x. (Earlier we wrote fM(x)
for this function.) Since we are considering decision
problems, M(x) will be 0 or 1.

Definition. A decision problem S ⊆ I is solvable in
polynomial time if there is a Turing machine M , termi-
nating in polynomial time, such that M(x) = 1 if and
only if x ∈ S.

The class of decision problems that are solvable in
polynomial time is our first example of a complexity
class. It is denoted P.

The asymptotic analysis of running time, i.e., estimat-
ing the running time as a function of the input length,
turns out to be crucial for revealing structure in the
theory of efficient computation. The choice of poly-
nomial time as the standard for efficiency may seem
arbitrary, and theories could be developed with other
choices, but it has amply justified itself. The main rea-
son for this is that the class of polynomials (or func-
tions bounded above by a polynomial) is closed under
various operations that arise naturally in computation.
In particular, the sum, product, or composition of two
polynomials is again a polynomial. This allows us, for
example, to think of long division as a basic, one-step
operation when we are investigating the efficiency of
algorithms for primality testing. In fact, long division
takes more than one step, but it is in P so the time it
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takes does not affect whether an algorithm that uses it
is itself in P. In general, if we use the basic program-
ming technique of subroutines, and if our subroutines
are in P, then we will preserve the efficiency of the
algorithm as a whole.

Almost all computer programs that are used in prac-
tice turn out to be efficient in this theoretical sense. Of
course, the converse is not true: an algorithm that runs
in time n100 is completely useless despite the fact that
n100 is a polynomial. However, this seems not to mat-
ter. It is unusual to discover even ann10-time algorithm
for a natural problem, and on the rare occasions when
this happens, improvements to n3- or n2-time, which
border on the practical, almost always follow.

It is important to contrast P with the class EXP. A
problem belongs to EXP if there is an algorithm that
solves it in at most exp(p(n)) steps for any input of
length n, where p is some polynomial. (Roughly speak-
ing, EXP consists of problems that can be solved in
exponential time: the polynomial p makes the defini-
tion more robust and less dependent on the precise
nature of encodings, etc.)

If you use trial division to test the primality of a num-
ber N with n digits in its binary expansion, then you
have to do

√
N long-division calculations. Since

√
N is

about 2n/2, this is an exponential-time procedure. Expo-
nential running time is considered blatantly inefficient,
and if the problem has no faster algorithm, then it is
deemed intractable. It is known (via a basic technique
called diagonalization) that P ≠ EXP; furthermore,
some problems in EXP really do require exponential
time. Almost all problems and classes considered in
this paper can easily be shown to belong to EXP via
trivial, “brute-force” algorithms such as the trial divi-
sion just discussed: the main question will be whether
much faster algorithms can be devised for them.

3 The P versus NP Question

In this section we discuss the famous P versus NP
question, which is usually formulated in terms of deci-
sion problems, but which also has an interpretation in
terms of search problems. We shall start with the latter.

3.1 Finding versus Checking

Can you rearrange the letters CHAIRMITTE to form an
English word? To solve a puzzle like this, one has to
search among many possibilities (all permutations of
those letters), perhaps building up fragments of words
and hoping that inspiration will strike. Now consider

the following question: can the letters of CHAIRMITTE
be rearranged to form the word “arithmetic”? It is very
easy (if slightly boring) to check that the answer is yes.

This informal example illustrates an important fea-
ture of many search problems: that once you find a
solution, it is easy to recognize that it is a solution. The
hard part is to find the solution in the first place. Or
at least, so it seems. But actually proving that search
problems of this kind are hard is a famous unsolved
problem, the P versusNP question.

Another search problem with this quality, which is in
fact quite general and has a natural appeal to mathe-
maticians, is the task of finding proofs for valid math-
ematical statements. Again it seems to be far easier to
check that an argument is a valid proof than it is to find
the argument in the first place. Since finding a proof is
a process that requires considerable creativity (as, in a
much smaller way, is finding an anagram), the P ver-
sus NP question is, in a sense, asking whether this
kind of creativity can be automated.

In section 3.2 we shall define the classNP formally.
Informally, it corresponds to the set of all search prob-
lems for which it is easy to check whether you have
found what you are searching for. Another example of
such a problem is that of finding a factor of a large com-
posite integer N . If you are told that K is a factor, then
it is an easy task for you (or your computer) to verify
that this is true: all you have to do is a single instance
of long division.

A vast number of problems in science (such as cre-
ating theories to explain various natural phenomena)
and engineering (such as creating designs under vari-
ous physical and economic constraints) have the same
property that success is much easier to recognize than
to achieve in the first place. This gives some indication
of the importance of this class of problems.

3.2 Deciding versus Verifying

For the purposes of theoretical analysis, it is actually
more convenient to define NP as a class of decision
problems. For instance, consider the decision problem,
“Is N composite?” What makes this a problem in NP
is that, whenever N is composite, there is a short proof
of this fact. Such a proof consists of a factor of N , and
is easy to check that this proof is correct. That is, it
is easy to devise a polynomial-time algorithm M that
takes as input a pair (N,K) of positive integers and
outputs 1 if K is a nontrivial factor of N and 0 other-
wise. If N is prime, thenM(N,K) = 0 for every K, while
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if N is composite there will always exist an integer K
such thatM(N,K) = 1. Moreover, in this case the string
that encodes K will be at most as long as the string
that encodes N , though all we really care about is that
it should not be too much longer. These properties we
now encapsulate in a formal definition.

Definition (the complexity class NP1). A decision
problem S ⊂ I belongs to NP if there is a subset
R ⊂ I× I with the following three properties.

(i) There is a polynomial function p such that |y| �
p(|x|) whenever (x,y) ∈ R.

(ii) x belongs to S if and only if there is some y such
that (x,y) belongs to R.

(iii) The problem of determining whether a pair (x,y)
belongs to R is in P.

When such a y exists, it is called a proof (or wit-
ness) of the fact that x belongs to S. The polynomial-
time algorithm for determining whether a pair (x,y)
belongs to R is called a verification procedure for
determining whether x belongs to S.

Notice that every problem S in the class P is also
in NP, since we can simply forget about the candi-
date proof y and use the efficient test for whether x
belongs to S. On the other hand, every problem inNP
is trivially in EXP, because we can enumerate all pos-
sible ys (in exponential time) and check for each one
whether it works. (This is more or less what we do with
trial division.) Can this trivial algorithm be improved?
Sometimes it can, even in very nonobvious cases. In
fact, recently it was proved that the problem of deter-
mining whether a numberN is composite belongs to P.
(Further details can be found in computational num-
ber theory [IV.3 §2].) However, we would like to know
whether for every problem in NP one can do much
better than the trivial algorithm.

3.3 The Big Conjecture

The P versus NP problem asks whether or not P
equals NP. In terms of decision problems, this ques-
tion is asking whether the existence of an efficient ver-
ification procedure for some set implies the existence of
an efficient decision procedure for it. In other words,
if there is a polynomial-time algorithm for checking

1. The acronym NP stands for nondeterministic polynomial-time,
where a nondeterministic machine is a fictitious computing device used
in an alternative definition of the class NP. The nondeterministic
moves of such a machine correspond to guessing a “proof” in this
definition.

whether proofs that x ∈ S are correct (as in the def-
inition ofNP just given), does it follow that there is a
polynomial-time algorithm for deciding whetherx ∈ S?

As our earlier examples suggest, the problem can also
be formulated as a question about search problems.
Suppose we have a set R ⊂ I×I satisfying properties (i)
and (iii) of the definition ofNP. For instance, R might
correspond to all pairs of integers (N,K) such that K is
a nontrivial factor ofN . Then the corresponding search
problem, “Given a composite number N find a nontriv-
ial factor K,” is closely related to the integer factoriza-
tion problem. In general, any such relation R gives rise
to a search problem, “Given a string x, find a string y
such that (x,y) belongs to R (if such a y exists).” Now
the P versus NP problem asks the following: “Are all
such search problems solvable in polynomial time?”

If the answer is yes, then the mere fact that it can be
checked in polynomial time whether K is a nontrivial
factor of N would imply that such a factor could actu-
ally be found in polynomial time.2 Similarly, the mere
fact that a short proof of a mathematical statement
existed would be enough to guarantee that it could be
found in a short time by a purely mechanical process.
The apparent difference between the difficulty of dis-
covering solutions and the ease of checking them once
discovered would be entirely illusory.

This would be very strange, and almost all experts
believe that it is not the case. However, nobody has
managed to prove it. So the big conjecture is thatP does
not equalNP. That is, finding is harder than checking,
and efficient verification procedures do not necessar-
ily lead to efficient algorithms for decision problems.
This conjecture is strongly supported by our intuition,
which has been developed over many centuries of deal-
ing with search and decision problems in a wide variety
of human activities. Further empirical evidence in favor
of the conjecture is given by the fact that there are lit-
erally thousands of NP problems, from many math-
ematical and scientific disciplines, that are not known
to be solvable in polynomial time, despite the fact that
researchers have tried very hard to discover efficient
procedures for solving them.

The P ≠NP conjecture is certainly the most impor-
tant open problem in computer science, and one of
the most significant in all of mathematics. Our later
section on circuit complexity (section 5.1) is devoted

2. Despite the fact that there is a polynomial-time algorithm for
determining whether a number is composite, no such algorithm is
known for actually finding its factors, and it is widely believed that no
efficient algorithm exists for this.
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to attempts to prove it. There we shall discuss some
partial results and limits of the techniques used so far.

3.4 NP versus coNP
Another important class, known as coNP, is the class
of complements of sets (or decision problems) in NP.
For example, the problem “Is N prime?” belongs to
coNP because there is an efficient verification pro-
cedure for showing that a given positive integer N is
not prime, namely, exhibiting some factors. Equiva-
lently, the set of primes belongs to coNP because its
complement belongs toNP.

Does NP equal coNP? That is, if you have an effi-
cient verification procedure for determining member-
ship of a set S, do you also have one for determining
nonmembership? Again, intuition would suggest not, or
at least not necessarily. For instance, if a jumble of let-
ters can be rearranged to form a word, then that word
serves as a short demonstration. But suppose a jumble
of letters cannot be rearranged to form a word. One
could demonstrate this by looking at all possible rear-
rangements and noting that none of them is a word,
but this is a very long demonstration and there does
not seem to be a systematic way of finding a truly short
one.

Here again intuition from mathematics is extremely
relevant: to verify that a set of logical constraints is
mutually inconsistent, that a family of polynomial equa-
tions has no common root, or that a set of regions in
space has empty intersection seems far harder than
to verify the opposite (exhibiting a consistent valua-
tion, a common root, or a point that belongs to all
the regions). Indeed, only when rare extra mathemat-
ical structure is available, such as duality [III.19] the-
orems or complete systems of invariants, are we able to
show that a set and its complement are computation-
ally equivalent. So another big conjecture is that NP
is not equal to coNP. The section on proof complex-
ity (section 5.3) looks further at this conjecture and at
attempts to resolve it.

Surprisingly, it is not hard to show that the prob-
lem, “Is N composite?” which obviously belongs to
NP, actually belongs to coNP as well. To prove this,
one uses the following fact from elementary number
theory:p is prime if and only if there is an integer a < p
such that ap−1 ≡ 1 (mod p) and ar �≡ 1 whenever r is
a factor of p − 1. Thus, to verify that p is prime it is
enough to exhibit such an integer a. However, to check
that a works, one needs to know the prime factoriza-
tion of p − 1, and one must give a short proof that it

really is a factorization into primes. This takes us back
to the problem we started with, but the numbers are
smaller so one can give a recursive argument. (We men-
tion again that the set of primes is actually inP, but this
is harder to prove.)

4 Reducibility and NP-Completeness

One sign that a mathematical problem is fundamental
is that it has many equivalent formulations. This is true
to a quite extraordinary extent for the P versus NP
problem, as we shall see in this section. Fundamen-
tal to our discussion will be the notion of polynomial-
time reducibility. Roughly speaking, one computational
problem is polynomially reducible to another if any
polynomial-time algorithm for the second can be con-
verted into a polynomial-time algorithm for the first.
Let us see an example of this, and then we will define
the notion formally.

First, here is a famous problem in NP, called SAT.
Consider the logical formula

(p ∨ q ∨ r̄ )∧ (p̄ ∨ q)∧ (p ∨ q̄ ∨ r)∧ (p̄ ∨ r̄ ).
Here, p, q, and r are propositions, each of which can
be true or false. The symbols “∨” and “∧” stand for OR
and AND, respectively, and p̄ (read as “NOT-p”) is the
proposition that is true if and only if p is false.

Suppose now that p is true, q is true, and r is false.
Then the first subformula p ∨ q ∨ r̄ is true because
at least one of p, q, and r̄ is true. Similarly, one can
check that all the other subformulas are true, which
means that the entire formula is true. We call our choice
of truth values for p, q, and r a satisfying assignment
for the formula, and we say that the formula is satisfi-
able. A natural computation problem that arises is the
following.

SAT: given a propositional formula, is it satisfiable?

In the example above, the formula was a conjunction of
subformulas, called clauses. In their turn, these subfor-
mulas were disjunctions of propositions or their nega-
tions, which are called literals. (The conjunction of some
formulas φ1, . . . ,φk is the formula φ1 ∧ · · · ∧φk and
their disjunction is φ1 ∨ · · · ∨φk.)
3SAT: given a propositional formula that consists of a
conjunction of clauses that contain at most three literals
each, is the formula satisfiable?

Notice that SAT and 3SAT are inNP, since it is an easy
matter to check whether a given truth assignment to the
variables is a satisfying assignment for the formula.

Let us now turn to a second problem inNP.
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3-colorability: given a planar map (such as one
might find in an atlas), can its regions be colored with
three colors, Red, Blue, and Green, such that no two
adjacent countries have the same color?3

We shall now “reduce” 3-colorability to 3SAT: that
is, show how an algorithm that solves 3SAT can be used
to solve 3-colorability as well. Suppose, then, that
we have a map with n regions. We shall need 3n propo-
sitions, which we shall call R1, . . . , Rn, B1, . . . , Bn, and
G1, . . . , Gn, and we would like to define a logical for-
mula in such a way that a satisfying assignment of the
formula will correspond to a 3-coloring of the graph.
In the back of our minds, we shall think of Ri as the
statement, “Region i of the map is colored Red,” and
similarly for Bi and Gi. We then take as our clauses
some statements that tell us that every region receives
a single color and no two adjacent regions receive the
same color.

This is easy to do: to guarantee that region i receives
a color, we take the clause Ri ∨ Bi ∨ Gi, and if regions
i and j are adjacent, then to guarantee that they do
not receive the same color we take the three clauses
Ri∨Rj , Bi∨Bj , and Gi∨Gj . (To ensure that no region is
assigned more than one color, we can also add clauses
of the form Ri ∨ Bi, Bi ∨Gi, and Gi ∨ Ri. Alternatively,
we can allow multiple colors and finish by picking one
of the assigned colors for each region.)

It is not hard to see that the conjunction of all these
clauses is satisfiable if and only if there is a 3-coloring
of the map. Furthermore, the conversion process is a
simple one that can be carried out in a time that is poly-
nomial in the number of regions in the map. Thus, we
have our hoped-for polynomial-time reduction.

Now let us give a formal description of what we have
just done.

Definition (polynomial-time reducibility). Let S and
T be subsets of I. We say that S is polynomial-time
reducible to T if there exists a polynomial-time com-
putable function h : I → I such that x ∈ S if and only
if h(x) ∈ T .

If S is polynomial-time reducible to T , then the fol-
lowing algorithm can be used to decide membership
of S: given x, compute h(x) (in polynomial time), then
decide whether h(x) ∈ T . Therefore, if membership of
T can be decided in polynomial time, so can member-
ship of S. An equivalent, and important, way of saying

3. Recall that the celebrated four-color theorem [V.14] asserts
that this can always be done with four colors.

this is that if membership of S cannot be decided in

polynomial time, then neither can membership of T . In

short, if S is hard, then T is hard.

Now let us give a very important definition based on

the notion of polynomial-time reducibility.

Definition (NP-completeness). A decision problem S is

NP-complete if S is in NP and every decision problem

inNP is polynomial-time reducible to S.

That is, if S has a polynomial-time algorithm, then so

do all other problems in NP. Thus, an NP-complete

(decision) problem is in a certain sense “universal”

among all problems inNP.

At first this may seem a peculiar definition, because

it is far from obvious that there are any NP-complete

problems! However, in 1971, it was proved that SAT is

NP-complete, and since then thousands of problems

have been proved to be NP-complete as well. (Hun-

dreds of them are listed in Garey and Johnson (1979).)

Other examples are 3SAT and 3-colorability. The

significance of 3SAT is that it is one of the most basic

of all NP-complete problems. (It is not too hard to PUP: Tim thinks
that if you’ve
followed the
article to this
point, then it’s
clear what this
sentence means.
OK to leave it as it
is?

show that, by contrast, 2SAT and 2-colorability

have polynomial-time algorithms.) In order to prove

that a decision problem S is NP-complete, one starts

with a known NP-complete problem S′ and finds a

polynomial-time reduction from S′ to S. It now follows

that if S has a polynomial-time algorithm, then so does

S′ and hence so do all other problems in NP. Some-

times these reductions are quite simple, like our reduc-

tion of 3-colorability to 3SAT. But sometimes they

need a great deal of ingenuity.

Here are two further NP-complete problems.

Subset sum: given a sequence of integers a1, . . . , an
and another integer b, does there exist a set J such that∑
i∈J ai = b?

Traveling salesman problem: given a finite graph

[III.34] G, does there exist a Hamilton cycle? That is,

can one find a cycle of edges that visits each vertex of

the graph exactly once?

Interestingly, almost all natural problems in NP that

are not obviously in P turn out to be NP-complete.

However, there are two important examples that have

not been shown to be NP-complete and are strongly

believed not to be. The first is a problem we have

already discussed: integer factorization. More pre-

cisely, consider the following decision problem.
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Factor in interval: given x, a, b, does x have a
prime factor y such that a � y � b?

A polynomial-time algorithm for this can be combined
with a simple binary search to find a prime factor if it
exists. The reason this problem is unlikely to be NP-
complete is that it also belongs to coNP. (Roughly
speaking, this is true because one can exhibit the prime
factorization of x and demonstrate in polynomial time
that it really is a prime factorization.) If it were NP-
complete, then it would follow thatNP ⊂ coNP, and
hence, by symmetry, thatNP = coNP.

The second example is the following.

Graph isomorphism: given two graphs G and H with
n vertices, is there a function φ from the vertex set of G
to the vertex set of H such that φ(x)φ(y) is an edge of
H when, and only when, xy is an edge of G?

Notice with these two examples how surprising it is that
they can be reduced in polynomial time to problems
such as 3SAT or 3-colorability. This is particularly
true of the first, which has nothing to do with graphs
or satisfiability of logical formulas.

If P ≠ NP, then no NP-complete problem has
a polynomial-time decision procedure. Consequently,
the corresponding search problems cannot be solved
in polynomial time. Thus, a proof that a problem is
NP-complete is often taken as evidence that this prob-
lem is hard: if we could solve it, then we could also effi-
ciently solve a multitude of other problems. But thou-
sands of researchers (and tens of thousands of engi-
neers) have, over several decades, tried and failed to
find such procedures.

NP-completeness has more positive aspects as well.
Sometimes it is possible to prove a fact about all sets in
NP by establishing it only for some NP-complete set
(and noting that polynomial-time reductions preserve
the claimed property). Famous examples include the
existence of “zero-knowledge proofs,” established first
for 3-coloring (see section 6.3.2), and the so-called PCP
theorem, established first for 3SAT (see section 6.3.3).

5 Lower Bounds

As we mentioned earlier, it is very much harder to prove
that certain problems cannot be solved efficiently than
it is to find efficient algorithms (when they exist). In this
section, we shall survey some of the basic methods that
have been developed for finding lower bounds for the
complexity of natural computational problems. That is,

we shall discuss results that say that no algorithm can
run in fewer than a given number of steps.

In particular, we shall introduce the theories of circuit
complexity and proof complexity. The first is defined
with the long-term goal of proving that P ≠ NP, and
the second is a program that is aimed at proving that
NP ≠ coNP. Both of these theories use the notion of
a directed acyclic graph, which models the flow of infor-
mation in a computation or a proof, and the sequence
of derivations of each new piece of information from
previous ones.

A directed graph is a graph for which each edge is
given a direction. One can visualize it as a graph with
arrows along the edges. A directed cycle is a sequence
of vertices v1, . . . , vt such that for every i between 1
and t−1 there is an edge pointing from vi toward vi+1

and there is also an edge pointing from vt back to v1.
If a directed graph G has no directed cycle, then it is
called acyclic. We shall abbreviate the phrase “directed
acyclic graph” by writing DAG.

It is not hard to see that in every DAG there will be
some vertices with no incoming edges and some with
no outgoing edges. These are called inputs and outputs,
respectively. If u and v are vertices of a DAG and there
is an edge from u to v , then we say that u is a prede-
cessor of v . The basic idea of the DAG model is that
you place information at each input, and at each ver-
tex v you have a very simple rule that derives some
information at v from the information at all the pre-
decessors of v . Starting at the inputs, you gradually
move through the graph, working out the information
at a vertex once you have worked out the information
for all its predecessors, until you have reached all the
outputs.

5.1 Boolean Circuit Complexity

A Boolean circuit is a DAG in which all the values at the
inputs, outputs, and intermediate vertices are bits. That
is, each vertex may take the value 0 or 1. We have to
specify simple rules for determining the value at a ver-
tex from the values of its predecessors, and the usual
choice is to allow three logical operations: AND, OR, and
NOT. We call a vertex v an AND gate if the following
rule applies: the value at v is 1 if all its predecessors
have value 1 and is otherwise 0. At an OR gate we have
a similar rule: the value at v is 1 if and only if at least
one of its predecessors has value 1. Finally, v is a NOT
gate if it has exactly one predecessor u, and v takes
the value 1 if and only if u takes the value 0.
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Given any Boolean circuit with n inputs u1, . . . , un
and m outputs v1, . . . , vm one can associate with
it a function f from In to Im as follows. Given a
{0,1}-string x = (x1, . . . , xn) of length n, let each ui
take the value xi. Then use the gates of the circuit to
find the values at the outputs v1, . . . , vm. If these are
y1, . . . , ym, then f(x1, . . . , xn) = (y1, . . . , ym).

It is not hard to prove that any function from In to
Im can be computed in this way. Thus, we say that AND,
OR, and NOT gates, or more briefly “∧”, “∨”, and “¬”,
form a complete basis. Moreover, this is true even if we
restrict attention to DAGs where every vertex has at
most two predecessors. In fact, we shall now assume
that our DAGs have this property unless we say other-
wise. There are other choices of gates that are complete
bases, but we shall stick with “∧”, “∨”, and “¬” since
this does not affect our discussion in an essential way.

It may be easy to show that every Boolean function f
can be computed by means of a circuit, but as soon
as one asks how large the circuit needs to be, one
comes up against fascinating and very difficult ques-
tions. Thus, the following definition is central to the
subject of circuit complexity.

Definition. Let f be a function from In to Im. Then
S(f ) is the size of the smallest Boolean circuit that
computes f , where this is measured by the number of
vertices in the corresponding DAG.

To see what this has to do with the P versus NP
question, consider an NP-complete decision problem
such as 3SAT. This can be coded as a function f from I
to {0,1}, with f(x) taking the value 1 if and only if the
formula corresponding to x is satisfiable. Now we can-
not find a circuit to compute f for the simple reason
that I is an infinite set. However, if we restrict attention
to formulas that can be encoded as strings of length n,
then we obtain a function fn : In → {0,1}, and we can
try to estimate S(fn).

If we do this for every n, then we obtain an estimate
for the growth rate of S(fn) as n tends to infinity. Writ-
ing f for the infinite sequence of functions (f1, f2, . . . ),
let us define S(f ) to be the function that takes n to
S(fn).

This is an important definition because of the fol-
lowing fact: if there is a polynomial-time algorithm for
computing f , then the function S(f ) is bounded above
by a polynomial. More generally, given any function
f : I→ I, let fn stand for the restriction of f to In. If f
has Turing complexity T (as defined in section 2.1), then
S(fn) is bounded above by a polynomial function of

T(n). That is, there is a sequence of circuits that com-

putes the function f , and takes a time not significantly

different from the time taken by the Turing machine.

This provides us with a potential method of proving

lower bounds on computational complexity, since if we

can prove that S(fn) grows very rapidly with n, then

we have proved that the Turing complexity of f is very

large. If f is a problem in NP, then this proves that

P ≠NP.

The circuit model of computation is finite rather than

infinite, which raises an issue called uniformity. When

we build a family of circuits from a Turing machine,

the circuits are all in a certain sense “the same.” More

precisely, there is an algorithm that can generate these

circuits, and the time it takes to generate each one is

polynomial in its size. A uniform family of circuits is

one that can be generated in this way.

However, by no means all families of circuits are uni-

form. Indeed, there are functions f that cannot be com-

puted by Turing machines at all (let alone in a reason-

able amount of time), despite having circuits of linear

size. This extra power comes from the fact that these

families of circuits do not have a succinct (“effective”)

description; that is, there is no single algorithm that can

generate them. Such families are called nonuniform.

If there are many families of circuits that do not arise

from Turing machines, then it would seem that prov-

ing good lower bounds for circuit complexity should

be much harder than proving lower bounds for Turing

complexity, since now one must rule out many more

potential ways of computing a function. However, there

is a strong sentiment that the extra power provided by

nonuniformity is irrelevant to the P versus NP ques-

tion: it is believed that for a natural problem such as

3SAT, nonuniformity does not help. Therefore, we have

another big conjecture of theoretical computer science:

that NP-complete sets do not have polynomial-size cir-

cuits. Why do we believe this conjecture? It would be

nice to be able to say that its falsehood implied that

P =NP.

We do not quite know that, but we do know that if it

is false then “the polynomial-time hierarchy collapses.”

Roughly speaking, this means that a whole system of

complexity classes, which appear to be distinct, would

in fact all be the same, which would be very unexpected.

In any case, it is hard to imagine that there might

be a sequence of polynomial-sized circuits computing

an NP-complete problem without its being possible to

generate such a sequence by an efficient algorithm.



�

272 IV. Branches of Mathematics

Even if we grant that nonuniformity does not help

solve NP-complete problems, what is the point of

replacing the Turing machine model by the more pow-

erful model of circuit families? The main reason is that

circuits are simpler mathematical objects than Turing

machines, and have the great advantage of being finite.

The hope is that, while abstracting away the unifor-

mity condition, which ought to be irrelevant, circuits

provide us with a model that can be analyzed using

combinatorial techniques.

It is also worth mentioning that Boolean circuits are

a natural computational model of “hardware complex-

ity,” so their study is of independent interest. Moreover,

some of the techniques for analyzing Boolean func-

tions have found applications elsewhere: for example,

in computational learning theory, combinatorics, and

game theory.

5.1.1 Basic Results and Questions

We have already mentioned several basic facts about

Boolean circuits, in particular the fact that they can effi-

ciently simulate Turing machines. Another basic fact

is that most Boolean functions require exponential-size

circuits. This can be proved by a simple counting argu-

ment: the number of small circuits is far smaller than

the number of functions. More precisely, let the num-

ber of inputs be n. The number of possible functions

defined on the set of alln-bit sequences is precisely 22n .

On the other hand, it is not hard to show that the num-

ber of circuits of size m is bounded above by around

mm2
. It follows easily that we cannot compute all func-

tions unless m > 2n/2/n. Furthermore, the proportion

of functions that can be computed by a circuit of size

at mostm is tiny.

Thus, hard functions (for circuits and consequently

for Turing machines) abound. However, this hardness

is proved via a counting argument, which does not give

us a way of actually exhibiting a hard function. That is,

we cannot prove such hardness for any explicit function

f , where “explicit” means that we place some algorith-

mic restriction on f , such as belonging toNP or EXP.

In fact, the situation is even worse: no nontrivial lower

bound is known for any explicit function. For any func-

tion f on n bits (assuming that it depends on all its

inputs), we trivially must have S(f ) � n, just to read

the inputs. A major open problem of circuit complex-

ity is beating this trivial bound by more than a constant

factor.

Open problem. Find an explicit Boolean function f (or
even a length-preserving function f ) for which S(f ) is
superlinear: that is, not bounded above by cn for any
constant c.

A particularly basic special case of this problem is the
question of whether addition is easier than multiplica-
tion. Let ADD and MULT denote, respectively, the addi-
tion and multiplication functions defined on pairs of
integers (presented in binary). For addition, the usual
procedure one learns at school gives rise to a linear-
time algorithm, which implies a linear upper bound for
S(ADD) as well. For multiplication, the standard school
algorithm runs in quadratic time: that is, the num-
ber of steps is proportional to n2. This can be greatly
improved (via fast fourier transforms [III.26]) to
an algorithm that yields S(MULT) < n(logn)2. Since
logn grows very slowly with n, this is only slightly
superlinear. And now the question is whether this
can be improved further. In particular, do there exist
linear-size circuits for multiplication?

How can circuit complexity be a thriving subject if no
nontrivial bounds are known for any explicit functions?
The answer is that there have been some remarkable
successes in proving lower bounds under natural extra
assumptions on the circuits. We shall now describe the
most important of these extra assumptions.

5.1.2 Monotone Circuits

As we have seen, general Boolean circuits can compute
every Boolean function, and can do it at least as effi-
ciently as general algorithms. Now some functions have
additional properties that might lead one to expect
that they could be computed with Boolean circuits of
a particular kind. For example, consider the function
CLIQUE, defined on the set of all graphs as follows. If G
is a graph with n vertices, then a clique in G is defined
to be a set of vertices such that any two are joined by
an edge. Let us define CLIQUE(G) to be 1 if G contains
a clique of size at least

√
n and 0 otherwise.

Notice that if we add an edge to G, then either
CLIQUE(G) changes from 0 to 1 or it stays the same.
What it will not do is change from 1 to 0: adding an
edge obviously cannot destroy a clique.

We can encodeG as a stringx of
(
n
2

)
bits, one for each

pair of vertices, assigning 1 to a bit if the correspond-
ing pair of vertices is joined by an edge and 0 other-
wise. If we then set CLIQUE(x) to equal CLIQUE(G), we
find that changing any bit of x from a 0 to a 1 cannot
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change CLIQUE(x) from 1 to 0. Boolean functions with
this property are called monotone.

When considering the complexity of monotone func-
tions, it is extremely natural to restrict the circuits by
allowing only AND and OR gates, and disallowing NOT
gates. Notice that “∧” and “∨” are monotone opera-
tions, in the sense that changing an input bit from 0
to 1 will not change the output of the gate from 1 to
0, whereas “¬” is certainly not monotone in this sense.
A circuit that uses just “∧” and “∨” is called a mono-
tone circuit. It is not hard to show that every monotone
function f : In → Im can be computed by a monotone
circuit, and that almost all monotone functions need
exponential-sized circuits.

Does the extra restriction on the circuits make it eas-
ier to prove lower bounds? For over forty years the
answer seemed to be not much: nobody could prove a
super-polynomial lower bound for the monotone com-
plexity of any explicit monotone function. But then, in
1985, a new technique called the approximation method
was invented to prove the remarkable theorem that
CLIQUE has super-polynomial monotone complexity.
This technique eventually led to the following even
stronger result.

Theorem. CLIQUE requires monotone circuits of expo-
nential size.

Very roughly speaking, the approximation method
works as follows. Assume that CLIQUE can be com-
puted with a small monotone circuit. Then replace
the occurrences of “∧” and “∨” in this circuit with
other gates that are cleverly chosen (and complex to
describe), denoting these by “∧̃” and “∨̃,” respectively.
The new gates are chosen to satisfy two key properties.

(i) Replacing one particular gate has only a “small”
effect on the output of the circuit (where “small” is
defined in terms of a certain natural but nontrivial
measure of distance). Consequently, if a circuit has
few gates, then replacing all of them yields a new
circuit that approximates the original circuit for
“most” choices of inputs.

(ii) On the other hand, every circuit (regardless of its
size) containing only the approximating gates “∧̃”
and “∨̃” computes a function that can be shown to
be “far” from CLIQUE, in the sense that it disagrees
with CLIQUE on many inputs.

CLIQUE is a well-known NP-complete problem, so the
above theorem provides us with an explicit monotone

function, conjectured not to be in P, that cannot be
computed by small monotone circuits. It is natural at
this point to wonder whether every monotone function
that is in P can be computed by a small monotone cir-
cuit. If so, we would be able to deduce that P ≠ NP.
However, the same method yields a super-polynomial
lower bound for the size of monotone circuits that com-
pute the PERFECT MATCHING function, which is mono-
tone and is in P. Given a graph G, this function out-
puts 1 if one can pair up the vertices in such a way
that every pair is connected by an edge and 0 other-
wise. Furthermore, exponential-size lower bounds are
known for other monotone functions in P, so general
circuits are known to be substantially more powerful
than monotone circuits, even for computing monotone
functions.

5.1.3 Bounded-Depth Circuits

To understand the motivation for our next model, con-
sider the following basic question: “Can one speed up
computation by using several computers in parallel?”
For instance, suppose that a certain task can be per-
formed by one computer in t steps. Can it be performed
by t (or even t2) cooperating computers in constant
time (or just in

√
t time)? The common wisdom is that

the answer depends on the task in question: if a single
person can dig at a rate of one cubic meter per hour,
then in one hour a hundred people can dig a ditch that
is 100 m long, but not a hole 100 m deep. Determining
which computational tasks can be “parallelized” when
many processors are available and which are “inher-
ently sequential” is a basic question for both practical
and theoretical reasons.

A very good feature of the circuit model is that it can
easily be used to study questions of this kind. Let us
define the depth of a DAG to be the length of the longest
directed path in it: that is, the longest sequence of ver-
tices where there is an edge from each one to the next.
This notion of depth models the parallel time needed
to compute the function: if you put a separate proces-
sor at each gate of a circuit of depth d, and at each
phase you evaluate all gates for which the inputs have
already been evaluated, then the number of phases you
need is d. Parallel time is another important computa-
tional resource. Here again our knowledge is scarce—
we do not know how to disprove the statement that
every explicit function can be computed by a circuit of
polynomial size and logarithmic depth.

Thus, we will restrict d to be a constant. It then be-
comes necessary to allow our gates to have unbounded
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fan-in, meaning that the AND and OR gates are allowed
to have any number of incoming edges. (If we do not
allow this, then each output bit can depend only on
a constant number of input bits.) With this very strin-
gent restriction on circuit depth, it is possible to prove
lower bounds for the complexity of explicit functions.
For example, let PAR(x) (for “parity”) equal 1 if and only
if the binary string has an odd number of 1s, and let
MAJ(x) (for “majority”) equal 1 if and only if there are
more 1s than 0s in x.

Theorem. For any constant d, the functions PAR and
MAJ cannot be computed by a polynomial-sized family
of circuits of depth d.

This result is due to another fundamental proof tech-
nique: the random restriction method. The idea is to fix
at random (with judiciously chosen parameters) most
of the input variables, by assigning them random val-
ues. Note that this simultaneously restricts the function
as well as the circuit. This “restriction” should satisfy
the following two properties.

(i) The restricted circuit becomes very simple: for
instance, it may depend on only a small subset of
the remaining, unfixed input variables.

(ii) The restricted function remains complex: for
instance, it may depend on all remaining input
variables.

For PAR the second property is easily seen to hold, and
of course the heart of the matter is analyzing the effect
of random restrictions on shallow circuits.

Interestingly, MAJ remains hard for constant-depth
polynomial-size circuits even if the circuits are also
allowed (unbounded fan-in) PAR-gates. However the
“converse” does not hold; that is, PAR has constant-
depth polynomial-size circuits with (unbounded fan-
in) MAJ-gates. Indeed, the latter class seems to be quite
powerful: nobody has managed to prove that there are
functions in NP that cannot be computed by such
circuits, even if the depth is restricted to 3.

5.1.4 Formula Size

Formulas are perhaps the most standard way in which
mathematicians express functions. For example, the
largest root of the quadratic polynomial at2 + bt + c,
in terms of its (input) coefficients a, b, and c, is rep-
resented by the formula (−b +√b2 − 4ac)/2a. This is
an arithmetic formula. In Boolean formulas the logical

operations “¬”, “∧”, “∨” replace the arithmetic opera-
tions above. For example, if x = (x1, x2) is a Boolean
string of length 2, then PAR(x) is given by the formula
(¬x1 ∧ x2)∨ (x1 ∧¬x2).

Any formula can be represented by a circuit, but this
circuit has the additional property that its underlying
DAG is a tree. Intuitively, this means that the compu-
tation is not allowed to reuse a previously computed
partial result (unless it recomputes it). A natural size
measure for formulas is the number of occurrences of
variables in them, which is the same as the number of
gates, to within a factor of 2.

Formulas are natural not only because of their preva-
lence in mathematics, but also because their size can
be related to the depth of circuits and to the mem-
ory requirements of Turing machines (i.e., their space
complexity).

By recursively using the above formula for PAR, that
is, by using the fact that PAR(x1, . . . , x2n) is equal to
PAR(PAR(x1, . . . , xn),PAR(xn+1, . . . , x2n)), we obtain a
formula for the parity of n variables that has size n2.
Given the fact that PAR has a simple circuit of linear
size, one might wonder if there are smaller formulas
as well. One of the oldest results in circuit complexity
gives a negative answer.

Theorem. Boolean formulas for PAR and MAJ must
have at least quadratic size.

The proof follows a simple combinatorial (or infor-
mation-theoretic) argument. By contrast, there are
linear-size circuits for both functions. This is very easy
to show for PAR, but not for MAJ.

Can we give super-polynomial lower bounds on for-
mula size? One of the cleanest methods suggested so
far is the communication complexity method, which pro-
vides an information-theoretic setting for studying this
computational problem. The power of this approach
has been demonstrated mainly in the context of mono-
tone formulas, where it yields an exponential lower
bound for the PERFECT MATCHING problem (defined in
section 5.1.2).

Suppose that two players play the following game.
One player is given a graph G with n vertices that con-
tains no perfect matching, and the other is given a
graph H, with the same vertices, that does contain a
perfect matching. Then there must be some pair of ver-
tices that are joined by an edge in H but not joined
in G. The aim of the two players is to find such a pair
by sending each other bit strings, which each thinks of
as encoding messages according to some prearranged
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scheme. Of course, the player with graph G could sim-
ply send enough messages to specify the entire graph,
but the question is whether there is some protocol
that would enable them to find a pair of the desired
kind with far fewer bits being exchanged. The smallest
number of bits needed (in the worst case) is called the
monotone communication complexity of the problem.

It has been shown that the monotone communication
complexity must be at least linear inn, and this leads to
the exponential lower bound just mentioned. More gen-
erally, if f : In → {0,1} is a monotone function, then
the monotone communication complexity of f is the
smallest number of bits that must be exchanged, in the
worst case, to find a place i where xi = 0 and yi = 1, if
f(x) = 0 and f(y) = 1. If f is not monotone, then one
simply asks to find i such that xi and yi differ, and the
smallest number of exchanges needed is the communi-
cation complexity of f . It can be shown that the mono-
tone formula size of f is at least exp(cm) for a positive
constant c if and only if the monotone communication
complexity of f is at least c′m for a positive constant
c′. The corresponding statement also holds for general
formula size and general communication complexity.

5.1.5 Why Is It so Difficult to Prove Lower Bounds?

We have seen that complexity theory has devel-
oped quite a few powerful techniques, which have at
least been useful in proving strong lower bounds in
restricted models of computation. But they all fall well
short of providing nontrivial lower bounds for general
circuits. Is there a fundamental reason for this failure?
The same may be asked about any long-standing math-
ematical problem, such as the riemann hypothesis
[V.29], for example, and the typical answer would be
rather vague: that it seems that the current tools and
ideas do not suffice.

Remarkably, for circuit complexity this vague feel-
ing has been made into a precise theorem. Thus, there
is a “formal excuse” for our failure so far. Roughly
speaking, a very general class of arguments, called nat-
ural proofs, has been defined and shown to include all
known proofs of lower bounds for restricted circuits. In
fact, so broad is the class of arguments that it is very
hard to envisage what an “unnatural” proof might be
like. On the other hand, it has also been shown that if
there is a natural proof that P ≠ NP, then there are
fairly efficient (not quite polynomial-time, but signifi-
cantly faster than known) algorithms for various prob-
lems, including integer factorization. So if, like most

complexity theorists, you believe that these problems
do not have efficient algorithms, then you also believe
that there is no natural proof that P ≠NP.

The connection between natural proofs thatP ≠NP
and some notoriously hard problems is through the
notion of pseudorandomness, which is discussed in
section 7.1.

One interpretation of this result is that it shows that
general circuit lower bounds are “independent” of a
certain natural fragment of peano arithmetic [III.69].
This gives a hint that the P versus NP question may
be independent of all of Peano arithmetic, or even of
the axioms of zfc [IV.22 §3.1], although few believe
the latter to be the case.

5.2 Arithmetic Circuits

As mentioned earlier, directed acyclic graphs can be
used in various different contexts. We shall now leave
Boolean functions and operations and look instead at
arithmetical operations and functions that take numer-
ical values, by which we mean values in Q or R or indeed
in any field [I.3 §2.2]. If F is a field, then we can con-
sider a DAG in which the inputs are now elements of
F and the gates are the field operations “+” and “×”
(including multiplication by fixed field elements such
as −1). Then, just as with Boolean circuits, once we
know the inputs we can assign values to all vertices
of the DAG: at each vertex one just applies the corre-
sponding arithmetical operation to the values assigned
to its predecessors, once these have been calculated.
An arithmetic circuit computes a polynomial function
p : Fn → Fm, and every homogeneous polynomial func-
tion is computed by some circuit. To allow the compu-
tation of inhomogeneous polynomials, we augment the
model by allowing a special input vertex whose value is
the constant “1” of the field.

Let us consider a couple of examples. The polyno-
mial x2−y2, which as written requires two multiplica-
tions and one addition, can be computed by the circuit
(x + y)(x − y) which requires instead one multipli-
cation and two additions. The polynomial xd, which is
defined using d−1 multiplications, may in fact be com-
puted with only 2 logd multiplications: first compute
x,x2, x4, . . . (each term in the sequence squaring the
previous one), and then multiply together the appro-
priate subset of these powers to get the exponent d.

We denote by SF (p) the smallest possible size of a
circuit that computes p. When we give no subscript, we
shall assume that F = Q, the field of rational numbers.
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We do not count multiplication by a fixed field element
as contributing to the size of a circuit: for example,
when we said that (x + y)(x − y) involves one mul-
tiplication, we were not counting the multiplication of
y by −1. The reader may wonder about division. How-
ever, we will be mainly interested in computing poly-
nomials, and for computing polynomials (over infinite
fields) division can be efficiently emulated by the other
operations. As usual, we will be interested in sequences
of polynomials, one for every input size, and will study
size asymptotically.

It is easy to see that, for any fixed finite field F , arith-
metic circuits over F can simulate Boolean circuits (on
Boolean inputs) with only a constant factor increase in
size. Thus, lower bounds for such arithmetic circuits
yield corresponding lower bounds for Boolean circuits.
Therefore, if we want to avoid the extreme difficulty
with which we are already familiar, it makes sense to
focus more on infinite fields, where lower bounds may
perhaps be easier to obtain.

As in the Boolean case, the mere existence of hard
polynomials is easy to establish.4 But, as before, we
will be interested in explicit (families of) polynomials.
The notion of explicitness is more delicate here, but
it can be formally defined (and, for example, polyno-
mials with algebraically independent coefficients are
not considered explicit).

An important parameter, which is absent in the
Boolean model, is the degree of the polynomial(s) being
computed. For example, a polynomial of degree d, even
in one variable, requires size at least logd. Let us briefly
consider the one-variable, or univariate, case first, in
which the degree is the main parameter of interest,
since this case already contains striking and important
problems. Then we shall move to the general multivari-
ate case, in which n, the number of inputs, will be the
main parameter.

5.2.1 Univariate Polynomials

How tight is the logd lower bound for the size of an
arithmetic circuit computing a polynomial of degree
d? A simple dimension argument shows that for most
degree-d polynomials p, S(p) is proportional to d.
However, we know of no explicit polynomial with this

4. A counting argument over infinite fields is inadequate (e.g., for
everya,b ∈ F the circuitax+b has size two, and so there are infinitely
many circuits of size 2). Instead, a “dimension” argument is used,
showing that the set of polynomials that are computable by small
circuits forms a vector space of lower dimension than the set of all
polynomials of adequate degree.

property. (Of course, this is shorthand for “explicit fam-

ily of polynomials, one for each degree d.”) In fact,

considerably less is known even than this.

Open problem. Find an explicit polynomialp of degree

d, such that S(p) is not bounded above by c logd for

some constant c.

Two concrete examples are illuminating. Let pd(x) =
xd, and qd(x) = (x + 1)(x + 2) · · · (x + d). We have

already seen that S(pd) � 2 logd, so the trivial lower

bound is relatively tight. On the other hand, it is a major

open problem to determine S(qd), and the conjecture is

that S(qd) grows more quickly than any power of logd.

This question is particularly important because of the

following result. If S(qd) is bounded above by a power

of logd, then integer factorization has polynomial-size

circuits.

5.2.2 Multivariate Polynomials

Now let us return to polynomials with n variables. It is

convenient to make n our only input size parameter,

so we shall restrict ourselves to polynomials of total

degree at most n, even when we do not mention this

restriction.

For almost every polynomial p in n variables, S(p)
is at least exp(n/2). Again, this follows from an easy

dimension argument, but again we would like to find

explicit (families of) polynomials that are hard to com-

pute. Unlike in the Boolean world, here there are lower

bounds that slightly exceed the trivial ones. The fol-

lowing theorem is proved using elementary tools from

algebraic geometry.

Theorem. There is a positive constant c such that

S(xn1 + xn2 + · · · + xnn) � cn logn.

The same techniques extend to prove lower bounds

of similar strength for other natural polynomials such

as the symmetric polynomials and the determinant

[III.15] (which can be regarded as a polynomial in the

entries of the matrix). Establishing a stronger lower

bound for some explicit polynomial is a major open

problem. Another is obtaining a superlinear lower

bound for any polynomial map of constant total degree.

Outstanding candidates for the latter are the linear

maps that compute the discrete Fourier transform over

the complex numbers or the Walsh transform over the

rationals. For both these transformations algorithms of

time complexity O(n logn) are known.
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Now let us focus on specific polynomials of central

importance. The most natural and well-studied candi-

date for the last open problem is matrix multiplica-

tion [I.3 §4.2]: given two m ×m matrices A, B, how

many operations are needed to compute their product?

The obvious algorithm, which follows from the defini-

tion of matrix product, requires about m3 operations.

Can this be beaten? It turns out that what really mat-

ters here is the number of multiplications. The first

hint that one can improve on the obvious algorithm

comes from the first nontrivial case (i.e.,m = 2). While

the usual algorithm uses eight multiplications, one can

in fact reorganize the calculation and get away with

only seven. This leads to a recursive argument: given

a 2m× 2m matrix, think of it as a 2× 2 matrix, each

entry of which is itself an m×m matrix. It follows

that doubling the size of the matrix increases the num-

ber of multiplications needed by a factor of at most 7.

This argument leads to an algorithm with only mlog2 7

multiplications (and roughly as many additions).

These ideas have been developed and extended to

yield the following strong, but not quite linear, upper

bound, where we denote by n = m2 the natural input

size, and by MM the matrix multiplication function.

Theorem. For every field F there is a constant c such

that SF (MM) � cn1.19.

So what is the complexity of MM (even if one counts

only multiplication gates)? Is it linear, or almost linear

(something like n logn, say), or is S(MM) at least nα for

some α > 1? This is a famous open problem.

We next consider two polynomials in the n = m2

variables representing an m×m matrix. We have

already mentioned the determinant, but we shall also

look at the permanent, which is defined by the deter-

minant formula, except that now all the signs are pos-

itive. (In other words, one simply adds up m! prod-

ucts instead of adding some and subtracting others.)

We shall denote these by DET and PER, respectively.

While DET plays a major role in classical mathemat-

ics, PER is somewhat esoteric (though it appears in

statistical mechanics and quantum mechanics). In the

context of complexity theory both polynomials are of

great importance, because they are representative of

natural complexity classes. DET has relatively low com-

plexity (and is related to the class of polynomials hav-

ing polynomial-sized arithmetic formulas), while PER

seems to have high complexity (indeed, it is complete

for a complexity class of counting problems denoted

#P, which extends NP). Thus, it is natural to con-
jecture that PER is not polynomial-time reducible to
DET.

One restricted type of reduction that makes sense in
this algebraic context is called projection. Suppose we
wish to find an algorithm for computing the permanent
of anm×m matrix A. One approach might be to con-
struct an M ×M matrix B such that each of its entries
is either a (variable) entry of A or a fixed element of the
field, and to do so in such a way that the determinant of
B equals the permanent of A. Then, as long as M is not
too much larger than m, we can use the efficient algo-
rithm for DET to give us an efficient algorithm for PER. A
projection of this kind is known to exist with M = 3m,
but this is nothing like good enough. Therefore we ask
the following question.

Open problem. Can the permanent of an m×m
matrix be expressed as the determinant of an M ×M
matrix, with M bounded above by a polynomial inm?

If so, then P =NP: therefore, the answer is likely to
be no. Conversely, if the answer could be shown to be
no, then this would provide a significant step toward
proving that P ≠ NP, though it would probably not
imply it.

5.3 Proof Complexity

The concept of proof distinguishes mathematics from
all other fields of human inquiry. Mathematicians have
gathered millennia of experience to attribute such
adjectives to proofs as “insightful,” “original,” “deep,”
and, most notably, “difficult.” Can one quantify math-
ematically the difficulty of proving various theorems?
This is exactly the task undertaken in proof complexity.
It seeks to classify theorems according to the difficulty
of proving them, much as circuit complexity seeks to
classify functions according to the difficulty of com-
puting them. In proofs, just as in computation, there
will be a number of models, called proof systems, that
capture the power of reasoning that is allowed to the
prover.

The types of statements, theorems, and proofs we
shall deal with are best illustrated by the following
example. We warn the reader in advance that the the-
orem we are about to discuss may seem too trivial to
give us any insight into the nature of proofs: however,
it turns out to be highly relevant.

The theorem in question is the well-known pigeon-
hole principle, which states that if you have more
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pigeons than holes then at least two pigeons will have
to share a hole. More formally, there is no injection
[I.2 §2.2] f from a finite set X to a smaller finite set
Y . Let us reformulate this theorem and then discuss
the complexity of proving it. First, we turn it into a
sequence of finite statements. For eachm > n let PHPmn
stand for the statement, “You cannot fitm pigeons into
n holes if each pigeon needs a hole to itself.” A conve-
nient way of formulating this mathematically is to use
an m×n matrix of Boolean variables xij . This can be
used to describe a hypothetical mapping if we inter-
pret xij = 1 to mean that the ith pigeon is placed in
the jth hole. The pigeonhole principle states that either
some pigeon is not mapped anywhere or two pigeons
are mapped to the same hole. In terms of the matrix,
this says that either there is some i such that xij = 0
for every j, or we can find i ≠ i′ and j such that
xij = xi′j = 1.5 These conditions are easily express-
ible as a propositional formula in the variables xij (that
is, an expression built out of the xij using “∧”, “∨”,
and “¬”), and the pigeonhole principle is the state-
ment that this formula is a tautology : that is, it is sat-
isfied by every assignment of true or false values (or
equivalently 1 or 0) to the variables.

How can we prove this tautology to someone who can
read our proof and perform simple, efficient compu-
tations? Here are a few possibilities which differ from
each other in a number of ways.

• The standard proof uses symmetry and induction.
It reduces PHPmn to PHPm−1

n−1 by saying that once the
first pigeon has been assigned a hole, the task that
is left is to place the remaining n− 1 pigeons into
m− 1 holes. Notice that these holes may not be
the first n− 1 holes, so for such an argument to
become a formal proof one must argue by sym-
metry. Our proof system must be strong enough
to capture this symmetry (which amounts to a
renaming of the variables), and it must also allow
us to use induction.

• At the other extreme, one can obtain a trivial proof,
which requires only “mechanical reasoning,” by
simply presenting an evaluation of the formula for
every possible input. As there are mn variables,
the proof length is 2mn, which is exponential in
the size of the formula describing the assertion
PHPmn .

5. Note that we have not ruled out the possibility that some pigeon
is mapped to more than one hole—we could do so, but the principle
remains valid even if we do not.

• A more sophisticated (“mechanical”) proof uses
counting. Assume for a contradiction that there
exists an assignment of truth values to the vari-
ables that falsifies the formula. Since each pigeon
is mapped to some hole, the assignment must
have at least m 1s. But since each hole contains
at most one pigeon, the assignment must contain
at most n 1s. Therefore, m � n, which contra-
dicts the assumption thatm > n. For this proof to
be admissible, our system has to allow inferences
powerful enough to do counting of this kind.

The lesson from the above example is that proofs
and their length depend on the underlying proof sys-
tem. But what exactly is a proof system, and how do we
measure the complexity of a proof? It is to this ques-
tion that we now turn. Here are the salient features that
we expect from any such system.

Completeness: every true statement has a proof.
Soundness: no false statement has a proof.
Verification efficiency: given a mathematical state-

ment T and a purported proof for it π , it can be eas-
ily checked whether π does indeed prove T in the
system.6

Actually, even the first two requirements are too
much to expect from strong proof systems, as gödel
[VI.92] famously proved in his incompleteness theo-
rem [V.18]. However, we are considering just proposi-
tional formulas with finite proofs, and for these there
are proof systems. In this context, the above conditions
are concisely captured by the following definition.

Definition. A (propositional) proof system is a poly-
nomial-time Turing machine M with the property that
T is a tautology if and only if there exists a (“proof ”) π
such that M(π,T) = 1.7

As a simple example, consider the following “truth-
table” proof system MTT, which corresponds to the
trivial proof in the foregoing example. Basically, this
machine will declare a formula T to be a theorem if
evaluating T on each possible input makes T true. A
bit more formally, for any formula T in n variables,
MTT(π, T) = 1 if and only if π is a list of all binary

6. Here, efficiency of the verification procedure refers to its running
time measured in terms of the total length of the alleged theorem and
proof. In contrast, in sections 3.2 and 6.3, we consider the running time
as a function of the length of the alleged theorem (or, alternatively,
allow only proofs of a priori bounded length).

7. In agreement with standard formalisms (see below), the proof is
seen as coming before the theorem.
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strings of length n, and for each such string σ we have
T(σ) = 1.

Notice that MTT runs in polynomial time in its input
length. The point, of course, is that for typical interest-
ing formulas such as the pigeonhole principle, whose
size depends polynomially on the number of variables,
the input length is extremely long, since the proof π
has length exponential in the length of the formula.
This leads us to the definition of the efficiency (or com-
plexity) of a general propositional proof system M : it
is the length of the shortest proof of each tautology.
That is, if T is a tautology, we define its complexity
LM(T) to be the length of the shortest string π such
thatM(π,T) = 1. We then measure the efficiency of the
proof system itself (i.e.,M) by defining LM(n) to be the
maximum of LM(T) over all tautologies T of length n.

Is there a propositional proof system which has
polynomial-size proofs for all tautologies? The follow-
ing theorem provides a basic connection between this
question and computational complexity, and in partic-
ular with the major question of section 3.4. It follows
quite easily from the NP-completeness of SAT, the prob-
lem of satisfying propositional formulas (and the fact
that a formula is satisfiable if and only if its negation
is not a tautology).

Theorem. There exists a proof systemM such that LM
is polynomial if and only ifNP = coNP.

To start attacking this formidable problem it makes
sense to begin by considering simpler (and thus
weaker) proof systems, before moving on to more and
more complex ones. Moreover, there are tautologies
and proof systems that naturally suggest themselves
as good ones to study, systems in which certain basic
forms of reasoning are allowed while others are not. In
the rest of this section we shall focus on some of these
restricted proof systems.

If a typical proof in a branch of mathematics such as
algebra, geometry, or logic is written out in full, then it
starts with some axioms and proceeds to a conclusion
using a set of very simple and transparent deduction
rules. Each line of the proof consists of a mathemat-
ical statement, or formula, which follows from earlier
statements by means of one of these rules.8 This deduc-
tive approach goes right back to euclid [VI.2] and per-
fectly fits our DAG model: the inputs can be labeled

8. General proof systems as we defined them can also be adapted to
this formalism, by considering a deduction rule that corresponds to a
single step of the machineM . However, the deduction rules considered
below are even simpler, and more importantly they are natural.

by the axioms, every other vertex is assigned a deduc-
tion rule, and the statement associated with each vertex
is the statement that follows from its predecessors by
means of the specified rule.

There is an equivalent and somewhat more conve-
nient view of (simple) proof systems, namely as (sim-
ple) refutation systems. These encapsulate the idea of
a proof by contradiction. We assume the negation of
the tautology T we wish to prove, and use the rules of
the system to derive a contradiction—that is, a state-
ment that is identically FALSE. It is often easy to write
the negation of a tautology T as a conjunction of mutu-
ally contradicting formulas (e.g., a set of clauses with
no common truth assignment, a system of polynomials
with no common root, a collection of half-spaces with
empty intersection, etc). Assuming, for a contradiction,
that all these are simultaneously satisfiable by some σ
(which could be an assignment, root, or point, respec-
tively), we derive more and more formulas that must
also be satisfied by σ because of the soundness of the
derivation rules, until eventually we reach a blatant con-
tradiction (such as ¬x ∧ x, 1 = 0, or 1 < 0, respec-
tively). We will use the refutation viewpoint through-
out, and often exchange “tautology” and its negation,
“contradiction.”

So we turn to studying the proof lengthLΠ(T) of tau-
tologies T in proof systems Π. The first observation,
which reveals a major difference between proof com-
plexity and circuit complexity, is that the trivial count-
ing argument fails. The reason is that, while the number
of functions on n bits is 22n , there are at most 2n tau-
tologies of length n. Thus, in proof complexity, even
the existence of a hard tautology, let alone an explicit
one, would be of interest. As we shall see, however,
most known lower bounds (in restricted proof systems)
apply to very natural tautologies.

5.3.1 Logical Proof Systems

The proof systems in this section will all have lines that
are Boolean formulas. The differences between the sys-
tems will be in the structural limits that are imposed
on these formulas.

The most basic proof system, called the Frege system,
puts no restriction on the formulas manipulated by the
proof. It has just one derivation rule, called the cut rule:
from the two formulas (A∨C), (B∨¬C) we can derive
A ∨ B. Different basic books in logic have slightly dif-
ferent ways of describing this system. However, from
a computational perspective they are all equivalent, in
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the sense that (up to polynomial factors) the length of
the shortest proofs is independent of which variant you
pick.

The counting-based proof of the pigeonhole prin-
ciple can be carried out efficiently in the Frege sys-
tem (but this is not a trivial fact), which tells us that
LFrege(PHPn+1

n ) is polynomial in n. The major open
problem in proof complexity is to find any tautology
(as usual we mean a family of tautologies) that has no
polynomial-size proof in the Frege system.

Open problem. Establish super-polynomial lower
bounds for the Frege system.

As it seems to be very hard to find lower bounds
for Frege systems, we turn to natural and interesting
subsystems. The most widely studied system is called
resolution. Its importance stems from its use by most
propositional (as well as first-order) automated theo-
rem provers.9 The formulas allowed in resolution refu-
tations are simply clauses (disjunctions), so the cut rule
defined earlier simplifies to the resolution rule: from
two clauses (A ∨ x), (B ∨ ¬x) we can derive A ∨ B,
where A, B are clauses and x is a variable.

A major result of proof complexity is that proving the
pigeonhole principle is hard in the resolution system.

Theorem. Lresolution(PHPn+1
n ) = 2Ω(n)

The proof of this result is related in an interest-
ing way to the circuit lower bounds for the parity and
majority functions discussed in section 5.1.3.

5.3.2 Algebraic Proof Systems

Just as a natural contradiction in the Boolean set-
ting is an unsatisfiable collection of clauses, a natu-
ral contradiction in the algebraic setting is a system of
polynomials without a common root.10PUP: Tim thinks

the footnote called
here is relevant.
OK?

How would you prove that the system {f1 = xy +
1, f2 = 2yz − 1, f3 = xz + 1, f4 = x + y + z − 1}
has no common root (over any field)? A quick way is to

9. These are algorithms that attempt to generate proofs for given
tautologies. These tautologies may be boring mathematically but of
great practical importance, such as the statement that a computer
chip or communication protocol functions correctly. Interestingly,
popular applications also include a variety of theorems that are
mathematically interesting, such as results in basic number theory.

10. Moreover, polynomials can easily encode propositional formu-
las. First, one puts such a formula into conjunctive normal form, or
CNF: that is, one expresses it as the conjunction of a collection of
clauses. CNF formulas can easily be converted to a system of polyno-
mials, one per clause, over any field. One often adds the polynomials
x2
i − xi, which ensure Boolean values.

observe that zf1 − xf2 +yf3 − f4 ≡ 1. Clearly, a com-
mon root of the system would be a root of this linear
combination, which is a contradiction because the con-
stant 1 function has no root. Can we always use such
proofs?

A famous theorem, hilbert’s nullstellensatz
[V.20], tells us that the answer is yes. It states that if
f1, f2, . . . , fn are polynomials (with any number of vari-
ables) that have no common root, then there exist poly-
nomials g1, . . . , gn such that

∑
i gifi ≡ 1. How efficient

are such proofs? Can we always have proofs (i.e., gis) of
length polynomial in the description of the fis? Unfor-
tunately not: the shortest explicit description of the gis
may be of exponential length, though proving this fact
is highly nontrivial.

Another natural proof system, which is related both
to Hilbert’s Nullstellensatz and to computations of
Gröbner bases in symbolic algebra programs, is poly-
nomial calculus (PC). The lines in this system are poly-
nomials, represented explicitly by all their coefficients,
and it has two deduction rules: for any two polyno-
mials g, h, we can derive their sum, g +h, and for any
polynomial g and any variable xi, we can derive the
product xig. PC is known to be exponentially stronger
than the proof system underlying Hilbert’s Nullstel-
lensatz. However, strong size lower bounds (obtained
from degree lower bounds) are known for this system
as well. For example, encoding the pigeonhole principle
as a contradicting set of constant degree polynomials,
we have the following theorem.

Theorem. For every n and everym > n, LPC(PHPmn ) �
2n/2, over every field.

5.3.3 Geometric Proof Systems

Yet another natural way to represent contradictions is
by sets of regions in space that have empty intersection.
For instance, many important problems in combinato-
rial optimization concern systems of linear inequalities
in Rn and their relationship to the Boolean cube {0,1}n.
Each inequality defines a half-space, and the problem
is to decide whether the intersection of all these half-
spaces contains a point with coordinates all equal to 0
or 1.

The most basic proof system is called Cutting

Planes (CP). A line of a proof is a linear inequality with
integer coefficients. The deduction rules are that you
can add two inequalities, and, less obviously, that you
can divide the coefficients by a constant and do some
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rounding, taking advantage of the fact that the points

of the solution space have integer coordinates.

While PHPmn is easy in this system, exponential lower

bounds are known for other tautologies. They are

obtained from the monotone circuit lower bounds of

section 5.1.2.

6 Randomized Computation

Up to now, the computations we have considered have

all been deterministic : that is, the output is completely

determined by the inputs and the rules governing the

computations. In this section we shall continue to focus

on polynomial-time computations, but now we shall

allow our computing devices to make probabilistic, or

randomized, choices.

6.1 Randomized Algorithms

A famous example of such an algorithm is one that tests

for primality. If N is the positive integer to be tested,

then the algorithm randomly chooses k numbers less

than N , and repeatedly performs a simple test using

each of the chosen numbers in turn. If N is composite,

then the probability that the test detects this is at least
1
4 . Therefore, the probability that the algorithm fails

to detect it for any of the k numbers is at most ( 3
4 )
k,

which is very small indeed for even modestly large val-

ues of k. Details of how the test works can be found in

computational number theory [IV.3 §2].

It is not hard to give a rigorous definition of a ran-

domized Turing machine, but we shall not need the

precise details here. The main point is that if M is a

randomized Turing machine and x is an input string,

thenM(x) is not a fixed output string, but rather a ran-

dom variable [III.73 §4]. If, for example, the output is

a single bit, then we shall make statements such as,

“The probability that M(x) = 1 is p.” The actual value

of M(x) will depend on the particular random choices

made by the machine M when it runs.

If we are using a randomized algorithm to solve a

decision problem S, then we would likeM(x) to give the

correct answer with high probability whatever the input

x. (The correct answer is 1 if x ∈ S and 0 otherwise.)

This leads to the definition of the complexity classBPP
(for bounded error, probabilistic polynomial time).

Definition (BPP). A Boolean function f is in BPP if

there exists a probabilistic polynomial-time machineM
such that Pr[M(x) ≠ f(x)] � 1

3 for every x ∈ I.

The error bound 1
3 is arbitrary, and can be made

much smaller if one runs the algorithm several times
and takes a majority vote of the answers. (We stress
that the random moves in the various runs are inde-
pendent.) Standard probabilistic estimates show that,
for any k, the error probability can be reduced to 2−k

if one runs the algorithm O(k) times.
Because randomness is believed to be “available” and

an exponentially small chance of failure is of no prac-
tical importance, the class BPP is in many ways a
better model for efficient computation than P, which
it trivially contains. Let us mention some relations of
this class BPP to other complexity classes we have
seen already. It is easy to see that BPP ⊆ EXP; if
the machine tosses m coins, we could enumerate all
2m possible outcomes of these coin tosses and take a
majority vote. The relation ofBPP toNP is not known,
but it is known that if P = NP then P = BPP as
well. Finally, nonuniformity can replace randomness:
every function in BPP has polynomial-size circuits.
But the fundamental question is whether or not ran-
domized algorithms are genuinely more powerful than
deterministic ones (for decision problems).

Open problem. Does P = BPP?

As we mentioned earlier, a deterministic polynomial-
time algorithm was recently discovered for primality
testing, though in practice the randomized algorithm
is much more efficient. However, there are quite a few
problems11 that are known to be inBPP but not known
to be in P. Indeed, for most of these problems random-
ness gives an exponential improvement over the best
deterministic algorithms that are known. Is this evi-
dence that randomness increases our power to solve
decision problems? Surprisingly, a completely different
kind of evidence (discussed in section 7.1) suggests the
opposite, namely that P = BPP.

6.2 Counting at Random

One important general question regarding NP search
problems is that of determining how many solutions a
particular instance has. This includes a host of inter-
esting problems from various disciplines: for example,
counting the number of solutions to a system of mul-
tivariate polynomials, counting the number of perfect
matchings of a graph (or, equivalently, computing the
permanent of a {0,1} matrix), computing the volume

11. A central example is Identity Testing: given an arithmetic
circuit over Q, decide if it computes the identically zero polynomial.
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of a polytope (defined by linear inequalities) in high
dimension (see [I.4 §9] for more about this problem),
computing various parameters of physical systems, etc.

For most of these problems, even approximate count-
ing is good enough. Clearly, an approximate count of
the number of solutions will in particular allow one to
determine whether a solution exists at all. For exam-
ple, if one knows the approximate number of satisfy-
ing assignments for a given propositional formula, then
one certainly knows whether this number is at least
1. This tells us whether the formula is satisfiable and
solves an instance of SAT. Interestingly, the converse is
also true: if one can solve SAT, then one can use this
ability to produce a randomized algorithm for approx-
imating the number of solutions, to within any con-
stant factor greater than 1. More precisely, there is an
efficient probabilistic algorithm that can produce such
an approximate count if it is allowed to make free use
of a subroutine that solves SAT instances. It turns out
that analogous statements holds for all NP-complete
problems.

For some problems, approximate counting can be
done without the SAT subroutine. There are poly-
nomial-time probabilistic algorithms for approximat-
ing the permanent of positive matrices, approximating
the volume of polytopes, and more. These algorithms
use a connection between approximate counting and
another natural algorithmic problem: that of randomly
generating a solution in such a way that all correct solu-
tions are equally likely to occur. The basic technique is
to construct a Markov chain on the space of solutions
with uniform stationary distribution and to analyze the
rate of convergence of the chain to this distribution (see
Hochbaum 1996, chapter 12).

What about exact counting? It is believed that this
cannot be done by an efficient probabilistic algorithm,
even if it can make free use of a SAT subroutine. A
remarkable “complete” problem for this class of count-
ing problems is counting the number of perfect match-
ings in a graph. What is surprising about it is that there
is an efficient algorithm for finding a perfect matching
in a graph, if one exists, and yet counting such match-
ings is complete in the sense that an efficient algorithm
for doing this can be turned into an efficient algorithm
for the counting version of any other problem inNP.

6.3 Probabilistic Proof Systems

As we saw earlier, proof systems are defined in terms
of their verification procedure. In section 5.3, we con-
sidered verification procedures that run in time that

is polynomial in the combined length of the assertion

and its alleged proof. Here (as in section 3.2), we restrict

our attention to verification procedures that run in time

that is polynomial in the length of the assertion. Such

proof systems are related to the classNP, since sets S
in NP are those with the following property: there is

a polynomial-time algorithm M such that x belongs to

S if and only if there exists a string y of length poly-

nomial in x with M(x,y) = 1. In other words, we can

regard y as a concise proof (verifiable by M) that x
belongs to S.

What if we now allow M to be a randomized algo-

rithm? Then we obtain a probabilistic proof system. Such

systems are not put forward as a substitute for the

notion of mathematical proof, but rather as an inter-

esting extension of the notion of efficient verifiability

in situations where a tiny amount of error can be tol-

erated. As we shall see, various types of probabilistic

proof systems yield enormous advantages in computer

science. We shall exhibit three remarkable manifesta-

tions of this. The first shows that we can use it to prove

many more theorems, the second that we can do so

without revealing anything in our proof, and the third

that alleged proofs can be written in such a way that

verifiers need only look at a tiny handful of bits in order

to decide whether they are correct.

6.3.1 Interactive Proof Systems

Recall the graph isomorphism problem from section 4.

Given two graphs G and H, it asks whether H is

obtained fromG by simply permuting the vertices. This

problem is clearly in NP, since one can just exhibit a

permutation that transforms G into H.

We can look at this as a protocol involving a ver-

ifier, who can do polynomial-time computations, and

a prover, who has unlimited computational resources.

The verifier wishes to be convinced that G and H are

isomorphic, so the prover sends a permutation and the

verifier checks (in polynomial time) that it is valid.

Suppose that we now look at the graph nonisomor-

phism problem. Is there any way for a prover to con-

vince a verifier that two graphs G and H are not iso-

morphic? Obviously there will be for some pairs of

graphs (G,H), but there does not seem to be a system-

atic method of demonstration that works for all noni-

somorphic pairs. Yet, remarkably, if we allow random-
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ness and interaction, then there is a simple way for the
verifier to be convinced.12

Here is how it works. The verifier chooses at random
one of the two graphs G and H, randomly permutes its
vertices, and sends it to the prover. The prover then
sends back a message saying whether this permuted
graph is G or H.

If G and H are not isomorphic, then the permuted
graph is isomorphic to exactly one of G and H, so the
prover can determine which and thereby get the right
answer. But if G and H are isomorphic, then the prover
has no way of knowing which graph has been permuted,
and therefore has a 50% chance of getting the right
answer.

So now, to become convinced, the verifier repeats the
procedure k times. If the graphs are not isomorphic,
the prover will always get the right answer. If they are
isomorphic, then with probability 1−2−k the prover will
make at least one mistake. If k is large, this becomes a
near-certainty, so if the prover never makes a mistake,
then the verifier will be convinced that the graphs are
not isomorphic.

That was an example of an interactive proof system.
Given a decision problem S, an interactive proof system
for S is a protocol involving an interacting verifier and
prover, with the property that if x ∈ S then the veri-
fier will eventually output 1, while if x ∉ S then there
is a probability of at least 1

2 that the verifier will out-
put 0. As in the example, the verifier can then repeat
the protocol several times, thereby replacing 1

2 by a
probability very close to 1. Also as in the example, the
verifier is allowed polynomial-time randomized com-
putations and the prover has unlimited computational
power. Finally, the number of rounds of the interaction
must be at most polynomial in the size of the input
x, so that the entire verification procedure is efficient.
The class of decision problems for which an interactive
proof system exists is denoted IP.

One can view the protocol as an “interrogation” by a
persistent student, who asks the teacher “tough” ques-
tions in order to be convinced of correctness. Inter-
estingly, it turns out that asking “tough” questions is
no better than asking random questions! That is, every
set that has an interactive proof system also has one
in which the verifier only asks random questions that
are uniformly and independently distributed in some
predetermined set.

12. We note that allowing interaction without randomness does
not yield any gain; that is, such interactive (but deterministic) proof
systems are exactly as powerful asNP.

It turns out that for every decision problem S that
belongs to NP there is an interactive proof system
that can be used to demonstrate that x �∈ S. It works
by demonstrating the nonexistence of an NP-proof that
x is in S. The proof of this result, which tells us
that coNP ⊂ IP, involves an arithmetization of
Boolean formulas. Furthermore, a complete characteri-
zation of the power of interactive proofs is known. Let
PSPACE be the class of all problems solvable in poly-
nomial space (or memory). Although solving problems
in PSPACE may require exponential time, they all have
interactive proofs.

Theorem. IP = PSPACE.

While it is not known if NP ≠ PSPACE, it is
widely believed to be the case, and so it seems that
interactive proofs are much more powerful than stan-
dard noninteractive and deterministic proofs (that is,
NP-proofs).

6.3.2 Zero-Knowledge Proof Systems

A typical mathematical proof not only guarantees the
truth of a statement, but also teaches you something
about it. In this section we shall discuss a kind of proof
that teaches you absolutely nothing, beyond the fact
that the statement is true. Since this seems impossible,
let us give an example.

Suppose a prover wants to convince you that a cer-
tain map (in the geography sense) can be colored with
three colors in such a way that no two adjacent regions
have the same color. The most obvious approach is
actually to show you a coloring, but this teaches you
something—a particular coloring—which you would
not otherwise be able to find easily, even knowing that
it existed (since this search problem is NP-complete).
Is there any way the prover can convince you without
giving you this extra knowledge?

Here is a way of doing it. Given any coloring of the
map, with red, blue, and green, say, one can produce
other colorings by permuting the colors: for instance,
one might change all the red regions into blue and all
the blue ones into red. Let the prover take six copies of
the map and color them in six different ways, one for
each permutation of the three colors. Now we have a
sequence of rounds. In each round the prover randomly
chooses one of the six colored maps, you randomly
choose a pair of adjacent regions, and the prover allows
you to check that they have different colors, but does
not allow you to look at the rest of the map. If the graph
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cannot be properly colored with three colors and the

prover tries to cheat, then after enough rounds (a poly-

nomial number suffices) you will discover the deception

by hitting upon two adjacent regions that have been

given the same color (or perhaps one of them has not

been colored at all). However, at each stage, all you learn

about the two regions you look at is that they have dif-

ferent colors—you have no idea what those colors are

in the coloring the prover started with. So you end up

with no knowledge beyond the fact that the map can

(almost certainly) be properly colored.

Similarly, a “zero-knowledge proof” that a certain for-

mula is satisfiable should not reveal a satisfying assign-

ment, or even any partial information (such as the truth

value of one of the variables), or irrelevant information

that is hard to compute (such as how to factorize an

integer that happens to be encoded by the formula). In

general, a zero-knowledge proof is an interactive proof

that does not help you (the verifier) to make any com-

putations that you were not able to make efficiently

already.

Which theorems have zero-knowledge proofs? Obvi-

ously, if the verifier can determine the answer with no

help, then the theorem has a trivial zero-knowledge

proof, in which the prover does nothing at all. Thus,

any set in BPP has a zero-knowledge proof. The zero-

knowledge proof outlined for 3-colorability depended

on noncomputational procedures, such as the prover

watching carefully to make sure that you just look at

two regions. Implementing the protocol in full on a

computer takes some care, but a method of doing it has

been devised, which depends on the hardness of inte-

ger factorization. The result is a zero-knowledge proof

system. Combining this with the NP-completeness of 3-

colorability, one can prove that zero-knowledge proof

systems exist for every set in NP. More generally, we

have the following theorem.

Theorem. If one-way functions exist (these are defined

in section 7), then every set in NP has a zero-

knowledge proof system. Moreover, this proof system

can be efficiently derived from the standardNP proof.

This theorem has a dramatic effect on the design of

cryptographic protocols (see section 7.2). Furthermore,

under the same assumption, an even stronger result

holds: any set that has an interactive proof system also

has a zero-knowledge interactive proof system.

6.3.3 Probabilistically Checkable Proofs

In this section we turn to one of the deepest and most
surprising discoveries about the power of probabilistic
proofs. Here, as in the case of standard (noninteractive)
proofs, the verifier receives a complete written proof.
The catch is that the verifier may read only a very small,
randomly selected, part of this proof.

A good analogy is to imagine that you are refer-
eeing a paper and trying to decide the correctness
of a long proof by reading just a few random lines.
If the proof has a single (but crucial) mistake, then
you will probably not read the relevant line so you
will not notice the mistake. But this is true only for
the “natural” way of writing down proofs. It turns
out that there are ways of writing proofs “robustly”
(with a certain amount of redundancy) so that any mis-
take will manifest itself in many different places. (This
may remind you of error-correcting codes [VII.6].
There is indeed an important analogy here, and cross-
fertilization between the two areas has been very sig-
nificant.) Such a robust proof system is called a PCP,
which stands for “probabilistically checkable proof.”

Loosely speaking, a PCP system for a set S con-
sists of a probabilistic polynomial-time verifier who has
access to individual bits in a string that represents the
(alleged) proof. The verifier tosses coins and, depend-
ing on the outcome, accesses only a constant number of
the bits in the alleged proof. It should output 1 when-
ever x belongs to S (and an adequate proof is pro-
vided), while if x does not belong to S, then (no matter
which false proof is provided) it should output 0 with
probability at least 1

2 .

Theorem (the PCP theorem). Every set in NP has a
PCP system. Furthermore, there exists a polynomial-
time procedure for converting any NP-proof to the
corresponding PCP.

In particular, it follows that the (robust) PCP has
length that is polynomial in the length of the input. In
fact, this PCP is itself an NP-proof.13

On top of its direct conceptual appeal, the PCP theo-
rem (and its variants) has a major application to com-
plexity theory: it allows us to prove that several nat-
ural approximation problems are hard (assuming that
P ≠NP).

13. Here we take advantage of the fact that PCP systems are defined
to be error free when x ∈ S and the fact that the verifier in the PCP
theorem uses only a logarithmic number of coin tosses, so one can
efficiently check all possible outcomes.
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For example, suppose we are givenn linear equations
over the two-element field F2. If we choose random val-
ues for the variables, then any given equation will be
satisfied with probability 1

2 , so it is clearly possible to
satisfy at least half the equations. Also, by linear alge-
bra one can quickly determine whether it is possible
to satisfy all the equations simultaneously. However, it
turns out that if P ≠NP then there is no polynomial-
time algorithm that will output 1 if 99% of the equations
can be satisfied simultaneously and 0 if it is impossible
to satisfy more than 51% of them. That is, even approx-
imately determining the number of equations that can
be satisfied simultaneously is hard.

To see the connection between such approximation
problems and PCP, note that a PCP system for any set S
gives rise to an optimization problem as follows. Sup-
pose we are given an input x. Then for any alleged
proof that x ∈ S, which is presented as a string y ,
there is a certain probability that the verifier accepts y .
What is the maximum of this probability over all alleged
proofs y? If we could answer this question to within a
factor of 2, then we would be able to tell whether x
belongs to S. Hence, if S is an NP-complete decision
problem, the PCP theorem implies that this optimiza-
tion problem is NP-hard (that is, at least as hard as any
problem inNP). One can now use reductions, capital-
izing on the fact that the verifier reads only a constant
number of bits in the alleged proof, to obtain similar
results for many natural optimization problems.

This is of great theoretical interest, but some practi-
cal disappointment: in many cases, approximate solu-
tions would have been just as useful as exact ones, but
they turn out to be just as hard to obtain.

6.4 Weak Random Sources

We now turn to the question of how to obtain the
randomness for all the probabilistic computations dis-
cussed in this section. Although randomness seems to
be present in the world (e.g., the perceived randomness
in the weather, Geiger counters, Zener diodes, real coin
flips, etc.), it does not seem to be in the perfect form
of the unbiased and independent coin tosses we have
postulated. If we actually want to use randomized pro-
cedures, then we need to convert weak sources of ran-
domness into almost perfect ones, because this is what
probabilistic computations were defined to work with.

Algorithms that convert imperfect randomness into
a stream of almost completely independent and unbi-
ased bits are called randomness extractors, and near

optimal ones have been constructed. This large body
of work is surveyed in Shaltiel (2002), for example. The
questions that arise turn out to be related to certain
types of pseudorandom generators (see section 7.1) as
well as to combinatorics and coding theory.

To illustrate the nature of the problem of random-
ness extraction, we consider three relatively simple
models of weak random sources. Imagine first that you
are in possession of a biased coin that has probability
p of coming up Heads, where 1

3 < p <
2
3 , but you do

not know the bias. Can you produce a uniformly dis-
tributed binary value using such a coin? A simple solu-
tion consists of tossing the coin twice, outputting 1 if
the result is Heads followed by Tails and 0 if the result
is Tails followed by Heads, and otherwise continuing
to the next attempt. This way we can generate a per-
fect coin toss by tossing the biased coin an expected
number ((1− p)p)−1 of times.

A more challenging setting arises if you are given n
different biased coins, with unknown biases p1, . . . , pn,
each in the interval ( 1

3 ,
2
3 ), and you are asked to gen-

erate an almost uniformly distributed binary value by
tossing each of these coins exactly once. Here a good
solution consists of tossing all coins and outputting
the parity of the number of Heads. It can be shown
that the outcome will be 1 with a probability that is
exponentially (in n) close to 1

2 .

Finally, consider a situation in which the devil
designs the coins in the latter example, but does so
after seeing the outcome of previous coin tosses. That
is, you are tossing n different coins, but the bias of
the ith coin (i.e., pi) may depend on the outcome of
the previous i − 1 coin tosses (but still lies between 1

3
and 2

3 ). It can be shown that in this case you cannot
do better than simply outputting the outcome of the
first coin. However, if you are allowed to use just a few
genuinely random bits, then you can do much better:
given just O(log(n/ε)) perfectly random coin tosses,
together with the n biased coin tosses, you can output
a string of length proportional to n that is “ε-close” to
being uniformly distributed.

7 The Bright Side of Hardness

If P ≠ NP, as almost everybody believes, then there
are computational problems of great interest that are
inherently intractable. This is bad news, but there is a
bright side to the matter: computational hardness has
many fascinating conceptual consequences as well as
important practical applications.
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The hardness assumption we shall make is the exis-
tence of one-way functions; namely, functions that are
easy to compute but hard to invert. For example, the
product of two integers is of course easy to compute,
but its “inverse”—factoring the resulting product—is
the integer factorization problem, widely believed to be
intractable. For our purposes, we shall need the inverse
to be hard not just in the worst case, but hard on aver-
age. For example, for factoring it is believed that the
product of two random primes of length n cannot be
factored in polynomial time, even with some small con-
stant probability of success. In general, we shall say
that a function f : In → In is a one-way function if
it is easy to evaluate (i.e., there exists a polynomial-
time algorithm that returns f(x) when you input x)
but hard to invert in the following average-case sense:
any polynomial-time algorithm M will fail to invert f
correctly for at least half the input strings x ∈ In. That
is, for at least half the strings x, if you input y = f(x)
intoM , then the output will not be a string x′ such that
f(x′) = y .

Do one-way functions exist? It is easy to see that if
P = NP then the answer is no. The converse is an
important open problem: If P ≠NP, does it follow that
one-way functions exist?

Below, we discuss the connections between compu-
tational difficulty (in the form of one-way functions),
and two important computational complexity theories:
the theory of pseudorandomness and the theory of
cryptography.

7.1 Pseudorandomness

What is randomness? When should we say that a mathe-
matical or physical object behaves randomly? These are
fundamental questions that have been thought about
for centuries. When the objects are probability distribu-
tions, onn-bit sequences, say, there is consensus about
one point at least: the uniform distribution (in which
each n-bit string appears with probability 2−n) is “the
most random” one. More generally, it seems reasonable
to say that any distribution that is statistically close
to the uniform distribution should also be regarded as
having “good randomness” properties.14

One of the great insights of computational com-
plexity theory is that there are distributions that are
extremely far from the uniform distribution, but which

14. Two probability distributions p1 and p2 are statistically close if
they assign roughly the same probabilities: that is, if p1(E) ≈ p2(E)
for every event E.

are nevertheless “effectively random.” The reason is

that they are computationally indistinguishable from

the uniform distribution.

Let us try to formalize this idea. Suppose we can ran-

domly samplen-bit strings chosen according to a prob-

ability distribution Pn, and suppose that we want to

know whether Pn is in fact the uniform distribution.

One way to try to tell is to fix an efficiently computable

function f : In → {0,1} and consider two experiments:

one of the probability that f(x) = 1 when x is chosen

with probability Pn(x), and the other of the probability

that f(x) = 1 when x is chosen with the uniform prob-

ability 2−n. If there is a noticeable discrepancy between

these two probabilities, then certainly Pn is not uni-

form. However, the converse is not true: it may be that

Pn is far from uniform, but no efficiently computable

function f can help us detect this. In that case, we say

that Pn is pseudorandom.

This definition is both general and pragmatic. It

refers to any efficient procedure that may be employed

in an attempt to tell two distributions apart. And it is

pragmatic because for any practical purpose a pseudo-

random distribution is as good as a random one, for

reasons we shall now explain.

Notice first that the behavior of any efficient prob-

abilistic algorithm will be virtually unaffected if we

replace its random source with a pseudorandom

one. Why? Because if its behavior changed, then the

algorithm itself would have efficiently distinguished

between the random and pseudorandom sources, con-

tradicting the definition of pseudorandomness!

Replacing uniform distributions by pseudorandom

distributions is beneficial provided we can generate

the latter using fewer resources. In this context, the

resource we are trying hardest to save on is random-

ness. Suppose we have an efficiently computable func-

tion φ : Im → In and suppose that n > m. Then we

can define a probability distribution on n-bit strings

by choosing a random m-bit string x and computing

φ(x). If this distribution is pseudorandom, then φ is

called a pseudorandom generator. The random string x
is called the seed, and if the generator stretches m-bit

long seeds into strings of lengthn = 	(m), then we call

the function 	 the stretch measure of the generator. The

larger the stretch measure, the better the generator is

considered to be.

Of course, all this raises an important question: Do

pseudorandom generators exist? It is to this question

that we now turn.
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7.1.1 Hardness versus Randomness

There is an obvious connection between pseudo-
random generators and computational difficulty, since
the main property of a pseudorandom generator is that
its output should be computationally hard to distin-
guish from a purely random string, even though the
two distributions are significantly different. However,
there is a much less obvious connection as well.

Theorem. Pseudorandom generators exist if and only
if one-way functions exist. Furthermore, if pseudo-
random generators exist then they exist for any stretch
measure that is a polynomial.15

This theorem converts computational difficulty, or
hardness, into pseudorandomness, and vice versa. Fur-
thermore, its proof links computational indistinguisha-
bility to computational unpredictability, hinting that
the computational difficulty is linked to randomness,
or at least to the appearance of randomness.

The existence of pseudorandom generators has the
remarkable consequence that probabilistic algorithms
can be partially or even wholly derandomized. The basic
idea is this. Suppose you have a probabilistic algorithm
that computes a function f and requires nc random
bits (where n denotes the length of the input). Suppose
that this algorithm outputs f(x) with probability at
least 2

3 . If you replace the random bits with nc pseudo-
random bits, generated from a seed of sizem, then the
behavior of the algorithm will hardly be affected. There-
fore, ifm is small, then you can do the same computa-
tion with only a small amount of randomness. If m is
as small as O(logn), then it becomes feasible to check
through all possible seeds. For close to two thirds of
these, the algorithm outputs f(x). But this means we
can compute f(x) deterministically and efficiently by
taking a majority vote!

Can this actually be done? Can we use hardness
to achieve the ultimate derandomization result, that
BPP = P? The theory has developed to give essen-
tially optimal answers to this question. Notice that if
we wish to achieve an exponential stretch measure, we
do not mind if the algorithm that performs the stretch
takes exponential time (in the length of the seed).
Such pseudorandom generators exist under very plau-
sible hardness assumptions, such as the assumption
that NP-complete problems require exponential-size

15. In other words, if you can achieve a stretch measure 	(m) =
m+1, then you can also achieve a stretch measure of 	(m) =mc for
any c > 1.

Boolean circuits. More generally, we have the following
theorem.

Theorem. If, for some constant ε > 0, S(SAT) > 2εn,
then BPP = P. Moreover, SAT can be replaced by any
problem computable in 2O(n)-time.

7.1.2 Pseudorandom Functions

Pseudorandom generators allow you to generate long
pseudorandom sequences efficiently from short ran-
dom seeds. Pseudorandom functions are even more
powerful: if you are given a random seed of n bits, they
provide you with an efficient way of computing a func-
tion f : In → {0,1} that is computationally indistin-
guishable from a random function. Thus, with just n
bits of randomness, one has efficient access to 2n bits
that appear random. (Note that it is inefficient to scan
through all these bits—what we are given is the ability
to look at any one of them in polynomial time.)

It turns out that pseudorandom functions can be
constructed given any pseudorandom generator, and
that they have many applications (most notably in
cryptography).

7.2 Cryptography

Cryptography has existed for millennia, but whereas
in the past it was focused on one basic problem—
that of providing secret communications—the modern
computational theory of cryptography is interested in
all tasks that involve several agents who each wish to
obtain some information while preserving the secrecy
of other information. An important priority besides pri-
vacy (that is, keeping secrets) is resilience: one would
like guaranteed privacy even if one is not certain that
the other participants are behaving honestly.

A good example to illustrate these difficulties is play-
ing a game of poker over the telephone or e-mail. You
are encouraged to ponder seriously how this might
be done, and realize to what extent standard poker
relies on human vision, physical implements like cards
with opaque backs, etc., to protect privacy and prevent
cheating.

In general, the goal of cryptography is to con-
struct schemes, called protocols, that maintain any
desired functionality (rules, privacy requirements, etc.),
even in the face of malicious attempts to make
these schemes deviate from this functionality. As with
pseudorandomness, there are two key assumptions
underlying the new theory. First, it is assumed that
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all parties, including the malicious adversaries, are
computationally limited. Second, it is assumed that
there are hard functions. Sometimes these are one-way
functions, and sometimes they are yet stronger func-
tions called “trapdoor permutations,” which also exist
if integer factorization is hard.

This goal is an ambitious one, but it has been
achieved. There is a result that says, roughly speaking,
that every functionality can be securely implemented.
This includes highly complex tasks such as playing
poker over the phone, but also very basic ones such as
secure communication, digital signatures (a digital ana-
logue of handwritten signatures), collective coin flip-
ping, auctions, elections, and the famous millionaires’
problem: how can two people interact to determine
who is richer, without either of them learning anything
further about the other’s wealth?

Let us very briefly hint at connections between cryp-
tography and matters that we have already discussed.
First of all, consider the very definition of the central
notion of cryptography: that of a secret. If you have an
n-bit string, then when should we say that it is com-
pletely secret? A natural definition would be that it is
secret if nobody else has any information about it: that
is, from anybody else’s point of view it is equally likely
to be any of the 2n-bit strings. However, in the new com-
putational complexity theory, this is not the definition
taken, since a pseudorandom n-bit string will, for all
practical purposes, be just as secret.

The difference between the two definitions of a secret
is huge. The point of cryptography is not just to have
secrets (that is easy, just select a string at random) but
actually to use them without giving away information.
At first this seems impossible, since any nontrivial use
of a secret n-bit string will cut down the set of pos-
sible strings that it might be, and therefore give away
genuine information. However, if the new probability
distribution over the possible strings (after the infor-
mation has been given away) is pseudorandom, then
this information cannot feasibly be used, since no effi-
cient algorithm can tell the difference between a string
that gives rise to the information you have revealed and
a truly random string.

A famous example of this idea is given by the so-
called public-key encryption schemes, such as RSA,
which are described in detail in mathematics and
cryptography [VII.7] and in Goldreich (2004, chap-
ter 5). In the RSA scheme, if a user, say Alice, wants
to receive messages, she publishes a number N , called
a public key, which is a product of two primes P andQ.

If you know N then you can encrypt any message, but
to decrypt it you need to know P and Q. Thus, if inte-
ger factorization is hard, then only Alice can feasibly
decrypt messages, even though P andQ are completely
determined by N .

The generic problem about using secrets is one in
which there are k parties, and each party has a string of
bits. They are interested in the value of some efficiently
computable function f that depends on all the strings
of bits, but they would like to ascertain this without
giving away any information about their own strings
beyond what follows from the value of f . For example,
in the case of the millionaires’ problem, there are two
parties, each with a string that encodes their wealth. PUP avoiding ‘each

... their’ would
result in
something so
clumsy that Tim
would prefer to
keep things as
they are. OK?

They would like a protocol that provides them with a
single bit that tells them who is richer, but gives them
no information beyond this. The precise formulation
of this condition is an extension of the formulation of
zero-knowledge proofs (presented in section 6.3.2). As
hinted at earlier in this section, assuming the existence
of trapdoor permutations, every such multiparty com-
putation can be performed without yielding anything
beyond the designated outputs.

Finally, we come to the issue of cheating. In the fore-
going discussion, we did not worry about malicious
behavior and focused on what participants may learn
from the transcript of their interaction. But how can a
player, Bob, say, be forced to act “as specified,” when
his actions may depend partly on his secrets, which he
does not want to reveal? The answer is closely related to
zero-knowledge proofs. Essentially, each player whose
turn it is to perform some computation is asked to
prove to the others that he has acted as specified. This
is a (mathematically boring) theorem and the standard
proof is obvious (i.e., revealing all his secrets). But as we
saw in our discussion of zero-knowledge proof systems
in section 6.3.2, if a proof exists, then a zero-knowl-
edge proof can be efficiently derived from it. Thus, Bob
can convince the others of his proper behavior without
revealing anything about his secrets.

8 The Tip of an Iceberg

Even within the topics reviewed above, many important
notions and results have not been discussed, for space
reasons. Furthermore, other important topics and even
wide areas have not been mentioned at all.

The P versus NP question, as well as most of the
discussion so far, focuses on a simplified view of the
goals of (efficient) computations. Specifically, we have
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insisted on efficient procedures that always give the
exact answer. However, in practice one may be con-
tent with less. For example, one may be happy with
an efficient procedure that gives the correct answer
for a large fraction of the instances. This will be use-
ful if all instances are equally interesting, but that is
typically not the case. On the other hand, demand-
ing success under all input distributions gives back
worst-case complexity. Between these two extremes is
a useful and appealing theory of average-case complex-
ity (see Goldreich 1997): one demands that algorithms
succeed with high probability on every possible input
distribution that can be efficiently sampled.

Another possible relaxation is settling for approxi-
mate answers. This can mean many things, and the best
notion of approximation varies from context to context.
For search problems, we may be satisfied with a solu-
tion that is close in some metric [III.58] to being valid
(see Hochbaum (1996) and the mathematics of algo-
rithm design [VII.5]). For decision problems, we might
ask how close the input is (again in some natural met-
ric) to an instance in the set (see Ron 2001). And there
is also approximate counting, which was discussed in
section 6.2.

In this article we have focused on the running time of
procedures. This is arguably the most important com-
plexity measure, but it is not the only one. Another is
the amount of work space consumed during the compu-
tation (see Sipser 1997). Another important issue is the
extent to which a computation can be performed in par-
allel; that is, speeding up the computation by splitting
the work among several computing devices, which are
viewed as components of the same (parallel) machine
and are provided with direct access to the same mem-
ory module. In addition to the parallel time, a funda-
mentally important complexity measure in such a case
is the number of parallel computing devices used (see
Karp and Ramachandran 1990).

Finally, there are several computational models that
we have not discussed here. Models of distributed com-
puting refer to distant computing devices, each given
a local input, which may be viewed as a part of a
global input. In typical studies one wishes to min-
imize the amount of communication between these
devices (and certainly avoid the communication of the
entire input). In addition to measures of communi-
cation complexity, a central issue is asynchrony (see
Attiya and Welch 1998). The communication complex-
ity of two-argument (and many-argument) functions is
a measure of their “complexity” (see Kushilevitz and

Nisan 1996), but in these studies communication pro-
portional to the length of the input is not ruled out
(but rather appears frequently). While being “informa-
tion theoretic” in nature, this model has many connec-
tions to complexity theory. Altogether different types
of computational problems are investigated in the con-
text of computational learning theory (see Kearns and
Vazirani 1994) and of online algorithms (see Borodin
and El-Yaniv 1998). Finally, quantum computation
[III.76] investigates the possibility of using quantum
mechanics to speed up computation (see Kitaev et al.
2002).

9 Concluding Remarks

We hope that this ultra-brief survey conveys the fasci-
nating flavor of the concepts, results, and open prob-
lems that dominate the field of computational complex-
ity. One important feature of the field we did not do
justice to is the remarkable web of (often surprising)
connections between different subareas, and its impact
on progress.

For further details on sections 1–4 the reader is re-
ferred to standard textbooks such as Garey and John-
son (1979) and Sipser (1997). For further details on
sections 5.1–5.3 the reader is referred to Boppana and
Sipser (1990), Strassen (1990), and Beame and Pitassi
(1998), respectively. For further details on sections 6
and 7 the reader is referred to Goldreich (1999) (and
also to Goldreich (2001, 2004)).
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IV.21 Numerical Analysis
Lloyd N. Trefethen

1 The Need for Numerical Computation

Everyone knows that when scientists and engineers
need numerical answers to mathematical problems,
they turn to computers. Nevertheless, there is a wide-
spread misconception about this process.

The power of numbers has been extraordinary. It is
often noted that the scientific revolution was set in
motion when Galileo and others made it a principle
that everything must be measured. Numerical measure-
ments led to physical laws expressed mathematically,
and, in the remarkable cycle whose fruits are all around
us, finer measurements led to refined laws, which in
turn led to better technology and still finer measure-
ments. The day has long since passed when an advance

in the physical sciences could be achieved, or a signifi-
cant engineering product developed, without numerical
mathematics.

Computers certainly play a part in this story, yet
there is a misunderstanding about what their role is.
Many people imagine that scientists and mathemati-
cians generate formulas, and then, by inserting num-
bers into these formulas, computers grind out the nec-
essary results. The reality is nothing like this. What
really goes on is a far more interesting process of exe-
cution of algorithms. In most cases the job could not
be done even in principle by formulas, for most mathe-
matical problems cannot be solved by a finite sequence
of elementary operations. What happens instead is
that fast algorithms quickly converge to “approximate”
answers that are accurate to three or ten digits of pre-
cision, or a hundred. For a scientific or engineering
application, such an answer may be as good as exact.

We can illustrate the complexities of exact versus
approximate solutions by an elementary example. Sup-
pose we have one polynomial of degree 4,

p(z) = c0 + c1z + c2z2 + c3z3 + c4z4,

and another of degree 5,

q(z) = d0 + d1z + d2z2 + d3z3 + d4z4 + d5z5.

It is well-known that there is an explicit formula that
expresses the roots of p in terms of radicals (discov-
ered by Ferrari around 1540), but no such formula for
the roots of q (as shown by Ruffini and abel [VI.33]
more than 250 years later; see the insolubility of
the quintic [V.24] for more details). Thus, in a cer-
tain philosophical sense the root-finding problems for
p and q are utterly different. Yet in practice they hardly
differ at all. If a scientist or a mathematician wants to
know the roots of one of these polynomials, he or she
will turn to a computer and get an answer to sixteen
digits of precision in less than a millisecond. Did the
computer use an explicit formula? In the case of q,
the answer is certainly no, but what about p? Maybe,
maybe not. Most of the time, the user neither knows
nor cares, and probably not one mathematician in a
hundred could write down formulas for the roots of
p from memory.

Here are three more examples of problems that can
be solved in principle by a finite sequence of elementary
operations, like rootfinding for p.

(i) Linear equations: solve a system of n linear equa-
tions in n unknowns.
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(ii) Linear programming: minimize a linear function
of n variables subject tom linear constraints.

(iii) Traveling salesman problem: find the shortest tour
between n cities.

And here are five that, like rootfinding for q, cannot
generally be solved in this manner.

(iv) Find an eigenvalue [I.3 §4.3] of an n×n matrix.
(v) Minimize a function of several variables.

(vi) Evaluate an integral.
(vii) Solve an ordinary differential equation (ODE).

(viii) Solve a partial differential equation (PDE).

Can we conclude that (i)–(iii) will be easier than (iv)–(viii)
in practice? Absolutely not. Problem (iii) is usually very
hard indeed if n is, say, in the hundreds or thousands.
Problems (vi) and (vii) are usually rather easy, at least
if the integral is in one dimension. Problems (i) and (iv)
are of almost exactly the same difficulty: easy when n
is small, like 100, and often very hard when n is large,
like 1 000 000. In fact, in these matters philosophy is
such a poor guide to practice that, for each of the three
problems (i)–(iii), when n and m are large one often
ignores the exact solution and uses approximate (but
fast!) methods instead.

Numerical analysis is the study of algorithms for
solving the problems of continuous mathematics, by
which we mean problems involving real or complex
variables. (This definition includes problems like lin-
ear programming and the traveling salesman problem
posed over the real numbers, but not their discrete ana-
logues.) In the remainder of this article we shall review
some of its main branches, past accomplishments, and
possible future trends.

2 A Brief History

Throughout history, leading mathematicians have been
involved with scientific applications, and in many cases
this has led to the discovery of numerical algorithms
still in use today. gauss [VI.26], as usual, is an out-
standing example. Among many other contributions,
he made crucial advances in least-squares data fitting
(1795), systems of linear equations (1809), and numer-
ical quadrature (1814), as well as inventing the fast
fourier transform [III.26] (1805), though the last
did not become widely known until its rediscovery by
Cooley and Tukey in 1965.

Around 1900, the numerical side of mathematics
started to become less conspicuous in the activities

of research mathematicians. This was a consequence
of the growth of mathematics generally and of great
advances in fields in which, for technical reasons, math-
ematical rigor had to be the heart of the matter. For
example, many advances of the early twentieth cen-
tury sprang from mathematicians’ new ability to reason
rigorously about infinity, a subject relatively far from
numerical calculation.

A generation passed, and in the 1940s the computer
was invented. From this moment numerical mathemat-
ics began to explode, but now mainly in the hands of
specialists. New journals were founded such as Math-
ematics of Computation (1943) and Numerische Mathe-
matik (1959). The revolution was sparked by hardware,
but it included mathematical and algorithmic develop-
ments that had nothing to do with hardware. In the half-
century from the 1950s, machines sped up by a factor
of around 109, but so did the best algorithms known
for some problems, generating a combined increase in
speed of almost incomprehensible scale.

Half a century on, numerical analysis has grown in-
to one of the largest branches of mathematics, the
specialty of thousands of researchers who publish in
dozens of mathematical journals as well as applica-
tions journals across the sciences and engineering.
Thanks to the efforts of these people going back many
decades, and thanks to ever more powerful comput-
ers, we have reached a point where most of the clas-
sical mathematical problems of the physical sciences
can be solved numerically to high accuracy. Most of the
algorithms that make this possible were invented since
1950.

Numerical analysis is built on a strong foundation:
the mathematical subject of approximation theory.
This field encompasses classical questions of inter-
polation, series expansions, and harmonic analy-
sis [IV.11] associated with newton [VI.14], fourier
[VI.25], Gauss, and others; semiclassical problems of
polynomial and rational minimax approximation asso-
ciated with names such as chebyshev [VI.45] and Bern-
stein; and major newer topics, including splines, radial
basis functions, and wavelets [VII.3]. We shall not
have space to address these subjects, but in almost
every area of numerical analysis it is a fact that, sooner
or later, the discussion comes down to approximation
theory.

3 Machine Arithmetic and Rounding Errors

It is well-known that computers cannot represent real
or complex numbers exactly. A quotient like 1/7 eval-
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uated on a computer, for example, will normally yield

an inexact result. (It would be different if we designed

machines to work in base 7!) Computers approximate

real numbers by a system of floating-point arithmetic,

in which each number is represented in a digital equiv-

alent of scientific notation, so that the scale does not

matter unless the number is so huge or tiny as to cause

overflow or underflow. Floating-point arithmetic was

invented by Konrad Zuse in Berlin in the 1930s, and

by the end of the 1950s it was standard across the

computer industry.

Until the 1980s, different computers had widely dif-

ferent arithmetic properties. Then, in 1985, after years

of discussion, the IEEE (Institute of Electrical and Elec-

tronics Engineers) standard for binary floating-point

arithmetic was adopted, or IEEE arithmetic for short.

This standard has subsequently become nearly univer-

sal on processors of many kinds. An IEEE (double pre-

cision) real number consists of a 64-bit word divided

into 53 bits for a signed fraction in base 2 and 11 bits

for a signed exponent. Since 2−53 ≈ 1.1 × 10−16, IEEE

numbers represent the numbers of the real line to a rel-

ative accuracy of about 16 digits. Since 2±210 ≈ 10±308,

this system works for numbers up to about 10308 and

down to about 10−308.

Computers do not merely represent numbers, of

course; they perform operations on them such as

addition, subtraction, multiplication, and division, and

more complicated results are obtained from sequences

of these elementary operations. In floating-point arith-

metic, the computed result of each elementary opera-

tion is almost exactly correct in the following sense: if

“∗” is one of these four operations in its ideal form and

“©* ” is the same operation as realized on the computer,

then for any floating-point numbers x and y , assuming

that there is no underflow or overflow,
T&T note: must
check that this
star-in-a-circle still
looks OK before
CRC. x ©* y = (x ∗y)(1+ ε).

Here ε is a very small quantity, no greater in abso-

lute value than a number known as machine epsilon,

denoted by εmach, that measures the accuracy of the

computer. In the IEEE system, εmach = 2−53 ≈ 1.1 ×
10−16.

Thus, on a computer, the interval [1,2], for example,

is approximated by about 1016 numbers. It is interest-

ing to compare the fineness of this discretization with

that of the discretizations of physics. In a handful of

solid or liquid or a balloonful of gas, the number of

atoms or molecules in a line from one point to another

is on the order of 108 (the cube root of Avogadro’s num-
ber). Such a system behaves enough like a continuum
to justify our definitions of physical quantities such as
density, pressure, stress, strain, and temperature. Com-
puter arithmetic, however, is more than a million times
finer than this. Another comparison with physics con-
cerns the precision to which fundamental constants are
known, such as (roughly) 4 digits for the gravitational
constant G, 7 digits for Planck’s constant h and the ele-
mentary charge e, and 12 digits for the ratio µe/µB of
the magnetic moment of the electron to the Bohr mag-
neton. At present, almost nothing in physics is known
to more than 12 or 13 digits of accuracy. Thus IEEE
numbers are orders of magnitude more precise than
any number in science. (Of course, purely mathematical
quantities like π are another matter.)

In two senses, then, floating-point arithmetic is far
closer to its ideal than is physics. It is a curious
phenomenon that, nevertheless, it is floating-point
arithmetic rather than the laws of physics that is PUP: Tim prefers

‘is’. OK?
widely regarded as an ugly and dangerous compromise.
Numerical analysts themselves are partly to blame for
this perception. In the 1950s and 1960s, the founding
fathers of the field discovered that inexact arithmetic
can be a source of danger, causing errors in results
that “ought” to be right. The source of such prob-
lems is numerical instability : that is, the amplification
of rounding errors from microscopic to macroscopic
scale by certain modes of computation. These men,
including von neumann [VI.91], Wilkinson, Forsythe,
and Henrici, took great pains to publicize the risks of
careless reliance on machine arithmetic. These risks are
very real, but the message was communicated all too
successfully, leading to the current widespread impres-
sion that the main business of numerical analysis is
coping with rounding errors. In fact, the main busi-
ness of numerical analysis is designing algorithms that
converge quickly; rounding-error analysis, while often
a part of the discussion, is rarely the central issue. If
rounding errors vanished, 90% of numerical analysis
would remain.

4 Numerical Linear Algebra

Linear algebra became a standard topic in undergradu-
ate mathematics curriculums in the 1950s and 1960s,
and has remained there ever since. There are several
reasons for this, but I think one is at the bottom of it:
the importance of linear algebra has exploded since the
arrival of computers.
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The starting point of this subject is Gaussian elimi-
nation, a procedure that can solve n linear equations
in n unknowns using on the order of n3 arithmetic
operations. Equivalently, it solves equations of the form
Ax = b, where A is an n×nmatrix and x and b are col-
umn vectors of size n. Gaussian elimination is invoked
on computers around the world almost every time a
system of linear equations is solved. Even if n is as
large as 1000, the time required is well under a sec-
ond on a typical 2008 desktop machine. The idea of
elimination was first discovered by Chinese scholars
about 2000 years ago, and more recent contributors
include lagrange [VI.22], Gauss, and jacobi [VI.35].
The modern way of describing such algorithms, how-
ever, was apparently introduced as late as the 1930s.
Suppose that, say, α times the first row of A is sub-
tracted from the second row. This operation can be
interpreted as the multiplication of A on the left by the
lower-triangular matrix M1 consisting of the identity
with the additional nonzero entry m21 = −α. Further
analogous row operations correspond to further multi-
plications on the left by lower-triangular matrices Mj .
If k steps convert A to an upper-triangular matrix U ,
then we haveMA = U withM = Mk · · ·M2M1, or, upon
setting L = M−1,

A = LU.
Here L is unit lower-triangular, that is, lower-triangular
with all its diagonal entries equal to 1. Since U rep-
resents the target structure and L encodes the oper-
ations carried out to get there, we can say that Gauss-
ian elimination is a process of lower-triangular upper-
triangularization.

Many other algorithms of numerical linear algebra
are also based on writing a matrix as a product of matri-
ces that have special properties. To borrow a phrase
from biology, we may say that this field has a central
dogma:

algorithms ←→ matrix factorizations.

In this framework we can quickly describe the next
algorithm that needs to be considered. Not every matrix
has an LU factorization; a 2× 2 counterexample is the
matrix

A =
(

0 1

1 0

)
.

Soon after computers came into use it was observed
that even for matrices that do have LU factoriza-
tions, the pure form of Gaussian elimination is unsta-
ble, amplifying rounding errors by potentially large
amounts. Stability can be achieved by interchanging

rows during the elimination in order to bring maxi-
mal entries to the diagonal, a process known as piv-
oting. Since pivoting acts on rows, it again corresponds
to a multiplication of A by other matrices on the left.
The matrix factorization corresponding to Gaussian
elimination with pivoting is

PA = LU,
where U is upper-triangular, L is unit lower-triangular,
and P is a permutation matrix, i.e., the identity matrix
with permuted rows. If the permutations are chosen to
bring the largest entry below the diagonal in column k
to the (k, k) position before the kth elimination step,
then L has the additional property |	ij| � 1 for all i
and j.

The discovery of pivoting came quickly, but its
theoretical analysis has proved astonishingly hard. In
practice, pivoting makes Gaussian elimination almost
perfectly stable, and it is routinely done by almost all
computer programs that need to solve linear systems
of equations. Yet it was realized in around 1960 by
Wilkinson and others that for certain exceptional matri-
ces, Gaussian elimination is still unstable, even with
pivoting. The lack of an explanation of this discrep-
ancy represents an embarrassing gap at the heart of
numerical analysis. Experiments suggest that the frac-
tion of matrices (for example, among random matri-
ces with independent normally distributed entries) for
which Gaussian elimination amplifies rounding errors
by a factor greater than ρn1/2 is in a certain sense expo-
nentially small as a function of ρ as ρ →∞, where n is
the dimension, but a theorem to this effect has never
been proved.

Meanwhile, beginning in the late 1950s, the field of
numerical linear algebra expanded in another direction:
the use of algorithms based on orthogonal [III.52 §3]
or unitary [III.52 §3] matrices, that is, real matrices
withQ−1 = QT or complex ones withQ−1 = Q∗, where
Q∗ denotes the conjugate transpose. The starting point
of such developments is the idea of QR factorization. If
A is an m×n matrix with m � n, a QR factorization
of A is a product

A = QR,
where Q has orthonormal columns and R is upper-tri-
angular. One can interpret this formula as a matrix
expression of the familiar idea of Gram–Schmidt
orthogonalization, in which the columns q1, q2, . . . ofQ
are determined one after another. These column oper-
ations correspond to multiplication of A on the right
by elementary upper-triangular matrices. One could say
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that the Gram–Schmidt algorithm aims for Q and gets
R as a by-product, and is thus a process of triangular
orthogonalization. A big event was when Householder
showed in 1958 that a dual strategy of orthogonal tri-
angularization is more effective for many purposes. In
this approach, by applying a succession of elementary
matrix operations each of which reflects Rm across a
hyperplane, one reduces A to upper-triangular form
via orthogonal operations: one aims at R and gets Q
as a by-product. The Householder method turns out to
be more stable numerically, because orthogonal oper-
ations preserve norms and thus do not amplify the
rounding errors introduced at each step.

From the QR factorization sprang a rich collection of
linear algebra algorithms in the 1960s. The QR factor-
ization can be used by itself to solve least-squares prob-
lems and construct orthonormal bases. More remark-
able is its use as a step in other algorithms. In par-
ticular, one of the central problems of numerical lin-
ear algebra is the determination of the eigenvalues and
eigenvectors of a square matrix A. If A has a com-
plete set of eigenvectors, then by forming a matrix X
whose columns are these eigenvectors and a diagonal
matrixD whose diagonal entries are the corresponding
eigenvalues, we obtain

AX = XD,
and hence, since X is nonsingular,

A = XDX−1,

the eigenvalue decomposition. In the special case in
which A is hermitian [III.52 §3], a complete set of
orthonormal eigenvectors always exists, giving

A = QDQ∗,
where Q is unitary. The standard algorithm for com-
puting these factorizations was developed in the early
1960s by Francis, Kublanovskaya, and Wilkinson: the
QR algorithm. Because polynomials of degree 5 or more
cannot be solved by a formula, we know that eigen-
values cannot generally be computed in closed form.
The QR algorithm is therefore necessarily an iterative
one, involving a sequence of QR factorizations that is
in principle infinite. Nevertheless, its convergence is
extraordinarily rapid. In the symmetric case, for a typ-
ical matrix A, the QR algorithm converges cubically,
in the sense that at each step the number of cor-
rect digits in one of the eigenvalue–eigenvector pairs
approximately triples.

The QR algorithm is one of the great triumphs of
numerical analysis, and its impact through widely used

software products has been enormous. Algorithms and
analysis based on it led in the 1960s to computer codes
in Algol and Fortran and later to the software library
EISPACK (“Eigensystem Package”) and its descendant
LAPACK. The same methods have also been incor-
porated in general-purpose numerical libraries such
as the NAG, IMSL, and Numerical Recipes collections,
and in problem-solving environments such as MAT-
LAB, Maple, and Mathematica. These developments
have been so successful that the computation of matrix
eigenvalues long ago became a “black box” operation
for virtually every scientist, with nobody but a few spe-
cialists knowing the details of how it is done. A curi-
ous related story is that EISPACK’s relative LINPACK for
solving linear systems of equations took on an unex-
pected function: it became the original basis for the
benchmarks that all computer manufacturers run to
test the speed of their computers. If a supercomputer
is lucky enough to make the TOP500 list, updated twice
a year since 1993, it is because of its prowess in solving
certain matrix problems Ax = b of dimensions ranging
from 100 into the millions.

The eigenvalue decomposition is familiar to all math-
ematicians, but the development of numerical linear
algebra has also brought its younger cousin onto the
scene: the singular value decomposition (SVD). The
SVD was discovered by Beltrami, jordan [VI.52], and
sylvester [VI.42] in the late nineteenth century, and
made famous by Golub and other numerical analysts
beginning in around 1965. If A is anm×nmatrix with
m � n, an SVD of A is a factorization

A = UΣV∗,
where U ism×n with orthonormal columns, V is n×n
and unitary, and Σ is diagonal with diagonal entries
σ1 � σ2 � · · · � σn � 0. One could compute the
SVD by relating it to the eigenvalue problems for AA∗

and A∗A, but this proves numerically unstable; a bet-
ter approach is to use a variant of the QR algorithm
that does not square A. Computing the SVD is the stan-
dard route to determining the norm [III.64] ‖A‖ = σ1

(here ‖·‖ is the hilbert space [III.37] or “2” norm), the
norm of the inverse ‖A−1‖ = 1/σn in the case where A
is square and nonsingular, or their product, known as
the condition number,

κ(A) = ‖A‖‖A−1‖ = σ1/σn.

It is also a step in an extraordinary variety of fur-
ther computational problems including rank-deficient
least-squares, computation of ranges and nullspaces,
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determination of ranks, “total least-squares,” low-rank
approximation, and determination of angles between
subspaces.

All the discussion above concerns “classical” numer-
ical linear algebra, born in the period 1950–75. The
ensuing quarter-century brought in a whole new set
of tools: methods for large-scale problems based on
Krylov subspace iterations. The idea of these iterations
is as follows. Suppose a linear algebra problem is given
that involves a matrix of large dimension, say n )
1000. The solution may be characterized as the vector
x ∈ Rn that satisfies a certain variational property such
as minimizing 1

2x
TAx−xTb (for solving Ax = b if A is

symmetric positive definite) or being a stationary point
of (xTAx)/(xTx) (for solving Ax = λx if A is symmet-
ric). Now if Kk is a k-dimensional subspace of Rn with
k* n, then it may be possible to solve the same vari-
ational problem much more quickly in that subspace.
The magical choice of Kk is a Krylov subspace

Kk(A, q) = span(q,Aq, . . . , Ak−1q)

for an initial vector q. For reasons that have fascinat-
ing connections with approximation theory, solutions
in these subspaces often converge very rapidly to the
exact solution in Rn as k increases, if the eigenvalues of
A are favorably distributed. For example, it is often pos-
sible to solve a matrix problem involving 105 unknowns
to ten-digit precision in just a few hundred iterations.
The speedup compared with the classical algorithms
may be a factor of thousands.

Krylov subspace iterations originated with the conju-
gate gradient and Lanczos iterations published in 1952,
but in those years computers were not powerful enough
to solve problems of a large enough scale for the meth-
ods to be competitive. They took off in the 1970s with
the work of Reid and Paige and especially van der Vorst
and Meijerink, who made famous the idea of precon-
ditioning. In preconditioning a system Ax = b, one
replaces it by a mathematically equivalent system such
as

MAx = Mb
for some nonsingular matrix M . If M is well chosen,
the new problem involvingMAmay have favorably dis-
tributed eigenvalues and a Krylov subspace iteration
may solve it quickly.

Since the 1970s, preconditioned matrix iterations
have emerged as an indispensable tool of computa-
tional science. As one indication of their prominence we
may note that in 2001, Thomson ISI announced that the
most heavily cited article in all of mathematics in the

1990s was the 1989 paper by van der Vorst introducing
Bi-CGStab, a generalization of conjugate gradients for
nonsymmetric matrices.

Finally, we must mention the biggest unsolved prob-
lem in numerical analysis. Can an arbitraryn×nmatrix
A be inverted in O(nα) operations for every α > 2?
(The problems of solving a system Ax = b or com-
puting a matrix product AB are equivalent.) Gaussian
elimination has α = 3, and the exponent shrinks as
far as 2.376 for certain recursive (though impractical)
algorithms published by Coppersmith and Winograd in
1990. Is there a “fast matrix inverse” in store for us?

5 Numerical Solution of Differential Equations

Long before much attention was paid to linear alge-
bra, mathematicians developed numerical methods to
solve problems of analysis. The problem of numeri-
cal integration or quadrature goes back to Gauss and
newton [VI.14], and even to archimedes [VI.3]. The
classic quadrature formulas are derived from the idea
of interpolating data at n+ 1 points by a polynomial
of degree n, then integrating the polynomial exactly.
Equally spaced interpolation points give the Newton–
Cotes formulas, which are useful for small degrees but
diverge at a rate as high as 2n as n → ∞: the Runge
phenomenon. If the points are chosen optimally, then
the result is Gauss quadrature, which converges rapidly
and is numerically stable. It turns out that these opti-
mal points are roots of Legendre polynomials, which
are clustered near the endpoints. (A proof is sketched in
special functions [III.87].) Equally good for most pur-
poses is Clenshaw–Curtis quadrature, where the inter-
polation points become cos(jπ/n), 0 � j � n. This
quadrature method is also stable and rapidly conver-
gent, and unlike Gauss quadrature can be executed in
O(n logn) operations by the fast Fourier transform.
The explanation of why clustered points are necessary
for effective quadrature rules is related to the subject
of potential theory.

Around 1850 another problem of analysis began to
get attention: the solution of ODEs. The Adams formu-
las are based on polynomial interpolation in equally
spaced points, which in practice typically number fewer
than ten. These were the first of what are now called
multistep methods for the numerical solution of ODEs.
The idea here is that for an initial value problem u′ =
f(t,u)with independent variable t > 0, we pick a small
time step∆t > 0 and consider a finite set of time values

tn = n∆t, n � 0.
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We then replace the ODE by an algebraic approxi-

mation that enables us to calculate a succession of

approximate values

vn ≈ u(tn), n � 0.

(The superscript here is just a superscript, not a power.)

The simplest such approximate formula, going back to

euler [VI.19], is

vn+1 = vn +∆tf (tn, vn),

or, using the abbreviation fn = f(tn, vn),

vn+1 = vn +∆tfn.

Both the ODE itself and its numerical approximation

may involve one equation or many, in which case

u(t,x) and vn become vectors of an appropriate

dimension. The Adams formulas are higher-order gen-

eralizations of Euler’s formula that are much more effi-

cient at generating accurate solutions. For example, the

fourth-order Adams–Bashforth formula is

vn+1 = vn + 1
24∆t(55fn − 59fn−1 + 37fn−2 − 9fn−3).

The term “fourth-order” reflects a new element in

the numerical treatment of problems of analysis: the

appearance of questions of convergence as ∆t → 0.

The formula above is of fourth order in the sense that it

will normally converge at the rateO((∆t)4). The orders

employed in practice are most often in the range 3–6,

enabling excellent accuracy for all kinds of computa-

tions, typically in the range of 3–10 digits, and higher-

order formulas are occasionally used when still more

accuracy is needed.

Most unfortunately, the habit in the numerical analy-

sis literature is to speak not of the convergence of these

magnificently efficient methods, but of their error, or

more precisely their discretization or truncation error

as distinct from rounding error. This ubiquitous lan-

guage of error analysis is dismal in tone, but seems

ineradicable.

At the turn of the twentieth century, the second great

class of ODE algorithms, known as Runge–Kutta or

one-step methods, was developed by Runge, Heun, and

Kutta. For example, here are the formulas of the famous

fourth-order Runge–Kutta method, which advance a

numerical solution (again scalar or system) from time

step tn to tn+1 with the aid of four evaluations of the

function f :

a = ∆tf (tn, vn),
b = ∆tf (tn + 1

2∆t, v
n + 1

2a),

c = ∆tf (tn + 1
2∆t, v

n + 1
2b),

d = ∆tf (tn +∆t, vn + c),
vn+1 = vn + 1

6 (a+ 2b + 2c + d).
Runge–Kutta methods tend to be easier to implement

but sometimes harder to analyze than multistep for-

mulas. For example, for any s, it is a trivial matter to

derive the coefficients of the s-step Adams–Bashforth

formula, which has order of accuracy p = s. For Runge–

Kutta methods, by contrast, there is no simple relation-

ship between the number of “stages” (i.e., function eval-

uations per step) and the attainable order of accuracy.

The classical methods with s = 1,2,3,4 were known to

Kutta in 1901 and have order p = s, but it was not until

1963 that it was proved that s = 6 stages are required

to achieve order p = 5. The analysis of such problems

involves beautiful mathematics from graph theory and

other areas, and a key figure in this area since the 1960s

has been John Butcher. For orders p = 6,7,8 the mini-

mal numbers of stages are s = 7,9,11, while for p > 8

exact minima are not known. Fortunately, these higher

orders are rarely needed for practical purposes.

When computers began to be used to solve differ-

ential equations after World War II, a phenomenon of

the greatest practical importance appeared: once again,

numerical instability. As before, this phrase refers to

the unbounded amplification of local errors by a com-

putational process, but now the dominant local errors

are usually those of discretization rather than round-

ing. Instability typically manifests itself as an oscilla-

tory error in the computed solution that blows up expo-

nentially as more numerical steps are taken. One math-

ematician concerned with this effect was Germund

Dahlquist. Dahlquist saw that the phenomenon could

be analyzed with great power and generality, and some

people regard the appearance of his 1956 paper as

one of the events marking the birth of modern numer-

ical analysis. This landmark paper introduced what

might be called the fundamental theorem of numerical

analysis:

consistency+ stability = convergence.

The theory is based on precise definitions of these three

notions along the following lines. Consistency is the

property that the discrete formula has locally positive
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order of accuracy and thus models the right ODE. Sta-
bility is the property that errors introduced at one time
step cannot grow unboundedly at later times. Conver-
gence is the property that as ∆t → 0, in the absence
of rounding errors, the numerical solution converges
to the correct result. Before Dahlquist’s paper, the idea
of an equivalence of stability and convergence was per-
haps in the air in the sense that practitioners realized
that if a numerical scheme was not unstable, then it
would probably give a good approximation to the right
answer. His theory gave rigorous form to that idea for
a wide class of numerical methods.

As computer methods for ODEs were being devel-
oped, the same was happening for the much bigger
subject of PDEs. Discrete numerical methods for solv-
ing PDEs had been invented around 1910 by Richard-
son for applications in stress analysis and meteo-
rology, and further developed by Southwell; in 1928
there was also a theoretical paper on finite-difference
methods by courant [VI.83], Friedrichs, and Lewy.
But although the Courant–Friedrichs–Lewy work later
became famous, the impact of these ideas before com-
puters came along was limited. After that point the
subject developed quickly. Particularly influential in
the early years was the group of researchers around
von Neumann at the Los Alamos laboratory, including
the young Peter Lax.

Just as for ODEs, von Neumann and his colleagues
discovered that some numerical methods for PDEs were
subject to catastrophic instabilities. For example, to
solve the linear wave equation ut = ux numerically we
may pick space and time steps ∆x and ∆t for a regular
grid,

xj = j∆x, tn = n∆t, j,n � 0,

and replace the PDE by algebraic formulas that com-
pute a succession of approximate values:

vnj ≈ u(tn,xj), j,n � 0.

A well-known discretization for this purpose is the Lax–
Wendroff formula:

vn+1
j = vnj + 1

2λ(v
n
j+1−vnj−1)+ 1

2λ
2(vnj+1−2vnj +vnj−1),

where λ = ∆t/∆x, which can be generalized to non-
linear systems of hyperbolic conservation laws in one
dimension. For ut = ux , if λ is held fixed at a value less
than or equal to 1, the method will converge to the cor-
rect solution as ∆x,∆t → 0 (ignoring rounding errors).
If λ is greater than 1, on the other hand, it will explode.
Von Neumann and others realized that the presence or
absence of such instabilities could be tested, at least

for linear constant-coefficient problems, by discrete
fourier analysis [III.27] in x: “von Neumann analy-
sis.” Experience indicated that, as a practical matter, a
method would succeed if it was not unstable. A theory
soon appeared that gave rigor to this observation: the
Lax equivalence theorem, published by Lax and Richt-
myer in 1956, the same year as Dahlquist’s paper. Many
details were different—this theory was restricted to lin-
ear equations whereas Dahlquist’s theory for ODEs also
applied to nonlinear ones—but broadly speaking the
new result followed the same pattern of equating con-
vergence to consistency plus stability. Mathematically,
the key point was the uniform boundedness principle.

In the half-century since von Neumann died, the
Lax–Wendroff formula and its relatives have grown
into a breathtakingly powerful subject known as com-
putational fluid dynamics. Early treatments of linear
and nonlinear equations in one space dimension soon
moved to two dimensions and eventually to three. It
is now a routine matter to solve problems involving
millions of variables on computational grids with hun-
dreds of points in each of three directions. The equa-
tions are linear or nonlinear; the grids are uniform or
nonuniform, often adaptively refined to give special
attention to boundary layers and other fast-changing
features; the applications are everywhere. Numerical
methods were used first to model airfoils, then whole
wings, then whole aircraft. Engineers still use wind
tunnels, but they rely more on computations.

Many of these successes have been facilitated by
another numerical technology for solving PDEs that
emerged in the 1960s from diverse roots in engineering
and mathematics: finite elements. Instead of approx-
imating a differential operator by a difference quo-
tient, finite-element methods approximate the solu-
tion itself by functions f that can be broken up into
simple pieces. For instance, one might partition the
domain of f into elementary sets such as triangles
or tetrahedra and insist that the restriction of f to
each piece is a polynomial of small degree. The solu-
tion is obtained by solving a variational form of the
PDE within the corresponding finite-dimensional sub-
space, and there is often a guarantee that the computed
solution is optimal within that subspace. Finite-element
methods have taken advantage of tools of functional
analysis to develop to a very mature state. These meth-
ods are known for their flexibility in handling compli-
cated geometries, and in particular they are entirely
dominant in applications in structural mechanics and
civil engineering. The number of books and articles that
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have been published about finite-element methods is in
excess of 10 000.

In the vast and mature field of numerical solution of
PDEs, what aspect of the current state of the art would
most surprise Richardson or Courant, Friedrichs, and
Lewy? I think it is the universal dependence on exotic
algorithms of linear algebra. The solution of a large-
scale PDE problem in three dimensions may require a
system of a million equations to be solved at each time
step. This may be achieved by a GMRES matrix iteration
that utilizes a finite-difference preconditioner imple-
mented by a Bi-CGStab iteration relying on another
multigrid preconditioner. Such stacking of tools was
surely not imagined by the early computer pioneers.
The need for it ultimately traces to numerical insta-
bility, for as Crank and Nicolson first noted in 1947,
the crucial tool for combating instability is the use of
implicit formulas, which couple together unknowns at
the new time step tn+1, and it is in implementing this
coupling that solutions of systems of equations are
required.

Here are some examples that illustrate the success-
ful reliance of today’s science and engineering on the
numerical solution of PDEs: chemistry (schrödinger
equation [III.85]); structural mechanics (equations of
elasticity); weather prediction (geostrophic equations);
turbine design (navier–stokes equations [III.23]);
acoustics (Helmholtz equation); telecommunications
(maxwell’s equations [IV.13 §1.1]); cosmology (Ein-
stein equations); oil discovery (migration equations);
groundwater remediation (Darcy’s law); integrated cir-
cuit design (drift diffusion equations); tsunami mod-
eling (shallow-water equations); optical fibers (non-
linear wave equations [III.51]); image enhancement
(Perona–Malik equation); metallurgy (Cahn–Hilliard
equation); pricing financial options (black–scholes
equation [VII.9 §2]).

6 Numerical Optimization

The third great branch of numerical analysis is opti-
mization, that is, the minimization of functions of sev-
eral variables and the closely related problem of solu-
tion of nonlinear systems of equations. The develop-
ment of optimization has been somewhat independent
of that of the rest of numerical analysis, carried forward
in part by a community of scholars with close links to
operations research and economics.

Calculus students learn that a smooth function may
achieve an extremum at a point of zero derivative, or at

a boundary. The same two possibilities characterize the
two big strands of the field of optimization. At one end
there are problems of finding interior zeros and min-
ima of unconstrained nonlinear functions by methods
related to multivariate calculus. At the other are prob-
lems of linear programming, where the function to be
minimized is linear and therefore easy to understand,
and all the challenge is in the boundary constraints.

Unconstrained nonlinear optimization is an old sub-
ject. Newton introduced the idea of approximating
functions by the first few terms of what we now call
their Taylor series; indeed, Arnol’d has argued that Tay- PUP: this is

correctly set.
lor series were Newton’s “main mathematical discov-
ery.” To find a zero x∗ of a function F of a real variable
x, everyone knows the idea of Newton’s method : at the
kth step, given an estimatex(k) ≈ x∗, use the derivative
F ′(x(k)) to define a linear approximation from which to
derive a better estimate x(k+1):

x(k+1) = x(k) − F(x(k))/F ′(x(k)).
Newton (1669) and Raphson (1690) applied this idea
to polynomials, and Simpson (1740) generalized it to
other functions F and to systems of two equations.
In today’s language, for a system of n equations in n
unknowns, we regard F as ann-vector whose derivative
at a point x(k) ∈ Rn is the n × n Jacobian matrix with
entries

Jij(x(k)) = ∂Fi∂xj (x
(k)), 1 � i, j � n.

This matrix defines a linear approximation to F(x) that
is accurate for x ≈ x(k). Newton’s method then takes
the matrix form

x(k+1) = x(k) − (J(x(k)))−1F(x(k)),

which in practice means that to get x(k+1) from x(k),
we solve a linear system of equations:

J(x(k))(x(k+1) − x(k)) = −F(x(k)).
As long as J is Lipschitz continuous and nonsingu-
lar at x∗ and the initial guess is good enough, the
convergence of this iteration is quadratic:

‖x(k+1) − x∗‖ = O(‖x(k) − x∗‖2). (1)

Students often think it might be a good idea to develop
formulas to enhance the exponent in this estimate to 3
or 4. However, this is an illusion. Taking two steps at
a time of a quadratically convergent algorithm yields
a quartically convergent one, so the difference in effi-
ciency between quadratic and quartic is at best a con-
stant factor. The same goes if the exponent 2, 3, or
4 is replaced by any other number greater than 1.
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The true distinction is between all of these algorithms
that converge superlinearly, of which Newton’s method
is the prototype, and those that converge linearly or
geometrically, where the exponent is just 1.

From the point of view of multivariate calculus, it is a
small step from solving a system of equations to min-
imizing a scalar function f of a variable x ∈ Rn: to
find a (local) minimum, we seek a zero of the gradient
g(x) = ∇f(x), an n-vector. The derivative of g is the
Jacobian matrix known as the Hessian of f , with entries

Hij(x(k)) = ∂2f
∂xi∂xj

(x(k)), 1 � i, j � n,

and one may utilize it just as before in a Newton itera-
tion to find a zero of g(x), the new feature being that
a Hessian is always symmetric.

Though the Newton formulas for minimization and
finding zeros were already established, the arrival of
computers created a new field of numerical optimiza-
tion. One of the obstacles quickly encountered was
that Newton’s method often fails if the initial guess
is not good. This problem has been comprehensively
addressed both practically and theoretically by the
algorithmic technologies known as line searches and
trust regions.

For problems with more than a few variables, it also
quickly became clear that the cost of evaluating Jaco-
bians or Hessians at every step could be exorbitant.
Faster methods were needed that might make use of
inexact Jacobians or Hessians and/or inexact solutions
of the associated linear equations, while still achiev-
ing superlinear convergence. An early breakthrough
of this kind was the discovery of quasi-Newton meth-
ods in the 1960s by Broyden, Davidon, Fletcher, and
Powell, in which partial information is used to gen-
erate steadily improving estimates of the true Jaco-
bian or Hessian or its matrix factors. An illustration
of the urgency of this subject at the time is the fact
that in 1970 the optimal rank-two symmetric positive-
definite quasi-Newton updating formula was published
independently by no fewer than four different authors,
namely Broyden, Fletcher, Goldfarb, and Shanno; their
discovery has been known ever since as the BFGS for-
mula. In subsequent years, as the scale of tractable
problems has increased exponentially, new ideas have
also become important, including automatic differen-
tiation, a technology that enables derivatives of com-
puted functions to be determined automatically: the
computer program itself is “differentiated,” so that as
well as producing numerical outputs it also produces

their derivatives. The idea of automatic differentiation
is an old one, but for various reasons, partly related to
advances in sparse linear algebra and to the develop-
ment of “reverse mode” formulations, it did not become
fully practical until the work of Bischof, Carle, and
Griewank in the 1990s.

Unconstrained optimization problems are relatively
easy, but they are not typical; the true depth of this
field is revealed by the methods that have been devel-
oped for dealing with constraints. Suppose a function
f : Rn → R is to be minimized subject to certain equal-
ity constraints cj(x) = 0 and inequality constraints
dj(x) � 0, where {cj} and {dj} are also functions from
Rn to R. Even the problem of stating local optimality
conditions for solutions to such problems is nontrivial,
a matter involving lagrange multipliers [III.66] and
a distinction between active and inactive constraints.
This problem was solved by what are now known as
the KKT conditions, introduced by Kuhn and Tucker in
1951 and also twelve years earlier, it was subsequently
realized, by Karush. Development of algorithms for
constrained nonlinear optimization continues to be an
active research topic today.

The problem of constraints brings us to the other
strand of numerical optimization, linear programming.
This subject was born in the 1930s and 1940s with
Kantorovich in the Soviet Union and Dantzig in the
United States. As an outgrowth of his work for the
U.S. Air Force in the war, Dantzig invented in 1947
the famous simplex algorithm [III.86] for solving lin-
ear programs. A linear program is nothing more than
a problem of minimizing a linear function of n vari-
ables subject to m linear equality and/or inequality
constraints. How can this be a challenge? One answer is
that m and n may be large. Large-scale problems may
arise through discretization of continuous problems
and also in their own right. A famous early example
was Leontiev’s theory of input–output models in eco-
nomics, which won him the Nobel Prize in 1973. Even in PUP: ‘Even in’ must

stay according to
Tim.the 1970s the Soviet Union used an input–output com-

puter model involving thousands of variables as a tool
for planning the economy.

The simplex algorithm made medium- and large-
scale linear programming problems tractable. Such a
problem is defined by its objective function, the func-
tion f(x) to be minimized, and its feasible region, the
set of vectorsx ∈ Rn that satisfy all the constraints. For
a linear program the feasible region is a polyhedron, a
closed domain bounded by hyperplanes, and the opti-
mal value of f is guaranteed to be attained at one of
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the vertex points. (A point is called a vertex if it is
the unique solution of some subset of the equations
that define the constraints.) The simplex algorithm pro-
ceeds by moving systematically downhill from one ver-
tex to another until an optimal point is reached. All of
the iterates lie on the boundary of the feasible region.

In 1984, an upheaval occurred in this field, triggered
by Narendra Karmarkar at AT&T Bell Laboratories. Kar-
markar showed that one could sometimes do much
better than the simplex algorithm by working in the
interior of the feasible region instead. Once a connec-
tion was shown between Karmarkar’s method and the
logarithmic barrier methods popularized by Fiacco and
McCormick in the 1960s, new interior methods for lin-
ear programming were devised by applying techniques
previously viewed as suitable only for nonlinear prob-
lems. The crucial idea of working in tandem with a pair
of primal and dual problems led to today’s powerful
primal–dual methods, which can solve continuous opti-
mization problems with millions of variables and con-
straints. Starting with Karmarkar’s work, not only has
the field of linear programming changed completely,
but the linear and nonlinear sides of optimization are
seen today as closely related rather than essentially
different.

7 The Future

Numerical analysis sprang from mathematics; then it
spawned the field of computer science. When universi-
ties began to found computer science departments in
the 1960s, numerical analysts were often in the lead.
Now, two generations later, most of them are to be
found in mathematics departments. What happened? A
part of the answer is that numerical analysts deal with
continuous mathematical problems, whereas computer
scientists prefer discrete ones, and it is remarkable how
wide a gap this can be.

Nevertheless, the computer science side of numerical
analysis is of crucial importance, and I would like to end
with a prediction that emphasizes this aspect of the
subject. Traditionally one might think of a numerical
algorithm as a cut-and-dried procedure, a loop of some
kind to be executed until a well-defined termination
criterion is satisfied. For some computations this pic-
ture is accurate. On the other hand, beginning with the
work of de Boor, Lyness, Rice and others in the 1960s, a
less deterministic kind of numerical computing began
to appear: adaptive algorithms. In an adaptive quadra-
ture program of the simplest kind, two estimates of

the integral are calculated on each portion of a certain
mesh and then compared to produce an estimate of
the local error. Based on this estimate, the mesh may
then be refined locally to improve the accuracy. This
process is carried out iteratively until a final answer is
obtained that aims to be accurate to a tolerance spec-
ified in advance by the user. Most such computations
come with no guarantee of accuracy, but an exciting
ongoing development is the advance of more sophis-
ticated techniques of a posteriori error control that
sometimes do provide guarantees. When these are com-
bined with techniques of interval arithmetic, there is
even the prospect of accuracy guaranteed with respect
to rounding as well as discretization error.

First, computer programs for quadrature became
adaptive; then programs for ODEs did as well. For
PDEs, the move to adaptive programs is happening
on a longer timescale. More recently there have been
related developments in the computation of Fourier
transforms, optimization, and large-scale numerical
linear algebra, and some of the new algorithms adapt
to the computer architecture as well as the mathemat-
ical problem. In a world where several algorithms are
known for solving every problem, we increasingly find
that the most robust computer program will be one
that has diverse capabilities at its disposal and deploys
them adaptively on the fly. In other words, numeri-
cal computation is increasingly embedded in intelligent
control loops. I believe this process will continue, just
as has happened in so many other areas of technology,
removing scientists further from the details of their
computations but offering steadily growing power in
exchange. I expect that most of the numerical computer
programs of 2050 will be 99% intelligent “wrapper” and
just 1% actual “algorithm,” if such a distinction makes
sense. Hardly anyone will know how they work, but they
will be extraordinarily powerful and reliable, and will
often deliver results of guaranteed accuracy.

This story will have a mathematical corollary. One
of the fundamental distinctions in mathematics is be-
tween linear problems, which can be solved in one
step, and nonlinear ones, which usually require itera-
tion. A related distinction is between forward problems
(one step) and inverse problems (iteration). As numeri-
cal algorithms are increasingly embedded in intelligent
control loops, almost every problem will be handled by
iteration, regardless of its philosophical status. Prob-
lems of algebra will be solved by methods of analy-
sis; and between linear and nonlinear, or forward and
inverse, the distinctions will fade.



�

IV.21. Numerical Analysis 301

Table 1 Some algorithmic developments in the history of numerical analysis.

Year Development Key early figures

263 Gaussian elimination Liu, Lagrange, Gauss, Jacobi
1671 Newton’s method Newton, Raphson, Simpson
1795 Least-squares fitting Gauss, Legendre
1814 Gauss quadrature Gauss, Jacobi, Christoffel, Stieltjes
1855 Adams ODE formulas Euler, Adams, Bashforth
1895 Runge–Kutta ODE formulas Runge, Heun, Kutta
1910 Finite differences for PDE Richardson, Southwell, Courant, von Neumann, Lax
1936 Floating-point arithmetic Torres y Quevedo, Zuse, Turing
1943 Finite elements for PDE Courant, Feng, Argyris, Clough
1946 Splines Schoenberg, de Casteljau, Bezier, de Boor
1947 Monte Carlo simulation Ulam, von Neumann, Metropolis
1947 Simplex algorithm Kantorovich, Dantzig
1952 Lanczos and conjugate gradient iterations Lanczos, Hestenes, Stiefel
1952 Stiff ODE solvers Curtiss, Hirschfelder, Dahlquist, Gear
1954 Fortran Backus
1958 Orthogonal linear algebra Aitken, Givens, Householder, Wilkinson, Golub
1959 Quasi-Newton iterations Davidon, Fletcher, Powell, Broyden
1961 QR algorithm for eigenvalues Rutishauser, Kublanovskaya, Francis, Wilkinson
1965 Fast Fourier transform Gauss, Cooley, Tukey, Sande
1971 Spectral methods for PDE Chebyshev, Lanczos, Clenshaw, Orszag, Gottlieb
1971 Radial basis functions Hardy, Askey, Duchon, Micchelli
1973 Multigrid iterations Fedorenko, Bakhvalov, Brandt, Hackbusch
1976 EISPACK, LINPACK, LAPACK Moler, Stewart, Smith, Dongarra, Demmel, Bai
1976 Nonsymmetric Krylov iterations Vinsome, Saad, van der Vorst, Sorensen
1977 Preconditioned matrix iterations van der Vorst, Meijerink
1977 MATLAB Moler
1977 IEEE arithmetic Kahan
1982 Wavelets Morlet, Grossmann, Meyer, Daubechies
1984 Interior methods in optimization Fiacco, McCormick, Karmarkar, Megiddo
1987 Fast multipole method Rokhlin, Greengard
1991 Automatic differentiation Iri, Bischof, Carle, Griewank

8 Appendix: Some Major
Numerical Algorithms

The list in table 1 attempts to identify some of thePUP: the fact that
the date for
‘Gaussian
elimination’ in the
table predates
Gauss is indeed
OK. T&T note:
check position of
table before CRC.
(Cannot appear
earlier than page
facing this
reference.)

most significant algorithmic (as opposed to theoret-

ical) developments in the history of numerical analy-

sis. In each case some of the key early figures are cited,

more or less chronologically, and a key early date is

given. Of course, any brief sketch of history like this

must be an oversimplification. Distressing omissions of

names occur throughout the list, including many early

contributors in fields such as finite elements, precondi-

tioning, and automatic differentiation, as well as more

than half of the authors of the EISPACK, LINPACK, and

LAPACK libraries. Even the dates can be questioned; the

fast Fourier transform is listed as 1965, for example,

since that is the year of the paper that brought it to

the world’s attention, though Gauss made the same dis-
covery 160 years earlier. Nor should one imagine that
the years from 1991 to the present have been a blank!
No doubt in the future we shall identify developments
from this period that deserve a place in the table.
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IV.22 Set Theory
Joan Bagaria

1 Introduction

Among all mathematical disciplines, set theory occu-
pies a special place because it plays two very different
roles at the same time: on the one hand, it is an area of
mathematics devoted to the study of abstract sets and
their properties; on the other, it provides mathematics
with its foundation. This second aspect of set theory
gives it philosophical as well as mathematical signifi-
cance. We shall discuss both aspects of the subject in
this article.

2 The Theory of Transfinite Numbers

Set theory began with the work of cantor [VI.54]. In
1874 he proved that there are more real numbers than
there are algebraic ones, thus showing that infinite sets
can be of different sizes. This also provided a new proof
of the existence of transcendental numbers [III.43].
Recall that a real number is called algebraic if it is the
solution of some polynomial equation

anXn + an−1Xn−1 + · · · + a1X + a0 = 0,

where the coefficients an are integers (and an �= 0).
Thus, numbers like

√
2, 3

4 , and the golden ratio, 1
2 (1 +√

5), are algebraic. A transcendental number is one that
is not algebraic.

What does it mean to say that there are “more” real
numbers than algebraic ones, when there are infinitely
many of both? Cantor defined two sets A and B to
have the same size, or cardinality, if there is a bijec-
tion between them: that is, if there is a one-to-one cor-
respondence between the elements of A and the ele-
ments of B. If there is no bijection between A and B,
but there is a bijection between A and a subset of B,
then A is of smaller cardinality than B. So what Cantor
in fact showed was that the set of algebraic numbers
had smaller cardinality than that of all real numbers.

In particular, Cantor distinguished between two dif-
ferent kinds of infinite set: countable and uncount-
able [III.11]. A countable set is one that can be put into
one-to-one correspondence with the natural numbers.

In other words, it is a set that we can “enumerate,”
assigning a different natural number to each of its ele-
ments. Let us see how this can be done for the algebraic
numbers. Given a polynomial equation as above, let the
number

|an| + |an−1| + · · · + |a0| +n
be called its index. It is easy to see that for every k > 0
there are only a finite number of equations of index
k. For instance, there are only four equations of index
3 with strictly positive an, namely, X2 = 0, 2X = 0,
X+1 = 0, and X−1 = 0, which have as solutions 0, −1,
and 1. Thus, we can enumerate the algebraic numbers
by first enumerating all solutions of equations of index
1, then all solutions of equations of index 2 that we
have not already enumerated, and so on. Therefore, the
algebraic numbers are countable. Note that from this
proof we also see that the sets Z and Q are countable.

Cantor discovered that, surprisingly, the set R of
real numbers is not countable. Here is Cantor’s orig-
inal proof. Suppose, aiming for a contradiction, that
r0, r1, r2, . . . is an enumeration of R. Let a0 = r0.
Choose the least k such that a0 < rk and put b0 = rk.
Given an and bn, choose the least l such that an <
rl < bn, and put an+1 = rl. And choose the least m
such that an+1 < rm < bn, and put bn+1 = rm. Thus,
we have a0 < a1 < a2 < · · · < b2 < b1 < b0. Now
let a be the limit of the an. Then a is a real number
different from rn, for all n, contradicting our assump-
tion that the sequence r0, r1, r2, . . . enumerates all real
numbers.

Thus it was established for the first time that there
are at least two genuinely different kinds of infinite
sets. Cantor also showed that there are bijections
between any two of the sets Rn, n � 1, and even RN,
the set of all infinite sequences r0, r1, r2, . . . of real
numbers, so all these sets have the same (uncountable)
cardinality.

From 1879 to 1884 Cantor published a series of
works that constitute the origin of set theory. An impor-
tant concept that he introduced was that of infinite, or
“transfinite,” ordinals. When we use the natural num-
bers to count a collection of objects, we assign a num-
ber to each object, starting with 1, continuing with
2, 3, etc., and stopping when we have counted each
object exactly once. When this process is over we have
done two things. The more obvious one is that we have
obtained a number n, the last number in the sequence,
that tells us how many objects there are in the collec-
tion. But that is not all we have done: as we count we
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also define an ordering on the objects that we were

counting, namely the order in which we count them.

This reflects two different ways in which we can think

about the set {1,2, . . . , n}. Sometimes all we care about

is its size. Then, if we have a set X in one-to-one cor-

respondence with {1,2, . . . , n}, we conclude that X has

cardinality n. But sometimes we also take note of the

natural ordering on the set {1,2, . . . , n}, in which case

we observe that our one-to-one correspondence pro-

vides us with an ordering on X too. If we adopt the

first point of view, then we are regarding n as a cardi-

nal, and if we adopt the second, then we are regarding

it as an ordinal.

If we have a countably infinite set, then we can

think of that from the ordinal point of view too. For

instance, if we define a one-to-one correspondence

between N and Z by taking 0,1,2,3,4,5,6,7, . . . to

0,1,−1,2,−2,3,−3, . . . , then we have not only shown

that N and Z have the same cardinality, but also used

the obvious ordering on N to define an ordering on Z.

Suppose now that we want to count the points in

the unit interval [0,1]. Cantor’s argument given above

shows that no matter how we assign numbers in this

interval to the numbers 0, 1, 2, 3, etc., we will run

out of natural numbers before we have counted all

points. However, when this happens, nothing prevents

us from simply setting aside the numbers we have

already counted and starting again. This is where trans-

finite ordinals come in: they are a continuation of the

sequence 0,1,2,3, . . . “beyond infinity,” and they can

be used to count bigger infinite sets.

To start with, we need an ordinal number that rep-

resents the first position in the sequence that comes

straight after all the natural numbers. This is the first

infinite ordinal number, which Cantor denoted by ω.

In other words, after 0,1,2,3, . . . comesω. The ordinal

ω has a different character from the previous ordinals,

because although it has predecessors, it has no imme-

diate predecessor (unlike 7, say, which has immediate

predecessor 6). We say thatω is a limit ordinal. But once

we have ω, we can continue the ordinal sequence in a

very simple way, just by adding 1 repeatedly. Thus, the

sequence of ordinal numbers begins as follows:

0,1,2,3,4,5,6,7, . . . ,ω,ω+ 1, ω+ 2, ω+ 3, . . . .

After this comes the next limit ordinal, which it seems

natural to callω+ω, and which we can write asω · 2.

The sequence continues as

ω · 2,ω · 2+ 1,ω · 2+ 2, . . . ,ω ·n, . . . ,ω ·n+m, . . . .

As this discussion indicates, there are two basic rules

for generating new ordinals: adding 1 and passing to

the limit. What we mean by “passing to the limit” is

“assigning a new ordinal number to the position in the

ordinal sequence that comes straight after all the ordi-

nals obtained so far.” For example, after all the ordinals

ω ·n+m comes the next limit ordinal, which we write

as ω ·ω, or ω2, and we obtain

ω2,ω2 + 1, . . . ,ω2 +ω, . . . ,ω2 +ω ·n, . . . ,ω2 ·n, . . . .
Eventually, we reachω3 and the sequence continues as

ω3,ω3 + 1, . . . ,ω3 +ω, . . . ,ω3 +ω2, . . . ,ω3 ·n, . . . .
The next limit ordinal is ω4, and so on. The first limit

ordinal after all the ωn is ωω. And after ωω,ωωω ,

ωωω
ω
, . . . comes the limit ordinal denoted by ε0. And

on and on it goes.

In set theory, one likes to regard all mathematical

objects as sets. For ordinals this can be done in a par-

ticularly simple way: we represent 0 by the empty set,

and the ordinal number α is then identified with the set

of all its predecessors. For instance, the natural num-

ber n is identified with the set {0,1, . . . , n − 1} (which

has cardinality n) and the ordinal ω + 3 is identified

with the set {0,1,2,3, . . . ,ω,ω+ 1,ω+ 2}. If we think

of ordinals in this way, then the ordering on the set of

ordinals becomes set membership: if α comes before

β in the ordinal sequence, then α is one of the prede-

cessors of β and therefore an element of β. A critically

important property of this ordering is that each ordinal

is a well-ordered set, which means that every nonempty

subset of it has a least element.

As we said earlier, cardinal numbers are used for

measuring the sizes of sets, while ordinal numbers indi-

cate the position in an ordered sequence. This distinc-

tion is much more apparent for infinite numbers than

for finite ones, because then it is possible for two dif-

ferent ordinals to have the same size. For example, the

ordinalsω andω+1 are different but the correspond-

ing sets {0,1,2, . . . } and {0,1,2, . . . ,ω} have the same

cardinality, as figure 1 shows. In fact, all sets that can be

counted using the infinite ordinals we have described

so far are countable. So in what sense are different ordi-

nals different? The point is that although two sets such

as {0,1,2, . . . } and {0,1,2, . . . ,ω} have the same cardi-

nality, they are not order isomorphic : that is, you cannot

find a bijection φ from one set to the other such that

φ(x) < φ(y)whenever x < y . Thus, they are the same

“as sets” but not “as ordered sets.”
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0, 1, 2, 3, 4, 5, 6, . . . , n, n + 1, . . .

0, 1, 2, 3, 4, 5, 6, . . . , n, . . . . . . . . . . + 1

Figure 1 ω and ω+ 1 have the same cardinality.

Informally, the cardinal numbers are the possible
sizes of sets. A convenient formal definition of a car-
dinal number is that it is an ordinal number that is
bigger than all its predecessors. An important example
of such an ordinal is the set of all countable ordinals,
which Cantor denoted byω1. This is the first uncount-
able ordinal: uncountable since it cannot include itself
as an element, and the first one because all its elements
are countable. (If this seems paradoxical, consider the
ordinal ω: it is infinite, but all its elements are finite.)
Therefore, it is also a cardinal number, and when we
consider this aspect of it rather than its order structure
we call it ℵ1, again following Cantor.

This process can be repeated. The set of all ordinals
of cardinality ℵ1 (or equivalently the set of all ordi-
nals that can be put in one-to-one correspondence with
the first uncountable ordinal ω1) is the smallest ordi-
nal that has cardinality greater than ℵ1. As an ordi-
nal it is called ω2 and as a cardinal it is called ℵ2. We
can continue, generating a whole sequence of ordinals
ω1,ω2,ω3, . . . of larger and larger cardinality. More-
over, using limits as well, we can continue this sequence
transfinitely: for example, the ordinal ωω is the limit
of all the ordinals ωn. As we do this, we also produce
the sequence of infinite, or transfinite, cardinals:

ℵ0,ℵ1, . . . ,ℵω,ℵω+1, . . . ,ℵωω, . . . ,
ℵω1 , . . . ,ℵω2 , . . . ,ℵωω, . . . .

Given two natural numbers, we can calculate their
sum and product. A convenient set-theoretic way to
define these binary operations is as follows. Given two
natural numbers m and n, take any two disjoint sets
A and B of size m and n, respectively; m + n is then
the size of the union A∪B. As for the product, it is the
size of the set A× B, the set of all ordered pairs (a, b)
with a ∈ A and b ∈ B. (For this set, which is called
the Cartesian product, we do not need A and B to be
disjoint.)

The point of these definitions is that they apply just
as well to infinite cardinal numbers: just replace m
and n in the above definitions by two infinite cardinals
κ and λ. The resulting arithmetic of transfinite cardi-
nals is very simple, however. It turns out that for allPUP: Tim strongly

disagrees with the
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transfinite cardinals ℵα and ℵβ,

ℵα + ℵβ = ℵαℵβ =max(ℵα,ℵβ) = ℵmax(α,β).

However, it is also possible to define cardinal expo-
nentiation, and for this the picture changes completely.
If κ and λ are two cardinals, then κλ is defined as the
cardinality of the Cartesian product of λ copies of any
set of cardinality κ. Equivalently, it is the cardinality of
the set of all functions from a set of cardinality λ into
a set of cardinality κ. Again, if κ and λ are finite num-
bers, this gives us the usual definition: for instance, the
number of functions from a set of size 3 to a set of size
4 is 43. What happens if we take the simplest nontriv-
ial transfinite example, 2ℵ0 ? Not only is this question
extremely hard, there is a sense in which it cannot be
resolved, as we shall see later.

The most obvious set of cardinality 2ℵ0 is the set
of functions from N to the set {0,1}. If f is such a
function, then we can regard it as giving the binary
expansion of the number

x =
∑
n∈N

f(n)2−(n+1),

which belongs to the closed interval [0,1]. (The power
is 2−(n+1) rather than 2−n because we are using the con-
vention, standard in set theory, that 0 is the first natural
number rather than 1.) Since every point in [0,1] has
at most two different binary representations, it follows
easily that 2ℵ0 is also the cardinality of [0,1], and there-
fore also the cardinality of R. Thus, 2ℵ0 is uncountable,
which means that it is greater than or equal to ℵ1. Can-
tor conjectured that it is exactly ℵ1. This is the famous
continuum hypothesis, which will be discussed at length
in section 5 below.

It is not immediately obvious, but there are many
mathematical contexts in which transfinite ordinals
occur naturally. Cantor himself devised his theory of
transfinite ordinals and cardinals as a result of his
attempts, which were eventually successful, to prove
the continuum hypothesis for closed sets. He first
defined the derivative of a set X of real numbers to
be the set you obtain when you throw out all the “iso-
lated” points of X. These are points x for which you
can find a small neighborhood around x that con-
tains no other points in X. For example, if X is the
set {0} ∪ {1, 1

2 ,
1
3 , . . . }, then all points in X are isolated

except for 0, so the derivative of X is the set {0}.
In general, given a set X, we can take its derivative

repeatedly. If we set X0 = X, then we obtain a sequence
X0 ⊇ X1 ⊇ X2 ⊇ · · · , where Xn+1 is the derivative
of Xn. But the sequence does not stop here: we can
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take the intersection of all the Xn and call it Xω, and if
we do that, then we can define Xω+1 to be the deriva-
tive of Xω, and so on. Thus, the reason that ordinals
appear naturally is that we have two operations, taking
the derivative and taking the intersection of everything
so far, which correspond to successors and limits in
the ordinal sequence. Cantor initially regarded super-
scripts such as ω+ 1 as “tags” that marked the trans-
finite stages of the derivation. These tags later became
the countable ordinal numbers.

Cantor proved that for every closed set X there must
be a countable ordinal α (which could be finite) such
that Xα = Xα+1. It is easy to show that each Xβ in the
sequence of derivatives is closed, and that it contains
all but countably many points of the original set X.
Therefore, Xα is a closed set that contains no isolated
points. Such sets are called perfect sets and it is not too
hard to show that they are either empty or have cardi-
nality 2ℵ0 . From this it follows thatX is either countable
or of cardinality 2ℵ0 .

The intimate connection, discovered by Cantor, be-
tween transfinite ordinals and cardinals and the struc-
ture of the continuum was destined to leave its mark
on the entire subsequent development of set theory.

3 The Universe of All Sets

In the discussion so far we have taken for granted that
every set has a cardinality, or in other words that for
every set X there is a unique cardinal number that can
be put into one-to-one correspondence with X. If κ is
such a cardinal and f : X → κ is a bijection (recall
that we identify κ with the set of all its predecessors),
then we can define an ordering on X by taking x < y if
and only if f(x) < f(y). Since κ is a well-ordered set,
this makes X into a well-ordered set. But it is far from
obvious that every set can be given a well-ordering:
indeed, it is not obvious even for the set R. (If you need
convincing of this, then try to find one.)

Thus, to make full use of the theory of transfinite
ordinals and cardinals and to solve some of the fun-
damental problems—such as computing where in the
aleph hierarchy of infinite cardinals the cardinal of R

is—one must appeal to the well-ordering principle: the
assertion that every set can be well-ordered. Without
this assertion, one cannot even make sense of the ques-
tions. The well-ordering principle was introduced by
Cantor, but he was unable to prove it. hilbert [VI.63]
listed proving that R could be well-ordered as part of
the first problem in his celebrated list of twenty-three

unsolved mathematical problems presented in 1900 at
the Second International Congress of Mathematicians
in Paris. Four years later, Ernst Zermelo gave a proof
of the well-ordering principle that drew a lot of criti-
cism for its use of the axiom of choice [III.1] (AC),
a principle that had been tacitly used for many years
but which was now brought into focus by Zermelo’s
result. AC states that for every set X of pairwise-disjoint
nonempty sets there is a set that contains exactly one
element from each set in X. In a second, much more
detailed, proof published in 1908, Zermelo spells out
some of the principles or axioms involved in his proof
of the well-ordering principle, including AC.

In that same year, Zermelo published the first axiom-
atization of set theory, the main motivation being the
need to continue with the development of set theory
while avoiding the logical traps, or paradoxes, that orig-
inated in the careless use of the intuitive notion of a set
(see the crisis in the foundations of mathematics
[II.7]). For instance, it seems intuitively clear that every
property determines a set, namely, the set of those
objects that have that property. But then consider the
property of being an ordinal number. If this property
determined a set, this would be the set of all ordinal
numbers. But a moment of reflection shows that there
cannot be such a set, since it would be well-ordered and
would therefore correspond to an ordinal greater than
all ordinals, which is absurd. Similarly, the property of
being a set that is not an element of itself cannot deter-
mine a set, for otherwise we fall into Russell’s paradox,
that if A is such a set, then A is an element of A if and
only if A is not an element of A, which is absurd. Thus,
not every collection of objects, not even those that are
defined by some property, can be taken to be a set. So
what is a set? Zermelo’s 1908 axiomatization provides
the first attempt to capture our intuitive notion of set
in a short list of basic principles. It was later improved
through contributions from skolem [VI.81], Abraham
Fraenkel, and von neumann [VI.91], becoming what
is now known as Zermelo–Fraenkel set theory with the
axiom of choice, or ZFC.

The basic idea behind the axioms of ZFC is that there
is a “universe of all sets” that we would like to under-
stand, and the axioms give us the tools we need to build
sets out of other sets. In usual mathematical practice
we take sets of integers, sets of real numbers, sets of
functions, etc., but also sets of sets (such as sets of PUP: Tim prefers

‘but’ to ‘and’ here.
open sets in a topological space [III.92]), sets of sets
of sets (such as sets of open covers), and so on. Thus,
the universe of all sets should consist not only of sets
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Figure 2 The universe V of all pure sets.

of objects, but also of sets of sets of objects, etc. Now

it turns out that it is much more convenient to dis-

pense with “objects” altogether and consider only sets

whose elements are sets, whose elements are also sets,

etc. Let us call those sets “pure sets.” The restriction

to pure sets is technically advantageous and yields a

more elegant theory. Moreover, it is possible to model

traditional mathematical concepts such as real num-

bers using pure sets, so one does not lose any mathe-

matical power. Pure sets are built from nothing, i.e., the

empty set, by successively applying the “set of” opera-

tion. A simple example is {∅, {∅, {∅}}}: to build this

we start by forming {∅}, then {∅, {∅}}, and putting

these two sets together gives us {∅, {∅, {∅}}}. Thus, at

every stage we form all the sets whose elements are sets

already obtained in the previous stages. Once again,

this can be continued transfinitely: at limit stages we

collect into a set all the sets obtained so far, and keep

going. The universe of all (pure) sets, represented by the

letter V and usually drawn as a V-shape with a vertical

axis representing the ordinals (see figure 2), therefore

forms a cumulative well-ordered hierarchy, indexed by

the ordinal numbers, beginning with the empty set ∅.

That is, we let

V0 = ∅,
Vα+1 = P(Vα), the set of all subsets of Vα,

Vλ =
⋃
β<λ
Vβ, the union of all the Vβ, β < λ,

if λ is a limit ordinal.

The universe of all sets is then the union of all the

sets Vα such that α is an ordinal. More concisely,

V =
⋃
α
Vα.

3.1 The Axioms of ZFC

The ZFC axioms, stated informally, are the following.

(i) Extensionality. If two sets have the same elements,
they are equal.

(ii) Power set. For every set x there is a setP(x)whose
elements are all the subsets of x.

(iii) Infinity. There is an infinite set.
(iv) Replacement. Ifx is a set andφ is a function-class1

restricted to x, then there is a set y = {φ(u) : u ∈
x}.

(v) Union. For every set x, there is a set
⋃
x whose

elements are all the elements of the elements of x.
(vi) Regularity. Every set x belongs to Vα, for some

ordinal α.
(vii) Axiom of choice (AC). For every set X of pairwise-

disjoint nonempty sets there is a set that contains
exactly one element from each set in X.

Usually a further axiom appears on this list, called the
pairing axiom. It asserts that for any two sets A and B
the set {A,B} exists. In particular, {A} exists. Apply-
ing the union axiom to the set {A,B} one then gets the
union A ∪ B of A and B. But pairing can be derived
from the other axioms. Another important axiom that
appeared in Zermelo’s original list, one that is both nat-
ural and very useful, is the axiom of separation. It states
that for every set A and every definable property P , the
set of elements of A that have the property P is also
a set. But this axiom is a consequence of the axiom of
replacement, so there is no need to include it in the list.
Using the axiom of separation one can easily prove the
existence of the empty set ∅, as well as the intersec-
tion A ∩ B and difference A − B of any two sets A and
B. The axiom of regularity is also known as the axiom
of foundation and it is usually stated as follows: every
nonempty set X has an ∈-minimal element, i.e., an ele-
ment that no element of X belongs to. In the presence
of the other axioms the two formulations are equiva-
lent. We chose the formulation in terms of the Vαs to
stress the fact that this is a natural axiom based on
the construction of the universe of all sets. But it is
important to notice that the notions of “ordinal” and
the “cumulative hierarchy of Vαs” need not appear in
the formulation of the axioms of ZFC.

The axioms of ZFC lead a kind of double life. On
the one hand, they tell us the things we can do with

1. A function-class can be thought of as a function that is given as a
definition rather than an object that has to exist as a set. The concept
will be made precise in section 3.2.
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sets. In this sense, ZFC is just like any other collec-
tion of axioms for algebraic structures, e.g., the axioms
for groups [I.3 §2.1], or fields [I.3 §2.2]: in both cases
they give rules for creating new objects from old ones,
though there are more rules for sets than there are for
group or field elements and they are more complicated.
Thus, just as one studies abstract groups, i.e., algebraic
structures that satisfy the axioms for groups, so one
can study the mathematical structures that satisfy the
axioms of ZFC. These are called models of ZFC. Since,
for reasons to be explained below, models of ZFC are
not easy to come by, one is also interested in models
of fragments of ZFC: that is, of axiom systems A that
consist of just some of the axioms of ZFC. A model of a
fragment A of ZFC is defined to be a pair 〈M,E〉, where
M is a nonempty set and E is a binary relation on M ,
such that all axioms of A are true when the elements
of M are interpreted as the sets and E is interpreted
as the membership relation. For example, if A includes
the union axiom, then for every element x of M there
must be an element y ofM such that zEy if and only if
there existsw such that zEw andwEx. (If we replaced
E by ∈ and “element ofM” by “set” in the last sentence,
then we would recover the usual union axiom.)

The set 〈Vω,∈〉 is a model of all the axioms of ZFC
except infinity, and 〈Vω+ω,∈〉 is a model of ZFC except
replacement. (To see why replacement fails, let x be
the setω and define a function φ on x by letting φ(n)
equalω+n. The range ofφ belongs to Vω+ω+1 but not
to Vω+ω because the ordinalω+ω does not belong to
any set Vω+n and Vω+ω is the union of the sets Vω+n.)
For both these models, we took E to be ∈, but one can
also look at a completely different relation E on a set
M , and see whether it happens to satisfy some of the
axioms of ZFC. For example, take the pair 〈N, E〉, where
mEn if and only if the mth digit (counting from right
to left) in the binary expansion of n is 1. This is a model
of ZFC without the axiom of infinity, as the reader may
care to check.

The other way of thinking of the ZFC axioms is that
they tell us how to build up the hierarchy of the Vαs.
Axiom (i), the axiom of extensionality, states that a
set is something entirely determined by its elements.
Axioms (ii)–(v) are tailored to construct V . The power-
set axiom is what we use to get from Vα to Vα+1. The
axiom of infinity allows the construction to go into
the transfinite. Indeed, in the context of the other ZFC
axioms, this axiom is equivalent to the assertion that
ω exists. The axiom of replacement is used to continue
the construction of V at limit stages λ. To see this, con-

sider the function defined by F(x) = y if and only if
x is an ordinal and y = Vx . The range of F restricted
to λ then consists of all Vβ with β < λ. By the axiom
of replacement these sets form a set. Now, by an appli-
cation of the union axiom to this set one obtains Vλ.
Finally, the axiom of regularity states that all sets are
obtained in this way: that is, the universe of all sets is
preciselyV . This rules out pathologies, such as sets that
belong to themselves. The point is that for every set X
there is a firstα such thatX ∈ Vα+1. Thisα is called the
rank ofX and it marks the stage of the cumulative hier-
archy where X was formed. So X could not possibly be
an element of itself, since all elements of X must have
a rank strictly smaller than the rank of X. The axiom
of choice is equivalent, in the context of the other ZFC
axioms, to the well-ordering principle.

3.2 Formulas and Models

The ZFC axioms can be formalized using the language
of first-order logic for sets. The symbols of first-order
logic are variables such as x,y, z, . . . ; the quantifiers
“∀” (for all) and “∃” (there exists); the logical connec-
tives “¬” (not), “∧” (and), “∨” (or), “→” (if …, then …),
and “↔” (if and only if); the equality symbol “=”; and
parentheses. To make this first-order logic for sets we
add one other symbol, “∈,” standing for “is an ele-
ment of,” and the quantifiers are understood to range
over sets. Here is how the axiom of extensionality is
expressed in this language:

∀x∀y(∀z(z ∈ x ↔ z ∈ y)→ x = y).
This reads as: for every set x and every set y , if every
set z belongs to x if and only if it belongs to y (i.e.,
if x and y have the same elements), then x and y are
equal. It is an example of a formula in our language.
Formulas can be defined inductively as follows. The
atomic formulas are x = y and x ∈ y . Using quan-
tifiers and logical connectives one can build up more
complicated formulas using the following rules: if ϕ
and ψ are formulas, then so are ¬ϕ, (ϕ∧ψ), (ϕ∨ψ),
(ϕ → ψ), (ϕ ↔ ψ), ∀xϕ, and ∃xϕ. Thus, formulas
are the formal counterpart of sentences in English (or
in any other natural language) that talk only about sets
and the membership relation. (For another discussion
of formal languages, see logic and model theory
[IV.23 §1].)

Conversely, any formula of the formal language can
be interpreted as a sentence (in English) about sets, and
it makes sense to ask whether the interpreted sentence
is true or not. Usually, by “true” we mean “true in the
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universe V of all sets,” but it also makes sense to ask
about the truth or falsity of a formula in any structure
of the form 〈M,E〉, where E is a binary relation on M .
For example, the formula ∀x∃y x ∈ y is true in all
models 〈M,E〉 of ZFC, while the formula∃x∀y y ∈ x is
false (because of the axiom of regularity). Any formula
that can be deduced from the axioms of ZFC is true in
all models of ZFC.

Once we have defined what a formula is, we are in a
position to make many statements precise that would
otherwise not be. For example, the axiom of replace-
ment involves the notion of a “function-class.” To make
proper sense of it one formulates it in terms of first-
order formulas. For example, the operation that takes
each set a to the singleton {a} is definable, and this
depends on the fact that the statement y = {x} can
be expressed by the formula ∀z(z ∈ y ↔ z = x). It is
not a function, since it is defined on all sets, and the
universe of all sets is not a set. This is why we use the
different phrase “function-class.” In addition, we some-
times allow parameters in our definitions of function-
classes. For example, the function-class that, for a fixed
set b, takes each set a to the set a∩b is defined by the
formula ∀z(z ∈ y ↔ z ∈ x ∧ z ∈ b), which depends
on the set b: we call b a parameter and we say that
the function-class is definable with parameters. More
generally, a function-class is a function on sets given
by a formula. But the function itself may not exist as
a set, since its domain may contain all sets, or all ordi-
nals, etc. Since the axiom of replacement is a statement
about all function-classes, it is not in fact a single axiom
but rather an “axiom-scheme,” consisting of one axiom
for each function-class.

An important consequence of the fact that ZFC can
be formalized in first-order logic is that it is subject to
a remarkable theorem of Löwenheim and Skolem. The
Löwenheim–Skolem theorem is a general result about
first-order formal languages; in the particular case of
ZFC, it says that if ZFC has a model, then it has a count-
able model. More precisely, given any modelM = 〈M,E〉
of ZFC, there is a modelN of ZFC contained inM that is
countable and that satisfies exactly the same sentences
as M . At first, this may seem paradoxical, for how can
ZFC have a countable model if one can prove in ZFC
that there are uncountable sets? Does the theorem not
lead to a contradiction and therefore imply that there
are no models of ZFC? Not quite. Suppose that we have
a countable modelN of ZFC and a set a inN . If we want
to show that the statement “a is countable” is true inN ,
then we must show that in N there is a surjective map

from ω to a. But it is possible for such a map to exist
in V , or in some model M that is larger than N , with-
out existing in N , because V and M contain more sets,
and therefore more functions, than N does. In such a
case, a is uncountable from the point of view of N but
countable from the point of view of M or V .

Far from presenting a problem, the relativity of cer-
tain set-theoretic notions, like being countable or hav-
ing a certain cardinality, with respect to different mod-
els of ZFC is an important phenomenon which, even
if a bit disconcerting at first, may be used to great
advantage in consistency proofs (see section 5 below).

It is not difficult to see that all the axioms of ZFC are
true in V , which is hardly surprising since they were
designed for that to happen. But the ZFC axioms may
conceivably hold in some smaller universes. That is,
there may be some class M properly contained in V ,
or even some set M , and therefore by the Löwenheim–
Skolem theorem also some countable set M , which
is a model of ZFC. As we shall see, while the exis-
tence of models of ZFC cannot be proved in ZFC, the
fact that one can consistently assume that they exist—
provided ZFC is consistent, of course—is of the greatest
importance for set theory.

4 Set Theory and the
Foundation of Mathematics

As we have seen, we can use ZFC to develop the theory
of transfinite numbers. But it turns out that all stan-
dard mathematical objects may be viewed as sets, and
all classical mathematical theorems can be proved from
ZFC using the usual logical rules of proof. For exam-
ple, real numbers can be defined as certain sets of
rational numbers, which can be defined as equiva-
lence classes [I.2 §2.3] of ordered pairs of integers.
The ordered pair (m,n) can be defined as the set
{m, {m,n}}, integers can be defined as equivalence
classes of ordered pairs of positive integers, and posi-
tive integers can be thought of as finite ordinals, which
as we have seen can be defined as sets. Tracing back,
one finds that a real number can be regarded as a set
of sets of sets of sets of sets of sets of finite ordi-
nals. Similarly, all the usual mathematical objects—
such as algebraic structures, vector spaces, topologi-
cal spaces, smooth manifolds, dynamical systems, and
so on—can be shown to exist in ZFC. Theorems con-
cerning these objects can be expressed in the formal
language of ZFC, as can their proofs. Of course, writ-
ing out a complete proof using the formal language
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would be extremely laborious, and the result would
not only be very long but also virtually impossible to
understand. It is important, however, to convince one-
self that in principle it can be done. It is the fact that
all standard mathematics can be formulated and devel-
oped within the axiomatic system of ZFC that makes
metamathematics possible, that is, the rigorous math-
ematical study of mathematics itself. For example, it
allows us to think about whether a mathematical state-
ment has a proof: once we have rigorous definitions
of “mathematical statement” and “proof,” the question
of whether a proof exists becomes a mathematical one
with a determinate answer.

4.1 Undecidable Statements

In mathematics the truth of a mathematical statement
ϕ is established by means of a proof from basic prin-
ciples or axioms. Similarly, the falsity of ϕ is estab-
lished by a proof of ¬ϕ. It is tempting to believe that
there must always be a proof of either ϕ or ¬ϕ, but in
1931 gödel [VI.92] proved in his famous incomplete-
ness theorems [V.18] that this is not the case. The first
incompleteness theorem says that in every axiomatic
formal system that is consistent and rich enough to
develop basic arithmetic there are undecidable state-
ments: that is, statements such that neither they nor
their negations are provable in the system. In partic-
ular, there are statements of the formal language of
set theory that are neither provable nor disprovable
from the ZFC axioms, supposing, that is, that ZFC is
consistent.

But is ZFC consistent? The statement that asserts the
consistency of ZFC, usually written as CON(ZFC), is the
translation into the language of set theory of:

0 = 1 is not provable in ZFC.

This statement asserts that the sequence of symbols
0 = 1 is not the last step of any formal proof from ZFC.
One can encode a formal proof as a finite sequence
of natural numbers that satisfies certain arithmetical
properties, and thereby regard the above statement
as an arithmetical one. Gödel’s second incompleteness
theorem says that in any consistent axiomatic formal
system that is rich enough to develop basic arithmetic,
the arithmetical statement that asserts the consistency
of the system cannot be proved. Thus, if ZFC is con-
sistent, then its consistency can neither be proved nor
disproved in ZFC.

ZFC is currently accepted as the standard formal sys-
tem in which to develop mathematics. Thus, the truth

of a mathematical statement is firmly established if its
translation into the language of set theory is provable
in ZFC. But what about undecidable statements? Since
ZFC embodies all standard mathematical methods, the
fact that a given mathematical statementϕ is undecid-
able in ZFC means that the truth or falsity of ϕ cannot
be established by means of usual mathematical prac-
tice. If all undecidable statements were like CON(ZFC),
this would probably not be a cause of worry, since they
seem not to directly affect the kind of mathematical
problems that people are usually interested in. But for
better or worse this is not so. As we will see, there
are many statements of mathematical interest that are
undecidable in ZFC.

There is an obvious way of showing that a mathemat-
ical statement has a proof: you just find one. But how
can it be possible to prove, mathematically, that a given
mathematical statementϕ is undecidable in ZFC? This
question has a short but far-reaching answer. If we can
find a model M of ZFC in which ϕ is false, then there
cannot be a proof ofϕ (because that proof would show
thatϕ was true inM). Therefore, if we can find models
M and N of ZFC with ϕ true in M and false in N , we
can conclude that ϕ is undecidable.

Unfortunately, a consequence of Gödel’s second in-
completeness theorem is that it is not possible to prove
in ZFC the existence of a model of ZFC. This is because
another theorem of Gödel, called the completeness the-
orem for first-order logic, asserts that ZFC is consistent
if and only if it has a model. However, we can get around
this difficulty by splitting the proof of the undecidabil-
ity ofϕ into two relative consistency proofs: the first is
a proof that if ZFC is consistent, then so is ZFC plusϕ;
and the second is a proof that if ZFC is consistent, then
so is ZFC plus the negation of ϕ. That is, one assumes
that there is a model M of ZFC and proves the exis-
tence of two models of ZFC: one where ϕ holds, and
one where it fails. One can then conclude that either ϕ
and its negation are both unprovable in ZFC, or ZFC is
inconsistent, in which case everything is provable.

One of the most surprising results of twentieth-cen-
tury mathematics is that the continuum hypothesis is
undecidable in ZFC.

5 The Continuum Hypothesis

Cantor’s continuum hypothesis (CH), first formulated
in 1878, states that every infinite set of real numbers
is either countable or has the same cardinality as R.
In ZFC, since AC implies that every set, and in par-
ticular every infinite set of real numbers, can be put
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into one-to-one and onto correspondence with a cardi-
nal number, one can easily see that CH is equivalent to
the assertion that the cardinality of R is ℵ1, or equiva-
lently, that 2ℵ0 = ℵ1, the version of the statement that
we mentioned earlier.

Solving CH was the first problem in Hilbert’s famous
list of twenty-three unsolved problems, and has been
one of the main driving forces for the development of
set theory. In spite of many attempts at proving CH by
Cantor himself and by many leading mathematicians
of the first third of the twentieth century, no major
progress was made until, sixty years after its formu-
lation, Gödel was able to prove its consistency with
ZFC.

5.1 The Constructible Universe

In 1938, Gödel found a way to construct, starting with
a model M of ZFC, another model of ZFC, contained
in M , where CH holds. He thereby proved the relative
consistency of CH with ZFC. Gödel’s model is known
as the constructible universe and is represented by the
letter L. SinceM is a model of ZFC, we may viewM as the
universe V of all sets. Then L is built inside M in a way
that is similar to how we built V , but with the following
important difference. When we passed from Vα to Vα+1

we took all subsets of Vα, but to go from Lα to Lα+1 one
takes only those subsets of Lα that are definable in Lα.
That is, Lα+1 consists of all sets of the form {a : a ∈
Lα and ϕ(a) holds in Lα}, where ϕ(x) is a formula of
the language of set theory that may mention elements
of Lα. If λ is a limit ordinal, then Lλ is just the union of
all the Lα, α < λ, and L is the union of all the Lα, α an
ordinal. Of course, we can also build L inside V . This is
the real L, the universe of all constructible sets.

One important observation is that to build L it is not
necessary to use AC, and so we do not require AC to
hold in M . But once L is constructed it can be veri-
fied that AC holds in L, as do the other axioms of ZFC.
The verification of AC is based on the fact that every
element of L is defined at some stage α, and so it is
uniquely determined by a formula and some ordinals.
Therefore, any sensible well-ordering of all the formu-
las will naturally yield a well-ordering of L, and thus of
every set in L. This shows that if ZF (i.e., ZFC minus
AC) is consistent, then so is ZFC. In other words, if
we add AC to the ZF axioms, then no contradiction is
introduced into the system. This is very reassuring, for
although AC has many desirable consequences it also
has some that at first sight can appear counterintuitive,
such as the banach–tarski paradox [V.3].

That CH holds in L is due to the fact that in L every
real number appears at some countable stage of the
construction, i.e., in some Lα, whereα is countable in L.
To prove this, one shows first that every real r belongs
to some Lβ that satisfies a finite number of axioms of
ZFC that are sufficient to build L, where β is an ordinal
that is not necessarily countable. Then, with the help
of the Löwenheim–Skolem theorem, one can show that
there is a countable subset X of Lβ that contains r and
satisfies the same axioms as Lβ. And then one shows
that X must be isomorphic to Lα for some countable
ordinal α, via an isomorphism that is the identity on
r ; this finishes the proof that r appears at a countable
stage. But since there are only ℵ1 countable ordinals,
and Lα is countable for each countable ordinal α, there
can be only ℵ1 real numbers.

Since, for each ordinal α, Lα contains only the sets
that are strictly necessary, namely those that were
explicitly definable in one of the previous stages, L is
the smallest possible model of ZFC containing all the
ordinals, and in it the cardinality of R is also the small-
est possible, namely ℵ1. In fact, in L the generalized
continuum hypothesis (GCH) holds: that is, for every
ordinal α, 2ℵα has the smallest possible value, namely,
ℵα+1.

The theory of constructible sets went through an
extraordinary development in the hands of Ronald
Jensen. He showed that in L a well-known conjecture
called Suslin’s hypothesis was false (see section 10
below) and isolated two important combinatorial prin-
ciples, known as ♦ (diamond) and � (square), that hold
in L. These two principles, which will not be defined
here, enable us to carry out constructions of uncount-
able mathematical structures by induction on the ordi-
nals in such a way that the construction does not break
down at limit stages. This is extremely useful, because
it allows one to prove consistency results without going
to the trouble of analyzing constructible sets: if you can
deduce a statement ϕ from ♦ or �, then it holds in L,
since, by Jensen’s results, ♦ and � hold in L; it follows
that ϕ is consistent with ZFC.

There is also an important generalization of the
notion of constructibility, called inner model theory.
Given any set A it is possible to build the constructible
closure of A, which is the smallest model of ZF that
contains all ordinals and A. This model, called L(A),
is built in the same way as L, but instead of beginning
with the empty set one begins with the transitive clo-
sure of A, which consists of A, the elements of A, the
elements of the elements of A, and so on. Models of
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this sort are examples of inner models: that is, models
of ZF that contain all the ordinals and all the elements
of their elements. Especially prominent are the inner
models L(r), where r is a real number, and L(R), the
constructible closure of the set of real numbers. Also
very important are the inner models of large-cardinal
axioms, which will be discussed in section 6 below.

After the result of Gödel, and given the repeated
failed attempts to prove CH in ZFC, the idea started
to take shape that maybe it was undecidable. To prove
this, it was necessary to find a way to build a model of
ZFC in which CH is false. This was finally accomplished
twenty-five years later, in 1963, by Paul Cohen, using a
revolutionary new technique called forcing.

5.2 Forcing

The forcing technique is an extremely flexible and pow-
erful tool for building models of ZFC. It allows one to
construct models with the most diverse properties and
with great control over the statements that will hold in
the model being constructed. It has made it possible
to prove the consistency of many statements with ZFC
that were not previously known to be consistent, and
this has led to many undecidability results.

In a manner reminiscent of the way one passes
from a field K to an algebraic extension K[a], one
goes from a model M of ZFC to a forcing extension
M[G] that is also a model of ZFC. However, the forc-
ing method is far more complex, both conceptually
and technically, involving set-theoretic, combinatorial,
topological, logical, and metamathematical aspects.

To give an idea of how it works, let us consider
Cohen’s original problem of starting from a model M
of ZFC and obtaining from it a model where CH fails.
The only thing we know about M is that it is a model
of ZFC, and as far as we know CH may hold in it. In
fact, for all we know,M might be the constructible uni-
verse L: perhaps when we build L inside M we obtain
the whole of M . Therefore, when we extend M we shall
have to add to it some new real numbers to ensure that
in the extensionM[G] there will be at least ℵ2 of them.
More precisely, we need the model M[G] to satisfy the
sentence that says that there are at least ℵ2-many real
numbers. However, the “real numbers” in M[G] may
not be real numbers in the actual universe V : all that
matters is that in M[G] they satisfy sentences that say
“I am a real number.” Similarly, the element of M[G]
that plays the role of the cardinal ℵ2 need not be the
actual cardinal ℵ2 in V .

In order to explain the method, let us consider the
simpler problem of adding to M just a single new real
number r . To make things even simpler, let us think of
r as just the binary representation of a real in [0,1]. In
other words, r is an infinite binary sequence in the real
world V .

A first difficulty is thatM may already contain all infi-
nite binary sequences, in which case we will not be able
to find one to add. However, by the Löwenheim–Skolem
theorem, every model M of ZFC has a countable sub-
model N that satisfies exactly the same sentences of
the language of set theory as M . Let us emphasize that
N is countable in the real world, that is, in V ; so there is,
outside N , a function that enumerates all its elements.
Nevertheless, N will contain sets x for which the sen-
tence that says “x is uncountable” is true in N . Since
M was a model of ZFC, so is N . So, since we really do
not care about the size ofM , but only that it is a model
of ZFC, we may as well assume that M = N , so that M
itself is countable. And now, since there are uncount-
ably many infinite binary sequences, there are plenty of
them that do not belong to M .

So, can we just pick any one of them and add it to
M? Well, no. The problem is that there are some binary
sequences that have a great influence on any model that
contains them. For example, we can encode any count-
able ordinal α as a real number as follows. First let f be
a bijection from N to α and define a subsetA ⊂ N2 to be
{(m,n) ∈ N2 : f(m) < f(n)}. Now choose a bijection
g from N to N2 and let c(n) = 1 if and only if g(n) ∈ A.
If g is sufficiently explicit (as it can easily be chosen to
be), then any model M that contains the infinite binary
sequence c must contain the ordinal α, since α can be
built out of c using the axioms of ZFC.

To see why this matters, suppose that M is of the
form Lα, as constructed in V , where α is a countable
ordinal in V . The existence of models of ZFC of this
form follows, for instance, from the existence of large
cardinals (see section 6 below), so we certainly can-
not rule out this possibility. Since we want to build a
model M[c] of ZFC that contains a new infinite binary
sequence c and all the elements of M , it will have to
contain Lα(c), i.e., all sets that can be constructed in
fewer thanα steps starting with c. But if c is a sequence
that encodesα, as above, thenM[c] cannot equal Lα(c)
and still be a model of ZFC, since this would imply that
Lα(c) contained itself. If we try to circumvent the prob-
lem by adding more sets to M[c] so that it becomes a
model of ZFC, then we may end up with M[c] = Lγ for
some ordinal γ greater than α. And this is not good for
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our purposes since CH holds in all models of ZFC of the
form Lγ . The conclusion is that we cannot just pick an
arbitrary c that is not in M : we will have to choose it
very carefully.

The key idea is that c should be “generic,” meaning
that it should have no special property that singles it
out. The reason for this is that if, as before, M = Lα,
and we want to ensure that M[c] = Lα(c) is still a
model of ZFC, then we do not want c to have any spe-
cial property that would interfere in the construction
of M[c] and cause some ZFC axiom not to hold any
more. To accomplish this we build c little by little so
that it avoids all the special properties that could pos-
sibly have any undesirable effect onM[c]. For example,
if we do not want c to encode the ordinal α in the man-
ner sketched above, we simply set some c(n) equal to
0 for some n such that g(n) ∈ A.

Of course, if we have built up the firstN binary digits
of c andϕ is a property that holds for all real numbers
that begin with those N digits, then we cannot avoid
ϕ without undoing our previous work. Let us call a
property avoidable if every finite binary sequence p can
be extended to a finite binary sequence q such that no
infinite sequence that extends q has the property. For
instance, the property “all terms in the sequence are
zero” is avoidable, while the property “there are ten
consecutive ones in the sequence” is not avoidable.

A real number c is called generic, or Cohen, over M
if it avoids all avoidable properties that can be defined
in M , that is, properties that can be defined by means
of formulas that may mention sets in M . It is easy to
see that c cannot belong to M , since if it did then the
property “is equal to c” would be definable inM , and it
is certainly avoidable.

Why should a generic real number exist? Once again,
we use the fact thatM is countable. From this it follows
that there are only countably many avoidable proper-
ties. If we enumerate them as ϕ1,ϕ2, . . . , then we can
pick a finite sequence q1 such that no infinite extension
of q1 satisfiesϕ1. Then we can extend q1 to q2 such that
no infinite extension of q2 satisfies ϕ2. Continuing in
this way we create an infinite binary sequence c that
does not have any of the propertiesϕi. In other words,
it is generic.

Now let M[c] be the set of all sets that can be con-
structed, using c and the elements ofM as parameters,
in as many steps as the ordinals of M . For instance, if
M were of the form Lα, thenM[c] would just be Lα(c).
The model M[c] is called a Cohen-generic extension of
M .

It turns out that, miraculously, M[c] is a model of
ZFC. Moreover, it has the same ordinals asM and, there-
fore, it is not of the form Lγ , for any ordinal γ. In partic-
ular, when we build L insideM[c], c does not belong to
it. These statements are by no means easy to prove, but
very roughly what Cohen showed was that a formulaϕ
is true in M[c] if and only if there is an initial segment
p of c that “forces” ϕ to be true. Moreover, the rela-
tion “p forces ϕ to be true,” which relates finite binary
sequences to formulas and is written p � ϕ, can be
defined in M . Therefore, to know whether a statement
ϕ is true inM[c] one just needs to check whether there
is an initial segment p of c such that p �ϕ. In particu-
lar, using this result one can prove that M[c] satisfies
the ZFC axioms.

In order to build a model where CH fails, one adds
not just one generic real number but ℵM2 of them, where
ℵM2 is the ordinal that plays the role of ℵ2 in M . That
is, it is the second uncountable cardinal in M . This
need not be the real ℵ2, and indeed it will not be if,
for instance, M is of the form Lα for some countable
ordinal α in V . Adding ℵM2 generic real numbers can
be done by finitely approximating any finite number of
them while avoiding all avoidable properties they could
have. Thus, instead of finite binary sequences we now
work with finite sets of finite binary sequences indexed
by ordinals less than ℵM2 . A generic object will be a
sequence 〈cα : α < ℵM2 〉 of Cohen reals over M , all
different, and so CH is false in the generic extension
M[〈cα : α < ℵM2 〉].

However, there is an important point that needs to be
addressed. When we add the new real numbers to M ,
it is important that the ℵ2 of the new expanded model
is the same as ℵM2 . Otherwise, CH might hold in the
expanded model and our work would have been wasted.
Fortunately, this is true, but again we must use the facts
about forcing to prove it.

The same kind of forcing argument allows one to con-
struct models where the cardinality of R is ℵ3, or ℵ27,
or any other cardinal of uncountable cofinality, i.e., any
uncountable cardinal that is not the least upper bound
of countably many smaller cardinals. The cardinality
of the continuum is, therefore, undetermined by ZFC.
Furthermore, since CH holds in Gödel’s constructible
universe L and fails in the model constructed by Cohen
using forcing, it is undecidable in ZFC.

Cohen also used forcing to prove that AC is indepen-
dent of ZF. Since AC holds in L, this amounted to con-
structing a model of ZF in which AC was false. He did
this by adding a countable collection 〈cn : n ∈ N〉 of



�

IV.22. Set Theory 313

generic real numbers to a countable modelM of ZF. To
see why this works, let N be the smallest submodel of
M[〈cn : n ∈ N〉] that contains all the ordinals and the
unordered setA = {cn : n ∈ N}. Thus,N is just L(A), as
built insideM[〈cn : n ∈ N〉]. One can then show that N
is a model of ZF, but that in N there is no well-ordering
ofA. The reason is that any well-ordering ofAwould be
definable in L(A) with a finite number of ordinals and
finitely many elements of A as parameters, and then
each one of the cn would in its turn be definable by
indicating its ordinal position in the well-ordering. But
since the whole sequence of cns is generic over L, no
formula can distinguish one of the cns from another
unless they appear as parameters in the formula. Since
we can choose two different cns that do not appear as
parameters in the definition of the well-ordering of A,
and that well-ordering distinguishes all the cns from
each other, we have a contradiction. Therefore, the set
A cannot be well-ordered, so AC does not hold.

Immediately after Cohen’s proof of the independence
of AC from ZF and of CH from ZFC, a result for which
he got the Fields Medal in 1966, many set theorists
started developing the forcing technique in its full gen-
erality (notably Azriel Lévy, Dana Scott, Joseph Shoen-
field, and Robert Solovay) and began to apply it to other
well-known mathematical problems. For instance, Solo-
vay constructed a model of ZF in which every set of
real numbers is lebesgue measurable [III.57], thereby
showing that AC is necessary for the existence of non-
measurable sets. He also constructed a model of ZFC
where every definable set of real numbers is Lebesgue
measurable; therefore, nonmeasurable sets, although
they can be proved to exist (see the example in sec-
tion 6.1 below), cannot be explicitly given; Solovay
and Stanley Tennenbaum developed the theory of iter-
ated forcing and used it to prove the consistency of
Suslin’s hypothesis (see section 10 below); Adrian Math-
ias proved the consistency of the infinitary form of
ramsey’s theorem [IV.19 §2.2]; Saharon Shelah proved
the undecidability of the Whitehead problem in group
theory; and Richard Laver proved the consistency of the
Borel conjecture; to cite just a few remarkable examples
from the 1970s.

The forcing technique now pervades all of set theory.
It continues to be a research area of great interest,
very sophisticated from the technical point of view and
of great beauty. It keeps producing important results,
with applications in many areas of mathematics, such
as topology, combinatorics, and analysis. Especially
influential has been the development over the last

twenty-five years of the theory of proper forcing, intro-
duced by Shelah. Proper forcing has proved very use-
ful in the context of forcing iterations, and in the for-
mulation and study of new forcing axioms, which will
be dealt with in section 10, as well as in the analy-
sis of cardinal invariants of the continuum. These are
uncountable cardinals associated with various topolog-
ical or combinatorial properties of the real line that can
consistently take different values in different models
obtained by forcing. An example of a cardinal invari-
ant is the least number of null sets needed to cover
the real line. Another important development has been
the use of class forcing by Anthony Dodd and Ronald
Jensen for coding the universe into a single real num-
ber, which shows that, amazingly, one can always use
forcing to turn any model M into a model of the form
L(r) for some real number r . A more recent contribu-
tion is the invention by W. Hugh Woodin of new power-
ful forcing notions associated with the theory of large
cardinals (see the next section), which have provided
new insights into the continuum hypothesis (see the
end of section 10).

The large number of independence results obtained
by forcing have made very clear that the axioms of PUP: Tim thinks
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‘results’ that have
made things clear,
rather than their
sheer number, so
‘have’ OK?

ZFC are insufficient to answer many fundamental math-
ematical questions. Thus, it is desirable to find new
axioms that, once added to ZFC, will provide a solu-
tion to some of those questions. We shall discuss some
candidates in the next few sections.

6 Large Cardinals

As we have already seen, the collection of all ordinal
numbers cannot form a set. But if it did, then to that
set there would correspond an ordinal number κ. This
ordinal would coincide with the κth cardinal ℵκ , since
otherwise ℵκ would be a larger ordinal. Moreover, Vκ
would be a model of ZFC. We cannot prove in ZFC that
there is an ordinal κ with these properties, for then
we would have proved in ZFC that ZFC has a model,
which is impossible by Gödel’s second incompleteness
theorem. So, why do we not add to ZFC the axiom that
says that there is a cardinal κ such that Vκ is a model
of ZFC?

This axiom, with the further requirement that κ be
regular, that is, not the limit of fewer than κ smaller
cardinals, was proposed in 1930 by sierpiński [VI.77]
and tarski [VI.87], and it is the first of the large-
cardinal axioms. A cardinal κ with those properties is
called inaccessible.
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Other notions of large cardinals, which implied inac-
cessibility, kept appearing during the twentieth cen-
tury. Some of them originated in generalizations to
uncountable sets of the infinite version of Ramsey’s
theorem, which states that if each (unordered) pair
of elements of ω (i.e., of natural numbers) is painted
either red or blue, then there is an infinite subset X of
ω such that all pairs of elements of X have the same
color. The natural generalization of the theorem toω1

turns out to be false. However, on the positive side, Paul
Erdős and Richard Rado proved that for every cardinal
κ > 2ℵ0 , if each pair of elements of κ is painted either
red or blue, then there is a subsetX of κ of sizeω1 such
that all pairs of elements ofX have the same color. This
is one of the landmark results of the partition calculus,
an important area of combinatorial set theory devel-
oped mainly by the Hungarian school, led by Erdős and
András Hajnal. The problem of whether Ramsey’s the-
orem can be generalized to some uncountable cardinal
leads naturally to cardinals that are called weakly com-
pact. A cardinal κ is weakly compact if it is uncountable
and satisfies the strongest possible Ramsey-type theo-
rem: whenever all pairs of elements of κ are painted
either red or blue, there is a subset X of κ of size κ
such that all pairs of elements of X have the same
color. Weakly compact cardinals are inaccessible, so
their existence cannot be proved in ZFC. Moreover, it
turns out that below the first weakly compact cardi-
nal, assuming it exists, there are many inaccessible car-
dinals, so the existence of a weakly compact cardinal
cannot be proved even if one assumes the existence of
inaccessible cardinals.

The most important large cardinals, the measurable
cardinals, are much larger than the weakly compact
ones, and were discovered in 1930 by Stanisław Ulam.

6.1 Measurable Cardinals

A set A of real numbers is a borel set [III.57] if it can
be obtained in countably many steps starting from the
open intervals and applying the two operations of tak-
ing complements and countable unions. It is null, or
has measure zero, if for every ε > 0 there is a sequence
of open intervals I0, I1, I2, . . . such that A ⊆ ⋃n In and∑
n |In| < ε. It is Lebesgue measurable if it is almost

a Borel set, that is, if it differs from a Borel set by a
null set. To each measurable set A corresponds a num-
ber µ(A) ∈ [0,∞], its measure, that is invariant under
translation of A and is countably additive, that is, the
measure of a countable union of measurable pairwise-
disjoint sets is the sum of their measures. Moreover,

the measure of an interval is its length (see measures
[III.57]).

One can prove in ZFC that there exist non-Lebesgue-
measurable sets of real numbers. For example, the fol-
lowing set was discovered in 1905 by Giuseppe Vitali.
Define two elements of the closed interval [0,1] to be
equivalent if they differ by a rational, and letA be a sub-
set of [0,1] that contains precisely one element from
each equivalence class. This requires one to make a
large number of choices, which can be done by AC. To
see that A is not measurable, consider for each rational
p the set Ap = {x + p : x ∈ A}. Any two of these sets
are disjoint, because of the way we built A. Let B be
the union of all Ap over all rational numbers p in the
interval [−1,1]. A cannot have measure zero, for then
B itself would have measure zero, and this is impos-
sible because [0,1] ⊆ B. On the other hand, A can-
not have positive measure either, since then B would
have infinite measure, and this is impossible because
B ⊆ [−1,2].

Since measurable sets are closed under taking com-
plements and countable unions, all Borel sets are mea-
surable. In 1905 lebesgue [VI.72] showed that there
are measurable sets that are not Borel. While reading
Lebesgue’s work, Mikhail Suslin noticed that Lebesgue
had made a mistake in claiming that continuous images
of Borel sets are Borel. Indeed, Suslin soon found a
counterexample, which led eventually to the discovery
of a new natural hierarchy of sets of reals beyond the
Borel sets, the so-called projective sets. These are the
sets that can be obtained from the Borel sets by tak-
ing continuous images and complements (see section 9
below). In 1917 Nikolai Luzin showed that all contin-
uous images of Borel sets, the analytic sets, are also
measurable. If a set is measurable, then so is its com-
plement, so all complements of analytic sets, the coan-
alytic sets, are also Lebesgue measurable. It is therefore
natural to ask whether we can continue like this. In par-
ticular, are continuous images of coanalytic sets, or Σ1

2

sets, as they are known, also measurable? The answer
to this question turns out to be undecidable in ZFC: in
L there are Σ1

2 sets that are not Lebesgue measurable,
and with forcing one can construct models where all Σ1

2

sets are measurable.
The proof given above of the existence of a non-

Lebesgue-measurable set of reals hinges on the fact
that Lebesgue measure is translation invariant. In fact,
the proof shows that there cannot be any countably
additive translation-invariant measure that extends
Lebesgue measure and measures all sets of reals. Thus,
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a natural question, known as the measure problem,
is whether, if one drops the requirement of transla-
tion invariance, there can exist some countably additive
measure that extends Lebesgue measure and measures
all sets of reals. If such a measure exists, then the car-
dinality of the continuum cannot be ℵ1, nor ℵ2, nor any
ℵn with n < ω, etc. In fact, Ulam proved in 1930 that a
positive solution to the measure problem implies that
the cardinality of R is extremely large: it is greater than
or equal to the least uncountable regular cardinal that
is a limit of smaller cardinals. He also proved that the
existence of a nontrivial countably additive measure on
any set implies either a positive solution to the mea-
sure problem, or that there exists an uncountable car-
dinal κ with a (nontrivial) {0,1}-valued κ-additive mea-
sure that measures all its subsets. Such a cardinal is
called measurable. If κ is measurable, then it is weakly
compact, and therefore inaccessible. In fact, the set of
weakly compact cardinals smaller than κ has measure
1, and so κ is itself the κth weakly compact cardinal. It
follows that the existence of a measurable cardinal can-
not be proved in ZFC, even if one adds the axiom that
inaccessible, or weakly compact, cardinals exist (unless,
of course, ZFC plus the existence of such cardinals is
inconsistent). A complete clarification of the measure
problem was finally provided by Solovay, who showed
that if the solution is positive, then there is an inner
model with a measurable cardinal. Conversely, if there
is a measurable cardinal, then one can build a forcing
extension where the measure problem has a positive
solution.

An unexpected consequence of the existence of a
measurable cardinal is that the universe V cannot be
L: that is, there are nonconstructible sets, and even
nonconstructible real numbers. In fact, if there is a
measurable cardinal, then V is much larger than L.
For instance, the first uncountable cardinal, ℵ1, is an
inaccessible cardinal in L.

After the invention of forcing and the subsequent
avalanche of independence results, the hope arose that
axioms asserting the existence of large cardinals, like
measurable cardinals, would settle some of the ques-
tions that, thanks to the forcing technique, had been
proved undecidable in ZFC. It was soon shown, how-
ever, by Lévy and Solovay, that large-cardinal axioms
could not settle CH, as one could easily use forcing to
change the cardinality of the continuum and make CH
hold or fail without destroying the large cardinals. But
Solovay proved in 1969 that, surprisingly, if there exists
a measurable cardinal, then all Σ1

2 sets of real num-

bers are Lebesgue measurable. So, while the axiom that

asserts the existence of a measurable cardinal cannot

settle the size of the continuum, it has a profound effect

on its structure. It is indeed astonishing that measur-

able cardinals, so far away from the sets of real num-

bers in the universe V , have such a strong influence on

their basic properties. While the relationship between

large cardinals and the structure of the continuum is

not yet fully understood, great progress has been made

in the last thirty years through the work done in descrip-

tive set theory and determinacy, which will be described

in sections 8 and 9 below.

Some of the deepest and most technically difficult

work in set theory is currently devoted to the construc-

tion and analysis of canonical inner models for large

cardinals. These are analogues of L for large cardinals,

that is, they are models built in some canonical way that

contain all the ordinals and are transitive (i.e., they con-

tain all elements of their elements), and in which certain

large cardinals exist. The larger the cardinal, the more

difficult it is to build the model. This work is known as

the inner model program.

One of the striking consequences of the inner model

program is that it provides a way of measuring the

consistency strength of virtually any set-theoretic state-

ment ϕ, using large cardinals. That is, there are large-

cardinal axioms A1 and A2 such that the consistency of

ZFC plus ϕ implies that of ZFC plus A1 and is implied

by the consistency of ZFC plus A2. We refer to A1 as

a lower bound for the consistency of ϕ and to A2

as an upper bound. In the fortunate cases when the

lower and upper bounds coincide, we obtain an exact

measure of the consistency strength of ϕ. An upper

bound A2 is usually obtained by forcing over a model

of ZFC plus A2, whereas a lower bound A1 is obtained

by inner model theory. Earlier in this section we saw

that the consistency strength of a positive solution to

the measure problem is exactly that of the existence of

a measurable cardinal. We shall see another important

example in the next section.

Knowing upper and lower bounds for the consistency

strength of set-theoretic statements—or, even better,

knowing their exact consistency strength—is extremely

useful for comparing them. Indeed, if the lower bound

for a sentence ϕ is greater than the upper bound for

another sentence ψ, then we can conclude, via Gödel’s

incompleteness theorem, that ψ does not imply ϕ.
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7 Cardinal Arithmetic

Beyond the continuum hypothesis, understanding the
behavior of the exponential function 2κ for arbitrary
infinite cardinals κ has been a motivating force in set
theory. Cantor proved that 2κ > κ for all κ, and Dénes
König proved that the cofinality of 2κ is always greater
than κ: that is, 2κ is not the limit of fewer than κ smaller
cardinals. The GCH, which, as we saw, holds in the con-
structible universe L, states precisely that 2κ has the
least possible value, namely, the least cardinal greater
than κ, usually denoted by κ+. One might think that,
as in the case of 2ℵ0 , by forcing it should be possible
to build models of ZFC where 2κ takes any prescribed
value, subject only to the necessary requirement that
its cofinality should be greater than κ. This is true for
cardinals κ that are regular, that is, not the limit of
fewer than κ smaller cardinals. Indeed, William Easton
showed that for any function F on the regular cardi-
nals such that κ � λ implies F(κ) � F(λ) and F(κ)
has cofinality greater than κ, there is a forcing exten-
sion of L in which 2κ = F(κ), for all regular κ. So, for
instance, one can build a model of ZFC where 2ℵ0 = ℵ7,
2ℵ1 = ℵ20, 2ℵ2 = ℵ20, 2ℵ3 = ℵ101, etc. This shows thatPUP: Tim confirms
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the behavior of the exponential function for infinite
regular cardinals is totally undetermined in ZFC, and
anything possible can be attained by forcing.

But how about nonregular cardinals? Nonregular car-
dinals are called singular. Thus, an infinite cardinal κ is
singular if it is the supremum of fewer than κ smaller
cardinals. For instance, ℵω, being the supremum of the
ℵn, n ∈ N, is the first singular cardinal. Determining
the possible values of the exponential function at sin-
gular cardinals is a very hard problem that has gen-
erated much important research and involves, quite
surprisingly, the necessary use of large cardinals.

Using a supercompact cardinal, which is a measur-
able cardinal with certain further properties that make
it much larger than ordinary measurable cardinals,
Matthew Foreman and Woodin built a model of ZFC in
which GCH fails everywhere, i.e., 2κ > κ+ for all cardi-
nals κ. But curiously, the value of the exponential func-
tion at a singular cardinal of uncountable cofinality is
somehow determined by its values at smaller regular
cardinals. Indeed, in 1975, Jack Silver proved that if
κ is a singular cardinal of uncountable cofinality and
2α = α+ for all α < κ, then 2κ = κ+. That is, if the
GCH holds below κ, then it also holds at κ. That this
is also the case for singular cardinals of countable cofi-
nality is a consequence of the singular cardinal hypoth-

I

II

n0 n2 n4
n1 n3 n5 n2k + 1

n2k. . .

. . .

. . .

. . .

Figure 3 A run of the infinite game
associated with a set A ⊆ [0,1].

esis (SCH), a general principle weaker than the GCH
that completely determines singular cardinal exponen-
tiation, relative to exponentiation for regular cardinals.
A special case of SCH is the following. If 2ℵn < ℵω for all
finite n, then 2ℵω = ℵω+1. So, in particular, if the GCH
holds below ℵω, then it must hold at ℵω. Shelah used
his powerful “PCF theory” to obtain the unexpected PUP: Tim would
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result that if 2ℵn < ℵω for all n, then 2ℵω < ℵω4 . So,
if GCH holds below ℵω, then there is a bound (in ZFC!)
on the possible values of 2ℵω . But can this value actually
be greater than the least possible one, namely ℵω+1? In
particular, can the GCH first fail at ℵω? The answer is
yes, but large cardinals are needed. Indeed, on the one
hand Menachem Magidor proved the consistency of the
first failure of GCH at ℵω, assuming the consistency
of the existence of a supercompact cardinal. Thus, the
existence of a supercompact cardinal is an upper bound
for the failure of SCH. On the other hand, using inner
model theory, Dodd and Jensen showed that large car-
dinals are required for this to happen. An exact mea-
sure of the consistency strength of the failure of SCH
was later established by Moti Gitik.

8 Determinacy

It turns out that the existence of very large cardi-
nals, such as supercompact cardinals, has a dramatic
effect on the properties of sets of real numbers, espe-
cially when they can be defined in some simple way.
The link between the two appears through the analy-
sis of certain infinite two-player games that are asso-
ciated with sets of real numbers. Given a subset A
of [0,1], consider the following infinite game associ-
ated with A: there are two players, I and II, who alter-
nately choose a number ni that equals either 0 or 1. To
begin with, player I plays n0, then player II plays n1,
to which I answers by playing n2, and so on. A run of
the game is displayed in figure 3. At the end of the run,
the players have produced an infinite binary sequence:
n0, n1, n2, . . . . This sequence can be regarded as the
binary expansion of a real number r in [0,1]. Player I
wins the game if r belongs to A and player II wins
otherwise.

For example, if A is the interval [0, 1
2 ], then a win-

ning strategy for player I is simply to start by play-
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ing 0, whereas if A = [0, 1
4 ), then player II wins the

game by playing 1 in her first move. But for most
games, the question of who wins is not decided after
any finite number of moves. For instance, if A is the
set of rational points of [0,1], then one can easily see
that player II has a strategy for winning the game (for
example, whatever player I does, player II will win if she
plays 01001000100001 . . . ), but she will not win at any
finite stage of the run.

The game is determined if one of the two play-
ers has a winning strategy. Formally, a strategy for
player II is a function f that assigns 0 or 1 to each
finite binary sequence of odd length. It is a winning
strategy if player II always wins the game if she plays
f(n0, n1, . . . , n2k) in her kth turn, whatever moves are
made by player I. Similarly, one can define a winning
strategy for I. We say that the set A is determined if
the game associated with A is determined. One might
guess that every game is determined, but actually it is
quite easy, using AC, to prove the existence of a game
that is not determined.

It turns out that the determinacy of the games asso-
ciated with certain classes of sets of reals implies that
all sets in the class have properties similar to those of
the Borel sets. For example, the axiom of determinacy
(AD), which asserts that all sets of reals are determined,
implies that every set of reals is Lebesgue measurable,
has the property of Baire (i.e., differs from an open set
by a set of first category), and has the perfect set prop-
erty (i.e., contains a perfect set if it is uncountable). To
give the flavor of a typical argument, let us indicate why
every set A of reals is Lebesgue measurable.

First, one observes that it is enough to show that if
all measurable subsets of A are null, then A itself must
be null. And for this one plays, for every ε > 0, the
covering game for A and ε. In this game, player I plays
so that the sequence a = 〈n0, n2, n4, . . . 〉 represents
an element of A, and player II plays (binary encodings
of) finite unions of rational intervals, with measures
adding up to at most ε, while attempting to cover a.
It can be shown that if every measurable subset of A is
null, then player I cannot have a winning strategy. So by
AD there must be a winning strategy for II. Using this
strategy one can show that the outer measure of A is
at most ε. And since this works for all ε > 0, Amust be
null.

While AD rules out the existence of badly behaved
sets of reals, it implies the negation of AC, so AD is
inconsistent with ZFC. However, weaker versions of AD
are compatible with, and even follow from, ZFC. Indeed,

Donald Martin proved in 1975 that ZFC implies that
every Borel set is determined. Moreover, if there exists a
measurable cardinal, then every analytic set, and there-
fore also every coanalytic set, is determined. A natural
question, therefore, is whether the existence of larger
cardinals implies the determinacy of more complex
sets such as the Σ1

2 sets.

The intimate connection between large cardinals and
the determinacy of simple sets of reals was first made
explicit by Leo Harrington, who showed that the deter-
minacy of all analytic sets is in fact equivalent to a
large-cardinal principle slightly weaker than the exis-
tence of a measurable cardinal. As we shall shortly see,
large cardinals imply the determinacy of certain sim-
ply definable sets of reals, the so-called projective sets,
while the determinacy of those sets implies in turn the
existence of the same kind of large cardinals in some
inner models.

9 Projective Sets and
Descriptive Set Theory

As we have seen, very basic questions about sets of
real numbers can be extremely hard to answer. How-
ever, it often turns out to be possible to answer them
for sets that occur “in nature,” or that can be explicitly
described. This raises the hope that one might be able
to prove facts about definable sets of reals that cannot
be proved for arbitrary sets.

The study of the structure of definable sets of reals is
the subject of descriptive set theory. Examples of such
sets are the Borel sets, and also the projective sets,
which are sets that can be obtained from Borel sets by
taking continuous images and complements. An equiv-
alent definition of the projective sets is that they are
subsets of R that can be obtained from closed subsets
of Rn by a mixture of projecting to a lower dimension
and taking complements. To see how this relates to
definability, consider projecting a subset A ⊂ R2 down
to the x-axis. The result will be the set of all x such
that there exists y with (x,y) ∈ A. Thus, projection
corresponds to existential quantification. Taking com-
plements corresponds to negation, so one can combine
the two and obtain universal quantification as well. One
can therefore think of a projective set as a set that is
definable from a closed set.

Since analytic sets are continuous images of Borel
sets, they are projective. And so are the complements
of the analytic sets, the coanalytic sets, and the con-
tinuous images of coanalytic sets, the Σ1

2 sets. More
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complex projective sets are obtained by taking com-

plements of Σ1
2 sets, the so-called Π1

2 sets, their contin-

uous images, called Σ1
3 , etc. The projective sets form

a hierarchy of increasing complexity, in accordance

with the number of steps (always finite) that are nec-

essary to obtain them from the Borel sets. Many sets

of reals that appear naturally in usual mathematical

practice are projective. Moreover, the results and tech-

niques of descriptive set theory, although originally

developed for the study of sets of reals, also apply

to definable sets in any Polish space (a separable and

complete-metrizable space). These include basic exam-PUP: Tim confirms
that this jargon is
necessary here. ples such as Rn, C, separable banach spaces [III.64],

etc., where projective sets arise in a very natural way.

For example, in the space C[0,1] of continuous real-

valued functions on [0,1] with the sup norm, the set of

everywhere differentiable functions is coanalytic, and

the set of functions that satisfy the mean-value theo-

rem isΠ1
2 . Thus, since descriptive set theory deals with

rather natural sets in Polish spaces of general mathe-

matical interest, it is not surprising that it has found

many applications in other areas of mathematics such

as harmonic analysis, group actions, ergodic theory,

and dynamical systems.

Classical results of descriptive set theory are that

all analytic sets, and hence also all coanalytic sets, are

Lebesgue measurable and have the Baire property, and

that all uncountable analytic sets contain a perfect set.

However, as we have already pointed out, one cannot

prove in ZFC that all Σ1
2 sets have those properties,

since in L there are counterexamples. By contrast, if

there exists a measurable cardinal, then they do have

them. But what about more complex projective sets?

The theory of projective sets is closely tied to large

cardinals. On the one hand, Solovay showed that if the

existence of an inaccessible cardinal is consistent, then

so is the statement that every projective set of reals

is Lebesgue measurable, has the Baire property, etc.

On the other hand, Shelah showed, quite unexpectedly,

that the inaccessible cardinal is necessary, in the sense

that if all Σ1
3 sets are Lebesgue measurable, then ℵ1 is

an inaccessible cardinal in L.

Nearly all the classical properties of Borel and ana-

lytic sets are shared by the projective sets, assuming

that they are determined. So since the determinacy of

all projective sets cannot be proved in ZFC and since it

allows for the extension of the theory of Borel and ana-

lytic sets to all projective sets in a very elegant and sat-

isfactory way, it constitutes an excellent candidate for a

new set-theoretic axiom. This axiom is known as projec-
tive determinacy (PD). It implies, for instance, that every
projective set is Lebesgue measurable, has the Baire
property, and has the perfect set property. In partic-
ular, since every uncountable perfect set has the same
cardinality as R, it implies that there is no projective
counterexample to CH.

One of the most remarkable advances in set theory
over the last twenty years is the proof that PD follows
from the existence of large cardinals. Martin and John
Steel proved in 1988 that if there exist infinitely many
so-called Woodin cardinals, then PD holds. Woodin car-
dinals lie between measurable and supercompact in
the hierarchy of large cardinals. Subsequently, Woodin
showed that, surprisingly, the hypothesis that for each
n it is consistent that there exist n Woodin cardinals
is necessary in order to obtain the consistency of PD.
Thus the existence of infinitely many Woodin cardinals
is a sufficient, and essentially necessary, assumption
for extending the classical theory of Borel and analytic
sets to all projective sets of reals, and more generally
to all projective sets in Polish spaces.

In spite of the enormous success of the known large-
cardinal axioms, not only in descriptive set theory but
also in many other areas of mathematics, their status as
true axioms of set theory is still a matter of debate. This
is more so in the case of very large cardinals such as
the supercompact ones, the reason being that there is
as yet no inner model theory available for them, which
means that there is not even strong evidence for their
consistency. However, it should be noted that, as Har-
vey Friedman has shown, large cardinals are necessary
even for proving quite simple-looking and rather nat-
ural statements about finite functions on the integers,
which provides evidence for their essential role in even
the most basic parts of mathematics. Another short-
coming of the known large-cardinal axioms is that they
cannot decide some fundamental questions. The most
conspicuous is CH, but there are others.

10 Forcing Axioms

Another old and basic question about the continuum
that the known large-cardinal axioms cannot solve is
Suslin’s hypothesis (SH). Cantor had proved that every
linearly ordered set that is dense (i.e., any two distinct
elements have another element in between), complete
(i.e., every nonempty subset with an upper bound has a
supremum), separable (i.e., contains a dense countable
subset), and without endpoints is order-isomorphic to
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the real line. In 1920 Suslin conjectured that if instead

of separability one assumes the weaker countable chain

condition, or CCC, which demands that every pairwise-

disjoint collection of open intervals should be at most

countable, then it must still be isomorphic to R. The

importance of SH for the development of set theory is

that it led to the discovery of a new class of axioms, the

so-called forcing axioms.

In 1967, Solovay and Tennenbaum used forcing to

construct a model in which SH holds. The idea is to use

the forcing to destroy any counterexamples that there

might be to SH. But when one does this one may cre-

ate new ones, and the result is that one needs to force

again and again, transfinitely many times. The iteration

of forcing is technically cumbersome and difficult to

control, for many unwanted things can happen at the

limit stages. For instance, ω1 may be “collapsed,” i.e.,

it may become countable.

Fortunately, these difficulties can be dealt with. In

general, a forcing argument involves a partially ordered

set. (In the case we looked at earlier, it was the set

of all finite binary sequences, with p < q if p was

a proper initial segment of q.) If one starts with a

model where GCH holds, uses only partial orderings

that are CCC—that is, in which every set of incompat-

ible elements is countable—and takes so-called direct

limits at the limit stages, then in ω2 steps one can

destroy all counterexamples so that SH holds in the

final model. On the other hand, Jensen proved in 1968

that a counterexample to SH exists in L, thereby proving

the undecidability of SH in ZFC.

From the construction of Solovay and Tennenbaum,

Martin isolated a new principle now known as Martin’s

axiom (MA), which generalizes the well-known Baire

category theorem. The latter states that in every com-

pact Hausdorff topological space, the intersection of a

countable collection of dense open sets is nonempty.

MA says the following:

In every compact Hausdorff CCC topological space, the

intersection of ℵ1 dense open sets is nonempty.

The condition that the space be CCC (i.e., every col-

lection of pairwise-disjoint open sets is countable) is

necessary, for without it the statement is false. It is easy

to see that MA implies the negation of CH, for if there

are only ℵ1 real numbers, then the intersection of the

ℵ1 dense open sets R\ {r}, as r ranges over all the real

numbers, is empty. However, MA does not decide the

cardinality of R.

MA has been used with great success to solve many
questions that are undecidable in ZFC. For example,
it implies SH and that every Σ1

2 set is Lebesgue mea-
surable. But is MA really an axiom? In what sense, if
any, is it a natural, or at least plausible, assumption
about sets? Is the fact that it decides many ZFC undecid-
able questions sufficient for it to be accepted as being
on a par with the ZFC axioms or the axioms of large
cardinals? We shall come back to this.

MA has many different equivalent formulations. The
original formulation of Martin was more closely con-
nected with forcing—hence the term forcing axiom.
Roughly speaking it said that if you have a CCC par-
tial order, then you can avoid ℵ1 avoidable properties,
and not just countably many. This allows one to prove
the existence of generic subsets of the partial order,
over models M of size ℵ1.

Stronger forcing axioms can be obtained by expand-
ing the class of partial orderings to which MA applies
while keeping the axiom consistent. An important such
strengthening is the proper forcing axiom (PFA), which
is formulated for partial orderings that are proper.
Properness is a property weaker than the CCC that PUP: Tim thinks

this is OK as it is.
was discovered by Shelah and is particularly useful
when working with complicated forcing iterations. The
strongest possible forcing axiom of this type was dis-
covered by Foreman, Magidor, and Shelah in 1988. It
is called Martin’s maximum (MM) and is consistent
with ZFC, assuming the consistency of a supercompact
cardinal.

Both MM and PFA have striking consequences. For
example, PFA, and therefore also MM, implies the axiom
of projective determinacy (PD), the singular cardinal
hypothesis (SCH), and that the cardinality of R is ℵ2.

An advantage of forcing axioms is that one can apply
them without having to go into the details of forcing,
just as ♦ and � save one from having to go into the
details of constructible sets. A very good example of
this is PFA and some combinatorial principles derived
from it, like the so-called open coloring axiom, which
have been used with great success by Stevo Todor-
cevic to solve many outstanding problems in general
topology and infinite combinatorics.

As we have already pointed out, forcing axioms are
not as intuitively evident as the ZFC axioms, or even
the axioms of large cardinals, so one can ask to what
extent they should be considered as true axioms of set
theory rather than just useful principles for showing
that certain statements are consistent with ZFC. In the
case of MA and some weaker forms of PFA and MM,
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some justification for their being taken as true axioms
is based on the fact that they are equivalent to princi-
ples of generic absoluteness. That is, they assert, under
certain restrictions that are necessary to avoid inconsis-
tency, that everything that might exist, does exist. More
precisely, if some set having certain properties could
be forced to exist over V , then a set having the same
properties already exists (in V ). So, like the axioms of
large cardinals, they are maximality principles, i.e., they
attempt to make V as large as possible.

For example, MA is equivalent to the assertion that if
a set X having some properties that depend exclusively
on subsets ofω1 could be forced to exist over V using a
CCC partial ordering P, then such an X already exists in
V . This characterization of MA in terms of generic abso-
luteness provides some justification for regarding MA
as a true axiom of set theory. The analogous principle
of generic absoluteness, but for proper partial order-
ings instead of CCC, is known as the bounded proper
forcing axiom (BPFA). Although weaker than PFA, BPFA
is strong enough to decide many questions that the
large-cardinal axioms are unable to settle. Most notably,
Justin Moore has recently proved, following a series of
results by Woodin, David Asperó, and Todorcevic, that
BPFA implies that the cardinality of R is ℵ2.

To finish, let us briefly mention some deep results
that establish strong underlying connections between
large cardinals, inner models, determinacy, forcing
axioms, generic absoluteness, and the continuum.
These results hold under the assumption that for every
ordinal α there exists a Woodin cardinal greater than
α.

The first one, due to Shelah and Woodin, is that the
theory of L(R) is generically absolute. That is, all sen-
tences with real numbers as parameters that would
hold in the L(R) of any generic extension of V are
already true in the real L(R). This kind of generic abso-
luteness implies that all sets of reals in L(R), and in
particular the projective sets, are Lebesgue measur-
able, have the Baire property, etc. Furthermore, by refin-
ing the Martin–Steel result that large cardinals imply
PD, Woodin showed that in L(R) every set of reals is
determined.

Another result of Woodin is that there is an axiom,
which he calls (∗), that is intended to play the role for
subsets ofω1 that PD plays for sets of natural numbers,
in the sense that it decides “practically all” questions
about those sets. Of course, no consistent axiom can
really decide all questions that refer only to subsets of
ω1, since by Gödel’s incompleteness theorem there will

always be undecidable arithmetical statements. So, to

formulate precisely the notion of deciding practically

all questions, Woodin introduces a new logic, called Ω-

logic, that strengthens ordinary first-order logic. One

of the main features of Ω-logic is that the valid state-

ments in Ω-logic are generically absolute. Under suit-

able large-cardinal hypotheses, (∗) is consistent in Ω-

logic and decides in Ω-logic all questions that refer

only to subsets of ω1. The main open problem is the

Ω-conjecture, whose formulation is quite technical and

beyond the scope of this article. If the Ω-conjecture is

true, then any axiom compatible with the existence of

large cardinals that decides all questions that depend

exclusively on subsets ofω1 in Ω-logic must imply the

negation of CH. Thus, the theories ZFC plus CH and ZFC

plus not-CH are not equally reasonable from the point

of view of Ω-logic, since in the presence of large car-

dinals CH puts an unnecessary limitation on the possi-

bility of settling all natural questions about subsets of

ω1.

11 Final Remarks

In this short account of set theory, we have reviewed

some of the key developments since its beginnings in

the late nineteenth century. What started in the hands

of Cantor as a mathematical theory of transfinite num-

bers has developed to become a general theory of infi-

nite sets and a foundation for mathematics. The fact

that it has been possible to unify all of classical math-

ematics into one single theoretical framework, the ZFC

axiom system, is certainly remarkable. But beyond this,

and most importantly, the techniques developed by set

theory, such as constructibility, forcing, infinite com-

binatorics, the theory of large cardinals, determinacy,

the descriptive theory of definable sets in Polish spaces,

etc., have turned it into a discipline of great depth and

beauty, with fascinating results that stimulate and chal-

lenge our imagination, and with numerous applications

in areas such as algebra, topology, real and complex

analysis, functional analysis, and measure theory. In

the twenty-first century, the ideas and techniques gen-

erated within set theory will surely continue to con- PUP: Tim has
deleted some of
this sentence but
is resistant to the
specific changes
suggested by the
proofreader. OK as
it is now?

tribute to the solution of outstanding mathematical

problems, old as well as new, and will help mathemati-

cians gain an ever deeper insight into the complexities

and vastness of the mathematical universe.
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IV.23 Logic and Model Theory
David Marker

1 Languages and Theories

Mathematical logic is the study of formal languages
that are used to describe mathematical structures and
what these can tell us about the structures themselves.
We can learn a lot about a formal language by inves-
tigating which of its sentences are true for the struc-
ture it describes, and we can learn a lot about the
structure by investigating the subsets of it that can be
defined using the language. In this article, we shall see
several examples of languages and the structures that
they are used to describe. We shall also see instances
of the remarkable phenomenon that theorems in logic
can sometimes be used to prove “purely mathemati-
cal” results that seem to have nothing to do with logic.
This introductory section briefly introduces some of
the basic ideas that will be needed to understand the
later sections.

All the formal languages that we consider will be ex-
tensions of a basic logical language that we shall denote
by L0. The statements, or formulas, of this language
are made up of the following components: variables,
which are denoted by letters of the alphabet such as

x or y , or letters with subscripts such as v1, v2, . . . ;
the parentheses “(” and “)”; the equality symbol “=”;
the logical connectives ∧, ∨, ¬, →, ↔, which we read
as “and,” “or,” “not,” “implies,” and “if and only if”; and
the quantifiers ∃ and∀, which we read as “there exists”
and “for all.” (If these symbols are unfamiliar to you,
then you should read the language and grammar
of mathematics [I.2] before attempting to read this
article.) Here are a couple of formulas of L0:

(i) ∀x ∀y ∃z (z �= x ∧ z �= y);
(ii) ∀x (x = y ∨ x = z).

The first of these says that if any object exists at all then
there are at least three objects, and the second says that
y and z are the only objects. There is an important dif-
ference between the two formulas: the variables x, y ,
and z that occur in the first formula are all bound vari-
ables, which means that they are all attached to quan-
tifiers, whereas in the second formula, only the vari-
able x is bound, while the variables y and z are free.
This means that the first formula expresses a statement
about some mathematical structure, while the second
is a statement about not just a structure but also the
particular elements y and z.

There are various rules that allow one to build larger
formulas out of smaller ones. We will not give them
all, but for example if φ and ψ are formulas, then ¬φ,
φ ∨ψ, φ ∧ψ, φ → ψ, and φ ↔ ψ are all formulas. In
general, ifφ is built out of smaller formulasφ1, . . . ,φn
using logical connectives (and parentheses), then we
call φ a Boolean combination of φ1, . . . ,φn. Another
important way to modify a formula is quantification:
if φ(x) is a formula involving a free variable x, then
∀xφ(x) and ∃xφ(x) are both formulas.

The formulas just discussed are “purely logical,”
which makes them not very useful for describing inter-
esting mathematical structures. Suppose, for example,
that we wanted to study real solutions to algebraic
and exponential equations over the field [I.3 §2.2] of
real numbers. We can think of this as studying the
“mathematical structure”

Rexp = (R,+, ·, exp, <,0,1),

where the right-hand side is a septuple that consists of
the set R of real numbers, the binary operations of addi-
tion and multiplication, the exponential function
[III.25], the “less than” relation, and the real numbers 0
and 1.

The various components of this structure are of
course related to each other in many ways, but we can-
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not express these relationships unless we are prepared

to extend the basic language L0. For example, if we

wanted to write, in a formal way, the statement that

the exponential function turns addition into multipli-

cation, then the obvious thing to write down would

be

(i) ∀x∀y exp(x) · exp(y) = exp(x +y).

Here we have two quantifiers, two bound variables x
and y , and the equals sign, but the rest of the for-

mula involves extraneous elements such as “+”, “·”, and

“exp”. Thus, to discuss the structure Rexp, we extend

the language L0 to a language Lexp, by adding in the

symbols “+”, “·”, “exp”, “<”, “0”, and “1”. Of course,

these come with various syntactic rules that reflect the

fact that “+” is a binary operation, “exp” is a function,

and so on. For instance, these rules would allow us to

write exp(x + y) = z but would forbid us to write

exp(x = y)+ z.

Here are three more Lexp-formulas:

(ii) ∀x (x > 0→ ∃y exp(y) = x);
(iii) ∃x x2 = −1;

(iv) ∃y y2 = x.

We interpret these formulas as the assertions “for all

positive x, there is a y such that ey = x,” “−1 is a

square,” and “x is a square.” The first three formulas

above are declarative statements about the structure

Rexp. Formulas (i) and (ii) are true in Rexp, while (iii) is

false. Formula (iv) is different because x is a free vari-

able: thus, it expresses a property of x. (For instance,

it is true if x = 8, but false if x = −7.) A sentence is

defined to be a formula with no free variables. If φ is

an Lexp-sentence, then φ is either true or false in Rexp.

If φ is a formula with free variables x1, . . . , xn, and

a1, . . . , an are real numbers, then we write Rexp /
φ(a1, . . . , an) if the formula φ is true for the partic-

ular sequence (a1, . . . , an). We think of the formula as

defining the set

{(a1, . . . , an) ∈ Rn : Rexp / φ(a1, . . . , an)},
that is, the set of all sequences (a1, . . . , an) for which

the formula is true when you setxi to equal ai for every

i. For example, the formula

∃z (x = z2 + 1 ∧ y = z · exp(exp(z)))

defines the parametrized curve{(
t2 + 1, teet ) : t ∈ R

}
.

For another example, one that illustrates an impor-
tant point, let us consider the structure (Z,+, ·,0,1):
that is, the integers, with addition, multiplication, 0,
and 1. The language used to describe this structure is
the language of rings, Lrng = L(+, ·,0,1). (The nota-
tion here lists the symbols that we add to the basic
language L0.) The language Lrng has no symbol for the
usual ordering on Z, but, surprisingly, this ordering can
nevertheless be defined in terms of Lrng. (To appreciate
the nonobviousness of this fact, the reader is encour-
aged to try to work out why it is true before reading
on.)

The trick is to use a well-known theorem due to
lagrange [VI.22], which asserts that every nonnega-
tive integer is a sum of four squares. It follows that the
statement x � 0 can be defined by the formula

∃y1∃y2∃y3∃y4 x = y2
1 +y2

2 +y2
3 +y2

4 .

(Of course, we are also using the fact that a negative
integer cannot be written as a sum of four squares.
Note too that a similar trick would work even if all one
knew was that every nonnegative integer was a sum of
a hundred squares.) Once one has a way of expressing
the statement that x is nonnegative, it is easy to define
the symbol “<”. The interesting aspect of this is that
the reformulation was not obvious—it depended on a
genuine mathematical theorem.

It is important to understand that formulas are
restricted in several ways, of which two stand out in
particular.

• Formulas are finite. We do not allow formulas like

∀x > 0 (x < 1∨x < 1+ 1∨x < 1+ 1+ 1∨ · · · ),
which would express the fact that R has the so-
called Archimedean property. (If we did, then it
would be much easier to define “<” above.)

• Quantifiers range over elements of the structure,
and not subsets. This rules out a “second-order”
formula such as

∀S ⊆ R (if S is bounded above,
then S has a least upper bound),

which would express the completeness of R by
quantifying over all subsets S of R. Since we
look just at “first-order” formulas, what we are
studying is often called first-order logic.

Now that we have seen some examples of languages,
let us discuss them more generally. A language is basi-
cally something like Lexp or Lrng above: that is, a set
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of symbols (combined with the basic logical symbols)
together with some rules concerning their use. If L is a
language, then an L-structure is a mathematical struc-
ture in which all the sentences of L can be interpreted.
(This concept will become clearer in a moment, when
we give a couple of examples.) An L-theory T is just a
set of L-sentences, which one can think of as axioms
that an L-structure might or might not satisfy. A model
of T is then anL-structureM in which all the sentences
of T , suitably interpreted, are true. For instance, the
structure was a model for the formulas (i) and (ii) of
the language Lexp that we discussed earlier. (Another
model for the same two formulas would be one in which
we replaced the exponential function by the function
2x and interpreted “exp” as referring to that function
instead.)

The justification for the word “theory” is clearer in
another example, the language of groups [I.3 §2.1],
Lgrp = L(◦, e). Here, ◦ is a binary operation symbol
and e is a constant. We might look at the theory Tgrp

consisting of the sentences

(i) ∀x∀y∀z x ◦ (y ◦ z) = (x ◦y) ◦ z;
(ii) ∀x x ◦ e = e ◦ x = x;

(iii) ∀x∃y x ◦y = y ◦ x = e;

which are the usual axioms for groups.

In order to interpret this language in some mathe-
matical structure M we need M to consist of a set
M , a binary operation f : M2 → M , and an element
a ∈ M . We then interpret “◦” as referring to f , “e” as
referring to the element a, and quantification as being
over the set M . Thus, for example, the interpretation
of (iii) is that for every x in M there exists a y in M
such that f(x,y) = a. Under this interpretation of
the symbols of Lgrp, the structureM becomes an Lgrp-
structure. This Lgrp-structure is a model of Tgrp if in
addition the sentences (i), (ii), and (iii) are all true. Since
sentences (i)–(iii) are the axioms for groups, a model of
Tgrp is nothing other than a group.

We say that an L-sentence φ is a logical consequence
of a theory T , and write T / φ, if φ is true in every
model of T . That is, T / φ if φ is true in every struc-
ture in which all the sentences of T are true. Thus, the
symbol “/” has two different meanings, according to
whether there is a structure or a theory on the left-hand
side. However, these two meanings are closely related
in that they are both concerned with truth in models:
M/ φmeans thatφ is true in the modelM, and T / φ,
as we have just said, means that φ is true in every pos-

sible model of T . Either way, the symbol “/” stands for
a “semantic” notion of entailment.

Returning to the example of groups, ifφ is a sentence
in Lgrp, then Tgrp / φ if and only if φ is true for every
group. So, for instance,

Tgrp / ∀x∀y∀z (xy �= xz ∨y = z),
because if x, y , and z are elements of any group and
xy = xz, then we can multiply both sides on the left
by the inverse of x to deduce that y = z.

We can now describe some of the basic problems in
logic.

(i) Given an L-theory T , can we decide if a sentence
φ is a logical consequence of T , and if so how?

(ii) Given an interesting mathematical structure, like
Rexp, or (N,+, ·,0,1), or the complex field, and
a language L that describes the structure, can
we determine which L-sentences are true of the
structure?

(iii) Given a structure described by a language, do the
subsets of the structure that can be defined in
the language have special properties? Are they in
some sense “simple”? For example, earlier we saw
how to use Lexp to define a certain curve in the
plane. Now consider a very complicated set such
as a cantor set [III.17] or the mandelbrot set
[IV.14 §2.8]. Is it possible to prove that these sets
cannot be defined in Lexp because they are “too
complex” in some sense?

2 Completeness and Incompleteness

Let T be an L-theory and let φ be an L-sentence. To
show that T / φ, we must show that φ holds in every
model of T . Checking all models of T sounds like a
daunting task, but fortunately it is not necessary, since
instead we can use a proof. One of the first tasks in
mathematical logic is to say precisely what this means.

Suppose, then, thatL is some language and that T is a
set of sentences inL, i.e., anL-theory. Suppose also that
φ is a formula of L. Informally speaking, a proof of φ
assumes the statements of T and ends up establishing
φ. We express this idea formally as follows. A proof of
φ from T is a finite sequence of L-formulasψ1, . . . ,ψm
(which one can think of as the lines of the proof) with
the following properties:

(i) each ψi is either a logical axiom, or a sentence
of T , or a formula that follows from the previous
formulas ψ1, . . . ,ψi−1 by means of simple logical
rules;
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(ii) ψm = φ.

We shall not say precisely what a “simple logical rule”
is, but three examples are

• from φ and ψ it follows that φ∧ψ;
• from φ∧ψ it follows that φ;
• from φ(x) it follows that ∃v φ(v).

The other possible rules are similarly elementary.
There are three points about proofs that need to be

stressed. The first is that they are finite, which may
seem too obvious to mention but is important because
it has a number of consequences that are not obvious.
The second is that proof systems have to be sound : if
there is a proof of φ from T , then φ is true in every
model of T . To put this more succinctly, let us intro-
duce the notation T # φ for the statement that there is
a proof of φ from T . Then soundness is the assertion
that if T # φ then T / φ. This is why we can prove that
φ is true in every model of T by finding a proof rather
than by looking at all the models. The third point is that
it is easy to check whether a sequence of sentences is
a proof. More precisely, there is an algorithm that can
look at a sequence ψ1, . . . ,ψm and decide whether it
really is a proof of φ from T .

It is not too surprising that ifφ can be proved from T ,
then φ is true in all models of T . Much more remark-
able is that the converse is also true: if φ cannot be
proved from T , then there must be a model of T in
which φ is false. This tells us that two very different
notions—the finitistic, syntactic notion of “proof” and
the semantic notion of “logical consequence,” which
concerns truth in models—always agree. This result is
known as Gödel’s completeness theorem. Here is its
formal statement.

Theorem. Let T be an L-theory and let φ be an
L-sentence. Then T / φ if and only if T # φ.

Suppose that T is a simple theory like Tgrp, where
there is an algorithm to decide whether a sentence is
in T . (In the case of Tgrp this algorithm is particularly
simple, but some theories might have infinitely many
sentences.) We could write a computer program which,
given a formula φ as its input, would systematically
generate all possible proofs σ from T and check to see
whether σ was a proof of φ. If such a program finds a
proof ofφ, then it halts and tells us that T / φ. We say
that {φ : T / φ} is recursively enumerable.

However, one might hope for more. If T �/ φ, our
program above will go on searching forever, so it will

never tell us that there is no proof of φ. We say that an
L-theory T is decidable if there is a computer program
which, when given anL-sentenceφ as input, will always
halt and tell us, one way or another, whether T / φ.
Such a program would have to be cleverer than the
one that just checks all possible proofs σ , and unfortu-
nately such a program does not have to exist: as gödel
[VI.92] proved in his famous incompleteness theo-
rem [V.18], many important theories are undecidable.
Here is a first version of his theorem, concerning the
theory of the natural numbers (or theory of N for short),
which means the set of all sentences in the language
Lrng that are true of the structure (N,+, ·,0,1).
Theorem. The theory of the natural numbers is unde-
cidable.

At first, this might seem rather strange: after all, if T
is the theory of N, then T contains all true sentences
about N. So a sentence φ is provable from T if and
only if it has a one-line proof (the line being φ itself).
However, this does not make φ decidable, because the
theory T is very complicated and there is no algorithm
for deciding whether φ belongs to T .

One approach to proving the incompleteness theo-
rem is to associate a natural number with each com-
puter program in such a way that statements about pro-
grams can be recast as statements about natural num-
bers. The theory of N then determines whether a pro-
gram P halts on input x, thus solving what is known
as the halting problem. Since the halting problem was
shown by turing [VI.94] to be undecidable (a sketch
of the proof can be found in the insolubility of the
halting problem [V.23]), it follows that the theory of
N is undecidable.

How can we understand the theory of N? One might
hope to find a much smaller theory that yielded the
same true sentences. That is, we could try to find a
simple set of axioms about N that we know are true
and hope that every true sentence follows from these
axioms. A good candidate is first-order Peano arith-
metic, or PA. This is a theory in the languageL(+, ·,0,1)
that involves a few simple axioms about addition and
multiplication, such as

∀x∀y x · (y + 1) = x ·y + x,
together with axioms for induction.

Why do we need more than one axiom of induction?
The reason is that the obvious statement that expresses
the principle of mathematical induction, namely

∀A (0 ∈ A∧∀x x ∈ A→ x + 1 ∈ A)→ ∀x x ∈ A,
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is not a first-order sentence, because the quantifier is
applied to all subsetsA of N. (It is also not a sentence in
Lrng since it uses the symbol “∈”, but this is a less fun-
damental problem.) To get around this difficulty, one
has a separate axiom of induction for each formula φ.
It is the assertion that

[φ(0)∧∀x (φ(x)→ φ(x + 1))]→ ∀x φ(x).
In words, this says that if φ(0) is true and φ(x + 1) is
true wheneverφ(x) is true, thenφ(x) is true for every
x in N.

Most of number theory can be formalized in PA and
one might hope that PA # φ for every φ that is true
in N. Sadly, this is not true. Here is a second ver-
sion of Gödel’s incompleteness theorem. Recall that the
notation N / ψ means simply that ψ is true in N.

Theorem. There is a sentence ψ such that N / ψ but
PA �# ψ.

Another way to state this result is to say that there
is a sentence ψ such that PA �# ψ and PA �# ¬ψ. To see
that this is an equivalent statement, let ψ be any sen-
tence. Then precisely one of ψ and ¬ψ is true. There-
fore, if the theorem is false, then PA must prove either
ψ or ¬ψ. But this means that we can decide which by
simply going through all possible proofs in PA until we
find a proof of ψ or a proof of ¬ψ.

Gödel’s original example of a true but unprovable
sentence was a self-referential sentence that effectively
asserted

“I am not provable from PA.”

More precisely, he found a sentence ψ for which he
was able to show that ψ is true in N if and only if ψ is
not provable from PA. With more work he showed that
there is a sentence that asserts

“PA is consistent”

that is unprovable from PA. The somewhat artificial
and metamathematical nature of these sentences might
lead one to hope that all “mathematically interesting”
sentences about N are settled by PA. However, more
recent work has shown that even this is a forlorn
hope, since there are undecidable statements related to
ramsey’s theorem [IV.19 §2.2] in finite combinatorics.

Undecidability also appears in number theory in
a very basic way. Hilbert’s tenth problem asked if
there is an algorithm to decide whether a polynomial
p(X1, . . . , Xn) with integer coefficients has an integer
zero. Davis, Matijasevic, Putnam, and Robinson showed
that the answer is no.

Theorem. For any recursively enumerable S ⊆ N there
is n > 0 and p(X,Y1, . . . , Yn) ∈ Z[X, Y1, . . . , Yn] such
thatm ∈ S if and only ifp(m,Y1, . . . , Yn) has an integer
zero.

Since the halting problem provides an undecidable
recursively enumerable set, the answer to Hilbert’s
tenth problem is no. An important open question is
whether there is an algorithm to decide if a polynomial
with rational coefficients has a rational zero. Hilbert’s
tenth problem is also discussed in the insolubility
of the halting problem [V.23], and other interesting
examples of undecidability can be found in geometric
and combinatorial group theory [IV.10].

3 Compactness

A theory T is called satisfiable if there are structures
that satisfy all of the sentences in T (that is, if T has a
model), and we call T consistent if we cannot derive a
contradiction from T . Since our proof system is sound,
any satisfiable theory is consistent. On the other hand
if T is not satisfiable, then every sentence φ is a logi-
cal consequence of T , for the trivial reason that there
are no models of T in which φ is required to be true.
But the completeness theorem then tells us that T # φ
for everyφ. Choosingφ to be some contradictory state-
ment, of the formψ∧¬ψ, for instance, we see that T is
inconsistent. This way of reformulating the complete-
ness theorem has the following simple consequence,
called the compactness theorem, which turns out to be
surprisingly important, as we shall see.

Theorem. If every finite subset of T is satisfiable, then
T is satisfiable.

The reason this is true is that if T is not satisfiable
then it is inconsistent (as we have just seen), which
means that a contradiction can be proved from T . Since
this proof, like all proofs, must be finite, it involves
only finitely many sentences from T . Therefore, T has
a finite subset that implies a contradiction, which con-
tradicts our assumption that all finite subsets of T are
satisfiable.

Although the compactness theorem is an easy con-
sequence of the completeness theorem, it has many
immediate intriguing consequences and lies at the
heart of many constructions in model theory. Here are
two simple applications that show that theories have
many models that you might not expect. If M is some
L-structure, let us write Th(M) for the theory of M:
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that is, for the set of all L-sentences that are true inM.
We also extend our earlier notation M / φ from sin-
gle formulas to collections of formulas, so if M is an
L-structure and T is an L-theory, then M / T means
that every sentence of T is true inM , or in other words
thatM is a model of T .

Corollary. There exists anLexp-structureM containing
an infinite elementa (which means thata > 1,a > 1+1,
a > 1+ 1+ 1, etc.), such thatM/ Th(Rexp).

That is, there is a structure M in which all the true
statements about the structure Rexp are still true, but
M is different from Rexp because it contains an infinite
element. To prove this, we add one more constant sym-
bol c to our language and consider the theory T that
consists of all the statements of Th(Rexp) (that is, all
true statements about Rexp), together with the infinite
sequence of statements c > 1, c > 1+ 1, c > 1+ 1+ 1,
and so on. If ∆ is any finite subset of T , then we can
make R a model of ∆ simply by interpreting c as a suf-
ficiently large real number—large enough to satisfy all
the statements of the form c > 1 + 1 + · · · + 1 that
belong to∆. Since we can model every finite subset∆ of
T , the compactness theorem tells us that we can model
T itself. If M / T , then the element named by c must
be infinite.

The element 1/a will be an infinitesimal element of
M (which means that it satisfies statements that effec-
tively say that it is smaller than 1/n for every positive
integer n). This observation is the first step toward a
rigorous development of calculus with infinitesimals.

For another example, let Lrng = L(+, ·,0,1) be the
language of rings. Let T be the set of L-sentences that
are true in every finite field. We call T the theory of finite
fields. Recall that a field is said to have characteristic p
if p is the smallest positive integer (which has to be
prime) such that 1+ 1+ · · · + 1 = 0 in the field, where
the number of 1s in the sum is p. If there is no such p,
then the field is said to have characteristic zero. Thus,
the fields Q, R, and C all have characteristic zero.

Corollary. There is a field F with characteristic zero
such that F / T .

This result tells us that there is no possible set of
axioms that characterizes the finite fields: given any set
of statements that are true in all finite fields, there is
an infinite field in which they are also all true. To prove
it, we look at the theory T ′ that consists of T together
with the statements 1+ 1 �= 0, 1+ 1+ 1 �= 0, and so on.
Any finite set of statements in T ′ will be true of a finite

field of sufficiently large characteristic, and thus satisfi-
able. By the compactness theorem T ′ is satisfiable, but
a model of T clearly has to have characteristic zero.

The compactness theorem can sometimes be used to
show the existence of interesting algebraic bounds. The
next result allows us to deduce from hilbert’s null-
stellensatz [V.20] a stronger “quantitative version.” It
is our first example of a statement that does not appear
to be logical in nature but which can be proved using
logic. Recall that a field is algebraically closed if every
polynomial with coefficients in the field has a root in the
field. (the fundamental theorem of algebra [V.15]
is the assertion that C is an algebraically closed field.)

Proposition. For any three positive integers n, m, d
there is a positive integer l such that if K is an alge-
braically closed field and f1, . . . , fm are polynomials
in n variables with coefficients in K, degree at most
d and no common zero, then there are polynomials
g1, . . . , gm of degree at most l such that

∑
gifi = 1.

Hilbert’s Nullstellensatz itself is the same statement
but without the extra information about the degrees of
the polynomials gi.

To see how the proposition is proved, we will restrict
our attention to the case n = d = 2. This is just for
notational simplicity: the proof is almost identical in
larger cases. For each i between 1 andm let

Fi = aiX2 + biY 2 + ciXY + diX + eiY + fi.
For each k write down a formula φk that asserts that
there are no polynomials G1, . . . , Gm with degree at
most k such that 1 = ∑

FiGi. Let T be the theory of
algebraically closed fields with the formulasφ1,φ2, . . .
and the assertion that the polynomials F1, . . . , Fm have
no common zero. If there is no positive integer l sat-
isfying the conclusion of the proposition, then every
finite subset of T is satisfiable. Hence, by the compact-
ness theorem, T is satisfiable. If K / T , then F1, . . . , Fm
are polynomials over an algebraically closed field with
no common zero, but it is impossible to find polyno-
mialsG1, . . . , Gm such that

∑
GiFi = 1. This contradicts

Hilbert’s Nullstellensatz.

Notice that in the above argument we did not say
anything about the dependence of l on n, m, and
d. This is because the proof does not actually find a
bound: it merely shows that some sort of bound must
exist. However, good explicit bounds were recently
discovered—see algebraic geometry [IV.4] for more
details.
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4 The Complex Field

A surprising counterpoint to Gödel’s incompleteness
theorem is a result of tarski [VI.87], which states that
the theories of the fields of real and complex numbers
are decidable. The key to these results is a method
known as quantifier elimination. If we have a formula
without quantifiers that concerns the natural numbers,
then it is easy to decide whether it is true or false. The
negative solution to Hilbert’s tenth problem shows that
as soon as we start adding existential quantifiers (as we
do if, for example, we assert that a polynomial has a
zero), then we leave the realm of decidability.

Thus, if we want to show that a formula is decidable,
it will be very useful if we can find an equivalent for-
mula that does not have quantifiers. And in some set-
tings, this turns out to be possible. For example, let
φ(a,b, c) be the formula

∃x ax2 + bx + c = 0.

The usual rule for solving quadratics tells us that, as
long as a �= 0, this is true in R if and only if b2 � 4ac.
Therefore, R / φ(a,b, c) if and only if

[(a �= 0∧ b2 − 4ac � 0)∨ (a = 0∧ (b �= 0∨ c = 0))].

As for the complex numbers, it is easy to see that C /
φ(a,b, c) if and only if

a �= 0∨ b �= 0∨ c = 0.

In either case, φ is equivalent to a formula with no
quantifiers.

For a second example, letφ(a,b, c, d) be the formula

∃x∃y∃u∃v (xa+yc = 1 ∧ xb +yd = 0

∧ ua+ vc = 0 ∧ ub + vd = 1).

The formula φ(a,b, c, d) is the obvious way of assert-
ing that the matrix ( a bc d ) is invertible. However, by the
determinant [III.15] test, we know that, for any field
F , F / φ(a,b, c, d) if and only if ad − bc �= 0. Thus
the existence of an inverse can be expressed by the
quantifier-free formula ad− bc �= 0.

Tarski proved that we can always eliminate quanti-
fiers in algebraically closed fields.

Theorem. For any Lrng-formulaφ there is a quantifier-
free formula ψ such that φ is equivalent to ψ in every
algebraically closed field.

Furthermore, Tarski gave an explicit algorithm for
eliminating the quantifiers.

The equivalent quantifier-free formulas above were
both finite Boolean combinations of formulas of the

form p(v1, . . . , vn) = q(v1, . . . , vn), where p and q are
polynomials in n variables with integer coefficients. It
is not hard to see that this is true of any quantifier-
free Lrng-formula. It follows that a quantifier-free Lrng-
sentence is particularly simple: if no free variables are
allowed and no quantifiers are allowed, then there can-
not be any variables! Therefore, the polynomials p and
q have to be constant, which means that a quantifier-
free Lrng-sentence is a finite Boolean combination of
formulas of the form k = l (where this should be
regarded as an abbreviation for 1 + 1 + · · · + 1 =
1 + 1 + · · · + 1, with k 1s on the left-hand side and
l 1s on the right-hand side).

This leads to the decidability result. If we want to
know whether C / φ, then we use Tarski’s algorithm to
convert φ into an equivalent quantifier-free sentence.
But the very simple form of such sentences makes their
truth or falsity easy to decide.

In the remainder of this section, we shall discuss a
number of other consequences of Tarski’s theorem.
The first is that sentences in the language Lrng can-
not distinguish between different algebraically closed
fields of the same characteristic. That is, if φ is any
Lrng-sentence that is true for some algebraically closed
field of characteristic p (where p is allowed to be zero),
then it is true in every algebraically closed field of
characteristic p.

To see why this is true, let K and F be two alge-
braically closed fields of characteristic p, and suppose
that K / φ (or in other words that φ is true of K).
Let k be the field Q if the characteristic is zero and
the field with p elements otherwise. Tarski’s theorem
tells us that there is a quantifier-free sentence ψ that
is equivalent to φ in all algebraically closed fields of
characteristic p. However, the extremely simple nature
of the quantifier-free sentences ofLrng means that their
truth or falsity in any given field depends only on the
elements 0, 1, 1+ 1, and so on. Therefore,

K / ψ � k / ψ � F / ψ.
Since K / φ and φ and ψ are equivalent in all alge-
braically closed fields of characteristic p, it follows that
F / φ as well.

A consequence of this theorem is that an Lrng-sen-
tence φ is true of the complex numbers if and only
if it is true of the algebraic numbers Qalg. (Recall that
these are all roots of polynomials with integer coef-
ficients. As one would expect, the algebraic numbers
form an algebraically closed field, though this is not
a wholly obvious fact.) Thus, rather surprisingly, if we
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wish to prove something about Qalg, we have the option
of working in C and using the methods of complex
analysis; similarly, if we want to prove something about
C we can, if it makes things easier, work in Qalg and use
number-theoretic methods.

Combining these ideas with the completeness theo-
rem gives another useful tool. Ifφ is any Lrng-sentence,
then the following are equivalent:

(i) φ is true in every algebraically closed field of
characteristic zero;

(ii) for some m > 0, φ is true in every algebraically
closed field of characteristic p > m;

(iii) there are arbitrarily large p such that φ is true in
some algebraically closed field of characteristic p.

Let us see why this is so. Suppose first that φ is true
in every algebraically closed field of characteristic 0.
The completeness theorem then implies that there is
a proof of φ from the axioms for algebraically closed
fields combined with the sentences 1 �= 0, 1 + 1 �= 0,
1+1+1 �= 0, and so on. Since proofs are finite sequences
of formulas, there must be somem such that the proof
used only the firstm of these sentences (not necessar-
ily all of them). If p is some prime bigger thanm, then
this proof shows that φ holds in algebraically closed
fields of characteristic p, since all the sentences we
used are true in such fields.

We have just shown that (i) implies (ii). It is obvious
that (ii) implies (iii). To see that (iii) implies (i), let us
suppose that (i) fails, so that there is an algebraically
closed field of characteristic zero in which ¬φ is true.
Then, by the principle we proved earlier, ¬φ is true in
every algebraically closed field of characteristic zero.
Thus, since (i) implies (ii), there is anm such that ¬φ is
true in every algebraically closed field of characteristic
p > m. Therefore (iii) fails.

An interesting application of this theorem was found
by Ax. It is another example of a statement that has
nothing to do with logic, but which can be proved using
logical tools. It is perhaps more striking than the pre-
vious example because in this case one does not even
feel with hindsight that the statement did after all have
some logical content.

Theorem. If a polynomial map from Cn to Cn is an
injection, then it must also be a surjection.

The basic thought behind the proof of this result is
very simple indeed: what is remarkable is that it is of
any help. It is the observation that if k is a finite field,

then every injective polynomial map from kn to kn is a
surjection. This is true because every injection from a
finite set to itself is automatically a surjection.

How do we exploit this observation? Well, the pre-
vious results tell us that, in several situations, state-
ments are true for one field if and only if they are true
for another. We shall use these results to transfer our
problem from C, where it is hard, to a finite field k,
where it is trivial. The first step is a routine exercise:
one shows that for each positive integer d there is a
sentence φd in Lrng that expresses the fact that every
injective polynomial map from Fn to Fn, with the n
polynomials all of degree at most d, is surjective. We
would like to prove that all the sentences φd are true
when F = C.

The equivalences in the previous theorem imply that
it is enough to prove that the sentences φd are true
when F is the field F

alg
p , the algebraic closure of the p-

element field. (It can be shown that any field F is con-
tained in an algebraically closed field. Roughly speak-
ing, the algebraic closure of F is the smallest alge-
braically closed field that contains F .) Suppose, then,
that someφd fails for F

alg
p . Then there must be an injec-

tive polynomial map f from (Falg
p )n to (Falg

p )n that is not
surjective. Since every finite subset of F

alg
p is contained

in a finite subfield, there is a finite subfield k such that
all the n polynomials used to define f have coefficients
in k, from which it follows that f maps kn to kn. More-
over, by enlarging k if necessary, we can ensure that
there is an element of kn that is not in the image of f .
But now we have succeeded in transferring ourselves to
a finite field: this function f : kn → kn is an injection
between finite sets that is not a surjection, which is a
contradiction.

Quantifier elimination has other useful applications.
Let F be a field, letK be a subfield of F , letψ(v1, . . . , vn)
be a quantifier-free formula, and let a1, . . . , an be ele-
ments of K. Since, as we have already mentioned,
quantifier-free formulas are just Boolean combina-
tions of equalities between polynomials, the statement
ψ(a1, . . . , an) involves just the elements of K, and is
therefore true in K if and only if it is true in F . By quan-
tifier elimination, if K and F are algebraically closed,
then the same is true for all formulas ψ, and not just
those that are quantifier free. From this observation we
can prove the “weak version” of Hilbert’s Nullstellen-
satz. (For the proof, we shall need to assume a certain
degree of familiarity with the basics of ring theory
[III.83]. We shall also writeK[X] for the polynomial ring
K[X1, . . . , Xn] and v̄ for the n-tuple (v1, . . . , vn).)
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Proposition. Suppose that K is an algebraically closed
field, P is a prime ideal in K[X], and g is a polynomial
in K[X] that does not belong to P . Then there is some
a = (a1, . . . , an) in Kn such that f(a) = 0 for every f
that belongs to P , and such that g(a) �= 0.

Proof. Let F be the algebraic closure of the fraction field
of the integral domain K[X]/P . We can view F as an
extension field of K with a natural homomorphism η :
K[X]→ F . Let bi = η(Xi) and let b ∈ Fn be the element
(b1, . . . , bn). Then f(b) = 0 for all f ∈ P and g(b) �= 0.
We would like to find such an element in K. Since ideals
in polynomial rings are finitely generated, we can find
polynomials f1, . . . , fm that generate P . The sentence

∃v1 · · · ∃vn(f1(v̄) = · · · = fm(v̄) = 0 ∧ g(v̄) �= 0)

is true in F . Thus it is also true in K and we can find a ∈
Kn such that each f ∈ P vanishes at a but g(a) �= 0.

PUP: square at end
of line here does
indeed signify end
of proof.

Notice that the above proof has the same basic struc-
ture as the result about polynomial maps on Cn. The
idea was to come up with a different field, in this case
F , where the result was easy to prove, and use logi-
cal ideas to deduce the result for the field we were
originally interested in, in this case K.

5 The Reals

Quantifier elimination in the language of rings does
not work in the field of real numbers. For instance, the
formula

∃y x = y ·y,
which asserts “x is a square,” is not equivalent to a
quantifier-free formula in the language of rings. Of
course, x is a square if and only if x � 0. So we could
eliminate this quantifier if we were prepared to add a
symbol for the ordering to our language. An amazing
result of Tarski shows that this is the only obstruction
to quantifier elimination.

Let Lor be the language of ordered rings, which is the
language of rings with the addition of the symbol “<”
for an ordering. WhichLor-sentences are true in the real
field? Some of the properties of R that we can formalize
in Lor include:

(i) the axioms for ordered fields, such as the sentence

∀x∀y (x > 0∧y > 0)→ x ·y > 0;

(ii) the intermediate-value property for polynomials,
which states that if p(x) is a polynomial and there
exist a and b such that a < b and p(a) < 0 <

p(b), then there exists a real number c such that

a < c < b and p(c) = 0.

The intermediate-value property is expressed not by

just one sentence, but by the infinite sequence of

sentences

∀d0 · · ·∀dn∀a∀b(∑
diai < 0 <

∑
dibi → ∃c

∑
dici = 0

)
,

one for each positive integer n.

An ordered field that satisfies the intermediate-value

property is called a real closed field. It turns out that

an equivalent way of axiomatizing real closed fields is

as ordered fields for which every positive element is a

square and every polynomial of odd degree has a zero.

Tarski’s theorem is the following statement.

Theorem. For any Lor-formula φ there is a quantifier-

free Lor-formulaψ such thatφ andψ are equivalent in

every real closed field.

What are the quantifier-free formulas of Lor? It turns

out (and is not hard to show) that they are finite Boolean

combinations of formulas of the form p(v1, . . . , vn) =
q(v1, . . . , vn) and formulas of the form p(v1, . . . , vn) <
q(v1, . . . , vn), where, as in the case of Lrng, p and q are

polynomials in n and m variables, respectively, with

integer coefficients. As for quantifier-free sentences,

they are Boolean combinations of sentences of the form

k = l and sentences of the form k < l.
One consequence of quantifier elimination is the fol-

lowing result, which tells us that every Lor statement

that is true in R can be proved from the real-closed-

field axioms. One says that these axioms completely

axiomatize the theory of the real field.

Corollary. Let K be a real closed field and let φ be an

Lor-sentence. Then K / φ if and only if R / φ.

To prove this, first use Tarski’s theorem to find a

quantifier-free sentenceψ such thatφ andψ are equiv-

alent in any real closed field. Every ordered field has

characteristic zero and contains the rational numbers

as an ordered subfield. Therefore Q is a subfield of both

K and R. But the very simple nature of quantifier-free

sentences in Lor means that

K / ψ � Q / ψ � R / ψ.
Since φ and ψ are equivalent in all real closed fields, it

follows that K / φ if and only if R / φ.
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By the completeness theorem, φ is true in every real
closed field if and only if we can prove φ from the
axioms for real closed fields, and φ is false in every
real closed field if and only if we can prove ¬φ from
the axioms for real closed fields. It follows that the Lor-
theory of the real field is decidable. Indeed, if φ is true
in R, then by the corollary above, it is true in every
real closed field, so it has a proof. If φ is false in R,
then ¬φ is true in R, so for the same reason ¬φ has a
proof. Therefore, to decide whether φ is true, one can
search through all possible proofs from the axioms of
real closed fields until one proves either φ or ¬φ.

LetM be a mathematical structure consisting of a set
M and various other parts such as functions and binary
operations. A subset X of M is called definable, with
respect to some language L that describes M, if there
is an L-formula φ with a free variable x such that X =
{x ∈ M : φ(x)}. Quantifier elimination gives us a good
geometric understanding of the definable sets. If K is
an ordered field, we say that X ⊆ Kn is semialgebraic
if it is a finite Boolean combination of sets of the form

{x ∈ Kn : p(x) = 0} and {x ∈ Kn : q(x) > 0},
where p,q ∈ K[X1, . . . , Xn]. By quantifier elimination,
the definable sets in a real closed field are easily shown
to be exactly the semialgebraic sets.

A simple application of this fact is that if A is a semi-
algebraic subset of Rn, then the closure of A is also
semialgebraic. Indeed, the closure ofA is, by definition,
the set{

x ∈ Rn : ∀ε > 0 ∃y ∈ A
n∑
i=1

(xi −yi)2 < ε
}
.

This is a definable set, and hence a semialgebraic set.

Semialgebraic subsets of the real line are particularly
simple. For any real polynomial f in one variable, the
set {x ∈ R : f(x) > 0} is a finite union of open inter-
vals. Therefore, any semialgebraic subset of R is a finite
union of points and intervals. This simple fact is the
starting point of the modern model-theoretic approach
to R. Let L∗ be a language extending Lor and let R∗

denote the reals considered as an L∗-structure. For
example, below we will be interested in the case where
L∗ = Lexp and R∗ = Rexp. We say that R∗ is o-minimal if
every subset of R definable usingL∗-formulas is a finite
union of points and intervals. The “o” in “o-minimal”
stands for “ordered.” R∗ is o-minimal if every definable
subset of R can be defined using only the ordering.

Pillay and Steinhorn introduced o-minimality, gener-
alizing an earlier idea of van den Dries. It turned out

to be a key definition, because although o-minimality
is defined in terms of the one-dimensional set R, it has
remarkably strong consequences for definable subsets
of Rn when n > 1.

To explain this, we inductively define a collection of
basic sets called cells as follows.

• A subset X of R is a cell if and only if it is either a
point or an interval.

• If X is a cell in Rn and f is a continuous definable
function from X to R, then the graph of f (which
is a subset of Rn+1) is a cell.

• If X is a cell in Rn and f and g are continu-
ous definable functions from X to R such that
f(x) > g(x) for every x ∈ X, then {(x,y) :
x ∈ X and f(x) > y > g(x)} is a cell, as are
{(x,y) : x ∈ X and f(x) > y} and {(x,y) : x ∈
X and y > f(x)}.

Cells are topologically simple definable sets that play
the role of open intervals in R. It is not hard to see
that any cell is homeomorphic to (0,1)n for some n.
Remarkably, all definable sets can be decomposed into
cells. The following theorem is a precise version of this
statement.

Theorem.

(i) If R∗ is an o-minimal structure, then every defin-
able set X can be partitioned into finitely many
disjoint cells.

(ii) If f : X → R is a definable function, then there is
a partition of X into finitely many cells such that
f is continuous on each cell.

This is just the beginning. In any o-minimal struc-
ture, definable sets have many of the good topological
and geometric properties of the semialgebraic sets. For
example:

• Any definable set has finitely many connected
components.

• Definable bounded sets can be definably triangu-
lated.

• Suppose that X is a definable subset of Rn+m. For
each a ∈ Rm, let Xa be the “cross-section” {x ∈
Rn : (x,a) ∈ X}. Then there are only finitely many
different homeomorphism types for the sets Xa.

As these results were known for semialgebraic sets,
the real interest is in finding new o-minimal structures.
The most interesting example is Rexp. It is known that
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Rexp does not have quantifier elimination in the lan-
guage Lexp. Wilkie showed that the next best thing is
true. We say that Rn is an exponential variety if it is
the zero set of a finite system of exponential terms.
For example, the set {(x,y, z) : x = exp(y)2 − z3 ∧
exp(exp(z)) = y − x} is an exponential variety.

Theorem. Every Lexp-definable subset of Rn is of the
form

{x ∈ Rn : ∃y ∈ Rm (x,y) ∈ V}
for some exponential variety V ⊆ Rn+m.

In other words, the definable sets, though not expo-
nential varieties themselves, are projections of expo-
nential varieties, which makes them tractable. Indeed,
a theorem from real analytic geometry, due to Khovan-
skii, states that every exponential variety has a finite
number of connected components. Since this property
is preserved by projections, it follows that every defin-
able set has a finite number of connected components,
and also that every definable subset of the real line
is a finite union of points and intervals. Thus Rexp is
o-minimal and all of the results above about definable
sets in o-minimal structures apply.

Tarski asked if the theory of Rexp is decidable. This
question remains open, but the answer is known to
follow from the following conjecture of Schanuel in
transcendental number theory.

Conjecture. Suppose that λ1, . . . , λn are complex num-
bers that are linearly independent over Q. Then the field
Q(λ1, . . . , λn, eλ1 , . . . , eλn) has transcendence degree at
least n.

Macintyre and Wilkie have shown that if Schanuel’s
conjecture is true, then the theory of Rexp is decidable.

6 The Random Graph

Model-theoretic methods give interesting information
about random graphs [III.34]. Suppose we construct a
graph as follows. The vertex set is the set N of all natu-
ral numbers N. To decide whether we will have an edge
between x and y (with x �= y) we flip a coin, putting an
edge there if and only if we get heads. Although these
constructions are random, we will show below that,
with probability 1, any two such graphs are isomorphic.

The proof depends on the following extension prop-
erty. Let A and B be disjoint finite subsets of N, and
suppose that they have sizes n and m, respectively.
We would like to find a vertex x ∈ N that is joined to
every element of A and to no element of B. Now for any

particular x, the probability that it does not have the
desired property is p = 1− 2−(n+m). Therefore, if we
look at N different vertices, the probability that none
of them has the desired property is pN . Since this con-
verges to zero with N , the probability that at least one
x ∈ N has the property is 1. Moreover, since there are
only countably many disjoint pairs (A, B) of finite sets,
with probability 1 it is the case that for every such pair
(A, B) one can find a vertex x that is joined to every
vertex in A and to no vertex in B.

We can formalize this observation in a model-theo-
retic way. Let Lg = L(∼), where “∼” is a binary relation
symbol (which we read as “is joined to”). We let T be
the Lg-theory:

(i) ∀x∀y x ∼ y → y ∼ x;
(ii) ∀x ¬(x ∼ x);

(iii) Φn,m for n,m � 0.

Here Φn,m is the sentence

∀x1 · · ·∀xn∀y1 · · ·∀ym( n∧
i=1

m∧
j=1

xi �= yj → ∃z
n∧
i=1

(R(xi, z)∧¬R(yi, z))
)
.

The first two sentences tell us that the relation “∼”
defines a graph, and for each pair (n,m) the sentence
Φn,m tells us that the extension property holds for all
pairs of disjoint sets A and B with A of size n and B
of size m. Thus, a model of T is a graph for which the
extension property holds for any pair of disjoint finite
sets of vertices.

The argument above shows that with probability 1
the random graphs we constructed are models of T .
Now let us see why they are isomorphic (again with
probability 1). This will be an immediate consequence
of the following theorem.

Theorem. If G1 and G2 are any two countable models
of T , then G1 is isomorphic to G2.

Recall that an isomorphism betweenG1 andG2 means
a bijection f from the vertex set of G1 to the vertex set
ofG2 such that x is joined to y inG1 if and only if f(x)
is joined to f(y) in G2. The proof, which we shall now
sketch, is a “back-and-forth” argument that gradually
builds up an isomorphism between G1 and G2. First,
let a0, a1, . . . be an enumeration of the vertices of G1

and let b0, b1, . . . be an enumeration of the vertices of
G2. Let us set f(a0) to be b0. Next, we choose an image
for a1: if a1 is joined to a0 then we need to find some
vertex that is joined to b0 and if a1 is not joined to a0
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then we need to find a vertex that is not joined to b0.
Either way, we can do it because G is a model of T , so it
satisfies the extension property. (The particular cases
we use here are Φ1,0 and Φ0,1.)

It is tempting to continue finding images for a2, a3,
and so on, in each case using the extension property to
make sure that the images are joined to each other if
and only if the original vertices are. The trouble with
this is that we may not end up with a bijection, since
for any particular bj there is no guarantee that we will
ever choose it as the image of some aj . However, we can
remedy this by alternately choosing an image for the
first ai that does not yet have an image, and a preimage
for the first bj that does not yet have a preimage. In this
way we build the desired isomorphism.

It was not essential to use model theory to prove the
above result. However, it has the following very nice
model-theoretic consequence.

Corollary. For any Lg-sentence φ either φ is true in
every model of T or ¬φ is true in every model of T .
Moreover, there is an algorithm that will tell us which
of φ or ¬φ is true in every model of T .

To prove this, one first applies a slight strengthening
of the compactness theorem, which allows one to con-
clude that if the result is false then there are countable
models G1 and G2 of T such that φ is true in G1 and
¬φ is true in G2. But this shows that G1 and G2 are
not isomorphic, and therefore directly contradicts the
previous theorem.

To decide which ofφ or ¬φ is true in every model of
T , one searches through all possible proofs from the
sentences of T . By the completeness theorem, one or
other of the statements has a proof, so we will eventu-
ally find either a proof of φ or a proof of ¬φ. At that
point we will know which of φ and ¬φ is true in every
model of T .

The theory T also gives us information about random
finite graphs. Let GN be the set of all graphs with ver-
tices {1,2, . . . , N}. We consider the probability measure
on GN in which we make all graphs equally likely. This
is the same as constructing a random graph on N ver-
tices, where for each i and j we toss an unbiased coin
in order to decide whether i is joined to j. For any Lg-
sentence φ, let us write pN(φ) for the probability that
a random graph on N vertices satisfies φ.

An easy variant of the argument for infinite graphs
shows that for each extension axiom Φn,m, the proba-
bility pN(Φn,m) tends to 1. Therefore, for any fixed M ,

ifN is sufficiently large, then with very high probability
a random graph on N vertices satisfies all the axioms
Φn,m with n,m � M .

This observation allows us to use the theory T to get
a good understanding of the asymptotic properties of
random graphs. The following result is called a zero–
one law.

Theorem. For any Lg-sentence φ, the probability
pN(φ) either tends to 0 or tends to 1 as N →∞. More-
over, T axiomatizes the set of statements φ such that
the limit is 1, called the almost sure theory of graphs,
which is a decidable theory.

This follows from our previous results. We saw ear-
lier that either φ is true in every model of T or ¬φ is
true in every model of T . In the first case, by the com-
pleteness theorem there must be a proof of φ from T .
Since proofs are finite, this proof can use only finitely
many of the statements Φn,m. Therefore, there exists
some M such that if G / ΦM,M , then G / φ. But if
G is a random graph on N vertices, then the prob-
ability that G / ΦM,M tends to 1, and therefore the
probability pN(φ) that G / φ tends to 1 as well. The
same argument holds if ¬φ is true in every model of T
and shows that pN(¬φ) tends to 1, which implies that
pN(φ) tends to 0.

Note the following interesting consequence of this
result. It is not hard to prove that the probability that a
random graph contains at least 1

2

(
N
2

)
edges converges

to 1
2 as N tends to infinity. Combining this simple

observation with the theorem we can deduce that the
property “contains at least as many edges as nonedges”
cannot be expressed by a first-order formula inLg. This
is a purely syntactic result, but to prove it we made
essential use of model theory.

Further Reading

Shoenfield (2001) is an excellent introduction to logic
including the completeness and incompleteness the-
orems, basic computability theory, and elementary
model theory.

The examples described here give only a small part
of the flavor for modern model theory. Hodges (1993),
Marker (2002), and Poizat (2000) are comprehensive
introductions. Marker et al. (1995) contains several
introductory articles on the model theory of fields.

In addition to providing tools for analyzing defin-
ability in particular structures, a major goal in model
theory is proving structure theorems for wide classes
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of mathematical structures. A key feature is the devel-
opment by Shelah of notions of dependence generaliz-
ing linear dependence in vector spaces and algebraic
dependence in fields. Led by Hrushovski and Zilber,
model theorists have studied the geometry of depend-
ence and found that frequently it can be used to detect
hidden algebraic structure.

In recent years, the abstract model theory has
found interesting applications in classical mathemat-
ics. Hrushovski used these ideas to give a model-theo-
retic proof of the Mordell–Lang conjecture for func-
tion fields in Diophantine geometry. Bouscaren (1998)
is an excellent collection of survey articles leading up
to Hrushovski’s proof.

Bouscaren, E., ed. 1998. Model Theory and Algebraic Geom-
etry. An Introduction to E. Hrushovski’s Proof of the Geo-
metric Mordell–Lang Conjecture. New York: Springer.

Hodges, W. 1993. Model Theory. Encyclopedia of Math-
ematics and Its Applications, volume 42. Cambridge:
Cambridge University Press.

Marker, D. 2002. Model Theory: An Introduction. New York:
Springer.

Marker, D., M. Messmer, and A. Pillay. 1995. Model Theory
of Fields. New York: Springer.

Poizat, B. 2000. A Course in Model Theory. An Introduction
to Contemporary Mathematical Logic. New York: Springer.

Shoenfield, J. 2001. Mathematical Logic. Natick, MA: A. K.
Peters.

IV.24 Stochastic Processes
Jean-François Le Gall

1 Historical Introduction

Stochastic processes are one of the major themes of
modern probability theory. Roughly speaking, they are
mathematical models that describe the evolution of
random phenomena as time goes by. In this article, we
shall introduce and illustrate the fundamental ideas of
the theory of stochastic processes by concentrating on
the single most important example: Brownian motion.
We start with a brief historical introduction, in order to
provide some motivation for the mathematical theory
that follows.

In 1828, the British botanist Robert Brown observed
the very irregular and wiggly motion of small particles
of pollen suspended in water. Brown pointed out the
unpredictable character of the motion, which appeared
to obey no known physical rule. During the nineteenth
century, several physicists tried to understand the ori-
gin of this “Brownian motion,” which turned out to

be present in many other physical phenomena. Sev-
eral theories were proposed, some of them rather fan-
ciful: perhaps Brownian particles were living micro-
scopic animals, or perhaps the motion was due to elec-
trostatic forces. By the end of the century, however,
physicists had concluded that the constant changes of
direction in Brownian motion could be explained by the
impacts on a particle from the molecules of the sur-
rounding medium. If the particle was sufficiently light,
then these numerous collisions could have a macro-
scopic influence on its displacement. This explanation
was also consistent with the experimental observation
that the motion became faster if the temperature of the
water, and thus the thermal agitation of its molecules,
increased.

Albert Einstein, in one of his three famous 1905
papers, was responsible for a major step forward in
the understanding of Brownian motion. He worked out
that if a Brownian particle starts at the origin, then
after a fixed time t its position should be randomly dis-
tributed according to the (three-dimensional) gaussian
distribution [III.73 §5] with mean 0 and variance σ2t,
where σ2 is a constant, called the diffusion constant,
that measures how quickly the distribution spreads
out with time. (One can think of this loosely as the
speed of the Brownian motion, but we shall see later
that the word “speed” is not really appropriate.) Ein-
stein’s method was based on considerations of statis-
tical physics, which led him to the heat equation
[I.3 §5.4] and then to the Gaussian density that solves
this equation (see section 5.2).

A few years before Einstein, the French mathemati-
cian Louis Bachelier, in his work about the mathemat-
ical modeling of stock markets, had already noticed
the Gaussian distribution of Brownian motion. How-
ever, Bachelier was dealing not with the physical phe-
nomenon known as Brownian motion, but rather with
random walks where the step size was very small. As
we shall see in sections 2 and 3, the two concepts are
essentially equivalent from a mathematical viewpoint.
Bachelier pointed out what we call today the Markov
property of Brownian motion: if we wish to predict the
displacement after time t of a Brownian particle, then
knowledge of the path followed by the particle before
time t does not help us any more than just knowing
the position at time t. Bachelier’s arguments were not
completely satisfactory, and his ideas were not fully
appreciated in his time.

How does one go about modeling a particle that
moves in a random way? A first remark is that the posi-
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tion of the particle at time t will be a random variable
[III.73 §4] Bt . But these random variables will depend on
each other: if you know where the particle is at time t,
it will affect your knowledge of how likely it is to be in
a certain region at some later time. These two consid-
erations can be accommodated if we take as our basic
model a set of random variables Bt , one for each non-
negative real number, all defined on the same underly-
ing probability space. This, formally speaking, is what
a stochastic process is.

This may seem a rather simple definition, but in order
for a stochastic process to be interesting it needs to
have additional properties, and difficult mathematical
questions arise as soon as one tries to obtain them. Let
us write Ω for the underlying probability space. Then
each of the random variables Bt is a function fromΩ to
R3, and therefore we associate a point in R3 with each
pair (t,ω) (where t is a positive real number and ω
belongs to Ω). So far we have thought about the prob-
ability distribution of Bt , so we have been focusing on
what happens when we fix t and let ω vary. However,
we must also consider what happens when we look at
a “single instance” of a stochastic process, by fixing ω
and letting t vary. For fixedω, the function that takes t
to Bt(ω) is called a sample path. If we want a rigorous
mathematical theory of Brownian motion, then a very
important property it should satisfy is that all the sam-
ple paths are continuous: that is, for fixed ω the point
Bt(ω) depends continuously on t.

Physical observations, as well as the contributions of
Einstein and Bachelier described above, suggested a few
other properties that Brownian motion should satisfy.
It then became a substantial mathematical problem to
prove that there existed a stochastic process with those
properties. Wiener was the first person to establish this,
which he did in 1923, and for this reason the mathemat-
ical concept of Brownian motion is sometimes called
the Wiener process.

The most famous names of probability theory in
the twentieth century, including kolmogorov [VI.88],
Lévy, Itô, and Doob, all made important contributions
to the study of Brownian motion. Detailed properties
of the sample paths have received particular attention,
ever since the physicist Jean Perrin observed that these
functions are nowhere differentiable (despite Wiener’s
later result that they were continuous). The nondif-
ferentiability of Brownian trajectories led Itô to intro-
duce a differential calculus for functions of Brownian
motion and more general stochastic processes. This
Itô stochastic calculus, which will be briefly presented
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Figure 1 The accumulated gain in coin tossing.

in section 4, has found many applications in many
different areas of modern probability theory.

2 Coin Tossing and Random Walks

One of the easiest ways to understand Brownian motion
is via another important concept of probability: that of
random walks. Suppose you were to play a game where
you repeatedly tossed a coin, winning €1 if it came up
heads, and losing €1 if it came up tails. One could then
define a sequence of random variables S0, S1, S2, . . . ,
where Sn represented your total gain (which could well
be negative) aftern tosses of the coin. Two simple prop-
erties of this sequence are that S0 must be 0 and that
Sn and Sn−1 always differ by 1. One can see this in fig-
ure 1, which plots a graph of the sequence in the case
where the coin tosses are HTTTHTHHHTHHTH ….

A third property becomes clear if one defines another
sequence of random variables ε1, ε2, . . . , representing
the outcome of each toss of the coin. These are inde-
pendent, and each εn takes the value 1 with probability
1
2 and −1 with probability 1

2 . Moreover, for each n we
can write Sn = ε1 + · · · + εn. The distribution of sums
of this kind depends in a very simple way on the well-
known binomial distribution [III.73 §1]. (To be pre-
cise, the binomial distribution tells you that the prob-
ability that the number of heads after n tosses is k is
2−n

(
n
k

)
. If it is k, then Sn = k− (n−k) = 2k−n.) What

is more, ifm > 0 then Sm+n−Sm = εm+1+· · ·+εm+n,
which is also a sum of n of the εi, so the distribution
of Sm+n−Sm is the same as that of Sn. Note too that it
is independent of the values of S0, S1, . . . , Sm.

The name “random walk” comes from the fact that
we can think of the sequence S0, S1, S2, . . . as taking
a succession of random steps, each of either 1 or −1.
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Brownian motion can be thought of as the limit of this
process as the number of steps gets larger and larger
and the sizes of the steps get correspondingly smaller.

To see what “correspondingly” means here, we
appeal to the central limit theorem [III.73 §5], which
tells us about the limiting behavior of the distribution
of Sn when n gets large. Or rather, it tells us about the
distribution of (1/

√
n)Sn: the reason it is appropriate

to divide by
√
n is that

√
n is the standard deviation

[III.73 §4] of Sn. This one can think of as its “typical
size”: thus, when we divide by it, the “renormalized”
distribution will have “typical size” 1 (and therefore we
will get the same typical size for each n).

The precise information that the central limit theo-
rem gives us is that for any real numbers a and b with
a < b, the probability that a < (1/

√
n)Sn < b tends to

1√
2π

∫ b
a

e−x
2/2 dx

as n tends to ∞. That is, the limiting behavior of the
distribution of (1/

√
n)Sn is Gaussian with mean 0 and

standard deviation 1. Since the distribution of Sm+n −
Sm is the same as that of Sn (as we saw earlier), this
also tells us the limiting behavior of the distribution of
(1/
√
n)(Sm+n − Sm) for anym.

3 From Random Walks to Brownian Motion

In the previous section, we looked at a sequence of ran-
dom variables S0, S1, S2, . . . . This is another stochastic
process, except that “time” is now represented by a pos-
itive integer. (One says that it is a discrete-time process.)
Now let us try to do justice to the idea that Brownian
motion is something like a random walk with infinitely
many infinitesimally small steps. (We are now looking
at one-dimensional Brownian motion, rather than the
three-dimensional Brownian motion discussed right at
the beginning of this article.)

It will be slightly simpler to think about a Brownian
motion Bt that runs just for times t between 0 and 1. We
hope that the distributions of Bt , and in particular of B1,
will be Gaussian, and the results from the last section
suggest that this is exactly what we should expect if
they are appropriately scaled limits of the distributions
of the Sn. To be precise, suppose we have a graph like
that of figure 1 but with some large number of steps n.
Then the x-axis will go from 1 to n and the standard
deviation of the height of the end of the graph will be√
n. Therefore, if we shrink the graph horizontally by

a factor of n and vertically by a factor of
√
n we will

obtain the graph of a random function S(n) from [0,1]

t

St
(n)

Figure 2 The rescaled random walk S(n) for n = 100.

Bt

t

Figure 3 Simulation of linear Brownian motion.

to R, and the standard deviation of S(n)(1) will be 1.

Effectively, we are shrinking the time between the steps

of the random walk from 1 to 1/n and shrinking the

step size from 1 to 1/
√
n. Also, so that the functions

S(n) are defined everywhere, we “join the dots” of the

graph with straight lines, just as we did in figure 1. A

rescaled random walk of this kind is shown in figure 2.

At this point, we shall simply assume that the dis-

tributions of these rescaled random walks converge, in

an appropriate sense, to a stochastic process with con-

tinuous sample paths. This stochastic process is the

Brownian motion Bt . The graph of a typical sample path

is illustrated in figure 3. Notice how similar its general

behavior is to that of the graph in figure 2.

If we want to approximate a Brownian motion that

goes on forever rather than stopping at 1, all we have
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to do is let the rescaled random walk go on forever,
rather than stopping after n steps.

Now let us give a more precise definition. A linear
Brownian motion starting at x is a collection (Bt)t�0

of real-valued random variables with the following
properties.

• B0 = x. (In other words, B0(ω) = x for everyω in
the underlying probability space.)

• The sample paths are continuous.
• Given any s < t the distribution of Bt − Bs is

Gaussian with mean 0 and variance t − s.
• Moreover, Bt − Bs is independent of the process

up to time s. (This implies the Markov property
mentioned in section 1.)

Each of these properties has its counterpart for ran-
dom walks, as we saw in the previous section. There-
fore, even though it is not easy to prove that Brownian
motion exists, the result is nevertheless highly plausi-
ble. (It turns out to be easy to construct a stochastic pro-
cess that satisfies all the properties above apart from
the second; the difficulty is in obtaining the continuity
of the sample paths.) Another important remark is that
the above properties characterize Brownian motion:
any two stochastic processes with those properties are
essentially the same.

We have not yet said what it means for the rescaled
random walks S(n) to “converge” to Brownian motion.
Rather than defining this notion precisely, we shall
merely remark that any “reasonable” function that
we can define on the processes S(n) will converge to
the “corresponding” function of the limiting Brownian
motion Bt . For example, as we have already seen, the
probability that S(n)(1) lies between a and b converges
to

1√
2π

∫ b
a

e−x
2/2 dx.

But B1 is governed by the Gaussian distribution, so this
is also the probability that B1 lies between a and b.

A more interesting example is the proportion Xn of
times t between 0 and 1 for which S(n)(t) is positive, or
rather the way that this proportion (which is a random
variable that depends on the walk S(n)) is distributed.
This “converges in distribution” to the distribution of
the corresponding proportion X for Brownian motion.
That is, for any a < b, the probability that the propor-
tion Xn lies between a and b converges to the proba-
bility that the proportion X lies between a and b. The
probability distribution for X is known explicitly, and

is called Paul Lévy’s arcsine law :

P[a � X � b] =
∫ b
a

dx
π
√
x(1− x) .

Perhaps surprisingly, X is more likely to be close to 0
or 1 than to 1

2 . The basic reason for this is that if s and
t are two different times, then the events Bs > 0 and
Bt > 0 are positively correlated.

The convergence of random walks to Brownian
motion is just one special case of a much more gen-
eral phenomenon (see, for example, Billingsley 1968).
For instance, we can allow other probability distribu-
tions for the individual steps of the random walk. A
typical result is that if each individual step has mean 0
(as is the case when we have +1 or −1 with probabil-
ity 1

2 ) and finite variance, then the limiting process will
always be a simple rescaling of Brownian motion. In this
sense Brownian motion appears as a universal object:
it is the continuous limit of a wide range of discrete
models. (See the introduction to probabilistic mod-
els of critical phenomena [IV.25] for a discussion
of universality.)

Now that we have discussed one-dimensional Brown-
ian motion, let us think about how to model random
continuous paths in three dimensions. An obvious way
of doing it would be to take three independent Brown-
ian motions, B1

t , B2
t , and B3

t , and let these be the three
coordinates of a point in a random path in R3. And
indeed, this is how three-dimensional Brownian motion
is defined. However, it is not quite so obvious that this
is a good definition. In particular, it seems to depend
on our choice of coordinate system, which is worrying
if we want a good model for physical Brownian motion.

However, a key property of higher-dimensional
Brownian motion (the definition just given clearly gen-
eralizes to any dimension d) is rotational invariance.
That is, if we choose a different orthonormal basis
[III.37] as our coordinate system, then we obtain the
same stochastic process. The proof of this is a simple
deduction from the basic fact that the density func-
tion [III.73 §3] of a vector made up of d independent
one-dimensional Gaussian random variables is

1
(2π)d/2

e−(x
2
1+···+x2

d)/2.

Since the quantity x2
1 + · · · + x2

d is just the square of
the distance from 0 to (x1, . . . , xd), the density does
not change when you rotate.

In the planar case d = 2, there is a much deeper
invariance property, which we shall explain in sec-
tion 5.3.
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Figure 4 Simulation of planar Brownian motion.

It is not hard to incorporate the notion of a diffu-
sion constant into our model. (This is the constant σ2

mentioned in section 1 that measures how quickly the
Brownian motion tends to spread out.) All one has to
do is rescale from Bt to Bσ 2t .

As one might expect, higher-dimensional Brown-
ian motions are limits of higher-dimensional random
walks. This helps to explain why mathematical Brown-
ian motion is a good model for the physical phe-
nomenon observed by Brown: the erratic displacements
caused by collisions with molecules resemble the steps
of a random walk with very small step size. See fig-
ure 4 for a simulation of the curve of a planar Brownian
motion over the time interval [0,1].

4 Itô’s Formula and Martingales

Let f be a real-valued differentiable function. Suppose
that we are told the values of f ′(x) at 0,1/n,2/n, . . . ,
(n − 1)/n for some large positive integer n and are
asked to estimate f(1) − f(0). If the derivative f ′

did not vary too rapidly, then we would expect the
difference f((j + 1)/n) − f(j/n) to be approximately
(1/n)f ′(j/n), so a good approximation ought to be

1
n

(
f ′(0)+ f ′

(
1
n

)
+ f ′

(
2
n

)
+ · · · + f ′

(
n− 1
n

))
.

the fundamental theorem of calculus [I.3 §5.5]
implies that this argument is indeed correct if the
derivative f ′ is continuous.

Now let us look at a setup that is superficially
similar. This time, let us suppose that the numbers
x0, x1, x2, . . . , xn are the positions of a random walk
with step size 1/

√
n. Suppose that f is a function with

a well-behaved derivative, and that we know the val-

ues of f ′(x) at x0, x1, . . . , xn−1. This time, let us think

about estimating f(xn)− f(x0).
If we follow the lines of our previous argument,

then we will comment that f(xj+1)− f(xj) is approx-

imately (xj+1 − xj)f ′(xj), which would lead to an

estimate of

(x1 − x0)f ′(x0)+ (x2 − x1)f ′(x1)

+ · · · + (xn − xn−1)f ′(xn−1).

Now it is not obvious that this will still be a good esti-

mate. The reason is that, typically, the random walk will

have gone backwards and forwards, covering the same

ground several times before reaching its eventual des-

tination xn, and this gives the errors in the approxima-

tions a chance to accumulate. To see that this is a seri-

ous problem, consider the very well-behaved function

f(x) = x2 and let x0 = 0. In this case,

f(xj+1)− f(xj) = x2
j+1 − x2

j

and a simple calculation shows that this is equal to

(xj+1 − xj)2xj + (xj+1 − xj)2.
The first term here equals (xj+1 − xj)f ′(xj) and is

therefore the approximation that we are considering, so

the error we have to worry about is (xj+1−xj)2, which

is the square of the step size of the random walk. In

other words, it is 1/n. But there are n steps to the walk,

so the total error (all of which is positive) is 1. Since the

order of magnitude of xn, and hence x2
n, is typically

about 1, this is a significant fraction of f(xn)− f(x0),
and therefore our estimate is not a good one.

Remarkably, this turns out to be the “only” problem

that can occur, and we can get around it rather eas-

ily. All we have to do is use one more term in the Tay-

lor expansion. That is, we use the slightly more refined

approximation

f(xj+1)− f(xj) = (xj+1 − xj)f ′(xj)
+ 1

2 (xj+1 − xj)2f ′′(xj).
(Of course, now we are assuming that the second deriva-

tive f ′′ exists and is continuous.) Notice that in the

example f(x) = x2 just considered, f ′′(x) = 2 for

every x, and so if we add up all the above approx-

imations we get exactly the right answer. In general,

as this observation would suggest, one can show that

f(xn)− f(x0) is well-approximated by

n−1∑
j=0

(xj+1 − xj)f ′(xj)+ 1
2

n−1∑
j=0

(xj+1 − xj)2f ′′(xj).
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Now let us think about what happens to these two
sums if we allow our random walks to converge to a
Brownian motion Bt . A relatively straightforward argu-
ment, based on the fact that (xj+1 − xj)2 is just the
reciprocal of the number of steps, shows that the lim-
iting distribution of the second sum exists and is given
by the integral 1

2

∫ t
0 f ′′(Bs)ds. This suggests that the

first sum should also converge to a limit, which indeed
it does: the limit is called the stochastic integral and is
written

∫ t
0 f ′(Bs)dBs . More precisely, one ends up with

the formula

f(Bt) = f(B0)+
∫ t

0
f ′(Bs)dBs + 1

2

∫ t
0
f ′′(Bs)ds, (1)

which is known as Itô’s formula. Note the similarity to
the fundamental theorem of calculus. The main differ-
ence is the extra term involving the second derivative,
the so-called Itô term.

Why, one might wonder, is this interesting? If we
wish to estimate the difference between two values of a
function by integrating its derivative, why not choose a
smooth path rather than a very wiggly one? The point,
however, is that we are not interested in just one path.
For any fixed sample path, the two sides of the above
formula are just numbers, but if we think of Bt as a ran-
dom variable, then they too become random variables.
And since both sides are defined for all t � 0, they
are actually stochastic processes. So what we are dis-
cussing is a way of integrating one stochastic process
to produce another.

The reason Itô’s formula is so useful is that stochas-
tic integrals have properties that allow one to prove
many facts about them. In particular, if we view the
stochastic integral

∫ t
0 f ′(Bs)dBs as a collection of ran-

dom variables indexed by the parameter t, then we
have a stochastic process of an especially nice sort
called a martingale. A martingale is a stochastic pro-
cess (Mt)t�0 with the property that, whenever s � t,
the expected value of Mt , conditional on the values of
Mr for all r � s, is just Ms .

Brownian motion is a particularly simple kind of mar-
tingale, but martingales are much more general because
Mt − Ms is not independent of the values of Mr with
r � s: all one knows is that the expectation of Mt −Ms ,
given those values, is zero. Here is an example that illus-
trates the difference: start running Brownian motion at
0; when it first reaches 1 (if it ever does), continue with
Brownian motion but at double the speed (or rather,
double the diffusion constant). In this case, the behav-
ior ofMt−Ms certainly depends on what has happened
up to s, but its expectation is nevertheless zero.

In a certain sense, the stochastic integral term in Itô’s
formula behaves like a Brownian motion “run at a vary-
ing speed,” rather like the example just given. The pre-
cise result is that there exists another Brownian motion
β = (βt)t�0 such that, for every t � 0,∫ t

0
f ′(Bs)dBs = β∫ t

0 f ′(Bs)2 ds .

This is in fact true for any continuous martingale—not
just one given by a stochastic integral—and the relevant
time change is a quantity called the quadratic varia-
tion of the martingale. Therefore, the graph of a con-
tinuous martingale is obtained from that of a Brownian
motion by a time-change operation. This is why Brown-
ian motion is such a central example, and why it is
important to understand its behavior before going on
to deal with more general stochastic processes.

It is straightforward to generalize the previous
derivation of Itô’s formula to multidimensional Brown-
ian motion. If x = (x1, . . . , xd) and y = (y1, . . . , yd)
belong to Rd and are close together, then the first
approximation to f(x)− f(y) is now

d∑
i=1

(xi −yi)∂if (y),

where ∂if (y) denotes the ith partial derivative of f ,
evaluated at y . The vector of partial derivatives at
y is usually denoted ∇f(y). It is called the gradient
of f at y (or “grad f ” for short). As for the second
derivative of f , it naturally generalizes to the Lapla-
cian ∆f (for reasons that are explained in some fun-
damental mathematical definitions [I.3 §5.4]), and
we therefore arrive at the formula

f(Bt) = f(B0)+
∫ t

0
∇f(Bs) · dBs + 1

2

∫ t
0
∆f(Bs)ds.

The stochastic integral term is defined formally in
terms of one-dimensional stochastic integrals in the
obvious way:

∫ t
0
∇f(Bs) · dBs =

d∑
j=1

∫ t
0

∂f
∂xj

(Bs)dBjs .

Since stochastic integrals are martingales, the sto-
chastic process

Mft = f(Bt)− 1
2

∫ t
0
∆f(Bs)ds

is (under appropriate conditions on f ) a martingale.
This observation leads to the martingale problem for
Brownian motion. To state a martingale problem for
a stochastic process (Xt)t�0 is to give a collection of
martingales defined as functionals of this stochastic
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process—just asMf above is defined as a certain func-
tion of (Bs)s�0. The martingale problem is said to be
well-posed if it characterizes the distribution of the
given stochastic process. In the preceding example, the
martingale problem is well-posed: if we know noth-
ing about the distribution of the process (Bt)t�0 apart
from the fact that Mft is a martingale for every (twice
continuously differentiable) function f , we can infer
that B must be a Brownian motion.

Martingale problems play a fundamental role in
modern probability theory (see in particular Stroock
and Varadhan (1979), and also the mathematics of
money [VII.9 §2.3]). The introduction of a suitable mar-
tingale problem is often the most convenient way
to specify a stochastic process, or more precisely to
characterize its probability distribution.

5 Brownian Motion and Analysis

5.1 Harmonic Functions

A continuous function h defined on an open subset U
of Rd is called harmonic if the average value of h over
any closed ball contained in U , or equivalently the aver-
age value over the boundary of any such ball, is equal to
its value at the center of the ball. A basic result of analy-
sis is that h is harmonic if and only if it is twice con-
tinuously differentiable and ∆h = 0. Harmonic func-
tions play an important role in several areas of mathe-
matics as well as in physics. For instance, the electrical
potential of a conductor in equilibrium is a harmonic
function outside the conductor. And if the tempera-
ture of the boundary of a body is kept fixed (that is,
although different parts of the boundary may have dif-
ferent temperatures, these temperatures do not change
over time), then the equilibrium temperature inside the
body is also a harmonic function. (See the discussion of
the heat equation in the next section.)

Harmonic functions have a very close relationship
with Brownian motion, which leads to one of the most
important connections between probability and analy-
sis. This connection is already apparent from the fact
that Mft , defined in the previous section, is a martin-
gale. It follows from this that h(Bt) is a martingale if
(and in fact only if) h is harmonic, since then the sec-
ond term vanishes. However, we will explain the link
between Brownian motion and harmonic functions in a
more elementary way, from the classical Dirichlet prob-
lem. Let U be a bounded open set, and let g be a contin-
uous real-valued function defined on the boundary ∂U

U 

x

 BT

Bτ

Figure 5 The probabilistic solution
of the Dirichlet problem.

of U . The classical Dirichlet problem is to find a func-
tion h that is harmonic on U and is equal to g on the
boundary.

The Dirichlet problem has a remarkably simple solu-
tion in terms of Brownian motion: take x ∈ U , start a
Brownian motion from x, and evaluate g at the point
Bτ where this Brownian motion leaves U (see figure 5);
then define h(x) to be the average value you get. Why
does this work? That is, why is the function h, defined
in this way, harmonic, and why does it equal (or, to be
more accurate, converge to) g at the boundary?

The answer to the last question is roughly that if x
is very close to the boundary, then a Brownian motion
started at x is very likely to leave U at a point close to
x. Therefore, since g is continuous, the average value
of g at the first exit point will be close to the value of
g at any point near x.

To show that h is harmonic is more interesting. Let
x be a point in U and suppose that the ball of radius
r about x is contained in U . We would like to show
that h(x) equals the average value of h on the bound-
ary of this ball. Now h(x) is the average value of g
at the point where a Brownian motion that starts at x
leaves U . Let us work out this average by conditioning
on the first point BT where the Brownian path leaves the
ball of radius r (see figure 5). By the rotational invari-
ance of Brownian motion, this point will be evenly dis-
tributed around the boundary of this ball. If we reach
the boundary at a point y , then the average value of
g when the path leaves U (conditioning on this extra
information) is h(y), by definition. Therefore, h(x) is
indeed the average value of h on the boundary of the
ball of radius r .

Convincing though this argument might seem, there
is a subtlety concealed within it, connected with the
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fact that a Brownian path will typically cross the bound-
ary of the ball many times. Suppose we tried a similar
argument, but this time we conditioned on the value
at the last point where the path left the ball. If this
point was y , we could not then say that the expected
value of g where the path first reached the boundary of
U was h(y) because from that point onward the path
would be forbidden to enter the ball again, and would
therefore not be a Brownian motion.

Recall that the Markov property of a Brownian motion
states that, given a fixed time T and another time t with
T < t, the value of Bt−BT is independent of Bs for s � T .
It may seem that we are applying this principle in the
argument above, taking T to be the first time that the
Brownian motion reaches the boundary of the ball. But
if we do that, then T is not a fixed time since it depends
on the Brownian motion. However, the argument can
still be made to work because T is a so-called stopping
time. Informally, this means that T does not depend on
what the Brownian motion does after T . (Therefore the
last time it leaves the ball of radius r is not a stopping
time, because whether or not a given time is this last
time depends on the subsequent behavior of the Brown-
ian motion.) Brownian motion can be shown to have the
strong Markov property, which is like the usual Markov
property except that T is allowed to be a stopping time.
Given this fact, it is not hard to show rigorously that h
is harmonic.

5.2 The Heat Equation

Let f be a function on Rd (which we shall assume to
be continuous and bounded). If we think of f as a tem-
perature distribution at time 0, then the heat equa-
tion [III.36] models what happens to the temperature
at subsequent times. To find a solution to this equation
with initial value f means to find a continuous function
u(t,x), defined for every t � 0 and x ∈ Rd, that solves
the partial differential equation

∂u
∂t
= 1

2∆u (2)

whenever t > 0, and that satisfies the condition
u(0, x) = f(x) for every x. (The factor 1

2 in this equa-
tion is not important but it makes the probabilistic
interpretation easier to express.)

The heat equation also has a simple solution in
terms of Brownian motion: u(t,x) is defined to be the
expected value of f(Bt) when Bt is a Brownian motion
that starts at x. This tells us that heat propagates like
a collection of infinitesimal Brownian particles.

The preceding probabilistic representation is quite
easy to derive since one can write down an explicit for-
mula for the expectation of f(Bt) in terms of the Gauss-
ian density function. Given this formula, all we have
to do is differentiate it and check that the equation is
satisfied. However, the connection between Brownian
motion and the heat equation is much deeper, and in
many other cases there is a probabilistic representa-
tion for a solution but no explicit formula. To take one
example, suppose that we want to solve the heat equa-
tion in an open set U with Dirichlet boundary condi-
tions. This means that we specify an initial value f(x)
for the temperature of each point x ∈ U and stipulate
that the temperature at the boundary is kept at 0. In
other words, we want to find a function u(t,x) such
that u(0, x) = f(x) for every x ∈ U , u(t,x) = 0 for
every time t � 0 and every x in the boundary of U , and
u satisfies the heat equation inside U . In this case, the
solution is obtained as follows. Run a Brownian motion
(Bt) starting at x. Let gt = f(Bt) if it has not left U at
any time before t, and let gt = 0 otherwise. Then define
u(t,x) to be the expected value of gt .

Thus, in order to obtain the solution, we had to make
just a small modification to the solution of the heat
equation in Rd. An analytic treatment of this version of
the heat equation would be much more complicated.

5.3 Holomorphic Functions

Let us now concentrate on the case d = 2. As usual, we
identify R2 with the complex plane C. Let f = f1 + if2

be a holomorphic function [I.3 §5.6] defined on C.
Then the real part f1 and the imaginary part f2 of f
are both harmonic functions, so that f1(Bt) and f2(Bt)
are martingales. More precisely, Itô’s formula tells us
that, for j = 1,2,

fj(Bt) = fj(x)+
∫ t

0

∂fj
∂x1

(Bs)dB1
s +

∫ t
0

∂fj
∂x2

(Bs)dB2
s ,

since the Itô term vanishes. As we saw in section 3,
each of the two processes fj(Bt) can be expressed as a
time change of a linear Brownian motion βj . However, a
stronger result can also be proved, namely that the time
change is the same in both cases and that the Brownian
motions β1 and β2 are independent. This makes it pos-
sible to prove a “localized” rotational invariance, which
leads to the important conformal invariance property
of Brownian motion. Roughly speaking, this states that
the image of a planar Brownian motion under a con-
formal (that is, angle-preserving) mapping is another
planar Brownian motion run at a different speed.
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6 Stochastic Differential Equations

Imagine a Brownian particle in some water. If the tem-
perature of the water rises, then we expect there to be
more collisions with faster-moving molecules; this can
be modeled easily by increasing the diffusion constant.
But what if the temperature in the water varied from
place to place? Then the particle would be more agi-
tated in some parts of the water than in others. And
if the water was moving, with different parts moving
at different speeds, then one would need to superim-
pose on the Brownian motion a “drift” term, to take into
account that on average we would expect the particle
to move with the surrounding water.

Stochastic differential equations are used to model
more complicated situations like this. Let us begin by
considering the one-dimensional case. Let σ and b be
two functions (which we shall assume to be continuous)
defined on R. We think of σ(x) as telling us the rate
of diffusion at x and of b(x) as the drift at x. (For
the sake of a picture, one could think of σ(x) as the
local temperature at x and b(x) as the velocity at x
of some “one-dimensional water.”) Let (Bt) be a one-
dimensional Brownian motion.

The notation used for the associated stochastic dif-
ferential equation is

dXt = σ(Xt)dBt + b(Xt)dt. (3)

Here (Xt) is an unknown stochastic process. The idea
is that, infinitesimally speaking, its behavior is like that
of a Brownian motion with diffusivity σ(Xt) (which is
the diffusivity at the point that Xt has reached) super-
imposed onto a linear motion at speed b(Xt). More pre-
cisely, a solution to the above equation is defined to be
a continuous stochastic process (Xt) that satisfies, for
every t � 0, the integral equation

Xt = X0 +
∫ t

0
σ(Xs)dBs +

∫ t
0
b(Xs)ds.

Notice that if σ(x) = 0 for every x, this boils down to
the ordinary differential equation x′(t) = b(x(t)). The
stochastic integral

∫ t
0 σ(Xs)dBs is defined by approx-

imations similar to those described in section 4. (For
this to work, there are certain technical conditions that
the process (Xt) must satisfy.) In fact, stochastic dif-
ferential equations were Itô’s original motivation for
developing stochastic integrals.

Itô proved, under suitable conditions onσ andb, that
for each x ∈ R the above equation has a unique solu-
tion (Xt) that starts at x. Furthermore, this solution is a
Markov process in the sense that was explained above:

the way that (Xt) evolves after time T given the value
of XT is independent of what happens before T , and is
distributed in the same way as a solution of the equa-
tion that starts at XT . In fact, it is also a strong Markov
process in the sense explained in section 5.

An important example can be found in the famous
black–scholes model [VII.9 §2] of mathematical fi-
nance. In this model, the price of a share solves a
stochastic differential equation of the type above with
σ(x) = σx and b(x) = bx, where σ and b are positive
constants. This is motivated by the simple idea that the
price fluctuations of a share should be roughly propor-
tional to its current value. In this context, the number
σ is called the volatility of the share.

The previous discussion generalizes fairly easily to
stochastic differential equations in higher dimensions.
The solution of a d-dimensional stochastic equation
(which when d = 3 could model the water example
mentioned at the beginning of this section) is once
again a strong Markov process, known as a diffusion
process. Much of what was said earlier about the rela-
tionship between Brownian motion and partial differ-
ential equations can be generalized to diffusion pro-
cesses as well. Roughly speaking, with each diffusion
process one can associate a differential operator L, and
this operator plays the role that the Laplacian plays for
Brownian motion.

7 Random Trees

Brownian motion and more general diffusion processes
appear as limits of many discrete models in probability
theory, combinatorics, and statistical physics. The most
striking recent example of this is given by the so-called
stochastic Loewner evolution (commonly abbreviated to
SLE) processes, which are discussed in [IV.25 §5]). These
are expected to describe the asymptotic behavior of a
large number of two-dimensional models, and their def-
inition involves both linear Brownian motion and the
Loewner equation from complex analysis. Rather than
trying to give a general presentation of the relationship
between Brownian motion and discrete models, in this
final section we shall discuss a surprising application
of Brownian motion to random trees, which can be used
to describe the genealogy of a population.

The basic discrete model is the following. We start
with a single “ancestor,” which we label ∅. Then we
place a probability distribution µ on the nonnegative
integers, and use this to determine the number of chil-
dren the ancestor has. Then each child is assumed to
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Figure 6 Left: a tree θ. Right: the contour function Cθ .

have children, the numbers of children being indepen-
dent and also determined by the probability distribu-
tion µ. And so on. The case that we shall be inter-
ested in is the so-called critical case, where the expected
number of children is exactly 1 (and the variance is
finite).

We can represent the outcome of this process as a
labeled tree, called the genealogical tree, in a natural
way. To draw the tree one simply joins each member of
the population to its children. As for the labels, the chil-
dren of the original ancestor are labeled 1,2, . . . , left to
right, the children of 1 are labeled (1,1), (1,2), . . . , the
children of 2 are labeled (2,1), (2,2), . . . , and so on. (For
instance, the children of (3,4,2), if it is ever born, are
labeled (3,4,2,1), (3,4,2,2), . . . .) See the left-hand side
of figure 6 for a simple example of a tree. It is known
that in this critical case the population will eventually
die out with probability 1. (To avoid the certainty of
this fate, the average number of children must be more
than 1. A particular case of this process is discussed in
[IV.25 §2].)

The genealogical tree, which we shall denote by θ, is
a random variable. It is called the Galton–Watson tree
with offspring distribution µ. A convenient way to repre-
sent this tree is via its so-called contour function, which
is illustrated on the right-hand side of figure 6. Infor-
mally, we imagine the motion of a particle that starts
from the root and explores the tree from the left to the
right, moving continuously along the edges at constant
vertical speed (we set the height of each edge to 1), until
it has completely explored the tree and come back to its
starting point, after which it stays at this point. Since
the particle will go along each edge exactly twice in this
evolution, once upward and once downward, the total

time T(θ) needed to explore the tree is twice the num-

ber of edges. The value Cθt of the contour function at

time t is the height of the particle at time t. All this

should be clear from figure 6.

It may be that a typical tree dies out fairly quickly.

However, our goal is to understand the shape of the

tree when it is “conditioned to be large.” This is a bit

like the difference between on the one hand picking a

random person alive one thousand years ago and look-

ing at the tree of all his or her descendants, and on the

other hand looking at the tree of a random ancestor,

alive one thousand years ago, of an individual who is

alive today. In the latter case the tree is guaranteed to

continue for many generations without dying out.

Suppose we condition on the event that the tree θ (or

rather the population it represents) survives for n gen-

erations. We may now ask all sorts of questions about

this genealogical tree. How many individuals are there

in a given generation of the tree? If we pick two indi-

viduals in the same generation, how far do we typically

have to go back in the tree to reach a common ances-

tor? Asymptotic answers to such questions are also of

interest in computer science and in combinatorics.

We will condition on a slightly different event, namely

the event that θ has exactly n edges. The conditioned

tree is called θn. It is a random tree with n edges, so

T(θn) = 2n.

In the particular case where the probability µ(k) of

having k children is 2−(k+1), it is not hard to prove that

the distribution of θn will actually be uniform over all

trees with n edges. A famous theorem of Aldous gives

the asymptotic behavior of the contour function Cθn

as n → ∞ for general offspring distributions, and it
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turns out to be very closely related to a linear Brownian

motion.

Notice that it cannot be a Brownian motion because it

exhibits some behavior that is very untypical: it begins

and ends at zero and remains positive for all time. How-

ever, we can use Brownian motion in a simple way to

define a notion called a Brownian excursion, for which

the sample paths have the right shape. The rough idea

is to start a linear Brownian motion at zero, draw its

graph, and then pick out the part of the graph between

x = x1 and x = x2, where x1 is the point where it

last crosses the x-axis before x = 1 and x2 is the point

where it first crosses the x-axis after x = 1. The corre-

sponding portion of the Brownian motion will start and

end at zero and not cross zero in between. We then need

to rescale it so that x goes from 0 to 1 instead of from

x1 to x2, and we also need to rescale the height appro-

priately, by dividing by 1/
√
x2 − x1. Also, if the path

is everywhere negative between x1 and x2, we simply

turn it upside down to make it positive.

Aldous’s theorem states that the limiting distribu-

tion of the contour function Cθn (rescaled in time by

the factor 1/2n and in space by the factor 1/
√

2n,

like the rescaling in section 3) is a Brownian excursion.

The surprising fact about this result is that it does not

depend on the offspring distribution µ. Since the con-

tour function completely determines the shape of the

corresponding tree, we find that the limiting shape of

a large critical Galton–Watson tree does not depend on

the offspring distribution. This is another example of

universality.

This result and variants of it provide a lot of use-

ful information about the asymptotic behavior of large

trees. Many interesting functions of the tree can be

rewritten in terms of the contour function and by

Aldous’s theorem they will converge to similar func-

tions of the Brownian excursion, whose distribution can

be computed explicitly with the help of stochastic cal-

culus. To give just one example, this technique can be

used to calculate the limiting distribution of the height

of the tree θn. Let the variance of the offspring distri-

bution be σ , and let us define the rescaled height of a

tree to be its original height multiplied by σ/2
√
n. The

probability that this is at least x turns out to converge,

as n gets large, to the quantity

2
∞∑
k=1

(4x2k2 − 1) exp(−2k2x2).
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IV.25 Probabilistic Models of
Critical Phenomena
Gordon Slade

1 Critical Phenomena

1.1 Examples

A population can explode if its birth rate exceeds
its death rate, but otherwise it becomes extinct. The
nature of the population’s evolution depends critically
on which way the balance tips between adding new
members and losing old ones.

A porous rock with randomly arranged microscopic
pores has water spilled on top. If there are few pores,
the water will not percolate through the rock, but if
there are many pores, it will. Surprisingly, there is a
critical degree of porosity that exactly separates these
behaviors. If the rock’s porosity is below the critical
value, then water cannot flow completely through the
rock, but if its porosity exceeds the critical value, even
slightly, then water will percolate all the way through.

A block of iron placed in a magnetic field will become
magnetized. If the magnetic field is extinguished, then
the iron will remain magnetized if the temperature is
below the Curie temperature 770 ◦C (1418 ◦F), but not
if the temperature is above this critical value. It is strik-
ing that there is a specific temperature above which
the magnetization of the iron does not merely remain
small, but actually vanishes.
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The above are three examples of critical phenom-

ena. In each example, global properties of the sys-

tem change abruptly as a relevant parameter (fertility,

degree of porosity, or temperature) is varied through

a critical value. For parameter values just below the

critical value, the overall organization of the system is

quite different from how it is for values just above. The

sharpness of the transition is remarkable. How does it

occur so suddenly?

1.2 Theory

The mathematical theory of critical phenomena is cur-

rently undergoing intense development. Intertwined

with the science of phase transitions, it draws on ideas

from probability theory and statistical physics. The

theory is inherently probabilistic: each possible config-

uration of the system (e.g., a particular arrangement of

pores in a rock, or of the magnetic states of the individ-

ual atoms in a block of iron) is assigned a probability,

and the typical behavior of this ensemble of random

configurations is analyzed as a function of parameters

of the system (e.g., porosity or temperature).

The theory of critical phenomena is now guided to a

large degree by a profound insight from physics known

as universality, which, at present, is more of a phi-

losophy than a mathematical theorem. The notion of

universality refers to the fact that many essential fea-

tures of the transition at a critical point depend on

relatively few attributes of the system under consid-

eration. In particular, simple mathematical models can

capture some of the qualitative and quantitative fea-

tures of critical behavior in real physical systems even if

the models dramatically oversimplify the local interac-

tions present in the real systems. This observation has

helped to focus attention on particular mathematical

models, among both physicists and mathematicians.

This essay discusses several models of critical phe-

nomena that have attracted much attention from math-

ematicians, namely branching processes, the model of

random networks known as the random graph, the per-

colation model, the Ising model of ferromagnetism, and

the random cluster model. As well as having appli-

cations, these models are mathematically fascinating.

Deep theorems have been proved, but many problems

of central importance remain unsolved and tantalizing

conjectures abound.

Figure 1 A possible family tree,
with probability p10(1− p)12.

2 Branching Processes

Branching processes provide perhaps the simplest

example of a phase transition. They occur naturally as

a model of the random evolution of a population that

changes in time as a result of births and deaths. The

simplest branching process is defined as follows.

Consider an organism that lives for a unit time and

that reproduces immediately before death. The organ-

ism has two potential offspring, which we can regard

as the “left” offspring and the “right” offspring. At the

moment of reproduction, the organism has either no

offspring, a left but no right offspring, a right but no left

offspring, or both a left and a right offspring. Assume

that each of the potential offspring has a probability p
of being born and that these two births occur inde-

pendently. Here, the number p, which lies between 0

and 1, is a measure of the population’s fecundity. Sup-

pose that we start with a single organism at time zero,

and that each descendant of this organism reproduces

independently in the above manner.

A possible family tree is depicted in figure 1, showing

all births that occurred. In this family tree, ten offspring

were produced in all, but twelve potential offspring

were not born, so the probability of this particular tree

occurring is p10(1− p)12.

If p = 0, then no offspring are born, and the fam-

ily tree always consists of the original organism only.

If p = 1, then all possible offspring are born, the fam-

ily tree is the infinite binary tree, and the population

always survives forever. For intermediate values of p,

the population may or may not survive forever: let θ(p)
denote the survival probability, that is, the probabil-

ity that the branching process survives forever when

the fecundity is set at p. How does θ(p) interpolate

between the two extremes θ(0) = 0 and θ(1) = 1?
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Figure 2 The survival probability θ versus p.

2.1 The Critical Point

Since an organism has each of two potential offspring

independently with probability p, it has, on average,

2p offspring. It is natural to suppose that survival for

all time will not occur if p < 1
2 , since then each organ-

ism, on average, produces less than 1 offspring. On

the other hand, if p > 1
2 , then, on average, organisms

more than replace themselves, and it is plausible that a

population explosion can lead to survival for all time.

Branching processes have a recursive nature, not

present in other models, that facilitates explicit com-

putation. Exploiting this, it is possible to show that the

survival probability is given by

θ(p) =

⎧⎪⎪⎨
⎪⎪⎩

0 if p � 1
2 ,

1
p2
(2p − 1) if p � 1

2 .

The value p = pc = 1
2 is a critical value, at which the

graph of θ(p) has a kink (see figure 2). The interval

p < pc is referred to as subcritical, whereas p > pc is

supercritical.

Rather than asking for the probability θ(p) that

the initial organism has infinitely many descendants,

one could ask for the probability Pk(p) that the num-

ber of descendants is at least k. If there are at least

k+ 1 descendants, then there are certainly at least k,

so Pk(p) decreases as k increases. In the limit as k
increases to infinity, Pk(p) decreases to θ(p). In par-

ticular, when p > pc, Pk(p) approaches a positive limit

as k approaches infinity, whereas Pk(p) goes to zero

when p � pc. When p is strictly less than pc, it can be

shown that Pk(p) goes to zero exponentially rapidly,

0

1

p = 0 11
2

χ

Figure 3 The average family size χ versus p.

but at the critical value itself we have

Pk(pc) ∼ 2√
πk
.

The symbol “∼” denotes asymptotic behavior, and
means that the ratio of the left- and right-hand sides
in the above formula goes to 1 as k goes to infinity.
In other words, Pk(pc) behaves essentially like 2/

√
πk

when k is large.

There is a pronounced difference between the expo-
nential decay of Pk(pc) for p < pc and the square-root
decay at pc. When p = 1

4 , family trees larger than 100
are sufficiently rare that in practical terms they do not
occur: the probability is less than 10−14. However, when
p = pc, roughly one in every ten trees will have size at
least 100, and roughly one in a thousand will have size
at least 1 000 000. At the critical value, the process is
poised between extinction and survival.

Another important attribute of the branching pro-
cess is the average size of a family tree, denoted χ(p).
A calculation shows that

χ(p) =
⎧⎪⎨
⎪⎩

1
1− 2p

if p < 1
2 ,

∞ if p � 1
2 .

In particular, the average family size becomes infinite
at the same critical value pc = 1

2 above which the prob-
ability of an infinite family ceases to be zero. The graph
of χ is shown in figure 3. At p = pc, it may seem at first
sight contradictory that family trees are always finite
(since θ(pc) = 0) and yet the average family size is infi-
nite (since χ(pc) = ∞). However, there is no inconsis-
tency, and this combination, which occurs only at the
critical point, reflects the slowness of the square-root
decay of Pk(pc).
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2.2 Critical Exponents and Universality

Some aspects of the above discussion are specific to
twofold branching, and will change for a branching
process with higher-order branching. For example, if
each organism has not two but m potential offspring,
again independently with probability p, then the aver-
age number of offspring per organism is mp and the
critical probability pc changes to 1/m. Also, the formu-
las written above for the survival probability, for the
probability of at least k descendants, and for the aver-
age family size must all be modified and will involve
the parameterm.

However, the way that θ(p) goes to zero at the critical
point, the way that Pk(pc) goes to zero as k goes to
infinity, and the way that χ(p) diverges to infinity as
p approaches the critical point pc will all be governed
by exponents that are independent of m. To be more
specific, they behave in the following manner:

θ(p) ∼ C1(p − pc)β, as p → p+c ,
Pk(pc) ∼ C2k−1/δ, as k→∞,
χ(p) ∼ C3(pc − p)−γ, as p → p−c .

Here, the numbers C1, C2, and C3 are constants that
depend on m. By contrast, the exponents β, δ, and γ
take on the same values for everym � 2. Indeed, those
values are β = 1, δ = 2, and γ = 1. They are called
critical exponents, and they are universal in the sense
that they do not depend on the precise form of the law
that governs how the individual organisms reproduce.
Related exponents will appear below in other models.

3 Random Graphs

An active research field in discrete mathematics with
many applications is the study of objects known as
graphs [III.34]. These are used to model systems such
as the Internet, the World Wide Web, and highway net-
works. Mathematically, a graph is a collection of ver-
tices (which might represent computers, Web pages, or
cities) joined in pairs by edges (physical connections
between computers, hyperlinks between Web pages,
highways). Graphs are also called networks, vertices are
also called nodes or sites, and edges are also called links
or bonds.

3.1 The Basic Model of a Random Graph

A major subarea of graph theory, initiated by Erdős and
Rényi in 1960, concerns the properties that a graph typ-
ically has when it has been generated randomly. A nat-
ural way to do this is to take n vertices and for each

pair to decide randomly (by the toss of a coin, say)
whether it should be linked by an edge. More generally,
one can choose a number p between 0 and 1 and let
p be the probability that any given pair is linked. (This
would correspond to using a biased coin to make the
decisions.) The properties of random graphs come into
their own when n is large, and of particular interest is
the fact that there is a phase transition.

3.2 The Phase Transition

If x and y are vertices in a graph, then a path from x
to y is a sequence of vertices that starts with x and
ends with y in such a way that neighboring terms of
the sequence are joined by edges. (If the vertices are
represented by points and the edges by lines, then a
path is a way of getting from x to y by traveling along
the lines.) If x and y are joined by a path, then they
are said to be connected. A component, or connected
cluster, in a graph is what you obtain if you take a vertex
together with all the other vertices that are connected
to it.

Any graph decomposes naturally into its connected
clusters. These will, in general, have different sizes (as
measured by the number of vertices), and given a graph
it is interesting to know the size of its largest cluster,
which we shall denote by N . If we are considering a
random graph with n vertices, then the value of N will
depend on the multitude of random choices made when
the graph was generated, and thus N is itself a ran-
dom variable. The possible values of N are everything
from 1, the value it takes when no edges are present
and every cluster consists of a single vertex, to n, when
there is just one connected cluster consisting of all the
vertices. In particular, N = 1 when p = 0, and N = n
when p = 1. At a certain point between these extremes,
N undergoes a dramatic jump.

It is possible to guess where the jump might take
place, by considering the degree of a typical vertex x.
This means the number of neighbors of x, that is, other
vertices that are directly linked to x by a single edge.
Each vertex has n−1 potential neighbors, and for each
one the probability that it is an actual neighbor is p,
so the expected degree of any given vertex is p(n− 1).
When p is less than 1/(n−1), each vertex has, on aver-
age, less than one neighbor, whereas when p exceeds
1/(n− 1), it has, again on average, more than one. This
suggests that pc = 1/(n−1)will be a critical value, with
N being small when p is below pc, and large when p is
above pc.
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This is indeed the case. If we set pc = 1/(n− 1) and
write p = pc(1 + ε), with ε a fixed number between
−1 and +1, then ε = p(n − 1) − 1. Since p(n − 1) is
the average degree of each vertex, ε is a measure of
how much the average degree differs from 1. Erdős and
Rényi showed that, in an appropriate sense, as n goes
to infinity,

N ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2ε−2 logn if ε < 0,

An2/3 if ε = 0,

2εn if ε > 0.

The A in the above formula is not a constant but a cer-
tain random variable that is independent of n (the dis-
tribution of which we have not specified here). When
ε = 0 and n is large, the formula will tell us, for any
a < b, the approximate probability that N lies between
an2/3 and bn2/3. To put it another way,A is the limiting
distribution of the quantity n−2/3N when ε = 0.

There is a marked difference between the behavior of
the functions logn, n2/3, and n, for large n. The small
clusters present forp < pc correspond to what is called
a subcritical phase, whereas in the so-called supercriti-
cal phase, where p > pc, there is a “giant cluster” whose
size is of the same order of magnitude as the entire
graph (see figure 4).

It is interesting to consider the “evolution” of the ran-
dom graph, as p is increased from subcritical to super-
critical values. (Here one can imagine more and more
edges being randomly added to the graph.) A remark-
able coalescence occurs, in which many smaller clusters
rapidly merge into a giant cluster whose size is pro-
portional to the size of the entire system. The coales-
cence is thorough, in the sense that in the supercritical
phase the giant cluster dominates everything: indeed,
the second-largest cluster is known to have asymptotic
size only 2ε−2 logn, which makes it far smaller than
the giant cluster.

3.3 Cluster Size

For branching processes, we defined the quantity χ(p)
to be the average size of the family tree spawned by an
individual when the probability of each potential off-
spring being born was p. By analogy, for the random
graph it is natural to take an arbitrary vertex v and
define χ(p) to be the average size of the connected
cluster containing v . Since all the vertices play iden-
tical roles, χ(p) is independent of the particular choice
of v . If we fix a value of ε, set p = pc(1+ ε), and let n
tend to infinity, it turns out that the behavior of χ(p)

(a)

(b)

p =    pc = 0.00123
4

p =    pc = 0.00205
4

Figure 4 The largest cluster (black) and second largest
cluster (dots) in random graphs with 625 vertices. These
clusters have sizes (a) 17 and 11 and (b) 284 and 16. The
hundreds of edges in the graphs are not clearly shown.

is described by the formula

χ(p) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/|ε| if ε < 0,

cn1/3 if ε = 0,

4ε2n if ε > 0,

where c is a constant. Thus the expected cluster size

is independent of n when ε < 0, grows like n1/3 when

p = pc, and is much larger—indeed, of the same order

of magnitude n as the entire system—when ε > 0.

To continue the analogy with branching processes,

let Pk(p) denote the probability that the cluster con-
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taining the arbitrary vertex v consists of at least k ver-
tices. Again this does not depend on the particular
choice of v . In the subcritical phase, when p = pc(1+ε)
for some fixed negative value of ε, the probability Pk(p)
is essentially independent of n and is exponentially
small in k. Thus, large clusters are extremely rare. How-
ever, at the critical point p = pc, Pk(p) decays like
a multiple of 1/

√
k (for an appropriate range of k).

This much slower square-root decay is similar to what
happens for branching processes.

3.4 Other Thresholds

It is not only the largest cluster size that jumps. An-
other quantity that does so is the probability that a
random graph is connected, meaning that there is a
single connected cluster that contains all the n ver-
tices. For what values of the edge-probability p is this
likely? It is known that the property of being connected
has a sharp threshold, at pconn = (1/n) logn, in the
following sense. If p = pconn(1 + ε) for some fixed
negative ε, then the probability that the graph is con-
nected approaches 0 as n → ∞. If on the other hand ε
is positive, then the probability approaches 1. Roughly
speaking, if you add edges randomly, then the graph
suddenly changes from being almost certainly not con-
nected to almost certainly connected as the proportion
of edges present moves from just below pconn to just
above it.

There is a wide class of properties with thresholds
of this sort. Other examples include the absence of any
isolated vertex (a vertex with no incident edge), and the
presence of a Hamiltonian cycle (a closed loop that vis-
its every vertex exactly once). Below the threshold, the
random graph almost certainly does not have the prop-
erty, whereas above the threshold it almost certainly
does. The transition occurs abruptly.

4 Percolation

The percolation model was introduced by Broadbent
and Hammersley in 1957 as a model of fluid flow in
a porous medium. The medium contains a network of
randomly arranged microscopic pores through which
fluid can flow. A d-dimensional medium can be mod-
eled with the help of the infinite d-dimensional lat-
tice Zd, which consists of all points x of the form
(x1, . . . , xd), where each xi is an integer. This set can
be made into a graph in a natural way if we join each
point to the 2d points that differ from it by ±1 in
one coordinate and are the same in the others. (So,

for example, in Z2 the neighbors of (2,3) are the four
points (1,3), (3,3), (2,2), and (2,4).) One thinks of the
edges as representing all pores potentially present in
the medium.

To model the medium itself, one first chooses a
porosity parameter p, which is a number between 0
and 1. Each edge (or bond) of the above graph is then
retained with probabilityp and deleted with probability
1− p, with all choices independent. The retained edges
are referred to as “occupied” and the deleted ones as
“vacant.” The result is a random subgraph of Zd whose
edges are the occupied bonds. These model the pores
actually present in a macroscopic chunk of the medium.

For fluid to flow through the medium there must be a
set of pores connected together on a macroscopic scale.
This idea is captured in the model by the existence of
an infinite cluster in the random subgraph, that is, a
collection of infinitely many points all connected to one
another. The basic question is whether or not an infinite
cluster exists. If it does, then fluid can flow through
the medium on a macroscopic scale, and otherwise it
cannot. Thus, when an infinite cluster exists, it is said
that “percolation occurs.”

Percolation on the square lattice Z2 is depicted in
figure 5. Percolation in a three-dimensional physical
medium is modeled using Z3. It is instructive, and
mathematically interesting, to think how the model’s
behavior might change as the dimension d is varied.

For d = 1, percolation will not occur unless p = 1.
The simple observation that leads to this conclusion is
the following. Given any particular sequence ofm con-
secutive edges, the probability that they are all occu-
pied is pm, and if p < 1, then this goes to zero as
m goes to infinity. The situation is quite different for
d � 2.

4.1 The Phase Transition

For d � 2, there is a phase transition. Let θ(p) denote
the probability that any given vertex of Zd is in an
infinite connected cluster. (This probability does not
depend on the choice of vertex.) It is known that for
d � 2 there is a critical value pc, depending on d, such
that θ(p) is zero if p < pc and positive if p > pc. The
exact value of pc is not known in general, but a special
symmetry of the square lattice allows for a proof that
pc = 1

2 when d = 2.

Using the fact that θ(p) is the probability that any
particular vertex lies in an infinite cluster, it can be
shown that when θ(p) > 0 there must be an infinite
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Figure 5 Bond-percolation configurations on a 14× 14 piece of the square lattice Z2

for p = 0.25, p = 0.45, p = 0.55, p = 0.75. The critical value is pc = 1
2 .

connected cluster somewhere in Zd, while when θ(p) =
0 there will not be one. Thus, percolation occurs when

p > pc but not when p < pc, and the system’s behavior

changes abruptly at the critical value. A deeper argu-

ment shows that whenp > pc there must be exactly one

infinite cluster; infinite clusters cannot coexist on Zd.

This is analogous to the situation in the random graph,

where one giant cluster dominates when p is above the

critical value.

Let χ(p) denote the average size of the connected

cluster containing a given vertex. Certainly χ(p) is infi-

nite for p > pc, since then there is a positive proba-

bility that the given vertex is in an infinite cluster. It is

conceivable that χ(p) could be infinite also for some

values of p less than pc, since infinite expectation is

in principle compatible with θ(p) = 0. However, it is

a nontrivial and important theorem of the subject that

this is not the case: χ(p) is finite for all p < pc and

diverges to infinity as p approaches pc from below.

Qualitatively, the graphs of θ and χ have the appear-

ance depicted for the branching process in figures 2

and 3, although the critical value will be less than 1
2 for

d � 3. There is, however, a caveat. It has been proved

that θ is continuous in p except possibly at pc, and

right-continuous for all p. It is widely believed that θ
is equal to zero at the critical point, so that θ is con-

tinuous for all p and percolation does not occur at the

critical point. But proofs that θ(pc) = 0 are currently

known only for d = 2, for d � 19, and for certain

related models when d > 6. The lack of a general proof

is all the more intriguing since it has been proved for

all d � 2 that there is zero probability of an infinite

cluster in any half-space when p = pc. This still allows

for an infinite cluster with an unnatural spiral behav-

ior, for example, though it is believed that this does not

occur.

4.2 Critical Exponents

Assuming that θ(p) does in fact approach zero as p
is decreased to pc, it is natural to ask in what man-
ner this occurs. Similarly, we can ask in what man-
ner χ(p) diverges as p increases to pc. Deep argu-
ments of theoretical physics, and substantial numerical
experimentation, have led to the prediction that this, as
well as other, behavior is described by certain powers
known as critical exponents. In particular, it is predicted
that there are asymptotic formulas

θ(p) ∼ C(p − pc)β, as p → p+c ,
χ(p) ∼ C(pc − p)−γ, as p → p−c .

The critical exponents here are the powers β and γ,
which depend, in general, on the dimension d. (The let-
ter C is used to denote a constant whose precise value
is inessential and may change from line to line.)

When p is less than pc, large clusters have exponen-
tially small probabilities. For example, in this case the
probability Pk(p) that the size of the connected cluster
containing any given vertex exceeds k is known to decay
exponentially as k→∞. At the critical point, this expo-
nential decay is predicted to be replaced by a power-law
decay involving a number δ, which is another critical
exponent:

Pk(pc) ∼ Ck−1/δ as k→∞.
Also, for p < pc, the probability τp(x,y) that two

vertices x and y are in the same connected clus-
ter decays exponentially like e−|x−y|/ξ(p) as the sep-
aration between x and y is increased. The number
ξ(p) is called the correlation length. (Roughly speak-
ing, τp(x,y) starts to become small when the dis-
tance between x and y exceeds ξ(p).) The correlation
length is known to diverge as p increases to pc, and the
predicted form of this divergence is

ξ(p) ∼ C(pc − p)−ν as p → p−c ,
where ν is a further critical exponent. As before, the
decay at the critical point is no longer exponential. It
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is predicted that τpc(x,y) decays instead via a power
law, traditionally written in the form

τpc(x,y) ∼ C
1

|x −y|d−2+η , as |x −y| → ∞,
for yet another critical exponent η.

The critical exponents describe large-scale aspects of
the phase transition and thus provide information rel-
evant to the macroscopic scale of the physical medium.
However, in most cases they have not been rigorously
proved to exist. To do so, and to establish their values,
is a major open problem in mathematics, one of central
importance for percolation theory.

In view of this, it is important to be aware of a pre-
diction from theoretical physics that the exponents are
not independent, but are related to each other by what
are called scaling relations. Three scaling relations are

PUP: I can confirm
that repetition of
‘γ + 2β’ is OK.

γ = (2− η)ν, γ + 2β = β(δ+ 1), dν = γ + 2β.

4.3 Universality

Since the critical exponents describe large-scale behav-
ior, it seems plausible that they might depend only
weakly on changes in the fine structure of the model. In
fact, it is a further prediction of theoretical physics, one
that has been verified by numerical experiments, that
the critical exponents are universal, in the sense that
they depend on the spatial dimension d but on little
else.

For example, if the two-dimensional lattice Z2 is re-
placed by another two-dimensional lattice, such as the
triangular or the hexagonal lattice, then the values
of the critical exponents are believed not to change.
Another modification, for general d � 2, is to replace
the standard percolation model with the so-called
spread-out model. In the spread-out model, the edge set
of Zd is enriched so that now two vertices are joined
whenever they are separated by a distance of L or less,
where L � 1 is a fixed finite parameter, usually taken
to be large. Universality suggests that the critical expo-
nents for percolation in the spread-out model do not
depend on the parameter L.

The discussion so far falls within the general frame-
work of bond percolation, in which it is bonds (edges)
that are randomly occupied or vacant. A much-studied
variant is site percolation, where now it is vertices, or
“sites,” that are independently “occupied” with proba-
bility p and “vacant” with probability 1− p. The con-
nected cluster of a vertex x consists of the vertex x
itself together with those occupied vertices that can

be reached by a path that starts at x, travels along
edges in the graph, and visits only occupied vertices.
For d � 2, site percolation also experiences a phase
transition. Although the critical value for site percola-
tion is different from the critical value for bond percola-
tion, it is a prediction of universality that site and bond
percolation on Zd have the same critical exponents.

These predictions are mathematically very intrigu-
ing: the large-scale properties of the phase transition
described by critical exponents appear to be insensitive
to the fine details of the model, in contrast to features
like the value of critical probability pc, which depends
heavily on such details.

At the time of writing, the critical exponents have
been proved to exist, and their values rigorously com-
puted, only for certain percolation models in dimen-
sions d = 2 and d > 6, while a general mathematical
understanding of universality remains an elusive goal.

4.4 Percolation in Dimensions d > 6

Using a method known as the lace expansion, it has
been proved that the critical exponents exist, with
values

β = 1, γ = 1, δ = 2, ν = 1
2 , η = 0,

for percolation in the spread-out model when d > 6
and L is large enough. The proof makes use of the
fact that vertices in the spread-out model have many
neighbors. For the more conventional nearest-neighbor
model, where bonds have length 1 and there are fewer
neighbors per vertex, results of this type have also been
obtained, but only in dimensions d � 19.

The above values of β, γ, and δ are the same as
those observed previously for branching processes. A
branching process can be regarded as percolation on
an infinite tree rather than on Zd, and thus percola-
tion in dimensions d > 6 behaves like percolation on
a tree. This is an extreme example of universality, in
which the critical exponents are also independent of
the dimension, at least when d > 6.

If the above values for the exponents are substituted
into the scaling relation dν = γ+2β, the result is d = 6.
Thus, the scaling relation (called a hyperscaling relation
because of the presence of the dimension d in the equa-
tion) is false for d > 6. However, this particular rela-
tion is predicted to apply only in dimensions d � 6. In
lower dimensions, the nature of the phase transition is
affected by the manner in which critical clusters fit into
space, and the nature of the fit is partly described by
the hyperscaling relation, in which d appears explicitly.
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Figure 6 The exploration process.

The critical exponents are predicted to take on dif-
ferent values below d = 6. Recent advances have shed
much light on the situation for d = 2, as we shall see
in the next section.

4.5 Percolation in Dimension 2

4.5.1 Critical Exponents and Schramm–Loewner
Evolution

For site percolation on the two-dimensional triangular
lattice it has been shown, in a major recent achieve-
ment, that the critical exponents exist and take the
remarkable values

β = 5
36 , γ = 43

18 , δ = 91
5 , ν = 4

3 , η = 5
24 .

The scaling relations play an important role in the
proof, but an essential additional step requires under-
standing of a concept known as the scaling limit.

To get some idea of what this is, let us look at the
so-called exploration process, which is depicted in fig-
ure 6. In figure 6, hexagons represent vertices of the tri-
angular lattice. Hexagons in the bottom row have been
colored gray on the left half and white on the right half.
The other hexagons have been chosen to be gray or
white independently with probability 1

2 , which is the
critical probability for site percolation on the triangu-
lar lattice. It is not hard to show that there is a path,
also illustrated in figure 6, which starts at the bottom
and all along its length is gray to the left and white to
the right. The exploration process is this random path,
which can be thought of as the gray/white interface.
The boundary conditions at the bottom force it to be
infinite.

The exploration process provides information about
the boundaries separating large critical clusters of dif-

ferent color, and from this it is possible to extract
information about critical exponents. It is the macro-
scopic large-scale structure that is essential, so inter-
est is focused on the exploration process in the limit
as the spacing between vertices of the triangular lattice
goes to zero. In other words, what does the curve in
figure 6 typically look like in the limit as the size of the
hexagons shrinks to zero? It is now known that this
limit is described by a newly discovered stochastic
process [IV.24 §1] called the Schramm–Loewner evolu-
tion (SLE) with parameter six, or SLE6 for short. The
SLE processes were introduced by Schramm in 2000,
and have become a topic of intense current research
activity.

This is a major step forward in the understanding
of two-dimensional site percolation on the triangular
lattice, but much remains to be done. In particular, it is
still an unsolved problem to prove universality. There is
currently no proof that critical exponents exist for bond
percolation on the square lattice Z2, although universal-
ity predicts that the critical exponents for the square
lattice should also take on the interesting values listed
above.

4.5.2 Crossing Probabilities

In order to understand two-dimensional percolation, it
is very helpful to understand the probability that there
will be a path from one side of a region of the plane
to another, especially when the parameter p takes its
critical value pc.

To make this idea precise, fix a simply connected
region in the plane (i.e., a region with no holes), and
fix two arcs on the boundary of the region. The crossing
probability (which depends on p) is the probability that
there is an occupied path inside the region that joins
one arc to the other, or more accurately the limit of
this probability as the lattice spacing between vertices
is reduced to zero. For p < pc, clusters with diameter
much larger than the correlation length ξ(p) (measured
by the number of steps in the lattice) are extremely
rare. However, to cross the region, a cluster needs to be
larger and larger as the lattice spacing goes to zero. It
follows that the crossing probability is 0. When p > pc,
there is exactly one infinite cluster, from which it can
be deduced that if the lattice spacing is very small, then
with very high probability there will be a crossing of the
region. In the limit, the crossing probability is 1. What
if p = pc? There are three remarkable predictions for
critical crossing probabilities.
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Figure 7 The two regions are related by a conformal trans-
formation, depicted in the upper figures. In the lower fig-
ures, the limiting critical crossing probabilities are identi-
cal.

The first prediction is that critical crossing proba-
bilities are universal, which is to say that they are the
same for all finite-range two-dimensional bond- or site-
percolation models. (As always, we are talking about
the limiting probabilities as the lattice spacing goes to
zero.)

The second prediction is that the critical crossing
probabilities are conformally invariant. A conformal
transformation is a transformation that locally pre-
serves angles, as shown in figure 7. The remarkable
riemann mapping theorem [V.37] states that any two
simply connected regions that are not the entire plane
are related by a conformal transformation. The state-
ment that the critical crossing probability is confor-
mally invariant means that if one region with two spec-
ified boundary arcs is mapped to another region by
a conformal transformation, then the critical cross-
ing probability between the images of the arcs in the
new region is identical to the crossing probability ofPUP: Tim says that

the figures and the
text are fine here. the original region. (Note that the underlying lattice is

not transformed; this is what makes the prediction so
striking.)

The third prediction is Cardy’s explicit formula for
critical crossing probabilities. Assuming conformal in-
variance, it is only necessary to give the formula for
one region. For an equilateral triangle, Cardy’s formula
is particularly simple (see figure 8).

In 2001, in a celebrated achievement, Smirnov stud-
ied critical crossing probabilities for site percolation
on the triangular lattice. Using the special symmetries
of this particular model, Smirnov proved that the lim-

Side = 1

s

Figure 8 For the equilateral triangle of unit side length,
Cardy’s formula asserts that the limiting critical crossing
probability shown is simply the length s.

iting critical crossing probabilities exist, that they are
conformally invariant, and that they obey Cardy’s for-
mula. To prove universality of the crossing probabili-
ties remains a tantalizing open problem.

5 The Ising Model

In 1925, Ising published an analysis of a mathematical
model of ferromagnetism which now bears his name
(although it was in fact Ising’s doctoral supervisor Lenz
who first defined the model). The Ising model occu-
pies a central position in theoretical physics, and is of
considerable mathematical interest.

5.1 Spins, Energy, and Temperature

In the Ising model, a block of iron is regarded as a col-
lection of atoms whose positions are fixed in a crys-
talline lattice. Each atom has a magnetic “spin,” which is
assumed for simplicity to point upward or downward.
Each possible configuration of spins has an associated
energy, and the greater this energy is, the less likely the
configuration is to occur.

On the whole, atoms like to have the same spin as
their immediate neighbors, and the energy reflects this:
it increases according to the number of pairs of neigh-
boring spins that are not aligned with each other. If
there is an external magnetic field, also assumed to be
directed up or down, then there is an additional contri-
bution: atoms like to be aligned with the external field,
and the energy is greater the more spins there are that
are not aligned with it. Since configurations with higher
energy are less likely, spins have a general tendency to
align with each other, and also to align with the direc-
tion of the external magnetic field. When a larger frac-
tion of spins points up than down, the iron is said to
have a positive magnetization.
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Although energy considerations favor configurations
with many aligned spins, there is a competing effect.
As the temperature increases, there are more random
thermal fluctuations of the spins, and these diminish
the amount of alignment. Whenever there is an exter-
nal magnetic field, the energy effects predominate and
there is at least some magnetization, however high the
temperature. However, when the external field is turned
off, the magnetization persists only if the tempera-
ture is below a certain critical temperature. Above this
temperature, the iron will lose its magnetization.

The Ising model is a mathematical model that cap-
tures the above picture. The crystalline lattice is mod-
eled by the lattice Zd. Vertices of Zd represent atomic
positions, and the atomic spin at a vertex x is simply
modeled by one of the two numbers +1 (representing
spin up) or −1 (representing spin down). The particular
number chosen at x is denoted σx , and a collection of
choices, one for each x in the lattice, is called a configu-
ration of the Ising model. The configuration as a whole
is denoted simply as σ . (Formally, a configuration σ is
a function from the lattice to the set {−1,1}.)

Each configuration σ comes with an associated ener-
gy, defined as follows. If there is no external field, the
energy of σ consists of the sum, taken over all pairs
of neighboring vertices 〈x,y〉, of the quantity −σxσy .
This quantity is −1 if σx = σy , and is +1 otherwise, so
the energy is indeed larger the more nonaligned pairs
there are. If there is a nonzero external field, mod-
eled by a real number h, then the energy receives an
additional contribution −hσx , which is larger the more
spins there are with a different sign from that of h.
Thus, in total, the energy E(σ) of a spin configuration
σ is defined by

E(σ) = −
∑
〈x,y〉

σxσy − h
∑
x
σx,

where the first sum is over neighboring pairs of ver-
tices, the second sum is over vertices, and h is a real
number that may be positive, negative, or zero.

The sums defining E(σ) actually make sense only
when there are finitely many vertices, but one wishes
to study the infinite lattice Zd. This problem is handled
by restricting Zd to a large finite subset and later tak-
ing an appropriate limit, the so-called thermodynamic
limit. This is a well-understood process that will not be
described here.

Two features remain to be modeled, namely, the
manner in which lower-energy configurations are “pre-
ferred,” and the manner in which thermal fluctuations

can lessen this preference. Both features are handled
simultaneously, as follows. We wish to assign to each
configuration a probability that decreases as its energy
increases. According to the foundations of statistical
mechanics, the right way to do this is to make the
probability proportional to the so-called Boltzmann fac-
tor e−E(σ)/T , where T is a nonnegative parameter that
represents the temperature. Thus, the probability is

P(σ) = 1
Z

e−E(σ)/T ,

where the normalization constant, or partition function,
Z , is defined by

Z =
∑
σ

e−E(σ)/T ,

where the sum is taken over all possible configurations
σ (again it is necessary to work first in a finite subset
of Zd to make this precise). The reason for this choice
of Z is that once we divide by it then we have ensured
that the probabilities of the configurations add up to
one, as they must. With this definition, the desired pref-
erence for low energy is achieved, since the probabil-
ity of a given configuration is smaller when the energy
of the configuration is larger. As for the effect of the
temperature, note that when T is very large, all the
numbers e−E(σ)/T are close to 1, so all probabilities are
roughly equal. In general, as the temperature increases
the probabilities of the various configurations become
more similar, and this models the effect of random
thermal fluctuations.

There is more to the story than energy, however. The
Boltzmann factor makes any individual low-energy con-
figuration much more likely than any individual high-
energy configuration. However, the low-energy config-
urations have a high degree of alignment, so there are
far fewer of them than there are of the more randomly
arranged high-energy configurations. It is not obvious
which of these two competing considerations will pre-
dominate, and in fact the answer depends on the value
of the temperature T in a very interesting way.

5.2 The Phase Transition

For the Ising model with external field h and tem-
perature T , let us choose a configuration randomly
with the probabilities defined above. The magnetiza-
tion M(h,T) is defined to be the expected value of the
spin σx at a given vertex x. Because of the symmetry
of the lattice Zd, this does not depend on the partic-
ular vertex chosen. Accordingly, if the magnetization
M(h,T) is positive, then spins have an overall tendency
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to be aligned in the positive direction, and the system
is magnetized.

The symmetry between up and down implies that
M(−h,T) = −M(h,T) (i.e., reversing the external field
reverses the magnetization) for all h and T . In partic-
ular, when h = 0, the magnetization must be zero. On
the other hand, if there is a nonzero external field h,
then configurations with spins that are aligned with h
are overwhelmingly more likely (because their energy
is lower), and the magnetization satisfies

M(h,T)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
< 0 if h < 0,

= 0 if h = 0,

> 0 if h > 0.

What happens if the external field is initially posi-
tive and then is reduced to zero? In particular, is the
spontaneous magnetization, defined by

M+(T) = lim
h→0+

M(h,T),

positive or zero? If M+(T) is positive, then the magne-
tization persists after the external field is turned off. In
this case there will be a discontinuity in the graph ofM
versus h at h = 0.

Whether or not this happens depends on the tem-
perature T . In the limit as T is reduced to zero, a small
difference in the energies of two configurations results
in an enormous difference in their probabilities. When
h > 0 and the temperature is reduced to zero, only the
minimal energy configuration, in which all spins are+1,
has any chance of occurring. This is the case no matter
how small the external field becomes, soM+(0) = 1. On
the other hand, in the limit of infinitely high tempera-
ture, all configurations become equally likely and the
spontaneous magnetization is equal to zero.

For dimensions d � 2, the behavior ofM+(T)when T
lies between these two extremes is quite surprising. In
particular, it is not differentiable everywhere: there is a
critical temperature Tc, depending on the dimension,
such that the spontaneous magnetization is strictly
positive for T < Tc and zero for T > Tc, and it is at
T = Tc that differentiability fails. Schematic graphs of
the magnetization versus h and the spontaneous mag-
netization versus T are shown in figure 9. What hap-
pens at the critical temperature itself is delicate. In all
dimensions except d = 3 it has been proved that there
is no spontaneous magnetization at the critical temper-
ature, which is to say thatM+(Tc) = 0. It is believed that
this is true when d = 3 as well, but it remains an open
problem to prove it.

h

M
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, T
 )

T < Tc
T = Tc
T > Tc
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Figure 9 Magnetization versus external field, and
spontaneous magnetization versus temperature.

5.3 Critical Exponents

The phase transition for the Ising model is again de-
scribed by critical exponents. The critical exponent β,
given by

M+(T) ∼ C(Tc − T)β, as T → T−c ,
indicates how the spontaneous magnetization disap-
pears as the temperature increases toward the critical
temperature Tc. For T > Tc, the magnetic susceptibil-
ity, denoted χ(T), is defined to be the rate of change of
M(h,T) with respect to h, at h = 0. This partial deriva-
tive in h diverges as T approaches Tc from above, and
the exponent γ is defined by

χ(T) ∼ C(T − Tc)−γ, as T → T+c .
Finally, δ describes the manner in which the magneti-
zation goes to zero as the external field is reduced to
zero at the critical temperature. That is,

M(h,Tc) ∼ Ch1/δ, as h→ 0+.

These critical exponents, like those for percolation, are
predicted to be universal and to obey various scaling
relations. They are now understood mathematically in
all dimensions except d = 3.
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5.4 Exact Solution for d = 2

In 1944, Onsager published a famous paper in which
he gave an exact solution of the two-dimensional Ising
model. His remarkable computation is a landmark in
the development of the theory of critical phenomena.
With the exact solution as a starting point, critical expo-
nents could be calculated. As with two-dimensional
percolation, the exponents take interesting values:

β = 1
8 , γ = 7

4 , δ = 15.

5.5 Mean-Field Theory for d � 4

Two modifications of the Ising model are relatively easy
to analyze. One is to formulate the model on the infi-
nite binary tree, rather than on the integer lattice Zd.
Another is to formulate the Ising model on the so-called
“complete graph,” which is the graph consisting of n
vertices with an edge joining every pair of vertices, and
then take the limit as n goes to infinity. In the latter,
known as the Curie–Weiss model, each spin interacts
equally with all the other spins, or, put another way,
each spin feels the mean field of all the other spins. In
each of these modifications, the critical exponents take
on the so-called mean-field values

β = 1
2 , γ = 1, δ = 3.

Ingenious methods have been used to prove that the
Ising model on Zd has these same critical exponents
in dimensions d � 4, although in dimension 4 there
remain unresolved issues concerning logarithmic cor-
rections to the asymptotic formulas.

6 The Random-Cluster Model

The percolation and Ising models appear to be quite
different. A percolation configuration consists of a ran-
dom subgraph of a given graph (usually a lattice as
in the examples earlier), with edges included indepen-
dently with probability p. A configuration of the Ising
model consists of an assignment of values ±1 to spins
at the vertices of a graph (again usually a lattice), with
these spins influenced by energy and temperature.

In spite of these differences, in around 1970 Fortuin
and Kasteleyn had the insight to observe that the two
models are in fact closely related to each other, as mem-
bers of a larger family of models known as the random-
cluster model. The random-cluster model also includes
a natural extension of the Ising model known as the
Potts model.

In the Potts model, spins at the vertices of a given
graph G may take on any one of q different values,

where q is an integer greater than or equal to 2. When
q = 2 there are two possible spin values and the model
is equivalent to the Ising model. For general q, it is con-
venient to label the possible spin values as 1,2, . . . , q.
As before, a configuration of spins has an associated
energy that is smaller when more spins are aligned. The
energy associated with an edge is −1 if the spins at the
vertices joined by the edge are identical, and 0 other-
wise. The total energy E(σ) of a spin configuration σ ,
assuming no external field, is the sum of the energies
associated with all edges. The probability of a particular
spin configuration σ is again taken to be proportional
to a Boltzmann factor, namely

P(σ) = 1
Z

e−E(σ)/T ,

where the partition function Z is once again there to
ensure that the probabilities add up to 1.

Fortuin and Kasteleyn noticed that the partition func-
tion of the Potts model on a finite graphG can be recast
as ∑

S⊂G
p|S|(1− p)|G\S|qn(S).

In this formula, the sum is over all subgraphs S that can
be obtained by deleting edges fromG, |S| is the number
of edges in S, |G\S| is the number of edges deleted from
G to obtain S, n(S) is the number of distinct connected
clusters of S, and p is related to the temperature by

p = 1− e−1/T .

The restriction that q be an integer greater than or
equal to 2 is essential for the definition of the Potts
model, but the above sum makes good sense for any
positive real value of q.

The random-cluster model has the above sum as
its partition function. Given any real number q > 0,
a configuration of the random-cluster model is a set
S of occupied edges of the graph G, exactly like a
configuration of bond percolation. However, in the
random-cluster model we do not simply associate p
with each occupied edge and 1− p with each vacant
edge. Instead, the probability associated with a config-
uration is proportional to p|S|(1− p)|G\S|qn(S). In par-
ticular, for the choice q = 1, the random-cluster model
is the same as bond percolation. Thus the random-
cluster model provides a one-parameter family of mod-
els, indexed by q, which corresponds to percolation for
q = 1, to the Ising model for q = 2, and to the Potts
model for integer q � 2. The random-cluster model has
a phase transition for general q � 1, and provides a
unified setting and a rich family of examples.
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7 Conclusion

The science of critical phenomena and phase transi-
tions is a source of fascinating mathematical problems
of real physical significance. Percolation is a central
mathematical model in the subject. Often formulated
on Zd, it can also be defined instead on a tree or on the
complete graph, as a result of which it encompasses
branching processes and the random graph. The Ising
model is a fundamental model of the ferromagnetic
phase transition. At first sight unrelated to percolation,
it is in fact closely connected within the wider setting of
the random-cluster model. The latter provides a unified
framework and a powerful geometric representation
for the Ising and Potts models.

Part of the fascination of these models is due to the
prediction from theoretical physics that large-scale fea-
tures near the critical point are universal. However,
proofs often rely on specific details of a model, even
when universality predicts that these details should
not be essential to the results. For example, the under-
standing of critical crossing probabilities and the calcu-
lation of critical exponents has been carried out for site
percolation on the triangular lattice, but not for bond
percolation on Z2. Although the progress for the trian-
gular lattice is a triumph of the theory, it is not the last
word. Universality remains a guiding principle but it is
not yet a general theorem.

In the physically most interesting case of dimen-
sion 3, a very basic feature of percolation and the Ising
model is not understood at all: it has not yet been
proved that there is no percolation at the critical point
and that the spontaneous magnetization is zero.

Much has been accomplished but much remains to
be done, and it seems clear that further investigation
of models of critical phenomena will lead to highly
important mathematical discoveries.
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IV.26 High-Dimensional Geometry and
Its Probabilistic Analogues
Keith Ball

1 Introduction

If you have ever watched a child blowing soap bubbles,
then you cannot have failed to notice that the bubbles
are, at least as far as the human eye can tell, perfectly
spherical. From a mathematical perspective, the reason
for this is simple. The surface tension in the soap solu-
tion causes each bubble to make its area as small as
possible, subject to the constraint that it encloses a
fixed amount of air (and cannot compress the air too
much). The sphere is the surface of smallest area that
encloses a given volume.

As a mathematical principle, this seems to have been
recognized by the ancient Greeks, although fully rig-
orous demonstrations did not appear until the end of
the nineteenth century. This and similar statements are
known as “isoperimetric principles.”1

The two-dimensional form of the problem asks: what
is the shortest curve that encloses a given area? The
answer, as we might expect by analogy with the three-
dimensional case, is a circle. Thus, by minimizing the
length of the curve we force it to have a great deal of
symmetry: the curve should be equally curved every-
where along its length. In three or more dimensions,
many different kinds of curvature [III.80] are used in
different contexts. One, known as mean curvature, is
the appropriate one for area-minimization problems.

The sphere has the same mean curvature at every
point, but then it is pretty clear from its symmetry
that the sphere would have the same curvature at every
point whatever measure of curvature we used. More
illustrative examples are provided by the soap films
(much more varied than simple bubbles) that are a pop-
ular feature of recreational mathematics lectures: fig-
ure 1 shows such a soap film stretched across a wire

1. The prefix “iso” means “equal.” The name “equal perimeter”
refers to the two-dimensional formulation: if a disk and another region
have equal perimeter, then the area of the other region cannot be
larger than that of the disk.
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Figure 1 A soap film has minimum area.

frame. The film adopts the shape that minimizes its

area, subject to the constraint that it is bounded by the

wire frame. One can show that the minimal surface (the

exact mathematical solution to the minimization prob-

lem) has constant mean curvature: its mean curvature

is the same at every point.

Isoperimetric principles turn up all over mathemat-

ics: in the study of partial differential equations, the

calculus of variations, harmonic analysis, computa-

tional algorithms, probability theory, and almost every

branch of geometry. The aim of the first part of this

article is to describe a branch of mathematics, high-

dimensional geometry, whose starting point is the fun-

damental isoperimetric principle: that the sphere is the

surface of least area that encloses a given volume. The

most remarkable feature of high-dimensional geometry

is its intimate connection to the theory of probabil-

ity: geometric objects in high-dimensional space exhibit

many of the characteristic properties of random distri-

butions. The aim of the second part of this article is to

outline the links between the geometry and probability.

2 High-Dimensional Spaces

So far we have discussed only two- and three-dimen-

sional geometry. Higher-dimensional spaces seem to

be impossible for humans to visualize but it is easy

to provide a mathematical description by extend-

ing the usual description of three-dimensional space

in terms of Cartesian coordinates. In three dimen-

sions, a point (x,y, z) is given by three coordin-

ates; in n-dimensional space, the points are n-tuples

(x1, x2, . . . , xn). As in two and three dimensions, the

points are related to one another in that we can add two

of them together to produce a third, by simply adding

corresponding coordinates:

(2,3, . . . ,7)+ (1,5, . . . ,2) = (3,8, . . . ,9).

(1,1)

(1,0)

(0,1)

(0,0)

Figure 2 The unit square.

By relating points to one another, addition gives the
space some structure or “shape.” The space is not just
a jumble of unrelated points.

To describe the shape of the space completely, we
also need to specify the distance between any two
points. In two dimensions, the distance of a point (x,y)
from the origin is

√
x2 +y2 by the Pythagorean theo-

rem (and the fact that the axes are perpendicular). Simi-
larly, the distance between two points (u,v) and (x,y)
is √

(x −u)2 + (y − v)2.
In n dimensions we define the distance between points
(u1, u2, . . . , un) and (x1, x2, . . . , xn) to be√

(x1 −u1)2 + (x2 −u2)2 + · · · + (xn −un)2.
Volume is defined in n-dimensional space roughly as

follows. We start by defining a cube in n dimensions.
The two- and three-dimensional cases, the square and
the usual three-dimensional cube, are very familiar. The
set of all points in the xy-plane whose coordinates are
between 0 and 1 is a square of side 1 unit (as shown in
figure 2), and, similarly, the set of all points (x,y, z) for
which x, y , and z are all between 0 and 1 is a unit cube.
In n-dimensional space the analogous cube consists of
those points whose coordinates are all between 0 and 1.
We stipulate that the unit cube has volume 1. Now, if
we double the size of a plane figure, its area increases
by a factor of 4. If we double a three-dimensional body,
its volume increases by a factor of 8. In n-dimensional
space, the volume scales as the nth power of size: so a
cube of side t has volume tn. To find the volume of a
more general set we try to approximate it by covering
it with little cubes whose total volume is as small as
possible. The volume of the set is calculated as a limit
of these approximate volumes.

Whatever the dimension, a special geometric role is
played by the unit sphere: that is, the surface consist-
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1

1 + ε

Figure 3 An inflated ball.

ing of all points that are a distance of 1 unit from
a fixed point, the center. As one might expect, the
corresponding solid sphere, or unit ball, consisting of
all points enclosed by the unit sphere, also plays a
special role. There is a simple relationship between
the (n-dimensional) volume of the unit ball and the
(n− 1)-dimensional “area” of the sphere. If we let vn
denote the volume of the unit ball in n dimensions,
then the surface area is nvn. One way to see this is
to imagine enlarging the unit ball by a factor slightly
greater than 1, say 1+ ε. This is pictured in figure 3. The
enlarged ball has volume (1+ε)nvn and so the volume
of the shell between the two spheres is ((1+ε)n−1)vn.
Since the shell has thickness ε, this volume is approxi-
mately the surface area multiplied by ε. So the surface
area is approximately

(1+ ε)n − 1
ε

vn.

By taking the limit as ε approaches 0 we obtain the
surface area exactly:

lim
ε→0

(1+ ε)n − 1
ε

vn.

One can check that this limit isnvn either by expanding
the power (1+ ε)n or by observing that the expression
is the formula for a derivative.

So far we have discussed bodies in n-dimensional
space without being too precise about what kind of sets
we are considering. Many of the statements in this arti-
cle hold true for quite general sets. But a special role
is played in high-dimensional geometry by convex sets
(a set is convex if it contains the entire line segment
joining any two of its points). Balls and cubes are both
examples of convex sets. The next section describes
a fundamental principle which holds for very general
sets but which is intrinsically linked to the notion of
convexity.

Figure 4 Adding two sets.

3 The Brunn–Minkowski Inequality

The two-dimensional isoperimetric principle was es-
sentially proved in 1841 by Steiner, although there
was a technical gap in the argument which was filled
later. The general (n-dimensional) case was completed
by the end of the nineteenth century. A couple of
decades later a different approach to the principle, with
far-reaching consequences, was found by hermann T&T note: check

CR style later.
minkowski [VI.64]—an approach which was inspired
by an idea of Hermann Brunn.

Minkowski considered the following way to add to-
gether two sets in n-dimensional space. If C and D are
sets, then the sum C +D consists of all points which
can be obtained by adding a point of C to a point of D.
Figure 4 shows an example in which C is an equilateral
triangle and D is a square centered at the origin. We
place a copy of the square at each point of the triangle
(some of these are illustrated) and the set C +D con-
sists of all points that are included in all these squares.
The outline of C +D is shown dashed.

The Brunn–Minkowski inequality relates the volume
of the sum of two sets to the volumes of the sets them-
selves. It states that (as long as the two sets C and D
are not empty)

vol(C +D)1/n � vol(C)1/n + vol(D)1/n. (1)

The inequality looks a bit technical, if only because the
volumes appearing in the inequality are raised to the
power 1/n. However, this fact is crucial. If each of C
and D is a unit cube (with their edges aligned the same
way), then the sum C +D is a cube of side 2: a cube
twice as large. Each of C and D has volume 1 while the
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C

C +   Bε

ε

Figure 5 An ε-enlargement.

volume ofC +D is 2n. So, in this case, vol(C+D)1/n = 2
and each of vol(C)1/n and vol(D)1/n is equal to 1: the
inequality (1) holds with equality. Similarly, whenever C
and D are copies of one another, the Brunn–Minkowski
inequality holds with equality. If we omitted the expo-
nents 1/n, the statement would still be true; in the case
of two cubes, it is certainly true that 2n � 1+ 1. But the
statement would be extremely weak: it would give us
almost no useful information.

The importance of the Brunn–Minkowski inequality
stems from the fact that it is the most fundamental
principle relating volume to the operation of addition,
which is the operation that gives space its structure.
At the start of this section it was explained that Min-
kowski’s formulation of Brunn’s idea provided a new
approach to the isoperimetric principle. Let us see why.

Let C be a compact set [III.9] in Rn whose volume is
equal to that of the unit ball B. We want to show that
the surface area of C is at leastn vol(B) since this is the
surface area of the ball. We consider what happens to C
if we add a small ball to it. An example (a right-angled
triangle) is shown in figure 5: the dashed curve outlines
the enlarged set we obtain by adding to C a copy of the
ball B scaled by a small factor ε. This looks rather like
figure 3 above but here we do not expand the original
set, we add a ball. Just as before, the difference between
C + εB and C is a shell around C of width ε, so we can
express the surface area as a limit as ε approaches 0:

lim
ε→0

vol(C + εB)− vol(C)
ε

.

Now the Brunn–Minkowski inequality tells us that

vol(C + εB)1/n � vol(C)1/n + vol(εB)1/n.

The right-hand side of this inequality is

vol(C)1/n + ε vol(B)1/n = (1+ ε) vol(B)1/n

because vol(εB) = εn vol(B) and vol(C) = vol(B). So
the surface area is at least

lim
ε→0

(1+ ε)n vol(B)− vol(C)
ε

= lim
ε→0

(1+ ε)n vol(B)− vol(B)
ε

.

Again as in section 2, this limit is n vol(B) and we
conclude that the surface of C has at least this area.

Over the years, many different proofs of the Brunn–
Minkowski inequality have been found, and most of the
methods have other important applications. To finish
this section we shall describe a modified version of the
Brunn–Minkowski inequality that is often easier to use
than (1). If we replace the set C +D by a scaled copy
half as large, 1

2 (C +D), then its volume is scaled by
1/2n and the nth root of this volume is scaled by 1

2 .
Therefore, the inequality can be rewritten

vol( 1
2 (C +D))1/n � 1

2 vol(C)1/n + 1
2 vol(D)1/n.

Because of the simple inequality 1
2x + 1

2y � √xy for
positive numbers, the right-hand side of this inequality
is at least

√
vol(C)1/n vol(D)1/n. It follows that

vol( 1
2 (C +D))1/n �

√
vol(C)1/n vol(D)1/n

and hence that

vol( 1
2 (C +D)) �

√
vol(C) vol(D). (2)

We shall elucidate a striking consequence of this in-
equality in the next section.

The Brunn–Minkowski inequality holds true for very
general sets inn-dimensional space, but for convex sets
it is the beginning of a surprising theory that was initi-
ated by Minkowski and developed in a remarkable way
by Aleksandrov, Fenchel, and Blaschke, among others:
the theory of so-called mixed volumes. In the 1970s
Khovanskii and Teissier (using a discovery of D. Bern-
stein) found an astonishing connection between the
theory of mixed volumes and the Hodge index theorem
in algebraic geometry.

4 Deviation in Geometry

Isoperimetric principles state that if a set is reason-
ably large, then it has a large surface or boundary.
The Brunn–Minkowski inequality (and especially the
argument we used to deduce the isoperimetric princi-
ple) expands upon this statement by showing that if
we start with a reasonably large set and extend it (by
adding a small ball), then the volume of the new set
is quite a lot bigger than that of the original. During
the 1930s Paul Lévy realized that in certain situations,
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C

D

Figure 6 Expanding half a ball.

this fact can have very striking consequences. To get an
idea of how this works suppose that we have a compact
set C inside the unit ball, whose volume is half that of
the ball; for example, C might be the set pictured in
figure 6.

Now extend the set C by including all points of the
ball that are within distance ε of C , much as we did
when deducing the isoperimetric inequality (the dashed
curve in figure 6 shows the boundary of the extended
set). Let D denote the remainder of the ball (also illus-
trated). Then if c is a point in C and d is a point in D,
we are guaranteed that c and d are separated by a dis-
tance of at least ε. A simple two-dimensional argument,
pictured in figure 7, shows that in this case the mid-
point 1

2 (c + d) cannot be too near the surface of the
ball. In fact, its distance from the center is no more
than 1− 1

8ε
2. So the set 1

2 (C +D) lies inside the ball of
radius 1 − 1

8ε
2, whose volume is (1 − 1

8ε
2)n times the

volume of the ball vn. The crucial point is that if the
exponent n is large and ε is not too small, the factor
(1− 1

8ε
2)n is extremely small: in a space of high dimen-

sion, a ball of slightly smaller radius has very much
smaller volume. In order to make use of this we apply
inequality (2), which states that the volume of 1

2 (C +D)
is at least

√
vol(C) vol(D). Therefore,√

vol(C) vol(D) � (1− 1
8ε

2)nvn

or, equivalently,

vol(C) vol(D) � (1− 1
8ε

2)2nv2
n.

Since the volume of C is 1
2vn, we deduce that

vol(D) � 2(1− 1
8ε

2)2nvn.

It is convenient to replace the factor (1− 1
8ε

2)2n by
a (pretty accurate) approximation e−nε2/4, which is
slightly easier to understand. We can then conclude

c

d

ε

Figure 7 A two-dimensional argument.

that the volume vol(D) of the residual set D satisfies

the inequality

vol(D) � 2e−nε
2/4vn. (3)

If the dimension n is large, then the exponential fac-

tor e−nε2/4 is very small, as long as ε is a bit bigger

than 1/
√
n. What this means is that only a small frac-

tion of the ball lies in the residual set D. All but a small

fraction of the ball lies close to C , even though some

points in the ball may lie much farther from C . Thus,

if we start with a set (any set) that occupies half the

ball and extend it a little bit, we swallow up almost the

entire ball. With a little more sophistication, the same

argument can be used to show that the surface of the

ball, the sphere, has exactly the same property. If a setC
occupies half the sphere, then almost all of the sphere

is close to that set.

This counterintuitive effect turns out to be character-

istic of high-dimensional geometry. During the 1980s

a startling probabilistic picture of high-dimensional

space was developed from Lévy’s basic idea. This pic-

ture will be sketched in the next section.

One can see why the high-dimensional effect has a

probabilistic aspect if one thinks about it in a slightly

different way. To begin with, let us ask ourselves a basic

question: what does it mean to choose a random num-

ber between 0 and 1? It could mean many things but if

we want to specify one particular meaning, then our job

is to decide what the chance is that the random num-

ber will fall into each possible range a � x � b: what is

the chance that it lies between 0.12 and 0.47, for exam-

ple? For most people, the obvious answer is 0.35, the

difference between 0.47 and 0.12. The probability that

our random number lands in the interval a � x � b
will just be b − a, the length of that interval. This way

of choosing a random number is called uniform. Equal-
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sized parts of the range between 0 and 1 are equally
likely to be selected.

Just as we can use length to describe what is meant
by a random number, we can use the volume measure
in n-dimensional space to say what it means to select
a random point of the n-dimensional ball. We have to
decide what the chance is that our random point falls
into each subregion of the ball. The most natural choice
is to say that it is equal to the volume of that subregion
divided by the volume of the entire ball, that is, the
proportion of the ball occupied by the subregion. With
this choice of random point, it is possible to reformu-
late the high-dimensional effect in the following way. If
we choose a subset C of the ball which has a 1

2 chance
of being hit by our random point, then the chance that
our random point lies more than ε away from C is no
more than 2e−nε2/4.

To finish this section it will be useful to rephrase
the geometric deviation principle as a statement about
functions rather than sets. We know that if C is a
set occupying half the sphere, then almost the entire
sphere is within a small distance of C . Now suppose
that f is a function defined on the sphere: f assigns a
real number to each point of the sphere. Assume that
f cannot change too rapidly as you move around the
sphere: for example, that the values f(x) and f(y) at
two points x and y cannot differ by more than the dis-
tance between x and y . LetM be the median value of f ,
meaning that f is at most M on half the sphere and at
leastM on the other half. Then it follows from the devi-
ation principle that f must be almost equal toM on all
but a small fraction of the sphere. The reason is that
almost all of the sphere is close to the half where f is
below M ; so f cannot be much more than M except on
a small set. On the other hand, almost all of the sphere
is close to the half where f is at least M ; so f cannot
be much less than M except on a small set.

Thus, the geometric deviation principle says that if a
function on the sphere does not vary too fast, then it
must be almost constant on almost the entire sphere
(even though there may be some points where it is very
far from this constant value).

5 High-Dimensional Geometry

It was mentioned at the end of section 3 that convex
sets have a special significance in Minkowski’s theory
relating volume to the additive structure of space.
They also occur naturally in a large number of appli-
cations: in linear programming and partial differential

(1, 1, …, 1)

1

n

(1, 0, …, 0)

√

Figure 8 A ball in a box in a ball.

equations, for example. Although convexity is a fairly
restrictive condition for a body to satisfy, it is not hard
to convince oneself that convex sets exhibit consider-
able variety and that this variety seems to increase with
the dimension. The simplest convex sets after the balls
are cubes. If the dimension is large, the surface of a
cube looks very unlike the sphere. Let us consider, not
a unit cube, but a cube of side 2 whose center is the ori-
gin. The corners of the cube are points like (1,1, . . . ,1)
or (1,−1,−1, . . . ,1), whose coordinates are all equal to
1 or −1, while the center of each face is a point like
(1,0,0, . . . ,0) which has just one coordinate equal to
1 or −1. The corners are at a distance

√
n from the

center of the cube, while the centers of the faces are
at distance 1 from the origin. Thus, the largest sphere
that can be fitted inside the cube has radius 1, while the
smallest sphere that encloses the cube has radius

√
n

(this is illustrated in figure 8).
When the dimension n is large, this ratio of

√
n is

also large. As one might expect, this gap between the
ball and the cube is able to accommodate a wide vari-
ety of different convex shapes. Nevertheless, the prob-
abilistic view of high-dimensional geometry has led to
an understanding that, for many purposes, this enor-
mous variety is an illusion: that in certain well-defined
senses, all convex bodies behave like balls.

Probably the first discovery that pointed strongly in
this direction was made by Dvoretzky in the late 1960s.
dvoretzky’s theorem [V.10] says that every high-
dimensional convex body has slices that are almost
spherical. More precisely, if you specify a dimension
(say ten) and a degree of accuracy, then for any suffi-
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Figure 9 The directional radius.

ciently large dimension n, every n-dimensional convex
body has a ten-dimensional slice that is indistinguish-
able from a ten-dimensional sphere, up to the specified
accuracy.

The proof of Dvoretzky’s theorem that is concep-
tually simplest depends upon the deviation principle
described in the last section and was found by Milman a
few years after Dvoretzky’s theorem appeared. The idea
is roughly this. Consider a convex body K in n dimen-
sions that contains the unit ball. For each point θ on the
sphere, imagine the line segment starting at the origin,
passing through the sphere at θ, and extending out to
the surface of K (see figure 9). Think of the length of
this line as the “radius” of K in the direction of θ and
call it r(θ). This “directional radius” is a function on
the sphere. Our aim is to find (say) a 10-dimensional
slice of the sphere on which r(θ) is almost constant.
In such a slice, the body K looks like a ball, since its
radius hardly varies.

The fact that K is convex means that the function
r cannot change too rapidly as we move around the
sphere: if two directions are close together, then the
radius of K must be about the same in these two direc-
tions. Now we apply the geometric deviation principle
to conclude that the radius of K is roughly the same
on almost the entire sphere: the radius is close to its
average (or median) value for all but a small fraction
of the possible directions. That means that we have
plenty of room in which to go looking for a slice on
which the radius is almost constant—we just have to
choose a slice that avoids the small bad regions. It can
be shown that this happens if we choose the slice at
random from among all possible slices. The fact that
most of the sphere consists of good regions means that
a random slice has a good chance of falling into a good
region.

Dvoretzky’s theorem can be recast as a statement
about the behavior of the entire body K, rather than
just its sections, by using the Minkowski sums defined
in the previous section. The statement is that if K is a
convex body in n dimensions, then there is a family of
m rotations K1, K2, . . . , Km of K whose Minkowski sum
K1 + · · · +Km is approximately a ball, where the num-
ber m is significantly smaller than the dimension n.
Recently, Milman and Schechtman realized that the
smallest numberm that would work could be described
almost exactly, in terms of relatively simple proper-
ties of the body K, despite the apparently enormous
complexity of the choice of rotations available.

For some n-dimensional convex sets, it is possible to
create a ball with many fewer than n rotations. In the
late 1970s Kašin discovered that if K is the cube, then
just two rotations K1 and K2 are enough to produce
something approximating a ball, even though the cube
itself is extremely far from spherical. In two dimen-
sions it is not hard to work out which rotations are
best: if we choose K1 to be a square and K2 to be its
rotation through 45◦, then K1+K2 is a regular octagon
which is as close to a circle as we can get with just two
squares. In higher dimensions it is extremely hard to
describe which rotations to use. At present the only
known method is to use randomly chosen rotations,
even though the cube is as concrete and explicit an
object as one ever meets in mathematics.

The strongest principle discovered to date showing
that most bodies behave like balls is what is usually
called the reverse Brunn–Minkowski inequality. This
result was proved by Milman, building on ideas of his
own and of Pisier and Bourgain. The Brunn–Minkowski
inequality was stated earlier for sums of bodies. The
reverse one has a number of different versions; the sim-
plest is in terms of intersections. To begin with, if K is a
body and B is a ball of the same volume, then the inter-
section of these two sets, the region that they have in
common, is clearly of smaller volume. This obvious fact
can be stated in a complicated way that looks like the
Brunn–Minkowski inequality:

vol(K ∩ B)1/n � vol(K)1/n. (4)

If K is extremely long and thin, then whenever we
intersect it with a ball of the same volume, we cap-
ture only a tiny part of K. So there is no possibility
of reversing inequality (4) as it stands: no possibility
of estimating the volume of K ∩ B from below. But if
we are allowed to stretch the ball before intersecting it
with K, the situation changes completely. A stretched
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ball inn-dimensional space is called an ellipsoid (in two
dimensions it is just an ellipse). The reverse Brunn–Min-
kowski inequality states that for every convex body K,
there is an ellipsoid E of the same volume for which

vol(K ∩E)1/n � α vol(K)1/n,

where α is a fixed positive number.

There is a widespread (but not quite universal) belief
that an apparently much stronger principle is true: that
if we are allowed to enlarge the ellipsoid by a factor of
(say) 10, then we can ensure that it includes half the
volume of K. In other words, for every convex body,
there is an ellipsoid of roughly the same size which
contains half of K. Such a statement flies in the face of
our intuition about the huge variety of shapes in high
dimensions, but there are some good reasons to believe
it.

Since the Brunn–Minkowski inequality has a reverse
form, it is natural to ask whether the isoperimetric
inequality also does. The isoperimetric inequality guar-
antees that sets cannot have a surface that is too small.
Is there a sense in which bodies cannot have too large
a surface area? The answer is yes, and indeed a rather
precise statement can be made. Just as in the case of
the Brunn–Minkowski inequality, we have to take into
account the possibility that our body could be long and
thin and so have small volume but very large surface.
So we have to start by applying a linear transformation
that stretches the body in certain directions (but does
not bend the shape). For example, if we start with a tri-
angle, we first transform it into an equilateral triangle
and then measure its surface and its volume. Once we
have transformed our body as best we can, it turns out
that we can specify precisely which convex body has
the largest surface for a given volume. In two dimen-
sions it is the triangle, in three it is the tetrahedron,
and in n dimensions it is the natural analogue of these:
the n-dimensional convex set (called a simplex) which
has n+ 1 corners. The fact that this set has the largest
surface was proved by the present author using an
inequality from harmonic analysis discovered by Bras-
camp and Lieb; the fact that the simplex is the only con-
vex set with maximal surface (in the sense described)
was proved by Barthe.

In addition to geometric deviation principles, two
other methods played a central role in the mod-
ern development of high-dimensional geometry; these
methods grew out of two branches of probability
theory. One is the study of sums of random points in
normed spaces [III.64] and how big they are, which

provides important geometrical information about the
spaces themselves. The other, the theory of Gaussian
processes, depends upon a detailed understanding of
how to cover sets in high-dimensional space efficiently
with small balls. This issue may sound abstruse but
it addresses a fundamental problem: how to measure
(or estimate) the complexity of a geometric object. If
we know that our object can be covered by one ball
of radius 1, ten balls of radius 1

2 , fifty-seven balls of
radius 1

4 , and so on, then we have a good idea of how
complicated the object can be.

The modern view of high-dimensional space has re-
vealed that it is at once much more complicated than
was previously thought and at the same time in other
ways much simpler. The first of these is well illustrated
by the solution of a problem posed by Borsuk in the
1930s. A set is said to have diameter at most d if no
two points in the set are further thand from each other.
In connection with his work in topology, Borsuk asked
whether every set of diameter 1 inn-dimensional space
could be broken into n+ 1 pieces of smaller diameter.
In two and three dimensions this is always possible,
and as late as the 1960s it was expected that the answer
should be yes in all dimensions. However, a few years
ago, Kahn and Kalai showed that in n dimensions it
might require something like e

√
n pieces, enormously

more than n+ 1.

On the other hand, the simplicity of high-dimensional
space is reflected in a fact discovered by Johnson and
Lindenstrauss: if we pick a configuration of n points
(in whatever dimension we like), we can find an almost
perfect copy of the configuration sitting in a space of
dimension much smaller than n: roughly the logarithm
of n. In the last few years this fact has found applica-
tions in the design of computer algorithms, since many
computational problems can be phrased geometrically
and become much simpler if the dimension involved is
small.

6 Deviation in Probability

If you toss a fair coin repeatedly, you expect that
heads will occur on roughly half the tosses, and tails
on roughly half. Moreover, as the number of tosses
increases, you expect the proportion of heads to get
closer and closer to 1

2 . The number 1
2 is called the

expected number of heads per toss. The number of
heads yielded by a given toss is either 1 or 0, with
equal probability, so the expected number of heads is
the average of these, namely 1

2 .
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Figure 10 Twenty tosses of a fair coin.

The crucial unspoken assumption that we make
about the tosses of the coin is that they are indepen-
dent : that the outcomes of different tosses do not influ-
ence one another. (Independence and other basic prob-
abilistic concepts are discussed in probability dis-
tributions [III.73].) The coin-tossing principle, or its
generalization to other random experiments, is called
the strong law of large numbers. The average of a
large number of independent repetitions of a random
quantity will be close to the expected value of the
quantity.

The strong law of large numbers for coin tosses is
fairly simple to demonstrate. The general form, which
applies to much more complicated random quantities,
is considerably more difficult. It was first established by
kolmogorov [VI.88] in the early part of the twentieth
century.

The fact that averages accumulate near the expected
value is certainly useful to know, but for most purposes
in statistics and probability theory it is vital to have
more detailed information. If we focus our attention
near the expected value, we may ask how the average
is distributed around this number. For example, if the
expected value is 1

2 , as for coin tossing, we might ask,
what is the chance that the average is as large as 0.55
or as small as 0.42? We want to know how likely it is
that our average number of heads will deviate from the
expected value by a given amount.

The bar chart in figure 10 shows the probabilities of
obtaining each of the possible numbers of heads, with
twenty tosses of a coin. The height of each bar shows
the chance that the corresponding number of heads
will occur. As we would expect from the strong law
of large numbers, the taller bars are concentrated near
the middle. Superimposed upon the chart is a curve
that plainly approximates the probabilities quite well.

This is the famous “bell-shaped” or “normal” curve. It

is a shifted and rescaled copy of the so-called standard

normal curve, whose equation is

y = 1√
2π

exp(− 1
2x

2). (5)

The fact that the curve approximates coin-tossing prob-

abilities is an example of the most important principle

in probability theory: the central limit theorem. This

states that whenever we add up a large number of

small independent random quantities, the result has

a distribution that is approximated by a normal curve.

The equation of the normal curve (5) can be used to

show that if we toss a coinn times, then the chance that

the proportion of heads deviates from 1
2 by more than ε

is at most e−2nε2
. This closely resembles the geometric

deviation estimate (3) from section 4. This resemblance

is not coincidental, although we are still far from a full

understanding of when and how it applies.

The simplest way to see why a version of the central

limit theorem might apply to geometry is to replace

the toss of a coin by a different random experiment.

Suppose that we repeatedly select a random number

between −1 and 1, and that the selection is uniform

in the sense described in section 4. Let the first n
selections be the numbers x1, x2, . . . , xn. Instead of

thinking of them as independent random choices, we

can consider the point (x1, . . . , xn) as a randomly cho-

sen point inside the cube that consists of all points

whose coordinates lie between −1 and 1. The expres-

sion (1/
√
n)
∑n
i=1 xi measures the distance of the ran-

dom point from a certain (n− 1)-dimensional “plane,”

which consists of all points whose coordinates add

up to zero (the two-dimensional case is shown in fig-

ure 11). So the chance that (1/
√
n)
∑n
i=1 xi deviates

from its expected value, 0, by more than ε is the same

as the chance that a random point of the cube lies a

distance of more than ε from the plane. This chance is

proportional to the volume of the set of points that are

more than ε from the plane: the set shown shaded in

figure 11. When we discussed the geometric deviation

principle, we estimated the volume of the set of points

which were more than ε away from a set C which occu-

pied half the ball. The present situation is really the

same, because each part of the shaded set consists of

those points that are more than ε away from whichever

half of the cube lies on the other side of the plane.

Arguments akin to the central limit theorem show

that if we cut the cube in half with a plane, then the set

of points which lie more than a distance ε from one of
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Plane: x + y = 0

Figure 11 A random point of the cube.

the halves has volume no more than e−ε2
. This state-

ment is different from, and apparently much weaker
than, the one we obtained for the ball (3) because the
factor of n is missing from the exponent. The estimate
implies that if you take any plane through the center
of the cube, then most points in the cube will be at a
distance of less than 2 from it. If the plane is parallel
to one of the faces of the cube, this statement certainly
is weak, because all of the cube is within distance 1 of
the plane. The statement becomes significant when we
consider planes like the one in figure 11. Some points
of the cube are at a distance of

√
n from this “diagonal”

plane, but still, the overwhelming majority of the cube
is very much closer. Thus, the estimates for the cube
and the ball contain essentially the same information;
what is different is that the cube is bigger than the ball
by a factor of about

√
n.

In the case of the ball we were able to prove a devi-
ation estimate for any set occupying half the ball, not
just the special sets that are cut off by planes. Towards
the end of the 1980s Pisier found an elegant argument
that showed that the general case works for the cube
as well as for the ball. Among other things, the argu-
ment uses a principle which goes back to the early days
of large-deviation theory in the work of Donsker and
Varadhan.

The theory of large deviations in probability is now
highly developed. In principle, more or less precise esti-
mates are known for the probability that a sum of inde-
pendent random variables deviates from its expecta-
tion by a given amount, in terms of the original dis-
tribution of the variables. In practice, the estimates
involve quantities that may be difficult to compute,
but there are sophisticated methods for doing this.
The theory has numerous applications within proba-
bility and statistics, computer science, and statistical
physics.

One of the most subtle and powerful discoveries of
this theory is Talagrand’s deviation inequality for prod-
uct spaces, discovered in the mid 1990s. Talagrand
himself has used this to solve several famous prob-
lems in combinatorial probability and to obtain strik-
ing estimates for certain mathematical models in par-
ticle physics. The full inequality of Talagrand is some-
what technical and is difficult to describe geometrically.
However, the discovery had a precursor which fits per-
fectly into the geometric picture and which captures at
least one of the most important ideas.2 We look again
at random points in the cube but this time the random
point is not chosen uniformly from within the cube.
As before, we choose the coordinates x1, x2, . . . , xn of
our random point independently of one another, but we
do not insist that each coordinate is chosen uniformly
from the range between−1 and 1. For example, it might
be that x1 can take only the values 1, 0, or−1, each with
probability 1

3 , that x2 can take only the values 1 or −1
each with probability 1

2 , and perhaps that x3 is cho-
sen uniformly from the entire range between −1 and 1.
What matters is that the choice of each coordinate has
no effect on the choice of any others.

Any sequence of rules that dictates how we choose
each coordinate determines a way of choosing a ran-
dom point in the cube. This in turn gives us a way of
measuring a kind of volume for subsets of the cube:
the “volume” of a set A is the chance that our ran-
dom point is selected from A. This way to measure vol-
ume might be very different from the usual one; among
other things, an individual point might have nonzero
volume.

Now suppose that C is a convex subset of the cube
and that its “volume” is 1

2 , in the sense that our random
point will be selected from C with probability 1

2 . Tala-
grand’s inequality says that the chance that our random
point will lie a distance of more than ε from C is less
than 2e−ε2/16. This statement looks like the deviation
estimate for the cube except that it refers only to con-
vex sets C . But the crucial new information that makes
the estimate and its later versions important is that we
are allowed to choose our random point in so many
different ways.

This section has described deviation estimates in
probability theory that have a geometric flavor. For the
cube, we are able to show that if C is any set occupying
half the cube, then almost the entire cube is close to C .
It would be extremely useful to know the same thing for

2. This precursor evolved from an original argument of Talagrand
via an important contribution of Johnson and Schechtman.
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convex sets more general than the cube. There are some
other highly symmetric sets for which we do know it,
but the most general possible statement of this type
seems to be beyond our current methods. One potential
application, which comes from theoretical computer
science, is to the analysis of random algorithms for vol-
ume calculation. The problem may sound specialized,
but it arises in linear programming [III.86] (which
alone is sufficient reason to justify the expenditure of
enormous effort) and in the numerical estimation of
integrals. In principle, one can calculate the volume of
a set by laying over it a very fine grid, and counting
how many grid points fall into the set. In practice, if the
dimension is large, the number of grid points will be so
astronomically huge that no computer has a chance of
performing the count.

The problem of calculating the volume of a set is
essentially the same as the problem of choosing a point
at random within the set, roughly as we saw in section 4.
So the aim is to select a random point without identify-
ing a huge number of possible points to select from. At
present, the most effective way of generating a random
point in a convex set is to carry out a random walk
within the set. We perform a sequence of small steps
whose directions are chosen randomly and then select
the point that we have reached after a fairly large num-
ber of steps, in the hope that this point has roughly the
correct chance of falling into each part of the set. For
the method to be effective, it is essential that the ran-
dom walk quickly visits points all over the set: that it
does not get stuck for a long time in, say, half of the set.
In order to guarantee this rapid mixing, as it is called,
we need an isoperimetric principle or deviation princi-
ple. We need to know that each half of our set has a
large boundary, so that there is a good chance that our
random walk will cross the boundary quickly and land
in the other half of our set.

In a series of papers published over the last ten
years, Applegate, Bubley, Dyer, Frieze, Jerrum, Kannan,
Lovasz, Montenegro, Simonovits, Vempala, and others
have found very efficient random walks for sampling
from a convex set. A geometric deviation principle of
the kind alluded to above would make it possible to
estimate the efficiency of these random walks almost
perfectly.

7 Conclusion

The study of high-dimensional systems has become
increasingly important in the last few decades. Prac-

tical problems in computing frequently lead to high-
dimensional questions, many of which can be posed
geometrically, while many models in particle physics
are automatically high-dimensional because it is neces-
sary to consider a huge number of particles in order
to mimic large-scale phenomena in the real world. The
literature in both these fields is vast but some gen-
eral remarks can be made. The intuition that we gain
from low-dimensional geometry leads us wildly astray
if we try to apply it in many dimensions. It has become
clear that naturally occurring high-dimensional sys-
tems exhibit characteristics that we expect to arise in
probability theory, even if the original system does not
have an explicitly random element. In many cases these
random characteristics are manifested as an isoperi-
metric or deviation principle, that is, a statement to
the effect that large sets have large boundaries. In the
classical theory of probability, independence assump-
tions can often be used to demonstrate deviation prin-
ciples quite simply. For the very much more compli-
cated systems that are studied today it is usually useful
to have a geometric picture to accompany the proba-
bilistic one. That way one can understand probabilistic
deviation principles as analogues of the isoperimetric
principle discovered by the ancient Greeks. This arti-
cle has described the relationship between geometry
and probability in just a few special cases. A very much
more detailed picture is almost certainly waiting to be
found. At present it seems to be just out of reach.
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Part V

Theorems and Problems

V.1 The ABC Conjecture

The ABC conjecture, proposed by Masser and Oesterlé
in 1985, is a bold and very general conjecture in number
theory with a wide range of important consequences.
The rough idea of the conjecture is that it is impossible
for one number to be the sum of two others if all three
numbers have many repeated prime factors and no two
have a prime factor in common (which would then have
to be shared by the third).

More precisely, one defines the radical of a positive
integer n to be the product of all primes that divide
n, with each distinct prime included just once. For
instance, 3960 = 23 × 32 × 5 × 11, so its radical is
2×3×5×11 = 330. Let us write rad(n) for the radical
of n. The ABC conjecture asserts that for every posi-
tive real number ε there is a constant Kε such that if
a, b, and c are coprime integers and a + b = c, then
c < Kε rad(abc)1+ε.

To get a feel for the meaning of this conjecture, con-
sider the Fermat equation xr +yr = zr (see fermat’s
last theorem [V.12]). If three positive integers x, y ,
and z solve the equation, then we can divide through by
any common factors they might have and obtain a solu-
tion for which x, y , and z, and hence their r th powers,
are coprime. Set a = xr , b = yr , and c = zr . Then

rad(abc) = rad(xyz) � xyz = (abc)1/r � c3/r ,

where the last inequality follows from the fact that c
is greater than either a or b. If we set ε to be 1

6 , then
the ABC conjecture gives us a constant K such that c
cannot be more than K(c3/r )7/6 = Kc7/2r . If r � 4 then
the power 7/2r is less than 1, so the Fermat equation
can have at most finitely many solutions with x, y , and
z coprime.

It is clear that this is just one of a huge number
of consequences of a similar kind. For instance, we
could deduce that there are only finitely many solu-
tions of the equation 2r + 3s = x2, since the radical

of 2r3sx2 is 6x, which is considerably smaller than
x2. But the ABC conjecture has other consequences
that are less obvious, and more important, than this
one. For instance, Bombieri has shown that the ABC
conjecture implies roth’s theorem [V.25], Elkies has
shown that it implies the mordell conjecture [V.32],
and Granville and Stark have shown that a strength-
ening of the ABC conjecture implies the nonexistence
of Siegel zeros (these are defined in analytic number
theory [IV.2]). It is also equivalent to strong forms,
as yet unproven, of a famous theorem of Baker in
transcendence theory, and of the theorem of Wiles
about modular forms [III.61] that implies Fermat’s
last theorem.

The ABC conjecture is discussed further in compu-
tational number theory [IV.3].

V.2 The Atiyah–Singer Index
Theorem
Nigel Higson and John Roe

1 Elliptic Equations

The Atiyah–Singer index theorem is concerned with the
existence and uniqueness of solutions to linear par-
tial differential equations of elliptic type. To understand
this concept, consider the two equations

∂f
∂x
+ ∂f
∂y
= 0 and

∂f
∂x
+ i
∂f
∂y
= 0.

They differ only by the factor i = √−1, but their solu-
tions nevertheless have very different properties. Any
function of the form f(x,y) = g(x − y) is a solu-
tion to the first equation, but in the analogous gen-
eral solution g(x+ iy) of the second equation, g must
be a holomorphic function [I.3 §5.6] of the complex
variable z = x + iy , and it was already known in the
nineteenth century that such functions are very spe-
cial. For example, the first equation has an infinite-
dimensional set of bounded solutions, but liouville’s
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theorem [I.3 §5.6] in complex analysis asserts that the
only bounded solutions of the second equation are the
constant functions.

The differences between the solutions of the two
equations can be traced to the differences between the
symbols of the equations, which are the polynomials in
real variables ξ, η that are obtained by substituting iξ
for ∂/∂x and iη for ∂/∂y . Thus the symbols of the two
equations above are

iξ + iη and iξ − η,
respectively. An equation is said to be elliptic if its sym-
bol is zero only when ξ = η = 0; thus, the second
equation is elliptic but the first is not. The fundamen-
tal regularity theorem, which is proved using fourier
analysis [III.27], states that an elliptic partial differen-
tial equation (subject to suitable boundary conditions,
if needed) has a finite-dimensional solution space.

2 Topology of Elliptic Equations
and the Fredholm Index

Consider now the general first-order linear partial dif-
ferential equation

a1
∂f
∂x1

+ · · · + an ∂f∂xn + bf = 0,

in which f is a vector-valued function and the coeffi-
cients aj and b are complex matrix-valued functions.
It is elliptic if its symbol

iξ1a1(x)+ · · · + iξnan(x)

is an invertible matrix for every nonzero vector ξ =
(ξ1, . . . , ξn) and everyx. The regularity theorem applies
in this generality, and it allows us to form the Fredholm
index of an elliptic equation (with suitable boundary
conditions), which is the number of linearly indepen-
dent solutions of the equation minus the number of
linearly independent solutions of the adjoint equation

− ∂
∂x1

(a∗1 f)− · · · −
∂
∂xn

(a∗nf)+ b∗f = 0.

The reason for introducing the Fredholm index is
that it is a topological invariant of elliptic equations.
This means that continuous variations in the coeffi-
cients of an elliptic equation leave the Fredholm index
unchanged. (By contrast, the number of linearly inde-
pendent solutions of an equation can vary as the coef-
ficients of the equation vary.) The Fredholm index is
therefore constant on each connected component of
the set of all elliptic equations, and this raises the
prospect of using topology to determine the struc-
ture of the set of all elliptic equations as an aid to

computing the Fredholm index. This observation was
made by Gelfand in the 1950s. It lies at the root of the
Atiyah–Singer index theorem.

3 An Example

To see in more detail how topology can be used to deter-
mine the Fredholm index of an elliptic equation, let us
look at a specific example. Consider elliptic equations
for which the coefficients aj(x) and b(x) are polyno-
mial functions of x, with aj of degree m− 1 or less
and b of degree m or less. The expression

iξ1a1(x)+ · · · + iξnan(x)+ b(x)
is then a polynomial in both x and ξ of degree m or
less. Let us strengthen the hypothesis of ellipticity by
assuming that the terms in this expression that have
degree exactlym (jointly inx and ξ) define an invertible
matrix whenever either x or ξ is nonzero. Let us also
agree to consider only solutions f of the equation or its
adjoint that are square-integrable, which means that∫

|f(x)|2 dx <∞.
All these extra hypotheses are types of boundary con-
ditions (the behaviors of the equation and its solutions
at infinity are controlled), and collectively they imply
that the Fredholm index is well-defined.

A simple example is the equation

df
dx
+ xf = 0. (1)

The general solution to this ordinary differential equa-
tion is the one-dimensional space of multiples of the
square-integrable function e−x2/2. By contrast, the solu-
tions of the adjoint equation

−df
dx
+ xf = 0

are multiples of the function e+x2/2, which is not
square-integrable. Thus the index of this differential
equation is equal to 1.

Returning to the general equation, the terms of
degree m in

iξ1a1(x)+ · · · + iξnan(x)+ b(x)
determine a map from the unit sphere in (x, ξ)-space
to the set GLk(C) of invertible k× k complex matrices.
Moreover, every such map comes from an elliptic equa-
tion (possibly of a more general type than we have dis-
cussed up to now, but an equation to which the basic
regularity theorem guaranteeing the existence of the
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Fredholm index applies). It therefore becomes impor-
tant to determine the topological structure of the space
of all maps from the sphere S2n−1 into GLk(C).

A remarkable theorem of Bott provides the answer.
The Bott periodicity theorem associates an integer,
which we shall call the Bott invariant, with each map
S2n−1 → GLk(C). Furthermore, Bott’s theorem asserts
that, provided that k � n, one such map can be con-
tinuously deformed into another if and only if the Bott
invariants of the two maps agree. In the special case
n = k = 1, where we are dealing with maps from the
one-dimensional circle into the nonzero complex num-
bers, or in other words closed paths in C that do not
pass through the origin, the Bott invariant is just the
classical winding number, which measures the num-
ber of times such a path winds around the origin. We
may therefore regard the Bott invariant as a generalized
winding number.

The index theorem for equations of the type that we
are considering in this section asserts that the Fred-
holm index of an elliptic equation is equal to the Bott
invariant of its symbol. For instance, in the case of the
simple example (1) considered above, the symbol iξ+xPUP: Tim thinks

that the small
effort involved by
the reader in
figuring out what
to do here is well
worth it and that it
should stay as it is.
OK?

corresponds to the identity map from the unit circle in
(x, ξ)-space to the unit circle in C. Its winding number
is equal to 1, in agreement with our computation of the
index.

The proof of the index theorem depends strongly on
Bott periodicity and proceeds as follows. Because ellip-
tic equations are classified topologically by the Bott
invariant, and because the Bott invariant and the Fred-
holm index have analogous algebraic properties, one
need only verify the theorem in a single example: that
corresponding to a symbol with Bott invariant 1. It
turns out that this Bott generator can be represented
by an n-dimensional generalization of our example (1),
and a computation in this case completes the proof.

4 Elliptic Equations on Manifolds

It is possible to define elliptic equations not just for
functions f of n variables, but also for functions
defined on a manifold [I.3 §6.9]. Particularly accessi-
ble to analysis are the elliptic equations on closed man-
ifolds, that is, on manifolds that are finite in extent
and that have no boundary. For closed manifolds it is
not necessary to specify any boundary conditions in
order to obtain the basic regularity theorem for elliptic
equations (after all, there is no boundary). As a result,
every elliptic partial differential equation on a closed
manifold has a Fredholm index.

The Atiyah–Singer index theorem concerns elliptic
equations on closed manifolds and it has roughly the
same form as the index theorem that we studied in
the previous section. One builds out of the symbol an
invariant called the topological index, which general-
izes the Bott invariant. The Atiyah–Singer index theo-
rem then asserts that the topological index of an elliptic
equation is equal to the Fredholm or analytical index of
the equation. The proof has two stages. In the first, the-
orems are proved that allow one to transform an elliptic
equation on a general manifold into an elliptic equation
on a sphere without changing the topological or analyti-
cal indices. For example, it may be shown that two ellip-
tic equations on different manifolds that are the com-
mon “boundary” of an elliptic equation on a manifold of
one higher dimension must have the same topological
and analytical indices. In the second stage of the proof
the Bott periodicity theorem and an explicit computa-
tion are applied to identify the topological and analyti-
cal indices of elliptic equations on spheres. Throughout
both stages, an important tool is K-theory [IV.6 §6],
which is a branch of algebraic topology invented by
Atiyah and Hirzebruch.

Although the proof of the Atiyah–Singer index theo-
rem makes use ofK-theory, the final result can be trans-
lated into terms that do not mention K-theory explic-
itly. In this way one obtains an index formula roughly
like this:

index =
∫
M
IM · ch(σ).

The term IM is a differential form [III.16] determined
by the curvature [III.80] of the manifold M on which
the equation is defined. The term ch(σ) is a differential
form obtained from the symbol of the equation.

5 Applications

In order to prove the index theorem, Atiyah and Singer
were obliged to study a very broad class of generalized
elliptic equations. However, the applications they first
had in mind were related to the simple equation with
which we began this article. Solutions of the equation

∂f
∂x
+ i
∂f
∂y
= 0

are precisely the analytic functions of the complex vari-
able z = x+ iy . There is a counterpart to this equation
on any riemann surface [III.81], and the Atiyah–Singer
index formula, applied in this instance, is equivalent to
a foundational result about the geometry of surfaces
called the riemann–roch theorem [V.34]. The Atiyah–
Singer index theorem then gives a means to generalize
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the Riemann–Roch theorem to a complex manifold
[III.6 §2] of any dimension.

The Atiyah–Singer index theorem also has impor-
tant applications outside of complex geometry. The
simplest example involves the elliptic equation dω +
d∗ω = 0, concerning differential forms on a mani-
fold M . The Fredholm index may be identified with
the Euler characteristic of M , which is the alternat-
ing sum of the numbers of r -dimensional cells in a
cell decomposition of M . For two-dimensional man-
ifolds, the Euler characteristic is the familiar quan-
tity V − E + F . In the two-dimensional case, the index
theorem reproduces the Gauss–Bonnet theorem, which
asserts that the Euler characteristic is a multiple of the
total Gaussian curvature.

Even in this simple case, the index theorem can be
used to produce topological restrictions on the ways
a manifold can curve. Many important applications of
the index theorem proceed in the same direction. For
example, Hitchin used a more refined application of
the Atiyah–Singer index theorem to show that there is
a nine-dimensional manifold that is homeomorphic to
the sphere despite not being positively curved in even
the weakest sense. (By contrast, the usual sphere is
positively curved in the strongest possible sense.)
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V.3 The Banach–Tarski Paradox
T. W. Körner

The Banach–Tarski paradox states that we can decom-
pose the three-dimensional unit sphere into a finite
number of disjoint pieces which we can then translate
and rotate in such a way that they remain disjoint but
now their union consists of two copies of our original
sphere.

Such a result seems impossible at first sight, and
indeed it contradicts the naive assumption that one can
consistently assign a finite volume to every bounded

set. In other words, it shows that one cannot assign vol-
umes to all bounded sets in such a way that these vol-
umes are unaffected by translation and rotation, that
the volume of a union of two disjoint sets is the sum
of the volumes of the two sets, and that the volume
of the unit sphere is greater than zero. However, if we
drop this naive assumption, then the paradox disap-
pears. Since there is no genuine paradox, we shall refer
to the Banach–Tarski construction.

The Banach–Tarski construction is a descendant of
an older construction due to Vitali, which concerns area
rather than volume. Let us write lθ for the line segment
in R2 that is given in polar coordinates by

lθ = {(r , θ) : 0 < r � 1}.
Note that the union of all such segments is the punc-
tured unit disk D∗ (that is to say, the unit disk with the
origin removed). We say that lθ and lφ belong to the
same equivalence class if θ − φ is a rational multiple
of π , and we consider a set E that is the union of a set
of lθ containing exactly one representative from each
equivalence class.

The rationals are countable [III.11], so we can enu-
merate the rationals x with 0 � x < 1 as a sequence
x1, x2, . . . . If we write

En = {lθ+2πxn : lθ ∈ E},
then each En is obtained from E by a rotation about the
origin (through an angle 2πxn), the En are disjoint (as
E contains only one representative from each equiva-
lence class), and the union of the En isD∗ (as E contains
a representative from each equivalence class).

Now take D∗ and split it into the set F consisting of
the union of the sets E2n and the set G consisting of
the union of the sets E2n+1. Each E2n can be rotated to
En, and the union of the En gives us D∗. Similarly, each
E2n+1 can be rotated to En, and the union of the En
gives us D∗ again. Thus the punctured unit disk can be
split into a countable set of disjoint pieces (all obtained
by rotation of one particular set) which can be rotated
and translated to form disjoint sets whose union is two
copies of D∗.

Vitali’s construction makes use of the axiom of
choice [III.1] (because we chose one representative
from each equivalence class), and the same is true for
the Banach–Tarski construction. Solovay showed that
if we reject the axiom of choice, then there are mod-
els of set theory [IV.22 §3] in which it is possible to
assign a volume to all bounded sets in R3 in a consis-
tent way. However, most mathematicians would agree
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that the natural moral to draw from our discussion is

that when we define volume we should consider only a

restricted collection of sets.

The Banach–Tarski construction is also closely re-

lated to our final example, which requires a little group

theory. To introduce this example of bad behavior, we

first consider an example of good behavior. Suppose

that f : R → R is a reasonable function with f(x) � 0

and f(x + 1) = f(x) for all x (thus, f is positive and

periodic with period 1). Suppose that there existed real

numbers numbers s, t, u, v such that

f(x + s)+ f(x + t)− f(x +u)− f(x + v) � −1 (1)

for all x. Since
∫ 1
0 f(x +w)dx = ∫ 1

0 f(x)dx for all w,

integrating both sides of (1) from 0 to 1 would give

0 �
∫ 1

0
(−1)dx = −1,

which is impossible. Thus (1) cannot hold.

Now consider the free group [IV.10 §2] G generated

by a and b (that is to say, the group generated by a and

b where no nontrivial relations hold between a and b).

Every element of G can be written in shortest form as

the product of a sequence, each term of which is a, a−1,

b, or b−1. Define F(x) = 1 if x = e or the shortest form

of x ends with a or a−1, and set F(x) = 0 otherwise.

We see that F(x) � 0 for all x ∈ G, and the reader can

check, by going through cases, that

F(xb)+ F(xab)− F(xa−1)− F(xb−1a) � −1 (2)

for all x ∈ G. The averaging argument that enabled us

to show that (1) was false for R must fail for G since (2)

is, in fact, true. If there is no averaging argument, then

there can be no appropriate universal integral and no

appropriate universal “volume” in G.

This example bears a clear family resemblance to the

“paradoxes” discussed earlier. If we consider the group

SO(3) of rotations in three dimensions, then (unless

specific conditions hold) there is no nontrivial group

relation between two generally chosen rotations A and

B about two generally chosen axes. Thus SO(3) con-

tains a copy of the group G considered in the previous

paragraph. The Banach–Tarski construction is a modifi-

cation of a construction of Hausdorff that exploits this

fact.

There is a beautiful account of all these matters in

The Banach–Tarski Paradox by Stan Wagon (Cambridge

University Press, Cambridge, UK, 1993).

V.4 The Birch–Swinnerton-Dyer
Conjecture

Given an elliptic curve [III.21], there is a natural way
of defining a binary operation on its points, and this
turns the elliptic curve into an abelian group [I.3 §2.1].
Moreover, the points on the curve with rational coordin-
ates form a subgroup of this group. Mordell’s theorem
tells us that this subgroup is finitely generated. (These
results are described in rational points on curves
and the mordell conjecture [V.32].)

Every finitely generated Abelian group is isomorphic
to a group of the form Zr ×Cn1×Cn2×· · ·×Cnk , where
Cn stands for the cyclic group with n elements. The
number r , which measures the maximum number of
independent elements of this group that have infinite
order, is called the rank of the elliptic curve. Mordell’s
theorem implies that the rank of every elliptic curve
is finite, but it does not tell us how to calculate it. That
turns out to be an extraordinarily hard problem: in fact,
so hard that it is considered a remarkable achievement
of Birch and Swinnerton-Dyer even to have come up
with a plausible conjecture about it.

Their conjecture relates the rank of an elliptic curve
to a very different object associated with that curve:
an L-function [III.49]. This is a function with proper-
ties similar to those of the riemann zeta function
[IV.2 §3], but it is defined in terms of a series of num-
bersN2(E),N3(E),N5(E), . . . , one for each prime p; the
number Np(E) is the number of points on the elliptic
curve when it is considered as a curve over the field
[I.3 §2.2] with p elements. One of the properties of the
L-function of E is that it is holomorphic [I.3 §5.6]. (The
fact that it can be extended to a holomorphic func-
tion everywhere on the complex plane is very far from
obvious: it follows from the fact that all elliptic curves
are modular. See fermat’s last theorem [V.12].) Birch
and Swinnerton-Dyer conjectured that the rank of the
group associated with the elliptic curve is equal to the
order of the zero of its L-function at 1. (If the L-function
does not take the value 0 at 1, then this order is defined
to be 0.) This can be thought of as a sophisticated
local-to-global principle [III.53], in that it relates
the rational solutions to the equation for the elliptic
curve to the solutions mod p for each prime p.

Another remarkable feature of the conjecture is that
far less was known about elliptic curves when Birch and
Swinnerton-Dyer made it. Now there are many reasons
to find it plausible, but then it was much more of a
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leap in the dark: they based it on numerical evidence
gleaned from computations of Np(E) for several ellip-
tic curves and many primes p. In other words, they did
not calculate the orders of zeros of L-functions of vari-
ous elliptic curves, since that was too hard, but guessed
them based on approximations.

The Birch–Swinnerton-Dyer conjecture has been
proved for curves with L-functions that have a zero
of order 0 or 1 at 1, but a proof of the general case
still appears to be a long way off. It is one of the prob-
lems for which the Clay Mathematics Institute offers a
prize of a million dollars. For a further discussion of
the problem and much more about its mathematical
context, see arithmetic geometry [IV.5].

V.5 Carleson’s Theorem
Charles Fefferman

Carleson’s theorem asserts that the fourier series
[III.27] of a function f in L2[0,2π] converges almost
everywhere. To understand this statement and appre-
ciate its significance, let us follow the history of the sub-
ject, starting in the early nineteenth century. fourier’s
[VI.25] great idea was that “any” (complex-valued) func-PUP: Tim thinks

the ‘basic
question’ referred
to at the end of the
article is implicit
in a couple of
places (at the end
of the paragraph
that starts
‘Decades later’ and
at the end of the
later paragraph
that starts
‘However, it would
still be nice’) and
that it is all clear
enough as it is.
OK?

tion f on an interval such as [0,2π] can be expanded
in what we would now call a Fourier series,

f(θ) =
∞∑

n=−∞
aneinθ, (1)

for suitable Fourier coefficients an. Fourier obtained
the formula for the coefficients an, and proved that (1)
holds in interesting special cases.

The next major advance was due to dirichlet
[VI.36], who gave a formula for the Nth partial sum
SNf(θ), which is defined to be

SNf(θ) =
N∑

n=−N
aneinθ. (2)

Dirichlet realized that the precise meaning of (1) is that

lim
N→∞

SNf(θ) = f(θ). (3)

Dirichlet used his formula for SNf to prove that under
certain circumstances (3) does indeed hold. For exam-
ple, if f is a continuous increasing function on [0,2π],
then it holds for every θ ∈ (0,2π).

Decades later, de la vallée poussin [VI.67] dis-
covered an example of a continuous function whose
Fourier series diverges at a single point. More gener-
ally, given any countable set E ⊂ [0,2π], there exists a
continuous function f whose Fourier series diverges at

every point of E, a result that appears to restrict quite
considerably the circumstances under which Fourier’s
original vision is valid.

The work of lebesgue [VI.72] led to fundamental
progress in Fourier analysis and a significant change
of viewpoint. We first sketch Lebesgue’s ideas and then
trace their impact on Fourier analysis.

Lebesgue sought to define a notion of integration that
could be applied to all but the most pathological non-
negative functions F on [0,2π]. He began by defining
the measure [III.57] of a set E ⊂ [0,2π]. Loosely speak-
ing, the measure of E, written µ(E), is “what the set
E would weigh” if the interval [0,2π] were made of
wire weighing one gram per centimeter. For instance,
the measure of an interval (a, b) is equal to its length
b−a. Certain sets E have measure zero, e.g., countable
sets, or the cantor set [III.17]; sets of measure zero
are regarded as negligibly small.

Using his notion of measure, Lebesgue defined the
Lebesgue integral

∫ 2π
0 F(θ)dθ for the “measurable”

functions F � 0 on [0,2π]. All but the most patho-
logical functions are measurable, but

∫ 2π
0 F(θ)dθ may

be infinite if F is too big. For example, if F(θ) = 1/θ for
θ ∈ (0,2π], then the integral of F is infinite.

Finally, for any number p � 1, the Lebesgue
space Lp[0,2π] consists of all measurable functions
f on [0,2π] that are not too big, in the sense that∫ 2π
0 |f(θ)|p dθ is finite. (See function spaces [III.29]

for a slight, technical correction to this definition.)
We now turn to the impact of Lebesgue’s theory on

Fourier analysis. The Lebesgue space L2[0,2π], which
is also a hilbert space [III.37], plays a fundamen-
tal role. If f belongs to L2[0,2π], then its Fourier
coefficients an are such that

∞∑
n=−∞

|an|2 <∞. (4)

Conversely, any sequence of complex numbers an
(−∞ < n < ∞) satisfying (4) arises as the sequence of
Fourier coefficients of a function f in L2[0,2π]. More-
over, the size of a function f and its Fourier coefficients
an are related by the Plancherel formula:

1
2π

∫ 2π

0
|f(θ)|2 dθ =

∞∑
n=−∞

|an|2.

Finally, the partial sums SNf (see (2)) converge to the
function f in the L2-norm. In other words,∫ 2π

0
|SNf(θ)− f(θ)|2 dθ −→ 0 (5)

as N tends to infinity. This gives us a precise sense in
which the function f is the sum of its Fourier series.
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Thus, we have justified Fourier’s formula (1) by rein-

terpreting it as the statement (5) rather than using the

more obvious interpretation of (3).

However, it would still be nice to know to what extent

the original, more straightforward interpretation can

be justified. In 1906, Luzin conjectured that if f is any

function in L2[0, π], then

lim
N→∞

SNf(θ) = f(θ) (6)

for all θ outside a set of measure zero. When this holds,

one says that the Fourier series of f converges almost

everywhere. If Luzin’s conjecture were true, it would

validate Fourier’s vision from the early nineteenth cen-

tury.

For several decades it looked as if Luzin’s conjec-

ture might well be false. kolmogorov [VI.88] con-

structed a function f in L1[0,2π] whose Fourier

series converges nowhere. Also, a theorem of Kol-

mogorov, Seliverstoff, and Plessner, which asserted

that limN→∞(SNf(θ)/
√

logN) = 0 almost everywhere

when f is in L2[0,2π], withstood all attempts at

improvement for over thirty years.

It therefore came as a big surprise when Lennart Car-

leson proved in 1966 that Luzin’s conjecture is true.

The main point of Carleson’s proof is to control the

Carleson maximal function

C(f)(θ) = sup
N�1

|SNf(θ)|

by proving that

µ({θ ∈ [0,2π] : C(f)(θ) > α}) � A
α2

∫ 2π

0
|f(θ)|2 dθ

(7)

for all f in L2[0,2π] and all α > 0, where A is a con-

stant independent of f and α. It is not hard to show

that (7) implies Luzin’s conjecture, but it is very hard

to prove (7).

Shortly after Carleson’s work, Hunt proved the

almost-everywhere convergence of Fourier series of

functions in Lp[0,2π] for any p > 1. Kolmogorov’s

counterexample shows that the result fails for p = 1.

Fourier analysis has been immensely useful in math-

ematics and its applications. (For a fuller discussion

of this, see the fourier transform [III.27] and har-

monic analysis [IV.11].) The theorems of Carleson and

Hunt provide the sharpest known answer to the basic

question that started the subject.

Acknowledgments. This work was partially supported by
NSF grant #DMS-0245242.

V.6 Cauchy’s Theorem

Cauchy’s theorem asserts that if f is a holomor-
phic function [I.3 §5.6] defined on a simply connected
domain (that is, an open set in C with no holes), then
the path integral of f around any closed curve that lies
in the domain is zero. This theorem stands at the begin-
ning of a remarkable series of results about holomor-
phic functions, such as the residue theorem, which is an
extremely powerful way of calculating path integrals.

It follows fairly easily from Cauchy’s theorem as
stated above that the path integral of any holomorphic
function around a closed curve C is a topological invari-
ant of that curve, even when the domain in question
is not simply connected. That is, the integral does not
change if the curve is continuously deformed within
the domain. This is just one indication of the geomet-
ric significance of the theorem, which is a vital tool
for studying manifolds with complex structure, such
as riemann surfaces [III.81] and kähler manifolds
[III.90 §3].

V.7 The Central Limit Theorem

The central limit theorem is a fundamental result in
probability concerning sums of independent random
variables. Let X1, X2, . . . be independent and suppose
that they are identically distributed. Suppose also that
they have mean 0 and variance 1. Then X1 + · · · + Xn
has mean 0 and variance n. (The variance is n because
the Xi are independent.) Therefore, Yn = (X1 + · · · +
Xn)/

√
n has mean 0 and variance 1. The central limit

theorem states that, regardless of the distribution of
the Xi, the random variable Yn converges to a standard
normal distribution. It is easy to deduce from this a sim-
ilar result for random variables with any finite mean
and variance. Details may be found in probability
distributions [III.73 §5].

V.8 The Classification of
Finite Simple Groups
Martin W. Liebeck

A finite group G is said to be simple if its only normal
subgroups are the identity subgroup and G itself. To
some extent, simple groups play an analogous role in
finite group theory to that of prime numbers in num-
ber theory: just as the only factors of a prime p are
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1 and p itself, so the only factor groups of a simple

group G are the identity group 1 and G itself. The anal-

ogy runs a bit deeper: just as every positive integer

(greater than 1) is a product of a collection of primes, so

every finite group is “built” from a collection of simple

groups, in the following sense. Let H be a finite group,

and choose a maximal normal subgroup H1 of H (this

means that H1 is not the whole of H, and it is not con-

tained in any larger normal subgroup that is not the

whole of H); then choose a maximal normal subgroup

H2 ofH1; and so on. This gives a sequence of subgroups

1 = Hr < Hr−1 < · · · < H1 < H0 = H, each one

a maximal normal subgroup of the next, and, because

of the maximality, each factor group Gi = Hi/Hi+1 is

a simple group. It is in this sense that one says that

H is built from the collection G0, G1, . . . , Gr−1 of sim-

ple groups (although unlike the situation with prime

numbers, there will in general be several different finite

groups that are built from the same collection of simple

groups).

At any rate, it is abundantly clear that simple groups

lie at the heart of the theory of finite groups, and one

of the driving forces of twentieth-century finite group

theory was to study, and ultimately to classify com-

pletely, the finite simple groups. This classification was

eventually achieved by the combined efforts of more

than one hundred mathematicians in many published

research articles and books written over a long period,

the most intensive being 1955–80. It was a truly monu-

mental feat of prolonged collaboration, and one of the

most momentous theorems in the history of algebra.

In order to state the classification theorem, it is

necessary to describe some examples of finite sim-

ple groups. The most obvious are the cyclic groups

of prime order: these are clearly simple, since they

have no subgroups at all apart from the identity and

the whole group (by Lagrange’s theorem, for example,

which states that the size of any subgroup is a factor of

the size of the group). Next come the alternating groups

An: hereAn is defined as the group consisting of all the

even permutations in the symmetric group Sn (see per-

mutation groups [III.70]). The alternating group An
has 1

2 (n!) elements, and is simple provided n � 5. For

example, A5, of order 60, is the smallest non-Abelian

simple group.

Next we introduce some simple groups of matrices.

For an integer n � 2 and a field K, define SLn(K)
to be the set of all n×n matrices with entries in K
and with determinant [III.15] equal to 1. This is a

group under matrix multiplication, called a special lin-
ear group. When the field K is finite, SLn(K) is a finite
group. For each prime power q, there is up to isomor-
phism a unique field of order q, and the correspond-
ing special linear group in dimension n is denoted by
SLn(Fq). These groups are not in general simple, since
Z = {λI : λn = 1}, the subgroup of scalar matrices
in SLn(Fq), is a normal subgroup. However, the factor
groups PSLn(Fq) = SLn(Fq)/Z are simple (except when
(n, q) = (2,2) or (2,3)). This is the family of projective
special linear groups.

There are a number of other families of finite sim-
ple matrix groups, which, very roughly speaking, are
defined as groups of matrices A ∈ SLn(Fq) that satisfy
an equation of the form ATJA = J, where J is a non-
singular symmetric or skew-symmetric n×n matrix.
Again factoring out by the subgroup of scalar matri-
ces, this gives the projective orthogonal and symplec-
tic families of finite simple matrix groups. Similarly,
if the finite field of order q has an automorphism
α → ᾱ of order 2, this can be extended to matrices
A = (aij) by defining Ā = (āij), and then the group
{A ∈ SLn(Fq) : ATĀ = I}, factored by its subgroup of
scalar matrices, gives the projective unitary family of
finite simple groups.

The families of projective special linear, symplec-
tic, orthogonal, and unitary groups comprise what are
known as the classical simple groups. These were all
known early in the twentieth century, but it was not
until 1955 that further infinite families of finite simple
groups were discovered by Chevalley. For each of the
simple complex Lie algebras L, and each finite field K,
Chevalley constructed a version of L overK, call it L(K),
and defined his families of finite simple groups as auto-
morphism groups of the Lie algebras L(K). Not long
afterward, Steinberg, Suzuki, and Ree found some vari-
ations of Chevalley’s construction and defined some
further families of simple groups, known as twisted
Chevalley groups. The Chevalley and twisted Chevalley
groups include all the classical groups, together with
ten other infinite families, and are collectively known
as the finite simple groups of Lie type.

Until 1966, the only known finite simple groups
were the cyclic groups of prime order, the alternat-
ing groups, the groups of Lie type, and a collection
of five strange simple groups discovered by math-
ieu [VI.51] in the 1860s. These were groups of per-
mutations of n objects, where n = 11, 12, 22, 23, or
24. Mathieu’s groups were termed “sporadic groups”—
sporadic meaning that they do not fit into any of the
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known infinite families—and many thought that per-
haps there were no more finite simple groups to be
found. Then there was a bombshell, when Janko pub-
lished a paper demonstrating the existence of a sin-
gle, new finite simple group: the sixth sporadic group.
After this, new sporadic groups appeared at regular
intervals, culminating in the monster [III.63], an amaz-
ing group of order around 1054, which was predicted
by Fischer and constructed by Griess as a group of
196 884× 196 884 matrices. By 1980, twenty-six spo-
radic groups were known.

During this period the program to classify all the
finite simple groups was proceeding at breakneck
speed, and eventually in the early 1980s the final
classification theorem was announced.

Every finite simple group is either a cyclic group of
prime order, or an alternating group, or a group of Lie
type, or one of the twenty-six sporadic groups.

Not surprisingly, this theorem has changed the face of
finite group theory and its many areas of application:
one can now solve many problems in a concrete way,
by reducing them to the study of the (now known) list
of simple groups, rather than abstractly, by deducing
them from the axioms for groups.

The sheer length of the proof of the classification the-
orem (estimated at around ten thousand journal pages,
spread across about five hundred research articles)
meant that it was extremely difficult, perhaps impos-
sible, for a single person to work through the entire
proof. It also meant that the chances were rather high
that there were errors along the way. Fortunately, in
the years since the announcement of the result, various
teams of group theorists have been publishing sum-
maries and revisions of many parts of the proof, and
a series of volumes containing the whole proof is now
well on the way to completion.

V.9 Dirichlet’s Theorem

A famous theorem of euclid [VI.2] asserts that there
are infinitely many primes. But what if one wants
more information about these primes? For instance,
are there infinitely many primes of the form 4n − 1?
A fairly straightforward modification of Euclid’s argu-
ment shows that there are, and a slightly more diffi-
cult modification proves that there are infinitely many
of the form 4n + 1 as well. However, modifications of
Euclid’s argument are not enough to prove the general
result in this direction, which is that if a and m are

coprime (that is, have highest common factor 1), then

there are infinitely many primes of the form mn +
a. This was proved by dirichlet [VI.36] using what

are now called Dirichlet L-functions [III.49], which

are closely related to the riemann zeta function

[IV.2 §3]. The condition thatm and a have highest com-

mon factor 1 is clearly necessary, since any common

factor of m and a will be a factor of mn + a. Dirich-

let’s theorem is discussed further in analytic number

theory [IV.2 §4].

V.10 Dvoretzky’s Theorem

Dvoretzky’s theorem can be stated in two equivalent

ways. On the one hand it is a central result in the

theory of finite-dimensional banach spaces [III.64] and

on the other it is a highly counterintuitive geometrical

PUP: Tim’s answer
to the
proofreader’s
query here is as
follows. “Whether
or not something
is easy to
understand is not
the same as
whether it’s
intuitively
plausible. In this
case, the
geometrical
version is easier to
grasp and this
makes it easier to
see just how
counterintuitive it
is.” OK?

statement about convex bodies.

The second formulation is easier to grasp and appre-

ciate. A convex body is a shape in Rn with the following

property: given any two points in the shape, the line

joining those two points lies entirely within the shape.

Figure 1 shows two shapes, of which the first is convex T&T note: position
of figures in this
article might be
tricky. Check
before page
make-up stage.

and the second not convex (because the line joining the

points A and B leaves the shape).

Suppose that we have chosen a point O to serve as

an origin. Then, given any point P, there will be another

point, usually called −P, at the same distance from O

but in the opposite direction. A convex body is called

centrally symmetric about O if, for every point P in

the body, the opposite point −P is also in the body.

Thus, a square or circle is centrally symmetric while an

equilateral triangle is not.

Figure 2 shows two cubes, which are examples of

three-dimensional centrally symmetric convex bodies.

Both cubes are cut by planes through their centers, and

the parts of the planes that lie within the cubes are con-

vex bodies themselves, but two-dimensional ones. They

are known as central cross sections of the cubes. The

first is a square and the second, more oblique one is a

regular hexagon.

It is obvious that, whatever the angle of the plane

that determines the cross section, the resulting two-

dimensional body will not be a circle, since the faces

of the cube are flat rather than curved. However, if we

wanted to find the best approximation to a circle that

we could, then we would do better to pick a regular

hexagon than a square: the more sides a regular poly-

gon has, the more circular it becomes. And this is in
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A

B

Figure 1 A convex and a nonconvex body.

Figure 2 Two cross sections of a cube.

fact the best we can do, since no cross section of the
cube has more than six sides.

However, remarkably, we can approximate a circle
better if we look at cross sections of higher-dimen-
sional bodies. There is a natural way to generalize
all the above concepts to higher dimensions, and one
can ask the following question. Let n and m be pos-
itive integers with m less than n and let K be an
n-dimensional centrally symmetric convex body. Sup-
pose we wish to find, among all them-dimensional cen-
tral cross sections ofK, as good an approximation as we
can to an m-dimensional sphere (which will be a circle
when m = 2). How well can we do? Dvoretzky’s theo-
rem states that we can make the approximation as good
as we like, provided only that n is chosen large enough.
In other words, if you fix a dimensionm and tell me how
good you would like the approximation to be, then I
can give you an n that will guarantee an approximation
at least that good. To put this more loosely, a high-
dimensional convex body has almost spherical cross
sections, even if, like a cube, it has flat faces.

Dvoretzky proved his theorem in 1960. In 1970 Vitali
Milman gave a second proof of Dvoretzky’s theorem
that was a triumph of the probabilistic method
[IV.19 §3]. His argument showed the following even
more surprising fact: if the dimension of the con-
vex body K is large enough, then almost every m-
dimensional central cross section closely approximates
an m-dimensional sphere. (Some care is needed in
interpreting this statement.) The new proof led to
intense activity in the theory of finite-dimensional

Banach spaces and there are now many extensions and
modifications of the original theorem. For more dis-
cussion on convex geometry, see high-dimensional
geometry and its probabilistic analogues [IV.26].

V.11 Ergodic Theorems
Vitaly Bergelson

Consider the sequence (zn)∞n=0, where z is a complex
number of modulus 1. While for z ≠ 1 our sequence
is not convergent, it is not hard to see that, on aver-
age, it exhibits quite regular behavior. Indeed, using the
formula for the sum of a geometric progression, and
assuming that z ≠ 1, we have, for any N > M � 0,
∣∣∣∣zM + zM+1 + · · · + zN−1

N −M
∣∣∣∣

=
∣∣∣∣zM(zN−M+1 − 1)

N −M
∣∣∣∣ � 2

(N −M)|z − 1| ,
which implies that when N − M is large enough, the
averages

AN,M(z) = z
M + zM+1 + · · · + zN−1

N −M
are small. More formally, we have

lim
N−M→∞

zM + zM+1 + · · · + zN−1

N −M =
⎧⎨
⎩0, z ≠ 1,

1, z = 1.
(1)

This simple fact is a special, one-dimensional case of
von Neumann’s ergodic theorem, which was the first
mathematical statement to throw light on the so-called
quasi-ergodic hypothesis in statistical mechanics and
the kinetic theory of gases.

Von neumann’s theorem concerns the average behav-
ior of powers of unitary operators [III.52 §3.1] on
hilbert spaces [III.37]. If U is such an operator defined
on a Hilbert space H , then we can associate with U
the U -invariant subspace Hinv that consists of all vec-
tors f ∈ H such that Uf = f : that is, all vectors that
are fixed by U . Let P be the orthogonal projection
[III.52 §3.5] onto that subspace. Then von Neumann’s
theorem asserts that

lim
N−M→∞

∥∥∥∥ 1
N −M

N−1∑
n=M

Unf − Pf
∥∥∥∥ = 0.

In other words, in a certain sense the averages

1
N −M

N−1∑
n=M

Un

converge to the orthogonal projection P . (This is not
actually the theorem as formulated by von neumann
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[VI.91], but it is simpler to explain. He proved an equiv-

alent statement about a continuous family of unitary

operators (Uτ)τ∈R.)

Before we discuss various applications and refine-

ments of von Neumann’s theorem, let us briefly com-

ment on its proof. Von Neumann’s original proof used

sophisticated machinery such as the spectral theory of

one-parameter groups of unitary operators, obtained

by Marshall Stone. Over the years many alternative

proofs were offered, the simplest being a “geometric”

proof due to riesz [VI.74], which we will describe below.

To give the rough idea of von Neumann’s proof it is con-

venient to use the fact (which follows from the spec-

tral theorem [III.52 §3.4]) that any unitary operator

U on a Hilbert spaceH has a “functional model.” That

is, we can realize the Hilbert space H as a function

space, consisting of all (equivalence classes of) square-

integrable functions with respect to some finite mea-

sure [III.57], in such a way that U becomes a multipli-

cation operator Mϕ(f) = ϕf , where ϕ is a complex-

valued measurable function that satisfies |ϕ(x)| = 1

for almost every x. It is not hard to see, after pass-

ing to such a functional model, that von Neumann’s

theorem follows immediately from its one-dimensional

case as expressed by formula (1). Note that in this case

the orthogonal projection to the space of invariant ele-

ments takes a function f to the function g such that

g(x) = f(x) if ϕ(x) = 1 and g(x) = 0 otherwise.

Riesz’s proof is based on the observation that

the orthogonal complement of the subspace Hinv of

U -invariant vectors is spanned by the set of vectors of

the form Ug−g. To see this, note first that if f ∈Hinv,

then

〈f ,Ug〉 = 〈U−1f , g〉 = 〈f , g〉,
from which it follows that 〈f ,Ug − g〉 = 0 and thus

that f is orthogonal to Ug−g. Conversely, if f 	∈ Hinv,

then 〈f ,Uf − f 〉 = 〈f ,Uf 〉 − 〈f , f 〉. This is less than

0, by the cauchy–schwarz inequality [V.22] and the

fact that ‖Uf‖ = ‖f‖ but Uf 	= f . In particular, f is

not orthogonal to Uf −f . Thus,Hinv is the orthogonal

complement of the (closed) subspace of H generated

by functions of the form Ug − g.

Now the conclusion of von Neumann’s theorem holds

trivially if f ∈Hinv, since then Pf = f andUnf = f for

every n. On the other hand, if f = Ug−g, then Pf = 0.

As for the averages, we know that Unf = Un+1g−Ung,

from which it follows that
∑N−1
n=M Unf = UNg − UMg.

Since ‖UNg − UMg‖ is at most 2‖g‖ for every M and

N , we find that

1
N −M

N−1∑
n=M

Unf

has norm at most 2‖g‖/(N −M) and hence tends to 0.
So the theorem is true in this case as well. It is straight-
forward to check that the set of functions for which
the theorem holds is a closed linear subspace of H ,
and therefore the theorem is proved.

The reason that von Neumann’s theorem and other
similar results are relevant to physics is that it is often
possible to represent the evolution of the parameters
associated with a physical system by a subset X ⊂ Rd

that has finite d-dimensional volume, together with a
continuous family (Tτ)τ∈R of volume-preserving trans-
formations fromX toX. With each such transformation
Tτ one can associate the unitary map Uτ , defined on
L2(X) (the Hilbert space of square-integrable functions
on X) by the formula (Uτf)(x) = f(Tτx). The fact
that these maps are unitary follows from the fact that
the transformations Tτ preserve volume; also, it fol-
lows from the fact that the transformations Tτ depend
continuously on τ that the maps Uτ do as well.

To simplify the discussion let us now “discretize”
the situation. Instead of considering the continuous
families (Tτ) and (Uτ) we shall fix a transformation
T = Tτ0 (say, for τ0 = 1) and let U be the corresponding
unitary operator. Assume that our volume-preserving
transformation T is ergodic, which means that there
is no proper subset A ⊆ X of positive volume such
that T(A) ⊂ A. This assumption can easily be shown
to be equivalent to the fact that the only elements of
L2(X) that satisfy Uf = f are the constant functions.
It follows from von Neumann’s theorem that for any
f ∈ L2(X) the averages

AN,M(f) = 1
N −M

N−1∑
n=M

Unf

converge to a constant whose value is easy to find
by performing term-by-term integration: it equals
(
∫
f dm)/vol(X). Since von Neumann’s theorem also

tells us that limN−M→∞AN,M(f) is always a U -invariant
function, we see that the assumption of ergodicity is a
necessary and sufficient condition for the time average
represented by limN−M→∞AN,M(f) to equal the space
average, (

∫
f dm)/vol(X).

One can also use von Neumann’s theorem to
strengthen a classical theorem of poincaré [VI.61],
called Poincaré’s recurrence theorem. This result states
that if X is a set of finite volume, as above, and A is
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a subset of X with nonzero volume, then “almost all
points ofA return infinitely often toA.” In other words,
if we set Ã to be the set of all points x ∈ A such that
Tnx ∈ A for infinitely many n, then the measure of the
set of points in A but not in Ã is 0. The main step in
the proof of Poincaré’s theorem is to prove the same
about the set A1, which consists of all points x ∈ A
such that Tnx ∈ A for some positive integer n. To see
why this is true, let B be the set of all points in A but
not in A1. The sets B, T−1B, T−2B, . . . all have the same
measure, since T is volume preserving. (T−nB is defined
to be the set of all x such that Tnx ∈ B.) Since X has
finite volume, there must exist positive integersm and
n such that the intersection of T−mB and T−(m+n)B
has positive measure, and from this it follows that the
measure of B ∩T−nB is also positive. But if x ∈ B then
x 	∈ A1, so Tnx 	∈ A and therefore Tnx 	∈ B, so this is
a contradiction.

Now let us apply the von Neumann ergodic theorem
with f equal to the characteristic function of a set A
(that is, f(x) = 1 when x ∈ A and f(x) = 0 otherwise)
andU defined in terms of T as before. Suppose also that
the set X has volume 1 and write µ for the measure on
X. Then one can check that 〈f ,Unf 〉 = µ(A ∩ T−nA).
It follows that

〈f ,AN,M(f)〉 = 1
N −M

N−1∑
n=M

µ(A∩ T−nA).

If we let N − M tend to infinity, then AN,Mf tends
to a U -invariant function g. Since g is U -invariant,
〈f , g〉 = 〈Unf ,g〉 for every n, and therefore 〈f , g〉 =
〈AN,M(f), g〉 for every N and M , and finally 〈f , g〉 =
〈g,g〉. By the Cauchy–Schwarz inequality, this is at least
(
∫
g(x)dµ)2 = (

∫
f(x)dµ)2 = µ(A)2. Therefore, we

deduce that

lim
N−M→∞

1
N −M

N−1∑
n=M

µ(A∩ T−nA) � (µ(A))2.

If you choose two “random sets” of measure µ(A),
then their intersection will typically be (µ(A))2, so the
inequality above is saying that the average intersection
ofAwith T−nA is at least as big as the “expected” inter-
section. This result, due to Khinchin, gives more precise
information about the nature of Poincaré recurrence.

When a unitary operator is defined in terms of a
measure-preserving transformation as above, it is nat-
ural to ask whether the averages converge not just in
the sense of the L2-norm but also in the more clas-
sical sense of convergence almost everywhere. (For a
related thought in a different context, see carleson’s

theorem [V.5].) The answer is that they do, as was
shown by birkhoff [VI.78] soon after he learned of
von Neumann’s theorem. He proved that for each inte-
grable function f one could find a function f∗ such
that f∗(Tx) = f∗(x) for almost every x, and such
that

lim
N→∞

1
N

N−1∑
n=0

f(Tnx) = f∗(x)

for almost every x. Suppose that the transformation T
is ergodic, let A ⊆ X be a set of positive measure, and
let f(x) be the characteristic function of A. It follows
from Birkhoff’s theorem that for almost every x ∈ X
one has

lim
N→∞

1
N

N−1∑
n=0

f(Tnx) =
∫
f dµ
µ(X)

= µ(A)
µ(X)

.

Since the expression

lim
N→∞

1
N

N−1∑
n=0

f(Tnx)

describes the frequency of visits of Tnx to the setA, we
see that in an ergodic system the images x,Tx, T 2x, . . .
of a typical point x ∈ A visit A with a frequency that
equals the proportion of the space occupied by A.

The ergodic theorems of von Neumann and Birkhoff
have been generalized over the years in many differ-
ent directions. These far-reaching extensions of ergodic
theorems, and more generally the ergodic method, have
found impressive applications in such diverse fields
as statistical mechanics, number theory, probability
theory, harmonic analysis, and combinatorics.

Further Reading
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Krengel, U. 1985. Ergodic Theorems, with a supplement by
A. Brunel. De Gruyter Studies in Mathematics, volume 6.
Berlin: Walter de Gruyter.

Mackey, G. W. 1974. Ergodic theory and its significance for
statistical mechanics and probability theory. Advances in
Mathematics 12:178–268.

The Fermat–Euler Theorem
See modular arithmetic [III.60]

V.12 Fermat’s Last Theorem

Many people, even if they are not mathematicians, are
aware of the existence of Pythagorean triples: that is,
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triples of positive integers (x,y, z) such that x2+y2 =
z2. These give us examples of right-angled triangles

with integer side lengths, of which the best known is

the “(3,4,5) triangle.” For any two integers m and n,

we have that (m2−n2)2+(2mn)2 = (m2+n2)2, which

gives us an infinite supply of Pythagorean triples, and

in fact every Pythagorean triple is a multiple of a triple

of this form.

fermat [VI.12] asked the very natural question of

whether similar triples existed for higher powers: that

is, could there be a solution in positive integers of the

equation xn + yn = zn for some power n � 3? For

instance, is it possible to express a cube as a sum of

two other cubes? Or rather, Fermat famously claimed

that it was not possible, and that he had a proof that

space did not permit him to write down. Over the next

three and a half centuries, this problem became the

most famous unsolved problem in mathematics. Given

the amount of effort that went into it, one can be virtu-

ally certain that Fermat did not in fact have a proof: the

problem appears to be irreducibly difficult, and solv-

able only by techniques that were developed much later

than Fermat.

The fact that Fermat’s question was an easy one to

think of does not on its own guarantee that it is inter-

esting. Indeed, in 1816 gauss [VI.26] wrote in a letter

that he found it too isolated a problem to interest him.

At the time, that was a reasonable remark: it is often

extremely hard to determine whether a given Diophan-

tine equation has a solution, and it is therefore easy to

come up with hard problems of a similar nature to Fer-

mat’s last theorem. However, Fermat’s last theorem has

turned out to be exceptional in ways that even Gauss

could not have been expected to foresee, and nobody

would now describe it as “isolated.”

By the time of Gauss’s remark, the problem had been

solved for n = 3 (by euler [VI.19]) and n = 4 (by Fer-

mat; this is the easiest case). The first serious connec-

tion between Fermat’s last theorem and more general

mathematical concerns came with the work of kum-

mer [VI.40] in the middle of the nineteenth century. An

important observation that had been made by Euler is

that it can be fruitful to study Fermat’s last theorem

in larger rings [III.83 §1], since these, if appropriately

chosen, allow one to factorize the polynomial zn−yn.

Indeed, if we write 1, ζ, ζ2, . . . , ζn−1 for the nth roots

of 1, then we can factorize it as

(z −y)(z − ζy)(z − ζ2y) · · · (z − ζn−1y). (1)

Therefore, if xn + yn = zn then we have two rather
different-looking factorizations of xn inside the ring
generated by 1 and ζ (namely the factorization in (1)
above, and xxx · · ·x), and it is reasonable to hope that
this information might be exploited. However, there
is a serious problem: the ring generated by 1 and ζ
does not enjoy the unique factorization property
[IV.1 §§4–8], so one’s sense of being close to a contra-
diction when faced with these two factorizations is not
well-founded. Kummer, in connection with the search
for higher reciprocity laws [V.31], had met this diffi-
culty and had defined the notion of an ideal [III.83 §2]:
very roughly, if you enlarge a ring by adding in Kum-
mer’s “ideal numbers,” then unique factorization is
restored. Using these concepts, Kummer was able to
prove Fermat’s last theorem for every prime number p
that was not a factor of the class number [IV.1 §7] of
the corresponding ring. He called such primes regular.
This connected Fermat’s last theorem with ideas that
have belonged to the mainstream of algebraic num-
ber theory [IV.1] ever since. However, it did not solve
the problem, since there are infinitely many irregular
primes (though this was not known in Kummer’s day).

It turned out that more complicated ideas could be
used for individual irregular primes, and eventually an
algorithm was developed that could check for any given
n whether Fermat’s last theorem was true for that n.
By the late twentieth century, the theorem had been
verified for all exponents up to 4 000 000. However, a
general proof came from a very different direction.

The story of the eventual proof by Andrew Wiles
has been told many times, so we shall be very brief
about it here. Wiles did not study Fermat’s last theo-
rem directly, but instead solved an important special
case of the Shimura–Taniyama–Weil conjecture, which
connects elliptic curves [III.21] and modular forms
[III.61]. The first hint that elliptic curves might be rel-
evant came when Yves Hellegouarch noticed that the
elliptic curve y2 = x(x − ap)(x − bp) would have
rather unusual properties if ap + bp was also a pth
power. Gerhard Frey realized that such a curve might
be so unusual that it would contradict the Shimura–
Taniyama–Weil conjecture. Jean-Pierre Serre came up
with a precise statement (the “epsilon conjecture”) that
would imply this, and Ken Ribet proved Serre’s con-
jecture, thus establishing that Fermat’s last theorem
was a consequence of the Shimura–Taniyama–Weil con-
jecture. Wiles suddenly became very interested indeed,
and after seven years of intensive and almost secret
work he announced a solution to a case of the Shimura–
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Taniyama–Weil conjecture that was sufficient to prove

Fermat’s last theorem. It then emerged that Wiles’s

proof contained a serious mistake, but with the help of

Richard Taylor he managed to find an alternative and

correct argument for that portion of the proof.

The Shimura–Taniyama–Weil conjecture asserts that

“all elliptic curves are modular.” We finish by giving

a rough idea of what this means. (A few more details

can be found in arithmetic geometry [IV.5].) Associ-

ated with any elliptic curve E is a sequence of numbers

an(E), one for each positive integer n. For each prime

p, ap(E) is related to the number of points on the ellip-

tic curve (modp); it is easy to derive from these values

the values of an(E) for composite n. Modular forms

are holomorphic functions [I.3 §5.6] with certain

periodicity properties defined on the upper half-plane;

associated with each modular form f is a fourier

series [III.27] that takes the form

f(q) = a1(f )q + a2(f )q2 + a3(f )q3 + · · · .
Let us call an elliptic curve E modular if there is a mod-

ular form f such that ap(E) = ap(f) for all but finitely

many primes p. If you are presented with an elliptic

curve, it is not at all clear how to set about finding a

modular form associated with it in this way. However, it

always seemed to be possible, even if the phenomenon

was a mysterious one. For instance, if E is the ellip-

tic curve y2 + y = x3 − x2 − 10x − 20, then there is

a modular form f such that ap(E) = ap(f) for every

primep apart from 11. This modular form is the unique

complex function (up to scaling) that satisfies a certain

periodicity property with respect to the group Γ0(11),
which consists of all matrices ( a bc d ) such that a, b, c,
and d are integers, c is a multiple of 11, and the deter-

minant [III.15] ad−bc is 1. It is far from obvious that a

definition of this type should have anything to do with

elliptic curves.

Wiles proved that all “semistable” elliptic curves are

modular, not by showing how to associate a modular

form with each such elliptic curve, but by using a sub-

tle counting argument that guaranteed that the modu-

lar form had to exist. The full conjecture was proved

a few years later, by Christophe Breuil, Brian Conrad,

Fred Diamond, and Richard Taylor, which put the icing

on the cake of one of the most celebrated mathematical

achievements of all time.

V.13 Fixed-Point Theorems

1 Introduction

The following is a variant of a well-known mathematical

puzzle. A man is on a train from London to Cambridge

and has a bottle of water with him. Prove that there is at

least one moment on the journey when the volume of

air in the bottle, as a fraction of the volume of the bottle

itself, is exactly equal to the fraction of his journey that

he has completed. (For instance, the bottle might be

two fifths full, and therefore three fifths empty, at the

precise moment when he is three fifths of the way from

London to Cambridge. Note that we do not assume that

the bottle is full at the start of the journey or empty at

the end.)

The solution, if you have not seen this sort of ques-

tion before, is surprisingly simple. For each x between

0 and 1 let f(x) be the proportion of air in the bottle

when the proportion of the journey that has been com-

pleted is x. Then 0 � f(x) � 1 for every x, since the

volume of air in the bottle cannot be negative and can-

not exceed the volume of the bottle. If we now set g(x)
to be x−f(x), then we see that g(0) � 0 and g(1) � 0.

Since g(x) varies continuously with x, there must be

some moment at which g(x) = 0, so that f(x) = x,

which is what we wanted.

What we have just proved is a slightly disguised form

of one of the simplest of all fixed-point theorems. We

could state it more formally as follows: if f is a contin-

uous function from the closed interval [0,1] to itself,

then there must exist an x such that f(x) = x. This x
we call a fixed point of f . (We deduced the result from

the intermediate-value theorem, a basic result in analy-

sis that states that if g is a continuous function from

[0,1] to R such that g(0) � 0 and g(1) � 0, then there

must be some x such that g(x) = 0.)

In general, a fixed-point theorem is a theorem that

asserts that a function that satisfies certain conditions

must have a fixed point. There are many such theo-

rems, a small sample of which we shall discuss in this

article. On the whole, they tend to have a nonconstruc-

tive nature: they establish the existence of a fixed point

rather than defining one or telling you how to find it.

This is part of the reason that they are important, since

there are many examples of equations for which one

would like to prove that a solution exists even when

one cannot solve it explicitly. As we shall see, one way

of going about this is to try to rewrite the equation in

the form f(x) = x and apply a fixed-point theorem.
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f (x)

x g (x)

D

Figure 1 If f has no fixed points, then it
can be used to define a retraction g.

2 Brouwer’s Fixed-Point Theorem

The fixed-point theorem we have just proved is the one-
dimensional version of Brouwer’s fixed-point theorem,
which states that if Bn is the unit ball of Rn (that is, the
set of all (x1, . . . , xn) such that x2

1 + · · · +x2
n � 1) and

f is a continuous function from Bn to Bn, then f must
have a fixed point. The set Bn is an n-dimensional solid
sphere, but all that matters is its topological character,
so we could take it to be another shape such as an n-
dimensional cube or simplex.

In two dimensions this says that a continuous func-
tion from the closed unit disk to itself must have a fixed
point. In other words, if you had a circular sheet of rub-
ber on a table and you picked it up and put it back down
within the circle where it started, having folded it and
stretched it as much as you liked, there would always
have to be a point that ended up in the same place as
before.

To see why this is true, it is helpful to reformulate
the statement. Let D = B2 be the closed unit disk. If
we had a continuous function f from D to D with no
fixed point, then we could define a continuous function
g from D to its boundary ∂D as follows: for each x,
follow a straight path from f(x) to x and continue on
in a straight line; g(x) is the point where you first reach
∂D (see figure 1), and it is well-defined because (and
only because) f(x) 	= x. If x is already on the boundary
of D, then g(x) = x. So we have a continuous function
g : D → ∂D such that g(x) = x for every x ∈ ∂D. Such
a function is called a retraction from D to ∂D.

It seems highly unlikely that a continuous retraction
from D to ∂D could exist. If we can prove that it can-
not, then we will have contradicted the assumption that
there is a continuous function fromD toDwith no fixed
point, and thereby have proved Brouwer’s fixed-point
theorem in two dimensions.

There are several ways of proving that continuous
retractions from disks to their boundaries cannot exist.
Here we briefly sketch two.

Suppose, first, that g is such a retraction. For each t,
let us consider the restriction of g to the circle of radius
t about the origin, and let us represent a typical point in
this circle as teiθ . Let us write gt(θ) for g(teiθ). When
t = 1 the circle of radius t is ∂D, so as θ goes from
0 to 2π , gt(θ) = eiθ goes once around the unit circle.
When t = 0, the circle of radius t is a single point, so as
θ goes from 0 to 2π , gt(θ) is just the constant point
g(0), which does not go around the unit circle at all.
Therefore, somewhere between t = 1 and t = 0 there
must be a change in the number of times gt(θ) goes
around the unit circle as θ goes from 0 to 2π . But the
functions gt are a continuously varying family of func-
tions, and a small change in gt cannot cause a sudden
jump in the number of times that gt(θ) goes around
the circle. (To make this last step rigorous needs a bit
of work, but the basic idea is sound.)

A second proof uses basic tools from algebraic topol-
ogy. The first homology group [IV.6 §4] of the disk D
is trivial, since every curve in the disk can be shrunk
to a point. The first homology group of the unit circle
∂D is Z. If there is a continuous retraction g from D to
∂D, then we can find continuous maps h : ∂D → D and
g : D → ∂D such that g ◦ h is the identity on ∂D. (We
let h be the map that takes a point of ∂D to itself and
we let g be the continuous retraction.) Now continuous
maps between topological spaces give rise to homo-
morphisms [I.3 §4.1] between their homology groups,
in such a way that compositions go to compositions and
identity maps go to identity maps. (That is, there is a
functor [III.8] from the category [III.8] of topological
spaces and continuous maps to the category of groups
and group homomorphisms.) This means that there
must be homomorphisms φ : Z → {0} and ψ : {0} → Z

such that ψ ◦φ is the identity on Z, which is obviously
impossible.

Both proofs generalize to higher dimensions: the sec-
ond straightforwardly (once one knows how to com-
pute homology groups of spheres), and the first via the
notion of the degree of a continuous map from the n-
sphere to itself, which is a higher-dimensional analogue
of the notion of the number of times a map from the
circle to itself “goes around the circle.”

Brouwer’s fixed-point theorem has many applica-
tions. For example, the following fact is important in
the theory of random walks on graphs. A stochastic
matrix is ann×nmatrix with nonnegative entries such
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that the sum of the entries in each row is equal to 1.
Brouwer’s fixed-point theorem can be used to show that
every such matrix has an eigenvector [I.3 §4.3] with
nonnegative entries and eigenvalue 1. The proof is as
follows: the set of all column vectors with nonnegative
entries that add up to 1 is, geometrically speaking, an
(n− 1)-dimensional simplex. (For example, if n = 3,
this set is a triangle in R3 with vertices (1,0,0), (0,1,0),
and (0,1,0).) If A is a stochastic matrix and x belongs
to this simplex, then so doesAx. Since the map x �→ Ax
is continuous, Brouwer’s theorem gives us an x such
that Ax = x: this is the required eigenvector.

An extension of Brouwer’s theorem, called the Kaku-
tani fixed-point theorem, was used by John Nash to
establish the existence of a “social equilibrium,” a
state of affairs in which no household can individu-
ally improve its well-being by altering the amount that
it consumes of various items. Kakutani’s theorem con-
cerns functions that take points in a closed ball B not
to other points in Bn but to subsets of Bn. If f(x) is a
nonempty closed convex subset of Bn for each x and if
f(x) varies continuously in an appropriate sense, then
the theorem says that there must be some x such that
x ∈ f(x). Brouwer’s theorem is the special case where
each f(x) is a set with just one element.

3 A Stronger Form of Brouwer’s
Fixed-Point Theorem

So far, we have discussed maps from solid spheres to
themselves, but there is nothing to stop us thinking
about whether continuous maps on other spaces must
have fixed points. For example, let S2 be the (nonsolid)
sphere {(x,y, z) : x2 + y2 + z2 = 1} and let f be
a continuous function from S2 to S2. Must f have a
fixed point? At first one might think so: some obvi-
ous functions from S2 to itself are rotations and reflec-
tions, both of which certainly have fixed points, and it is
hard to see how one can “get rid” of those fixed points.
However, eventually one realizes that there is a simple
example of a function without a fixed point, namely the
function f(x) = −x, which reflects each point through
the origin.

The obvious reaction to this example is to note
that the result we had hoped for is false and to turn
our attention to something else. But this reaction is
a mistake, as it is in many other mathematical con-
texts, because there was something importantly correct
about the idea that it was impossible to get rid of the
fixed points of a rotation. It turns out that if you start

with a rotation and try to get rid of the fixed points

by continuously deforming it, then you are doomed to

failure. In fact, in a certain sense there will always be

exactly two fixed points. More generally, if you take any

continuous function from S2 to S2 and continuously

deform it, then you cannot change the number of fixed

points.

Of course, these last two statements are patently

false if taken at face value so some reinterpretation

is needed. First, we must assume that the number of

fixed points is finite, but this is not a huge assumption

as it can be shown that a typical small perturbation of

any continuous function will have only finitely many

fixed points. Second, we must count the fixed points

with appropriate weights. To define these, suppose that

f(x) = x, and imagine a point y(t) that goes around

x in a tiny circle as t goes from 0 to 1. We define the

index of the fixed point x to be the number of times

that f(y(t)) goes around x, counting this negatively if

it goes around in the opposite direction to y(t). (This

definition is problematic if f(y(t)) = x for some t,
but again we can make small perturbations and assume

that this does not happen.) Then the sum of the indices

of all the fixed points is the quantity that does not

change if you continuously deform f .

It follows that if you continuously deform a rotation,

then the sum of the indices will always be 2. From this

it follows that there must be at least one fixed point.

It also follows that you cannot continuously deform a

rotation so that it becomes the map that sends each x
to −x.

The notion of the index of a fixed point can be gener-

alized in a fairly straightforward way to higher dimen-

sions (using the concept of degree mentioned earlier),

and one can show under very general circumstances

that the sum of the indices of fixed points remains

constant when you continuously deform a continuous

map. This implies Brouwer’s fixed-point theorem as

follows. We can continuously deform any continuous

map f : Bn → Bn into to any other continuous map

g : Bn → Bn by defining ft(x) = (1 − t)f (x) + tg(x)
and letting t vary from 0 to 1. Let us therefore take g to

be the map x �→ 1
2x, which has a single fixed point. This

fixed point has index 1 (as one can see easily in the two-

dimensional case), and therefore the sum of the indices

of the fixed points of f is 1 as well.

In general, the sum of the indices of the fixed points

of a function f defined on a suitable topological space

X (such as a smooth compact manifold [I.3 §6.9]) can
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be calculated in terms of the effect of f on the homol-
ogy groups of X. The resulting theorem is (a slight
generalization of) the Lefschetz fixed-point theorem.

The fact that the index of a continuous map is an
invariant of continuous deformations can be used to
give a proof of the fundamental theorem of alge-
bra [V.15]. Consider, for instance, the problem of prov-
ing that the polynomial x5 + 3x + 8 has a root. This isPUP: Tim says that

any momentary
puzzlement here
is probably a good
thing, so would
like to keep it as it
is. OK?

the same as asking for a fixed point of the function
x5+4x+8, since if this equals x then x5+3x+8 = 0.
Now if we regard the polynomial x5 as being defined on
the riemann sphere [IV.14 §2.4] C ∪ {∞}, then it has
two fixed points, at 0 and∞. Moreover, their indices are
both 5 (since if x goes around 0 or∞ in a “small circle,”
then x5 goes around five times). Now the polynomials
x5 + (4x + 8)t give us a continuous deformation from
x5 to x5 + 4x + 8, and x5 + 4x + 8 has a fixed point of
index 5 at ∞. It follows that there must be other fixed
points, with indices adding up to 5. These are the roots
of x5 + 3x+ 8, and the indices are the multiplicities of
the roots.

4 Infinite-Dimensional Fixed-Point
Theorems and Applications to Analysis

What happens if we try to generalize the Brouwer fixed-
point theorem to continuous maps defined on infinite-
dimensional closed balls? The answer is that we will
not be able to, as the following example shows. Let
B be the set of all sequences (a1, a2, . . . ) such that∑
n |an|2 � 1. This is our closed ball; it is the unit

ball of the hilbert space [III.37] �2. Given an infinite
sequence a = (a1, a2, . . . ), we write ‖a‖ for its norm
(
∑
n |an|2)1/2. Now consider the map f : (a1, a2, . . . ) �→

((1 − ‖a‖2)1/2, a1, a2, . . . ). It is easy to check that f is
continuous and that ‖f(a)‖ = 1 for every a. There-
fore, if a is a fixed point, we must have ‖a‖ = 1, from
which we can see that a1 = 0. From this it follows that
a2 = 0, and then that a3 = 0, and so on. In other words,
a = 0. But this contradicts the condition that ‖a‖ = 1.
Therefore, the map f has no fixed point.

However, if we place extra conditions on a con-
tinuous map, then it is sometimes possible to prove
fixed-point theorems, and some of these theorems
have important applications, notably to establishing
the existence of solutions to differential equations.

An easy result of this type is the contraction map-
ping theorem. This states that if X is a metric space
[III.58] with a property known as completeness (which
is briefly discussed in normed spaces and banach

spaces [III.64]) and f is a map from X to X such that

there exists a constant ρ < 1 such thatd(f(x), f (y)) �
ρd(x,y) for every x and y in X, then f must have a

fixed point. To prove this, one picks any point x ∈ X
and looks at the iterates x, f(x), f(f(x)), f(f(f(x))),
and so on. Denoting these by x0, x1, x2, . . . , one can

prove quite easily that d(xn,xm) tends to 0 as m and

n both tend to infinity, and the completeness property

then guarantees that the sequence (xn) has a limit. It

is not hard to prove that this limit is a fixed point of f .

A more sophisticated example is the Schauder fixed-

point theorem, which states that if X is a Banach space,

K is a compact [III.9] convex subset of X, and f is a

continuous function from K to K, then f has a fixed

point. Roughly speaking, to prove this one approxi-

mates K by larger and larger finite-dimensional sets

Kn and approximates f by continuous maps fn that

take Kn to Kn. Brouwer’s fixed-point theorem gives a

sequence (xn) such that fn(xn) = xn for each n. The

compactness of K implies that the sequence (xn) has

a convergent subsequence: its limit can be shown to be

a fixed point of f .

The importance of these two theorems, and others of

a similar nature, lies more in their applications than in

their basic statements. A typical application is a proof

that the differential equation

d2u
dx2

= u− 10 sin(u2)− 10 exp(−|x|)

has a solution u such that u(x) is defined for every

real number x and tends to 0 as x tends to ±∞. We can

rewrite this equation as
(

1− d2

dx2

)
u = 10 sin(u2)+ 10 exp(−|x|).

If we write the left-hand side as L(u), then this equation

can be further rewritten as

u = L−1(10 sin(u2)+ 10 exp(−|x|)).
(It is possible to identify the operator L−1 explicitly.) If

we now let X be the Banach space of continuous func-

tions defined on R that tend to 0 at ±∞, with the uni-

form norm, then it can be shown that the right-hand

side of this last equation defines a continuous function

from X to a compact convex subset of X. Therefore,

by the Schauder fixed-point theorem, this highly non-

linear equation has a solution with the given boundary

conditions, a result that is hard to prove in any other

way.
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V.14 The Four-Color Theorem
Bojan Mohar

The four-color theorem asserts that the regions of any

map drawn in the plane (or, equivalently, on the two-

dimensional sphere) can be colored with no more than

four colors in such a way that any two regions with

a common boundary are given different colors. The

example in figure 1 shows that four distinct colors are

necessary since the regions A, B, C, and D are all adja-

cent to each other. This result was conjectured by Fran-

cis Guthrie in 1852. An incorrect proof was given by

Kempe in 1879, and for eleven years the problem was

believed to have been solved, until Heawood pointed

out the error in 1890. However, Heawood showed that

Kempe’s basic idea, which we shall outline below, could

at least be used to give a correct proof that five colors

were always sufficient. After that, the problem became

a famous example of a question that remained stub-

bornly open despite being very easy to understand.

(Another such problem was fermat’s last theorem

[V.12].)

In modern mathematics, map-coloring problems are

usually formulated in the language of graph theory. To

any map we assign a graph [III.34]: the vertices of the

graph correspond to the regions of the map, and we

declare two vertices to be adjacent if the correspond-

ing regions share a piece of their boundary. The graph

for the map in figure 1 is shown in figure 2. It is easy

to see that the graph of any map in the plane can be

drawn in such a way that no two edges cross each

other: such graphs are called planar. Instead of color-

ing regions of maps, we now color vertices of the corre-

sponding graphs. If no two vertices that are joined by

an edge have the same color, then we say that the col-

oring is proper. After this reformulation, the four-color

theorem states that every planar graph G has a proper

coloring with at most four colors.

Here, briefly, is the proof of the five-color theorem

due to Kempe and Heawood. It is a proof by contradic-

tion, so we start by assuming that the result is false. If

that is the case, then there must be a graph G of min-

imal size that has no proper coloring with five colors.

euler’s formula [I.4 §2.2] says that V − E + F = 2 for

any (connected) planar graph, where V is the number

of vertices, E is the number of edges, and F is the num-

ber of regions into which the plane is divided by any

drawing of the graph. It is not hard to deduce from this

B
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E

F

G
H

A

Figure 1 A map with eight regions.
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H

Figure 2 The graph of the map from figure 1.

formula that G has a vertex v with at most five neigh-
bors (that is, other vertices linked tov by an edge) in the
graph. If we remove v from the graph, then we can find
a proper coloring of what is left, becauseG is a minimal
counterexample to the theorem. If v has fewer than five
neighbors, then we can color v as well, since there are
at most four colors that need to be avoided and we have
five colors at our disposal. So the only thing that can go
wrong is if v has five neighbors and those five colors
all get different colors when we color the rest of G.

Let us suppose that the colors of the neighbors of v
are red, yellow, green, blue, and brown, as we go clock-
wise around v . As it stands, we cannot color v , but we
could try to do so by adjusting the coloring of the rest
of the graph. For instance, we could try recoloring the
red vertex green, thereby freeing up red to be used for
v . Of course, if we did that we might have to recolor
further vertices, but we could try to find a recoloring
as follows: first change the color of the red neighbor of
v to green. Then change all the green neighbors of that
vertex to red, and all the red neighbors of those ver-
tices to green, and so on. When we have finished this
process, the one thing that could go wrong is that we
might end up recoloring the green neighbor of v red, in
which case we would not after all be free to use red for
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v . This will happen if and only if there is a chain of ver-

tices from the red neighbor of v to the green neighbor

that alternates red and green. However, if this circum-

stance arises, we can try to recolor the yellow neighbor

of v blue in a similar way. Once again, the only thing

that can stop us is an alternating chain of yellow and

blue vertices going from the yellow neighbor of v to

the blue neighbor. But such a chain cannot exist, as it

would at some point have to cross the red/green chain,

and this contradicts the fact that the graph is planar.

Returning to the four-color problem, the German

mathematician Heinrich Heesch proposed a general

method for tackling it that can be thought of as a more

complicated version of the above argument. The idea is

to identify a list C of “configurations” with the follow-

ing properties. First, every planar graph must contain

a configuration X that belongs to C. Second, given a

planar graph G that contains a configuration X from C,

and given a proper coloring of the rest of G that uses at

most four colors, it is possible to adjust this coloring in

such a way that it can be extended to a proper coloring

of the whole ofG. In the proof of the five-color theorem

above, there was a very simple list of five configura-

tions: a vertex v with one edge, two edges, three edges,

four edges, or five edges coming out of it. Nothing this

simple works for the four-color problem, but Heesch’s

idea was that it might be possible to solve the problem

by using a more complicated list of configurations.

Such a list was found by Kenneth Appel and Wolf-

gang Haken in 1976. However, this is by no means the

whole story, because the list of configurations that they

found was not just “more complicated” but so much

more complicated that it broke new ground: it was the

first time that a major theorem had been proved with a

proof that was too long to be humanly checkable. The

reason for this was partly that their list C contained

about 1200 configurations, but a more important rea-

son was that for some configurations X it was neces-

sary to check hundreds of thousands of cases in order

to demonstrate that a coloring of the rest of the graph

could be adjusted to accommodate a coloring of X as

well. Therefore, there was no alternative but to use a

computer to do the checking. (Heesch had himself pro-

posed a list, but some of his configurations would have

involved so many cases that even a computer could not

have checked them all.)

The reaction of other mathematicians to the proof of

Appel and Haken was mixed. Some hailed it as the addi-

tion of a powerful new tool to the mathematical armory.

Others were uneasy about having to trust that the rele-
vant computer program had been written correctly and
that the computer had operated as it should. And in
fact the proof turned out to have several flaws, though
all those that were discovered were subsequently cor-
rected by Appel and Haken in their monograph of
1989. Any doubts there may have been of this kind
were removed once and for all in 1997, when Robert-
son, Sanders, Seymour, and Thomas developed another
proof based on similar principles. The part of the proof
that was checkable by humans was made more trans-
parent, and the computer-verified part was supported
by a well-structured collection of data that enabled the
proofs to be checked independently. One could still
question whether the compilers used were correct and
whether the hardware was stable, but the proof has
been checked on different platforms, using different
programming languages and operating systems, so this
proof is much less likely to be incorrect than a typical
human-checked proof of even moderate length.

The result is that very few mathematicians are now
worried about whether the proof is correct. However,
there are many who object to it for a different rea-
son. Even if we can now be certain that the theorem
is true, we can still ask why it is true, and not every-
body regards the answer “Because hundreds of thou-
sands of cases were checked and they all turned out
to be OK” as a satisfactory explanation. As a result, if
someone were to discover a shorter and more acces-
sible proof it would be regarded by many as a break-
through comparable to the solution of the problem by
Appel and Haken. An unfortunate side effect of this is
that mathematics departments around the world still
receive many incorrect attempted proofs, several of
which repeat the mistake of Kempe.

Like many good problems, the four-color problem
provoked the development of many important new
mathematical ideas. The theory of graph colorings, in
particular, has evolved into a deep and beautiful area of
research. (See extremal and probabilistic combina-
torics [IV.19 §2.1.1] and also Jensen and Toft (1995).)
Extensions of map-coloring problems to arbitrary sur-
faces led to the development of topological graph
theory, and questions about the planarity of graphs
culminated in the theory of graph minors [V.35].

One of the most prolific graph theorists, William
T. Tutte, judged the impact of the four-color theorem
on mathematics by proclaiming: “The four-colour theo-
rem is the tip of the iceberg, the thin end of the wedge,
and the first cuckoo of Spring.”



�

20 V. Theorems and Problems

Further Reading

Appel, K., and W. Haken. 1976. Every planar map is four
colorable. Bulletin of the American Mathematical Society
82:711–12.

. 1989. Every Planar Map Is Four Colorable. Contem-
porary Mathematics, volume 98. Providence, RI: American
Mathematical Society.

Jensen, T., and B. Toft. 1995. Graph Coloring Problems. New
York: John Wiley.

Robertson, N., D. Sanders, P. Seymour, and R. Thomas.
1997. The four-colour theorem. Journal of Combinatorial
Theory B 70:2–44.

V.15 The Fundamental Theorem of
Algebra

The complex numbers [I.3 §1.5] can be thought of as
what you obtain from the real numbers [I.3 §1.4] when
you introduce a new number, denoted i, and stipulate
that it is a solution of the equation x2 = −1, or equiva-
lently a root of the polynomial x2 + 1. At first, this may
seem an artificial thing to do—it is not obvious what
is so important about x2 + 1 as opposed to any other
polynomial—but that is a judgment with which no pro-
fessional mathematician would concur. The fundamen-
tal theorem of algebra is one of the best pieces of evi-
dence that the complex number system is, in fact, natu-
ral, and natural in a profound way. It states that, within
the complex number system, every polynomial has a
root. In other words, once we introduce the number i,
then not only can we solve the equation x2 + 1 = 0, we
can solve all polynomial equations (even if the coeffi-
cients are themselves complex). Thus, when one defines
the complex numbers, one gets much more out of them
than one puts in. It is this that makes them seem not
an artificial construction but a wonderful discovery.

For many polynomials it is not hard to see that they
have roots. For example, if P(x) = xd −u for some pos-
itive integer d and some complex number u, then a
root of P will be a dth root of u. One can write u in
the form reiθ , and then r1/deiθ/d will be such a root.
This means that any polynomial that can be solved by a
formula involving dth roots and the usual arithmetical
operations, which includes all polynomials of degree
less than 5, can be solved in the complex number sys-
tem. However, owing to the insolubility of the quin-
tic [V.24], not all polynomials can be dealt with in this
way, and in order to prove the fundamental theorem of
algebra one must look for a less direct argument.

In fact, this is true even if one is looking for real
roots of real polynomials. For example, if P(x) = 3x7−
10x6 + x3 + 1, then we know that P(x) is large and
positive when x is, since the x7 term is by far the most
significant, and large and negative when x is, for the
same reason. Therefore, at some point the graph of
P crosses the x-axis, which means that there is some
x with P(x) = 0. Notice that this argument does not
tell us what x is—that is the sense in which it is “less
direct.”

Now let us see how one might show that a polynomial
has a complex root, by looking at the example P(x) =
x4+x2−6x+9. This can be rewritten x4+(x−3)2, and
since both x4 and (x − 3)2 are nonnegative, and since
they cannot be zero simultaneously, P cannot have a
real root. To see that it has a complex root, we shall
begin by fixing a large real number r and looking at the
behavior of P(reiθ) as θ varies between 0 and 2π . As
θ varies in this way, reiθ traces out a circle of radius r
in the complex plane.

Now (reiθ)4 = r4e4iθ , so the x4 part of P(reiθ) traces
out a circle of radius r4, but goes around it four times. If
r is large enough, then the rest (that is, (reiθ−3)2) is so
small compared with (reiθ)4 that the only effect on the
behavior of P(reiθ) is to make it deviate very slightly
from the circle of radius r4. This small deviation is not
enough to stop the path of P(reiθ) going around zero
four times.

Next, let us consider what happens when r is very
small. Then P(reiθ) is very close to 9, whatever the
value of θ, since (reiθ)4, (reiθ)2, and (reiθ) are all
small. But this means that the path traced out by
P(reiθ) does not go around zero at all.

For any r we can ask how many times the path traced
out by P(reiθ) goes around zero. What we have just
established is that for very large r the answer is four
and for very small r it is zero. It follows that at some
intermediate r the answer changes. But if you gradu-
ally shrink r , the path traced out by P(reiθ) varies in a
continuous way, so the only way this change can come
about is if for some r the path crosses 0. This gives us
the root we are looking for, since the path consists of
points of the form P(reiθ) and one of these points is 0.

Some care is needed to turn the above reasoning into
a rigorous proof. However, this can be done, and it is
not hard to generalize the resulting argument to one
that applies to any polynomial.

The fundamental theorem of algebra is usually
attributed to gauss [VI.26], who proved it in 1799 in
his doctoral thesis. Though his argument (which was
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different from the one sketched above) was not fully
rigorous by today’s standards, it was convincing and
broadly correct. Later he went on to give three more
proofs.

V.16 The Fundamental Theorem of
Arithmetic

The fundamental theorem of arithmetic is the assertion
that every positive integer can be expressed in exactly
one way as a product of prime numbers. These prime
numbers are known as the prime factors of the orig-
inal number and the product itself is the prime fac-
torization. To give a few examples: 12 = 2 × 2 × 3,
343 = 7 × 7 × 7, 4559 = 47 × 97, and 7187 is itself a
prime. This last number shows that the word “product”
should be interpreted so as to include the case where
there is only one prime involved. As for the phrase
“exactly one way,” it is understood that the order in
which the primes are multiplied is not significant, so,
for example, the products 47× 97 and 97× 47 are not
regarded as different.

The following inductive procedure allows one to find
the prime factorization of a given positive integer n. If
n is prime, then we have found it already. Otherwise,
let p be the smallest prime factor ofn and letm = n/p.
Since m is smaller than n, we know by induction how
to find the prime factorization ofm, and this, together
with p, gives it to us for n. In practice, what this means
is that we generate a sequence of numbers, where each
number in the sequence is the previous one divided by
its smallest prime factor. For example, if we start with
the number 168, then the sequence begins 168, 84, 42,
21. At this point we cannot divide by 2, but 3 is a factor
of 21 so the next number in the sequence is 7. Since 7 is
a prime, the process stops. Looking back, we find that
we have shown that 168 = 2× 2× 2× 3× 7.

Once one is used to this method, it comes to seem
inconceivable that a number could have two genuinely
different prime factorizations. But the method does not
guarantee this at all. Suppose we successively divide
by the largest prime factor rather than the smallest.
Why should this not give a completely different set of
primes? It is hard to think of an argument that does
not use a phrase such as “the prime factorization of n,”
thereby implicitly assuming what it sets out to prove.

It is possible to show in a rather precise way that
the fundamental theorem of arithmetic is not obvious,
by looking at an algebraic structure where the notion
of prime factorization makes sense but numbers can

have more than one prime factorization. This structure,
denoted Z(

√−5), is the set of all numbers of the form
a+ b√−5, where a and b are integers. Such numbers
can be added and multiplied just like ordinary integers.
For example,

(1+ 3
√−5)+ (6− 7

√−5) = 7− 4
√−5

and

(1+ 3
√−5)(6− 7

√−5)

= 6− 7
√−5+ 18

√−5+ 28(
√−5)2

= 6+ 11
√−5− 28× 5

= −134+ 11
√−5.

In this structure, we can regard a number x = a +
b
√−5 as prime if its only factors are ±1 and ±x. (This

would also be a natural definition if we wanted to
extend the notion of primes from the positive integers
to all integers.) It can be shown quite easily that 2 and 3
are both primes (though it is not immediately obvious
since there are now more possibilities for factors). Two
other primes are 1+√−5 and 1−√−5. But we can write 6
either as 2× 3 or as (1+√−5)(1−√−5), so 6 has two
different prime factorizations. For a further discussion
of this point see algebraic numbers [IV.1 §§4–8].

What this example shows is that any proof of the fun-
damental theorem of arithmetic must use some feature
of Z, the set of integers, that is lacking in Z(

√−5). Since
addition and multiplication work in a very similar way
in both structures, it is not very easy to find such a
feature, or at least not one that is relevant. It turns out
that the important property that Z(

√−5) does not have
is an appropriate analogue of the following basic prin-
ciple for integers: that if m and n are integers, then
one can write n = qm+ r with 0 � r < |m|. This fact
underlies euclid’s algorithm [III.22], which plays an
important role in the most commonly given proof of
unique factorization.

V.17 The Fundamental Theorem of
Calculus

The idea that integration is the “reverse” of differentia-
tion is a familiar one. The fundamental theorem of cal-
culus is the mathematical theorem that expresses this
idea precisely. It has two parts: one says that differ-
entiation “undoes” integration, and the other says that
integration “undoes” differentiation. In order to formu-
late these principles properly, one must be careful to
specify conditions on the function that is integrated or
differentiated. The first part states the following: if f is
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a continuous function defined on an interval [a, b] and

F is defined by the formula F(x) = ∫ x
a f(t)dt, then F

is differentiable and F ′(x) = f(x) for every x. As for

the second, it states that if f is a differentiable func-

tion on [a, b] and if its derivative f ′ is continuous, then

f(x) = f(a)+∫ xa f ′(t)dt for every x. It is important to

realize that these statements are not true by definition.

See [I.3 §5.5] for further discussion.

Gauss’s Law of Quadratic Reciprocity
See from quadratic reciprocity to

class field theory [V.31]

V.18 Gödel’s Theorem
Peter J. Cameron

In response to problems in the foundations of mathe-

matics such as Russell’s paradox (“consider the set of

all sets which are not members of themselves; is it a

member of itself?”), hilbert [VI.63] proposed that the

consistency of any given part of mathematics should

be established by finitary methods that could not lead

to a contradiction. Any part for which this had been

done could then be used as a secure foundation for all

of mathematics.

An example of a “part of mathematics” is the arith-

metic of the natural numbers, which can be described in

terms of first-order logic [IV.23 §1]. We begin with

symbols, both logical (connectives such as “not” and

“implies,” quantifiers such as “for all,” the equality sym-

bol, symbols for variables, and punctuation) and non-

logical (symbols for constants, relations, and functions

suitable for the branch of mathematics under consid-

eration). Formulas are finite strings of symbols built

according to certain precise rules (which allow them

to be mechanically recognized). We fix a certain set

of formulas as our axioms, and we also choose a few

rules of inference that allow us to infer some formulas

from others. An example of a rule of inference is modus

ponens: if we have inferredφ and (φ→ ψ), then we can

infer ψ. A theorem is a formula that is at the end of a

chain (or tree) of inferences that starts with axioms.

Axioms for the natural numbers were given by peano

[VI.62] (see the peano axioms [III.69]). The nonlogi-

cal symbols are zero, the “successor function” s, addi-

tion, and multiplication. (The last two can be defined in

terms of the others by inductive axioms: for example,

the rules x + 0 = x and x + s(y) = s(x + y) define

addition.) The crucial axiom is the principle of induc-
tion, which asserts that if P(n) is a formula such that
P(0) is true and P(n) implies P(s(n)) for all n, then
P(n) is true for all n. Hilbert’s specific challenge was
to give a formal proof of the consistency of this theory:
that is, a proof that no contradiction can be deduced
from the axioms by the rules of first-order logic.

Hilbert’s program was undone by two remarkable
incompleteness theorems proved by gödel [VI.92]. The
first theorem states the following.

There are (first-order) statements about the natural
numbers that can be neither proved nor disproved from
Peano’s axioms.

(This is sometimes qualified by being prefixed with,
“If Peano’s axioms are consistent, then . . . .” However,
since we accept the existence of the natural numbers,
we do know that Peano’s axioms are consistent, as
the natural numbers model them. So the qualifica-
tion is unnecessary here, although it would need to
be included if we were discussing some axioms whose
consistency was not clear.)

Gödel’s proof is long, but it is based on two simple
ideas. The first is Gödel numbering, which is a means
of encoding each formula or sequence of formulas as a
natural number in a systematic and mechanical way.

It can be shown that there is a two-variable formula
π(x,y) such that π(m,n) holds if and only if “n is a
proof of m,” which is a shorthand way of saying that
m is the Gödel number of a formula φ and n is the
Gödel number of a string of formulas that constitutes a
proof ofφ. Slightly more elaborately, there is a formula
ω(x,y) such thatω(m,n) holds if and only ifm is the
Gödel number of a formulaφ that has one free variable
and n is the Gödel number of a proof of φ(m). (A free
variable is one that is not quantified over. For example,
φ(x) might be the formula (∃y)y2 = x, in which case
x is the free variable. For this choice of φ, the number
n would be the Gödel number of a proof that the Gödel
number of φ was a perfect square.)

Now let ψ(x) be the formula (∀y)(¬ω(x,y)). If φ
is a formula (with one free variable) with Gödel number
m, then ψ(m) tells us that there is no proof of φ(m).
(It tells us this indirectly: what it actually says is that
there is no y that is the Gödel number of such a proof.)
Let p be the Gödel number of ψ itself, and let ζ be the
formula ψ(p).

This brings us to the second idea in the proof: self-
reference. The formula ζ is carefully devised so that it
asserts its own unprovability, since ψ(p) tells us that
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there is no proof of the formula with Gödel number

φ(p), where φ is the formula with Gödel number p.

In other words, it tells us that there is no proof of

ψ(p). Since ζ asserts its own unprovability, it must be

unprovable (since a proof of ζ would be a proof that

ζ had no proof, which is absurd). Since ζ asserts its

unprovability and is unprovable, it is true, and since it

is true it cannot be disprovable. (One might wonder why

this argument that ζ is true does not constitute a proof

of ζ. The answer is that although it is a rigorous demon-

stration of the truth of ζ, it is not a proof in Peano

arithmetic. That is, it is not an argument that starts

from the Peano axioms and uses the rules of inference

of the kind we discussed earlier.)

Gödel numbering also allowed Gödel to consider the

consistency of the axioms as a first-order formula:

namely (∀y)(¬(π(m,y))), wherem is the Gödel num-

ber of the formula 0 = s(0) (or any other contradiction).

Here is Gödel’s second theorem.

It is impossible to prove from Peano’s axioms that they

are consistent.

The proofs of these theorems are not specific to

the Peano axioms, but apply to any (consistent) sys-

tem of mechanically recognizable axioms that is pow-

erful enough to describe the natural numbers. Thus,

completeness cannot be restored simply by adding a

true but unprovable statement as a new axiom, for

the resulting system is still strong enough for Gödel’s

theorem to apply to it.

It might seem that we could obtain a complete axiom-

atization of the natural numbers by simply taking all

true statements as axioms. However, one requirement

for Gödel’s theorems is that the axioms should be rec-

ognizable by some mechanical method. (This is needed

to construct the formula π(x,y) at the start of the

proof.) Indeed, we can deduce from this that (as subse-

quently pointed out by turing [VI.94]) the true state-

ments about the natural numbers cannot be mechan-

ically recognized (that is, their Gödel numbers do not

form a recursive set ).

Gödel’s true but unprovable statement is important

for the foundations of mathematics, but it has no intrin-

sic interest in its own right. Later, Paris and Harring-

ton gave the first example of a mathematically sig-

nificant statement that is unprovable from Peano’s

axioms. Their statement is a variant of ramsey’s the-

orem [IV.19 §2.2]. Subsequently, many other “natural

incompletenesses” have been found.

Of course, the consistency of Peano’s axioms can be
proved in a stronger system, since we could just add the
(unprovable) consistency statement. Less trivially, since
a model of the natural numbers can be constructed
within set theory, the consistency of Peano arithmetic
can be proved from the zermelo–fraenkel axioms
[IV.22 §3.1] (known as ZFC) for set theory. Of course,
ZFC cannot prove its own consistency, but the consis-
tency of ZFC can be deduced from a yet stronger sys-
tem (for example, adding an axiom that asserts the exis-
tence of a suitably “large” cardinal number such as an
inaccessible cardinal [IV.22 §6]).

For small enough parts of mathematics, it is some-
times possible to find complete axiom systems (that
is, systems that allow one to prove every true state-
ment). For instance, this can be done for the theory of
the natural numbers with zero, the successor function,
and addition alone. Thus, multiplication is essential to
Gödel’s argument.

It is more elementary to see that Peano’s axioms are
not categorical : there are models for the axioms that
are not isomorphic to the natural numbers. Such non-
standard models of arithmetic contain infinitely large
numbers (that is, numbers that are larger than all
natural numbers).

Gödel’s theorem has been a battleground for philoso-
phers arguing about whether the human brain is a
deterministic machine (in which case, presumably, we
would not be able to prove any formally unprovable
statement). Fortunately, there is not enough space in
this article for more details!

The Goldbach Conjecture
See problems and results in additive

number theory [V.30]

V.19 Gromov’s Polynomial-Growth
Theorem

IfG is a group and g1, . . . , gk are generators ofG (mean-
ing that every element of G can be expressed as a prod-
uct of the gi and their inverses), then we can define
a Cayley graph by taking the elements of G as vertices
and joining g to h if there is some i such that h is equal
either to ggi or to gg−1

i .

For each r , let γr be the number of elements that are
at a distance of at most r from the identity: that is, the
number of elements that can be written as a “word” of
length at most r in the generators and their inverses.
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(For instance, if g = g1g4g−3
2 , then we know that g

belongs to γ5.) It turns out that if G is an infinite group,
then the rate of growth of the sizes of the sets γr can
tell one a great deal about G; this is particularly true
when the growth is less than exponential. (The growth
is always bounded above by an exponential function,
since there are at most exponentially many words of a
given length in the generators g1, . . . , gr .)

If G is an Abelian group generated by g1, . . . , gk, then
every element of γr is of the form

∑k
i=1 aigi, where

a1, . . . , ak are integers such that
∑k
i=1 |ai| � r . It fol-

lows easily that the size of γr is at most (2r +1)k (and
with a bit more effort one can improve this bound).
Thus, as r tends to infinity, the growth rate of γr is
bounded above by a polynomial of degree k in r . If G is
the free group [IV.10 §2] generated by g1, . . . , gk, then
all words of length r in the elements gi (but not their
inverses) give rise to distinct elements of G, so the size
of γr is at least kr . Thus, in this case the growth rate
is exponential. More generally, there will be an expo-
nential growth rate whenever G contains a non-Abelian
free subgroup.

These observations suggest that the growth rate is
likely to be smaller if G is more like an Abelian group.
Gromov’s theorem is a remarkably precise result along
these lines. It states that the growth rate of the sets γr
is bounded above by a polynomial in r if and only if
G has a nilpotent subgroup of finite index. This condi-
tion does indeed say thatG is somewhat like an Abelian
group, since nilpotent groups are “close to Abelian” and
a subgroup of finite index is “close to the whole group.”
For example, a typical nilpotent group is the Heisen-
berg group, which consists of all 3× 3 matrices with
0s below the diagonal, 1s on the diagonal, and integers
above the diagonal. Given any two such matrices X and
Y , the products XY and YX differ only in the top right-
hand corner, and the “error matrix”XY−YX commutes
with everything in the group. In general, a nilpotent
group is built out of Abelian groups in a controlled
manner in a finite number of steps.

A fuller discussion of the theorem, including the
exact definition of “nilpotent,” can be found in geomet-
ric and combinatorial group theory [IV.10]. Here
we highlight the fact that it is a beautiful example of a
rigidity theorem: if a group behaves roughly in the way
that a nilpotent group would (because the growth rate
of the sets γr is polynomial), then it must in fact be
related to a nilpotent group in a very precise and alge-
braic way. (See mostow’s strong rigidity theorem
[V.26] for another example of such a theorem.)

V.20 Hilbert’s Nullstellensatz

Let f1, . . . , fn be a collection of polynomials in d com-
plex variables z1, . . . , zd. Suppose that it is possible to
find another collection of polynomials g1, . . . , gn such
that

f1(z)g1(z)+ f2(z)g2(z)+ · · · + fn(z)gn(z) = 1

for every complex d-tuple z = (z1, . . . , zd). Then it fol-
lows immediately that no such d-tuple can be a root
of every single fi, since otherwise the left-hand side
would equal 0. Remarkably, the converse also holds:
that is, if there is no d-tuple for which the polynomials
fi all vanish simultaneously, then it is possible to find
polynomials gi such that the above identity holds. This
result is known as the weak Nullstellensatz.

A short (but clever) argument can be used to deduce
Hilbert’s Nullstellensatz from the weak Nullstellensatz.
This again is a statement where a condition that is obvi-
ously necessary turns out to be sufficient. Suppose that
h is another polynomial in d complex variables, that r
is a positive integer, and that the polynomial hr can be
written in the form f1g1 + f2g2 + · · ·+ fngn for some
collection of polynomials g1, . . . , gd. It follows imme-
diately that h(z) = 0 whenever fi(z) = 0 for every i.
Hilbert’s Nullstellensatz states that if h(z) = 0 when-
ever fi(z) = 0 for every i, then there must be some
positive integer r and some collection of polynomials
g1, . . . , gd such that hr = f1g1 + f2g2 + · · · + fngn.

Hilbert’s Nullstellensatz is discussed further in alge-
braic geometry [IV.4 §§5, 12].

V.21 The Independence of the
Continuum Hypothesis

The real numbers are uncountable [III.11], but do they
form the “smallest” uncountable set? Equivalently, is
it the case that if A is any set of real numbers, then
either A is countable or there is a bijection between A
and the set of all real numbers? The continuum hypoth-
esis (or CH) is the assertion that this is indeed true.
The notions of countability and uncountability were
invented by cantor [VI.54], who was also the first to
formulate CH. He tried hard to prove or disprove it, as
did many others after him, but nobody succeeded.

Gradually, mathematicians came to entertain the idea
that CH might be “independent” of normal mathe-
matics: that is, independent of the usual zfc axioms
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[IV.22 §3.1] of set theory. This would mean that it could
be neither proved nor disproved from the ZFC axioms.

The first result in this direction was due to gödel
[VI.92], who showed that CH could not be disproved
from the usual axioms. In other words, one could not
reach a contradiction by assuming CH. To do this,
he showed that inside every model of set theory
[IV.22 §3.2] there is a model in which CH holds. This
model is called the “constructible universe.” Roughly
speaking, it consists just of those sets that “have to
exist” if the axioms are true. So, in this model, the set
of reals is as small as it could possibly be. The “smallest
uncountable size” is usually denoted ℵ1, and in Gödel’s
construction the reals appear in ℵ1 stages, with only
countably many reals appearing at each stage. From
this one can deduce that the number of reals is ℵ1,
which is precisely the assertion of CH.

The other direction had to wait thirty years, until Paul
Cohen invented the method of forcing. How would we
make CH false? Starting from some model of set theory
(in which CH might well hold), we would like to “add”
some reals to it. Indeed, we would like to add enough
that there are now more than ℵ1 of them. But how do
we “add” a real? We need to ensure that what we end up
with is still a model of set theory, which is hard enough,
but also that when we add new reals we do not alter the
value of ℵ1 (since otherwise the statement “the num-
ber of reals is ℵ1” may still be true in the new model).
This is an extremely complicated task, both conceptu-
ally and technically. See set theory [IV.22] for more
details about how it is carried out.

V.22 Inequalities

Let x and y be two nonnegative real numbers. Then
(
√
x−√y)2 = x+y−2

√xy is a nonnegative real num-
ber, from which it follows that 1

2 (x+y) � √xy . That is,
the arithmetic mean of x and y is at least as big as the
geometric mean. This conclusion is a very simple exam-
ple of a mathematical inequality; its generalization to
n numbers is called the AM–GM inequality.

In any branch of mathematics that has even the
slightest flavor of analysis, inequalities will be of
great importance: as well as analysis itself, this
includes probability, and parts of combinatorics, num-
ber theory, and geometry. Inequalities are less promi-
nent in some of the more abstract parts of analy-
sis, but even there one needs them as soon as one
wishes to apply the abstract results. For instance, one
may not always need an inequality to prove a theorem

about continuous linear operators [III.52] between

banach spaces [III.64], but the statement that some

specific linear operator between two specific Banach

spaces is continuous is an inequality, and often a very

interesting one. We do not have space to discuss more

than a small handful of inequalities in this article, but

we shall include some of the most important ones in

the toolbox of any analyst.

Jensen’s inequality is another fairly simple but use-

ful inequality. A function f : R → R is called convex

if f(λx + µy) � λf(x) + µf(y) whenever λ and µ
are nonnegative real numbers with λ + µ = 1. Geo-

metrically, this says that all chords of the graph of the

function lie above the graph. A straightforward induc-

tive argument can be used to show that this property

implies the same property for n numbers:

f(λ1x1 + · · · + λnxn) � λ1f(x1)+ · · · + λnf(xn)
whenever all the λi are nonnegative and λ1+· · ·+λn =
1. This is Jensen’s inequality.

The second derivative of the exponential function

[III.25] is positive, from which it follows that the expo-

nential function itself is convex. If a1, . . . , an are posi-

tive real numbers and we apply Jensen’s inequality to

the numbers xi = log(ai), then we find, using standard

properties of exponentials and logarithms [III.25 §4],

that

aλ1
1 · · ·aλnn � λ1a1 + · · · + λnan.

This is called the weighted AM–GM inequality. When all

the λi are equal to 1/n it reduces to the usual AM–GM

inequality. Applying Jensen’s inequality to other well-

known convex functions produces several other well-

known inequalities. For instance, if we apply it to the

function x2, we obtain the inequality

(λ1x1 + · · · + λnxn)2 � λ1x2
1 + · · · + λnx2

n, (1)

which can be interpreted as saying that if X is a ran-

dom variable [III.73 §4] on a finite sample space, then

(EX)2 � EX2.

The Cauchy–Schwarz inequality is perhaps the most

important inequality in all of mathematics. Suppose

that V is a real vector space with an inner product

[III.37] 〈· , ·〉 on it. One of the properties of an inner

product is that 〈v,v〉 � 0 for every v ∈ V , with

equality if and only if v = 0. Let us write ‖v‖ for

〈v,v〉1/2. If x and y are any two vectors in V with

‖x‖ = ‖y‖ = 1, then 0 � ‖x −y‖2 = 〈x −y,x −y〉 =
〈x,x〉 + 〈y,y〉 − 2〈x,y〉 = 2− 2〈x,y〉. It follows that

〈x,y〉 � 1 = ‖x‖‖y‖. Moreover, equality holds only if
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x = y . We can obtain a general pair of vectors by mul-
tiplying x by λ and y by µ, for some nonnegative real
numbers λ and µ. Then both sides of the inequality
scale up by a factor of λµ, so we can conclude that
the inequality 〈x,y〉 � ‖x‖‖y‖ holds in general, with
equality if and only if x and y are proportional.

Particular inner-product spaces lead to special cases
of this inequality, which are themselves often referred
to as the Cauchy–Schwarz inequality. For instance, if
we take the space Rn with the inner product 〈a,b〉 =∑n
i=1 aibi, then we obtain the inequality

n∑
i=1

aibi �
( n∑
i=1

a2
i

)1/2( n∑
i=1

b2
i

)1/2
. (2)

It is not hard to deduce a similar inequality for complex
scalars: one needs to replace a2

i and b2
i by |ai|2 and

|bi|2 on the right-hand side. It is also not too hard to
prove that inequality (2) is equivalent to the inequality
(1) above.

Hölder’s inequality is an important generalization of
the Cauchy–Schwarz inequality. Again it has several
versions, but the one that corresponds to inequality (2)
is

n∑
i=1

aibi �
( n∑
i=1

|ai|p
)1/p( n∑

i=1

|bi|q
)1/q

,

where p belongs to the interval [1,∞] and q is the con-
jugate index of p, which is defined to be the number
that satisfies the equation (1/p)+(1/q) = 1. (We inter-
pret 1/∞ to be 0.) If we write ‖a‖p for the quantity
(
∑n
i=1 |ai|p)1/p , then this inequality can be rewritten in

the succinct form 〈a,b〉 � ‖a‖p‖b‖q.
It is a straightforward exercise to find, for each

sequence a, another (nonzero) sequence b such that
equality occurs in the above inequality. Also, both sides
of the inequality scale in the same way if you mul-
tiply b by a nonnegative scalar. It follows that ‖a‖p
is the maximum of 〈a,b〉 over all sequences b such
that ‖b‖q = 1. Using this fact, it is easy to verify that
the function a �→ ‖a‖p satisfies Minkowski’s inequality :
‖x +y‖p � ‖x‖p + ‖y‖p .

This gives some idea of why Hölder’s inequality is so
important. Once one has Minkowski’s inequality, it is
very easy to check that ‖·‖p is (as the notation suggests)
a norm [III.64] on Rn. This is an even more basic exam-
ple of the phenomenon mentioned at the beginning of
the article: just to show that a certain normed space
is a normed space, we have had to prove an inequality
about real numbers. In particular, looking at the case
p = 2, we see that the entire theory of hilbert spaces
[III.37] depends on the Cauchy–Schwarz inequality.

Minkowski’s inequality is a particular case of the tri-
angle inequality, which states that if x, y , and z are
three points in a metric space [III.58], then d(x, z) �
d(x,y) + d(y, z), where d(a,b) denotes the distance
between a and b. When put like this, the triangle
inequality is a tautology, since it is one of the axioms
of a metric space. However, the statement that a partic-
ular notion of distance actually is a metric is far from
vacuous. If our space is Rn and we define d(a,b) to be
‖a− b‖p , then Minkowski’s inequality is easily seen to
be equivalent to the triangle inequality for this notion
of distance.

The inequalities above have natural “continuous
analogues” as well. For example, here is a contin-
uous version of Hölder’s inequality. For two func-
tions f and g defined on R, let 〈f , g〉 be defined to
be

∫∞
−∞f(x)g(x)dx, and write ‖f‖p for the quantity

(
∫∞
−∞ |f(x)|p)1/p . Then, once again, 〈f , g〉 � ‖f‖p‖g‖q,

where q is the conjugate index of p. Another example
is a continuous version of Jensen’s inequality, which
states, in a continuous setting, that if f is convex and
X is a random variable, then f(EX) � Ef(X).

In all the inequalities we have so far mentioned, we
have been comparing two quantities A and B, and it
has been easy to identify the extreme cases where the
ratio of A to B is maximized. However, not all inequal-
ities are like this. Consider, for instance, the follow-
ing two quantities associated with a sequence of real
numbers a = (a1, a2, . . . , an). The first is the norm
‖a‖2 = (

∑n
i=1 a

2
i )

1/2. The second is the average of
|∑ni=1 εiai| over all the 2n sequences (ε1, ε2, . . . , εn)
such that each εi is 1 or −1. (In other words, for each
i you randomly decide whether to multiply ai by −1
or not, add up the results, and take the expected abso-
lute value of the sum.) It is not the case that the first
quantity is always less than the second. For instance,
let n = 2, and let a1 = a2 = 1. Then the first quantity is√

2 and the second is 1. However, Khinchin’s inequality
(or to be more accurate an important special case of
Khinchin’s inequality) is the remarkable statement that
there is a constantC such that the first quantity is never
more than C times the second. It is not hard to prove,
using the inequality EX2 � (EX)2, that the first quan-
tity is always at least as big as the second; so the two
rather different looking quantities are in fact “equiva-
lent, up to a constant.” But what is the best constant?
In other words, how much bigger can the first quantity
be than the second? This question was not answered
until 1976, by Stanislaw Szarek, over fifty years after
Khinchin proved the original inequality. The answer
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turns out to be that the example given earlier is the
extreme one: the ratio can never exceed

√
2.

This situation is typical. Another famous inequality
for which the best constant was discovered much
later than the inequality itself is the Hausdorff–Young
inequality, which relates norms of functions with
norms of their fourier transforms [III.27]. Suppose
that 1 � p � 2, and that f is a function from R to C

with the property that the norm

‖f‖p =
(∫∞
−∞
|f(x)|dx

)1/p

exists and is finite. Let f̂ be the Fourier transform
of f and let q be the conjugate index of p. Then
‖f̂‖q � Cp‖f‖p for some constant Cp that depends
on p only (and not on f ). Again, it was an open prob-
lem for many years to determine the best constant
Cp . Some idea of why it might have been difficult can
be gleaned from the fact that the “extreme” functions
in this case are Gaussians: that is, functions of the
form f(x) = e−(x−µ)2/2σ 2

. A sketch of a proof of the
Hausdorff–Young inequality can be found in harmonic
analysis [IV.11 §3].

There is an important class of inequalities known
as geometric inequalities, where the quantities that are
being compared are parameters associated with geo-
metric objects. A famous example of such an inequality
is the Brunn–Minkowski inequality, which states the fol-
lowing. Let A and B be two subsets of Rn, and define
A+ B to be the set {x +y : x ∈ A, y ∈ B}. Then

(vol(A+ B))1/n � vol(A)1/n + vol(B)1/n.

Here, vol(X) denotes the n-dimensional volume (or,
more formally, the lebesgue measure [III.57]) of the
set X. The Brunn–Minkowski inequality can be used
to prove the equally famous isoperimetric inequality
in Rn (which is one of a large class of isoperimet-
ric inequalities). Informally, this states that, of all sets
with a given volume, the one with the smallest surface
area is a sphere. An explanation of why this follows
from the Brunn–Minkowski inequality can be found in
high-dimensional geometry and its probabilistic
analogues [IV.26 §3].

We finish this brief sample with one further in-
equality, the Sobolev inequality, which is important in
the theory of partial differential equations. Suppose
that f is a differentiable function from R2 to R. We
can visualize its graph as a smooth surface in R3 lying
above the xy-plane. Suppose also that f is compactly
supported, which means that there exists an M such
that f(x,y) = 0 if the distance from (x,y) to (0,0) is

greater thanM . We would now like to bound the size of
f , as measured by some Lp norm, in terms of the size of
its gradient [I.3 §5.3] ∇f , as measured by some other
Lp norm. The Lp norm of a function F is defined here
as

‖f‖p =
(∫

R2
|F(x,y)|p dx dy

)1/p
.

In one dimension, it is clear that no such bound
is possible. For instance, we could have a differ-
entiable function that was 1 everywhere on the
interval [−M,M], 0 everywhere outside the interval
[−(M + 1),M + 1], and gently decaying from 1 to 0 in
between. Then if we widened the interval we would
not change the size of the derivative: we would just
move the two nonzero parts of the derivative further
apart. On the other hand, using this widening we could
increase the size of f as much as we liked. However,
we cannot do this sort of construction in two dimen-
sions, because now the “boundary” of the function
increases as the size of the function increases. The
Sobolev inequality tells us that if 1 � p < 2 and
r = 2p/(2 − p), then ‖f‖r � Cp‖∇f‖p . To see why
this might be reasonable, consider the case p = 1, so
that r = 2. Let f be a function that is 1 everywhere
inside the circle of radius M about the origin and 0
everywhere outside the circle of radius M + 1. Then
as M increases, the norm ‖f‖2 increases in proportion
to M (since ‖f‖2

2 is approximately equal to the area of
the circle of radius M), and so does ‖∇f‖1 (since it is
roughly proportional to the length of the boundary of
the circle). As this informal argument suggests, there
are close connections between the Sobolev inequality
and the isoperimetric inequality in the plane. And like
the isoperimetric inequality, the Sobolev inequality has
an n-dimensional version for each n: it is the same
result, except that now the condition is that 1 � p < n,
and r is equal to np/(n− p).

V.23 The Insolubility of the
Halting Problem

What does it mean to understand a certain area of math-
ematics completely? One possible answer is that you
understand it when you can solve its problems mechan-
ically. Consider, for instance, the following question.
Jim is half the age of his mother, and in twelve years’
time he will be three-fifths of her age. How old is his
mother now? For a child who is just old enough to
understand the concept of “three-fifths,” this is likely to
be an impossibly difficult problem. A bright and slightly
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older child may be able to solve it after some hard
thought, which will probably include a certain amount
of trial and error. But for anybody who has learned
how to translate such problems into equations and who
knows how to solve two simultaneous linear equations,
the problem is utterly routine: let x be Jim’s age and y
his mother’s; then the problem tells us that 2x = y
and 5(x+12) = 3(y +12); the second equation can be
rearranged to give 3y − 5x = 24; substituting y = 2x
gives x = 24, so y = 48.

The more mathematics one learns, the more one finds
that problems that once seemed to be difficult and to
require ingenuity have become routine in this sort of
way, and it is eventually tempting to ask whether all
of mathematics might, ultimately, be reducible to a
mechanical procedure. And even if you think that that
is a bit much to hope for, you can still ask the ques-
tion about certain natural classes of problems, such as
simultaneous linear equations. Perhaps there is always
a mechanical procedure for solving the problems in
any sufficiently “natural” class, even if there is not nec-
essarily a systematic way of finding the mechanical
procedure.

One class of problems that has been intensively stud-
ied for several centuries is that of Diophantine equa-
tions, which are equations in one or more variables
where one stipulates that the solutions should be inte-
gers. The most famous Diophantine equation is the
Fermat equation xn + yn = zn (see fermat’s last
theorem [V.12]), but this is somewhat complicated
because one of the variables,n, appears as an exponent.
Suppose we restrict attention to polynomial equations,
such asx2−xy+y2 = 157. Is there a systematic way of
telling whether such an equation has integer solutions?

The left-hand side of the equationx2−xy+y2 = 157
is equal to (x2+y2+ (x−y)2)/2. Therefore, any solu-
tion (x,y) must satisfy x2 + y2 � 314, which makes
it a short task to search through all possibilities until
one discovers the solution x = 12 and y = 13 (or vice
versa). However, an exhaustive search is not always pos-
sible: consider, for example, the equation 2x2−y2 = 1.
This is a special case of the Pell equation, discussed
in algebraic numbers [IV.1 §1]. The Pell equation can
be solved systematically, with the help of continued
fractions [III.22], and this leads to a systematic solu-
tion of all polynomial equations of degree up to 2 in
two variables.

By the end of the nineteenth century, these and
many other Diophantine equations had been com-
pletely solved, but there was no single overarching

method that dealt with all of them. This state of affairs
prompted hilbert [VI.63] to include, as the tenth in
his famous list of twenty-three unsolved problems, the
question of whether there was a single, universal pro-
cedure for solving all polynomial Diophantine equa-
tions in any number of variables. Later, in 1928, he
asked the more general question alluded to earlier: is
there a universal procedure for determining the truth
or falsity of any mathematical statement? This question
became known as the Entscheidungsproblem (which
means “decision problem” in German).

Hilbert expected, or at least hoped, that the answers
to both questions would be yes. In other words, he
hoped that the mathematicians of his day were in the
position of the child who has not yet learned how to
solve simultaneous equations. Perhaps a new age was
dawning in which it would be possible, at least in princi-
ple, to solve all mathematical problems systematically
and without relying on native wit.

The evidence in favor of such a view was not very
strong: although problems of some kinds could be
solved fully systematically, others, including Diophan-
tine equations, stubbornly resisted, and the role of
ingenuity in mathematical research appeared to be as
important as ever. But if one wanted to give a negative
answer to Hilbert’s questions, then one faced a major
challenge: in order to prove rigorously that there is
no systematic procedure for accomplishing a particu-
lar task, one has to be absolutely clear about what a
“systematic procedure” actually is.

Nowadays there is an easy answer to this: a system-
atic procedure is anything that you can program a com-
puter to do. (Strictly speaking, this is an oversimplifi-
cation, because one also makes the idealizing assump-
tion that the computer has unlimited storage space.)
Our feeling that we do not have to think too hard to
solve simultaneous equations is reflected in the fact
that we can devise a computer program to do it for us
(though if we want the program to be fast and numer-
ically robust, we will face very interesting problems:
see numerical analysis [IV.21 §4]). However, Hilbert
asked the questions before computers existed, so it
was a remarkable achievement when in 1936 church
[VI.89] and turing [VI.94] independently managed to
formalize the notion of what we now call an algo-
rithm [IV.20 §1]. That is, they each gave a precise def- PUP: Tim prefers

this sentence and
the next as they
are. OK?

inition of the notion of an algorithm. Their definitions
were quite different, but later shown to be equivalent,
which means that anything that can be done by an algo-
rithm in Church’s sense can be done by an algorithm
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in Turing’s sense, and vice versa. Turing’s formaliza-
tion, which had a big influence on the design of modern
computers, is discussed in computational complex-
ity [IV.20 §1.1], while Church’s is described in algo-
rithms [II.4 §3.2], but for the purposes of this article we
shall use the anachronistic definition with which this
paragraph began.

It turns out that once one has any sufficiently precise
notion of “algorithm,” one is just a few short steps away
from a negative answer to Hilbert’s Entscheidungsprob-
lem. To see this, imagine that L is some programming
language (such as Pascal or C++). Given any string of
symbols, we can ask of it the following question: if I
present that string of symbols to my computer as a pro-
gram in L, will the program run forever, or will it even-
tually stop? This is called the halting problem. (Note
that the word “problem” really means “class of prob-
lems.”) The halting problem may not seem very math-
ematical, but certain instances of it certainly are. For
example, suppose that after a quick look at a program
you realize that it does the following. In one portion of
the memory it stores an even number n, which at the
beginning is set to 6. It then checks for every odd num-
berm less thannwhetherm andn−m are both prime.
If the answer is yes for somem, then it adds 2 to n and
repeats. If the answer is no for allm, then it halts. This
program will halt if and only if the Goldbach conjec-
ture (see problems and results in additive number
theory [V.30]) is false.

Turing proved that there is no systematic procedure
for solving the halting problem. (Church proved an
analogous result for his notion of recursive functions.)
Let us see how Turing’s argument works for the lan-
guage L. In this case, it shows that there is no system-
atic procedure for recognizing which strings of sym-
bols form programs in L that halt, and which do not.
The proof is a reductio ad absurdum, so we begin by
assuming that there is such a procedure. Let us call it P .
Suppose that L is like most computer languages, in that
a typical program asks for an input, which affects its
subsequent behavior. Then P will be able to tell, given
any pair of strings (S, I), whether S is a program in L
that halts if the input is I.

Now let us create a new procedure Q out of P . Given
any string S, we start by getting Q to run P on the pair
(S, S). If P judges that S does not halt when presented
with itself as input, we then cause Q to halt. But if P
judges that S does halt when presented with itself as
input, then we artificially send Q into an endless loop,
so that it does not halt. (If S is not a valid program in L,

then let us say that Q halts—it does not really matter
though.) To summarize, if S halts for input S, then Q
does not halt for S, and if S does not halt for S, then Q
does halt for S.

But now let us suppose that S is the program for Q
itself. Does Q halt with input S? If it does, then S halts
with input S, so Q does not halt. If it does not, then
S does not halt with input S, so Q does halt. This is
a contradiction, and therefore the procedure P out of
which Q was built could not have existed.

That solves the general version of Hilbert’s prob-
lem: there is no algorithm that will determine the truth
or falsity of arbitrary mathematical statements. But
it does so by constructing, for any given algorithm,
a rather artificial statement. We do not yet have an
answer to the question of what happens if we look
at more specific and more natural classes of state-
ments, such as that a given Diophantine equation has
a solution.

Remarkably, however, specific questions of this kind
can often be shown to be equivalent to the general ques-
tion, by a technique known as encoding. For example,
there is no algorithm that will take as its input a set
of polygonal tiles (suitably represented) and tell you
whether it is possible to tile the plane using copies of
just those tiles. How do we know this? Well, given any
algorithm, there is a clever way of devising a set of tiles
(this is the encoding) that will tile the plane if and only
if the algorithm halts. Therefore, if there were an algo-
rithm for determining whether the tiles could tile the
plane, then there would be an algorithm for solving the
halting problem—but there is not.

Another famous example of a more specific problem
for which there is no algorithm is the word problem
for groups. Here you are given a set of generators and
relations for a group and asked whether the group is
trivial—that is, whether it contains just the identity.
Again, an algorithm that could decide this would give
us an algorithm that could solve the halting problem,
so there cannot be one. The encoding process used to
prove this is much more difficult than it is for tiling the
plane: the insolubility of the word problem for groups
is a famous theorem proved by Pyotr Novikov in 1952.
For a much fuller explanation of this problem and its
solution, see geometric and combinatorial group
theory [IV.10].

Finally, what about Hilbert’s tenth problem? This has
become another famous and very hard theorem, due to
Yuri Matiyasevitch in 1970, who built on work of Mar-
tin Davis, Hilary Putnam, and Julia Robinson. Matiya-
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sevitch managed to produce a system of ten equations,
involving two parametersm andn, that could be solved
in integers if and only ifmwas the 2nth Fibonacci num-
ber. From Robinson’s work it followed that, given any
algorithm with integer inputs, there was a system of
Diophantine equations, involving a parameter q, that
could be solved if and only if the algorithm failed to
halt at q. That is, any instance of the halting problem
can be encoded as a system of Diophantine equations,
so there is no general algorithm for deciding whether
Diophantine equations can be solved.

Different people draw different morals from these
results. In the opinion of some mathematicians, they
show that there will always be a place for human cre-
ativity in mathematics, however powerful the com-
puters of the future might be. Others maintain that
although we now know that we cannot systematically
solve all problems in mathematics, the effect on most
mathematics is very slight: one should be aware that
certain kinds of problems are sometimes equivalent to
the halting problem, and that is it. Still others point
out that it is often easy to devise an algorithm to solve
a problem but much harder to make it efficient. This
issue is discussed in great detail in computational
complexity [IV.20].

Turing’s argument for the insolubility of the halt-
ing problem is closely related to gödel’s theorem
[V.18], and both proofs use diagonal arguments, which
are discussed in countable and uncountable sets
[III.11].

V.24 The Insolubility of the Quintic
Martin W. Liebeck

Every student will be familiar with the formula for the
roots of a quadratic polynomial ax2 + bx + c, namely
(−b ±√b2 − 4ac)/2a. Perhaps less familiar is the fact
that there is also a formula for the roots of a cubic: write
the cubic asx3+ax2+bx+c, and make the substitution
y = x + 1

3a to rewrite it in the form y3 + hy + k. The
roots of this are then of the form

3

√
1
2 (−k+

√
k2 + 4h3)+ 3

√
1
2 (−k−

√
k2 + 4h3).

While the quadratic formula was known to the Greeks,
the cubic formula was not found until the sixteenth
century. In the same century a formula for the roots
of quartic (degree 4) polynomials was also found.
The formulas for quadratics, cubics, and quartics all
arise by applying a sequence of arithmetic opera-
tions (addition, subtraction, multiplication, division)

together with extraction of roots (square roots, cube
roots, and so on) to the coefficients of the original poly-
nomial. Such a formula is called a radical expression for
the roots.

The next step, naturally enough, was the quintic (i.e.,
polynomial of degree 5). However, several hundred
years passed without anyone finding a radical formula
for the roots of a general quintic polynomial.

There was a good reason for this. There is no such
formula. Nor is there a formula for polynomials of
degree greater than 5. This fact was first established
in the early nineteenth century by abel [VI.33] (who
died aged twenty-six), after which galois [VI.41] (who
died aged twenty-one) built an entirely new theory of
equations that not only explained the nonexistence of
formulas but laid the foundations for a whole edifice
of algebra and number theory known as Galois theory,
a major area of modern-day research.

One of the key ideas of Galois was to associate with
any polynomial f = f(x) a group [I.3 §2.1] Gal(f ) (the
Galois group of f ), which is a finite group that per-
mutes the roots of f . This group is defined in terms
of certain fields [I.3 §2.2], which for these purposes
can be thought of as subsets F of the complex num-
bers [I.3 §1.5] C having the property that if a, b are
any two elements of F , then all the numbers a + b,
a − b, ab, and a/b also lie in F (where we assume
that b 	= 0 in the last case to avoid dividing by 0).
The standard mathematical language for this property
is to say that F is “closed under” the usual arithmetic
operations of addition, subtraction, multiplication, and
division. For example, the rationals Q form a field, as
does Q(

√
2) = {a + b√2 : a,b ∈ Q} (this is clearly

closed under addition, subtraction, and multiplication,
and is also closed under division since 1/(a + b√2) =
a/(a2−2b2)−b√2/(a2−2b2)). A polynomial f(x) of
degree n with rational coefficients has n complex roots
by the fundamental theorem of algebra [V.15]—
call them α1, . . . , αn. The splitting field of f is defined
to be the smallest field containing Q and all the αi,
and is written as Q(α1, . . . , αn). For example, the poly-
nomial x2 − 2 has roots ±√2, so its splitting field is
Q(
√

2), defined above. Less trivially, x3 − 2 has roots
α, αω, αω2, where α = 21/3, the real cube root of 2,
and ω = e2π i/3, so its splitting field is Q(α,ω), which
consists of all complex numbers a1 + a2α + a3α2 +
a4ω + a5αω + a6α2ω with ai ∈ Q. (Notice that we
do not have to include ω2 in such expressions since
ω3 = 1, so (ω − 1)(ω2 +ω + 1) = ω3 − 1 = 0, which
implies that ω2 = −ω− 1.)
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Let E = Q(α1, . . . , αn) be the splitting field of our
polynomial f . An automorphism of E is a bijection
φ : E → E that preserves addition and multiplication—
in other words, φ(a+ b) = φ(a)+φ(b) and φ(ab) =
φ(a)φ(b) for all a,b ∈ E. Such a function necessarily
also preserves subtraction and division, and fixes every
rational number. Denote by Aut(E) the set of all auto-
morphisms of E. For example, when E = Q(

√
2), any

automorphism φ satisfies

2 = φ(2) = φ(√2
√

2) = φ(√2)φ(
√

2) = φ(√2)2,

and therefore φ(
√

2) = √2 or −√2. In the first case
φ(a + b√2) = a + b√2 for all a,b ∈ Q, while in
the second φ(a + b√2) = a − b√2. Both of these
are automorphisms of E; call them φ1, φ2, so that
Aut(E) = {φ1,φ2}.

The composition φ ◦ψ of two automorphisms φ, ψ
of E is again an automorphism, and so is the inverse
function φ−1, while the identity function ι defined by
ι(e) = e for all e ∈ E is also an automorphism. Since
composition of functions is an associative operation,
it follows that Aut(E) is a group under composition.
Define the Galois group Gal(f ) of our polynomial f(x)
with splitting field E to be this group Aut(E). Thus, for
example, Gal(x2 − 2) = {φ1,φ2}. Notice that φ1 is the
identity ι, while φ2

2 = φ2 ◦ φ2 = φ1, so this is just a
cyclic group of order 2. Similarly, if f(x) = x3 − 2,
with splitting field E = Q(α,ω) as above, then any
φ ∈ Aut(E) satisfies φ(α)3 = φ(α3) = φ(2) = 2, and
therefore φ(α) = α, αω, or αω2; likewise φ(ω) = ω
or ω2. Once φ(α) and φ(ω) are specified, φ is com-
pletely determined (sinceφ(a1+a2α+· · ·+a6α2ω) =
a1+a2φ(α)+· · ·+a6φ(α)2φ(ω)), so there are just six
possibilities for the automorphism φ. It turns out that
each of these is indeed an automorphism, and therefore
Gal(x3 − 2) is a group of order 6. In fact, this group
is isomorphic to the symmetric group [III.70] S3, as
can be seen by considering each automorphism as a
permutation of the three roots of f(x).

Now that the Galois group is defined, it is possible
to state some of Galois’s fundamental results that lead
to the insolubility of the quintic. Each subgroup H of
G = Gal(f ) has a fixed field H†, which is defined to be
the set of all numbers a ∈ E such that φ(a) = a for
all φ ∈ H. Galois proved that the association between
H and H† gives a one-to-one correspondence between
subgroups of G and fields which lie between Q and
E (the so-called intermediate subfields of E). The con-
dition that f(x) has a radical formula for its roots
leads to certain special kinds of intermediate subfields,

and hence to certain special subgroups of G, and even-
tually to Galois’s most famous theorem: the polyno-
mial f(x) has a radical formula for its roots if and
only if its Galois group Gal(f ) is a soluble group. (This
means that G = Gal(f ) has a sequence of subgroups
1 = G0 < G1 < · · · < Gr = G such that for each i, Gi
is a normal subgroup [I.3 §3.3] of Gi+1 and the factor
group Gi+1/Gi is Abelian.)

It follows from Galois’s theorem that to demonstrate
the insolubility of the quintic, it is enough to produce a
quintic f(x) such that Gal(f ) is not a soluble group. An
example of such a quintic is f(x) = 2x5−5x4+5: one
can show first that Gal(f ) is isomorphic to the symmet-
ric group S5; and second that S5 is not a soluble group.
Here is a brief sketch of how the argument goes. First
one establishes that f(x) is an irreducible polynomial
(i.e., is not the product of two rational polynomials of
smaller degree) with five distinct complex roots. Thus,
as observed above, Gal(f ) can be regarded as a sub-
group of S5 that permutes the five roots. By sketch-
ing the graph of f(x) one can easily see that three of
its roots are real and that the other two, call them α1

and α2, are complex conjugates of each other. Since
the complex conjugation map z → z̄ always gives an
automorphism in Gal(f ), it follows that Gal(f ) is a
subgroup of S5 that contains a 2-cycle, namely (α1α2).
Another basic general fact is that the Galois group of an
irreducible polynomial permutes the roots transitively,
meaning that for any two roots αi, αj there exists an
automorphism in Gal(f ) that sends αi to αj . Thus, our
group Gal(f ) is a subgroup of S5 that permutes the five
roots transitively and contains a 2-cycle. At this point
some fairly elementary group theory shows that Gal(f )
must actually be the whole of S5. Finally, the fact that
S5 is not a soluble group follows easily from the fact
that the alternating group A5 is a non-Abelian simple
group (i.e., it has no normal subgroups apart from the
identity subgroup and A5 itself).

These ideas can be extended to produce polynomials
of any degree n � 5 that have Galois group Sn, and
that are therefore not soluble by radicals. The reason
this cannot be done for quartics, cubics, and quadratics
is that S4 and all its subgroups are soluble groups.

V.25 Liouville’s Theorem and
Roth’s Theorem

One of the most famous theorems in mathematics is the
statement that

√
2 is irrational. This means that there

is no pair of integers p and q such that
√

2 = p/q, or
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equivalently that the equation p2 = 2q2 has no integer
solutions apart from the trivial solution p = q = 0. The
argument that proves this can be considerably general-
ized, and, in fact, if P(x) is any polynomial with integer
coefficients and leading coefficient 1, then all its roots
are either integers or irrational numbers. For example,
since x3 + x − 1 is negative when x = 0 and positive
when x = 1 it must have a root strictly between 0 and 1.
This root is not an integer, so it must be irrational.

Once one has proved that a number is irrational, it
may seem as though not much more can be said. How-
ever, this is very far from true: given an irrational num-
ber, one can ask how close it is to being rational, and
fascinating and extremely difficult questions arise as
soon as one does so.

It is not immediately obvious what this question
means, since every irrational number can be approx-
imated as closely as you like by rational numbers.
For example, the decimal expansion of

√
2 begins

1.414213 . . . , which tells us that
√

2 is within 1/100 000
of the rational number 141 421/100 000. More gener-
ally, for any positive integer qwe can letp be the largest
integer such that p/q <

√
2, and then p/q will be within

1/q of
√

2. In other words, if we want an approximation
to
√

2 with accuracy 1/q, we can obtain it if we use a
denominator of q.

However, we can now ask the following question: are
there denominators q for which one can one obtain an
accuracy much better than 1/q? The answer turns out
to be yes. To see this, letN be a positive integer and con-
sider the numbers 0,

√
2,2
√

2, . . . , N
√

2. Each of these
can be written in the formm+α, wherem is an integer
and α, the fractional part, lies between 0 and 1. Since
there are N+1 numbers, at least two of their fractional
parts must be within 1/N of each other. That is, we
can find integers r < s between 0 and N such that if we
write r

√
2 = n+α and s

√
2 =m+β, then |α−β| � 1/N .

Thus, if we set γ = α−β, we have (s−r)√2 = n−m+γ
and |γ| � 1/N . If we now let q = s − r and p = n−m,
then

√
2 = p/q + γ/q, so |√2 − p/q| � 1/qN . Since

N � q, 1/qN � 1/q2, so for at least some positive
integers q we can achieve an accuracy of 1/q2 using
a denominator of q.

A different argument shows that we cannot do sub-
stantially better than this. Let p and q be any two posi-
tive integers. Since

√
2 is irrational, p2 and 2q2 are dis-

tinct positive integers, which implies that |p2 − 2q2| �
1. On factorizing, we deduce that |p−q√2|(p+q√2) �
1. We can now divide through by q2 and obtain the
inequality |p/q − √2|(p/q + √2) � 1/q2. We may

as well assume that p/q is less than 2, since other-
wise it is not a good approximation to

√
2. But then

p/q + √2 is less than 4, so the inequality implies that
|p/q−√2| � 1/4q2. Thus, with a denominator of q we
cannot achieve an accuracy better than 1/4q2.

A generalization of this argument proves Liouville’s
theorem: if x is an irrational root of a polynomial of
degree d and p and q are integers, then |p/q−x| can-
not be substantially smaller than 1/qd. When x = √2
this reduces to what we have just shown, since then
x2 − 2 = 0 and we can set d = 2. However, from
Liouville’s theorem we know many similar facts, such
as that |p/q − 3

√
2| cannot be substantially smaller

than 1/q3.

Roth’s theorem, proved in 1955, is the astonishing
assertion that the power d that appears in Liouville’s
theorem can be improved—almost as far as 2. To be
precise, given any irrational root x of any polynomial,
and any number r > 2, there is a constant c > 0 with
the property that |p/q − x| is always at least as big
as c/qr . (The proof gives no information whatsoever
about c beyond the fact that it is positive. It is a major
open problem to understand something about how c
depends on r and x.)

To see why this is a much deeper result than Liou-
ville’s theorem, consider the example of 3

√
2. Underlying

the proof that |p/q − 3
√

2| is never much smaller than
1/q3 is the simple fact that p3 and 2q3 are distinct inte-
gers and therefore differ by at least 1. In order to prove
a substantially better result such as Roth’s theorem,
one must show much more: that p3 and 2q3 differ by
an amount that grows as p and q grow. For example, if
one wishes to prove Roth’s theorem when r = 5

2 , it is
necessary to show that p3 and 2q3 must always differ
by an amount comparable to or greater than

√p, and it
is far from obvious why this should be so.

The Mordell Conjecture
See rational points on curves and

the mordell conjecture [V.32]

V.26 Mostow’s Strong Rigidity
Theorem
David Fisher

1 What Are Rigidity Theorems?

A typical rigidity theorem is a statement that some class
of objects is much smaller than one might expect. To
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make this notion clear, let us look at some examples of
moduli spaces [IV.8] that might lead us to expect that
spaces of a certain type would in general be large.

2 Some Moduli Spaces

A metric [III.58] on an n-dimensional manifold
[I.3 §6.9] is called flat if it is locally isometric to the
usual metric on the Euclidean space Rn. In other words,
every point x in the manifold is contained in a neigh-
borhood Nx such that there is a distance-preserving
bijection from Nx to a subset of Rn. For our first exam-
ple, we shall consider flat metrics on a torus. We shall
consider just the two-dimensional torus, but the phe-
nomena we shall discuss occur in higher dimensions as
well.

The simplest way of putting a flat metric on the two-
dimensional torus T2 is to view it as the quotient
[I.3 §3.3] of R2 by a discrete subgroup, or lattice, that is
isomorphic to Z2. In fact, it is not too hard to see that
every flat metric arises in essentially this way. How-
ever, there is a choice involved: the choice of which lat-
tice to take. An obvious choice is Z2 itself. But one can
also take any invertible linear transformation A, apply
it to Z2, and then define the torus as R2/A(Z2), which
gives rise to another metric. A natural question to ask
is, when do two choices of A give rise to the same met-
ric? Usually, one studies only the cases when the deter-
minant [III.15] of A is 1, since it is easy to deduce from
these what happens in general. The group of all such
linear maps is called SL2(R).

If A is orthogonal, then it just rotates the lattice Z2

and therefore A(Z2) gives rise to the same metric as
Z2. What is slightly less obvious is that there are other
maps A that give rise to this metric as well, namely all
maps of determinant 1 whose matrices with respect to
the standard basis of R2 have integer entries. The group
of all these maps is called SL2(Z). IfA belongs to SL2(Z),
then the reason thatA(Z2) gives rise to the same metric
as Z2 is simple: A(Z2) is actually equal to Z2.

Loosely speaking, what we have just done is iden-
tify the space of flat metrics on T2 with the set
SL2(Z)\ SL2(R)/ SO(2). (This is notation for the set
SL2(R), with two maps A and B considered equivalent
if B can be expressed as A multiplied by a product of
matrices from SO(2) and SL2(Z).) In higher dimensions,
a similar discussion shows that one can identify the
space of flat metrics on the n-dimensional torus Tn

with SLn(Z)\ SLn(R)/ SO(n).
Returning to two dimensions, a torus is a surface of

genus 1 (since it has one “hole”). A similar construction

gives rise to a moduli space of metrics on a surface of
higher genus, but now the metrics will be hyperbolic
rather than flat. The uniformization theorem [V.37]
says that any compact connected surface admits a met-
ric of constant curvature [III.13]: when the genus is 2
or more, this curvature must be negative, which implies
that the surface is a quotient [I.3 §3.3] of the hyper-
bolic plane [I.3 §6.6] H2 by a group Γ that acts on H2

as a set of isometries. (See fuchsian groups [III.28].)
Conversely, if we want to construct a metric of con-

stant curvature on a surface of higher genus, we can
take a subgroup Γ of the group of isometries of H2

(which is isomorphic to SL2(R)) and we can consider
the quotient H2/Γ , which is analogous to the quotient
R2/Z2 that we considered earlier. If Γ has no elements
of finite order and if for each x the orbit of x (the set of
images of x under the isometries in Γ ) is a discrete sub-
set of H2, then this space is a manifold. Furthermore, if
there is a compact region in H2, called a fundamental
domain, whose translates cover H2, then the manifold
is compact. There are two fairly simple ways to con-
struct examples of groups Γ with these properties: one
is to use reflection groups and the other is to use a bit
of number theory.

Now we can ask the same question for these met-
rics. In other words, given a surface S of genus at least
2, how many hyperbolic metrics can we find on S?
The answer is quite similar to the answer for T2. For
instance, if the genus is 2, then there is a connected six-
dimensional space of such structures. This is a bit more
difficult to see, as the space is not constructed in any
simple way from a lie group [III.50 §1] (such as SLn(R))
and its subgroups. We will not describe this construc-
tion here but it can be found in Thurston (1997) or in
moduli spaces [IV.8].

T&T note: Fisher
would like to see a
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3 Mostow’s Theorem

Thinking about the last two sets of examples leads
to a natural question: what about compact three-
dimensional hyperbolic manifolds? Or n-dimensional
ones? To be clear, a compact n-dimensional hyperbolic
manifold is the quotient of Hn by a discrete group Γ
of isometries of the hyperbolic n-space Hn such that
Γ has no elements of finite order and there is a com-
pact fundamental domain for Γ . Given this descrip-
tion, the reader may wonder if there are any such
groups Γ . Once again, there are two easy ways of con-
structing them, one using a bit of number theory and
another using reflection groups. (However, slightly sur-
prisingly, the method using reflection groups works
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only in fairly small dimensions.) The constructions are

all a bit technical so we will not go through them

here. There are also many other examples of com-

pact hyperbolic manifolds, particularly in three dimen-

sions, where “most” manifolds are hyperbolic by the

geometrization theorem [IV.7 §2.4].

Here we shall concentrate less on the existence of

hyperbolic manifolds and more on the question that

has been our principal concern in this article: if X
is a manifold that can be represented in the form

Hn/Γ , then how many ways are there of giving X this

structure? This question is equivalent to asking how

many injective homomorphisms there are from Γ to the

group of all isometries of Hn such that the image of Γ
is discrete and cocompact. (A subset X of a group G
is cocompact if there is a compact subset K of G such

that XK = G. For instance, Z2 is a cocompact subset of

R2 because R2 = Z2+[0,1]2 and the closed unit square

[0,1]2 is compact.) As we have seen, when n = 2 there

is a continuum of such homomorphisms, and the same

is true in all dimensions if we replace Hn by Rn. So it is

rather surprising that when n � 3, the answer for Hn

is exactly 1. This is a special case of Mostow’s rigidity

theorem.

What does this result mean? Suppose we know that

a manifold M is a quotient of Hn by some discrete

cocompact group of isometries. The topology of M
completely determines the group Γ up to isomorphism:

it is just the fundamental group [IV.6 §2] of M . The

result we have just stated tells us that this purely topo-

logical information about the manifold M completely

determines the geometry of Hn/Γ (that is, its struc-

ture as a metric space). More precisely, it says that

any homeomorphism, or even homotopy equivalence,

fromM to another hyperbolic manifoldN is homotopic

to an isometry. In other words, any purely topological

equivalence can be realized as a geometric equivalence.

The full Mostow rigidity theorem concerns objects

called compact locally symmetric manifolds. Given a

manifold with a metric, we say that it is locally sym-

metric if the central symmetry at every point is a local

isometry. The central symmetry at a pointm is defined

formally as multiplication by −1 in the tangent space

to m: one can picture it as taking a very small neigh-

borhood of m and “reflecting through m.” It turns out

that every locally symmetric space is a quotient of a

symmetric space: that is, a space such that the central

symmetry at every point is a global isometry. Clearly,

symmetric spaces have very large isometry groups. The

work of cartan [VI.69] shows that the resulting isom-
etry groups are exactly the semisimple lie groups
[III.50 §1]. We will not say precisely what these are, but
they include the classical matrix groups such as SLn(R),
SLn(C), and Spn(R). Other examples, which can also be
realized as matrix groups, include the isometry groups
of complex and quaternionic hyperbolic spaces.

In general, given a Lie group G and a discrete sub-
group Γ , we say that Γ is a cocompact lattice if there
is a compact fundamental domain for Γ in G. Cartan’s
theorem has the consequence that any compact locally
symmetric space is a quotient Γ \G/K, where G is the
isometry group of the universal cover and K is the (nec-
essarily compact) set of isometries that fix a specified
point. Mostow’s theorem says the same here as it said
for Hn/Γ : given such a manifold, there is only one way
to realize it as Γ \G/K. Or, equivalently, any homeomor-
phism between two such manifolds is always homo-
topic to an isometry unless the relevant locally sym-
metric space is a product of a flat torus or a hyperbolic
surface with some other locally symmetric manifold.

One might well ask how Mostow discovered such
a phenomenon. His work certainly did not occur in
a vacuum. In fact, earlier work of Calabi, Selberg,
Vesentini, and weil [VI.93] had already shown that the
moduli spaces Mostow was studying were discrete: in
other words, unlike flat tori or two-dimensional hyper-
bolic manifolds, higher-dimensional locally symmet-
ric spaces could admit only a discrete set of locally
symmetric metrics. Mostow has said explicitly that he
was motivated by the desire to find a more geometric
understanding of this fact.

Another point worth making is that Mostow’s proof
is at least as surprising as his theorem. At the time,
the study of locally symmetric spaces, or equivalently
of semisimple Lie groups and their lattices, was domi-
nated by two sets of techniques: one set that was purely
algebraic and another that used classical methods in
differential geometry. Mostow’s original proof (which
was only for Hn) uses instead the theory of quasi-
conformal mappings and some ideas from dynamics.
Raghunathan, another leading figure in the field, has
said that when he first read Mostow’s paper, he thought
it must be by a different man named Mostow. Simi-
lar uses of surprising dynamical and analytical ideas
to study the same objects occurred almost simultane-
ously in work of Furstenberg and Margulis. These ideas
have had a long and interesting legacy in the study of
locally symmetric spaces, semisimple Lie groups, and
related objects.



�

V.28. The Poincaré Conjecture 35

Further Reading

Furstenberg, H. 1971. Boundaries of Lie groups and dis-
crete subgroups. In Actes du Congrès International des
Mathématiciens, Nice, 1970, volume 2, pp. 301–6. Paris:
Gauthier-Villars.

PUP: the fact that
year of publication
is later than the
year of the actual
conference seems
OK to me for these
two references.
OK?

Margulis, G. A. 1977. Discrete groups of motions of man-
ifolds of non-positive curvature. In Proceedings of the
International Congress of Mathematicians, Vancouver,
1974, pp. 33–45. AMS Translations, volume 109. Provi-
dence, RI: American Mathematical Society.

Mostow, G. D. 1973. Strong Rigidity of Locally Symmet-
ric Spaces. Annals of Mathematics Studies, number 78.
Princeton, NJ: Princeton University Press.

Thurston, W. P. 1997. Three-Dimensional Geometry and
Topology, edited by S. Levy, volume 1. Princeton Math-
ematical Series, number 35. Princeton, NJ: Princeton Uni-
versity Press.

V.27 The P versus NP Problem

The P versus NP problem is widely considered to be
the most important unsolved problem in theoretical
computer science, and one of the most important in all
of mathematics. P and NP are two of the most basic
computational complexity classes [III.10]: P is the
class of all computational tasks that can be performed
in a time that is polynomial in the length of the input,
and NP is the class of all computational tasks where
a correct answer can be verified in a time that is poly-
nomial in the length of the input. An example of the
former is multiplying two n-digit integers (which, even
if you use long multiplication, takes roughly n2 arith-
metical operations). An example of the latter is search-
ing in a graph [III.34] with n vertices for a set of m
vertices, any two of which are joined by an edge: if you
are presented withm such vertices, then you just have
to check the

(
m
2

)
pairs of those vertices to make sure

that each pair is indeed an edge of the graph.

It appears to be much harder to find m vertices that
are all joined than to check that a givenm vertices are
all joined. This suggests that problems in NP are in
general harder than problems in P. The P versus NP
problem asks for a proof that the complexity classes P
andNP really are distinct. For a detailed discussion of
the problem, see computational complexity [IV.20].

V.28 The Poincaré Conjecture

The Poincaré conjecture is the statement that a com-
pact [III.9] simply connected smooth n-dimensional

manifold [I.3 §6.9] must be homeomorphic to the n-
sphere Sn. One can think of a compact manifold as a
manifold that lives in a finite region of Rm for somem
and that has no boundary: for example, the 2-sphere
and the torus are compact manifolds living in R3, while
the open unit disk or an infinitely long cylinder is not.
(The open unit disk does not have a boundary in an
intrinsic sense, but its realization as the set {(x,y) :
x2 + y2 < 1} has the set {(x,y) : x2 + y2 = 1} as
its boundary.) A manifold is called simply connected if
every loop in the manifold can be continuously con-
tracted to a point. For instance, a sphere of dimension
greater than 1 is simply connected but a torus is not
(since a loop that “goes around” the torus will always
go around the torus, however you continuously deform
it). Thus, the Poincaré conjecture asks whether two
simple properties of spheres, compactness and simple
connectedness, are enough to characterize spheres.

The case n = 1 is not interesting: the real line is
not compact and a circle is not simply connected, so
the hypotheses of the problem cannot be satisfied.
poincaré [VI.61] himself solved the problem for n = 2
early in the twentieth century, by completely classify-
ing all compact 2-manifolds and noting that in his list
of all possible such manifolds only the sphere was sim-
ply connected. For a time he believed that he had solved
the three-dimensional case as well, but then discovered
a counterexample to one of the main assertions of his
proof. In 1961, Steven Smale proved the conjecture for
n � 5, and Michael Freedman proved the n = 4 case
in 1982. That left just the three-dimensional problem
open.

Also in 1982, William Thurston put forward his
famous geometrization conjecture, which was a pro-
posed classification of three-dimensional manifolds.
The conjecture asserted that every compact 3-manifold
can be cut up into submanifolds that can be given met-
rics [III.58] that turn them into one of eight particularly
symmetrical geometric structures. Three of these struc-
tures are the three-dimensional versions of Euclidean,
spherical, and hyperbolic geometry (see some funda-
mental mathematical definitions [I.3 §6]). Another
is the infinite “cylinder” S2×R: that is, the product of a
2-sphere with an infinite line. (This is not compact, but
that is because the pieces into which one cuts up the
manifold may have boundaries that are not included
in the pieces.) Similarly, one can take the product of
the hyperbolic plane with an infinite line and obtain a
fifth structure. The other three are slightly more com-
plicated to describe. Thurston also gave significant evi-
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dence for his conjecture by proving it in the case of
so-called Haken manifolds.

The geometrization conjecture implies the Poincaré
conjecture; both were proved by Grigori Perelman, who
completed a program that had been set out by Richard
Hamilton. The main idea of this program was to solve
the problems by analyzing ricci flow [III.80]. The solu-
tion was announced in 2003 and checked carefully
by several experts over the next few years. For more
details, see differential topology [IV.7].

V.29 The Prime Number Theorem and
the Riemann Hypothesis

How many prime numbers are there between 1 and n?
A natural first reaction to this question is to define
π(n) to be the number of prime numbers between 1
and n and to search for a formula for π(n). However,
the primes do not have any obvious pattern to them
and it has become clear that no such formula exists
(unless one counts highly artificial formulas that do not
actually help one to calculate π(n)).

The standard reaction of mathematicians to this kind
of situation is to look instead for good estimates. In
other words, we try to find a simply defined func-
tion f(n) for which we can prove that f(n) is always
a good approximation to π(n). The modern form of
the prime number theorem was first conjectured by
gauss [VI.26] (though a closely related conjecture had
been made by legendre [VI.24] a few years earlier).
He looked at the numerical evidence, which suggested
to him that the “density” of primes near n was about
1/logn, in the sense that a randomly chosen integer
near n would have a probability of roughly 1/logn of
being a prime. This leads to the conjectured approx-
imation of n/logn for π(n), or to the slightly more
sophisticated approximation

π(n) �
∫ n

0

dx
logx

.

The function defined by the integral on the right-hand
side is called li(n) (which stands for the “logarithmic
integral” of n). Some care is needed in interpreting the
integral because log 1 = 0, but one can avoid this prob-
lem by integrating from 2 to n instead, which changes
the function by just an additive constant.

The prime number theorem, proved independently
by hadamard [VI.65] and de la vallée poussin [VI.67]
in 1896, states that li(n) is indeed a good approxima-
tion to π(n), in the sense that the ratio of the two
functions tends to 1 as n tends to infinity.

This result is considered one of the great theorems of
all time, but it is by no means the end of the story. The
proofs of Hadamard and de la Vallée Poussin used the
riemann zeta function [IV.2 §3] ζ(s). The Riemann
zeta function is defined to be 1−s+2−s+3−s+· · · when-
ever s is a complex number with real part greater than
1; this expression defines a holomorphic function
[I.3 §5.6], which can be extended (by analytic continu-
ation) to a function that is holomorphic on the entire
complex plane, except for a pole at 1. This function has PUP: I confirm that

this is the right
word here.zeros, known as “trivial zeros,” at all negative even inte-

gers. Riemann proved that the prime number theorem
was equivalent to the assertion that the only “nontrivial
zeros” were inside the critical strip, which consists of
those complex numbers with real part strictly between
0 and 1. He also formulated what is often held to be
the most important unsolved problem in mathemat-
ics, now known as the Riemann hypothesis: that in fact
the nontrivial zeros all have real part equal to 1

2 . This
assertion about the zeros of the zeta function has been
shown to be equivalent to a stronger form of the prime
number theorem, which states not just thatπ(n)/ li(n)
tends to 1, but even that |π(n)− li(n)| � √n logn for
every n � 3. Since li(n) is around n/logn, which is
much bigger than

√
n logn, this would mean that the

error |π(n)−li(n)|was extremely small compared with
π(n) or li(n) themselves.

The importance of the Riemann hypothesis goes far
beyond its consequences for the distribution of primes:
hundreds of statements in number theory have been
shown to follow from it. This is particularly true when
one considers generalizations of the Riemann hypoth-
esis that apply to a wider class of L-functions [III.49].
For example, analogues of the Riemann hypothesis for
Dirichlet L-functions imply very good estimates for the
distribution of primes in arithmetic progressions, from
which many further consequences follow.

The prime number theorem and the Riemann hypoth-
esis are discussed in more detail in analytic number
theory [IV.2 §3].

V.30 Problems and Results in
Additive Number Theory

Is every even number greater than 4 the sum of two
odd primes? Are there infinitely many primes p such
that p + 2 is also a prime? Is every sufficiently large
positive integer the sum of four cubes? These three
questions are all famous unsolved problems in num-
ber theory: the first is called the Goldbach conjecture,
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the second is the twin-primes conjecture (discussed in
some detail in analytic number theory [IV.2]), and
the third is a special case of Waring’s problem, which
we shall discuss later.

These three problems belong to an area of mathemat-
ics known as additive number theory. In order to say
in general terms what this area is, it is useful to make
some simple definitions. Suppose that A is a set of pos-
itive integers. Then the sumset of A, denoted A + A,
is the set of all x + y such that x and y (which are
allowed to be equal) both belong to A. For example, if
A is the set {1,5,9,10,13}, then A+A is the set {2,6,
10,11,14,15,18,19,20,22,23,26}. Similarly, the dif-
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ference set, denotedA−A, is the set of allx−y such that
x andy both belong toA. In the above example,A−A =
{−12,−9,−8,−5,−4,−3,−1,0,1,3,4,5,8,9,12}.

Using this language, we can state two of our three
problems very succinctly. Let P be the set of all
odd primes and let C be the set of all cubes. Then
Goldbach’s conjecture asks whether P + P is the
set {6,8,10,12, . . . }, and the special case of Waring’s
problem asks whether every sufficiently large integer
belongs to C + C + C + C . The twin-primes conjecture
is slightly more complicated: it states not just that 2
belongs to the set P − P but that it does so “infinitely
many times.” (In a similar way, if A is the set in the
previous paragraph, then A−A contains the number 4
three times.)

These problems are notoriously difficult. However,
remarkably, there are some closely related problems
that look just as hard at first, but which have been
solved. For instance, Vinogradov’s three-primes theo-
rem is the statement that every sufficiently large odd
integer is the sum of three odd primes. Without the
“sufficiently large” this would answer the ternary Gold-
bach problem, which asks whether every odd number
from 9 onward is a sum of three odd primes. (How large
is “sufficiently large”? Well, until recently you needed
your number to have about 7 000 000 digits, but in 2002
this was reduced to under 1500 digits.) As for Waring’s
problem, it is known that every sufficiently large pos-
itive integer is a sum of seven cubes. More generally,
it seems likely that, for any k, every sufficiently large
integer can be written as a sum of at most 100k kth
powers (where 100 is just a randomly chosen largish
number—it is possible that even 4k kth powers are
enough), and although a proof of this is well beyond
today’s mathematical technology, it has been shown
that a little over k logk kth powers are enough. Since
logk is a very slowly growing function, this result is,

in a certain sense, not too far from a solution to the

problem.

How does one obtain results such as these? Some of

the proofs are pretty complicated, so we cannot give

a full answer here. However, we can at least explain

one idea that is fundamental to many of the argu-

ments, namely the use of exponential sums. Let us illus-

trate it by looking at the beginning of the proof of the

Vinogradov three-primes theorem.

Imagine, then, that we have a very large odd integer

n and we wish to prove that it is a sum of three odd

primes. Here is an argument that strongly suggests that

our task is impossible: if n is over three times larger

than the largest known prime, as it may very well be,

then we cannot produce three primes that add up to

n without finding a new prime. Indeed, we could take

n to be astronomically large, 1010100 + 1, say, and then
1
3n would be far beyond any prime that has ever been

discovered or is ever likely to be discovered.

This argument is, however, flawed, and the clue to

what is wrong with it lies in the word “produce.” We

do not have to produce the three primes to show

that they exist, any more than Euclid had to specify

an infinite sequence of primes in order to show that

there were infinitely many. (For a proof that there are,

see [IV.2 §2].) But, one might ask, what alternative could

there possibly be to actually finding three odd primes

that add up to n?

This question has a beautifully simple answer: we

shall attempt to count, or rather estimate, the number

of triples p1, p2, p3 of odd primes such that p1 + p2 +
p3 = n. If the estimate we manage to obtain is rather

large, and if in addition we can show that it is reason-

ably accurate, then the actual number of such triples

must also be rather large. This will imply that there is

such a triple, and will not require us to “produce” one.

However, our answer immediately raises a difficult-

looking question: how do we estimate the number of

such triples? This is where exponential sums come in.

We shall use certain properties of the exponential

function [III.25] to reformulate our counting problem

as a problem about estimating a certain integral.

As is customary in this area, let us write e(x) instead

of e2π ix . The two basic properties that we shall use of

the function e(x) are that e(x+y) = e(x)e(y) and that∫ 1
0 e(nx)dx = 1 ifn = 0, and 0 ifn is any other integer.

Let us also adopt the convention that if we write
∑
p�n,

then we are summing over all odd primes less than or

equal to n. Now define a function F(x) by the formula
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F(x) =∑p�N e(px). That is,

F(x) = e(3x)+ e(5x)+ e(7x)+ e(11x)+ · · · + e(qx),
where q is the largest prime less than or equal to
n. This is a sum of exponentials—hence the phrase
“exponential sums.” Next, we consider the cube of this
function:

F(x)3 = (e(3x)+ e(5x)+ e(7x)+ · · · + e(qx))3.
When we multiply out the right-hand side, we obtain
the sum of all terms of the form e(p1x)e(p2x)e(p3x),
where p1, p2, and p3 are primes between 3 and q.

The integral we shall look at is
∫ 1
0 F(x)3e(−nx)dx.

From our discussion in the previous paragraph, we
know that this will be the sum of all integrals of the
form

∫ 1
0 e(p1x)e(p2x)e(p3x)e(−nx)dx. Now the first

basic property of e(x) tells us that this last integral is
equal to

∫ 1
0 e((p1 + p2 + p3 −n)x)dx, and the second

one then tells us that it is 1 if p1 + p2 + p3 = n and
0 otherwise. Therefore, when we sum over all possible
triples p1, p2, p3 of odd primes less than or equal to
n, we get a contribution of 1 for each triple that adds
up to n and 0 for all other triples. In other words, the
integral

∫ 1
0 F(x)3e(−nx)dx exactly equals the number

of ways of writing n as a sum of three odd primes.
This “reduces” our problem to that of estimating

the integral
∫ 1
0 F(x)3e(−nx)dx. But the function F(x)

looks rather difficult to analyze. Is it really feasible
to estimate an expression such as

∑
p�N e(px), which

mixes prime numbers with exponentials?
Surprisingly, it is. The details are complicated, but

the fact that it can be done becomes less mysterious
after one thinks for a moment about which exponen-
tial sums we definitely can estimate. Are there at least
some sets A of integers for which we can handle sums
of the form

∑
a∈A e(ax)? Yes there are: arithmetic pro-

gressions. Suppose A is the set {s, s + d, s + 2d, . . . ,
s + (m− 1)d}: that is, the arithmetic progression of
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length m and common difference d that starts at s.
Then, using the basic properties of e(x), we find that∑
a∈A e(ax) is

e(sx)+ e((s + d)x)+ · · · + e((s + (m− 1)d)x)

= e(sx)+ e(dx)e(sx)+ · · · + e((m− 1)dx)e(sx)

= e(sx)(1+ e(dx)+ e(dx)2 + · · · + e(dx)m−1).

This last expression is the sum of a geometric progres-
sion that starts at e(sx) and has common ratio e(dx).
Using the standard formula and the basic properties of
e(x), we deduce that∑

a∈A
e(ax) = e(sx)− e((s + dm)x)

1− e(dx) .

Such expressions are useful because they can often
be shown to be small. Suppose, for instance, that
|1− e(dx)| is at least as big as some constant c. We
know that |e(sx) − e((s + dm)x)| � 2, so the modu-
lus of the right-hand side is at most 2/c. If c is not too
small, then this shows that there is a huge amount of
cancellation in the sum

∑
a∈A e(ax): we added together

m numbers of modulus 1 and obtained a number of
modulus no bigger than 2/c.

For certain values of x, we can use this simple obser-
vation to help us estimate the sum

∑
p∈P e(px). What

we need to do is express the sum over P as a combina-
tion of sums over arithmetic progressions, and this is
a very natural thing to do, since P consists of all those
integers up to n that do not lie in certain arithmetic
progressions (such as 14,21,28,35,42, . . . ). So we can
begin by taking the sum

∑n
t=1 e(tx). From this we need

to subtract the contribution from all even integers,
which is

∑
t�n/2 e(2tx). We also need to subtract the

contribution from multiples of 3, apart from 3 itself.
This contribution is

∑
1<t�n/3 e(3tx). Now we find that

we have subtracted the contribution from multiples of
6 twice, so we correct for that by adding

∑
t�n/6 e(6tx).

This process can be continued, and it leads to a way
of decomposing the sum over primes into a combina-
tion of sums over geometric progressions. If x is not
close to a rational with small denominator, then most of
the common ratios are far from 1, so most of the sums
over progressions are small. Unfortunately, there are
too many of them for this simple argument to lead to a
useful estimate. However, there is a more sophisticated
argument with a similar flavor that does.

What happens if x is close to a rational with small
denominator? For example, what can we say about the
sum

∑
p�n e(p/3)? Here we use more direct methods:

it is known that roughly half of all primes are 1 (mod 3)
and half are 2 (mod 3) (see [IV.2 §4]), which tells us that
this sum is roughly (|P |/2)(e(p/3) + e(2p/3)), where
|P | denotes the size of the set P .

For very similar reasons, in Waring’s problem one
finds oneself wanting to know about exponential sums
such as G(x) =∑mt=0 e(tkx). Again, one can sometimes
estimate these by reducing them to sums of geomet-
ric progressions. This is easiest to show in the case
k = 2. The idea is to look not at G(x) directly but at
|G(x)|2, which a moment’s calculation shows is equal
to
∑m
t=0

∑m
u=0 e((t2 −u2)x). Now t2 −u2 = (t +u)(t −

u), so we can change variables, setting v = t + u and
w = t − u. This gives us the sum

∑
(v,w)∈V e(vwx),

where V is the set of all (v,w) such that (v + w)/2



�

V.31. From Quadratic Reciprocity to Class Field Theory 39

and (v −w)/2 (which equal t and u, respectively) are
both between 0 and m. For each v the set of possible
values of w is an arithmetic progression, so we have
decomposed |G(x)|2 into a sum of sums of geometric
progressions, one for each v .

So far we have been looking at so-called direct prob-
lems in additive number theory. These are problems
where one specifies a set and then tries to understand
its sumset or difference set. We have only scratched
the surface of the subject: other related results and
techniques are discussed in [IV.2] (see in particular
sections 7, 9, and 11).

Direct problems have a long history, but in recent
years another class of problems, called inverse prob-
lems, have become an important focus of research as
well. These concern the following broad question: if you
are given information about a sumset or a difference
set, what can you deduce about the original set? We
end by describing one of the highlights of this kind of
additive number theory, called Freiman’s theorem.

It is not hard to prove that if A is any set of integers
of size n, then the size of A+Amust be between 2n−1
and n(n+1)/2. (The first happens if A is an arithmetic
progression and the second happens if all the sums you
can make are different.) What can we say about A if the
size of A+A is at most 100n, or, more generally, is at
most Cn for some constant C that remains fixed as n
tends to infinity?

Suppose that we can find an arithmetic progression
P of size at most 50n such that A is a subset of P . Then
A+A is a subset of P+P , which has size 100n−1. So ifA
is two percent of an arithmetic progression, then A+A
has size at most 100n. However, there are other ways
of producing such sets. Suppose, for instance, that A
consists of all numbers of up to seven digits such that
the third, fourth, and fifth digits from the end are 0:
that is, numbers such as 35 000 26 or 99 000 90. There
are 100 × 100 = 10 000 of these. If we add two of
them together, then we get a number like 138 00 162
or 141 00 068, which is made up of a number between
0 and 198, followed by two 0s, followed by a second
number between 0 and 198 (written with 0s in front if
these are needed to make it up to three digits). There
are 199×199 of these, which is less than 40 000. There-
fore, the size of A+A is less than four times the size of
A. However, A does not fill up two percent of any arith-
metic progression P : such a progression would have to
have common difference 1 and include both the num-
bers 0 and 99 000 99, and 10 000 is nothing like two
percent of 9 900 100.

However, A is a very structured set: it is an example
of a two-dimensional arithmetic progression. Roughly
speaking, an ordinary, or one-dimensional, arithmetic
progression is one that you build up by starting with
a number s and repeatedly adding another one, d,
called the common difference. You build up a two-
dimensional arithmetic progression by using two “com-
mon differences” d1 and d2. That is, you have a start-
ing number s and you look at numbers of the form
s + ad1 + bd2, specifying that a should be between 0
and m1 − 1 and b should be between 0 and m2 − 1.
Our set A is a two-dimensional progression with s = 0,
d1 = 1, d2 = 100 000, and m1 =m2 = 100.

In a similar way one can define higher-dimensional
progressions. It is not hard to show that if P is an r -
dimensional progression, then the size of P + P is less
than 2r times the size of P . Therefore, if A is a subset
of P and the size of P is at most C times the size of A,
then the size of A+A is at most the size of P+P , which
is at most 2rC times the size of A.

This tells us that if A is a large subset of a low-
dimensional arithmetic progression, thenA has a small
sumset. Freiman’s theorem is the remarkable statement
that these are the only sets with small sumsets. That
is, if A+A is not much larger than A, then there must
be some low-dimensional arithmetic progression P that
contains A and is not much bigger than A. Exponential
sums are vital for the proof of this theorem as well.
Freiman’s theorem has had many applications, and is
likely to have many more.

V.31 From Quadratic Reciprocity to
Class Field Theory
Kiran S. Kedlaya

The law of quadratic reciprocity, discovered by euler
[VI.19] and first proved by gauss [VI.26] (who dubbed
it his theorema aureum, or golden theorem), is consid-
ered a crown jewel of number theory, and with good
cause. Whereas its statement could be rediscovered
by a sufficiently ingenious student (indeed, it actu-
ally has been rediscovered on a regular basis at the
Arnold Ross mathematics summer program for several
decades), rare is the student who comes up with a proof
unassisted.

The law is most conveniently stated in a formulation
due to legendre [VI.24]. For n an integer not divisible
by the prime p, write (np ) = 1 if n is congruent to some
perfect square modulop, and (np ) = −1 if it is not. Then
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quadratic reciprocity states the following. (The prime 2

must be treated separately.)

Theorem (quadratic reciprocity). Suppose that p and

q are two different primes, neither equal to 2. Then

(pq )(
q
p ) = −1 if p and q are both congruent to 3

modulo 4, and ( pq )(
q
p ) = 1 otherwise.

For instance, if p = 13 and q = 29, then (pq )(
q
p ) = 1.

Since 29 is congruent modulo 13 to the perfect square

16, it must be that 13 is congruent to some perfect

square modulo 29, and in fact 100 = 3 · 29+ 13.

This statement is simple but also mysterious, be-

cause it violates our intuition that congruences mod-

ulo different primes should act independently. For

instance, the Chinese remainder theorem asserts that

(in a suitably precise sense) knowing that a random

integer is odd or even does not prejudice it toward

having any particular remainder modulo 3. Number

theorists are fond of using geometric language to

describe this situation, referring to phenomena asso-

ciated with congruences modulo a single prime (or

a power of a single prime) as local phenomena (see

local and global in number theory [III.53]). The

Chinese remainder theorem can be interpreted as say-

ing that local phenomena at one point really are local,

in that they do not influence local phenomena at

another point. However, just as a particle physicist can-

not explain the behavior of the universe by analyz-

ing individual particles in isolation, one cannot hope

to understand the behavior of integers by looking at

individual primes in isolation. Quadratic reciprocity

thus emerges as one of the first known examples of

a global phenomenon, proving to be a “fundamental

force” that binds together two different primes. The

interplay between local and global is built thoroughly

into our modern understanding of number theory, but

the phenomenon of quadratic reciprocity was where it

first came to light.

Another indication of the fundamental nature of

quadratic reciprocity is that it admits proofs using

many different techniques. Gauss himself devised eight

proofs in his lifetime, and nowadays dozens of proofs

are available. These suggest numerous directions of

generalization; here we will focus on the direction that

led historically to class field theory. Among the many

fascinating sidelights that this will force us to omit is

the theory of Gauss sums and its surprisingly diverse

range of applications, such as Kolyvagin’s work on the

birch–swinnerton-dyer conjecture [V.4], and the

use of number theory in cryptography [VII.7] and

other areas of computer science.

Euler had sought reciprocity laws for perfect third

and fourth powers, but had had limited success. Gauss

succeeded in formulating such laws (but not proving

them; that fell to Eisenstein later) by realizing that one

could only properly understand them by stepping out

of the ring of integers.

Let us see this explicitly for fourth powers. Let p and

q be primes that are both congruent to 1 modulo 4.

The reciprocity between p being congruent to a fourth

power modulo q and vice versa cannot be easily stated

in terms of p and q. Instead, we must recall a result of

fermat [VI.12]: we can write p = a2 + b2 and q = c2 +
d2, where each of the pairs (a, b) and (c, d) is unique

up to changing signs and ordering. In other words, in

the ring of complex numbers whose real and imaginary

parts are integers (now called the Gaussian integers),

we have p = (a+ bi)(a− bi) and q = (c + di)(c − di).
Gauss defined an analogue of the Legendre symbol

as follows. It was already known to Euler that(
n
p

)
≡ n(p−1)/2 (mod p);

to see that the right-hand side is either 1 or −1, note

that it squares to 1 by fermat’s little theorem

[III.60], and the equation x2 = 1 has just these two

roots. Gauss similarly defined(
c + di
a+ bi

)
4

to be ik, for the unique choice of k modulo 4 for which

ik ≡ (c+di)(a
2+b2−1)/4 = (c+di)(p−1)/4 (mod a+bi).

Here we say that two integers are congruent mod a+bi

if their difference is a multiple of a+ bi by a Gaussian

integer. The existence of such k again follows from Fer-

mat’s little theorem: if you expand (c+di)p , then all the

binomial coefficients are multiples of p apart from the

first and the last, so you obtain cp+(di)p , which equals

c + di by Fermat’s theorem and the assumption that p
is congruent to 1 mod 4; it follows that (c+di)p−1 ≡ 1.

(Alternatively, one can prove this by showing that the

Gaussian integers mod a+ bi form a group of order

p − 1 and applying Lagrange’s theorem.)

Before stating the reciprocity law, we must stamp out

the ambiguity in the choice of a, b, c, and d. We require

that a and cmust be odd, and that a+b−1 and c+d−1

must be divisible by 4. (Note that we can still flip the

signs of b and d.)
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Theorem (quartic reciprocity). With p, q, a, b, c, and
d as above, we have(

a+ bi
c + di

)
4

(
c + di
a+ bi

)
4
= −1

if p and q are both congruent to 5 modulo 8, and(
a+ bi
c + di

)
4

(
c + di
a+ bi

)
4
= 1

otherwise.

One might expect to find an nth power reciprocity
law that looks like this by working with the ring gen-
erated by a primitive nth root of 1. What complicates
matters is that this ring does not enjoy the unique fac-
torization property [IV.1 §§4–8] (whereas the usual
integers and the Gaussian integers both do). This was
remedied only by kummer’s [VI.40] theory of ideals
[III.83 §2] (short for “ideal numbers”). An ideal is a set
that has the typical properties of the set of all mul-
tiples of a given number, but it can be more general.
(Even if an ideal is the set of all multiples of some num-
ber, that number is not unique, since one can multi-
ply it by a unit. For instance, both 2 and −2 gener-
ate the ideal of all even numbers.) Using Kummer’s
theory, Kummer and Eisenstein managed to formu-
late broad generalizations of quadratic reciprocity for
higher powers.

hilbert [VI.63] then realized that these should fit
together as part of some sort of maximally general
reciprocity law. He also gave a candidate for this law,
inspired by a reformulation of quadratic reciprocity
itself in terms of the norm residue symbol. For a prime
p, and any nonzero integersm andn, the norm residue
symbol (m,np ) equals 1 if, for all sufficiently large k, the
equations mx2 + ny2 ≡ z2 (mod pk) have solutions
where x, y , and z are not all divisible by pk; other-
wise the symbol equals −1. In other words, the symbol
equals 1 if the equationmx2+ny2 = z2 has a solution
in the p-adic numbers [III.53].

Hilbert’s formulation of quadratic reciprocity is that,
for any nonzero m and n,∏

p

(
m,n
p

)
= 1,

where the product is taken over all primes p and the
prime p = ∞. The latter requires some explanation: we
write (m,n∞ ) = 1 if and only ifm andn are not both neg-
ative, i.e., if the equationmx2+ny2 = z2 has a solution
in the real numbers. This fits into a general pattern, that
conditions quantified over “all prime numbers” must
also account for the so-called infinite prime.

It should also be clarified that Hilbert’s product only
makes sense by virtue of the fact that, for fixed m
and n, (m,np ) = 1 for all but finitely many p. This is
because in general, since approximately half the inte-
gers mod pk are quadratic residues, it is easy to solve
the equation mx2 + ny2 = z2: difficulties arise only
when multiplication bym or n identifies many of these
quadratic residues. For instance, if m and n are (posi-
tive) prime numbers, then only those two primes con-
tribute to the product; the two resulting factors can be
related to (mn ) and ( nm), which leads back to quadratic
reciprocity.

Using this formulation, Hilbert was able to state and
prove a form of quadratic reciprocity over any num-
ber field [III.65], in which the corresponding product
of symbols is quantified over the prime ideals of the
number field (together with some “infinite primes”).
Hilbert also conjectured a higher-power reciprocity law
over any number field. That conjecture was tackled by
Hasse, Takagi, and finally artin [VI.86], who stated a
general reciprocity law. Its statement is a bit too techni-
cal to include here; we limit ourselves to observing that
Artin’s reciprocity law, when applied to a number field
K, describes certain norm residue symbols in terms of
Abelian extensions of K, i.e., number fields containing
K whose groups of symmetries (galois groups [V.24])
are commutative.

The Abelian extensions of Q are easy to describe: the
Kronecker–Weber theorem asserts that they are all con-
tained in fields generated by roots of 1. This explains
the role of the roots of 1 in the classical reciprocity
laws. However, describing the Abelian extensions of an
arbitrary number field K is somewhat harder. They can
at least be classified in terms of the structure of the
field K itself; this is what is commonly referred to as
class field theory.

However, the problem of explicitly specifying gener-
ators of the Abelian extensions of K (Hilbert’s twelfth
problem) remains mostly unsolved, except in some spe-
cial cases. For instance, the theory of elliptic func-
tions [V.34] solves this problem for fields of the form
Q(
√−d) with d > 0 via the theory of complex multi-

plication. Some additional examples emerged from the
work of Shimura on modular forms [III.61], leading to
the Shimura reciprocity law.

This last example shows that the story of reci-
procity laws is not yet complete. Any new instance of
explicit class field theory would reveal another reci-
procity law that had previously been hidden from view.
Some exciting new conjectures in this direction have
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been advanced by Bertolini, Darmon, and Dasgupta,
who have proposed some new constructions of Abe-
lian extensions using p-adic analysis. These are analo-
gous to the aforementioned constructions using ellip-
tic functions, in which one evaluates a transcendental
function at a special value. At first, there seems to be no
reason to expect the resulting complex number to have
any special properties, but in fact it turns out to be an
algebraic number that generates an appropriate Abe-
lian extension of the base field. While one can check in
individual examples, using computer calculations, that
the construction seems to be converging p-adically to
a particular generator of the right field, a proof seems
out of reach at present.

Further Reading

Ireland, K., and M. Rosen. 1990. A Classical Introduction to
Modern Number Theory, 2nd edn. New York: Springer.

Lemmermeyer, F. 2000. Reciprocity Laws, from Euler to
Eisenstein. Berlin: Springer.

V.32 Rational Points on Curves and
the Mordell Conjecture

Suppose that we wish to study a Diophantine equation
such as x3 + y3 = z3. A simple observation we can
make is that studying integer solutions to this equation
is more or less equivalent to studying rational solutions
to the equation a3 + b3 = 1: indeed, if we had integers
x, y , and z such that x3 + y3 = z3, then we could set
a = x/z and b = y/z and obtain rational numbers with
a3 + b3 = 1. Conversely, given rational numbers a and
b with a3 + b3 = 1, we could multiply a and b by the
lowest common multiple z of their denominators and
set x = az and y = bz, obtaining integers x, y , and z
such that x3 +y3 = z3.

The advantage of doing this is that it reduces the
number of variables by 1 and focuses our attention on
the plane curve u3 + v3 = 1, which is a simpler object
than the surface x3 + y3 = z3. A curve of this kind,
defined by one or more polynomial equations, is called
an algebraic curve.

Even though we are interested in rational points on
the curve, it can be helpful to regard the curve as
an abstract object that has many manifestations. (See
arithmetic geometry [IV.5] for a fuller discussion of
this point.) For instance, if we think of u and v as com-
plex numbers, then the “curve” u3 + v3 = 1 becomes
a two-dimensional object, which means that it starts

to have a genuinely interesting geometry. To be pre-
cise, it can be regarded as a two-dimensional manifold
[I.3 §6.9] living in R4. From a complex perspective it is
a one-dimensional subset of C2, but from either per-
spective it has a potentially interesting topology. For
instance, if we compactify [III.9] the curve by consid-
ering it as a subset not of C2 but of the complex pro-
jective plane [I.3 §6.7], then we turn it into a compact
surface. As such, it must have a genus [III.33], which,
roughly speaking, tells us how many holes it has.

Surprisingly, it turns out that this geometrical def-
inition of the genus of a curve is intimately related
to the algebraic question of how many rational points
the curve contains. Consider, for instance, the curve
u2 + v2 = 1, which corresponds to the Diophantine
equation x2 + y2 = z2. Since there are infinitely many
genuinely Pythagorean triples that are not multiples of
each other, there are infinitely many rational points on
the curve u2+v2 = 1. In order to calculate the genus of
the curve, we first rewrite it as (u+iv)(u−iv) = 1. This
shows that the function (u,v) �→ u+iv is a homeomor-
phism from the curve to the set C \ {0} of all nonzero
complex numbers, which itself is homeomorphic to a
sphere with two points removed. The compactification
adds in these points, giving us a surface of genus 0, so
we say that the curve u2 +v2 = 1 has genus 0. It turns
out that a curve of genus 0 always has either no rational
points or infinitely many.

In general, the larger the genus, the harder it is to find
rational solutions. A curve of genus 1 is called an ellip-
tic curve [III.21]. It is possible for an elliptic curve to
contain infinitely many rational points as well, but the
set of such points turns out to have a very restricted
structure. To explain this, let us consider an elliptic
curve E of the form y2 = ax3 + bx2 + cx + d (a form
into which any elliptic curve can be put). If we think of
it as a curve in R2, then we can define a binary opera-
tion on it as follows: given any two points P and Q on
E, let L be the line through P and Q (where we define
this to be the tangent to the curve at P if P = Q). In gen-
eral, L intersects E in three points, of which P and Q are
two; let R′ be the third. Finally, let R be the reflection
of R′ in the x-axis (which also belongs to E because E
has the form y2 = f(x)). This construction of R from P
and Q, which is illustrated in figure 1, defines a binary
operation on the points of E. Remarkably, this binary
operation turns E into an Abelian group, at least when
we also include a point at infinity and adopt the con-
vention that the point at infinity is the intersection of E
with any vertical line. The point at infinity is the iden-
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L

Figure 1 The group law for an elliptic curve.

tity of the group, since a vertical line through a point P
intersects E in the reflection P′ of P in the x-axis, and
when we reflect P′ in the x-axis we get P again.

It is laborious, but basically straightforward, to come
up with a formula for the “group law” of an elliptic
curve—that is, a formula for the coordinates of R in
terms of the coordinates of P and Q. Once one does so,
it becomes clear that if P and Q have rational coordin-
ates, then so does R. Thus, the set of all rational points
on an elliptic curve E forms a subgroup. This simple
fact can be used to produce rather easily some very
large solutions to the corresponding Diophantine equa-
tions. For instance, one can start with a small solu-
tion, associate with it a rational point P, and then use
the formula for the binary operation to calculate 2P,
then 4P, then 8P, and so on. Unless nP = 0 for some
n (which can certainly happen), in no time at all one
has a point on the curve with rational coordinates that
have huge numerators and denominators. To give an
idea of the sort of solutions that can be obtained in
this way, take the elliptic curve y2 = x3 − 5x and let
P be the point (−1,2) (which lies on the curve since
22 = (−1)3−5(−1)). If you calculate 5P using the group
law, then you obtain the point (−5 248 681/4 020 025,
16 718 705 378/8 060 150 125). In general, the number

T&T note: need to
check that the
linebreak is OK
before CRC stage. of digits needed to express the point nP grows expo-

nentially with n.
In the early twentieth century, poincaré [VI.61] con-

jectured that the subgroup of rational points on an
elliptic curve was finitely generated. This conjecture
was proved by Louis Mordell in 1922. Thus, although
a curve of genus 1 may have infinitely many rational
points, there is a finite set of these points that can be
used to build up all the others: this is the sense in

which the structure of the set of rational solutions is
restricted.

Mordell conjectured that a curve of genus at least
2 could contain only finitely many points. This was a
remarkable conjecture: if true, it would apply to an
extremely wide class of Diophantine equations, prov-
ing that all of them had at most finitely many solutions
(up to a multiple). Just one of its many implications was
that for each n � 3 the Fermat equation xn +yn = zn
had at most finitely many solutions with x, y , and z
coprime. However, it is one thing to make a very gen-
eral conjecture and quite another to prove it, and for
a long time the consensus was that the Mordell con-
jecture, like many other conjectures in number theory,
was way beyond what anybody could prove. It therefore
came as a big surprise when Gerd Faltings proved the
conjecture in 1983.

As a result of Faltings’s proof, our knowledge about
Diophantine equations took a huge leap forward. The
theorem has subsequently been given a variety of dif-
ferent proofs, some of them simpler than that of Falt-
ings. However, remarkable as these proofs are, they
do have some limitations. One is that they are ineffec-
tive. That is, even though Faltings’s theorem tells us
that certain curves have finitely many rational points,
no known proof gives any bound on the sizes of the
numerators and denominators of the coordinates of
those points, so we do not have any way of knowing
whether we have found all of them. This aspect of the
theorem is common in number theory: another exam-
ple of a famous theorem that is ineffective is roth’s
theorem [V.25]. To find effective versions of these the-
orems would be a further remarkable breakthrough.
(Variants of the abc conjecture [V.1] would imply
effective versions of these results, but the ABC conjec-
ture seems even further out of reach now than Mordell’s
conjecture seemed before Faltings proved it.)

At the beginning of this article, we simplified the
equation x3 + y3 = z3 so that we were looking at a
curve rather than a surface. But we obviously cannot
always do that. For instance, if we apply the same pro-
cedure to the equation x5 + y5 + z5 = w5, then we
obtain the two-dimensional surface t5 + u5 + v5 = 1.
Our knowledge about rational points on varieties (that
is, sets defined by polynomial equations) of dimension
greater than 1 is very limited. However, there is at least
a definition of a “variety of general type” that serves
as an analogue of the notion of a curve of genus at
least 2. One cannot expect such a variety to contain only
finitely many rational points, but a higher-dimensional
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analogue of the Mordell conjecture, due to Serge Lang,
asserts that the rational points on a varietyX of general
type must all be contained in a union of finitely many
lower-dimensional subvarieties of X. This conjecture is
considered to be well out of reach of present methods:
indeed, it is not even universally believed.

V.33 The Resolution of Singularities

Virtually all important mathematical structures come
with a notion of equivalence. For instance, we regard
two groups [I.3 §2.1] as equivalent if they are isomor-
phic [I.3 §4.1], and we regard two topological spaces
[III.92] as equivalent if there is a continuous map from
one to the other with a continuous inverse (in which
case we say that they are homeomorphic). In general, a
notion of equivalence is useful if properties that we are
interested in are unaffected when we replace an object
by an equivalent one: for example, if G is a finitely gen-
erated Abelian group and H is isomorphic to G, then H
is a finitely generated Abelian group.

A useful notion of equivalence for algebraic vari-
eties [IV.4 §7] is that of birational equivalence. Roughly
speaking, two varieties V and W are said to be bira-
tionally equivalent if there is a rational map from V to
W with a rational inverse. If V and W are presented as
solution sets of equations in some coordinate system,
then these rational maps are just rational functions in
the coordinates that send points of V to points of W .
However, it is important to understand that a rational
map from V toW is not literally a function from V toW ,
because it is allowed to be undefined at certain points
of V .

Consider, for example, how we might map the infinite
cylinder {(x,y, z) : x2+y2 = 1} to the cone {(x,y, z) :
x2 +y2 = z2}. An obvious map would be the function
f(x,y, z) = (zx, zy, z), which we could try to invert
using the map g(x,y, z) = (x/z,y/z, z). However, g is
not defined at the point (0,0,0). Nevertheless, the cylin-
der and the cone are birationally equivalent, and alge-
braic geometers would say that g “blows up” the point
(0,0,0) to the circle {(x,y, z) : x2 +y2 = 1, z = 0}.

The main property of a variety V that is preserved by
birational equivalence is the so-called function field of
V , which consists of all rational functions defined on V .
(What precisely this means is not completely obvious:
in some contexts, V is a subset of a larger space such as
Cn in which one can talk about ratios of polynomials,
and then one possible definition of a rational function
on V is that it is an equivalence class of such ratios,

where two of them are counted as equivalent if they
take the same values on V . See arithmetic geometry
[IV.5 §3.2] and quantum groups [III.77 §1] for further
discussion of this equivalence relation.)

A famous theorem of Hironaka, proved in 1964,
states that every algebraic variety (over a field of char-
acteristic 0) is birationally equivalent to an algebraic
variety without singularities, with some technical con-
ditions on the birational equivalence that are needed
for the theorem to be interesting and useful. The exam-
ple given earlier is a simple illustration: the cone has
a singularity at (0,0,0) but the cylinder is smooth
everywhere. Hironaka’s proof was well over two hun-
dred pages long, but his argument has since been
substantially simplified by several authors.

For a further discussion of the resolution of singu-
larities, see algebraic geometry [IV.4 §9].

The Riemann Hypothesis
See the prime number theorem and

the riemann hypothesis [V.29]

V.34 The Riemann–Roch Theorem

A riemann surface [III.81] is a manifold [I.3 §6.9] that
“looks locally like C,” in the usual sense of this sort of
phrase. In other words, every point has a neighborhood
that can be mapped bijectively to an open subset of C,
and where two such neighborhoods overlap, the “tran-
sition functions” are holomorphic [I.3 §5.6]. One can
think of a Riemann surface as the most general sort of
set on which the notion of a holomorphic function (that
is, a complex-differentiable function) of one complex
variable makes sense.

The definition of differentiability is a local one: a
function is differentiable if and only if a certain con-
dition holds at each point z, and the condition at z
depends only on the behavior of f at points very close
to z. However, one of the surprises of complex analysis
is that holomorphic functions are much more global
than their basic definition would lead one to expect.
Indeed, if you know the values of a holomorphic func-
tion f : C → C at every point in a small neighborhood
of a single point z, then you can deduce its values at
every point in C. And the same is true if you replace C

by any other (connected) Riemann surface.

Here is a second illustration of the global nature of
holomorphic functions. One of the most basic Riemann
surfaces is the so-called Riemann sphere Ĉ, which is
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obtained from C by adding a “point at infinity.” A func-
tion f : Ĉ→ C is said to be holomorphic if the following
conditions hold:

• f is differentiable at every point of C;
• f(z) tends to a limit w as z →∞ in any direction;
• w is the value of f at ∞.

What, then, are the holomorphic functions from Ĉ to C?
A holomorphic function f is continuous, from which it
follows that if f(z) tends to a limit as z → ∞, then f
is bounded on C. But a well-known theorem of liou-
ville [VI.39] states that a bounded holomorphic func-
tion defined on all of C must be constant. So the only
holomorphic functions from Ĉ to C are constant!

One might take the attitude that it was slightly arti-
ficial to consider maps from Ĉ to C. Why not look at
maps from Ĉ to Ĉ? Such maps are equivalent to func-
tions from C to C that are allowed to tend to infinity at
a finite set of points z1, . . . , zk, called poles, and must
tend to a limit as z → ∞. (This limit is allowed to be
the point ∞. We say that f(z) → ∞ as z → ∞ if we
can make |f(z)| arbitrarily large by making |z| large
enough. Note that some familiar functions such as ez

are ruled out since it is possible for |z| to be large
and ez to be small.) Functions with this property are
called meromorphic. A typical example is z, or z2, or
(1 + z)/(1 − z), or indeed any rational function in z;
it can in fact be shown that any meromorphic function
from Ĉ to Ĉ is rational.

The notion of a meromorphic function also makes
sense on other Riemann surfaces. One can think of it
as a function that is holomorphic except at a set of iso-
lated points where it tends to infinity. (If the function is
defined on C, there may be infinitely many such points,
but a compact [III.9] surface such as Ĉ cannot contain
infinitely many points that are all isolated from each
other, so a meromorphic function on a compact surface
has at most finitely many poles.)

A particularly important example is when the Rie-
mann surface in question is a torus. We can regard
such a surface as the quotient [I.3 §3.3] of C by the lat-
tice generated by two complex numbers u and v such
that u/v is not real. There is then a one-to-one corre-
spondence between functions defined on the torus and
functions f defined on C that are doubly periodic, in
the sense that f(z+u) and f(z+v) are both equal to
f(z) for every z. Liouville’s theorem again implies that
if such a function is holomorphic then it is constant;
however, there are interesting examples of doubly peri-

odic meromorphic functions. Such functions are called
elliptic functions.

Even here, the global nature, or “rigidity,” of holo-
morphic functions asserts itself, by greatly restricting
the supply of elliptic functions. Indeed, one can define
a single function, called the Weierstrass P -function ℘,
with the property that any other elliptic function with
respect to a given pair of generators u and v can be
expressed as a rational function of ℘ and its derivative.
Weierstrass’s function (for the generators u and v) is
given by the formula

℘(z)= 1
z2
+

∑
(n,m)	=(0,0)

(
1

(z−mu−nv)2 −
1

(mu+nv)2
)
.

Notice that the double periodicity is built into the defi-
nition, and that ℘ has a pole at every point in the lattice
generated by u and v . If we think of ℘ as a function on
the torus, then it has just one pole. Near this pole, f
tends to infinity at the same rate as the function 1/z2

does when z tends to 0; we say that the pole has order 2.
More generally, if f tends to infinity at the same rate
as 1/zk, then the pole has order k.

Suppose we take a compact Riemann surface S and
choose from it a finite set of points z1, . . . , zr . Given
a sequence d1, . . . , dr of positive integers, can we find
a meromorphic function f defined on S such that its
poles are z1, . . . , zr and such that for each i the order
of the pole at zi is at most di? The results mentioned so
far would lead us to expect that this might be possible,
but that there would probably not be a huge supply
of such functions. Since a linear combination of such
functions gives us another one, the set of functions we
are interested in forms a vector space [I.3 §2.3], so we
could hope to quantify “how many” functions there are
by investigating the dimension of this space.

As we might by now expect, this dimension turns out
to be finite. riemann [VI.49] proved that if the poles are
required to be simple (that is, di = 1 for i = 1,2, . . . r ),
then the dimension l is at least r − g + 1, where g is
the genus [III.33] of the surface, which means, roughly
speaking, the number of holes it has. This result is
called Riemann’s inequality. Roch’s contribution was
to interpret the difference between l and r − g + 1 as
the dimension of another space of functions. This often
makes it possible to calculate the dimension l exactly.
For instance, under certain circumstances one can show
that the dimension of the space of functions identified
by Roch is 0, in which case l = r − g + 1. In particular,
this is the case when r � 2g − 1.

The original question we asked was more general in
that we did not require the poles to be simple: rather,
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we wanted the order of the pole at zi to be at most di.
However, the result generalizes straightforwardly, and
l is now at least d1+· · ·+dr −g+1, with the difference
again equal to the dimension of a certain space of func-
tions that one can define. One can even ask for some
of the di to be negative, interpreting a “pole of order at
most di” to mean a zero of multiplicity at least −di.

The Riemann–Roch theorem is a basic tool for com-
puting the dimensions of spaces of holomorphic or
meromorphic functions on compact surfaces (which
is often equivalent to requiring them to obey certain
symmetry conditions). Let us begin with a very sim-
ple example. It is not hard to show that every mero-
morphic function defined on the Riemann sphere with
at most simple poles at 0 and 1 has to take the form
a+ b/z+ c/(z− 1). This is a three-dimensional space,
and that is what the Riemann–Roch theorem predicts. A
more sophisticated example concerns the Weierstrass
P -function. We saw earlier that this is a doubly peri-
odic meromorphic function defined on C with a pole of
order 2 at each point in the lattice generated by u and
v . The existence (and essential uniqueness) of such a
function can be proved more abstractly with the help
of the Riemann–Roch theorem: it shows that the space
of such functions has dimension 2, so they can all be
built out of a single function ℘ and the constant func-
tions. Similarly, the theorem can be used to compute
dimensions of spaces of modular forms [III.61].

The Riemann–Roch theorem has been reformulated
and generalized many times, which has made it even
more useful as a computational tool, and a central
result in algebraic geometry: for example, Hirzebruch
found a higher-dimensional generalization, which was
generalized further by Grothendieck to a statement
about advanced concepts in modern algebraic geom-
etry such as schemes [IV.5 §3] and “sheaves.” Hirze-
bruch’s generalization, like the classical result about
curves, expresses an analytically defined quantity in
terms of purely topological invariants: it is this fea-
ture of both results that underlies their importance.
Another generalization of which the same can be said
is the famous atiyah–singer index theorem [V.2],
which has itself been generalized several times.

V.35 The Robertson–Seymour
Theorem
Bruce Reed

A graph G is a mathematical structure that consists of
a set V(G) of vertices and a set E(G) of edges that link

some of the vertices. Graphs can be used to represent
many different networks in an abstract way. For exam-
ple, the vertices might represent cities, and the edges
might represent highways linking the cities; similarly,
we could use a graph to represent which islands of an
archipelago are linked by bridges, or to represent the
wires of a telephone network. Among graphs there are
certain families of “nice” graphs. One such family is the
family of cycles: a k-cycle is a set of k vertices arranged
around a circle with each point joined by an edge to the
points immediately before and after it. Another family
is that of complete graphs: the complete graph of order
k consists of k vertices, all pairs of which are joined.

An important concept in graph theory, particularly
when families of graphs are involved, is that of a minor.
Given a graph G, a minor of G is any graph you can
obtain by applying a sequence of operations of two
kinds, known as contractions and deletions, applied to
edges. To contract the edge that joins two vertices x
and y , one “fuses” x and y into a single vertex, join-
ing it to all the vertices that were previously joined to
either x or y . For example, if you contract an edge of
a 9-cycle, you will obtain an 8-cycle. Deleting an edge
means what one would guess: for example, if you delete
an edge from a 9-cycle you will get a path with nine
vertices and eight edges.

It is not hard to check that a graph H is a minor of G
if and only if we can find a collection of disjoint subsets
of G, one for each vertex of H, with the following prop-
erties: they should be connected, which means that any
two vertices in one of the subsets are joined to each
other by a path in that subset, and for any pair of ver-
tices inH that are linked by an edge inH the two corre-
sponding subsets of G should be linked by an edge. For
example, a graph has a 3-cycle (or triangle) as a minor
if and only if it contains a cycle.

For an example of how minors can arise naturally,
note that if a graph is planar (meaning that it can be
drawn in the plane in such a way that edges do not
cross), then so is any minor of it. This is expressed by
saying that the class of planar graphs is minor closed.
Now, there is a theorem of Kuratowski that tells us
which graphs are planar. One form that this theorem
takes is the following statement: a graph is planar if
and only if it does not have either K5 or K3,3 as a minor,
where K5 denotes the complete graph of order 5, and
K3,3 denotes the complete bipartite graph that consists
of two sets of three vertices, with every vertex in one set
joined to every vertex in the other set. Thus, the class of
planar graphs is characterized by two forbidden minors.
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Kuratowski’s theorem tells us which graphs can be

embedded into the plane. What happens for other sur-

faces? For example, it is easy to see that for anyd the set

of graphs that can be drawn on a d-holed torus is minor

closed, but is there a finite set of forbidden minors in

this case? To put it another way, is the set of obstruc-

tions to being embeddable into the d-holed torus only

finite?

A special case of the Robertson–Seymour theorem

states that the answer to this question is yes for any

surface. But the theorem itself is much more general. It

states that for any minor-closed class of graphs, there

is a finite set of forbidden minors. In other words, for

any minor-closed class G there exist graphs G1, . . . , Gk
such that a graph G belongs to the family G if and only

if G does not have any Gi as a minor. There is also a

pleasant form of the theorem (which is easily seen to be

equivalent) that says that the class of all graphs is “well-

quasi-ordered” by the minor relation: this means that

given any sequence G1, G2, . . . of graphs there must

exist one that is a minor of a later one.

It turns out that testing a graph for the presence of a

given minor can be done reasonably fast, so that one

amazing spin-off from the Robertson–Seymour theo-

rem is that for any minor-closed class there is an effi-

cient algorithm for checking whether or not a given

graph belongs to the class. This has had a huge number

of applications in routing problems and the like.

The actual proof of the Robertson–Seymour theorem

is enormous: it was published in a sequence of twenty-

two papers. Interestingly, it turns out that the case of

graphs embeddable into a given surface plays a key

role, as we now explain.

We will consider the form of the theorem mentioned

above involving a sequence of graphs. So let us suppose

for a contradiction that we have a “bad” sequence: that

is, a sequence G1, G2, . . . for which no Gi is a minor

of any later Gj . Let the number of vertices of the first

graph G1 be k. Since no later Gi has G1 as a minor,

it certainly follows that none of G2, G3, . . . has a com-

plete minor of size k (or else we could delete some

edges and obtain G1). For this reason, Robertson and

Seymour studied families of graphs that do not have

a complete minor of size k. They were able to show

that every graph that does not have a complete minor

of size k may be built up in a certain way from graphs

that are “nearly embeddable” into a fixed surface (that

depends on the value of k). This means that in a cer-

tain sense that can be made precise the graph is not

too far from a graph that is embeddable into the sur-

face. By some very deep arguments, they were able to

show that the family of all such graphs (the graphs that

can be built up from nearly embeddable graphs, for a

given surface) has a finite number of forbidden minors,

thereby proving the theorem.

V.36 The Three-Body Problem

The three-body problem can be simply stated: three

point masses move in space under their mutual gravita-

tional attraction; given their initial positions and veloc-

ities, determine their subsequent motion. Initially, it

may come as a surprise that this is a difficult prob-

lem, since the analogous two-body problem can be

solved fairly simply: more precisely, given any set of

initial conditions, we can write down a formula, in

terms of elementary functions (these are functions that

can be built up using the basic operations of arith-

metic, together with a few standard functions such as

the exponential [III.25] and trigonometric [III.94]

functions), that tells us the subsequent positions and

velocities of the bodies. However, the three-body prob-

lem is a complicated nonlinear problem and it can-

not be solved in this way, even if we are prepared to

enlarge our stock of “standard functions” somewhat.

newton [VI.14] himself speculated that an exact solu-

tion “exceeds, if I am not mistaken, the force of any

human mind,” while hilbert [VI.63], in his celebrated

Paris address of 1900, put the problem in a category

similar to fermat’s last theorem [V.12]. The prob-

lem can be extended to any number of bodies and in

the general case it is known as the n-body problem.

Recall that the gravitational force of a particle P1 on

a particle P2 has magnitude k2m1m2/r2 (in suitable

units), where k is the Gaussian gravitational constant,

particle Pi has mass mi, and the distance between the

particles is r . The direction of this force on P2 is toward

P1 (and there is a force of the same magnitude on P1 in

the direction of P2). Recall also Newton’s second law:

force equals mass times acceleration. From these two

laws we can easily derive the equations of motion for

the three-body problem. Let the particles be P1, P2, and

P3. Write mi for the mass of Pi, rij for the distance

between Pi and Pj , and qij for the jth coordinate of the
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position of Pi. Then the equations of motion are

d2q1i

dt2
= k2m2

q2i − q1i

r3
12

+ k2m3
q3i − q1i

r3
13

,

d2q2i

dt2
= k2m1

q1i − q2i

r3
12

+ k2m3
q3i − q2i

r3
23

,

d2q3i

dt2
= k2m1

q1i − q3i

r3
13

+ k2m2
q2i − q3i

r3
23

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

Here, i runs from 1 to 3; thus, there are nine equations,
all derived from the simple laws above. For instance, the
left-hand side of the first equation is the component of
the acceleration of P1 in the ith direction, and the right-
hand side is the component of the force acting on P1 in
this direction, divided by m1.

If the units are chosen so that k2 = 1, then the
potential energy V of the system is given by

V = −m2m3

r23
− m3m1

r31
− m1m2

r12
.

Setting

pij =mi
dqij
dt

and H =
3∑

i,j=1

p2
ij

2mi
+ V,

we can rewrite the equations in the hamiltonian form
[IV.16 §2.1.3]

dqij
dt

= ∂H
∂pij

,
dpij
dt

= − ∂H
∂qij

, (2)

which is a set of eighteen first-order differential equa-
tions. Since this set is easier to use, it is now generally
preferred to (1).

A standard way of decreasing the complexity of a
system of differential equations is to find an algebraic
integral for it: that is, a quantity that will remain con-
stant for any given solution and that can be expressed
as an integral that gives rise to an algebraic depend-
ence between the variables. This allows us to reduce
the number of variables by expressing some of them in
terms of others. The three-body problem has ten inde-
pendent algebraic integrals: six of them tell us about
the motion of the center of mass (three for the posi-
tion variables and three for the momentum variables),
three integrals express the conservation of angular
momentum, and one expresses conservation of energy.
These ten independent integrals were known to euler
[VI.19] and lagrange [VI.22] in the middle of the eigh-
teenth century, and in 1887 Heinrich Bruns, professor
of astronomy at Leipzig, proved that there are no oth-
ers, a result sharpened by poincaré [VI.61] two years
later. By the use of these ten integrals, together with
the “elimination of the time” and the “elimination of
the nodes” (a procedure first made explicit by jacobi

[VI.35]), the original system of order eighteen can be
reduced to one of order six, but it can be reduced no
further. Hence, any general solution of (2) cannot be
given by a simple formula: the best we can hope for
is a solution in the form of an infinite series. It is not
difficult to find series that work well enough for a lim-
ited time span: the problem is to find series that work
for any initial configuration and for any time span, no
matter how long. There is also the question of colli-
sions. A complete solution to the problem has to take
account of all possible motions of the bodies, including
determining which initial conditions lead to binary and
triple collisions. Since collisions are described by sin-
gularities in the differential equations, this means that
to find a complete solution the singularities have to be
understood.

This turns out to be a more interesting problem than
one might think. It is obvious from the equations that
a collision gives rise to a singularity, but it is less clear
whether there can be any other kind of singular behav-
ior. In the case of the three-body problem, the answer
was supplied by Painlevé in 1897: the collisions are the
only singularities. However, for more than three bodies
the answer turned out to be different. In 1908 a Swedish
astronomer, Hugo von Zeipel, showed that noncollision
singularities can occur only if the system of particles
becomes unbounded in a finite amount of time. A good
example of such a singularity was found by Zhihong Xia
for the five-body problem in 1992. In this case there are
two pairs of bodies, the bodies in each pair having equal
mass, and a fifth body with very small mass. The bod-
ies in a pair move in very eccentric orbits parallel to the
xy-plane, with the two pairs on opposite sides of this
plane and rotating in opposite directions. A fifth parti-
cle is then added to the system. Its motion is confined
to the z-axis and oscillates between the two pairs. Xia
showed that the motion of the fifth particle forced the
two pairs to move away from the xy-plane, but that it
also came closer and closer to colliding with the pairs,
giving it larger and larger bursts of acceleration, and
that as this happened the two pairs were forced out to
infinity in finite time.

As well as trying to solve the problem in general,
one can look for interesting particular solutions. A cen-
tral configuration is defined to be a solution in which
the geometric configuration remains constant. The first
examples were discovered by Euler in 1767: they were
solutions in which the bodies always lie on a straight
line and revolve with uniform angular velocity in cir-
cles or ellipses about their common center of mass. In
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1772 Lagrange discovered solutions in which the bod-
ies are always at the vertices of an equilateral triangle
that rotates uniformly about the center of mass. For
almost all sets of initial conditions for these solutions,
the size of the triangle changes as it rotates so that each
body describes an ellipse.

However, despite the discovery of the particular solu-
tions and a century of unrelenting work on the prob-
lem, the mathematicians of the nineteenth century were
unable to find a general solution. Indeed, the problem
was considered so hard that in 1890 Poincaré was led
to declare that he thought it impossible without the
discovery of some significant new mathematics. But,
contrary to Poincaré’s expectation, less than twenty
years later a young Finnish mathematical astronomer,
Karl Sundman, using only existing mathematical tech-
niques, astonished the mathematical world by obtain-
ing uniformly convergent infinite series that mathemat-
ically “solved” the problem. Sundman’s series, which
are in powers of t1/3, are convergent for all real t,
except for the negligible set of initial conditions for
which the angular momentum is zero. To deal with
binary collisions, Sundman used the technique of regu-
larization, or analytically extending a solution beyond
the collision, but he was unable to deal with triple colli-
sions because in order for such a collision to occur the
angular momentum must be zero.

Although it was a remarkable mathematical achieve-
ment, Sundman’s solution leaves many questions unan-
swered. It provides no qualitative information about
the behavior of the system and, worse, because the
series converges so slowly it is of no practical use. To
determine the motion of the bodies for any reasonable
period of time would require the summation of some-
thing of the order of 108000000 terms, a calculation that
is patently unrealistic. Thus, Sundman left plenty still
to do, and work on the problem (and the related n-
body problem) has continued up to the present day,
with exciting results continuing to appear. One recent
example is a convergent power-series solution for the
general n-body problem, which was discovered by Don
Wang in 1991.

Since the three-body problem itself proved so in-
tractable, simplified versions were developed, of which
the most famous is the one now known as the restricted
three-body problem (the name is due to Poincaré),
which was first investigated by Euler. In this case, two
of the bodies (the primaries) revolve around their joint
center of mass in circular orbits under the influence
of their mutual gravitational attraction, while the third

body (the planetoid), which is assumed to have such

small mass that the force it exerts on the other two bod-

ies can be neglected, moves in the plane defined by the

primaries. The advantage of this formulation is that the

motion of the primaries can be treated as a two-body

problem and is hence known; it remains only to inves-

tigate the motion of the planetoid, which can be done

using perturbation theory. Although the restricted for-

mulation might appear artificial, it provides a good

approximation to real physical situations, such as, for

example, the problem of determining the motion of

the Moon around Earth given the presence of the Sun.

Poincaré wrote extensively on the restricted problem,

and the techniques he developed to tackle it led to his

discovery of mathematical chaos, as well as laying the PUP: can’t add ‘to’
after this word as
this means ‘and
also laid’.

foundations for modern dynamical systems [IV.14]

theory.

Apart from its intrinsic appeal as a simple-to-

state problem, the three-body problem has a further

attribute that has contributed to its attraction for

potential solvers: its intimate link with the fundamen-

tal question of the stability of the solar system. That

is the question of whether the planetary system will

always keep the same form as it has now, or whether,

eventually, one of the planets will escape or, perhaps

worse, experience a collision. Since bodies in the solar

system are approximately spherical and their dimen-

sions extremely small when compared with the dis-

tances between them, they can be considered as point

masses. Ignoring all other forces, such as solar winds or

relativistic effects, and taking only gravitational forces

into account, the solar system can be modeled as a ten-

body problem with one large mass and nine small ones,

and it can be investigated accordingly.

Over the years, attempts to find a solution to the

three-body problem (and the related n-body problem),

have spawned a wealth of research. As a result, the

importance of the problem is as much in the mathemat-

ical advances it has generated as in the problem itself.

A notable example of this is the development of KAM

theory, which provides methods for integrating per-

turbed Hamiltonian systems and obtaining results that

are valid for infinite periods of time. This was devel-

oped in the 1950s and 1960s by kolmogorov [VI.88],

Arnold, and Moser.

Thurston’s Geometrization Conjecture
See the poincaré conjecture [V.28]
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V.37 The Uniformization Theorem

The uniformization theorem is a remarkable classifi-
cation of riemann surfaces [III.81]. Two surfaces are
biholomorphically equivalent if there is a holomor-
phic function [I.3 §5.6] from one to the other that
has a holomorphic inverse. If a Riemann surface is sim-
ply connected [III.95], then the uniformization theo-
rem states that it is biholomorphically equivalent to the
sphere, the Euclidean plane, or the hyperbolic plane
[I.3 §6.6]. These three spaces can all be viewed as Rie-
mann surfaces, and they are all particularly symmetric:
they have constant curvature [III.80] (positive, zero,
and negative, respectively); more generally, given any
two points x and y in such a space, one can find a
symmetry of the space that takes x to y , and one can
ensure that a little arrow at x ends up pointing in any
desired direction at y . Loosely speaking, these spaces
“look the same from every point.”

It can be shown that an open subset of C that is not
the whole of C cannot be biholomorphically equivalent
to the sphere or to C. Therefore, by the uniformization
theorem, a simply connected open subset of C that is
not the whole of C must be biholomorphically equiva-
lent to the hyperbolic plane. This proves that any such
set, no matter how irregular its boundary might be,
can be mapped biholomorphically to any other. This
result is called the Riemann mapping theorem. Biholo-
morphic maps are conformal : that is, if two curves in
one set meet at an angle θ, then the angle between their
images in the other set is also θ. So the Riemann map-
ping theorem implies that the interior of any simple
closed curve can be mapped in an angle-preserving way
to the open unit disk. Recall that one of the main mod-
els of the hyperbolic plane is Poincaré’s disk model.
Thus, the hyperbolic metric on the disk together with
the biholomorphic map that is given by the uniformiza-
tion theorem can be used to define a hyperbolic metric
on any simply connected proper open subset of C.

If a Riemann surface is not simply connected, it is at
least a quotient [I.3 §3.3] of a simply connected sur-
face, namely its universal cover [III.95]. For example,
a torus is a quotient of the complex plane (in many
possible ways that are topologically but not biholomor-
phically equivalent). Thus, the uniformization theorem
tells us that a general Riemann surface is a quotient
of the sphere, the Euclidean plane, or the hyperbolic
plane. For a more detailed discussion of what such a
quotient might be like, see fuchsian groups [III.28].

Waring’s Problem
See problems and results in additive

number theory [V.30]

V.38 The Weil Conjectures
Brian Osserman

The Weil conjectures constitute one of the central
landmarks of twentieth-century algebraic geometry
[IV.4]: not only was their proof a dramatic triumph,
but they were the driving force behind a striking num-
ber of fundamental advances in the field. The conjec-
tures treat a very elementary problem: how to count the
number of solutions to systems of polynomial equa-
tions over finite fields [I.3 §2.2]. While one might ulti-
mately be more interested in solutions over, say, the
field of rational numbers, the problem is far more
tractable over finite fields, and local–global prin-
ciples [III.53] such as the birch–swinnerton-dyer
conjecture [V.4] establish strong, albeit subtle, rela-
tionships between the two cases.

Moreover, there are some basic questions that have
nonobvious connections to the Weil conjectures. The
most famous of these is the Ramanujan conjecture,
which concerns the coefficients of∆(q), one of the most
fundamental examples of a modular form [III.61]. We
obtain the function τ(n) from the formula for ∆(q) as
follows:

∆(q) = q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn.

ramanujan [VI.82] conjectured that |τ(p)| � 2p11/2

for any prime number p. This is closely related to a
statement on the number of ways of writing p as a
sum of twenty-four squares. Work of Eichler, Shimura,
Kuga, Ihara, and Deligne showed that in fact Ramanu-
jan’s conjecture is a consequence of the Weil conjec-
tures, so that Deligne’s proof of the latter in 1974 also
resolved the former.

We begin with a brief historical summary of develop-
ments prior to weil [VI.93] and follow this with a more
precise description of the statement of his conjectures.
Finally, we sketch the ideas behind their proof.

1 An Auspicious Prologue

Our story begins with the seminal work of riemann
[VI.49] on the classical zeta function [IV.2 §3], which



�

V.38. The Weil Conjectures 51

we recall is defined by the sum

ζ(s) =
∑
n

1
ns
.

euler [VI.19] had studied this function for real values
of s, but Riemann, in his remarkable eight-page paper
of 1859, went much further. He looked at complex val-
ues as well, and therefore had at his disposal the con-
siderable resources of complex analysis. In particular,
although the above sum for ζ(s) converges only for
complex numbers s that have real part Re(s) strictly
greater than 1, Riemann showed that the function itself
can be extended to an analytic function defined on the
entire complex plane, except at the point s = 1, at which
it tends to infinity. He showed, moreover, that ζ(s)
satisfies a certain functional equation relating ζ(s) to
ζ(1 − s), which introduced an important kind of sym-
metry around the line Re(s) = 1

2 . Most famously (or
infamously), he conjectured what is now known as the
riemann hypothesis [I.4 §3]: that, aside from easily
analyzed “trivial zeros” on the negative real axis, every
zero of ζ(s) occurs on the line Re(s) = 1

2 . Riemann’s
motivation for studying ζ(s) was to analyze the dis-
tribution of prime numbers, but it fell to later authors
(hadamard [VI.65], de la vallée poussin [VI.67], and
Van Koch) to bring this vision to fruition. They used
the zeta function to prove the prime number theorem
[I.4 §3], which determined the asymptotic distribution
of prime numbers, and also showed that the Riemann
hypothesis is equivalent to a particularly strong upper
bound for the error term in the prime number theorem.

At first glance, the Riemann hypothesis might appear
to be completely special, a one-of-a-kind conjecture.
However, it was not long before dedekind [VI.50] gen-
eralized the Riemann hypothesis to a whole family of
zeta functions, and in doing so opened the door to fur-
ther generalization. Just as we can think of the complex
numbers as being obtained from the real numbers by
including a square root of−1, that is, a root of the poly-
nomial x2 + 1, one can obtain a number field [III.65],
the fundamental object of study in algebraic num-
ber theory [IV.1], from the field Q of rational num-
bers by including roots of more general polynomials.
For each number fieldK we have the ring of integersOK ,
which enjoys many of the same properties as the classi-
cal integers Z. Starting from this observation, Dedekind
defined a more general class of zeta functions, one for
each such ring, which now bear his name. The classical
zeta function ζ(s) was the Dedekind zeta function in
the case OK = Z. However, it was not at all straightfor-
ward to establish the existence of a functional equation

for Dedekind zeta functions: this was an open problem
until 1917, when it was settled by Hecke, who showed
at the same time that Dedekind zeta functions could be
extended to the complex plane, thereby ensuring that
the Riemann hypothesis makes sense for them as well.

With such ideas in the air, it was not long before
geometry entered the picture. artin [VI.86] first intro-
duced zeta functions and the Riemann hypothesis for
certain curves over finite fields in his 1923 thesis, not-
ing that the ring of polynomial functions on such a PUP: Tim says this

sentence (and the
use of singular) is
fine. OK?

curve shares precisely the properties of rings of inte-
gers that Dedekind used to define his zeta functions.
Artin quickly observed first that his new zeta func-
tions were strongly analogous to Dedekind zeta func-
tions, and second that they were often more tractable:
evidence for both observations is provided by the
fact that he was able to check explicitly that the Rie-
mann hypothesis was satisfied for a number of specific
curves. The difference between the two situations is
encapsulated as follows: while in the number field case
one can think of the zeta function as counting primes,
in the case of a function field the zeta function may
be expressed in terms of the more geometric data of
counting points on the given curve. In a 1931 paper
F. K. Schmidt generalized Artin’s work, and exploited
this geometry to prove a strong form of the functional
equation for such zeta functions. And then, in 1933,
Hasse proved the Riemann hypothesis in the special
case of elliptic curves [III.21] over finite fields.

2 Zeta Functions of Curves

We now discuss in more detail the definition and prop-
erties of zeta functions associated with curves over
finite fields, as well as the theorems of Schmidt and
Hasse. Let Fq denote the finite field with q elements,
where q = pr for some prime number p and some pos-
itive integer r . The simplest case is when q = p, and
Fp is just the field of integers modulo p (see modular
arithmetic [III.60]). More generally, we can obtain Fq

by adding roots of polynomials to Fp just as we do to Q

to obtain number fields; in fact, a single root of a single
irreducible polynomial of degree r will do.

Artin studied a certain class of curves in the plane.
Here, “plane” means F2

q, that is, the set of all pairs (x,y)
with x and y in Fq. A curve C is simply the subset
of these points where some polynomial f(x,y) with
coefficients in Fq vanishes. Of course, if F is any field
that contains Fq, then the coefficients are also in F , so it
makes sense to talk about C(F), the curve in the larger
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“plane” F2 defined by the same equation f(x,y) = 0. If
F is also a finite field, then C(F) is obviously also finite.
The finite fields F containing Fq turn out to be the fields
Fqm for m � 1. For each m � 1 let us define Nm(C) to
be the number of points belonging to the curve C(Fqm).
The sequence N1(C),N2(C),N3(C), . . . is what we shall
try to understand.

Given our plane curve C , we can define the ring
of polynomial functions OC of C . This is simply the
ring of polynomial functions on the plane (i.e., in
two variables), modulo the equivalence relation
[I.2 §2.3] that two functions taking the same values
on C should be considered the same. Formally, OC is
simply the quotient [I.3 §3.3] ring Fq[x,y]/(f (x,y)).
Artin’s basic observation was that the definition of the
Dedekind zeta function could be applied equally well
to the ring OC , yielding a zeta function ZC(t) associ-
ated with C . However, in our geometric context we have
the following equivalent and more elementary formula,
which explicitly relates ZC(t) to the number of points
over finite fields:

ZC(t) = exp
( ∞∑
m=1

Nm(C)
tm

m

)
. (1)

Schmidt generalized Artin’s definition to all curves
over finite fields, and gave an elegant description of
the zeta function for curves, bearing out Artin’s obser-
vations in the cases he was able to compute. The nicest
form of Schmidt’s theorem applies to curves that sat-
isfy two additional conditions. The first condition is
that, rather than considering the curve C in the plane,
we will want to “compactify” it by considering instead
a projective curve; we can think of this as adding some
“points at infinity,” thus increasingNm(C) slightly. Sec-
ond, we will want to impose a technical condition of
smoothness on C , which is analogous to asking that C
be a manifold [I.3 §6.9].

In order to state Schmidt’s result, recall that there
is a notion of the genus g (see algebraic geometry
[IV.4 §10]) of a smooth projective curve C , which can be
defined to be the dimension of the space of differentials
on C , or, if C is a complex curve, as the “number of
holes” in the space obtained from the analytic topology
on C . By extending certain classical results in algebraic
geometry to more general fields, Schmidt proved that,
for a smooth projective curve C over Fq of genus g, we
have

ZC(t) = P(t)
(1− t)(1− qt) , (2)

where P(t) is a polynomial of degree 2g with integer
coefficients. Furthermore, he proved a functional equa-

tion in terms of the substitution t �→ 1/qt. If we set
t = q−s , this gives a functional equation for the substi-
tution s �→ 1−s, as in Riemann’s original work. The Rie-
mann hypothesis for C is then the statement that the
roots of ZC(q−s) all have Re(s) = 1

2 , or, equivalently,
that the roots of P(t) all have norm equal to q−1/2. It
is an elementary observation that this is equivalent to
the assertion that |Nm(C) − qm + 1| � 2g

√
qm, for all

m � 1.

The next step in exploiting the geometric nature of
zeta functions of curves is the observation that if F is a
finite field containing Fqm , then the points with coordin-
ates in Fqm are the fixed points of a function called
the Frobenius map, which is the map Φqm that sends
a point (x,y) ∈ F2 to the point (xqm,yqm). It is a sim-
ple extension of fermat’s little theorem [III.60] that
if t ∈ Fqm , then tqm = t. Moreover, the converse holds:
if F is a field containing Fqm , and t ∈ F satisfies tqm = t,
then t ∈ Fqm . This follows because in any field, and in
particular in F , the polynomial tqm − t can have at most
qm roots, which must then be precisely the elements of
Fqm . It immediately follows that a point (x,y) ∈ F2 is a
fixed point ofΦqm if and only if (x,y) ∈ F2

qm . Moreover,
it is elementary that (s + t)qm = sqm + tqm , if s, t are
in any field containing Fp . Because the coefficients of
f(x,y) are in Fqm , it follows that if f(x,y) = 0, then

f(Φqm(x,y)) = f(xqm,yqm) = (f (x,y))qm = 0,

so we see that Φqm gives a map from C to itself. Thus,
one might hope to studyC(Fqm) by analyzing more gen-
erally what one can say about the fixed points of maps
from C to itself. Hasse successfully applied this point
of view to prove the Riemann hypothesis in the case
g = 1, which is to say the case of elliptic curves. More-
over, we will see that this perspective is woven through-
out the fabric of the rest of our story, not only inspiring
Weil to make his conjectures, but also suggesting the
techniques that ultimately led to their proof.

3 Enter Weil

In 1940 and 1941, Weil gave two proofs of the Riemann
hypothesis for curves over finite fields. Or, to be more
accurate, he described two proofs: they both relied
on fundamental facts in algebraic geometry which had
been proved by analytic methods for varieties over the
complex numbers, but which had not been proved rig-
orously in the case of arbitrary base fields. It was largely
in order to address this deficiency that Weil wrote his
Foundations of Algebraic Geometry , which appeared in
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1948 and allowed both of his earlier proofs to be made
rigorous.

Weil’s book constituted a watershed in algebraic
geometry, as it introduced for the first time the notion
of an abstract algebraic variety. Previously, a variety
was always a global object, in that it was defined by
a single collection of polynomial equations, in either
affine or projective space. Weil realized that it would
be helpful to have a corresponding locally defined
concept, so he introduced abstract algebraic varieties,
which are obtained by gluing together affine algebraic
varieties in much the same way that manifolds in topol-
ogy are obtained by gluing together open subsets of
affine space. The notion of an abstract variety played
a fundamental role in formalizing Weil’s proofs, and
was also an important precursor to Grothendieck’s
immensely successful theory of schemes [IV.5 §3].

The following year, in a remarkable paper in the Bul-
letin of the American Mathematical Society, Weil went
further, studying zeta functions ZV(t) associated with
higher-dimensional varieties V over finite fields, and
taking as his definition the formula (1). While the situ-
ation is more complicated in this context, the behavior
conjectured by Weil was nonetheless strikingly similar,
an utterly natural extension of the case of curves:

(i) ZV(t) is a rational function of t;
(ii) more explicitly, if n = dimV , we can write

ZV(t) = P1(t)P3(t) · · ·P2n−1(t)
P0(t)P2(t) · · ·P2n(t)

,

where each root of each Pi(t) is a complex number
of norm q−i/2;

(iii) the roots of Pi(t) are interchanged with the roots
of P2n−i(t) under the substitution t �→ 1/qnt;

(iv) if V is the reduction modulo p of a variety Ṽ
defined over a subfield of C, then bi = deg Pi(t) is
the ith Betti number of Ṽ using the usual topology.

The last part of (ii) is known as the Riemann hypoth-
esis, while (iii) constitutes a functional equation for
the substitution t �→ 1/qnt. Betti numbers are a well-
known invariant from algebraic topology [IV.6]: if
we return to Schmidt’s theorem (2) in the case of curves,
the degrees 1, 2g, 1 of 1− t, P(t), 1− qt are precisely
the Betti numbers of a complex curve of genus g.

4 The Proof

Weil’s conjectures were inspired by a very intuitive
topological picture, derived from considering V(Fqm)
as the set of fixed points of Φqm . Forgetting for the

moment that Φqm makes sense only over finite fields,

if we imagine that V were defined over the complex

numbers, then by using the complex topology we could

study the fixed points of Φqm by the lefschetz fixed-

point theorem [V.13 §3], obtaining a formula in terms

of the action of Φqm on the cohomology groups

[IV.6 §4]. Indeed, we could deduce the factorization in

(ii) almost immediately (and in particular the rational-

ity asserted in (i)), with each factor Pi(t) correspond-

ing to the action of Frobenius on the ith cohomology

group, and we would also have deg Pi(t) given by the

ith Betti number of V . Moreover, the functional equa-

tion would follow from a concept known as poincaré

duality [III.19 §7].

It was not long before it became clear that such coho-

mological arguments might become more than just

motivation: there could be a cohomology theory for

algebraic varieties over finite fields that would mimic

the properties of the classical topological theory and

would allow one to prove the Weil conjectures. Such a

cohomology theory is now known as a Weil cohomology.

Serre was the first to seriously attempt to develop such

a theory, but he had only limited success. In 1960,

Dwork provided a brief detour by using p-adic analy-

sis [III.53] to prove parts (i) and (iii) of the conjec-

tures: that is, the rationality and the functional equa-

tion. Shortly thereafter, building on comments of Serre

and in collaboration with Artin, Grothendieck proposed

and developed a candidate for a Weil cohomology, the

étale cohomology. Indeed, he noted that one could in

fact extend the list of desired properties of a Weil

cohomology in such a way that the Weil conjectures

would follow almost immediately. These properties

were known but extremely difficult in the classical case,

and included the “hard Lefschetz theorem.” In a burst

of optimism, Grothendieck referred to them as the

“standard conjectures,” and envisioned that the Weil

conjectures would ultimately be proved through them.

However, the final chapter of the story did not go

entirely according to Grothendieck’s plan. His student

Deligne set about working on the problem, and was

ultimately able to complete an exceedingly subtle and

intricate proof using induction on the dimension of

the variety. The étale cohomology played an absolutely

fundamental role in Deligne’s proof, but he also intro-

duced other ideas into the picture, most notably a clas-

sical geometric construction of Lefschetz, as well as

some work of Rankin on the Ramanujan conjecture. In

the end, he was able to conclude the hard Lefschetz
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theorem from his work, but the rest of the standard
conjectures remain unsolved to this day.
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Mathematicians

VI.1 Pythagoras
b. Samos, Ionia (now Samos, Greece)?, ca. 569 b.c.e.;
d. Metapontum, Magna Graecia (now Metaponto, Italy)?, ca. 494 b.c.e.
Incommensurability; theorem of Pythagoras
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One of the most elusive figures of antiquity, Pythago-
ras is famous not just for his alleged mathematical
achievements: it has been claimed that he had a golden
thigh and that he issued a prescription against broad
beans. Few things about him can be taken as histori-
cal facts, but we can be reasonably confident that he
lived in around the sixth century b.c.e. in Greek south-
ern Italy and that he established a group of follow-
ers, the Pythagoreans, who shared not just beliefs, but
also dietary habits and a code of behavior. The exis-
tence of anecdotes about splinter Pythagoreans who
revealed secrets to outsiders and were accordingly pun-
ished suggests that they were far from constituting a
completely homogeneous group.

After a peak period in the late fifth century b.c.e., the
Pythagoreans dispersed, probably as a result of their
involvement in the public life of various city-states.
The impact of their theories about the universe and
the soul was very long-lived, though, and can be felt in
Plato, Aristotle, and later authors. From the third cen-
tury b.c.e. until well into late antiquity, a stream of texts
was produced that purported to be by Pythagoras or
his immediate successors. Indeed, historians talk of a
neo-Pythagorean philosophical movement, sometimes
associated with neo-Platonism.

The name of Pythagoras and his school is most
commonly linked to the theorem establishing that the
square on the hypotenuse of a right-angled triangle
is equivalent to the sum of the squares on the other
two sides. In fact, there is some evidence that the
mathematical property expressed by the theorem was
known in Mesopotamia long before Pythagoras’s time;
the ancient sources attributing the result to him are
late and not entirely reliable, and no actual proof of

the theorem is found before Euclid’s Elements. While
the proof itself may predate euclid [VI.2], there is no
solid reason to connect it to Pythagoras.

Similarly, the discovery of the incommensurabil-
ity of the side and the diagonal of a square, often
attributed to Pythagoreans, may have been made earlier
in Mesopotamia, and the earliest full proof in a Greek
context belongs to a later period.

Pythagoras’s real contribution to mathematics lies
elsewhere. The Pythagoreans are credited by Aristo-
tle with the theory that “things themselves are num-
bers.” One interpretation is that they believed that
mathematics offered a key to understanding reality,
whether this reality was conceived to have an under-
lying geometrical structure (as in Plato’s Timaeus), or
whether it was simply seen as ordered and “in propor-
tion.” Indeed, Pythagoreans are plausibly credited with
a strong interest in formulating the numerical ratios
of musical concords and harmony. They connected the
harmonious sound produced by, say, the plucking of
a string with the fact that the musician plucked it at
specific, mathematically expressible points. Breaking
the mathematical proportion between the points on
the string unsettled the sound produced. The heavenly
bodies themselves, according to the Pythagoreans, pro-
duced music, thanks to their mathematical, and there-
fore orderly, arrangement. Understand the mathemat-
ics, and you will grasp the structure of reality: this
insight is perhaps Pythagoras’s true legacy.

Further Reading
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Carl.)
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frühen Pythagoreismus. Berlin: Akademie.
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VI.2 Euclid
b. Alexandria, Egypt?, ca. 325 b.c.e.; d. Alexandria?, ca. 265 b.c.e.
Deduction; postulate; reductio ad absurdum

Nothing is known about Euclid’s life. In fact, his major
work, the Elements, is now seen as a rather loose col-
lection, with no strong authorial voice and no clear way
of determining what, if any, Euclid’s original contribu-
tions were. Born in the cultural climate of Ptolemaic
Alexandria, the text probably aimed at systematizing
the current knowledge in some mathematical areas.

The Elements covers plane geometry (including the
squaring of any rectilinear figure, the bisection of an
arc, the inscription and circumscription of polygons
in circles, the finding of a mean proportional), solid
geometry (e.g., the ratio of spheres to one another, the
five regular solids), and arithmetic, from relatively sim-
ple (the properties of odd and even numbers, prime
number theory) to more complex (commensurable and
incommensurable lines, binomials and apotomes).

The title hints at the foundational character of the
text, which starts with definitions of mathematical
objects (e.g., point, straight line, scalene triangle), pos-
tulates (e.g., all right angles are equal to one another)
and common notions (e.g., the whole is greater than the
part). These initial premises are not demonstrated—
whether some postulates are demonstrable spawned
debate in antiquity, and later led to non-Euclidean
geometries. In a style which has been termed axiomatic-
deductive, proofs tend to be general rather than spe-
cific; they use a restricted set of formulaic expressions,
refer to a lettered diagram, and each of their steps
is justified by appeal to undemonstrated premises, to
previous proofs, or to very simple notions, such as
the principle of the excluded middle. Some proofs use
reductio ad absurdum: instead of directly showing that
something is the case, they proceed to show that any
alternative is impossible.

There are parts of the book that reveal the presence
of different, less abstract, demonstrative procedures.
For instance, one of the theorems establishing crite-
ria for two triangles to have the same area refers to
one triangle being “superimposed” on the other, with
the reader effectively invited to verify that their areas
are indeed equal. The appeal is to a mental opera-
tion, which is quite different from the logical step-by-
step method found elsewhere. Again, book IX contains
propositions on odd and even numbers, which are often
seen as vestiges of Pythagorean mathematics, to be

demonstrated with the help of pebbles. The coexistence
itself of arithmetic and geometry has been puzzling
for some historians, who have proposed a notion of
“geometric algebra,” so that book II, ostensibly about
squares and rectangles built on segments of straight
lines, would in fact foreshadow modern equations.

As well as works on astronomy, optics, and music,
the Data, which is about solving geometrical prob-
lems on the basis of some elements that are already
given, is also attributed to Euclid. His fame is, however,
inextricably linked to the Elements. The very absence
of a strong authorial voice has perhaps facilitated
other mathematicians’ interaction with the text, which
has been appropriated, added to, interfered with, and
commented upon since antiquity. This very plasticity
helped to make it possibly the most popular mathe-
matical book of all time. (For more about its impact on
the early development of mathematics, see geometry
[II.2], the development of abstract algebra [II.3],
and the development of the idea of proof [II.6].)

Further Reading

Euclid. 1990–2001. Les Éléments d’Euclide d’Alexandrie;
Traduits du Texte de Heiberg, general introduction by M.
Caveing, translation and commentary by B. Vitrac, four
volumes. Paris: Presses Universitaires de France.

Netz, R. 1999. The Shaping of Deduction in Greek Mathemat-
ics. A Study in Cognitive History. Cambridge: Cambridge
University Press.
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VI.3 Archimedes
b. Siracusa, Magna Graecia (now Syracuse, Italy), ca. 287 b.c.e.;
d. Siracusa, 212 b.c.e.
Area of the circle; centers of gravity; method of exhaustion;
volume of the sphere

Archimedes’ life was as spectacular as his scientific
achievements: various sources attest that he built a
ship, a cosmological model, and magnificent catapults
with which he defended his native Syracuse during
the Second Punic War. The Roman besiegers eventually
took the city by deceit, and Archimedes was killed in
the ensuing pillage. According to legend, his tomb was
engraved with a sphere inscribed in a cylinder, to mark
one of his most famous discoveries. Indeed, the first
part of his Sphere and Cylinder reaches a climax with
a proof that the volume of every sphere is two thirds
of that of the cylinder circumscribing it. Archimedes’
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interest in establishing the volume or area of curved fig-

ures is also attested by his discovery of the area of the

circle and of a sphere, and by treatises on spiral curves,

conoids, and paraboloids, and on the Quadrature of the

Parabola.

While following an axiomatic-deductive framework,

Archimedes’ style is distinctive. Many of his theorems

about curved figures use the so-called method of

exhaustion [II.6 §2].

Take the problem of determining the area of a circle.

Archimedes accomplished this by showing that it had

the same area as that of a certain right-angled trian-

gle. Since it was known how to calculate the area of a

triangle, he was “reducing” a problem whose solution

was unknown to one whose solution was known. Rather

than establishing this directly, he proves that the area

of the circle can be neither larger than nor smaller

than the area of the triangle, so that only one possi-

bility remains: that they are equal. This is achieved,

here and in general, by inscribing and circumscribing

rectilinear figures to the curvilinear figure under inves-

tigation, thus getting closer and closer to it. The leap

from closer and closer approximation to equivalence

of a rectilinear and curvilinear figure, however, can be

accomplished only indirectly, by excluding the other

possibilities. Such arguments usually employ a lemma,

already found in Euclid, to the effect that if we start with

a quantity and replace it by a quantity at most half as

large, and then repeat this, then what remains can be

made as small as we please.

Archimedes’ output also includes The Sand-Reck-

oner, about astronomy and arithmetic, and works on

the centers of gravity of plane figures and on bodies

immersed in a fluid.

Above all, Archimedes provides unique insights into

the processes of ancient Greek mathematics. The sec-

ond part of Sphere and Cylinder contains problems

about constructing given solid bodies. Several of the

proofs are in two parts: analysis and synthesis. In the

analysis, the result one wants to establish is taken as

proved, and consequences are drawn from it, until one

hits upon a result that is already proved elsewhere, and

the process is then reconstituted in reverse (the “syn-

thesis”). The recently rediscovered Method (addressed

to Eratosthenes) reveals that Archimedes arrived at

some of his most famous results, e.g., the area of a

segment of a parabola, by imagining the two objects

involved (say, a segment of a parabola and a triangle)

as divided up into an infinite number of slices and lines,

then placed at the two ends of a balance and set in equi-
librium with each other. Archimedes underlined that
this heuristic procedure was not a strict proof, but that
only makes the Method all the more valuable a glimpse
into the mind of a great mathematician.

Further Reading

Archimedes. 2004. The Works of Archimedes: Translation
and Commentary. Volume 1: The Two Books On the
Sphere and the Cylinder, edited and translated by R. Netz.
Cambridge: Cambridge University Press.

Dijksterhuis, E. J. 1987. Archimedes, with a bibliographical
essay by W. R. Knorr. Princeton, NJ: Princeton University
Press.
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VI.4 Apollonius
b. Perge, Pamphylia (now Perga, Turkey), ca. 262 b.c.e.;
d. Alexandria, Egypt?, ca. 190 b.c.e.
Conic sections; diorism; locus problems

The Conics, in eight books, only seven of which have
come down to us, has had fewer modern readers than
other recognized masterpieces of Greek mathematics:
it is complex, difficult to summarize, and easy to mis-
translate into modern algebraic notation. Apollonius
of Perga also wrote about arithmetic and astronomy,
but none of these works survive. The letters prefac-
ing six of the surviving books indicate that he was a
highly esteemed member of a network of mathemati-
cians, to whom he sent his results. He refers to the fact
that various versions of his Conics were circulated, the
latest probably incorporating his correspondents’ feed-
back. Knowledge of the parabola, hyperbola, and ellipse
predates Apollonius (we find conics in Archimedes),
but his is the first known systematic account of these
curves, which were of interest both in themselves and
because they could be used as auxiliary lines for the
solution of problems such as the trisection of an angle
or the duplication of the cube.

Apollonius himself declares that the first four books
of the Conics are an introduction to the subject, and
indeed he starts with definitions of the cone and its
various parts. The parabola, hyperbola, and ellipse are
not introduced until later, so that their origin (from
a plane cutting a cone or a conic surface at different
angles) is already accompanied by a statement of their
properties, which are further and fully explored in the
next three books. These include theorems on tangents,
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asymptotes, and axes; constructions of conic sections
on the basis of certain data; and an account of the con-
ditions under which conics can intersect in the same
plane.

The nonelementary books, which exist only in Arabic,
contain treatments of maximum and minimum lines
within the sections, the construction of conic sections
equal or similar to a given conic section (including the
theorem that all parabolas are similar), and “diorismic
theorems.” These are propositions that set the limits
of possibility of a construction, or the limits of valid-
ity of some property of a geometrical configuration,
given a certain number of known positions or known
objects at the outset. Indeed, several of the proposi-
tions in the Conics are about loci, i.e., geometrical con-
figurations consisting of all the points sharing a certain
family of properties. Apollonius criticizes euclid [VI.2]
for not having provided an exhaustive solution to the
construction of the three-line and four-line locus (con-
figurations of three or four lines, arranged so that they
have specific properties).

In terms of demonstrative methods, Apollonius is
in the axiomatic-deductive mold: general enunciations,
lettered diagrams, each step justified by appeal to
undemonstrated premises or previous proofs. Instead
of indirect methods, we find a real mastery of the intri-
cacies (and power) of proportion theory. At the same
time, his propositions easily lend themselves to the
consideration of different subcases: when, for instance,
a certain line falls inside, outside, or on the vertex of a
conical surface. Apollonius, in other words, combines a
systematic approach with an almost playful fascination
with exploring the possibilities of mathematical objects
and their properties under varying circumstances.

Further Reading

Apollonius. 1990. Conics, books V–VII. Arabic Translation of
the Lost Greek Original in the Version of the Banu Musa,
edited with translation and commentary by G. J. Toomer,
two volumes. New York: Springer.

Fried, M. N., and S. Unguru. 2001. Apollonius of Perga’s
Conica: Text, Context, Subtext. Leiden: Brill.
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VI.5 Abu Ja’far Muhammad ibn Mūsā
al-Khwārizm̄ı

b. Unknown, 800; d. Unknown, 847
Arithmetic; algebra
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Al-Khwārizm̄ı, or possibly his ancestors, came from

Khwārizm (the modern region of Khorezm in Uzbek-

istan, also known as Khiva). Most of his life was spent

as a scholar at the House of Wisdom, Baghdad, where

he produced works on astronomy, mathematics, and

geography. Of his mathematical works, two have come

down to us, one on arithmetic and one on algebra.

The arithmetical work, which did not survive in Ara-

bic and is known only through Latin translations, was

the means by which Hindu numerals were transmitted

to the West, as well as the corresponding methods of

arithmetical calculation. Although the text was clearly

based on Indian writings, in Europe the techniques

became particularly associated with al-Khwārizm̄ı’s

name in the form of algorism (from which the modern

term “algorithm” is derived).

Al-Khwārizm̄ı’s al-Kitāb al-mukhtas. ar f̄ı h. isāb al-jabr

wa’l-muqābala (“The compendious book on calcula-

tion by completion and balancing”) became the start-

ing point for the subject of algebra for Islamic math-

ematicians. A work of elementary practical mathemat-

ics, it is written in three parts: one was devoted to solv-

ing equations, one to practical mensuration (areas and

volumes), and one to problems that arose mainly from

the complicated Islamic laws of inheritance (involving

arithmetic and simple linear equations). No algebraic

symbolism is employed: everything, including numer-

als is expressed in words. The text opens with a brief

discussion of the place-value system and then deals

with equations of the first and second degrees. Remark-

ably, al-Khwārizm̄ı did not regard these equations just

as a means for solving problems, as his predecessors

had done, but studied them in their own right, classi-

fying them into six separate types. In modern notation

these are

ax2 = bx, ax2 = b, ax = b,
ax2 + bx = c, ax2 + c = bx, ax2 = bx + c,

where a, b, and c are positive integers. The different

types are necessary because al-Khwārizm̄ı did not rec-

ognize the existence of either negative numbers or zero

as coefficients. Not only did al-Khwārizm̄ı give proofs

that his methods worked, which in itself was not stan-

dard at the time, but the proofs he gave were geomet-

rical ones. That is, they were not classical Greek proofs

but geometrical demonstrations of the validity of his

methods.

The key word of the Arabic title, al-jabr (“comple-

tion” or “restoration”), which refers to restoring all the
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terms to a standard form, eventually came into com-
mon usage in the West as algebra. It is, however, doubt-
ful whether al-Khwārizm̄ı’s work was the first Islamic
work bearing that name.

Further Reading

Berggren, J. L. 1986. Episodes in the Mathematics of Medieval
Islam. New York: Springer.

VI.6 Leonardo of Pisa
(known as Fibonacci)

b. Pisa, Italy, ca. 1170; d. Pisa, Italy, ca. 1250

Son of Pisan merchant; studied mathematics under Muslim teachers
in North Africa and traveled throughout the Mediterranean meeting
with Islamic scholars; awarded an annual stipend in 1240 by the city
of Pisa in recognition of his teaching and other services
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One of the earliest European writers on algebra, Fibo-
nacci is most famous for his Liber Abaci (“Book of cal-
culation”), which first appeared in 1202 and was largely
responsible for the spread of the Hindu–Arabic numer-
als throughout Europe. The book contained not only
rules for computing with the Hindu–Arabic numerals
but also a large number of problems of various kinds,
the best known of which was his “rabbit problem.” This
problem asks how many pairs of rabbits will be pro-
duced in a year, beginning with a single pair, if in every
month each pair produces a new pair which becomes
productive from the second month on. The number Fn
of pairs there will be in the nth month is the num-
ber of pairs there were in the previous month plus the
number of breeding pairs, and the latter is the num-
ber of rabbits there were in the previous month but
one. This leads to the rule Fn = Fn−1 + Fn−2. Start-
ing with F0 = 0 and F1 = 1, we obtain the sequence
0,1,1,2,3,5,8,13, . . . of Fibonacci numbers. It can be
shown that limn→∞ Fn+1/Fn = φ, whereφ = (1+√5)/2
is the golden ratio.

VI.7 Girolamo Cardano
b. Pavia, Italy, 1501; d. Rome, 1576

Teacher of mathematics, Milan (1534–43); Professor of Medicine:
Pavia (1543–60), Bologna (1562–70); imprisoned for heresy (1570–71)

Cardano’s great treatise, the Ars Magna (1545), laid the
foundations for European algebra and remained the
most comprehensive and systematic work on algebra
for more than a century after it was published. It con-
tained many new ideas, including methods (not all Car-
dano’s own) for solving cubic and quartic equations,

all written without mathematical notation. Cardano’s
own great insight was to recognize the existence of
relations between the roots and the coefficients of an
equation; in this he was unprecedented. He also showed
a greater readiness than most of his contemporaries
to contemplate the square roots of negative numbers.
He is remembered today for “Cardano’s rule” for solv-
ing cubic equations of the form x3 + cx = d, where
c and d are positive (he was unable to solve the casus
irreducibilis, the case when c is negative).

VI.8 Rafael Bombelli
b. Bologna, Italy, 1526; d. Probably Rome, after 1572

Engineer–architect for the Roman nobleman Alessandro Rufini,
later Bishop of Melfi

Bombelli was prompted to write his Algebra (1572) by
a desire to make cardano’s [VI.7] Ars Magna (1545)
accessible to the less sophisticated reader. The Alge-
bra, which contains a systematic treatment of quadrat-
ics, cubics, and quartics, is noted for its advances in
mathematical notation—it was the first printed text to
include a notation for exponents—and for its role in
disseminating awareness of the work of Diophantus.
Above all, the Algebra was renowned for solving cer-
tain special cases of the so-called casus irreducibilis of
the cubic, those in which Cardano’s rule appears to give
rise to a complex or “impossible” solution. Cardano was
aware that what we today call complex numbers (num-
bers of the form a+ b√−1) could arise in the solution
of quadratic equations. Bombelli made the important
discovery that what at first sight appears to be a com-
plex root of a cubic equation may in fact be a real root,
because the imaginary parts cancel each other out. The
Algebra included the first extensive discussion of com-
plex numbers and Bombelli formulated the four basic
operations of arithmetic for them.

VI.9 François Viète
b. Fontenay-le-Comte, France, 1540; d. Paris, 1603
Trigonometry; algebraic analysis; classical problems;
numerical solution of equations

Viète obtained a bachelor’s degree in law in 1560 from
the University of Poitiers, but left the profession from
1564 to 1568 to oversee the education of Catherine
de Parthenay, daughter of a local aristocratic family. His
earliest scientific writings were his lectures to Cather-
ine. He spent the remainder of his life in high pub-
lic office, apart from a period between 1584 and 1589
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when he was banished from the court in Paris for polit-
ical and religious reasons. He died in Paris in 1603.
Throughout his life, it was only during the time he
had free from official duties that he was able to devote
himself to mathematics.

The work for which Viète is best known appeared
during the 1590s, beginning with In Artem Analyticem
Isagoge (“Introduction to the analytic art”) in 1591.
In the Isagoge Viète began to combine classical Greek
geometry with algebraic methods that had originated
from Islamic sources, and in doing so laid the founda-
tions for the algebraic approach to geometry. Viète saw
that the symbols in equations (traditionally variants of
R, Q, and C , for the unknown, its square, and its cube)
could represent either numbers or geometric quanti-
ties, and that this was potentially a powerful tool for
analyzing and solving geometric problems.

Viète’s understanding of analysis was based on his
reading of the Synagoge (“Collection”) of Pappus (early
fourth century c.e.), where analysis was described as
a method of investigating a problem by assuming that
the solution is in some sense known, as we would do
now by representing the solution by a symbol and car-
rying out mathematical manipulations involving that
symbol. Algebra achieves this by regarding all quan-
tities, known or unknown, as of equal status; equa-
tions are then formed from prestated conditions (a pro-
cess Viète called zetetics), and solved to produce the
unknown quantity in terms of those given (exegetics).
For Viète the final step in geometric problems was to
provide a specific construction for the solution: this
was the geometric synthesis arising from the preceding
algebraic analysis.

In several further treatises, mostly written or pub-
lished around 1593, Viète taught the necessary skills
of forming equations and carrying out the correspond-
ing geometric constructions, and these books together
made up his Opus Restitutae Mathematicae Analyseos,
seu Algebra Nova (“The work of restored mathematical
analysis, or the new algebra”), which he offered with the
famous and ambitious hope of leaving no mathematical
problem unsolved (nullum problema non solvere). For
most of the seventeenth century, algebra continued to
be known as the “analytic art,” or simply “analysis.”

Recognizing that not all equations could be solved
algebraically, Viète also put forward a method of
numerical solution based on successive approxima-
tions. This was the first appearance of such techniques
in Europe, and was important not only for practical
purposes, but also because it rapidly led to a deeper

understanding of the relationships between roots and
coefficients of equations.

Viète’s style of writing is wordy and often obscure,
thanks in part to his liking for technical Greek terms.
In his algebraic treatises, however, he devised some
rudimentary notation. It had long been the case that
rules for solving equations were presented through
particular examples that were understood to repre-
sent a general class, but Viète took the step of replac-
ing known quantities by consonants B,C, . . . , and
unknowns by vowels A,E, . . . , so that numbers were
replaced throughout by letters, or “species.” However,
he had no simple or systematic way of denoting powers
(for squares and cubes he used the verbal A quadratus
andA cubus), and his connectives (“added to,” “equals,”
and so on) were also written in words, so that his
algebra was still very far from symbolic.

One of the first people to study Viète’s work in depth
was Thomas Harriot in England, who, through study
of Viète’s numerical method shortly after 1600, dis-
covered that polynomials could be written as prod-
ucts of linear and quadratic factors, a major break-
through in the understanding of equations. Harriot also
rewrote much of Viète’s mathematics in what is essen-
tially modern algebraic notation. In France, Viète’s work
was taken up in the 1620s by fermat [VI.12], who was
profoundly influenced by it. descartes [VI.11], on the
other hand, denied that he had ever read either Viète
or Harriot, though in the 1630s he developed a number
of very similar ideas.

Viète and his immediate successors dealt only with
equations of finite degree. Only much later in the sev-
enteenth century with the work of newton [VI.14] was
analysis extended to include what were thought of as
infinite equations, or what we would now call infinite
series, hence bringing the word “analysis” much closer
to its modern meaning.

Jacqueline Stedall

VI.10 Simon Stevin
b. Bruges, Belgium, 1548; d. The Hague, the Netherlands, 1620

Mathematics and science tutor to Maurice of Nassau,
Prince of Orange

The Flemish mathematician and engineer Simon Stevin
is remembered for his study of decimal fractions.
Although he was not the first to use decimal fractions
(they are found in the work of the tenth-century Islamic
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mathematician al-Uql̄ıdis̄ı), it was his tract De Thiende
(“The tenth”), published in 1585 and translated into
English (as Disme: The Art of Tenths, or Decimall Arith-
metike Teaching) in 1608, that led to their widespread
adoption in Europe. Stevin, however, did not use the
notation we use today. He drew circles around the expo-
nents of the powers of one tenth: thus he wrote 7.3486
as 7©0 3©1 4©2 8©3 6©4 . In De Thiende Stevin not only
demonstrated how decimal fractions could be used but
also advocated that a decimal system should be used
for weights and measures and for coinage.

VI.11 René Descartes

b. La Haye (now “Descartes”), France, 1596; d. Stockholm, 1650
Algebra; geometry; analytic geometry; foundations of mathematics

In 1637 Descartes published La Géométrie as an “essay”
appended to his philosophical treatise Discours de la
Méthode. It remained his only mathematical publica-
tion. No single early modern text shaped the devel-
opment of mathematics between 1650 and 1700 as
strongly as La Géométrie. It was the founding text of
analytic geometry and it paved the way for the merging
of algebra and geometry that made possible the devel-
opment of the integral and differential calculus about
fifty years later.

Descartes was educated at the Jesuit College at La
Flèche. He spent his life mostly outside France, travel-
ing through Europe in his early twenties and living in
the Netherlands from 1628 until 1649; he then left for
Sweden, invited by Queen Christina to her court. From
an early age his interest in mathematics was tightly
linked to his primary philosophical preoccupation: the

certainty of knowledge. In a letter of 1619 he sketched
a method, clearly inspired by arithmetic and geometry,
for solving all problems in natural philosophy. Shortly
afterward, his ideas grew into a passionate conviction
that he could and should develop a philosophy along
these problem-solving and mathematics-inspired lines.
La Géométrie grew out of the mathematical part of his
philosophical program; it was not a textbook on ana-
lytic geometry. Descartes offered little in the way of
general principles, explaining his ideas by means of
examples.

Descartes used a classical problem, Pappus’s prob-
lem, for explaining coordinates and equations of
curves, and showed that the defining property of a
curve could be written as an equation. He introduced
coordinates x and y , using oblique as well as rectan-
gular coordinate axes, which he always adjusted to the
problem at hand. He also introduced the now very com-
mon usage of employing x, y , and z for unknowns and
a, b, and c for indeterminate fixed quantities.

For Descartes, a geometrical problem required a geo-
metrical answer. The equation was at best an algebraic
reformulation of the problem; the answer had to be a
construction of the curve or of individual points. If, as
in the particular case of Pappus’s problem in four lines,
the equation was quadratic, then for any fixed value of
y the x-coordinate was a root of a quadratic equation.
Earlier in the book Descartes had shown how such a
root could be constructed (using ruler and compass).
Thus, the curve could be constructed “pointwise” by
choosing a series of values for y and constructing the
corresponding xs and points on the curve. Pointwise
construction could not provide the whole curve. There-
fore in Pappus’s problem Descartes used the equation
to show that the solution curves were conic sections,
and explained how to determine the nature of the conic,
the location of its axes, and the values of its parame-
ters. This was an impressive result; it was, in fact, the
first classification of an algebraically defined class of
curves.

A further influential result in La Géométrie, and the
one of which Descartes himself said he was most proud,
was his method to determine the normal (and thus
also the tangent) at a given point on a curve with
a given equation. It was a pre-calculus forerunner of
differentiation.

There are three important differences between how
Descartes treated curves and their equations and how
they are treated in modern analytic geometry: he
employed oblique as well as rectangular axes; he did
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not consider the equation as defining a curve—rather
it represented a problem, namely to construct the curve
itself, as well as its axes, tangents, etc.; and he did not
consider the plane itself as a collection of points char-
acterized by pairs of real numbers—for him the xs and
ys were not dimensionless numbers but the lengths
of line segments. (The term “Cartesian plane” for R2 is
therefore anachronistic.)

Descartes supposed (too optimistically) that his pro-
cedures could be extended to polynomial equations
of any degree (usually connected to Pappus’s problem
with more than four lines) and that therefore he had
shown how, in principle, all geometrical construction
problems could be solved. For higher-order construc-
tions he needed new algebraic techniques. The relevant
section in La Géométrie constituted the first general
theory of polynomial equations and their roots. It con-
tained his “sign rule” about the number of positive and
negative roots of a polynomial, various transformation
rules, and methods to check equations for reducibility.
He gave no proofs; his results were based on a convic-
tion that polynomials could essentially be written as
products of linear factors x −xi, in which the roots xi
could be positive, negative, or “imaginary.”

It appears, then, that analytic geometry was not the
primary goal of La Géométrie. Rather, its aim was to
provide a universal method for solving geometrical
problems, and to do so Descartes had to answer two
urgent methodological questions. The first was how to
solve geometrical problems not constructible by ruler
and compass, and the second was how to use algebra
as an analytic, i.e., solution-finding, tool in geometry.

For the first of these, Descartes allowed successively
more complicated curves as means of construction. It
was Descartes’s conviction that algebra, through the
equations of these curves, could guide him to choose,
among all such construction curves, the most appro-
priate for the problem, in particular the simplest, i.e.,
that of lowest degree.

The second question addressed serious conceptual
difficulties that were felt at the time about using alge-
bra in geometry. The transfer of algebraic operations
to geometry was indeed problematic because multipli-
cation in geometry was generally interpreted dimen-
sionally: for example, a product of two lengths had to
represent an area, and a product of three a volume.
But until then algebra had dealt mostly with numbers
and had routinely used products of more than three
factors. Thus, a consistent and unrestricted geomet-
rical interpretation of the operations of algebra was

needed. Descartes did indeed provide such a reinter-
pretation. He introduced a unit line segment in such
a way that multiplication no longer raised the dimen-
sion and inhomogeneous terms could be allowed in
equations.

By 1637 he had given up on his earlier attempts to
link philosophy and mathematics. Yet the preoccupa-
tion with certainty remained. As his concept of con-
struction involved the use of curves, he had to consider
which curves could be understood by the human mind
with sufficient clarity to be acceptable in geometry. His
answer was that all algebraic curves were acceptable (he
called these “geometrical curves”) and all others were
not (these he called “mechanical”). Few seventeenth-
century mathematicians followed Descartes in this
strict demarcation of geometry. This is typical of the
reception of Descartes’s La Géométrie: the philosophi-
cal and methodological aspects of the book were largely
ignored by his mathematical readers, but the technical
mathematical aspects were eagerly accepted and used.

Further Reading

Bos, H.J.M. 2001. Redefining Geometrical Exactness: Des-
cartes’ Transformation of the Early Modern Concept of
Construction. New York: Springer.

Cottingham, J., ed. 1992. The Cambridge Companion to
Descartes. Cambridge: Cambridge University Press.

Shea, W. R. 1991. The Magic of Numbers and Motion: The
Scientific Career of René Descartes. Canton, MA: Watson
Publishing.

Henk J. M. Bos

VI.12 Pierre Fermat
b. Beaumont-de-Lomagne, France, 160?; d. Castres, France, 1665
Number theory; probability theory; variational principles;
quadrature; geometry

Fermat, who spent his life as a magistrate in the
south of France, contributed decisively to most of the
mathematical subjects of his time: from quadrature
to optics, from geometry to number theory. Very lit-
tle is known about his early life—even the date of his
birth is uncertain—but by 1629 he had close contacts
with viète’s [VI.9] scientific heirs in Bordeaux. His work
displays a thorough knowledge of ancient as well as
contemporary mathematics and he exchanged prob-
lems and mathematical information by correspondence
with, among others, rené descartes [VI.11], Gilles Per-
sonne de Roberval, Marin Mersenne, Bernard Frenicle,
John Wallis, and Christiaan Huygens.
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A crucial early-modern topic was the use of algebra to

solve geometric problems. Viète and other algebraists

before him had used equations in a single unknown

to rewrite and solve “determinate” problems (prob-

lems admitting a finite number of solutions). In his

manuscript Ad Locos Planos et Solidos Isagoge, which

circulated in Paris in 1637 (the same year as Descartes’s

La Géométrie), Fermat presented a general way of han-

dling and solving indeterminate problems associated

with constructions of loci: that is, of sets of points (usu-

ally curves) defined by some constraints. He identified

the points of such loci by two coordinates linked by an

equation (although he chose a different way of taking

coordinates from the usual modern x and y coordin-

ates). Moreover, Fermat gave the standard forms of the

corresponding equation when the locus to be found

was a line, a parabola, an ellipse, etc.

Fermat also used algebraic analysis to solve prob-

lems of extrema, including finding the tangent or the

normal to a curve at a given point, and determining

centers of gravity. His method relies on the principle

that a certain algebraic expression takes on the same

values twice near the extremum. Although the proce-

dure is purely algebraic, his successors tended to inter-

pret it from a differential perspective, thereby making

his work an apparent precursor of the calculus. Fermat

applied the method to a variety of problems, includ-

ing (within the framework of a controversy with Des-

cartes’s followers around 1660) a proof of the law of

refraction in optics. Basing his analysis on the principle

that “nature acts in the shortest time,” Fermat was able

to express the problem as one of extrema and to solve it

with his method. The problem of refraction was one of

the first complex physical problems to be treated in a

thoroughly mathematical way, and Fermat’s approach

later led to variational methods [III.96].

However, Fermat also showed a perfect mastery of

more classical, for instance Archimedean, techniques,

which he used when dealing with other types of geo-

metrical questions such as quadrature.

Such versatility also appears in Fermat’s work on

numbers. On the one hand, he was happy to apply his

algebraic approach to Diophantine analysis in order

to obtain solutions for cases previously thought to be

insoluble, or to derive new solutions from ones already

known. On the other hand, he advocated a theoretical

study of the integers, for which the currently available

algebraic theory of equations was not sufficient. For

example, he gave general properties of the divisors of

numbers of the form an ± 1 (among them his now cel-
ebrated little theorem [III.60]) and of x2 + Ny2 for
various N . He invented the method of infinite descent
specifically to deal with problems concerning integers.
He used this method, which relies on the impossibility
of constructing an infinite strictly decreasing sequence
of integers, to prove that a4 − b4 = c2 has no nontrivial PUP: this has been

double-checked
and ‘c2’ is indeed
correct.

integer solutions. This is a particular case of his famous
last theorem [V.12], which Fermat only stated in the
margins of one of his books: an +bn = cn has no non-
trivial integer solutions for n > 2. The first proof of the
general case was given by Andrew Wiles in 1995.

In 1654 Fermat exchanged letters with pascal [VI.13]
on the idea of a “fair game” and on the redistribution of
the stakes if a game is interrupted before its end. These
letters introduced important concepts in probability,
including expected value and conditional probability.

Further Reading

Cifoletti, G. 1990. La Méthode de Fermat, Son Statut et Sa Dif-
fusion. Société d’Histoire des Sciences et des Techniques.
Paris: Belin.

Goldstein, C. 1995. Un Théorème de Fermat et Ses Lecteurs.
Saint-Denis: Presses Universitaires de Vincennes.

Mahoney, M. 1994. The Mathematical Career of Pierre de
Fermat (1601–1665), second revised edn. Princeton, NJ:
Princeton University Press.

Catherine Goldstein

VI.13 Blaise Pascal
b. Clermont-Ferrand, France, 1623; d. Paris, 1662

Scientist and theologian

Pascal was the first to make a systematic study of
the arithmetical triangle which now bears his name;
although the triangle itself is found earlier, notably
in the work of the Chinese mathematician Zhu Shijie
(1303). “Pascal’s triangle”

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

· · · · · ·
a triangular array in which each number is the sum of
the two immediately above it, provides a geometrical
arrangement of the binomial coefficients

(
n
k

)
, with

(
n
k

)
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appearing as the (k+1)st element in the (n+1)st row.
Here

(
n
k

)
is, as usual, the number of subsets of size k

in a set of size n, so that(
n
k

)
= n!
k!(n− k)! .

The number
(
n
k

)
is also the coefficient of akbn−k in the

binomial expansion of (a + b)n for any integer n � 0
and 0 � k � n. In his Traité du Triangle Arithmétique
(printed in 1654 but not distributed until 1665) Pascal
was the first to connect binomial coefficients with the
combinatorial coefficients that arise in probability. The
Traité is famous too for its explicit statement of the
principle of mathematical induction.

Pascal is also known for a theorem in projective
geometry (given an arbitrary hexagon inscribed in any
conic section, if the three pairs of opposite sides are
continued until they meet, then the three points of
intersection lie on a straight line) (1640); and for a two-
function (addition and subtraction) mechanical calcu-
lating machine (1645).

VI.14 Isaac Newton

b. Woolsthorpe, England, 1642; d. London, 1727
Calculus; algebra; geometry; mechanics; optics;
mathematical astronomy

Newton entered Trinity College, Cambridge, in 1661,
and it was in Cambridge that he spent most of his for-
mative years, first as a student, then as a Fellow, and
then, from 1669, as Lucasian Professor of Mathemat-
ics. His election to the Lucasian Chair was engineered
by his mentor Isaac Barrow, a talented mathematician
and theologian who was the first to hold the presti-
gious chair. In 1696 Newton moved to London to take

up the post of Warden of the Mint. He resigned his
professorship in 1702.

It appears that Newton’s interest in mathemat-
ics began in 1664 when, embarking on a course of
self-instruction, he read viète’s [VI.9] works (1646),
Oughtred’s Clavis Mathematicae (1631), descartes’s
[VI.11] La Géométrie (1637), and Wallis’s Arithmetica
Infinitorum (1656). From Descartes, Newton learned
how useful it could be to relate algebra to geom-
etry, since plane curves could be represented by alge-
braic equations in two unknowns. Descartes had, how-
ever, imposed strict limitations on the class of curves
allowed in La Géométrie: “geometrical” (i.e., algebraic)
curves were admitted but “mechanical” (i.e., transcen-
dental) ones were not. In common with many of his con-
temporaries, Newton felt that such limitations ought to
be overcome and that a “new analysis” capable of deal-
ing with mechanical curves ought to be possible. He
found the answer in infinite series.

Newton had learned how to deal with infinite series
from Wallis’s work, and it was while elaborating one
of Wallis’s techniques that, in the winter of 1664,
he obtained his first great mathematical discovery:
the binomial theorem for fractional powers. This pro-
vided him with a method for expanding into power
series a large class of “curves,” including transcenden-
tal curves, which could now be given an “analytical”
representation to which the rules of algebra could be
applied. Termwise application of the relation (which
he knew from Wallis and which is expressed in famil-
iar Leibnizian notation as

∫
xn dx = xn+1/(n + 1))

allowed him to “square” a variety of curves when they
were expanded as a power series. (In the seventeenth
century, squaring a curvilinear figure meant finding
a square the area of which is equal to that of the
curvilinear figure.)

A few months later, Newton, with extraordinary in-
sight, realized that most of the problems dealt with by
his contemporaries could be reduced to two classes:
problems in which one is required to find the tangent
to a curve, and problems in which one is required to
find the area subtended by a curve. He conceived geo-
metrical magnitudes as being generated by continuous
motion. For example, the motion of a point generates
a line and the motion of a line generates a surface.
These he called “fluents,” while the instantaneous rate
of flow he called the “fluxion.” Basing his intuitions on
kinematical models, he formulated a version of what is
known today as the fundamental theorem of cal-
culus [I.3 §5.5]. Namely, he proved that tangent and
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area problems are inverses of each other. In modern
terms, Newton was able to reduce quadrature prob-
lems (i.e., calculating curvilinear areas) to the search for
primitive functions (indefinite integrals). He built “cat-
alogues of curves” (tables of integrals), deploying tech-
niques equivalent to substitution of variables and inte-
gration by parts. He developed an efficient algorithm
that allowed him to tackle both the direct (differential)
and inverse (integral) methods of fluxions. He was able
to calculate the tangent to and curvature of any known
curve, and perform integrations of many classes of
(what we now call) ordinary differential equations. Such
mathematical tools allowed him to explore the proper-
ties of cubics, and he classified seventy-two different
species of them. His results on series and on the direct
and inverse methods of fluxions were published in De
Quadratura Curvarum and those on cubics in the Enu-
meratio Linearum Tertii Ordinis, both works appear-
ing in 1704 as appendices to Opticks. His Arithmetica
Universalis, the text in which he collected together his
lectures on algebra, appeared in 1707.

Before 1704, Newton, displaying his characteristic
reluctance to publish, had divulged his discoveries on
the fluxional method through letters and manuscripts
rather than in printed form. In the meantime leib-
niz [VI.15], later than Newton but independently, had
also discovered the differential and integral calculus,
and had printed it as early as 1684–86. Newton was
convinced that Leibniz had stolen the idea from him,
and from 1699 onward he engaged Leibniz in a bitter
quarrel over priority.

In the early 1670s Newton began distancing himself
from the modern symbolic style that had characterized
his youthful researches. He turned to geometry in the
hope of restoring a hidden geometric method of dis-
covery: the “method of analysis,” known to the ancient
Greeks. In fact, geometry dominates Newton’s master-
piece, the Philosophiae Naturalis Principia Mathemat-
ica. In this work, which appeared in 1687, Newton pre-
sented his theory of gravitation. Newton was convinced
that the ancient method was superior to the modern
symbolic one that he identified with Cartesian analysis.
In his attempts to rediscover the method, he developed
elements of projective geometry. (This sprang from the
idea that the ancients were able to solve complex prob-
lems related to conics by using projective transforma-
tions.) An important result is his solution of Pappus’s
locus problem, which appears in book I of the Principia
(1687). Here he shows that a conic is the locus of points,
the product of whose distances from two given lines

is proportional to the product of its distances from a

third and fourth given line. He then applied projective

transformations to determine the conic tangent to m
given lines that passes through n given points, when

m+n = 5.

The Principia contains a rich array of mathematical

results. In book I Newton presents the “method of first

and ultimate ratios,” in which he deploys geometric

limit procedures in order to determine tangents, cur-

vatures, and curvilinear areas, the latter containing the

basic ingredients of what today is known as the rie-

mann integral [I.3 §5.5]. He also shows that “ovals”

are algebraically nonintegrable. In dealing with the so-

called Kepler problem, Newton approximates the roots

of x − d sinx = z (d and z given) by a technique equiv-

alent to the newton–raphson method [II.4 §2.3]. In

book II he inaugurates variational methods [III.96]

by tackling the problem of the solid with least resis-

tance. And in book III, in dealing with cometary paths,

he presents a method of interpolation which inspired

research by mathematicians such as Stirling, Bessel,

and gauss [VI.26]. In his masterpiece, Newton had

shown how productive the application of mathemat-

ics to natural philosophy could be: most notably, his

studies on the Moon’s motion, the precession of the

equinoxes, and the tides were seminal in stimulating

eighteenth-century perturbation theory.
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VI.15 Gottfried Wilhelm Leibniz
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b. Leipzig, Germany, 1646; d. Hanover, Germany, 1716
Calculus; theory of linear equations and elimination theory; logic

Renowned among mathematicians for his invention of
the calculus, Leibniz was a universal thinker who grad-
uated in law and was self-taught in mathematics. In
1676 he became counselor and librarian in Hanover for
the Duke Johann Friedrich of Braunschweig–Lüneburg,
holding this position until the end of his life. Besides
mathematics he occupied himself with technical, his-
toriographical, political, religious, and philosophical
questions. His philosophy distinguished between two
areas of reality: the world of appearances and the world
of substances. It was in developing his philosophy that
he was led to declare that the real world is “the best
of all possible worlds.” In 1700 he was appointed first
president of the newly founded Brandenburg Society of
Sciences established in Berlin.

Most of his mathematical ideas and writings were
not published during his lifetime, and consequently
many of his results were rediscovered many years later.
About a fifth of his mathematical papers have now been
published. He was always more interested in general or
even universal methods than in technical details, using
analogy and inductive reasoning to develop the art of
invention. For the same reason he became a key creator
of mathematical notation: he knew how much a suitable
notation could facilitate mathematical discoveries.

One of Leibniz’s earliest mathematical works was a
treatise on infinitesimal geometry (written in 1675–76
but not published until 1993). In it he used his “quanta”
concept of the infinite. In Leibniz’s eyes the actual infi-
nite as well as indivisibles, in the strictest sense of the
word, were not quantities and therefore not mathemati-
cal entities: hence, he used the notions “infinitely small”

and “infinitely large.” These denoted, it is true, variable
quantities, but nevertheless they were quantities of a
sort, so they could be handled by mathematics. Among
the results in this treatise is a rigorous proof, in the
style of archimedes [VI.3], of the existence of (what
is today known as) the riemann integral [I.3 §5.5] of
continuous functions, which is based on intermediary
values of the function within subintervals. Only a few
of these results were actually published by Leibniz, and
even these mainly without proof: in 1682 the alternat-
ing series forπ/4; in 1691 some further results. In 1713
he communicated his alternating series test in a private
letter to johann bernoulli [VI.18].

The year 1675 was also the year in which Leibniz
invented his version of the differential and integral cal-
culus, although its publication did not begin until 1684.
His calculus was based on the key concept of a variable
(quantity) ranging over a sequence of values infinitely
close to each other, with the differential, the difference
between two successive values in the sequence, being
itself a variable that could be manipulated in the usual
manner. Differentiation was represented by the opera-
tor “d”, which assigned variables to variables. For exam-
ple, if x is a line of variable length, then dx is a very
short line, also of variable length. Integration meant
summation. His notation (d and

∫
) is still used today. He

deduced the standard differentiation rules (the chain
rule, the product rule, etc.) and successfully applied his
calculus to the differentiation of families of curves, to
differentiation under the integral sign, and to various
types of differential equations.

Leibniz considered “combinatorial art” as a general
qualitative science, which did not coincide with mod-
ern combinatorial analysis but included combinatorics
and algebra: Leibniz considered it as “the inventive part
of logic.” Here he found the Girard formula for the rep-
resentation of sums of powers of roots of equations by
means of elementary symmetric functions, and the so-
called Waring formulas by which polynomial symmet-
ric functions are reduced to power sums (these were
rediscovered by waring [VI.21] in 1762). He invented
double and multiple indices in order to solve systems
of linear equations and problems of elimination theory.
Between 1678 and 1713 he laid the foundations for
the theory of determinants [III.15]. The method now
known as Cramer’s rule, for solving simultaneous equa-
tions, which in modern terms is based on determi-
nants, and which Cramer published in 1750, was in fact
found in 1684 by Leibniz (but again not published by
him). He also stated (without proof) several theorems
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in the theory of linear equations and elimination theory
now attributed to euler [VI.19], laplace [VI.23], and
sylvester [VI.42].

Among Leibniz’s other mathematical interests was
additive number theory. In 1673 he found a recursion
formula for the number of tripartitions of a natural
number (published in 1976) and discovered further
rules of recurrence now attributed to Euler. He also
developed a formalism for a positional calculus (cal-
culus situs) in order to express positions in space: if
the definitions of figures are completely expressed by
this calculus, all of their properties can then be found
by this calculus. This is closely linked with the modern
notions of geometry and topology.

Leibniz was one of the pioneers of actuarial theory.
Using mathematical models of human life he calculated
the purchase price of life annuities both for single per-
sons and for groups of men, and he applied such con-
siderations to the liquidation of a state’s indebtedness.PUP: this has been

double-checked
and is correct. From the very beginning of his scientific career Leib-

niz was deeply interested in logic. He conceived of a
general science: that is, of an art of inventing and of
judging all sciences by means of sufficient data and a
suitable universal language or writing. Yet, his “char-
acteristica universalis” and the ensuing logical calculi
remained fragmentary projects. His “calculus ratiocina-
tor” was meant to be a formalized deduction of truth.
Given that Leibniz was interested in formalizing calcu-
lations, it is not surprising that he also constructed the
first four-function calculating machine. In constructing
this machine he invented a new technical device, which
he developed in two different versions: the so-called
pinwheel (before 1676) and the stepped drum (from
1693 or earlier).

Further Reading

Leibniz, G. W. 1990–. Sämtliche Schriften und Briefe, Reihe 7
Mathematische Schriften, four volumes (so far). Berlin:PUP: this has been

checked and there
are still only four
volumes at
present.

Akademie.

Eberhard Knobloch

VI.16 Brook Taylor
b. Edmonton, Middlesex, England, 1685; d. London, 1731

Secretary of the Royal Society (1714–18)

Taylor was not the first to discover the theorem that
bears his name (James Gregory found the theorem in

1671), but he was the first to publish it and the first to

appreciate its significance and applicability. The theo-

rem, which states that any function that satisfies cer-

tain conditions can be expressed as (what is now known

as) a Taylor series, was published in Taylor’s Metho-

dus Incrementorum Directa et Inversa (1715). In the

Methodus Taylor gave the series as

f(x+h)= f(x)+ f
′(x)
1!

h+ f
′′(x)
2!

h2+ f
′′′(x)
3!

h3+· · ·

(as it would appear in modern notation). Although Tay-

lor did not attend to questions of rigor—there is no

consideration of convergence, of the remainder term,

or of the validity of expressing a function by such a

series—his derivation of the series was not out of line

with the standards of its day. Taylor used the theorem

for approximating the roots of equations and for solv-

ing differential equations. Although he was aware of

its use for expanding functions into series, he does not

appear to have fully appreciated its significance in this

respect.

Taylor is also noted for his contribution to the prob-

lem of the vibrating string (discussed in the Methodus

and in earlier papers) and for a book on the theory of

linear perspective (1715).

VI.17 Christian Goldbach
b. Königsberg (now Kaliningrad, Russia), 1690; d. Moscow, 1764

Professor of Mathematics, Imperial Academy of Sciences,
Saint Petersburg (1725–28); tutor to Tsarevitch Peter II, Moscow
(1728–30); corresponding secretary and administrator,
Imperial Academy of Sciences, Saint Petersburg (1732–42);
Ministry of Foreign Affairs (1742–64)

Goldbach is remembered today for the conjecture that

bears his name: that every even number greater than 2

is a sum of two primes. This was first stated by euler

[VI.19] in 1742 in a letter to Goldbach in response to the

earlier proposal by Goldbach that every number greater

than 2 is a sum of three primes (Goldbach considered

1 as a prime number). Goldbach’s conjecture, together

with the weaker conjecture that every odd number is

either prime or the sum of three primes, was first pub-

lished by waring [VI.21] in 1770 but without attribu-

tion. Both conjectures remain unsolved. However, Vino-

gradov proved that every sufficiently large odd number

is the sum of three primes: see problems and results

in additive number theory [V.30].
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VI.18 The Bernoullis

Nicolaus Bernoulli

Jacob I 
(1654–1705)

Jacob II 
(1759–1789)

Johann III 
(1744–1807)

Johann II 
(1710–1790)

Daniel 
(1700–1782)

Nicolaus II 
(1695–1726)

Johann I 
(1667–1748)

Nicolaus I 
(1687–1759)

Nicolaus

All born in Basel, Switzerland, apart from Daniel (Groningen, the
Netherlands). All died in Basel, apart from Jacob II, Nicolaus II
(both Saint Petersburg, Russia), and Johann III (Berlin). (The two
members of the family not in bold text were not mathematicians.)

The Bernoullis played a remarkable role in the develop-
ment of mathematics during the Enlightenment. Indeed
such was the family’s importance that in 1715 leibniz
[VI.15] coined the term “bernoullizare” to describe the
activity of doing mathematics. Altogether eight mem-
bers of the family devoted themselves to the mathe-
matical sciences (including physics, especially mechan-
ics and fluid mechanics), and from 1687 to 1790 the
mathematics chair of the university of Basel was occu-
pied by successive members of the family: first Jacob
(1687–1705), then his brother Johann (1705–48), and
finally Johann’s son, Johann II (1748–90). Throughout
the eighteenth century Bernoullis were members of the
Paris Academy of Sciences and individually they won
prestigious prizes on many occasions. The same was
true of the academies in Berlin, Saint Petersburg, and
several others.

The family goes back to a line of Calvinist merchants
who fled the Spanish Netherlands. The first Bernoulli
to settle in Basel was Jacob, a druggist, who became
a citizen in 1622. His grandson, Jacob I, studied phi-
losophy and theology in Basel before turning to math-
ematics, against the will of his father. This was to be
a typical pattern in the family: many of the Bernoullis
studied mathematics despite pressure from the fam-
ily to make a career in other areas (such as medicine
or law). Having received a licentiate in theology in
1676, Jacob undertook an educational journey which
took him first to France, then to the Netherlands, and
finally to England. And it was through his encoun-
ters with Nicolas Malebranche, Jan Hudde, and others
that he became acquainted with Cartesianism and its
most eminent representatives. In 1677 he started his

diary, Meditationes, in which he wrote down many of
his mathematical insights and thoughts.

Having obtained the chair of mathematics in Basel,
Jacob studied Leibniz’s early memoirs on differential
calculus, whose power he was the first, together with
his younger brother Johann I, to recognize. In a paper
on the curve of constant descent, published in the
Leipzig Acta Eruditorum in 1690, Jacob was the first
to use the term “integral” in its present mathemat-
ical sense. From then on he showed his mastery of
Leibnizian methods in his study of curves, including,
among others, the catenary, the form of a bent elastic
beam, the form of a sail inflated by the wind, and the
parabolic and logarithmic spirals. He also solved the
differential equation y′ = p(x)y + q(x)yn, which is
now named after him. However he is best remembered
for his Ars Conjectandi (1713), which was published
posthumously with a short foreword by his nephew,
Nicolaus I. It contains an attempt to give a sound math-
ematical treatment of a commonsense principle already
appealed to by cardano [VI.7] and Halley: if an experi-
ment is repeated a large number of times, then the rela-
tive frequency with which an event occurs will roughly
equal the probability of the event. Bernoulli’s theo-
rem, known since poisson [VI.27] as the (weak) law
of large numbers [III.73 §4], establishes a first link
between the theories of probability and statistics. In
the same book, Bernoulli also introduced the sequence
B0, B1, . . . of rational numbers that now bears his name,
which can be defined as the coefficients of tk/k! in the
power-series expansion

t
et − 1

=
∞∑
k=0

Bk
tk

k!
.

Jacob computed these numbers up to B10.

Johann, who had to study medicine before he could
devote himself to mathematics, got his first mathe-
matical training from his brother Jacob, with whom
he developed numerous applications of the new Leib-
nizian calculus to mechanics. An academic peregrina-
tion brought him to Paris in 1691–92, where he gave
private lessons to Guillaume de l’Hôpital. These lessons
are the basis of l’Hôpital’s famous Analyse des Infin-
iment Petits (1696). This textbook, the first on calcu-
lus, contains l’Hôpital’s rule, which Johann had com-
municated by letter to his student. In 1695, Johann
left Basel for Groningen to take up a professorship in
mathematics.

With the growing visibility of Johann’s work, the
friendly collaboration between the two brothers Jacob
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and Johann transformed into an endless round of con-
troversies, priority disputes, and public accusations.
They engaged in heated struggles concerning the solu-
tion of the brachistochrone (curve of fastest descent)
problem, and a complicated isoperimetric problem that
involved minimizing the area enclosed by a curve of
fixed length. Eventually, these bitter quarrels led to an
interesting mathematical outcome: the creation of the
calculus of variations [III.96]. After Jacob’s death,
Johann took over the mathematics chair in Basel, where
he taught until the end of his life, attracting students
from all over Europe, including euler [VI.19].

Johann’s most important achievement in mathemat-
ics is the development of the integral calculus. He devel-
oped a general theory for the integration of rational
functions and new methods for the solution of dif-
ferential equations. He also extended the infinitesimal
calculus to handle exponential functions [III.25].

Johann’s correspondence with Leibniz (which spans
approximately twenty-five years) can be viewed as a lab-
oratory of mathematical invention and debate. The pri-
ority dispute that ensued when newton [VI.14] accused
Leibniz of having stolen the calculus from him also
involved Johann, who fought on Leibniz’s side. With
each camp defying the other with difficult problems,
Johann had the opportunity to create, with his son Nico-
laus II, the theory of orthogonal trajectories of fami-
lies of curves. Johann was also a towering figure in the
origins of analytical mechanics and in mathematical
physics, where, among other things, he made notable
contributions to the study of central forces, to naviga-
tional theories, and to the question of the principles of
statics.

Nicolaus I studied mathematics at the university of
Basel with his uncle Jacob before taking a degree of
Doctor of Jurisprudence (1709). He was the profes-
sor of mathematics in Padua, occupying the chair once
held by Galileo, and he later held the professorship
of logic in Basel. His main interests in mathematics
were infinite series and the applications of probabil-
ity theory to questions of law. He formulated, in 1713,
the notorious Saint Petersburg paradox, which origi-
nated with a gambling game. Suppose that Peter is toss-
ing a fair coin, and he will give Paul one ducat if the
coin turns up heads on the first toss, two ducats if
it shows heads for the first time on the second toss,
and in general 2n−1 ducats if the coin turns up heads
for the first time on the nth toss. The standard cal-
culation shows that the value of Paul’s expectation
(E = 1

2 1 + 1
4 2 + 1

8 4 + · · · + 1
2n 2n−1 + · · · ) is infinitely

great. Nevertheless no “fairly reasonable man” would
be willing to pay even a moderately high price to pur-
chase Paul’s prospects. The result of the mathematical
analysis clearly affronted common sense; this was the
paradox. Nicolaus’s cousin, Daniel, discussed the prob-
lem while he was staying in Saint Petersburg (hence the
name given to the paradox). His strategy was to distin-
guish two senses of expectation, one mathematical and
the other moral. The latter was to take into account the
individual characteristics of the risk taker (his wealth,
for instance).

Although primarily a physicist and author of the
famous Hydrodynamica (1738), Daniel obtained a solu-
tion of the Riccati equation, y′ = r(x) + p(x)y +
q(x)y2, and engaged in the problem of the vibrating
string.

Otto Spiess, from Basel, started to publish the com-
plete edition of the works and correspondence of the
Bernoullis in 1955. The project continues.

Further Reading

Cramer, G., ed. 1967. Jacobi Bernoulli, Basileensis, Opera,
two volumes. Brussels: Editions Culture et Civilization.
(Originally published in Geneva in 1744.)

. 1968. Opera Omnia Johannis Bernoulli, four vol-
umes. Hildesheim: Georg Olms. (Originally published in
Lausanne and Geneva in 1742.)

Spiess, O., ed. 1955–. The Collected Scientific Papers of the PUP: this is indeed
an ongoing series
of publications.Mathematicians and Physicists of the Bernoulli Family.

Basel: Birkhäuser.

Jeanne Peiffer

VI.19 Leonhard Euler
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b. Basel, Switzerland, 1707; d. Saint Petersburg, Russia, 1783
Analysis; series; rational mechanics; number theory;
music theory; mathematical astronomy;
calculus of variations; differential equations

Euler was one of the most influential and prolific math-

ematicians in history. His first publication was a 1726

paper on mechanics, and his last was a collection pub-

lished in 1862, seventy-nine years after his death. There

are over eight hundred papers bearing his name, about

three hundred of them appearing posthumously, and

more than twenty books. His Opera Omnia fill over

eighty volumes.

In number theory, Euler introduced the Euler phi

function, φ(n), to denote the number of positive inte-

gers less than n and relatively prime to n, and proved

the fermat–euler theorem [III.60] that n divides

aφ(n) − 1. He showed that the remainders relatively

prime to n form what we now call a group under multi-

plication and he expanded the theory of quadratic and

higher-order residues. He proved fermat’s last the-

orem [V.12] for n = 3. He stated that any real poly-

nomial of degree n is a product of real and quadratic

factors and hasn complex roots, but was unable to give

complete proofs. He was the first to use generating

functions [IV.18 §§2.4, 3] when he gave a generating

function for Naudé’s partition problem: the question of

how many different ways a given integer can be written

as a sum of positive integers. He introduced the func-

tion σ(n), the sum of the divisors of an integer n, and

used this function to increase the number of known

pairs of amicable numbers (a pair m, n of numbers is

called amicable if the sum of the proper divisors of m
equalsn, and vice versa) from 3 to over 100. He showed

that any prime number of the form 4n+1 is the sum of

two rational squares. lagrange [VI.22] later improved

this result to show that such numbers are the sum of

two integer squares. Euler factored the fifth Fermat

number, F5 = 225 + 1, thus refuting fermat’s [VI.12]

conjecture that all integers of the form Fn = 22n + 1

were prime. He made extensive studies of the binary

quadratic forms x2+y2, x2+ny2, andmx2+ny2, and

proved a form of the law of quadratic reciprocity

[V.31].

Euler was the first to use analytic methods in number

theory. In the 1730s he calculated to several decimal

places the so-called Euler–Mascheroni constant

γ = lim
n→∞

[( n∑
k=1

1
k

)
− logn

]

and discovered many of its properties. Mascheroni
added to those properties in the 1790s. Euler also dis-
covered the sum–product formula for what we now call
the Riemann zeta function,

ζ(s) =
∞∑
n=1

1
ns
=

∏
p prime

1
1− p−s ,

and he evaluated the function for positive even values
of s.

In analysis, besides defining the modern calculus
curriculum, Euler was the first to take a system-
atic approach to the solution of differential equations
and to problems of the calculus of variations
[III.96]. He discovered a differential equation some-
times called the “Euler necessary condition” and some-
times called the “Euler–Lagrange equation.” The equa-
tion tells us that if J is defined by the integral equa-
tion J = ∫ ba f(x,y,y′)dx, then a function y(x) that
maximizes or minimizes J will satisfy the differential
equation

∂f
∂y
− d

dx

(
∂f
∂y′

)
= 0.

Euler apparently thought that the condition was also
sufficient. Very early in his career, he pioneered the
use of the integrating factor in differential equa-
tions, though the almost simultaneous published solu-
tion of Clairaut was more complete and more widely
read, so credit for this innovation usually falls to
Clairaut. He also did the first work using what are
now called fourier series [III.27] and laplace trans-
forms [III.93], more than a generation before laplace
[VI.23] or fourier [VI.25] began doing mathematics,
though they took the fields much farther than Euler
had.

Much of Euler’s best work involved series. His first
widely acclaimed result was when he solved one of the
best-known problems of his age, the seventy-year-old
“Basel problem.” The problem was to evaluate the sum
of the reciprocals of the square integers, or ζ(2). Euler
showed that ∞∑

n=1

1
n2
= π

2

6
.

(For a sketch of a proof, see π [III.72].)
He developed the Euler–Maclaurin series to strength-

en the relationships between series and integrals. The
existence of the Euler–Mascheroni constant followed
from these researches. Using techniques he called
“interpolation of series,” he developed the gamma
function [III.31] and the beta function. He developed
the first extensive theory of continued fractions
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[III.22], and derived series for the accurate and efficient
calculation of logarithms [III.25 §4] and trigonomet-
ric tables, often to more than twenty decimal places.

He was the first to do calculus with complex num-
bers and to investigate logarithms of negative and com-
plex numbers. This research led to a long and bitter
controversy with d’alembert [VI.20].

Euler was not the first to prove that eiθ = cosθ +
i sinθ or to know that eπ i = −1, but he made so much
more use of these facts than any of his predecessors
that this last formula is generally known as Euler’s
identity.

He is regarded as a pioneer in topology and graph
theory for his necessary condition for a graph to have
an Euler path, the so-called Königsburg bridge prob-
lem. This is to determine whether or not a graph has a
path that traverses every edge exactly once. He also dis-
covered and gave a flawed proof that, for a polyhedron
“bounded by planes,” Euler’s words for what we now
call “convex,” V − E + F = 2, where V is the number of
vertices, E is the number of edges, and F is the number
of faces. (For details about the flaws in Euler’s proof,
see Richeson and Francese (2006).)

PUP: you said you
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the citations. Let
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Euler proved a form of the general addition theorem
for elliptic integrals and gave a complete classification
of elastic curves. At the command of his king, Frederick
the Great of Prussia, he studied hydraulics, designed
pumps and fountains, and evaluated the probabilities
and combinatorics involved in the state lotteries.

In a triangle, the line on which the orthocenter, the
centroid, and the circumcenter lie is the Euler line.
The Euler method is an algorithm for giving numeri-
cal solutions to differential equations. The euler dif-
ferential equation [III.23] is the partial differential
equation that describes continuity of fluid flow.

Euler tried to use lunar and planetary theory to solve
the problem of finding longitude at sea. In studying the
orbit of a comet, he made the first steps in the statistics
of observed data.

He left Switzerland in 1727 to work in the new
academy of Peter the Great in Saint Petersburg. In 1741
he moved to Berlin and the academy of Frederick the
Great, but returned to Saint Petersburg in 1766, after
the ascension of Catherine the Great. He was blind
for the last fifteen years of his life, during which time
he nevertheless wrote over three hundred papers. He
won the annual prize competition of the Paris Academy
twelve times.

His series of calculus books, published in four vol-
umes between 1755 and 1770, were the first success-

ful calculus textbooks. It was the climax of a com-
plete series of mathematical textbooks, including arith-
metic (1738), algebra (1770), and the Introductio in
Analysin Infinitorum (1748), a textbook on the math-
ematics Euler thought was necessary to understand
calculus.

In the two volumes of the Mechanica (1736), Euler
gave the first calculus-based treatment of the mechan-
ics of point masses. He followed this with another two-
volume work, Theoria Motus Corporum (1765), on the
motions of solid bodies, including rotations.

Other books include Methodus Inveniendi (1744),
the first unified treatment of the calculus of varia-
tions, Tentamen Novae Theoriae Musicae (1739), on the
physics of music and including the first use of loga-
rithms in the theory of pitch, three different books on
celestial mechanics and lunar theory, two on the theory
of shipbuilding, three on optics, and one on ballistics.

Our modern notion that functions [I.2 §2.2] are a
fundamental object in mathematics is due to Euler.
Euler standardized the use of the symbols e,π , and i, as
well as

∑
for summations and ∆ for finite differences.

His Letters to a German Princess in three volumes
(1768–71) is regarded variously as the first work of pop-
ular science writing by a first-rate scientist and as an
important work in the philosophy of science.

Laplace is reported to have advised, “Read Euler.
Read Euler. He is the master of us all.” The words are
probably not those of Laplace, but the misattribution
does not affect the quality of the advice.

Further Reading
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Euler, L. 1984. Elements of Algebra. New York: Springer.
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Springer.
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VI.20 Jean Le Rond d’Alembert
b. Paris, 1717; d. Paris, 1783
Algebra; infinitesimal calculus; rational mechanics; fluid mechanics;
celestial mechanics; epistemology

D’Alembert spent his whole life in Paris, where he
became one of the most influential members of the
Académie Royale des Sciences and of the Académie
Française. He became well-known as the scientific edi-
tor of the celebrated French Encyclopédie, the twenty-
eight-volume work on which he collaborated with Denis
Diderot, and for which he wrote most of the mathemat-
ical and many of the scientific articles.

As a student at the Jansenist Collège des Quatre-
Nations, he followed the usual curriculum of grammar,
rhetoric, and philosophy, the latter including some
Cartesian science, a little mathematics, and much the-
ology framed by the then burning debate about pre-
destination, freedom, and grace. Disgusted with the
permanent climate of controversy and the endless
metaphysical discussions among his Jansenist teach-
ers, d’Alembert decided, after attaining his diploma
in law, to devote himself to his personal passion,
“géométrie” (that is, mathematics).

D’Alembert’s first communications to the French
Académie were concerned with the analytic geometry
of curves, the integral calculus, and fluid resistance,
notably the problem of the deceleration and deflec-
tion of a disk entering a fluid, which was linked to the
Cartesian explanation of refraction of light. He made
a close reading of newton’s [VI.14] Principia, his com-
mentary on passages of the first book showing his clear
preference for analytical methods over the synthetic
geometry of Newton.

D’Alembert’s Traité de Dynamique (1743) made him
famous in learned circles. He built up a systematic and
rigorous theory of mechanics founded upon a short
list of well-chosen principles—inertia, composition of
motions (i.e., the addition of the effects of two forces or
powers), and equilibrium—while at the same time try-
ing to avoid metaphysical arguments. Most notably he
proposed an important general principle, known today
as “d’Alembert’s principle,” to simplify the investiga-
tion of constrained systems, such as the compound
pendulum, vibrating rods, strings, rotating bodies, and
even fluids, which he considered to be aggregates of
parallel slices. The essential idea behind the principle
was to reduce a problem in dynamics to one in statics,
roughly speaking by introducing a fictitious force, the

“kinetic reaction,” which was minus the mass times the
acceleration. This allowed techniques from statics to be
brought to bear on problems in dynamics.

His other books and memoirs were developments,
some very innovative, in fluid theory, partial differen-
tial equations, celestial mechanics, algebra, and inte-
gral calculus. He devoted much thought to the use and
status of imaginary numbers.

In his Réflexions sur la Cause Générale des Vents
(1747) and his Recherches sur le Calcul Intégral (1748)
he observed that numbers of the form a + bi (where
i = √−1) retain the same form when subjected to the
usual operations (addition, subtraction, multiplication,
division, and exponentiation). He proved that, for a real
polynomial, imaginary roots always occur in conjugate
pairs, and that even if a real polynomial has no real
root, there is still always a complex root. However, his
work was not rigorous—for example, he presupposed
the existence of roots—and consequently he did not
provide a proof of the fundamental theorem of
algebra [V.15].

At the end of the 1740s there was a crisis in New-
tonian science, with d’Alembert, Clairaut, and euler
[VI.19] each independently coming to the conclusion
that Newton’s theory of gravitation could not account
for the motion of the Moon. In 1747 d’Alembert dis-
cussed various possibilities for solving the problem—
an additional force, or a very irregular shape for the
Moon, or some vortices between Earth and Moon—and
produced a long study on celestial mechanics and plan-
etary perturbations that has only recently been redis-
covered and published (see d’Alembert 2002). By 1749
an improved mathematical analysis of the problem
had shown that Newton’s theory was correct. The rest
of d’Alembert’s extensive work on celestial mechanics
was published in his Recherches sur la Précession des
Équinoxes (1749), Recherches sur Différents Points du
Système du Monde (1754–56), and in some of the eight
volumes of his Opuscules (1761–83).

In 1747 d’Alembert presented a paper on the famous
problem of vibrating strings, Recherches sur la Courbe
que Forme une Corde Tendue Mise en Vibration (1749).
This paper contained a solution of the wave equation
[I.3 §5.4]. This was the first solution of a partial differen-
tial equation—partial differential equations were a new
tool that he had already used in his 1747 Réflexions sur
la Cause Générale des Vents. It led to a lengthy debate
with Euler and daniel bernoulli [VI.18] about the pos-
sible form of the solutions and the general notion of
function.
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D’Alembert’s work for the Encyclopédie (1751–65)
and his efforts to find rigorous foundations for the sci-
ences led him into the field of philosophy, where his
main contributions concerned the classification of var-
ious sciences. He also worked on the study of cogni-
tion following the lines proposed by descartes [VI.11],
Locke, and Condillac.

Further Reading

D’Alembert, J. le R. 2002. Premiers Textes de Mécanique
Céleste, edited by M. Chapront. Paris: CNRS.

Hankins, T. 1970. Jean d’Alembert, Science and the Enlight-
enment. Oxford: Oxford University Press.

Michel, A., and M. Paty. 2002. Analyse et Dynamique. Études
sur l’Oeuvre de d’Alembert. Laval, Québec: Les Presses de
l’Université Laval.

Francois de Gandt

VI.21 Edward Waring
b. Shrewsbury, England, ca. 1735; d. Shrewsbury, 1798

Lucasian Professor of Mathematics, Cambridge (1760–98)
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Waring, the leading British mathematician of the latter
half of the eighteenth century, wrote several advanced
but somewhat impenetrable analytical texts. His first
work, Miscellanea Analytica (1762), is devoted to the
theory of numbers and algebraic equations and con-
tains many results which he revised and expanded in
his Meditationes Algebraicae (1770). Included in the
latter is the problem known today as Waring’s prob-
lem (that every positive integer is the sum of not more
than nine cubes, or the sum of not more than nineteen
fourth powers, and so on, with a fixed number of sum-
mands depending on the exponent), which was solved
by hilbert [VI.63] in the affirmative in 1909 and which
gave rise to important work by hardy [VI.73] and lit-
tlewood [VI.79] in the 1920s. The Meditationes also
contained the first publication of Goldbach’s conjec-
ture (that every even integer greater than 2 can be writ-
ten as the sum of two primes) and of Wilson’s theorem
(if p is a prime number, then (p − 1)! + 1 is divisible
by p), which was subsequently proved by lagrange
[VI.22].

Waring’s problem and Goldbach’s conjecture are dis-
cussed in problems and results in additive number
theory [V.30].

VI.22 Joseph Louis Lagrange

b. Turin, Italy, 1736; d. Paris, 1813
Number theory; algebra; analysis; classical and celestial mechanics

In 1766 Lagrange left his native Turin, where he had

been a founding member of what would later become

the Turin Academy of Sciences, to become the math-

ematics director at the Berlin Academy of Sciences. In

1787 he moved to Paris to take up a position as a pen-

sionnaire veteran at the Academy of Sciences. In Paris

he also lectured at the École Polytechnique, founded

in 1794, and served as one of the members of the

committee that established the modern metric system.

Lagrange was only nineteen years old when he wrote

to euler [VI.19] announcing a new formalism to sim-

plify Euler’s method for finding a curve that satisfied

an extremum condition. Lagrange’s method was based

on the introduction of a new differential operator, δ,

to express the independent variations of the coordin-

ates of a curve that produced a local infinitesimal

deformation.

Using this formalism he derived the differential equa-

tion known today as the Euler–Lagrange equation, the

fundamental equation of the calculus of variations

[III.96]. Suppose that we wish to find the function y =
y(x) that maximizes or minimizes a definite integral

of the form ∫ b
a
f(x,y,y′)dx,

where y′ = dy/dx. The equation states a necessary

condition that this function must satisfy:

∂f
∂y
− d

dx

(
∂f
∂y′

)
= 0.
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This is a typical example of Lagrange’s reductionist
style. Throughout his career he sought suitable for-
malisms with which to express and solve the key
problems of mathematical analysis.

Lagrange publicly presented his δ-formalism in a
memoir published in the second volume (1760–61) of
Miscellanea Taurinensia, a review he had helped to
found. He coupled this memoir with another in which
he used the same formalism to formulate a generalized
version of the principle of least action (previously intro-
duced by Maupertuis and Euler). As a result, he was able
to derive the equations of motion of any system of dis-
tinct bodies attracted by central forces depending on
the distances from their centers.

Meanwhile, in the first volume of Miscellanea Tauri-
nensia (1759), Lagrange had published a memoir pre-
senting a new approach to the problem of the vibrating
string, where the string is first represented as a dis-
crete system of n particles, and n is then allowed to
tend to infinity. Using this method Lagrange argued
that Euler was right to allow a large class of “func-
tions,” both “continuous” and “discontinuous,” as solu-
tions of this problem, whereas d’alembert [VI.20] had
maintained that only “continuous functions” (that is,
curves expressed by a single equation) could count as
solutions.

Lagrange established a very general program in the
foundations of classical mechanics in these memoirs.
It was based on the interpretation of a continuous
system as a limiting case of a discrete one and the
use of the method of indeterminate coefficients: sup-
posing that P(x) is a polynomial in x, whose coef-
ficients ai (i = 0, . . . , n) depend on some indetermi-
nates, and that P(x) = 0 for all x (in a given interval),
this method consists of deducing the system of equa-
tions {ai = 0}i=ni=0 , from which the indeterminates are
possibly determined. Lagrange extended this method
to sums of polynomials in several (independent) vari-
ables, and (following Euler, d’Alembert, and many oth-
ers) also used it with respect to power series. This pro-
gram was further elaborated in two memoirs on the
motion of the Moon (1764, 1780), and later realized in
the Méchanique Analitique (1788). Here, the principle
of least action was replaced by a generalization of the
Bernoullian principle of “virtual velocities,” which were
expressed by variations. Using what are now known as
generalized coordinates,ϕi (that is, mutually indepen-
dent coordinates in the configuration space of a dis-
crete system that characterize completely the position
of its bodies), Lagrange derived the equations that are

now named after him:

d
dt

(
∂T
∂ϕ̇i

)
− ∂T
∂ϕi

+ ∂U
∂ϕi

= 0,

where T and U are the kinetic and potential energy of
the system, respectively.

The Méchanique Analitique appeared a century after
newton’s [VI.14] Principia and marked the culmina-
tion of a purely analytical approach to mechanics. In
the preface Lagrange proudly stated that no diagrams
would be found in the work and that everything would
be reduced to “algebraic operations submitted to a
regular and uniform progression.”

Lagrange made fundamental contributions to per-
turbation theory and the three-body problem [V.36]
with research published in the 1770s and 1780s. His
methods were further developed by laplace [VI.23]
in his Mécanique Céleste and formed the basis for
subsequent mathematical work in physical astronomy.

The method of indeterminate coefficients, or rather
its extension to power series, is also the crucial tech-
nique underlying Lagrange’s approach to the calculus.
In a memoir which appeared in the Proceedings of the
Berlin Academy (1768) he used it to prove an important
result connecting the calculus to the theory of algebraic
equations, the so-called Lagrange inversion theorem,
which states that a function ψ(p) of a root p of an
equation t − x +ϕ(x) = 0, where ϕ(x) is an arbitrary
function of x, can be expanded in a series based on the
Taylor expansions of ϕ(t) and ψ(t) (the precise con-
ditions to be satisfied by x, ϕ(x), and ψ(t) were later
clarified by cauchy [VI.29] and Roché).

In a memoir of 1772 Lagrange returned to power
series and proved that if a function f(x + h) has a
power-series expansion in h, then this series can be
written in the form

∞∑
i=0

f (i)(x)
hi

i!
,

where, for any i, f (i+1) is derived from f (i) in the same
way that f ′ derives from f . Thus, he just had to prove,
through an infinitesimal argument, that f ′ = df/dx
to conclude that the only power-series expansion of
a function is its Taylor series. In Théorie des Fonc-
tions Analytiques (1797) he then showed (or, rather,
claimed to have shown), without making an appeal to
the differential calculus, that any function f(x+h) can
be expanded in a power series, and suggested inter-
preting the differential formalism as a formalism that
applies to the coefficients of hi/i! in such an expansion.
In other words, he suggested defining the differential
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ratios of any order (that is, the ratios diy/dxi, where
y = f(x)) as derivative functions supplying these coef-
ficients, whereas previously these had been thought of
as genuine ratios of differentials. He also proved that
the remainder of a Taylor series could be written in the
form now known as the Lagrange remainder.

The main results obtained by Lagrange within the
theory of algebraic equations were presented in a long
memoir of 1770 and 1771 in which the formulas for
solving equations of degree 2, 3, and 4 were obtained
through an analysis of permutations of the roots.
This work constituted the starting point for the later
researches of abel [VI.33] and galois [VI.41]. In the
same memoir Lagrange stated a particular but signif-
icant case of the theorem in group theory that today
bears his name: that the order of a subgroup of a finite
group divides the order of the group.

Lagrange also obtained important results in number
theory. Arguably the most significant were the proof of
a conjecture, advanced by fermat [VI.12] (among oth-
ers) and which Euler had already tried to prove, assert-
ing that any positive integer is the sum of (at most)
four squares (1770), and the proof of Wilson’s theo-
rem (first guessed by Wilson and published by waring
[VI.21] without proof), asserting that if n is prime, then
(n− 1)!+ 1 is divisible by n (1771).

Further Reading

Burzio, F. 1942. Lagrange. Torino: UTET.

Marco Panza

VI.23 Pierre-Simon Laplace
b. Beaumont-en-Auge, France, 1749; d. Paris, 1827
Celestial mechanics; probability; mathematical physics

Laplace is known to later mathematicians for many
concepts of fundamental importance to mathematics:
the laplace transform [III.93], the Laplace expan-
sion, Laplace’s angles, Laplace’s theorem, Laplace func-
tions, inverse probability, generating functions
[IV.18 §§2.4 §3], a derivation of the Gauss/Legendre
least-squares rule of error by means of a linear regres-
sion, and the laplacian [I.3 §5.4] or potential function.
Laplace developed the fields of celestial mechanics (the
phrase was his coinage) and probability, and along the
way the mathematics to service and advance them. For
Laplace, celestial mechanics and probability were com-
plementary instruments that implemented a unified

vision of a fully determined universe. Celestial mechan-
ics vindicated the Newtonian system of the world. Prob-
ability was the measure, not of the operations of chance
in nature, for there are none, but of human ignorance
of causes, which was to be reduced to virtual certainty
by calculation. The third reason for Laplace’s impor-
tance to the history of science was the mathematiza-
tion of physics in the first two decades of the nine-
teenth century. Apart from a few formulations—speed
of sound, capillary action, refractive indices of gases—
his role there was that of instigator and patron rather
than of major contributor.

Laplace came up with the majority of the above con-
cepts in a probabilistic context. The earliest hints of
the method of solving difference, differential, and inte-
gral equations, later known as the Laplace transform,
appeared in “Mémoire sur les suites” (1782a), where
Laplace introduced generating functions. Laplace con-
sidered generating functions to be the approach of
choice in solving problems that involved the develop-
ment of functions in series and evaluation of the sums.
Years later, in composing Théorie Analytique des Prob-
abilités (1813), he subordinated all the analytical part
to the theory of generating functions and treated the
entire subject as their field of application. In the early
memoir, however, he emphasized what he expected to
be their applicability to problems of nature.

In an even earlier paper, “Mémoire sur la proba-
bilité des causes par les événements” (1774), Laplace
stated the theorem permitting the analysis later termed
bayesian [III.3]. Unknown to Laplace, Thomas Bayes
had arrived at the same theorem eleven years earlier
but had not developed it. Laplace for his part pro-
ceeded, in further investigations over some thirty years,
to develop inverse probability into the basis for sta-
tistical inference, philosophical causality, estimation of
scientific error, quantification of the credibility of evi-
dence, and optimal voting rules in the proceedings of
legislative bodies and judicial panels. His initial attrac-
tion to the approach was its applicability to human con-
cerns. It was in the course of these papers, most notably
“Mémoire sur les probabilités” (1780), that the word
probability came to connote not merely the basic quan-
tity in the theory of games and chance but a subject in
itself.

Laplace first addressed error theory in the above
paper on causality. The problem was to estimate the
most appropriate mean value to be taken in a series of
astronomical observations of the same phenomenon.
He also determined how the limits of the error were
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related to the number of observations (“Mémoire sur les

probabilités” above). In “Essai pour connaître la popu-

lation du Royaume” (1783–91) Laplace turned to demo-

graphic applications. In the absence of census data, one

needed to determine the multiplier to be applied to the

number of births at any one time in order to estimate

the approximate size of a population. The specific prob-

lem Laplace solved was the size of the sample required

for the probability of error to fall within given limits.

Laplace then put probabilistic investigation aside.

Only twenty-five years later did he return to the subject,

in the course of preparing the comprehensive Théorie

Analytique des Probabilités. In 1810 he returned to the

problem of determining the mean value from a large

number of observations, which he interpreted as the

problem of the probability that the mean value falls

within certain limits. He proved a law of large numbers,

stating that if positive and negative errors in an indefi-

nitely large number of observations are assumed to be

equally possible, then their mean result converges to a

limit in a precise way. From this analysis followed the

least-squares law of error. A priority dispute over the

discovery of that law was even then simmering between

gauss [VI.26] and legendre [VI.24].

In a long series of investigations brought together in

Traité de Mécanique Céleste (1799–1825, five volumes),

the two part “Mémoire sur la Théorie de Jupiter et de

Saturne” (1788) demonstrates the most famous of his

findings in planetary astronomy. He established that

the current acceleration in orbital motion of Jupiter and

the deceleration of Saturn are the reciprocal effects of

their mutual gravitation, which are cyclical over many

hundreds of years and not cumulative. From this and

analysis of other phenomena that Laplace explored, it

followed that the so-called secular inequalities of plan-

etary motions are periodic over many centuries. Thus,

they are not derogations from the law of gravity but

evidence that its validity extended beyond the Sun–

planet attractions that had been studied by newton

[VI.14]. He was never able to prove, however, that lunar

acceleration is self-correcting over time.

The expansion known by Laplace’s name in the

theory of determinants first appears in the background

of the Jupiter–Saturn memoir in an analysis of the

eccentricities and inclinations of orbits, “Recherches

sur le calcul intégral et sur le système du monde”

(1776). Except for that, Laplace’s mathematical original-

ity is less notable in his analysis of planetary motion

than in his development of the theory of probability.

More in evidence in his astronomical work is his moti-
vational drive and his power and virtuosity in calcu-
lation, which may indeed have been more important
throughout his long career. Laplace was masterful in
finding rapidly convergent series, in obtaining mathe-
matical expressions incorporating terms to represent
a multitude of physical phenomena, in justifying the
neglect of inconvenient quantities in order to reach
solutions, and in giving the widest possible generality
to his conclusions.

The attraction exerted by a spheroid on an external
or internal point proved to be mathematically the most
fertile set of problems in Laplacian planetary astron-
omy. In “Théorie des attractions des sphéroïdes et de
la figure des planètes” (1785) Laplace employed legen-
dre polynomials [III.87] in a form later called Laplace
functions. He also proved a theorem that stated that all
ellipsoids with the same foci for their principal sections
attract a given point with a force proportional to their
masses. Laplace’s angles appear in his development of
the equation for the attraction of a spheroid on a given
point. Laplace used polar coordinates in this analy-
sis. He transformed the equation into one in Cartesian
coordinates in “Mémoire sur la théorie de l’anneau de
Saturne” (1789). In 1828 George Green dubbed Pois-
son’s application of the formula to electrostatic and
magnetic forces the potential function, the term used
thereafter in classical physics.

Further Reading

The memoirs cited in this article can be found in the
bibliography of C. C. Gillispie’s Pierre-Simon Laplace:
A Life in Exact Science (Princeton University Press,
Princeton, NJ, 1997).

For the mathematical content of Laplacian physics,
see pp. 440–55 (and elsewhere) of I. Grattan-Guinness’s
Convolutions in French Mathematics (Birkhäuser, Basel,
1990 (three volumes)).
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make a global
change throughout
the Companion,
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change. (I think it
was expressed as a
preference rather
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before.)

Charles C. Gillispie

VI.24 Adrien-Marie Legendre
b. Paris, 1752; d. Paris, 1833
Analysis; theory of attractions; geometry; number theory

Legendre passed his career in Paris and seems to have
been largely of independent means. Somewhat younger
than lagrange [VI.22] (who was resident there from
1787) and laplace [VI.23], he did not quite match their
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reputation, though the range of his mathematical inter-

ests was comparably wide. His professional appoint-

ments were modest; however, in 1799 he took over

from Laplace as a graduation examiner at the École

Polytechnique and remained there until his retirement

in 1816. Additionally, in 1813 he succeeded Lagrange

at the Bureau des Longitudes.

Legendre’s early research concerned the shape of

Earth and its external attraction to a point. Solutions of

the differential equations involved led him to examine

properties of the functions that are named after him;

he was in rivalry with Laplace, after whom the func-

tions were named during the nineteenth century. His

other main concern in analysis, and the longest lasting,

was with elliptic integrals. He wrote on them at great

length up to a Traité of 1825–28. But in supplements

of 1829–32 he acknowledged that his theory had just

been eclipsed by the inverse elliptic functions [V.34]

of jacobi [VI.35] and abel [VI.33]. He also studied vari-

ous other (functions defined as) integrals, including the

beta and gamma functions [III.31]; solutions to differ-

ential equations; and optimization in the calculus of

variations [III.96].

Among Legendre’s contributions to numerical math-

ematics was a beautiful theorem (found in 1789) relat-

ing spheroidal triangles (that is, triangles drawn on the

surface of a spheroid) to spherical triangles, which was

used in the 1790s by J.B.J. Delambre in the triangulation

analysis that led to the specification of the meter. His

most famous numerical result is the least-squares cri-

terion of curve fitting, proposed in 1805 in connection

with determining the orbits of comets. For him the cri-

terion was simply one of minimization; he did not make

the connections to probability theory that were soon to

be effected by laplace [VI.23] and gauss [VI.26].

Legendre’s Essai sur la Théorie des Nombres (1798)

was the first monograph on this subject. After review-

ing continued fractions [III.22] and the theory of

equations, he focused upon the algebraic branch, solv-

ing various Diophantine equations. Among many prop-

erties of integers, he stressed quadratic reciprocity

[V.31], and proved various partition theorems concern-

ing quadratic and some higher forms. Little in the book

was new; while expanded editions appeared in 1808

and 1830, he had been quickly eclipsed on methods of

proof by the Disquisitiones Arithmeticae (1801) of the

young Gauss.

For educational use Legendre produced Elements de

Géométrie (1794), an account of euclidean geometry

[I.3 §6.2] that emulated the same kind of form and orga-
nization and standards of proof of the Greek original.
He also handled aspects that had lain outside Euclid’s
concerns, such as alternatives to the parallel postulate,
related numerical issues such as approximations to the
value ofπ , and a lengthy summary of planar and spher-
ical trigonometry. He produced eleven further editions
up to 1823 and there were further posthumous editions
up until 1839 (which were followed by reprints). It was
a very influential book in mathematics education.

Further Reading

de Beaumont, E. 1867. Eloge Historique de Adrien Marie
Legendre. Paris: Gauthier-Villars.

Ivor Grattan-Guinness

VI.25 Jean-Baptiste Joseph Fourier
b. Auxerre, France, 1768; d. Paris, 1830
Analysis; equations; heat theory

Unusually for a mathematician, Fourier pursued a dis-
tinguished nonmathematical career. He was a civilian
member of General Bonaparte’s expedition to Egypt
(1798–1801), important enough for the First Consul
to make him, in 1802, the Prefect of the département
at Grenoble, a position which he held until Emperor
Napoleon’s fall in the mid 1810s. Thereafter, Fourier
moved to Paris, where he managed to establish himself
to the extent of being appointed a secrétaire perpétuel
of the Paris Academy of Sciences in 1822.

The prefectureship involved heavy commitments,
and Fourier was also active in Egyptology, most notably
discovering a teenager named Jean Champollion in
Grenoble, who was later to decipher the Rosetta Stone
and who helped to found the discipline. Nevertheless, PUP: this

suggested as
alternative to what
came here before.
OK?

between 1804 and 1815 he also created most of his
scientific work. His motivation was the mathematical
study of the diffusion of heat in continuous and solid
bodies; his “diffusion equation” for this purpose was
not only novel in itself but also marked the first large-
scale mathematization of physical phenomena that lay
outside mechanics. To solve this differential equation
he proposed using infinite trigonometric series. These
series were already known but had a low status. Fourier
(re)found many properties: not only the formulas for
their coefficients and some conditions for their conver-
gence but especially their representability, namely, how
a periodic series could represent a general function. For
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diffusion in a cylinder he found many properties of the

Bessel function J0(x), which was then little studied.

Fourier presented his findings to the scientific class

of the Institut de France in 1807. lagrange [VI.22]

did not like the series, while laplace [VI.23] was dis-

appointed in the physical modeling. But Laplace also

gave him a clue about solutions of the diffusion equa-

tion for infinite bodies, which led Fourier to find, by

1811, his integral solution (including inversion) for

them. His main publication was the book Théorie Ana-

lytique de la Chaleur (1822), which greatly influenced

younger mathematicians: for example, the first sat-

isfactory proof of the convergence of the series by

dirichlet [VI.36] (1829) and their use in fluid dynam-

ics by C.L.M.H. Navier (1825). Less happy was his rela-

tionship with poisson [VI.27], who tried to rederive

the entire theory following the molecularist physical

principles of Laplace and the methods of solution of

Lagrange, but only added a few special cases.

Fourier also worked on other topics in mathematics.

As a teenager he gave the first proof of descartes’s

[VI.11] rule of signs on the numbers of positive and

negative roots of a polynomial equation. (He used an

inductive proof that has now become standard.) He also

found an upper bound on the number of roots within a

given interval, which J.C.F. Sturm improved to an exact

evaluation in 1829. At that time Fourier was trying to

finish a book on equations, which appeared posthu-

mously in 1831 thanks to Navier. The main novelty was

the basic theory of linear programming [III.86], as

we now call it. Despite his prestige and advocacy, he

gained few followers (Navier was one), and the theory

lay dormant for over a century. Fourier also took up a

few aspects of Laplace’s work on mathematical statis-

tics, examining the status of the normal distribution

[III.73 §5].

Further Reading

Fourier, J. 1888–90. Oeuvres Complètes, edited by G. Dar-
boux, two volumes. Paris: Gauthier-Villars.

Grattan-Guinness, I., and J. R. Ravetz. 1972. Joseph Fourier.
Cambridge, MA: MIT Press.

Ivor Grattan-Guinness

VI.26 Carl Friedrich Gauss

b. Brunswick, Germany, 1777; d. Göttingen, Germany, 1855
Algebra; astronomy; complex function theory including elliptic
function theory; differential equations; differential geometry;
land surveying; number theory; potential theory; statistics

Gauss’s prodigious mathematical abilities brought him
to the attention of the duke of Brunswick when he was
fifteen, when the duke paid for his further education,
lifting him out of near poverty. For the rest of his life
Gauss felt a loyalty to the state and a strong desire to
do useful work, which led him to become a professional
astronomer. In 1801 he was the first person to manage
to reobserve Ceres, the first asteroid to be discovered,
after it had disappeared behind the Sun. Gauss pro-
duced a novel statistical analysis of the original obser-
vations, using the method of least squares, which he
had invented but not published, to predict where Ceres
would reappear. Gauss then assisted for many years
in the analysis of the orbits of several more asteroids.
He also wrote extensively on celestial mechanics and
cartography, and did important work on telegraphy.

Nonetheless, it is as a pure mathematician that Gauss
will always be remembered. In 1801 he published his
Disquisitiones Arithmeticae, the book that created mod-
ern algebraic number theory. In it he gave the first
rigorous proof of the law of quadratic reciprocity
[V.31], going on to find five more proofs over the
years. Later he extended the theorem to higher pow-
ers, introducing the Gaussian integers for the purpose
in 1831 (Gaussian integers are numbers of the form
m + ni, where m and n are integers and i = √−1). He
did major work on differential equations, chiefly the
hypergeometric equation, which is a second-order lin-



�

VI.27. Siméon-Denis Poisson 763

ear differential equation depending on three param-
eters and having two singular points, with the prop-
erty that many of the familiar functions of analysis are
related to its solutions. He showed that this equation
played a significant role in the new theory of ellip-
tic functions [V.34], but because most of this work
was unpublished it had no influence on the dramatic
and rapidly advancing publications of abel [VI.33] and
jacobi [VI.35]. This unpublished work showed that he
was the first mathematician to see the need to create
a theory of complex functions of a complex variable.
He also gave four proofs of the fundamental the-
orem of algebra [V.15]. By the 1820s he was per-
suaded that physical space might not be Euclidean, but
he confined his opinion to his circle of friends, most
of them astronomers and sympathetic to the idea; the
much more detailed accounts of bolyai [VI.34] and
lobachevskii [VI.31] were published independently in
the early 1830s. Credit for the first detailed, mathe-
matical descriptions of a non-Euclidean space there-
fore rightly attaches to Bolyai and Lobachevskii (for fur-
ther discussion of this, see geometry [II.2 §7]). In 1827
Gauss wrote his Disquisitiones Generales Circa Superfi-
cies Curvas, in which the concept of intrinsic (Gauss-
ian) curvature of a surface was put forward for the first
time, thus reformulating differential geometry.

In statistics, he was one of the two or three discov-
erers of the normal distribution [III.73 §5], and he
was an expert in error analysis, bringing the levels of
accuracy in astronomy to land surveying. In that con-
text he invented the heliotrope, which couples a mirror
to a telescope in order to transmit a precise beam of
light, to improve precision measurement.

The sheer volume of Gauss’s work is overwhelming.
The Werke run to twelve volumes, and there are several
books, of which the Disquisitiones Arithmeticae stands
out.

A truly original mathematician and scientist, Gauss
was otherwise a conservative in his tastes and views.
His first marriage ended after only four years with the
death of his wife in 1809; he then married again. A num-
ber of Gauss’s descendants may now be found in the
United States.

Gauss was the last great mathematician to be called
the “Prince of mathematicians,” and he has been
admired as much for his breadth as for the depth of his
insights and the fertility of his ideas. His own view of
mathematics and its importance is captured both in the
much-quoted remark that “mathematics is the queen of
the sciences and arithmetic the queen of mathematics”

(which he did say) and in the apocryphal remark that
“mathematics is the queen and the servant of science.”

Further Reading

Dunnington, G. W. 2003. Gauss: Titan of Science, new edition
with additional material by J. J. Gray. Washington, DC:
Mathematical Association of America.

Jeremy Gray

VI.27 Siméon-Denis Poisson
b. Pithiviers, France, 1781; d. Paris, 1840
Analysis; mechanics; mathematical physics; probability

A brilliant graduate of the École Polytechnique in 1800,
Poisson was quickly appointed to the staff, and became
professor and graduation examiner there until his
death. He was also founder professor of mechanics at
the new Paris Faculté des Sciences of the Université
de France; from 1830 he was also a member of the
governing Council of the Université.

Poisson’s research output was dominated by his
adherence to the traditions established by lagrange
[VI.22] and laplace [VI.23]. Like Lagrange he pre-
ferred to algebraize theories, and to rely if possible
upon power series and variational methods. From the
mid 1810s he challenged the new theories of fourier
[VI.25] (especially the solving of differential equations
by trigonometric series and the Fourier integral) and
of cauchy [VI.29] (the new approach to real-variable
analysis using limits, and his innovation of complex-
variable analysis). His overall achievements were much
less significant than theirs: the main novelties were
the “Poisson integral,” which embedded Fourier series
within a power series; and a summation formula. He
also studied the general and singular solutions of
differential, difference, and mixed equations.

In physics Poisson tried to justify Laplace’s claim
that all physical phenomena were molecular, and that
the cumulative action upon a molecule of all its com-
panions should be expressed mathematically in terms
of an integral. He applied this approach to heat dif-
fusion and to elasticity theory by the mid 1820s, but
then decided that integrals should be replaced by sums;
he elaborated this alternative especially in capillary
theory (1831). Curiously, molecularism did not domi-
nate his most important contributions to physics: to
electrostatics (1812–14) and to magnetic bodies and
the process of magnetization (1824–27). His mathemat-
ical contributions to these topics included modifying
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Laplace’s equation to what we now call Poisson’s equa-
tion, which deals with the potential at points inside a
charged body or region of charge (1814); and also a
divergence theorem (1826).

In mechanics, between 1808 and 1810 Poisson and
Lagrange developed the brackets theory (named after
them) of canonical solutions to the equations of
motion. Poisson’s motivation was to extend, to second-
order terms in masses of the planets, Lagrange’s superb
attempt to prove that the planetary system was sta-
ble; in later work he examined this (first-order) prob-
lem specifically, as well as other aspects of perturba-
tion theory. He also analyzed rotating bodies by using
moving frames of reference (1839), in an analysis that
was to inspire Léon Foucault to propose his famous
long pendulum in 1851. His best-known publications
include a substantial and wide-ranging two-volume
Traité de Mécanique (editions in 1811 and 1833), which
did not, however, have room for Louis Poinsot’s beau-
tiful recent theory (1803) of the couple in statics. In
the mid 1810s, he studied deep-body fluid dynamics,
in rivalry with Cauchy.

Poisson was one of the few contemporaries to take
up Laplace’s work in probability theory and mathe-
matical statistics. He studied various probability dis-
tributions [III.73]: not only the one named after him
(1837, rather in passing) but also the so-called Cauchy
(1824) and Rayleigh (1830) distributions. He also exam-
ined proofs of the central limit theorem [III.73 §5],
and formulated the law of large numbers [III.73 §4]
(his term). One of his main applications was to the old
problem of determining the probability that a triad of
judges would come to the correct decision in court
cases (1837).

Further Reading

Grattan-Guinness, I. 1990. Convolutions in French Mathe-
matics 1800–1840. Basel: Birkhäuser.

Métivier, M., P. Costabel, and P. Dugac, eds. 1981. Siméon-
Denis Poisson et la Science de son Temps. Paris: École
Polytechnique.

Ivor Grattan-Guinness

VI.28 Bernard Bolzano
b. Prague, 1781; d. Prague, 1848

Catholic priest and Professor of Theology, Prague (1805–19)

Bolzano was concerned with problems connected with
finding the “correct,” or the most appropriate, proofs
and definitions in analysis and related areas. In 1817
he proved an early version of the intermediate-value
theorem for continuous functions—he was among the
first to have a rigorous conception of a continuous
function—and in the course of doing so proved the
following important lemma. If a property M does not
apply to all values of a variable x but does apply for all
values smaller than a certain u, then there is always a
quantityU , which is the greatest of those of which it can
be asserted that all smaller x possess the property M .
The valueu in this formulation is a lower bound for the
(nonempty) set of numbers with the property not-M .
Bolzano’s lemma is therefore equivalent to what nowa-
days might be called the “greatest lower bound” axiom
(or, more commonly and equivalently, the “least upper
bound” axiom). It is also equivalent to the Bolzano–
Weierstrass theorem (that every bounded infinite set in
R, or more generally Rn, has an accumulation point). It
is likely that weierstrass [VI.44] independently redis-
covered the Bolzano–Weierstrass theorem, but it is also
likely that he knew, and was influenced by, Bolzano’s
proof technique of iterated bisection (used by Bolzano
in 1817).

In the early 1830s it was widely believed that a con-
tinuous function must be differentiable except at some
isolated points. But at that time Bolzano constructed
a counterexample (although he did not publish it), and
proved that it was such—more than thirty years before
the well-known counterexample due to Weierstrass.

Bolzano had a surprising variety of insights and suc-
cessful proof techniques that were well ahead of their
time: notably in analysis, topology, dimension theory,
and set theory.

VI.29 Augustin-Louis Cauchy
b. Paris, 1789; d. Sceaux, France, 1857
Real and complex analysis; mechanics; number theory;
equations and algebra

Trained as a roads and bridges engineer at the École
Polytechnique (hereafter, “EP”) and the École des Ponts
et Chaussées (1805–10), Cauchy passed his career as an
academic at the EP and the Paris Faculté des Sciences of
the Université de France until 1830, when he left France
with the deposed royal family after the revolution of
that year. He returned only in 1838, and later taught in
the Paris Faculté.

Of Cauchy’s many contributions to pure and applied
mathematics, the best known are in mathematical
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analysis. In the foundations of real variables, he

replaced all previous approaches to the theory with one

that (in more developed forms) has now become stan-

dard: (i) lay down an explicit theory of limits; (ii) for-

mulate definitions carefully, and in general terms;

(iii) define the derivative of a function as the limiting

value of the difference quotient, its integral as the limit-

ing value of a sequence of partition sums, its continuity

in terms of the joint passage to limits of any sequence

of its argument and of its corresponding values, and the

sum of a convergent infinite series as the limiting value

of its partial sums. A key ingredient in all this was the

idea that (iv) limits may not exist: their existence has

to be justified carefully. Similarly, (v) the existence of

solutions to differential equations has to be proved, not

just assumed.

This approach brought a new level of rigor to analy-

sis; for example, for the first time the fundamental

theorem of calculus [I.3 §5.5] was a genuine theo-

rem, governed by conditions on the function. However,

this emphasis on limits made the theory hard for begin-

ners: it was not liked by staff or students at the EP,

where he taught it in this form between 1816 and 1830

and published it extensively, especially in his Cours

d’Analyse (1821) and his Résumé (1823) of the calcu-

lus. Its rise to standard educational practice was very

gradual, both in France and elsewhere.

Another major innovation of Cauchy dates from

1814, when he began to create complex-variable analy-

sis. Initially the integrand was a complex function but

the limits of integration were real; however, from 1825

on they too became complex, and in this form he

found many theorems on the residues of functions

over closed domains of various shapes. Unusually for

him, his progress was fitful, and he cast the theory in

terms of the complex plane only in the mid 1840s. He

also studied the general theory of complex functions,

including their expansion in power series of various

kinds.

Cauchy’s main single achievement in applied mathe-

matics lies in linear elasticity theory, where in the 1820s

he used stress–strain models to analyze the behav-

ior of various kinds of surfaces and solids; later he

adapted it to study aspects of (aetherian) optics. In

the 1810s he studied deep-body fluid dynamics, where

he found Fourier-integral solutions. In this and several

other areas he was in some competition with Fourier

and, especially, Poisson, regarding both the quality of

the theory and the chronology of its development.

Cauchy’s other contributions lie in basic mechan-
ics (derived from the EP teaching); singular and gen-
eral solutions of differential equations; the theory of
equations, especially methods that helped in the rise
of group theory; algebraic number theory; perturba-
tion theory in celestial mechanics; and an astounding
paper of 1829 on quadratic forms, which could have
launched the spectral theory of matrices had its author
recognized its significance!

Further Reading

Belhoste, B. 1991. Augustin-Louis Cauchy. A Biography. New
York: Springer.

Cauchy, A. L. 1882–1974. Oeuvres Complètes, twelve vol-
umes in the first series and fifteen in the second. Paris:
Gauthier-Villars.

Ivor Grattan-Guinness

VI.30 August Ferdinand Möbius
b. Schulpforta, Saxony, 1790; d. Leipzig, Germany, 1868
Astronomy; geometry; statics

Möbius was briefly a student of gauss [VI.26], and
worked as an astronomer at Leipzig University for
almost all of his life. His finest mathematical work
was his Der barycentrische Calcul (1829), in which he
introduced algebraic methods into the study of pro-
jective geometry. He showed in this way how points
can be described by a homogeneous triple of coordin-
ates, lines can be described by linear equations, the con-
cept of cross-ratio can be introduced, and the duality
of points and lines in the plane can be handled alge-
braically. He also introduced a Möbius net, which is
the projective equivalent of squared paper in Cartesian
geometry. His work is all the more remarkable because
Möbius knew very little of Poncelet’s radical reinven-
tion of projective geometry only a few years before.
In its turn his work was for a time overshadowed by
Jakob Steiner’s synthetic treatment of projective geom-
etry of 1832, and then Plücker’s two books on algebraic
curves in the 1830s, but the simplicity and generality
of Möbius’s methods were important in establishing
projective geometry as a rigorous mainstream subject.

In the 1830s Möbius developed a geometrical theory
of statics and the composition of forces, and it was in
this connection that he showed that whereas duality in
plane geometry necessarily gives rise to a conic, duality
in space need not. Möbius’s study of duality in space,
which pairs points with planes, led him to consider the
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set of all lines in space, which is a four-dimensional
space. It pleased the educator Rudolf Steiner very much
that the ordinary three-dimensional space may also
be thought of as a four-dimensional space, because
Steiner’s philosophy was directed against breaking
what he saw as a stranglehold of orthodox teaching.

Möbius is also remembered for the “Möbius band”
(or möbius strip [IV.7 §2.3]), a one-sided or nonori-
entable surface, but the first mathematician to describe
such a surface was his compatriot J. B. Listing, in July
1858 (published in 1861). Möbius discovered it only in
September 1858 (publishing it in 1865). He is also one
of the most important mathematicians to study inver-
sion in circles, and his account of it in 1855 is one rea-
son that such transformations are often called Möbius
transformations.

Further Reading

Fauvel, J., R. Flood, and R. J. Wilson, eds. 1993. Möbius and
His Band. Oxford: Oxford University Press.

Möbius, A. 1885–87. Gesammelte Werke, edited by R. Baltzer
(except volume 4, edited by W. Scheibner and F. Klein),
four volumes. Leipzig: Hirzel.

Jeremy Gray

VI.31 Nicolai Ivanovich Lobachevskii
b. Nizhni Novgorod (formerly Gorki), Russia, 1792;
d. Kazan, Russia, 1856
Non-Euclidean geometry

Lobachevskii came from a poor background, but his
mother was able to have him enrolled at the local
Gymnasium (or high school) on a scholarship in 1800.
In 1805 the Gymnasium was made the kernel of the
new University of Kazan, and in 1807 Lobachevskii
began to study there. The university had just appointed
Martin Bartels as Professor of Mathematics, and Bar-
tels not only trained Lobachevskii well, but protected
him from trouble with the authorities when Lobachev-
skii was suspected of atheism. Eventually, Lobachev-
skii graduated not with the ordinary degree but with a
Master’s qualification, and his career as a professional
mathematician began.

In 1826, after a reform of the university, Lobachev-
skii gave a public lecture: “On the principles of geom-
etry, with a rigorous demonstration of the theory of
parallels.” The manuscript of this talk is now lost, but
it probably marked the start of Lobachevskii’s aware-
ness of a non-Euclidean geometry. Lobachevskii was

soon elected Rector of the University of Kazan, a post

he occupied with distinction for thirty years, helping to

protect the university from a cholera epidemic in 1830,

to rebuild it after a fire in 1841, and generally to expand

its library and other facilities.

In the 1830s he also wrote his major works, on a

geometry different in only one respect from Euclid-

ean geometry. He called it imaginary geometry and it

is known today as non-Euclidean geometry. In the new

geometry, given a line in a plane and a point not on

the line there are two lines through the point that are

asymptotic to the given line (one in each direction);

these two lines separate the lines through the point

which meet the given line from those that do not. Loba-

chevskii called these the parallels to the given line

through the given point. Starting from this definition,

he gave formulas for the new trigonometry of triangles,

and showed that these formulas reduce to the famil-

iar formulas of plane Euclidean trigonometry when the

triangles are very small. He extended his results to

describe a geometry of three dimensions, thus mak-

ing it clear that his new geometry could be a geom-

etry of space, and attempted, inconclusively, to mea-

sure the parallax of stars in order to determine whether

his imaginary geometry gave a more accurate account

of space than Euclidean geometry.

He published these conclusions in lengthy papers in

Russian in the Journal of Kazan University, but they

drew only a relentlessly hostile review from Ostro-

gradskii, a much better known mathematician in Saint

Petersburg. He published in French in a German jour-

nal in 1837, in German in a booklet of 1840, and again

in French in 1855, but to little avail. gauss [VI.26]

appreciated the booklet of 1840 and in 1842 had Loba-

chevskii made a corresponding member of the Göttin-

gen Academy of Sciences, but this was to be the only

acclaim Lobachevskii received in his lifetime.

Lobachevskii’s final years were marked by terrible

financial and mental decline. Such was the chaos of his

household that Lobachevskii’s biographers have been

unable to establish the number of children born into it,

but it may well have been fifteen or even eighteen.

Further Reading

Gray, J. J. 1989. Ideas of Space: Euclidean, Non-Euclidean,
and Relativistic, second edn. Oxford: Oxford University
Press.

Lobachetschefskij, N. I. 1899. Zwei geometrische Abhand-
lungen, translated by F. Engel. Leipzig: Teubner.
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VI.32 George Green
b. Nottingham, England, 1793; d. Nottingham, 1841

Miller; Fellow of Caius College, Cambridge (1839–41)

PUP: have not
repeated ‘England’
with second
‘Nottingham’ – OK?

Green, a self-taught mathematician, went to Cambridge
University at the age of forty, having already produced
his most important work, the privately printed An Essay
on the Application of Mathematical Analysis to the The-
ories of Electricity and Magnetism (1828). In this work,
which Green opened by stressing the central role of the
“potential function” (a term that he himself coined), he
proved the three-dimensional version of the theorem
now named after him, and introduced the concept that
riemann [VI.49] later called Green’s function (1860).
The Essay became widely known only after its discovery
in 1845 by William Thomson (later Lord Kelvin), who
was responsible for its republication in the Journal für
die reine und angewandte Mathematik (1850–54).

Green gave his version of the theorem (in modern
notation) as∫∫∫
U∆V dv+

∫∫
U
∂V
dn

dσ =
∫∫∫
V∆U dv+

∫∫
V
∂U
dn

dσ,

where U and V are two continuous functions of x, y , z
whose derivatives are not infinite at any point of an
arbitrary body, n is the surface normal of the body
directed inward, and dσ is a surface element. The result
today known as Green’s theorem, which is the planar
version of the above, was first published by cauchy
[VI.29] in 1846, and it can be given (in modern nota-
tion) as follows. Let R be a closed plane region with
a piecewise-smooth boundary curve C with positive
orientation. Let P(x,y) and Q(x,y), having continu-
ous partial derivatives, be defined on an open region
containing R. We then have∫

C
(P dx +Qdy) =

∫∫
R

(
∂Q
∂x
− ∂P
∂y

)
dx dy.

More original than his theorem, however, was the
powerful technique Green developed to solve certain
second-order differential equations. In essence, Green
sought a “potential function” and formulated the con-
ditions it needed to satisfy. His great insight was to
recognize that the central issue in potential theory was

to relate properties inside volumes to properties on
their surfaces. Green’s functions are extensively used
today in the solution of inhomogeneous differential
equations with boundary conditions and in the solution
of partial differential equations.

VI.33 Niels Henrik Abel
b. Finnöy, Norway, 1802; d. Froland, Norway, 1829
Theory of equations; analysis; elliptic functions; Abelian integrals

Abel’s life was short and penurious, but successful, and
he received recognition in his lifetime. His father—a
minister of the church in Norway, but also at one time
a government minister—overreached himself and when
he died he left the family in straitened circumstances.
Abel’s exceptional intellectual talents were recognized
at school, and funds were raised to enable him to com-
plete his education and, in particular, to study mathe-
matics. At age twenty-two, he was awarded a scholar-
ship to make a two-year tour of Europe, during which
he studied in Berlin and Paris. In Berlin he met and
was befriended by Auguste Crelle, the engineer who
had just founded the Journal für die reine und ange-
wandte Mathematik (otherwise known as Crelle’s Jour-
nal). Almost all of Abel’s mathematical work was pub-
lished in the first four volumes of the journal. From
1826 until his death in 1829 Abel eked out a poor
existence, earning a little by teaching, but using what
few resources he had to support his mother and his
younger brother. He died of consumption at the age
of twenty-seven within a couple of days of the news
reaching Norway that he had been appointed to an
established post in Berlin.

Abel’s main mathematical contributions lie in three
distinct areas. The first of these was the theory of equa-
tions. Here he was influenced by ideas published by
lagrange [VI.22] in 1770 and cauchy [VI.29] in 1815
about the form of functions of the roots of an equa-
tion, and what happens to such functions when the
roots are permuted. Lagrange had hinted at the possi-
bility that quintic equations might perhaps not be sol-
uble in classical terms and Paolo Ruffini had expended
much effort between 1799 and 1814 trying to prove
this, though he had not managed to persuade his con-
temporaries. Abel’s first success was to give an accept-
able proof of the fact that, for polynomial equations of
degree 5, there is no formula in the coefficients involv-
ing the usual operations of arithmetic together with
extraction of roots that will always yield a solution.
This first appeared in 1824 in a short pamphlet written
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in French and published privately in Christiania (Oslo).
Once Abel reached Berlin, however, Crelle translated it
into German and published it in the first volume of
his journal; he also published a fuller, more detailed
account, covering polynomials of any degree greater
than 4, in 1826.

Abel returned to equations a few years later, pub-
lishing a long paper in 1829 about a class of equations
satisfying two special conditions. His first requirement
is that every root of the equation can be expressed as a
function of every other root, the second that these func-
tions commute (in modern terms, the galois group
[V.24] of the equation is commutative). He proved var-
ious theorems about such equations, the most striking
being that they are soluble by radicals. This represented
an extensive generalization of the ideas described by
gauss [VI.26] in the seventh part of Disquisitiones Arith-
meticae, where the special case of cyclotomic equations
(which satisfy both of these conditions) is treated sys-
tematically. It was in honour of this work that, later,
the adjective “Abelian” was applied to groups that are
commutative. It is important to appreciate, however,
that Abel reached his results in the theory of equations
without any appeal to groups, which at that time were
not yet known.

He also made major contributions to the theory of
convergence. Although there had been over a century
of critical thinking devoted to foundations of the cal-
culus, modern ideas of rigour were only just emerg-
ing in the writings of bolzano [VI.28], Cauchy, and
others. Convergence had received some attention in
Cauchy’s lectures of 1820–21, but series in general,
and power series in particular, were still far from well
understood. Among other contributions, Abel offered
a proper proof of the binomial theorem for exponents
other than positive integers, and the insight about the
continuity of a function defined by a power series as its
argument goes to the circle of convergence that is now
known as Abel’s limit theorem.

Perhaps his greatest discoveries, however, were in
the area where analysis and algebraic geometry come
together. To summarize his legacy in this area in just
a few words: first, a new and productive approach to
the theory of elliptic functions [V.34]; and, second,
a vast generalization of elliptic functions to what are
now called Abelian functions and Abelian integrals. In
this area Abel competed for priority with jacobi [VI.35].
Most (though by no means all) of his work was writ-
ten in two memoirs. One was published in two parts,
“Recherches sur les fonctions elliptiques” and “Précis

d’une théorie des fonctions elliptiques,” coming to well
over two hundred pages in Crelle’s Journal in 1828 and
1829. The other, entitled “Mémoire sur une propriété
générale d’une classe très étendue de fonctions tran-
scendantes,” was submitted to the Paris Academy of
Sciences in October 1826. There it lay on Cauchy’s desk,
unread until after Abel’s death. It was published by the
Paris Academy in 1841. The manuscript itself, however,
was stolen by G. Libri, lost, and rediscovered in parts
between 1952 and 2000 by Viggo Brun and Andrea del
Centina.

In June 1830 the Paris Academy awarded its Grand
Prix de Mathématiques jointly to Abel (posthumously)
and Jacobi for their work on elliptic functions.
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VI.34 János Bolyai
b. Klausenburg, Transylvania, Hungary (now Cluj, Romania), 1802;
d. Marosvásárhely, Hungary (now Tirgu-Mures, Romania), 1860
Non-Euclidean geometry

János Bolyai’s father Farkas Bolyai taught him mathe-
matics at home, using the first six books of euclid’s
[VI.2] Elements and euler’s [VI.19] Algebra. From
1818 to 1823 János studied at the Royal Engineer-
ing Academy in Vienna, and then served as an engi-
neer in the Austrian Army for ten years, before retir-
ing on a pension as a semi-invalid. Probably inspired
by his father’s attempts to prove the parallel pos-
tulate, a key assumption in Euclidean geometry, but
very much against the advice of his father, János also
attempted to prove it. But in 1820 he switched direc-
tion and attempted to show that there could be a geom-
etry independent of the parallel postulate. By 1823 he
believed he had succeeded, and after much subsequent
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discussion father and son agreed to publish the son’s

ideas as a twenty-eight-page appendix to his father’s

two-volume work on geometry in 1832.

In this appendix, Bolyai started from a new definition

of parallels, according to which, given a line in a plane

and a point not on the line, there are many lines through

the point that do not meet the given line. Of these

lines, there are two that are asymptotic to the given

line (one in each direction), and Bolyai called these the

parallels to the given line through the given point. He

went on to derive many results that follow from this

assumption in the geometry of two and three dimen-

sions, and gave formulas for the new trigonometry of

triangles. He showed that these formulas reduce to the

familiar formulas of plane Euclidean geometry when

the triangles are very small. He also found a surface in

his three-dimensional geometry in which geometry is

Euclidean. He concluded that there were logically two

geometries and that it remained undecided which one

corresponded to reality. He also showed that in his new

geometry it was possible to construct a square equal in

area to a given circle, thus accomplishing a feat that was

widely (and, as was later shown, correctly) believed to

be impossible in Euclidean geometry.

A copy of the book was sent to gauss [VI.26], who

eventually replied on March 6, 1832, that he could not

praise the work, for “to praise it, would be to praise

myself,” going on to claim that the methods and results

in the appendix agreed with his own work over the pre-

vious thirty-five years, although he was “very glad that

it was just the son of my old friend, who takes the

precedence of me in such a remarkable manner.” This

endorsement of the validity of János’s ideas pleased

the father but infuriated the son, and soured rela-

tions between father and son for several years. They

did eventually resume an uncomfortable relationship,

which persisted until Farkas’s death in 1856.

János Bolyai published virtually nothing else, and his

discovery was not appreciated in his lifetime. Indeed,

it is unclear that anyone but Gauss ever read it, but

specific comments about it that Gauss left behind led

mathematicians back to it, and it was translated into

French by Hoüel in 1867 and into English in 1896

(reprinted in 1912 and 2004).

Further Reading

Gray, J. J. 2004. János Bolyai, Non-Euclidean Geometry and
the Nature of Space. Cambridge, MA: Burndy Library, MIT
Press.
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VI.35 Carl Gustav Jacob Jacobi
b. Potsdam, Germany, 1804; d. Berlin, 1851
Theory of functions; number theory; algebra; differential equations;
calculus of variations; analytical mechanics; perturbation theory;
history of mathematics

Jacobi grew up as Jacques Simon Jacobi in a wealthy
and well-educated Jewish family. He was baptized dur-
ing his first year at the University of Berlin in 1821,
probably in order to make it possible for him to fol-
low an academic career at a time when Jews were inel-
igible for academic positions. Jacobi studied classics
under the famous philologist Boeckh and philosophy
under Hegel. Owing to the mediocrity of the mathe-
matics staff in Berlin at that time, he was self-taught
in the discipline, which soon became his favorite. He
read euler [VI.19], lagrange [VI.22], laplace [VI.23],
gauss [VI.26], and, last but not least, Greek mathemati-
cians like Pappus and Diophantus. In 1825, Jacobi was
awarded his doctorate for a thesis, written in Latin,
on the theory of functions. The subsequent disputa-
tio (discussion) included critical comments both on
Lagrange’s theory of functions and on his analytical
mechanics. The following year Jacobi went to the Uni-
versity of Königsberg, where (in 1829) he got a full pro-
fessorship. In 1834, he and the physicist F. E. Neumann
founded the “Königsberg mathematical physics semi-
nar,” which, because of the close connection between
research and teaching that it fostered, soon led to
Königsberg becoming the most successful and influ-
ential educational institution for theoretical physics
and mathematics in the German-speaking part of the
scientific world. By 1844, when Jacobi left Königsberg
because of poor health and in order to become a mem-
ber of the Berlin Academy of Sciences, he was rec-
ognized as Germany’s most important mathematician
after Gauss. After seven more fruitful years of research
in Berlin he died unexpectedly from smallpox.

Throughout his life Jacobi was an advocate of pure
mathematics, conceiving mathematical thinking as a
means of developing the human intellect and, indeed,
of advancing humanity itself. His first published paper
(1827), which was influenced by Gauss’s Disquisi-
tiones Arithmeticae, was devoted to number theory
(cubic residues). Further investigations were devoted
to higher residues, the division of the circle, quadratic
forms, and related subjects. Many of Jacobi’s results
in number theory were published in the book Canon
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Arithmeticus (1839). The extension of the concept of
divisibility to algebraic numbers by Jacobi and Gauss
paved the way for the later algebraic theory of numbers
(by kummer [VI.40] and others).

Jacobi’s “most original achievements” (in the words
of klein [VI.57]) were his contributions to the theory of
elliptic functions [V.34], which developed in compe-
tition with abel [VI.33] between 1827 and 1829. Start-
ing with legendre’s [VI.24] work, Jacobi’s approach
was analytical and focused on the transformation of
elliptic functions, their properties (like double peri-
odicity), and the introduction of the inverse function.
Jacobi’s research on elliptic functions culminated in the
book Fundamenta Nova Theoriae Functionum Ellipti-
carum (1829). Together with Abel he should be viewed
as one of the founders of the theory of complex func-
tions, which emerged in the second half of the cen-
tury. In particular, his application of research on ellip-
tic functions to Diophantine equations became impor-
tant for the development of analytic number theory.
Jacobi’s contributions to algebra include investigations
into the theory of determinants (the “Jacobian” func-
tional determinant) and their relation to inverse func-
tions, into quadratic forms (“Sylvester’s law of inertia”),
and into the transformation of multiple integrals.

Even Jacobi’s work in mathematical physics bears the
stamp of “pure mathematics”: following the analytical
tradition of Euler and Lagrange, he presented the foun-
dations of mechanics in an abstract and formal man-
ner, paying special attention to the relation between
conservation laws [IV.12 §4.1] and symmetries of
space and to the unifying role of variational princi-
ples. Jacobi’s achievements in this area, which he devel-
oped in close relation to the theory of differential equa-
tions and the calculus of variations [III.96], include
what is now called the “Jacobi–Poisson theorem,” the
“principle of the last multiplier,” a theory for inte-
grating hamilton’s [VI.37] canonical equations of
motion [IV.16 §2.1.3] by transformation (“Hamilton–
Jacobi theory”), and a time-independent formulation of
the principle of least action (“Jacobi’s principle”). His
approach to these areas and the results he obtained
are documented in two comprehensive books based
on his lectures: Vorlesungen über Dynamik (1866) and
Vorlesungen über Analytische Mechanik (not published
until 1996). The former had considerable impact on thePUP: the huge gap
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development of German mathematical physics in the
last third of the nineteenth century. The latter reveals
Jacobi’s criticism of the traditional understanding of
mechanical principles (as laws that are firmly based on

empirical observation or a priori reasoning) and shows
strong parallels with the “conventionalist” viewpoint,
which did not become popular in science and philos-
ophy until half a century later, when it numbered H.
Hertz and poincaré [VI.61] among its adherents.

Jacobi not only promoted new mathematical devel-
opments, but also studied the history of mathematics:
he worked on ancient number theory, was the advisor
for the historical parts of A. von Humboldt’s great Kos-
mos (1845–62), and developed detailed plans for the
publication of Euler’s works.

Further Reading

Koenigsberger, L. 1904. Carl Gustav Jacob Jacobi. Fest-
schrift zur Feier des hundertsten Wiederkehr seines
Geburtstages. Leipzig: Teubner.
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VI.36 Peter Gustav Lejeune Dirichlet
b. Düren, French Empire (now Germany), 1805;
d. Göttingen, Germany, 1859
Number theory; analysis; mathematical physics; hydrodynamics;
probability theory

The low level of mathematics education at German uni-
versities prompted Dirichlet to study in Paris, where he
came into contact with the leading French mathemati-
cians Lacroix, poisson [VI.27], and fourier [VI.25], who
particularly attracted him. In 1827 he took up a posi-
tion at the University of Breslau. The following year he
moved to Berlin, where he was appointed as a professor
at the military academy and where he was also allowed
to teach at the university. In 1831 he was made a pro-
fessor at the university and from then on held positions
at both institutions until 1855, when he was appointed
as the successor to gauss [VI.26] at the University of
Göttingen.

Dirichlet’s primary interest was in number theory.
His guiding star was Gauss’s pioneering Disquisi-
tiones Arithmeticae (1801)—the work that made num-
ber theory into a mathematical discipline—which he
studied throughout his career. Dirichlet was not only
the first mathematician to completely understand this
work but he also became its interpreter, picking up
its problems and improving its proofs, as well as
developing its ideas.

With his very first publication, which appeared in
1825, Dirichlet came to international prominence. The
paper, which dealt with Diophantine equations of the
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form x5 +y5 = Az5, yielded substantial results for the
verification of fermat’s last theorem [V.12] for the
casen = 5 (these results were used by legendre [VI.24]
for a complete proof for that case some weeks later). In
a paper published in 1837 Dirichlet came up with the
new and revolutionary idea of applying analytical meth-
ods to number theory. He introduced expressions that
are now known as Dirichlet L-series. These are infinite
series of the form

L(s, χ) =
∞∑
n=1

χ(n)
ns

where χ(n) is a Dirichlet character modulo k: that is, a
complex-valued function on the integers that is totally
multiplicative, in the sense that χ(ab) = χ(a)χ(b) for
alla and b, and χ is periodic with period k and not iden-
tically zero. Using these L-series, Dirichlet showed that
every arithmetic progression {an + b : n = 0,1, . . . },
where a and b are relatively prime, contains infinitely
many prime numbers. In two subsequent papers, pub-
lished in 1838 and 1839, he used his new methods,
among other things, to determine the formula of the
class number of binary quadratic forms: that is, the
number of proper classes of forms of given determi-
nant. It is often said that these three papers mark the
start of analytic number theory [IV.2].

Dirichlet also made important contributions to alge-
braic number theory, culminating in his unit theo-
rem [III.65] for the Abelian group of units in an alge-
braic number field. These contributions, together with
numerous others due to him (e.g., his Schubfachprinzip,
or box principle; work on the law of biquadratic reci-
procity; and results concerning Gaussian sums), were
brought together in his influential Vorlesungen über
Zahlentheorie (lectures on number theory), published
by his former student dedekind [VI.50] in 1863.

Inspired by his close contact with fourier [VI.25]
during his student days in Paris, Dirichlet’s other main
interests were in analysis and mathematical physics,
and in the connections between them. In a ground-
breaking paper of 1829, Dirichlet not only gave the first
strict proof of the convergence of a Fourier series under
given conditions, but he also used new methods and
concepts (e.g., his insight into the importance of con-
ditional convergence of series; his Dirichlet function
influencing the development of the concept of a func-
tion) that became classic and that served as a basis for
countless nineteenth-century investigations on analy-
sis. He also occupied himself with the determination
of multiple integrals as well as with the expansion of

a function into spherical functions (Kugelfunktionen)
and applied these results to problems in mathemat-
ical physics. His main contributions to mathematical
physics include papers on the theory of heat, hydro-
dynamics, the gravitational attraction of an ellipsoid,
the n-body problem, and potential theory. The first
boundary-value problem (the “Dirichlet problem” of
finding the solution of an elliptic partial differential
equation in the interior of a given region that takes
prescribed values on the boundary of the region) had
already been handled by Fourier and others, but Dirich-
let proved the uniqueness of the solution, while the
dirichlet principle [IV.12 §3.5] (a method for solv-
ing boundary problems for elliptic partial differen-
tial equations [IV.12 §2.5] by reducing them to vari-
ational problems [III.96]) was introduced by him in
lectures on potential theory, enhancing a method intro-
duced by Gauss. Connected with Dirichlet’s work on
analysis was his contribution to probability and error
theory, in particular his development of new methods
for probabilistic limit theorems.

Dirichlet also influenced the further development of
mathematics by his mathematical style, by the exact-
ness and elegance of his proofs, and by his teach-
ing. Together with his friend jacobi [VI.35], he ush-
ered in a new epoch of mathematical teaching at Ger-
man universities by introducing lectures and seminars
on the most recent research, and with him began the
golden age of mathematics in Berlin. Although Dirich-
let did not found his own mathematical school, his
influence can be found in the work of Dedekind, Eisen-
stein, kronecker [VI.48], and riemann [VI.49], among
others.

Further Reading
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VI.37 William Rowan Hamilton
b. Dublin, 1805; d. Dublin, 1865
Calculus of variations; optics; dynamics; algebra; geometry
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Hamilton was educated at Trinity College, Dublin.
Shortly before graduating in 1827, he was appointed
Professor of Astronomy and Royal Astronomer of Ire-
land, a post which he held for the remainder of his
life.

His first paper, “Theory of systems of rays: part first”
(1828), was written while he was still an undergrad-
uate. In it he developed new methods for the study
of foci and caustics produced by the reflection of
light from curved surfaces. Hamilton developed his
approach to optics over the following five years, pub-
lishing three substantial supplements to his original
paper. He showed that the properties of an optical sys-
tem are completely determined by a certain “character-
istic function” that is a function of the initial and final
coordinates of a ray of light and which measures the
time of passage of light through the system. In 1832 he
predicted that light falling at a certain angle on a biax-
ial crystal would be refracted to form a hollow cone
of emergent rays. This prediction was verified by his
friend and colleague Humphrey Lloyd.

Hamilton adapted his optical methods to the study of
dynamics. In a paper “On a general method in dynam-
ics” (1834), he showed that the dynamics of a system
of attracting and repelling point particles is completely
determined by a certain characteristic function, which
satisfies a differential equation, today referred to as
the hamilton–jacobi equation [IV.12 §2.1]. In a sub-
sequent paper, “Second essay on a general method in
dynamics” (1835), he introduced the principal func-
tion of a dynamical system, presented the equations
of motion of such a system in hamiltonian form
[IV.16 §2.1.3], and adapted methods of perturbation
theory to this setting.

Hamilton discovered the system of quaternions
[III.78] in 1843. The fundamental equations of this sys-
tem occurred to him in a flash of insight as he was walk-
ing along the bank of the Royal Canal, near Dublin, on
October 16 of that year. Most of his subsequent math-
ematical work involved quaternions. It is not difficult
to translate much of this work into the language of
modern vector analysis, and indeed many of the basic
concepts and results of vector algebra and analysis
emerged from Hamilton’s work on quaternions. Hamil-
ton applied quaternion methods to the study of dynam-
ics in a series of short papers published in the three
years immediately following his discovery of quater-
nions. He also investigated a number of algebraic sys-
tems related to quaternions. However, most of his work
with quaternions was concerned with their application

to the study of geometrical problems, and, in particular,
to the study of surfaces of the second order and (espe-
cially in the final years of his life) to the study of the
differential geometry of curves and surfaces. Much of
this research is to be found in his two books Lectures on
Quaternions (1853) and Elements of Quaternions (1866,
published posthumously).

Further Reading

Hankins, T. L. 1980. Sir William Rowan Hamilton. Baltimore,
MD: Johns Hopkins University Press.
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VI.38 Augustus De Morgan
b. Madura (now Madurai), India, 1806; d. London, 1871

Professor of Mathematics, University College London
(1828–31, 1836–66); first president of the
London Mathematical Society (1865–66)

De Morgan, a prolific author in many fields of math-
ematics and its history, made important and origi-
nal contributions to the development of mathematical
logic. He is particularly remembered for what we now
call de Morgan’s laws, which he first published in 1858
in a paper in the Transactions of the Cambridge Philo-
sophical Society. The “laws” can be stated (using the
notation of sets) as follows. If A and B are subsets of a
set X, then (A∩ B)c = Ac ∪ Bc and (A∪ B)c = Ac ∩ Bc,
where “∪” represents union, “∩” represents intersec-
tion, and a superscript “c” denotes the complement
with respect to X.

VI.39 Joseph Liouville
b. Saint Omer, France, 1809; d. Paris, 1882
Differentiation of arbitrary order; integration in closed form;
Sturm–Liouville theory; potential theory; mechanics;
differential geometry; doubly periodic functions;
transcendental numbers; quadratic forms

Liouville was the leading French mathematician in
the generation between cauchy [VI.29] and hermite
[VI.47]. He taught analysis and mechanics at his alma
mater, the École Polytechnique, until 1851, when he
became professor at the Collège de France. Moreover,
he was professor at the Sorbonne from 1857 and mem-
ber of the Paris Academy of Sciences and the Bureau
des Longitudes. In 1836 he founded the Journal de
Mathématiques Pures et Appliquées, which exists to this
day.
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His wide-ranging research was often inspired by
physics. For example, his early theory of differential
operators of the form (d/dx)k, where k is an arbitrary
complex number, had its origin in Ampère’s electro-
dynamics. Similarly, Sturm–Liouville theory, which he
developed in around 1836 with his friend C. F. Sturm,
was inspired by the theory of heat conduction. Sturm–
Liouville theory deals with a linear self-adjoint second-
order differential equation involving a parameter that
must be chosen so that there exist nontrivial solutions
(eigenfunctions) that satisfy given boundary-value con-
ditions. Liouville’s main contribution to this theory was
a proof that an “arbitrary” function has a convergent
“Fourier expansion” in terms of eigenfunctions. Sturm–
Liouville theory was a major step toward a more qual-
itative theory of differential equations, and the first
work on spectral theory of a general class of differential
operators.

Liouville was the first to prove (in 1844) that
there exist transcendental numbers [III.43], such
as

∑∞
n=1 10−n!. In a similar vein, in the 1830s he had

already shown that there are elementary functions such
as et/t whose integrals are not expressible in elemen-
tary (or closed) form, i.e., in terms of algebraic func-
tions, exponentials, and logarithms. In particular he
proved that the elliptic integrals are nonelementary.

Around 1844 Liouville suggested an entirely new ap-
proach to elliptic functions [V.34] (inverses of ellip-
tic integrals), based on a systematic investigation of
doubly periodic complex functions and in particular
the observation that such a function must have singu-
larities if it is not constant. When Cauchy heard of this
theorem he immediately generalized it to the statement
that any bounded complex analytic function must be a
constant. Today this is called Liouville’s theorem.

In mechanics, Liouville’s name is connected with the
theorem stating that the volume in phase space is con-
stant when a mechanical system moves according to
hamilton’s equations [III.90 §2.1]. In fact, Liouville
proved the constancy of a certain determinant [III.15]
formed from the solutions of a general class of differ-
ential equations. It was jacobi [VI.35] who pointed out
that the theorem applied to Hamilton’s equations, and
Boltzmann who interpreted the determinant as the vol-
ume in phase space, and emphasized its importance in
statistical mechanics.

Liouville made many other important contributions
to mechanics and to potential theory. For example,
Jacobi had postulated that when the angular momen-
tum of a fluid planet revolving around an axis is high

enough, there are two shapes that are in equilibrium
in their rotating frames of reference: an ellipsoid of
revolution and an ellipsoid with three different axes.
Liouville showed that Jacobi was right, and moreover
proved the surprising result that only the latter fig-
ure is in stable equilibrium. Liouville published only
the result, leaving the verification to Lyapunov and
poincaré [VI.61] (at least if the angular momentum is
not too large).

The first mathematician to recognize the significance
of galois’s [VI.41] theory of solvability of equa-
tions [V.23], Liouville did a great service to algebra
when he published some of Galois’s most important
papers in his journal.

Further Reading

Lützen, J. 1990. Joseph Liouville 1809–1882: Master of Pure
and Applied Mathematics. Studies in the History of Math-
ematics and Physical Sciences, volume 15. New York:
Springer.

Jesper Lützen

VI.40 Eduard Kummer
b. Sorau (now Zary, Poland), 1810; d. Berlin, 1893

Gymnasium teacher, Liegnitz (now Legnica, Poland) 1832–42;
Professor of Mathematics: Breslau (now Wroclaw, Poland) 1842–55,
Berlin 1855–82

Kummer’s early research was in function theory, in
which he made an important contribution to the theory
of the (generalized) hypergeometric series (a power
series in which the ratios of successive coefficients
are rational functions). Surpassing earlier work of
gauss [VI.26], Kummer not only provided a systematic
account of solutions to the hypergeometric differential
equation

x(x − 1)
d2y
dx2

+ (c − (a+ b + 1)x)
dy
dx
− aby = 0,

where a, b, and c are constants, but also made the
connection between the hypergeometric functions and
newer functions in analysis, such as the elliptic func-
tions [V.34].

After moving to Breslau, Kummer started doing re-
search in number theory, the field in which he achieved
his greatest success: the creation of the theory of “ideal
prime factors” (1845–47). Although Kummer’s theory is
often described as an early contribution to the theory
of ideals [III.83 §2], his algorithmic approach was very
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different from that later followed by dedekind [VI.50].
Kummer’s original goal had been to generalize the law
of quadratic reciprocity [V.31] to higher powers,
and he succeeded in this in 1859. An additional conse-
quence of this research was that he managed to prove
fermat’s last theorem [V.12] for all prime exponents
(and hence, since it was known for fourth powers, all
exponents) less than 100.

In the third phase of his career Kummer turned to
algebraic geometry. Continuing the work of hamilton
[VI.37] and jacobi [VI.35] on ray systems and geometric
optics, he was led to the discovery of the quartic surface
with sixteen nodal points, which is now named after
him.

VI.41 Évariste Galois
b. Bourg-la-Reine, France, 1811; d. Paris, 1832
Theory of equations; theory of groups; Galois theory; finite fields

Galois studied at home until he was eleven years old,
then entered the Collège Louis-le-Grand in Paris, where
he stayed for six years. He had, and gave his teach-
ers, a difficult time there, but excelled in mathematics,
in which he read advanced work of lagrange [VI.22],
gauss [VI.26], and cauchy [VI.29] alongside standard
texts of the time. He attempted the entrance examina-
tion for the École Polytechnique prematurely in June
1828, but failed. In July 1829, after his father’s sui-
cide, Galois was again rejected by the École Polytech-
nique. He entered the École Préparatoire (later known as
the École Normale Supérieure) in October 1829 but was
expelled in December 1830 for unacceptable behaviour
arising from political disagreements with the authori-
ties. Arrested on Bastille Day (14 July) 1831, he spentPUP: this is the

article where UK
spelling was
approved for the
(ultra-pedantic)
author, so I have
also kept UK date
style as it was his
strong preference.
OK?

the next eight months in prison for flouting authority
again. He emerged at the end of April 1832 but some-
how got himself challenged to a duel. On 29 May he
edited his manuscripts and wrote a summary of his dis-
coveries in a letter to his friend Auguste Chevalier. The
duel took place the next morning and he died on 31 May
1832. Much has been written about him. But a man who
dies so young leaves little real evidence for historians
to work with, however rich his story, and most of his
biographers have allowed romantic invention to colour
their accounts of his life.

There are four main papers in Galois’s mathemati-
cal works (and a number of smaller and less important
items). The first to be published was “Sur la théorie des
nombres,” which appeared in April 1830 and contains
the theory of Galois fields. These are analogues of the

complex numbers obtained by adjoining to the integers

modulo a prime number p a root of an irreducible poly-

nomial congruence modulo p. The paper contains most

of the basic features of what later became the theory of

finite fields.

In the letter to Chevalier written on the eve of the

duel, Galois mentions three memoirs. The first, now

known as the Premier Mémoire, is a manuscript enti-

tled “Sur les conditions de résolubilité des équations

par radicaux.” Galois submitted work on the theory of

equations to the Paris Academy on 25 May and 1 June

1829, but this is now lost and it seems quite possi-

ble that Galois withdrew it on the advice of Cauchy (to

whom it had been given to referee) in January 1830.

In February 1830 he resubmitted his work in compe-

tition for the Grand Prix de Mathématiques, but his

manuscript was unfortunately and mysteriously lost

on the death of fourier [VI.25] (and the prize was

awarded jointly to abel [VI.33], posthumously, and

jacobi [VI.35]). Encouraged to do so by poisson [VI.27]

he submitted his ideas to the Academy for a third time

in January 1831. It is this third submission (which was

read by the Academy referees, Poisson and Lacroix, and

rejected on 4 July 1831) that survives as the manuscript

of the Premier Mémoire. This is the remarkable work

in which he introduced what is now called the Galois

group of an equation and showed how solubility of the

equation in terms of radicals could be precisely char-

acterized by a property of the group. It was the Pre-

mier Mémoire which turned the theory of equations

into what is now called galois theory [V.24].

The Second Mémoire also exists. Galois never com-

pleted it, however, nor is it all correct. Nevertheless, it

is an exciting document that focuses on aspects of what

is now recognized as the theory of groups. Its main the-

orem is (in group-theoretic language) that every primi-

tive soluble permutation group has degree a power of

a prime number and may be represented as a group

of affine transformations over the prime field Fp . It

also contains an incomplete study of two-dimensional

linear groups over Fp . The Troisième Mémoire, which

he described as being on the theory of integrals and

elliptic functions [V.34], has never been found.

Galois’s main work—comprising the paper “Sur la

théorie des nombres,” the Premier Mémoire, the Second

Mémoire, and the letter to Chevalier—was finally pub-

lished by liouville [VI.39] in 1846. A critical edition

by Bourgne and Azra, including every known fragment

of Galois’s writing, was published in 1962.
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Galois’s legacy is enormous. His ideas led directly
to “abstract algebra” (see [II.3 §6]): when the abstract
notion of field developed later in the nineteenth cen-
tury, it turned out that most of the theory of finite fields
had already been anticipated in that first paper; Galois
theory developed directly out of the material in the
Premier Mémoire; and the theory of groups developed
from the ideas in the Premier Mémoire and the Second
Mémoire together with a series of papers published by
Cauchy in 1845.

Further Reading
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VI.42 James Joseph Sylvester
b. London, 1814; d. London, 1897
Algebra

As a Jew, Sylvester could neither take the degree he
earned at St John’s College, Cambridge, in 1837 nor
compete for positions at England’s Anglican universi-
ties. This effectively forced him down a convoluted path
toward his personal goal of a career as a research math-
ematician. He worked as an actuary in London in the
1840s and 1850s before qualifying as a lawyer by pass-
ing the English Bar. He was unemployed for some six
years in the 1870s, but held professorships at various
times, both of natural philosophy and of mathemat-
ics, in England and in the United States. Most notably,
Sylvester served as the first Professor of Mathematics
at Johns Hopkins University in Baltimore, Maryland,
from 1876 to 1883 and, thanks to an 1871 law that
finally made it possible for non-Anglicans to hold pro-
fessorships at Oxbridge, was eligible for and won the
appointment as Oxford’s Savilian Professor of Geom-
etry in 1883. He held the Oxford chair until ill health
forced his retirement in 1894. The program Sylvester
set up at Johns Hopkins established his pivotal place
in the history of American research-level mathematics,
while his mathematical accomplishments had garnered
him an international reputation as early as the 1860s.

Sylvester entered the research arena in the late 1830s
with work on the problem of determining when two
polynomial equations have a common root. This nat-
urally led not only to questions in the theory of
determinants but also to an explicit, pioneering, and
self-consciously algebraic analysis of the intermediate
expressions that arise in Charles François Sturm’s algo-
rithm for determining the number of real roots of a
polynomial equation that lie between two given real
numbers (1839, 1840). Sylvester followed this up with
what he called the dialytic method of elimination: a new
criterion in terms of determinants [III.15] for detect-
ing whether two polynomial equations have a common
root (1841).

His next major research push came in the 1850s
when, together with cayley [VI.46], he formulated a
theory of invariants. This involved an associated and
slightly more general theory of “covariants.” More con-
cretely, given a binary form of a particular degree,
Sylvester and Cayley devised techniques both for
explicitly finding invariants and covariants of that form
and for determining algebraic relations, or “syzygies,”
between them. Sylvester tackled these questions in two
important papers: “On the principles of the calculus of
forms” (1852) and “On a theory of the syzygetic rela-
tions of two rational integral functions” (1853). In the
latter, he proved, among other results, Sylvester’s law
of inertia: if Q(x1, . . . , xn) is a real quadratic form
[III.75] of rank r , then there exists a (real) nonsingular
linear transformation that takes Q to x2

1 + · · · + x2
p −

x2
p+1 − · · · − x2

r , where p is uniquely determined.
Sylvester surprised the mathematical world in 1864

and 1865 with the first proof of newton’s [VI.14] rule
(Newton had only stated it) for determining bounds on
the number of positive and negative roots of a polyno-
mial equation. However, he then entered a fallow period
that ended only with his move to Baltimore. While there,
he returned to invariant theory, and specifically to the
problem of inductively determining, for binary forms
first of degree 2 then of degree 3 then of degree 4,
etc., the number of covariants in a minimum generat-
ing set associated with the form. In 1868, Paul Gordan
had proved that this number is always finite and, in
so doing, had proved wrong an earlier result of Cayley,
who claimed to have shown that a minimum generating
set of covariants for the binary quintic form (that is, the
binary form of degree 5) was infinite. By 1879, Sylvester
had explicitly calculated minimum generating sets of
covariants associated with binary forms of degrees two
through ten. He had also succeeded in recognizing and
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filling (1878) a critical gap in the proof that Cayley had
given of a theorem on the maximal number of linearly
independent covariants associated with a binary form
of any given degree.

Sylvester was the founding editor of the Ameri-
can Journal of Mathematics, and indeed much of this
invariant-theoretic work, as well as results on partitions
(1882), on rational points on a cubic curve (1879–80),
and on matrix algebras (1884), appeared there.

Further Reading
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VI.43 George Boole
b. Lincoln, England, 1815; d. Cork, Republic of Ireland, 1864
Boolean algebra; logic; operator theory; differential equations;
difference equations

Boole, who never attended secondary school, college, or
university, was almost entirely self-taught. His father
was a poor shoemaker who was more interested in
building telescopes and scientific instruments than
making shoes—the result being that his business failed
and Boole had to leave school at the age of fourteen
and take a job as a junior teacher to support his par-
ents, sister, and two brothers. By the age of ten he had
mastered Latin and Ancient Greek, and by the age of
sixteen he could read and speak French, Italian, Span-
ish, and German fluently. From his father he got a love
of mechanics, physics, geometry, and astronomy, and
together they built functioning scientific instruments.
Boole then turned to mathematics and by the age of
twenty he was publishing original research in calcu-
lus and linear systems. He wrote two seminal papers
on linear transformations (1841, 1843), which provided
the starting point for invariant theory, but he left it to
others such as cayley [VI.46] and sylvester [VI.42]
to develop the subject. In 1844 he was awarded the
Royal Society’s Gold Medal for his paper on operators
in analysis, the first gold medal for mathematics to be

presented by the society. The paper was important not

only because it contained (arguably for the first time) a

clear definition of the concept of an operator [III.52],

but also because of the influence it had on Boole’s sub-

sequent ideas. An operator, for Boole, was an opera-

tion of the calculus, such as differentiation (which he

denoted by D), considered as an object in its own right.

There was an explicit similarity between the laws he

derived for functions of D and the laws of his algebra

of logic, which we shall discuss below.

At one time Boole had hoped to become a clergyman

but family circumstances prevented this. His reverence

for creation made him interested in the workings of

the human mind, which he regarded as God’s greatest

accomplishment. He longed, as Aristotle and leibniz

[VI.15] had before him, to explain how the brain pro-

cesses information and to express this information in

mathematical form. In 1847 he published a book enti-

tled A Mathematical Analysis of Logic in which he took

the first steps toward achieving his goal, but the book

did not have a wide circulation and so made very little

impact on the mathematical world.

In 1849 Boole was appointed Professor of Mathemat-

ics at Queen’s College, Cork. It was there that he rewrote

and expanded his ideas in a book entitled An Investiga-

tion of the Laws of Thought (1854), in which he intro-

duced a new type of algebra, an algebra of logic, which

evolved into what we now call Boolean algebra. From his

earlier study of languages, he realized that there were

mathematical structures concealed in everyday speech.

For example, the class of European men, together with

(i.e., union) the class of European women, is the same as

the class of European men and women. By using letters

to represent a class, or set, of objects, he could write

the above as z(x+y) = zx+zy , where the letters x,y ,

and z represent the class of men, the class of women,

and the class of all Europeans, respectively. Here addi-

tion is to be understood as union, at least for disjoint

classes like men and women, and multiplication is to

be understood as intersection.

The principal laws of Boole’s algebra are commuta-

tivity, distributivity, and the law which he called the

“fundamental law of duality” and which is represented

by x2 = x. This law can be interpreted by observing

that the class of all white sheep intersected with the

class of all white sheep is still the class of all white

sheep. Unlike his other laws, all of which apply to ordi-

nary numerical algebra, this law applies to numerical

algebra only when x is 0 or 1.
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Boole broke with traditional mathematics by showing
that the study of well-defined classes or sets of objects
is capable of precise mathematical interpretation and is
indeed fundamental to mathematical analysis. In sim-
ple cases, his approach also reduces classical logic to
symbolic mathematical form. Using the symbols 0 and
1 to denote “nothing” and “universe” respectively, and
denoting the complement of the class x by 1 − x, he
derived (from the law of duality) the law x(1− x) = 0,
which represents the impossibility of an object simul-
taneously possessing and not possessing a given prop-
erty, otherwise known as the principle of contradic-
tion. Boole also applied his calculus to the theory of
probability.

Boole’s algebra lay dormant until 1939, when Shan-
non discovered that it was the appropriate language for
describing digital switching circuits. Boole’s work thus
became an essential tool in the modern development
of electronics and digital computer technology.

Boole also made several other contributions to math-
ematics: differential equations, difference equations,
operator theory, calculus of integrals, etc. His text-
books on differential equations (1859) and finite dif-
ferences (1860) include much of his original research
and are still in print today, but he is best remembered
as the father of symbolic logic and one of the founders
of computer science.

Further Reading
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VI.44 Karl Weierstrass
b. Ostenfelde, Germany, 1815; d. Berlin, 1897
Analysis

Weierstrass began his career studying finance and ad-
ministration at the University of Bonn but his real
interest was mathematics and he did not complete his
course. He qualified as a teacher and taught in gym-
nasia for fourteen years. The turning point in his life
occurred when, at the age of almost forty, he published
a ground-breaking paper on Abelian functions, in which
he solved the problem of inversion of hyperelliptic inte-
grals. Shortly afterward he was offered a position at the
University of Berlin. He demanded of himself the very
strictest standards, with the result that he published

little. His ideas, and his reputation, spread through his
excellent lectures, which drew students and established
mathematicians from around the world.

Weierstrass has been described as the “father of mod-
ern analysis.” He contributed to all branches of the
subject: calculus, differential and integral equations,
calculus of variations [III.96], infinite series, ellip-
tic and Abelian functions, and real and complex analy-
sis. His work is characterized by attention to foun-
dations and by scrupulous logical reasoning. “Weier-
strassian rigor” has come to denote rigor of the strictest
standard.

Calculus in the seventeenth and eighteenth centuries
was heuristic, lacking logical foundations. The nine-
teenth century ushered in a rigorous spirit in mathe-
matics which included an examination of the founda-
tion of various fields of mathematics. cauchy [VI.29]
initiated this process in calculus in the 1820s. But
there were several major foundational problems with
his approach: verbal definitions of limit and continu-
ity; frequent use of infinitesimals; and intuitive appeal
to geometry in proving the existence of various limits.

Weierstrass and dedekind [VI.50] (among oth-
ers) determined to remedy this unsatisfactory sit-
uation, with the goal of establishing theorems in
a “purely arithmetic” manner, as Dedekind put it.
To that end, Weierstrass gave precise ε–δ defini-
tions of limit [I.3 §5.1] and continuity [I.3 §5.2]
(those we still use today), thus banishing infinitesi-
mals from analysis (until robinson [VI.95] some hun-
dred years later). He also defined the real numbers
based on the rationals (although Dedekind’s and can-
tor’s [VI.54] approaches proved more accessible). He
was thereby largely responsible for the “arithmeti-
zation of analysis” (a term coined by klein [VI.57]).
Among his remarkable contributions to real analysis
are his introduction of uniform convergence (intro-
duced independently by P. L. Seidel) and his example of
an everywhere-continuous and nowhere-differentiable
function (Cauchy and his contemporaries believed that
a continuous function was differentiable except possi-
bly at isolated points).

Both riemann [VI.49] and Weierstrass (succeeding
Cauchy) founded complex function theory, but they
had fundamentally different approaches to the subject.
Riemann’s global, geometric conception was based on
the notion of a riemann surface [III.81] and on the
dirichlet principle [IV.12 §3.5], while Weierstrass’s
local algebraic theory was grounded in power series
and analytic continuation [I.3 §5.6]. “The more I
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ponder the principles of function theory—and I do so
incessantly—the more I am convinced that it must be
founded on simple algebraic truths. . . ,” he asserted in
a letter to H. A. Schwartz. He severely criticized the
Dirichlet principle for being mathematically not well-
grounded, and produced a counterexample, after which
his approach to complex analysis became dominant
until the early twentieth century. Klein commented on
Weierstrass’s general approach to mathematics: “[He]
is first of all a logician; he proceeds slowly, systemat-
ically, step-by-step. When he works, he strives for the
definitive form.”

Weierstrass’s name is attached to various concepts
and results, among them the Weierstrass approximation
theorem, which says that a continuous function can be
uniformly approximated by polynomials; the Bolzano–
Weierstrass theorem, which states that every infinite,
bounded set of real numbers has a limit point; the
Weierstrass factorization theorem, which gives the rep-
resentation of an entire function in terms of an infinite
product of “prime functions”; the Casorati–Weierstrass
theorem, which says that in every neighborhood of an
isolated essential singularity an analytic function takes
values arbitrarily close to any assigned complex num-
ber; the Weierstrass M-test, which deals with the com-
parison of series for convergence; and the Weierstrass
℘-function, an example of an elliptic function [V.34]
of order 2.

Weierstrass was most proud of his work on Abelian
functions, and much of his fame in the nineteenth cen-
tury rested on it. His results in this field are, however,
less significant today. For us, his main legacy is his
unrelenting insistence on maintaining high standards
of rigor and seeking the fundamental ideas underlying
mathematical concepts and theories.

Further Reading

Bottazzini, U. 1986. The Higher Calculus: A History of Real
and Complex Analysis from Euler to Weierstrass. New
York: Springer.

Israel Kleiner

VI.45 Pafnuty Chebyshev
b. Okatovo, Russia, 1821; d. Saint Petersburg, Russia, 1894

Assistant, Extraordinary then full Professor of Mathematics,
Saint Petersburg (1847–82); Artillery Committee (1856);
Scientific Committee of the Ministry of Education (1856)

Fascinated by Watt’s parallelogram (the linkage used in
steam engines) and the problem of converting circular
motion into rectilinear motion, Chebyshev embarked
on a deep study of the theory of hinge mechanisms. In
particular, he sought the linkage that would produce
the minimum deviation from a straight line over a given
range. This corresponds to the mathematical problem
of finding, from among the class of functions cho-
sen to approximate a given function, the one with the
smallest absolute error for all specified values of the
argument. It was in this context, in particular consid-
ering the approximation of functions by polynomials,
that Chebyshev discovered the polynomials now named
after him (see [III.87]). These polynomials were first
published in his memoir “Théorie des mécanismes con-
nus sous le nom de parallélogrammes” (1854), and they
marked the beginning of his important contributions to
the theory of orthogonal polynomials.

Chebyshev polynomials of the first kind are defined
by Tn(cosθ) = cos(nθ), for n = 0,1,2, . . . . These poly-
nomials also satisfy the recurrence relation Tn+1(x) =
2xTn(2) − Tn−1(x), where T0(x) = 1 and T1(x) =
x. Chebyshev polynomials of the second kind satisfy
Un(cosθ) = sin((n + 1)θ)/ sinθ and the recurrence
relationUn+1(x) = 2xUn(x)−Un−1(x), whereU0(x) =
1 and U1(x) = 2x.

Chebyshev also had a significant impact on num-
ber theory, coming close to proving the prime number
theorem [V.29]. In probability he is remembered for
Chebyshev’s inequality, a result that is simple but has
innumerable applications.

VI.46 Arthur Cayley
b. Richmond, England, 1821; d. Cambridge, England, 1895
Algebra; geometry; mathematical astronomy

At the beginning of his career in the 1840s, Cayley
laid down subjects that informed much of his later
research. The novelties of his very first undergraduate
paper, “On a theorem in the geometry of position”
(1841), are the now-standard notation for determi-
nants [III.15] of arrays set between vertical lines and
the introduction of the Cayley–Menger determinant.
Following hamilton’s [VI.37] discovery of the quater-
nions [III.78] (1843), Cayley expressed rotations in
three-dimensional space via the succinctly expressed
mapping x → q−1xq, a result that led him to the
Cayley–Klein parameters. He outlined the nonassocia-
tive system of the octaves (cayley numbers [III.78]),
the intersection of curves (the Cayley–Bacharach
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theorem), and a dual curve called the Cayleyan. In
major papers, he described a theory of multilinear
determinants and elliptic functions [V.34] as doubly
infinite products. In concert with George Salmon he
investigated the famous twenty-seven lines that lie in
a cubic surface. The most important studies among
his juvenilia, though, were his first steps in invariant
theory (1845, 1846), the field in which his reputation
was made.

Between 1849 and 1863, years spent as a quali-
fied London barrister, Cayley broadened his range, but
unlike other gentlemen of science who roamed across
a multitude of subjects, he restricted his activity exclu-
sively to mathematics. This was mostly pure mathe-
matics. He generalized permutation groups [III.70]
using the calculus of operations as a basis, and he
saw that not only were matrices useful as a notational
device, but they also constituted a study in their own
right. Not generally an excitable person, at the point
of discovery he declared the Cayley–Hamilton theorem
as “very remarkable” and generations of mathemati-
cians have shared his delight. Matrix algebra was used
in his solution of the Cayley–Hermite problem, which
required a description of those linear transformations
that leave a bilinear form invariant. A special case of the
solution gives rise to the Cayley orthogonal transform
(I−T)(I+T)−1. The links between quaternions, matri-
ces, and group theory that he observed in the 1850s
are indicative of his concern for the organization of
mathematics.

In the 1850s, Cayley set in motion his famous mem-
oirs on quantics, a term he coined for algebraic forms,
now referred to as multilinear homogeneous algebraic
forms. He discovered Cayley’s formula for the general
form of covariants of binary forms and Cayley’s law for
counting them. In the Sixth Memoir (1859), he demon-
strated that euclidean geometry [I.3 §6.2] was part
of projective geometry [I.3 §6.7] rather than the con-
verse. The idea of a projective metric (Cayley’s abso-
lute) was seen by klein [VI.57] in the 1870s as the
unifying conceptual idea for classifying non-Euclidean
geometries.

For twenty-five years, from 1858, he was the editor
of the Monthly Notices of the Royal Astronomical Soci-
ety. In astronomy he contributed to the theory of ellip-
tic planetary motion, calculatory work that demanded
an assiduous attention to detail. His work on the lunar
theory was noteworthy, and in one long calculation he
helped to settle an Anglo-French controversy by veri-
fying the correct value for the secular acceleration of

the Moon, which had been established by John Couch
Adams in 1853.

Cayley returned to the academic world in 1863 as
the founding Sadleirian Professor of Pure Mathemat-
ics at Cambridge. In 1868 Paul Gordan startled invari-
ant theorists by proving that invariants and covariants
of a binary quantic could be expressed in terms of a
finite basis. This contradicted an earlier result of Cay-
ley’s but, undaunted, he completed his series with a list-
ing of the irreducible invariants and covariants of the
binary form of order 5 (the binary quintic), and their
connecting syzygies.

Many developments in pure mathematics can be
traced back to his minor notes of the 1870s and 1880s,
including the theory of knots, fractals, dynamic pro-
gramming, and group theory (the well-known Cay-
ley’s theorem). In graph theory, the number of dis-
tinct labeled trees with n nodes being nn−2 is known
as Cayley’s graph theorem. He brought his theoret-
ical knowledge of graphical trees to bear on the prob-
lem of counting isomers in organic chemistry, thus
prompting questions about the actual existence of cer-
tain chemical compounds that have since been discov-
ered in many instances by chemists. In the last decade
of his life, Cayley set about the task that gave him an
important line of contact with today’s mathematicians:
the publication of his Collected Mathematical Papers in
thirteen large volumes by Cambridge University Press.

Further Reading

Crilly, T. 2006. Arthur Cayley: Mathematician Laureate of
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sity Press.
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VI.47 Charles Hermite
b. Dieuze, Moselle, France, 1822; d. Paris, 1901
Analysis (elliptic functions, differential equations);
algebra (invariant theory, quadratic forms); approximation theory

Like many who aspired to enter the École Polytech-
nique, Hermite undertook special preparatory classes,
in his case at Lycée Henri IV and Lycée Louis-le-Grand.
He began to study serious mathematics, immersing
himself in the work of lagrange [VI.22] and legen-
dre [VI.24], and became interested in the solution of
equations by radicals. Admitted to the École Polytech-
nique in 1842, by the end of that year he had completed
his first significant original work. This extended results
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of jacobi [VI.35] in the theory of elliptic functions
[V.34]. He sent these to Jacobi, who responded very
positively. This achievement both brought him recogni-
tion in Paris and initiated a correspondence with Jacobi
on elliptic functions and number theory that launched
Hermite’s career.

Hermite nonetheless struggled to find a position
commensurate with his abilities, and for almost a
decade survived on teaching assistant and examiner
jobs around Paris. Hermite’s work turned to number
theory, in particular the arithmetic of quadratic forms,
where he followed gauss [VI.26] and Lagrange in study-
ing when one form can be reduced to another by a linear
transformation. It was in this context that the hermi-
tian matrices [III.52 §3] named after him arose. Her-
mite was interested in invariants of quadratic forms,
and also applied his work to the problem of location
of roots of polynomials. As a result of these efforts,
in 1856 he was appointed to the Paris Academy of Sci-
ences, with liouville [VI.39] and cauchy [VI.29] sup-
porting him. This appointment was quickly followed
by Hermite’s 1858 discovery of a means to express the
solutions of the general fifth-degree polynomial equa-
tion in terms of elliptic functions, which earned him
widespread international recognition.

Finally obtaining a professorship at the Faculty of Sci-
ence in Paris in 1869, Hermite became an influential
mentor for a generation of mathematicians, his best-
known protégés including J. Tannery, poincaré [VI.61],
E. Picard, P. Appell, and E. Goursat. Hermite’s dynas-
tic connections are also impressive: his brother-in-law,
Joseph Bertrand, was permanent secretary of the Paris
Academy of Sciences, Picard was his son-in-law, Appell
married Bertrand’s daughter, and their daughter mar-
ried borel [VI.70]. His advocacy of improved interna-
tional communication led to German work becoming
much better known in France than it had been pre-
viously. During this period, he obtained a proof of
the transcendence [III.43] of “e” using continued-
fraction [III.22] methods based on earlier research in
approximation theory (which had included the inven-
tion of the Hermite polynomials). His influence in the
mathematical community was strong until his death.

Further Reading

Picard, É. 1901. L’œuvre scientifique de Charles Hermite.
Annales Scientifiques de l’École Normale Supérieure (3) 18:
9–34.

Tom Archibald

VI.48 Leopold Kronecker
b. Liegnitz, Silesia, today Poland, 1823; d. Berlin, 1891
Algebra; number theory

One of the dominant mathematicians of the second
half of the nineteenth century, Kronecker is best known
today for his constructivist views and his contributions
to number theory. After finishing his Ph.D. under the
supervision of dirichlet [VI.36] in 1845, Kronecker
left Berlin and mathematics in order to manage a fam-
ily estate and to wind up his father-in-law’s banking
business. These activities left him wealthy and free
to return to Berlin and concentrate on mathematics
without holding an academic position. In 1855, Kro-
necker’s former school teacher and closest scientific
friend, eduard kummer [VI.40], also came to Berlin
and stayed there until his death in 1893. In 1861, Kro-
necker became a member of the Berlin Academy of Sci-
ences and started teaching courses at Berlin Univer-
sity. Kronecker valued the exchange with his Berlin col-
leagues (especially Kummer and weierstrass [VI.44])
highly, until a quarrel arose between Kronecker and
Weierstrass in the 1870s, which drove Weierstrass to
bitter, even anti-Semitic, complaints to others about
Kronecker. After Kummer’s retirement in 1883, Kro-
necker occupied Kummer’s chair and stepped up his
teaching activities as well as the frequency of his pub-
lications. This last active period was cut short when he
died, shortly after the death of his wife.

Renowned for the originality of his mathemati-
cal insight, Kronecker became increasingly influential
through the 1860s and 1870s. In 1868, he was offered
the chair at Göttingen formerly held by gauss [VI.26],
and was elected to the Paris Academy. After the Franco-
Prussian war of 1870–71, he was invited to recommend
mathematicians for the newly opened German univer-
sity in Strasbourg; and in 1880 he became the man-
aging editor of the Journal für die reine und ange-
wandte Mathematik (otherwise known as Crelle’s Jour-
nal). He was often criticized for incomplete, unpub-
lished, or incomprehensible proofs—jordan [VI.52]
spoke of his colleagues’ “envy and despair” with regard
to his results. Only in his later years was he explicit
about his constructivist methodology. This constituted
at least part of the quarrel with Weierstrass, and later
prompted hilbert [VI.63] to call Kronecker a “Ver-
botsdiktator” (“forbidding dictator”). Generally affable
and hospitable, Kronecker was tough in defending his
mathematical ideas and his claims to priority.
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In his first works on solvable algebraic equations
(in the early 1850s), he claimed not only the so-
called Kronecker–Weber theorem (in today’s formula-
tion: every finite Galois extension of the rational num-
bers with Abelian galois group [V.24] lies in a field
generated by roots of unity; the first correct proof of it
was given by Hilbert in 1896), but also a generalization
to Abelian extensions of imaginary quadratic fields,
which he later called his “liebster Jugendtraum” (“dear-
est dream of his youth”). This dream, which was incor-
rectly translated by Hilbert into his twelfth problem in
1900, is today part of class field theory [V.31] and
the theory of complex multiplication. Such connections
between algebra, analysis, and arithmetic continued
to pervade Kronecker’s later work. Important results
of Kronecker include class number relations and limit
formulas in the theory of elliptic functions [V.34],
the structure theorem for finitely generated Abelian
groups, and a theory of bilinear forms.

In the late 1850s, Kronecker began to work on alge-
braic number theory, but only in 1881 did he pub-
lish his “Grundzüge einer arithmetischen Theorie der
algebraischen Grössen,” dedicated to Kummer on the
fiftieth anniversary of his doctorate. This mathematical
testament contains an (incomplete) exposition of a uni-
fied arithmetical theory of algebraic numbers and alge-
braic functions. As a research program, it adumbrates
important aspects of class field theory as well as of
an arithmetico-geometric theory in dimensions higher
than one. Kronecker’s concept of “divisor” is equivalent
to Dedekind’s notion of “ideal” in the case of Dedekind
domains, but is more restricted in the general case. Sev-
eral mathematicians, such as H. Weber, K. Hensel, and
G. König, took up the “Grundzüge” in their own work.

On a more general level, Kronecker asked for the
complete arithmetization of pure mathematics, i.e., for
the effective finitary reduction of pure mathematics
to the notion of positive integer. For this, he propa-
gated the introduction of indeterminates and equiv-
alence relations, a method which he traced back to
Gauss. In the case of a finite extension of the rational
numbers, for instance, Kronecker is explicitly work-
ing with polynomials modulo an irreducible equation
f(x) = 0, rather than adjoining a root of it.

Further Reading
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VI.49 Georg Friedrich
Bernhard Riemann

b. Breselenz, near Dannenberg, Germany, 1826;
d. Selasca, Italy, 1866
Real and complex analysis; differential equations;
differential geometry; heat distribution; number theory;
propagation of shock waves; topology

Riemann was born into a poor pastor’s family and stud-
ied mathematics at Göttingen, eventually becoming a
professor there. His health broke in 1862 and he died
near Lake Maggiore, Italy, of pleurisy at the age of
thirty-nine.

No mathematician is more associated with the mid-
nineteenth-century transition from algorithmic to con-
ceptual thought than Riemann. His doctoral thesis of
1851, and still more his paper on Abelian functions
(1857), promoted the view that a holomorphic func-
tion [I.3 §5.6] is properly defined by the cauchy–
riemann equations [I.3 §5.6] and is to be studied
through a close connection with the theory of har-
monic functions [IV.24 §5.1]. In his thesis he sketched
a proof of the remarkable riemann mapping theorem
[V.37]. This states that if X and Y are any two simply
connected open subsets in the complex plane, neither
of which is the whole plane, then there is a holomor-
phic map from one to the other with a holomorphic
inverse. For example, if you draw any closed curve in
the plane that does not intersect itself, and let D be
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the region inside the curve, then D is biholomorphi-
cally equivalent to the open unit disk. In the 1857 paper
he defined riemann surfaces [III.81], showed how to
analyze them topologically, and outlined the Riemann
inequality which his student Gustav Roch improved
to the riemann–roch theorem [V.34] in 1864. (The
Riemann–Roch theorem, which is of great importance
in algebraic geometry as well as complex analysis,
determines the dimension of the space of meromor-
phic functions on a given Riemann surface with a pre-
scribed number of poles.) In 1857 he extended the
theory of differential equations, specifically the impor-
tant case of the hypergeometric equation, to complex
functions. In 1859 he used deep, new ideas from com-
plex function theory to study the (Riemann) zeta func-
tion and proposed his celebrated conjecture, the rie-
mann hypothesis [IV.2 §3], concerning the location
of the complex zeros of this function. The conjecture
remains unsolved to this day.

These ideas enabled mathematicians to study com-
plex functions on domains other than the plane and
subsets of the plane. They opened the way to a geomet-
ric study of algebraic functions and algebraic curves,
and proved to be decisive in the study of the integrals of
algebraic functions (the theories of Abelian functions
and theta functions of several variables). Investigations
of the Riemann zeta function led not only to the dis-
covery of new properties of classes of complex func-
tions, but more recently to the use of zeta functions
of many other kinds in other branches of mathematics,
including dynamics.

In 1854 Riemann, inspired by his mentor dirich-
let [VI.36], formulated the concept of the riemann
integral [I.3 §5.5], which permitted him to do pro-
found work on the convergence of trigonometric series.
Dirichlet had been able to prove that a real function
was correctly represented by a Fourier series, but only
under very restrictive conditions. This left open the
questions of what sorts of functions did not satisfy
these conditions and how could they be studied. Rie-
mann reformulated the concept of the integral and was
able to show that it is not just the continuity of a func-
tion and the ways in which it may fail to be continuous
that affect the accuracy of its Fourier series represen-
tation, but the nature of its oscillations. The Riemann
integral remained the dominant definition of the inte-
gral until it was replaced by the lebesgue integral
[III.57] after 1902, which is better adapted to capturing
the way the behavior of a function affects its Fourier
series.

In a lecture, also given in 1854 (but published posthu-
mously in 1868), he entirely reformulated geometry as
being about spaces (sets of points, which he called man-
ifolds [I.3 §6.9]) with a riemannian metric [I.3 §6.10]
(an appropriate concept of distance) and argued that
the geometric properties of a space were its intrinsic
ones. He noted that there are three constant-curvature
spaces in two dimensions and showed how the idea of
constant curvature can be extended to higher dimen-
sions. In passing, he was the first person to write down a
metric for non-Euclidean geometry (more than a decade
before Beltrami’s publication of 1868, which legit-
imized non-Euclidean geometry). This lecture earned
him the right to teach in a German university.

Riemann also did important work on shock waves,
and shares with weierstrass [VI.44] the honor of intro-
ducing the methods of complex function theory in the
study of minimal surfaces [III.96 §3.1], where he was
led to several new solutions of the Plateau problem,
which asks for the surface of least area spanning a
given curve in space.

The distinguished complex analyst Lars Ahlfors once
described Riemann’s complex analysis as consisting
of “almost cryptic messages to the future” and said
that his mapping theorem was given in a form that
“would defy any attempt at proof, even with modern
methods,” and it is true that Riemann’s presentation is
more visionary than precise. But his vision described
a geometric setting for complex function theory that,
as Ahlfors’s own work indicates, remains fertile over
150 years after it was written.

Further Reading
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VI.50 Julius Wilhelm Richard Dedekind
b. Brunswick, Germany, 1831; d. Brunswick, Germany, 1916
Algebraic number theory; algebraic curves; set theory;
foundations of mathematics

Dedekind spent most of his life as a professor at the
Technische Hochschule in Brunswick, Germany (his and
gauss’s [VI.26] home town), having spent the years
1858–62 at the Polytechnikum in Zürich (which later
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became known as ETH). He obtained his mathematical

education at Göttingen, being Gauss’s last Ph.D. stu-

dent and subsequently a pupil of dirichlet [VI.36]

and riemann [VI.49]. Dedekind was a retiring man

with, as klein [VI.57] said, a “contemplative nature;”

he remained a bachelor, living with his mother and

sister. Nevertheless, he had an impact upon a select

group of contemporaries (especially cantor [VI.54],

frobenius [VI.58], and Heinrich Weber) through his

rich correspondence.

A key figure in the emergence of modern set-theoretic

mathematics, and particularly the notion of a math-

ematical structure, Dedekind is best known for his

work on the foundations of the real number sys-

tem [I.3 §1.4]. His main contribution, however, was

in algebraic number theory. Indeed, he shaped mod-

ern number theory as we know it, presenting it as a

theory of ideals in rings of integers (see algebraic

numbers [IV.1 §§4–7]). This was first made public in

1871, within Supplement X to his edition of Dirichlet’s

Vorlesungen über Zahlentheorie, where he established

unique decomposition of ideals into prime ideals for

all rings of algebraic integers. In the process, he for-

mulated the concepts of field, ring, ideal, and mod-

ule (see [I.3 §2.2] and [III.83]), always within the par-

ticular context of the complex numbers. It was also

in the context of algebra (Galois theory) and num-

ber theory that Dedekind started systematic work with

quotient structures, isomorphisms, homomorphisms,

and automorphisms.

In subsequent editions of Dirichlet’s Vorlesungen

(1879 and 1894) Dedekind went on refining his pre-

sentation of ideal theory, making it more purely set-

theoretic. In 1882, together with Weber, he offered a

theory of ideals in fields of algebraic functions, which

made it possible to give a rigorous treatment of Rie-

mann’s results on algebraic curves up to the riemann–

roch theorem [V.34]. This work paved the way for

modern algebraic geometry.

Intimately linked with Dedekind’s work in algebra

and number theory were his reflections on the foun-

dations of the real number system. In 1858 (published

1872) he formulated a definition of the real numbers

using what are now known as “Dedekind cuts” in the

set of rational numbers. During the 1870s (published

1888) he elaborated a purely set-theoretic definition of

the natural numbers as “simply infinite” sets, which

led him to crystallize the dedekind–peano axioms

[III.69]. In this work, as in his more advanced research,

sets, structures, and mappings form the essential build-
ing blocks, the very foundations of pure mathematics.
In the light of (now superseded) conceptions of logic,
this led Dedekind to the view that “arithmetic (algebra,
analysis) is only a part of logic.” From a modern view-
point, his contributions show that set theory [IV.22]
is a sufficient foundation for classical mathematics.
Thus he contributed as much as anybody else to the
set-theoretic reformulation of modern mathematics.
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VI.51 Émile Léonard Mathieu
b. Metz, France, 1835; d. Nancy, France, 1890

Student at the École Polytechnique; Docteur és sciences with
thesis on transitive functions (1859); Professor of Mathematics:
Besançon (1869–74), Nancy (1874–90)

Mathieu is known for the functions that take his name,
which he discovered while solving the two-dimensional
wave equation for the vibrations of an elliptical mem-
brane. These functions, which are special cases of the
hypergeometric function, are particular solutions of
Mathieu’s equation:

d2u
dz2

+ (a+ 16q cos 2z)u = 0,

where a and q are constants that depend on the
physical problem.

Mathieu is also known for his discovery of the five
Mathieu groups. These were the first sporadic simple
groups [V.8] (meaning that they did not fit into one
of the known infinite families of simple groups) to be
found. It is now known that there are twenty-six such
groups altogether, although it was almost a century
after Mathieu before a sixth one was found.

VI.52 Camille Jordan
b. Lyons, France, 1838; d. Milan, Italy, 1922

Nominally an engineer until 1885; teacher of mathematics,
École Polytechnique and Collège de France (1873–1912)
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Jordan was the leading group theorist of his genera-
tion. His immense Traité des Substitutions et des Équa-
tions Algébriques (1870), which brought together all
his earlier results on permutation groups [III.70]
and provided a synthesis of galois’s [VI.41] ideas,
remained a cornerstone for group theorists for many
years. Included in the Traité, in the chapter on what he
calls linear substitutions (now written in matrix form
as y = Ax), is the definition of what today is called
the jordan normal form [III.45] of a matrix, although
in 1868 weierstrass [VI.44] had already defined an
equivalent normal form.

Jordan is also known for his work in topology, espe-
cially for the theorem now known as the Jordan curve
theorem. This states that a simple closed curve in the
plane separates the plane into two disjoint regions, an
inside and an outside, and it was given by him in his
influential Cours d’Analyse (1887). Although the theo-
rem appears obvious, the proof, as Jordan recognized,
is difficult and the one he gave was incorrect. (The
proof is relatively easy for smooth curves; the difficul-
ties arise when dealing with nowhere-smooth curves,
such as the Koch snowflake.) The first rigorous proof
was given by Oswald Veblen in 1905. There is a stronger
form of the theorem, known as the Jordan–Schönflies
theorem, which states that in addition the two regions
of the plane, the inside and the outside, are homeo-
morphic to the standard circle in the plane. Unlike the
original theorem, this stronger form of the theorem
cannot be generalized to higher dimensions, a famous
counterexample being the Alexander horned sphere.

VI.53 Sophus Lie
b. Nordfjordeid (western Norway), 1842; d. Oslo, 1899
Transformation groups; Lie groups; partial differential equations

Lie was twenty-six when he discovered that, in his
own words, he “harbored a mathematician.” Before
then he had primarily wanted to be an observational
astronomer. Later in life, looking back on his career,
he said that it was the “audacity of his thinking” more
than any formal knowledge and education that had
given him a position among the foremost of mathe-
maticians. During a career spanning more than thirty
years, Lie produced almost eight thousand pages of
mathematics, making him one of the most productive
mathematicians of his time.

Lie graduated in general science from the university
in Oslo in 1865 but without showing any special apti-
tude for mathematics. It was not until 1868, when he

attended a lecture by the Danish geometer Hierony-
mus Zeuthen on the work of Chasles, möbius [VI.30],
and Plücker, that he became inspired by modern geom-
etry. He studied the works of Poncelet (projective geom-
etry) and Plücker (line geometry), and wrote a disserta-
tion on “imaginary geometry,” that is, geometry based
on complex numbers. In the fall of 1869 he traveled
to Berlin, Göttingen, and Paris, where he met mathe-
maticians who would remain friends and colleagues for
the rest of his life. In Berlin he met klein [VI.57], in
Göttingen he met Clebsch, and in Paris, where he was
joined by Klein, he met Darboux and jordan [VI.52].
These two had a particular influence on him—Darboux
through his theory of surfaces and Jordan through his
knowledge of group theory and the work of galois
[VI.41]—with the result that he (and Klein) began to
recognize the value of group theory for the study of
geometry. Lie and Klein published three joint papers
on geometrical topics, including one on the so-called
Lie line–sphere transformation (the contact transfor-
mation, which is a transformation that maps straight
lines into spheres and principal tangent curves into
curvature lines; and then the study of the geometrical
entities that are invariant under such transformations).

When Klein prepared what was to become his famous
“Erlanger Programm” (his characterization of geometry
as properties invariant under a group action), Lie was
with him. This work later created a deep rift between
them. (Friendship turned into aloofness and hostility
and culminated in the following statement by Lie in
1893: “I am no pupil of Klein’s, nor is the reverse the
case, although this would be nearer to the truth.”)

Lie returned (after his first trip abroad) to Oslo
and, in 1872, a chair of mathematics at the univer-
sity was created especially for him. During the early
1870s Lie worked on turning his line–sphere transfor-
mation into a general theory of contact transforma-
tions. From 1873 he worked on a systematic study of
continuous transformation groups (today known as lie
groups [III.50 §1]), his aim being to classify lie alge-
bras [III.50 §§2, 3] and apply the results to the solu-
tion of differential equations. He also published studies
on minimal surfaces [III.96 §3.1]. In Norway, however,
there was no scientific milieu, and he felt very isolated.
In 1884 Klein and his friend Adolf Mayer in Leipzig
tried to help him by sending their student Friedrich
Engel to study with him and to help him with the for-
mulation and writing of his new ideas. The work that
Engel and Lie started together resulted in three vol-
umes, Theorie der Transformationsgruppen (1888–93).
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In 1886 Lie accepted the professorship in Leipzig (in
succession to Klein, who had moved to Göttingen). In
Leipzig he became a leading mathematician and a cen-
tral figure in the European community of mathemati-
cians. Promising new students from both France and
the United States were sent to study with him. Besides
teaching he continued his research on transformation
groups and differential equations, and he solved the
so-called Helmholtz space problem (characterizing the
geometry of space in terms of groups of transforma-
tions). In 1898, the year before he died, Lie returned to
Oslo to take up a position created especially for him.

The theory of transformation groups, which Lie ini-
tiated and developed in the study of differential equa-
tions, has grown into a field of its own, the theory of Lie
groups and Lie algebras, which today permeates large
parts of mathematics and mathematical physics.

Further Reading

Borel, A. 2001. Essays in the History of Lie Groups and
Algebraic Groups. Providence, RI: American Mathematical
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Hawkins, T. 2000. Emergence of the Theory of Lie Groups.
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Laudal, O. A., and B. Jahrien, eds. 1994. Proceedings, Sophus
Lie Memorial Conference. Oslo: Scandinavian University
Press.

Stubhaug, A. 2002. The Mathematician Sophus Lie. Berlin:
Springer.

Arild Stubhaug

VI.54 Georg Cantor
b. Saint Petersburg, Russia, 1845; d. Halle, Germany, 1918
Set theory; transfinite numbers; the continuum hypothesis

Although born in Russia, Cantor was raised and edu-
cated in Prussia and spent his entire career as pro-
fessor of mathematics at the University of Halle. He
studied at the Universities of Berlin and Göttingen
with kronecker [VI.48], kummer [VI.40], and weier-
strass [VI.44], and received his Ph.D. from the Uni-
versity of Berlin in 1867. His dissertation, “De aequa-
tionibus secundi gradus indeterminatis” (“On indeter-
minate equations of the second grade”), dealt with
work in number theory on Diophantine equations, work
that had been pioneered by lagrange [VI.22], gauss
[VI.26], and legendre [VI.24]. The following year he
accepted a position in the mathematics department
at the University of Halle, where he spent the rest

of his academic career. There, his Habilitationsschrift
was again devoted to number theory, and dealt with
transformations of ternary quadratic forms.

It was at Halle that Cantor’s colleague, Eduard Heine,
was working on difficult problems involving trigono-
metric series, and he interested Cantor in the problem
of determining the conditions under which a trigono-
metric series of the form

f(x) = 1
2a0 +

∞∑
n=1

(an sinnx + bn cosnx)

uniquely represented a given function. In other words,
could it be that two different trigonometric series could
represent the same function? Heine had shown, in
1870, that if f(x) is continuous in general (i.e., for all
but a finite number of points of discontinuity, at which
points Heine added that the function need not neces-
sarily be finite), the representation is unique if we insist
that the series is uniformly convergent to f in gen-
eral. Cantor was able to establish much more general
results, and in five papers written between 1870 and
1872 he was able to show that such representations
were unique even if an infinite number of exceptional
points were allowed, so long as these exceptional points
(i.e., points at which the function failed to be continu-
ous) were distributed over the domain of the function’s
definition in a particular way, constituting what Cantor
called “point sets of the first species.” His studies of
these and related point sets eventually led Cantor to
his much more abstract and powerful theory of sets
and transfinite numbers.

Point sets of the first species were sets P for which,
given its sequence of derived sets (the derived set P ′

of a set P is the set of all the limit points of P ), there
was some finite n such that the nth derived set Pn of
P was finite, and thus the (n + 1)st derived set was
empty, i.e., Pn+1 = ∅. It was Cantor’s subsequent study
of infinite linear point sets that would eventually lead to
his creation of transfinite set theory in the 1880s. (For
more details about this, see set theory [IV.22 §2].)

Before he did so, Cantor first began to explore the
implications of his work on trigonometric series and
the structure of the real numbers in several papers,
one of which was to revolutionize mathematics in a
fundamental way. The first of these papers was pub-
lished in 1874, and bore the innocuous title “Über eine
Eigenschaft des Inbegriffes aller reellen algebraischen
Zahlen” (“On a property of the collection of all real alge-
braic numbers”). In this paper, Cantor proved that the
set of all algebraic real numbers was countably infi-
nite [III.11]. What was revolutionary about the paper,
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however, was that he also proved that the set of all real

numbers was not countable, and must be of a higher

order of infinity than the countably infinite set of nat-

ural numbers. He returned to this result in 1891 with

a new approach, the groundbreaking method of diago-

nalization, to prove in a very direct way that the set of

real numbers is uncountably infinite. Cantor’s second

important paper of the decade appeared in 1878, “Ein

Beitrag zur Mannigfaltigkeitslehre” (“A contribution to

the theory of aggregates”), in which he proved (with a

partly faulty argument) the invariance of dimension, a

theorem first correctly proved by brouwer [VI.75] in

1911.

Between 1879 and 1884 Cantor published six papers

designed to outline the basic elements of his new think-

ing about sets. He first considered what happened if a

set were not of the first species by introducing sym-

bols for the infinite indices needed to identify such

sets. For example, a set P was said to be of the sec-

ond species if there was no finite n such that the nth

derived set Pn of P was finite. He then considered the

case in which the intersection of all the derived sets of

P (namely P ′, P ′′, . . . , Pn, . . . ) was again an infinite set,

which he designated P∞. This set, since it was infinite,

had a derived set as well, P∞+1, and this led in fact to an

entire sequence of derived sets of the second species:

P∞, P∞+1, . . . , P∞+n, . . . , P2∞, . . . .
In his first papers on infinite linear sets, these indices

for derived sets remained “infinitary symbols”: that is,

devices for distinguishing between different sets. But

in his Grundlagen einer allgemeinen Mannigfaltigkeits-

lehre (“Foundations of a general set theory”), published

in 1883, these symbols became the first transfinite

numbers: the transfinite ordinal numbers. These num-

bers began withω, the transfinite ordinal number rep-

resenting the sequence of natural numbers 1,2,3, . . . ,
which could also be thought of as the first infinite ordi-

nal number after all of the finite whole numbers. In

the Grundlagen, Cantor not only devised the basic fea-

tures of a transfinite arithmetic for these numbers, but

he provided a detailed philosophical defense of the

new numbers. Acknowledging the revolutionary nature

of what he was introducing, he argued that the new

concepts were necessary in order to achieve precise

mathematical results that he could obtain by no other

means.

Cantor’s best-known mathematical creation, how-

ever, the transfinite cardinal numbers, which he

denoted using the Hebrew letter aleph, were introduced

only later, in the 1890s. They were first given full expo-
sition in a pair of papers (1895, 1897) that constituted
his “Beiträge zur Begrundung der transfiniten Mengen-
lehre” (“Contributions to the founding of transfinite set
theory”). In two articles published in Mathematische
Annalen, he not only set out his theory of transfinite
ordinal and cardinal numbers, as well as their arith-
metics, but also explained his theory of order types,
namely the different properties exhibited by the sets
of natural, rational, and real numbers considered in
their natural orders. There he also stated (but could not
prove) his famous continuum hypothesis [IV.22 §5],
namely that the power (or cardinal number) of the con-
tinuum of all real numbers R is the next largest infi-
nite set (or cardinal number) after the countably infi-
nite set of natural numbers N, the cardinality of which
was taken to be ℵ0. Cantor expressed the continuum
hypothesis algebraically as the statement that 2ℵ0 = ℵ1.

By the end of his career Cantor had received hon-
orary degrees from foreign universities and the Cop-
ley Medal of the Royal Society for his great contribu-
tions to mathematics, but there were problems with
set theory that were beyond his capacities to remedy.
The most disturbing for many mathematicians were the
“antinomies” of set theory: the paradoxes put forward
by the likes of Burali-Forti and russell [VI.71]. In 1897
the former published the paradox arising from the col-
lection of all ordinal numbers, the ordinal number of
which should be an ordinal number greater than any in
the collection of all ordinal numbers. In 1901 the lat-
ter discovered the paradox of the class of all classes
that are not members of themselves: is it a member of
itself or not? (See the crisis in the foundations of
mathematics [II.7].) Cantor himself was aware of the
contradictions that arose from considering the collec-
tions of all transfinite ordinal or cardinal numbers, and
what their ordinal or cardinal numbers might be. The
solution Cantor adopted was to regard such collections
as too large, and not really sets at all, but “inconsis-
tent aggregates” as he called them. Others, like Zer-
melo, began to axiomatize set theory in an effort to
exclude the possibility of contradictions. The two most
powerful results of the twentieth century to comple-
ment Cantor’s work are those of gödel [VI.92] (who
established the consistency of the continuum hypoth-
esis with zermelo–fraenkel set theory [IV.22 §3])
and Paul Cohen (who determined the independence of
the continuum hypothesis from Zermelo–Fraenkel set
theory), the latter finally establishing the impossibility
of proving the continuum hypothesis.
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Cantor’s legacy for the history of mathematics has
truly been revolutionary. Above all, his transfinite set
theory for the first time gave mathematicians the
means of dealing with concepts of the infinite in a
careful and precise way.
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VI.55 William Kingdon Clifford
b. Exeter, England, 1845; d. Madeira, Portugal, 1879
Geometry; complex function theory; popularization of mathematics

Clifford went up to Trinity College Cambridge in 1863.
He graduated from there in 1867 as 2nd Wrangler and
also came second in the more demanding Smith’s prize
examination. In 1868 he became a Fellow of Trinity,
leaving in 1871 to become the professor of applied
mathematics at University College London. He died of
tuberculosis in 1879.

A versatile mathematician, regarded by many as the
best of his generation, Clifford’s favorite field was
geometry, over which he ranged widely, proving new
results in classical Euclidean geometry as well as in
projective and differential geometry. He was the first
English mathematician to appreciate the work of rie-
mann [VI.49] on differential geometry, and published
a translation of Riemann’s paper “On the hypothe-
ses that lie at the foundations of geometry” in 1873.
He endorsed Riemann’s fundamental reformulation of
geometry, and went even further in speculating that the
curvature of physical space might explain the motion
of matter. He also made a significant application of

the riemann–roch theorem [V.34], and was among

the first to analyze the complicated topological nature

of a riemann surface [III.81] by showing how to dis-

sect any Riemann surface into simple pieces in a stan-

dard way. He was the first to study a geometry locally

equivalent to plane geometry but topologically distinct

(the flat torus, also known today as the Clifford–Klein

space form after klein’s [VI.57] later more detailed

study of it). In algebra, he invented the biquaternions

(these are like quaternions, but have complex numbers

as coefficients).

Clifford was regarded as a marvelous lecturer until

his health broke, and he was a successful popularizer

and essay writer. He forcefully adopted the view that

geometry was a matter of experience, not a priori truth.

He was a friend of T. H. Huxley and was sympathetic to

humanism in philosophy.

Further Reading

Clifford, W. K. 1968. Mathematical Papers, edited by
R. Tucker. New York: Chelsea. (First published in 1882.)

Jeremy Gray

VI.56 Gottlob Frege
b. Wismar, Germany, 1848; d. Bad Kleinen, Germany, 1925
Logic; foundations of mathematics; paradox

Frege was a precursor of modern logic, in that many of

the hallmarks of contemporary logic appear first in his

writing. His work has also been singularly influential

outside the foundations of mathematics, especially in

the philosophy of language.

Frege was trained at Jena and Göttingen, receiving

a Ph.D. under Ernst Schering in 1873. His Ph.D. thesis

addressed the spatial representation of imaginary ele-

ments in geometry, and his 1874 Habilitation essay at

Jena worked out some basic details of what we would

now call “iteration theory.” Though his early work gave

no obvious sign of the revolutionary work to come, with

hindsight one can discern a foundational motif run-

ning through even the apparently conventional math-

ematics of the early work: a conviction that arithmetic

was in some way or other logical, and that geometry

was fundamentally different and less general because it

was grounded in spatial intuition. This is an especially

salient concern in some of his areas of early research,

such as Plücker’s line geometry and riemann’s [VI.49]
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complex analysis, where the role of visual represen-
tation was a matter of some dispute. Frege sought to
resolve the dispute by deriving arithmetic and analy-
sis rigorously from logical principles. His motivation
was not so much a desire for certainty: rather, he
held that only “gap-free” proofs can reveal a science’s
fundamental principles.

Among the features of contemporary logic appear-
ing first in Frege’s core logical writings (Begriffsschrift
(1879) and Grundgesetze der Arithmetik (volume 1,
1893; volume 2, 1903)) are the following.

(i) Inferences are analyzed within a quantified logic
of propositions, which extends to relations as well
as to propositions of subject–predicate form. We
would today describe Frege’s logical system as a
higher-order predicate calculus.

(ii) Forms from syllogistic logic (such as “All As are
Bs”) are interpreted as quantified conditionals
(“For all x, if x is an A, then x is a B”), in the way
that is now so standard as to seem inescapable,
presenting implicitly the point that the underly-
ing logical form of a proposition may differ from
its surface grammar.

(iii) The syntax of the language is explicitly displayed,
and inferences are carried out strictly in accor-
dance with the form of statements by explicitly
stated rules.

(iv) Rules of inference and axioms are distinguished;
the consequence relation and conditionals are dis-
tinguished.

(v) “Function” is taken as an undefined primitive con-
cept. (This was a contentious move. Some math-
ematicians of the time, including one of Frege’s
teachers, Alfred Clebsch, held the concept of func-
tion to be too vague to serve as a basic building
block.) A sharp distinction is enforced between
functions and the things (called objects) that can
be arguments of functions.

(vi) Quantifiers can be iterated, making possible the
logical representations of distinctions such as that
between uniform and pointwise convergence.

However, any simple catalogue of novelties under-
states the crystalline sharpness of Frege’s logical writ-
ing when compared with works with similar aims, such
as the later Principia Mathematica of Whitehead and
russell [VI.71]. It would be several decades before
logicians approached Frege’s standards for exactness
and clarity. The notation, however, seemed unwieldy

to readers at the time (and since). Here, for example,
is the statement “if not q, then every v is F” (¬q =⇒
(∀v)F(v)) in Frege’s notation:

v

q

F(v)

(Here represents negation, v is the universal
quantifier, and the long vertical line represents the
conditional.)

Frege also wrote an informal treatise, Grundlagen der
Arithmetik (1884), which has had a profound influence
on English-language philosophy since its translation
in 1950. Its account of number contains the first hint of
the tension that would collapse the project from within.
Frege sets out conditions that a definition of number
must satisfy to be counted as “acceptable.” However,
when formalized these lead to a contradiction, of a sim-
ilar type to Russell’s paradox (on the set of all sets that
are not members of themselves). This problem escaped
Frege’s notice until Russell alerted him to it in a let-
ter of 1903. Frege’s reaction (“arithmetic totters”) has
been taken to be an overreaction to the failure of one
set of axioms among many possible ones. But in Frege’s
view, the problem was not with the specific axioms, but
rather that any logically adequate weakening appeared
to violate some principle he took to be grounded in
the nature of thought. Recently, many logicians who do
not share Frege’s often baroque-seeming metaphysics
of concepts have shown that some natural consistent
weakenings of Frege’s system do support the derivation
of the mathematics Frege aimed to reconstruct.

The years after 1903 brought personal tragedies in
Frege’s life and he ceased serious work for over a
decade. Though he resumed writing in 1918 with a
series of philosophical articles, his only research in
mathematics was a brief jotted effort to found arith-
metic on geometry, rather than logic, indicating his
conclusion that his logical program had failed.

Further Reading

A particularly detailed recent example of “neo-Fregean”
reconstructions of Frege’s foundations of arithmetic
appears in John Burgess’s Fixing Frege (Princeton Uni-
versity Press, Princeton, NJ, 2005). Many of the clas-
sic papers on the technical details of reconstructing
Frege’s philosophy of logic are reprinted in Frege’s
Philosophy of Mathematics (Harvard University Press,
Harvard, MA, 1995) by William Demopoulos.
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VI.57 Christian Felix Klein
b. Düsseldorf, Germany, 1849; d. Göttingen, Germany, 1925
Higher geometry; function theory; theory of algebraic equations;
pedagogy

Klein had originally intended to be a physicist but dur-
ing the course of his studies with Julius Plücker in Bonn,
with whom he studied both mathematics and physics,
he turned to mathematics, receiving his doctorate for a
thesis on line geometry in 1868. After Plücker’s death in
1868 he went to Göttingen to study with Alfred Cleb-
sch, where he worked exclusively on mathematics. In
1869–70 he spent some months in Berlin studying with
weierstrass [VI.44] and kummer [VI.40] before join-
ing lie [VI.53] for a trip to Paris to see hermite [VI.47].
After passing his habilitation in Göttingen in 1871,
he took positions successively at Erlangen, Munich,
and Leipzig, returning to Göttingen in 1886, where he
remained until he retired (because of poor health) in
1913. In 1875 he married Anna Hegel, a granddaughter
of the philosopher Georg Wilhelm Friedrich Hegel.

In 1872 Klein published his celebrated “Erlanger Pro-
gramm,” a creative and unified conception of geom-
etry. Building on a paper of cayley [VI.46] of 1859
in which Cayley had shown how to deduce euclid-
ean geometry [I.3 §6.2] from projective geometry
[I.3 §6.7], Klein applied his knowledge of group theory
(learned from jordan [VI.52] in Paris) to create a hier-
archy of all geometries. He had recognized that each
geometry could be characterized by a group of trans-
formations and classified accordingly (see some fun-
damental mathematical definitions [I.3 §6.1]). The
classification showed, as Klein had anticipated, that of
all the geometries, projective is the most basic and that
the others, e.g., affine, hyperbolic, Euclidean, etc., are
subsumed at some level beneath it. Moreover, it was
clear from his construction that a contradiction in non-
euclidean geometry [II.2 §§6–10] would simultane-
ously involve a contradiction in Euclidean geometry.

Klein regarded his work in function theory as his
greatest achievement. As his career progressed, he
moved more and more from Plücker’s and Clebsch’s
strictly geometric viewpoint toward the wider out-
look embraced by riemann [VI.49], who had regarded
analytic functions as given by conformal mappings
between given domains. In his “Riemanns Theorie der
algebraischen Funktionen und ihrer Integrale” (1882),
Klein provided a geometric treatment of function

theory in which he fused Riemann’s ideas with the
rigorous power-series methods of Weierstrass.

In 1882, when he was at the height of his powers,
Klein’s health broke down. His attempt to keep up
with poincaré [VI.61] in the race to develop the theory
of automorphic functions (which are generalizations
of periodic functions such as trigonometric functions,
elliptic functions [V.34], etc.), during which he had
proved his famous Grenzkreis (boundary circle) The-
orem, had left him exhausted, and he was never again
able to work with such intensity and at such a high level.

After his breakdown Klein’s interest shifted progres-
sively from research toward pedagogy. In his efforts to
modernize mathematical education he developed out-
standing organizational skills and initiated important
and far-reaching editorial projects ranging from the
preparation of lecture notes to coediting the twenty-
four-volume Encyklopädie der mathematischen Wissen-
schaften (1896–1935). He was an editor of the Mathem-
atische Annalen for almost fifty years, and was among
the founding members of the Deutsche Mathematiker-
Vereinigung (1890). He also played an active role in
establishing mathematical applications in science and
engineering, as well as promoting the better under-
standing of mathematics by engineers.

Among Klein’s other achievements were important
results in the theory of algebraic equations (through
a consideration of the icosahedron he obtained a com-
plete theory of the general fifth-degree equation (1884))
and in mechanics, in which, jointly with Arnold Som-
merfeld, he developed the theory of the gyroscope
(1897–1910). He also worked on ideas involving the
application of group theory to the theory of relativ-
ity, producing papers on the lorentz group [IV.13 §1]
(1910) and gravitation (1918). Klein was an interna-
tional figure who traveled widely, including to the
United States and the United Kingdom, and he played
a significant role in the first International Congresses
of Mathematicians. His many foreign students included
several from the United States, e.g., Maxime Bôcher and
William Fogg Osgood, and a number of women, notably
Grace Chisholm Young and Mary Winston.

Klein’s achievements made Göttingen the scientific
center of Germany and one of the mathematical cen-
ters of the world. He possessed an outstanding abil-
ity to “see” the truth in mathematical statements and
to bring mathematical fields together without feeling
the necessity for detailed calculations and justification
(which he left to his students and others). He believed
strongly in the unity of mathematics.
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VI.58 Ferdinand Georg Frobenius
b. Berlin, 1849; d. Berlin, 1917
Analysis; linear algebra; number theory; theory of groups;
character theory

After school in Berlin, Frobenius (who suppressed his
first name and wrote mainly as G. Frobenius) spent
one semester studying mathematics and physics in
Göttingen, then returned to Berlin where he stud-
ied under kronecker [VI.48], kummer [VI.40], weier-
strass [VI.44], and others. He wrote his doctoral dis-
sertation (in Latin) supervised by Weierstrass, in 1870,
on infinite series representations of analytic func-
tions of one variable. For four years he worked as
a schoolteacher in Berlin before he became Außeror-
dentlicher Professor (associate professor) at Berlin Uni-
versity. After less than two years, in 1875, he was called
to a full professorship at the Eidgenössische Technis-
che Hochschule in Zürich, where he remained until
1892, when he returned to Berlin as successor to kro-
necker [VI.48]. He retired in 1916, and died one year
later.

His early contributions were to analysis and the
theory of differential equations. Later he wrote mainly
on theta functions, algebra, and number theory. One of
his well-known contributions lies across group theory
and number theory. Given a polynomial with coeffi-
cients in an algebraic number field, one may ask for
the degrees of the irreducible factors that occur when
it is reduced modulo a prime ideal. In particular, one
may ask for the “density” (suitably defined) of the
set of prime ideals modulo which a given pattern ofPUP: this sentence

is fine as it is.
irreducible-factor degrees arises. Pursuing ideas of Kro-
necker, Frobenius proved that, if the galois group
[V.24] is the symmetric group [III.70], then that den-
sity is the proportion of elements of the group whose

cycle structure is the pattern of degrees. He conjec-
tured that this should be true whatever the Galois
group. A tool he used for this led to the name “Frobe-
nius automorphism” for the natural generator a �→ aq
of the Galois group of a finite extension of the field
Fq. The conjecture was proved by N. G. Chebotaryov
in 1925 and is now known as the Chebotaryov density
theorem, or, sometimes, the Frobenius–Chebotaryov
density theorem.

Another well-known and important contribution was
to the theory of matrices and linear transformations,
where Frobenius introduced the minimal polynomial
and other invariants (the elementary divisors).

Frobenius is best known for his work in finite group
theory. Like Otto Hölder and william burnside [VI.60],
he focused for a time on the search for finite simple
groups [V.8]. His greatest contribution, however, is his
invention of the theory of group characters [IV.9].
This emerged unexpectedly in 1896 out of his study
of group determinants. These are the determinants of
square matrices with rows and columns indexed by
the members of a finite group G, and with (a, b)-entry
xab−1 , where the xg are independent variables, one for
each element g of G. His interest, stimulated by cor-
respondence with dedekind [VI.50], was in how the
group determinant factorizes as a polynomial in these
variables. This problem led Frobenius to the discovery
of certain sets of complex numbers, which he called
Gruppencharactere, one for each conjugacy class in the
group, that arose as the solutions of sets of linear equa-
tions connected with the group. Nowadays they are
defined differently: for each complex linear representa-
tion ρ of the group G (that is, homomorphism ρ : G →
GLn(C), where GLn(C) is the group of n×n invertible
matrices over C), the associated character χ is the map
G → C such that χ(g) = traceρ(g) for g ∈ G. Frobenius
proved the orthogonality relations, recognized the con-
nection of his characters with matrix representations of
the group, calculated the character tables of the sym-
metric groups, the alternating groups, and the Mathieu
groups, and used properties of induced characters to
prove his famous theorem that a transitive permuta-
tion group in which no element other than the identity
fixes two or more points has a regular normal subgroup
(that is, a subgroup consisting of the identity together
with the fixed-point-free elements of the group). To this PUP: because

Neumann’s articles
are allowed to
keep UK style, I
have not changed
the second hyphen
here to an en-rule.
OK?

day no purely group-theoretic proof of this theorem
has been found. In recognition of his contribution such
groups are now called Frobenius groups. Through char-
acter theory and representation theory, as developed
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by Frobenius for finite groups (and by his pupil, friend,
and colleague Issai Schur for classical matrix groups),
group theory found important applications in physics
and chemistry a generation later.
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Peter M. Neumann

VI.59 Sofya (Sonya) Kovalevskaya
b. Moscow, 1850; d. Stockholm, 1891
Partial differential equations; Abelian integrals

Kovalevskaya showed talent for mathematics at an
early age but as a woman in mid-nineteenth-century
Russia she was denied access to university. Unable to
leave the country unescorted she married and in 1869
traveled to Heidelberg, where she was taught mathe-
matics by Du Bois-Reymond. The following year she
moved to Berlin to work with weierstrass [VI.44].
Berlin University was closed to women but Weierstrass
agreed to tutor her privately. Under his supervision
Kovalevskaya completed dissertations on partial dif-
ferential equations (PDEs), Abelian integrals, and Sat-
urn’s rings, and in 1874 she became the first woman
to receive a doctorate in mathematics. The dissertation
on PDEs, which excited particular attention, contained
the result now known as the cauchy–kovalevskaya
theorem [IV.12 §§2.2, 2.4], an important tool in estab-
lishing the existence of analytic solutions of PDEs.

That same year Kovalevskaya returned to Russia and,
unable to find a suitable position, temporarily aban-
doned mathematics. In 1880, at the invitation of cheby-
shev [VI.45], she gave a paper on Abelian integrals at a
conference in Saint Petersburg. It was enthusiastically
received and in 1881 she returned to Berlin. She saw
Weierstrass frequently and devoted herself to the study
of the propagation of light in a crystalline medium—
a subject to which she had been led by studying the
work of the French physicist Gabriel Lamé—and to the
study of the rotation of a solid body about a fixed
point. Later that year she moved to Paris to work with
mathematicians there.

In 1883, championed by Mittag-Leffler, Kovalevskaya
was appointed as a Privatdozent at the University of
Stockholm. She also became an editor of Acta Mathe-
matica, making her the first woman to join the board
of a scientific journal. On behalf of Acta she liaised with
mathematicians from Paris, Berlin, and Russia, provid-
ing an important link between Russian mathematicians
and their western European counterparts. She contin-
ued to work on the rotation problem and in 1885 made
the breakthrough that, three years later, would win her
the prestigious Prix Bordin of the French Academy of
Sciences. Prior to her work the problem had been com-
pletely solved for only two cases, both symmetrical. In
the first, solved by euler [VI.19], the center of grav-
ity of the moving body coincides with the fixed point;
and in the second, solved by lagrange [VI.22], the cen-
ter of gravity and the fixed point lie on the same axis.
Kovalevskaya discovered that there was a third case,
one that was asymmetrical and more complicated than
the other two, which could also be solved completely.
(It was later shown that there are no others.) The nov-
elty of her results lay in her application of the recently
developed theory of theta functions—the simplest ele-
ments from which elliptic functions [V.34] can be
constructed—to solve Abelian integrals.

Kovalevskaya became a full professor of mathemat-
ics at the University of Stockholm in 1889, the first
woman anywhere to achieve such a position. Shortly
afterward, she was nominated by Chebyshev for cor-
responding membership of the Russian Academy of
Sciences, her subsequent election breaking the gender
barrier once again.

Further Reading

Cooke, R. 1984. The Mathematics of Sonya Kovalevskaya.
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Koblitz, A. H. 1983. A Convergence of Lives. Sofia Kovalev-
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VI.60 William Burnside
b. London, 1852; d. West Wickham, England, 1927
Theory of groups; character theory; representation theory

Burnside’s mathematical abilities first showed them-
selves at school. From there he won a place at Cam-
bridge, where he read for the Mathematical Tripos and
graduated as 2nd Wrangler in 1875. For ten years he
remained in Cambridge as a Fellow of Pembroke Col-
lege, coaching student rowers and mathematicians. In



�

792 VI. Mathematicians

1885, having published three very short papers, he was
appointed professor at the Royal Naval College, Green-
wich. He married in 1886 and the next year, at the
age of thirty-five, he embarked on his career as a pro-
ductive mathematician. He was elected as a Fellow of
the Royal Society in 1893 on the basis of his contri-
butions in applied mathematics (statistical mechanics
and hydrodynamics), geometry, and the theory of func-
tions. Although he continued to contribute to these
areas throughout his working life, and added probabil-
ity theory to his fields of interest during World War I,
he turned to the theory of groups in 1893, and it is for
his discoveries in this subject that he is remembered.

Burnside treated every aspect of the theory of finite
groups. He was much concerned with the search for
finite simple groups, and made the famous conjecture,
finally proved by Walter Feit and John Thompson in
1962, that there are no simple groups of odd compos-
ite order (see the classification of finite simple
groups [V.8]). He helped to develop character theory,
which had been created by frobenius [VI.58] in 1896,
into a tool for proving theorems of pure group theory,
using it in 1904 to spectacular effect when he proved
his so-called pαqβ-theorem: the theorem that groups
whose orders are divisible by at most two different
prime numbers are soluble. By asking, in effect, whether
a group all of whose elements have finite order and
which is generated by finitely many elements must be
finite, he launched the huge area of research which for
much of the twentieth century was known as the Burn-
side problem (see geometric and combinatorial
group theory [IV.10 §5.1]).

Although cayley [VI.46] and the Reverend T. P. Kirk-
man had written about groups before him, he was the
only British mathematician to work in group theory
until Philip Hall started his mathematical career in
1928. Burnside’s influential book Theory of Groups
of Finite Order (1897) was written in the hope of
“arousing interest among English mathematicians in a
branch of pure mathematics which becomes the more
interesting the more it is studied.” Its influence in
his own country was minimal, however, until several
years after his death. It went to a second edition in
1911 (reprinted 1955), which differs from the first in
that it has been substantially revised and, in particu-
lar, it includes chapters about the character theory of
finite groups and its applications—mathematics which
had been much developed by Frobenius, Burnside, and
Schur over the fifteen years following the invention of
character theory in 1896.

Further Reading
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VI.61 Jules Henri Poincaré

b. Nancy, France, 1854; d. Paris, 1912
Function theory; geometry; topology; celestial mechanics;
mathematical physics; foundations of science

Educated at the École Polytechnique and the École
des Mines in Paris, Poincaré began his teaching career
at the University of Caen in 1879. In 1881 he took
up an appointment at the University of Paris where,
from 1886, he held successive chairs until his death
in 1912. He was of a retiring nature and did not attract
graduate students, but his lecture courses provided the
basis for a number of treatises, mostly in mathematical
physics.

Poincaré came to international prominence in the
early 1880s when, fusing ideas from complex func-
tion theory, group theory, non-Euclidean geometry, and
the theory of ordinary linear differential equations, he
identified an important class of automorphic functions.
Named Fuchsian functions, in honor of the mathemati-
cian Lazarus Fuchs, they are defined on a disk and
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remain invariant under certain discrete groups of trans-
formations. Soon after, he identified the related but
more complicated Kleinian functions, which are auto-
morphic functions without a limit circle. His theory of
automorphic functions was the first significant appli-
cation of non-Euclidean geometry. It led to his discov-
ery of the disk model of the hyperbolic plane and later
inspired the uniformization theorem [V.37].

During the same period Poincaré began pioneering
work on the qualitative theory of differential equations,
motivated in part by an interest in some of the funda-
mental questions of mechanics, notably the problem
of the stability of the solar system. What was new and
important was his idea of thinking of the solutions
in terms of curves rather than functions, i.e., think-
ing geometrically rather than algebraically, and it was
this that marked a departure from the work of his
predecessors, whose research had been dominated by
power-series methods. From the mid 1880s he began
applying his geometric theory to problems in celestial
mechanics. His memoir on the three-body problem
[V.36] (1890) is famous both for providing the basis
for his acclaimed treatise, Les Méthodes Nouvelles de
la Mécanique Céleste (1892–99), and for containing the
first mathematical description of chaotic behavior
[IV.14 §1.5] in a dynamical system. Stability was also at
the heart of his investigation into the forms of rotat-
ing fluid masses (1885). This work, which contained
the discovery of new, pear-shaped figures of equilib-
rium, aroused considerable attention because of its
important implications for cosmogony in relation to
the evolution of binary stars and other celestial bodies.

Poincaré’s work on Fuchsian functions and on the
qualitative theory of differential equations led him to
recognize the importance of the topology (or, as it was
then called, analysis situs) of manifolds [I.3 §6.9]. And
in the 1890s he began to study the topology of man-
ifolds as a subject in its own right, effectively cre-
ating the powerful independent field of algebraic
topology [IV.6]. In a series of memoirs published
between 1892 and 1904, the last of which contains the
hypothesis known today as the poincaré conjecture
[IV.7 §2.4], he introduced a number of new ideas and
concepts, including Betti numbers, the fundamental
group [IV.6 §2], homology [IV.6 §4], and torsion.

A deep interest in physical problems lay behind
Poincaré’s achievements in mathematical physics. His
work in potential theory forms a bridge between that of
Carl Neumann on boundary-value problems and that of
fredholm [VI.66] on integral equations. He introduced

the “méthode de balayage” (“sweeping-out method”)

for establishing the existence of solutions to the

dirichlet problem [IV.12 §1] (1890); and he had the

idea that the Dirichlet problem itself should give rise

to a sequence of eigenvalues and eigenfunctions

[I.3 §4.3] (1898). In developing the theory for functions

of several variables he was led to the discovery of

new results in complex function theory. In Électricité

et Optique (1890, revised 1901), which derived from

his university lectures, he gave an authoritative account

of the electromagnetic theories of Maxwell, Helmholtz,

and Hertz. In 1905 he responded to Lorentz’s new

theory of the electron, coming close to anticipating Ein-

stein’s theory of special relativity [IV.13 §1], thereby

provoking controversy among later writers about the

question of priority. And in 1911 he attended the first

Solvay Conference on quantum theory, publishing an

influential memoir (1912) in its favor.

As Poincaré’s career developed, so too did his interest

in the philosophy of mathematics and science. His ideas

became widely known through four books of essays:

La Science et l’Hypothèse (1902), La Valeur de la Sci-

ence (1905), Science et Méthode (1908), and Dernières

Pensées (1913). As a philosopher of geometry he was a

proponent of the view, known as conventionalism, that

it is not an objective question which model of geometry

best fits physical space but is rather a matter of which

model we find most convenient. By contrast, his posi-

tion on arithmetic was intuitionist. On the question of

foundational issues, he was largely critical. Although

sympathetic to the goals of set theory, he attacked

what he perceived as its counterintuitive results (see

the crisis in the foundations of mathematics

[II.7 §2.2]).

Poincaré’s visionary geometric style led him to new

and brilliant ideas, which frequently connected differ-

ent branches of mathematics, but lack of detail often

made his work hard to follow. At times his approach

was censured for imprecision; it was in marked contrast

to that of hilbert [VI.63], his German counterpart,

whose work was rooted in algebra and rigor.
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VI.62 Giuseppe Peano
b. Spinetta, Italy, 1858; d. Turin, 1932
Analysis; mathematical logic; foundations of mathematics

Known above all for his (and dedekind’s [VI.50]) axiom
system for the natural numbers, Peano made impor-
tant contributions to analysis, logic, and the axiomati-
zation of mathematics. He was born in Spinetta (Pied-
mont, Italy) as the son of a peasant, and from 1876
studied at the University of Turin, taking his doctoral
degree in 1880. He remained there until his death in
1932, becoming full professor in 1895.

During the 1880s Peano worked in analysis, achiev-
ing what are generally considered to be his most impor-
tant results. Particularly noteworthy are the continuous
space-filling Peano curve (1890), the notion of content
(a precedent of measure theory [III.57]) developed
independently by jordan [VI.52], and his theorems on
the existence of solutions for differential equations of
the first order (1886, 1890). The textbook he published
in 1884, Calcolo Differentiale e Principii di Calcolo Inte-
grale, partly based on lectures by his teacher Angelo
Genocchi, was noteworthy for its rigor and critical style,
and is counted among the very best nineteenth-century
treatises.

The years 1889–1908 saw Peano dedicating himself
intensively to symbolic logic, axiomatization, and pro-
ducing the encyclopedic Formulaire de Mathématiques
(1895–1908, five volumes). This ambitious assembly of
mathematical results, compactly presented in the sym-
bols of mathematical logic, was given completely with-
out proofs. This was by no means standard at the time,
but it shows what Peano expected from logic: it was
supposed to bring precision of language and brevity,
but not a greater level of rigor (something that was, by
contrast, crucial for frege [VI.56]). In 1891, together
with some colleagues, he founded the journal Rivista di
Matematica, gathering around him an important group
of followers.

Peano was an accessible man, and the way he mingled
with students was regarded as “scandalous” in Turin.
He was a socialist in politics, and a tolerant universal-
ist in all matters of life and culture. In the late 1890s
Peano became increasingly interested in elaborating a
universal spoken language, “Latino sine flexione”; the
last edition of the Formulario (1905–8) appeared in this
language.

Peano followed closely the work of German mathe-
maticians such as Hermann Grassmann, Ernst Schrö-

der, and Richard Dedekind; for example, the 1884

textbook defined the real numbers by Dedekind cuts,

and in 1888 he published Calcolo Geometrico Secondo

l’Ausdehnungslehre di H. Grassmann. In 1889 there

appeared (notably in Latin) a first version of the famous

peano axioms [III.69] for the set of natural numbers,

which he refined in volume 2 of the Formulaire (1898).

It aimed at filling the most significant gap in the foun-

dations of mathematics at a time when the arithmeti-

zation of analysis had essentially been completed. It

is no coincidence that other mathematicians (Frege,

Charles S. Peirce, and Dedekind) published similar work

in the same decade. Peano’s attempt is better rounded

than Peirce’s, but simpler and framed in more famil-

iar terms than those of Frege and Dedekind; because of

this, it has been more popular.

Peano’s work on the natural numbers was at the

crossroads of his diverse mathematical contributions,

linking naturally his previous research in analysis

with his later work on logical foundations, and being

a necessary prerequisite for the Formulaire project.

Actually, Arithmetices Principia can be regarded as a

simplification, refinement, and translation into logical

language (the “nova methodo” in its title) of Grass-

mann’s Lehrbuch der Arithmetik (1861). Grassmann

had striven to elaborate a stern deductive structure,

stressing proofs by mathematical induction and recur-

sive definitions. But curiously, unlike Peano, he did not

postulate an axiom of induction; thus, Peano presented

the basic assumptions much more clearly, bringing

induction to center stage as the key defining property

of the natural numbers.
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b. Königsberg, Germany, 1862; d. Göttingen, Germany, 1943
Invariant theory; number theory; geometry;
International Congress of Mathematicians; axiomatics

hermann weyl [VI.80] described his teacher Hilbert’s
style: “It is as if you were on a swift walk through a
sunny open landscape; you look freely around, demar-
cation lines and connecting roads are pointed out to
you, before you must brace yourself to climb the hill;
then the path goes straight up. . . .” Several themes
balance in Hilbert’s career as a mathematician. He
wanted clarity, rigor, simplicity, and depth. Though he
loved mathematics for its beauty, a beauty that tran-
scends human failures, Hilbert saw mathematics as a
social collaboration. A turning point came when he met
minkowski [VI.64] and Adolf Hurwitz at university in
Königsberg.

Hilbert wrote: “On unending walks we engrossed our-
selves in the actual problems of the mathematics of the
time; exchanged our newly acquired understandings,
our thoughts and scientific plans; and formed a friend-
ship for life.” Later Hilbert became professor at Göt-
tingen and, with klein [VI.57], drew mathematicians
from all over the world and turned that small city into a
crossroads for mathematics—until Hitler destroyed it.

When he was a new Privatdozent, Hilbert decided he
would study mathematics as he taught, and he resolved
never to repeat lectures. He and Hurwitz decided to
embark on a “systematic exploration” of mathematics,
and he followed this pattern for the rest of his life.
Hilbert’s career divides easily into six periods: (i) alge-
bra and algebraic invariants (1885–93); (ii) algebraic

number theory (1893–98); (iii) geometry (1898–1902);
(iv) analysis (1902–12); (v) mathematical physics (1910–
22); and (vi) foundations (1918–30). Remarkably, there
is very little overlap. When Hilbert finished a subject,
he was finished with it.

Hilbert’s first breakthrough came in 1888 when he
solved Gordan’s problem, named after Paul Gordan, in
a single bold move. Given a polynomial equation with
at least two variables, some things about the polyno-
mial change and some do not when you change coor-
dinate systems. For example, with the real polynomial
equation

ax2 + bxy + cy2 + d = 0,

if you rotate the coordinate system the equation
changes dramatically, but the graph does not, and nei-
ther does the discriminant b2 − 4ac. The discriminant
is one invariant. In the general case—a more compli-
cated class of polynomials and coordinate changes—
there can be many invariants. Mathematicians sus-
pected that a finite number of essentially different
invariants existed for any given type of polynomial
and class of coordinate changes. Was this so? Many
mathematicians calculated individual examples indus-
triously. Instead, Hilbert reasoned indirectly: what if
there is no finite basis for a specific class of polyno-
mials and transformations? He found that it was always
possible to produce a contradiction. He concluded that
there must be such a basis. At first this result was
greeted with disbelief because he did not display a
basis. Gordan said, “Das ist nicht Mathematik. Das ist
Theology.” However, the result was so powerful that it
has been said that it killed algebraic invariant theory.

In 1893 Hilbert and Minkowski were asked by the Ger-
man Mathematical Society to write a report on number
theory. Hilbert chose algebraic number theory [IV.1]
and transformed the results of the nineteenth century
into the study of algebraic number fields [III.65]. The
deep organizing structure Hilbert found eventually led
to what has been called “the magnificent edifice of class
field theory” (described in [V.31]).

Hilbert’s classic Foundations of Geometry , first pub-
lished in 1899 and revised many times, starts with real-
number arithmetic. He assumes that it is consistent, i.e.,
that it is free of the possibility of contradictory deduc-
tions. Using analytic geometry, he then exhibits a model
of euclidean geometry [II.2 §3]. A point is a pair of
real numbers; a line is a set of pairs of numbers that
satisfy the equation for a line; a circle. . . ; and so on.
All of Euclid’s axioms are true statements about these
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“lines” and “points,” that is, they are true statements
about these sets of real numbers. Euclidean geometry
is thereby reduced to a fraction of all the true state-
ments about real numbers, and we conclude that if real-
number arithmetic is consistent then Euclid’s geometry
is consistent. Next Hilbert constructs models of var-
ious non-Euclidean geometries in terms of Euclidean
geometry, exploring in depth and with great inventive-
ness which possible axioms follow from which groups
of axioms and which are independent yet consistent.

Hilbert was invited to address the Second Interna-
tional Congress of Mathematicians in Paris in 1900.
He gave a talk proposing twenty-three problems for
the new century. These problems are known today as
“Hilbert’s problems”; in a sense they have created a vir-
tual Göttingen where mathematicians have entered into
conversation with Hilbert and each other ever since.

Next Hilbert turned to analysis. weierstrass [VI.44]
had found counterexamples to Dirichlet’s principle,
which is essentially the assertion that, in variational
problems, maxima and minima are always attained.
Hilbert proved a modified, but still powerful, version
that “salvaged” much of the work that assumed the
principle. The larger theme of this period, though, was
integral equations and what is now called hilbert
space [III.37]. Newton’s equations for motion are dif-
ferential equations, and it was natural to phrase equa-
tions in physics that way. However, in many cases it
was easier to solve problems if the equations were
written using integrals rather than derivatives. Between
1902 and 1912 Hilbert attacked a variety of problems
from this direction. He viewed the solutions as part of
Hilbert space and gave a spectral interpretation analo-
gous to an infinite-dimensional vector space. Thus,
an amorphous sea of functions acquired geometric
structure.

In 1910 he turned toward mathematical physics and
had some successes, but physics was undergoing mul-
tiple revolutions and was not ready for mathematical
clarification.

When he delivered his problems in 1900, Hilbert
was aware that there were contradictions in mathe-
matics as it was then phrased, and specifically in set
theory. His second problem asked for a proof that
first arithmetic, and then set theory, were consistent.
As the debate widened, some mathematicians began
to pull back on what they accepted as valid reason-
ing. Hilbert wanted none of this. By 1918 he was
increasingly focused on a program to formally axiom-
atize mathematics and prove it free of contradictions

using proof-theoretic, combinatorial methods. gödel
[VI.92] proved his incompleteness theorems in 1930
and thereby showed that Hilbert’s program, at least as
initially conceived, could never be successful. Hilbert
was wrong here, but even if wrong, his dream of plac-
ing mathematics on a formal foundation stimulated
some of the most important work of the twentieth
century—and mathematics did not pull back.
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VI.64 Hermann Minkowski
b. Alexotas, Russia (present day Kaunas, Lithuania), 1864;
d. Göttingen, Germany, 1909
Number theory; geometry; relativity theory

In 1883, the Paris Academy of Sciences awarded its
prestigious Grand Prix for mathematical science to
the eighteen-year-old student Hermann Minkowski. The
prize problem was to give the number of representa-
tions of an integer as a sum of five squares of inte-
gers. In a manuscript of 140 pages written in German,
Minkowski developed a general theory of quadratic
forms [III.75] that contains the solution to this problem
as a special case. Two years later, Minkowski obtained
his Ph.D. in Königsberg, and in 1887 he received his
habilitation in Bonn with further work on quadratic
forms in n variables.

While a student in Königsberg, Minkowski became a
close friend of Adolf Hurwitz and hilbert [VI.63]. In
1894, after Hurwitz had moved to Zürich, Minkowski
returned from Bonn to his alma mater, and soon
became Hilbert’s successor after Hilbert left for Göt-
tingen. In 1896, Minkowski moved on to Zurich to
become Hurwitz’s colleague. In 1902, Hilbert nego-
tiated for another chair of mathematics to be cre-
ated for Minkowski in Göttingen. There he worked as
Hilbert’s colleague and closest friend until he died,
unexpectedly, of a ruptured appendix in early 1909.

Minkowski’s later work is characterized by an inge-
nious use of geometric intuition for the solution of
number-theoretic problems. His starting point was a
theorem of hermite [VI.47] on the smallest positive
real that can be represented by a given positive-definite
quadratic form of n integer-valued nonzero variables.
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By interpreting the quadratic forms in terms of geo-
metric objects such as ellipses (for n = 2) or ellip-
soids (for n = 3), and considering the integer val-
ues of the variables as the coordinates of the points
of a regular lattice, Minkowski was able to employ
the notion of volume to arrive at nontrivial number-
theoretic results. His investigations were published in
1896 in a book entitled The Geometry of Numbers. Real-
izing that the geometric arguments based on ellipsoids
used only the property of convexity, Minkowski fur-
ther generalized his theory by introducing a general
concept of convex point sets. A convex body, accord-
ing to Minkowski, is one in which the straight line con-
necting any two interior points lies completely within
the set. This notion allowed Minkowski to investigate a
geometry in which the Euclidean axiom about the con-
gruence of triangles is replaced by the weaker axiom
that the sum of two sides of a triangle is always larger
than the third one (which we would nowadays call the
triangle inequality, the key notion in metric spaces).
Theorems about this Minkowskian geometry also pro-
duced immediate nontrivial number-theoretic results.
Further results were obtained in the theory of contin-
ued fractions [III.22]. In 1907, Minkowski published
introductory lectures on number theory under the title
Diophantine Approximations.

Minkowski always had a deep interest in physics.
In 1906, he wrote the article on capillarity for the
authoritative Encyclopedia of the Mathematical Sciences
(edited by klein [VI.57] and others). In Göttingen,
Hilbert and Minkowski gave joint seminars in which
they studied contemporary work in electrodynamics
by poincaré [VI.61], Einstein, and others. Minkowski
soon realized the significance of the fact that the
special theory of relativity was a consequence of the
invariance of the Maxwell equations under the group
of Lorentz transformations (see general relativity
and the einstein equations [IV.13 §1]). He reinter-
preted Maxwell–Lorentz electrodynamics geometrically
in a mathematical formulation in which no formal dis-
tinction between the space and time coordinates exists.
This is expressed in the famous opening words of his
address to the Cologne meeting of the Society of Ger-
man Scientists and Physicians a few weeks before his
death: “From this hour on, space by itself and time
by itself are to sink fully into shadows and only a
kind of union of the two should yet preserve auton-
omy.” Minkowski’s four-dimensional Lorentz-covariant
formulation of special relativity was a prerequisite for
Einstein’s later general theory of relativity.
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VI.65 Jacques Hadamard
b. Versailles, France, 1865; d. Paris, 1963
Function theory; calculus of variations; number theory;
partial differential equations; hydrodynamics

A graduate of the École Normale in Paris, Hadamard ob-
tained a position at the University of Bordeaux in 1893.
He returned to Paris in 1897 where he taught at the
Collège de France, the École Polytechnique, and the
École Centrale until his retirement in 1937. The Hada-
mard Seminar at the Collège de France, where mathe-
maticians came from around the world to expound on
recent results, was an influential and integral part of
mathematical life in France between the wars.

Hadamard’s first significant papers were concerned
with the theory of holomorphic functions [I.3 §5.6]
of a complex variable, in particular with the analytic
continuation of a Taylor series; and in his thesis of
1892 he investigated how the properties of the singu-
larities of a series could be deduced from those of its
coefficients. Notably he showed that the radius of con-
vergence R of a Taylor series

∑
anzn could be given

by R = (limn→∞ sup |an|1/n)−1, a result now known as
the Cauchy–Hadamard theorem. (cauchy [VI.29] had
published the formula in 1821 but Hadamard, who
had discovered it independently, was the first to give a
complete proof.) Further results followed, including the
famous “Hadamard gap theorem,” which gives the con-
dition for the circle of convergence of the series to be
a natural boundary of the function. His monograph La
Série de Taylor et son Prolongement Analytique (1901)
proved especially influential. In 1912 he formulated the
problem of quasi-analyticity for infinitely differentiable
functions.

The year 1892 also saw the appearance of Hada-
mard’s prize-winning memoir on entire functions, in
which he used results from his thesis to establish the
relations between the coefficients of the Taylor series of
an entire function and its zeros, and then applied them
to evaluate the genus of the entire function. He applied
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this work, and other results from his thesis, to the rie-
mann zeta function [IV.2 §3], which enabled him, in
1896, to prove his most famous result: the prime num-
ber theorem [V.29]. (The theorem was proved simulta-
neously by de la vallée poussin [VI.67] but in a more
complicated way.)

Hadamard’s other achievements of the 1890s include
a well-known inequality on determinants [III.15]
(1893), a result essential in the fredholm theory
[IV.15 §1] of integral equations; and his “three-circles
theorem” (1896), which demonstrates the importance
of convexity in the study of analytic functions and plays
a significant role in interpolation theory.

In 1896 Hadamard won the Prix Bordin for his study
of the behavior of geodesics on surfaces. (The motiva-
tion for studying such geodesics is that they can be
used to represent the trajectories of motion in dynam-
ical systems.) It was Hadamard’s first major work on
a subject other than analysis. His two papers, one on
geodesics on a surface of positive curvature (1897) and
the other on geodesics on a surface of negative cur-
vature (1898), are characterized by a qualitative analy-
sis inherited from poincaré [VI.61]. The first relies on
results from classical differential geometry, while the
second is dominated by topological considerations.

Prompted by an interest in the calculus of vari-
ations [III.96], Hadamard developed the ideas of
Volterra’s functional calculus. In 1903 he was the first
to describe linear functionals on a function space. By
considering the space of continuous functions on a
given interval, he showed that every functional is the
limit of a sequence of intervals, a result now recognized
as a precursor to the riesz representation theorem
[III.18] formulated by riesz [VI.74] in 1909. Hadamard’s
influential Leçons sur le Calcul de Variations (1910) is
the first book in which the ideas of modern functional
analysis can be found.

In applied mathematics Hadamard was primarily
concerned with wave propagation, in particular high-
speed flows. In 1900 he began working on the theory
of partial differential equations, and in 1903 published
Leçons sur la Propagation des Ondes et les Équations
de l’Hydrodynamique; this was followed by Lectures on
Cauchy’s Problem in Linear Partial Differential Equa-
tions (1922). The latter contained the details of his fun-
damental idea of the well-posed problem [IV.12 §2.4]
(i.e., a problem in which the solution must not only exist
and be unique but must also depend continuously on
the initial data). The origins of the idea can be found in
his 1898 paper on geodesics [I.3 §6.10].

Hadamard’s book The Psychology of Invention in the

Mathematical Field (1945) is well-known for its discus-

sion of the unconscious and its role in mathematical

discovery.

Further Reading

Hadamard, J. 1968. Collected Works: Œuvres de Jacques
Hadamard, four volumes. Paris: CNRS.

Maz’ya, V., and T. Shaposhnikova. 1998. Jacques Hada-
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VI.66 Ivar Fredholm
b. Stockholm, 1866; d. Stockholm, 1927

Professor of Mechanics and Mathematical Physics,
Stockholm (1906–27)

In papers of 1900 and 1903 Fredholm solved the inte-

gral equations named after him,

ϕ(x)+
∫ b
a
K(x,y)ϕ(y)dy = ψ(x),

with a continuous “kernel” K and unknown ϕ(x), by

analogy with infinite systems of linear equations and

generalized determinants. Both the solution and sev-

eral ideas attached to it (“Fredholm alternatives”) made

this work an important stimulus for hilbert’s [VI.63]

theory of integral equations (1904–6) and thus a start-

ing point for functional analysis (see operator alge-

bras [IV.15 §1]). The equations arise in the context of

problems of mathematical physics, e.g., in potential

theory and in the theory of oscillations. Fredholm con-

sidered himself primarily a mathematical physicist, and

his colleague Mittag-Leffler tried in vain to have him

awarded the Nobel Prize for physics.

VI.67 Charles-Jean de la Vallée Poussin
b. Louvain, Belgium, 1866; d. Brussels, 1962
Analytic number theory; analysis

De la Vallée Poussin graduated in engineering (1890)

and mathematics (1891) from the Université Catholique

de Louvain, where he went on to teach mathematical

analysis from 1891 until 1951. His lectures formed

the basis for his renowned Cours d’Analyse Infinitési-

male, which ran to many editions from 1903 to 1959.

A member of the most famous academies in Europe

and the United States, with honorary doctorates from

Paris, Strasbourg, Toronto, and Oslo, he was the first
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president (1920) of the International Union of Mathe-

maticians (now the International Mathematical Union).

He was made a baron in 1930.

De la Vallée Poussin’s main achievement was his

proof in 1896 of the prime number theorem [V.29]

(an asymptotic estimate for the distribution of prime

numbers in the integers), first conjectured by gauss

[VI.26] in around 1793. (The theorem was also proved

independently by hadamard [VI.65] in the same year,

also using complex function theory.) Shortly afterward,

de la Vallée Poussin followed his proof with a sharper

error term (1899), which he extended to prime numbers

in an arithmetic progression.

When lebesgue [VI.72] first published his inte-

gral [III.57] in 1902, de la Vallée Poussin immediately

grasped its importance and, using an original approach,

described it in the second edition of his Cours d’Analyse

(1908). In addition, he introduced the concept of the

characteristic function of a set (1915), and shortly

afterward gave a decomposition theorem for the mea-

sure generated by a continuous function of bounded

variation (1916).

Of particular importance for approximation theory

and the summation of series is de la Vallée Poussin’s

convolution integral (1908), for approximating periodic

functions by trigonometric polynomials. His other sig-

nificant results in this field include a lower bound for

the error in the best approximation of a continuous

function by a polynomial (1910), and a convergence test

and a summation method for Fourier series (1918).

In 1911 de la Vallée Poussin was responsible for sug-

gesting the Belgian Academy prize question that led to

Jackson’s and Bernstein’s theorems on the order of the

best approximation of a continuous function by poly-

nomials. His existence and uniqueness theorem for thePUP: editors would
prefer to keep the
items in this
sentence in this
order, i.e. not by
date. OK?

Chebyshev problem for an overdetermined system of

linear equations (1911) was an important step in lin-

ear programming [III.86]; his interpolation formula

(1908) was fundamental for sampling theory; and his

characterization of new classes of quasi-analytic func-

tions by the rate of decrease of their Fourier coefficients

(1915) was a notable development.

De la Vallée Poussin’s other achievements include

determining a uniqueness condition for multipoint

boundary-value problems (1929), which was a sig-

nificant result for the study of nonoscillatory solu-

tions of linear differential equations; and solving var-

ious problems of the conformal representation of

multiply connected regions (1930–31). In potential

theory he extended the concept of capacity to arbi-
trary bounded sets, proved his extraction theorem for
bounded sequences of set functions, and, by introduc-
ing measure theory into poincaré’s [VI.61] “méthode
de balayage” (“sweeping-out method”) for the dirich-
let problem [IV.12 §1], he paved the way for modern
abstract potential theory.

Further Reading

Butzer, P., J. Mawhin, and P. Vetro, eds. 2000–4. Charles-
Jean de la Vallée Poussin. Collected Works—Oeuvres Sci-
entifiques, four volumes. Bruxelles/Palermo: Académie
Royale de Belgique/Circolo Matematico di Palermo.
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VI.68 Felix Hausdorff
b. Breslau, Germany (now Wrocław, Poland), 1868;
d. Bonn, Germany, 1942
Set theory; topology

Hausdorff studied mathematics at Leipzig, Freiburg,
and Berlin between 1887 and 1891, and then started
research in applied mathematics at Leipzig under
H. Bruns. After his habilitation (1895) he taught first at
Leipzig and then later at Bonn (1910–13, 1921–35) and
Greifswald (1913–21). He is best known for his work
in set theory and general topology, his magnum opus
being Grundzüge der Mengenlehre (“Basic features of
set theory”). It was published in 1914 and had second
and third editions in 1927 and 1935. The second edi-
tion was so heavily revised in content, however, that it
should really be considered a new book.

Hausdorff’s early work concentrated on applied
mathematics, mainly related to astronomy, in partic-
ular the refraction and extinction of light in the atmo-
sphere. He had broad intellectual interests and moved
in Nietzschean circles of artists and poets at Leipzig.
Under the pseudonym Paul Mongré he wrote two long
philosophical essays of which the more prominent was
“Das Chaos in kosmischer Auslese” (“The chaos in cos-
mic selection”). Until 1904 he regularly contributed cul-
tural critical essays to a renowned German intellectual
review of the time, continuing to contribute, although
less frequently, until 1912. He also published poems
and a satirical play.

Hausdorff took up set theory at the turn of the cen-
tury and gave his first lecture course on the topic in
the summer semester of 1901 at Leipzig university.
After his turn toward “Cantorianism” (set theory) he
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began deep and innovative research on order structures
and their classification. Among the results of his early
work in set theory are the Hausdorff recursion formula
for exponentiation of cardinals and several contribu-
tions to the study of order structures (cofinality, etc.).
Although Hausdorff did not pursue active research in
the axiomatic foundation of set theory, he contributed
important insights on transfinite numbers, in particu-
lar a characterization of what are now known as weakly
inaccessible cardinals and his maximal chain principle,
a form of zorn’s lemma [III.1] that predated the latter
and differed from it in formulation and intention.

His own contribution to the axiomatic method was
oriented toward generalizing classical areas of math-
ematics and founding them on axiomatic principles
within the framework of set theory. Hausdorff’s move
to use set theory inside mathematics was seminal for
the turn toward modern mathematics in the sense
of the twentieth century, most prominently character-
ized by the bourbaki [VI.96] group. Best known in
this respect are his axiomatization of general topol-
ogy in terms of axioms for neighborhood systems, first
published in the Grundzüge (1914), and the study of
the properties of general, or more specialized, topo-
logical spaces [III.92]. Less well-known (it remained
unpublished until recently) was Hausdorff’s axiomati-
zation of probability theory, which was presented in
a lecture course of 1923 and which preceded kol-
mogorov’s [VI.88] work in this area by about a decade.
He also made important contributions to analysis and
algebra. In algebra, he contributed to lie theory [III.50]
(via what is now called the Baker–Campbell–Hausdorff
formula), while in analysis he developed summation
methods for divergent series and also a generalization
of the Riesz–Fischer theory.

Hausdorff’s central goals in using set theory were for
applications to analytical disciplines such as function
theory. Among his most important contributions in this
respect, and of wide-ranging importance, was the con-
cept of hausdorff dimension [III.17], which he intro-
duced to give a notion of dimension to rather general
sets (such as, for example, fractal-type sets).

Hausdorff realized that analytical questions of set
theory were deeply connected to foundational ques-
tions. In 1916 he (and, independently, P. Alexandroff)
showed that any uncountable borel set [III.57] in the
reals actually has the cardinality of the continuum. This
was an important development of a strategy proposed
by Cantor to clarify the continuum. Although this strat-
egy did not finally contribute to the decisive results

by Gödel and Cohen on the continuum hypothesis
[IV.22 §5], it led to the development of an extended
field of investigation in the border region between set
theory and analysis, now dealt with in descriptive set
theory [IV.22 §9]. Hausdorff’s second edition of the
Mengenlehre (1927) was the first monograph in this
field.

After the rise to power of the Nazi regime, working
conditions and life in general deteriorated more and
more drastically for Hausdorff and others of Jewish ori-
gin. When Hausdorff, his wife Charlotte, and a sister of
hers were ordered to leave their house for local intern-
ment in January 1942, they opted for suicide rather
than suffering further persecution.

Further Reading
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Hausdorff, F. 2001. Gesammelte Werke einschließlich der
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Erhard Scholz

VI.69 Élie Joseph Cartan
b. Dolomieu, France, 1869; d. Paris, 1951
Lie algebras; differential geometry; differential equations

Cartan was one of the leading mathematicians of his
generation, particularly influential for his work on
geometry and the theory of lie algebras [III.50 §§2, 3].
In the bleak years after World War I he was one of the
most prominent mathematicians in France. He eventu-
ally became a notable influence on the bourbaki [VI.96]
group, of which his son Henri, another distinguished
mathematician, was one of the seven founder members.
Cartan held lecturing positions in Montpellier and Lyon
before becoming a professor in Nancy in 1903. He went
on to gain a lecturing position at the Sorbonne in 1909,
becoming a professor in 1912 and remaining there until
his retirement.

In his doctoral thesis of 1894 Cartan classified the
simple Lie algebras over the field of complex numbers,
refining and correcting earlier work of Wilhelm Killing
and emphasizing the deep general abstract structures
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inherent in the theory. In later years he returned to
these ideas and drew out their implications for the
study of the corresponding lie groups [III.50 §1]—
these groups have a major bearing on symmetry con-
siderations in physics.

Cartan spent much of his life working on geometry.
In the 1870s, and again in the 1890s, klein [VI.57] had
analyzed geometry and shown how the major branches
(Euclidean, non-Euclidean, projective, and affine) could
be unified and treated as special cases of projective
geometry. Cartan became interested in the extent to
which the group-theoretic ideas that had animated
Klein could be adapted to the setting of differential
geometry, and especially to spaces of variable curva-
ture [III.80]—the mathematical setting for einstein’s
general theory of relativity [IV.13]. In that subject
the observations of different observers are related by
coordinate transformations, and changes in the gravi-
tational field are expressed through changes in the met-
ric, and hence curvature, of the underlying spacetime
manifold. In the 1920s Cartan broadened the setting
to what are today called fiber bundles [IV.6 §5], and
showed that Klein’s approach could be carried through
by concentrating on the possible types of coordinate
transformation and the Lie groups to which they can
belong.

There are many problems in which one has a multi-
tude of possible observations at each point of a space:
for example, the weather at each point of Earth’s sur-
face. In Cartan’s formulation, Earth’s surface is taken
as the base manifold [I.3 §6.9] and the possible obser-
vations at each point form another manifold, called the
fiber at the point. The pair consisting of all fibers and
all points of the base manifold is, roughly, a fiber bun-
dle; the precise concept has proved to be fundamental
across the whole field of modern differential geometry.
It was to prove a natural setting for the study of what
are called connections on a manifold, which deal with
the way objects, such as vectors, are transformed as
they move along curves in the manifold. Cartan’s fun-
damental idea was to capture the symmetry of a geo-
metrical problem by allowing fibers to have a common
symmetry group, although aspects of the geometry of
the base manifold, such as its curvature, were allowed
to vary from point to point in such a way that the base
manifold admits no symmetries at all.

Cartan also applied his geometric approach to the
study of differential equations, which had earlier been
a motivating concern for lie [VI.53] in the creation
of the theory of Lie algebras. He did important work

on systems of equations, and this led him to empha-
size the role of what are called exterior forms. Familiar
examples include the 1-form (see differential forms
[III.16]) that represents the element of length along a
curve, the 2-form that represents the element of area
of a surface, and so on. The main thing one does to
a 1-form is integrate it; integrating the 1-form that
describes arc-length gives length along a curve. Car-
tan studied systems of equations involving arbitrary 1-
forms and was led to discover ways in which the alge-
bra of 1-forms, and more generally the algebra of k-
forms for arbitrary k, captures features of the geom-
etry of the manifold on which they are defined. This
led him to reformulate a method of studying the geom-
etry of curves and surfaces that had been pursued by
Gaston Darboux, the leading French geometer of the
previous generation, and to proclaim his method of
“moving frames” that again related to the study of fiber
bundles and symmetries in differential geometry. This
work, together with his work on fiber bundles, remains
a major source of ideas for the study of differentiable
manifolds to this day.
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VI.70 Emile Borel
b. Saint-Affrique, France, 1871; d. Paris, 1956

Professor of Mathematics: University of Lille (1893–96),
École Normale, Paris (1896–1909); Chair of Theory of Functions
(specially created for him), Sorbonne, Paris (1909–41);
first director of the Institut Poincaré (1926)

Borel’s thesis of 1894 started with problems from
within the classical theory of complex functions. With
a new theory of measure [III.57] based on cantor’s
[VI.54] set theory and, in particular, a “covering the-
orem” (later misnamed the Heine–Borel theorem), he
gave a rationale for neglecting certain infinite sets of
singularities. He assigned them “measure zero” and
thus extended the domain of regularity of the func-
tions considered. Borel’s theory of measure, based on
operations with infinitely many sets, became widely
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known through his influential Leçons sur la Théorie des
Fonctions (1898) and was later completed and devel-
oped into a major tool of analysis by lebesgue [VI.72].
It was, in addition, an important prerequisite for the
axiomatization of probability by kolmogorov [VI.88].

VI.71 Bertrand Arthur William Russell
b. Trelleck, Wales, 1872; d. Plas Penrhyn, Wales, 1970
Mathematical logic and set theory; philosophy of mathematics

Russell’s training at Cambridge University in the early
1890s inspired the part of his long and varied life
that relates to mathematics. He divided his Tripos into
Part 1 (Mathematics) and Part 2 (Philosophy), and then
united these two trainings to seek a general philosophy
of mathematics, especially its epistemological founda-
tions, with geometry as the first test case (1897). But
over the next few years he changed his philosophical
stance, especially when he recognized the significance
of cantor’s [VI.54] set theory from 1896 onward, and
also discovered in 1900 a group of mathematicians
around peano [VI.62] in Turin. Wishing to raise the level
of axiomatization and rigor in mathematics, the follow-
ers of Peano formalized theories as much as possible,
including the “mathematical logic” of propositions and
predicates with set theory, but they kept mathematical
and logical notions separate. After learning their sys-
tem and adding to it a logic of relations, Russell decided
in 1901 that their distinction of notions was not neces-
sary: all notions lay in that logic. This is the philosoph-
ical position that has become known as “logicism,” and
Russell wrote a largely nonsymbolic account of it in The
Principles of Mathematics (1903). In an appendix to thisPUP: this sentence

added after
proofreading. OK? book he publicized the work of frege [VI.56], who had

anticipated logicism (but advocated it only for arith-
metic and some analysis); Russell read him in detail
after forming his own position, which continued to be
influenced more by Peano.

Now the job was to expound logicism in Peanesque
detail—a daunting task, made even harder by Russell’s
discovery in 1901 that set theory was susceptible to
paradoxes, which would have to be avoided or even
solved. He was joined in the effort by his former Cam-
bridge tutor, A. N. Whitehead; eventually three volumes
of Principia Mathematica appeared between 1910 and
1913. After the basic logic and set theory, the arith-
metic of real numbers and also the arithmetic of trans-
finite numbers were worked out in detail; a fourth vol-
ume on geometry was due to be written by Whitehead,
but he abandoned it around 1920.

The paradoxes were solved by a “theory of types,”

which formed a hierarchy of individuals, sets of indi-

viduals, sets of sets of individuals, and so on. A set or

individual could only be a member of a set immediately

above it in the hierarchy; thus, a set could not belong

to itself. Comparable restrictions were laid on relations

and predicates. While this avoided the paradoxes, it

also ruled out a great deal of good mathematics, since

different kinds of numbers lay in different types and

so could not be brought together for arithmetic opera-

tions: for example, 34+ 7
18 was not even definable. The

authors proposed the “axiom of reducibility” to allow

such definitions to be made; but this was, frankly, just

a fudge.

Among the various features of Russell’s theory was a

form of the axiom of choice [III.1], called the “multi-

plicative axiom,” that he had found in 1904, just before

Ernst Zermelo. It had a curious role within logicism,

partly because its logicist status was suspect.

While there was discussion of Principia Mathemat-

ica, concerning both its logic and its logicism, it tended

to be too mathematical for the philosophers and too

philosophical for the mathematicians. However, the

program influenced some kinds of philosophy, includ-

ing Russell’s own; and as an example of high-level

axiomatization it served as a model for foundational

studies, including gödel’s incompleteness theorems

[V.18] of 1931, which showed that logicism as Russell

had conceived it could not be achieved.

Further Reading
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VI.72 Henri Lebesgue
b. Beauvais, France, 1875; d. Paris, 1941
Theory of the integral; measure; applications in Fourier analysis;
dimension in topology; calculus of variations

Lebesgue studied at the École Normale in Paris (1894–

97), where he was influenced by the slightly older

borel [VI.70] and René-Louis Baire. As a teacher at

Nancy he completed his seminal thesis “Intégrale,

longueure, aire” (1902). After university positions in
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Rennes, Poitiers, and at the Sorbonne in Paris, and fol-
lowing war-related research, Lebesgue became a pro-
fessor at the Sorbonne (1919) and then, finally, at the
Collège de France (1921). One year later he was elected
to the French Academy of Sciences.

Lebesgue’s most important achievement was his gen-
eralization of riemann’s [VI.49] notion of an integral.
This was partly in response to the need to include
broader classes of real-valued functions, and partly to
give secure foundations to concepts such as the inter-
changeability of limit and integral in infinite series (par-
ticularly Fourier series). Alluding to a famous example
(1881) by Vito Volterra of a bounded derivative that
could not be integrated, Lebesgue wrote in his thesis:

The kind of integration defined by Riemann does not
allow in all cases for the solution of the fundamen-
tal problem of the calculus: find a function with a
given derivative. It thus seems natural to search for a
definition of the integral which makes integration the
inverse operation of differentiation in as large a class
of functions as possible.

Lebesgue defined his integral by partitioning the
range of a function and summing up sets of x-coor-
dinates (or arguments) belonging to given y-coordi-
nates (or ordinates), rather than, as had traditionally
been done, partitioning the domain. Lebesgue himself,
according to his colleague, Paul Montel, compared his
method with paying off a debt:

I have to pay a certain sum, which I have collected in my
pocket. I take the bills and coins out of my pocket and
give them to the creditor in the order I find them until
I have reached the total sum. This is the Riemann inte-
gral. But I can proceed differently. After I have taken
out all my money I order the bills and coins according
to identical values and then I pay the several heaps one
after another to the creditor. This is my integral.

The comparison reveals the more theoretical charac-
ter of Lebesgue’s integral, as compared with the more
intuitive and natural summation used by Riemann. This
meant that more sophisticated functions, which were
not necessarily integrable in Riemann’s sense, became
“summable” according to Lebesgue.

In order to perform his summations, Lebesgue had
to base his new integral on Borel’s notion of measure
[III.57] (1898), which in turn drew heavily on cantor’s
[VI.54] theory of infinite sets. He used infinitely many
intervals to cover and to measure sets, and was thus
able to measure much less intuitive subsets of the lin-
ear continuum (the reals) than had hitherto been con-

sidered. A crucial role was played by the notion of
“the set of measure zero” and the consideration of
properties that were valid “except for” such sets, i.e.,
“almost everywhere.” This allowed for the theory to be
streamlined to include fundamental results such as: “A
bounded function is Riemann integrable if and only if
the set of its points of discontinuity has measure zero.”

Lebesgue completed Borel’s theory of measure, mak-
ing it a true generalization of jordan’s [VI.52] ear-
lier theory. From Jordan he also borrowed the impor-
tant notion of a function of bounded variation for his
theory of the integral. Lebesgue ascribed a measure to
any subset of a “set of measure zero,” and opened up
broader theoretical questions such as whether there
exist any sets that are not Lebesgue-measurable. The
latter question was proved in the affirmative by the Ital-
ian Giuseppe Vitali in 1905 with the help of the axiom
of choice [III.1], while Robert Solovay showed in 1970,
with methods of mathematical logic, that without the
axiom of choice such existence cannot be proved (see
set theory [IV.22 §5.2]). Lebesgue himself remained
skeptical about an unlimited use of set-theoretical prin-
ciples such as the axiom of choice. He held a restric-
tive view of the “existence” of mathematical objects by
making “definability” the touchstone for his empiricist
philosophy of mathematics.

Lebesgue’s integral—the idea of which was paral-
leled, although not in such depth, in the work of
the English mathematician W. H. Young—served as a
sophisticated stimulus to developments in harmonic
and functional analysis (e.g., the Lp spaces of riesz
[VI.74] (1909)). Generalizations to functions defined on
n-dimensional space, proposed by Lebesgue himself
(1910), contributed to even more general theories of
integrals, e.g., the theory of Radon (1913).

Although it took several decades for the importance
of Lebesgue’s integral to become widely recognized, its
significance for applications, especially in the analysis
of discontinuous and statistical phenomena of nature
and in probability theory, could not be ignored in the
long run.

Further Reading

Hawkins, T. 1970. Lebesgue’s Theory of Integration: Its Ori-
gins and Development. Madison, WI: University of Wiscon-
sin Press.

Lebesgue, H. 1972–73. Œuvres Scientifiques en Cinq Vol-
umes. Geneva: Université de Genève.

Reinhard Siegmund-Schultze
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VI.73 Godfrey Harold Hardy
b. Cranleigh, England, 1877; d. Cambridge, 1947
Number theory; analysis

Hardy was the most influential mathematician in

Britain in the twentieth century. With the exception of

the years from 1919 to 1931, when he was the Savil-

ian professor of geometry in Oxford, he spent his adult

life in Cambridge, where from 1931 until his retirement

in 1942 he was the Sadleirian professor of pure math-

ematics. He became a Fellow of the Royal Society in

1910 and was awarded a Royal Medal in 1920 and the

Sylvester Medal in 1940. He died on the day the Royal

Society’s highest honor, the Copley Medal, was to be

presented to him.

At the beginning of the twentieth century, the stan-

dard of mathematical analysis was rather low in Britain;

Hardy did much to remedy this situation, not only

through his research, but also by publishing A Course of

Pure Mathematics in 1908. This book, which he wrote

as “a missionary talking to cannibals,” had a tremen-

dous influence on several generations of mathemati-

cians in the United Kingdom. Unfortunately, Hardy’s

love of pure mathematics, and analysis in particular,

somewhat stifled the growth of applied mathematics

and algebraic subjects for several decades.

In 1911 he began a long collaboration with little-

wood [VI.79], with whom he wrote almost one hun-

dred papers: this partnership is generally considered

to have been the most fruitful in the history of math-

ematics. They worked on convergence and summabil-

ity of series, inequalities, additive number theory

[V.30] (including Waring’s problem and Goldbach’s con-

jecture), and Diophantine approximation.

Hardy was one of the first to do important work on

the riemann hypothesis [IV.2 §3] when, in 1914, he

proved that the zeta function ζ(s) = ζ(σ + it) has

infinitely many zeros on the critical line σ = 1
2 (see

littlewood [VI.79]). Later, with Littlewood, he proved

deep extensions of this result.

From 1914 to 1919 he collaborated with the

largely self-taught Indian genius, srinivasa ramanu-

jan [VI.82]. They wrote five papers, the most famous

of which is about p(n), the number of partitions of n.

This is a rapidly growing function: p(5) = 7 but

p(200) = 3 972 999 029 388.

The generating function [IV.18 §§2.4, 3] of p(n),
that is,

f(z) = 1+
∞∑
n=1

p(n)zn,

is equal to 1/((1− z)(1− z2)(1− z3) · · · ), so

p(n) = 1
2π i

∫
Γ

f (z)
zn+1

dz,

where Γ is a circle about the origin of radius just less
than 1. In 1918, Hardy and Ramanujan not only gave
a rapidly convergent asymptotic formula for p(n) but
also showed that, for n large enough, p(n) could be
calculated exactly by taking the integer nearest to the
sum of the first few terms. In particular, p(200) can be
computed from the first five terms.

Hardy and Ramanujan proved their asymptotic for-
mula for p(n)with the aid of the “circle method”; later,
Hardy and Littlewood developed this method into one
of the most powerful tools in analytic number theory. In
order to estimate contour integrals like the one above,
Hardy and Littlewood found it advisable to break up
the circle of integration in a subtle way.

Another Hardy–Ramanujan result concerns the num-
berω(n) of distinct prime divisors of a “typical” num-
ber n. They proved that a “typical” number n has about
log logn distinct prime factors in a certain precise
sense. In 1940 Erdős and Kac sharpened and extended
this result by showing that additive number-theoretic
functions like ω(n) obey the gaussian law [III.73 §5]
of errors: this gave birth to the important field of
probabilistic number theory.

Hardy’s name has been attached to several con-
cepts and results, including Hardy spaces, Hardy’s
inequality, and the hardy–littlewood maximal the-
orem [IV.11 §3]. For 0 < p � ∞ the Hardy space Hp

consists of functions analytic in the unit disk that are
bounded in various ways; in particular, H∞ consists
of bounded analytic functions. Hardy and Littlewood
deduced fundamental properties ofHp from their max-
imal theorem, which relates a function to its “radial
limits” at the boundary of the disk. The theory of Hp

spaces has found numerous applications not only in
analysis, but also in probability theory and control
theory.

Hardy and Littlewood loved inequalities of all kinds;
their book on the subject with George Pólya, an instant
classic the moment it was published in 1934, greatly
influenced the development of hard analysis.

Although Hardy was fiercely proud of the purity of
his mathematics, in a paper published in 1908 he for-
mulated the extension of the Mendelian law about the
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proportions of dominant and recessive characters. This

law, which later became known as the Hardy–Weinberg

law, refuted the idea “that a dominant character should

show a tendency to spread over a whole population, or

that a recessive should tend to die out.” In a later arti-

cle he dealt a severe blow to eugenics by giving a sim-

ple mathematical argument that showed the futility of

forbidding people with “undesirable” characteristics to

breed.

In his interest in mathematical philosophy, Hardy

was a disciple of russell [VI.71], whose political views

he also shared. He was a secretary of the committee

which forced the abolition of the order of merit in

the Mathematical Tripos through a reluctant Senate in

1910, and many years later he fought hard for the abo-

lition (not reform!) of the Mathematical Tripos itself,

which he considered to be harmful to mathematics in

the United Kingdom. After World War I, Hardy led the

British efforts to heal the wounds of the international

mathematical community, and with the advent of the

Nazi persecutions on the Continent in the early 1930s,

he was an important figure in an extensive network

finding jobs for refugee mathematicians in the United

States, Britain, and the Commonwealth. He was a great

supporter of the London Mathematical Society: he was

not only one of the secretaries for close to twenty years,

but also its president for two terms.

Hardy was a militant atheist; as an affectation, he

liked to talk of God as his personal enemy. He was a

great conversationalist, and was fond of various intel-

lectual games, like putting together cricket teams of

bores, bogus poets, Fellows of a Cambridge college, and

so on. He loved ball games, especially cricket, baseball,

bowls (with the curved woods of his college), and real

tennis (as opposed to lawn tennis); to praise people, he

frequently likened them to outstanding cricketers.

He had an exceptional gift for collaboration and

launching young mathematicians on their research

careers. He was a master not only of mathematics, but

also of English prose; he was lively and charming, and

left a lasting impression even on his casual acquain-

tances. His poetic book A Mathematician’s Apology,

written toward the end of his life, gives a rare insight

into the world of a mathematician.

Further Reading

Hardy, G. H. 1992. A Mathematician’s Apology, with a fore-
word by C. P. Snow. Cambridge: Cambridge University
Press. (Reprint of the 1967 edition.)

Hardy, G. H., J. E. Littlewood, and G. Pólya. 1988. Inequalities.
Cambridge: Cambridge University Press. (Reprint of the
1952 edition.)

Béla Bollobás

VI.74 Frigyes (Frédéric) Riesz
b. Györ, Hungary, 1880; d. Budapest, 1956
Functional analysis; set theory; measure theory

After being educated at Budapest University and else-
where in Europe, Riesz was appointed in 1911 to the
University of Kolozsvár (Hungary), which moved in
1920 to become Szeged University; he served twice
as Rector. He returned to Budapest in 1946. Most of
Riesz’s research work lay in mathematical analysis
enriched with techniques from set and measure theory,
and functional analysis.

One of Riesz’s famous results was the converse of
a generalization of Parseval’s theorem for fourier
series [III.27]: given a sequence of orthonormal func-
tions on a finite interval, and a sequence a1, a2, . . . of
real numbers, there exists a function f that can be
expanded as a Fourier-type series with respect to those
functions with thear as coefficients if and only if

∑
r a2

r
is convergent; further, f is itself square summable. He
proved the theorem in 1907, simultaneously with the
German mathematician Ernst Fischer; so it is named
after both of them.

Two years later Riesz found the “representation the-
orem” named after him. It states that a continuous lin-
ear functional that maps continuous functions F over
a finite interval I onto the real numbers can be repre-
sented as a Stieltjes integral of F over I with respect to
a function of bounded variation. It was to be a fertile
source of applications and generalizations.

Riesz found these two theorems partly in connection
with his study of integral equations, a topic then being
developed by hilbert [VI.63], and partly in connection
with his study of functional analysis as formulated by
Maurice Fréchet. Hilbert’s work had led him to con-
sider infinite matrices, which were then little studied:
Riesz wrote the first monograph on them, Les Systèmes
d’Équations Linéaires à une Infinité d’Inconnues (1913).
He also studied the theory of Lp spaces for p > 1
(that is, spaces of functions f such that fp is measure-
integrable over some specified interval) and their dual
spaces Lq, where 1/p + 1/q = 1; and he worked on
applying his and Fischer’s theorem to the self-dual
space, now known as hilbert space [III.37], that is
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given by p = 2. Later he laid some of the foundations

of complete spaces (later known as banach spaces

[III.64]), and applied functional analysis to ergodic

theory. He summed up much of his work in these

areas in the book Leçons d’Analyse Fonctionnelle (1952),

written with his student B. Szökefnalvy-Nagy.

All this work constituted important contributions to

theories already laid out in principle by various other

mathematicians. Riesz achieved groundbreaking work

on subharmonic functions: he modified the dirich-

let problem [IV.12 §1] by allowing the function that

extends a given function into a domain to be subhar-

monic (“locally less than harmonic”) instead of har-

monic. He studied some of the applications of these

functions to potential theory.

Riesz also studied some foundational aspects of set

theory, especially types of ordering, continuity, and

generalized Heine–Borel covering theorems. He also

reformulated the lebesgue integral [III.57] in a con-

structive manner, using step functions and sets of mea-

sure zero as primitive notions, and avoiding measure

theory [III.57] as much as possible.

Further Reading

Riesz, F. 1960. Oeuvres Complètes, edited by Á. Császár, two
volumes. Budapest: Akademiai Kiado.

Ivor Grattan-Guinness

VI.75 Luitzen Egbertus Jan Brouwer
b. Overschie, the Netherlands, 1881;
d. Blaricum, the Netherlands, 1966
Lie groups; topology; geometry; intuitionistic mathematics;
philosophy of mathematics

Brouwer entered the University of Amsterdam at the

age of sixteen, where his teacher was D. J. Korteweg.

The young Brouwer taught himself modern mathemat-

ics, as well as a fair amount of philosophy. As a grad-

uate student he published some original papers on the

decomposition of rotations in four-dimensional space.

He also published a brief monograph on mysticism that

contained a number of ideas that became prominent

in his later philosophy. In his dissertation of 1907 he

solved a special case of hilbert’s [VI.63] fifth problem

(the elimination of differentiability conditions from the

axioms of lie groups [III.50 §1]), and he presented his

first program for “constructive mathematics.”

The basis of his mathematics was the ur-intuition
of mathematics: the continuum and the natural num-
bers are simultaneously created from intuition. Mathe-
matical objects (including proofs) are mental creations.
After sketching the development of the basic parts of
mathematics, Brouwer went on to criticize contempo-
rary mathematics for transcending the bounds of the
human mind. In particular, he criticized cantor [VI.54]
for introducing sets beyond human recognition, and
Hilbert for the axiomatic method and for formalism. He
criticized the latter’s consistency program and denied
that “consistency implies existence.”

In his 1908 paper “The unreliability of the logical
principles,” Brouwer explicitly rejected the principle of
the excluded middle as unreliable (and also rejected
Hilbert’s dogma that “all mathematical problems can be
solved in one way or another”). Between 1909 and 1913
Brouwer worked in topology. He continued his work
on Lie groups, and noted that topology (in the style of
Cantor–Schoenflies) was in need of a sound basis. In his
paper “Zur Analysis Situs” (1910), he spelled out a num-
ber of notions and examples (curves, indecomposable
continua, three domains with one common boundary).
This was the beginning of his revision of set-theoretic
topology. At the same time he started two lines of
research: one on homeomorphisms from surfaces to
themselves, establishing fixed-point theorems [V.13]
on the sphere and the plane translation theorem (a char-
acterization of fixed-point free homeomorphisms of
the Euclidean plane); and one on vector distributions
on the sphere, yielding existence theorems for singu-
lar points, and a characterization of these points. The
best-known theorem in this area is Brouwer’s “hairy
ball theorem” (no matter how one combs a hairy ball,
there is always a crown). In 1910 Brouwer published a
direct topological proof of the Jordan curve theorem,
which remains one of the most elegant proofs. The so-
called new topology opened with Brouwer’s “invariance
of dimension” theorem (1910). He then laid the basis
for topology of manifolds [I.3 §6.9], where his basic
tool was the Brouwer degree of continuous mappings.
The basic paper is his “Über Abbildungen von Man-
nigfaltigkeiten” (“On mappings of manifolds,” 1911),
which contained most of the tools for the new topology,
e.g., simplicial approximation, mapping degree, homo-
topy [IV.6 §§2, 3], singularity index (in his own termi-
nology), and also the fundamental properties of the
new notions.

Brouwer’s new topological insights and techniques
led him to a wealth of spectacular results: the Brouwer



�

VI.76. Emmy Noether 807

fixed-point theorem, the invariance-of-domain the-
orem, the higher-dimensional Jordan theorem, and
the definition of dimension, including the soundness
proof (that Rn has dimension n). He also applied his
invariance-of-domain theorem to the theory of auto-
morphic functions and uniformization, thus proving
the correctness of the Klein–Poincaré continuity method
(1912).

During World War I Brouwer returned to the foun-
dations of mathematics; he conceived his mature
intuitionistic mathematics [II.7 §3.1], which fully
exploited the potential of constructive mathematics,
based on mentally created objects and notions. The key
notions were (infinite) choice sequences (i.e., sequences
determined by more or less free choices (by the
mathematician) of mathematical objects, say natural
numbers), well-orderings, and intuitionistic logic. In
“Brouwer’s universe” strong results can be obtained:
the “continuity principle,” for example, which says
that a function that assigns natural numbers to choice
sequences is continuous (i.e., the output is determined
by a finite piece of the (infinite) input); and certain
transfinite induction principles, in particular the novel
principle of “bar-induction.” With the help of these
principles he showed that (i) all real functions on a
closed segment are uniformly continuous and (ii) the
continuum is indecomposable (cannot be split). This
enabled him to refute the principle of the excluded
middle in a strong sense: it is not the case that each
real number is zero or nonzero. In Brouwer’s universe
many classical theorems, such as the intermediate-
value theorem and the Bolzano–Weierstrass theorem,
fail.

Brouwer’s mathematical universe lacked the logical
“principle of the excluded middle,” but instead it had
certain strong constructive principles at its disposal,
which turned it into an alternative to the traditional
universe, with a comparable strength.

His foundational program brought him into conflict
with Hilbert (“intuitionism versus formalism”). In 1928
matters came to a head and, in an incident famously
described by Einstein as “the war of frogs and mice,”
Hilbert succeeded in getting Brouwer removed (after
fourteen years’ service) from the editorial board of
Mathematische Annalen.

Brouwer was unconventional and had wide-ranging
interests: art, literature, politics, philosophy, mysti-
cism. He was a staunch internationalist.

He was a professor at the University of Amsterdam
from 1912 until 1951.

Further Reading
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VI.76 Emmy Noether
b. Erlangen, Germany, 1882; d. Bryn Mawr, Pennsylvania, 1935
Algebra; mathematical physics; topology

Noether began her career with a feat of classical alge-
bra, which she transmuted into the noether conser-
vation theorems [IV.12 §4.1] for physics. She became
a founder of modern abstract algebra and the leader in
spreading that algebra all across mathematics.

Her father Max Noether and family friend Paul Gor-
dan were Erlangen mathematicians and favored educat-
ing women. Gordan made heroic calculations of invari-
ants in algebra. A quadratic polynomial Ax2 + Bx +
C has essentially just one invariant, the discriminant√
B2 − 4AC used in the quadratic formula. As Gordan’s

student, Noether found 331 independent invariants of
degree-four polynomials in three variables, and proved
that all others depend on them. It was impressive,
though not, as it turned out, groundbreaking.

hilbert [VI.63] brought her to Göttingen in 1915 to
work on invariants for differential equations in gen-
eral relativity by reducing them to algebra. That year
she found her conservation theorems, which show that
the conserved quantities of a physical system corre-
spond to its symmetries. For example, if a system has
laws unchanging with time, so that a time shift is a
symmetry of the system, then energy is conserved in
the system (Feynman 1965, chapter 4). These theorems
became fundamental in Newtonian physics and espe-
cially quantum mechanics. They also showed that gen-
eral relativity admits conservation laws only in special
cases.

Noether saw the creation of general abstract alge-
bra as her life’s work. Instead of classical algebra with
real numbers, or complex numbers, and polynomials
using them, she would study any system satisfying
abstract rules such as the ring axioms [III.83] or the
group axioms [I.3 §2.1]. Concrete examples include
the ring of all algebraic functions defined on a space
(such as a sphere), and the group of all symmetries
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of a given space. She largely created the now-standard

style of abstract algebra. Her ideas were also adopted in

algebraic geometry [IV.4] where every abstract ring

appears as the ring of functions on a corresponding

space called a scheme [IV.5 §3].

She turned her attention away from operations on

elements of a system, like plus and times, and focused

instead on relating whole systems to each other, such

as ringsR,R′ related by ring homomorphisms [I.3 §4.1]

from R to R′. She organized all algebra around her

homomorphism and isomorphism theorems. Her aim

was to show how ideals [III.83 §2] and their cor-

responding homomorphisms could replace equations

between elements as the basic tools for stating and

proving theorems. (This approach was to come to

fruition in the 1950s, with the advent of Grothendieck-

style homological algebra.)

Topologists studied topological spaces [III.92] by

looking at continuous functions from one space to

another. Noether saw how her algebraic methods could

apply here, and convinced young topologists in the

1920s to use them in algebraic topology. Each topo-

logical space S has homology groups [IV.6 §4] HnS
with the property that continuous functions from S to

S′ induce group homomorphisms from HnS to HnS′.
Theorems of topology follow by abstract algebra. This

relationship between homomorphisms and continuous

functions is what inspired category theory [III.8].

In the 1930s Noether pursued the algebra of galois

theory [V.24] through a radically simplified abstract

theory of groups acting on rings. The applications are

quite arcane, beginning with class field theory [V.31]

and eventually growing into group cohomology and

many other algebraic and topological methods used in

arithmetic geometry [IV.5].

Exiled from Germany by the Nazis in 1933, she died

following surgery in the United States, at the height of

her creative power.

Further Reading
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VI.77 Wacław Sierpiński
b. Warsaw, 1882; d. Warsaw, 1969
Number theory; set theory; real functions; topology

Sierpiński studied mathematics at the Russian univer-

sity in Warsaw under the guidance of Georgii Voronoi.

In his first paper (1906), he improved gauss’s [VI.26]

estimate for the difference between the number of lat-

tice points inside the circle x2 + y2 � N and the area

of the circle, showing that it is O(N1/3).
He became an associate professor at the University

of Lwów in 1910, at which point his interest shifted

to set theory, on which he wrote a textbook in 1912,

only the fifth book ever to be published on the subject.

His first important results on set theory were obtained

during World War I, which he spent in Russia: in 1915–

16 he constructed two curves that were among the

first published examples of fractals, one known now as

Sierpiński’s gasket and the other as Sierpiński’s carpet.

The latter is the set of all points (x,y) in the square

[0,1]2 such that, when written out as base 3 decimals,

there is no position in which both x and y have a 1.

It is also known as Sierpiński’s universal curve, since it

contains a homeomorphic image of every planar contin-

uum (a continuum is a compact connected set) without

interior points.

In 1917, Souslin had shown that projections of borel

sets [III.57] (from the plane into the line, say) need not

be Borel. Together with Lusin, Sierpiński proved in 1918

that in fact every analytic set (a projection of a Borel

set) is the intersection of ℵ1 Borel sets (where ℵ1 is

the smallest uncountable cardinal). That same year he

also published an important study of the axiom of

choice [III.1] and the role it plays in set theory and

analysis, and proved that no continuum can be decom-

posed into countably many pairwise disjoint nonempty

closed subsets.

In 1919 Sierpiński was made a full professor at

the new Polish University of Warsaw and in 1920 he

founded (together with Janiszewski and Mazurkiewicz)

the first specialized mathematical journal, Fundamenta

Mathematicae, which was devoted to set theory, topol-

ogy, and applications. He remained its editor until

1951. Among his results published in volume 1 are a

proof that every countable subset of Rn without iso-

lated points is homeomorphic to the rationals; a com-

plete classification of countable compact subsets of

Rn, obtained jointly with Mazurkiewicz; and a neces-
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sary and sufficient condition for a subset of Rn to be a
continuous image of an interval.

Using the continuum hypothesis [IV.22 §5] (ℵ1 =
2ℵ0 ), he constructed an uncountable set [III.11] of
reals, now known as a Sierpiński set, such that every
uncountable subset of it is nonmeasurable (1924); and
also a one-to-one mapping of the line into itself that
maps sets of measure zero [III.57] to sets of first cate-
gory, in such a way that every set of the first category is
obtained (1934). The former result is highly paradoxical
(no explicit example of a nonmeasurable set is known);
the latter has led, thanks to Erdős, to the following dual-
ity principle. Let P be any proposition involving solely
the notions of measure zero, first category, and pure
set theory. Let P∗ be the proposition obtained from P
by interchanging the terms “set of measure zero” and
“set of first category.” Then P and P∗ are equivalent,
assuming the continuum hypothesis.

Sierpiński wrote a monograph devoted to the con-
tinuum hypothesis in 1934, entitled Hypothèse du
Continu. Together with tarski [VI.87] he introduced
the notion of strongly inaccessible cardinals
[IV.22 §6] (1930), meaning cardinals m that cannot be
obtained as products of fewer than m cardinals less
than m. He also worked in Ramsey theory, giving a
limitation on infinite extensions to Ramsey’s theorem.
To be precise, Ramsey had proved that, whenever one
finitely colors the pairs from the natural numbers, there
is an infinite monochromatic subset (i.e., a subset all of
whose pairs have the same color); Sierpiński showed
that, by contrast, one can 2-color the pairs from a
ground set of size ℵ1 in such a way that there is no
monochromatic subset of size ℵ1. He also deduced
the axiom of choice from the generalized continuum
hypothesis (formulated without cardinals in 1947).

In his old age he returned to number theory and
became the editor of Acta Arithmetica (1958–69).

Further Reading

Sierpiński, W. 1974–76. Oeuvres Choisies. Warsaw: Polish
Scientific.

Andrzej Schinzel

VI.78 George Birkhoff
b. Oversiel, Michigan, 1884; d. Cambridge, Massachusetts, 1944
Difference equations; differential equations; dynamical systems;
ergodic theory; relativity theory

At the International Congress of Mathematicians in

1924 the Russian mathematician A. N. Krylov described

Birkhoff as “the poincaré [VI.61] of America.” It was an

apt description and one that Birkhoff would have rel-

ished, for he was deeply influenced by Poincaré’s work,

in particular his great treatise on celestial mechanics.

Birkhoff studied first at Chicago under E. H. Moore

and Oskar Bolza, and then at Harvard under W. F.

Osgood and Maxime Bôcher. Returning to Chicago, he

was awarded his doctorate in 1907 for a thesis on

asymptotic expansions, boundary-value problems, and

Sturm–Liouville theory. In 1909, after two years at

Wisconsin under E. B. Van Vleck, he went to Prince-

ton, where he formed a close association with Oswald

Veblen. In 1912 he moved to Harvard and remained

there, in professorial positions, until his sudden death

in 1944. Birkhoff was steadfast in his support for the

development of American mathematics, supervising

forty-five doctoral students, including Marston Morse

and Marshall Stone, and holding many distinguished

positions within the scientific community. He was gen-

erally recognized, both at home and abroad, as the

leading American mathematician of his generation.

Birkhoff first came to prominence with a memoir

on the theory of linear difference equations (1911),

and he continued to publish on the topic intermit-

tently throughout his career. Related to this work

were several papers on the theory of linear differen-

tial equations and a paper on the generalized Rie-

mann problem (1913), which concerns complex func-

tions defined by differential equations. (Until recently

it was believed that the latter paper included a solution

to Hilbert’s twenty-first problem, the Hilbert–Riemann

problem, but in 1989 Bolibruch proved this belief to be

mistaken.)

Throughout his life Birkhoff’s deepest interest in

analysis lay in dynamical systems [IV.14] and it was

here that he enjoyed his greatest success. His over-

arching aim was to obtain a reduction of the most

general dynamical system to a normal form from

which a complete qualitative characterization could

be deduced. As with Poincaré, the study of periodic

motions was central to his work, and he wrote exten-

sively on the three-body problem [V.36] as well as on

questions connected with stability. Of his memoir on

dynamical systems with two degrees of freedom (1917),

which won the Bôcher prize in 1923, he is said to have

remarked that it was as good a piece of work as he was

ever likely to do. Another celebrated achievement was
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his proof of Poincaré’s topological “last geometric the-

orem,” the publication of which brought him immedi-

ate international acclaim (1913). (The theorem states

that any one-to-one area-preserving transformation of

an annulus that moves the boundary circles in oppo-

site directions must have at least two fixed points, and

its importance lies in the fact that its proof implies

the existence of periodic orbits in the restricted three-

body problem.) He introduced several new concepts

into dynamical theory, including “recurrent motion”

(1912) and “metric transitivity” (1928), and promoted

the use of symbolism in dynamics (1935), the latter

helping to pave the way for the formalized develop-

ment of symbolic dynamics (the branch of dynami-

cal systems invented by hadamard [VI.65] (1898) that

deals with spaces consisting of infinite sequences of

symbols) by Marston Morse and Gustav Hedlund at the

end of the 1930s. His book Dynamical Systems (1927)

was the first book on the qualitative theory of systems

defined by differential equations. Awash with topolog-

ical ideas, it provides a connected account of much of

his earlier research.

Closely related to Birkhoff’s dynamical research was

his work on ergodic theory [V.11]. Stimulated by

the theorems of Bernard Koopman and von neumann

[VI.91], Birkhoff presented his own ergodic theorem in

1931, a fundamental result both for statistical mechan-

ics and for measure theory [III.57], the proof of which

combined Poincaré’s topological approach with the

use of Lebesgue measure theory. (Roughly speaking,

Birkhoff’s ergodic theorem states that for any dynam-

ical system given by differential equations that pos-

sesses an invariant volume integral, there is a defi-

nite “time probability” p that any moving point, except

those of a set of measure zero, will be in an assigned

region v . In other words, if t is a total elapsed time

interval and t∗ is the portion of time during which the

point is in v , then lim t∗/t = p.)

In the creation of physical theories Birkhoff advo-

cated mathematical symmetry and simplicity above

physical intuition. His books on relativity theory (which

were among the first on the subject in English), Relativ-

ity and Modern Physics (1923) and The Origin, Nature,

and Influence of Relativity (1925), were characteristi-

cally original and widely read. At the time of his death

he was engaged in developing a new theory of matter

(taken to be a perfect fluid), electricity, and gravitation,

which he had first proposed in 1943 and which, unlike

Einstein’s theory, was based on flat spacetime.

Birkhoff published in several other fields, including

the calculus of variations [III.96] and map color-

ing, and he was the coauthor (with Ralph Beatley) of

a textbook of elementary geometry (1929). His paper

(with O. D. Kellogg) on fixed points in function space

(1922) provided a stimulus for the later work of Leray

and Schauder.

Birkhoff had a lifelong interest in the arts and was

fascinated by the problem of analyzing the fundamen-

tals of musical and artistic form. In later life he lectured

extensively on the application of mathematics to aes-

thetics, and his book Aesthetic Measure (1933) enjoyed

popular success.

Further Reading

Aubin, D. 2005. George David Birkhoff. Dynamical systems.
In Landmark Writings in Western Mathematics 1640–
1940, edited by I. Grattan-Guinness, pp. 871–81. Amster-
dam: Elsevier.

VI.79 John Edensor Littlewood
b. Rochester, England, 1885; d. Cambridge, England, 1977
Analysis; number theory; differential equations

Littlewood made important contributions to many

branches of analysis and analytic number theory,

including Abelian and Tauberian theory, the riemann

zeta function [IV.2 §3], waring’s problem, gold-

bach’s conjecture [V.30], harmonic analysis, proba-

bilistic analysis, and nonlinear differential equations.

He loved concrete problems such as the riemann

hypothesis [IV.2 §3]: he was arguably the best problem

solver of his generation. Much of his work was done in

collaboration with hardy [VI.73]: the Hardy–Littlewood

partnership dominated the mathematical scene in the

United Kingdom for a third of a century. With the excep-

tion of three years in Manchester, he lived all his adult

life in Trinity College, Cambridge. From 1928 until his

retirement in 1950, he was the first holder of the Rouse

Ball Chair of Mathematics in Cambridge.

His first major result, published in 1911, was a deep

converse of abel’s [VI.33] classical theorem that if a

series of reals
∑
an sums to A, then

∑
anxn also tends

to A as x → 1 from below. In general, the converse is

false, but Tauber had proved that it is true if nan → 0.

Littlewood extended this by weakening the condition

to nan being bounded. This result gave rise to an

extended area of analysis called Tauberian theorems.
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In the theory of functions, he did elegant, important,
and innovative work on injective holomorphic func-
tions, the minimum modulus, and subharmonic func-
tions. In particular, he worked on the conjecture that
Bieberbach made in 1916 that if f(z) = z + a2z2 +
a3z3 + · · · is an injective holomorphic function
[I.3 §5.6] in the open disk ∆ = {z : |z| < 1}, then
|an| � n for every n. Littlewood proved in 1923 that
|an| < en for every n. After many improvements by
a number of people, the constant e was eventually
reduced to a value close to 1, before de Branges proved
the full conjecture in 1984.

Littlewood had a lifelong interest in the zeta func-
tion. This is defined in the half-plane Re(s) > 1 by the
absolutely convergent series

ζ(s) = ζ(σ + it) = 1
1s
+ 1

2s
+ 1

3s
+ · · · ,

and in the whole complex plane by analytic continua-
tion. In fact, the second problem suggested to him by
his supervisor was the Riemann hypothesis that the
zeros of ζ(s) in the “critical strip” 0 < σ < 1 are on
the “critical line” σ = 1

2 . If true, this famous conjec-
ture would imply deep results about the distribution of
primes. Most of Littlewood’s work on the zeta function
was done in collaboration with Hardy and concerned
analytic properties of ζ(s).

In addition to his work with Hardy, he also made
use of the zeta function to prove a striking theorem
about the error term in the prime number theorem
[V.29]. The prime number theorem itself had been
proved by hadamard [VI.65] and, independently, by
de la vallée poussin [VI.67] in 1896. This funda-
mental result states that π(x), the number of primes
less than x, is asymptotic to the “logarithmic inte-
gral” li(x) = ∫ x

0 (1/ log t)dt. There was much numer-
ical evidence that π(x) < li(x) for all x; in partic-
ular, by 1914 this inequality was known to hold for
all 2 � x � 107. Nevertheless, Littlewood proved that
li(x)−π(x) changes sign infinitely often. Interestingly,
he did not obtain any explicit bound for a value x with
π(x) > li(x); the first such bound, given by Skewes in
1955, was

1010101000

.

Hardy and Littlewood proved important approximate
formulas for ζ(s), which they used to deduce that, in
a certain sense, ζ(s) is “small” on the critical line; this
was viewed as a breakthrough. Littlewood also studied
the number of zeros of ζ(s) in a rectangle 0 < σ < 1,
0 < t � T .

In 1770, in his Meditationes Algebraicae, waring
[VI.21] asserted on the basis of empirical evidence that
every natural number is the sum of nine nonnegative
integral cubes, nineteen fourth powers, and so on: for
every natural number k there is a minimal integer g(k)
such that every natural number is the sum of g(k)
nonnegative kth powers. In 1909 hilbert [VI.63] used
complicated algebraic identities to prove that g(k)
indeed exists, but the bounds he obtained on g(k)were
rather weak. In the 1920s, in a groundbreaking series of
papers entitled Partitio Numerorum, Hardy and Little-
wood introduced an analytic method that could be used
to tackle not only Waring’s problem of determining
g(k), but many other problems as well. The origins of
this “circle method” of Hardy and Littlewood go back to
the work of Hardy and ramanujan [VI.82] on the par-
tition function, but the technical difficulties that Hardy
and Littlewood had to overcome were much greater
than in that earlier work. This method enabled them to
show, for example, that every sufficiently large number
is the sum of nineteen fourth powers. (In 1986, Balasub-
ramanian, Dress, and Deshouillers proved that g(4) is
indeed 19.) More importantly, they gave an asymptotic
estimate for the number of representations of n as a
sum of at most s positive kth powers.

The circle method also provides a possible line of
attack on Goldbach’s conjecture that every even num-
ber greater than two is the sum of two primes, and gives
strong heuristic evidence for the strengthened version
of the twin-prime conjecture that the number of primes
p � n such that p + 2 is also a prime is asymptotic to
c
∫n
2 (1/(log t)2)dt for a constant c > 0. The so-called

k-tuple conjecture of Hardy and Littlewood is a fur-
ther extension of this conjecture for “constellations of
primes.”

Much of Littlewood’s remarkable work on harmonic
analysis was done in collaboration with R.E.A.C. Paley in
the early 1930s. The starting point of the littlewood–
paley theory [VII.3 §7] is an inequality concerning
trigonometric polynomials. Roughly speaking, Little-
wood and Paley related the size of a function to
the projection of its fourier coefficients [III.27]
onto various intervals. The original one-dimensional
Littlewood–Paley theory has been extended to higher
dimensions, arbitrary intervals, and even to tensors
on two-dimensional compact manifolds; the theory has
connections to such varied topics as wavelets [VII.3],
semigroups acting on Lp-spaces of functions with val-
ues in a banach space [III.64], and the geometry of null
hypersurfaces for rough Einstein metrics.
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Littlewood was also a formidable applied mathe-
matician. During World War I he worked on ballistics,
and during World War II, with his collaborator Mary
Cartwright, he worked on the van der Pol oscillator
in order to help the development of radio. Cartwright
and Littlewood were among the first to combine topo-
logical and analytical methods to tackle differential
equations, and discovered many of the phenomena
that later became known as “chaos”: they proved that
chaos could arise even in equations originating in real
engineering problems.

From 1910 until his death sixty-seven years later, Lit-
tlewood lived in the same set of spacious rooms in Trin-
ity College, Cambridge. He was a great raconteur: after
almost every dinner he was to be found in the Combi-
nation Room drinking claret in the company of Fellows
and any mathematicians who might be visiting. In spite
of his tremendous output, he suffered for decades from
severe bouts of depression, from which he was cured
only in 1957. He practiced his belief that mathemati-
cians should take a vacation of at least twenty-one days
a year during which they should do no mathematics. He
was a keen and skilled rock climber and an avid Alpine
skier. Although not an active musician, on most days
he listened to Bach, Beethoven, and Mozart for hours
on end.

In 1943, when he was awarded the Sylvester Medal
of the Royal Society, the citation read: “Littlewood,
on Hardy’s own estimate, is the finest mathematician
he has ever known. He was the man most likely to
storm and smash a really deep and formidable prob-
lem; there was no one else who could command such a
combination of insight, technique and power.”

Further Reading

Littlewood, J. E. 1986. Littlewood’s Miscellany, edited and
with a foreword by B. Bollobás. Cambridge: Cambridge
University Press.

Béla Bollobás

VI.80 Hermann Weyl
b. Elmshorn, Germany, 1885; d. Zürich, 1955
Analysis; geometry; topology; foundations; mathematical physics

Weyl studied mathematics at Göttingen under hilbert
[VI.63], klein [VI.57], and minkowski [VI.64] between
1904 and 1908. His first teaching positions were at Göt-
tingen (1910–13) and ETH Zürich (1913–30). In 1930 he

accepted the call to Göttingen as Hilbert’s successor.
After the rise to power of the Nazis, he emigrated to
the United States and became a member of the newly
founded Institute of Advanced Studies at Princeton
(1933–51).

Weyl made contributions to real and complex analy-
sis, geometry and topology, lie groups [III.50 §1], num-
ber theory, the foundations of mathematics, mathemat-
ical physics, and philosophy. He contributed at least
one book to each of these fields, publishing thirteen in
total. Together with his other technical and conceptual
innovations, these books were all of lasting influence:
many had a pronounced and immediate effect.

His early research dealt with integral operators and
differential equations with singular boundary condi-
tions. His fame came later, with his book The Con-
cept of a Riemann Surface (1913). This grew out of
a lecture course in the winter of 1910–11 and built
upon Klein’s intuitive treatment of riemann’s [VI.49]
geometric function theory and Hilbert’s justification of
the dirichlet principle [IV.12 §3.5]. Here Weyl gave
a new presentation of the properties of riemann sur-
faces [III.81], which became highly influential for the
geometric function theory of the twentieth century.

His second book, The Continuum (1918), marked
the beginning of Weyl’s interest in the foundations of
mathematics. He was critical of Hilbert’s “formalist”
program for an axiomatic foundation of mathematics,
and explored the possibility of a semi-formalized arith-
metical approach to a strictly constructivist foundation
of real analysis. Shortly thereafter he shifted toward
brouwer’s [VI.75] intuitionistic program and attacked
Hilbert’s foundational views even more strongly in a
famous article of 1921. In the late 1920s he developed
a more balanced view of the foundational questions.
After World War II he returned to a weak preference
for his arithmetical constructive approach of 1918.

At the same time as he was working on foundational
questions Weyl took up Einstein’s theory of general rel-
ativity and wrote his third book, Space–Time–Matter.
It was first published in 1918, and appeared in five
successive editions until 1923. This was one of the
first monographs on relativity theory and was among
the most influential. The book represented only the
tip of the iceberg of his contributions to differential
geometry and general relativity. Weyl undertook this
research within a broad conceptual and philosophical
framework. One of the outcomes of this approach was
his Analysis of the Problem of Space (1923), in which he
sketched ideas that would later be analyzed in terms of
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the geometry of fiber bundles [IV.6 §5] and the study
of gauge fields. He had already introduced gauge fields
(and the key idea of a point-dependent rescaling of the
metric) in 1918 for a generalization of riemannian
geometry [I.3 §6.10] and a geometrically unified field
theory of gravity and electromagnetism.

Weyl made his most influential contributions to pure
mathematics around the middle of the 1920s with
his work on the representation theory [IV.9] of
semisimple Lie groups. Combining cartan’s [VI.69]
insights into the representations of lie algebras
[III.50 §2] with methods developed by Hurwitz and
Schur, Weyl used his knowledge of the topology of man-
ifolds and developed the core of the general theory
of representations of Lie groups in a blend of geo-
metric, algebraic, and analytic methods. He extended
and refined this work and it formed the core of his
later book The Classical Groups (1939)—a harvest of
his work and lectures on this topic during his Princeton
years.

Along with all this work, Weyl actively followed the
rise of the new quantum mechanics. In 1927–28 he
gave a lecture course at ETH on the topic, which gave
rise to his next book on mathematical physics, Group
Theory and Quantum Mechanics (1928). Weyl empha-
sized the conceptual role of group methods in the sym-
bolic representation of quantum structures, in partic-
ular the intriguing interplay between representations
of the special linear group and permutation groups
[III.70]. A second step in his gauge theory of the elec-
tromagnetic field was published separately, which gave
rise to a modified gauge theory of electromagnetism.
This was endorsed by leading theoretical physicists,
including Pauli, Schrödinger, and Fock. It served as a
starting point for the next generation of physicists who
developed gauge field theories in the 1950s and 1960s.

Weyl’s research in mathematics and physics was
shaped by his philosophical outlook and he included
his philosophical reflections on scientific activity in
many of his publications. Most influential was his con-
tribution to a philosophical handbook, Philosophy of
Mathematics and Natural Science, originally published
in German in 1927 and translated into English in 1949.
It became a classic in the philosophy of science.
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VI.81 Thoralf Skolem
b. Sandsvaer, Norway, 1887; d. Oslo, 1963
Mathematical logic

Thoralf Skolem was one of the major logicians of the
twentieth century, often a lone voice in his under-
standing of the subtle relationship between abstract
set theory and logic. He also worked on Diophantine
equations and on group theory, but his contributions
to mathematical logic have proved the most lasting. He
taught at Bergen and Oslo, was for a time President of
the Norwegian Mathematical Society and an editor of
its journal, and in 1954 was named a Knight of the
First Class in the Royal Order of St. Olav by the king
of Norway.

In 1915 Skolem extended a result obtained by the
Polish mathematician Leopold Löwenheim. His conclu-
sion (published in 1920 and known as the Löwenheim–
Skolem theorem) says that if a mathematical theory
defined using only the first-order predicate calculus has
a model, then it has a countable model. Here a model is
a set of mathematical objects that obeys the axioms of
the theory (see logic and model theory [IV.23]). Now,
the real numbers are definable in such a theory (for
example, zermelo–fraenkel set theory [IV.22 §3], or
any other axioms for set theory). From this we obtain
the so-called Skolem paradox, that the real numbers
can be defined in a theory with a countable model, even
though it had been known since the time of cantor
[VI.54] that the real numbers are uncountable. How can
this paradox be resolved?

The answer is that one has to be very careful about
what we mean by “countable.” In this strange count-
able model of set theory, we can see that the reals are
countable, but to the model the reals may be uncount-
able. In other words, the actual enumeration of the reals
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that we can see (i.e., the actual bijection between the
reals and the natural numbers) may not belong to the
model: the model can be so “small” that it is missing
some functions. Skolem’s paradox highlights the dif-
ference between the viewpoint from outside the model
and that from inside the model.

Several fundamental aspects of Skolem’s work are
visible in these two results, the Löwenheim–Skolem
theorem and the Skolem paradox. Skolem had real-
ized, long before anyone else, that mathematical the-
ories nearly always have several different models. He
argued that there are axiom systems, and one can prove
theorems in these settings, but what is meant by the
objects that obey these rules will generally vary from
case to case. From this he drew the radical conclu-
sion that attempts to build mathematics on axiomatic
theories were unlikely to succeed (although nowadays,
of course, mathematics built on axiomatic foundations
has become overwhelmingly successful).

Skolem’s insistence on first-order theories, in which
variables may range only over elements, not subsets,
was one that his contemporaries took time to accept.
But that viewpoint, and the great clarity that comes with
it, is today the overwhelmingly dominant one. Skolem
insisted that the only possible logic to use in any inves-
tigation of the foundations of mathematics was first-
order logic [IV.22 §3.2], and that second-order theo-
ries were impermissible in the foundations, precisely
because second-order theories allowed the axioms to
refer to sets, but the nature of sets was, in his view,
one of the topics to be elucidated. Skolem also felt
that, while one can talk of individual objects, talk of all
objects of a certain kind can be problematic if it is too
informal. Indeed, a generation earlier mathematicians
had encountered the paradoxes of naive set theory,
where loose talk about all sets of certain kinds causes
real difficulties: for example, Russell’s paradox of the
set of all sets that are not members of themselves (if it
is a member of itself, then it is not, but if it is not, then
it is).

Skolem’s work is also characterized by a distrust of
the concept of infinity and a preference for finitistic rea-
soning. He was an early advocate of primitive recur-
sion [II.4 §3.2.1], which deals with the theory of what
are called computable functions, as a way of avoiding
paradoxes concerning the infinite.

Further Reading
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VI.82 Srinivasa Ramanujan
b. Erode, India, 1887; d. Madras (now Chennai), India, 1920
Partitions; modular forms; mock theta functions

Ramanujan, a self-taught Indian genius, made monu-
mental contributions to mathematics that set the stage
for many of the breakthroughs in number theory in
the twentieth century. He worked on analytic num-
ber theory, as well as on elliptic functions [V.34],
hypergeometric series, and the theory of continued
fractions [III.22]. Much of this work was carried out
together with his friend, benefactor, and collaborator
g. h. hardy [VI.73].

Hardy and Ramanujan founded the powerful “circle
method” in their remarkable paper that gave an exact
formula forp(n), the number of integer partitions ofn.
Ramanujan independently discovered the two identi-
ties that came to be known as the Rogers–Ramanujan
identities:

1+
∞∑
n=1

qn2

(1− q)(1− q2) · · · (1− qn)

=
∞∏
n=0

1
(1− q5n+1)(1− q5n+4)

,

1+
∞∑
n=1

qn2+n

(1− q)(1− q2) · · · (1− qn)

=
∞∏
n=0

1
(1− q5n+2)(1− q5n+3)

.

These have applications ranging from lie theory
[III.50] to statistical physics. The importance of these
identities relates to the fact that the generating func-
tion [IV.18 §§2.4, 3] for p(n) is

∞∏
n=0

1
1− qn .

Thus, for example, the second identity asserts that the
number of partitions of n into parts all of which are
2 or 3 mod 5 is equal to the number of partitions into
distinct parts, all greater than 1, in which no two parts
are consecutive integers.

In his work on p(n), Ramanujan discovered and
proved many divisibility properties, e.g., that 5 always
divides p(5n+4) and that 7 always divides p(7n+6).
His conjectures on these divisibility properties inspired
the development of extensive methods in modular
forms [III.61], and his last conjecture was finally settled
in 1969 by Oliver Atkin.
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All Ramanujan’s studies involving p(n) concerned
the modular form

η(w) = q1/24
∞∏
n=1

(1− qn), where q = e2π iw.

The relevance of this is that q1/24/η(w) is the generat-
ing function for p(n). Of special interest to Ramanujan
was the arithmetic function τ(n), defined by the 24th
power of η(w): namely,

∞∑
n=1

τ(n)qn = q
∞∏
n=1

(1− qn)24.

Ramanujan conjectured that |τ(p)| < 2p11/2 for every
prime p. The study of this problem led to deep and
extensive work on modular forms by H. Petersson,
R. Rankin, and others. Eventually, the conjecture was
proved by P. Deligne, who received the Fields Medal for
his achievement in 1978.

The full story of Ramanujan’s life makes his achieve-
ments all the more amazing. As a child he was math-
ematically precocious. In high school he won prizes in
mathematics. On the basis of his high school record,
he won a scholarship to the Government College in
Kumbakonam in 1904. At about this time, Ramanujan
came into contact with the book A Synopsis of Elemen-
tary Results in Pure and Applied Mathematics by G. S.
Carr. This rather eccentric book is essentially a huge
collection of formulas and theorems compiled for stu-
dents preparing for the celebrated Mathematical Tri-
pos examination at Cambridge. This book fascinated
Ramanujan, who became obsessed with mathematics.
In college, he neglected his other subjects and gave
his all to mathematics. Consequently, he failed some
subjects and lost his scholarship. By 1913, Ramanu-
jan seemed destined for obscurity—he was now a mere
clerk in the Madras Port Trust. Friends encouraged him
to write to English mathematicians about his mathe-
matical discoveries. Eventually he wrote to G. H. Hardy,
who was able to discern that Ramanujan was a truly
extraordinary mathematician.

Hardy arranged for Ramanujan to travel to England,
and between 1914 and 1918 the two of them produced
the groundbreaking work described above.

In 1918, Ramanujan became ill with a sickness diag-
nosed as tuberculosis. He convalesced in England for a
year. His health improved a little in 1919 and he was
able to return to India. Unfortunately, his health wors-
ened after his return, and he died in 1920. During this
last year in India he penned the pages now known as
Ramanujan’s Lost Notebook and therein laid the foun-
dations of the theory of mock theta functions, a class of

functions similar to but more general than the classical
theta functions.

Further Reading
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VI.83 Richard Courant
b. Lublinitz, Silesia (then part of Germany, now Poland), 1888;
d. New York, 1972
Mathematical physics; partial differential equations;
minimal surfaces; compressible flow; shock waves

The long and eventful life of Courant was full of high
achievements: in mathematical research, the applica-
tions of mathematics, as a teacher of many future math-
ematicians, as a writer of superb books on mathemat-
ics, and as an organizer and administrator of large
institutions. The fact that Courant—an outsider in his
native Germany and a refugee in the United States—
could accomplish these things is a testament to his
personality as well as to his scientific outlook.

Born in Lublinitz, Courant completed his high school
training in Breslau, living on his own and supporting
himself by tutoring. His older Breslau friends, Hellinger
and Toeplitz, went on to Göttingen, then the mecca
of mathematics, and in due course Courant followed
them. There he was taken on as an assistant to hilbert
[VI.63], and he began a close friendship with Harald
Bohr, which was later extended to Harald’s brother
Niels.

Under Hilbert’s direction, Courant wrote his disser-
tation on the use of dirichlet’s principle [IV.12 §3.5]
(on minimizing energy) for constructing conformal
maps. Courant also used Dirichlet’s principle in several
further mathematical studies.

During World War I Courant was drafted into the
army as an officer; he fought on the western front and
was seriously wounded. After returning to academic
life he turned his energies to mathematics and proved
some remarkable results: an isoperimetric inequality
for the lowest frequency of a vibrating membrane; and
the Courant max–min principle for the eigenvalues
[I.3 §4.3] of a self-adjoint operator [III.52 §3.2], so
useful in studying the distribution of eigenvalues of the
operators of mathematical physics.
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In 1920 Courant was named as klein’s [VI.57] suc-

cessor as professor in Göttingen; the appointment was

pushed through by Klein and Hilbert, who saw, cor-

rectly, that he shared their vision of the relationship

between mathematics and science, that he would strike

a balance between research and education, and that he

had the administrative energy and wisdom to push his

mission to fruition.

Courant formed a close friendship with the publisher

Ferdinand Springer. One of the fruits of this relation-

ship was the famous “Grundlehren” series of mono-

graphs, affectionately known as the “Yellow Peril.” The

third volume in this series is Courant’s exposition of

riemann’s [VI.49] geometric view of the theory of ana-

lytic functions, combined with Hurwitz’s lectures on

elliptic functions [V.34]. In 1924 the first volume

of Courant–Hilbert on Mathematical Physics appeared;

it contained, presciently, much of the mathematics

needed for Schrödinger’s version of quantum mechan-

ics. His influential calculus book appeared in 1927. His

research did not languish; in 1928 he published, jointly

with his students Friedrichs and Lewy, the basic paper

on the difference equations of mathematical physics.

Under Courant’s leadership, Göttingen, where the

lively international atmosphere had been destroyed by

World War I, became once again an important center

for mathematics, as well as physics: the list of visi-

tors reads like a Who’s Who of mathematics. This was

totally shattered when Hitler took over the government:

Jewish professors, Courant among the first, were dis-

missed unceremoniously and had to flee or face anni-

hilation. Courant and his family found refuge in New

York, where he was invited to build a Graduate School

of Mathematics at New York University (NYU). Without

any foundation to build on, Courant succeeded in this

task, with the help of his former student Friedrichs and

of the American James Stoker, who shared Courant’s

scientific ideals. Courant found New York a reservoir

of talent, and attracted students such as Max Shiffman,

and later Harold Grad, Joe Keller, Martin Kruskal, Cath-

leen Morawetz, Louis Nirenberg, and others, including

the writer of this article.

In 1936, in a burst of creativity, Courant obtained

basic results about minimal surfaces [III.96 §3.1]

using Dirichlet’s principle. In 1937 he finished the sec-

ond volume of Courant–Hilbert. The immensely suc-

cessful popular book he wrote jointly with Herb Rob-

bins, What Is Mathematics?, appeared in 1940. In 1942

when federal financing for scientific research became

available, Courant’s group embarked on an ambitious
study of supersonic flow and shock waves.

Federal support did not stop after the war; this
enabled Courant to vastly expand the scale of research
and graduate instruction at NYU. The research com-
bined, at a high intellectual level, theoretical mathe-
matics with applications such as fluid dynamics, statis-
tical mechanics, the theory of elasticity, meteorology,
the numerical solution of partial differential equations,
and other topics. Nothing like this had been attempted
before at a university in the United States. The insti-
tute created by Courant, eventually named after him, is
flourishing today and has served as a model for other
centers around the world.

Courant hated the Nazis, but did not condemn all
Germans; after the war he helped to rebuild mathemat-
ics in Germany and was instrumental in inviting tal-
ented young German mathematicians and physicists to
the United States.

Courant received much help from friends of his
youth, many of whom became leaders in their fields,
as well as from science administrators in government
and industry who admired his vision of mathemat-
ics and the gallant spirit that was demonstrated by
his willingness to fight against seemingly insuperable
odds.

Further Reading

Reid, C. 1976. Courant in Göttingen and New York: The Story
of an Improbable Mathematician. New York: Springer.

Peter D. Lax

VI.84 Stefan Banach
b. Kraków, Poland, 1892; d. Lwów, Poland, 1945
Functional analysis; real analysis; measure theory;
orthogonal series; set theory; topology

Banach was the son of Katarzyna Banach and Stefan
Greczek. As his parents were unmarried and his mother
was too poor to support her son, he was brought up
mainly in Kraków by a foster mother, Franciszka Płowa.

After graduating from high school in 1910, Banach
enrolled at the Lwów Polytechnic in the Faculty of Engi-
neering. Two years after his studies were interrupted
by the outbreak of World War I, Banach returned to
Kraków, where on a summer evening in 1916 he was
“discovered” by Hugo Steinhaus, who overheard the
words “Lebesgue integral” and brought him to Lwów.
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Steinhaus considered this event as his “greatest math-

ematical discovery.” It was also through Steinhaus that

Banach met his future wife, Łucja Braus, whom he

married in 1920.

In the same year Professor Antoni Łomnicki engaged

Banach as his assistant at the Lwów Polytechnic, even

though Banach had not yet finished his studies. This

was the beginning of the meteoric rise of Banach’s

scientific career.

In June 1920 Banach defended his doctoral disserta-

tion, “On operations on abstract sets and their applica-

tion to integral equations,” at the Jan Kazimierz Univer-

sity in Lwów. His dissertation was written in Polish and

published in 1922 in French. In his thesis Banach intro-

duced the concept of complete normed linear spaces,

which are today known as banach spaces [III.64] (the

name was proposed by Fréchet in 1928). The theory

combined the contributions of riesz [VI.74], Volterra,

fredholm [VI.66], Lévy, and hilbert [VI.63] on con-

crete spaces and on integral equations into a general

theory. Banach’s dissertation could be viewed as the

birth of functional analysis, since Banach spaces are one

of its central objects of study.

On April 17, 1922, the Jan Kazimierz University in

Lwów awarded Banach his habilitation (a degree allow-

ing him to teach at the university), after which he was

appointed Docent in Mathematics. On July 22, 1922,

he became a professor of the university (and a full

professor from 1927). Banach achieved great research

results and became an authority in functional analysis

and measure theory [III.57]. During the academic year

1924–25 Banach was on sabbatical leave in Paris, where

he met lebesgue [VI.72], who became a lifelong friend.

In Lwów a group of talented young mathematicians

around Banach and Steinhaus soon became the Lwów

School of Mathematics and started the journal StudiaPUP: June checked
this and the
convention is to
use caps. OK to
keep them?

Mathematica in 1929. Among the members of this

school were S. Mazur, S. Ulam, W. Orlicz, J. P. Schauder,

H. Auerbach, M. Kac, S. Kaczmarz, S. Ruziewicz, and

W. Nikliborc. Banach also collaborated with Steinhaus,

Saks, and Kuratowski. Many of these mathematicians

were later killed by the Germans during the occupation

of Poland.

In 1932, Banach’s famous book Theory of Linear

Operations appeared in French (a Polish version was

published the year before) as part of a new series of

mathematical monographs, of which he was one of the

founders. This was the first monograph on functional

analysis as an independent discipline, and it was the

culmination of more than a decade of intense activity
by Banach and others.

Banach and the mathematicians around him liked
to discuss mathematics in the Café Szkocka (“Scottish
café”). This unconventional way of doing mathemat-
ics made the atmosphere of Lwów unique—it is one
of the rare cases in mathematics of genuine teamwork
among a large group. Turowicz and Ulam noted that
(see Kaluza 1996, pp. 62, 74):

Banach liked to spend most of his days in a café. He
liked the noise and the music. They did not prevent
him from concentrating and thinking. It was difficult to
outlast or outdrink Banach during these sessions. Prob-
lems posed right there were discussed, often with no
solution evident even after several hours of thinking.
The next day Banach was likely to appear with several
small sheets of paper containing outlines of proofs he
had completed.

One day in 1935, Banach proposed that the open prob-
lems should be collected in a notebook. This notebook
later became famous under the name “The Scottish
Book.” In the years 1935–41 over 190 problems from
various branches of mathematical analysis were pro-
posed in this notebook, and the collection was pub-
lished in English in 1957 by Ulam. A version with
commentaries was published in 1981 by Birkhäuser as
The Scottish Book, Mathematics from the Scottish Café
(edited by R. D. Mauldin).

Banach was also the author of the books Mechanics
(in two volumes, 1929 and 1930; English translation
in 1951), Differential and Integral Calculus (in two vol-
umes, 1929 and 1930, with several editions in Polish),
Introduction to the Theory of Real Functions (in two vol-
umes, written by Banach before the war, although only
the first volume remains), and ten textbooks (jointly
written with Stożek and sierpiński [VI.77]) for primary
and secondary schools on arithmetic, geometry, and
algebra (published in the years 1930–36 and reprinted
in 1944–47).

Banach’s famous discoveries in functional analysis
had three important steps. First, he considered abstract
linear spaces, where functions are treated like points
or vectors, sets of functions as function spaces, and
operations on functions as operators. Second, he intro-
duced the norm ‖ · ‖ of a mathematical object, that
is, a quantity that in some (possibly abstract) sense
describes the length, size, or extent of the object. The
distance between two abstract elementsx andy is then
given naturally by d(x,y) = ‖x−y‖. The third impor-
tant step was to introduce the notion of “complete-
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ness” for these spaces. In such general spaces (Banach

spaces) he was able to prove several fundamental the-

orems, like the uniform boundedness principle, the

open mapping theorem, and the closed graph theorem.

What these results say, roughly speaking, is that in a

Banach space we cannot have bad (pathological) behav-

ior everywhere—there is always some part of the space

where our linear map or other object is well-behaved.

Names like Banach space, Banach algebra, Banach lat-

tice, Banach manifold, Banach measure, Hahn–Banach

theorem, Banach fixed-point theorem, Banach–Mazur

game, Banach–Mazur distance between isomorphic

spaces, Banach limits, Banach–Saks property, Banach–

Alaoglu theorem, and the Banach–Tarski paradox on a

decomposition of sets into congruent parts show how

wide his influence has been. Banach also introduced

the notions of dual space [III.19], dual operator, the

general concepts of weak and weak-star convergence,

and he used all of these notions in linear operator

equations.

In 1936, Banach delivered a one-hour plenary address

at the International Congress of Mathematicians in

Oslo, where he described the work of the whole Lwów

school. In 1937 Norbert Wiener tried to lure him to

the United States. In 1939 he was elected president

of the Polish Mathematical Society and was awarded

a Grand Prize of the Polish Academy of Knowledge.

Banach spent the war years in Lwów. During the years

1940–41 and 1944–45 he was the Dean of the Faculty

of Science at the renamed Iwan Franko State University.

In the period 1941–44 Lwów was occupied by the Ger-

man army. During this period Banach was saved from

almost certain death by the action of Rudolf Weigel,

a “Schindleresque” factory owner and inventor of the

typhus vaccine, who gave him employment at his Bac-

teriological Institute as a louse feeder. After the war, he

accepted a chair at the Jagiellonian University. He died

on August 31, 1945, in Lwów of lung cancer at the age

of fifty-three.

The complete list of Banach’s publications comprises

fifty-eight items, and they were reprinted in Banach’s

Collected Works (published in two volumes in 1967 and

1979). Banach said, “Mathematics is the most beauti-

ful and most powerful creation of the human spirit.

Mathematics is as old as Man.” Banach is considered a

national hero in Poland, as a great scientist and a major

figure in the great flowering of Polish scientific life in

the independent Poland of the interwar years.

Further Reading

Banach, S. 1967, 1996. Oeuvres, two volumes. Warsaw: PWN.
Kaluza, R. 1996. The Life of Stefan Banach. Basel: Birk-

häuser.

Lech Maligranda

VI.85 Norbert Wiener
b. Columbia, Missouri, 1894; d. Stockholm, 1964
Stochastic processes; applications to electrical engineering and
physiology; harmonic analysis; cybernetics

Wiener was just eighteen years old when, in 1913, he
was awarded a Ph.D. in logic while studying under
Josiah Royce at Harvard University. Afterward, he stud-
ied with, among others, russell [VI.71] and hardy
[VI.73] in Cambridge and hilbert [VI.63] in Göttingen.
After doing work on ballistics for the military during
World War II, he was appointed instructor of mathemat-
ics at the fledgling Massachusetts Institute of Technol-
ogy in Cambridge, MA, where he remained for the rest
of his career.

Wiener was in many respects a nonconformist,
certainly scientifically and mathematically, but also
socially, culturally, politically, and philosophically. He
was a precocious child and his home education by
his father (a noted linguist and Harvard professor),
along with his Jewish background in a society still
stricken by anti-Semitism, made his nonconformism
almost inevitable. Garrett Birkhoff, the son of george
birkhoff [VI.78], said the following in 1977:

Wiener was notable as one of the few Americans of
his time who was outstanding in both pure mathe-
matics and its applications. How much of this can be
attributed to his varied and cosmopolitan early back-
ground, and how much to his continuing contacts with
non-mathematicians … it is hard to say.

During a period in which American mathematics was
largely self-sufficient and was still in a phase in which
interdisciplinary approaches were generally ignored,
Wiener was reaching out to European mathematics and
collaborating with engineers such as Vannevar Bush.

This attitude also affected his choices of research
topics, even within pure mathematics: he worked on
whatever took his fancy. In a talk in 1938, George
Birkhoff described Wiener’s work on Tauberian the-
orems as an example of “exercising talent for free
invention,” contrasting this with the typically American
approach: “mathematics as serious business.”
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Wiener’s way of connecting pure and applied math-
ematics did not follow the usual path of taking old
problems of applied mathematics (such as in classi-
cal mechanics and electrical engineering) and tack-
ling them with new, and rigorously sharpened, mathe-
matical tools. Rather the opposite: Wiener used some
of the newest, and much debated, results of pure
mathematics—such as the lebesgue integral [III.57],
Fourier transformations in the complex domain, and
stochastic processes [IV.24]—and connected them
to several of the newest physical, technological, and
biological problems. The types of problem he attacked
included those of brownian motion [IV.24], quantum
mechanics, radio astronomy, anti-aircraft fire control,
noise filtration in radar, the nervous system, and the
theory of automata.

Of Wiener’s many analytical results that make con-
nections between very different domains we give only
one as an example. Around 1931 Wiener discussed the
following (Lebesgue) integral equation with the German
mathematical astrophysicist Eberhard Hopf:

f(t) =
∫∞

0
W(t − τ)f(τ)dτ.

The solution for unknown f(t), which was found with
the help of a new and very important factorization
technique, and which was dependent on the analyt-
ical behavior of the fourier transforms [III.27] of
the functions involved, could be connected to radia-
tive equilibrium in stars. When t is interpreted as time,
equations of this kind can be seen to describe causal-
ity: the transition from the influencing “past” to the
indeterminate “future.” A decade later the Wiener–Hopf
equations would be connected to Wiener’s theories of
prediction and filtering.

Wiener’s discussion of such disparate fields of appli-
cation could not fail to invoke philosophically relevant
notions such as causality, information (Wiener is con-
sidered together with Claude Shannon as the founder
of the modern concept of information), control, feed-
back, and finally the wide-ranging theory of “cyber-
netics.” Cybernetics (literally, the art of steering) can
be retrospectively connected to earlier discussions in
Greek antiquity (Plato), to James Watt’s centrifugal gov-
ernor, and to Ampère’s philosophical writings. Wiener’s
broad outlook resulted from his collaboration with
colleagues from very different domains: mathemati-
cal (R.E.A.C. Paley), physical (Hopf), technical (Julian
Bigelow, Bush), and physiological (Arturo Rosenblueth).
However, this outlook left him vulnerable to criticism
and to philosophical and political misinterpretation.

The prominent mathematician Hans Freudenthal was
a sharp-tongued critic of Wiener’s epoch-making book
of 1948, Cybernetics or the Control and Communica-
tion in the Animal and the Machine, claiming that it
“shows there is not much to be reported” and that it
“has contributed to spreading mistaken ideas of what
mathematics really means,” although even he had to
admit that the book “earned Wiener the greater part of
his public renown” and that its “mathematical readers
were more fascinated by the richness of its ideas than
by its shortcomings.”

During the period of the Nazi threat Wiener helped
refugees from Europe to settle in the United States,
while after World War II he cautioned against the repeti-
tion of mistakes such as the boycott of German science
in the aftermath of World War I. Wiener warned against
the arms race and the misuse of technological develop-
ments in the postwar world. Having resigned from the
National Academy of Sciences in 1941 because of its
alleged bureaucracy and complacency, Wiener never-
theless accepted, shortly before his death in 1964 while
traveling, the National Medal of Science from President
Johnson.

Further Reading

Masani, P. R. 1990. Norbert Wiener 1894–1964. Basel: Birk-
häuser.

Reinhard Siegmund-Schultze

VI.86 Emil Artin
b. Vienna, 1898; d. Hamburg, Germany, 1962
Number theory; algebra; theory of braids

Born in fin de siècle Vienna to an art dealer father and
opera singer mother, Artin was influenced throughout
his life by the rich cultural atmosphere of the late Haps-
burg Empire. He was, as the algebraist Richard Brauer
described him, as much artist as mathematician. After
his first semester at the University of Vienna in 1916,
Artin was drafted into the Austrian Army, in which he
served until the end of World War I. In 1919 he enrolled
at the University of Leipzig, and completed his doctor-
ate under the direction of Gustav Herglotz in only two
years.

Artin spent the academic year 1921–22 at the math-
ematically vibrant University of Göttingen, and then
moved to the recently opened University of Hamburg.
He achieved the rank of full professor in 1926. While
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at Hamburg, Artin oversaw the work of eleven doc-
toral students, including Max Zorn and Hans Zassen-
haus. Artin’s years at Hamburg were among the most
productive of his life.

Artin’s work in class field theory [V.31], the sub-
ject closest to his heart, led him to a solution of
Hilbert’s ninth problem: a proof of the most general law
of reciprocity. The aim was to generalize Gauss’s law of
quadratic reciprocity and the higher reciprocity laws.
Teiji Tagaki’s fundamental results on class field theory
had appeared when Artin was a student. Using Takagi’s
theory, N. G. Chebotaryov’s 1922 proof of the density
theorem (conjectured by frobenius [VI.58] in 1880),
and his own theory of L-functions [III.49], Artin estab-
lished his general law of reciprocity in 1927. Artin’s the-
orem not only provided the final form of the classical
question on reciprocity but it also formed the central
result of class field theory. Both Artin’s result and his
tools, particularly his L-functions, proved important.
Artin posed a conjecture about his L-functions that
remains unanswered today. Questions in non-Abelian
class field theory also remain open.

In 1926–27, Artin and Otto Schreier developed the
theory of formally real closed fields: fields with the
property that −1 cannot be expressed as the sum of
two squares (an example being the real numbers). This
work formed the basis of Artin’s solution of Hilbert’s
seventeenth problem concerning rational functions.

Artin extended Wedderburn’s theory of algebras
(“hypercomplex numbers”) to noncommutative rings
with chain conditions in 1928. Indeed, the class of such
rings called “Artinian rings” is named in his honor.

In 1929 Artin married one of his students, Natalie
Jasny. Natalie’s Jewish background and Artin’s per-
sonal sense of justice prompted them to leave Germany
in 1937. They emigrated to America, where Artin spent
a year at Notre Dame University before moving to a per-
manent position at Indiana University. Artin’s lectures
at Notre Dame led to his influential text Galois Theory
(1942), which reflected his quest for simplification and
his desire to unite different research trends.

At Indiana, Artin began a collaboration with George
Whaples of the University of Pennsylvania and intro-
duced the concept of a valuation vector, a notion closely
related to the concept of an idèle introduced by Claude
Chevalley. This work seemed to revitalize Artin’s math-
ematical research, and, after something of a hiatus in
his written work, he began to publish regularly again.

In 1946, Artin moved to Princeton University. While
there, Artin oversaw eighteen of his thirty-one Ph.D.

students, including John Tate and Serge Lang. He also
returned to his work in the theory of braids [III.4],
a topic that relates questions in topology and group
theory. His introduction to the theory of braids that
appeared in American Scientist in 1950 reveals Artin’s
prowess as a master expositor.

Further Reading

Brauer, R. 1967. Emil Artin. Bulletin of the American Math-
ematical Society 73:27–43.

Della Fenster

VI.87 Alfred Tarski
b. Warsaw, 1901; d. Berkeley, California, 1983
Symbolic logic; metamathematics; set theory; semantics; model
theory; algebras of logic; universal algebra; axiomatic geometry

Tarski matured during Poland’s renaissance in math-
ematics and philosophy in the remarkable interwar
period of Polish independence. His teachers at the
University of Warsaw included Stanisław Leśniewski
and Jan Łukasiewicz in logic, sierpiński [VI.77] in
set theory, and Stefan Mazurkiewicz and Kazimierz
Kuratowski in topology. In his thesis Tarski solved
a core problem in Leśniewski’s idiosyncratic system
for the foundation of mathematics, but afterward he
focused on set theory and more mainstream mathemat-
ical logic. Almost immediately he obtained the spectac-
ular banach–tarski paradox [V.3] (that it is possible
to dissect a solid sphere into a finite number of pieces
that may then be reassembled to form two spheres of
the same radius as the original one) in collaboration
with banach [VI.84].

Encouraged by his professors, he changed his origi-
nal surname, Teitelbaum, to Tarski just before receiv-
ing his Ph.D. in 1924, because a Jewish name was a pro-
fessional handicap. This accorded with Tarski’s strong
identification with Polish nationalism and his belief
that assimilation was a rational solution to the Jewish
question.

By 1930, Tarski had established one of his most
important results: the completeness and decidability
of formal systems of the algebra of real numbers and
of Euclidean geometry axiomatized within first-order
logic (see logic and model theory [IV.23 §4]). In the
following years Tarski concentrated on fundamental
conceptual developments in metamathematics and the
semantics of formalized languages. In contrast with
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hilbert [VI.63], who called for the execution of his
metamathematical consistency program by the most
restricted means possible, Tarski was open to the use
of any mathematical methods, including all those of
set theory. His main conceptual contribution was to
provide a theory of truth for formalized languages,
in which he laid down a novel criterion—called the
T-scheme—for an adequate definition of truth for such
a language, and showed how it can be met by a set-
theoretical definition within a metalanguage, while it
cannot be defined within the language itself.

Though Tarski’s preeminence in Polish logic was
widely acknowledged, he never succeeded in obtain-
ing a chair in his country of birth, partly because of
the paucity of positions, and partly as a result of anti-
Semitism, notwithstanding his change of name. Made a
Docent at the University of Warsaw as soon as he had
finished his Ph.D., his position was later raised to that
of Adjunct Professor. Neither post paid a living wage,
and so, in order to make ends meet, Tarski also taught
in a Gymnasium (high school) throughout the 1930s.
Because he did not hold a chair, he could not be des-
ignated the official director of the dissertation of his
first student, Andrzej Mostowski; instead Kuratowski
assumed that role.

An invitation to attend a Unity of Science meeting (an
offshoot of the Vienna Circle) at Harvard brought Tarski
to the United States two weeks before the Nazi invasion
of Poland on September 1, 1939. Given his Jewish ori-
gins, this probably saved his life, but the war separated
him from his family. (His wife and immediate family
survived the war, but most of the rest of his family
perished in the Holocaust.) In the United States he was
granted a permanent nonquota visa within months, but
only temporary positions were available to him during
the period 1939–42. Finally, he succeeded in obtaining
a position as Lecturer in the Department of Mathemat-
ics of the University of California at Berkeley. There
Tarski’s manifest excellence was soon recognized and
he rose rapidly to the position of Full Professor by 1946.
In the following decade, through his charismatic teach-
ing and zealous campaigning for additional appoint-
ments in the field, he built a program in logic and
the foundations of mathematics that made Berkeley a
mecca for logicians from all over the world for years to
come.

It was not until 1939 that Tarski wrote up his deci-
sion procedure for algebra and geometry for publi-
cation; it was slated to appear as a monograph for
a Parisian publisher, but that was aborted following

the invasion of France by Germany in 1940. A revised
version with full details was finally prepared with the
assistance of J.C.C. McKinsey as a RAND Corporation
report in 1948; it only became publicly available a few
years later through the University of California Press.
This work then became paradigmatic for the applica-
tions of model theory to algebra in which the Tarski
school led the way; the subject has continued to be
one of the most important parts of mathematical logic
to this day. At Berkeley during the postwar period
Tarski also promoted substantial developments along
several different lines: algebraic logic, the axiomatics
of set theory and the significance of large cardinal
[IV.22 §6] assumptions for mathematical problems, and
the axiomatics of geometry. Above all, the importance
of Tarski’s work lay in opening the field of logic to
the unrestricted use of set-theoretical methods, com-
bined with a constant attention to rigorous and proper
conceptual development.

Further Reading

Feferman, A. B., and S. Feferman. 2004. Alfred Tarski. Life
and Logic. New York: Cambridge University Press.

Givant, S. 1999. Unifying threads in Alfred Tarski’s work.
Mathematics Intelligencer 13(3):16–32.

Tarski, A. 1986. Collected Papers, four volumes. Basel: Birk-
häuser.
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VI.88 Andrei Nikolaevich Kolmogorov
b. Tambov, Russia, 1903; d. Moscow, 1987
Analysis; probability; statistics; algorithms; turbulence

Kolmogorov was one of the greatest mathematicians
of the twentieth century. His work was distinguished
both by its great depth and power, and by its breadth:
he made important contributions to several different
areas. He is most famous for his work on probabil-
ity theory, and is widely regarded as having been the
greatest probabilist ever.

Kolmogorov’s mother, Mariya Yakovlena Kolmogo-
rova, died in childbirth; his father, Nikolai Matveevich
Kataev, an agronomist, worked for the Ministry of Agri-
culture after the Revolution and died in the Denikin
offensive in the Civil War in 1919. Kolmogorov was
brought up by his mother’s sister Vera, whom he
regarded as his mother and who lived to see her
adopted son’s success.
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After his childhood in Tunoshna, near Yaroslavl on

the Volga, Kolmogorov became a student of math-

ematics at Moscow University in 1920. His teachers

included Aleksandrov, Lusin, Urysohn, and Stepanov.

Kolmogorov’s first work, published in 1923 when he

was still nineteen, gave an example of a (Lebesgue inte-

grable) function whose fourier series [III.27] diverges

almost everywhere. (This is in contrast to the classi-

cal theorems giving regularity conditions on a func-

tion that are sufficient for its Fourier series to converge

to it.) This famous and unexpected result made him a

celebrity, all the more so when in 1925 he sharpened

“almost everywhere” to “everywhere.”

Kolmogorov became a postgraduate student in 1925,

studying under Lusin. Also in 1925, he published his

first work on probability theory, in collaboration with

Alexander Yakovlevich Khinchin (Khintchine, Hincin),

on the “three series theorem.” This classical result

gives a necessary and sufficient condition for the con-

vergence of a random series with independent terms,

namely the convergence of three nonrandom series.

The paper also contains the Kolmogorov inequality on

maxima of independent sums. By the time of his doctor-

ate in 1929, Kolmogorov had written eighteen mathe-

matical papers: on analysis, on probability, and on intu-

itionist logic, an indication of his lifelong interest in the

foundations of mathematics. He became a professor at

Moscow University in 1931.

Also in 1931, Kolmogorov published his famous

paper on analytic methods in probability theory. This

deals with Markov processes in continuous time, with

the state space continuous or discrete (in which case

one speaks of a Markov chain). The Chapman–Kol-

mogorov equations, and the Kolmogorov forward and

backward differential equations, date from this paper.

Diffusions are also treated, developing earlier work by

Bachelier.

The whole subject of modern probability theory was

given a firm foundation by Kolmogorov’s epoch-making

monograph Grundbegriffe der Wahrscheinlichkeitsrech-

nung of 1933 (later translated as Foundations of Proba-

bility Theory). Before this time, probability had lacked

a rigorous mathematical foundation, and indeed some

authors had believed that it was impossible to provide

one. However, the relevant mathematical theory, mea-

sure theory [III.57], had been introduced by lebesgue

[VI.72] in 1902, in connection with his theory of the

integral. Measure theory also provides a firm founda-

tion for the mathematics of length, area, and volume.

By the 1930s, the subject had been freed from its ori-

gins in Euclidean space. Kolmogorov treated probabil-

ity simply as a measure of total mass 1, events as mea-

surable sets, random variables [III.73 §4] as measur-

able functions, etc. The decisive technical innovation

was his treatment of conditioning, which used the then-

recent Radon–Nikodým theorem (whereby conditional

expectations became Radon–Nikodým derivatives). The

Grundbegriffe also contains two further key results.

The first is the Daniell–Kolmogorov theorem, basic to

the definition of a stochastic process [IV.24]. The

second is Kolmogorov’s strong law of large num-

bers [III.73 §4]. When we repeatedly toss a fair coin, we

expect the observed frequency of heads to tend to the

expected frequency, a half. Some restriction is needed

to make precise mathematical sense out of this intu-

ition. It was known before Kolmogorov that the qualifi-

cation needed here is that convergence takes place with

probability 1 (“almost surely,” or “a.s.”). Kolmogorov

generalized this result from coin tossing to repeated

replication of any random experiment. One needs the

expected value (often called the mean) to exist, in the

technical sense of measure theory. Then the average

value in a sample, the sample mean, converges to the

expectation, the population mean, with probability 1.

Further work by Kolmogorov on probability theory

followed in the 1930s and 1940s. He worked on limit

theorems, on infinite divisibility, on the Kolmogorov–

Petrovskii–Piscunov equation governing the wave of

advance of an advantageous gene, and on linear pre-

diction of stationary stochastic processes. This appli-

cation, which led to the “Kolmogorov–Wiener filter,”

was motivated by wartime applications to fire control

problems.

This last work led Kolmogorov naturally to path-

breaking work on turbulence in 1941, including the Kol-

mogorov “two-thirds power” law. This work has been

profoundly important subsequently, as the problem

of understanding turbulence is a central one in fluid

dynamics.

Motivated by questions of the stability of the solar

system, and related dynamical systems [IV.14], Kol-

mogorov published in 1954 his work on mechanics and

invariant tori, work that developed into the subject of

“KAM theory” (for Kolmogorov, Arnold, and Moser).

Kolmogorov’s axiomatization of probability theory

can be regarded as a solution of (part of) Hilbert’s sixth

problem, to put probability and mechanics onto a rig-

orous footing. In 1956 and 1957, Kolmogorov solved
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another of Hilbert’s problems, the thirteenth. His solu-
tion gave a surprising structure theorem, by which a
function of many variables can be built up from func-
tions of few variables by means of basic operations.
He showed that a continuous function of any number
of real variables may be built up by combining (using
the operations of addition and of taking a function of a
function) a finite number of functions of only three real
variables. He regarded this work as his most technically
difficult accomplishment.

In the 1960s, Kolmogorov’s interests shifted to
foundational questions: in mathematics, in probabil-
ity theory, and in information theory [VII.6] and
the theory of algorithms. He introduced the concept
now called “Kolmogorov complexity.” He gave a new
approach to randomness, quite different from that in
his earlier work on probability theory. Here, random
sequences are identified as sequences of maximal com-
plexity. His later work was dominated by his lifelong
interest in teaching, and in particular his involvement
in special schools for particularly gifted pupils.

Kolmogorov’s Selected Works comprise three vol-
umes: Mathematics and Mechanics, Probability and
Statistics, and Information Theory and Algorithms.

He was widely honored, both within the Soviet Union
and outside. He was married, with no children.

Further Reading

Kendall, D. G. 1990. Obituary, Andrei Nikolaevich Kolmog-
orov (1903–1987). Bulletin of the London Mathematical
Society 22(1):31–100.

Shiryayev, A. N., ed. 2006. Selected Works of A. N. Kol-
mogorov. New York: Springer.

Shiryayev, A. N., and others. 2000. Kolmogorov in Perspec-
tive. History of Mathematics, volume 20. London: London
Mathematical Society.

Nicholas Bingham

VI.89 Alonzo Church
b. Washington, District of Columbia, 1903; d. Hudson, Ohio, 1995
Logic
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Church’s career was spent almost entirely at Princeton.
Having studied there, he returned, after spells in Har-
vard, Göttingen, and Amsterdam, to take up a posi-
tion as an assistant professor in 1929, and rose to
become Professor of Philosophy and Mathematics in
1961, a position he held until his retirement in 1967.
He then moved to the University of California at Los

Angeles where he was Kent Professor of Philosophy
and Professor of Mathematics until he retired (again)
in 1990.

Princeton became an important center for logic dur-
ing the 1930s: von neumann [VI.91] arrived at the
beginning of the decade, gödel [VI.92] visited in 1933
and 1935 before moving there permanently in 1940,
and from September 1936 turing [VI.94] spent two
years there as a graduate student, completing his Ph.D.
with Church.

In 1936 Church made two profound contributions to
the theory of logic. The first, which appeared in a paper
entitled “An unsolvable problem in elementary number
theory,” is what is now known as Church’s thesis: the
proposal to identify the vague intuitive notion of effec-
tive calculability with the precise notion of a recur-
sive function [II.4 §3.2.1]. It quickly transpired that
Church’s definition of a recursive function was equiva-
lent to Turing’s definition of computable functions. At
the end of 1936, Turing, who had been working with
analogous ideas in an entirely different way, published
his famous paper “On computable numbers,” which
contained the result that every function that is natu-
rally regarded as computable is computable by a tur-
ing machines [IV.20 §1.1]. Church’s thesis is therefore
often known as the Church–Turing thesis.

The second of Church’s contributions is what is now
known as Church’s theorem. In a short paper published
in the first issue of The Journal of Symbolic Logic,
Church showed that it is impossible to decide algorith-
mically whether statements in arithmetic are true or
false. It follows that a general solution to the Entschei-
dungsproblem (decision problem) does not exist; equiv-
alently, first-order logic is undecidable. This result is
also known as the Church–Turing theorem since Tur-
ing independently (and in the paper referred to above)
proved the same result (see the insolubility of the
halting problem [V.23]). In achieving this result, both
Church and Turing were strongly influenced by gödel’s
incompleteness theorem [V.18].

VI.90 William Vallance Douglas Hodge
b. Edinburgh, Scotland, 1903; d. Cambridge, England, 1975
Algebraic geometry; differential geometry; topology

Hodge is famous for his theory of harmonic integrals
(or forms), which was described by weyl [VI.80] as “one
of the landmarks of twentieth century mathematics.”
He was a Scot who spent his early life in Edinburgh but
lived for most of his life in Cambridge, where he was
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Lowndean Professor of Astronomy and Geometry (an
archaic title) from 1936 until 1970.

Hodge’s work straddles the area between algebraic
geometry, differential geometry, and complex analysis.
It can be seen as a natural outgrowth of the theory of
riemann surfaces [III.81] (or algebraic curves) and the
work of Lefschetz on the topology of algebraic vari-
eties [IV.4 §7] (of higher dimension). It put algebraic
geometry on a modern analytic footing and prepared
the ground for the spectacular breakthroughs of the
postwar period in the 1950s and 1960s. It also har-
monized well with the later interaction with theoretical
physics, harking back to the influence of James Clerk
Maxwell.

In Riemann surface theory (with one complex dimen-
sion), complex structures and real metrics are very
closely related and the roots of their relationship
can be traced back to the link between the cauchy–
riemann equations [I.3 §5.6] and the laplace opera-
tor [I.3 §5.4]. In higher dimensions this close link dis-
appears and a riemannian metric [I.3 §6.10] seems
alien to complex analysis, but it was Hodge’s great
insight to see that real analysis could still play a fruitful
role.

Following the formalism of electromagnetic theory as
developed by Maxwell, he introduced a generalization
of the Laplace operator to exterior differential forms
[III.16] (on any Riemannian manifold) and proved the
key theorem that the null space of this operator on
r -forms (“harmonic” forms) is naturally isomorphic to
the r -dimensional cohomology [IV.6 §4] Hr . In other
words, a harmonic form is uniquely specified by its
periods, and all sets of periods occur.

For complex manifolds, provided the metric is suit-
ably compatible with the complex structure (the käh-
ler condition [III.90 §3], always satisfied by algebraic
varieties in projective space), this result can be refined.
We get a decomposition of Hr into subspaces Hp,q

with p + q = r , with the extreme cases p = r , q =
r corresponding to holomorphic or anti-holomorphic
forms.

This Hodge decomposition has a rich structure and
a wealth of applications. One of the most remarkable
is the Hodge signature theorem, which (for an even-
dimensional algebraic variety) expresses the signature
of the intersection matrix of middle-dimensional cycles
in terms of the dimensions of the Hp,q.

Another success of the theory was the characteriza-
tion of those homology classes of dimension 2n− 2
(on a complex n-manifold) that arise from algebraic

subvarieties. He conjectured that a similar character-
ization would work for all dimensions and proved
the easy part. The hard part has resisted all subse-
quent attempts, and is now one of the million-dollar
Millennium Problems of the Clay Institute.

The influence of Hodge’s theory was enormous.
First, in algebraic geometry it integrated many classi-
cal results into a modern framework and it acted as a
launch pad for the subsequent development of mod-
ern sheaf theory by Henri Cartan, Serre, and others.
Second, it was the first deep result in global differ-
ential geometry and paved the way for what became
known as “global analysis.” Third, it provided the
basis for later developments arising from, or linked
to, theoretical physics. These included the atiyah–
singer index theorem [V.2] for elliptic operators,
and nonlinear analogues of Hodge theory (the Yang–
Mills and the Seiberg–Witten equations), which have
played such a key role in the Donaldson theory of
four-dimensional manifolds (see differential topol-
ogy [IV.7 §2.5]). More recently, Witten and others have
shown how suitable infinite-dimensional versions of
Hodge’s theory turn up naturally in quantum field
theory [IV.17 §2.1.4].

Further Reading

Griffiths, P., and J. Harris. 1978. Principles of Algebraic
Geometry. New York: Wiley.

Sir Michael Atiyah

VI.91 John von Neumann
b. Budapest, 1903; d. Washington, District of Columbia, 1957
Axiomatic set theory; quantum physics; measure theory;
ergodic theory; operator theory; algebraic geometry;
theory of games; computer engineering; computer science
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Neumann János Lajos’s political outlook was strongly
affected by the five-month reign of the communist Béla
Kun’s regime after World War I. It formed his liberal
and democratic political credo (although he did insist
on retaining the title of nobility “margittai,” acquired
by his father in 1913, which he later translated to the
German “von”). He was a child prodigy, learning several
languages and demonstrating an early enthusiasm for
mathematics.

During the early 1920s von Neumann studied mathe-
matics, physics, and chemistry in Berlin and Zürich, and
was also enrolled to study mathematics in Budapest
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although he never attended any lectures there. He
received a diploma in chemical engineering at the
ETH Zürich and shortly afterward (in 1926) a doctor-
ate in mathematics at the University of Budapest (his
thesis was entitled “The axiomatic deduction of gen-
eral set theory”). While engineering was considered a
respectable profession for a brilliant young man with
such wide-ranging interests, the theoretical challenges
of mathematics and formal logic drove von Neumann to
the more academic environment in Germany, where he
immediately received attention from hilbert [VI.63].
Although the sensible choice, academically speaking,
would have been to stay with Hilbert at Göttingen—
and he did spend six months there during 1926–27
on a Rockefeller Fellowship—he preferred the pulsating
atmosphere of Berlin.

During the following years he published on the
axiomatic foundations of set theory, on measure
theory [III.57], and on the mathematical foundations
of quantum mechanics. He also wrote his first paper
on game theory (“Zur Theorie der Gesellschaftsspiele,”
published in Mathematische Annalen in 1928), prov-
ing the minimax theorem (the theorem that states that
every two-person finite zero-sum game has optimal
mixed strategies).

In 1927 von Neumann received his habilitation in
mathematics from the Philosophical Faculty of Berlin
University with a written thesis and a lecture on the
foundations of set theory and mathematics, becoming
one of the youngest Privatdozents in the history of the
university. At this point he changed his name to the
German Johann von Neumann. He gave lecture courses
in Hamburg (1929–30) as well as in Berlin, but in 1933,
with the Nazi seizure of power, he resigned from his
appointment at Berlin. By that time he was already in
Princeton, where his visiting status at the university,
originally conferred in 1930, was transformed into a
tenured position at the newly founded Institute for
Advanced Study. He modified his name once again, this
time to John von Neumann, receiving U.S. citizenship in
1937.

At Princeton he found a peaceful ivory tower. Much
of his important mathematical work stems from that
period in the mid 1930s: he published around six
journal articles per year (a rate he maintained until
his death), as well as several books. The Institute’s
environment allowed him to expand his research
scope, taking in, among other things, ergodic theory
[V.11], Haar measure, certain spaces of operators on a
hilbert space [III.37] (these spaces are now known as

von neumann algebras [IV.15 §2]), and “continuous
geometry.”

Von Neumann was much too politically sensitive to
ignore the European crisis that led to World War II.
Having begun to investigate turbulent flow beyond the
speed of sound in the mid 1930s, he was invited to the
Ballistic Research Laboratory in 1937 as an expert on
shock waves. Later he acted as a consultant to the Navy
and the Air Force. Although he was not in the initial
group of Los Alamos scientists, in 1943 he became an
advisor to the Manhattan Project, where his mathemati-
cal treatment of shock waves became essential, leading
to the “implosion lens,” an arrangement of explosives
that started the uranium chain reaction.

In parallel with his war-related work, von Neumann
pursued his interest in economics, which resulted in
a collaboration with Oskar Morgenstern: their ground-
breaking book The Theory of Games and Economic
Behavior, partly based on his 1928 Mathematische
Annalen paper, appeared in 1944.

In the 1940s von Neumann began to focus on com-
puting as a result of two very different branches of his
thinking: namely, the numerical approximation of solu-
tions to otherwise unsolvable problems, and his profi-
ciency in the foundations of mathematics. He had tried
to enlist turing [VI.94] as an assistant at Princeton and
he was certainly aware of the importance of Turing’s
seminal paper on computable numbers (1936). While
Turing discussed an abstract machine in the form of
a thought experiment, von Neumann also considered
the problems arising from the actual construction of
computers, such as those connected with the use of
electronic hardware. His training as a mathematician
allowed him to focus on the very essentials of com-
puting machinery and avoid baroque designs like the
Moore School’s ENIAC (Electronic Numerical Integra-
tor And Computer). In 1945 he defined the essential
components for the “Electronic Discrete Variable Com-
puter.” His “First draft of a report on the EDVAC,” which
summarized and focused ideas gathered from work on
early electronic computers, provided a logical frame-
work for the modern electronic computer, becoming
a road map for computer architecture for the ensu-
ing decades. While von Neumann probably did not con-
sider this paper to have the same importance as his
mathematical results, today it is considered the birth
certificate of modern computers.

Von Neumann quickly recognized that programming
computers (or “coding,” as he called it) was likely to
be more demanding than building basic hardware. In
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essence he considered programming as a new branch
of formal logic. In 1947 he coauthored (with Herman
Goldstine) a three-part report, “Planning and coding of
problems for an electronic computing instrument,” in
which many insights on the novel and demanding art
of software construction were collected together.

Von Neumann’s thinking went beyond the restric-
tions of calculating machines, and allowed him to ven-
ture into philosophical questions on the structure of
the human brain and cellular automata and the idea
of self-reproducing systems—questions that were fore-
runners to the disciplines now called “artificial intelli-
gence” and “artificial life.” Consideration of these ques-
tions resulted in a series of lectures published as The
Computer and the Brain (1958) and a book, Theory
of Self-Reproducing Automata (1966), both of which
appeared posthumously.

In 1954 von Neumann was appointed to the five-
member U.S. Atomic Energy Commission and in 1956
he was awarded the Presidential Medal of Freedom by
President Eisenhower.

Further Reading

Aspray, W. 1990. John von Neumann and the Origins of
Modern Computing. Cambridge, MA: MIT Press.

Wolfgang Coy

VI.92 Kurt Gödel
b. Brno, Moravia (now Czech Republic), 1906;
d. Princeton, New Jersey, 1978
Logic; relativity theory

Born in Brno, Moravia, Gödel did his most important
work at the University of Vienna. In 1940 he emigrated
to the United States, where he accepted an appointment
at the Institute for Advanced Study in Princeton.

Considered the greatest mathematical logician of the
twentieth century, Gödel is renowned for his proofs of
three fundamental results: the semantic completeness
of first-order logic [IV.23 §2]; the syntactic incom-
pleteness of formal number theory [V.18]; and
the consistency, relative to the axioms of zermelo–
fraenkel [IV.22 §3.1] set theory, of the axiom of
choice [III.1] and the generalized continuum hypoth-
esis [IV.22 §5].

Gödel’s completeness theorem (1930) is concerned
with the following kind of question: how do we know
that a statement in group theory, for example, that is

true in every group is actually provable from the axioms
of group theory? Gödel showed that in any first-order
theory (one in which quantifiers are allowed over ele-
ments but not over subsets), any statement true in all
models is indeed provable. In an equivalent form, this
completeness theorem states that any set of statements
that is consistent (that is, from which no contradiction
may be derived) has a model—a structure in which all
those statements hold.

Gödel’s incompleteness theorem (1931) sent shock
waves through logic and the philosophy of mathemat-
ics. hilbert [VI.63] had set out a program in which all
statements (in number theory, for example) should be
derivable from a fixed set of axioms. It was generally
believed that such a program was in principle possible,
until the incompleteness theorem destroyed that hope.

Gödel’s idea was to construct a statement S that, in
effect, asserts “S is not provable.” A moment’s thought
shows that such a statement must be both true and
unprovable. Gödel’s remarkable achievement was to
manage to encode such a statement in the language
of number theory. His proof applies to such axioms as
the peano axioms [III.69] for number theory, and more
generally, to any reasonable extension of them (such as
the Zermelo–Fraenkel axioms for set theory).

Gödel’s second incompleteness theorem represented
another blow to the Hilbert program. Suppose that
we have a set of axioms T (for example, the Peano
axioms) that is consistent. Can we prove that it is con-
sistent? Gödel showed that, if T is consistent, then
the statement “T is consistent” (when encoded as a
statement of number theory) cannot be proved from T .
So “T is consistent” is an explicit example of a true
but unprovable statement. Again, this applies when T
is the set of Peano axioms, or any reasonable exten-
sion thereof (roughly, any extension that allows one
to encode into arithmetic statements about provabil-
ity and the like). As a slogan: “a theory cannot prove its
own consistency.”

The axiom of choice became highly controversial
when Ernst Zermelo used it to prove that every set can
be well-ordered, a task that, together with the proof
of the continuum hypothesis, Hilbert had listed first
among the problems he posed in 1900 to the Inter-
national Congress of Mathematicians. In 1938 Gödel
showed that both the axiom of choice and the gen-
eralized continuum hypothesis are consequences of
another principle (the axiom of constructibility) that
holds in a submodel of any model of Zermelo–Fraenkel
set theory. Both are consequently consistent with (not
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disprovable from) the Zermelo–Fraenkel axioms. Much
later (1963) Paul Cohen showed that both statements
are also independent of (not provable from) those
axioms.

Apart from logic, Gödel also worked in relativity
theory, where he established the existence of models
of einstein’s field equations [IV.13] that permit time
travel into the past.

Further Reading

Dawson Jr., J. W. 1997. Logical Dilemmas: The Life and Work
of Kurt Gödel. Natick, MA: A. K. Peters.

John W. Dawson Jr.

VI.93 André Weil
b. Paris, 1906; d. Princeton, New Jersey, 1998
Algebraic geometry; number theory

André Weil was one of the most influential mathemati-
cians of the twentieth century. His influence is due
both to his original contributions to a remarkably broad
spectrum of mathematical theories, and to the mark
he left on mathematical practice and style, through
some of his own works as well as through the bour-
baki [VI.96] group, of which he was one of the principal
founders.

Weil, as well as his sister, the philosopher, politicalPUP: two changed
sentences here
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activist, and religious thinker Simone Weil, received an
excellent education. Both were brilliant students, very
widely read, with a keen interest in languages (including
Sanskrit). André Weil soon specialized in mathematics,
his sister in philosophy. He graduated (and was first in
his year in the agrégation for mathematics) from the
École Normale Supérieure (ENS) when he was not even
nineteen years old, and traveled in Italy and Germany.
He obtained his doctorate in Paris at the age of twenty-
two, and then went to Aligarh, India, as a professor
for two years. After a brief spell in Marseilles, he was
Maître de Conférences at Strasbourg University (along
with Henri Cartan) from 1933 to 1939. The idea of the
Bourbaki project arose there from discussions about
teaching with Cartan, and grew in Paris in meetings that
included other friends from the ENS.

His research achievements began with his 1928 Paris
thesis. In it, he generalized mordell’s theorem [V.32]
of 1922, that the group of rational points on an ellip-
tic curve [III.21] is a finitely generated Abelian group,
to the group of K-rational points (where K is a number

field [III.65]) of a Jacobian variety. During the follow-
ing twelve years, Weil branched out in various direc-
tions, all related to important research topics of the
1930s: the approximation of holomorphic functions
of several variables by polynomials; the conjugation
of maximal tori in compact lie groups [III.50 §1]; the
theory of integration on compact and Abelian topolog-
ical groups; and the definition of uniform topologi-
cal spaces [III.92]. But problems of arithmetic origin
stood out among his interests: further thoughts on his
thesis and on Siegel’s finiteness theorem for integral
points; a bold “vector bundle” version of the riemann–
roch theorem [V.34] on a Riemann surface (in parallel
with similar work by E. Witt); p-adic analogs of elliptic
functions [V.34] (with his student Elisabeth Lutz).

Starting in 1940, Weil became active on what was
probably the biggest challenge in arithmetic algebraic
geometry at the time. Helmut Hasse had proved in 1932
the analogue of the riemann hypothesis [IV.2 §3] for
curves of genus 1 (elliptic curves) defined over a field
with finitely many elements. The problem was to gen-
eralize this to algebraic curves of genus higher than 1.
In 1936, Max Deuring had proposed algebraic corre-
spondences as a crucial new ingredient for attacking
this problem; but the problem remained open until
World War II. Weil’s initial attempt, written while in jail
in Rouen, was very modest, and contained little more
than Deuring’s observations of 1936. But, after several
years of searching in various directions while in resi-
dence in the United States, Weil finally became the first
person to prove the analogue of the Riemann hypothe-
sis for all nonsingular curves. This proof relied on his
complete rewriting of algebraic geometry (over an arbi-
trary ground field), which he had published before in
his Foundations of Algebraic Geometry (1946). Further-
more, Weil generalized the analogue of the Riemann
hypothesis from curves to algebraic varieties of arbi-
trary dimensions, defined over a finite field, and added
a new topological interpretation of the main invariants
of the relevant zeta functions. Taken together, all these
conjectures became known as the weil conjectures
[V.38]; they represented the most important stimulus
for the further development of algebraic geometry right
through to the 1970s, and to some extent later as well.

Several mathematicians were at work in the 1930s
and 1940s trying to rewrite algebraic geometry. Weil’s
Foundations, even though it does contain striking new
insights (e.g., a novel definition of intersection mul-
tiplicity), owes its basic notions (generic points, spe-
cializations) to van der Waerden, and it exerted its
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influence on the mathematical community in conjunc-
tion with the (different) rewriting of algebraic geometry
developed so successfully by Oscar Zariski from 1938
onward. It was therefore to a large extent the charac-
teristic style, rather than just the “mathematical con-
tent,” of the Foundations that would create a new way
of doing algebraic geometry for the next twenty years
or so, until it began to be replaced by Grothendieck’s
language of schemes.

Later works include, among other seminal papers
and books, Weil’s “adelic” rewriting of Siegel’s work
on quadratic forms, and a crucial contribution to the
philosophy, due to Taniyama and Shimura, that elliptic
curves over the rational numbers should be modular—
the proof of this fact is the basis of Wiles’s 1995 proof
of fermat’s last theorem [V.12].

In 1947, Weil—whose evasion of the French draft in
1939 was considered very critically by many American
colleagues—finally obtained a professorship at a distin-
guished university, namely Chicago. In 1958, he moved
to Princeton as a permanent member of the Institute
for Advanced Study.

The postwar years saw Weil continuously active on
many fronts of mathematical research, contributing
insightfully to many subjects that were in the air at
the time. To mention just a few: the Weil groups of
class field theory [V.31]; the explicit formulas of
analytic number theory; various aspects of differential
geometry, in particular kähler manifolds [III.90 §3];
the determination of Dirichlet series by their functional
equations. All of these topics point to seminal works
without which today’s mathematics would not be what
it is.

In his later years, Weil put his erudition and historical
sense to work writing articles and a book on the history
of mathematics: Number Theory, an Approach through
History. He also published a partial autobiography end-
ing in 1945, Souvenirs d’Apprentissage, of considerable
literary quality.

Further Reading
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Norbert Schappacher and Birgit Petri

VI.94 Alan Turing
b. London, 1912; d. Wilmslow, England, 1954
Logic; computing; cryptography; mathematical biology

In 1936, as a young Fellow of King’s College, Cam-
bridge, Alan Turing made a crucial contribution to
mathematical logic: he defined “computability” with
what is now called the turing machines [IV.20 §1.1].
Although mathematically equivalent to a definition of
effective calculability earlier given by church [VI.89],
Turing’s concept was compelling because of his entirely
original philosophical analysis. It won the endorse-
ment of Church, and indeed also of gödel [VI.92],
whose 1931 incompleteness theorem [V.18] under-
lay Turing’s investigation. Using his definition, Turing
showed that first-order logic was undecidable, and thus
dealt the final death blow to hilbert’s [VI.63] formalist
program. (See logic and model theory [IV.23 §2].)

Computability is now fundamental in mathematics,
in that it gives an exact meaning to the question of
whether a method exists to solve a problem. As an
illustration, hilbert’s tenth problem [V.23], on the
general solubility of Diophantine equations, was com-
pletely resolved in 1970 by methods connected with
Turing’s ideas. Turing himself pioneered extensions of
his definition in mathematical logic, and applications
of it in algebra. However, he was unusual as a mathe-
matician in that he explored not only the mathematical
uses of his ideas (in questions of decidability in algebra)
but also the wider implications for philosophy, science,
and engineering.

One factor in Turing’s breakthrough was his fas-
cination with the problem of mind and matter. Tur-
ing’s analysis of mental states and operations has since
become a point of departure for the cognitive sciences.
Turing himself blazed this trail later by his advocacy
of the possibility of artificial intelligence. His famous
1950 “Turing test” was part of an extensive range of
research proposals in this field.

A more immediately applicable aspect of his 1936
work lay in his observation that a single “universal”
machine could do the work of any Turing machine, by
reading the description of that machine as a table of
instructions. This is the essential principle of the mod-
ern digital computer, whose programs are themselves
data structures. In 1945 Turing used this insight to plan
a first electronic computer and its programming. He
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was preempted by von neumann [VI.91], but it can be

argued that von Neumann had used Turing’s insight

that computing must be primarily an application of

logic. Thus, Turing laid the foundations of modern

computer science.

Turing was able to bridge theory and practice be-

cause between 1938 and 1945 he was the chief sci-

entific figure in British cryptography, with particular

responsibility for decrypting German naval signals. His

main contributions lay in a brilliant logical solution of

the Enigma cipher, and in Bayesian information theory.

The advanced electronics employed in British code

breaking gave him the experience to become a pioneer

of practical computing as well.

Turing had less success in postwar computer engi-

neering, and increasingly withdrew from attempts

to influence the course of computer development.

Instead, at Manchester University after 1949 he con-

centrated on a theory of nonlinear partial differen-

tial equations applied to biological development. Like

his 1936 work, this opened an entirely new field. It

also illustrated his broad mathematical scope, which

included important work on the riemann zeta func-

tion [IV.2 §3]. He was busy working on biological

theory and new ideas in physics at the time of his

sudden death.

Turing’s short life combined the purest mathematics

and the most practical applications. It was also marked

by other contrasts. Although he promoted the theme of

computer-based artificial intelligence, there was noth-

ing mechanical about his thought or life. The wit and

drama of the “Turing test” have made him a lasting fig-

ure in the popularization of mathematical ideas. The

dramatization of his life, drawing on the extraordinary

secrecy of his war work, and his subsequent persecu-

tion as a homosexual, have also attracted great public

interest.

Further Reading
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Turing. Amsterdam: Elsevier.
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VI.95 Abraham Robinson

b. Waldenburg (Lower Silesia; now Walbrzych, Poland), 1918;
d. New Haven, Connecticut, 1974
Applied mathematics; logic; model theory; nonstandard analysis

Robinson was educated at a private Rabbinical school
and then at the Jewish High School in Breslau until
1933, when he emigrated with his family to Palestine.
There Robinson finished high school, going on to study
mathematics at the Hebrew University under Abraham
Fraenkel. He spent the spring of 1940 at the Sorbonne,
but when the Germans invaded France Robinson made
his way to England. There he spent the war as a refugee,
in the service of the Free French Forces. Robinson’s
mathematical talents were soon recognized, and he was
assigned to the Royal Aircraft Establishment in Farn-
borough, where he was part of a team designing super-
sonic delta wings and reconstructing German V-2 rock-
ets to determine how they worked. After the war, Robin-
son received his M.Sc. degree in mathematics from the
Hebrew University, with minors in physics and philoso-
phy. Several years later, he completed his Ph.D. in math-
ematics at Birkbeck College, London. His thesis, “On the
metamathematics of algebra,” was published in 1951.

Meanwhile, Robinson had been teaching at the Royal
College of Aeronautics since its founding in Cranfield in
October of 1946. Although promoted to Deputy Head of
the Department of Aeronautics in 1950, in the follow-
ing year Robinson accepted a position, at the rank of
associate professor, at the University of Toronto in the
Department of Applied Mathematics. While at Toronto,
most of his publications were devoted to applied math-
ematics, including papers on supersonic airfoil design
and a book he coauthored with his former student from
Cranfield, J. A. Laurmann, on Wing Theory.

His years at Toronto (1951–57) proved to be a tran-
sitional period in Robinson’s career, as his interests
turned increasingly toward mathematical logic, begin-
ning with studies of algebraically closed fields of char-
acteristic zero. In 1955 he published a book in French
summarizing much of his early work in mathematical
logic and model theory [IV.23], Théorie Métamathé-
matique des Ideaux. Robinson was a pioneering con-
tributor to model theory, which at its simplest uses
mathematical logic to analyze mathematical structures
(like groups, fields, or even set theory itself). Given
an axiomatic system, a model is a structure that sat-
isfies the axioms. One of his early impressive results
was a model-theoretic proof, which he published in
1955 in Mathematische Annalen, of Hilbert’s seven-
teenth problem, namely that a positive-definite rational
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function over the reals can be expressed as a sum of
squares of rational functions. This was soon followed
by another book, Complete Theories (1956), which fur-
ther extended ideas he had explored earlier in his the-
sis on model-theoretic algebra. Here Robinson intro-
duced such important concepts as model complete-
ness, model completion, and the “prime model test,”
along with proofs of the completeness of real-closed
fields [IV.23 §5] and the uniqueness of the model
completion of a model-complete theory.

In the fall of 1957 Robinson returned to the Hebrew
University, where he assumed the chair formerly held
by his teacher Abraham Fraenkel in the Einstein Insti-
tute of Mathematics. While at the Hebrew University,
Robinson worked on aspects of local differential alge-
bra, differentially closed fields, and in logic on skolem’s
[VI.81] results dealing with nonstandard models of
arithmetic. These provide models of ordinary peano
arithmetic [III.69], the usual arithmetic of the inte-
gers (0,1,2,3, . . . ), but ones that include “nonstandard”
elements, “numbers” that extend the scope of the stan-
dard model to models that are larger but nevertheless
satisfy the axioms of the standard structure. A non-
standard model of arithmetic may include, for example,
infinite integers. As Haim Gaifman puts it succinctly, “A
nonstandard model is one that constitutes an interpre-
tation of a formal system that is admittedly different
from the intended one.”

Robinson spent the year 1960–61 in the United
States, at Princeton, replacing church [VI.89], who
was on sabbatical leave. It was there that Robinson
was inspired to make his most revolutionary contri-
bution to mathematics, nonstandard analysis, using
model theory to allow the rigorous introduction of
infinitesimals. In fact, this extended the usual, standard
model of the real numbers to a nonstandard model that
included both infinite and infinitesimal elements. He
first published on this topic in 1961 in the Proceed-
ings of the Netherlands Royal Academy of Sciences. This
paper was soon followed by a book, Introduction to
Model Theory and to the Metamathematics of Algebra
(1963), a thorough revision of his earlier book of 1951,
including a new section on nonstandard analysis.

Meanwhile, Robinson had left Jerusalem for Los
Angeles, where he was appointed as Carnap’s chair at
UCLA in mathematics and philosophy. In addition to
writing an introductory text, Numbers and Ideals: An
Introduction to Some Basic Concepts of Algebra and
Number Theory (1965), he also published his definitive
introduction to Nonstandard Analysis (1966). Among

the important results he obtained while at UCLA (1962–
67) was his proof of the invariant subspace theorem
in Hilbert space for the case of polynomially compact
operators, published with his graduate student Allen
Bernstein. (The case for compact operators had been
established by Aronszajn and Smith in 1954; what Bern-
stein and Robinson did was extend this to the case of
an operator T such that some nonzero polynomial of
T is compact.)

In 1967 Robinson moved to Yale University (1967–
74), where he was eventually given a Sterling Profes-
sorship in 1971. Among Robinson’s most important
mathematical achievements during this period were
his extension of Paul Cohen’s method of forcing
[IV.22 §5.2] in set theory to model theory, and applica-
tions of nonstandard analysis in economics and quan-
tum physics. He also applied nonstandard analysis to
achieve an outstanding result in number theory, namely
a simplification of Carl Ludwig Siegel’s theorem regard-
ing integer points on curves (1929), as generalized
by Kurt Mahler for rational as well as integer solu-
tions (1934). This was work that Robinson did jointly
with Peter Roquette; together they extended the Siegel–
Mahler theorem by considering nonstandard integer
points and nonstandard prime divisors. After Robin-
son’s death from pancreatic cancer in 1974, Roquette
published this work in the Journal of Number Theory
in 1975.
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VI.96 Nicolas Bourbaki
b. Paris, 1935; d. —
Set theory; algebra; topology; foundations of mathematics; analysis;
differential and algebraic geometry; integration theory; spectral
theory; Lie algebras; commutative algebras; history of mathematics

Anne: you
suggested ‘fl.’
instead of ‘b.’ here,
but the problem is
that the group is
still ‘flourishing’
so that won’t
work. OK to keep
it as it is?
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Bourbaki is a pseudonym chosen in 1935 by a group
of French mathematicians, including Henri Cartan,
Jean Dieudonné, and andré weil [VI.93]. Under this
nom de plume, several generations of mostly French
mathematicians conceived, wrote, and published a
series of treatises under the general title Éléments
de Mathématique. The uncommon use of the singu-
lar “mathématique” underscored a strong commitment
to the unity of mathematics that is one of the chief
characteristics of the group. Together with the “Bour-
baki Seminar,” this monumental work promoted a uni-
fied, axiomatic, and structural view of pure mathemat-
ics that has exerted a strong influence on teaching and
research since World War II, especially in France.

Charles Denis Sauter Bourbaki was a French general
who fought in the Franco-Prussian war in 1870–71. A
hoax lecture given by students at the École Normale
Supérieure to the entering class in 1923 culminated
with a “Bourbaki theorem.” In 1935, a group of mathe-
maticians, many of whom had taken part in that lecture,
as either audience or pranksters, decided to adopt that
name for the fictive author of the modern treatise of
analysis they were planning to write.

Their first meeting had taken place in Paris on
December 10, 1934. In addition to Cartan, Dieudonné,
and Weil, other young university professors of mathe-
matics were present: Claude Chevalley, Jean Delsarte,
and René de Possel. Agreeing that analysis textbooks
available in French (such as Édouard Goursat’s Cours
d’Analyse) were outdated, they decided to write a book,
collectively, to replace them. Having been in touch with
modern German mathematics, especially at hilbert’s
[VI.63] Göttingen, and influenced in particular by Bar-
teel van der Waerden’s Moderne Algebra, they thought
that their large treatise should begin with an “abstract
packet” summarizing in axiomatic form basic general
notions such as sets, groups, and fields. Soon after this,
Szolem Mandelbrojt joined the group. Paul Dubreil and
Jean Leray took part in just a few of the original meet-
ings, and were replaced by Charles Ehresmann and the
physicist Jean Coulomb.

In July 1935, the group had its first “congress” (as
its annual summer meetings would later be called) in
Besse-en-Chandesse, Auvergne, where the pen name
“N. Bourbaki” was definitively adopted (the first name,
Nicolas, was chosen later). Settling on working proce-
dures, they drew up the general outline of the planned
treatise. The members of the group worked collectively
following certain ritual rules. They co-opted new col-
laborators, kept membership secret, and refused to

acknowledge individual contributions. During the three
or four working sessions they held every year, each con-
tribution prepared in advance by one of them was read
line by line, discussed, and severely criticized by the
others. Up to ten successive drafts and several years
of work by various authors were often needed before a
final version was unanimously adopted.

The first booklet—a digest of results in set theory—
was dated 1939 but issued in 1940. Despite the dif-
ficult working conditions during World War II, this
was soon followed in the 1940s by several book-
lets dealing mostly with general topology and algebra.
Today, the Elements of Mathematics consists of several
books: Theory of Sets, Algebra, General Topology, Real-
Variable Functions, Topological Vector Spaces, Integra-
tion, Commutative Algebra, Differential and Analytic
Manifolds, Lie Groups and Lie Algebra, Spectral Theo-
ries, and Elements of the History of Mathematics. Many
of them have been extensively revised over the years
and translated into several languages, including English
and Russian.

The first six books formed a tight linear exposi-
tion entitled “The fundamental structures of analysis.”
When they first appeared, they were striking for the log-
ical organization of the topics covered. The axiomatic
method was used systematically, and great effort was
made to ensure a global unity of style, notation, and
terminology. The avowed ambition was to take math-
ematics from its very start and, proceeding from the
general toward the particular, write a unified survey of
most of modern mathematics.

Several generations of mathematicians were co-opted
into the “Association of Bourbaki’s Collaborators,” as
the group is now officially known. After World War II,
Samuel Eilenberg, Laurent Schwartz, Roger Godement,
Jean-Louis Koszul, and Jean-Pierre Serre, among oth-
ers, took part in the writing of the treatise. Later,
Armand Borel, John Tate, François Bruhat, Serge Lang,
and Alexander Grothendieck also joined. Although its
frequency of publication has now slowed to a trickle,
the group is still functioning in the first decade of the
twenty-first century.

Notwithstanding the number of collaborators in-
volved and the extensiveness of the work pub-
lished, Bourbaki’s vision of mathematics was, and
has remained, surprisingly coherent. Most of the cru-
cial mathematical choices, which would come to have
a huge impact on the structural image of mathe-
matics that the group would later vigorously pro-
mote, were made in the late 1930s. In the follow-
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ing decades, many mathematicians shared a conviction
that a tight axiomatic refoundation of their research
domains would help overcome current blockages. This
was felt, for example, in probability theory, model
theory, algebraic geometry and topology, commutative
algebra, Lie groups, and Lie algebras.

After World War II, as the notoriety of both the
group and its individual members steadily grew, Bour-
baki’s public image soon encompassed more than just
the treatise. At the level of mathematical research,
the Bourbaki Seminar was a prestigious outlet estab-
lished in Paris in 1948, and it has met three times a
year ever since. Members of Bourbaki selected speak-
ers who usually summarized someone else’s work, and
supervised the publication of their talks. The topics
selected emphasized specific domains of mathemat-
ics, such as algebraic and differential geometry, at the
expense of others, such as probability theory or applied
mathematics.

Bourbaki’s views on the philosophy of mathematics
were always clear, especially after two articles pub-
lished in the late 1940s under that name argued for
a complete reorganization of mathematics, eschewing
older classification schemes in favor of fundamental
structures (sometimes called “mother-structures” and
supposedly closer to the deep mental structures of
humans) meant to underscore the organic unity of
mathematics. Bourbaki’s public image was echoed by
structuralists in the human sciences as well as artists
and philosophers, and it was invoked by radical reform-
ers of mathematical education from kindergarten to
university—although actual members of Bourbaki were
rarely involved directly.

From the late 1960s, Bourbaki’s critics became louder
on two counts: they took issue with the Bourbaki
approach to the logical foundations of mathematics
and they found gaps in the group’s encyclopedic objec-
tives. category theory [III.8] developed by Saunders
Mac Lane and Samuel Eilenberg was found to offer a
more fruitful foundational framework than Bourbaki’s
structures. It also became clear that whole branches of
mathematics—probability theory, geometry, and, to a
lesser extent, analysis and logic—were to remain absent
from the treatise, their very place in the grand archi-
tecture of Bourbakist mathematics left unclear. For a
new generation of mathematicians, it was Bourbaki’s
elitist contempt for applications that was especially
damaging.

Bourbaki’s impact on mathematics was profound:
despite its excesses, Bourbaki’s unified, structural, rig-

orous image of mathematics is still with us. But it was
those very characteristics that led to a feeling that Bour-
baki was corseting mathematical research. The back-
lash seems to be abating somewhat nowadays, but no
new Bourbaki is in view.

Further Reading
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Part VII

The Influence of Mathematics

VII.1 Mathematics and Chemistry
Jacek Klinowski and Alan L. Mackay

1 Introduction

Since archimedes [VI.3], and his experimental investi-
gation (described by Vitruvius) of the proportions of
gold and silver in an alloy, the solution of chemical
problems has employed mathematics. Carl Schorlem-
mer studied the paraffinic series of hydrocarbons (then
important because of the discovery of oil in Pennsylva-
nia) and showed how their properties changed with the
addition of successive carbon atoms. His close friend
in Manchester, Friedrich Engels, was inspired by this to
introduce the transformation of “quantity into quality”
into his philosophical outlook, which then became a
mantra of dialectical materialism. From a similar chem-
ical observation, cayley [VI.46] in 1857 developed
“rooted trees” and the mathematics of the enumera-
tion of branched molecules, the first articulation of
graph theory [III.34]. Later, George Pólya developed
his fundamental enumeration theorem, facilitating fur-
ther advances in the counting of these molecules. Still
more recently, chemical problems such as the mechan-
ics and kinematics of DNA have had a significant
influence on knot theory [III.46].

However, chemistry has been a quantitative modern
science for no more than 150 years. Before this, it was
a distant dream: when newton [VI.14] was develop-
ing the calculus in around 1700, much of his time was
spent working on alchemy. He explained why, having
established “the motions of the planets, the comets,
the Moon and the sea,” he was unable to determine
the remaining structure of the world from the same
propositions:

I suspect that they may all depend upon certain forces
by which the particles of the bodies, by some causes
hitherto unknown, are either mutually impelled toward

one another, and cohere in regular figures, or are
repelled and recede from one another. These forces
being unknown, philosophers have hitherto attempted
the search of Nature in vain; but I hope the principles
laid down will afford some light either to this or some
truer method of philosophy.

The nature of such forces came to be understood only

two hundred years later, and indeed the electron, the

particle responsible for chemical bonding, was not dis-

covered until 1897. This is why the main flow of ideas

has been from mathematical theory to applications in

chemistry.

Some of the fundamental equations of chemistry,

though based on experiment rather than strict mathe-

matical reasoning, convey a wealth of information with

great simplicity and elegance (Thomas 2003). For exam-

ple, consider Boltzmann’s fundamental equation of sta-

tistical thermodynamics, which links entropy, S, to Ω,

the number of possible ways of arranging the particles:

S = k logΩ, where k is known as the Boltzmann con-

stant. There is also the expression derived by Balmer

for the wavelength, λ, of spectral lines from hydrogen

in the visible portion of the spectrum:

1

λ
= R

(
1

n2
1

− 1

n2
2

)
,

where n1 and n2 are integers, n1 < n2, and R is known

as the Rydberg constant. A third example, the Bragg

equation, links the wavelength, λ, of monochromatic X-

rays, the distance, d, between planes in a crystal lattice,

and the angle, θ, between the crystal planes and the

direction of the X-rays. It says thatnλ = 2d sinθ, where

n is a small integer. Finally, there is the “phase rule,”

P +F = C+2, which links the number of phases, P , the

number of degrees of freedom, F , and the number of

components, C , in a chemical system. This is the same

relationship as that between the number of vertices,

faces, and edges in a convex polyhedron, and emerges

from the geometrical representation of the system.
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In recent years computers have become the dominant
tool in theoretical chemistry. Not only can computers
solve differential equations numerically, they can often
provide exact algebraic expressions, sometimes even
ones that are too elaborate to write out. Computing has
required the development of algorithms in the fields of
structure, process, modeling, and search. Mathematics
has been revolutionized by the advent of computers:
in particular in the facility for dealing with nonlinear
problems and for displaying results graphically. This
has led to fundamental advances, some of them bearing
on chemistry.

In general, mathematical approaches to chemical
problems can be divided into discrete and continuous
treatments, reflecting on the one hand the fundamen-
tal discrete atomic nature of matter and on the other
the continuous statistical behavior of large numbers of
atoms. For example, enumerating molecules is a dis-
crete problem, while a problem involving global mea-
sures such as temperature and other thermodynamic
parameters will be continuous. These treatments have
required different branches of mathematics, with inte-
gers more important for discrete problems and real
numbers more important for continuous ones.

We shall now outline some chemical problems to
which, in our view, mathematics has made the most
significant contributions.

2 Structure

2.1 Description of Crystal Structure

Crystal structure is the study of how atoms arrange
themselves to form macroscopic materials. Early ideas
in the subject were based purely on the symmetry of
crystals and their morphology (that is, the shapes they
tended to form), and were developed in the nineteenth
century in the absence of definite information about
the atomic structure of matter. The 230 space groups,
which codify different ways of arranging objects peri-
odically in three-dimensional (3D) space, were found
independently by Fedorov, Schoenflies, and Barlow be-
tween 1885 and 1891. They result from the systematic
combination of a certain collection of fourteen lattices,
named Bravais lattices after their discovery in 1848
by Auguste Bravais, with the thirty-two so-called crys-
tallographic point groups, which were developed from
morphological considerations.

Since the diffraction of X-rays was demonstrated in
1912 by Max von Laue and practical X-ray analysis was
developed by W. H. Bragg and his son W. L. Bragg, the

crystal structures of several hundred thousand inor-
ganic and organic substances have been determined.
However, such analysis was for a long time held back by
the time required for the calculation of fourier trans-
forms [III.27]. This difficulty is now a thing of the past,
owing to the discovery of the fast fourier trans-
form [III.26] by Cooley and Tukey in 1965—a univer-
sally applied algorithm and one of those most often
cited in mathematics and computer science.

The fundamental geometry of two-dimensional (2D)
and 3D spatial structures led mathematicians to seek
analogous problems in N dimensions. Some of this
work has found application in the description of quasi-
crystals, which are arrangements of atoms that, like
crystals, exhibit a high degree of organization, but
which lack the periodic behavior of crystals. (That is,
they do not have translational symmetry.) The most
notable example is the following, which uses six-dimen-
sional geometry. Take a regular cubic lattice L in six
dimensions and let V be a 3D subspace of R6 that con-
tains no point of L apart from the origin. Now project on
to V all points from L that are closer to V than a certain
distance d. The result is a 3D structure of points that
exhibits a great deal of local regularity but not global
regularity. This structure gives a very good model for
quasicrystals.

Until recently, crystals in three dimensions had al-
ways been thought of as periodic, and therefore capable
of showing only twofold, threefold, fourfold, or sixfold
axes of symmetry. Fivefold axes were excluded, because
a plane cannot be tiled with regular pentagons. How-
ever, in 1982, X-ray and electron diffraction demon-
strated the presence of fivefold diffraction symmetry
in certain rapidly cooled alloys. Careful electron micro-
scopy was necessary to distinguish the observed struc-
tures from the twinning (symmetrical intergrowth) of
“normal” crystals. This discovery, of a quasicrystalline
alloy phase “with long-range orientational order and no
translational symmetry,” has brought about an ideolog-
ical shift in crystallography.

The earlier concept of a “quasilattice” appeared to be
one possible mathematical formalism for the descrip-
tion of quasicrystals. Quasilattices have two incom-
mensurable periods in the same direction, and the
ratio of these periods was given by so-called Pisot
and Salem numbers. A Pisot number θ is a root of a
polynomial with integer coefficients of degree m such
that if θ2, . . . , θm are the other roots, then |θi| < 1,
i = 2, . . . ,m. A real quadratic algebraic integer (see
algebraic numbers [IV.1 §11]) greater than 1 and of
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degree 2 or 3 is a Pisot number if its norm is equal

to ±1. The golden ratio is an example of a Pisot num-

ber since it has degree 2 and norm−1. A Salem number

is defined in a similar way to a Pisot number, but with

the inequalities replaced by equalities.

lie algebra [III.50 §2] arguments have also been

used to describe quasicrystals. This has stimulated

a great deal of theoretical N-dimensional geometry.

Before the discovery of quasicrystals, Roger Penrose

had shown how to cover a plane nonperiodically using

two different types of rhombic tiles, and correspond-

ing rules were developed for 3D space with two kinds

of rhombohedral tiles. The Fourier transform of such

a 3D structure with atoms placed in the rhombohe-

dral cells explains the observed diffraction patterns

of 3D quasicrystals, while Penrose’s 2D pattern cor-

responds to decagonal quasicrystals, which consist of

stacked layers of the 2D pattern and which have been

experimentally observed.

The broadening of classical crystallography to en-

compass quasicrystals has been given further impe-

tus by recent advances in electron microscopy. It is

now possible to observe atomic arrangements directly,

including those of the decagonal quasicrystals just

mentioned, rather than having to deduce them from

diffraction patterns, where the phases of the various

diffracted beams are lost in the experimental system

and have to be recovered mathematically. The whole

field of computational and experimental image pro-

cessing has become coherent as a result.

Another model describes 2D quasicrystals in terms

of a single repeating unit, but the unit is a compos-

ite object, a pattern made out of identical decagons.

Unlike the unit cells in periodic crystals, these quasi-

unit cells are allowed to overlap, but where they do their

constituent decagons must match up. This conceptual

device is an alternative to the use of two kinds of unit

cell. It emphasizes the dominating physical presence

of locally ordered atomic clusters, with no long-range

order, and it can be extended to three dimensions. The

predictions of this model agree with the observed com-

position of a 2D decagonal quasicrystal, as well as with

the results obtained by electron microscopy and X-ray

diffraction. Nevertheless, although a huge amount of

interesting mathematics has been generated by the dis-

covery of quasicrystals, most of it is not physically

relevant: the structures emerge from the competition

between local and global ordering forces rather than

from the mathematics of the Penrose tiling.

The acceptance of quasicrystals demonstrates the
need to accommodate more general concepts of order
into classical crystallography. It has explicitly intro-
duced concepts of hierarchy, by involving not just
ordered clusters of atoms but ordered clusters of clus-
ters, where local order has predominated over the
regular lattice repetition. Quasicrystals represent the
first step from absolute regularity toward more gen-
eral structures that are intimately bound up with the
notion of information.

Information can be stored in a device which has two
or more clearly identifiable states that are metastable.
This means that each state is a local equilibrium, and to
pass from one to another, one must supply and remove
enough energy to take the device over the local energy
watershed. A switch, for example, can be on or off; it is
stable in either state and to change the state takes a cer-
tain amount of energy. To take a more general example,
any information, encoded as a sequence of binary dig-
its, can be read in, read out, and stored as a sequence
of magnetic domains, where each one is magnetized
either north or south.

Perfect crystals have no alternative metastable states,
so cannot be used to store information, but a piece of
silicon carbide, for example, exists as a sequence of
close-packed layers, each of which may be in one or
other of two almost equivalent positions. To describe
the structure of a piece of silicon carbide therefore
demands a knowledge of the sequence of positions in
which the layers are stacked. This can be represented
by a string of binary digits. Now that it is possible to
arrange atoms in a structure almost at will, at least if
they are on a surface, the processing of information has
become important to chemistry.

In determining the arrangement of atoms in crystals,
mathematics has been essential for the solution of the
phase problem, which had held up progress in struc-
tural chemistry and molecular biology for decades. A
pattern of diffracted X-rays, recorded as an array of
spots on a photographic plate, depends on the arrange-
ment of atoms in the molecule causing the diffrac-
tion. The problem is that the diffraction pattern reg-
isters only the intensity of the light waves, but to work
back to the molecular structure it is necessary to know
their phase as well (that is, the positions of the crests
and troughs of the waves relative to each other). This
results in a classic inverse problem, which was solved
by Jerome and Isabella Karle and Herbert A. Hauptman.

A Voronoi diagram consists of points, representing
atom sites, with each point contained in a region (see
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Figure 1 Voronoi dissection of 2D space.

also mathematical biology [VII.2 §5]). The region
surrounding a given site consists of all points that are
closer to that site than to any of the other sites (fig-
ure 1). The geometric dual of the Voronoi diagram, a
system of triangles with the sites as vertices, is called
the Delaunay triangulation. (An alternative definition
of the Delaunay triangulation is that it is a triangulation
of the sites with the additional property that, for each
triangle, the circumcircle of that triangle contains no
other sites.) These dissections give a well-defined way
of representing many N-dimensional chemical struc-
tures as arrangements of polytopes. Crystals, which
have periodic boundaries, are easier to deal with than
extended structures that terminate in a boundary. The
Voronoi dissection of crystal structures enables one to
describe them as networks. Nevertheless, despite much
progress in understanding structure, it is not yet pos-
sible to guess a crystal structure in advance just from
the composition of elements in its molecules.

2.2 Computational Chemistry

Attempts to solve the schrödinger equation [III.85],
which gives the quantum mechanical description of
matter, began soon after it was proposed in 1926.
For very simple systems, calculations performed on
mechanical calculators agreed with the experimental
results of spectroscopy. In the 1950s, electronic com-
puters became available for general scientific use, and
the new field of computational chemistry developed,
the aim of which was to obtain quantitative informa-
tion on atomic positions, bond lengths, electronic con-
figurations of atoms, etc., by means of numerical solu-

tions of the Schrödinger equation. Advances during the
1960s included deriving suitable functions for repre-
senting electronic orbitals, obtaining approximate solu-
tions to the problem of how the motions of different
electrons correlate with each other, and providing for-
mulas for the derivative of the energy of a molecule
with respect to the positions of the atomic nuclei. Pow-
erful software packages became available in the early
1970s. Much current research is aimed at developing
methods that can handle larger and larger molecules.

Density functional theory (DFT) (Parr and Yang 1989)
is a major recent field of activity in quantum mechan-
ical computation, and concerns macroscopic features
of materials. It has been successful in the description
of the properties of metals, semiconductors, and insu-
lators, and even of complex materials such as pro-
teins and carbon nanotubes. Traditional methods in the
study of electronic structure—such as one called the
Hartree–Fock theory molecular orbital method, which
assigns the electrons two at a time to a set of molec-
ular orbitals—involve very complicated many-electron
wave functions. The main objective of DFT is to
replace the many-body electronic wave function, which
depends on 3N variables, with a different basic quan-
tity, the electronic density, which depends on just 3 vari-
ables, and therefore greatly speeds up calculations.

The partial differential equations of quantum
mechanics, physics, fields, surfaces, potentials, and
waves can sometimes be solved analytically, but even
if they cannot, they are now almost always soluble
by numerical methods. All this relies on the corre-
sponding pure mathematics (see numerical analysis
[IV.21 §5]).

2.3 Chemical Topology

Isomers are chemical compounds that are made out
of the same elements but have different physical and
chemical properties. This can happen for various rea-
sons. In structural isomers, the atoms and functional
groups are linked together in different ways. This
class includes chain isomers, where hydrocarbon chains
have variable amounts of branching, and position iso-
mers, where the position of a functional group in a
chain is different (figure 2(a)). In stereoisomers the
bond structure is the same, but the geometrical posi-
tioning of atoms and functional groups in space dif-
fers (figure 2(b)). This class includes optical isomers,
where different isomers are mirror images of each other
(figure 2(c)). While structural isomers have different
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Figure 2 (a) Position isomerism. (b) Stereoisomerism.
(c) Optical isomerism.

chemical properties, stereoisomers behave identically

in most chemical reactions. There are also topological

isomers such as catenanes and DNA.

An important theme in chemical topology is deter-

mining how many isomers there are of a given

molecule. To do this, one first associates with any

molecule a molecular graph, the vertices represent-

ing atoms and the edges representing chemical bonds.

To enumerate stereoisomers, one counts the symme-

tries of this graph, but first one must consider symme-

tries of the molecule (Cotton 1990) in order to decide

which symmetries of the graph correspond to spa-

tial transformations that make chemical sense. Cay-

ley addressed the problem of enumerating structural

isomers, that is, combinatorially possible branched

molecules. To do this, one must count how many dif-

ferent molecular graphs there are with a given set of

elements, where two graphs are regarded as the same if

they are isomorphic. The enumeration of isomorphism

types uses group theory to count the intrinsic graph

symmetries. After Pólya published his remarkable enu-

meration theorem [IV.18 §6] in 1937, his work using

generating functions [IV.18 §§2.4, 3] and permuta-

tion groups [III.70] became central to the enumer-

ation of isomers in organic chemistry. The theorem

solves the general problem of how many configura-

tions there are with certain properties. It has applica-

tions such as the enumeration of chemical compounds

and the enumeration of rooted trees in graph theory. A

new branch of graph theory, called enumerative graph

theory, is based on Pólya’s ideas (see algebraic and
enumerative combinatorics [IV.18]).

Although not all the possible isomers occur in nature,
molecules with remarkable topologies have been syn-
thesized artificially. Among them are cubane, C8H8,
which contains eight carbon atoms arranged at the
corners of a cube, each linked to a single hydrogen
atom; dodecahedrane, C20H20, which, as its name sug-
gests, has a dodecahedral shape; the molecular trefoil
knot ; and the self-assembling compound olympiadane
composed of five interlocked rings. Catenanes (from
Latin catena, chain) are molecules containing two or
more interlocked rings that are inseparable without
breaking a covalent bond. Rotaxanes (from Latin rota,
wheel, and axis, axle) are dumbbell shaped, having a
rod and two bulky stopper groups, around which there
are encircling macrocyclic components. The stoppers
of the dumbbell prevent the macrocycles from slipping
off the rod. Even a molecular möbius strip [IV.7 §2.3]
has recently been synthesized.

Macromolecules, such as synthetic polymers and
biopolymers (e.g., DNA and proteins), are very large and
highly flexible. The degree to which a polymer molecule
coils and knots and links with other molecules is crucial
to its physical and chemical properties, such as reactiv-
ity, viscosity, and crystallization behavior. The topolog-
ical entanglement of short chains can be modeled using
Monte Carlo simulation, and the results can now be
experimentally verified with fluorescence microscopy.

DNA, the central substance of life, has a complex
and fascinating topology, which is closely related to its
biological function. The major geometric descriptions
of supercoiled DNA (that is, DNA wrapped around a
series of proteins) involve the concepts of linking, twist-
ing, and writhing numbers that come from knot theory.
DNA knots, which are created spontaneously within
cells, interfere with replication, reduce transcription,
and may decrease the stability of the DNA. “Resolvase
enzymes” detect and remove these knots, but the mech-
anism of this process is not understood. However,
using topological concepts of knots and tangles, one
can gain insight into the reaction site and thereby
try to infer the mechanism. (See also mathematical
biology [VII.2 §5].)

2.4 Fullerenes

Graphite and diamond, the two crystalline forms of the
element carbon, have been known since time immemo-
rial, but fullerenes, which were subsequently found to
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Figure 3 The structure of the fullerene C60.

exist naturally in soot and geological deposits, were dis-

covered only in the mid 1980s. The most common is the

almost-spherical carbon cage C60 molecule (figure 3),

also known as “buckminsterfullerene” after the archi-

tect who designed enormous domes, but fullerenes C24,

C28, C32, C36, C50, C70, C76, C84, etc., also exist. Topology

provides insights into the possible types of such struc-

tures, while group theory and graph theory describe the

symmetry of the molecules, allowing one to interpret

their vibrational modes.

In all fullerenes, each carbon atom is connected

to exactly three neighboring ones, and the resulting

molecule is a “cage” made of rings of either five or

six carbon atoms. From euler’s [VI.19] topological rela-

tionship
∑
n(6−n)fn = 12, where fn is the number of

n-hedral faces and the summation is over all faces of

the polyhedron, we conclude first that f5 = 12, since n
is found to take only the values 5 or 6, and second that

f6 can take any value.

In 1994, Terrones and Mackay predicted the exis-

tence of ordered structures of a new kind, derived

from graphite and related to fullerenes, with topolo-

gies of triply periodic minimal surfaces [III.96 §3.1].

These new structures, which are of great practical inter-

est, are produced by introducing eight-membered rings

of carbon atoms into a sheet of six-membered rings.

This gives rise to saddle-shaped surfaces of negative

gaussian curvature [III.80], unlike the fullerenes,

which have positive curvature. Thus, to model them

mathematically one must consider embeddings of non-

Euclidean 2D spaces into R3. This has contributed to

a renewed interest in certain aspects of non-Euclidean

geometry.

2.5 Spectroscopy

Spectroscopy is the study of the interaction of elec-

tromagnetic radiation (light, radio waves, X-rays, etc.)

with matter. The central portion of the electromagnetic

spectrum—spanning the infrared, visible, and ultra-

violet wavelengths and the radio frequency region—is

of particular interest to chemistry. A molecule, which

consists of electrically charged nuclei and electrons,

may interact with the oscillating electric and magnetic

fields of light and absorb enough energy to be pro-

moted from one discrete vibrational energy level to

another. Such a transition is registered in the infrared

spectrum of the molecule. The Raman spectrum mon-

itors inelastic scattering of light by molecules (that is,

when some of the light is scattered at a different fre-

quency from the frequency of the incoming photons).

Visible and ultraviolet light can redistribute the elec-

trons in the molecule: this is electronic spectroscopy.

Group theory is essential in the interpretation of the

spectra of chemical compounds (Cotton 1990; Hollas

2003). For any given molecule, the symmetry opera-

tions that can be applied to it form a group [I.3 §2.1],

and can be represented by matrices. This allows one to

identify “spectroscopically active” events in a molecule.

For example, just three bands are observed in the

infrared spectrum and eight bands in the Raman spec-

trum of dodecahedrane. This is a consequence of the

icosahedral symmetry of the molecule and is what

one expects from group-theoretic considerations. Also,

there are no coincidences between the infrared- and

Raman-active modes. Similarly, group theory correctly

predicts that, because of the high symmetry of a C60

molecule, it has only four lines in its infrared spectrum

and ten in its Raman spectrum, even though it has 174

vibrational modes.

2.6 Curved Surfaces

Structural chemistry has greatly changed in the last

twenty years. First, as we have seen, the rigid con-

cept of a “perfect crystal” has been relaxed to embrace

structures such as quasicrystals and textures. Second,

an advance has been made from classical geometry to

3D differential geometry. The main reason for this has

been the use of curved surfaces for describing a great

variety of structures (Hyde et al. 1997).
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Figure 4 One unit cell of the P triply periodic minimal sur-
face. The surface divides space into two interpenetrating
labyrinths.

When a wire frame is dipped into soapy water, a thin
film is formed. Surface tension minimizes the energy
of the film, which is proportional to its surface area.
As a result, the film has the smallest area consistent
with the shape of the frame and with the requirement
that the mean curvature of the film be zero at every
point. If the symmetries of a minimal surface are given
by one of the 230 space groups mentioned earlier, then
the surface is periodic in three independent directions.
Such triply periodic minimal surfaces (TPMSs) are of
special interest because they appear in a variety of
real structures such as silicates, bicontinuous mixtures,
lyotropic colloids, detergent films, lipid bilayers, poly-
mer interfaces, and biological formations (an example
of a TPMS is illustrated in figure 4). Thus, TPMSs pro-
vide a concise description of many seemingly unre-
lated structures. Extensions of TPMSs may even have
applications in cosmology as “branes.”

In 1866 weierstrass [VI.44] discovered a method of
complex analysis suitable for general investigation of
minimal surfaces. Consider a transformation of a min-
imal surface into the complex plane by combination of
two simple maps. The first is the Gauss map ν , under
which the image of a point P of the surface is the point
P′ of the intersection of the surface normal vector at P
with the unit sphere centered at P. The second map is a
stereographic projectionσ of the point P′ on the sphere

into the complex plane C, resulting in the point P′′. The
composite map, σν , conformally maps the neighbor-
hood of any nonumbilic point on the surface to a simply
connected region of C. (An umbilic point is one where
the two principal curvatures are the same.) The inverse
of this composite map is called the Enneper–Weierstrass
representation.

In a system with the origin at (x0, y0, z0), the Carte-
sian coordinates (x,y, z) of any nontrivial minimal
surface are determined by a set of three integrals:

x = x0 + Re
∫ω
ω0

(1− τ2)R(τ)dτ,

y = y0 + Re
∫ω
ω0

i(1+ τ2)R(τ)dτ,

z = z0 + Re
∫ω
ω0

2τR(τ)dτ.

Here R(τ) is the Weierstrass function. It is a function of
a complex variable τ , and it is holomorphic [I.3 §5.6]
in a simply connected region of C, except at isolated
points.

The Cartesian coordinates of any (nonumbilic) point
on a minimal surface are thus expressed as the real
parts of certain contour integrals, evaluated in the com-
plex plane from some fixed pointω0 to a variable point
ω. Integration is carried out within the domain where
the integrands are analytic, and thus by cauchy’s the-
orem [V.6] the values of the integrals are independent
of the path of integration from ω0 to ω. In this way,
a specific minimal surface is completely defined by its
Weierstrass function.

While the Weierstrass functions for many TPMSs are
unknown, the coordinates of points lying on some
minimal surfaces involve functions of the form

R(τ) = 1√
τ8 + 2µτ6 + λτ4 + 2µτ2 + 1

,

where µ and λ are sufficient to parametrize the surface.
A method has been developed for deriving this function
for a given type of surface, and it generates different
families of minimal surfaces from the above equation.
For example, taking µ = 0 and λ = −14 gives a surface
known as the D surface (for “diamond”).

The application of minimal surfaces to the physical
world has so far been descriptive, rather than quan-
titative. Although explicit analytical equations for the
parameters of some TPMSs have recently been derived,
problems such as stability and mechanical strength are
unresolved. While describing structure using the con-
cept of curvature is mathematically attractive, it has
yet to make its full impact on chemistry.



�

840 VII. The Influence of Mathematics

2.7 Enumeration of Crystalline Structures

It is a matter of considerable scientific and practi-
cal importance to enumerate all possible networks of
atoms in a systematic way. For example, 4-connected
networks (that is, networks in which each atom is
connected to exactly four neighbors) occur in crys-
talline elements, hydrates, covalently bonded crystals,
silicates, and many synthetic compounds. Of particu-
lar interest is the possibility of using systematic enu-
meration to discover and generate new nanoporous
architectures.

Nanoporous materials are materials with tiny holes
in them that allow some substances to pass through
and not others. Many are naturally occurring, such as
cell membranes and “molecular sieves” called zeolites,
but many others have been synthesized. There are now
152 recognized structure types of zeolites, with several
new types being added to the list every year. Zeolites
find many important applications in science and tech-
nology, in areas as diverse as catalysis, chemical sepa-
ration, water softening, agriculture, refrigeration, and
optoelectronics. Unfortunately, the problem of enu-
meration is fraught with difficulties, and since the num-
ber of 4-connected 3D networks is infinite and there
is no systematic procedure for their derivation, the
results reported so far have been obtained by empirical
methods.

Enumeration originated with the work of Wells (1984)
on 3D nets and polyhedra. Many possible new struc-
tures were found by model building or computer search
algorithms. New research in this field is based on
recent advances in combinatorial tiling theory, devel-
oped by the first generation of pure mathematicians
familiar with computing. The tiling approach identified
over nine hundred networks with one, two, and three
kinds of inequivalent vertices, which we call uninodal,
binodal, and trinodal.

However, only a fraction of the mathematically gen-
erated networks are chemically feasible (many would
be “strained” frameworks requiring unrealistic bond
lengths and bond angles), so for the mathematics to
be useful an effective filtering process is needed to
identify the most plausible frameworks. Methods of
computational chemistry were therefore used to min-
imize the framework energy of the various hypotheti-
cal structures, which were treated as though they were
made from silicon dioxide. The unit cell parameters,
framework energies and densities, volumes available
to adsorption, and X-ray diffraction patterns were all

calculated. A total of 887 structures were successfully
optimized and ranked according to their framework
energies and available volumes to give a subset of
chemically feasible hypothetical structures. A number
of them have since been synthesized.

The results of these calculations are relevant to the
structures of zeolites and other silicates, aluminophos-
phates (AlPOs), oxides, nitrides, chalcogenides, halides,
carbon networks, and even to polyhedral bubbles in
foams.

2.8 Global Optimization Algorithms

A wide variety of problems in practically all fields
of physical science involve global optimization, that
is, determining the global minimum (or maximum)
of a function of an arbitrary number of independent
variables (Wales 2004). These problems also appear
in technology, design, economics, telecommunications,
logistics, financial planning, travel scheduling, and the
design of microprocessor circuitry. In chemistry and
biology, global optimization arises in connection with
the structure of clusters of atoms, protein conforma-
tion, and molecular docking (the fitting and binding
of small molecules at the active sites of biomacro-
molecules such as enzymes and DNA). The quantity to
be minimized is nearly always the energy of the system
(see below).

Global optimization is like trying to find the deepest
point in a very rugged landscape. In most cases of prac-
tical interest it is very difficult because of the ubiquity
of local minima, or holes in the landscape, the num-
ber of which tend to increase exponentially with the
size of the problem. Conventional minimization tech-
niques are time-consuming and have a tendency to find
a nearby hole and stay there: that is, they converge
to whichever local minimum they first encounter. The
genetic algorithm (GA), an approach inspired by Dar-
win’s theory of evolution, was introduced in the 1960s.
This algorithm starts with a set of solutions (repre-
sented by “chromosomes”) called a population. Solu-
tions from one population are taken and used to form
a new population. This is done in such a way that one
expects the new population to be better than the old
one. Solutions that are chosen for forming new solu-
tions (“offspring”) are selected according to their “fit-
ness”: the more suitable they are the more chances
they have to reproduce. This is repeated until some
condition is satisfied. (For example, one might stop
after a certain number of generations or after a certain
improvement of the solution has been achieved.)
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Simulated annealing (SA), introduced in 1983, uses
an analogy between the annealing process, in which
a molten metal cools and freezes into a minimum-
energy structure, and the search for a minimum in a
more general system. The process can be thought of
as an adiabatic approach to the lowest-energy state.
The algorithm employs a random search which accepts
not only changes that decrease the energy, but also
some changes that increase it. The energy is repre-
sented by an objective function f , and the energy-
increasing changes are accepted with a probability p =
exp(−δf/T), where δf is the increase in f and T is the
system “temperature,” irrespective of the nature of the
objective function. SA involves the choice of “annealing
schedule,” initial temperature, the number of iterations
at each temperature, and the temperature decrease at
each step as cooling proceeds.

Taboo (or tabu) search is a general-purpose stochas-
tic global-optimization method originally proposed by
Glover in 1989. It is used for very large combina-
torial optimization tasks and has been extended to
continuous-valued functions of many variables with
many local minima. Taboo search uses a modifica-
tion of “local search,” which starts from some initial
solution and attempts to find a better solution. This
becomes the new solution and the process restarts
from it. The procedure continues step by step until no
improvement is found to the current solution. The algo-
rithm avoids entrapment in local minima and gives the
optimal final solution. A recent method of global opti-
mization, known as “basin hopping,” has been success-
fully applied to a variety of atomic and molecular clus-
ters, peptides, polymers, and glass-forming solids. The
algorithm is based upon a transformation of the energy
landscape that does not affect the relative energies of
local minima. Combined with taboo search, basin hop-
ping shows a significant improvement in efficiency over
the best published results for atomic clusters.

2.9 Protein Structure

Proteins are linear sequences of amino acids, molecules
containing both the amide (–NH2) and carboxylic
(–COOH) functional groups. Understanding the means
by which a protein adopts its 3D structure is a key sci-
entific challenge (Wales 2004). This problem is also crit-
ical to developing strategies, at the molecular level, to
counter “protein folding diseases” such as Alzheimer’s
disease and “mad cow” disease. The strategy in tackling
protein folding relies upon the fact, observed by Anfin-
sen, Haber, Sela, and White in 1961, that the structure

Figure 5 A fifty-five-atom Lennard-Jones cluster.
(Courtesy of Dr. D. J. Wales, Cambridge University.)

of a folded protein corresponds to the conformation
which minimizes the free energy of the system. The free
energy of a protein depends on the various interactions
within the system, and each can be modeled mathemat-
ically using the principles of electrostatics and physi-
cal chemistry. As a result, the free energy of a protein
can be expressed as a function of the positions of the
constituent atoms. The 3D arrangement of the protein
then corresponds to the set of atomic locations pro-
viding the minimum possible value of the free energy,
and the problem is reduced to finding the global mini-
mum of the potential-energy surface of the protein. The
problem is further complicated because some proteins
require other molecules, “chaperones,” to enable them
to reach a particular configuration.

2.10 Lennard-Jones Clusters

Lennard-Jones clusters are closely packed arrange-
ments of atoms in which every pair of atoms has
an associated potential energy, given by the classical
Lennard-Jones potential-energy function. The Lennard-
Jones cluster problem is to determine the atomic clus-
ter configurations with minimum potential energy (fig-
ure 5). If n is the number of atoms in the cluster,
then one wishes to find points p1, p2, . . . , pn so as to
minimize the sum

n−1∑
i=1

n∑
j=i+1

(r−12
ij − 2r−6

ij ),
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where rij stands for the Euclidean distance between pi
and pj , and the atoms of the cluster are positioned at
p1, p2, . . . , pn. The problem is still a challenge, both to
optimization methods and to computer technology. A
systematic survey by Northby in 1987, which yielded
most of the lowest Lennard-Jones potential values in
the range 13 � n � 147, was a significant land-
mark, and these results have since been improved by
about 10%. The results for n = 148, 149, 150, 192,
200, 201, 300, and 309 have now been reported using
stochastic global-optimization algorithms.

2.11 Random Structures

Stereology, originally the deduction of 3D structure
from microscope examination of sections, has required
the development of a substantial branch of statisti-
cal mathematics, in which R. E. Miles and R. Coleman
have played leading roles. Stereology concerns the esti-
mation of geometrical quantities. Geometrical shapes
are used to probe objects to learn about their quanti-
ties, such as volume or length. Random sampling is a
basic step in all stereological estimation. The degree of
randomness required for any estimate varies.

Even apparently simple questions involving random-
ness with spatial constraints may prove difficult. For
example, Gotoh and Finney gave an estimate of 0.6357
as the density expected for a dense random packing
of hard spheres of equal size, and their answer to
this apparently simple question has not since been
improved upon, as far as we know. The problem
needs to be defined very carefully, since it is far from
obvious what one means by a “random packing” of
spheres. This is even more true when one investigates
other, related problems concerning the interaction of
molecules using computer simulation. This area, called
molecular dynamics, was begun by A. Rahman, and it
developed steadily from the 1960s as computers them-
selves developed. An example of a problem in molec-
ular dynamics is the modeling of liquid water. This is
still difficult, but the immense computing power that
is now available has enabled enormous progress to be
made.

3 Process

In 1951 Belousov discovered the Belousov–Zhabotinski
reaction, in which time-dependent spatial patterns
appear in an apparently isotropic medium. The mech-
anism of this reaction was elucidated in 1972, and
this opened up an entire new research area: nonlinear

chemical dynamics. Oscillatory phenomena have also
been observed in membrane transport. Winfree and Pri-
gogine have shown how patterns in space and time can
appear, and some of these patterns have been fitted to
practical examples.

The development of cellular automata began with
Stanisław Ulam, Lindenmeyer systems, and Conway’s
“game of life” and continues to this day. With his huge
book, Wolfram (2002) has demonstrated the complex-
ity that can arise from apparently simple rules, and
recently Reiter has used cellular automata to simulate
the growth of snowflakes, beginning to answer ques-
tions that Kepler posed in 1611. There is a group of
mathematicians in Bielefeld, led by Andreas Dress, who
deal with structure-forming processes; they have made
particular progress in modeling actual chemistry and
thus revealing possible mechanisms.

4 Search

4.1 Chemical Informatics

A fundamental development in chemistry has been
the application of computing to searching multidimen-
sional databases of chemical compounds and their
structures. These databases are now enormous com-
pared with their (already large) predecessors, the clas-
sical Gmelin and Beilstein databases. The search pro-
cess has required fundamental mathematical analy-
ses, as exemplified in the pioneering work of Ken-
nard and Bernal in developing the Cambridge Structural
Database (www.ccdc.cam.ac.uk/products/csd/).

What is the best way to encode the structure of
a 3D molecule or a crystal arrangement as a linear
sequence of symbols? One would like to be able to
restore the structure efficiently from its encoding, and
also to search efficiently through a big list of encoded
structures. The problems that this raises are of long
standing, and need insights both from mathematics
and chemistry.

4.2 Inverse Problems

Many of the mathematical challenges of chemistry are
inverse problems. Often they involve solving a set of
linear equations. If there are as many equations as
unknowns and the equations are independent, then
this can be done by inverting a square matrix. How-
ever, if the system is singular or redundant, or if there
are fewer equations or more equations than unknowns,
then the corresponding matrix is singular or rectangu-
lar and there is no ordinary inverse. Nevertheless, it
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is possible to define a generalized inverse, which gives

a good model for linear problems. (It is the so-called

Moore–Penrose inverse or pseudo-inverse involved in

singular value decomposition.) This always exists and it

uses all available information; it is related to the prob-

lem of reconstructing a 3D structure from a 2D projec-

tion. The operation has been fully described and is now

available in Mathematica.

The generalized inverse also enables one to handle

redundant axes in quasicrystals, but usually the inter-

esting problems are nonlinear. Other inverse problems

include the following.

(i) Finding the arrangement of atoms that gives rise

to the observed scattering patterns of X-rays or

electrons from a crystal.

(ii) Reconstructing a 3D image from 2D projections in

microscopy or X-ray tomography.

(iii) Reconstructing the geometry of a molecule given

probable interatomic distances (and perhaps bond

angles and torsion angles).

(iv) Finding the way in which a protein molecule folds

to give an active site, given the sequence of con-

stituent amino acids.

(v) Finding the pathway to producing a molecule syn-

thetically, given that it occurs in nature.

(vi) Finding the sequence of rules that generate a mem-

brane or a plant or another biological object, given

that it takes a certain shape.

Some questions of this type do not have unique

answers. For example, the classic question as to

whether the shape of a drumhead can be determined

from its vibration spectrum (can you hear the shape

of a drum?) has been answered in the negative: two

vibrating membranes with different shapes may have

the same spectrum. It was thought that this ambiguity

might also be the case for crystal structures. Linus Paul-

ing suggested that there might be two different crys-

tal structures that were homometric (that is, giving the

same diffraction pattern), but no definite example has

been found.

5 Conclusion

As the examples in this article show, mathematics and

chemistry have a symbiotic relationship, with develop-

ments in one often stimulating advances in the other.

Many interesting problems, including several that we

have mentioned here, are still waiting to be solved.
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VII.2 Mathematical Biology
Michael C. Reed

1 Introduction

Mathematical biology is an extremely large and diverse
field. The objects of study range from molecules
to global ecosystems and the mathematical methods
come from many of the subdisciplines of the mathe-
matical sciences: ordinary and partial differential equa-
tions, probability theory, numerical analysis, control
theory, graph theory, combinatorics, geometry, com-
puter science, and statistics. The most that one short
article can do is to illustrate by selected examples this
diversity and the range of new mathematical questions
that arise naturally in the biological sciences.

2 How Do Cells Work?

From the simplest point of view, cells are large bio-
chemical factories that take inputs and manufacture
lots of intermediate products and outputs. For exam-
ple, when a cell divides, its DNA must be copied
and that requires the biochemical synthesis of large
numbers of adenine, cytosine, guanine, and thymine
molecules. Biochemical reactions are usually catalyzed
by enzymes, proteins that facilitate a reaction but are
not used up by it. Consider, for example, a reaction in
which chemical A is converted to chemical B with the
help of an enzyme E. If a(t) and b(t) are the respec-
tive concentrations of A and B at time t, then one typi-
cally writes down a differential equation for b(t), which
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takes the form

b′(t) = f(a, b, E)+ · · · − · · · .
Here, f is the rate of production, which typically
depends on a, b, and E. Of course B may be produced
by other reactions (which would lead to additional pos-
itive terms +· · · ) and may be used as a substrate itself
in still other reactions (which would lead to additional
negative terms −· · · ). So, given a particular cell func-
tion or biochemical pathway, we can just write down
the appropriate set of nonlinear coupled ordinary dif-
ferential equations for the chemical concentrations and
solve it by hand or by machine computation. However,
this straightforward approach is often unsuccessful.
First of all, there are a lot of parameters (and variables)
in these equations and measuring them in the context
of real living cells is difficult. Second, different cells
behave differently and may have different functions, so
we would expect the parameters to be different. Third,
cells are alive and change what they are doing, so the
parameters may themselves be functions of time. But
the greatest difficulty is that the particular pathway
under study is not really isolated. Rather, it is embed-
ded in a much larger system. How do we know that our
model system will continue to behave in the same way
when embedded in this larger context? We need new
theorems in dynamical systems that answer questions
such as this, not for general “complex systems” but for
the particular kinds of complex systems that arise in
important biological problems.

Cells continue to accomplish many basic tasks even
though their environments (i.e., their inputs) are con-
stantly changing. A brief example of this phenomenon,
which is known as homeostasis, will illustrate the prob-
lem of “context.” Let us suppose that the chemical reac-
tion above is one step in the pathway for making the
thymines necessary for cell division. If the cell is a can-
cer cell, we would like to turn off this pathway, and a
reasonable way to try to do this would be to put into
the cell a compound X that binds to E, thereby reduc-
ing the amount of free enzyme available to make the
reaction run. Two homeostatic mechanisms immedi-
ately come into play. First, a typical reaction is inhibited
by its product: that is, f decreases as b increases. This
makes biological sense because it ensures that B is not
overproduced. So, when the amount of free E is reduced
and the rate f declines, the resulting decrease in b
drives the rate up again. Second, if the rate f is lower
than usual, the concentration a typically rises since A
is not being used up as quickly, which also drives the

rate f up again since f increases as a increases. Given

the network in which A and B are embedded, one can

imagine calculating how much f will drop if we put a

certain amount of X into the cell. In fact, f may drop

even less than we calculate because of another homeo-

static mechanism that is not even in our network. The

enzyme E is a protein produced by the cell via instruc-

tions from a gene. It turns out that sometimes the con-

centration of free E inhibits the messenger RNA that

codes for the production of E itself. Then, if we intro-

duce X and reduce free E, the inhibition is removed and

the cell automatically increases its rate of production of

E, thus raising the amount of free E and with it raising

the reaction rate f .

This illustrates a fundamental difficulty in study-

ing cell biochemistry, indeed a difficulty in studying

many biological systems. These systems are very large

and very complex. To gain understanding, it is natural

to concentrate on particular relatively simple subsys-

tems. But one always has to be aware that the subsys-

tems exist in a larger context that may contain vari-

ables (excluded by the simplification) that are crucial

for understanding the behavior and biological function

of the subsystem itself.

Although cells exhibit remarkable homeostasis, they

also undergo spectacular changes. For example, cell

division requires unzipping of the DNA, synthesis of

two new complementary strands, the movement apart

of the two new DNAs, and the pinching off of the

mother cell to produce two daughters. How does a cell

do all this? In the case of yeast cells, which are compar-

atively simple, the actions of the biochemical pathways

are quite well understood, partly because of the mathe-

matical work of John Tyson. But as our brief discussion

makes clear, biochemistry is not all there is to cell divi-

sion; an important additional feature is motion. Materi-

als are being transported all the time throughout cells

from one specific place to another (so their motion is

not just diffusion), and indeed, cells themselves move.

How does this happen? The answer is that materials

are transported by special molecules called molecular

motors that turn the energy of chemical bonds into

mechanical force. Since bonds are formed and broken

stochastically (that is, some randomness is involved),

the study of molecular motors leads naturally to new

questions in stochastic ordinary and partial dif-

ferential equations [IV.24]. A good introduction to

the mathematics of cell biology is Fall et al. (2002).
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3 Genomics

To understand the mathematics that was involved in
sequencing the human genome it is useful to start with
the following simple question. Suppose that we cut up a
line segment into smaller segments and are presented
with the pieces. If we are told the order in which the
pieces came in the original segment, then we can put
them back together and reconstruct the segment. In
general, since there are many possible orders, we can-
not reconstruct the segment without extra information
of this kind. Now suppose that we have cut up the seg-
ment in two different ways. Think of the line segment
as an interval I of real numbers, and let the pieces be
A1, A2, . . . , Ar when you cut it up the first way, and
B1, B2, . . . , Bs when you cut it up the other way. That
is, the sets Ai form a partition of the interval I into
subintervals, and the sets Bj form another partition.
For simplicity, assume that no Ai shares an endpoint
with any Bj , except for the two endpoints of I itself.

Suppose that we know nothing about the order in
which the pieces Ai and Bj come in I. In fact, suppose
that all we know about them is which Ai overlap with
which Bj : that is, which of the intersections Ai∩Bj are
nonempty. Can we use this information to work out the
original order of the pieces Ai and thereby reconstruct
the interval I (or its reflection)? The answer will some-
times be yes and sometimes no. If it is yes, then we
would like to find an efficient algorithm for doing the
reconstruction, and if it is no, then we would like to
know how many different reconstructions are consis-
tent with the given information. This so-called restric-
tion mapping problem is really a problem in graph
theory [III.34]: the vertices of the graph correspond
to the sets Ai or Bj , and there is an edge between Ai
and Bj if Ai ∩ Bj �= ∅.Terri: ‘∅’

chosen for
this symbol
and used
globally
throughout
Companion.
OK?

A second problem is whether we can find the original
order of the Ai (or the Bj ) if what we are told is the
length of each set Ai and each set Bj , and the set of
all the lengths of the intersections Ai∩Bj . The catch is
that we are not told which length corresponds to which
intersection. This is called the double digest problem.
Again one would like to be able to tell when there is only
one solution, or to place an upper bound on the number
of possible reconstructions if there is more than one.

Human DNA is, for our purposes here, a word of
length approximately 3 × 109 over a four-letter alpha-
bet A, G, C, T. That is, it is a sequence of length 3× 109

in which each entry is A, G, C, or T. In the cell, the
word is bound letter by letter to the “complementary”

word, which is determined by the rule that A can only be

bound to T, and C can only be bound to G. (For example,

if the word is ATTGATCCTG, then the complementary

word is TAACTAGGAC.) In this brief discussion we will

ignore the complementary word.

Since DNA is so long (it would be approximately two

meters if one stretched it out into a straight line) it is

very hard to handle experimentally, but the sequence

of letters in short segments of approximately five hun-

dred letters can be determined by a process called

gel chromatography. There are enzymes that cut DNA

wherever specific very short sequences occur. So if

we digest a DNA molecule with one of these enzymes

and digest another copy with a different enzyme, we

can hope to determine which fragments from the first

digestion overlap fragments from the second digestion

and then use techniques from the restriction mapping

problem to reconstruct the original DNA molecule. The

interval I corresponds to the whole DNA word, and the

sets Ai to the fragments. This involves sequencing and

comparing the fragments, which has its own difficul-

ties. However, lengths of fragments are not so hard to

determine, so another possibility is to digest with the

first enzyme and measure lengths, digest with the sec-

ond and measure lengths, and finally digest with both

and measure lengths. If one does this, then the problem

one obtains is essentially the double digest problem.

To completely reconstruct the DNA word one takes

many copies of the word, digests with enzymes, and

selects at random enough fragments that together they

have a high probability of covering the word. Each

of the fragments is cloned, in order to get enough

mass, and then sequenced by gel chromatography. Both

processes can introduce errors, so one is left with a

very large number of sequenced fragments with known

error rates for the letters. These need to be compared

to see if they overlap: that is, to see if the sequence

near the end of one fragment is the same as (or very

similar to) the sequence at the beginning of another.

This alignment problem is itself difficult because of the

large number of possibilities involved. So, in the end we

have a very large restriction mapping problem except

that we can only say that given fragments overlap with

probabilities that are themselves hard to estimate. A

further difficulty is that DNA tends to have large blocks

that repeat in different parts of the word. As a result of

these complications, the problem is much harder than

the restriction mapping problem described earlier. It

is clear that graph theory, combinatorics, probability
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theory, statistics, and the design of algorithms all play
central roles in sequencing a genome.

Sequence alignment is important in other problems
as well. In phylogenetics (see below) one would like
a way of saying how similar two genes or genomes
are. When studying proteins, one can sometimes pre-
dict protein three-dimensional structure by searching
databases for known proteins with the most similar
amino acid sequence. To illustrate how complex these
problems are, consider a sequence {ai}1000

i=1 of one
thousand letters from our four-letter alphabet. We wish
to say how similar it is to another sequence {bi}1000

i=1 .
Naively, one could just compare ai with bi and define
a metric [III.58] like d({ai}, {bi}) =

∑
δ(ai, bi). How-

ever, DNA sequences have evolved typically by inser-
tions and deletions as well as by substitutions. Thus
if the sequence ACACAC · · · lost its first C to become
AACAC · · · , the two sequences would be very far apart
in this metric even though they are very similar and
related in a simple way. The way around this difficulty
is to allow sequences to include a fifth symbol, –, which
stands for the place of a deletion or a place opposite an
insertion. Thus, given two sequences (of perhaps dif-
ferent lengths), we wish to find how they can be aug-
mented with dashes to give the minimum possible dis-
tance between them. A little thought will convince the
reader that it is not feasible to use a brute-force search
for a problem like this, even for the fastest computers—
there are so many potential augmentations that the
search would take far too long. Serious and thought-
ful algorithm development is required. Two excellent
introductions to the material discussed in this section
are Waterman (1995) and Pevzner (2000).

4 Correlation and Causality

The central dogma of molecular biology is DNA →
RNA→ proteins. That is, information is stored in DNA,
it is transferred out of the nucleus by RNA, and the RNA
is then used in the cell to make proteins that carry out
the work of the cell through the metabolic processes
discussed in section 2. Thus DNA directs the life of the
cell. Like most things in biology, the true situation is
much more complicated. Genes, which are segments of
DNA that code for the manufacture of particular pro-
teins, are sometimes turned on and sometimes turned
off. Usually, they are partially turned on; that is, the
protein they code for is manufactured at some inter-
mediate rate. This rate is controlled by the binding (or
lack of binding) of small molecules or specific proteins

to the gene, or to the RNA that the gene codes for. Thus
genes can produce proteins that inhibit (or excite) other
genes; this called a gene network.

In a way, this was obvious all along. If cells can
respond to their environments by changing what they
do, they must be able to sense the environment and
signal the DNA to change the protein content of the
cell. Thus, while sequencing DNA and understanding
specific biochemical reactions are important first steps
in understanding cells, the hard and interesting work
to come is to understand networks of genes and bio-
chemical reactions. It is these networks, in which pro-
teins control genes and genes control proteins, that
carry out and control specific cellular functions. The
mathematics will be ordinary differential equations for
chemical concentrations and variables that indicate to
what extent a gene is turned on. Since transport into
and out of the nucleus occurs, partial differential equa-
tions will be involved. And, finally, since some of the
molecular species occur in very small numbers, con-
centration (molecules per unit volume) may not be a
useful approximation for computations about chemical
binding and dissociation: they are probabilistic events.

Two kinds of statistical data can give hints about
the components of these gene networks. First, there
are large numbers of population studies that corre-
late specific genotypes to specific phenotypes (such as
height, enzyme concentration, cancer incidence). Sec-
ond, tools known as microarrays allow us to measure
the relative amounts of a large number of different mes-
senger RNAs in a group of cells. The amount of RNA
tells us how much a particular gene is turned on. Thus,
microarrays allow us to find correlations that may indi-
cate that certain genes are turned on at the same time
or perhaps in a sequence. Of course, correlation is not
causality and a consistent sequential relationship is
not necessarily causal either (sure, football causes win-
ter, a sociologist once said). Real biological progress
requires understanding the gene networks discussed
above; they are the mechanisms by which the genotypes
play out in the life of the cell.

A nice discussion of the relationship between popu-
lation correlations and mechanisms occurs in Nijhout
(2002), from which we take the following simple exam-
ple. Most phenotypic traits depend on many genes; sup-
pose that we consider a trait that depends on only two
genes. Figure 1 depicts a surface that shows how the
trait in an individual depends on how much each of
the genes is turned on. All three variables are scaled
from 0 to 1. Suppose that we study a population whose

Terri: proofreader
thought the
correlation
between the text
here and the figure
was suspect, but
Tim is certain that
it’s all OK and that
the figure shows
exactly what it is
meant to show.
OK?
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Figure 1 A phenotypic surface.

members have a genetic makeup that puts the individ-
uals near the point X on the graph. If we do a statistical
analysis of the population, we will find that gene B is
highly statistically correlated to the trait, but gene A is
not. On the other hand, if the individuals in the pop-
ulation all live near the point Y on the surface, we
will discover in our population study that gene A is
highly statistically correlated to the trait, but gene B is
not. More detailed examples with specific biochemical
mechanisms are discussed in Nijhout’s paper. Similar
examples can be given for microarray data. This does
not mean that population studies or microarray data
are unimportant. Indeed, in studying hugely complexTerri: Tim thinks

this sentence
should stay as it is.
OK?

biological systems, statistical information can suggest
where to look for the mechanisms that will ultimately
give biological understanding.

5 The Geometry and Topology
of Macromolecules

To illustrate the natural geometric and topological
questions that arise when one studies macromolecules,
we will briefly discuss molecular dynamics, protein–
protein interactions, and the coiling of DNA. Genes
code for the manufacture of proteins, which are large
molecules made up of sequences of amino acids. There
are twenty amino acids, each coded by a triplet of
base pairs, and a typical protein might have five hun-
dred amino acids. Interactions among the amino acids
cause the protein to fold up into a complicated three-
dimensional shape. This three-dimensional structure is

crucial for the function of the protein since the exposed
groups and the nooks and crannies in the shape govern
the possible chemical interactions with small molecules
and other proteins. Three-dimensional structures of
proteins can be approximately determined by X-ray
crystallography and nontrivial inverse scattering cal-
culations. The forward problem—namely, given the
sequence of amino acids, predict the three-dimensional
structure of the protein—is important not only for
understanding existing proteins, but also for the phar-
macological design of new proteins to accomplish spe-
cific tasks. Thus, in the past twenty years a large field
called molecular dynamics has arisen, in which one uses
classical mechanical methods.

Suppose we have a protein that consists of N atoms.
Let xi denote the position (specified by three real
coordinates) of the ith atom, and let x denote the vec-
tor formed from all these coordinates (which belongs
to R3N ). For each pair of atoms, one attempts to write
down a good approximation to the potential energy,
Ei,j(xi, xj), due to their pairwise interaction. This could
be the electrostatic interaction, for example, or the
van der Waals interaction, which is a classical mechani-
cal formulation of quantum effects. The total potential
energy is E(x) ≡∑Ei,j(xi, xj) and Newton’s equations
of motion take the form

v̇ = −∇E(x), ẋ = v,
where v is the vector of velocities. Starting with some
initial conditions one can try to solve these equations
to follow the dynamics of the molecule. Note that this
is a very high-dimensional problem. A typical amino
acid has twenty atoms, so that is sixty coordinates right
there, and if we are looking at a protein made up of
five hundred amino acids, then x will be a vector with
thirty thousand coordinates. Alternatively, one could
assume that the protein will fold to the configuration
that has the minimum potential energy. Finding this
configuration would mean finding the roots of ∇E(x),
by newton’s method [II.4 §2.3] say, and then checking
to see which root gives the lowest energy. Again this is
an enormous computational task.

It is not surprising that molecular dynamics calcula-
tions have been only moderately successful and have
predicted the shapes of only relatively small molecules
and proteins. The numerical problems are substantial
and the choice of energy terms is somewhat specu-
lative. Even more importantly, context matters, as it
does in many biological problems. The way proteins
fold depends on properties of the solution in which
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they sit. Many proteins have several preferred config-
urations and switch from one to the other depending
on interactions with small molecules or other proteins.
Finally, it has recently been discovered that proteins do
not fold up by themselves from their linear configura-
tion to their three-dimensional shape, but are helped
and guided by other proteins called chaperones. It is
natural to ask whether there are quantifiable geometri-
cal units larger than points (atoms) that could reason-
ably form the basis for a good approximation to the
dynamics of large molecules.

A start has been made in this direction by groups
studying the interactions of proteins with small
molecules and other proteins. These interactions are
fundamental to cell biochemistry, cell-transport pro-
cesses, and cell signaling, and so progress is vital to
understanding how cells work. Suppose one has two
large proteins that are bound to each other. The first
thing one would like to do is describe the geometry of
the binding region. One could do this as follows. Con-
sider an atom in either protein that is at point x. Given
another atom at pointy , there is a plane that divides R3

into two open half-spaces: the points closer tox and the
points closer to y . Now let Rx denote the intersection
of all such open half-spaces as y ranges over the posi-
tions of all other atoms: that is, Rx consists of those
points that are closer to x than to any other atom. The
union of the boundaries,

⋃
x ∂(Rx), called a Voronoi sur-

face, consists of triangles and pieces of planes and has
the property that each point on the surface is equidis-
tant from at least two atom positions. To model the
binding region between the two proteins, we discard
all pieces of the Voronoi surface that are equidistant
from two atoms that belong to the same protein and
keep just the ones that are equidistant from two atoms
that are in different proteins. This surface goes off to
infinity, so we clip off the parts that are not “close” to
either protein. The result is a surface with a bound-
ary made up of polyhedral faces that is a reasonable
approximation of the interaction interface between the
two proteins. (This is not quite an accurate description:
in the actual construction, “distance” is weighted in a
way that depends on the atoms involved.) Now choose
colors representing the twenty amino acids and color
each side of each polyhedral piece with the color of the
amino acid that the closest atom is in. This divides each
side of the surface into large colored patches corre-
sponding to nearness of a particular amino acid on that
side. The coloring of the two sides of the boundary sur-
face will be different, of course, and the placement of

the patches gives information about which amino acids
in one protein are interacting with which amino acids
in the other. In particular, one amino acid in one pro-
tein may interact with several in the other. This gives
a way of using geometry to classify the nature of the
particular protein–protein interaction.

Finally, let us touch on questions involving the pack-
aging of DNA. The basic problem is easy to see. As
mentioned earlier, the human DNA double helix when
stretched out linearly is about two meters long. A typ-
ical cell has a diameter of about one-hundredth of a
millimeter and its nucleus has a diameter of about one-
third that size. All of that DNA has to be packed into
the nucleus. How is this done?

At least the first stages are well understood. The
DNA double helix is wound around proteins called his-
tones, which consist of about two hundred base pairs
each, yielding chromatin, which is a sequence of such
DNA-wrapped histones connected by short segments
of DNA. Then the chromatin is itself wrapped up and
compacted; the geometrical details are not completely
understood. It is important to understand the packing
and the mechanisms that create it, because the life of
the cell requires unpacking! When the cell divides, the
entire DNA helix must be unzipped to form two sepa-
rate strands, which are the templates on which the two
new copies of DNA will be built. Clearly this cannot be
done all at once but must involve local unwinding of
the DNA off the histones, local unzipping, synthesis,
and then local repacking.

It is equally challenging to understand the sequence
of events that occurs when a protein is synthesized
from a gene. Transcription factors diffuse into the
nucleus and bind to specific short segments of DNA
(of about ten base pairs) in the regulatory region of the
gene. Of course, they will randomly bind wherever they
see the same segment. Typically, one needs the binding
of several different transcription factors in the regula-
tory region along with RNA polymerase to start tran-
scription of a gene. That process involves the unwind-
ing of the gene-coding region from the histones so that
it can be transcribed, the transport of the resulting
RNA out of the nucleus, and the recompactification of
the DNA. To understand these processes fully, one will
have to solve problems in partial differential equations,
geometry, combinatorics, probability theory, and topol-
ogy. DeWitt Sumners is the mathematician who brought
the topological problems in the study of DNA (links,
twists, knots, supercoiling) to the attention of the math-
ematics community. A good reference for molecular
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dynamics and the general mathematical issues posed
by biological macromolecules is Schlick (2002).

6 Physiology

When one first studies human physiological systems,
they seem almost miraculous. They accomplish enor-
mous numbers of tasks simultaneously. They are
robust but capable of quick changes if the situation
warrants. They are made up of large numbers of cells
that actively cooperate so that the tasks of the whole
can be done. It is the nature of many of these systems
that they are complex, controlled by feedback, and inte-
grated with each other. It is the job of mathematical
physiology to understand how they work. We will illus-
trate some of these points by discussing problems in
biological fluid dynamics.

The heart pumps blood throughout a circulatory sys-
tem that consists of vessels of diameter as large as
2.5 cm (the aorta) and as small as 6×10−4 cm (the cap-
illaries). Not only are the vessels flexible, but many are
surrounded by muscle and can contract to exert local
force on the blood. The main force-generating mech-
anism (the heart!) is approximately periodic, but the
period can change. The blood itself is a very compli-
cated fluid. About 40% of its volume is made up of cells:
red blood cells carry most of the oxygen and CO2; white
blood cells are immune system cells that hunt bacte-
ria; and platelets are part of the blood clotting process.
Some of these cells have diameters that are larger than
the smallest capillaries, which raises the nice question
of how they get through. You notice that we are very
far away from most of the simplifying assumptions of
classical fluid dynamics.

Here is an example of a circulatory-system question.
In a significant number of people, the mitral valve,
which is the inflow valve to the left side of the heart,
becomes defective. It is common to replace the valve
by an artificial one and this leads to an important ques-
tion: how should one design the artificial valve so that
the resulting flow in the left heart chamber has as few
stagnant points as possible, since clots tend to form at
these points? Charles Peskin did the pioneering work
on this problem. Here is another question. The white
blood cells are not carried in the middle of the fluid but
tend to roll along the walls. Why do they do that? It is
a good thing that they do, because their job is to sniff
out inflammation outside the blood vessel and, when
they find it, to stop and burrow through the blood ves-
sel wall to get to the inflamed site. Another circulatory
fluid dynamics question is discussed in section 10.

The circulatory system is connected to many other

systems. The heart has its own pacemaker cells, but its

frequency of contraction is regulated by the autonomic

nervous system. Through the baroreceptor reflex, the

sympathetic nervous system tightens blood vessels to

avoid a dramatic drop in blood pressure when we

stand. Overall average blood pressure is maintained by

a complicated regulatory feedback mechanism involv-

ing the kidneys. It is worthwhile remembering that all

these things are being accomplished by living tissues

whose parts are always decaying and being replaced.

For example, the gap junctions that transmit current at

very low resistance between heart muscle cells have a

half-life of approximately one day.

As a final example, we consider the lung, which

has a fractal branching structure that terminates

after twenty-three levels in about 600 million air

sacs called alveoli, in which oxygen and CO2 are

exchanged with the circulating blood. The Reynolds Terri: Tim thinks
this is clear. (And
for what it’s worth,
I do too!)

number of the air flow varies by about three orders of

magnitude between the large vessels near the throat

and the tiny vessels near the alveoli. Premature infants

often have respiratory difficulty because they lack sur-

factants that reduce surface tension on the inner sur-

faces of the alveoli. The high surface tension makes the

alveoli collapse, which makes breathing difficult. One

would like the infants to breathe in air that includes

tiny aerosol drops of surfactant. How small should the

drops be so that as much surfactant as possible makes

it to the alveoli?

The mathematics of physiology consists mostly of

ordinary and partial differential equations. However,

there is a new feature: many of these equations have

time delays. For example, the rate of respiration is con-

trolled by a brain center that senses the CO2 content

of blood. It takes almost fifteen seconds for blood to

go from the lungs to the left heart and from there

to the brain center. This time delay is even longer

in patients with weak hearts and often these patients

display Cheyne–Stokes breathing: very rapid breathing

alternates with periods of little or no breathing. Such

oscillations in control systems are well-known as the

time delay gets longer. Since partial differential equa-

tions are often involved, new mathematical results are

needed that go well beyond the standard theory of ordi-

nary differential equations with delay, which was initi-

ated by Bellman in the 1950s. An excellent reference

for the applications of mathematics to physiology is

Keener and Sneyd (1998).
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7 What’s Wrong with Neurobiology?

The short answer is that there is not enough theory.

This may seem an odd thing to say, since neurobiology

is the home of the Hodgkin–Huxley equations, which

are often cited as a triumph of mathematics in biol-

ogy. In a series of papers in the early 1950s, Hodgkin

and Huxley described several experiments, and gave a

theoretical basis for explaining them. Building on the

work of physicists and chemists (for example, Wal-

ter Nernst, Max Planck, and Kenneth Cole), they dis-

covered the relationship between certain ionic con-

ductances and the trans-membrane electrical potential,

v(x, t), in the axons of neurons, and they formulated

a mathematical model:

∂v
∂t
= α∂

2v
∂x2

+ g(v,y1, y2, y3),

∂yi
∂t
= fi(v,yi), i = 1,2,3.

Here the yi are related to the membrane conduc-

tances of various ions. The equations have solutions

that are pulses that keep their shape and travel at

constant velocity in a way that corresponds to the

observed behavior of action potentials in real neurons.

The ideas, both explicit and implicit, in these discover-

ies form the basis of much single-neuron physiology.

Of course, mathematicians should not be too proud

about this since Hodgkin and Huxley were biologists.

The Hodgkin–Huxley equations were part of the stim-

ulus for interesting work by mathematicians on travel-

ing waves and pattern formation in reaction–diffusion

equations.

However, not everything can be explained at the level

of just one neuron. Watch your hand as it reaches out

gracefully to pick up an object. Think about the so-

called ocular–vestibular reflex in which motions of the

head are automatically compensated for by motions

of the eyes so that your gaze can remain fixed. Con-

sider the fact that you are looking at stereotypical

black marks on a page and they mean something inside

your head. These are system properties, and the sys-

tems are large indeed. There are approximately 1011

neurons in the central nervous system and on average

each makes about one thousand connections to other

neurons. These systems will not be understood just

by examining their parts (the neurons) and, for obvi-

ous reasons, experimentation is limited. Thus, experi-

mental neurobiology, like experimental physics, needs

input from deep and imaginative theorists.

The lack of a large theory community interacting
robustly with experimentalists is to some extent a his-
torical accident. Grossberg asked how groups of (quite
simple) model neurons, if they were connected in the
right ways, could accomplish various tasks such as pat-
tern recognition and decision making, or could exhibit
certain “psychological” properties (Grossberg 1982). He
also asked how these networks could be trained. At
about the same time it was shown that networks of
neuron-like elements connected in the right way could
automatically compute good solutions of large, diffi-
cult problems like the traveling-salesman problem
[VII.5 §2]. These and other factors, including the great
interest in software engineering and artificial intelli-
gence, led to the emergence of a large community of
researchers studying “neural networks.” The members
of this community were mostly computer scientists and
physicists, so it was natural for them to concentrate
on the design of devices, rather than biology. This was
noticed, of course, by experimental neurobiologists,
who lost interest in collaborating with these theorists.

This brief history is of course an oversimplification.
There are mathematicians (and physicists and com-
puter scientists) who are essentially theoreticians for
neuroscience. Some of them work on hypothetical net-
works, typically either very small networks or networks
with strong homogeneity properties, to discover what
are the emergent behaviors of the systems. Others work
on modeling real physiological neural networks, often
collaboratively with biologists. Usually, the models con-
sist of ordinary differential equations for the firing
rates of the individual neurons or mean-field models
that involve integral equations. These mathematicians
have made real contributions to neurobiology.

But much more is needed, and to see why, it is use-
ful to think about just how difficult these problems
really are. First, there is no one-to-one correspondence
between the cells of the central nervous system in dif-
ferent members of the same species (except in spe-
cial cases like C. elegans). Second, neurons in the same Terri: it’s Tim’s

opinion (and mine)
that this
abbreviation is
clear enough and
that including the
full first word
wouldn’t help
readers and would,
perhaps, look
strange to a
biologist. OK as it
is?

animal differ widely in their anatomy and physiology.
Third, the details of a particular network may well
depend on the life history of the animal. Fourth, most
neurons are somewhat unreliable devices in that they
give different outputs under repeated trials with the
same input. Finally, one of the prime characteristics of
neural systems is that they are plastic, adaptable, and
ever changing. After all, if you remember anything of
what is written here, then your head is different from
when you began. Between the level of the single neuron
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and the psychological level, there are probably twenty
levels of networks, each network feeding into and being
controlled by networks at other levels. The mathemat-
ical objects that will enable us to classify, analyze, and
understand how this all works have probably not yet
been discovered.

8 Population Biology and Ecology

Let us begin with a simple example. Imagine a large
orchard of equally spaced trees and suppose that one
tree has a disease. The disease can be transmitted only
to nearest neighbors, and is transmitted with prob-
ability p. What is E(p), the expected percentage of
trees that will be infected? Intuitively, if p is small,
E(p) should be small, and if p is large, E(p) should
be close to 100%. In fact, one can prove that E(p)
changes very rapidly from being small to being large
as p passes through a small transition region around
a particular critical probability pc. One would expect p
to decrease as the distance, d, between trees increases;
farmers should choose d in such a way that p is less
than the critical probability, in order to make E(p)
small. We see here a typical issue in ecological prob-
lems: how does behavior on the large scale (tree epi-
demic or not) depend on behavior at the small scale
(the distance between trees). And, of course, the exam-
ple illustrates that understanding the biological situa-
tion requires mathematics. For other examples of sharp
global changes in probabilistic models, see probabilis-
tic models of critical phenomena [IV.25].

Suppose that we now widen our gaze to consider
forests—let us say the forests on the East coast of the
United States. We would like to understand how they
have come to be as they are. Most of them were not
planted in neat rows, so that is already a complica-
tion. But there are two other really new features. First,
there is not one species but many, and each species
of tree has different properties: shape, seed dispersal,
need for light, and so forth. The species are different,
but their properties affect each other because they are
living in the same space. Second, the species, and the
interactions between the species, are affected by the
physics of the environment. There are physical param-
eters that vary on long timescales, like average temper-
ature, and there are other parameters that vary on very
short timescales, like wind speed (for seed dispersal).
Certain properties of forests may depend on the fluc-
tuations in these parameters as much as on the values
themselves. Finally, one might have to take into account

the reaction of the ecosystem to catastrophic events
such as hurricanes or prolonged drought.

The difficulties are similar to those we have seen for
other problems in mathematical biology. One would
like to understand the emergent behavior on the large
scale. To do this one creates mathematical models that
relate the behavior on the small scale to the large scale.
However, on the small scale one is overwhelmed by the
biological details. Which of these details should be in
the model? Of course, there is no simple answer to this
because, in fact, this is the heart of what we want to
know. Which of the bewildering variety of local proper-
ties or variables give rise to the large-scale behavior and
by what mechanisms? Furthermore, it is not obvious
what kinds of model are best. Should we model each
individual and its interactions, or should we use popu-
lation densities? Should we use deterministic models or
stochastic models? These are also hard questions, and
the answers depend on the system being studied and
the questions being asked. A nice discussion of these
different modeling choices can be found in Durrett and
Levin (1994).

Let us focus again on a simple model: the so-called
SIRS model for the spread of a disease in a population.
A crucial parameter is the infectious contact number,
σ , which represents the average number of new infec-
tions that an infected individual creates in the suscep-
tible population. For a serious disease one would like
to bring the value of σ down to below 1 (so that an epi-
demic will be unlikely) by vaccination, which takes indi-
viduals from the susceptible category and puts them in
the removed category. Since vaccination is expensive
and it is difficult to vaccinate high percentages of the
population, it is an important public-health problem to
know how much vaccination is needed to bring σ to
below 1. A little reflection shows us how difficult this
problem really is. First of all, the population is not well
mixed, so one may not be able to ignore spatial separa-
tion, as is done in the SIRS model. Even more important,
σ depends on the social behavior of individuals and the
subclasses of the population to which they belong (as
anyone with small children in school will attest). Thus,
we see a genuinely new issue here: if an ecological prob-
lem involves animals, then the social behavior of the
animals may affect the biology.

In fact, the issues are even deeper. Individuals in
groups, or species, or subpopulations, vary and it is
just this variation on which natural selection acts. So,
to understand how an ecosystem got to where it is
today, one may have to take this individual variability
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into account. Social behavior is also transmitted from
generation to generation, both biologically and cultur-
ally, and therefore also evolves. For instance, there are
many examples of plant and animal species in which
the biology of the plants and the sociology of the ani-
mals clearly coevolved, to the benefit of both. Game-
theory models have been used to study the evolution of
certain human behaviors such as altruism. Therefore,
ecological problems, which sometimes seem simple at
first, are often very deep, because the biology and its
evolution are connected in complicated ways to both
the physics of the environment and the social behav-
ior of the animals. A good introductory review of these
questions can be found in Levin et al. (1997).

9 Phylogenetics and Graph Theory

Since Darwin, a deep ongoing problem in biology has
been to determine the history of the evolution of
species that has brought us to our current state. It is
natural when thinking about such questions to draw
directed graphs [III.34] in which the vertices, V , are
species (past or present) and an edge from species ν1

to species ν2 indicates that ν2 evolved directly from
ν1. Indeed, Darwin himself wrote down such graphs.
To explain the mathematical issues, we will consider a
simple special case. A connected graph with no cycles is
called a tree. If we distinguish a particular vertex, ρ, and
call it the root, then the tree is called rooted. The ver-
tices of the tree that have degree one (i.e., have only one
attached edge) are called leaves. We will assume that ρ
is not a leaf. Notice that, because there are no cycles,
there is exactly one path in the tree from ρ to each ver-
tex ν . We say that ν1 � ν2 if the path from ρ to ν2

contains ν1 (see figure 2). The problem is to determine
which trees with a given set of leavesX (current species)
and a given root vertex ρ (a hypothesized ancestral
species) are consistent with experimental information
and theoretical assumptions about the mechanisms of
evolution. Such a tree is called a rooted phylogenetic
X-tree. One can always add extra intermediate species,
so typically one imposes the additional restriction that
the phylogenetic trees be as simple as possible.

Suppose that we are interested in a certain character-
istic, the number of teeth, for example. We can use it to
define a function f fromX, the set of current species, to
the nonnegative integers: given a species x in X, we let
f(x) be the number of teeth of members of x. In gen-
eral, a character is a function from X to a set C of pos-
sible values of a particular characteristic (having or not

●

● ●

● ● ● ● ●

● ● ● ● ● ●

root

leaves

ν1

ν2

Figure 2 A rooted tree.

having a gene, the number of vertebrae, the presence
or absence of a particular enzyme, etc.). It is characters
such as these that are measured by biologists in current
species. In order to say something about evolutionary
history, one would like to extend the definition of f
from X to the larger set V of all the vertices in a phy-
logenetic tree. To do this, one specifies some rules for
how characters can change as species evolve. A charac-
ter is called convex if f can be extended to a function
f̄ from V to C in such a way that for every c ∈ C , the
subset f̄−1(c) of V is a connected subgraph of the tree.
That is, between any two species x and y with charac-
ter value c there should be a path back in evolutionary
history from x and forward again to y such that all the
species in between have the same value c. This essen-
tially forbids new values from arising and then revert-
ing back and forbids two values evolving separately (in
different parts of the tree). Of course, we have the cur-
rent species and lots of characters. What is unknown
is the phylogenetic tree, that is, the collection of inter-
mediate species and the relations between them that
link the current species to a common ancestor. A col-
lection of characters is called compatible if there exists
a phylogenetic tree on which they are all convex. Deter-
mining when this is the case and finding an algorithm
for constructing such a tree (or a minimal such tree)
is called the perfect phylogeny problem. This problem
is understood for collections of characters with binary
values, but not in general.

An alternative problem is the following. Note that we
have been treating all the edges alike when in fact some
may represent longer or shorter evolutionary steps.
Suppose that we have a functionw that assigns a posi-
tive number to each edge. Then, since there is a unique
shortest path between any two vertices in the tree, w
induces a distance function dw on V ×V , and in partic-
ular on X. Now, suppose that we are given a distance
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function δ on X × X that tells us how far apart cur-
rent species are. The question is whether there exists
a phylogenetic tree and a weighting function w so that
δ(x,y) = dw(x,y) for all x,y ∈ X. If so, one would
like an algorithm to construct the tree and the weights.
If not, one would like to construct a family of trees that
satisfy the relation approximately.

Finally, we note that there is a blossoming field of
Markov processes on trees where the partial order on
V forms the basis for the Markov condition. Not only
are there wonderful mathematical questions relating
the geometry of the tree to the processes, but there
are important issues for phylogenetics. Suppose that
one starts with characters defined only at the root and
then allows them to “evolve” down the tree by (possibly
different) Markov processes. Then, given the distribu-
tion of characters on the leaves, when can we recon-
struct the tree? These questions have even given rise
to problems in algebraic geometry.

Phylogenetics is useful not only for determining our
past but also for controlling our present and future: see
Fitch et al. (1997), where you can find a phylogenetic
reconstruction for the influenza A virus. An excellent
recent graduate text in this field is Semple and Steel
(2003).

10 Mathematics in Medicine

It is clear that an improved understanding of biological
systems leads, at least indirectly, to improved medical
care. However, there are many cases in which mathe-
matics has a direct impact on medicine. We give two
brief examples.

Charles Taylor is a biomedical engineer at Stanford
who works on the fluid dynamics of the cardiovascu-
lar system. He wants to use fast simulations of flows
as part of the medical decision-making process. Sup-
pose that a patient presents with leg weakness and is
found on magnetic resonance imaging (MRI) to have an
arterial constriction in the thigh. Typically, the surgi-
cal group will meet and consider a variety of options
including shunting blood from other vessels to a point
below the constriction or shunting blood around the
constriction with vessels removed from some other site
in the patient’s body. Among a fairly large number of
possible choices, the surgical group chooses based on
what they have been taught and on their own expe-
rience. The characteristics of the flow after the graft
are important not just for recovery of function but to
prevent the formation of possibly destructive clots. An

important difficulty is that patients treated success-

fully are rarely seen again, so one does not know the

actual characteristics of the flow after the operation.

Charles Taylor wants to be in on the discussion with

the surgical team with immediate fluid dynamical sim-

ulations based on the patient’s actual vasculature (as

revealed by the MRI) for each proposed graft suggested.

And he wants followup on each patient to check how

well his simulations predicted the actual postoperative

flow.

David Eddy is an applied mathematician who has

worked on health policy for thirty years. He first

became prominent when he published Screening for

Cancer: Theory, Analysis and Design (Eddy 1980), which

grew out of his Ph.D. thesis. Because of this book,

the American Cancer Society changed its recommen-

dation for the frequency of Pap smears from once a

year to once every three years, since Eddy’s model-

ing showed that the change would have little effect on

the life expectancy of the average American woman. A

short calculation easily estimates the amount of money

saved in an economy that spends 15% of its gross

domestic product (GDP) on health care. Throughout his

career Eddy has criticized both the indiscriminate use

of diagnostic tests and the incorrect use of the results

by physicians and policy boards often ignorant of the

basic facts of conditional probability. He has criticized

specific health-policy guidelines as based on seat-of-

the-pants guesswork instead of quantitative analysis.

In a classic case he distributed questionnaires to physi-

cians at a conference on colorectal cancer. The physi-

cians were asked to estimate the percentage drop in

mortality from colorectal cancers if all Americans over

age fifty were to have the two most common diag-

nostic tests each year: fecal blood smear and flexible

sigmoidoscopy. The answers were approximately uni-

formly distributed in a range from 2% to 95%. Even

more startling was the fact that the physicians did not

even know that they disagreed so dramatically. He has

used mathematical models to analyze the costs and

benefits of new and existing surgeries, medical treat-

ments, and drugs, and he has participated robustly in

debates on the current health-policy crisis. Through-

out, he has pointed out that a hefty percentage of GDP

is spent on devices, drugs, and procedures with almost

no mathematical analysis of which are effective.

For more on the interrelations between mathemat-

ics and medicine, see mathematics and medical

statistics [VII.11].
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11 Conclusions

Mathematics and mathematicians have played impor-
tant roles in many fields of biology that this brief arti-
cle has not had the space to cover: immunology, radi-
ology, developmental biology, and the design of medi-
cal devices and synthetic biomaterials, to name just a
few of the most obvious omissions. Nevertheless, this
collection of examples and introductory discussions
allows us to draw a few conclusions about mathemat-
ical biology. The range of biological problems need-
ing explanation by mathematics is enormous and tech-
niques from many different branches of mathematics
are important. It is not so easy in mathematical biol-
ogy to extract simple, clear mathematical questions to
work on, because biological systems typically operate
in a complex environment where it is difficult to decide
what should be counted as the system and what as the
parts. Finally, biology is a source of new, interesting,
and difficult questions for mathematicians, whose par-
ticipation in the biological revolution is necessary for a
full understanding of the biology itself.
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VII.3 Wavelets and Applications
Ingrid Daubechies

1 Introduction

One of the best ways to understand a function is to
expand it in terms of a well-chosen set of “basic” func-
tions, of which trigonometric functions [III.94] are
perhaps the best-known example. Wavelets are fami-
lies of functions that are very good building blocks for
a number of purposes. They emerged in the 1980s from
a synthesis of older ideas in mathematics, physics,
electrical engineering, and computer science, and have
since found applications in a wide range of fields.
The following example, concerning image compression,
illustrates several important properties of wavelets.

2 Compressing an Image

Directly storing an image on a computer uses a lot of
memory. Since memory is a limited resource, it is highly
desirable to find more efficient ways of storing images,
or rather to find compressions of images. One of the
main ways of doing this is to express the image as a
function and write that function as a linear combina-
tion of basic functions of some kind. Typically, most
of the coefficients in the expansion will be small, and
if the basic functions are chosen in a good way it may
well be that one can change all these small coefficients
to zero without changing the original function in a way
that is visually detectable.

Digital images are typically given by large collections
of pixels (short for picture elements; see figure 1).

The boat image in figure 1 is made up of 256 × 384
pixels; each pixel has one of 256 possible gray values,
ranging from pitch black to pure white. (Similar ideas
apply to color images, but for this exposition, it is sim-
pler to keep track of only one color.) Writing a num-
ber between 0 and 255 requires 8 digits in binary; the
resulting 8-bit requirement to register the gray level for
each of the 256×384 = 98 304 pixels thus gives a total
memory requirement of 786 432 bits, for just this one
image.

This memory requirement can be significantly re-
duced. In figure 2, two squares of 36×36 pixels are high-
lighted, in different areas of the image. As is clear from
its blowup, square A has fewer distinctive characteris-
tics than square B (a blowup of which is shown in fig-
ure 1), and should therefore be describable with fewer
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Figure 1 A digital image with successive blowups.

A

B

Figure 2 Blowup of a 36× 36 square in the sky.

bits. Square B has more features, but it too contains

(smaller) squares that consist of many similar pixels;

again this can be used to describe this region with fewer

than the 36×36×8 bits given by the naive estimate of

assigning 8 bits to each pixel.

These arguments suggest that a change in the rep-

resentation of the image can lead to reduced memory

requirements: instead of a huge assembly of pixels, all

equally small, the image should be viewed as a combi-

nation of regions of different size, each of which has

more or less constant gray value; each such region can

then be described by its size (or scale), by where it

appears in the image, and by the 8-bit number that tells

us its average gray value. Given any subregion of the

image, it is easy to check whether it is already of this

simple type by comparing it with its average gray value.

For square A, taking the average makes virtually no dif-

ference, but for square B, the average gray value is not

sufficient to characterize this portion of the image (see

figure 3).

When square B is subdivided into smaller sub-

squares, some of them have a virtually constant gray

level (e.g., in the top-left or bottom-left regions of

square B); others, such as subsquares 2 and 3 (see fig-

ure 4), that are not of just one constant gray level may

(a)

(b)

Figure 3 (a) Blowups of squares A (left) and B (right) with
(b) the average gray value for each.

1

2

3 4

Figure 4 Subsquare 1 has constant gray level, while sub-
squares 2 and 3 do not, but they can be split horizontally (2)
or vertically (3) into two regions with (almost) constant gray
level. Subsquare 4 needs finer subdivision to be reduced to
“simple” regions.

still have a simple gray level substructure that can be
easily characterized with a few bits.

To use this decomposition for image compression,
one should be able to implement it easily in an auto-
mated way. This could be done as follows:

• first, determine the average gray value for the
whole image (assumed to be square, for simplic-
ity);

• compare a square with this constant gray value
with the original image; if it is close enough, then
we are done (but it will have been a very boring
image);
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• if more features are needed than only the average

gray value, subdivide the image into four equal-

sized squares;

• for each of these subsquares, determine their aver-

age gray value, and compare with the subsquare

itself;

• for those subsquares that are not sufficiently char-

acterized by their average gray value, subdivide

again into four further equal-sized subsquares

(each now having an area one sixteenth of the

original image);

• and so on.

In some of the subsquares it may be necessary to

divide down to the pixel level (as in subsquare 4 in

figure 4, for example), but in most cases subdivision

can be stopped much earlier. Although this method

is very easy to implement automatically, and leads to

a description using many fewer bits for images such

as the one shown, it is still somewhat wasteful. For

instance, if the average gray level of the original image

is 160, and we next determine the gray levels of each

of the four quarter images as 224, 176, 112, and 128,

then we have really computed one number too many:

the average of the gray levels for the four equal-sized

subimages is automatically the gray level of the whole

image, so it is unnecessary to store all five numbers. In

addition to the average gray value for a square, one just

needs to store the extra information contained in the

average gray values of its four quarters, given by the

three numbers that describe

• how much darker (or lighter) the left half of the

square is than the right,

• how much darker (or lighter) the top half of the

square is than the bottom, and

• how much darker (or lighter) the diagonal from

lower left to upper right is than the other diagonal.

Consider for example a square divided up into four sub-

squares with average values 224, 176, 112, and 128,

as shown in figure 5. The average gray value for the

whole square can easily be checked to be 160. Now

let us do three further calculations. First, we work out

the average gray values of the top half and the bottom

half, which are 200 and 120, respectively, and calculate

their difference, which is 80. Then we do the same for

the left half and the right half, obtaining the difference

168− 152 = 16. Finally, we divide the four squares up

diagonally: the average over the bottom-left and top-

224 176

112 128

Figure 5 The average gray values for
four subsquares of a square.

right squares is 144, the average over the other two is
176, and the difference between these two is −32.

From these four numbers one can reconstruct the
four original averages. For example, the average for
the top-right subsquare is given by 160 + [80 − 16 +
(−32)]/2 = 176.

It is thus this process, rather than simply averaging
over smaller and smaller squares as described above,
that needs to be repeated. We now turn to the ques-
tion of making the whole decomposition procedure as
efficient as possible.

A complete decomposition of a 256 × 256 square,
from “top” (largest square) to “bottom” (the three types
of “differences” for the 2 × 2 subsquares), involves
the computation of many numbers (in fact exactly
256 × 256 before pruning), some of which are them-
selves combinations of many of the original pixel val-
ues. For instance, the grayscale average of the whole
256 × 256 square requires adding 256 × 256 = 65 536
numbers with values between 0 and 255 and then divid-
ing the result by 65 536; another example, the differ-
ence between the averages of the left and right halves,
requires adding the 256×128 = 32 768 grayscale num-
bers for the left half and then subtracting from this
sum A the sum B of another 32 768 numbers. On the
other hand, the sum of the pixel grayscale values over
the whole square is simply A + B, a sum of two 33-
bit numbers instead of 65 536 numbers of 8 bits each.
This allows us to make a considerable saving in com-
putational complexity if A and B are computed before
the average over the whole square. A computationally
optimal implementation of the ideas explained so far
must therefore proceed along a different path from the
one sketched above.

Indeed, a much better procedure is to start from
the other end of the scale. Instead of starting with the
whole image and repeatedly subdividing it, one begins
at the pixel level and builds up. If the image has 2J ×2J

pixels in total, then it can also be viewed as consisting
of 2J−1 × 2J−1 “superpixels,” each of which is a small
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square of 2× 2 pixels. For each 2× 2 square, the aver-
age of the four gray values can be computed (this is
the gray value of the superpixel), as well as the three
types of differences indicated above. Moreover, these
computations are all very simple.

The next step is to store the three difference values
for each of the 2 × 2 squares and organize their aver-
ages, the gray values of the 2J−1 × 2J−1 superpixels,
into a new square. This square can be divided, in turn,
into 2J−2 × 2J−2 “super-superpixels,” each of which is
a small square of 2 × 2 superpixels (and thus stands
for 4×4 “standard” pixels), and so on. At the very end,
after J levels of “zooming out,” there is only one superJ -
pixel remaining; its gray value is the average over the
whole image. The last three differences that were com-
puted in this pixel-level-up process correspond exactly
to the largest-scale differences that the top-down pro-
cedure would have computed first, at much greater
computational expense.

Carrying out the procedure from the pixel level up,
none of the individual averaging or differencing compu-
tations involves more than two numbers; the total num-
ber of these elementary computations, for the whole
transform, is only 8(22J−1)/3. For the 256×256 square
discussed before, J = 8, so the total is 174 752, which
is about the number of computations needed for just
one level in the top-down procedure.

How can all this lead to compression? At each stage
of the process, three species of difference numbers are
accumulated, at different levels and corresponding to
different positions. The total number of differences cal-
culated is 3(1+ 22 + · · · + 22(J−1)) = 22J − 1. Together
with the gray value of the whole square, this means we
end up with exactly as many numbers as we had gray
values for the original 2J ×2J pixels. However, many of
these difference numbers will be very small (as argued
before), and can just as well be dropped or put to zero,
and if the image is reconstructed from the remainder
there will be no perceptible loss of quality. Once we
have set these very small differences to zero, a list that
enumerates all the differences (in some prearranged
order) can be made much shorter: whenever a long
stretch of Z zeros is encountered, it can be replaced
by the statement “insert Z zeros now,” which requires
only a prearranged symbol (for “insert zeros now”), fol-
lowed by the number of bits needed for Z , i.e., log2 Z .
This achieves, as desired, a significant compression of
the data that need to be stored for large images. (In
practice, however, image compression involves many
more issues, to which we shall return briefly below.)

The very simple image decomposition described
above is an elementary example of a wavelet decom-
position. The data that are retained consist of

• a very coarse approximation, and
• additional layers giving detail at successively finer

scales j, with j ranging from 0 (the coarsest level)
to J − 1 (the first superpixel level).

Moreover, within each scale j the detail layer consists
of many pieces, each of which has a definite localiza-
tion (indicating to which of the superj -pixels it per-
tains), and all the pieces have “size” 2j . (That is, the
size, in pixel widths, of the corresponding superj -pixel
is 2j .) In particular, the building blocks are very small
at fine scales and become gradually larger as the scale
becomes coarser.

3 Wavelet Transforms of Functions

In the image-compression example we needed to look
at three types of differences at each level (horizontal,
vertical, and diagonal) because the example was a two-
dimensional image. For a one-dimensional signal, one
type of difference suffices. Given a function f from R to
R, one can write a wavelet transform of f that is entirely
analogous to the image example. For simplicity, let us
look at a function f such that f(x) = 0 except when x
belongs to the interval [0,1].

Let us now consider successive approximations of f
by step functions: that is, functions that change value in
only finitely many places. More precisely, for each posi-
tive integer j, divide the interval [0,1] up into 2j equal
intervals, denoting the interval from k2−j to (k+1)2−j

by Ij,k (so that k runs from 0 to 2j − 1). Then define a
function Pj(f ) by setting its value on Ij,k to be the aver-
age value of f on that interval. This is illustrated in fig-
ure 6, which shows the step function P3(f ) for a func-
tion f whose graph is shown as well. As j increases,
the width of the intervals Ij,k decreases, and Pj(f ) gets
closer to f . (In more precise mathematical terms, if
p < ∞ and f belongs to the function space [III.29]
Lp , then Pj(f ) converges to f in Lp .)

Each approximation Pj(f ) of f can be computed eas-
ily from the approximation Pj+1(f ) at the next-finer
scale: the average of the values that Pj+1(f ) takes on
the two intervals Ij+1,2k and Ij+1,2k+1 gives the value
that Pj(f ) takes on Ij,k.

Of course, some information about f is lost when we
move from Pj+1(f ) to Pj(f ). On every interval Ij,k, the
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Figure 6 Graphs of (a) the function f and (b) its approxi-
mation P3(f ), which is constant on every interval between
l/8 and (l + 1)/8, with l = 0,1, . . . ,7, and exactly equal to
the average of f on each of these intervals.

difference between Pj+1(f ) and Pj(f ) is a step func-
tion, with constant levels on the Ij+1,l, that takes on
exactly opposite values on each pair (Ij+1,2k, Ij+1,2k+1).
The difference Pj+1(f )− Pj(f ) of the two approxima-
tion functions, over all of [0,1], consists of a juxta-
position of such up-and-down (or down-and-up) step
functions, and can therefore be written as a sum of
translates of the same up-and-down function, with
appropriate coefficients:

Pj+1(f )(x)− Pj(f )(x) =
2j−1∑
k=0

aj,kUj(x − 2−jk),

where

Uj(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for x between 0 and 2−(j+1),

−1 for x between 2−(j+1) and 2× 2−(j+1),

0 for all other x.

Moreover, the “difference functions” Uj at the dif-
ferent levels are all scaled copies of a single function
H, which takes the value −1 between 0 and 1

2 and +1
between 1

2 and 1; indeed, Uj(x) = H(2jx). It follows
that each difference Pj+1(f )(x) − Pj(f )(x) is a linear
combination of the functions H(2jx − k), with k rang-
ing from 0 to 2j −1; adding many such differences, for
successive j, shows that PJ(f )(x)−P0(f )(x) is a linear
combination of the collection of functions H(2jx− k),
with j ranging from 0 to J − 1 and k ranging from 0 to
2j − 1. Picking larger and larger J makes PJ(f ) closer
and closer to f ; one finds that f − P0(f ) (i.e., the dif-
ference between f and its average) can be viewed as a
(possibly infinite) linear combination of the functions
H(2jx−k), now with j ranging over all the nonnegative
integers.

This decomposition is very similar to what was done
for images at the start of the article, but in one dimen-
sion instead of two and presented in a more abstract

way. The basic ingredients are that f minus its aver-
age has been decomposed into a sum of layers at suc-
cessively finer and finer scales, and that each extra
layer of detail consists of a sum of simple “difference
contributions” that all have width proportional to the
scale. Moreover, this decomposition is realized by using
translates and dilates of the single functionH(x), often
called the Haar wavelet, after Alfred Haar, who first
defined it at the start of the twentieth century (though
not in a wavelet context). The functions H(2jx − k)
constitute an orthogonal set of functions, meaning
that the inner product

∫
H(2jx − k)H(2j′x − k′)dx is

zero except when j = j′ and k = k′; if we define
Hj,k(x) = 2j/2H(2jx − k), then we also have that∫
[Hj,k(x)]2 dx = 1. A consequence of this is that the

wavelet coefficients wj,k(f ) that appear when we write
the “jth layer” Pj+1(f )(x) − Pj(f )(x) of the function
f as a linear combination

∑
k wj,k(f )Hj,k(x) are given

by the formula wj,k(f ) =
∫
f(x)Hj,k(x)dx.

Haar wavelets are a good tool for exposition, but for
most applications, including image compression, they
are not the best choice. Basically, this is because replac-
ing a function simply by its averages over intervals (in
one dimension) or squares (in two dimensions) results
in a very-low-quality approximation, as illustrated in
figure 7(b).

T&T note: check
position of this
figure at page
make-up stage.
Note for Terri:
‘[k2−3 , (k+
1)2−3)’ is OK in
caption – bracket
type has to do with
whether the range
is inclusive or
exclusive. Another
note for Terri:
change from ‘(b)
and (c)’ to ‘(b), (c)’
OK in caption?

As the scale of approximation is made finer and finer
(i.e., as the j in Pj(f ) increases), the difference between
f and Pj(f ) becomes smaller; with a piecewise-con-
stant approximation, however, this requires correc-
tions at almost every scale “to get it right” in the end.
Unless the original happens to be made up of large
areas where it is roughly constant, many small-scale
Haar wavelets will be required even in stretches where
the function just has a consistent, sustained slope,
without “genuine” fine features.

The right framework to discuss these questions
is that of approximation schemes. An approximation
scheme can be defined by providing a family of “build-
ing blocks,” often with a natural order in which they
are usually enumerated. A common way of measuring
the quality of an approximation scheme is to define VN Terri: Tim has

checked through
the notation in this
article and thinks
it’s all OK and
consistent – and
has previously
checked with the
author as he was
also uncertain
initially.

to be the space of all linear combinations of the first
N building blocks, and then to let ANf be the clos-
est function in VN to f , where distance is measured
by the L2-norm (though other norms can also be used).
Then one examines how the distance ‖f − ANf‖2 =
[
∫ |f(x)−ANf(x)|2 dx]1/2 decays as N tends to infin-

ity. An approximation scheme is said to be of order L
for a class of functions F if ‖f −ANf‖2 � CN−L for all
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Figure 7 (a) The original function. (b), (c) Approximations of f by a function that equals a polynomial on each interval
[k2−3, (k+ 1)2−3). The best approximation of f by a piecewise-constant function is shown in (b); the best by a continuous
piecewise-linear function is in (c).

functions f in F , where C typically depends on f but
must be independent of N . The order of an approxima-
tion scheme for smooth functions is closely linked to
the performance of the approximation scheme on poly-
nomials (because smooth functions can be replaced in
estimations, at very little cost, by the polynomials given
by their Taylor expansions). In particular, the types
of approximation schemes considered here can have
order L only if they perfectly reproduce polynomials of
degree at most L− 1. In other words, there should exist
some N0 such that if p is any polynomial of degree at
most L− 1 and N � N0, then ANp = p.

In the Haar case, applied to functions f that differ
from zero only between 0 and 1, the building blocks
consist of the functionϕ that takes the value 1 on [0,1]
and 0 outside, together with the families {Hj,k; k =
0, . . . ,2j − 1} for j = 0,1,2, . . . . We saw above that
PHaar
j (f ) can be written as a linear combination of the

first 1 + 20 + 21 + · · · + 2j−1 = 2j building blocks ϕ,
H0,0,H1,0,H1,1,H2,0, . . . ,Hj−1,2j−1−1. Because the Haar
wavelets are orthogonal to each other, this is also the
linear combination of these basis functions that is clos-
est to f , so that PHaar

j (f ) = AHaar
2j . Figure 7 shows (for

j = 3) both AHaar
2j f and APL

2j f , which is the best approx-
imation of f by a continuous, piecewise-linear function
with breakpoints at k2−j , k = 0,1, . . . ,2j−1. It turns out
that if you are trying to approximate a function f using
Haar wavelets, then the best decay you can obtain, even
if f is smooth, is of the form ‖f − PHaar

j (f )‖2 � C2−j ,
or ‖f − AHaar

N f‖2 � CN−1 for N = 2j . This means
that approximation by Haar wavelets is a first-order
approximation scheme. Approximation by continuous
piecewise-linear functions is a second-order scheme:
for smooth f , ‖f − APL

N f‖2 � CN−2 for N = 2j . Note
that the difference between the two schemes can also
be seen from the maximal degree d of polynomials they
“reproduce” perfectly: clearly both schemes can repro-

duce constants (d = 0); the piecewise-linear scheme can
also reproduce linear functions (d = 1), whereas the
Haar scheme cannot.

Take now any continuously differentiable function f
defined on the interval [0,1]. Typically ‖f −PHaar

j (f )‖2

equals about C2−j ; for an approximation scheme of
order 2, that same difference would be about C′2−2j .
In order to achieve the same accuracy as PHaar

j (f ), the
piecewise-linear scheme would thus require only j/2
levels instead of j levels. For higher orders L, the gain
would be even greater. If the projections Pj gave rise
to a higher-order approximation scheme like this, then
the difference Pj+1(f )(x)−Pj(f )(x)would be so small
as not to matter, even for modest values of j, wherever
the function f was reasonably smooth; for these val-
ues of j, the difference would be important only near
points where the function was not as smooth, and so
only in those places would a contribution be needed
from “difference coefficients” at very fine scales.

This is a powerful motivation to develop a frame-
work similar to that for Haar, but with fancier “gener-
alized averages and differences” corresponding to suc-
cessive Pj(f ) associated with higher-order approxima-
tion schemes. This can be done, and was done in an
exciting period in the 1980s to which we shall return
briefly below. In these constructions, the generalized
averages and differences are typically computed by
combining more than two finer-scale entries each time,
in appropriate linear combinations. The correspond-
ing function decomposition represents functions as
(possibly infinite) linear combinations of wavelets ψj,k
derived from a wavelet ψ. As in the case of H, ψj,k(x)
is defined to be 2j/2ψ(2jx − k). Thus, the functions
ψj,k are again normalized translates and dilates of a
single function; this is due to our using systematically
the same averaging operator to go from scale j + 1 to
scale j, and the same differencing operator to quantify
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the difference between levels j + 1 and j, regardless of
the value of j. There is no absolutely compelling rea-
son to use the same averaging and differencing opera-
tor for the transition between any two successive levels,
and thus to have all the ψj,k generated by translating
and dilating a single function. However, it is very conve-
nient for implementing the transform, and it simplifies
the mathematical analysis.

One can additionally require that, like the Hj,k, the
ψj,k constitute an orthonormal basis for the space
L2(R). The basis part means that every function can
be written as a (possibly infinite) linear combination of
the ψj,k; the orthonormality means that the ψj,k are
orthogonal to each other, except if they are equal, in
which case their inner product is 1.

As discussed above, the projections Pj for the
waveletψ will correspond to an approximation scheme
of order L only if they can reproduce perfectly all poly-
nomials of degree less than L. If the functions ψj,k are
orthogonal, then

∫
ψj′,k(x)Pj(f )(x)dx = 0 whenever

j′ > j. Theψj,k can thus be associated with an approxi-
mation scheme of order L only if

∫
ψj,k(x)p(x)dx = 0

for sufficiently large j and for all polynomials p of
degree less than L. By scaling and translating, this
reduces to the requirement

∫
xlψ(x)dx = 0 for l =

0,1, . . . , L− 1. When this requirement is met, ψ is said
to have L vanishing moments.

Figure 8 shows the graphs of some choices for ψ
that give rise to orthonormal wavelet bases and that
are used in various circumstances.

For the wavelets of the typeψ[2n], and thus in partic-
ular for ψ[4] , ψ[6], and ψ[12] in figure 8, an algorithmT&T note: must

check forced
linebreak in
caption for this
figure immediately
prior to press
stage.

similar to that for the Haar wavelet can be used to carry
out the decomposition, except that instead of combin-
ing two numbers from Pj+1,k to obtain an average or
a difference coefficient at level j, these wavelet decom-
positions require weighted combinations of four, six,
or twelve finer-level numbers, respectively. (More gen-
erally, 2n finer-level numbers are used for ψ[2n].)

Because the Meyer and Battle–Lemarié wavelets ψ[M]

and ψ[BL] are not concentrated on a finite interval, dif-
ferent algorithms are used for wavelet expansions with
respect to these wavelets.

There are many useful orthonormal wavelet bases
besides the examples given above. Which one to choose
depends on the application one has in mind. For
instance, if the function classes of interest in the appli-
cation have smooth pieces, with abrupt transitions or
spikes, then it is advantageous to pick a smooth ψ,
corresponding to a high-order approximation scheme.

0
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H =    [2]ψ
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[12]ψ

[M]ψ

[BL]ψ

Figure 8 Six different choices of ψ for which the ψj,k(x) =
2j/2ψ(2jx − k), j, k ∈ Z, constitute an orthonormal basis
for L2(R). The Haar wavelet can be viewed as the first exam-
ple of a family ψ[2n], of which the wavelets for n = 2,
3, and 6 are also plotted here. Each ψ[2n] has n vanish-
ing moments and is supported on (i.e., is equal to zero
outside) an interval of width 2n− 1. The remaining two
wavelets are not supported on an interval; however, the
Fourier transform of the Meyer wavelet ψ[M] is supported
on [−8π/3,−2π/3] ∪ [2π/3,8π/3]; all moments of ψ[M]

vanish. The Battle–Lemarié wavelet ψ[BL] is twice differ-
entiable, is piecewise polynomial of degree 3, and has
exponential decay; it has four vanishing moments.

This allows one to describe the smooth pieces effi-
ciently with coarse-scale basis functions, and to leave
the fine-scale wavelets to deal with the spikes and
abrupt transitions. In that case, why not always use a
wavelet basis with a very high approximation order?
The reason is that most applications require numeri-
cal computation of wavelet transforms; the higher the
order of the approximation scheme, the more spread
out the wavelet, and the more terms have to be used
in each generalized average/difference, which slows
down numerical computation. In addition, the wider
the wavelet, and hence the wider all the finer-scale
wavelets derived from it, the more often a discontinu-
ity or sharp transition will overlap with these wavelets.
This tends to spread out the influence of such transi-
tions over more fine-scale wavelet coefficients. There-
fore, one must find a good balance between the approx-
imation order and the width of the wavelet, and the best
balance varies from problem to problem.

There are also wavelet bases in which the restriction
of orthonormality is relaxed. In this case one typically
uses two different “dual” wavelets ψ and ψ̃, such that
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∫∞
−∞ψj,k(x)ψ̃j′,k′(x)dx = 0 unless j = j′ and k = k′.

The approximation order of the scheme that approxi-

mates functions f by linear combinations of the ψj,k
is then governed by the number of vanishing moments

of ψ̃. Such wavelet bases are called biorthogonal. They

have the advantage that the basic wavelets ψ and ψ̃
can both be symmetric and concentrated on an inter-

val, which is impossible for orthonormal wavelet bases

other than the Haar wavelets.

The symmetry condition is important for image de-

composition, where preference is usually given to two-

dimensional wavelet bases derived from one-dimen-

sional bases with a symmetric function ψ, a deriva-

tion to which we return below. When an image is com-

pressed by deleting or rounding off wavelet coeffi-

cients, the difference between the original image I and

its compressed version Icomp is a combination, with

small coefficients, of these two-dimensional wavelets.

It has been observed that the human visual system

is more tolerant of such small deviations if they are

symmetric; the use of symmetric wavelets thus allows

for slightly larger errors, which translates to higher

compression rates, before the deviations cross the

threshold of perception or acceptability.

Another way of generalizing the notion of wavelet

bases is to allow more than one starting wavelet. Such

systems, known as multiwavelets, can be useful even in

one dimension.

When wavelet bases are considered for functions

defined on the interval [a, b] rather than the whole of

R, the constructions are typically adapted, giving bases

of interval wavelets in which specially crafted wavelets

are used near the edges of the interval. It is some-

times useful to choose less regular ways of subdividing

intervals than the systematic halving considered above:

in this case, the constructions can be adapted to give

irregularly spaced wavelet bases.

When the goal of a decomposition is compression of

the information, as in the image example at the start,

it is best to use a decomposition that is itself as effi-

cient as possible. For other applications, such as pat-

tern recognition, it is often better to use redundant

families of wavelets, i.e., collections of wavelets that

contain “too many” wavelets, in the sense that all func-

tions in L2(R) could still be represented even if one

dropped some of the wavelets from the collection. Con-

tinuous wavelet families and wavelet frames are the

two main kinds of collections used for such redundant

wavelet representations.

4 Wavelets and Function Properties

Wavelet expansions are useful for image compression
because many regions of an image do not have features
at very fine scales. Returning to the one-dimensional
case, the same is true for a function that is reasonably
smooth at most but not all points, like the function
illustrated in figure 6(a). If we zoom in on such a func-
tion near a point x0 where it is smooth, then it will look
almost linear, so we will be able to represent that part
of the function efficiently if our wavelets are good at
representing linear functions.

This is where wavelet bases other than Haar show
their power: the wavelets ψ[4], ψ[6], ψ[12], ψ[M], and
ψ[BL] shown in figure 8 all define approximation
schemes of order 2 or higher, so that

∫
xψj,k(x)dx = 0

for all j, k. This is also seen in the numerical imple-
mentation schemes: the corresponding generalized dif-
ferencing that computes the wavelet coefficients of f
gives a zero result not only when the graph is flat, but
also when it is a straight but sloped line, which is not
true for the simple differencing used for the Haar basis.
As a result, the number of coefficients needed for the
wavelet expansion of smooth functions f to reach a
preassigned accuracy is much smaller when one uses
more sophisticated wavelets than the Haar wavelets.

For a function f that is twice differentiable except
at a finite number of discontinuities, and with a basic
wavelet that has, say, three vanishing moments, typ-
ically only very few wavelets at fine scales will be
needed to write a very-high-precision approximation to
f . Moreover, those will be needed only near the dis-
continuity points. This feature is characteristic for all
wavelet expansions, whether they are with respect to
an orthonormal basis, a basis that is nonorthogonal, or
even a redundant family.

Figure 9 illustrates this for one type of redun-
dant expansion, which uses the so-called Mexi-
can hat wavelets, which are given by ψ(x) =
(2
√

2/
√

3)π−1/4(1 − 4x2)e−2x2
; this wavelet gets its

name from the shape of its graph, which looks like the
cross section of a Mexican hat (see the figure).

The smoother a function f is (i.e., the more times it
is differentiable), the faster its wavelet coefficients will
decay as j increases, provided the wavelet ψ has suf-
ficiently many vanishing moments. The converse state-
ment is also true: one can read off how smooth the func-
tion is at x0 from how the wavelet coefficients wj,k(f )
decay, as j increases. Here one restricts attention to the
“relevant” pairs (j, k). In other words, one considers
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Figure 9 A function with a single discontinuity (top) is
approximated by finite linear combinations of Mexican hat
wavelets ψ[MH]

j,l ; the graph of ψ[MH] is at the bottom of the
figure. Adding finer scales leads to increased precision. Left:
successive approximations for j = 1, 3, 5, and 7. Right: total
contributions from the wavelets at the scales needed to
bridge from one j to the next. (In this example, j increases
in steps of 1

2 .) The finer the scale, the more the extra detail
is concentrated near the discontinuity point.

only the pairs where ψj,k is localized near x0. (In more
precise terms, this converse statement can be reformu-
lated as an exact characterization of the so-called Lip-
schitz spaces Cα, for all noninteger α that are strictly
less than the number of vanishing moments of ψ.)

Wavelet coefficients can be used to characterize
many other useful properties of functions, both global
and local. Because of this, wavelets are good bases not
just for L2-spaces or the Lipschitz spaces, but also
for many other function spaces, such as, for instance,
the Lp-spaces with 1 < p < ∞, the sobolev spaces
[III.29 §2.4], and a wide range of Besov spaces. The
versatility of wavelets is partly due to their connec-
tion with powerful techniques developed in harmonic
analysis throughout the twentieth century.

We have already seen in some detail that wavelet
bases are associated with approximation schemes of
different orders. So far we have considered approxi-
mation schemes in which the ANf are always linear

combinations of the same N building blocks, regard-
less of the function f . This is called linear approxima-
tion, because the collection of all functions of the form
ANf is contained in the linear span VN of the first N
basis functions. Some of the function spaces mentioned
above can be characterized by specifying the decay of
‖f − ANf‖2 as N increases, where AN is defined in
terms of an appropriate wavelet basis.

However, when it is compression that we are inter-
ested in, we are really carrying out a different kind of
approximation. Given a function f , and a desired accu-
racy, we want to approximate f to within that accuracy
by a linear combination of as few basis functions as
possible, but we are not trying to choose those func-
tions from the first few levels. In other words, we are no
longer interested in the ordering of the basis functions
and we do not prefer one label (j, k) over another.

If we want to formalize this, we can define an approx-
imationANf to be the closest linear combination to f
that is made up of at most N basis functions. By anal-
ogy with linear approximation, we can then define the
set VN as the set of all possible linear combinations of
N basis functions. However, the sets VN are no longer
linear spaces: two arbitrary elements VN are typically
combinations of two different collections of N basis
functions, so that their sum has no reason to belong
to VN (though it will belong to V2N ). For this reason,
ANf is called a nonlinear approximation of f .

One can go further and define classes of functions
by imposing conditions on the decay of ‖f − ANf‖,
as N increases, with respect to some function space
norm ‖ · ‖. This can of course be done starting from
any basis; wavelet bases distinguish themselves from
many other bases (such as the trigonometric functions)
in that the resulting function spaces turn out to be
standard function spaces, such as the Besov spaces,
for example. We have referred several times to func-
tions that are smooth in many places but have possi-
ble discontinuities in isolated points, and argued that
they can be approximated well by linear combinations
of a fairly small number of wavelets. Such functions are Terri: Tim thinks

this sentence is
fine. OK?special cases of elements of particular Besov spaces,

and their good approximation properties by sparse
wavelet expansions can be viewed as a consequence of
the characterization of these Besov spaces by nonlinear
approximation schemes using wavelets.1

1. More types of wavelet families, as well as many generalizations,
can be found on the Internet at www.wavelet.org.
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5 Wavelets in More than One Dimension

There are many ways to extend the one-dimensional
constructions to higher dimensions. An easy way to
construct a multidimensional wavelet basis is to com-
bine several one-dimensional wavelet bases. The image
decomposition at the start is an example of such a
combination: it combines two one-dimensional Haar
decompositions. We saw earlier that a 2× 2 superpixel
could be decomposed as follows. First, think of it as
arranged in two rows of two numbers, representing the
gray levels of the corresponding pixels. Next, for each
row replace its two numbers by their average and their
difference, obtaining a new 2 × 2 array. Finally, do the
same process to the columns of the new array. This
produces four numbers, the result of, respectively,

• averaging both horizontally and vertically,
• averaging horizontally and differencing vertically,
• differencing horizontally and averaging vertically,

and
• differencing both horizontally and vertically.

The first is the average gray level for the superpixel,
which is needed as the input for the next round of the
decomposition at the next scale up. The other three
correspond to the three types of “differences” already
encountered earlier. If we start with a rectangular image
that consists of 2K rows, each containing 2J pixels, then
we end up with 2K−1×2J−1 numbers of each of the four
types. Each collection is naturally arranged in a rectan-
gle of half the size of the original (in both directions); it
is customary in the image-processing literature to put
the rectangle with gray values for the superpixels in the
top left; the other three rectangles each group together
all the differences (or wavelet coefficients) of the other
three kinds. (See the level 1 decomposition in figure 10.)
The rectangle that results from horizontal differencing
and vertical averaging typically has large coefficients
at places where the original image has vertical edges
(such as the boat masts in the example above); likewise,
the horizontal averaging/vertical differencing rectan-
gle has large coefficients for horizontal edges in the
original (such as the stripes in the sails); the horizon-
tal differencing/vertical differencing rectangle selects
for diagonal features. The three different types of “dif-
ference terms” indicate that we have here three basic
wavelets (instead of just one in the one-dimensional
case).

In order to go to the next round, one scale up, the
scenario is repeated on the rectangle that contains the

superpixel gray values (the results of averaging both
horizontally and vertically); the other three rectangles
are left unchanged. Figure 10 shows the result of this
process for the original boat image, though the wavelet
basis used here is not the Haar basis, but a symmetric
biorthogonal wavelet basis that has been adopted in the
JPEG 2000 image compression standard. The result is a
decomposition of the original image into its component
wavelets. The fact that so much of this is gray indicates
that a lot of this information can be discarded without
affecting the image quality.

Figure 11 illustrates that the number of vanishing
moments is important not just when the wavelet basis
is used for characterizing properties of functions, but
also when it comes to image analysis. It shows an image
that has been decomposed in two different ways: once
with Haar wavelets, the other with the JPEG 2000 stan-
dard biorthogonal wavelet basis. In both cases, all but
the largest 5% of the wavelet coefficients have been
set to zero, and we are looking at the correspond-
ing reconstructions of the images, neither of which is
perfect. However, the wavelet used in the JPEG 2000
standard has four vanishing moments, and therefore
gives a much better approximation in smoothly vary-
ing parts of the image than the Haar basis. Moreover,
the reconstruction obtained from the Haar expansion
is “blockier” and less attractive.

6 Truth in Advertising: Closer to
True Image Compression

Image compression has been discussed several times in
this article, and it is indeed a context in which wavelets
are used. However, in practice there is much more to
image compression than the simple idea of dropping
all but the largest wavelet coefficients, taking the result-
ing truncated list of coefficients, and replacing each of
the many long stretches of zeros by its runlength. In
this short section we shall give a glimpse of the large
gap between the mathematical theory of wavelets as
discussed above and the real-life practice of engineers
who want to compress images.

First of all, compression applications set a “bit bud-
get,” and all the information to be stored has to
fit within the bit budget; statistical estimates and
information-theoretic arguments about the class of
images under consideration are used to allocate differ-
ent numbers of bits to different types of coefficients.
This bit allocation is much more gradual and subtle
than just retaining or dropping coefficients. Even so,
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Figure 10 Wavelet decomposition of the boat image, together with a grayscale rendition of the wavelet coefficients. The
decompositions are shown after one level of averaging and differencing, as well as after two and three levels. In the rectangles
corresponding to wavelet coefficients (i.e., not averaged in both directions), where numbers can be negative, the convention
is to use gray scale 128 for zero, and darker/lighter gray scales for positive and negative values. The wavelet rectangles are
mostly at gray scale 128, indicating that most of the wavelet coefficients are negligibly small.

Figure 11 Top: original image, with blowup. Bottom: approximations obtained by expanding the image into a wavelet
basis, and discarding the 95% smallest wavelet coefficients. Left: Haar wavelet transform. Right: wavelet transform using the
so-called 9–7 biorthogonal wavelet basis.

many coefficients will get no bits assigned to them,

meaning that they are indeed dropped altogether.

Because some coefficients are dropped, care has to

be taken that each of the remaining coefficients is

given its correct address, i.e., its (j, k1, k2) label, which

is essential for “decompressing” the stored informa-

tion in order to reconstruct the image (or rather, an

approximation to it). If you do not have a good strat-

egy for doing this, then you can easily find that the

computational resources needed to encode informa-

tion about the addresses cancel out a large portion

of the gain made by the nonlinear wavelet approxima-

tion. Every practical wavelet-based image-compression

scheme uses some sort of clever approach to deal with

this problem. One implementation exploits the obser-

vation that at locations in the image where wavelet coef-

ficients of some species are negligibly small at some

scale j, the wavelet coefficients of the same species at

finer scales are often very small as well. (Check it out

on the boat image decomposition given above.) At each
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such location, this method sets a whole tree of finer-
scale coefficients (four for scale j + 1, sixteen for scale
j + 2, etc.) automatically to zero; for those locations
where this assumption is not borne out by the wavelet
coefficients that are obtained from the actual decom-
position of the image at hand, extra bits must then be
spent to store the information that a correction has to
be made to the assumption. In practice, the bits gained
by the “zero-trees” far outweigh the bits needed for
these occasional corrections.

Depending on the application, many other factors
can play a role. For instance, if the compression algo-
rithm has to be implemented in an instrument on a
satellite where it can only draw on very limited power
supplies, then it is also important for the computations
involved in the transform itself to be as economical as
possible.

Readers who want to know more about (important!)
considerations of this kind can find them discussed in
the engineering literature. Readers who are content to
stay at the lofty mathematical level are of course wel-
come to do so, but are hereby warned that there is more
to image compression via wavelet transforms than has
been sketched in the previous sections.

7 Brief Overview of Several Influences
on the Development of Wavelets

Most of what is now called “wavelet theory” was devel-
oped in the 1980s and early 1990s. It built on exist-
ing work and insights from many fields, including har-
monic analysis (mathematics), computer vision and
computer graphics (computer science), signal analysis
and signal compression (electrical engineering), coher-
ent states (theoretical physics), and seismology (geo-
physics). These different strands did not come together
all at once but were brought together gradually, often as
the result of serendipitous circumstances and involving
many different agents.

In harmonic analysis, the roots of wavelet theory go
back to work by littlewood [VI.79] and Paley in the
1930s. An important general principle in Fourier analy-
sis is that the smoothness of a function is reflected
in its fourier transform [III.27]: the smoother the
function, the faster the decay of its transform. Little-
wood and Paley addressed the question of characteriz-
ing local smoothness. Consider, for example, a periodic
function with period 1 that has just one discontinuity
in the interval [0,1) (which is then repeated at all inte-
ger translates of that point), and is smooth elsewhere.
Is the smoothness reflected in the Fourier transform?

If the question is understood in the obvious way, then
the answer is no: a discontinuity causes the Fourier
coefficients to decay slowly, however smooth the rest of
the function is. Indeed, the best possible decay is of the
form |f̂n| � C[1+ |n|]−1. If there were no discontinu-
ity, the decay would be at least as good as Ck[1+|n|]−k
when f is k-times differentiable.

However, there is a more subtle connection between
local smoothness and Fourier coefficients. Let f be a
periodic function, and let us write its nth Fourier coef-
ficient f̂n as aneiθn , where an is the absolute value of
f̂n and eiθn is its phase. When examining the decay of
the Fourier coefficients, we look just at an and for-
get all about the phases, which means that we can-
not detect any phenomenon unless it is unaffected by
arbitrary changes to the phases. If f has a discontinu-
ity, then we can clearly move it about by changing the
phases. It turns out that these phases play an impor-
tant role in determining not just where the singulari-
ties are, but even their severity: if the singularity at x0

is not just a discontinuity but a divergence of the type
|f(x)| ∼ |x − x0|−β, then one can change the value of
β just by changing the phases and without altering the
absolute values |an|. Thus, changing phases in Fourier
series is a dangerous thing to do: it can greatly change
the properties of the function in question.

Littlewood and Paley showed that some changes of
the phases of Fourier coefficients are more innocuous.
In particular, if you choose a phase change for the first
Fourier coefficient, another one for both the next two
coefficients, another for the next four, another for the
next eight, and so on, so that the phase changes are
constant on “blocks” of Fourier coefficients that keep
doubling in length, then local smoothness (or absence
of smoothness) properties of f are preserved. Similar
statements hold for the Fourier transform of functions
on R (as opposed to Fourier series of periodic func-
tions). This was the first result of a whole branch of har-
monic analysis in which scaling was exploited system-
atically to deal with detailed local analysis, and in which
very powerful theorems were proved that, with hind-
sight, seem ready-made to establish a host of powerful
properties for wavelet decompositions. The simplest
way to see the connection between Littlewood–Paley
theory and wavelet decompositions is to consider the
Shannon wavelet ψ[Sh], which is defined by ψ̂[Sh](ξ) =
1 when π � |ξ| < 2π , and ψ̂[Sh](ξ) = 0 other-
wise. Here, ψ̂[Sh] denotes the Fourier transform of the
waveletψ[Sh]. The corresponding functionsψ[Sh]

j,k (x) =
2j/2ψ[Sh](2jx − k) constitute an orthonormal basis for
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Difference between
original and first blurBlur

Blur Difference between
first and second blur

Figure 12 Differences between successive
blurs give detail at different scales.

L2(R), and for each f and each j the collection of inner
products (

∫∞
−∞ f(x)ψ

[Sh]
j,k (x)dx)k∈Z tells us how f̂ (ξ)

restricts to the set 2j−1 � π−1|ξ| < 2j . In other words,
it gives us the jth Littlewood–Paley block of f .

Scaling also plays an important role in computer
vision, where one of the basic ways to “understand” an
image (going back to at least the early 1970s) is to blur
it more and more, erasing more detail each time, so as
to obtain approximations that are graded in “coarse-
ness” (see figure 12). Details at different scales can
then be found by considering the differences between
successive coarsenings. The relationship with wavelet
transforms is obvious!

An important class of signals of interest to electri-
cal engineers is that of bandlimited signals, which are
functions f , usually of one variable only, for which the
Fourier transform f̂ vanishes outside some interval. In
other words, the frequencies that make up f come from
some “limited band.” If the interval is [−Ω,Ω], then f
is said to have bandlimit Ω. Such functions are com-
pletely characterized by their values, often called sam-
ples, at integer multiples of π/Ω. Most manipulations
on the signal f are carried out not directly but by oper-
ations on this sequence of samples. For instance, we

might want to restrict f to its “lower-frequency half.”
To do this, we would define a function g by the condi-
tion that ĝ(ξ) = f̂ (ξ) if |ξ| � Ω/2 and is 0 otherwise.
Equivalently, we could say that ĝ(ξ) = f̂ (ξ)L̂(ξ), where
L̂(ξ) = 1 if |ξ| � Ω/2 and 0 otherwise. The next step
is to let Ln be L(nπ/Ω), and we find that g(kπ/Ω) =∑
n∈Z Lnf((k−n)π/Ω). To put this more neatly, if we

write an and b̃n for f(nπ/Ω) and g(nπ/Ω), respec-
tively, then b̃k =

∑
n∈Z Lnak−n. On the other hand, g

clearly has bandlimit Ω/2, so to characterize g it suf-
fices to know only the sequence of samples at inte-
ger multiples of 2π/Ω. In other words, we just need
to know the numbers bk = b̃2k. The transition from
f to g is therefore given by bk =

∑
n∈Z Lna2k−n. In

the appropriate electrical engineering vocabulary, we
have gone from a critically sampled sequence for f
(i.e., its sampling rate corresponded exactly to its band-
limit) to a critically sampled sequence for g by filter-
ing (multiplying f̂ by some function, or convolving the
sequence (f (nπ/Ω))n∈Z with a sequence of filter coef-
ficients) and downsampling (retaining only one sample
in two, because these are the only samples necessary
to characterize the more narrowly bandlimited g). The
upper-frequency half h of f can be obtained by the
inverse Fourier transform of the restriction of f̂ (ξ) to
|ξ| > Ω/2. Like g, the function h is also completely
characterized by its values at multiples of 2π/Ω, and h
can also be obtained from f by filtering and downsam-
pling. This split of f into its lower and upper frequency
halves, or subbands, is thus given by formulas that
are the exact equivalent of the generalized averaging
and differencing encountered in the implementation
of wavelet transforms for orthonormal wavelet bases
supported on an interval. Subband filtering followed
by critical downsampling had been developed in the
electrical engineering literature before wavelets came
along, but were typically not concatenated in several
stages.

A concept of central importance in quantum physics
is that of a unitary representation [IV.15 §1.4] of a
lie group [III.50 §1] on some hilbert space [III.37]. In
other words, given a Lie group G and a Hilbert space
H, one interprets the elements g of G as unitary trans-
formations of H. The elements of H are called states,
and for certain Lie groups, if v is some fixed state, then
the family of vectors {gv; g ∈ G} is called a family
of coherent states. Coherent states go back to work by
Schrödinger in the 1920s. Their name dates back to
the 1950s, when they were used in quantum optics: Terri: Tim thinks

this sentence is
fine. OK?the word “coherent” referred to the coherence of the
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light they were describing. These families turned out
to be of interest in a much wider range of settings in
quantum physics, and the name stuck, even outside
the original setting of optics. In many applications it
helps not to use the whole family of coherent states
but only those coherent states that correspond to a cer-
tain kind of discrete subset of G. Wavelets turn out to
be just such a subfamily of coherent states: one starts
with a single, basic wavelet, and the transformations
that convert it (by dilation and translation) into the
remaining wavelets form a discrete semigroup of such
transformations.

Despite the fact that wavelets synthesized ideas from
all these fields, their discovery originated in another
area altogether. In the late 1970s, the geophysicist
J. Morlet was working for an oil company. Dissatis-
fied with the existing techniques for extracting spe-
cial types of signals from seismograms, he came up
with an ad hoc transform that combined translations
and scalings: nowadays, it would be called a redun-
dant wavelet transform. Other transforms in seismol-
ogy with which Morlet was familiar involve comparing
the seismic traces with special functions of the form
Wm,n(t) = w(t −nτ) cos(mωt), where w is a smooth
function that gently rises from 0 to 1 and then gently
decays to 0 again, all within a finite interval. Several dif-
ferent examples of functions w, proposed by several
different scientists, are used in practice: because the
functions Wm,n look like small waves (they oscillate,
but have a nice beginning and end because of w) they
are typically called “wavelets of X,” named after pro-
poser X for that particular w. The reference functions
in Morlet’s new ad hoc family, which he used to com-
pare pieces of seismic traces, were different in that they
were produced from a function w by scaling instead
of multiplying them by increasingly oscillating trigono-
metric functions. Because of this, they always had the
same shape, and Morlet called them “wavelets of con-
stant shape” (see figure 13) in order to distinguish themTerri: caption,

although not very
nice, is OK as
written.

from the wavelets of X (or Y, or Z, etc.).
Morlet taught himself to work with this new trans-

form and found it numerically useful, but had difficulty
explaining his intuition to others because he had no
underlying theory. A former classmate pointed him in
the direction of A. Grossmann, a theoretical physicist,
who made the connection with coherent states and,
together with Morlet and other collaborators, started to
develop a theory for the transform in the early 1980s.
Outside the field of geophysics it was no longer neces-
sary to use the phrase “of constant shape,” so this was

w (t)

0 t

0 t0 t

0 t

t
0

t0

Figure 13 Top: an example of a window function w that
is used in practice by geophysicists, with just below it two
examples ofw(t−nτ)eimt , i.e., two “traditional” geophysics
wavelets. Bottom: a wavelet as used by Morlet, with two
translates and dilates just below it—these have constant
shape, unlike the “traditional” ones.

quickly dropped, which annoyed geophysicists when,

some years later, more mature forms of wavelet theory

impinged on their field again.

A few years later, in 1985, standing in line for a

photocopy machine at his university, harmonic analy-

sis expert Y. Meyer heard about this work and real-

ized it presented an interestingly different take on

the scaling techniques with which he and other har-

monic analysts had long been familiar. At the time, no

wavelet bases were known in which the initial func-

tion ψ combined the properties of smoothness and

good decay. Indeed, there seemed to be a sublimi-

nal expectation in papers on wavelet expansions that

no such orthonormal wavelet bases could exist. Meyer

set out to prove this, and to everyone’s surprise and

delight he failed in the best possible way—by find-

ing a counterexample, the first smooth wavelet basis!

Except that it later turned out not to have been the very

first: a few years before, a different harmonic analyst,

O. Stromberg, had constructed a different example, but

this had not attracted attention at the time.
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Meyer’s proof was ingenious, and worked because
of some seemingly miraculous cancellations, which isTerri: this term is

indeed OK.
always unsatisfactory from the point of view of mathe-
matical understanding. Similar miracles played a role
in independent constructions by P. G. Lemarié (now
Lemarié-Rieusset) and G. Battle of orthonormal wavelet
bases that were piecewise polynomial. (They came to
the same result from completely different points of
departure—harmonic analysis for Lemarié and quan-
tum field theory for Battle.)

A few months later, S. Mallat, then a Ph.D. candidate
in computer vision in the United States, learned about
these wavelet bases. He was on vacation, chatting on the
beach with a former classmate who was one of Meyer’s
graduate students. After returning to his Ph.D. work,
Mallat kept thinking about a possible connection with
the reigning paradigm in computer vision. On learning
that Meyer was coming to the United States in the fall of
1986 to give a named lecture series, he went to see him
and explain his insight. In a few days of feverish enthu-
siasm, they hammered out multiresolution analysis, a
different approach to Meyer’s construction inspired by
the computer vision framework. In this new setting, all
the miracles fell into place as inevitable consequences
of simple, entirely natural construction rules, embody-
ing the principle of successively finer approximations.
Multiresolution analysis has remained the basic princi-
ple behind the construction of many wavelet bases and
redundant families.

None of the smooth wavelet bases constructed up
to that point was supported inside an interval, so the
algorithms to implement the transform (which were
using the subband filtering framework without their
creators knowing that it had been named and devel-
oped in electrical engineering) required, in principle,
infinite filters that were impossible to implement. In
practice, this meant that the infinite filters from the
mathematical theory had to be truncated; it was not
clear how to construct a multiresolution analysis that
would lead to finite filters. Truncation of the infinite
filters seemed to me a blemish on the whole beautiful
edifice, and I was unhappy with this state of affairs. I
had learned about wavelets from Grossmann and about
multiresolution analysis from explanations scribbled
by Meyer on a napkin after dinner during a conference.
In early 1987 I decided to insist on finite filters for the
implementation. I wondered whether a whole multires-
olution analysis (and its corresponding orthonormal
basis of wavelets) could be reconstructed from appro-
priate but finite filters. I managed to carry out this pro-

gram, and as a result found the first construction of an
orthonormal wavelet basis for which ψ is smooth and
supported on an interval.

Soon after this, the connection with the electri-
cal engineering approaches was discovered. Espe-
cially easy algorithms were inspired by the needs of
computer graphics applications. More exciting con-
structions and generalizations followed: biorthogonal
wavelet bases, wavelet packets, multiwavelets, irregu-
larly spaced wavelets, sophisticated multidimensional
wavelet bases not derived from one-dimensional con-
structions, and so on.

It was a heady, exciting period. The development
of the theory benefited from all the different influ-
ences and also enriched the different fields with which
wavelets are related. As the theory has matured,
wavelets have become an accepted addition to the
mathematical toolbox used by mathematicians, scien-
tists, and engineers alike. They have also inspired the
development of other tools that are better adapted to
tasks for which wavelets are not optimal.
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VII.4 The Mathematics of Traffic in
Networks
Frank Kelly

1 Introduction

We are all familiar with congested roads, and perhaps
also with congestion in other networks such as the
Internet, so it is obviously important to have a gen-
eral understanding of how and why congestion occurs
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in networks. However, the pattern of the flow of traf-
fic through a network is the consequence of a subtle
and complex interaction between different users. For
example, in a road network we would normally expect
each driver to attempt to choose the most convenient
route, and this choice will depend upon the delays
the driver expects to encounter on different roads; but
these delays will in turn depend upon the choices of
routes made by others. This mutual interdependence
makes it difficult to predict the effects of changes to
the system, such as the construction of a new road or
the introduction of tolls in certain places.

Related issues arise in other large-scale systems like
the telephone network or the Internet. In these systems
a major practical concern is the extent to which con-
trol can be decentralized. When you are browsing the
Web, the rate at which a Web page is transferred to
you across the network is controlled by software proto-
cols running on your computer and on the Web server
hosting the Web page, and not by some huge central
computer. This decentralized approach to flow control
has been outstandingly successful as the Internet has
evolved from a small-scale research network to today’s
interconnection of hundreds of millions of hosts, but
is beginning to show signs of strain. In developing new
protocols, the challenge is to understand just which
aspects of decentralized flow control are important if
the network as a whole is to continue to expand and
evolve.

In this article we introduce the reader to some of the
mathematical models that have been used to address
these issues. The models need to be able to represent
several distinct aspects of the system. We shall see that
the language of graph theory [III.34] and matrices
[I.3 §4.2] is needed to capture the pattern of connec-
tions within the network. Calculus is needed to describe
how congestion depends upon traffic volumes. And
optimization concepts are needed to model the way
in which self-interested drivers choose their shortest
routes, or the way that decentralized controls in com-
munication networks can cause the system as a whole
to perform well.

2 Network Structure

Figure 1 illustrates a set of three nodes connected by a
set of five directed links. We might imagine the nodes as
representing towns or locations within a city, and the
links as representing road capacity between different
nodes. A two-way road is represented by two links, one

1
2

a

b

c

3

4

5

ab ac ba bc ca1 ca2 cb1 cb2

1 1 1 0 0 0 0 0 1

2 0 0 1 0 0 1 0 0

A = 3

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠4 0 0 0 0 0 1 1 0

5 0 0 0 0 1 0 0 1

ab ac ba bc ca1 ca2 cb1 cb2

ab 1 0 0 0 0 0 0 0

ac 0 1 0 0 0 0 0 0

ba 0 0 1 0 0 0 0 0
H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

bc 0 0 0 1 0 0 0 0

ca 0 0 0 0 1 1 0 0

cb 0 0 0 0 0 0 1 1

Figure 1 A simple network and its link-route incidence
matrix, A. The matrix H represents which routes serve
which source–destination pairs.

in each direction. Notice that there are two routes from
node c to node a that a driver can choose: the first route,
let us call it ca1, is the direct route, using link 5; the
second route, let us call it ca2, is via node b and uses
links 4 and 2.

Let J be the set of directed links and let R be the
set of possible routes. One way to describe the rela-
tionship between links and routes is with a table, or
matrix, defined as follows. Set Ajr = 1 if link j lies
on route r , and set Ajr = 0 otherwise. This defines
a matrix A = (Ajr , j ∈ J, r ∈ R) called the link-
route incidence matrix. Each column of the matrix cor-
responds to one of the routes r , and each row to one
of the links j of the network. The column for route r
is composed of 0s and 1s: the 1s tell us which links are
on route r . As for the rows, the 1s in the row for link
j tell us which routes pass through that link. Thus, for
example, the incidence matrix in figure 1 has a column
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D(y)

0 y

Figure 2 The time taken to travel along a link, D(y),
expressed as a function of the total flow y along the link.
As the flow increases, congestion effects cause additional
delay.

for each of the two routes, ca1 and ca2, between node

c and node a. These columns encode the information

that route ca1 uses link 5 and that route ca2 uses links

4 and 2. Note that the incidence matrix does not tell

us the order of the links on the route. Also the inci-

dence matrix shown does not include all logically pos-

sible routes, but it could if we wanted it to. And while

we have illustrated a very small network, there is no

limit to the number of nodes and links there could be in

the network, or to the number of choices of route each

driver might have—the incidence matrix would just be

bigger.

One quantity of interest in a network is the volume

of traffic along a particular route or link. Let xr be the

flow on route r , defined as the number of cars per hour

that travel along that route. We can list the flows along

all the routes in the network as a sequence of numbers

x = (xr , r ∈ R), and we can think of this sequence

as a vector. From this vector we can calculate the total

flow through a link: for example, the total flow through

link 5 in figure 1 is the sum of the flows along routes ca1

and cb2, since these are the routes that pass through

link 5. In general, since Ajr = 1 when a route r passes

through link j and Ajr = 0 when it does not, the total

flow through link j, coming from all of the routes that

use it, is

yj =
∑
r∈R

Ajrxr , j ∈ J.

Again, the numbers (yj, j ∈ J) can be thought of

as forming a vector. The above equations can then be

represented succinctly in matrix form as

y = Ax.

We expect the level of congestion at a link to depend
on the total flow through the link, and we expect this
to influence the time taken to travel along the link. We
shall call this time the delay. Figure 2 shows a typical
way in which the delay might depend on the amount of
flow. At small values of the flow y the delay D(y) is
just the time taken to travel along an empty road; for
larger values of y the delay D(y) is larger, and quite
possibly much larger, owing to congestion effects.1

Let Dj(yj) be the delay along link j when the flow
through that link is yj ; the nature of this delay may
depend upon characteristics of link j such as its length
and width, so we have to use the subscript j on the
function Dj to indicate that the functions for the
various links can be different.

2.1 Routing Choices

Given two nodes in a network there will in general be a
variety of possible routes capable of linking them. For
example, in figure 1 we have seen that the incidence
matrix A records two routes between nodes c and a.
The pair ca is an example of a source–destination pair.
Flow originating from source c and destined for node a
can use either ca1 or ca2, the two routes that serve this
source–destination pair. We now need another matrix,
this time to describe the relationship between source–
destination pairs and routes. Let us use s to denote
a typical source–destination pair, and let S be the set
of all source–destination pairs. Then, for each source–
destination pair s and each route r , let Hsr = 1 if s
can be served by the route r , and let Hsr = 0 other-
wise. This defines a matrix H = (Hsr , s ∈ S, r ∈ R);
figure 1 gives an example. Observe that the row labeled
ca has 1s for the two routes, r = ca1, ca2, that serve the
source–destination pair s = ca. Each column of H cor-
responds to a route, and contains a single 1: this identi-
fies the source–destination pair served by the route. For
each route r let us write s(r) for the source–destination
pair served by r : for example, in figure 1, s(ac) = ac and
s(ca1) = ca.

1. The graph shown in figure 2 is single valued. It is quite possible
for the curve representing delay as a function of flow to bend back
upon itself, so that higher delays than shown in the graph correspond
to flows smaller than the maximum flow shown there. You are in this
part of the graph when you experience stop–start driving conditions
on a congested but otherwise incident-free highway. Part of the aim
of traffic management is to keep flows and delays away from this part
of the graph, which we will not consider further.

We will assume that the graph is increasing and smooth, which will
make our use of calculus later more straightforward. Formally, we
shall assume that D(y) is a continuously differentiable and strictly
increasing function of its argument y , as in the graph shown in
figure 2.
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From the vector x = (xr , r ∈ R) we can calculate the
total flow from a source to a destination: for example,
the flow from node c to node a in figure 1 is the sum of
flows along routes ca1 and ca2, since from the matrixH
we see that these are the routes that serve the source–
destination pair ca. More generally, if fs is the total flow
of traffic added up over all of the routes serving source–
destination pair s, then

fs =
∑
r∈R

Hsrxr , s ∈ S.

Thus the vector f = (fs, s ∈ S) of source–destination
flows can be expressed succinctly in matrix form as
f = Hx.

3 Wardrop Equilibria

We are now able to approach the central issue: how
do the traffic flows between the various sources and
destinations distribute themselves over the links of the
network? Each driver will try to use whatever route is
quickest, but this may make other routes quicker or
slower and cause other drivers to change their routes.
Only when they cannot find alternative, quicker routes
will drivers not have an incentive to change routes.
What does this mean mathematically?

Let us first calculate the time taken for a driver to
travel along route r . The column labeled r of the matrix
A tells us which links j are on route r . If we add up the
delays on each of these links, we get the time taken to
travel along route r as the expression∑

j∈J
Dj(yj)Ajr .

Now the driver using route r could have used any
other route that served the same source–destination
pair s(r). So, for the driver to be content with route
r , we require∑

j∈J
Dj(yj)Ajr �

∑
j∈J
Dj(yj)Ajr ′

for every other route r ′ that serves the same source–
destination pair s(r).

Define a Wardrop equilibrium (Wardrop 1952) to be
a vector x = (xr , r ∈ R) of nonnegative numbers
such that for every pair of routes r , r ′ serving the same
source–destination pair,

xr > 0 ⇒
∑
j∈J
Dj(yj)Ajr �

∑
j∈J
Dj(yj)Ajr ′ ,

where y = Ax. The inequality expresses the defining
characteristic of a Wardrop equilibrium: that if a route

r is actively used, then it achieves the minimum delay
over all routes serving its source–destination pair s(r).

Does a Wardrop equilibrium exist? It is not at all
clear whether it is possible to find a vector x such
that all of the above inequalities, for the various routes
through the network, are satisfied simultaneously. To
answer the question, we shall proceed by addressing a
seemingly different question: what is the answer to the
following optimization problem?

Minimize
∑
j∈J

∫ yj
0
Dj(u)du

over x � 0, y,

subject to Hx = f , Ax = y.
Let us see in outline why this optimization problem has
a solution (x,y), and why, if (x,y) is a solution, the
vector x is a Wardrop equilibrium.

The optimization problem has some aspects that are
quite natural. An obvious constraint is that the flows
along each route are nonnegative, which is why we
insist that x � 0. The constraints Hx = f , Ax = y just
enforce the accounting rules we have seen earlier—the
rules that allow the source–destination flows f and the
link flows y to be calculated from the route flows x
using the matrices H and A, respectively. We view the
source–destination flows f as fixed, to be distributed
over the various routes. Given a choice of f , our task
is then to find the route flows x and consequently the
link flows y . At a solution to the optimization problem
y will be nonnegative, since x is.

This much is fairly natural, but the function to be
minimized looks somewhat strange. Its importance
rests on the fact that the rate of change of the integral∫ yj

0
Dj(u)du

with respect to yj is Dj(yj), by the fundamental
theorem of calculus [I.3 §5.5], and the function to be
minimized is the sum of these integrals over all links.
We shall see that the link between Wardrop equilibria
and the optimization problem is a direct consequence
of this observation.

To find a solution to the optimization problem, we
will use the method of lagrange multipliers [III.66].
Define the function

L(x,y ;λ,µ)

=
∑
j∈J

∫ yj
0
Dj(u)du+ λ · (f −Hx)− µ · (y −Ax),
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where λ = (λs, s ∈ S), µ = (µj, j ∈ J) are vectors of
Lagrange multipliers, to be fixed later. The idea is that if
we make the right choices of Lagrange multipliers, the
minimization of the function L over x and y will find a
solution to the original problem. The reason this works
is that, for the right choices of Lagrange multipliers, the
constraintsHx = f andAx = y are consistent with the
minimization of L.

To minimize the function L we need to differentiate.
First,

∂L
∂yj

= Dj(yj)− µj.

Second,

∂L
∂xr

= −λs(r) +
∑
j∈J
µjAjr .

Note that the form of the matrixH causes the derivative
with respect to xr to pick out exactly one component
of λ, namely λs(r), and the form of the matrix A causes
the derivative to pick out just those components of µ
that correspond to links on route r . These derivatives
allow us to deduce that a minimum of L, over all x � 0
and all y , occurs when

µj = Dj(yj)
and

λs(r) =
∑
j∈J
µjAjr if xr > 0

�
∑
j∈J
µjAjr if xr = 0.

The equality condition for λs(r) is straightforward: if
xr > 0 then small variations up or down in xr should
not decrease the function L(x,y ;λ,µ), and hence we
deduce that the partial derivative with respect to xr
must be zero. But if xr = 0 then we can only vary xr
upward, and so all we can deduce is that the partial
derivative with respect to xr is nonnegative, and from
this we deduce the inequality condition for λs(r).

Minimizing the function L corresponds to allowing
the constraints Hx = f , Ax = y to be violated, but at
a cost: now one charges a price λs for any shortfall of
the sum

∑
j∈J Ajrxr below fs and a price µj for any

excess of the sum
∑
j∈J Ajrxr over yj . From general

results on convex optimization it is known that there
exist Lagrange multipliers (λ, µ) and a vector (x,y)
such that (x,y) minimizes L(x,y ;λ,µ), satisfies the
constraints Hx = f , Ax = y , and solves the original
optimization problem.

Our solution for the Lagrange multipliers shows that
they have a simple interpretation: µj is the delay on link

j and λs is the minimum delay over all routes serving
the node pair s. The various conditions established for
the multipliers thus show that an optimum of the func-
tion L, known as the objective function, corresponds
precisely to a Wardrop equilibrium.

Thus if traffic in the network distributes itself in
accordance with the self-interested choices of drivers,
the equilibrium flows (x,y) will solve an optimiza-
tion problem. This result is originally due to Beckmann
et al. (1956), and it provides a remarkable insight into
the equilibrium patterns achieved in road traffic net-
works. The pattern of traffic resulting from the indi-
vidual decisions of a large number of self-interested
drivers behaves as if a central intelligence were direct-
ing flows to optimize a certain (rather strange) objective
function.

The result does not mean that average delays in
the network will be minimal: a striking illustration of
this fact is provided by Braess’s paradox (Braess 1968),
which we describe next.

4 Braess’s Paradox

Consider the network illustrated in figure 3(a). Cars
travel from node S to node N, via either node W or node
E. The total flow is 6, and the link delaysDj(y) are given
next to the links in the figure. One can imagine the fig-
ure illustrating rush hour as commuters travel from the
center of a city in the south to their homes in the north.
Commuters learn from experience what the delays are
likely to be along the eastern and western routes. The
distribution of traffic shown is the Wardrop equilib-
rium: there is no incentive for any drivers to change
their routes, since the two possible routes incur the
same delay, namely (10×3)+(3+50) = 83 units of time.
Now suppose that a new link is added, between nodes
W and E, as shown in figure 3(b). Traffic is attracted
onto the new link, since to begin with it offers a shorter
journey time from the south to the north. Eventually,
after everyone knows about the new link and traffic pat-
terns have settled down, a new Wardrop equilibrium
will be established, and this is shown in figure 3(b). In
the new equilibrium there are three routes used, which
each incur the same delay, namely (10×4)+(2+50) =
(10× 4)+ (2+ 10)+ (10× 4) = 92. Thus in figure 3(b)
each car incurs a delay of 92, while in figure 3(a) the
delay of each car was only 83. Adding the new link has
increased everyone’s delay!

The explanation for this apparent paradox is as fol-
lows. At a Wardrop equilibrium each driver is using
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Figure 3 Braess’s paradox. The addition of a link causes everyone’s
journey time to lengthen. (After Braess (1968) and Cohen (1988).)

a route which, given the choices of others, gives the
minimum delay over the routes available between that
driver’s source and destination. But there is no intrinsic
reason why this equilibrium should correspond to par-
ticularly low delays relative to what could be achieved
by another flow pattern. If all drivers could be encour-
aged to depart from their own self-interested choices,
it is quite possible that all might benefit. And in the
above example, if all drivers in the second network
could agree to avoid the new link, effectively converting
the network back into the first network, then all would
incur lower delays.

To explore the point further, note that the product of
the flow yj and the delay Dj(yj) is the delay incurred
at link j per unit time, aggregated over all the vehicles
using link j. Let us try to find the flow pattern that min-
imizes the total delay per unit time, summed over the
entire network. Consider then the following problem.

Minimize
∑
j∈J
yjDj(yj)

over x � 0, y,

subject to Hx = f , Ax = y.
Note that the problem is of the same form as the ear-
lier optimization problem, but the function to be min-
imized now measures the total network delay per unit

time. (Recall that the function to be minimized in the
first optimization problem seemed initially to be rather
arbitrary, with its eventual motivation being that its
minimization was achieved by a Wardrop equilibrium.)
Again define the function

L(x,y ;λ,µ)

=
∑
j∈J
yjDj(yj)+ λ · (f −Hx)− µ · (y −Ax).

Again

∂L
∂xr

= −λs(r) +
∑
j∈J
µjAjr ,

but now

∂L
∂yj

= Dj(yj)+yjD′j(yj)− µj.

Hence a minimum of L over x � 0 and y occurs when

µj = Dj(yj)+yjD′j(yj)
and

λs(r) =
∑
j∈J
µjAjr if xr > 0

�
∑
j∈J
µjAjr if xr = 0.

The Lagrange multipliers now have a more sophisti-
cated interpretation. Suppose that, in addition to the
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delay Dj(yj), users of link j incur a traffic-dependent
toll

Tj(yj) = yjD′j(yj).
Then µj is the generalized cost of using link j, defined
as the sum of the toll and the delay, and λs is the mini-
mum generalized cost over all routes serving the node
pair s. If users select routes in an attempt to mini-
mize the sum of their tolls and their delays, then they
will produce a flow pattern that minimizes total delay
in the network. Notice that the generalized cost µj is
(∂/∂yj)(yjD(yj)), which is the rate of increase in the
total delay at link j as the flow yj is increased. So the
assumption now is that, in a certain sense, drivers try
to minimize their contribution to the total delay rather
than minimizing their own delay.

We have seen that if drivers attempt to minimize
their own delay, then the resulting equilibrium flows
will minimize a certain objective function defined for
the network. However, the objective function is cer-
tainly not the total network delay, and thus there is
no guarantee that when capacity is added to a network
the situation is improved. We have also seen that, with
the imposition of appropriate tolls, it is possible for the
self-interested behavior of drivers to lead to an equilib-
rium pattern of flow that minimizes total delay. A major
challenge for governments and transport planners is to
understand how insights from these and more sophisti-
cated models might be used to encourage more efficient
development and use of road networks (Department for
Transport 2004).

5 Flow Control in the Internet

When a file is requested over the Internet, the com-
puter that hosts that file breaks it into small packets
of data that are then transferred across the network
by the transmission control protocol of the Internet, or
TCP. The rate at which packets enter the network is con-
trolled by TCP, which is implemented as software on
the two computers that are the source and destination
of the data. The general approach is as follows (Jacob-
son 1988). When a link within the network becomes
overloaded, one or more packets are lost; loss of a
packet is taken as an indication of congestion, the desti-
nation informs the source, and the source slows down.
TCP then gradually increases its sending rate until it
again receives an indication of congestion. This cycle
of increase and decrease enables the source computers
to discover and use the available capacity, and to share
it between different flows of packets.

TCP has been outstandingly successful as the Inter-
net has evolved from a small-scale research network to
today’s interconnection of hundreds of millions of end-
points and links. This in itself is a striking observation.
Each of a large but indeterminate number of flows is
controlled by a feedback loop that can know only of
that flow’s experience of congestion. A flow does not
know how many other flows are sharing a link on its
route, or even how many links are on its route. The
links vary in capacity by many orders of magnitude, as
do the numbers of flows sharing different links. It is
remarkable that so much has been achieved in such a
rapidly growing and heterogeneous network with con-
gestion controlled just at the endpoints. Why does this
algorithm work so well?

In recent years theoreticians have shed some light on
TCP’s success, by interpreting the protocol as a decen-
tralized parallel algorithm that solves an optimization
problem, just as the decentralized choices of drivers in
a road network solve an optimization problem. We shall
outline the argument, beginning with a more detailed
description of TCP.2

Packets transferred by TCP across the Internet con-
tain sequence numbers indicating their order, and they
should arrive at their destination in that order. When
a packet is received at the destination, it is acknow-
ledged: an acknowledgment is a short packet sent by
the destination back to the source. If a packet has been
lost in the transfer, the source can tell this from the
sequence numbers contained in the acknowledgments.
The source keeps a copy of each packet sent until it
has been positively acknowledged; these copies form
what is called a sliding window, and allow packets lost
in transfer to be sent again by the source.

Meanwhile, stored in the source computer there is
a numerical variable known as the congestion window
and denoted cwnd. The congestion window directs the
size of the sliding window in the following sense: if the
size of the sliding window is less than cwnd, then the
computer increases it by sending out a packet; if it is
greater than or equal to cwnd, then it waits for positive
acknowledgments to come in, which have the effect of
reducing the size of the sliding window and, as we shall
see, increasing cwnd as well. Thus, the size of the sliding
window continually changes, moving in the direction of
a target size that is given by the congestion window.

2. Even our detailed description of TCP is simplified, concerning
just the congestion-avoidance part of the protocol and omitting dis-
cussion of timeouts or of reactions to multiple congestion indication
signals received within a single round-trip time.
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The congestion window itself is not a fixed number:
rather, it is constantly being updated, and the precise
rules for how this is done are critical for TCP’s shar-
ing of capacity. The rules currently used are as follows.
Every time a positive acknowledgment comes in, cwnd
is increased by cwnd−1, and every time a lost packet
is detected, cwnd is halved.3 Thus, if the source com-
puter detects a lost packet, it realizes that there has
been some congestion and backs off for a while, but
if all its packets are getting through then it allows the
rate at which it sends packets to inch up again.

If p is the probability that a packet is lost, then with
probability 1− p the congestion window will increase
by cwnd−1 and with probability p it will decrease by
1
2cwnd. The expected change in the congestion window
cwnd per update step is therefore

cwnd−1(1− p)− 1
2cwndp.

The expected change will be positive for small values
of cwnd, but will become negative if cwnd is big enough.
We might therefore expect an equilibrium for cwnd to
arise when the expression is zero: that is, when

cwnd =
√

2(1− p)
p

.

Now let us see how this calculation can be extended
to networks. Suppose that a network consists of a set
of nodes connected by directed links, like the net-
work illustrated in figure 1. As earlier, let J be the set
of directed links, let R be the set of routes, and let
A = (Ajr , j ∈ J, r ∈ R) be the link-route incidence
matrix. When a request reaches a computer in this net-
work, that computer will set up a congestion window
for the flow of packets that will result. Since there will
be many different such congestion windows, they need
to be labeled, and it is convenient to label them with the
route that will be used for the flow. (Exactly how these
flows are routed is a complicated and important ques-
tion, but one that we shall not discuss here.) So, for each
route r that is being used, let cwndr be the congestion
window for that route. Let Tr be the round-trip time for
the route r : that is, the time between the sending out
of a packet and the receiving of an acknowledgment for
it.4 Finally, define a variable xr to be cwndr /Tr .

3. These increase and decrease rules may appear rather mysterious,
and indeed it is only recently that many of their macroscopic conse-
quences have begun to be understood. The rules have worked well
for more than a decade, but they are now beginning to show signs
of age, and much current research is aimed at understanding the full
consequences of changing them.

4. The round-trip time comprises the time taken for a packet to
travel along links, called the propagation delay, together with pro-

Now at any given time the sliding window consists
of those packets that have been sent but not acknow-
ledged. Therefore, if a packet has just been acknow-
ledged and its round-trip has taken time Tr , the slid-
ing window consists of all packets sent out in the last
Tr time units. Since the source computer is aiming for
the number of such packets to be about cwndr , we can
interpret xr to be the rate at which packets are trans-
ferred over route r . Thus, the numbers xr form a flow
vector that is closely analogous to the traffic flow vector
discussed earlier.

As we did then, let us define a vector y = Ax, so that
yj is the total flow through link j, obtained by summing
xr over each route r that passes through link j. Let pj
be the proportion of packets that are lost, or “dropped,”
at link j. We expect pj to be related to yj , the total
flow through link j, as follows. If yj is less than the
capacity Cj of link j, then pj will be zero; there will be
no dropped packets at link j if the link is not full. And
if pj > 0 then yj = Cj ; if packets are dropped then the
link is full. If we assume that the proportions of packets
dropped at links are small, then the probability that a
packet is lost on route r is approximately

pr =
∑
j∈J
pjAjr .

(The exact formula would be (1−pr ) =
∏
j∈J(1−pj)Ajr ,

but when thepj are small we can ignore their products.)
Since xr = cwndr /Tr , our earlier calculation of cwnd
now gives us that

xr = 1
Tr

√
2(1− pr )
pr

.

Is it possible to choose the rates x = (xr , r ∈ R) and
the drop probabilities p = (pj, j ∈ J) in a consistent
fashion, so that the last two equations are satisfied and
either pj is zero or yj = Cj for each j ∈ J? The remark-
able observation is that such a choice corresponds pre-
cisely to the solution of the following optimization
problem (Kelly 2001; Low et al. 2002).

Maximize
∑
r∈R

√
2
Tr

arctan
(
xrTr√

2

)

over x � 0,

subject to Ax � C.

cessing times and queueing delays at nodes. Processing times and
queueing delays tend to decrease with increasing computer speeds,
but the finite speed of light places a fundamental lower bound on
propagation delays. We shall treat the round-trip time for a route as a
constant. Hence, we assume that congestion at a link makes itself felt
by packet loss rather than additional packet delay.
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arctan(x)

x0

Figure 4 The arctan function. The Internet’s TCP implic-
itly maximizes a sum of utilities over all the connections
present in a network: this function shows the shape of the
utility function for a single connection. The horizontal axis
is proportional to the rate of the connection, and the vertical
axis is proportional to the usefulness of that rate. Both axes
are scaled in terms of the round-trip time of the connection.

Some aspects of this optimization problem are as we
might expect: in particular, the inequality Ax � C sim-
ply adds up the flows through link j and requires that
the sum not exceed the capacity Cj of link j, for each
link j ∈ J. But, as before, the function being optimized
is undoubtedly strange. The arctan function, illustrated
in figure 4, is the inverse function to the trigonometric
function tan, and can also be defined as

arctan(x) =
∫ x

0

1
1+u2

du.

From this form, we see that its derivative with respect
to x is 1/(1+ x2).

Let us sketch the relationship between the opti-
mization problem and the equilibrium rates and drop
probabilities. Define the function

L(x, z;µ)

=
∑
r∈R

√
2
Tr

arctan
(
xrTr√

2

)
+ µ · (C −Ax − z),

where µ = (µj, j ∈ J) is a vector of Lagrange multi-
pliers, and z = C − Ax is a vector of slack variables,
measuring the spare capacity on each of the links j ∈ J
of the network. Then, using the derivative of the arctan
function,

∂L
∂xr

= (1+ 1
2x

2
r T 2
r )−1 −

∑
j∈J
µjAjr and

∂L
∂zj

= −µj.

We look for a maximum of L over x, z � 0; it turns out
that this maximum is, under the identification µj = pj ,
precisely the collection (xr , r ∈ R), (pj, j ∈ J) of
rates and drop probabilities that we were looking for.
For example, setting to zero the partial derivative with
respect to xr gives the desired equation for xr .

In summary, for each link j ∈ J the Lagrange multi-
plier µj arising from the optimization problem is pre-

cisely the proportionpj of packets dropped at that link,
much as the Lagrange multipliers arising earlier were
precisely the delays on links of a road traffic network.
And the equilibrium reached by the interaction of many
competing TCPs, each implemented only on the source
and destination computers, is effectively maximizing
an objective function for the entire network. The objec-
tive function has a surprising interpretation: it is as
if the usefulness of the flow rate xr to the source–
destination pair served by this route is given by a utility
function √

2
Tr

arctan
(
xrTr√

2

)
,

and the network is attempting to maximize the sum
of these utility functions across all source–destination
pairs, subject to constraints arising from the limited
capacities of the links.

The arctan function, illustrated in figure 4, is concave.
Thus, if two or more connections share an overloaded
link, the rates achieved will be approximately equal,
since otherwise the total utility could be increased by
reducing the largest rate a little and increasing the
smallest rate a little. As a result, there is a tendency
for TCP to share resources more or less equitably. This
is very different from resource-control mechanisms in
traditional telephone networks where, if the network
is overloaded, some calls are blocked in order that the
calls that are accepted are unaffected by the overload.

6 Conclusion

The behavior of large-scale systems has been of great
interest to mathematicians for over a century, with
many examples coming from physics. For example, the
behavior of a gas can be described at the microscopic
level in terms of the position and velocity of each
molecule. At this level of detail a molecule’s velocity
appears as a random process, as the molecule bounces
around off other molecules and the walls of the con-
tainer. Yet consistent with this detailed microscopic
description of the system is macroscopic behavior best
described by quantities such as temperature and pres-
sure. Similarly, the behavior of electrons in an elec-
trical network can be described in terms of random
walks, and yet this simple description at the micro-
scopic level leads to rather sophisticated behavior at
the macroscopic level: Kelvin showed that the pattern
of potentials in a network of resistors is exactly the
one that minimizes heat dissipation for a given level of
current flow (Kelly 1991). The local, random behavior
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of the electrons causes the network as a whole to solve
a rather complex optimization problem.

In the last fifty years we have begun to realize that
large-scale engineered systems are often best under-
stood in similar terms. Thus a microscopic description
of traffic flow in terms of each driver’s choice of the
most convenient route can be consistent with macro-
scopic behavior described in terms of a function mini-
mization. And the simple, local rules that control how
packets are transmitted through the Internet can cor-
respond to a maximizing of aggregate utility across the
entire network.

One thought-provoking difference is that, whereas
the microscopic rules governing physical systems are
fixed, for engineered systems such as transport or com-
munication networks we may be able to choose the
microscopic rules so as to achieve the macroscopic
consequences we judge desirable.
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VII.5 The Mathematics of Algorithm
Design
Jon Kleinberg

1 The Goals of Algorithm Design

When computer science began to emerge as a subject
at universities in the 1960s and 1970s, it drew some

amount of puzzlement from the practitioners of more
established fields. Indeed, it is not initially clear why
computer science should be viewed as a distinct aca-
demic discipline. The world abounds with novel tech-
nologies, but we do not generally create a separate
field around each one; rather, we tend to view them
as by-products of existing branches of science and
engineering. What is special about computers?

Viewed in retrospect, such debates highlighted an
important issue: computer science is not so much about
the computer as a specific piece of technology as it
is about the more general phenomenon of computa-
tion itself, the design of processes that represent and
manipulate information. Such processes turn out to
obey their own inherent laws, and they are performed
not only by computers but by people, by organizations,
and by systems that arise in nature. We will refer to
these computational processes as algorithms. For the
purposes of our discussion in this article, one can think
of an algorithm informally as a step-by-step sequence
of instructions, expressed in a stylized language, for
solving a problem.

This view of algorithms is general enough to cap-
ture both the way a computer processes data and the
way a person performs calculations by hand. For exam-
ple, the rules for adding and multiplying numbers that
we learn as children are algorithms; the rules used by
an airline company for scheduling flights constitute an
algorithm; and the rules used by a search engine like
Google for ranking Web pages constitute an algorithm.
It is also fair to say that the rules used by the human
brain to identify objects in the visual field constitute a
kind of algorithm, though we are currently a long way
from understanding what this algorithm looks like or
how it is implemented on our neural hardware.

A common theme here is that one can reason about
all these algorithms without recourse to specific com-
puting devices or computer programming languages,
instead expressing them using the language of mathe-
matics. In fact, the notion of an algorithm as we now
think of it was formalized in large part by the work of
mathematical logicians in the 1930s, and algorithmic
reasoning is implicit in the past several millennia of
mathematical activity. (For example, equation-solving
methods have always tended to have a strong algorith-
mic flavor; the geometric constructions of the ancient
Greeks were inherently algorithmic as well.) Today, the
mathematical analysis of algorithms occupies a cen-
tral position in computer science; reasoning about algo-
rithms independently of the specific devices on which
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they run can yield insight into general design principles
and fundamental constraints on computation.

At the same time, computer-science research strug-
gles to keep two diverging views in focus: this more
abstract view that formulates algorithms mathemati-
cally, and the more applied view that the public gen-
erally associates with the field, the one that seeks to
develop applications such as Internet search engines,
electronic banking systems, medical imaging software,
and the host of other creations we have come to expect
from computer technology. The tension between these
two views means that the field’s mathematical formu-
lations are continually being tested against their imple-
mentation in practice; it provides novel avenues for
mathematical notions to influence widely used appli-
cations; and it sometimes leads to new mathematical
problems motivated by these applications.

The goal of this short article is to illustrate this
balance between the mathematical formalism and the
motivating applications of computing. We begin by
building up to one of the most basic definitional ques-
tions in this vein: how should we formulate the notion
of efficient computation?

2 Two Representative Problems

To make the discussion of efficiency more concrete, and
to illustrate how one might think about an issue like
this, we first discuss two representative problems—
both fundamental in the study of algorithms—that are
similar in their formulation but very different in their
computational difficulty.

The first in this pair is the traveling-salesman prob-
lem (TSP), which is defined as follows. We imagine a
salesman contemplating a map with n cities (he is cur-
rently located in one of them). The map gives the dis-
tance between each pair of cities, and the salesman
wishes to plan the shortest possible tour that visits alln
cities and returns to the starting point. In other words,
we are seeking an algorithm that takes as input the set
of all distances among pairs of cities, and produces a
tour of minimum total length. Figure 1(a) depicts the
optimal solution to a sample input instance of the TSP;
the circles represent the cities, the dark lines (with
lengths labeling them) connect cities that the sales-
man visits consecutively on the tour, and the lighter
lines connect all the other pairs of cities, which are not
visited consecutively.

A second problem is the minimum-spanning-tree
problem (MSTP). Here we imagine a construction firm
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Figure 1 Solutions to instance of (a) the traveling-salesman
problem and (b) the minimum-spanning-tree problem, on
the same set of points. The dark lines indicate the pairs
of cities that are connected by the respective optimal solu-
tions, and the lighter lines indicate all pairs that are not
connected.

with access to the same map of n cities, but with a dif-

ferent goal in mind. They wish to build a set of roads Terri: Tim prefers
this as it is. OK?

connecting certain pairs of the cities on the map, so

that after these roads are built there is a route from

each of the n cities to each other one. (A key point

here is that each road must go directly from one city

to another.) The goal is to build such a road network

as cheaply as possible—in other words, using as little

total road material as possible. Figure 1(b) depicts the

optimal solution to the instance of the MSTP defined by

the same set of cities used for part (a).

Both of these problems have a wide range of practi-

cal applications. The TSP is a basic problem concerned

with sequencing a given set of objects in a “good” order;

it has been used for problems that run from planning

the motion of robotic arms drilling holes on printed cir-

cuit boards (where the “cities” are the locations where

the holes must be drilled) to ordering genetic markers

on a chromosome in a linear sequence (with the mark-

ers constituting the cities, and the distances derived

from probabilistic estimates of proximity). The MSTP

is a basic issue in the design of efficient communica-
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tion networks; this follows the motivation given above,
with fiber-optic cable acting in the role of “roads.” The
MSTP also plays an important role in the problem of
clustering data into natural groupings. Note, for exam-
ple, how the points on the left-hand side of figure 1(b)
are joined to the points on the right-hand side by a rel-
atively long link; in clustering applications, this can be
taken as evidence that the left and right points form
natural groupings.

It is not hard to come up with an algorithm for solv-
ing the TSP. We first list every possible way of ordering
the cities (other than the starting city, which is fixed
in advance). Each ordering defines a tour—the sales-
man could visit the cities in this order and then return
to the start—and for each ordering we could compute
the total length of the tour, by traversing the cities in
this order and summing the distances from each city
to the next. As we perform this calculation for all pos-
sible orders, we keep track of the order that yields the
smallest total distance, and at the end of the process
we return this tour as the optimal solution.

While this algorithm does solve the problem, it is
extremely inefficient. There are n− 1 cities other than
the starting point, and any possible sequence of them
defines a tour, so we need to consider (n− 1)(n− 2)
(n− 3) · · · (3)(2)(1) = (n − 1)! possible tours. Even
for n = 30 cities, this is an astronomically large quan-
tity; on the fastest computers we have today, running
this algorithm to completion would take longer than
the life expectancy of the Earth. The difficulty is that
the algorithm we have just described is performing a
brute-force search: the “search space” of possible solu-
tions to the TSP is very large, and the algorithm is doing
nothing more than plowing its way through this entire
space, considering every possible solution.

For most problems, there is a comparably inefficient
algorithm that simply performs a brute-force search.
Things tend to get interesting when one finds a way to
improve significantly on this brute-force approach.

The MSTP provides a nice example of how such an
improvement can happen. Rather than considering all
possible road networks on the given set of cities, sup-
pose we try the following myopic, “greedy” approach
to the MSTP. We sort all the pairs of cities in order of
increasing distance, and then work through the pairs
in this order. When we get to a pair of cities, say A
and B, we test if there is already a way to travel from A
to B in the collection of roads constructed thus far. If
there is, then it would be superfluous to build a direct
road from A to B—our goal, remember, is just to make

sure every pair is connected by some sequence of roads,

and A and B are already connected in this case. But

if there is no way to get from A to B using what has

already been built, then we construct the direct road

from A to B. (As an example of this reasoning, note that

the potential road of length 14 in figure 1(a) would not

get built by this MSTP algorithm; by the time this direct

route is considered, its endpoints are already joined by

the sequence of two shorter roads of length 7 and 11,

as depicted in figure 1(b).)

It is not at all obvious that the resulting road network

should have the minimum possible cost, but in fact this

is true. In other words, one can prove a theorem that

says, essentially, “On every input, the algorithm just

described produces an optimal solution.” The payoff

from this theorem is that we now have a way to com-

pute an optimal road network by an algorithm that is

much, much more efficient than brute-force search: it

simply needs to sort the pairs of cities by their dis-

tances, and then make a single pass through this sorted

list to decide which roads to build.

This discussion has provided us with a fair amount of

insight into the nature of the TSP and the MSTP. Rather

than experimenting with actual computer programs, we

described algorithms in words, and made claims about

their performance that could be stated and proved as

mathematical theorems. But what can we abstract from

these examples if we want to talk about computational

efficiency in general?

3 Computational Efficiency

Most interesting computational problems share the fol-

lowing feature with the TSP and the MSTP: an input

of size n implicitly defines a search space of possi-

ble solutions whose size grows exponentially with n.

One can appreciate this explosive growth rate as fol-

lows: if we simply add one to the size of the input, the

time required to search the entire space increases by

a multiplicative factor. We would prefer algorithms to

scale more reasonably: their running times should only

increase by a multiplicative factor when the input itself

increases by a multiplicative factor. Running times that

are bounded by a polynomial function of the input

size—in other words, proportional to n raised to some

fixed power—exhibit this property. For example, if an

algorithm requires at most n2 steps on an input of

size n, then it requires at most (2n)2 = 4n2 steps on

an input twice as large.
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In part because of arguments like this, computer sci-
entists in the 1960s adopted polynomial time as a work-
ing definition of efficiency: an algorithm is deemed to
be efficient if the number of steps it requires on an
input of size n grows like n raised to a fixed power.
Using the concrete notion of polynomial time as a
surrogate for the fuzzier concept of efficiency is the
kind of modeling decision that ultimately succeeds
or fails based on its utility in guiding the develop-
ment of real algorithms. And in this regard, polyno-
mial time has turned out to be a definition of surprising
power in practice: problems for which one can develop
a polynomial-time algorithm have turned out in gen-
eral to be highly tractable, while those for which we
lack polynomial-time algorithms tend to pose serious
challenges even for modest input sizes.

A concrete mathematical formulation of efficiency
provides a further benefit: it becomes possible to pose,
in a precise way, the conjecture that certain problems
cannot be solved by efficient algorithms. The TSP is a
natural candidate for such a conjecture; after decades
of failed attempts to find an efficient algorithm for the
TSP, one would like to be able to prove a theorem that
says, “There is no polynomial-time algorithm that finds
an optimal solution to every instance of the TSP.” A
theory known as np-completeness [IV.20 §4] provides
a unifying framework for thinking about such ques-
tions; it shows that a large class of computational prob-
lems, containing literally thousands of naturally aris-
ing problems (including the TSP), are equivalent with
respect to polynomial-time solvability: there is an effi-
cient algorithm for one if and only if there is an effi-
cient algorithm for all. It is a major open problem to
decide whether or not these problems have efficient
algorithms; the deeply held sense that they do not has
become the P versus NP conjecture, which has begun
to appear on lists of the most prominent problems in
mathematics.

Like any attempt to make an intuitive notion math-
ematically precise, polynomial time as a definition of
efficiency in practice begins to break down around
its boundaries. There are algorithms for which one
can prove a polynomial bound on the running time,
but which are hopelessly inefficient in practice. Con-
versely, there are well-known algorithms (such as the
standard simplex method [III.86] for linear program-
ming) that require exponential running time on certain
pathological instances, but which run quickly on almost
all inputs encountered in real life. And for computing
applications that work with massive data sets, an algo-

rithm with a polynomial running time may not be effi-
cient enough; if the input is a trillion bytes long (as
can easily occur when dealing with snapshots of the
Web, for example), even an algorithm whose running
time depends quadratically on the input will be unus-
able in practice. For such applications, one generally
needs algorithms that scale linearly with the size of
the input—or, more strongly, that operate by “stream-
ing” through the input in one or two passes, solving the
problem as they go. The theory of such streaming algo-
rithms is an active topic of research, drawing on tech-
niques from information theory, Fourier analysis, and
other areas. None of this means that polynomial time
is losing its relevance to algorithm design—it is still
the standard benchmark for efficiency—but new com-
puting applications tend to push the limits of current
definitions, and in the process raise new mathematical
problems.

4 Algorithms for Computationally
Intractable Problems

In the previous section we discussed how researchers
have identified a large class of natural problems,
including the TSP, for which it is strongly believed that
no efficient algorithm exists. While this explains our dif-
ficulties in solving these problems optimally, it leaves
open a natural question: what should we do when
actually confronted by such a problem in practice?

There are a number of different strategies for ap-
proaching such computationally intractable problems.
One of these is approximation: for problems like the
TSP that involve choosing an optimal solution from
among many possibilities, we could try to formulate
an efficient algorithm that is guaranteed to produce a
solution almost as good as the optimal one. The design
of such approximation algorithms is an active area of
research; we can see a basic example of this process by
considering the TSP. Suppose we are given an instance
of the TSP, specified by a map with distances, and we
set ourselves the task of constructing a tour whose total
length is at most twice that of the shortest tour. At first
this goal seems a bit daunting: since we do not know
how to compute the optimal tour (or its length), how
will we guarantee that the solution we produce is short
enough? It turns out, however, that this can be done by
exploiting an interesting connection between the TSP
and the MSTP, a relationship between the respective
optimal solutions to each problem on the same set of
cities.
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Consider an optimal solution to the MSTP on the
given set of cities, consisting of a network of roads;
recall that this is something we can compute efficiently.
Now, the salesman interested in finding a short tour
for these cities can use this optimal road network to
visit the cities as follows. Starting at one city, he follows
roads until he hits a dead end, that is, a city with no new
roads exiting it. He then backs up, retracing his steps
until he gets to a junction with a road he has not yet
taken, and he proceeds down this new road. For exam-
ple, starting in the upper left corner of figure 1(b), the
salesman would follow the road of length 8 and then
choose one of the roads of length 10 or 20; if he selects
the former, then after reaching the dead end he would
back up to this junction again and continue the tour by
following the road of length 20. A tour constructed in
this way traverses each road twice (once in each direc-
tion), so if we letm denote the total length of all roads
in the optimal MSTP solution, we have found a tour of
length 2m.

How does this compare to t, the length of the best
possible tour? Let us first argue that t � m. This is
true because, in the space of all possible solutions to
the MSTP, one option is to build roads between cities
that the salesman visits consecutively in the optimal
TSP tour, for a total mileage of t; on the other hand,m
is the total length of the shortest possible road network,
and hence t cannot be smaller thanm. So we have con-
cluded that the optimal solution to the TSP has length
at least m. However, we have just exhibited an algo-
rithm that finds a tour of length 2m, so, as we wanted,
we have an efficient way to find a tour that is at most
twice as long as the shortest one possible.

People trying to solve large instances of computa-
tionally hard problems in practice frequently use algo-
rithms that have been observed empirically to give
nearly optimal solutions, even when no guarantees on
their performance have been proved. Local-search algo-
rithms form one widely used class of approaches like
this. A local-search algorithm starts with an initial solu-
tion and repeatedly modifies it by making some “local”
change to its structure, looking for a way to improve
its quality. In the case of the TSP, a local-search algo-
rithm would seek simple improving modifications to
its current tour; for example, it might look at sets of
cities that are visited consecutively and see if visiting
them in the opposite order would shorten the tour.
Researchers have drawn connections between local-
search algorithms and phenomena in nature; for exam-
ple, just as a large molecule contorts itself in space

trying to find a minimum-energy conformation, we can
imagine the TSP tour in a local-search algorithm modi-
fying itself as it tries to reduce its length. Determining
how deeply this analogy goes is an interesting research
issue.

5 Mathematics and Algorithm
Design: Reciprocal Influences

Many branches of mathematics have contributed to
aspects of algorithm design, and the issues raised
by the analysis of new algorithmic problems have,
in a number of cases, suggested novel mathematical
questions.

Combinatorics and graph theory have been quali-
tatively transformed by the growth of computer sci-
ence, to the extent that algorithmic questions have
become thoroughly intertwined with the mainstream
of research in these areas. Techniques from probabil-
ity have also become fundamental to many areas of
computer science: probabilistic algorithms draw power
from the ability to make random choices while they are
being executed, and probabilistic models of the input
to an algorithm can give one a more realistic view of
the problem instances that arise in practice. This style
of analysis provides a steady source of new questions
in discrete probability.

A computational perspective is often useful in think-
ing about “characterization” problems in mathematics.
For example, the general issue of characterizing prime
numbers has an obvious algorithmic component: given
a number n as input, how efficiently can we determine
whether it is prime? (There exist algorithms that are
exponentially better than the approach of dividing n
by all numbers up to

√
n: see computational number

theory [IV.3 §2].) Problems in knot theory [III.46],
such as the characterization of unknotted loops, have
a similar algorithmic side. Suppose we are given a cir-
cular loop of string in three dimensions (described as
a jointed chain of line segments), and it wraps around
itself in complicated ways. How efficiently can we deter-
mine whether it is truly knotted, or whether by moving
it around we can fully untangle it? We can ask this sort
of question in many similar mathematical contexts; it is
clear that these algorithmic issues are extremely con-
crete as problems, though they may lose part of the
original intent of the mathematicians who posed the
questions more generally.

Rather than attempting to enumerate the intersec-
tion of algorithmic ideas with all the different branches
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of mathematics, we conclude this article with two case
studies that involve the design of algorithms for partic-
ular applications, and the ways in which mathematical
ideas arise in each instance.

6 Web Search and Eigenvectors

As the World Wide Web grew in popularity throughout
the 1990s, computer-science researchers grappled with
a difficult problem: the Web contains a vast amount of
useful information, but its anarchic structure makes
it very hard for users, unassisted, to find the specific
information they are looking for. Thus, early in the
Web’s history, people began to develop search engines
that would index the information on the Web, and pro-
duce relevant Web pages in response to user queries.
But of the thousands or millions of pages relevant to a
topic on the Web, which few should the search engine
present to a user? This is the ranking problem: how to
determine the “best” resources on a given topic. Note
the contrast with concrete problems like the TSP. There,
the goal (the shortest tour) was not in doubt; the diffi-
culty was simply in computing an optimal solution effi-
ciently. For the search engine ranking problem, on the
other hand, formalizing the goal is a large part of the
challenge—what do we mean by the “best” page on a
topic? In other words, an algorithm to rank Web pages
is really providing a definition of the quality of a Web
page as well as the means to evaluate this definition.

The first search engines ranked each Web page based
purely on the text it contained. These approaches began
to break down as the Web grew, because they did
not take into account the quality judgments encoded
in the Web’s hyperlinks: in browsing the Web, we
often discover high-quality resources because they are
“endorsed” through the links they receive from other
pages. This insight led to a second generation of search
engines that determined rankings using link analysis.

The simplest such analysis would just count the num-
ber of links to a page: in response to the query “newspa-
pers,” for example, one could rank pages by the number
of incoming links they receive from other pages con-
taining the term—in effect, allowing pages containing
the term “newspapers” to vote on the result. Such a
scheme will generally do well for the top few items,
placing prominent news sites like The New York Times
and The Financial Times at the head of the list; beyond
this, however, it will quickly break down, favoring a
large number of highly linked but irrelevant sites.

It is possible to make much more effective use of the
latent information in the links. Consider pages that link

to many of the sites ranked highly by this simple voting
scheme; it is natural to expect that these are authored
by people with a good sense for where the interesting
newspapers are, and so we could run the voting again,
this time giving more voting power to these pages that
selected many of the highly ranked sites. This revote
might elevate certain lesser-known newspapers favored
by Web-page authors who were more knowledgeable on
the topic; in response to the results of this revote, we
could further sharpen our weighting of the voters. This
“principle of repeated improvement” uses the informa-
tion contained in a set of page-quality estimates to pro-
duce a more refined set of estimates. If we perform
these refinements repeatedly, will they converge to a
stable solution?

In fact, this sequence of refinements can be viewed as
an algorithm for computing the principal eigenvector
[I.3 §4.3] of a particular matrix (see some fundamen-
tal mathematical definitions [I.3]); this both estab-
lishes the convergence of the process and characterizes
the end result. To establish this connection, we intro-
duce some notation. Each Web page is assigned two
scores: an authority weight, measuring its quality as a
primary source on the topic; and a hub weight, measur-
ing its power as a voter for the highest-quality content.
Pages may score highly in one of these measures but
not in the other—one should not expect a prominent
newspaper to simultaneously serve as a good guide to
other newspapers—but there is also nothing to pre-
vent a page from scoring well in both. One round of
voting can now be viewed as follows: we update the
authority weight of each page by summing the hub
weights of all pages that point to it (receiving links from
highly weighted voters makes you a better authority);
we then reweight all the voters, updating each page’s
hub weight by summing the authority weights of the
pages it points to (linking to high-quality content makes
you a better hub).

How do eigenvectors come into this? Suppose we
define a matrix M with one row and one column for
each page under consideration; the (i, j) entry equals
1 if page i links to page j, and it equals 0 otherwise.
We encode the authority weights in a vector a, where
the coordinate ai is the authority weight of page i.
The hub weights can be similarly written as a vector h.
Using the definition of matrix–vector multiplication,
we can now check that the updating of hub weights
in terms of authority weights is simply the act of set-
ting h equal toMa; correspondingly, setting a equal to
MTh updates the authority weights. (Here MT denotes
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the transpose of the matrixM.) Running these updates
n times each from starting vectors a0 and h0, we
obtain a = (MT(M(MT(M · · · (MT(Ma0)) · · · )))) =
(MTM)na0. This is the power-iteration method for
computing the principal eigenvector of MTM, in which
we repeatedly multiply some fixed starting vector by
larger and larger powers of MTM. (As we do this, we
also divide all coordinates of the vector by a scaling
factor to prevent them from growing unboundedly.)
Hence this eigenvector is the stable set of authority
weights toward which our updates are converging. By
completely symmetric reasoning, the hub weights are
converging toward the principal eigenvector of MMT.

A related link-based measure is PageRank, defined
by a different procedure that is also based on repeated
refinement. Instead of drawing a distinction between
the voters and the voted-on, one posits a single kind of
quality measure that assigns a weight to each page. A
current set of page weights is then updated by having
each page distribute its weight uniformly among the
pages it links to. In other words, receiving links from
high-quality pages raises one’s own quality. This too
can be written as multiplication by a matrix, obtained
from MT by dividing each row’s entries by the num-
ber of outgoing links from the corresponding page;
repeated updates again converge to an eigenvector.
(There is a further wrinkle here: repeated updating in
this case tends to cause all weight to pool at “dead-end”
pages that have no outgoing links and hence nowhere
to pass their weight. Thus, to obtain the PageRank mea-
sure used in applications, one adds a tiny quantity ε > 0
in each iteration to the weight of each page; this is
equivalent to using a slightly modified matrix.)

PageRank is one of the main ingredients in the search
engine Google; hubs and authorities form the basis
for Ask’s search engine Teoma, as well as a num-
ber of other Web search tools. In practice, current
search engines (including Google and Ask) use highly
refined versions of these basic measures, often combin-
ing features of each; understanding how relevance and
quality measures are related to large-scale eigenvector
computations remains an active research topic.

7 Distributed Algorithms

Thus far we have been discussing algorithms that run
on a single computer. As a concluding topic, we briefly
touch on a broad area in computer science concerned
with computations that are distributed over multiple
communicating computers. Here the problem of effi-
ciency is compounded by concerns over maintaining

coordination and consistency among the communicat-
ing processes.

As a simple example illustrating these issues, con-
sider a network of automatic teller machines (ATMs).
When you withdraw an amount of money x at one of
these ATMs, it must do two things: (1) notify a central
bank computer to deduct x from your account; and
(2) emit the correct amount of money in physical bills.
Now, suppose that between steps (1) and (2) the ATM
crashes so that you do not get your money; you would
like it to be the case that the bank does not subtract
x from your account anyway. Or suppose that the ATM
executes both of steps (1) and (2), but its message to the
bank is lost; the bank would like for x to be eventually
subtracted from your account anyway. The field of dis-
tributed computing is concerned with designing algo-
rithms that operate correctly in the presence of such
difficulties.

As a distributed system runs, certain processes may
experience long delays, some of them may fail in mid-
computation, and some of the messages between them
may be lost. This leads to significant challenges in rea-
soning about distributed systems, because this pattern
of failures can cause each process to have a slightly
different view of the computation. It is easily possible
for there to be two runs of the system, with different
patterns of failure, that are “indistinguishable” from
the point of view of some process P ; in other words,
P will have the same view of each, simply because the
differences in the runs did not affect any of the com-
munications that it received. This can pose a problem
if P ’s final output is supposed to depend on its having
noticed that the two runs were different.

A major advance in the study of such systems came
about in the 1990s, when a connection was made to
techniques from algebraic topology. Consider for sim-
plicity a system with three processes, though every-
thing we say generalizes to any number of processes.
We consider the set of all possible runs of the system;
each run defines a set of three views, one held by each
process. We now imagine the views associated with a
single run as the three corners of a triangle, and we
glue these triangles together according to the follow-
ing rule: for any two runs that are indistinguishable
to some process P , we paste the two corresponding
triangles together at their corners associated with P .
This gives us a potentially very complicated geometric
object, constructed by applying all these pasting oper-
ations to the triangles; we call this object the complex
associated with the algorithm. (If there were more than
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three processes, we would have an object in a higher
number of dimensions.) While it is far from obvious,
researchers have been able to show that the correctness
of distributed algorithms can be closely connected with
the topological properties of the complexes that they
define.

This is another powerful example of the way in which
mathematical ideas can appear unexpectedly in the
study of algorithms, and it has led to new insights
into the limits of the distributed model of computa-
tion. Combining the analysis of algorithms and their
complexes with classical results from algebraic topol-
ogy has in some cases resolved tricky open problems
in this area, establishing that certain tasks are provably
impossible to solve in a distributed system.

Further Reading

Algorithm design is a standard topic in the undergrad-
uate computer-science curriculum, and it is the sub-
ject of a number of textbooks, including Cormen et al.
(2001) and a book by Kleinberg and Tardos (2005).
The perspective of early computer scientists on how
to formalize efficiency is discussed by Sipser (1992).
The TSP and the MSTP are fundamental to the field of
combinatorial optimization; the TSP is used as a lens
through which this field is surveyed in a book edited
by Lawler et al. (1985). Approximation algorithms and
local-search algorithms for computationally intractable
problems are discussed in books edited by Hochbaum
(1996) and by Aarts and Lenstra (1997), respectively.
Web search and the role of link analysis is covered
in a book by Chakrabarti (2002); beyond Web appli-
cations, there are a number of other interesting con-
nections between eigenvectors and network structures,
as described by Chung (1997). Distributed algorithms
are covered in a book by Lynch (1996), and the topo-
logical approach to analyzing distributed algorithms is
reviewed by Rajsbaum (2004).
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VII.6 Reliable Transmission of
Information
Madhu Sudan

1 Introduction

The notion of “digital information” emerged in the mid-
dle of the twentieth century, in response to the advent
of the telegraph and to the beginnings of computer sci-
ence, which at the time was principally a theoretical
discipline. Of course, the use of electricity to commu-
nicate signals goes back further, but the earlier uses
involved signals of a “continuous” nature: music, voice,
etc. The new era was characterized by the transmission
of (or the need to transmit) more “discrete” messages,
i.e., messages such as English sentences, which can
be described as finite sequences of letters taken from
some finite alphabet. The phrase “digital information”
came to be applied to such families of messages.

Digital information posed some novel challenges to
the engineers and mathematicians charged with the
task of communicating such messages. The root cause
of these challenges is “noise.” Every communication
medium is noisy, and never transmits any signal com-
pletely accurately. In the case of continuous signals,
somehow the receivers (typically, our ears and eyes)
can adjust to such errors and learn to discount them.
For example, if you play a very old recording of a musi-
cal performance, then there will typically be a crackling
noise, but it is possible to ignore this, unless the quality
is very bad indeed, and concentrate on the music. How-
ever, in the case of digital information errors can have a
more catastrophic effect. To see this, suppose that we
are communicating in English sentences and that the
communication medium makes occasional mistakes
by altering one of the transmitted letters. In such a
scenario the message

WE ARE NOT READY
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could easily be changed into the message

WE ARE NOW READY.

All it takes is one error on the part of the communica-

tion medium, and the entire intention of the message

is reversed. Digital information tends to be inherently

intolerant of errors, and the mathematicians and engi-

neers of the time were charged with the task of invent-

ing methods that would make communication reliable

even if the process of transmission is not.

Here is one way of achieving this. To communicate

any message, the sender of the message repeats every

letter, say five times. For example, to send the message

WE ARE NOT READY

the sender says something like

WWWWWEEEEE AAAAA. . . .

The receiver can then detect errors (as long as there

are not too many) by checking that every block of five

successive letters repeats the same letter. If this ever

fails to be the case, then it is clear that errors have

occurred during transmission. If it is not possible for

five successive symbols to be in error (or even if it is

just very unlikely), then it follows that the resulting

scheme is also more reliable than the underlying means

of transmission. Finally, if even less error is possible,

then it may be possible for the receiver to determine

the actual message, rather than simply being able to

tell when errors have occurred. For example, if at most

two symbols in any block of five can be erroneous, then

the most commonly occurring letter in each block of

five must be the letter from the original message: for

instance, a sequence such as

WWWMWEFEEE AAAAA . . .

would be interpreted by the receiver as

WE A . . . .

Repeating every symbol five times in order to be able

to correct two errors does not appear to be a very effi-

cient way to use the communication channel. Indeed, as

we will show in the rest of this article, when transmit-

ting long messages one can do much better. However,

in order to understand this issue, we need to define

the process of communication, the model of error, and

the measures of performance more carefully. We do so

next.

2 Model

2.1 Channel and Errors

The central object of attention in the problem of infor-
mation transmission is the “channel of communica-
tion,” or simply the channel. The channel has an input
(the original signal to be communicated) and an output
(the signal after it is transmitted). The input consists of
a sequence of elements from some finite set: by anal-
ogy with the English-language example, these elements
are called letters and the finite set, which is typically
denoted Σ, is called an alphabet. The channel attempts
to transmit the input to the receiver, but while doing so
it may make some errors. The alphabet and the process
that underlies the errors are what specifies the channel.

The alphabet Σ varies from scenario to scenario. In
the example described above, the alphabet consisted of
the English characters {A,B, . . . ,Z}, and possibly some
punctuation symbols. In most communication scenar-
ios, the alphabet is the “binary alphabet” that consists
just of the “letters” 0 and 1, which are known as bits.
On the other hand, in applications involving storage
of digital information (in compact discs (CDs), digital
versatile discs (DVDs), etc.), the alphabet contains 256
elements (the alphabet of “bytes”).

Specifying an alphabet is easy, but if we wish to
define a good mathematical model for the way that
errors are produced, then a lot more care is needed. At
one extreme is a worst-case model suggested by Ham-
ming (1950), where there is some limit on the number of
errors that the channel can make, but within that limit
it chooses the errors to be as damaging as possible. A
more benign class of errors was proposed by Shannon
(1948), who suggested that errors could be modeled by
a probabilistic process.

We will focus on one probabilistic model to illustrate
many of the concepts below. In this model, the error
of the channel is specified by a real number param-
eter p, where 0 � p � 1. Every use of the channel
results in an error with probability p. To be precise,
if the sender transmits an element σ ∈ Σ, then with
probability 1− p the output for that element is σ but
with probability p it is some other element σ ′ of Σ,
chosen uniformly at random. Furthermore, and this is Terri: this is fine

according to Tim.
OK?very crucial to this model, the errors are assumed to be

independent, i.e., the channel repeats this process for
each letter it transmits without any memory of how it
acted on previous symbols. We refer to this model as
theΣ-symmetric channel with parameterp (orΣ-SC(p))
in the rest of this article. A special case of particular
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importance is the binary symmetric channel, which is
the Σ-symmetric channel when Σ is the binary alpha-
bet {0,1}. Then, if the input bit is 0, say, the corre-
sponding output bit will be 0 with probability 1− p and
1 with probability p.

While this model of error may seem rather oversim-
plified (and even unnatural if Σ is not the binary alpha-
bet {0,1}), it turns out that it captures the essence of
most mathematical challenges that arise when one tries
to make communication reliable. Furthermore, many of
the solutions found to make communication reliable in
this setting have been generalized to other scenarios,
so this simple model is very useful both in practice and
in the theoretical study of communication.

2.2 Encoding and Decoding

Suppose the sender wishes to transmit a sequence
through a channel that makes errors. One way to com-
pensate for these errors is to send through the chan-
nel not the sequence itself but a modified version of
the sequence that contains redundant information. The
process of modification that we choose is called the
encoding of the message. We have already seen one
method of encoding, namely repeating each term in the
sequence several times. However, this is by no means
the only way of doing it, so to discuss encoding we use
the following general framework: if the sender has a
message consisting of a sequence of k elements of Σ,
then by some means or another it expands the message
into a new sequence, now consisting ofn elements ofΣ,
for some n > k. Formally, the sender applies an encod-
ing function E : Σk → Σn to the message. (Σk stands for
the set of sequences of length kwith letters inΣ, andΣn

for the set of sequences of length n.) Thus, to convey
a message m = (m1,m2, . . . ,mk) to the receiver, the
sender transmits over the channel not the k symbols
of m but the n symbols of E(m).

The receiver now receives a sequence r =
(r1, r2, . . . , rn), belonging to Σn, and its goal is to “com-
press” this sequence back to a k-letter sequence, remov-
ing the error and obtaining the original message m (at
least if not too many errors have occurred). It does this
by applying a decoding function D : Σn → Σk, which
tells it how sequences of length n are converted back
into sequences of length k.

The possible pairs of functions E, D describe the
options available to the designers of the communi-
cation system. Their choice determines the perfor-
mance of the system. Let us now describe how this
performance is measured.

2.3 Goals

Very informally, our goals are threefold. We would like
to make the communication as reliable as possible. At
the same time, we would like to maximize the utiliza-
tion of the channel. Finally, we would like to do so
with effective computation. We describe these goals
more carefully below, in the case of the model Σ-SC(p)
described earlier.

Consider first the reliability. If we start with a mes-
sage m, encode it as E(m), and pass it through the
channel, then the output, after some random errors
have been introduced, will be a string y . The receiver
will decodey , producing a new messageD(y). For each
messagem, there is a certain probability of a decoding
error, i.e., a certain probability that D(y) will not in
fact be equal to the original message m. The reliabil-
ity of the communication is measured by the largest
of these probabilities. If this is small, then we know
that, whatever the original messagem, a decoding error
is unlikely, and then we regard the communication as
reliable.

Next, let us look at the utilization of the channel. This
is measured by the rate of the encoding, i.e., the quan-
tity k/n. In other words, it is the ratio of the length of
the original message to the length of the encoded mes-
sage: the smaller this ratio, the less efficiently one is
using the channel.

Finally, practical considerations also require us to be
able to encode and decode quickly: a pair of reliable
and efficient encoding and decoding functions will not
be of much use if they are very time-consuming to com-
pute. Adopting the standard convention in algorithm
design, we regard our algorithms as feasible if they run
in polynomial time: that is, if their running time can be
bounded above by a polynomial function of the length
of their input and output.

To illustrate the above ideas, let us analyze the “rep-
etition encoding” that repeats every letter of the alpha-
bet five times. For simplicity, take the alphabet Σ to be
{0,1}, let the probability p be fixed, and let us consider
the behavior of the model as the message length k tends
to∞. Our encoding function takes strings of length k to
strings of length 5k and thus has a rate of 1

5 . Given any
particular block of five transmissions, the probability
that it contains three or more errors is

p′ =
(

5
3

)
p3(1− p)2 +

(
5
4

)
p4(1− p)+

(
5
5

)
p5.

The probability that that block does not give rise to a
decoding error is 1− p′, so the probability that there is
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no decoding error is (1− p′)k and the probability that
there is a decoding error is 1− (1−p′)k. If we fix p > 0
and let k→∞, then (1−p′)k tends to 0 (exponentially
quickly), so the probability of decoding error tends to 1.
Thus, this encoding/decoding pair is highly unreliable,
and its rate is not too good either. The only redeeming
feature is that it is very easy indeed to compute. (Its
computational efficiency is easily seen to be bounded
by a number of operations that is linear in k.)

One way to salvage the repetition code is to repeat
every symbol c logk times. For a largish constant c, the
probability of a decoding error goes to 0, but now the
rate of the code goes to 0 as well. Prior to the work of
Shannon it may have even been believed that a trade-off
of this kind was inevitable: every encoding/decoding
scheme would either achieve a vanishingly small rate
or make mistakes with probability tending to 1. As we
will see later in the article, it is in fact possible to define
encoding schemes that achieve all three of our goals:
they operate at a positive rate, they can correct errors
that occur a positive proportion of the time (in either
the probabilistic or the worst-case model), and they use
efficient encoding and decoding algorithms. Most of the
insight for this remarkable result goes back to a sem-
inal paper by Shannon (1948). In that paper he gave
the first examples of encoding and decoding functions
that satisfied the first two goals, though they were not
computationally efficient.

Shannon’s encoding and decoding functions were
therefore not practical, but we can now see, with the
benefit of hindsight, that ignoring the goal of efficient
computability in order to gain some theoretical insight
into the channels was extraordinarily fruitful. A gen-
eral rule of thumb seems to operate: that the perfor-
mance of the very best encoding and decoding func-
tions can be matched arbitrarily closely by encoding
and decoding functions that are also computationally
efficient. This justifies considering the goal of efficiency
separately from the other two goals.

3 The Existence of Good Encoding
and Decoding Functions

In this section we will describe results that demonstrate
the existence of encoding and decoding functions that
have an extremely good rate and reliability. In order to
describe these results, first proved by Shannon, it will
be useful to consider two related notions introduced by
Hamming in work that was essentially concurrent with
that of Shannon.

In order to understand these notions, let us start by
describing what makes one encoding function E better
or worse than another. The task of the decoding func-
tion is to work out, when it receives a string y , what the
original message m was. Notice that this is equivalent
to working out what the encoded message E(m) was,
since no two messages are encoded in the same way.
The possible encoded messages are called codewords:
that is, a codeword is a string of length n that arises as
E(m) for some message m ∈ Σk.

What we are worried about is the possibility of con-
fusing two codewords after errors have been intro-
duced, and this depends only on the set of codewords,
and not on which codeword corresponds to which orig-
inal message. Therefore, we adopt what at first seems a
strange definition: an error-correcting code is any set of
strings of lengthn in the alphabet Σ (that is, any subset
of Σn). The strings in an error-correcting code are still
called codewords. This definition completely ignores
the actual process of encoding of a message, but that
is so that we can focus on the rate and the decoding
error while ignoring computational efficiency. If we are
given an encoding function E, then the corresponding
error-correcting code is simply the set of all the code-
words of E. Mathematically, this is just the image of the
function E.

What makes an error-correcting code good or bad? To
answer this question, let us consider what happens if
the alphabet is {0,1} and the code contains two strings
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) that dif-
fer in precisely d places. If errors are introduced with
probability p, then the probability that x is converted
into y is pd(1−p)n−d. Assuming that p < 1

2 , this prob-
ability gets smaller as d increases, so the smaller d is,
the more likely the strings x and y are to be confused.
It seems preferable, therefore, that there should not
be too many pairs of strings in the code that differ in
just a few places. A similar argument applies to larger
alphabets as well.

The above thoughts lead to a definition that is very
natural in this context. Given an alphabet Σ and two
strings x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)
belonging to Σn, the Hamming distance between x and
y is defined to be the number of coordinates i for which
xi �= yi. For example, let Σ = {a,b, c, d} and let n =
6. The strings abccad and abdcab differ in the third
and sixth places and are identical otherwise, so their
Hamming distance is 2. Our goal is to find an encoding
function E such that the associated code maximizes the
typical Hamming distance between pairs of codewords.
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Shannon’s solution to this is an extremely simple

application of the probabilistic method [IV.19 §3]:

he picks the encoding function at random. That is, for

every messagem, the encoding E(m) is chosen entirely

randomly from the set Σn, with all choices equally

likely. Furthermore, for every message m, this choice

is independent of the encoding of every other messageTerri: Tim thinks
this is OK and
could not possibly
cause confusion.

m′. It is a good exercise in basic probability to see that

such a choice almost always leads to a code where the

distances between codewords are on average large. In

fact, even the minimum distance between codewords

is almost always large. However, we will not show this.

Instead, we will argue that with high probability this

random choice leads to a “nearly optimal” encoding

function, from the point of view of rate and reliability.

First, let us consider what the decoding function

ought to be. In the absence of computational require-

ments, it is not hard to say what the “optimal” decod-

ing algorithm is. If you receive a sequence z, then you

should choose the message m that is most likely to

have resulted in this sequence. For the model Σ-SC(p)
with p < 1− 1/|Σ|, it is easily verified that this will be

the messagem for which the encoding E(m) is nearest

to z, as measured by Hamming distance. (If the min-

imum distance is attained by both E(m) and E(m′),
then one can make an arbitrary choice between them.)

The condition on p is important here. It ensures that

when the sequence E(m) passes through the channel,

the most likely output corresponding to any given term,

out of the |Σ| different possibilities, is the same as the

input. Without this condition, there would be no rea-

son to expect z to be close to E(m). We shall argue that

there is a numberC , depending only on the error proba-

bility p and the size of the alphabet, such that for a ran-

dom encoding function with rate smaller than C , this

decoding function recovers the original message with a

high probability. As an aside, Shannon also showed that

for the same constant C , any attempt to communicate

at rates greater than C would lead to errors with prob-

ability exponentially close to 1. Because of this result,

the constant C is known as the Shannon capacity of the

channel.

Once again, for simplicity we shall consider just the

case of the binary alphabet {0,1}. In this case we are

choosing a random function E from {0,1}k to {0,1}n,

and we would like to show that, under suitable circum-

stances, the resulting code will almost certainly be very

reliable. In order to do this, we shall focus on a single

message m, and rely on two basic ideas.

The first idea is a precise form of the law of large
numbers [III.73 §4]. If the error probability is p, then
the expected number of errors introduced into a code-
word E(m) is pn, so, if n is large, then we expect that
the actual number of errors will almost certainly be very
close to this, just as, if you toss a fair coin ten thousand
times, you will be surprised if the number of heads is
not close to five thousand. The result that expresses
this formally is as follows.

Claim. There exists a constant c > 0 such that the
probability that the number of errors exceeds (p+ ε)n
is at most 2−cε2n.

The same can be said of the probability that the num-
ber of errors is less than (p− ε)n, but we shall not use
this result.

When n is large, 2−cε2n is extremely small, so the
number of errors is almost certainly at most (p + ε)n.
The number of errors equals the Hamming distance
from y , the output of the channel, to E(m), the code-
word that was transmitted. Therefore, the decoding
function that chooses the codeword with smallest Ham-
ming distance from y will almost certainly choose
E(m), provided that there is no message m′ such that
E(m′) is closer to y than (p + ε)n.

The second idea, which allows us to say that this will
almost certainly be the case, is that “Hamming balls are
small.” Let z be a sequence in {0,1}n. Then the Ham-
ming ball of radius r about z is the set of all sequences
w with Hamming distance at most r from z. How big is
this set? Well, in order to specify a sequence w with
Hamming distance exactly d from z, it is enough to
specify the set of d places where w and z differ. There
are

(
n
d

)
ways of choosing this set, so the number of

sequences at a distance of at most r is(
n
0

)
+
(
n
1

)
+
(
n
2

)
+ · · · +

(
n
r

)
.

If r = αn and α < 1
2 , then this number is at most a

constant times
(
n
r

)
, because each term is at least

n− r
r

= 1−α
α

times the one before. But(
n
r

)
= n!
r !(n− r)! .

If we now use stirling’s formula [III.31] or the looser
approximation n! = (n/e)n, then we find that this is
about (1/α(1−α))n, which is 2H(α)n, where

H(α) = −α log2α− (1−α) log2(1−α).
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(Note thatH(α) is positive, becauseα and 1−α are less
than 1 and therefore have negative logarithms.) The
function H is called the entropy function. It is contin-
uous and strictly increasing on the interval [0, 1

2 ] with
H(0) = 0 and H( 1

2 ) = 1. So, if α < 1
2 , then H(α) < 1,

and therefore 2H(α)n is exponentially smaller than 2n:
this is what is meant by saying that the Hamming ball
of radius αn is small.

Let us set α to be p + ε < 1
2 . Then the probabil-

ity that a single randomly chosen sequence E(m′) lies
in the Hamming ball of radius (p + ε)n about y is
at most 2H(p+2ε)n2−n. (The 2ε is to compensate for
slight inaccuracies in the above estimate for the size
of the ball.) Since there are 2k − 1 possibilities for m′,
the probability that one can be found for which E(m′)
lies in the ball is at most 2k2H(p+2ε)n2−n. Therefore, if
k � n(1 − H(p + 2ε) − ε), this probability is at most
2−εn, which is exponentially small.

Because we can choose ε to be as small as we like,
we can make k/n as close as we like to 1−H(p) while
still maintaining an exponentially small probability of
decoding error. It turns out that the quantity 1−H(p)
is the constant C discussed earlier: the Shannon capac-
ity of the binary symmetric channel. Thus, the capacity
of the binary symmetric channel is always positive if
p < 1

2 .
Shannon’s theorem and proof are significantly more

general than the above example demonstrates. For a
wide variety of channels, and for a wide variety of mod-
els of (probabilistic) error, his theory pins down the
capacity of the channel and shows that reliable com-
munication is possible if and only if the rate of the
channel is less than its capacity. Shannon’s proof is
a remarkable example of the use of the probabilistic
method in the practice of engineering. Note, however,
that the encoding and decoding algorithms are quite
impractical. The proof gives no clue about how to find
an encoding function, though of course one can con-
sider every encoding function E : {0,1}k → {0,1}n
to check if it is good. However, even if such a func-
tion is found, it may have no succinct description, in
which case the encoder and decoder have to store this
encoding function as an exponentially long table in
their memory. Finally, the decoding algorithm seems
to involve a brute-force search for the nearest code-
word, a problem which seems to be the most serious
obstacle to obtaining a computationally efficient ver-
sion of Shannon’s theorem that can be used in practice.
What the theorem definitely does give us is a significant
insight into the limitations and potential utility of the

communication channel. With this in mind, we can set
ourselves the right targets to strive for when we come
to devise more practical encoding and decoding proce-
dures. In the next section we will show that it is possible
to achieve a fixed rate that is bounded away from zero,
to tolerate a constant fraction of errors, and to do both
of these with efficient algorithms.

4 Efficient Encoding and Decoding

We now turn to the task of designing encoding
and decoding functions that can be calculated effi-
ciently. Currently, there are at least two very differ-
ent approaches to building such functions. We describe
here an approach based on algebra over finite fields.
The alternative approach is based on the construction
of expanding graphs [III.24], but we will not describe
that here.

4.1 Codes for Large Alphabets Using Algebra

In this section we describe a simple way to get an encod-
ing function E : Σk → Σn, where Σ is a finite field
[I.3 §2.2] with at least n elements. (Recall that there are
finite fields with q elements whenever q is of the form
pt for a prime p and a positive integer t.) These codes
were introduced by Reed and Solomon (1960) and have
since been called the Reed–Solomon codes.

A Reed–Solomon code is specified by a sequence
of n distinct field elements α1, . . . , αn ∈ Σ. Given
a message m = (m0,m1, . . . ,mk−1) ∈ Σk, we asso-
ciate with the message the polynomial M(x) = m0 +
m1x + · · · + mk−1xk−1. The encoding of m is sim-
ply the sequence E(m) = M(α1),M(α2), . . . ,M(αn). In
other words, to encode a sequence m, you treat the
terms of the sequence as the k coefficients of a polyno-
mial of degree k− 1 and write out the values that this
polynomial takes at α1, . . . , αn.

Before describing the error-correcting capability of
this code, let us note that it is very succinctly repre-
sented: all that is needed to specify it is a descrip-
tion of the field Σ and the sequence of n elements
α1, . . . , αn. It is easy to show that the number of addi-
tions and multiplications needed to compute M(α) is
at most Ck for some constant C . (For example, to work
out 3α3 − α2 + 5α + 4, you start with 3, multiply by
α, subtract 1, multiply by α, add 5, multiply by α,
and add 4.) Therefore, the number of field operations
needed to compute the entire encoding is bounded
above by Cnk, for some (different) constant C . (In fact,
more sophisticated and efficient algorithms are known
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for the encoding problem that take at most Cn(logn)2

steps.)

Now let us consider the error-correcting properties
of the code. We start by showing that the encodings
of any two messages m1 and m2 have a Hamming dis-
tance of at least n− (k− 1). To see this, let M1(x) and
M2(x) be the polynomials associated withm1 andm2.
Now the difference p(x) = M1(x)−M2(x) has degree
at most k− 1, and it is not the zero polynomial (since
M1 and M2 are distinct), and therefore it has at most
k− 1 roots. This tells us that there are at most k− 1
values of α for which M1(α) = M2(α). It follows that
the Hamming distance between the sequences

E(m1) = (M1(α1),M1(α2), . . . ,M1(αn))

and

E(m2) = (M2(α1),M2(α2), . . . ,M2(αn))

is at least n− k+ 1.

It follows that if z is any sequence, then its Ham-
ming distance from at least one of E(m1) and E(m2)
is greater than 1

2 (n− k) (since otherwise the distance
between E(m1) and E(m2) would have to be at most
n− k). Therefore, if the number of errors that occur
during transmission is at most 1

2 (n− k), then the orig-
inal messagem is uniquely determined by the received
sequence z. What is much less obvious is that there
is an efficient algorithm for working out what m was,
but, remarkably, it is possible to compute m with a
polynomial-time algorithm (in n), which we shall now
describe.

What must the decoding algorithm do? It is given
the numbers α1, . . . , αn and the received sequence
z1, . . . , zn and is required to find a polynomial M of
degree k− 1 or less such that M(αi) = zi for all but at
most 1

2 (n− k) values of i. If such a polynomial exists,
then it is unique, as we have just seen, and its coeffi-
cients will give the original message m (if the number
of errors is at most 1

2 (n− k)).
If there were no errors, then our task would be much

easier: one can determine the coefficients of a polyno-
mial of degree k− 1 from k of its values by solving k
simultaneous equations. However, if some of the val-
ues we use are incorrect, then we will end up with a
completely different polynomial, so this method is not
easy to use for the problem we actually face.

To overcome this difficulty, let us imagine that
M exists and that the errors introduced into the
sequence M(α1), . . . ,M(αn) occur at i1, . . . , is , where
s � 1

2 (n− k). Then the polynomial B(x) = (x−αi1) · · ·

(x−αis ) has degree at most 1
2 (n−k) and is zero if and

only if x is equal to αij for some j. Let us set A(x) to
equal M(x)B(x). Then A(x) is a polynomial of degree
at most k− 1+ 1

2 (n− k) = 1
2 (n+ k− 2), and for every

i we have A(αi) = ziB(αi). (If there is no error at i,
then this is obvious, since zi = M(αi), and if there is
an error at i, then both sides are 0.)

Conversely, suppose that we manage to find polyno-
mials A(x), of degree at most 1

2 (n+ k− 2), and B(x),
of degree at most k− 1, such that A(αi) = ziB(αi) for
every i. Then R(x) = A(x)−M(x)B(x) is a polynomial
of degree at most 1

2 (n+k−2), and R(αi) = 0 whenever
M(αi) = zi. Since there are at most 1

2 (n− k) errors,
this happens for at least n− 1

2 (n− k) = 1
2 (n+ k) val-

ues of i. Therefore, the number of roots of R is bigger
than its degree, from which it follows that R is identi-
cally zero, so that A(x) = M(x)B(x) for every x. From
this we can determineM : given k values of x for which
A(x) and B(x) are nonzero, one can determine k values
of M(x) = A(x)/B(x), and hence determine M .

It remains to show that we can indeed (efficiently)
find polynomials A(x) and B(x) with the required
properties. The n constraints A(αi) = ziB(αi) turn
into n linear constraints on the unknown coefficients
of A and B. Since B has 1

2 (n−k)+ 1 coefficients and A
has 1

2 (n+k) coefficients, the total number of unknowns
is n+ 1. Since the system of equations is homogeneous
(that is, we obtain a solution if we take all unknowns to
be zero) and the number of unknowns is greater than
the number of constraints, there must be a nontrivial
solution: that is, a solution where A(x) and B(x) are
not both the zero polynomial. Moreover, we can find
such a solution by Gaussian elimination, which takes
at most Cn3 steps.

To summarize: we construct a code by exploiting the
fact that two distinct low-degree polynomials cannot
be equal for too many values. We then exploit the rigid
algebraic structure of low-degree polynomials for the
purposes of decoding. The main tool that allows us to
do this is linear algebra and in particular the solving of
systems of simultaneous equations.

4.2 Reducing the Size of the Alphabet Using

Good Codes

The ideas described in the previous section show us
how to build codes with efficient encoding and decod-
ing algorithms, but they use relatively large alphabets.
In this section we shall exploit these results to build
binary codes.
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To begin with, let us consider a very obvious method
of converting codes over large alphabets into codes
over the binary alphabet {0,1}. For simplicity, assume
that we have a Reed–Solomon code over an alphabet Σ
of size 2l for some integer l. Then we can associate the
elements of Σ with binary strings of length l. In such a
case, we can regard the Reed–Solomon encoding func-
tion, which maps Σk to Σn, as a function from {0,1}lk
to {0,1}ln. (For instance, an element of Σk is a sequence
of k objects, each of which is a binary sequence of
length l. Putting them together produces a single binary
sequence of length kl.) Since the encodings of two dis-
tinct messages differ for at least n− k+ 1 elements of
Σ, they must also differ on at least n− k+ 1 bits.

This gives a fairly reasonable code over the binary
alphabet. However, n − k + 1 is not as large as a fixed
fraction of ln: the ratio (n− k+ 1)/ln is less than 1/l,
and since we need 2l, the size of Σ, to be at least n, we
find that this fraction is at most 1/ log2n, which tends
to zero asn tends to infinity. However, this can be fixed
in a simple way, as we shall see.

The problem with the simple binary approach is that
two different elements of Σ may be represented by
binary sequences that differ in just one bit. However,
the Hamming distance between two binary sequences
of length l is usually much larger: it is more like cl for
some positive constant c. Suppose that we could repre-
sent the elements of Σ as binary sequences of some
length L in such a way that the Hamming distances
between any two of the sequences used was at least cL.
This would allow us to improve our argument above:
if the encodings of two messages were different for at
least n− k+ 1 elements of Σ, then they would have to
differ on at least cL(n − k + 1) bits rather than just
n− k+ 1, and this is a positive fraction of Ln.

What we are asking for is an encoding of the binary
sequences of length l as sequences of length L in such
a way that no two codewords are closer than cL to each
other. But we know, from the previous section, that
such an encoding exists, provided that L and c satisfy
appropriate conditions: for instance, it is possible to
find an encoding function that works with L � 10l and
c � 1

10 .
So how do we use this? We start with a binary

sequence m of length lk. As above, we associate with
this a sequence of length k in the alphabet Σ. We then
encode this sequence using the Reed–Solomon code,
obtaining a sequence of length n in the alphabet Σ.
Next, we convert each term of this sequence into a
binary sequence of length l. And, finally, we encode

each of these n binary sequences as a sequence of

length L using a good encoding function, obtaining as

a result a binary sequence of length Ln. We then pass

this sequence through the channel, where errors may

be introduced. The receiver then breaks the received

sequence up into n blocks of length L, decodes each

block to work out what binary sequence of length l gave

rise to it, and interprets that binary sequence as an ele-

ment of Σ. This results in a sequence of n elements of

Σ. It then uses the Reed–Solomon decoding algorithm

to decode this sequence, producing a sequence of k ele-

ments of Σ. Finally, this can be converted into a binary

sequence of length lk.

We have said nothing about the efficiency of the en-

coding and decoding procedures that convert binary

sequences of length l into ones of length L and back

again, stating merely that they exist. Since efficiency

is supposed to be our priority, this may seem rather

strange: do we not now face exactly the same problem

that we were trying to solve in the first place? Luckily

we do not, because although these encoding and decod-

ing procedures may take exponentially long, they take

exponentially long as a function of L, and L is much

much smaller thann. Indeed, L is proportional to logn,

from which it follows that 2L is bounded above by a

polynomial function of n. This is a useful principle:

one can afford procedures of exponential complexity

provided that one only ever applies them to very short

strings.

Thus even though we have not managed to specify

the code explicitly, we have demonstrated that there

is an encoding and decoding algorithm that runs in

polynomial time and that corrects a constant fraction

of errors. To complete this section, let us address the

question of the probability of decoding error, which we

have not yet discussed. The technique described above,

of composing encoding functions (and decoding func-

tions), can also be used to improve the above code so

that the encoding and decoding still take place in poly-

nomial time, but now the decoding error probability is

exponentially small on the binary symmetric channel

with parameter p, and the rate is arbitrarily close to the

Shannon capacity, which is the theoretical maximum.

(The idea is to compose a Reed–Solomon code that has

rate close to 1 with a random inner code, and then to

show that with random errors most of the inner decod-

ing steps decode correctly. One then uses the outer

decoding step to convert the “mostly correct decoding”

to a “fully correct decoding.”)
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5 Impact on Communication and Storage

The mathematical theory of error-correcting codes has
made a deep impact on the technologies for storage
and communication of information, and we elaborate a
little on this below.

Storage of information on digital media is probably
the biggest success story for error-correcting codes.
Most known forms of storage media, and in particu-
lar standards for audio and data CDs and DVDs, pre-
scribe error-correcting codes based on Reed–Solomon
codes. Specifically, they are based on a code that maps
F223

256 to F255
256, where F256 is the finite field with 256 ele-

ments. In audio CDs, codes are use to protect from
minor scratches, though more serious scratches do lead
to audible errors. In data CDs the error correction is
stronger (with more redundancies), so that even seri-
ous scratches do not lead to loss of data. In all cases
(CDs and DVDs) the readers for these devices use fast
algorithms for decoding when reading the information
on the media. Typically, these algorithms are based on
the idea of the previous section, but are much faster
implementations (in particular, an algorithm due to
E. Berlekamp is widely used). Indeed, several CD read-
ers owe their faster reading speed to faster decoding
algorithms. Similarly, the increased storage capacity
of DVDs (compared with CDs) is attributed in part to
better error-correcting codes. Indeed, error-correction
technology played a crucial role in establishing the
dominance of audio CDs, which store music digitally,
over the traditional, and now almost extinct, gramo-
phone records, which store music in continuous forms.
Thus, mathematical advances in coding theory have
played an influential role in this technology.

Similarly, error-correcting codes have had a profound
effect on communication. Since the late 1960s, error-
correcting codes (and decoding) have been used for
communication from satellites to their base stations
on Earth. Of late, error-correcting codes are also being
used in cellular phone communications and modems.
Again, the most commonly used code at the time of the
writing of this article is the Reed–Solomon code, though
this situation has been changing rapidly since the dis-
covery of a new class of codes called “turbo codes.” This
new family of codes seems to offer significant resilience
to random errors (more so than that offered by meth-
ods based on Reed–Solomon codes) and uses a simple
and quick algorithm, even when the codes used have
small block length. These codes and the corresponding
decoding algorithm have led to a resurgence of inter-

est in codes constructed with the help of insights from

graph theory [III.34]. Many of the good properties

of turbo codes have been observed only empirically:

that is, the codes seem to work very well in practice

but it has not yet been proved rigorously that they do.

Nevertheless, the observations have been so compelling

that new standards for communication are starting to

prescribe these codes.

Finally, it must be stressed that while many of the

codes used are based on ones that are studied in the

mathematical literature, this should not be taken to

mean that they can be deployed immediately without

further design. For example, the Mariner spacecraft

used not a Reed–Muller code but a variant of it designed

to allow for synchronization between blocks. Similarly,

the Reed–Solomon codes used in storage devices are

carefully spread out over the disc, so as to allow the

physical device to resemble more closely the model of

a code over a large alphabet. Note that errors due to

a scratch on the disc surface tend to ruin a large col-

lection of bits in a small localized part of the disc. If

all the data from a block were sitting in such a neigh-

borhood, the entire block would be lost. So each block

of 255 bytes of information is spread out all over the

disc. On the other hand, the bytes themselves, which

are elements of F256, are written as eight bits in close

proximity. So a scratch corrupting one bit out of these

eight is also likely to corrupt others in the neighbor-

hood. However, this is all right from the perspective of

the model that views the entire collection of eight bits

as a single element. In general, working out the right

way to apply the theory of error correction to a given

scenario is a major challenge, and many success stories

would not have been success stories had it not been for

some careful design choices.

Mathematics and engineering continue to feed each

other in this arena. Mathematical successes, such as

new algorithms for decoding Reed–Solomon codes,

raise the challenge of how to adapt technology to

exploit new algorithms. Engineering successes, such as

the discovery of turbo codes that perform extremely

well, challenge mathematicians to come up with a for-

mal model and analysis that can explain this success.

And if such a model and analysis emerges, it is likely to

lead to the discovery of new codes that might surpass

the performance of turbo codes and lead to a new set

of standards!
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VII.7 Mathematics and Cryptography
Clifford Cocks

1 Introduction and History

Cryptography is the science of hiding the meaning or
content of communications. The aim is that an adver-
sary who sees a message only in its enciphered state
cannot make sense of or derive useful information from

what is seen. On the other hand, the intended recip-

ient must be able to decipher the true meaning. For

most of history cryptography has been an art practiced

seriously only by a few—such as governments for mil-

itary and diplomatic communications—for whom the

consequences of unauthorized disclosure of informa-

tion are damaging enough to justify the expense and

inconvenience of enciphering messages. Recently this

has changed: one of the results of the information rev-

olution has been the need for instant and secure com-

munication for all on demand. Fortunately, mathemat-

ics has come to the rescue and provided theoretical

and algorithmic developments to meet this need. It has

also provided entirely new possibilities, such as “digital

signatures” (which will be discussed later).

One of the oldest and most basic methods of cryptog-

raphy is simple substitution. Suppose that a message to

be enciphered consists of a piece of English text. Before

it is sent, the sender and recipient agree on a permu-

tation of the twenty-six letters of the alphabet, which

they keep private. An enciphered message might then

look something like

ZPLKKWL MFUPP UFL XA EUXMFLP

For very short messages this method is reasonably

secure—it is just possible to work out the meaning of

the above example by matching letter patterns to those

commonly seen in English, but it is quite challenging! Terri: Tim and the
author
(presumably) think
it’s amusing not to
include the
solution. OK?

However, for longer messages, simply counting the fre-

quencies of each letter and comparing those counts

with the frequencies of letters in natural language will

almost always reveal the hidden permutation suffi-

ciently to allow the meaning to be easily recovered.

A major leap forward in cryptography came with the

advent of mechanical encryption devices in the twenti-

eth century, of which the German Enigma used during

World War II is perhaps the most famous example. An

account of the fascinating Enigma story and the role of

the code breakers of Bletchley Park appears in Simon

Singh’s excellent book on cryptography (Singh 1999).

It is interesting that the principle on which Enigma

operates is a development of the simple substitution

method. Each letter of the input message is enciphered

exactly as a simple substitution, but with the addi-

tional rule that the permutation controlling the sub-

stitution changes after every letter. A complex electro-

mechanical device controls the substitution process in

a deterministic way. The recipient can decipher the

message only if he or she can set up another device
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ar ar − 1 a1

Figure 1 Linear feedback shift register.

in exactly the same way as the originator. The informa-
tion needed to do this is called the key. Making sure
that keys are known only by the right people is called
key management. Until the advent of public-key cryp-
tography (to be discussed later), key management was
a major inconvenience and expense for anyone wantingTerri: Tim would

rather keep
‘anyone’ here. OK? to secure their communications.

2 Stream Ciphers and Linear
Feedback Shift Registers

Since the advent of computers, information has tended
to be transmitted as binary data: that is, as a stream
of 0s and 1s. For such data there is a rather differ-
ent method of encipherment based on a device called
the linear feedback shift register, or LFSR (see figure 1).
The first step is to generate a random-looking sequence
of 0s and 1s in a deterministic way, and this is done
by means of a recurrence formula, of which a simple
example is

xt = xt−3 + xt−4.

Here, addition is mod 2, so xt will be 1 if an odd num-
ber of the terms xt−3, xt−4 is 1, and it will be 0 other-
wise. We must also specify the first four values of the
sequence, so let us begin with 1000. The sequence then
continues as follows:

100110101111000100110101111 . . . .

More generally, one specifies some positive integers
a1, a2, . . . , ar , called feedback positions—the numbers
3 and 4 in the above example—and defines a sequence
by means of the recurrence formula

xt = xt−a1 + xt−a2 + · · · + xt−ar ,
where again the addition is mod 2.

A sequence produced in this way usually looks fairly
random, but because there are only finitely many binary
sequences of length ar it must eventually repeat.
Notice that, in our example, the sequence is periodic
with period 15, which is actually the longest possi-
ble period, since there are sixteen binary sequences
of length 4, and after a moment’s thought one sees

that the sequence 0000 cannot occur (or else the whole
sequence up to then would have had to consist entirely
of zeros).

In general, the length of the sequence depends on
properties of the polynomial

P(x) = 1+ xa1 + xa2 + · · · + xar
over the field [I.3 §2.2] F2 of two elements. As we have
just seen in the case ar = 4, the maximum possible
sequence length is 2ar − 1, and for this length to be
achieved the polynomial P(x)must be irreducible over
F2: that is, it must not factorize into smaller polyno-
mials. For example, the polynomial 1 + x4 + x5 is not
irreducible, because (1+ x + x3)(1+ x + x2) expands
out to

1+ x + x + x2 + x2 + x3 + x3 + x4 + x5,

which equals 1+x4+x5 since 1+1 = 0 in the field F2.
Irreducibility is a necessary condition for the se-

quence to have the maximum length, but it does not
guarantee it. For that we need a second condition: that
the polynomial is primitive. To see what this means, let
us take the polynomial x3 + x + 1 and calculate the
remainder when, for the first few positive integers m,
we divide xm by x3 +x+ 1 (with all coefficients in F2).
Whenm goes from 1 to 7 we obtain the polynomials x,
x2, x + 1, x2 + x, x2 + x + 1, x2 + 1, 1. For instance,

x6 = (x3 + x + 1)(x3 + x + 1)+ x2 + 1,

so the remainder on dividing x6 by x3+x+1 is x2+1.
Now the first time that we obtained the polynomial 1

was when m = 7, and 7 = 23 − 1. This shows that
the polynomial x3 + x + 1 is primitive. In general, a
polynomial p(x) of degree d is primitive if the first
time you obtain a remainder of 1 when you divide xm

by p(x) is when m = 2d − 1.
There are computationally efficient tests for deter-

mining whether a polynomial is irreducible and
whether it is primitive. The advantage of using a prim-
itive polynomial as the basis of an LFSR is that, in the
sequence it generates, no subsequence of length ar is
repeated until all nonzero sequences of length ar have
appeared exactly once.

How is all this applied in cryptography? A simple idea
would be to take the stream of bits generated by an
LFSR and add it term by term to the message one is enci-
phering. For instance, if the LFSR generated a sequence
that began 1001101 and the message was 0000111,
then the encrypted message would begin 1001010.
To decipher such a message, one could simply repeat
the process: adding the two sequences 1001101 and
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Figure 2 Feistel round structure.

1001010 gives the original message 0000111. For this
to work, the recipient would need to know the details
of the LFSR in order to be able to generate the same
sequence 1001101, so one might consider using the
feedback positions (in this case 3 and 4) as the secret
key.

In practice, the above procedure is not good
enough because there is an efficient algorithm, due
to Berlekamp and Massey (1969), that can recover the
feedback rule from the stream of bits it generates. It
is better to use some predetermined nonlinear func-
tion of the successive sequences of ar bits in order to
scramble further the sequence of bits produced by the
LFSR. Even then, such procedures are simple enough
that, with careful design, they can be applied to large
amounts of data very quickly.

3 Block Ciphers and the Computer Age

3.1 Data Encryption Standard

When computers started to be used, an entirely dif-
ferent method of cryptography became practical: the
block cipher. The first example of this was DES: the
Data Encryption Standard (first published in 1977).
DES was adopted as a standard in 1976 by the U.S.
National Bureau of Standards (now the National Insti-
tute of Standards and Technology). This enciphers a
block of 64 bits at a time, with a key of length 56 bits. It
has a particular structure, referred to as a Feistel cipher
(see figure 2).

This structure is as follows. Given a block of 64 bits,
you first divide it into two parts of 32 bits each, and
call them L and R. Next, you take a subset of the 56 bits
of the key, according to some predetermined rule, and
use this subset to define a nonlinear function F , again
according to some predetermined rule, which takes 32-
bit sequences to 32-bit sequences. You then replace the
pair [L,R] by the pair [R ⊕ F(L), L]. (Here R ⊕ F(L)
denotes the result of taking the mod-2 sum of R and
F(L) one bit at a time.)

Having done that, you repeat the process a num-
ber of times, choosing a different nonlinear function
F each time (but always deriving it in a predetermined
way from the 56-bit key). A complete encryption by
DES consists of 16 such rounds, together with some
permutation of the bits of the input and output.

One reason for using the Feistel structure is that
as long as one knows the 56-bit key it is quite easy
to reverse the encryption process. Given a round that
performs the transformation

[L,R]→ [R ⊕ F(L), L],
one can invert it by means of the transformation

[L,R]→ [R, L⊕ F(R)].
This has the great advantage that it does not require
us to invert F , so even if F is quite complicated the
procedure can be easy to carry out.

A number of what are called “modes of use” of DES
have been developed. Simply using the algorithm to
encrypt each 64-bit block of data in turn is called ECB
(for electronic codebook) mode. A disadvantage of this
mode is that if there is an exact 64-bit repeat in the data
then this results in an exact 64-bit repeat in the cipher.

Another mode is CBC, or cipher block chaining, mode.
Here, each block of data is added mod 2 to the previ-
ous block before being encrypted as above. In OFB, or
output feedback, mode the block of data is added to the
DES encipherment of the previous block. It is an easy
exercise to see how to decipher in CBC and OFB modes,
and in practice these are the two most common modes
of use of DES.

3.2 Advanced Encryption Standard

The U.S. National Institute of Standards and Tech-
nology recently held a competition for a replacement
for DES, to be called the Advanced Encryption Stan-
dard, or AES. This was to be a 128-wide block cipher
with a variety of possible key lengths. Many compet-
ing designs were submitted and subjected to public
scrutiny, and the winning entry was called Rijndael,
after the designers Joan Daemen and Vincent Rijmen.

The design is remarkable and elegant and makes use
of interesting mathematical structures (Daeman and
Rijmen 2002). The 128 bits in each block are thought of
as 16 bytes (a byte consists of eight bits), arranged in a
4×4 square. Each byte is then thought of as an element
of F256, the field of order 256. Encryption consists of
ten or more rounds (the exact number depending upon
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the key length); and each round mixes the data and the
key.

A round consists of a series of steps, typically as
follows. First, each byte, regarded as an element of
the finite field F256, is replaced by its inverse in the
field, except that 0 is left unchanged. Each byte is then
regarded as an element of the vector space of dimen-
sion 8 over the field F2 and an invertible linear trans-
formation is applied. Each row of the 4 × 4 square is
then rotated, by a different number of bytes for each
row. Next, the values of each column of the square are
taken to be the coefficients of a degree 3 polynomial
over F256 and this is multiplied by a fixed polynomial
and reduced modulo x4 + 1. Finally, the key for the
round, which is derived linearly from the encryption
key, is added modulo 2 to the 128 bits.

It can be seen that all of these steps are reversible,
which makes decipherment straightforward. It is likely
that AES will take over from DES as the most widely
used block cipher.

4 One-Time Key

The various encryption methods described above rely
on the computational difficulty of recovering some
secret that protects the enciphered data. There is one
classic encryption method that does not rely on this
property. This is the “one-time key.” Imagine that the
message to be enciphered is encoded as a sequence
of bits (for example, the standard ASCII encoding that
represents each character as eight bits). Suppose that
ahead of time the sender and recipient have shared
a sequence of random key bits r1, . . . , rn at least as
long as the message. Suppose that the message bits are
p1, p2, . . . , pn.

The enciphered message is then x1, x2, . . . , xn, where
xi = pi + ri. Here, as usual, addition is mod 2 addition
in each bit. If the bits ri are fully random, then knowing
the sequence xi gives no information whatsoever about
the message sequencepi. This system is called one-time
key. It is very secure as long as the key is used only once.
However, it is impractical to use this method except
in very specialized situations because of the need for
sender and recipient to share and keep safe possibly
large quantities of key material.

5 Public-Key Cryptography

All of the examples of encryption methods that we
have seen so far have had the following structure. Two
communicators agree on an algorithm or method for

encryption. The choice of method (e.g., simple substi-
tution, AES, or one-time key) can be made public with-
out the security of the system being compromised. The
two communicators also agree on a secret key in the
form required by the chosen encryption method. This
key needs to be kept secure and never revealed to any
adversary. The communicators encipher and decipher
messages using the algorithm and secret key.

This presents a major problem: how can the commu-
nicators securely share the secret key? It would be inse-
cure to exchange this over the same system that they
will later use to send enciphered messages. Until so-
called public-key methods were discovered this issue
limited the use of encryption to those organizations
that could afford the physical security and separate
communication channels necessary for distributing
keys reliably.

The following remarkable, counterintuitive proposi-
tion forms the basis of public-key cryptography: it is
possible for two entities to communicate information in
such a way that they start with no secret shared infor-
mation; an adversary has access to all communications
between them; at the end the entities have shared secret
knowledge that the adversary is unable to determine.

It is easy to see how useful such a capability could
be. Consider, for example, someone making a pur-
chase over the Internet. Having identified a product one
wishes to buy the next step is to send personal infor-
mation such as credit card details to the vendor. With
public-key cryptography it is possible to do this in a
secure manner straightaway.

How might public-key cryptography be possible? The
structure of a solution was proposed by James Ellis in
1969,1 with the first public description by Diffie and
Hellman (1976). The critical idea is to use a function
that is hard to invert unless you have an “inverse key”
that helps you to do so.

More formally, a one-way function H is a mapping
from a set X to itself, with the property that if you are
told the value y = H(x) for some x ∈ X, then it is
computationally hard to determine x. The inverse key
is a secret value, z, say, used in creating the functionH,
with the property that if you know z then it becomes
computationally easy to recover x from H(x).

We can use this to solve the problem of secure key
exchange as follows. Let us suppose that Bob wishes to
send some data securely to Alice. (Particularly useful
would be a shared secret that they can use later as a

1. See “The possibility of secure non-secret digital encryption,”
available at www.cesg.gov.uk/site/publications/media/possnse.pdf.
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key for subsequent communications.) Alice begins by
generating a one-way function H with an inverse key
z. She then communicates the function H to Bob, but
the inverse key remains her personal secret, which she
reveals to no one—not even to Bob. Bob takes the data
x that he wishes to send, computes H(x), and returns
the result of his computation to Alice. Because Alice
has the inverse key z, she can reverse the function H
and thereby recover x.

Now suppose that an adversary manages to read all
the communications between Alice and Bob. Then the
adversary will know the functionH and the valueH(x).
However, Alice has not communicated the inverse key
z, so the adversary is faced with the computationally
intractable problem of inverting H. Therefore, Bob has
successfully transmitted the secret x to Alice without
the adversary being able to work out what it is. (For
a more precise idea of what computational intractabil-
ity is and a further discussion of one-way functions,
see computational complexity [IV.20], especially
section 7.)

It can be helpful to imagine the one-way function H
as a padlock and the inverse key as the key that unlocks
the padlock. Then if Alice wants to receive an enci-
phered message from Bob, she sends him her padlock,
retaining the key. Bob locks (enciphers) the message
into a box with the padlock, and returns it. Only Alice,
who is in possession of the padlock key, can unlock
(decipher) the message.

5.1 RSA

It is all very well to have such a framework, but it
leaves open an obvious question: how can one produce
a one-way function with an inverse key? The following
method was published by Rivest, Shamir, and Adleman
(1978). It relies on the fact that it is relatively easy to
find large prime numbers and multiply them to pro-
duce a composite number, but it is much harder, if you
are given that composite number, to determine its two
prime factors.

To create a one-way function by their method, Alice
first finds two large prime numbers P and Q. She then
calculates the integer N = PQ and sends it to Bob,
together with another integer e called the encryption
exponent. The values N and e are called the public
parameters because it does not matter if an adversary
knows what they are.

Bob then expresses the secret value x that he wishes
to send to Alice as a number modulo N . Next, he com-
putes H(x), which is defined to be xe mod N , that is,

the remainder whenxe is divided byN . Bob sendsH(x)
to Alice.

Upon receipt of Bob’s message, Alice needs to recover
x from xe mod N . This she can do by first calculating
the number d that satisfies the equation

de ≡ 1 mod (P − 1)(Q− 1).

To do this efficiently, Alice can use euclid’s algo-
rithm [III.22]. Notice, however, that this would not be
possible if she did not know the values of P and Q. In
fact, the ability to calculate the correct value of d can
be shown to be equivalent to the ability to factorize N .
The value of d is Alice’s private key (or “inverse key” in
the terminology above): it is the secret that can undo
the encryption function H.

This is because H(x)d mod N can be shown to equal
x. Indeed, the significance of the number (P−1)(Q−1)
is that it equals φ(N), the number of integers less
than N and coprime to N . euler’s theorem [III.60]
states that xφ(N) ≡ 1 mod N whenever x is coprime
to N . Therefore, xmφ(N) ≡ 1 mod N as well, so if de
has the form mφ(N) + 1, as we are assuming, then
H(x)d ≡ xde ≡ x mod N . In other words, if you raise
x to the power e mod N and then raise that to the
power dmod N you get back to x. (An important point
is that raising numbers to powers mod N is compu-
tationally easy by the method of “repeated squaring.”
This is discussed in computational number theory
[IV.3 §2].)

While it has not been proved that the only way
for an adversary to defeat the RSA encryption system
is to factorize N , no other general attack has been
found. This has created interest in finding improved
factorization methods. A number of new subexpo-
nential methods—elliptic curve factorization (Lenstra
1987), the multiple polynomial quadratic sieve (Silver-
man 1987), and the number field sieve (Lenstra and
Lenstra 1993)—have been discovered in the years since
the RSA algorithm was found. See computational
number theory [IV.3 §3] for discussions of some of
them.

5.1.1 Implementation Details

The security of the RSA system depends on the primes
P andQ being large enough to make factorization hard.
However, the larger they are, the slower the encryption
process is. Thus, there is a trade-off between security
and the speed of encryption. A typical choice that is
often made is to use primes that are each of 512 bits.
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For the deciphering method to work, the encryp-
tion exponent e must have no factors in common with
either (P − 1) or (Q− 1). This assumption was needed
when we applied Euler’s theorem, and if it does not
hold then the encryption function is not invertible.
Values such as 17 or 216 + 1 are often used in prac-
tice, because making e small reduces the amount of
computation needed to calculate the encrypted value
xe mod N . (These two values of e are also well-suited
to calculation by repeated squaring.)

5.2 Diffie–Hellman

Another approach to generating a shared secret was
published by Whitfield Diffie and Martin Hellman. In
their protocol Alice and Bob jointly create a shared
secret, which can then be used as the key for one of
the conventional cryptographic systems such as AES.
To do this, they agree on a large prime number P and a
primitive element g modulo P , which means a number
g such that gP−1 ≡ 1 mod P , but gm �≡ 1 mod P for any
m < P − 1.

Alice then creates her own private key a, a number
randomly chosen between 1 and P − 1, and calculates
ga = ga mod P and sends this to Bob.

Bob similarly creates his own private key b between
1 and P − 1 and calculates and sends gb = gb mod P
to Alice.

Alice and Bob can now create the shared secret
gab mod P . Alice calculates this as gab mod P and Bob
calculates this as gba mod P . Note that all of these terms
can be calculated in time logarithmic ina and b through
repeated squaring.

An adversary, however, would see only ga mod P and
gb mod P , and would also know g and P . How could
gab mod P be determined from this? One method is
to solve what is called the discrete logarithm problem.
This is the problem of calculating a if you know P , g,
and ga mod P . For large P this appears to be a com-
putationally intractable problem. It is not known for
certain whether there is a faster way for the adver-
sary to calculate gab mod P than computing discrete
logarithms—this is called the Diffie–Hellman problem—
but at present no better method is known.

It is not obvious how to find primitive elements in
general, but it is much easier if, as is usually the case,
the prime P has been constructed so as to ensure that
the factorization of P −1 is known. For instance, if P is
of the form 2Q+1, whereQ is also a prime (such num-
bers are called Sophie Germain primes), then it can be

shown that for any a, exactly one of a and −a has the
property that its Qth power is congruent to −1 mod P ,
and this one is a primitive element. In practice, one can
find such primes by a process of trial and error: for
example, one can choose a number Q randomly and
use randomized primality tests to see whether Q and
2Q+1 are prime. Assuming that, as everyone believes,
such pairs occur with the “expected” frequency, the
probability of finding one on any given attempt is large
enough for this approach to be feasible.

5.3 Other Groups

The Diffie–Hellman protocol can be expressed in the
language of group theory [I.3 §2.1]. Suppose we have
a group G and some element g ∈ G. We will require
the group to be Abelian and will use “+” to denote the
group operation. (In the examples so far, the groups
under consideration were multiplicative groups con-
sisting of elements coprime to some integer N , so by
using additive notation we are taking a “logarithmic”
perspective.)

To execute the protocol Alice computes some pri-
vate integer a and computes and sends ag to Bob. Note
that Alice can compute this sum of a elements of G in
time of order logarithmic in a by successive doubling
and adding. (In the multiplicative groups considered
earlier, “doubling” is squaring, “adding” is multiplying,
and “multiplying by a” is raising to the power a.)

Similarly, Bob computes a private integer b and
computes and sends bg to Alice.

Both Alice and Bob can calculate the shared value
abg. An adversary will know only G, g, ag, and bg.

The question is: which groups can be used in practical
cryptographic systems? The critical property is that the
discrete logarithm problem in Gmust be hard; in other
words, given G, g, and ag it should be a hard problem
to determine a.

One type of group that has aroused interest for cryp-
tographic purposes is the additive group generated by
points on an elliptic curve [III.21]. An elliptic curve
has an equation of the form

y2 = x3 + ax + b.
It is an interesting exercise to sketch this curve over
the real numbers—the shape depends upon how many
times the curve

y = x3 + ax + b
crosses the x-axis.
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A + B

A

C
B

Figure 3 Addition of points on an elliptic curve.

It is possible to define an “addition rule” (often called
a group law) on the points of this curve, as follows.
Given two points A and B on the curve, the straight
line joining them must meet the curve in a third point,
C say. This is because a straight line must meet a cubic
in three places precisely. Define A+ B to be the mirror
image of C in the x-axis (see figure 3).

It is obvious that A+ B = B+ A from this definition.
What is rather more surprising is that the associative
law holds. That is, for any three points A, B, and C we
have ((A+B)+C) = (A+ (B+C)). There are some deep
reasons why this is true, but of course it can be verified
by just doing the algebra.

To use this for cryptography the group is formed
from the set of points on an elliptic curve defined over
a finite field. The graphical image for the sum of two
points is no longer valid, but the algebraic definition
still holds, so addition still obeys the associative law.
We need to add one further point to the set of points
on the curve to function as the zero of the group: this
is the “point at infinity” on the curve.

For optimal security it turns out to be best to find
a curve defined over Fp for which the number of ele-
ments in the group is a prime number. In fact it is
guaranteed—by a deep result on the theory of elliptic
curves—that the number of points on a curve defined
over Fp will lie between p + 1− 2

√p and p + 1+ 2
√p.

(See the weil conjectures [V.38].)
The reason this group is used is that for general

curves the discrete logarithm problem appears to be
particularly hard. If the group has n elements and if we
are given group elements g and ag, then the number
of steps needed to determine a, by the best algorithms
that are currently known, is around

√
n. Since there is

a so-called birthday attack that allows one to solve this
problem in any group with n elements in around

√
n

computational steps, this means that the problem for
elliptic curve groups is as hard as it can be. Therefore,
whatever level of security you require, the public key is
as short as it can be. This is important when there are
constraints on the number of bits that can be sent as
it allows the protocol to be executed in the minimum
possible time.

6 Digital Signatures

As well as secure transmission of data, there is another
very useful capability that is provided by public-key
cryptography. That is the concept of a digital signature.
A digital signature is a string of symbols that an author
attaches to the end of a message that certifies the
authenticity of the message. In other words, it proves
that the message was written by the attested author
and that it has not been modified. Once the necessary
frameworks are in place, this opens up the possibility
of much legal business being conducted online.

There are a number of ways that public-key methods
can be used to create digital signatures. The one based
on the RSA system is perhaps the simplest. Suppose
Alice wants to sign documents. Just as she does for
encryption, she generates two large prime numbers P
and Q and calculates her public modulus N = PQ and
her public exponent e. She also generates her private
key—the deciphering exponentdwith the property that
xde ≡ x mod N for any x. She will use the same param-
eters both for encryption and for the creation of digital
signatures.

Alice can assume that the recipients of her signed
messages know herN and e values. In practice she may
have these values themselves signed and certified by a
trusted authority or organization that the prospective
recipient of a signed message will recognize.

One other component of this system is an object
called a one-way hash function, which takes as its input
the message to be signed, which may be rather long,
and outputs a number between 1 andN − 1. The impor-
tant property that a hash function must have is that
for any value y between 1 and N it is computation-
ally hard to construct a message x that hashes to that
value. This is similar to a one-way function except that
we are no longer assuming that for each y there is
exactly one x that maps to y . However, the hash func-
tion should ideally also be collision free, which means
that, even though there are many pairs of messages that
hash to the same value, it is not easy to find any. Such
hash functions need to be carefully designed, but there
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are some recognized standard hash functions (two of
which are called MD5 and SHA-1). Suppose that x is the
message to be signed, and letX be the output when you
apply the hash function to x. The digital signature that
Alice appends to the message is Y = Xd mod N .

Observe that anyone in possession of Alice’s public
key can verify the signature by following these steps.
First, calculate the hashed value X of the message x,
which is possible because the hash function is made
public. Next, compute Z = Ye mod N , which can be
done because the parameters N and e are also public.
Finally, verify that X equals Z . In order to fake such
a signature, you have to find Y with the property that
Ye ≡ X mod N . That is, you must know how to calcu-
late Xd, which is computationally intractable if you do
not already know d.

It is also possible to construct digital signatures
using a public key based on discrete logarithms (Diffie–
Hellman type) rather than on factorization (RSA type).
The U.S. standards body has published such a proposal:
the Digital Signature Standard (1994).

7 Some Current Research Topics

Cryptography remains an active and fascinating area
for research—there are undoubtedly more results and
ideas to be discovered. For a good overview of current
activity one should look at recent proceedings of the
main conferences, such as Crypto, Eurocrypt, or Asia-
crypt (these are published in the Springer series Lecture
Notes in Computer Science). The comprehensive book
on cryptography by Menezes, van Oorschott, and Van-
stone (1996) is a good way to get up to speed on present
theory. In this final section I outline just a few of the
directions in which the subject is moving.

7.1 New Public-Key Methods

One important area of investigation is the search
for new public-key methods and signature schemes.
Recently some interesting new ideas have come from
the use of pairings on elliptic curves (Boneh and
Franklin 2001). These are maps w from pairs of points
on the curve to either the finite field over which the
curve is defined or an extension field.

A pairingw is bilinear, in the sense thatw(A+B,C) =
w(A,C)w(B,C) and w(A,B + C) = w(A,B)w(A,C),
where addition is the group operation defined on points
of the curve and multiplication takes place in the field.

One way that such a map can be used is to create an
“identity-based cryptosystem.” Here, a user’s identity

serves as his or her public key, which eliminates the

need for directories or other public-key infrastructure

in order to store and propagate public keys.

In such a system, a central authority decides upon

a curve, a pairing map w, and a hash function that

maps identities to points on the curve. All of this is

made public, but there is also a secret parameter, an

integer x.

Suppose that the hash function maps Alice’s identity

to the point A on the curve. The authority calculates

Alice’s private key xA and issues it to her when she

registers, after making appropriate checks on her iden-

tity. Similarly, Bob would receive his private key xB,

where B is the point on the curve corresponding to his

identity.

Alice and Bob are now able to communicate with-

out any initial key exchange, using the common key

w(xA,B) = w(A,xB). The important point is that

unlike other public-key systems this can be done with-

out any need to share public keys.

7.2 Communication Protocols

A second area of activity is the study of proposed pro-

tocols, especially those likely to become international

standards. When public-key methods are to be used

in practical communication the sequence of bits to be

transmitted needs to be clearly defined, so that both

communicating parties understand the same thing by

each bit sent. For example, if an n-bit number is

transmitted, are the bits transmitted in increasing or

decreasing order of significance? The rules or proto-

cols are often enshrined in public standards, and it is

important that they do not introduce any weakness into

the system.

An example of the sort of weakness that can be intro-

duced in this way is one discovered by Coppersmith

(1997) in a seminal paper. He showed that in a low-

exponent RSA system (for example, one with encryp-

tion exponent equal to 17) a weakness arises if too

many of the bits of the number that is to be enciphered

are set to publicly known values. This is something

that is natural to want to do, if, as is often the case,

a large public-key modulus is being used to transmit a

much shorter communication key. As a result of Cop-

persmith’s discovery such fields are nowadays usually

padded out before they are encrypted, with bits that

vary unpredictably.



�

VII.8. Mathematics and Economic Reasoning 901

7.3 Control of Information

Using public-key methods, one can control very pre-
cisely how information is released, shared, or gener-
ated. Research in this area is usually focused on finding
elegant and efficient ways of achieving different sorts
of control in a variety of situations. As a simple exam-
ple, we might want to create a secret that is shared
between N people in such a way that if any K people
combine their share (whereK < N) they can reconstruct
the secret, but no information can be gained about the
secret by any smaller number than K collaborating.

Another example of this type of control is a proto-
col that allows two participants to create an RSA mod-
ulus (a product of two primes) in such a way that nei-
ther participant gets to know the primes that were used
to produce the modulus. To decipher a message enci-
phered under this modulus the two participants have
to collaborate—neither can achieve this on their own
(Cocks 1997).

A third and more amusing example is a protocol that
allows Alice and Bob to replicate tossing a coin, but to
do it over the telephone. Obviously, it would not be sat-
isfactory for Alice to toss the coin and for Bob to make
the call “heads” or “tails”—for how does Bob know that
Alice is telling the truth about how the coin actually
fell? This problem turns out to have a simple solu-
tion. Alice and Bob choose large random sequences.
Alice then appends either a 1 or a 0 to her sequence
and Bob does the same for his. Alice’s extra bit rep-
resents the outcome of the coin toss, and Bob’s rep-
resents his guess. Next, they send one-way hashes of
their sequences (with the extra bits appended). At this
point, because of the nature of one-way hashes, nei-
ther has any idea what the other’s sequence is, so, for
example, if Alice reveals her hashed sequence first, Bob
cannot use this information to increase his chance of
guessing correctly. Alice and Bob then exchange the
unhashed sequences to see whether Bob’s guess was
correct. If either does not trust the other, they can hashTerri: Tim thinks

that what is here is
clearer than any of
the alternatives
and that this use
of ‘they’ is “so
convenient that
it’s wrong to
struggle to avoid
it”. I tend to agree
but obviously you
should let me
know if you don’t.

the other’s sequence to check that it really does give the
right answer. Since it is hard to find a different sequence
that gives the right answer, they can each be confident
that the other has not cheated. More complicated proto-
cols of this type have been designed—it is even possible
to play poker remotely in this way.
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VII.8 Mathematics and Economic
Reasoning
Partha Dasgupta

1 Two Girls

1.1 Becky’s World

Becky, who is ten years old, lives with her parents and
an older brother Sam in a suburban town in America’s
Midwest. Becky’s father works in a law firm special-
izing in small business enterprises. Depending on the
firm’s profits, his annual income varies somewhat, but
it is rarely below $145 000. Becky’s parents met in col-
lege. For a few years her mother worked in publish-
ing, but when Sam was born she decided to concen-
trate on raising a family. Now that both Becky and Sam
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attend school, she does voluntary work in local edu-
cation. The family live in a two-storey house. It has
four bedrooms, two bathrooms upstairs and a toilet
downstairs, a large drawing-cum-dining room, a mod-
ern kitchen, and a family room in the basement. There
is a small plot of land in the rear, which the family use
for leisure activities.

Although their property is partially mortgaged,
Becky’s parents own stocks and bonds and have a sav-
ings account in the local branch of a national bank.
Becky’s father and his firm jointly contribute to his
retirement pension. He also makes monthly payments
into a scheme with the bank that will cover college edu-
cation for Becky and Sam. The family’s assets and their
lives are insured. Becky’s parents often remark that,
federal taxes being high, they have to be careful with
money; and they are. Nevertheless, they own two cars,
the children attend camp each summer, and the fam-
ily take a vacation together once camp is over. Becky’s
parents also remark that her generation will be much
more prosperous than they. Becky wants to save the
environment and insists on biking to school each day.
Her ambition is to become a doctor.

1.2 Desta’s World

Desta, who is about ten years old, lives with her parents
and five siblings in a village in subtropical, southwest
Ethiopia. The family live in a two-room, grass-roofed
mud hut. Desta’s father grows maize and tef on half a
hectare of land that the government has awarded him.
Desta’s older brother helps him to farm the land and
care for the household’s livestock: a cow, a goat, and
a few chickens. The small quantity of tef produced is
sold so as to raise cash income, but the maize is largely
consumed by the household as a staple. Desta’s mother
works a small plot next to their cottage, growing cab-
bage, onions, and enset (a year-round root crop that
also serves as a staple). In order to supplement house-
hold income, she brews a local drink made from maize.
As she is also responsible for cooking, cleaning, and
minding the infants, her work day usually lasts four-
teen hours. Despite the long hours, it would not be
possible for her to complete the tasks on her own. (As
the ingredients are all raw, cooking alone takes five
hours or more.) So Desta and her older sister help their
mother with household chores and mind their younger
siblings. Although a younger brother attends the local
school, neither Desta nor her older sister has ever been
enrolled there. Her parents can neither read nor write,
but they are numerate.

Desta’s home has no electricity or running water.

Around where they live, sources of water, land for graz-

ing cattle, and the woodlands are communal property.

They are shared by people in Desta’s village; but the

villagers do not allow outsiders to make use of them.

Each day Desta’s mother and the girls fetch water, col-

lect fuelwood, and pick berries and herbs from the local

commons. Desta’s mother frequently observes that the

time and effort needed to collect their daily needs has

increased over the years.

There is no financial institution nearby to offer

either credit or insurance. As funerals are expensive

occasions, Desta’s father long ago joined a commu-

nity insurance scheme (iddir ) to which he contributes

monthly. When Desta’s father purchased the cow they

now own, he used the entire cash he had accumulated

and stored at home, but had to supplement that with

funds borrowed from kinfolk, with a promise to repay

the debt when he had the ability to do so. In turn, when

they are in need, his kinfolk come to him for a loan,

which he supplies if he is able to. Desta’s father says

that such patterns of reciprocity he and those close to

him practice are part of their culture, reflecting their

norms of social conduct. He also says that his sons are

his main assets, as they are the ones who will look after

him and Desta’s mother in their old age.

Economic statisticians estimate that, adjusting for

differences in the cost of living between Ethiopia and

the United States, Desta’s family income is about $5000

per year, of which $1000 is attributable to the prod-

ucts they draw from the local commons. However, as

rainfall varies from year to year, Desta’s family income

fluctuates widely. In bad years, the grain they store at

home gets depleted well before the next harvest. Food

is then so scarce that they all grow weaker, the younger

children especially so. It is only after harvest that they

regain their weight and strength. Periodic hunger and

illnesses have meant that Desta and her siblings are

somewhat stunted. Over the years Desta’s parents have

lost two children in their infancy, stricken by malaria

in one case and diarrhea in the other. There have also

been several miscarriages.

Desta knows that she will be married (in all likelihood

to a farmer, like her father) when she reaches eighteen

and will then live on her husband’s land in a neighbor-

ing village. She expects her life to be similar to that of

her mother.
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2 The Economist’s Agenda

That the lives people are able to construct differ enor-
mously across the globe is a commonplace. In our age
of travel, it is even a common sight. That Becky and
Desta face widely different futures is also something
we have come to expect, perhaps also to accept. Nev-
ertheless, it may not be out of turn to imagine that the
two girls are intrinsically very similar: they both enjoy
eating, playing, and gossiping; they are close to their
families; they like pretty things to wear; and they both
have the capacity to be disappointed, get annoyed, be
happy. Their parents are also alike. They are knowl-
edgeable about the ways of their worlds. They also care
about their families, finding ingenious ways to meet
the recurring problem of producing income and allocat-
ing resources among family members—over time and
allowing for unexpected contingencies. So, a promising
route for exploring the underlying causes behind their
vastly different conditions of life would be to begin
by observing that the constraints the families face are
very different: that in some sense Desta’s family are far
more restricted in what they are able to be and do than
Becky’s.

Economics in large measure tries to uncover the pro-
cesses that influence how people’s lives come to be
what they are. The context may be a household, a vil-
lage, a district, a state, a country, or the whole world.
In its remaining measure, the discipline tries to iden-
tify ways to influence those very processes so as to
improve the prospects of those who are hugely con-
strained in what they can be and do. Modern economics,
by which I mean the style of economics taught and
practiced in today’s graduate schools, does the exer-
cises from the ground up: from individuals, through
the household, village, district, state, country, to the
whole world. In varying degrees the millions of individ-
ual decisions shape the eventualities people all face;
as both theory and evidence tell us that there are enor-
mous numbers of unintended consequences of what we
all do. But there is also a feedback, in that those conse-
quences go on to shape what people subsequently can
do and choose to do. For example, when Becky’s family
drive their cars or use electricity, or when Desta’s fam-
ily create compost or burn wood for cooking, they con-
tribute to global carbon emissions. Their contributions
are no doubt negligible, but the millions of such tiny
contributions cumulatively sum to a sizable amount,
having consequences that people everywhere are likely
to experience in different ways.

To understand Becky’s and Desta’s lives, we need
first of all to identify the prospects they face for trans-
forming goods and services into further goods and
services—now and in the future, under various con-
tingencies. Second, we need to uncover the charac-
ter of their choices and the pathways by which the
choices made by millions of households like Becky’s
and Desta’s go to produce the prospects they all face.
Third, and relatedly, we need to uncover the pathways
by which the families came to inherit their current
circumstances.

The last of these is the stuff of economic history. In
studying history we could, should we feel bold, take
the long view—from about the time agriculture came
to be settled practice in the Fertile Crescent (roughly,
Anatolia) some eleven thousand years ago—and try
to explain why the many innovations and practices
that have cumulatively contributed to the making of
Becky’s world either did not reach or did not take
hold in Desta’s part of the world. (Diamond (1997) is
an enquiry into this set of questions.) If we wanted a
sharper account, we could study, say, the past six hun-
dred years and ask how it is that, instead of the several
regions in Eurasia that were economically promising in
about 1400 c.e., it was the unlikely northern Europe
that made it and helped to create Becky’s world, even
while bypassing Desta’s. (Landes (1998) is an inquiry
into that question. Fogel (2004) explores the path-
ways by which Europe during the past three hundred
years has escaped permanent hunger.) As modern eco-
nomics is largely concerned with the first two sets of
enquiries, this article focuses on them. However, the
methods that today’s economic historians deploy to
answer their questions are not dissimilar to the ones I
describe below to study contemporary lives. The meth-
ods involve studying individual and collective choices
in terms of maximization exercises. The predictions of
the theories are then tested by studying data relat-
ing to actual behavior. Even the ethical foundations of
national economic policies involve maximization exer-
cises: the maximization of social well-being subject to
constraints. (The treatise that codified this approach to
economic reasoning was Samuelson (1947).)

3 The Household Maximization Problem

Both Becky’s and Desta’s households are micro-
economies. Each subscribes to particular arrangements
over who does what and when, recognizing that it faces
constraints on what its members are capable of doing.
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We imagine that both sets of parents have their respec-
tive families’ well-being in mind and want to do as
well as they can to protect and promote it.1 Of course,
both Becky’s and Desta’s parents would have a wider
notion of what constitutes their families than I have
allowed here. Maintaining ties with kinfolk would be
an important aspect of their lives, a matter I return to
later. One also imagines that Becky’s and Desta’s par-
ents are interested in their future grandchildren’s well-
being. But as they recognize that their children will in
turn care about their children, they are right to con-
clude by recursion that doing the best for their chil-
dren amounts to doing the best for their grandchil-
dren, for their great grandchildren, and so on, down
the generations.

Personal well-being is made up of a variety of con-
stituents: health, relationships, place in society, and
satisfaction at work are but four. Economists and psy-
chologists have identified ways to represent well-being
as a numerical measure. To say that someone’s well-
being is greater in situation Y than in situation Z is to
say that her well-being measure is numerically higher
in Y than in Z . A family’s well-being is an aggregate
of its members’ well-beings. As goods and services are
among the determinants of well-being (some important
examples are food, shelter, clothing, and medical care),
the problem that both Becky’s and Desta’s parents face
is to determine, from among those allocations of goods
and services that are feasible, the ones that are best
for their households. However, both pairs of parents
care not only about today, but also about the future.
Moreover, the future is uncertain. So when the parents
think about which goods and services their households
should consume, they are concerned not just with the
goods and services themselves, but also with when they
will be consumed (food today, food tomorrow, and so
on) and what will happen in the case of various contin-
gencies (food the day after tomorrow if rainfall turns
out to be bad tomorrow, and so forth). Implicitly or
explicitly, both sets of parents convert their experience
and knowledge into probabilistic judgments. Some of
the probabilities they attach to contingencies are no
doubt very subjective, but others, such as their pre-
dictions about the weather, are arrived at from long
experience.

1. As suggested by McElroy and Horney in 1981, a realistic alter-
native would be to suppose that household decisions are reached by
negotiation between the various parties (see Dasgupta 1993, chap-
ter 11). Qualitatively, nothing much is lost in my assuming optimizing
households here.

In subsequent sections we shall study the way in
which Becky’s and Desta’s parents allocate goods and
services across time and contingencies. But here we
shall keep the exposition simple and consider a model
that is static and deterministic. That is, we shall pretend
that the people live in a timeless world, and that they
are completely certain about all the information they
need in order to make their decisions.

Suppose that a certain household has N members,
whom we label 1,2, . . . , N . Let us think about how we
can appropriately model the well-being of household
member i. As has already been mentioned, well-being
is taken to be a real number that depends in some way
on the goods and services consumed and supplied by i.
It is traditional to divide goods and services into those
consumed and those supplied, and to use positive num-
bers to represent quantities of the former and negative
numbers for the latter. Imagine now that there are M
commodities in all. Let Yi(j) represent the quantity of
the jth commodity that is consumed or supplied by i.
By our convention, Yi(j) > 0 if j is consumed by i
(e.g., food eaten or clothing worn) and Yi(j) < 0 if j
is supplied by i (e.g., labor). Now consider the vector
Yi = (Yi(1), . . . , Yi(M)). It denotes the quantities of all
the goods and services consumed or supplied by i. Yi is
a point in RM—the Euclidean space of M dimensions.
We now let Ui(Yi) denote i’s well-being. Let us assume
that supplying goods and services decreases i’s well-
being, while consuming them increases it. Because the
goods that are supplied by i are measured as nega-
tive quantities, we can justifiably assume that Ui(Yi)
increases as any of its components Yi increases.

The next step is to generalize the model to a
household. The individual well-beings of the mem-
bers of the household can be collected together so
that they themselves form an N-dimensional vec-
tor, (U1(Y1), . . . , UN(YN)). The household’s well-being
is dependent in some way on this vector. That
is, we say that the well-being of the household is
W(U1(Y1), . . . , UN(YN)), for some functionW . (Utilitar-
ian philosophers have argued thatW is simply the sum
of the Ui.) We also make the natural assumption thatW
is an increasing function of each Ui (which is certainly
the case if W is the sum of the Ui).

Let Y denote the sequence (Y1, . . . ,YN ). Y is a point in
the NM-dimensional Euclidean space RNM . It can also
be thought of as the matrix you obtain if you make
a table of the amounts of each commodity consumed
or supplied by each member of the household. Now,
it is clear that not every Y in RNM can actually occur:
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after all, the total amount of any given commodity (in
the whole world, say) is finite. So we assume that Y
belongs to a certain set J, which we regard as the set
of all potentially feasible values of Y . Within J we iden-
tify a smaller set, F , of “actually feasible” values of Y .
This is the set of values of Y from which the household
could in principle choose. It is smaller than J because of
constraints that the household faces, such as the max-
imum amount of income it can earn. F is the house-
hold’s feasible set.2 The decision faced by a household
is to choose Y from the feasible set F so as to maximize
its well-beingW(U1(Y1), . . . , UN(YN)). This is called the
household maximization problem.

It is reasonable, and mathematically convenient, to
assume that the sets J and F are both closed and
bounded subsets of RNM , and that the well-being func-
tion W is continuous. Since every continuous function
on a closed bounded set has a maximum, it follows that
the household maximization problem has a solution.
If, in addition, W is differentiable, the theory of non-
linear programming can be used to identify the opti-
mality conditions the household’s choice must satisfy.
If F is a convex set and W is a concave function of Y ,
those conditions are both necessary and sufficient. The
lagrange multipliers [III.66] associated with F can
be interpreted as notional prices: they reflect the worth
to the household of slightly relaxing the constraints.

Let us conduct an exercise to test the power of the
modern economist’s way of studying choice. First, let
us assume that W is a symmetric and concave function
of the individual well-beings Ui (as would be the case
if W were the sum of the Ui). The symmetry assump-
tion means that if two individuals exchange their well-
beings, then W is unchanged; and concavity means,
roughly speaking, that, other things being equal, as a
Ui increases, the rate of increase of W does not rise.
Let us suppose in addition that the household members
are identical: that is, let us set all the functions Ui to be
equal to a single function, U , say. Assume also that U is
a strictly concave function of the Yi, which means that
the rate of increase of well-being declines as consump-
tion increases. Finally, assume that the feasible set F is
nonempty, convex, and symmetric. (Symmetry means
that if some Y is feasible, and the vector Z is the same
as Y except that the consumptions of a pair of indi-
viduals in the household have been exchanged, then
Z is also feasible.) From these assumptions it can be
shown that members of the household would be treated

2. Presently we will see why we need to distinguish J from F , rather
than looking just at F .

equally: that is, W is maximized when they all receive
the same bundle of goods and services.

At low levels of consumption, however, the hypoth-
esis that the function U is concave is unreasonable.
To see why, we should note that, typically, 60–75% of
the daily energy intake of someone in nutritional bal-
ance goes toward maintenance, while the remaining 25–
40% is expended in discretionary activities (work and
leisure). The 60–75% is rather like a fixed cost: over the
long run a person needs it as a minimum no matter
what he or she does. The simplest way to uncover the
implications of such fixed costs is to continue to sup-
pose that F is convex (which is the case, for example,
if there is a fixed quantity of food for allocation among
members of the household), but that U is a strictly con-
vex function at low intakes of food and a strictly con-
cave function thereafter. It is not hard to show that a
poor household in such a world will maximize its well-
being by allocating food unequally among its members,
while a rich household can afford the luxury of equal
treatment and will choose to distribute food equally.
Suppose, to take a very stylized example, that energy
requirement for daily maintenance is 1500 kcal and
that a household of four can obtain at most 5000 kcal
for consumption. Then equal sharing would mean that
no one would have sufficient energy for any work, so it
is better to share the food unequally. On the other hand,
if the household is able to obtain more than 6000 kcal,
it can share the food equally without jeopardizing its
future.

There are empirical correlates of this finding. When
food is very scarce, the younger and weaker members
of Desta’s household are given less to eat than the
others, even after allowance is made for differences in
their ages. In good times, though, Desta’s parents can
afford to be egalitarian. In contrast, Becky’s household
can always afford enough food. Her parents therefore
allocate food equally every day.

4 Social Equilibrium

Household transactions in Becky’s world are carried out
mostly in markets. The terms of trade are the quoted
market prices. In developing a mathematical construc-
tion of social outcomes, I continue to imagine, for sim-
plicity, a static, deterministic world. Let P (� 0) be the
vector of market prices and let M (� 0) be the vector
of a household’s endowments of goods and services.
(That is, for each commodity j, P(j) is the price of j
andM(j) is the amount of j that the household already
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has.) Recalling our convention that goods consumed

are of positive sign and goods supplied are of nega-

tive sign, define X =∑Yi. (Thus, X(j) =∑Yi(j) is the

total amount of commodity j that is consumed by the

household.) Then P · X is the total price of goods con-

sumed by the household, minus the total price of goods

supplied, and P·M is the total value of its endowments.

The feasible set F is the set of household choices Y that

satisfy the “budget” constraint P · (X −M) � 0.

The income that Becky’s household earns from the

assets it supplies to the market is determined by mar-

ket prices (Becky’s father’s salary, interest rates on

bank deposits, returns on shares owned). Those prices

in turn depend on the size and distribution of house-

hold endowments of goods and services and on house-

hold needs and preferences. They depend too on the

ability and willingness of institutions, such as pri-

vate firms and the government, to make use of the

rights they in turn have been awarded. These func-

tional relationships explain why Becky’s father’s skills

as a lawyer (itself an asset, termed “human capital” by

economists) would not be worth much in Desta’s vil-

lage, even though they are much valued in the United

States. In fact, it was a firm belief that lawyers would

continue to prove valuable in the United States that

encouraged Becky’s father to be a lawyer.

Although Desta’s household does operate in mar-

kets (when her father sells tef or her mother sells the

liquor she has brewed), it undertakes many transac-

tions directly with nature; in the local commons and

in farming, and in nonmarket relationships with oth-

ers in the village. Therefore the F that Desta’s house-

hold faces is not defined simply by a linear budget

inequality, as in the idealized model we have con-

structed to display Becky’s world, but also reflects the

constraints that nature imposes, such as soil produc-

tivity and rainfall, the assets it has access to, and the

terms and conditions involving transactions with oth-

ers in the village via nonmarket relationships, a mat-

ter I come to later. The constraints imposed by nature

are felt by Becky’s household too, but through market

prices. For example, should a drought lead to a fall in

world cereal production, it would become noticeable

to Becky’s household through the high price of cereal.

Desta’s household, in contrast, would notice it directly

from the reduced harvest from their field.

Desta’s household assets include the family home,

livestock, agricultural implements, and their half

hectare of land. The skills Desta’s family members have

accumulated in farming, managing livestock, and col-
lecting resources from the local commons are part
of their human capital. Those skills do not command
much return in the global marketplace, but they do
shape the household’s feasible set F and are vital to the
family’s well-being. Desta’s parents learned those skills
from their parents and grandparents, just as Desta and
her siblings have learned them from their parents and
grandparents. Desta’s family can also be said to own a
portion of the local commons: in effect, her household
shares its ownership with others in the village. Difficul-
ties in reaching and enforcing agreement with neigh-
bors over the use of the local commons are less severe
than they are in the case of global commons, such as
the atmosphere as a sink for carbon emissions. This
is not only because the required negotiations involve
far fewer people when the commons are local, but also
because there is likely to be greater congruence of opin-
ions and interests among the users. It helps too that the
parties are able to observe whether the agreements they
made over the use of local commons are being kept.
(See below in our discussion of insurance arrangements
in Desta’s world.)

Thus, the choices other people make affect the
choices that are available to individuals, which results
in feedback. In a market economy, the feedback is
in large part transmitted in prices. In nonmarket
economies the feedback is transmitted through the
terms in which households are able to negotiate with
one another.

Let us try to model this situation mathematically.
We start by imagining an economy of H households.
For ease of exposition, I shall suppose that a house-
hold’s well-being can be expressed directly in terms of
its aggregate consumption of goods and services, dis-
regarding how this consumption is distributed among
the individual members. Let Xh denote the consump-
tion vector in household h (with the usual sign conven-
tion), let Jh be the set of potentially feasible vectors Xh,
and let Wh(Xh) be h’s well-being.

Within h’s potentially feasible set Jh of consump-
tion vectors lies the actual feasible set Fh. In order
to model the feedback we shall explicitly recognize
that Fh depends on the consumptions of other house-
holds. That is, it is a function of the sequence (X1, . . . ,
Xh−1,Xh+1, . . . ,XH). To save space, we shall denote
this sequence, which consists of every household’s
consumption vector except h’s, by X−h. Formally, Fh
is a function (sometimes called a “correspondence”)
that takes objects of the form X−h to subsets of Jh.
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Household h’s economic problem is to choose its con-

sumption Xh from its feasible set Fh(X−h) in such a

way as to maximize its well-being Wh(Xh). The opti-

mum choice depends on h’s beliefs about X−h and the

correspondence Fh(X−h).
Meanwhile, all other households are making simi-

lar calculations. How can we unravel the feedbacks?

One way would be to ask people to disclose their

beliefs about the feedbacks. Fortunately, economists

avoid that route. So as to anchor their investigation,

economists study equilibrium beliefs; that is, beliefs

that are self-confirming. The idea is to identify states

of affairs where the choices people make on the basis

of their beliefs about the feedbacks are precisely those

that give rise to those very feedbacks. We call any

such state of affairs a social equilibrium. Formally, a

sequence (X∗1 , . . . ,X
∗
H) of household choices is called

a social equilibrium if, for every h, the choice X∗h of

household hmaximizes the well-beingWh(Xh) over all

choices of Xh in its feasible set Fh(X∗−h).
This raises an obvious question: does a social equilib-

rium exist? Classic papers by Nash in 1950 and Debreu

in 1952 showed that, under a fairly general set of con-

ditions, it always does. Here is a set of conditions that

Debreu identified. Assume that each well-being func-

tionWh is continuous and quasi-concave (which means

that for any potentially feasible choice X′h in Jh, the set

of Xh in Jh for whichWh(Xh) is greater than or equal to

Wh(X′h) is convex). Assume also that for every house-

hold h, the feasible set Fh (recall that this is a subset

of Jh) is nonempty, compact, and convex, and depends

continuously on the choices X−h made by other house-

holds. The proof that under the above conditions a

social equilibrium always exists is a relatively straight-

forward use of the kakutani fixed-point theorem

[V.13 §2], which is itself a generalization of Brouwer’s

fixed-point theorem. Alternative sets of sufficient con-

ditions for the existence of social equilibria (which

allow the feasible set Fh(X−h) to be nonconvex) have

been explored in recent years.

In Becky’s world, a social equilibrium is called a mar-

ket equilibrium. A market equilibrium is a price vec-

tor P∗ (� 0) and a consumption vector X∗h for each

household h, such that X∗h maximizes Wh(Xh) subject

to the budget constraint P∗ · (Xh −Mh) � 0, and such

that the demands for goods and services across house-

holds are feasible (i.e.,
∑
(Xh −Mh) � 0). That market

equilibria are social equilibria, in the sense in which we

have defined the latter term here, was demonstrated by

Arrow and Debreu in 1954. Debreu (1959) is the defini-
tive treatise on market equilibria. In that book, Debreu
followed the leads of Erik Lindahl and Kenneth J. Arrow,
by distinguishing goods and services not only in terms
of their physical characteristics, but also in terms of
the date and contingency in which they appear. Later
in this article we shall expand the commodity space in
that way to study savings and insurance decisions in
both Becky’s and Desta’s worlds.

One cannot automatically assume that a social equi-
librium is just or collectively good. Moreover, except
for the most artificial examples, social equilibrium is
not unique—which means that a study of equilibria
per se leaves open the question of which social equi-
librium we should expect to observe. In order to probe
that question, economists study disequilibrium behav-
ior and analyze the stability properties of the resulting
dynamic processes. The basic idea is to hypothesize
about the way people form beliefs about the way the
world works, track the consequences of those patterns
of learning, and check them against data. It is reason-
able to limit such a study by considering only those
learning processes that converge to a social equilibrium
in stationary environments. Initial beliefs would then
dictate which equilibrium is reached in the long run
(see, for example, Evans and Honkapohja 2000). Since
the study of disequilibria would lengthen this article
greatly, we shall continue to study social equilibria
here.

5 Public Policy

Economists distinguish between what they call private
goods and public goods. For many goods, consumption
is rivalrous: if you consume a bit more from a given sup-
ply of such a good (e.g., food), others have that much
less to consume. These are private goods. The way to
assess their consumption throughout the economy is to
add up the amounts consumed by all individual house-
holds; which is what we did in the previous section
when arriving at the notion of a social equilibrium. Not
all goods are like that, however. For example, the extent
of national security on offer to you is the same as that
on offer to all households in your country. In a just soci-
ety the law has that same property, as has the state: not
only is consumption not rivalrous, but in addition, no
one can be prevented from availing himself or herself
of the entire amount available in the economy. Public
goods are goods of this second kind. One models the
quantity of a public good as a number G, and the quan-
tity Gh consumed by each household h is deemed to
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equal G. An example of a public good that has a global
coverage is the Earth’s atmosphere: the whole world
benefits from it jointly.

If the supply of public goods is left to private indi-
viduals, then problems arise. For example, even though
everyone in a city would benefit from a cleaner, health-
ier environment, individuals have a strong incentive
to free-ride on others when it comes to paying for
that cleaner environment. Samuelson showed in 1954
that such a situation resembles the prisoner’s dilemma:
each party has a strategy that is best for him/her,
regardless of what strategies the other parties choose,
even though there is another set of strategies, one per
party, that is better for everybody. Under such circum-
stances, one usually needs public measures, such as
taxes and subsidies, in order for it to be in the interest
of private individuals to act in a way that implements
the collectively preferred outcomes. In other words, the
dilemma can be expected to be resolved effectively not
by markets but by politics. It is widely accepted in polit-
ical theory that government should be charged with
imposing taxes, subsidies, and transfers, and should be
engaged in supplying public goods. The government is
also the natural agency to supply infrastructure, such
as roads, ports, and electrical cables, requiring as they
do investments that are huge in comparison with indi-
vidual incomes. We shall now extend our earlier model
to include public goods and infrastructure, so that we
can study the government’s economic task.

Let us assume that social well-being is a numerical
aggregate of household well-beings. Thus, if V is social
well-being, we write it as V(W1, . . . ,WH). It is natural to
postulate that V increases as any Wh increases. (One
example of such a function V is the one prescribed
by utilitarian philosophy, namely, W1 + · · · +WH .) The
government chooses what quantities to supply of the
various public goods and infrastructure commodities.
These numbers can be modeled by two vectors, which
we will call G and I, respectively. The government also
chooses to impose on each household h certain trans-
fers Th of goods and services (for example, providing
health care and charging income tax). Let us write T
for the sequence (T1, . . . ,TH). Whether or not a partic-
ular choice of vectors G and I is actually feasible for
the government will depend on T , so we define KT to
be the set of feasible pairs of vectors (G, I), given the
choice of T .

Because we have introduced a new set of goods,
we must modify the household well-being func-
tions by enlarging their domains. The obvious nota-

tion to express this extra dependence is to write
Wh(Xh,G, I,Th) for the well-being of household h.
Moreover, h’s feasible set Fh now also depends on G,
I, and Th; so we write the set of feasible household
choices as Fh(G, I,Th,X−h).

To try to determine the optimum public policy,
imagine a two-stage game. The government has the
first move, choosing T and then G and I from KT .
Households go second, reacting to decisions made
by the government. Imagine that a social equilibrium
X∗ = (X∗1 , . . . ,X∗H) is reached and that the equilibrium
is unique. (We assume that if there are multiple equilib-
ria, the government can select among them by resort-
ing to public signals.) Clearly, this equilibrium X∗ is a
function of G, I, and T . An intelligent and benevolent
government will anticipate it and choose T , G, and I
from KT in such a way as to maximize the resulting
social well-being V(W(X∗1 ), . . . ,W(X

∗
H)).

The public policy problem we have just designed,
involving as it does a double optimization, is techni-
cally very difficult. It transpires, for example, that even
in some of the simplest model economies one can imag-
ine, Fh(G, I,Th,X−h) is not convex. This means that the
social equilibrium cannot be guaranteed to depend con-
tinuously on G, I, and T , as was shown by Mirrlees in
1984. This in turn means that standard techniques are
not suitable for the government’s optimization prob-
lem. In fact, of course, even “double optimization” is
a huge simplification. The government chooses; people
respond by trading, producing, consuming; the govern-
ment chooses again; people respond once again—and
so forth in an unending series of moves and counter-
moves. Identifying the optimum public policy involves
severe computational difficulties.

6 Matters of Trust: Laws and Norms

The previous examples demonstrate that a fundamen-
tal problem facing people who would like to trans-
act with one another concerns trust. For example, the
extent to which parties trust one another shapes the
sets Fh and KT . If the parties do not trust one another,
what could have been mutually beneficial transactions
will not take place. But what grounds does a person
have for trusting someone to do what he promises to
do under the terms of an agreement? Such grounds can
exist if promises can be made credible. Societies every-
where have constructed mechanisms to create credibil-
ity of this kind, but in different ways. What the mech-
anisms have in common, however, is that individuals
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who fail to comply with agreements without a good
reason are punished.

How does that common feature work?
In Becky’s world the rules governing transactions are

embodied in the law. The markets Becky’s family enters
are supported by an elaborate legal structure (a pub-
lic good). Becky’s father’s firm, for example, is a legal
entity; as are the financial institutions he deals with
in order to accumulate his retirement pension, to save
for Becky’s and Sam’s education, and so on. Even when
someone in the family goes to the grocery store, the
purchases (paid for with cash or by card) involve the
law, which provides protection for both parties (the
grocer, in case the cash is counterfeit or the card is
void; the purchaser, in case the product turns out on
inspection to be substandard). The law is enforced by
the coercive power of the state. Transactions involve
legal contracts backed by an external enforcer, namely,
the state. It is because Becky’s family and the grocery
store’s owner are confident that the government has
the ability and willingness to enforce contracts (i.e., to
continue to supply the public good in question) that
they are willing to make transactions.

What is the basis of that confidence? After all, the
contemporary world has shown that there are states
and there are states. Why should Becky’s family trust
the government to carry out its tasks in an honest man-
ner? A possible answer is that the government in her
country worries about its reputation: a free and inquis-
itive press in a democracy helps to sober the govern-
ment into believing that incompetence or malfeasance
would mean an end to its rule come the next election.
Notice how the argument involves a system of inter-
locking beliefs about the abilities and intentions of oth-
ers. The millions of households in Becky’s country trust
their government (more or less!) to enforce contracts,
because they know that government leaders know that
not to enforce contracts efficiently would mean being
thrown out of office. In their turn, each party to a con-
tract trusts the other to refrain from reneging (again,
more or less!), because each knows that the other knows
that the government can be trusted to enforce con-
tracts. And so on. Trust is maintained by the threat
of punishment (a fine, a jail term, dismissal, or what-
ever) for anyone who breaks a contract. Once again, we
are in the realm of equilibrium beliefs, held together
by their own bootstraps. Mutual trust encourages peo-
ple to seek out mutually beneficial transactions and
engage in them. As the formal argument that supports
the above claim is very similar to the one showing that

social norms contain mechanisms for enforcing agree-
ments, we turn to the place of social norms in people’s
lives.

Although the law of contracts exists also in Desta’s
country, her family cannot depend on it because the
nearest courts are far from their village. Moreover,
there are no lawyers in sight. As transport is enor-
mously costly, economic life is shaped outside a for-
mal legal system. In short, crucial public goods and
infrastructure are either unavailable, or, at best, in
short supply. But even though there is no external
enforcer, Desta’s parents do make transactions with
others. Credit (not dissimilar to insurance in her village)
involves saying, “I will lend to you now if you promise
to repay me when you can.” Saving for funerals involves
saying, “I agree to abide by the terms and conditions of
the iddir.” And so on. But why should the parties have
any confidence that the agreements will not be broken?

Such confidence can be justified if agreements are
mutually enforced. The basic idea is this: a credible
threat by members of a community that stiff sanc-
tions will be imposed on anyone who breaks an agree-
ment can deter everyone from breaking it. The problem
is then to make the threat credible. In Desta’s world
credibility is achieved by recourse to social norms of
behavior.

By a social norm we mean a rule of behavior followed
by members of a community. A rule of behavior (or
“strategy” in economic parlance) reads like, “I will do
X if you do Y,” “I will do P if Q happens,” and so forth.
For a rule of behavior to be a social norm, it must be in
the interest of everyone to act in accordance with the
rule if all others act in accordance with it. Social norms
are equilibrium rules of behavior. We will now see how
social norms work and how transactions based on them
compare with market-based transactions. To do this we
will study insurance as a commodity.

7 Insurance

To insure oneself against a risk is to act in ways
to reduce that risk. (Formally, a random variable
[III.73 §4] X̃ is said to be riskier than a random vari-
able Ỹ if there is a random variable Z̃ with zero mean
such that X̃ has the same distribution as Ỹ + Z̃ . In
this case, X̃ and Ỹ have the same mean but X̃ is more
“spread out.”) As long as it does not cost too much, risk-
averse households will want to reduce risk by purchas-
ing insurance: in fact, avoiding risk would seem to be a
universal urge. To formalize these notions, consider an
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isolated village, such as Desta’s. Suppose for simplicity
that it contains H identical households. If household
h’s food consumption is Xh (represented by a single
real number), let us say that its well-being is W(Xh).
We shall assume that W ′(Xh) > 0 (that is, more food
leads to greater well-being) and that W ′′(Xh) < 0 (the
more food you already have, the less you benefit from
yet more). We shall confirm below that the second prop-
erty of W , its strict concavity, implies, and is implied
by, risk aversion; but the basic reason is simple: if W is
strictly concave, then you gain less when you are lucky
than you lose when you are unlucky.

For simplicity, let us suppose that the production of
food by a household h, which is subject to chance fac-
tors such as the weather, involves no effort. Since the
output is uncertain, we represent it by a random vari-
able X̃h, with expected value µ, which is assumed to be
positive. We shall denote expectations by E.

If a household h is completely self-sufficient, then its
expected well-being is simply E(W(X̃h)). However, the
strict concavity ofW implies thatW(µ) > E(W(X̃h)). To
put this in words: h’s well-being at the average level of
production is greater than the expectation of h’s well-
being if the production is random. This means that h
will prefer a sure level of consumption to a risky one
with mean equal to that sure level. In short, h is risk
averse. Define a number µ̄ by W(µ̄) = E(W(X̃h)). So µ̄
is the level of production that achieves the expected
well-being. This will be less than µ, and so µ − µ̄ is a
measure of the cost of the risk that a self-sufficient
household bears. Notice that the greater the “curva-
ture” of W is, the greater the cost is of the risk asso-
ciated with X̃h. (A useful measure of curvature turns
out to be −XW ′′(X)/W ′(X). We will make use of this
measure when discussing intertemporal choices.) To
see how households could gain by pooling their risks,
let us write X̃h = µ + ε̃h, where ε̃h is a random vari-
able with mean zero, variance σ2, and finite support.
Suppose for simplicity that the random variables ε̃h
are identical (i.e., they do not depend on h). Let the
correlation coefficient of any two of these distribu-
tions be ρ. It turns out that, as long as ρ < 1, house-
holds can reduce their risks by agreeing to share their
outputs. Suppose that households are able to observe
one another’s outputs. Given that the random variables
X̃h are identical, the obvious insurance scheme is to
share out the outputs equally. Under this scheme, h’s
uncertain food consumption becomes the average of
X̃1, . . . , X̃H , which is an improvement on self-sufficiency
because E(W(

∑
X̃h′/H)) > E(W(X̃h)). The problem is

that, without an enforcement mechanism, the agree-
ment to share will not stick, because once each house-
hold knows how much food every household has pro-
duced, all but the unluckiest households will wish to
renege. To see why, notice first that the luckiest house-
holds will renege because their outputs are above the
average; but this means that the next luckiest set of
households will renege because their outputs are above
the reduced average; and so on, down to the unlucki-
est households. Since households know in advance that
this will happen if there are no enforcement mecha-
nisms, they will not enter the scheme in the first place:
the only social equilibrium is pure self-sufficiency and
there is no pooling of risk.

Let us call the insurance game just described the
stage game. Although pure self-sufficiency is the only
social equilibrium for the stage game, we shall now see
that the situation changes if the game is played repeat-
edly. To model this, let us use the letter t to denote
time, and let us take time to be a nonnegative integer.
(The game might, for instance, take place every year,
with 0 standing for the current year.) Let us assume
that the villagers face the same set of risks in each
time period, and that the risk in one year is indepen-
dent of the risks in all other years. Also assume that,
in each period, once food outputs are realized, house-
holds decide independently of one another whether
they will abide by the agreement to share their produce
equally or whether they will renege on it.

Although future well-being is important to a house-
hold, it will typically be less important than present
well-being. To model this we introduce a positive
parameter δ, which measures how much a household
discounts its future well-being. The assumption is that,
when making calculations at t = 0, a household divides
its well-being at time t by a factor (1+ δ)t : that is,
the importance decays by a certain fixed percentage
at each time period. We shall now show that, provided
δ is sufficiently small (i.e., provided that households
care enough about their future well-being), there is a
social equilibrium in which households abide by the
agreement to share their aggregate output equally.

Let Ỹh(t) be the uncertain amount of food avail-
able to household h at time t. If all households are
participating in the agreement, then Ỹh(t) will be
µ + (∑ ε̃h′)/H, and if there is no agreement, then it
will be µ + ε̃h. At time t = 0 the total expected
well-being of household h, present and future, is∑∞

0 E(W(Ỹh(t)))/(1+ δ)t . (To calculate this we took,
for each t � 0, the expected well-being of h at time t
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and divided it by (1+δ)t . Then we added these numbers

up.)

Now consider the following strategy that h might

adopt: it begins by participating in the insurance

scheme and continues to participate so long as no

household has reneged on the agreement; but it with-

draws from the scheme from the date following the first

violation of the agreement by some household. Game

theorists have christened this the “grim strategy,” or

simply grim, because of its unforgiving nature. Let us

see how grim could support the original agreement to

share aggregate output equally at every date. (For a gen-

eral account of repeated games and the variety of social

norms that can sustain agreements, see Fudenberg and

Maskin (1986).)

Suppose that household h believes that all other

households have chosen grim. Then h knows that none

of the other households will be the first to defect. What

should h do then? We will show that if δ is small

enough, h can do no better than play grim. As the same

reasoning would be applicable to all other households,

we should conclude that, for small enough values of δ,

grim is an equilibrium strategy in the repeated game.

But if all households play grim, then no household will

ever defect. Grim can therefore function as a social

norm for sustaining cooperation. Let us see how the

argument works.

The basic idea is simple. As all other households

are assumed to be playing grim, household h would

enjoy a one-period gain by defecting if its own output

exceeded the average output of all households. But if h
defects in any period, all other households will defect

in all following periods (they are assumed to be playing

grim, remember). Therefore, h’s own best option in all

following periods will be to defect also, which means

that subsequent to a single deviation by h, the out-

come can be predicted to be pure self-sufficiency. So,

set against a one-period gain that household h would

enjoy if its output exceeded the average output of all

households is the loss it would suffer from the follow-

ing date because of the breakdown of cooperation. That

loss exceeds the one-period gain if δ is small enough.

So, if δ is sufficiently small, householdhwill not defect,

but will adopt grim; implying that grim is an equilib-

rium strategy and equal sharing among households in

every period is a social equilibrium.

To formalize the above argument, we consider the sit-

uation in which h’s incentive to defect is greatest. Let A
and B be the minimum and maximum possible outputs

of any household. Then the maximum gain that house-
hold h could possibly enjoy from defecting at t = 0
arises if h happens to produce B and all other house-
holds happen to produce A. Since the average output
in this eventuality is (B + (H − 1)A)/H, the one-period
gain that household h would enjoy from defecting is

W(B)−W
(
B + (H − 1)A

H

)
.

But h knows that if it defects, the expected loss in
each subsequent period (i.e., from t = 1 onward) will
be E(W(

∑
X̃h′/H))− E(W(X̃h)). In order to simplify

the notation, let us write E(W(
∑
X̃h′/H))− E(W(X̃h))

as L. Household h can then calculate that the expected
total loss it will suffer from defecting at t = 0 is
L
∑∞

1 (1+ δ)−t , which equals L/δ. If this future loss
exceeds the present gain from defecting, then house-
hold h will not want to defect. In other words, h will
not want to defect if

L
δ
> W(B)−W

(
B + (H − 1)A

H

)
or

δ < L
/(
W(B)−W

(
B + (H − 1)A

H

))
. (1)

But if h does not find it in its interest to defect when the
one-period gain from defection is the largest possible,
it will certainly not want to defect in any other situa-
tion. We conclude that if inequality (1) holds, then grim
is an equilibrium strategy and equal sharing among
households in every period is a resulting social equi-
librium. Notice that, as we said, this will happen if δ is
sufficiently small.

We usually reserve the term “society” to denote a
collective that has managed to find a mutually bene-
ficial equilibrium. Notice, however, that another social
equilibrium of the repeated game is each household
for itself. If everyone believed that all others would
break the agreement from the start, then everyone
would break the agreement from the start. Noncoop-
eration would involve each household selecting the
strategy: renege on the agreement. Failure to cooperate
could be due simply to a collection of unfortunate, self-
confirming beliefs, and nothing else. It is also easy to
show that noncooperation is the only social equilibrium
of the repeated game if

δ > L
/(
W(B)−W

(
B + (H − 1)A

H

))
. (2)

We now have in hand a tool for understanding how
a community can slide from cooperative to noncoop-
erative behavior. For example, political instability (in
the extreme, civil war) can mean that households are
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increasingly concerned that they will be forced to dis-
perse from their village. This translates into an increase
in δ. Similarly, if households fear that their government
is now bent on destroying communal institutions in
order to strengthen its own authority, δ will increase.
But from (1) and (2) we know that if δ increases suffi-
ciently, then cooperation ceases. The model therefore
offers an explanation for why, in recent decades, coop-
eration at the local level has declined in the unsettled
regions of sub-Saharan Africa. Social norms work only
when people have reasons to value the future benefits
of cooperation.

In the above analysis, we allowed for the possibility
that, in each period, household risks were positively
correlated. Moreover, the number of households in any
village is typically not large. These are two reasons why
Desta’s household is unable to attain anything like full
insurance against the risk they face. Becky’s parents, in
contrast, have access to an elaborate set of insurance
markets that pool the risks of hundreds of thousands
of households across the country (even the world, if
the insurance company is a multinational). This helps
to reduce individual risk more than Desta’s parents can,
because, first, spatially distant risks are more likely to
be uncorrelated, and, second, Becky’s parents can pool
their risk with many more households. With enough
households and enough independence of their risk, the
law of large numbers [III.73 §4] practically guaran-
tees that equal sharing among those households will
provide each one with the average µ. This is an advan-
tage of markets, backed by the coercive power of the
state as an external enforcer: in a competitive market,
insurance contracts are available, enabling people who
do not know one another to do business through third
parties, in this case the insurance companies.

Many of the risks that Desta’s parents face, such as
low rainfall, will in fact be very similar for all house-
holds in their village. Since the insurance they are able
to obtain within their village is therefore very limited,
they adopt additional risk-reducing strategies, such as
diversifying their crops. Desta’s parents plant maize,
tef, and enset (an inferior crop), with the hope that even
if maize were to fail one year, enset would not let them
down. That the local resource base in Desta’s village
is communally owned probably also has something to
do with a mutual desire to pool risks. Woodlands are
spatially nonhomogeneous ecosystems. In one year one
group of plants bears fruit, in another year some other
group does. If the woodland were divided into private
parcels, each household would face a greater risk than

it would under communal ownership. The reduction in
individual household risks owing to communal own-
ership may be small, but as average incomes are very
low, household benefits from communal ownership are
large. (For a fuller account of the management of local
commons in poor countries, see Dasgupta (1993).)

8 The Reach of Transactions
and the Division of Labor

Payments in Becky’s world are made in money, ex-
pressed in U.S. dollars. Money would not be required
in a world where everyone was known to be utterly
trustworthy, people did not incur computational costs,
and transactions were costless: simple IOUs, stipulat-
ing repayment in terms of specific good and services,
would suffice in that world. However, we do not live
in that world. A debt in Becky’s world involves a con-
tract specifying that the borrower is to receive a certain
number of dollars and that he promises to repay the
lender dollars in accordance with an agreed schedule.
When signing the contract the relevant parties entertain
certain beliefs about the dollar’s future value in terms
of goods and services. Those beliefs are in part based
on their confidence in the U.S. government to manage
the value of the dollar. Of course, the beliefs are based
on many other things as well; but the important point
remains that money’s value is maintained only because
people believe it will be maintained (the classic refer-
ence on this is Samuelson (1958)). Similarly, if, for what-
ever reason, people feared that the value would not be
maintained, then it would not be maintained. Currency
crashes, such as the one that occurred in Weimar Ger-
many in 1922–23, are an illustration of how a loss in
confidence can be self-fulfilling. Bank runs share that
feature, as do stock market bubbles and crashes. To
put it formally, there are multiple social equilibria, each
supported by a set of self-fulfilling beliefs.

The use of money enables transactions to be anony-
mous. Becky frequently does not know the salespeople
in the department stores of her town’s shopping mall,
nor do they know Becky. When Becky’s parents borrow
from their bank, the funds made available to them come
from unknown depositors. Literally millions of transac-
tions occur each day between people who have never
met and will never meet in the future. The problem
of creating trust is solved in Becky’s world by build-
ing confidence in the medium of exchange: money. The
value of money is maintained by the state, which has
an incentive to maintain it because, as we saw earlier, it
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wishes not to destroy its reputation and be thrown out
of office.

In the absence of infrastructure, markets are unable
to penetrate Desta’s village. Becky’s suburban town, by
contrast, is embedded in a gigantic world economy.
Becky’s father is able to specialize as a lawyer only
because he is assured that his income can be used to
purchase food in the supermarket, water from the tap,
and heat from cooking ovens and radiators. Specializa-
tion enables people to produce more in total than they
would be able to if they were each required to diversify
their activities. Adam Smith famously remarked that
the division of labor is limited by the size of the mar-
ket. Earlier we noted that Desta’s household does not
specialize, but produces pretty much all of its daily
requirements from a raw state. Moreover, the many
transactions it enters into with others, being supported
by social norms, are of necessity personalized, thus
limited. There is a world of a difference between laws
and social norms as the basis of economic activities.

9 Borrowing, Saving, and Reproducing

If you do not have insurance, then your consumption
will depend heavily on various contingencies. Purchas-
ing insurance helps to smooth out this dependence. We
shall see presently that the human desire to smooth
out the dependence on contingencies is related to the
equally common desire to smooth out consumption
across time: they are both a reflection of the strict con-
cavity of the well-being functionW . The flow of income
over a person’s lifetime tends not to be smooth, so
people look for mechanisms, such as mortgages and
pensions, that enable them to transfer consumption
across time. For instance, Becky’s parents took out a
mortgage on their house because at the time of pur-
chase they did not have sufficient funds to finance it.
The resulting debt decreased their future consumption,
but it enabled them to buy the house at the time they
did and thereby raise current consumption. Becky’s
parents also pay into a pension fund, which transfers
present consumption to their retired future. Borrow-
ing for current consumption transfers future consump-
tion to the present; saving achieves the reverse. Since
capital assets are productive, they can earn positive
returns if they are put to good use. This is one rea-
son why, in Becky’s world, borrowing involves having
to pay interest, while saving and investing earn positive
returns.

Becky’s parents also make a considerable investment
in their children’s education, but they do not expect to

be repaid for this. In Becky’s world, resources are trans-

ferred from parents to children. Children are a direct

source of parental well-being; they are not regarded as

investment goods.

A simple way to formulate the problem Becky’s par-

ents face when they arrange transfers of resources

across time is to imagine that they view themselves as

part of a dynasty. This means that, in reaching their

consumption and saving decisions, they take explicit

note not only of their own well-being and the well-being

of Becky and Sam, but also of the well-being of their

potential grandchildren, great grandchildren, and so

on, down the generations.

To analyze the problem, it is notationally tidiest to

assume that time is a continuous variable. At time t
(which we take to be greater than or equal to 0), let

K(t) denote household wealth and X(t) the consump-

tion rate, which is some aggregate based on the mar-

ket prices of what they consume. In practice, a house-

hold will want to smooth its consumption across both

time and contingencies, but in order to concentrate on

time we shall consider a deterministic model. Suppose

that the market rate of return on investment is a pos-

itive constant r . This means that if household wealth

at time t is K(t), then the income it earns from that

wealth at t is rK(t). The dynamical equation describing

the dynasty’s consumption options over time is then

dK(t)/dt = rK(t)−X(t). (3)

The right-hand side of the equation is the difference

between the dynasty’s investment income at time t
(which is r times its wealth at t) and its consumption

at t. This amount is saved and invested, so it gives the

rate of increase of the dynasty’s wealth at t. The present

time is t = 0 andK(0) is the wealth that Becky’s parents

have inherited from the past. Earlier, we assumed that

the household allocates its consumption across contin-

gencies by maximizing its expected well-being. The cor-

responding quantity for allocating consumption across

time is ∫∞
0
W(X(t))e−δt dt, (4)

where, as before, we assume that W satisfies the con-

ditions W ′(X) > 0 and W ′′(X) < 0. The parameter δ
is once again a measure of the rate at which future

well-being is discounted—owing to shortsightedness,

the possibility of dynastic extinction, and so on. The

difference between this and the previous δ is that now

we are considering a continuous model rather than a
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discrete one, but the decay is still assumed to be expo-
nential. In Becky’s world the rate of return on invest-
ment is large; that is, investment is very productive. So
it makes empirical sense to suppose that r > δ. We
will see presently that this condition provides Becky’s
parents with the incentive to accumulate wealth and
pass it on to Becky and Sam, who in turn will accumu-
late their wealth and pass that on, and so on. For sim-
plicity, let us suppose that the “curvature” of W , which
is −XW ′′(X)/W ′(X), is equal to a parameter α, whose
value exceeds 1.3 As we saw earlier, strict concavity
of W means that you gain less from increasing con-
sumption than you lose from decreasing it by the same
amount. The strength of this effect is measured by α:
the larger it is, the greater the benefit of any smoothing
you are able to do.

Becky’s parents’ problem at t = 0 is to maximize the
quantity in (4) by making a suitable choice of the rate at
which they consume their wealth (namely, X(t)), sub-
ject to the condition (3), together with the conditions
that K(t) and X(t) should not be negative.4 This is a
problem in the calculus of variations [III.96]. But
it is of a somewhat unusual form, in that the horizon
is infinite and there is no boundary condition at infin-
ity. The reason for the latter is that Becky’s parents
would ideally like to determine the level of assets that
the dynasty ought to aim at in the long run; they do
not think it is appropriate to specify it in advance. If
we assume for the moment that a solution to the opti-
mization problem exists, then it turns out that it must
satisfy the Euler–Lagrange equation:

α(dX(t)/dt) = (r − δ)X(t), t � 0. (5)

This equation is easily solved, and gives

X(t) = X(0)e(r−δ)t/α. (6)

3. This means that W has the form B −AX−(α−1), where A (which
is a positive number) and B (which can be of either sign) are the two
arbitrary constants that arise when we integrate the curvature of W
to arrive at W itself. We will see presently that the values that are
adopted for A and B have no bearing on the decisions that Becky’s
parents will want to make; that is, Becky’s parents’ optimum decision
is independent of A and B. Notice that, as α > 1, W(X) is bounded
above. The above form is particularly useful in applied work, because
in order to estimate W(X) from data on household consumption, one
has to estimate only one parameter, α. Empirical studies of saving
behavior in the United States have revealed that α is in the range 2–4.

4. This problem originated in a classic paper by Ramsey (1928).
Ramsey insisted that δ = 0 and devised an ingenious argument to
show that an optimum function X(t) exists despite the fact that the
integral in (4) does not converge. For simplicity, I am assuming δ > 0.
As W(X) is bounded above and r > 0 (meaning that it is feasible for
X(t) to grow indefinitely), we should expect (4) to converge if X(t) is
allowed to rise fast enough.

However, we are free to choose X(0). Koopmans
showed in 1965 that X(t) in (6) is optimal if
W ′(X(t))K(t)e−δt → 0 as t → ∞. It transpires that,
for the model in hand, there is a value of X(0), which
we shall write as X∗(0), such that the condition (3)
and Koopmans’s asymptotic condition are satisfied
by the function X(t) given in (6). This implies that
X∗(0)e(r−δ)t/α is the unique optimum. Consumption
grows at the percentage rate (r − δ)/α and dynas-
tic wealth accumulates continually in order to make
that rising consumption level possible. All other things
being equal, the larger the productivity of investment r ,
the higher the optimum rate of growth of consumption.
By contrast, the larger the value of α, the lower the rate
of growth of consumption, since there is a greater wish
to spread it out among the generations.

Let us conduct a simple exercise with our finding.
Suppose the annual market rate of return is 4% (i.e.,
r = 0.04 per year)—a reasonable figure for the United
States—that δ is small, and that α = 2. Then we can
conclude from (6) that optimum consumption will grow
at an annual rate of 2%; meaning that it will double
every thirty-five years—roughly, every generation. The
figure is close to the postwar growth experience in the
United States.

For Desta’s parents the calculations are very differ-
ent, since they are heavily constrained in their ability
to transfer consumption across time. For example, they
have no access to capital markets from which they can
earn a positive return. Admittedly, they invest in their
land (clearing weeds, leaving portions fallow, and so
forth), but that is to prevent the productivity of the
land from declining. Moreover, the only way they are
able to draw on the maize crop following each harvest
is to store it. Let us see how Desta’s household would
ideally wish to consume that harvest over the annual
cycle.

Let K(0) be the harvest, measured, say, in kilocalo-
ries. As rats and moisture are a potent combination,
stocks depreciate. If X(t) is the planned rate of con-
sumption and γ the rate of depreciation of the maize
stock, then the stock at t satisfies the equation

dK(t)/dt = −X(t)− γK(t). (7)

Here, γ is assumed to be positive and both X(t)
and K(t) nonnegative. Imagine that Desta’s parents
regard their household’s well-being over the year
to be

∫ 1
0 W(X(t))dt. As with Becky’s household, let

−XW ′′(X)/W ′(X) be equal to a number α > 1.
Desta’s parents’ optimization exercise is to maximize
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∫ 1
0 W(X(t))dt, subject to (7) and the condition that
K(1) � 0.

This is a straightforward problem in the calculus of
variations. It can be shown that the optimum maize
consumption declines over time at the rate γ/α. This
explains why Desta’s family consume less and become
physically weaker as the next harvest grows nearer. But
Desta’s parents have realized that the human body is a
more productive bank. So the family consumes a good
deal of maize during the months following each har-
vest so as to accumulate body mass, but they draw on
that reserve during the weeks before the next harvest,
when maize reserves have been depleted. Across the
years maize consumption assumes a sawtooth pattern.
(Readers may wish to construct the model that incorpo-
rates the body as a store of energy: see Dasgupta (1993)
for details.)

As Desta and her siblings contribute to daily house-
hold production, they are economically valuable assets.
Her male siblings, however, offer a higher return to
their parents, because the custom (itself a social equi-
librium!) is for girls to leave home on marriage and for
boys to inherit the family property and offer security to
their parents in old age. Because of an absence of cap-
ital markets and state pensions, male children are an
essential form of investment. The transfer of resources
in Desta’s household, in contrast to Becky’s, will be
from the children to their parents.

The under-five mortality rate in Ethiopia was, until
relatively recently, in excess of 300 per 1000 births.
So, parents had to aim at large families if they were
to have a reasonable chance of being looked after by a
male child in their old age. But fertility is not entirely
a private matter, since people are influenced by the
choices of others. This gives rise to a certain inertia
in household behavior even under changing circum-
stances, which is why even though the under-five mor-
tality rate has fallen in Ethiopia in recent decades, Becky
has five siblings.5 High population growth has placed
additional pressure on the local ecosystem, meaning
that the local commons that used to be managed in

5. See Dasgupta (1993) for the use of interdependent preferences to
explain fertility behavior. In the notation of the section on social equi-
libria, we are to suppose that household h’s well-being has the form
Wh(Xh,X−h), where one of the components of Xh is the number of
births in the household, and that the higher the fertility rate is among
other households in the village, the larger the desired number of chil-
dren in h. The theory based on interdependent preferences interprets
transitions from high to low fertility rates as bifurcations. Fertility
rates are expected to decline even in Ethiopia. Interdependent pref-
erences are currently being much studied by economists (see Durlauf
and Young 2001).

a sustainable manner no longer are. That they are
not is reflected in Desta’s mother’s complaint that the
daily time and effort required to collect from the local
commons has increased in recent years.

10 Differences in Economic
Life among Similar People

In this article, I have used Becky’s and Desta’s experi-
ences to show how it can be that the lives of essentially
very similar people can become so different (for further
elaboration, see Dasgupta (2004)). Desta’s life is one of
poverty. In her world people do not enjoy food security,
do not own many assets, are stunted and wasted, do not
live long (life expectancy at birth in Ethiopia is under
fifty years), cannot read or write, are not empowered,
cannot insure themselves well against crop failure or
household calamity, do not have control over their own
lives, and live in unhealthy surroundings. The depriva-
tions reinforce one another, so that the productivity of
labor effort, ideas, physical capital, and of land and nat-
ural resources are all very low and remain low. The rate
of return on investment is zero, perhaps even negative
(as it is with the storage of maize). Desta’s life is filled
with problems each day.

Becky suffers from no such deprivation (for exam-
ple, life expectancy at birth in the United States is
nearly eighty years). She faces what her society calls
challenges. In her world, the productivity of labor
effort, ideas, physical capital, and of land and natu-
ral resources are all very high and continually increas-
ing; success in meeting each challenge reinforces the
prospects of success in meeting further challenges.

We have seen, however, that, despite the enormous
differences between Becky’s and Desta’s lives, there is
a unified way to view them, and that mathematics is an
essential language for analyzing them. It is tempting to
pronounce that life’s essentials cannot be reduced to
mere mathematics; but in fact mathematics is essen-
tial to economic reasoning. It is essential because in
economics we deal with quantifiable objects of vital
interest to people.
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VII.9 The Mathematics of Money
Mark Joshi

1 Introduction

The last twenty years have seen an explosive growth
in the use of mathematics in finance. Mathematics has
made its way into finance mainly via the application of
two principles from economics: market efficiency and
no arbitrage.

Market efficiency is the idea that the financial mar-
kets price every asset correctly. There is no sense in
which a share can be a “good buy,” because the mar-
ket has already taken all available information into
account. Instead, the only way that we have of dis-
tinguishing between two assets is their differing risk
characteristics. For example, a technology share might
offer a high rate of growth but also a high probability
of losing a lot of money, while a U.K. or U.S. govern-
ment bond would offer a much smaller rate of growth,
but an extremely low probability of losing money. In
fact, the probability of loss is so small in the latter case

that these instruments are generally regarded as being
riskless.

No arbitrage, the second fundamental principle, sim-
ply says that it is impossible to make money without
taking risk. It is sometimes called the “no free lunch”
principle. In this context, “making money” is defined
to mean making more money than could be obtained
by investing in a riskless government bond. A simple
application of the principle of no arbitrage is that if one
changes dollars into yen and then the yen into euros
and then the euros back into dollars, then, apart from
any transaction costs, one will finish with the same
number of dollars that one started with. This forces a
simple relationship between the three foreign exchange
(FX) rates:

FX$,€ = FX$,�FX�,€. (1)

Of course, occasional anomalies and exceptions to
this relationship can occur, but these will be spotted
by traders. The exploitation of the resulting arbitrage
opportunity will quickly move the exchange rates until
the opportunity disappears.

One can roughly divide the use of mathematics in
finance into four main areas.

Derivatives pricing. This is the use of mathematics
to price securities (i.e., financial instruments), whose
value depends purely upon the behavior of another
asset. The simplest example of such a security is a
call option, which is the right, but not the obligation,
to buy a share for a pre-agreed price, K, on some
specified future date. The pre-agreed price is called
the strike. The pricing of derivatives is heavily reliant
upon the principle of no arbitrage.

Risk analysis and reduction. Any financial institution
T&T note: check
word spacing
before press.has holdings and borrowings of assets; it needs to

keep careful control of how much money it can lose
from adverse market moves and to reduce these risks
as necessary to keep within the owners’ desired risk
profiles.

Portfolio optimization. Any investor in the markets
will have notions of how much risk he wants to take
and how much return he wants to generate, and most
importantly of where he sees the trade-off between
the two. There is, therefore, a theory of how to invest
in shares in such a way as to maximize the return at
a given level of risk. This theory relies greatly on the
principle of market efficiency.

Statistical arbitrage. Crudely put, this is using mathe-
matics to predict price movements in the stock mar-
ket, or indeed in any other market. Statistical arbi-
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trageurs laugh at the concept of market efficiency,

and their objective is to exploit the inefficiencies in

the market to make money.

Of these four areas, it is derivatives pricing that has

seen the greatest growth in recent years, and which

has seen the most powerful application of advanced

mathematics.

2 Derivatives Pricing

2.1 Black and Scholes

Many of the foundations of mathematical finance were

laid down by Bachelier (1900) in his thesis; his math-

ematical study of brownian motion [IV.24] preceded

that of Einstein (see Einstein (1985), which contains his

1905 paper). However, his work was neglected for many

years and the great breakthrough in derivatives pricing

was made by Black and Scholes (1973). They showed

that, under certain reasonable assumptions, it was pos-

sible to use the principle of no arbitrage to guarantee

a unique price for a call option. The pricing of deriva-

tives had ceased to be an economics problem and had

become a mathematics problem.

The result of Black and Scholes was deduced by ex-

tending the principle of no arbitrage to encompass the

idea that an arbitrage could result not just from static

holdings of securities, but also from continuously trad-

ing them in a dynamic fashion depending upon their

price movements. It is this principle of no dynamic

arbitrage that underpins derivatives pricing.

In order to properly formulate the principle, we have

to use the language of probability theory.

An arbitrage is a trading strategy in a collection of

assets, the portfolio, such that

(i) initially the portfolio has a value of zero;

(ii) the probability that the portfolio will have a nega-

tive value in the future is zero;

(iii) the probability that the portfolio will have a posi-

tive value in the future is greater than zero.

Note that we do not require the profit to be certain;

we merely require that it is possible that money may

be made with no risk taken. (Recall that the notion of

making money is by comparison with a government

bond. The same is true of the “value” of a portfolio: it

will be considered positive in the future if its price has

increased by more than that of a government bond.)

The prices of shares appear to fluctuate randomly,
but often with a general upward or downward ten-
dency. It is natural to model them by means of a Brown-
ian motion with an extra “drift term.” This is what Black
and Scholes did, except that it was the logarithm of the
share price S = St that was assumed to follow a Brown-
ian motionWt with a drift. This is a natural assumption
to make, because changes in prices behave multiplica-
tively rather than additively. (For example, we measure
inflation in terms of percentage increases.) They also
assumed the existence of a riskless bond, Bt , grow-
ing at a constant rate. To put these assumptions more
formally:

log S = log S0 + µt + σWt, (2)

Bt = B0ert. (3)

Notice that the expectation of log S is log S0 + µt, so it
changes at a rate µ, which is called the drift. The term
σ is known as the volatility. The higher the volatility,
the greater the influence of the Brownian motion Wt ,
and the more unpredictable the movements of S. (An
investor will want a large µ and a small σ ; however,
market efficiency ensures that such shares are rather
rare.) Under additional assumptions such as that there
are no transaction costs, that trading in a share does
not affect its price, and that it is possible to trade con-
tinuously, Black and Scholes showed that if there is no
dynamic arbitrage, then at time t, the price of a call
option, C(S, t), that expires at time T must be equal to

BS(S, t, r , σ , T) = SΦ(d1)−Ke−r(T−t)Φ(d2), (4)

with

d1 = log(S/K)+ (r + σ2/2)(T − t)
σ
√
T − t (5)

and

d2 = log(S/K)+ (r − σ2/2)(T − t)
σ
√
T − t . (6)

Here, Φ(x) denotes the probability that a standard nor-
mal random variable has value less than x. As x tends
to∞,Φ(x) tends to 1, and asx tends to−∞,Φ(x) tends
to 0. If we let t tend to T , we find that d1 and d2 tend
to∞ if ST > K (in which case log(ST /K) > 0) and to −∞
if ST < K. It follows that the price C(S, t) converges to
max(ST − K,0), which is the value of a call option at
expiry, just as one would expect. We illustrate this in
figure 1.

There are a number of interesting aspects to this
result that go far beyond the formula itself. The first
and most important result is that the price is unique.
Using just the hypothesis that it is impossible to make a
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Figure 1 The Black–Scholes price of a call option struck at
100 for various maturities. The value decreases as maturity
decreases, with the bottom line denoting a maturity of zero.

riskless profit, along with some natural and innocuous
assumptions, we discover that there is only one possi-
ble price for the option. This is a very strong conclu-
sion. It is not just the case that the option is a bad deal
if traded at a different price: if a call option is bought
for less or sold for more than the Black–Scholes price,
then a riskless profit can be made.

A second fact, which may seem rather paradoxical, is
that µ, the drift, does not appear anywhere in the Black–
Scholes formula. This means that the expected behav-
ior of the share’s future mean price does not affect the
price of the call option; our beliefs about the probabil-
ity that the option will be used do not affect its price.
Instead, it is the volatility of the share price that is
all-important.

As part of their proof, Black and Scholes showed that
the call option price satisfied a certain partial differ-
ential equation (PDE) now known as the Black–Scholes
equation, or BS equation for short:

∂C
∂t
+ rS ∂C

∂S
+ 1

2σ
2S2 ∂2C

∂S2
= rC. (7)

This part of the proof did not rely on the derivative
being a call option: there is in fact a large class of
derivatives whose prices satisfy the BS equation, dif-
fering only in boundary conditions. If one changes vari-
ables, setting τ = T − t andX = log S, then the BS equa-
tion becomes the heat equation [I.3 §5.4] with an
extra first-order term which can easily be removed. This
means that the value of an option behaves in a similar
way to time-reversed heat: it diffuses and spreads out
the farther back one gets from the option’s expiry and
the more uncertainty there is about the value of the
share at time T .

2.2 Replication

The fundamental idea underlying the Black–Scholes
proof and much of modern derivatives pricing is
dynamic replication. Suppose we have a derivative Y
that pays an amount that depends on the value of the
share at some set of times t1 < t2 < · · · < tn, and sup-
pose that the payout occurs at a certain time T � tn.
This can be expressed in terms of a payoff function,
f(t1, . . . , tn).

The value of Y will vary with the share price. If, in
addition, we hold just the right number of the shares
themselves, then a portfolio consisting of Y and the
shares will be instantaneously immune to changes in
the share price, i.e., its value will have zero rate of
change with respect to the share price. As the value
of Y will vary with time and share price, we will need to
continuously buy and sell shares to maintain this neu-
trality to share-price movements. If we have sold a call
option, then it turns out that we will have to buy when
the share price goes up and sell when it goes down;
so these transactions will cost us a certain amount of
money.

Black and Scholes’s proof showed that this sum of
money was always the same and that it could be com-
puted. The sum of money is such that by investing it
in shares and riskless bonds, one can end up with a
portfolio precisely equal in value to the payoff of Y no
matter what the share price did in between.

Thus if one could sell Y for more than this sum of
money, one would simply carry out the trading strategy
from their proof and always end up ahead. Similarly, if
one can buy Y for less, one does the negative of the
strategy and always ends up ahead. Both of these are
outlawed by the principle of no arbitrage, and a unique
price is guaranteed.

The property that the payoff of any derivative can be
replicated is called market completeness.

2.3 Risk-Neutral Pricing

A curious aspect of the Black–Scholes result, mentioned
above, is that the price of a derivative does not depend
upon the drift of the share price. This leads to an alter-
native approach to derivatives pricing theory called
risk-neutral pricing. An arbitrage can be thought of as
the ultimate unfair game: the player can only make
money. By contrast, a martingale [IV.24 §4] encapsu-
lates the notion of a fair game: it is a random process
whose expected future value is always equal to its cur-
rent value. Clearly, an arbitrage portfolio can never be
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a martingale. So if we can arrange for everything to be
a martingale, there can be no arbitrages, and the price
of derivatives must be free of arbitrage.

Unfortunately, this cannot be done because the price
of the riskless bond grows at a constant rate, and is
therefore certainly not a martingale. However, we can
carry out the idea for discounted prices: that is, for
prices of assets when they are divided by the price of
the riskless bond.

In the real world, we do not expect discounted prices
to be martingales. After all, why buy shares if their
mean return is no better than that of a bond that car-
ries no risk? Nevertheless, there is an ingenious way of
introducing martingales into the analysis: by changing
the probability measure [III.73 §2] that one uses.

If you look back at the definition of arbitrage, you
will see that it depends only on which events have zero
probability and which have nonzero probability. Thus,
it uses the probability measure in a rather incomplete
way. In particular, if we use a different probability mea-
sure for which the sets of measure zero are the same,
then the set of arbitrage portfolios will not change. Two
measures with the same sets of measure zero are said
to be equivalent.

A theorem of Girsanov says that if you change the
drift of a Brownian motion, then the measure that you
derive from it will be equivalent to the measure you
had before. This means that we can change the term µ.
A good value to choose turns out to be µ = r − 1

2σ
2.

With this value of µ, one has

E(S/Bt) = S/B0 (8)

for any t, and since we can take any time as our start-
ing point, it follows that S/Bt is a martingale. (The extra
− 1

2σ
2 in the drift comes from the concavity of the coor-

dinate change to log-space.) This means that the expec-
tation has been taken in such a way that shares do
not carry any greater return, on average, than bonds.
Normally, as we have mentioned, one would expect an
investor to demand a greater return from a risky share
than from a bond. (An investor who does not demand
such compensation is said to be risk neutral.) However,
now that we are measuring expectations differently, we
have managed to build an equivalent model in which
this is no longer the case.

This yields a way of finding arbitrage-free prices.
First, pick a measure in which the discounted price pro-
cesses of all the fundamental instruments, e.g., shares
and bonds, are martingales. Second, set the discounted
price process of derivatives to be the expectations

of their payoff; this makes them into martingales by
construction.

Everything is now a martingale and there can be no
arbitrage. Of course, this merely shows that the price
is nonarbitrageable, rather than that it is the only non-
arbitrageable price. However, work by Harrison and
Kreps (1979) and by Harrison and Pliska (1981) shows
that if a system of prices is nonarbitrageable, then there
must be an equivalent martingale measure. Thus the
pricing problem is reduced to classifying the set of
equivalent martingale measures. Market completeness
corresponds to the pricing measure being unique.

Risk-neutral evaluation has become such a pervasive
technique that it is now typical to start a pricing prob-
lem by postulating risk-neutral dynamics for assets
rather than real-world ones.

We now have two techniques for pricing: the Black–
Scholes replication approach, and the risk-neutral
expectation approach. In both cases, the real-world
drift, µ, of the share price does not matter. Not surpris-
ingly, a theorem from pure mathematics, the Feynman–
Kac theorem, joins the two approaches together by stat-
ing that certain second-order linear partial differen-
tial equations can be solved by taking expectations of
diffusive processes.

2.4 Beyond Black–Scholes Terri: Tim would
like to keep the
heading as it is.
OK?For a number of reasons, the theory outlined above is

not the end of the story. There is considerable evidence
that the log of the share price does not follow a Brown-
ian motion with drift. In particular, market crashes
occur. For example, in October 1987 the stock market
fell by 30% in one day and financial institutions found
that their replication strategies failed badly. Mathemat-
ically, a crash corresponds to a jump in the share price,
and Brownian motion has the property that all paths
are continuous. Thus the Black–Scholes model failed to
capture an important feature of share-price evolution.

A reflection of this failure is that options on the same
share but with differing strike prices often trade with
different volatilities, despite the fact that the BS model
suggests that all options should trade with the same
volatility. The graph of volatility as a function of the
strike price is normally in the shape of a smile, dis-
playing the disbelief of traders in the Black–Scholes
model.

Another deficiency of the model is that it assumes
that the volatility is constant. In practice, market activ-
ity varies in intensity and goes through some periods
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when share prices are much more volatile and others
when they are much less so. Models must therefore be
corrected to take account of the stochasticity of volatil-
ity, and the prediction of volatility over the life of an
option is an important part of its pricing. Such models
are called stochastic volatility models.

If one examines the data on small-scale share move-
ments, one quickly discovers that they do not resem-
ble a diffusion. They appear to be more like a series
of small jumps than a Brownian motion. However, if
one rescales time so that it is based on the number
of trades that have occurred rather than on calendar
time, then the returns do become approximately nor-
mal. One way to generalize the Black–Scholes model is
to introduce a second process that expresses trading
time. An example of such a model is known as the vari-
ance gamma model. More generally, the theory of Lévy
processes has been applied to develop wider theories
of price movements for shares and other assets.

Most generalizations of the Black–Scholes model do
not retain the property of market completeness. They
therefore give rise to many prices for options rather
than just one.

2.5 Exotic Options

Many derivatives have quite complicated rules to deter-
mine their payoffs. For example, a barrier option can be
exercised only if the share price does not go below a cer-
tain level at any time during the contract’s life, and an
Asian option pays a sum that depends on the average
of the share price over certain dates rather than on the
price at expiry. Or the derivative might depend upon
several assets at once, such as, for example, the right
to buy or sell a basket of shares for a certain price.
It is easy to write down expressions for the value of
such derivatives in the Black–Scholes model, either via
a PDE or as a risk-neutral expectation. It is not so easy to
evaluate these expressions. Much research is therefore
devoted to developing efficient methods of pricing such
options. In certain cases it is possible to develop ana-
lytic expressions. However, these tend to be the excep-
tion rather than the rule, and this means that one must
resort to numerical techniques.

There is a wealth of methods for solving PDEs and
these can be applied to derivatives-pricing problems.
One difficulty in mathematical finance, however, is that
the PDE can be very high dimensional. For example, if
one is trying to evaluate a credit product depending
on 100 assets, the PDE could be 100 dimensional. PDE

methods are most effective for low-dimensional prob-
lems, and so research is devoted to trying to make them
effective in a wider range of cases.

One method that is less affected by dimensionality is
Monte Carlo evaluation. The basis of this method is very
simple: both intuitively and (via the law of large num-
bers) mathematically, an expectation is the long-run
average of a series of independent samples of a random
variableX. This immediately yields a numerical method
for estimating E(f (X)). One simply takes many inde-
pendent samples Xi of X, calculates f(Xi) for each one
and computes their average. It follows from the cen-
tral limit theorem [III.73 §5] that the error after N
draws is approximately distributed as a normal distri-
bution with variance equal to N−1/2 times the variance
of f(X). The rate of convergence is therefore dimen-
sion independent. If the variance of f(X) is large, it
may still be rather slow, however. Much effort is there-
fore devoted by financial mathematicians to developing
methods of reducing the variance when one computes
high-dimensional integrals.

2.6 Vanilla versus Exotics

Generally, a simple option to buy or sell an asset is
known as a vanilla option, whereas a more complicated
derivative is known as an exotic option. An essential
difference between the pricing of the two is that one
can hedge an exotic option not just with the underlying
share, but also by trading appropriately in the vanilla
options on that share. Typically, the price of a deriva-
tive will depend not just on observable inputs, such as
the share price and interest rates, but also on unob-
servable parameters, such as the volatility of the share
price or the frequency of market crashes, which cannot
be measured but only estimated.

When trading exotic options, one wishes to reduce
dependence upon these unobservable inputs. A stan-
dard way to do this is to trade vanilla options in such
a way as to make the rate of change of the value of the
portfolio with respect to such parameters equal to zero.
A small misestimation of their value will then have little
effect on the worth of the portfolio.

This means that when one prices exotic options,
one wishes not just to capture the dynamics of the
underlying asset accurately but also to price all the
vanilla options on that asset correctly. In addition, the
model will predict how the prices of vanilla options
change when the share price changes. We want these
predictions to be accurate.
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The BS model takes volatility to be constant. How-

ever, one can modify it so that the volatility varies with

the share price and over time. One can choose how it

varies in such a way that the model matches the market

prices of all vanilla options. Such models are known as

local volatility models or Dupire models. Local volatility

models were very popular for a while, but have become

less so because they give a poor model for how the

prices of vanilla options change over time.

Much of the impetus behind the development of

the models we mentioned in section 2.4 comes from

the desire to produce a model that is computationally

tractable, prices all vanilla options correctly, and pro-

duces realistic dynamics for both the underlying assets

and the vanilla options. This problem has still not been

wholly solved. There tends to be a trade-off between

realistic dynamics and perfect matching of the vanilla

options market. One compromise is to fit the market

as well as possible using a realistic model and then

to superimpose a local volatility model to remove the

remaining errors.

3 Risk Management

3.1 Introduction

Once we have accepted that it is impossible to make

money in finance without taking risk, it becomes impor-

tant to be able to measure and quantify risks. We wish

to measure accurately how much risk we are taking and

decide whether we are comfortable with that level of

risk. For a given level of risk, we want to maximize our

expected return. When considering a new transaction,

we will want to examine how it affects our risk lev-

els and returns. Certain transactions may even reduce

our risk while increasing our returns if they cancel out

other risk. (A risk that can be canceled out by other

risks that have a tendency to move in the opposite

direction is called diversifiable.)

The control of risk becomes particularly important

when dealing with portfolios of derivatives, which are

often of zero value initially but which can very quickly

change value. Placing a limit on the value of the con-

tracts held is therefore not of much use, and controls

based on deal sizes are complicated by the fact that

often many derivatives contracts largely cancel each

other out; it is the residual risk that one wishes to

control.

3.2 Value-at-Risk

One method of limiting an institution’s risks in deriva-

tives trading is to place a limit on the amount it can

lose with a given probability over a specified period of

time. For instance, one might consider the losses at a

1% level over ten days, or at a 5% level over one day.

This value is called Value-at-Risk or VAR.

To compute VAR one has to build up a probabilistic

model of how the portfolio of derivatives might change

in value over the time period. This requires a model

of how all the underlying assets can move. Given this

model, one then builds up the distribution of possible

profits and losses over the given time period. Once one

has this distribution one simply reads off the desired

percentile.

The issues involved in modeling the changes for VAR

computation are quite different from those for deriva-

tives pricing. Typically, a VAR computation is done over

a very short time period, such as one or ten days, unlike

the pricing of an option, which deals with a long time

frame. Also, one is not interested in the typical path for

VAR, but instead one focuses on the extreme moves.

In addition, since it is the VAR of an entire portfolio

that matters, one has to develop an accurate model

of the underlying assets’ joint distributions: the move-

ment of one underlying asset could magnify the price

movement of another, or it could act as a hedge.

There are two main approaches to developing a prob-

abilistic model for computing VAR. The first, the histor-

ical approach, is to record all the daily changes over

some time period, for example two years, and then

assume that the set of changes tomorrow will be identi-

cal to one of the sets of changes we have recorded. If we

assign equal probability to each of those changes, then

we get an approximation to the profit and loss distribu-

tion, from which we can read off the desired percentile.

Note that as we are using a day’s change for all assets

simultaneously, we automatically get an approximation

to the joint distribution of all the asset prices.

A second approach is to assume that asset price

movements come from some well-known class of dis-

tributions. For example, we could assume that the logs

of the asset price movements are jointly normal. We

would then use historical data to estimate the volatil-

ities and the correlations between the various prices.

The main difficulty with this approach is obtaining

robust estimates of the correlations given a limited

amount of data.
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4 Portfolio Optimization

4.1 Introduction

The job of a fund manager is to maximize the return
on the money invested while minimizing the risk. If we
assume that markets are efficient, then there is no point
in trying to pick shares that we believe to be underval-
ued as we have assumed that they do not exist. A corol-
lary is that just as no shares are good buys, no shares
are bad buys. In any case, over half the shares in the
market are owned via funds and therefore under the
control of fund managers. Therefore, the average fund
manager cannot expect to outperform the market.

It may seem that this does not leave much for fund
managers to do, but in fact it leaves two things.

(i) They can attempt to control the amount of risk
they are taking.

(ii) For a given level of risk, they can maximize their
expected return.

To do these things requires an accurate model of the
joint distribution of asset prices over the longer term,
and a quantifiable notion of risk.

4.2 The Capital Asset Pricing Model

Portfolio theory has been in its modern form for
longer than derivatives pricing. As an area, it relies
less on stochastic calculus and more on economics.
We briefly review the key ideas. The best-known model
for modeling portfolio returns is the capital asset pric-
ing model (or CAPM), which was introduced in the
1950s by Sharpe (see Sharpe 1964), and is still ubiqui-
tous. Sharpe’s model built on earlier work of Markowitz
(1952).

The fundamental problem in this area is to assess
what portfolio of assets, generally shares, an investor
should hold in order to maximize returns at a given
level of risk. The theory requires assumptions to be
made about the joint distribution of share returns, e.g.,
joint normality, and/or about the risk preferences of
investors, e.g., that they only care about the mean and
variance of returns.

Under these assumptions, the CAPM yields the result
that every investor should hold a multiple of the “mar-
ket portfolio,” which is essentially a portfolio consist-
ing of everything traded in appropriate quantities to
achieve maximum diversification, together with a cer-
tain amount of the risk-free asset. The relative amounts
are determined by the investor’s risk preferences.

A consequence of the model is the distinction be-
tween diversifiable risk and undiversifiable risk. While
investors are compensated for taking undiversifiable,
or systematic, risk via higher expected returns, diver-
sifiable risk does not carry a risk premium. This is
because one can cancel out diversifiable risk by holding
appropriate combinations of other assets. Therefore, if
it carried a risk premium, investors could receive extra
return without taking any risk.

Much of the current research in this area is directed
at trying to find more accurate models for the joint dis-
tribution of returns, and at finding techniques that esti-
mate the parameters of such returns. A related problem
is the “equity premium puzzle,” which is that the excess
return on investing in shares is much higher than the
model predicts for reasonable levels of risk aversion.

5 Statistical Arbitrage

We only briefly mention statistical arbitrage as it is a
rapidly changing area that is shrouded in secrecy. The
fundamental idea in this area is to squeeze informa-
tion out of asset price movements that the market has
not already acted on. It therefore contradicts the prin-
ciple of market efficiency, which says that all available
information is already encoded in the market price.
One explanation is that it is the action of taking such
arbitrages that makes the market efficient.
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1 Introduction

Suppose you want to measure something: your height,

or the velocity of an airplane for example. You take

repeated measurements x1, x2, . . . , xn and you would

like to combine them into a final estimate. An obvious

way of doing this is to use the sample mean (x1+x2+
· · · + xn)/n. However, modern statisticians use many

other estimators, such as the median or the trimmed

mean (where you throw away the largest and smallest

10% of the measurements and take the average of what

is left). Mathematical statistics helps us to decide when

one estimate is preferable to another. For example, it

is intuitively clear that throwing away a random half of

the data and averaging the rest is foolish, but setting

up a framework that shows this clearly turns out to be

a serious enterprise. One benefit of the undertaking is

the discovery that the mean turns out to be inferior to

nonintuitive “shrinkage estimators” even when the data

are drawn from a probability distribution [III.73] as

natural as the bell-shaped curve (that is, are normally

distributed [III.73 §5]).

To get an idea of why the mean may not always give

you the most useful estimate, consider the following

situation. You have a collection of a hundred coins and

you would like to estimate their biases. That is, you

would like to estimate a sequence of a hundred num-

bers, where the nth number θn is the probability that

the nth coin will come up heads when it is flipped. Sup-

pose that you flip each coin five times and note down

how many times it shows heads. What should your esti-

mate be for the sequence (θ1, . . . , θ100)? If you use the

means, then your guess for θn will be the number of

times the nth coin shows heads, divided by 5. How-

ever, if you do this, then you are likely to get some very

anomalous results. For instance, if all the coins happen

to be unbiased, then the probability that any given coin

shows up heads five times is 1/32, so you are likely

to guess that around three of the coins have biases of

1. So you will be guessing that if you flip those coins

five hundred times then they will come up heads every

single time.

Many alternative methods of estimation have been

proposed in order to deal with this obvious problem.

However, one must be careful: if a coin comes up heads

five times it could be that θi really is equal to 1. What

reason is there to believe that a different method of

estimation is not in fact taking us further from the

truth?

Here is a second example, drawn from work of
Bradley Efron, this time concerning a situation from
real life. Table 1 shows the batting averages of eigh-
teen baseball players. The first column shows the pro-
portion of “hits” for each player in their first forty-five
times at bat, and the second column shows the pro-
portion of hits at the end of the season. Consider the
task of predicting the second column given only the
first column. Once again, the obvious approach is to
use the average. In other words, one would simply use
the first column as a predictor of the second column.
The third column is obtained by a shrinkage estimator:
more precisely, it takes a number y in the first column
and replaces it by 0.265+0.212(y−0.265). The number
0.265 is the average of the entries in the first column,
so the shrinkage estimator is replacing each entry in
the first column by one that is about five times closer
to the average. (How the number 0.212 is chosen will
be explained later.) If you look at the table, you will
see that the shrinkage estimators in the third column
are better predictors of the second column in almost
every case, and certainly on average. Indeed, the sum of
squared differences between the James–Stein estimator
and the truth divided by the sum of squared differences
between the usual estimator and the truth is 0.29. That
is a threefold improvement.

There is beautiful mathematics behind this improve-
ment and a clear sense in which the new estimator
is always better than the average. We describe the
framework, ideas, and extensions of this example as
an introduction to the mathematics of statistics.

Before beginning, it will be useful to distinguish be-
tween probability and statistics. In probability theory,
one begins with a set X (for the moment taken to be
finite) and a collection of numbers P(x), one for each
x ∈ X, which are positive and sum to one. This function
P(x) is called a probability distribution. The basic prob-
lem of probability is this. You are given the probability
distribution P(x) and a subset A ⊂ X, and you must
compute or approximate P(A), which is defined to be
the sum of P(x) for x inA. (In probabilistic terms, each
x has a probability P(x) of being chosen, and P(A) is
the probability that x belongs to A.) This simple for-
mulation hides wonderful mathematical problems. For
example, X might be the set of all sequences of pluses
and minuses of length 100 (e.g.,+−−++−−−−−· · · ),
and each pattern might be equally likely, in which case
P(x) = 1/2100 for every sequence x. Finally,Amight be
the set of sequences such that for every positive integer
k � 100 the number of + symbols in the first k places
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Table 1 Batting averages for
18 major league players in 1970.

Batting Batting
average average

Player after 45 remainder James–Stein Remaining
number at bats of season estimator at bats

1 0.400 0.346 0.293 367
2 0.378 0.298 0.289 426
3 0.356 0.276 0.284 521
4 0.333 0.221 0.279 276
5 0.311 0.273 0.275 418
6 0.311 0.270 0.275 467
7 0.289 0.263 0.270 586
8 0.267 0.210 0.265 138
9 0.244 0.269 0.261 510

10 0.244 0.230 0.261 200
11 0.222 0.264 0.256 277
12 0.222 0.256 0.256 270
13 0.222 0.304 0.256 434
14 0.222 0.264 0.256 538
15 0.222 0.226 0.256 186
16 0.200 0.285 0.251 558
17 0.178 0.319 0.247 405
18 0.156 0.200 0.242 70

is larger than the number of − symbols in the first k
places. This is a mathematical model for the following
probability problem: if you and a friend flip a fair coin a
hundred times, then what is the chance that your friend
is always ahead? One might expect this chance to be
very small. It turns out, however, to be about 1

12 , though
verifying this is a far from trivial exercise. (Our poor
intuitions about chance fluctuations have been used to
explain road rage: suppose you choose one of two lines
at a toll booth. As you wait, you notice whether your line
or the other has made more progress. We feel it should
all balance out, but the calculations above show that a
fair proportion of the time you are always behind—and
frustrated !)

2 The Basic Problem of Statistics

Statistics is a kind of opposite of probability. In statis-
tics, we are given a collection of probability distribu-
tions Pθ(x), indexed by some parameter θ. We see just
one x and are required to guess which member of the
family (which θ) was used to generate x. For example,
let us keep X as the sequence of pluses and minuses
of length 100, but this time let Pθ(x) be the chance of
obtaining the sequence x if the probability of a plus is

θ and the probability of a minus is 1−θ, with all terms

in the sequence chosen independently. Here 0 � θ � 1,

and Pθ(x) is easily seen to be θS(1 − θ)T , where S is

the number of times “+” appears in the sequence x and

T = 100 − S is the number of times “−” appears. This

is a mathematical model for the following enterprise.

You have a biased coin with a probability θ of turning

up heads, but you do not know θ. You flip the coin a

hundred times, and are required to estimate θ based

on the outcome of the flips.

In general, for each x ∈ X, we want to find a guess,

which we denote by θ̂(x), for the parameter θ. That

is, we want to come up with a function θ̂, which will

be defined on the observation space X. Such functions

are called estimators. The above simple formulation

hides a wealth of complexity, since both the observa-

tion space X and the space Θ of possible parameters

may be infinite, or even infinite dimensional. For exam-

ple, in nonparametric statistics, Θ is often taken as

the set of all probability distributions on X. All of the

usual problems of statistics—design of experiments,

testing hypotheses, prediction, and many others—fit

into this framework. We will stick with the imagery of

estimation.

To evaluate and compare estimators, one more ingre-

dient is needed: you have to know what it means to

get the right answer. This is formalized through the

notion of a loss function L(θ, θ̂(x)). One can think of

this in practical terms: wrong guesses have financial

consequences, and the loss function is a measure of

how much it will cost if θ is the true value of the

parameter but the statistician’s guess is θ̂(x). The most

widely used choice is the squared error (θ − θ̂(x))2,

but |θ − θ̂(x)| or |θ − θ̂(x)|/θ and many other vari-

ants are also used. The risk function R(θ, θ̂) measures

the expected loss if θ is the true parameter and the

estimator θ̂ is used. That is,

R(θ, θ̂) =
∫
L(θ, θ̂(x))Pθ(dx).

Here, the right-hand side is notation for the average

value of L(θ, θ̂(x)) if x is chosen randomly accord-

ing to the probability distribution Pθ . In general, one

would like to choose estimators that will make the risk

function as small as possible.

3 Admissibility and Stein’s Paradox

We now have the basic ingredients: a family Pθ(x) and

a loss function L. An estimator θ̂ is called inadmissible
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if there is a better estimator θ∗, in the sense that

R(θ, θ∗) < R(θ, θ̂) for all θ.

In other words, the expected loss with θ∗ is less than

the expected loss with θ̂, whatever the true value of θ.

Given our assumptions (the model Pθ and loss func-

tion L) it seems silly to use an inadmissible estimator.

However, one of the great achievements of mathemat-

ical statistics is Charles Stein’s proof that the usual

least-squares estimator, which does not at first glance

seem silly at all, is inadmissible in natural problems.

Here is that story.

Consider the basic measurement model

Xi = θ + εi, 1 � i � n.

Here Xi is the ith measurement, θ is the quantity to

be estimated, and εi is measurement error. The classi-

cal assumptions are that the measurement errors are

independently and normally distributed: that is, they

are distributed according to the bell-shaped, or Gauss-

ian, curve e−x2/2/
√

2π , −∞ < x < ∞. In terms of

the language we introduced earlier, the measurement

space X is Rn, the parameter space Θ is R, and the

observation x = (x1, x2, . . . , xn) has probability den-

sity Pθ(x) = exp[− 1
2

∑n
1 (xi − θ)2]/(

√
2π)n. The usual

estimator is the mean: that is, if x = (x1, . . . , xn),
then one takes θ̂(x) to be (x1 + · · · + xn)/n. It has

been known for a long time that if the loss function

L(θ, θ̂(x)) is defined to be (θ − θ̂(x))2, then the mean

is an admissible estimator. It has many other optimal

properties as well (for example, it is the best linear un-

biased estimator, and it is minimax—a property that

will be defined later in this article).

Now suppose that we wish to estimate two parame-

ters, θ1 and θ2, say. This time we have two sets of obser-

vations, X1, . . . , Xn and Y1, . . . , Ym, with Xi = θ1 + εi
and Yj = θ2 + ηj . The errors εi and ηj are inde-

pendent and normally distributed, as above. The loss

function L((θ1θ2), (θ̂1(x)θ̂2(y))) is now defined to be

(θ1 − θ̂1(x))2 + (θ2 − θ̂2(y))2: that is, you add up the

squared errors from the two parts. Again, the mean of

the Xi and the mean of the Yi make up an admissible

estimator for (θ1, θ2).

Consider the same setup with three parameters, θ1,

θ2, θ3. Again, Xi = θ1 + εi, Yi = θ2 + nj , Zk = θ3 + δk
are independent and all the error terms are normally

distributed. Stein’s surprising result is that for three

(or more) parameters the estimator

θ̂1(x) = (x1 + · · · + xn)/n,
θ̂2(y) = (y1 + · · · +ym)/m,
θ̂3(z) = (z1 + · · · + zl)/l

is inadmissible: there are other estimators that do bet-
ter in all cases. For example, if p is the number of
parameters (and p � 3), then the James–Stein estimator
is defined to be

θ̂JS =
(

1− p − 2

‖θ̂‖
)
+
θ̂.

Here we are using the notation X+ to denote the max-
imum of X and 0; θ stands for the vector (θ1, . . . , θp)
of all the averages and ‖θ̂‖ is notation for (θ2

1 + · · · +
θ2
p)1/2.
The James–Stein estimator satisfies the inequality

R(θ, θ̂JS) < R(θ, θ̂) for all θ, and therefore the usual
estimator θ̂ is indeed inadmissible. The James–Stein
estimator shrinks the classical estimator toward zero.
The amount of shrinkage is small if ‖θ̂‖2 is large and
appreciable for ‖θ̂‖2 near zero. Now the problem as we
have described it is invariant under translation, so if we
can improve the classical estimate by shrinking toward
zero, then we must be able to improve it by shrinking
toward any other point. This seems very strange at first,
but one can obtain some insight into the phenomenon
by considering the following informal description of
the estimator. It makes an a priori guess θ0 at θ. (This
guess was zero above.) If the usual estimator θ̂ is close
to the guess, in the sense that ‖θ̂‖ is small, then it
moves θ̂ toward the guess. If θ̂ is far from the guess, it
leaves θ̂ alone. Thus, although the estimator moves the
classical estimator toward an arbitrary guess, it does so
only if there are reasons to believe that the guess is a
good one. With four or more parameters the data can in
fact be used to suggest which point θ0 one should use
as the initial guess. In the example of table 1, there are
eighteen parameters, and the initial guess θ0 was the
constant vector with all its eighteen coordinates equal
to the average 0.265. The number 0.212 that was used
for the shrinking is equal to 1−16/‖θ−θ0‖. (Note that
for this choice of θ0, ‖θ−θ0‖ is the standard deviation
of the parameters that make up θ.)

The mathematics used to prove inadmissibility is an
elegant blend of harmonic function theory and tricky
calculus. The proof itself has had many ramifications:
it gave rise to what is called “Stein’s method” in prob-
ability theory—this is a method for proving things like
the central limit theorem for complex dependent prob-
lems. The mathematics is “robust,” since it is applicable
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to nonnormal error distributions, a variety of different
loss functions, and estimation problems far from the
measurement model.

The result has had enormous practical application.
It is routinely used in problems where many param-
eters have to be simultaneously estimated. Examples
include national laboratories’ estimates of the percent-
age of defectives when they are looking at many differ-
ent products at once, and the simultaneous estimate of
census undercounts for each of the fifty states in the
United States. The apparent robustness of the method
is very useful for such applications: even though the
James–Stein estimator was derived for the bell-shaped
curve, it seems to work well, without special assump-
tions, in problems where its assumptions hold only
roughly. Consider the baseball players above, for exam-
ple. Adaptations and variations abound. Two popu-
lar ones are called empirical Bayes estimates (now
widely used in genomics) and hierarchical modeling
(now widely used in the assessment of education).

The mathematical problems are far from completely
solved. For example, the James–Stein estimator is itself
inadmissible. (It can be shown that any admissible esti-
mator in a normal measurement problem is an ana-
lytic function of the observations. The James–Stein
estimator is, however, clearly not analytic because it
involves the nondifferentiable function x �→ x+.) While
it is known that there is little practical improvement
possible, the search for an admissible estimator that
is always better than the James–Stein estimator is a
tantalizing research problem.

Another active area of research in modern mathemat-
ical statistics is to understand which statistical prob-
lems give rise to Stein’s paradox. For example, although
at the beginning of this essay we discussed some inade-
quacies of the usual maximum-likelihood estimator for
estimating the biases of a hundred coins, it turns out
that that estimator is admissible! In fact, the maximum-
likelihood estimator is admissible for any problem with
finite state spaces.

4 Bayesian Statistics

The Bayesian approach to statistics adds one further
ingredient to the family Pθ and loss function L. This
is known as a prior probability distribution π(θ), which
gives different weights to different values of the param-
eter θ. There are many ways of generating a prior dis-
tribution: it may quantify the working scientists’ best
guess at θ; it may be derived from previous studies

or estimates; or it may just be a convenient way to
generate estimators. Once the prior distribution π(θ)
has been specified, the observation x and Bayes’s the-
orem combine to give a posterior distribution for θ,
here denoted π(θ|x). Intuitively, if x is your observa-
tion, then π(θ|x) measures how likely it is that θ was
the parameter, given that the parameter was generated
from the probability distribution π . The mean value
of θ with respect to the posterior distribution π(θ|x)
gives a Bayes estimator:

θ̂Bayes(x) =
∫
θ π(θ|x).

For the squared–error loss function, all Bayes estima-
tors are admissible, and, in the converse direction, any
admissible estimator is a limit of Bayes estimators.
(However, not every limit of Bayes estimators is admis-
sible: indeed, the average, which we have seen to be
inadmissible, is a limit of Bayes rules.) The point for
the present discussion is this. In a wide variety of prac-
tical variations of the measurement problem—things
like regression analysis or the estimation of correla-
tion matrices—it is relatively straightforward to write
down sensible Bayes estimators that incorporate avail-
able prior knowledge. These estimators include close
cousins of the James–Stein estimator, but they are more
general, and allow it to be routinely extended to almost
any statistical problem.

Because of the high-dimensional integrals involved,
Bayes estimates can be difficult to compute. One of
the great advances in this area is the use of computer-
simulation algorithms, called variously Markov chain
Monte Carlo or Gibbs samplers, to compute use-
ful approximations to Bayes estimators. The whole
package—provable superiority, easy adaptability, and
ease of computation—has made this Bayesian version
of statistics a practical success.

5 A Bit More Theory

Mathematical statistics makes good use of a wide range
of mathematics: fairly esoteric analysis, logic, combi-
natorics, algebraic topology, and differential geometry
all play a role. Here is an application of group theory.
Let us return to the basic setup of a sample space X,
a family of probability distributions Pθ(x), and a loss
function L(θ, θ̂(x)). It is natural to consider how the
estimator changes when you change the units of the
problem: from pounds to grams, or from centimeters
to inches, say. Will this have a significant impact on the
mathematics? One would expect not, but if we want to
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think about this question precisely then it is useful to
consider a group G of transformations of X. For exam-
ple, linear changes of units correspond to the affine
group, which consists of transformations of the form
x �→ ax + b. The family Pθ(x) is said to be invariant
under G if for each element g of G the transformed
distribution Pθ(xg) is equal to a distribution Pθ̄(x) for
some other θ̄ in Θ. For example, the family of normal
distributions

exp
[
−

1
2 (x − θ1)2

2θ2
2

]
√

2nθ2
2

, −∞ < θ1 <∞, 0 < θ2 <∞,

is invariant underax+b transformations: if you change
x to ax + b, then after some easy manipulations you
can rewrite the resulting modified formula in the form
exp[− 1

2 (x − φ1)2/2φ2
2]/

√
2nθ2

2 for some new param-
eters φ1 and φ2. An estimator θ̂ is called equivariant
if θ̂(xg) = ¯̂θ(x). This is a formal way of saying that
if you change the data from one unit to another, then
the estimate transforms as it should. For example, sup-
pose your data are temperatures presented in centi-
grade and you want an answer in Fahrenheit. If your
estimator is equivariant, then it will make no difference
whether you first apply the estimator and then convert
the answer into Fahrenheit or first convert all the data
into Fahrenheit and then apply the estimator.

The multivariate normal problem that underlies
Stein’s paradox is invariant under a variety of
groups, including the p-dimensional group of Euclid-
ian motions (rotations and translations). However, the
James–Stein estimator is not equivariant, since, as we
have already discussed, it depends on the choice of
origin. This is not necessarily bad, but it is certainly
thought provoking. If you ask a working scientist if
they want a “most accurate” estimator, they will say
“of course.” If you ask if they insist on equivariance,
“of course” will follow as well. One way of express-
ing Stein’s paradox is the statement that the two
desiderata—accuracy and invariance—are incompati-
ble. This is one of many places where mathematics and
statistics part company. Deciding whether mathemat-
ically optimal procedures are “sensible” is important
and hard to mathematize.

Here is a second use of group theory. An estimator
θ̂ is called minimax if it minimizes the maximum risk
over all θ. Minimax corresponds to playing things safe:
you have optimal behavior (that is, the least possible
risk) in the worst case. Finding minimax estimators in
natural problems is hard, honest work. For example,

the vector of means is a minimax estimator in normal

location problems. The work is easier if the problem

is invariant under a group. Then one can first search

for best invariant estimators. Invariance often reduces

things to a straightforward calculus problem. Now the

question arises of whether an estimator that is mini-

max among invariant estimators is minimax among all

estimators. A celebrated theorem of Hurt and Stein says

“yes” if the group involved is nice (e.g., Abelian or com-

pact or amenable). Determining whether the best invari-

ant estimator is minimax when the group is not nice is

a challenging open problem in mathematical statistics.

And it is not just a mathematical curiosity. For exam-

ple, the following problem is very natural, and invariant

under the group of invertible matrices: given a sample

from the multivariate normal distribution, estimate its

correlation matrix. In this case, the group is not nice

and good estimates are not known.

6 Conclusion

The point of this article is to show how mathematics

enters and enriches statistics. To be sure, there are

parts of statistics that are hard to mathematize: graph-

ical displays of data are an example. Further, much

of modern statistical practice is driven by the com-

puter. There is no longer any need to restrict attention

to tractable families of probability distributions. Com-

plex and more realistic models can be used. This gives

rise to the subject of statistical computing. Nonethe-

less, every once in a while someone has to think about

what the computer should do and determine whether

one innovative procedure works better than another.

Then, mathematics holds its own. Indeed, mathematiz-

ing modern statistical practice is a challenging, reward-

ing enterprise, of which Stein’s estimator is a current

highlight. This endeavor gives us something to aim for

and helps us to calibrate our day-to-day achievements.
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VII.11 Mathematics and Medical
Statistics
David J. Spiegelhalter

1 Introduction

There are many ways in which mathematics has been
applied in medicine: for example, the use of differen-
tial equations in pharmacokinetics and models for epi-
demics in populations; and fourier analysis [III.27]
of biological signals. Here we are concerned with med-
ical statistics, by which we mean collecting data about
individuals and using it to draw conclusions about the
development and treatment of disease. This definition
may appear to be rather restrictive, but it includes all
of the following: randomized clinical trials of thera-
pies, evaluating interventions such as screening pro-
grams, comparing health outcomes in different popu-
lations and institutions, describing and comparing the
survival of groups of individuals, and modeling the way
in which a disease develops, both naturally and when
it is influenced by an intervention. In this article we are
not concerned with epidemiology, the study of why dis-
eases occur and how they spread, although most of the
formal ideas described here can be applied to it.

After a brief historical introduction, we shall sum-
marize the varied approaches to probabilistic model-
ing in medical statistics. We shall then illustrate each
one in turn using data about the survival of a sample
of patients with lymphoma, showing how alternative
“philosophical” perspectives lead directly to different
methods of analysis. Throughout, we shall give an indi-
cation of the mathematical background to what can
appear to be a conceptually untidy subject.

2 A Historical Perspective

One of the first uses of probability theory in the late
seventeenth century was in the development of “life-
tables” of mortality in order to decide premiums for
annuities, and Charles Babbage’s work on life-tables
in 1824 helped motivate him to design his “difference
engine” (although it was not until 1859 that Scheutz’s
implementation of the engine finally calculated a life-
table). However, statistical analysis of medical data was
a matter of arithmetic rather than mathematics until
the growth of the “biometric” school founded by Fran-
cis Galton and Karl Pearson at the end of the nineteenth
century. This group introduced the use of families of

probability distributions [III.73] to describe popula-
tions, as well as concepts of correlation and regression
in anthropology, biology, and eugenics. Meanwhile,
agriculture and genetics motivated Fisher’s huge con-
tributions in the theory of likelihood (see below) and
significance testing. Postwar statistical developments
were influenced by industrial applications and a U.S.-
led increase in mathematical rigor, but from around the
1970s medical research, particularly concerning ran-
domized trials and survival analysis, has been a major
methodological driver in statistics.

For around thirty years after 1945 there were
repeated attempts to put statistical inference on a
sound foundational or axiomatic basis, but no con-
sensus could be reached. This has given rise to a
widespread ecumenical perspective which makes use
of a mix of statistical “philosophies” which we shall
illustrate below. The somewhat uncomfortable lack of
an axiomatic basis can make statistical work deeply
unattractive to many mathematicians, but it provides
a great stimulus to those engaged in the area.

3 Models

In this context, by a model we mean a mathemati-
cal description of a probability distribution for one
or more currently uncertain quantities. Such a quan-
tity might, for example, be the outcome of a patient
who is treated with a particular drug, or the future
survival time of a patient with cancer. We can iden-
tify four broad approaches to modeling—these brief
descriptions make use of terms that will be covered
properly in later sections.

(i) A nonparametric or “model-free” approach that
leaves unspecified the precise form for the proba-
bility distributions of interest.

(ii) A full parametric model in which a specific form is
assumed for each probability distribution, which
depends on a limited number of unknown param-
eters.

(iii) A semi-parametric approach in which only part of
the model is parametrized, while the rest is left
unspecified.

(iv) A Bayesian approach in which not only is a full
parametric model specified, but an additional
“prior” distribution is provided for the parame-
ters.

These are not absolute distinctions: for example, some
apparently “model-free” procedures may turn out to
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match procedures that are derived under certain para-

metric assumptions.

Another complicating factor is the multiplicity of

possible aims of a statistical analysis. These may

include

• estimating unknown parameters, such as the mean

reduction in blood pressure when giving a certain

dose of a certain drug to a defined population;

• predicting future quantities, such as the number of

people with AIDS in a country in ten years’ time;

• testing a hypothesis, such as whether a particu-

lar drug improves survival for a particular class

of patents, or equivalently assessing the “null

hypothesis” that it has no effect;

• making decisions, such as whether to provide a

particular treatment in a health care system.

A common aspect of these objectives is that any conclu-

sion should be accompanied by some form of assess-

ment of the potential for an error having been made,

and any estimate or prediction should have an asso-

ciated expression of uncertainty. It is this concern for

“second-order” properties that distinguishes a statis-

tical “inference” based on probability theory from a

purely algorithmic approach to producing conclusions

from data.

4 The Nonparametric or
“Model-Free” Approach

Now let us introduce a running example that will be

used to illustrate the various approaches.

Matthews and Farewell (1985) report data on sixty-

four patients from the Fred Hutchinson Cancer

Research Center in Seattle who had been diagnosed

with advanced-stage non-Hodgkin’s lymphoma: for

each patient the information comprises their follow-up

time since diagnosis, whether their follow-up ended in

death, whether they presented with clinical symptoms,

their stage of disease (stage IV or not), and whether a

large abdominal mass (greater than 10 cm) was present.

Such information has many uses. For example, we may

wish to look at the general distribution of survival

times, or assess which factors most influence survival,

or provide a new patient with an estimate of theirTerri: Tim doesn’t
think ‘the’ will do
and would like to
keep ‘their’. OK?

chance of surviving, say, five years. This is, of course,

too small and limited a data set to draw firm con-

clusions, but it allows us to illustrate the different

mathematical tools that can be used.
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Figure 1 Kaplan–Meier nonparametric survival curves for
lymphoma patients with and without clinical symptoms at
diagnosis.

We need to introduce a few technical terms. Patients

who are still alive at the end of data collection, or have

been lost to follow-up, are said to have their survival

times “censored”: all we know is that they survived

beyond the last time that any data was recorded about

them. We also tend to call times of death “failure” times,

since the forms of analysis do not just apply to death.

(This term also reflects the close connection between

this area and reliability theory.)

The original approach to such survival data was

“actuarial,” using the life-table techniques mentioned

previously. Survival times are grouped into intervals

such as years, and simple estimates are made of one’s

chance of dying in an interval given that one was alive at

the start of it. Historically, this probability was known

as the “force of mortality,” but now it is usually called

the hazard. A simple approach like this may be fine for

describing large populations.

It was not until Kaplan and Meier (1958) that this

procedure was refined to take into account the exact

rather than the grouped survival times: with over thirty

thousand citations, their paper is one of the most refer-

enced papers in all of science. Figure 1 shows so-called

Kaplan–Meier curves for the groups of patients with

(n = 31) and without (n = 33) clinical symptoms at

diagnosis.

These curves represent estimates of the underlying

survival function, whose value at a time t is thought of

as the probability that a typical patient will survive until

that time. The obvious way of producing such a curve

is simply to let its value at time t be the proportion of



�

930 VII. The Influence of Mathematics

the initial sample that is still alive. However, this does
not quite work, because of the censored patients. So
instead, if a patient dies at time t, and if, just before
time t, there arem patients still in the sample, then the
value of the curve is multiplied by (m− 1)/m; and if a
patient is censored then the value stays the same. (The
tick marks on the curves show the censored survival
times.) The set of patients alive just before time t is
called the risk set and the hazard at t is estimated to
be 1/m. (We are assuming that two people do not die
at the same time, but it is easy to drop that assumption
and make appropriate adjustments.)

Although we do not assume that the actual survival
curve has any particular functional form, we do need
to make the qualitative assumption that the censoring
mechanism is independent of the survival time. (For
example, it is important that those who are about to die
are not for some reason preferentially removed from
the study.) We also need to provide error bounds on the
curves: these can be based on a variance formula devel-
oped by Major Greenwood in 1926. (“Major” was his
name rather than a title, one of the few characteristics
he shared with Count Basie and Duke Ellington.)

The “true underlying survival curve” is a theoret-
ical construct, and not something that one can directly
observe. One can think of it as the survival experience
that would be observed in a vast population of patients,
or equivalently the expected survival for a new individ-
ual drawn at random from that population. As well as
estimating these curves for the two groups of patients,
we may wish to test hypotheses about them. A typical
one would be that the true underlying survival curves
in the two groups are precisely the same. Traditionally
such “null” hypotheses are denoted H0, and the tradi-
tional way to test them is to determine how unlikely it
is that we would observe two Kaplan–Meier curves that
are so far apart if H0 were true. One can construct a
summary measure, known as a test statistic, that is large
if the observed curves are very different. For example,
one possibility is to contrast the observed number of
deaths in those with symptoms (O = 20) with the num-
ber one would have expected ifH0 were true (E = 11.9).
Under the null hypothesis it turns out there is only
a 0.2% chance of observing such a high discrepancy
between O and E, which casts considerable doubt on
the null hypothesis in this case.

When constructing intervals around estimates and
testing hypotheses we require approximate probabil-
ity distributions for our estimates and test statistics.
From a mathematical perspective the important theory

therefore concerns large-sample distributions of func-
tions of random variables, largely developed in the
early twentieth century. Theories for optimal hypoth-
esis testing were developed by Neyman and Pearson in
the 1930s: the idea is to maximize the “power” of a
test to detect a difference, while at the same time mak-
ing sure that the probability of wrongly rejecting a null
hypothesis is less than some acceptable threshold such
as 5% or 1%. This approach still finds a role in the design
of randomized clinical trials.

5 Full Parametric Models

Clearly we do not actually believe that deaths can only
occur at the previously observed survival times shown
in the Kaplan–Meier curve, so it seems reasonable to
investigate a fairly simple functional form for the true
survival function. That is, we assume that the survival
function belongs to some natural class of functions,
each of which can be fully parametrized by a small
number of parameters, collectively denoted by θ. It is θ
that we are trying to discover (or rather estimate with a
reasonable degree of confidence). If we can do so, then
the model is fully specified and we can even extrapolate
a certain amount beyond the observed data. We first
relate the survival function and the hazard, and then
illustrate how observed data can be used to estimate θ
in a simple example.

We assume that an unknown survival time has a prob-
ability density p(t|θ); without getting into technical
details, this essentially corresponds to assuming that
p(t|θ)dt is the probability of dying in a small interval
t to t + dt. Then the survival function, given a particu-
lar value of θ, is the probability of surviving beyond t:
we denote it by S(t|θ). To calculate it, we integrate the
probability density over all times greater than t. That
is,

S(t|θ) =
∫∞
t
p(x|θ)dx = 1−

∫ t
0
p(x|θ)dx.

From this and the fundamental theorem of calcu-
lus [I.3 §5.5] it follows that p(t|θ) = −dS(t|θ)/dt. The
hazard function h(t|θ)dt is the risk of death in the
small interval t to t+dt, conditional on having survived
to time t. Using the laws of elementary probability we
find that

h(t|θ) = p(t|θ)/S(t|θ).
For example, suppose we assume an exponential sur-

vival function with mean survival time θ, so that the
probability of surviving beyond time t is S(t|θ) = e−t/θ .
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The density is p(t|θ) = e−t/θ/θ. Therefore, the haz-
ard function is a constant h(t|θ) = 1/θ, so that 1/θ
represents the mortality rate per unit of time. For
instance, were the mean postdiagnosis survival to be
θ = 1000 days, an exponential model would imply a
constant 1/1000 risk of dying each day, regardless of
how long the patient had already survived after diagno-
sis. More complex parametric survival functions allow
hazard functions that increase, decrease, or have other
shapes.

When it comes to estimating θ we need Fisher’s con-
cept of likelihood. This takes the probability distribu-
tion p(t|θ) but considers it as a function of θ rather
than t, and hence for observed t allows us to examine
plausible values of θ that “support” the data. The rough
idea is that we multiply together the probabilities (or
probability densities) of the observed events, assuming
the value of θ. In survival analysis, observed and cen-
sored failure times make different contributions to this
product: an observed time t contributes p(t|θ), while
a censored time contributes S(t|θ). If, for example, we
assume that the survival function is exponential, then
an observed failure time contributes p(t|θ) = e−t/θ/θ,
and a censored time contributes S(t|θ) = e−t/θ . Thus,
in this case the likelihood is

L(θ) =
∏
i∈Obs

θ−1e−ti/θ
∏

i∈Cens

e−ti/θ = θ−nO e−T/θ.

Here “Obs” and “Cens” indicate the sets of observed
and censored failure times. We denote their sizes bynO

and nC, respectively, and we denote the total follow-up
time

∑
i ti by T . For the group of thirty-one patients

presenting with symptoms we have nO = 20 and T =
68.3 years: figure 2 shows both the likelihood and its
logarithm

LL(θ) = −T/θ −nO logθ.

We note that the vertical axis for the likelihood is
unlabeled since only relative likelihood is important.
A maximum-likelihood estimate (MLE) θ̂ finds param-
eter values that maximize this likelihood or equiva-
lently the log-likelihood. Taking derivatives of LL(θ)
and equating to 0 reveals that θ̂ = T/nObs = 3.4 years,
which is the total follow-up time divided by the number
of failures. Intervals around MLEs may be derived by
directly examining the likelihood function, or by mak-
ing a quadratic approximation around the maximum of
the log-likelihood.

Figure 3 shows the fitted exponential survival curves:
loosely, we have carried out a form of curve fitting
by selecting the exponential curves that maximize the
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Figure 2 Likelihood and log-likelihood for mean survival
time θ for lymphoma patients presenting with clinical
symptoms.
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Figure 3 Fitted exponential survival
curves for lymphoma patients.

probability of the observed data. Visual inspection sug-
gests the fit may be improved by investigating a more
flexible family of curves such as the Weibull distribu-
tion (a distribution widely used in reliability theory):
to compare how well two models fit the data, one can
compare their maximized likelihoods.

Fisher’s concept of likelihood has been the founda-
tion for most current work in medical statistics, and
indeed statistics in general. From a mathematical per-
spective there has been extensive development relat-
ing the large-sample distributions of MLEs to the sec-
ond derivative of the log-likelihood around its maxi-
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mum, which forms the basis for most of the outputs
of statistical packages. Unfortunately, it is not neces-
sarily straightforward to scale up the theory to deal
with multidimensional parameters. First, as likelihoods
become more complex and contain increasing num-
bers of parameters, the technical problems of maxi-
mization increase. Second, the recurring difficulty with
likelihood theory remains that of “nuisance parame-
ters,” in which a part of the model is of no particular
interest and yet needs to be accounted for. No generic
theory has been developed, and instead there is a some-
what bewildering variety of adaptations of standard
likelihood to specific circumstances, such as condi-
tional likelihood, quasi-likelihood, pseudo-likelihood,
extended likelihood, hierarchical likelihood, marginal
likelihood, profile likelihood, and so on. Below we
consider one extremely popular development, that of
partial likelihood and the Cox model.

6 A Semi-Parametric Approach

Clinical trials in cancer therapy were a major motivat-
ing force in developing survival analysis—in particular,
trials to assess the influence of a treatment on survival
while taking account of other possible risk factors. In
our simple lymphoma data set we have three risk fac-
tors, but in more realistic examples there will be many
more. Fortunately, Cox (1972) showed that it was pos-
sible both to test hypotheses and to estimate the influ-
ence of possible risk factors, without having to go the
whole way and specify the full survival function on the
basis of possibly limited data.

The Cox regression model is based on assuming a
hazard function of the form

h(t|θ) = h0(t)eβ·x.

Here h0(t) is a baseline hazard function and β is typ-
ically a column vector of regression coefficients that
measure the influence of a vector of risk factors x on
the hazard. (The expression β · x denotes the scalar
product of β and x.) The baseline hazard function cor-
responds to the hazard function of an individual whose
risk factor vector is x = 0, since then eβ·x = 1. More
generally, we see that an increase of one unit in a factor
xj will multiply the hazard by a factor eβj , for which
reason this is known as the “proportional hazards”
regression model. It is possible to specify a parametric
form for h0(t), but remarkably it turns out to be pos-
sible to estimate the terms of β without specifying the
form of the h0, if we are willing to consider the situa-
tion immediately before a particular failure time. Again

we construct a risk set, and the chance of a particular
patient failing, given the knowledge that someone in
the risk set fails, provides a term in a likelihood. This
is known as a “partial” likelihood since it ignores any
possible information in the times between failures.

When we fit this model to the lymphoma data we find
that our estimate of β for the patients with symptoms
is 1.2: easier to interpret is its exponent e1.2 = 3.3,
which is the proportional increase in hazard associated
with presenting with symptoms. We can estimate error
bounds of 1.5–7.3 around this estimate, so we can be
confident that the risk of a patient who presents with
symptoms will die at any stage following diagnosis is
substantially higher than that of a patient who does not
present with symptoms, all other factors in the model
being kept constant.

A huge literature has arisen from this model, dealing
with errors around estimates, different censoring pat-
terns, tied failure times, estimating the baseline sur-
vival, and so on. Large-sample properties were rigor-
ously established only after the method came into rou-
tine use, and have made extensive use of the theory of
stochastic counting processes: see, for example, Ander-
sen et al. (1992). These powerful mathematical tools
have enabled the theory to be expanded to deal with the
general analysis of sequences of events, while allow-
ing for censoring and multiple risk factors that may
depend on time.

Cox’s 1972 paper has over twenty thousand citations,
and its importance to medicine is reflected in his having
been awarded the 1990 Kettering Prize and Gold Medal
for Cancer Research.

7 Bayesian Analysis

Bayes’s theorem is a basic result in probability theory.
It states that, for two random quantities t and θ,

p(θ|t) = p(t|θ)p(θ)/p(t).
In itself this is a very simple fact, but when θ represents
parameters in a model, the use of this theorem rep-
resents a different philosophy of statistical modeling.
The major step in using Bayes’s theorem for inference
is in considering parameters as random variables
[III.73 §4] with probability distributions and therefore
making probabilistic statements about them. For exam-
ple, in the Bayesian framework one could express one’s
uncertainty about a survival curve by saying that one
had assessed that the probability that the mean sur-
vival time was greater than three years was 0.90. To
make such an assessment, one can combine a “prior”
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distribution p(θ) (a distribution representing the rela-
tive plausibility of different values of θ before you look
at the data) with a likelihood p(t|θ) (how likely you
were to observe the data t with that value of θ) and
then use Bayes’s theorem to provide a “posterior” dis-
tribution p(θ|t) (a distribution representing the rela-
tive plausibility of different values of θ after you look
at the data).

Put in this way Bayesian analysis appears to be a
simple application of probability theory, and for any
given choice of prior distribution that is exactly what
it is. But how do you choose the prior distribution?
You could use evidence external to the current study,
or even your own personal judgment. There is also an
extensive literature on attempts to produce a toolkit
of “objective” priors to use in different situations. In
practice you need to specify the prior distribution in a
way that is convincing to others, and this is where the
subtlety arises.

As a simple example, suppose that previous studies
of lymphoma had suggested that mean survival times
of patients presenting with clinical symptoms probably
lie between three and six years, with values of around
four years being most plausible. Then it seems reason-
able not to ignore such evidence when drawing conclu-
sions for future patients, but rather to combine it with
the evidence from the thirty-one patients in the cur-
rent study. We could represent this external evidence
by a prior distribution for θ with the form given in fig-
ure 4. When combined with the likelihood (taken from
figure 2(a)), this gives rise to the posterior distribu-
tion shown. For this calculation, the functional form of
the prior is assumed to be that of the inverse-Gamma
distribution, which happens to make the mathemat-
ics of dealing with exponential likelihoods particularly
straightforward, but such simplifications are not nec-
essary if one is using simulation methods for deriving
posterior distributions.

It can be seen from figure 4 that the external evidence
has increased the plausibility of higher survival times.
By integrating the posterior distribution above three
years, we find that the posterior probability that the
mean survival is greater than three years is 0.90.

Likelihoods in Bayesian models need to be fully para-
metric, although semi-parametric models such as the
Cox model can be approximated by high-dimensional
functions of nuisance parameters, which then need to
be integrated out of the posterior distributions. Diffi-
culties with evaluating such integrals held up realistic
applications of Bayesian analysis for many years, but

Mean survival
2 3 6

Likelihood
Prior
Posterior

4 5

Figure 4 Prior, likelihood, and posterior distributions for
mean survival time θ for patients presenting with symp-
toms. The posterior distribution is a formal compromise
between the likelihood, which summarizes the evidence
in the data alone, and the prior distribution, which sum-
marizes external evidence that suggested longer survival
times.

now developments in simulation approaches such as
Markov chain Monte Carlo (MCMC) methods have led to
a startling growth in practical Bayesian analyses. Math-
ematical work in Bayesian analysis has mainly focused
on theories of objective priors, large-sample properties
of posterior distributions, and dealing with hugely mul-
tivariate problems and the necessary high-dimensional
integrals.

8 Discussion

The preceding sections have given some idea of the
tangled conceptual issues that underlie even routine
medical statistical analysis. We need to distinguish a
number of different roles for mathematics in medical
statistics—the following are a few examples.

Individual applications: here the use of mathematics
is generally quite limited, since extensive use is made
of software packages, which can fit a wide variety
of models. In nonstandard problems, algebraic or
numerical maximization of likelihoods may be neces-
sary, or developing MCMC algorithms for numerical
integration.

Derivation of generic methods: these can then be
implemented in software. This is perhaps the
most widespread mathematical work, which requires
extensive use of probability theory on functions of
random variables, particularly using large-sample
arguments.

Proof of properties of methods: this requires the most
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sophisticated mathematics, which concerns topics

such as the convergence of estimators, or the behav-

ior of Bayesian methods under different circum-

stances.

Medical applications continue to be a driving force in

the development of new methods of statistical analysis,

partly because of new sources of high-dimensional data

from areas such as bioinformatics, imaging, and per-

formance monitoring, but also because of the increas-

ing willingness of health policy makers to use complex

models: this has the consequence of focusing atten-

tion on analytic methods and the design of studies for

checking, challenging, and refining such models.

Nevertheless, it may appear that rather limited math-

ematical tools are required in medical statistics, even

for those engaged in methodological research. This

is compensated for by the fascinating and continuing

debate over the underlying philosophy of even the most

common statistical tools, and the consequent variety

of approaches to apparently simple problems. Much of

this debate is hidden from the routine user. Regarding

the appropriate role of mathematical theory in statis-

tics, we can do no better than quote David Cox in

his 1981 Presidential Address to the Royal Statistical

Society (Cox 1981):

Lord Rayleigh defined applied mathematics as being
concerned with quantitative investigation of the real
world “neither seeking nor evading mathematical dif-
ficulties.” This describes rather precisely the delicate
relation that ideally should hold between mathemat-
ics and statistics. Much fine work in statistics involves
minimal mathematics; some bad work in statistics gets
by because of its apparent mathematical content. Yet
it would be harmful for the development of the sub-
ject for there to be widespread an anti-mathematical
attitude, a fear of powerful mathematics appropriately
deployed.
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VII.12 Analysis, Mathematical and
Philosophical
John P. Burgess

1 The Analytic Tradition in Philosophy

Philosophical problems are never solved for the same
reason that treasonous conspiracies never succeed: as
successful conspiracies are never called “treason,” so
solved problems are no longer called “philosophy.”
Philosophy, which once included almost every sub-
ject in the university (every subject in which the high-
est degree is Ph.D.), has thus been shrunk by suc-
cess. The greatest shrinkage occurred during the sev-
enteenth and eighteenth centuries, when natural phi-
losophy became natural science. Philosophers of the
period, all intensely interested in the emergence of the
new science, differed over issues of scientific method.
Philosophy had always been understood to differ from,
for instance, theology, by restricting itself to the meth-
ods of reasoned argument and the evidence of experi-
ence, without appeal to authority, tradition, revelation,
or faith. But philosophers of the era of the scientific rev-
olution disagreed about the comparative importance of
reason and experience.

In introductory histories, philosophers are accord-
ingly divided into the rationalists, or the party of rea-
son, and the empiricists, or the party of experience. The
former, mainly from Continental Europe, were domi-
nant in the seventeenth century, while the latter, mainly
from the British Isles, predominated in the eighteenth.
The rationalists, who included the mathematicians des-
cartes [VI.11] and leibniz [VI.15], were impressed by
the apparent ability of pure thought—logical deduction
from self-evident postulates—to achieve, as it seemed
to do in geometry, substantive results with worldly
applications; and they were tempted to adopt similar
methods in other areas. Spinoza even wrote his Ethics
in the style of euclid’s [VI.2] Elements, a world-historic
peak of the influence of mathematics on philosophy.
The empiricists, who included that acute critic of the
calculus, Berkeley, recognized that in physics one can-
not proceed as the rationalists wished to. The princi-
ples of physics are not self-evident, but must be con-
jectured from and tested against systematic observa-
tion and controlled experiment. What puzzled leading
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empiricists such as Locke and Hume was how pure
thought was able to succeed in any area, as it seemed
to in geometry. Thus, while for rationalists mathemat-
ics was a source of methods, for empiricists it was the
source of a problem.

An influential formulation of that problem was
offered by Kant, whose system attempted a synthesis
of rationalism with empiricism. On the one hand, Kant
claimed, geometry and arithmetic are a priori rather
than a posteriori, by which he meant that they are
knowable in advance of experience rather than depen-
dent on it. On the other hand, they are synthetic rather
than analytic, which is to say that they are more than
mere logical consequences of the definitions of con-
cepts, statements whose denials would amount to con-
tradictions in terms. Philosophy of mathematics, today
a smallish specialty within philosophy of science, itself
a smallish specialty within epistemology or the theory
of knowledge, played a much more important role for
Kant, who in his own summary of his system gave pride
of place to the question, “How is pure mathematics pos-
sible?” as the first case of the question, “How is syn-
thetic a priori knowledge possible?” Kant’s proposed
solution was based on the insight that our knowledge
must be shaped as much by the nature of ourselves,
the knowers, as by that of what is known. Kant con-
cluded that space, the subject matter of geometry, and
time, according to him the ultimate subject matter of
arithmetic, were not features of things as they are in
themselves, but rather of things as we must perceive
and experience them, given the nature of our sensi-
bility. Synthetic a priori knowledge is ultimately self -
knowledge, knowledge of the forms that we supply,
and into which reality independent of us pours con-
tent. This distinction between phenomena, or things
as we experience them, and noumena, things beyond
our experience, about which we can wonder but never
know, was central to Kant’s entire system, his ethics as
much as his metaphysics.

Such is the history of early modern philosophy,
painted in quick strokes with a broad brush. After
Kant, the story no longer has as clear a plotline. Sys-
tem building continued for another generation, down
to Hegel. But eventually, and inevitably, his system
collapsed under its own weight, and in the ensuing
reaction philosophers went off in all directions. Out-
side academia, striking figures sporadically appeared
on the borders of philosophy and literature, notably
Nietzsche. Meanwhile, academic philosophy, rather
like Victorian architecture, experienced a number of

revivals, of which the Kantian was the most promi-
nent. But even as neo-Kantianism prevailed in the
schools, the Kantian conception of mathematics was
under attack. First, though the development of con-
sistent non-Euclidean geometries in itself only con-
firms Kant’s claim that geometry is synthetic, those
who developed alternatives to Euclid were quickly led
to question whether Euclidean geometry is really a pri-
ori, as Kant had claimed. gauss [VI.26] had already
concluded that geometry is a posteriori, or, as he put
it, of the same status as mechanics, and riemann
[VI.49] argued at greater length that an examination
of the hypotheses that lie at the foundation of geom-
etry must lead us into the domain of the neighboring
science of physics. Second, while few doubted Kant’s
claim that arithmetic is a priori, a challenge arose to
the claim that it is synthetic in the work of gottlob
frege [VI.56] and (slightly later, but largely indepen-
dently) bertrand russell [VI.71], who both attempted
a derivation of arithmetic from logic along with an
appropriate definition of number.

Frege’s work long remained less well-known than it
deserved to be, despite the publicity given it by Rus-
sell once he became aware of it himself. As a result,
Frege, though very influential at present, is more a pre-
cursor of the tradition in philosophy within which he
stands than a founder, the founders being rather Rus-
sell and his contemporary and colleague G. E. Moore.
That pair began by rebelling against the philosophy
of their teachers, a late nineteenth-century aberration
called absolute idealism, a kind of Hegel revival; but
it soon became apparent that the rebels were aiming
at more than just a return to the traditional empiri-
cism of British philosophy from Bacon to Mill. Mean-
while, Edmund Husserl was developing the first form
of what was to become the great rival to the Russell–
Moore tradition in twentieth-century philosophy. Like
Frege, Husserl had begun his career with work in the
philosophy of arithmetic, work of which Frege himself
had taken notice, and no one in the early twentieth cen-
tury expected that Husserl’s and Frege’s heirs would,
within a generation, split into two noncommunicating
lines of descent.

The two lines of development or traditions are oddly
named, with a stylistic label, “analytic,” for one, and
a geographical label, “Continental,” for the other. This
odd labeling reflects the historical fact that the prin-
cipal representatives of the analytic style in Continen-
tal Europe (Ludwig Wittgenstein, Rudolf Carnap, and
others) were forced to go into exile in the English-
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speaking world in the 1930s, as a result of the process
generally known as the Nazification (but celebrated
by Husserl’s estranged student Martin Heidegger as
the “self-affirmation”) of the German university. This
physical separation—more than Heidegger’s break with
his teacher, hostility toward science, rebarbative prose
style, or loathsome politics—created a split that no one
could have anticipated twenty years earlier.

With the years the gap has widened, as later writ-
ers on each side tend to read and cite only predeces-
sors on that side. Indeed, the divide has extended back-
wards in time. For while Borges has said that in litera-
ture great writers create their own predecessors, in phi-
losophy even not-so-great writers can do so, and the
two twentieth-century traditions came to see different
nineteenth-century figures as leading up to themselves,
thus extending the division between them right back
to the death of Kant (with Hegel rather than Heideg-
ger being identified as the first distinctively Continen-
tal philosopher). The gap between the reading lists of
students in the two traditions has become so large that
nowadays for a student trained in one to take up the
other is virtually to switch disciplines.

The word “tradition,” rather than “school” or “move-
ment,” is used advisedly, for each tradition has con-
tained several movements, as well as individuals who
defy classification by school. It would be a serious mis-
take to suppose that there is any doctrine or method
on either side of the analytic/Continental divide that
all philosophers on that side uphold. In particular,
analytic philosophy should not be confused with log-
ical positivism, a Viennese–American school defunct
for more than half a century, nor should Continental
philosophy be confused with existentialism, a literary-
philosophical movement out of fashion in Paris for
nearly as long. Logical positivism and existentialism
were indeed varieties of analytic and Continental phi-
losophy respectively, and perhaps the most prominent
varieties half a century or so ago; but each was even
then far from being the only variety. In assessing the
influence of mathematics on philosophy in the twen-
tieth century, one must take into account divisions
within each tradition as much as the division between
the two traditions.

It may be true that since the early work of Husserl
there has been comparatively little contact between
mathematics and philosophy on the Continental side,
though the label “structuralist” is certainly broad
enough to take in both the mathematics of bourbaki
[VI.96] and the various anthropological and linguistic

doctrines that became influential in France after the
eclipse of existentialism; but it is also true that the
direct influence of mathematical ways of thinking on
many individuals and groups within the analytic tradi-
tion has been negligible. Thus, just as there are distin-
guishable German and French subtraditions within the
Continental tradition, so within the analytic tradition
one may distinguish a more technically oriented sub-
tradition, including Frege (who was himself a professor
of mathematics), Russell (who as an undergraduate had
concentrated on mathematics before turning to philos-
ophy), and the logical positivists (who had mostly been
trained as theoretical physicists), from a nontechnical
or antitechnical subtradition, including Moore, Wittgen-
stein, the so-called ordinary-language school of mid-
century Oxford, and others. (Wittgenstein even went so
far as to claim that mathematicians always make bad
philosophers, a sweeping judgment condemning many
right back to Thales and pythagoras [VI.1], though
the immediate target was Russell.) However, there has
been very much more communication and influence
back and forth between the two subtraditions within
each tradition than between the two traditions.

Even among the more technical analytic philosophers
the influence of mathematics after the period of the
founders has been occasional and sporadic, and has
come mostly from areas such as mathematical logic,
computability theory, probability and statistics, game
theory, and mathematical economics (as in the work
of the philosopher–economist Amartya Sen), which are
rather far from the core of pure mathematics as math-
ematicians see it. Thus it is hard to imagine the solu-
tion to any of the Millennium Prize Problems (except
perhaps the P vs NP problem, the one question com-
ing from theoretical computer science rather than core
mathematics) having measurable impact even among
the most susceptible analytic philosophers. In contrast
to this limited direct influence, the indirect influence of
mathematics, resulting from its effect on the thought
of the early figures Frege and Russell, has been over-
whelming even among the less technically oriented ana-
lytic philosophers. The branches of mathematics that
influenced Frege and Russell were geometry and alge-
bra and, above all, the third great branch of core mathe-
matics, “analysis,” in the mathematical rather than the
philosophical sense, the branch beginning with differ-
ential and integral calculus. (Frege and Russell were not
influenced by mathematical logic: rather, they created
it, and mathematical analysis was a key influence on its
creation.)



�

VII.12. Analysis, Mathematical and Philosophical 937

2 Mathematical Analysis
and Frege’s New Logic

Let us turn, then, to consider the state of mathemat-
ical analysis in the days of Frege and Russell, begin-
ning our account with a quick look back at the situa-
tion ca. 1800. As rich as its results were, and as power-
ful its applications, mathematics at the beginning of the
nineteenth century was concerned with but a few struc-
tures: the natural, rational, real, and complex num-
ber systems; and the Euclidean and projective spaces
of dimensions one, two, and three. All that changed
quickly when the work of Gauss, hamilton [VI.37], and
others introduced the first non-Euclidean spaces and
first noncommutative algebras, after which a prolifer-
ation of new mathematical structures rapidly ensued.
This generalizing tendency went hand in hand with a
rigorizing tendency, since the proliferation of novelties
persuaded mathematicians that they needed to adhere
more strictly than had become customary to the ancient
ideal of rigor, according to which all new results in
mathematics are to be logically deduced from previous
results, and ultimately from a list of explicit axioms.
For without rigor, intuitions derived from familiarity
with more traditional structures might easily be uncon-
sciously transferred to new situations where they are
no longer appropriate.

Generalization and rigorization went hand in hand
not only in geometry and algebra, but also in mathe-
matical analysis. Generalization in mathematical analy-
sis took place in two directions. The eighteenth-century
notion of “function” had been that of an operation
applying to one or more real numbers as inputs or
“arguments” and yielding a real number as output
or “value,” according to a certain formula, such as
f(x) = sinx + cosx or f(x,y) = x2 +y2. On the one
hand, nineteenth-century mathematicians generalized
by dropping the requirement of an explicit formula. On
the other hand, Cauchy, Riemann, and others extended
the notion to allow as arguments not only real num-
bers but also complex numbers, that is, numbers of the
form a + bi, where a and b are real numbers and i is
the “imaginary” square root of −1.

Rigorization in mathematical analysis also took place
on two levels. First, for each theorem it had to be clearly
stated just what special properties were being assumed
for the functions to which the result was supposed
to apply, since special properties such as definability
by a formula (or continuity or differentiability) were
no longer being built into the highly general notion

of function itself; moreover, the relevant properties
themselves had to be clearly defined (leading to the
so-called weierstrass [VI.44] epsilon–delta definitions
of such concepts as “continuity” and “differentiabil-
ity” in freshman calculus), since, as poincaré [VI.61]
remarked, until one has rigor in one’s definitions one
cannot have rigor in one’s theorems. Second, the prop-
erties assumed for the numbers to which the functions
apply had also to be clarified and stated explicitly as
axioms, with the properties of complex numbers being
derived by logical definition and deduction from prop-
erties of real numbers (by Hamilton), which themselves
in turn were derived from properties of rational num-
bers (by dedekind [VI.50] and cantor [VI.54]), which
themselves in turn were derived from properties of the
system of natural numbers 0, 1, 2, and so on.

Here Frege wished to press still further, and to do
what Kant had said could not be done, and derive the
properties of the natural numbers themselves from
pure logic. For this purpose he needed to become
more self-conscious about logic than even the most rig-
orist mathematicians: he needed not merely to adhere
implicitly to the rules and standards of logical def-
inition and deduction, but also to analyze explicitly
those very rules and standards themselves. Such self-
conscious analysis of definition and deduction was a
topic that had, since antiquity, traditionally belonged
to philosophy rather than mathematics. Frege needed
to carry out a revolution in this philosophical sub-
ject, one that would bring it much closer to mathe-
matics, and would bring progress to a field that Kant
had described as having advanced not a step beyond
the state in which it was left by its founder, Aristotle.
(The description is slightly exaggerated, but essentially
correct, in that each step forward in the two millen-
nia after Aristotle had been followed by a step back.)
It was Frege’s new logic, detached from its original role
as part of a special project in foundations of arithmetic
and applied to quite diverse subject matters, that was
to become the single most important general instru-
ment for philosophical analysis in the twentieth cen-
tury. Indeed, to a large degree philosophical analysis
simply is the logical analysis of philosophical rather
than mathematical notions, carried out with the aid of
Frege’s broad new logic, or still broader extensions of
it introduced by his successors. It was by the creation
of this general instrument of a new logic, rather than
the specialized application he made of it to the phi-
losophy of mathematics, that Frege became the grand-
father of analytic philosophy. And the novelty in Frege’s
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logic was directly inspired by novel developments in
mathematical analysis, as he himself emphasized.

In an article entitled “Function and concept,” Frege
describes the broadening of the notion of function as
follows (in the translation by Peter Geach and Max
Black):

Now how has the reference of the word “function” been
extended by the progress of science? We can distin-
guish two directions in which this has happened. In the
first place, the field of mathematical operations that
serve for constructing functions has been extended.
Besides addition, multiplication, exponentiation, and
their converses, the various means of transition to the
limit have been introduced—to be sure, without peo-
ple’s being always clearly aware that they were thus
adopting something essentially new. People have even
gone further still, and have actually been obliged to
resort to ordinary language, because the symbolic lan-
guage of Analysis failed, e.g., when they were speaking
of a function whose value is 1 for rational and 0 for irra-
tional arguments. [This is a famous example of dirich-
let [VI.36].] Secondly, the field of possible arguments
and values for functions has been extended by the
admission of complex numbers. In conjunction with
this, the sense of the expressions “sum,” “product,” etc.
had to be defined more widely.

Frege adds at the end, “In both directions I go still
further.” For it was the broadening of the notion of
function by mathematicians that provided Frege with
the clue he needed to develop a logic broader than
Aristotle’s.

Before one can appreciate the advance represented
by Frege’s logic, one must understand something of
Aristotle’s. Though it is a pretty poor achievement if
it is considered as the best the human race could do
in this area in a couple of thousand years, it is a bril-
liant one when considered as the work of a single indi-
vidual in the course of a career devoted to many other
projects. For Aristotle created from nothing the science
of logic, whose aim is to distinguish valid from invalid
inferences of conclusions from premises. Here an infer-
ence is valid if its form alone, regardless of the material
truth or falsehood of premises and conclusions, guar-
antees that if the premises are true, then the conclu-
sion is true. Equivalently, the inference is valid if in all
inferences of the same form in which the premises are
true, the conclusion is true. Thus, to adapt an exam-
ple of Lewis Carroll, the inference from “I believe what-
ever I say” to “I say whatever I believe” is not valid,
because there are inferences of identical form in which
the premise is true and the conclusion false, such as the

inference from “I see whatever I eat” to “I eat whatever
I see.”

The scope of Aristotle’s logic is limited by the lim-
ited range of forms of potential premises and conclu-
sions he recognizes. In fact, he recognized only four:
the universal affirmative “All A’s are B’s,” the univer-
sal negative “No A’s are B’s,” the particular affirmative
“Some A’s are B’s,” and the particular negative “Some
A’s are not B’s” or “Not all A’s are B’s.” The premise
“I believe whatever I say” amounts to “All things that
I say are things that I believe,” and hence is a univer-
sal affirmative. The invalidity of the inference in the
Lewis Carroll example exemplifies the invalidity of the
inference from “All A’s are B’s” to “All B’s are A’s.”
The validity of the inference from the two premises
“All Greeks are human beings” and “All human beings
are mortal” to the conclusion “All Greeks are mortal”
exemplifies the validity of the inference from “All A’s
are B’s” and “All B’s are C’s” to “All A’s are C’s,” tradi-
tionally called the “syllogism in Barbara,” for reasons
that need not concern us here. Aristotle’s logic was in
part inspired by the practice of deduction in philosoph-
ical debate (“dialectic”) and in part by the practice of
deduction in mathematical theorem-proving (“demon-
stration”), and he offers in his Posterior Analytics an
account of a deductive science that is presumed to be
based on the practice of the contemporary geometer
Eudoxus, in the same sense and to the same degree
in which his account in the Poetics of tragedy is based
on the practice of the contemporary playwright Euripi-
des. But, in fact, Aristotle’s logic is inadequate for the
analysis of mathematicians’ actual arguments, because
he makes no provision for forms of argument involv-
ing relations. He cannot, for instance, analyze properly
the valid argument from “All squares are rectangles”
to “Anyone who draws a square draws a rectangle,”
because he has no way of representing adequately the
form of the conclusion.

By contrast, if you open any present-day introduc-
tory logic text, you will find instructions on how to
represent symbolically the forms of arguments involv-
ing relations. The example just given would appear
textbook-style as follows:

∀x(Square(x)→ Rectangle(x))

∴ ∀y(∃x(Square(x) & Draws(y,x))→
∃x(Rectangle(x) & Draws(y,x))).

In words this would amount to the following. For every
x, if x is a square, then x is a rectangle. Therefore,
for every y , if there is an x such that x is a square
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and y draws x, then there exists an x such that x is a

rectangle and y draws x. (Thus “→” means “if . . . , then

. . . ,” “∀” means “for every,” and “∃” means “there is.”)

This style of logical analysis is the invention of Frege.

Underlying it is a notion of a “concept” as a special

kind of function, a function that (generalizing the math-

ematical notion in one direction) need not be given by

any kind of mathematical description, and that (gener-

alizing the mathematical notion in another direction)

need not have as arguments any kind of numbers. A

concept for Frege is a function whose argument or argu-

ments may be any objects at all, and whose values are

Truth and Falsehood. Thus, the concept Wise applied

to the argument Socrates produces the value Truth,

since Socrates is wise (at least to the extent of recog-

nizing that he lacked perfect wisdom), while the con-

cept Immortal applied to Socrates produces Falsehood,

since Socrates was not immortal but died of drinking

hemlock. Frege is able to handle relations because he

follows the mathematical analysts who allowed func-

tions of two or more arguments. Thus the two-argument

concept or relation Taught applied to Socrates and

Plato, in that order, produces Truth, since Socrates

taught Plato, while applied to Plato and Socrates, in that

order, produces Falsehood, since Plato did not teach

Socrates. Aristotle’s simple “All A’s are B’s” becomes,

for Frege, the more complex “For all objects x, if A(x),
then B(x).” At the price of such extra complexity,

he is able to logically analyze arguments turning on

relations, as Aristotle was not.

Aristotle analyzed the concept Human Being in terms

of the concepts Animal and Rational in the sense

of “language-using.” In present-day textbook notation

(writing “↔” for “if and only if”), this would be

Human(x)↔ Animal(x) & Rational(x).

But Aristotle, with no theory of relations, was unable

to analyze the notion of Mother (respectively, Father)

in terms of Female (respectively, Male) and Parent. For

Frege, Mother is analyzed as follows:

Mother(x)↔ Female(x) & ∃y Parent(x,y).

A mother is a female who is someone’s parent, and

analogously for a father. Frege was even able to ana-

lyze the concept Ancestor in terms of the concept Par-

ent, though this analysis is beyond the scope of the

present sketch. Later philosophical analysis would have

been unthinkable without Frege’s broadening of logi-

cal analysis beyond Aristotle’s, and Frege rightly saw

his broadening of logical analysis as a direct extrapo-
lation from the nineteenth-century mathematical ana-
lysts’ broadening of the notion of function they had
inherited from their eighteenth-century predecessors.

3 Mathematical Analysis and
Russell’s Theory of Descriptions

Like Frege, Russell found in mathematics both a source
of problems and a source of methods. For the pur-
poses of a specialized investigation of problems in
the philosophy of mathematics, he created an instru-
ment, his theory of descriptions, and a more general
method, that of contextual definition, which his suc-
cessors took up and applied to many other problem
areas. Indeed, it was not merely Russell’s successors
who applied these ideas to areas outside philosophy of
mathematics, since Russell himself did so in his first
publications on the subject. Thus it is not apparent
from Russell’s still widely read “On denoting,” pub-
lished in 1905 and even today a key item on the syllabus
of students of analytic philosophy, that the theory of
descriptions originated in the course of studies in foun-
dations and philosophy of mathematics. Rather, this is
a fact mentioned in Russell’s autobiographical writings
and known to historians of twentieth-century philoso-
phy. The degree to which the method of contextual def-
inition, which the theory of descriptions exemplifies,
was inspired by the nineteenth-century rigorization of
analysis is perhaps not sufficiently appreciated even by
such specialists.

A principal puzzle Russell addresses in “On denot-
ing” is that of so-called negative existentials, such as
“The king of France does not exist.” In superficial gram-
matical form this statement resembles “The queen of
England does not agree,” and to that extent it appears
to involve picking out an object (in this case, a person),
and then attributing a property to him (or her, as the
case may be). Thus it seems that in order to say that
someone or something does not exist, one must assume
that in some sense there is such a person or thing,
to whom or which the property of nonexistence may
be ascribed. Russell cites Alexius Meinong (a student
of Husserl’s teacher Franz Brentano) as a philosopher
committed to such a view. For Meinong had a theory
of “objects beyond being and nonbeing,” exemplified
by The Golden Mountain and The Round Square. But
as Scott Soames reveals, in his Philosophical Analysis in
the Twentieth Century, volume I: The Dawn of Analy-
sis, Russell himself had briefly held a similar view in
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the first days of his and Moore’s joint rebellion against
absolute idealism. It was through the development of
his theory of descriptions that Russell was able to free
himself from anything like commitment to Meinongian
“objects.”

According to that theory, to say that a Golden Moun-
tain exists is to say that there is something that is both
golden and a mountain: ∃x(Golden(x)& Mountain(x)).
To say that the Golden Mountain exists is to say that
there is one thing that is both golden and a mountain
and no other such thing:

∃x(Golden(x) & Mountain(x)

& ∼∃y(Golden(y) & Mountain(y) & y ≠ x)).

(Here “∼” represents “it is not the case that.”) This is
logically equivalent to saying there is something such
that a thing is both golden and a mountain if and only
if it is identical with that thing:

∃x∀y(Golden(y) & Mountain(y)↔ y = x).
To say that the Golden Mountain does not exist is
simply to deny this:

∼∃x∀y(Golden(y) & Mountain(y)↔ y = x).
To say that the king of France is bald is, similarly, to
say that there is something such that a thing is king of
France if and only if it is identical with that thing, and
that thing is bald:

∃x(∀y(King-of-France(y)↔ y = x) & Bald(x)).

This is not the place to go into the subtleties of Rus-
sell’s theory, whose main point should be clear from
these few examples: when the logical form is properly
analyzed, using the new logic, the phrase “the Golden
Mountain” or “the present king of France” disappears.
With it vanishes any appearance that we must acknow-
ledge such an “object” as the Golden Mountain or king
of France even in order to deny that any such object
exists. The examples illustrate in miniature two lessons:
first, that the logical form of a statement may differ sig-
nificantly from its grammatical form, and that recogni-
tion of this difference may be the key to solving or dis-
solving a philosophical problem; second, that the cor-
rect logical analysis of a word or phrase may involve an
explanation not of what that word or phrase taken by
itself means, but rather of what whole sentences con-
taining the word or phrase mean. Such an explanation
is what is meant by a contextual definition: a defini-
tion that does not provide an analysis of the word or
phrase standing alone, but rather provides an analysis
of contexts in which it appears.

Russell’s distinction between grammatical and logi-

cal form, and his claim that the former may be system-

atically misleading, was to prove immensely influen-

tial, even among nontechnically oriented philosophers,

such as the Oxford ordinary-language school, who saw

no need to use special symbols to represent logical

forms, and objected to details of Russell’s specific

application of the distinction in his theory of descrip-

tions. But Russell’s notion of contextual definition is

one implicit already in the practice of Weierstrass and

other leaders of the nineteenth-century rigorization of

analysis, and familiar to Russell from his undergradu-

ate mathematical studies, so that even the antitechnical

ordinary-language school of philosophical analysts are

being influenced at one remove (and, so to speak, in

spite of themselves) by mathematical analysis.

Contextual definition was the tool the rigorizers used

to dispel the mysteries surrounding the notions of

infinitesimals and infinities in the calculus. The fol-

lowers of Leibniz had, for instance, written df(x)/dx
for the derivative of a function f(x), wherein dx was

supposed to represent an “infinitesimal” change in the

argument, and df(x) a corresponding “infinitesimal”

change f(x + dx) − f(x) in the value when the argu-

ment changes from x to x + dx. (Leibniz claimed that

this was all just a figure of speech, but his followers

seem to have taken it literally.) These infinitesimals

could be treated as nonzero in some circumstances—

in particular, one could divide by them, as one cannot

divide by zero—and yet treated as zero and neglected

in other circumstances. Thus the derivative of the

function f(x) = x2 was computed as follows:

df(x)
dx

= f(x + dx)− f(x)
dx

= (x + dx)2 − x2

dx

= 2x dx + (dx)2
dx

= 2x + dx = 2x.

Here dx is treated as nonzero at the next-to-last step,

and zero at the last step—the kind of procedure that

outraged critics like Berkeley. In the course of the

nineteenth-century rigorization, the infinitesimals were

banished: what was provided was not a direct expla-

nation of the meaning of df(x) or dx, taken sepa-

rately, but rather an explanation of the meaning of

contexts containing such expressions, taken as wholes.

The apparent form of df(x)/dx as a quotient of

infinitesimals df(x) and dx was explained away, the

true form being (d/dx)f(x), indicating the application

of an operation of differentiation d/dx applied to a

function f(x).
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Similarly, such an expression as limx→0 1/x = ∞, or
“the limit of 1/x as x goes to zero is infinity,” was
explained as a whole, without requiring any explana-
tion of “∞” or “infinity” taken separately. The details,
which now appear in any freshman calculus textbook,
need not detain us. What is important historically is
that the notion of contextual definition employed in
Russell’s theory of descriptions was an idea that would
have been familiar to him as a student of mathematics.
To acknowledge this is, needless to say, not to deny
that there is a certain genius involved in extracting
such an idea from its original context of mathemati-
cal analysis and employing it to resolve philosophical
puzzles. To acknowledge the germs of Russell’s ideas
in ideas of Weierstrass is merely to indicate more pre-
cisely what kind of genius Russell, like Frege before
him, was bringing to bear on philosophical issues: a
kind of philosophical genius informed by knowledge of
mathematics.

4 Philosophical Analysis
and Analytic Philosophy

Anyone who acquires a new tool is in some danger of
behaving like the proverbial man with a hammer to
whom everything seems to be a nail. There is no deny-
ing that some of the first people to apply the new meth-
ods of Frege and Russell were overenthusiastic about
what such methods could accomplish. Russell himself,
having established to his own satisfaction that math-
ematics could be reduced to pure logic once one had
a sufficiently rich and powerful logic, went on to con-
clude that every science apart from mathematics could
be reduced to logical compounds of statements about
immediate sensory impressions—“sense data” as they
were called. The logical positivists reached a similar
conclusion, and were ready to ban any statement that
did not admit such a reduction, from the assertions of
Hegelian or absolute idealist metaphysicians on, as a
“pseudo-statement,” or mere nonsense.

Conscientious attempts to work out just how sci-
ence, even the parts concerned with theoretical enti-
ties not directly observable (such as quarks and black
holes in the science of today), could be reduced log-
ically to statements about sense data, or at least to
statements about everyday observable objects (such
as meter readings), failed. Hence the positivists were
forced to acknowledge that their program could not
succeed, and (since they did not wish to dismiss large
parts of modern science as mere pseudo-statements)

that their standards of meaningfulness were too rigid.
But as Soames emphasizes, this very acknowledgment
of failure was a kind of success, because few if any
philosophical schools before the positivists had even
stated their aims with sufficient clarity to make it pos-
sible to see that they were unachievable. The new log-
ical resources provided by Frege and Russell had both
tempted the positivists to conjecture more than they
could prove and made it clear to them that proof of
their conjecture was impossible.

With experience the scope and limits of the new
methods gradually came to be better understood. Rus-
sell’s theory of descriptions had been hailed by his
student F. P. Ramsey as “a paradigm of philosophi-
cal analysis,” which indeed it is. But it came to be
appreciated that the kind of application Russell made
to the issue of negative existentials, where a philo-
sophical problem was completely dissolved by philo-
sophical analysis, would seldom be possible. Analy-
sis, in general, is only a preliminary, a process that
makes it clearer what the real problems are, and not
a panacea, exposing all apparent problems as mere
pseudo-problems.

As analytic philosophy has developed, enthusiasm
has been replaced by dedication: recognition of the lim-
itations of Frege’s and Russell’s methods has led not
to the abandonment of the goal of clarity, which was
the underlying motive of the great pioneering figures,
but rather to firmer adherence to it. Today, when one
can read large tracts of philosophy in the analytic tra-
dition without encountering a single explicit analysis,
let alone one expressed in special logical symbolism,
one still finds almost everywhere a clarity of prose style
that instantly distinguishes writing in this tradition
from the writings of Continental philosophers (to say
nothing of the Continentalizing philosophastersto be
found in certain humanities departments in universi-
ties in the English-speaking world). This clarity—found,
to be sure, already in the mathematician–philosopher
Descartes, the first truly modern philosopher, but lost
in many of his successors—is the ultimate influence
and legacy which the pioneers of analytic philosophy
transmitted from mathematics to their philosophical
heirs.

Further Reading

I recommend Philosophical Analysis in the Twenti-
eth Century (Princeton, NJ: Princeton University Press,
2003) by Scott Soames for those wishing to read more



�

942 VII. The Influence of Mathematics

about this subject. Each of the two volumes of this work
contains substantial lists of primary and secondary
sources at the end of each of its several parts.

VII.13 Mathematics and Music
Catherine Nolan

1 Introduction and Historical Overview

Music is the pleasure the human mind experiences
from counting without being aware that it is counting.

This intriguing remark of leibniz [VI.15], from a 1712
letter to fellow mathematician Christian goldbach
[VI.17], suggests a serious connection between math-
ematics and music, two subjects—one a science, the
other an art—that may at first seem very different from
each other. Leibniz was perhaps thinking of the long-
standing historical and intellectual association of the
two disciplines that date back to the time of pythago-
ras [VI.1], when the subject of music was part of an
elaborate classification scheme of knowledge in the
mathematical sciences. This scheme became known in
the Middle Ages as the quadrivium, and consisted of
the four disciplines of arithmetic, music (harmonics),
geometry, and astronomy. In the Pythagorean world-
view, these subjects were interlinked, since in one way
or another they were all concerned with simple ratios.
Music was merely the aural manifestation of a more uni-
versal harmony, which was likewise expressed by rela-
tionships between numbers, geometrical magnitudes,
or the motions of celestial bodies. Harmonic conso-
nance of musical intervals resulted from simple ratios
of the first four natural numbers, 1:1 (the unison), 2:1
(the octave), 3:2 (the perfect fifth), and 4:3 (the per-
fect fourth), and was demonstrated empirically by the
ratios of lengths of vibrating strings on the ancient
instrument the monochord.1 Beginning with the Scien-
tific Revolution of the seventeenth century, theories of
tuning and temperament of musical intervals required
more advanced mathematical ideas as well, such as
logarithms and decimal expansions.

Musical composition has been inspired by mathe-
matical techniques throughout its history, although
mathematically inspired compositional techniques are
associated mainly with music of the twentieth, and

1. The monochord was an instrument designed for demonstration,
not artistic, purposes. It consisted of a single string stretched between
two fixed bridges. A movable bridge between the fixed bridges was
used to adjust the length of the string as it was plucked to produce
sound, thereby altering the pitch of the sound.

now twenty-first, centuries. A striking early example
appears in the section on melody in a monumental
treatise on music, entitled Harmonie universelle (1636–
37), by the mathematician Marin Mersenne. Mersenne
applied simple (from today’s perspective) combinato-
rial techniques to the distribution and organization of
notes in melodies. For example, he calculated the num-
ber of different arrangements or permutations of n
notes, for each n between 1 and 22 (twenty-two notes
delimiting the range of three octaves). The answer is of
coursen!, but in his zeal to illustrate this, he notated on
musical staves all 720 (6!) permutations of the six notes
of the minor hexachord (A, B, C, D, E, F), occupying a
full twelve pages of Harmonie universelle. He went on
to explore more complicated problems such as deter-
mining the number of melodies of a certain number
of notes selected from a larger number, or determin-
ing the number of arrangements of finite collections
of notes containing certain numbers of repetitions of
one or more notes. He illustrated some of his findings
with combinations of letters as well as musical nota-
tion, thereby showing that the music was incidental to
the problems, which were in essence purely combinato-
rial. Such exercises, while seemingly of little practical or
aesthetic value, at least demonstrated the great musi-
cal diversity that was in principle available with only a
limited set of resources.

The polymath Mersenne was a composer and practic-
ing musician as well as a mathematician, and his fas-
cination with applying a relatively new mathematical
technique to music composition showed a level of inter-
est in abstract connections between mathematics and
music that is shared by many music theorists, and to a
lesser degree by performing musicians and nonspecial-
ist music enthusiasts. The patterns of music, in partic-
ular pitch and rhythm, lend themselves well to mathe-
matical description, and some of them are amenable to
algebraic reasoning. In particular, the system of twelve
equal-tempered notes is naturally modeled using mod-
ular arithmetic [III.60], and this, together with com-
binatorial arguments, was used in the music theory of
the twentieth century. In this article we survey the asso-
ciation of mathematics and music from its concrete
representation in sound itself, through its manifesta-
tion in the working materials of composers, and finally
to its explanatory power in abstract music theory.

2 Tuning and Temperament

The most obvious relationships between mathematics
and music appear in acoustics, the science of musi-
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cal sound, and particularly in the analysis of the inter-
vals between pairs of pitches. With the development
of polyphonic music in the Renaissance period, the
Pythagorean conception of consonance based on the
simple ratios of the integers from 1 to 4 eventually
came into conflict with musical practice. The acousti-
cally pure perfect consonances of Pythagorean tuning
were well-suited for medieval parallel organum,2 but in
the fifteenth and sixteenth centuries use was increas-
ingly made of the so-called imperfect consonances, that
is, major and minor thirds and their octave inversions,
minor and major sixths. In Pythagorean tuning, inter-
vals are derived by successions of perfect fifths, so
the corresponding frequency ratios are powers of 3

2 .
In conventional Western music, twelve perfect fifths in
succession, C–G–D–A–E–B–F�–C�–G�–D�–A�–E�–B�, are
supposed to equal seven octaves (C = B�), but this does
not work in Pythagorean tuning, since ( 3

2 )
12 does not

equal 27. Indeed, a succession of Pythagorean perfect
fifths will never result in a whole number of octaves.
As it happens, twelve Pythagorean perfect fifths give
an interval slightly larger than seven octaves. The dif-
ference is a small interval known as the Pythagorean
comma, which corresponds to a ratio of ( 3

2 )
12/27,

which is about 1.013643.
Pythagorean tuning was originally conceived in terms

of successive single pitches. The problems associated
with it start to arise when pitches sound simultane-
ously. While Pythagorean fifths between simultaneous
pitches sound pleasing with their simple 3:2 ratios,
Pythagorean thirds and sixths have much more com-
plex ratios that sound harsh to Western ears. These
came to be replaced by the simple ratios of just into-
nation, which are ratios of quite small whole numbers.
These ratios were considered “natural” because they
reflect the ratios of the natural overtone series.3 The
Pythagorean major third, which has the relatively com-
plex ratio of ( 3

2 )
4/22, or 81

64 , was replaced by the slightly
smaller major third of just intonation, which has the
much simpler ratio 5:4. The difference between these
two intervals is known as the syntonic comma, which
corresponds to the ratio 81:80, or 1.0125. Likewise,

2. Organum is the earliest form of musical polyphony, and involved
adding a voice (or voices) to an existing plainchant melody (cantus
firmus). In its original form, the added voice proceeded in parallel
motion to the plainchant melody at the interval of a perfect fourth or
fifth.

3. The partials of the overtone series are multiples of the frequency
of the fundamental pitch, and the first six partials generate the inter-
vals of the major triad. For instance, the first six partials of the over-
tone series of a fundamental pitch C are C (1:1), C (2:1), G (3:1), C (4:1),
E (5:1), G (6:1).

Notes C D E F G A B C

Intervals 9
8

10
9

16
15

9
8

10
9

9
8

16
15

(ratios)

Figure 1 Successive intervals in a major
scale tuned in just intonation.

the Pythagorean minor third has ratio 32:27, and so is
slightly smaller than the minor third of just intonation,
which has ratio 6:5. The difference is again a syntonic
comma. The Pythagorean major and minor sixths, the
octave inversions of the thirds, also differ from their
just counterparts by a syntonic comma.

Suppose that you want to build a C-major scale in
just intonation. You can do it as follows. Start with
C and define each other note by the ratio of its fre-
quency to that of C. The subdominant and dominant,
that is, F and G, have ratios 4:3 and 3:2, respectively.
From these three notes one can build major triads in
the ratios 4:5:6. So E, for instance, which belongs to the
major triad that starts with C, has ratio 5:4. Similarly,
A has ratio 5:3, since it is in a ratio 5:4 with F. With this
kind of calculation, one ends up with the scale shown
in figure 1, where the fractions now represent the fre-
quency ratios between successive notes. The smaller
whole tone (10:9) between notes D and E creates into-
nation problems for the supertonic triad, D–F–A. While
the minor triads on E and A (the mediant and submedi-
ant) produce the proportion 10:12:15, the minor triad
on D is out of tune. Its fifth, D–A, is a syntonic comma
flat, as is its third, D–F, which is in fact a Pythagorean
minor third.

Tempering (increasing or decreasing) the size of
intervals offered a practical solution to the problems
inherent in just intonation by distributing the syntonic
comma among the major thirds or the perfect fifths
of the scale, thereby compromising the purity of one
interval to preserve the purity of another. This prac-
tice became known as meantone temperament. Vari-
ous systems of meantone temperament were put for-
ward in the sixteenth and seventeenth centuries for the
tuning of keyboard instruments, the most common of
which was quarter-comma meantone temperament. In
this system the perfect fifth is lowered by a quarter of a
syntonic comma so that the major thirds have the pure
ratio 5:4.

A perpetual problem with meantone temperaments
is that, while modulation to closely related keys sounds
pleasing, modulation to more remote keys sounds out
of tune. The system of equal temperament, in which the
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syntonic comma is distributed evenly among all twelve
semitones of the octave, gradually became adopted
because it removed the limitations on keys for mod-
ulation. The discrepancies between just and equal-
tempered intervals are small and easily accepted by
most listeners. The ratio of an equal-tempered semi-
tone is 12

√
2, or 1.05946 . . . ; by comparison, a just semi-

tone, with ratio 16:15, is 1.06666 . . . . The ratio of an
equal-tempered perfect fifth, seven semitones, is

12
√

27

or 12
√

128, which is 1.498307 . . . , whereas a just perfect
fifth, with ratio 3:2, is of course 1.5. In equal tempera-
ment, one starts from a reference such as the note A,
which is usually taken to have frequency 440 Hz.4 All
other notes have frequencies of the form 440( 12

√
2)n,

where n is the number of semitones between the note
in question and the reference note A. In equal tempera-
ment, enharmonic notes such as C� and D� are acousti-
cally identical—that is, they share the same frequency.
Equal temperament was well-suited for the kind of
music that was written from the eighteenth century
onward, with its much greater range of modulations
and chromatic harmonic vocabulary.

The unit of the cent was defined by A. J. Ellis as
the ratio between two pitches separated by one hun-
dredth of an equal-tempered semitone, and became
the most commonly used unit for measuring and com-
paring intervals.5 The octave consists, therefore, of
1200 cents. If a and b are two frequencies, then the
distance in cents between the corresponding pitches is
given by the formula n = 1200 log2(a/b). (As a check,
notice that if a = 2b then one does indeed get the
answer n = 1200.)

Microtonal systems based on the equal division of
the octave into more than twelve parts were proposed
and realized by some composers in the twentieth cen-
tury, but they have not become widely used in Western
music. However, the idea of dividing the octave into
equal parts has become fundamental. It means that
the notes used are naturally modeled by integers. If
one regards two notes an octave apart as “the same,”
which makes good musical sense, then one is dividing
all notes into twelve equivalence classes [I.2 §2.3].
The natural model for these is arithmetic modulo 12.

4. The frequency of a pitch is a measurement of the number of
cycles per second (abbreviated as “cps”). More commonly, the number
of cycles per second is identified in units called hertz (abbreviated as
“Hz”), named after the physicist Heinrich Rudolf Hertz.

5. Ellis’s account of the cent appeared in his appendix to the emi-
nent nineteenth-century physicist Hermann von Helmholtz’s On the
Sensations of Tone (1870; English edn., 1875).

Figure 2 J. S. Bach, Well-Tempered Clavier, Book 2,
Fugue no. 9, subject and diminution.

As we shall see later, the symmetries of the group of
integers mod 12 are of great musical significance.

3 Mathematics and Music Composition

The association of number and music in acoustics was
the result of scientific discovery. Number and music
have also been associated through invention and cre-
ativity in music composition. Fundamental aspects of
the temporal organization of music reflect simple pro-
portional relationships. The basic durational values in
Western music notation are the whole note ( ), half
note ( ), quarter note ( ), eighth note ( ), etc. These are
related to each other by simple multiples or fractions—
all powers of 2—and these relationships are reflected in
the metric organization of musical time into bars with
the same number of beats. Bars or measures are indi-
cated by time signatures such as the simple meters 2

4 ,
3
4 , or 4

4 ( ), where beats (the in these examples) are
typically subdivided into two, or the compound meters
6
8 , 9

8 , or 12
8 , in which beats (the . in these examples)

are subdivided into three.

A common device in musical composition, especially
counterpoint, is for a melodic theme, or subject, to
reappear at half or twice the original speed, tech-
niques known as rhythmic augmentation or diminu-
tion, respectively. Figures 2 and 3 show the subjects
of two fugues from the second volume of J. S. Bach’s
Well-Tempered Clavier : no. 9 in E major, whose sub-
ject appears in diminution; and no. 2 in C minor, whose
subject appears in augmentation. (The last note of the
diminished or augmented subject may not be propor-
tionally related to the original in order to allow a good
continuation for the music that follows.)

Geometric relations have served as musical resources
of other kinds too. A well-known construct in music
theory is the circle of fifths, which was originally
designed to demonstrate the relationships between dif-
ferent major and minor keys. As illustrated in figure 4,
the twelve notes are arranged around the circle as a suc-
cession of perfect fifths. Any seven consecutive notes in
this circle will be the notes of some major scale, which
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Figure 3 J. S. Bach, Well-Tempered Clavier, Book 2,
Fugue no. 2, subject and augmentation.

C
G

D

A

E

B

F

�B

�E

�A

F
�D

�/ G�

Figure 4 The circle of fifths.

makes it easy to understand some of the patterns of

the key signatures. For instance, the C major scale con-

sists of all the notes from F to B (clockwise). To change

from C major to G major, one shifts the sequence by

one, losing the note F but gaining F�. Continuing in this

way, we see that C major is the key with no sharps or

flats, G major has one sharp, D major has two sharps,

A major has three sharps, etc. Similarly, moving coun-

terclockwise from C, F major has one flat, B� major has

two flats, E� major has three flats, etc. From a mathe-

matical point of view, we have transformed the chro-

matic scale, which we identify with the additive group

of integers mod 12, using the automorphism x �→ 7x,

and this makes some musical phenomena much more

transparent.

Reflective symmetry is another geometrical concept

with a long history in musical composition. Musicians

will frequently describe melodic lines in spatial terms,

referring to notes of higher frequencies as “up,” and

notes of lower frequencies as “down.” This allows one

to think of melodic lines as ascending or descend-

ing. Reflection in a horizontal axis interchanges up

and down. The musical counterpart to this is known

as melodic inversion: one reverses the ascending or

descending direction of each interval, and the result

tr

Figure 5 J. S. Bach, Well-Tempered Clavier, Book 1,
Fugue no. 23, subject and inversion.

is an inverted form of the melody. Figure 5 shows the
subject of Fugue no. 23 in B major from the first volume
of Bach’s Well-Tempered Clavier and a later appearance
of the subject in inverted form. A geometrical reflection
is clearly visible in the notation, but, more importantly,
the inversion can also be clearly heard in the sound of
the music itself.

Conventional Western musical notation implies a
two-dimensional organization, in which the verti-
cal dimension expresses the relative frequency of
pitches from low to high, and the horizontal dimen-
sion expresses chronological time from left to right.
Another compositional device, much rarer than the
devices of rhythmic augmentation and diminution or
melodic inversion, is that of retrograde, where a melody
is played backwards. When the melody is played back-
wards and forwards simultaneously, the technique is
known as a cancrizans canon. Perhaps the best-known
examples of cancrizans occur in the music of J. S. Bach,
such as in the first canon of The Musical Offering or the
first and second canons of the Goldberg Variations. Fig-
ure 6 shows the opening and closing measures of the
cancrizans from Bach’s Musical Offering. The melody of
the first few bars of the upper staff returns in reverse
order at the end of the piece in the lower staff, and like-
wise, the melody of the first few bars of the lower staff
returns in reverse order at the end of the upper staff.
Joseph Haydn’s Menuetto al rovescio, from the Sonata
no. 4 for violin and piano, is another well-known exam-
ple of a similar technique, in which the first half of the
piece is played backwards in the second half.

We may regard the devices of melodic retrograde
and inversion as reflections in a two-dimensional musi-
cal space. However, retrograde is much more esoteric,
owing to the greater constraints involved in the manip-
ulation of musical time. Examples such as those by Bach
and Haydn mentioned above demonstrate great inge-
nuity on the part of the composer, who must make the
melodic retrogrades work convincingly with the under-
lying harmonic progressions. Certain common chord
progressions, such as moving from the supertonic to
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Figure 6 J. S. Bach, The Musical Offering, opening and closing measures of the cancrizans (canon 1).

the dominant, do not work well in reverse, so a com-

poser attempting to write a cancrizans canon is forced

to avoid them. Similarly, many common melodic pat-

terns do not sound good when reversed. These difficul-

ties account for the rarity of retrograde techniques in

tonal music (i.e., music based on major and minor keys).

With the abandonment of tonality in the early twenti-

eth century, the main constraints were removed, mak-

ing composition with retrograde easier. For instance,

retrograde and inversion played an important role in

serial music, as we shall see. However, composers of

such music replaced the traditional constraints of tonal

music with others, such as avoiding major or minor tri-

ads and bringing out other intervals deemed important

for a particular piece.

The atonal revolution in the early twentieth cen-

tury, during which composers experimented with novel

methods of harmonic organization, led to the explo-

ration of new types of symmetry relations in music

composition. Scales based on repeating interval pat-

terns (measured in semitones), such as the whole-tone

scale (2–2–2–2–2–2) or the octatonic scale (1–2–1–2–1–

2–1–2), appealed to composers for the symmetric struc-Terri: Tim thinks
this should stay as
it is. OK? tures and novel harmonies they embodied. The octa-

tonic scale, also known in jazz circles as the diminished

scale, had a particularly wide appeal among a variety

of composers of different nationalities, such as Igor

Stravinsky, Olivier Messiaen, and Béla Bartók. The nov-

elty of the whole-tone and octatonic scales is that they

have nontrivial translational symmetry, a property not

shared by the major or minor scales. The whole-tone

scale is unchanged if it is transposed by a tone, and

the octatonic scale is unchanged if it is transposed by

a minor third. There are thus only two distinct trans-

lates of the whole-tone scale and three of the octa-

tonic scale. For this reason, neither scale has a clearly

defined tonal center, which was a major reason for their
attractiveness to early twentieth-century composers.

Reflective symmetry was used by twentieth-century
composers as well, to help them with the formal aspects
of compositional design. A fascinating example is the
first movement of Bartók’s Music for Strings, Percus-
sion, and Celesta (1936), which extends the traditional
principles of the baroque fugue and incorporates a
symmetric design. Figure 7 illustrates the structure of
the fugue subject entries, starting from the initial entry
on A. In a traditional fugue, the subject is stated in
tonic, followed by a statement in the dominant, and
then again in the tonic (and continuing the alternat-
ing pattern of tonic and dominant entries for fugues
with more than three voices). In Bartók’s fugue, the first
statement of the subject begins with the note A, and
the next with E. Instead of returning to A for the third
statement, however, the subsequent entries follow a
pattern of alternating fifths in opposite directions from
A: that is, the sequence A–E–B–F�, etc., alternates with
the sequence A–D–G–C, etc. This pattern is illustrated in
figure 7. Each of the interlocked cycles completes a cir-
cle of fifths, one clockwise, the other counterclockwise.
Each letter in the illustration represents a statement of
the fugue subject beginning on that note, and each of
the interlocked cycles of fifths arrives on E� (six semi-
tones from the starting point, A) at its midpoint, so that
all twelve notes occur once in the first half of the pat-
tern and once again in the second half. The midpoint
of the pattern corresponds to the dramatic climax of
the work, after which the pattern of interlocked cycles
of fifths resumes with subject entries in inverted form
until the conclusion of the work with the return of the
subject starting on A.

Arnold Schoenberg’s twelve-tone method of compo-
sition, which he revealed in the early 1920s, is based
on permutations of all the twelve notes, rather than of
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Figure 7 Plan of fugal entries in Béla Bartók’s Music
for Strings, Percussion, and Celesta, first movement (after
Morris (1994, p. 61), with permission).

subsets of seven notes as one has in music in major or
minor keys. In twelve-tone music (and atonal music in
general), the twelve notes are supposed to have equal
prominence: in particular, there is no single note with
a special status like that of the tonic in a major or
minor key. The basic ingredient of a piece of twelve-
tone music is a tone row, which is a sequence given
by some permutation of the twelve notes of the chro-
matic scale. (These notes can, however, be stated in
any octave.) Once the tone row has been chosen, it can
be manipulated by means of four types of transfor-
mation: transposition, inversion, retrograde, and retro-
grade inversion. Musical transposition corresponds to
the mathematical operation of translation: the intervals
between successive notes of a transposed row are the
same as those between the corresponding notes of the
original row, so the entire row is shifted up or down.6

Inversion corresponds to reflection, as we have already
discussed: the intervals of the row are reflected about
a “horizontal” axis. Retrograde corresponds to reflec-
tion in time: the row is stated backwards. (However, if
it is combined with a transposition, as it may be, then
it is better described as a glide reflection.) Retrograde
inversion is a composition of two reflections, one ver-
tical and one horizontal: it therefore corresponds to a
half turn.

Figure 8 illustrates the serial transformations applied
to a row created by Schoenberg for his Suite for Piano,
opus 25, published in 1923. The forms of the row are

6. Describing transposition as translation does justice to the fact
that a melody sounds “the same” when transposed, even though the
pitches are different, because the successive intervals are the same. If
one arranges the twelve notes in a circle, then one can also think of
this translation as a rotation.

labeled P (for prime—the original row and its transpo-
sitions), R (for retrograde), I (for inversion), and RI (for
retrograde inversion). The integers 4 and 10 in the row
labels on the left and right refer to the starting notes of
the P and I row forms by telling us how many semitones
away from C they are. Thus, 4 refers to E (4 semitones
above C) and 10 refers to B� (10 semitones above C). The
retrogrades of the P and I forms, R and RI, are labeled
on the right-hand side of the figure. It is easy to see the
inversion (reflection) of P4 in I4 about the first note E
and the transposition of P4 by six semitones in P10, as
well as the inversion of P10 about the first note, B�.

One may wonder what sort of insight we gain from
understanding these abstract relationships and why
they were so attractive to composers like Schoenberg.
In Schoenberg’s Suite, the eight row forms shown in
figure 8 are in fact the only ones used in all five
movements of the composition. This represents a high
degree of selectivity, since there are 48 (= 12× 4) avail-
able row forms. However, this self-imposed restriction
is not on its own enough to account for the interest
or attraction of this music. An additional aspect of the
technique is that the row itself, and the way its transfor-
mations unfold in the course of a work, are chosen care-
fully to bring out certain relationships between notes.
For example, all the row forms used in the Suite begin
and end on the notes E and B�, and these notes are
frequently articulated in the work so that they take on
an anchoring function that fills the void created by the
absence of a conventional tonal center. Similarly, the
notes in the third and fourth positions in each of the
four row forms are always G and D�, in either order,
and likewise these are articulated in various ways in
the movements of the Suite so that they can become
recognizable. The two pairs of notes just mentioned,
E–B� and G–D�, are related to each other by sharing the
same interval, six semitones (half an octave, also known
as the tritone because it spans three whole tones). In
the hands of a master composer, a twelve-tone row is
not a random collection of notes, but a foundation for
an extended composition carefully constructed to pro-
duce interesting structural effects that one can learn to
recognize and appreciate.

Permutations and serial transformations of other
musical parameters besides pitch—such as rhythm,
tempo, dynamics, and articulation—were explored by
a new generation of postwar European composers,
including Olivier Messiaen, Pierre Boulez, and Karl-
heinz Stockhausen. Compared with the serialization of
pitch, however, serialization of these parameters does
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P4 R4

I4 RI4

P10 R10

I10 RI10

Figure 8 Row forms in Schoenberg’s Suite for Piano (1923).

not lend itself to such precise transformations, because
it is less easy to organize them into discrete units than
it is the twelve notes of musical space.

It is important to recognize that Schoenberg and
most composers whose music exhibits mathematical
conceptions such as those we have seen had little if any
mathematical training.7 Nevertheless, the basic mathe-
matical patterns and relations that we have discussed
are so pervasive in so many aspects of so many differ-
ent kinds of music that the importance of mathematics
in music is undeniable.

We end this section with a few more examples. Pro-
portional relations such as the simple ones between
note values reappear on a larger scale in relations
between lengths of formal divisions in music of Mozart,
Haydn, and others: they often use basic building blocks
of four-measure phrases and use them in pairs, and
pairs of pairs, to form larger units. The techniques
of melodic manipulation seen in Bach’s works, which
are found in a new guise in Schoenberg’s twelve-tone
techniques, can also be found in contrapuntal works
of composers before Bach, such as Palestrina. And
some composers, including Bach, Mozart, Beethoven,
Debussy, Berg, and others, are said to have incorpo-
rated numerological elements into their composition,

7. Some composers, to be sure, have received extended mathemati-
cal training, which is reflected in their works. Iannis Xenakis, for exam-
ple, was trained as an engineer, and had professional contact with
the architect Le Corbusier. Xenakis found parallels between music
and architecture through his study of Le Corbusier’s Modulor system
and its approach to form and proportion based on the human figure.
Xenakis’s compositions are characterized by their massive, physical
sound and their complex algorithmic processes.

such as symbolic numbers or proportions based on
Fibonacci sequences and the golden ratio.

4 Mathematics and Music Theory

In the second half of the twentieth century, the ideas
of Schoenberg and his followers were extended and
developed in North American music theory. Milton Bab-
bitt, a renowned American composer and theorist, is
widely credited with introducing formal mathematics,
specifically group theory, to the theoretical study of
music. He generalized Schoenberg’s twelve-tone system
to any system where one has a finite set of basic musi-
cal elements (of which Schoenberg’s twelve-tone rows
were just one example), with relations and transfor-
mations between them (see Babbitt 1960, 1992). There
are forty-eight ways of transforming a row, and Bab-
bitt noted that these transformations form a group,
which is in fact the product of the dihedral group D12

with the cyclic group C2 of two elements. (The D12 in
this product is the symmetry group of a dodecagon,
and the C2 allows the time reversal.) The four sets
of transformations—P, I, R, and RI (see the previous
section)—define a homomorphism from this group to
the Klein group C2×C2, by identifying transformations
that are equivalent up to rotation.

Identifying musical notes with the elements of the
group Z12 of integers mod 12, and modeling various
musical operations by means of transformations on
this group, makes it much easier to analyze some kinds
of music, such as the atonal music of Schoenberg, Berg,
and Webern, that do not lend themselves easily to more
traditional analysis of harmony (see Forte 1973; Morris
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Figure 9 Circular model of the twelve notes (pitch classes).

1987; Straus 2005). This identification is illustrated in
figure 9. As we have already commented, multiplying by
5 or 7 is an automorphism of Z12, and gives the cycle of
fifths shown in figure 4 (when one substitutes the mod-
12 integers for the names of the notes). This mathemat-
ical fact has many musical consequences. One of them
is that it is common to substitute fifths by semitones,
and vice versa, in chromatic harmony and in jazz.

A branch of music theory known as atonal set theory
attempts to give a very general understanding of pitch
relations by looking at all the 212 = 4096 possible
combinations of notes, and defining two such combi-
nations to be equivalent if one can be derived from the
other by two simple transformations, the idea being
that equivalent combinations will have the same inter-
vals. The transformations in question are transposi-
tion and inversion. A transposition up by n semitones
(where we think of n as an integer mod 12) is denoted
Tn. The notation I is used for a reflection about the note
C, so a general inversion takes the form TnI for somen.
(Inversion in this context refers to reflection in musical
space, and should not be confused with chord inver-
sion in tonal music.) In these terms, to use a familiar
example, the major triad and the minor triad are related
to each other by inversion since their successive inter-
vals are reflections of each other (four then three semi-
tones in the major triad and three then four semitones
in the minor triad, counting from the lowest note). Con-
sequently, all major and minor triads belong to the
same equivalence class. For example, the E-major triad
{4,8,11} is related to the C-major triad {0,4,7} by the
transposition T4 (because {4,8,11} ≡ {0+4,4+4,7+4},
mod 12), and the G-minor triad {7,10,2} is related by

inversion to the D-major triad {2,6,9} by T4I (because
{7,10,2} ≡ {4 − 9,4 − 6,4 − 2}, mod 12). An equiva-
lence class, such as the class of major and minor triads,
will normally consist of twenty-four sets. However, if it
has internal symmetries, such as those of the dimin-
ished seventh chord (with interval succession 3–3–3–3)
or the whole-tone and octatonic scales mentioned ear-
lier, then the number of sets in the class will be smaller,
though it will always be a factor of 24.

Sets of notes in the same equivalence class share cer-
tain sonic attributes because they share the same num-
ber and types of intervals. But while it seems reason-
able enough to regard transposed chords as equiva-
lent, since they really do have an obvious “sameness” in
the way they sound, there has been some controversy
over the notion of inversional equivalence. For exam-
ple, is it reasonable to declare major and minor triads
to be equivalent to each other when they clearly do not
sound the same and have very different musical roles?
Of course, we are free to define any equivalence relation
we like, so the real question is whether this one has any
utility. And in some contexts it does: with sets of notes
that do not possess extensive associations with tonal
music it is easier to recognize this form of equivalence
than it is with major and minor triads. For example,
the three notes C, F, and B share the same intervals
(one semitone, one perfect fourth or fifth, and one tri-
tone) as the three notes F�, G, and C�, and this does
indeed give them a noticeable form of “sameness.” (The
set {11,0,5} is inversionally related to {1,6,7} by T6I
because {11,0,5} ≡ {6− 7,6− 6,6− 1}, mod 12.)

There is other important work in music theory that
has been inspired by group theory. The most influ-
ential example is David Lewin’s Generalized Musical
Intervals and Transformations (1987), which develops
a formal theory that connects mathematical reasoning
and musical intuition. Lewin generalizes the concept
of interval to mean any measurable distance, whether
between pairs of pitches, durations, time points, or con-
textually defined events in a musical work. He develops
a model called the generalized interval system (GIS),
which consists of a set of musical objects (e.g., pitches,
rhythmic durations, time spans, or time points), a
group (in the mathematical sense) of intervals (repre-
senting the distance, span, or motion between a pair
of objects in the system), and a function that maps all
possible pairs of objects in the system into the group of
intervals. He also uses graph theory [III.34] to model
musical processes, through his notion of a transfor-
mation network. The vertices of such a network are
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basic musical elements such as melodic lines or chordal
roots. These elements come with certain transforma-
tions, such as transposition (or shifting by a general-
ized interval) or the serial transformations from twelve-
tone theory. Two vertices are joined by an edge if there
is an allowable transformation that takes one to the
other. The emphasis thus shifts from the basic ele-
ments to the relations that connect them. Transfor-
mation networks offer a dynamic way of looking at
musical processes, giving visible form to abstract and
often nonchronological connections in the analysis of
musical works.

The level of generalization and abstraction makes
Lewin’s treatise a challenge for the mathematically
unsophisticated music theorist, but it does not need
more than fairly simple undergraduate-level algebra, so
it is accessible enough for the determined reader with
some mathematical training. It becomes clear to such a
reader that the formality of the presentation is essen-
tial to a proper understanding of the transformational
approach to music theory and analysis. Despite this for-
mality, Lewin continually maintains contact with music
itself, and how his mathematical tools can be applied
in different contexts. The result is that the reader
is rewarded with insights that would be impossible
without the mathematical rigor. Mathematicians, while
likely to find the material relatively elementary, may
find their attention “captivated by the way in which the
author gives new and, sometimes, unexpected interpre-
tations to classical mathematical ideas when applied to
musical contexts” (Vuza 1988, p. 285).

5 Conclusion

The playful Leibniz quotation with which this essay
began underscores an enduring mathematical presence
in music. Both disciplines rely in a fundamental way on
concepts of order and reason, as well as more dynamic
concepts of pattern and transformation. Music was
once subsumed within mathematics, but it has now
acquired its own identity as an art that has always
derived inspiration from mathematics. Mathematical
concepts have provided composers and theorists of
music both with tools for creating music and with a
language for articulating analytical insights about it.
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VII.14 Mathematics and Art
Florence Fasanelli

1 Introduction

This article focuses on the relationship between the his-
tory of mathematics and the history of art in twentieth-
century France, England, and the United States. The
effect of mathematics on artists and the direct inter-
actions between artists and mathematicians have both
been extensively studied. These studies show that
knowledge of mathematics has had a significant influ-
ence on many artists, as well as on musicians and
writers. In particular, the increasingly wide acceptance,
during the nineteenth century, of mathematical ideas
that had once been revolutionary contributed strongly
to what is now called modern art. At the end of the
nineteenth century and the beginning of the twenti-
eth, artists expressed on canvas and in sculpture their
understanding of the fourth dimension and of non-
euclidean geometry [II.2 §§6–10]. In doing so, they
left behind their earlier training and heritage, which
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had been heavily based on a mathematical perspective
derived from euclid [VI.2]. Their new ideas reflected
the progress that had been made in mathematics,
and many of the artists who formed new schools of
thought were also engaged in interpreting these new
mathematical developments.

The connection between mathematics and art is rich,
complex, and informative. This is evident in some of
the artistic styles and the philosophies that developed
under the influence of new mathematics (and science),
and in the creation of mathematics to fulfill artis-
tic needs. Some examples include the paintings (with
their often-studied geometries) of Italian mathemati-
cian Piero della Francesca (ca. 1412–92), who, having
made a transcription of Jacopo of Cremona’s Latin
translation of Archimedes’ Codex A, wrote out his
own mathematical theories of perspective; Hans Hol-
bein’s (1497–1543) Ambassadors (1533), which illus-
trates how an artist can use a distorted variation on
mathematical perspective to fool the eye (anamor-
phosis); Artemesia Gentileschi’s (1593–1652) deliber-
ate correction of a smattering of blood in her first
version of Judith Beheading Holofernes (1612–13) to a
parabolic arc of blood in the second version (1620) to
match a sketch that her friend, scientist, court math-
ematician, and amateur painter Galileo Galilei (1564–
1642) had made as a study for his as yet unpublished
law of projectile motion; various works of the Dutch
portrait painter Johannes Vermeer (1632–75) using the
camera obscura; Johann Hummel’s (1769–1852) paint-
ings of the making of the great granite bowl in Berlin,
which used Gaspard Monge’s (1746–1818) Géométrie
Descriptive (1799); sculpture by Naum Gabo1 (1890–
1977) and his brother Antoine Pevsner (1886–1962) fol-
lowing their youthful academic study of solid geom-
etry; and the mathematically understandable but phys-
ically implausible scenes by Maurits Cornelis Escher
(1898–1972).

This article begins with a brief history of the devel-
opment of perspective in art, because it is necessary
to understand this in order to understand the rebel-
lion against it that had such a decisive impact on mod-
ern art. This is followed by a short summary of the
changing course of geometry in the nineteenth century
through the development of non-Euclidean geometry
and n-dimensional geometry. We then move on to the
activities of artists, beginning in France in the early
twentieth century and continuing with the works of

1. Gabo was born Naum Neemia Pevsner but changed his name to
distinguish himself from his painter brother.

representative artists in other countries, all the while
keeping in mind the mathematics that provoked their
artistic responses.

2 Development of Perspective

During the fifteenth century artists were still primar-
ily employed to produce images of sacred subjects,
but there was an increased interest in having pictures
match aspects of the physical world. Lacking any pre-
cursors, artists had to devise their own axioms of lin-
ear perspective. At the beginning of the sixteenth cen-
tury these early ideas of mathematical perspective were
spread by books that contained visual representations.
Mathematics that was previously known only in writing
or orally now took a visual form, which was copied in
engravings and spread across Europe.

The first writings on perspective were by Leon Bat-
tista Alberti (1404–72) and Piero della Francesca, while
the ideas of Filippo Brunelleschi (1377–1446), the Flo-
rentine architect and engineer who was in fact the first
to consider a mathematical theory of perspective, were
captured by his biographer Antonio Manetti (1423–97).
Artists and mathematicians continued to develop the
rules of perspective while looking for ways to best
represent space and distance. Among the mathemati-
cians, Federico Commandino (1509–75), renowned for
his Latin editions of the works of Greek mathematicians
such as Euclid, archimedes [VI.3], and apollonius
[VI.4], was the first to write about perspective for the
benefit of mathematicians rather than artists. His stu-
dent Guidobaldi del Monte (1505–1647) published the
influential book Perspectivae libri sex in 1600, in which
he showed that any set of parallel lines not parallel to
the plane of the picture will converge to a vanishing
point.

Great artists, notably Leonardo da Vinci (1452–1519)
and Albrecht Dürer (1471–1528), were now portray-
ing mathematics in a visual form. Mathematician Luca
Pacioli’s (1445–1517) De Divina Proportione (1509)
includes Leonardo’s unsurpassed woodcuts of poly-
hedra (among them the first published illustration of a
rhombicuboctohedron), and Dürer’s Unterweysung der
Messung (1525) contains the first illustration of nets
for models of polyhedra. Dürer’s own new knowledge
of perspective, whose secrets he had learned on a trip to
Italy from Germany, inspired him to create his famous
illustrations of how to draw a picture in which all the
elements are in one-point perspective (see figure 1).

In the seventeenth century, Girard Desargues (1591–
1661), a French engineer and architect who wrote on
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Figure 1 An artist using Dürer’s perspective machine.

practical subjects, continued the study of perspective
that had been begun by the Renaissance artists. In
doing so he invented a new, “non-Greek” way of doing
geometry, which he published in his Brouillon Project
d’une Atteinte aux Événemens des Rencontres du Cône
avec un Plan (1639). In this essay, he attempted to
unify the theory of conic sections through the use of
projective techniques. This new projective geometry
[I.3 §6.7] was based on his earlier realization than an
artist can construct a perspective image without using
a point from outside the picture field. However, of the
original fifty printed copies of the Brouillon Project only
one survives and his work, including his “perspective
theorem,” was made known through the publications
of other mathematicians. Abraham Bosse (1602–76), a
friend of Desargues who ran a famous atelier where
the art of engraving was taught, was responsible for
publishing much of Desargues’s work, including that
on the theory of perspective. But Bosse’s promotion of
Desargues’s innovative ideas created controversy in art
circles and seriously damaged his professional reputa-
tion. However, in the twentieth century, when engrav-
ing was revived as an important art form, a replica of
Bosse’s studio was built in Paris.

In the early eighteenth century, the mathematician
and amateur painter brook taylor [VI.16] published
Linear Perspective: Or a New Method of Representing
Justly All Manner of Objects as They Appear to the Eye
in All Situations (1715), the first book on perspective to
give a general treatment of vanishing points. As Tay-
lor wrote on the title page, the book was “a work nec-
essary for painters, architects, etc., to judge of, and
regulate designs by.” Taylor invented the phrase “lin-
ear perspective” and stressed the importance of what
is now described as the main theorem of perspective:
given any direction not parallel to the plane of the pic-
ture there is a “vanishing point” through which the
representations of all lines in that direction must pass.

Since ancient times the axioms of Euclid’s Elements
have provided the basis for the understanding of two-
and three-dimensional figures, and in the fifteenth
century they provided the foundations for the study
of perspective. But during the nineteenth century the
long-standing debate about whether to accept Euclid’s
fifth axiom (the “parallel postulate”) was resolved in
a way that was to provoke a radical change in the
perception of geometry: it was demonstrated by sev-
eral mathematicians—notably lobachevskii [VI.31] in
1829, bolyai [VI.34] in 1832, and riemann [VI.49] in
1854—that a consistent “non-Euclidean geometry” was
possible in which the fifth axiom no longer held.

The mathematician and expositor henri poincaré
[VI.61] provided popular accounts of these new ideas
in his books La Science et l’Hypothèse (1902) and
Dernières Pensées (1913), which were widely read in
France and elsewhere. Poincaré’s works provoked the
highly influential French (and later American) artist
Marcel Duchamp (1887–1968) to attach new meanings
to the concepts of space and measurement. Duchamp
famously discussed and used Poincaré’s essays “Math-
ematical magnitude and experiment” and “Why space
has three dimensions” to create artistic works of a com-
pletely new kind. (Duchamp’s ideas have been explored
by the art historian Linda Dalrymple Henderson, who
has used Duchamp’s extensive notes to analyze his
understanding of four-dimensional and non-Euclidean
geometries.)

3 Four-Dimensional Geometry

The modern movement known as cubism was greatly
influenced by ideas of the fourth dimension. One of Terri: June says,

“There is a
connection as
Jarry did draw on
science fiction. I
would be very
against removing
the whole
reference to
science fiction.”
OK?

the ways cubists came into contact with these ideas, as
well as with non-Euclidean geometry, was through their
reading of popular science fiction. In Gestes et Opin-
ions du Docteur Faustroll (1911), French author Alfred
Jarry (1873–1907), a close friend of Spanish artist Pablo
Picasso (1881–1973), attracted by the novelty of higher-
dimensional geometries, wrote about the work of the
British mathematician arthur cayley [VI.46]. In 1843,
Cayley published “Chapters in the analytic geometry of
n dimensions” in the Cambridge Mathematical Journal.
This work, along with Hermann Grassmann’s (1809–77)
Die Lineale Ausdehnungslehre, published in German a
year earlier, was of interest not only to mathematicians
but also to the general public, who recognized that in
spaces of higher than three dimensions basic concepts
had to be redefined and generalized.
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In 1880 Washington Irving Stringham (1847–1909),
in another influential article, “Regular figures in n-
dimensional space,” published in the American Journal
of Mathematics, extended euler’s formula [I.4 §2.2]
for polyhedra to new objects called “polyhedroids” in
which polyhedra are joined by their faces so as to
enclose a hyperspace. This article, which included illus-
trations of four-dimensional figures created by String-
ham, was cited for the next twenty years in the most
important mathematical texts on four-dimensional
geometry. Stringham’s figures intrigued several artists
during the first decade of the twentieth century:
Albert Gleizes’s (1881–1953) painting Woman with
Phlox (1910) has flowers that are similar to Stringham’s
“ikosatetrahedroid”; while in Henri Victor Gabriel LeTerri: spellings

checked in
Stringham’s
original paper
now, but because
they’re very odd
spellings we’ve
stuck inverted
commas in. All
OK?

Fauconnier’s (1881–1946) Abundance (1910–11) String-
ham’s “hekatonikosihedroid” appears.

Art forms evolved as artists found new ways of
responding visually to the world around them. This
was particularly true of cubism, in which the artist
depicted objects from several viewpoints at once. In
order to make sense of a cubist painting, the viewer
was invited to construct a single (elusive) object from
an array of different perspective “facets” laid out across
the picture’s surface.

The n-dimensional geometries influenced not just
the visual arts but also literature, including works by
Rudyard Kipling and H. G. Wells, and music, for exam-
ple Edgard Varese’s “Hyperprism” (1923). Some math-
ematicians used this new mathematics for humorous
purposes: two examples were Charles Dodgson in his
Through the Looking Glass of 1872 and Edwin Abbott in
Flatland: A Romance of Many Dimensions of 1884. The
latter in particular was read by French artists and was
referred to in other mathematics books that they read,
such as those by Esprit Pascal Jouffret (1837–1907).

4 Formal Protests against Euclid

In the early twentieth century, informed by Poincaré’s
exposition of “the fourth dimension” and by knowledge
of non-Euclidean geometry, a group of artists, includ-
ing Gleizes and Jean Metzinger (1883–1956), explic-
itly attempted to liberate themselves from the geom-
etry of three-dimensional Euclidean space. In an essay
titled “Du Cubisme” they stated, “If we wished to tie
the painter’s space to a particular geometry, we should
have to refer to the non-Euclidean scholars; we should
have to study, at some length, certain of Riemann’s
theorems.” Here they appear to be referring to rie-
mannian geometry [I.3 §6.10], in which the notion of

shape is less rigid than it is in Euclidean geometry. They
go on to say, “An object does not have one absolute
shape, it has several, it has as many as it has planes in
a range of meaning.” It is likely that they are referring
here to Poincaré’s “Les géométries non euclidiennes” in
La Science et l’Hypothèse. The title of a (lost) 1913 paint-
ing of Metzinger’s, Nature morte (4me dimension), gives
a good indication of his interest in representing three
and four dimensions on a two-dimensional surface.
Both Riemann’s geometry and the fourth dimension lay
behind what these artists were trying to accomplish;
they referred to both, however, as “non-Euclidean.”

In 1918, enraged by the destruction wrought by
World War I, a dozen artists, including Jean (Hans) Arp
(1886–1986) and Francis Picabia (1879–1953), signed
the Dada Manifesto. In it, they explicitly stated their
belief that “all objects, sentiments, obscurities, appari-
tions and the precise clash of parallel lines are weapons
for the fight [against conformity].” By the 1930s, more
and more artists were using their knowledge of math-
ematics to change, in a radical way, the appearance of
sculpture and painting.

5 Paris at the Center

During the last decade of the nineteenth century and
the years before the outbreak of World War I, artists
were profoundly influenced not just by mathemat-
ics, but also by the extraordinary developments and
discoveries in science and technology. For instance,
motion pictures (1880s), radios (1890s), airplanes, cars,
X-rays (1895), and the discovery of electrons (1897) all
had an impact on the work of artists. The pioneering
painter Wassily Kandinsky (1866–1944) wrote that an
artist’s block he was experiencing disappeared when
he learned of what was new in science; his old world
collapsed and he could begin painting again.

While it is not entirely clear how knowledge of scien-
tific and mathematical thinking came to working artists
in the early twentieth century, it is nevertheless evi-
dent that many artists were familiar with articles about
mathematics written for the general public. There was
also at least one tutor with whom they explored math-
ematics in depth. In 1911, in Paris, the mathematician
and actuary Maurice Princet (1875–1971) gave informal
lectures on four-dimensional geometry, using math-
ematician Esprit Pascal Jouffret’s Traité Élémentaire
de Géométrie à Quatre Dimensions et Introduction à
la Géométrie à n Dimensions (1903). Jouffret’s Traité,
which makes reference to Flatland , contains ways to
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present four dimensions on paper, the diagrams by
Stringham of polyhedroids in four-dimensional space,
and clear presentations of the ideas and theories of
Poincaré. A second book, Mélanges de Géométrie à
Quatre Dimensions (1906), emphasizes similar points.

Princet’s audience was the Puteaux cubist group
(which was sometimes called the “Section d’Or”). The
central figures in this group were the three brothers
Raymond Duchamp-Villon (1876–1918), Duchamp, and
Jacques Villon (born Gaston Emile Duchamp) (1875–
1963). Princet’s involvement with the artists continued,
even after his divorce from Alice Géry (1884–1975),
who shared a bohemian life with the best man at their
wedding, Pablo Picasso, and who later married André
Derain (1880–1954). Géry had introduced Princet to the
artists. An avid reader, she may have been the sitter
for Seated Woman with a Book (1910), an early cubist
painting by Picasso.

Together, in Paris, Princet and Duchamp privately
studied Poincaré and Riemann, two important sources
for Duchamp’s work, as we have already seen.
Duchamp’s own notes, written a decade later as he
created his famous painting The Bride Stripped Bare
by her Bachelors, Even (The Large Glass) (1915–23),
document his increasing interest in and understand-
ing of four-dimensional and non-Euclidean geometries.
Referring to Jouffret’s book, which explained how a
three-dimensional projection of a four-dimensional fig-
ure can be considered as a sort of “shadow,” Duchamp
told friends that the bride in his picture was a three-
dimensional projection of a four-dimensional object
recorded in two-dimensional form. He also refers to
the fact, which fascinated him, that electrons were
known to exist but could not be directly observed,
claiming that his picture contained elements that were
not directly represented. These notes, and others con-
taining speculations on mathematics, were published
in À l’Infinitif (1966). Working in a field hitherto domi-
nated by fifteenth-century Renaissance perspective and
its dependence on a Euclidean framework, Duchamp
and other artists learned with excitement that many
mathematicians no longer felt it necessary to sub-
ject themselves to Euclidean restrictions, and art was
dramatically changed.

Rather surprisingly, Riemann and Poincaré were even
part of the original inspiration for Duchamp’s famous
“readymades,” found objects presented as art. As the
artist Rhonda Shearer described in the New York
Academy of Science newsletter in 1997, Duchamp was
very taken with Poincaré’s description of the creative

Figure 2 Gabo’s Head No. 2, COR-TEN steel, 1916 (enlarged
version 1964). The works of Naum Gabo: © Nina Williams.

process in Science and Method. Poincaré reported on
his accidental discovery of the so-called Fuchsian func-
tions. After days of “unfruitful” conscious work spent
trying to prove that the functions do not exist, he
changed his habit and one evening drank black coffee
late at night. The next morning, “fruitful” ideas came
into his conscious mind. From these he selected “tout
fait” (readymade) ideas and saw, surprisingly, a way
to prove the existence of the mathematical functions
whose existence he had previously doubted. Duchamp
used the term “readymade” (and “tout fait”) in 1915.
The examples he selected, titled, and signed are ordi-
nary manufactured objects such as a urinal turned
upside down, Fountain (1917), and a bottle drying rack,
Bottle Rack (1914), thought to be the first readymade.

6 Constructivism

In Russia in 1920, the artists Naum Gabo and Antoine
Pevsner wrote that they had turned to mathematics in
order to rethink their work. As they put it: “We con-
struct our work as the universe constructs its men; as
the engineer constructs his bridges; as the mathemati-
cian his formulas of the orbits.” Gabo began to use a
stereometric system that he had studied in engineering,
creating sculptures such as “Head No. 2” (see figure 2).
The subject of stereometry goes back at least as far
as 1579, where it is listed in the “Groundplat” of John
Dee’s celebrated Mathematicall Praeface to Billingsley’s
edition of Euclid. It concerns the measurement of prop-
erties of solids, and was widely taught at universities
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Figure 3 Gabo’s two cubes: carving and construction.

in the nineteenth and twentieth centuries: indeed, it
is still taught today in some European countries. Gabo
and Pevsner constructed their sculptures out of planar
parts, so space, rather than mass, became the sculp-
tural element. Density was no longer important, with
the result that the subtraction techniques used in clas-
sical sculpture (where material is carved away from
a solid block leaving the artist’s work as the solid)
were no longer necessary. Sculpture became airy; sur-
faces became less significant and have remained so,
at least within the tradition that became known as
constructivism.

This tradition was first formalized in the Russian
Realistic Manifesto (1920), written and signed by Gabo
and Pevsner. There they argued that “The material for-
mation of the object is to be substituted for its aesthetic
combination. The object is to be treated as a whole … a
product of an industrial order like a car.” Gabo took
constructivism to the Bauhaus in Germany and then
to France and England in the 1930s, where he worked
alongside the British artists Barbara Hepworth (1903–
75) and her husband Ben Nicholson (1894–1982). Gabo
and Nicholson (with Leslie Martin) edited Circle: Inter-
national Survey of Constructive Art (1937), which con-
tained articles by themselves as well as ones by Hep-
worth, Piet Mondrian (1872–1944), and the critic Her-
bert Read (1893–1968), among others. In Circle, Gabo,
referring back to the seventeen-year-old Realistic Man-
ifesto, spells out what is meant by constructivism by
guiding the reader to see how two cubes (shown in
the photograph in figure 3) can illustrate the distinc-
tion between two kinds of representation of the same
object: carving and construction. The cubes have dif-
ferent methods of execution and different centers of
interest: one is mass and the other makes visible the
space in which mass exists. Constructivism created an
artistic context in which a mathematically understood
space became a sculptural element. As Gabo wrote:
“The stereometrical method in which [the right-hand
cube] is executed shows elementarily the constructive
principle of a sculptural space expression.”

Figure 4 Man Ray’s Allure de la Fonction Elliptique, 1936.

These artists studied mathematical models in muse-

ums and catalogues. These models, designed by math-

ematicians for teaching about surfaces, were made of

string, cardboard, metal, and plaster. The same artists

also studied photographs produced by the surrealist

Man Ray showing strings and striations of surface lines

on a model that had been found by another surrealist

artist, Max Ernst, at the Institut Henri Poincaré in Paris.

Ray portrayed these models with impressionistic pat-

terns of light and shadow (see figure 4); he was inter-

ested in the “elegance”—the aesthetic persuasiveness—

of the model, though aware that the original model-

maker had sought to give visual form to an elegance

inherent in the mathematical equations themselves.

Other artists too, such as Hepworth and Gabo, stated

that it was not mathematics itself but the beauty of

the mathematical models that provided the inspiration

for their work. Hepworth studied mathematical mod-

els that were on display in Oxford, considering them

to be “sculptural working out of mathematical equa-

tions.” They inspired her to add strings to her own

work. However, she wrote that her inspiration was not

the mathematics exhibited by the strings, but rather

their power: “the tension I felt between myself and the

sea, the winds, and the hills.”

A close friend of both Gabo and Hepworth was the

renowned sculptor Henry Moore (1898–1986). Moore

too spoke and wrote about the influence of mathemati-

cal models on his work. He had seen stringed figures of

Theodore Olivier (see figure 5) and after making many
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Figure 5 Olivier’s Intersection of Two Hyperbolic
Paraboloids, 1830. Image courtesy of the Union College
Permanent Collection, Schenectady, NY.

Figure 6 Moore’s Stringed Figure No. 1, cherry wood and
string, on oak base, 1937. Image (taken by Lee Stalsworth)
courtesy of the Hirshhorn Museum and Sculpture Gar-
den, Smithsonian Institution, Joseph H. Hirshhorn Purchase
Fund (1989).

of his own mathematical models introduced strings

into his sculpture in 1938, later considering it to have

been the most abstract of his work. He said he “had

gone to the Science Museum in South Kensington and

had been greatly intrigued by some of the mathemat-

ical models … hyperboloids and groins … developed by

[Fabre de] Lagrange in Paris, that have geometric fig-

Figure 7 Bill’s Eindeloze Kronkel, bronze, 1953–56. Image
courtesy of Mary Ann Sullivan, Bluffton University.

ures at the ends with colored threads from one to the
other to show what the form between would be. I saw
the sculptural possibilities of them, and I did some.”
Moore recognized that the use of strings connecting
protrusions actually created a barrier between the solid
sculpture and the space around the sculpture (see fig-
ure 6). The string barrier made it possible to see the
captured space. Moore and Gabo made different uses
of the mathematical models. As Moore later put it,
Gabo “developed this string idea so that his structure
always became space itself, whereas I liked the con-
trast between the solid and the strings … I was mak-
ing an outside shape a sculpture in its own right (Inte-
rior/Exterior forms), yet one which was not completed
until each part was connected to the other.”

7 Other Countries, Other Times, Other Artists

7.1 Switzerland and Max Bill

In the mid 1930s the Swiss designer and artist Max
Bill (1908–94) became intrigued by a one-sided surface,
unaware that it had been published in 1865 by the Ger-
man mathematician and astronomer August Ferdinand
möbius [VI.30]. Bill, when he needed a design for a
sculpture to hang in a stairwell, independently invented
his own möbius strip [IV.7 §2.3], by dangling a long
narrow rectangle of flexible material and then attaching
the corners appropriately (1935).

Having been informed some years later of the con-
nection between his sculpture and its mathematical
forerunner, Bill, who liked the simplicity of geomet-
ric forms, continued to earn commissions by making
sculptures based on topological problems and single-
sided surfaces (see figure 7). In a 1955 essay on the
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mathematical approach in contemporary art, he wrote
that mathematics, by giving all phenomena a meaning-
ful arrangement, is an essential method to understand
the world. For Bill, when mathematical relationships are
given form they “emanate undeniable aesthetic appeal,
such as goes out from space-models, as, for instance,
those that stand in the Musée Poincaré in Paris.”

7.2 Holland and Escher

From the second half of the twentieth century onward
there has been a groundswell of interest in the relation-
ship between mathematics and art, particularly since
1992 when artists and mathematicians from around
the world began holding joint annual conferences to
explore old and new ideas about the connections
between their disciplines. The popularity in the West
of this interdisciplinary study is in no small part due
to the unusual drawings and prints made by Maurits
Cornelis Escher (1898–1972), a Dutch graphic artist—
or “craftsman,” as he wished to be known. Escher
was deeply interested in tessellations and “impossible”
objects that are not constructible in three dimensions
but that can nevertheless be portrayed in two dimen-
sions. While his oeuvre is not thought of as an inte-
gral part of twentieth century art, he is greatly appre-
ciated by mathematicians and also by the general pub-
lic. Among his best-known works are pictures based on
Penrose triangles and on the Möbius strip.

He was inspired by knowing and learning from math-
ematicians including Georg Pólya (1887–1985), Roger
Penrose (1931–), and Harold Scott MacDonald “Don-
ald” Coxeter (1907–2003). Escher was introduced to the
international mathematics community in 1954 when
the organizing committee for the Amsterdam meet-
ing of the International Congress of Mathematicians
inaugurated an exhibition of his work at the Stedelijk
Museum. After Penrose viewed Escher’s 1953 print Rel-
ativity at this exhibition, he and his father, geneticist
Lionel Penrose (1898–1972), were inspired to create
impossible figures: the Penrose tribar and the Penrose
staircase published in the British Journal of Psychol-
ogy in 1958—the Penroses sent Escher an offprint of
the article. Escher subsequently used these in two well-
known lithographs: Waterfall (1961), in which water
runs in perpetual motion from the base of a waterfall
to the top of the waterfall; and Ascending and Descend-
ing (1960), which features a building with an impos-
sible staircase which constantly rises or falls (depend-
ing on the direction you go around it) but returns to

the same level. Coxeter’s field was symmetry in the
Euclidean and hyperbolic planes, but he also took plea-
sure in analyzing the works of artists from a mathe-
matical point of view. Escher began a correspondence
with him shortly after the congress, at which they met,
and it lasted until his death in 1972. In 1957 Coxeter
requested the use of two of Escher’s drawings to illus-
trate planar symmetry in “Crystal Symmetry and Its
Generalizations,” his presidential address to the Royal
Society of Canada—in this way Escher’s work spread
among the mathematical community. In 1958, Coxeter
sent Escher a letter containing a reprint of his address.
The response was a request: “Could [you] give me a
simple explanation how to construct the following cir-
cles, whose centers approach gradually from the out-
side till they reach the limit?” Coxeter’s reply, meant
to be helpful, gave Escher one small piece of useful
information; the rest of the lengthy letter was unin-
telligible to the artist. But from the pictures and his
own keen geometric intuition, Escher was able to con-
struct the circles he required, and by 1958 he was the
first graphic artist to have used the three main geome-
tries in his works: Euclidean, spherical, and hyperbolic.
Coxeter was astounded that an artist, untrained in
mathematics, could produce such accurate “equidis-
tant curves” as he did in his 1958 woodcut Circle Limit
III. Escher always claimed that he knew little mathe-
matics, but many of his prints are a direct result of
using mathematics. Mathematician Doris Schattschnei-
der has said that Escher was really a “secret mathemati-
cian,” since much of his work depended on his pursuit
of mathematical questions that arose from his inter-
ests and his interaction with mathematicians, which he
referred to as “Coxetering.” He did, however, write that
he preferred to find solutions and understanding by
himself.

As well as his artistic and mathematical legacy,
Escher had an important influence on crystallogra-
phers, who have used his symmetry drawings for analy-
sis. Crystallographer Caroline MacGillavry has pointed
out that Escher began a deep study of color symme-
try and created a classification system in 1941–42,
which was some time before crystallographers became
interested in this field of study, which has become
very active. The International Union of Crystallogra-
phy subsequently commissioned Escher to illustrate
MacGillavry’s Symmetry Aspects of M. C. Escher’s Peri-
odic Drawings, first published in 1965. Its purpose
was to interest “students in the laws which underlie
repeating designs and their colorings.”
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7.3 Spain and Dalí

As we have seen, some artists were influenced by their
own knowledge of mathematics, others by a less direct
appreciation of mathematical thinking, and still others
by the appeal of mathematical models. Another kind of
connection is illustrated by the example of the surreal-
ist artist Salvador Dalí (1904–89) and his relationship
with the mathematician and graphic artist Thomas Ban-
choff (1938–). Banchoff is a professor of mathematics at
Brown University, known for his research in differential
geometry in three and four dimensions. Since the late
1960s, he has also been involved in the development of
computer graphics. Dalí’s 1954 painting of Christ cru-
cified on a hypercube was reproduced in a 1975 arti-
cle about Banchoff’s pioneering work, which used com-
puter animation to illustrate geometry beyond the third
dimension. This led to a series of meetings between
Banchoff and Dalí over the next decade, at which hyper-
cubes and other aspects of geometry and art were dis-
cussed. One joint project was the design for a giant
sculpture of a horse that would appear realistic from
only one viewing position. Dalí eventually envisioned a
horse with its head in front of the viewer and its rump
somewhere on the moon—clearly a project solely of the
imagination. Dalí created works using anamorphoses,
as other artists, beginning with Leonardo, had done.
He prized his interactions with scientists and mathe-
maticians, later stating, “Scientists give me everything,
even the immortality of the soul.” Dalí also met the
French mathematician René Thom (1923–2002) to dis-
cuss catastrophe theory, which, in 1983, he sought to
represent in what turned out to be his last series of
paintings.

7.4 Other Recent Developments: The United States

and Helaman Ferguson

So far we have seen how mathematics has influenced
art. Occasionally, artists have actually created math-
ematics, for instance to produce sculpture by means
of carefully chosen mathematical equations. The noted
American sculptor/mathematician Helaman Ferguson
(1943–) divides his time equally between mathemat-
ics and the interpretation of mathematics in his art.
As a mathematician he designs algorithms for operat-
ing machinery and for scientific visualization. In 1979
he found a method for finding integer relationships
between more than two real or complex numbers—this
was later named one of the top ten algorithms of the
twentieth century. As an artist, he carves in stone. In

Figure 8 Ferguson’s Invisible Handshake II : a triply
punctured torus with negative Gaussian curvature.

1994, he asked mathematician Alfred Gray (1939–98) to
develop equations for a Costa surface (named after the
graduate student who invented equations for describ-
ing a minimal surface with holes), so that he could
sculpt the surface (see figure 8). Gray developed the
equations in terms of the Weierstrass zeta function.
This could be used with Mathematica, which made it
possible for Ferguson to create a stone sculpture. Fer-
guson sees his art as deriving from applied mathemat-
ics that has been developed over the course of the last
two centuries:

Start with physical observations about soap films
in nature (Plateau), write down a differential equa-
tion model describing minimizing surfaces (Euler–
Lagrange), define a minimal surface geometrically in
terms of curvature (Gauss), discover a minimal sur-
face with non-trivial topology (Costa), draw computer
images of the surface (Hoffman–Hoffman), recognize
symmetry and prove the surface has not self intersec-
tions (Hoffman–Meeks), discover fast parametric equa-
tions for the surface (Gray), and finally return to nature
with a sculpture, a solid form of a “soap film” big
enough to touch and climb on.

7.5 The United States and Tony Robbin

The development of n-dimensional geometry also had
a powerful effect on many other European and Amer-
ican artists, and this continued into the late twenti-
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Figure 9 Robbin’s Lobofour, acrylic on canvas
with metal rods, 1982, collection of the artist.

eth century. Interest was boosted in the 1970s with
the development of computer graphics by mathemati-
cians and artists. Examples can be found in the work of
American artist Tony Robbin (1943–), who has explored
concepts of dimension in painting, prints, and sculp-
ture (see figure 9). In late 1979, Robbin, who had also
been a student of mathematics, was working on Ban-
choff’s parallel processor computer and managed to
visualize for the first time a four-dimensional cube,
an event which radically changed his art, and which
led him to develop two-dimensional works that por-
trayed the spatial fourth dimension. Writing in his book
Fourfield: Computers, Art & the 4th Dimension (1992),
Robbin tells us, “When the fourth dimension becomes
part of our intuition our understanding will soar.” Some
of Robbin’s constructions, paintings, and prints show
figures in independent planes: that is, in overlapping
spaces that cannot be fully seen in three dimensions.
If the viewer wants to see two structures in the same
place at the same time and rotating with respect to one
another (as though projected from four-dimensional
space), then looking at one of Robbin’s wall-relief sculp-
tures lit by red and blue light while wearing 3D glasses
(one red and one blue lens) will create a full stereo-
scopic effect of the four-dimensional figure. In digital
prints it is Robbin’s lines and polyhedra that imply four
dimensions, with the two-dimensional picture being a
shadow of the higher-order object.

7.6 Hayter and Atelier 17

In 1927, the British surrealist and printmaker Stanley
William Hayter (1901–88) decided to revive the almost
lost skill of intaglio printing and established an experi-
mental studio, “Atelier 17,” in Paris. This was followed

by another in New York from 1940 to 1950 before he
returned to Paris. Hayter was aware that many of the
artists who used his facilities were working with a “dif-
ferent space from that seen through the classical win-
dow of Renaissance representation” that had existed
when engraving flourished a hundred years earlier. The
founding of Atelier 17 was central to the revival of the
print as an autonomous art form, and Hayter’s sensitiv-
ity to the significance of mathematics in the experimen-
tal techniques of printmaking (which had been evolving
since the nineteenth century) is quite apparent: “Man’s
increasing consciousness of and power over space (in
physics and mathematics) have been reflected in new
and unorthodox methods of demonstrating space and
time graphically,” so that “many properties of matter
and space, which had been represented diagrammat-
ically only by the scientists, found their expression
in graphic and affective forms.” A printmaker in the
twentieth century could use an arrangement of trans-
parent webs to define planes above the picture plane.
Specifically, by hollowing out spaces in the plate being
engraved—possibly even gouging all the way to the bot-
tom of the plate—the artist could make a projection in
front of the plane of the picture. Although artists could
have used this technique much earlier, it became impor-
tant only at the end of the nineteenth century when
the representational aspect of intaglio had been chal-
lenged by photography. They therefore used the gouge
to create the third dimension. Hayter also describes in
About Prints (1962) how Abraham Bosse’s seventeenth-
century atelier was organized and reconstructed in
Paris in the twentieth century.

In World War II Hayter’s interest in mathematics
revealed itself in a more practical way, when, in collabo-
ration with artist and patron of art Roland Penrose and
others, he set up a camouflage unit and, as Art News
reported in 1941, constructed

an apparatus which can duplicate the angle of the sun
and the consequent length of cast shadows at any
time of day, and day of the year, at any given latitude.
This complex of turntables, discs inscribed with a scale
of weeks, allowances for seasonal declination, and so
on is just the kind of working mathematics he really
delights in.

8 Conclusion

There has been a complex and fruitful relationship
between Western art and mathematics in the twenti-
eth century. Gabo, Moore, Bill, Dalí, and Duchamp are
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notable artists who have been influenced by mathemat-
ics, and Poincaré, Banchoff, Penrose, and Coxeter are
among the mathematicians who influenced them. In
the other direction, twentieth-century mathematicians,
like their forebears in the fifteenth and sixteenth cen-
turies, often turned to art to explore and exhibit, or
even just to explain more expressively, the meaning
of their mathematics. They have also likened their cre-
ative processes to those of artists. As the French mathe-
matician andré weil [VI.93] wrote to his sister, author
Simone Weil (1909–43), from military prison in 1940,
“When I invented (I say invented, and not discovered)
uniform spaces, I did not have the impression of work-
ing with resistant material, but rather the impression
that a professional sculptor must have when he plays
by making a snowman.”
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Final Perspectives
Anne: I can
confirm that the
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VIII.1 The Art of Problem Solving
A. Gardiner

Where there are problems, there is life.

Zinoviev (1980)

In English the word “problem” has negative connota-
tions, suggesting some unwanted and unresolved ten-
sion. Zinoviev’s reminder is therefore important: prob-
lems are the stuff of life—and of mathematics. Good
problems focus the mind: they challenge and frustrate;
they cultivate ambition and humility; they show up
the limitations of what we know, and highlight poten-
tial sources of more powerful ideas. By contrast, the
word “solving” suggests a release of tension. The juxta-
position of these two words in the expression “prob-
lem solving” may encourage the naive to think that this
unwelcome tension can be massaged away by means of
some “magic formula” or process. It cannot; there is no
magic formula.

Why don’t we tell the truth? No one has the faintest idea
how the process … works, and in calling it a “process”
we may be already making a dangerous assumption.

Gian-Carlo Rota, in Kac et al. (1986)

A “problem” is something that one wants to under-
stand, to explain, or to solve, but which eludes one’s
initial attempts to classify it as being of some famil-
iar “type.” The experience of being confronted by such
a “problem” is inevitably unsettling: it may eventually
prove to be more familiar than one thought, but the
would-be solver is initially dumped in terrain with few
signposts or marked tracks. Some (such as Pólya and
his recent followers) have tried to devise a universal
“problem-solving meta-map.” But in reality there is no
easy alternative to that painful immersion so familiar
to generations of postgraduate students.

Grand general principles can help to make sense

of this experience, but are unlikely to take us very

far. Consider, for example, the four general principles

formulated by descartes [VI.11] in his Discourse on

Method.

The first was never to accept anything for true which I
did not clearly know to be such. The second, to divide
each of the difficulties under examination into as many
parts as possible, and as might be necessary for its
adequate solution. The third, to conduct my thoughts
in such order that by commencing with objects the
simplest and easiest to know, I might ascend … step
by step to the knowledge of the more complex. And
the last … to make enumerations so complete … that I
might be assured that nothing was omitted.

Descartes’s rules are worth pondering. But it is hard

to accept that it was the systematic application of

these four rules that led to Descartes’s almost single-

handed creation of analytic geometry as we know them

today! In the detailed working out of the creative pro-

cess, problem-specific “know-how” distilled from end-

less hands-on experience is likely to be far more impor-

tant than any general principles. What then can one use-

fully say? To describe the “art of problem solving” in

impressive-sounding detail would be irresponsible. But

to say nothing would be misleading. Both options are

unsatisfactory—yet these two responses are what stu-

dents, teachers, and would-be mathematicians are most

likely to meet! Attempts to teach “problem-solving”

in schools often misconstrue mathematics as a kind

of “subjective pattern-spotting.” Instead of correcting

this distortion at university level, mathematicians often

maintain a discreet public silence about the very private

matter of how serious mathematical problems actually

get solved. Hence, in addressing the theme for read-

ers with a mathematical bent, this article has to start

largely from scratch, and to proceed slowly. So we begin

with a warning. The subject of problem solving is well

worth exploring, but we shall proceed obliquely and
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our conclusions will often remain implicit. Along the
way we shall meet extracts from a number of sources—
which may be viewed as an initial reading list for those
who wish to pursue the theme in greater detail, pro-
vided they never forget that the only way to gain true
insight into a craft is through practicing the craft itself.
Mathematics may be “the queen of the sciences,” but
the art of doing mathematics remains a craft, passed
on in the ancient craft tradition, through painful initi-
ation. A number of collections of problems at various
levels—often using relatively elementary material—are
listed in the references. Here we make do with a single
example.

Problem. For all positive integers n and k, show that
some triangular number is congruent to k (mod 2n).

The reader is encouraged to explore this prob-
lem before reading on, noting any obvious stages
along the way: from initial bewilderment, through an
exploratory/organization phase, eventually culminat-
ing in a solution and an attempt to locate this isolated
challenge in some broader mathematical context.

Mathematics is a largely unexplored “mental uni-
verse,” whose initial exploration and charting, sub-
sequent colonization, routine traverse, and efficient
administration correspond, in many ways, to the real-
world adventures of geographical explorers in former
centuries. To strike out beyond the security of the old-
world coastline, to imagine and explore something new,
takes intellectual courage.

Most prominent among these mathematical explor-
ers are the “system builders,” who identify new mathe-
matical continents, or who uncover profound and unex-
pected bridges joining known lands. Their initial moti-
vation may stem from a specific problem, whose analy-
sis provides hints of the outline of previously undis-
cerned structures; but the system builder’s focus then
switches to the bigger picture: trying to identify, and to
clarify, connections between the structures that under-
lie “mathematics in the large.” Such ventures often end
up with little to show for them—they may come close
to discovering some mathematical El Dorado, but they
lack the gold to prove it. Some of these explorers may
later be singled out as major prophets or discover-
ers, but such recognition can be fickle: those so hon-
ored may not have been the first to see their particular
promised land; they may not have appreciated the sig-
nificance of what they had stumbled upon, or of how
it would eventually be seen to link known mathemat-
ical lands; their success may have depended on ear-

lier attempts by others; and their bounty may not have

impressed their contemporaries as deeply as we now

imagine.

Each triumph of the system builders is rooted in

detailed knowledge of “mathematics in the small,”

which may derive from work in a very different mathe-

matical style—such as that of the mathematical beach-

comber, who is most at home exploring the known

mathematical shoreline, using some sixth sense to

spot suspicious-looking rocks, under which are hid-

den intricate, and totally unexpected, microworlds on

our very doorstep. While great explorers range fur-

ther and further afield, they leave behind annoying

gaps, or unsolved problems, which represent signif-

icant lacunas in our understanding—gaps that some

future beachcomber may one day explain, so opening

the way for some new synthesis.

The system builder and the beachcomber represent

very different mental styles; but their contributions

complement each other. In our evolving picture of the

mathematical universe, insights on a small scale and

on a large scale must somehow fit together. Hence

the beachcomber’s chance discoveries may contribute

in unexpected ways to our future conception of the

large-scale mathematical universe.

Such differing styles should be borne in mind as we

strive to make our introductory comments more spe-

cific. Our first attempt is based on a version of Alain

Connes’s three levels of mathematical activity.

The first [level] is defined by the faculty of calculation—
being able to apply a given algorithm rapidly and
reliably. . . . The second level begins when the actual
method of calculation is adapted to, and criticized in
the context of, a particular problem. . . . In mathemat-
ics this is what often makes it possible to solve prob-
lems that aren’t too difficult or that don’t require any
new ideas. . . . The third level [is] the level at which the
mind, or rather conscious thought, is occupied with
another task while the problem in question is being
solved … subconsciously. . . . At [the third] level it isn’t
only a matter of solving a given problem; it is also pos-
sible to discover … a part of mathematics to which the
[previously] existing corpus gives no direct access.

Alain Connes, in Changeux and Connes (1995)

Connes’s first level focuses on the development of

robust technique—that is, fluency, accuracy, and confi-

dence in using given procedures in relatively standard

ways. We say no more about work on this level except

to stress its importance! Discussion about the “art of
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problem solving” presupposes, and only makes sense
in the context of, appropriate robust technique.

Connes’s second level includes most, but by no
means all, of the serious mathematics that mathemati-
cians engage in on a daily basis. Genuine problems
occur on this level in different guises, ranging from
(i) challenges designed to stretch the young would-
be mathematician (in high school geometry, in puz-
zle books and problem-solving journals, in Olympiads,
etc., whose material is designed to force the would-be
solver to select, to adapt, and to combine known meth-
ods in unexpected ways), to (ii) genuine research prob-
lems that can be tackled and largely solved by selecting,
adapting, and combining known methods in a suitably
imaginative way.

In our problem about triangular numbers, the first
level includes the immediate translation from words
into symbols to obtain the congruence m(m − 1)/2 ≡
k (mod 2n), or m(m − 1) ≡ 2k (mod 2n+1), which, for
arbitrary given n � 1, has to be solved for all k � 1. The
second level might then include a systematic attempt
to make sense of what happens for small values of n,
leading to the formulation of simple conjectures whose
proofs would solve the problem, followed by moves to
devise the necessary proofs.

It is tempting to think of Connes’s third level as “in-
scrutable,” in the spirit of the following extract:

In science, as well as in other fields of human endeavor,
there are two kinds of geniuses: the “ordinary” and the
“magicians.” An ordinary genius is a fellow that you or
I would be just as good as if we were only many times
better [than we are]. There is no mystery as to how his
mind works. Once we understand what he has done, we
feel certain that we, too, could have done it. It is differ-
ent with the magicians. They are … in the orthogonal
complement of where we are and the working of their
minds is for all intents and purposes incomprehensi-
ble. Even after we understand what they have done, the
process by which they have done it is completely in the
dark. They seldom if ever have students because they
cannot be emulated and it must be terribly frustrating
to cope with the mysterious ways in which a magician’s
mind works.

Kac (1985)

However, one would then expect activity on this level to
be so idiosyncratic as to be irrelevant to ordinary mor-
tals. In fact, the most valuable insights we have into “the
art of problem solving” derive from personal testimony
about work on this level by precisely such “magicians”
as poincaré [VI.61], which suggests that there are clear
parallels between the experience of the very best math-

ematicians on Connes’s third level and what happens
when ordinary students, or mathematicians, operate
“out of their depth” when tackling more mundane prob-
lems; that is, when their own fumbling requires them
to work in regions to which their own “existing cor-
pus gives no direct access.” In our problem about tri-
angular numbers this might occur when a solver who
has never met “congruences for binomial coefficients”
manages to adapt the naive proof for

(
m
2

)
(mod 2n)

to cover the slightly more awkward
(
m
3

)
(mod 2n), and

realizes that, even though this naive approach does not
extend to

(
m
4

)
(mod 2n), something more general may

be lurking in the darkness.
Thus we use the word “problem” to refer to a seri-

ous mathematical challenge on at least Connes’s sec-
ond level, where this is to be interpreted in the spirit
of activity on Connes’s second and third levels. So any
analysis of the art of mathematical problem solving
must somehow reflect experience on these two higher
levels. By contrast, the educational assumptions that
underpin most attempts to bring “problem-solving” to
the classroom generally try to reduce this subtle pro-
cess to a set of rules in the spirit of Connes’s first
level !

A problem is much more than just a hard exercise.
Consider the question, When is a “problem” not a prob-
lem? One answer is clearly, When it is too easy ! How-
ever, many students and teachers are tempted to reject
unfamiliar or mildly confusing problems because they
appear to be too hard. This is an understandable reac-
tion only where mathematics is limited to a succession
of predictable exercises.

Most of us learn mathematics as a collection of stan-
dard techniques, which we use to solve standard prob-
lems in predictable contexts (Connes’s first level). Like
the athlete or musician, the mathematics student needs
to develop technique. However, as the athlete trains in
order to compete, and the musician practices in order
to make music, so the mathematician needs technique
in order to make mathematics by tackling challenging
problems. Each new piece of printed music may ini-
tially strike the beginner as a confusing array of black
blobs. But as they work on the piece, phrase by phrase, Terri: again, Tim

thinks that this
wording is the best
available. OK?

it slowly takes on a shape of its own, revealing internal
connections that may previously have been overlooked.
Much the same is true when we confront an unfamiliar
mathematical problem. At first sight we may not even
understand the question. But as we struggle to make
sense of the problem, we regularly find that, little by
little, the fog begins to lift.
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Two rats fell into a can of milk. After swimming for
a time one of them realized his hopeless fate and
drowned. The other persisted, and at last the milk was
turned to butter and he could get out.

In the first part of the war, Miss Cartwright and I
got drawn into van der Pol’s equation. . . . [W]e went on
and on … with no earthly prospect of “results”: sud-
denly the entire vista of the dramatic fine structure of
solutions stared us in the face.

Littlewood (1986)

In 1923 hardy [VI.73] and littlewood [VI.79] madeTerri: the
publication that
the quote(s) come
from was
published long
after the work was
done so the dates
are correct. OK?

a conjecture about the number of arithmetic progres-
sions (APs) of length k among the primes. One poten-
tial corollary was that the prime numbers must contain
arbitrarily long APs. Faced with such a claim it is nat-
ural to start looking for APs which consist entirely of
primes! But if you try, you will soon approach the lim-
its of what is known: the first three odd primes, 3, 5, 7,
form a very familiar AP of length three, but longer APs
are surprisingly elusive (in 2004 the record for an AP
of distinct primes had length twenty-three, with both
the primes themselves and the step size being astro-
nomical). Despite this unpromising lack of evidence,
in 2004 Ben Green and Terence Tao proved that the
set of prime numbers does indeed contain arbitrarily
long APs. Their proof is a fine example of the way in
which significant progress often combines a detailed
reevaluation of known results (in this case a deep result
of Szemerédi), lateral thinking (they embed the primes
not in the integers, but in a natural but sparser set
of “almost primes” of which the primes constitute a
nonzero fraction), and the determination and ingenuity
to make such ideas deliver the goods.

It remains a serious challenge to capture the essence
of Littlewood’s experience (where the fog suddenly
lifts) in a form that is suitable for relative beginners,
whether through time-constrained problems (see Bar-
beau 1989; Gardiner 1997; Lovasz 1979), or through
structured investigations (see Gardiner 1987; Ringel
1974). In the year in which Green and Tao announced
their proof, the British Mathematical Olympiad posed
the following problem, which readers are encouraged
to tackle.

Problem. In an AP of seven distinct primes, what is the
smallest possible value of the largest prime?

This challenge could enliven any introductory num-
ber theory course, as well as providing a natural link to
recent developments. For the novice it is far from obvi-
ous how to begin, but the basic idea is elementary and

should be “known” (in some sense), and can be used to
generate natural APs of lengths 4, 5, 6, 7, 8, provided
that one accepts the value of carrying out extensive
computations quickly and intelligently.

A great discovery solves a great problem. But there is
a grain of discovery in the solution of any problem.
Your problem may be modest; but if it challenges your
curiosity and brings into play your inventive faculties,
and if you solve it by your own means, you may expe-
rience the tension and enjoy the triumph of discovery.
Such experiences at a susceptible age may create a taste
for mental work and leave their imprint on mind and
character for a lifetime.

From the preface to the first
printing of Pólya (2004)

Pólya is, if anything, too reticent here. The important
distinction is not between that which is “known” and
that which is truly “original,” but rather between math-
ematical activity in the spirit of Connes’s first level and
mathematical activity in the spirit of Connes’s second
and third levels. Any introduction to this distinction is
inevitably through problems whose solution is known
to someone, so we should collect and use good “modest
problems,” not apologize for them. Ulam puts it more
directly.

I learned chess from my father. . . . The moves of the
knight fascinated me, especially the way two enemy
pieces can be threatened simultaneously with one
knight. Although it is a simple stratagem, I thought it
was marvelous, and I have loved the game ever since.

Could the same process apply to the talent for
mathematics? A child by chance has some satisfying
experiences with numbers; then he experiments fur-
ther and enlarges his memory by building up a store
of experiences.

Ulam (1991)

Children also find delight—if less profound and more
short-lived—in the discovery that one can set up a “cor-
ner move” in the children’s game noughts and crosses
(tic-tac-toe) so as to simultaneously threaten to com-
plete two lines-of-three, at most one of which can be
countered. This delight in a double-edged strategy,
which points in two directions at once, has much in
common with the pleasure we derive from (i) puns and
double entendres in ordinary language, in humor, and
in poetry, (ii) the almost physical response when we
recognize subtle variations on a theme in music, and
(iii) the more cerebral appreciation we feel when we
meet counting methods based on unanticipated iso-
morphisms, or the essentially two-faced idea of “proof
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by contradiction” in mathematics. This enjoyment of
hidden ambiguities and double meanings is related
to the evident (but poorly understood) way in which
analogy guides, and delights, mathematicians of all
ages.

Banach once told me, “Good mathematicians see analo-
gies between theorems or theories; the very best ones
see analogies between analogies.”

Ulam (1991)

Koestler, in his thought-provoking book The Act of
Creation (1976), shows how scientific and literary “cre-
ativity” often flows from the identification and exploita-
tion of “double meanings with a built-in tension.”
(Koestler calls them bisociations: “the perceiving of a
situation or idea L in two self-consistent but habitu-
ally incompatible frames of reference … the event L is
made to vibrate simultaneously on two different wave-
lengths, as it were.”) His study begins with an analysis
in precisely this vein of the human response to humor,
both comic and tragic, including a selection of jokes
attributed to von neumann [VI.91]!

Ulam’s innocent-sounding question (in the extract
before last) challenges us not only to provide children
with “satisfying experiences with numbers,” but also
to identify other quintessential aspects of mathemat-
ics and to ensure that they are experienced memorably
at school (and undergraduate) level. In particular, inso-
far as there is such a thing as an “art of problem solv-
ing,” we need to learn how to convey it faithfully and
effectively through the medium of classical elementary
mathematics to those who are near the beginning of
their mathematical studies, or who may not yet have
any commitment to mathematics.

It is often claimed that Pólya’s little book How to
Solve It provides an answer. It does not. Pólya was a
pioneer who sought to provoke a debate among mathe-
maticians about “heuristics.” This debate never really
got started. Instead his first low-level attempt at a
theoretical framework has been embraced uncritically.

Much of what Pólya writes about specific problems
in How to Solve It makes sense; but his general con-
clusions on “how to help students solve problems” are
less convincing. As a result, much of the book’s gen-
eral theorizing needs to be read extremely carefully.
For example, Pólya’s suggestion that “when the teacher
solves a problem before the class, he should drama-
tize his ideas a little and he should put to himself the
same questions which he uses when helping students”
is spot on. But alarm bells should start ringing when he

confidently concludes that “[thanks] to such guidance,
the student will eventually … acquire something that is
more important than the knowledge of any particular
mathematical fact.” In the right setting the claim may
occasionally be true; but as a statement about the effect
on students in general it is false.

Similar claims have been widely used to justify the
introduction of a whole new branch of school mathe-
matics called “problem-solving” (see NCTM (1980) and
www.pisa.oecd.org), which has grown at the expense
of mastery of the “particular mathematical facts” on
which the activity itself depends.

Pólya and others were right to insist that school
mathematics should include a regular diet of good
problems, and that educators have a duty to convey
not just the techniques and inner logical structure of
the subject, but also the experience of struggling to
uncover the mathematics hidden in multistep prob-
lems and carefully structured investigations. Fortu-
nately, the four volumes that Pólya wrote to illustrate
this broader thesis remain in print (Pólya 1981, 1990).
There the focus is on mathematics, and the rhetoric is
more restrained:

[L]et us learn proving, but also let us learn guessing. . . .
I do not believe there is a foolproof method to learn
guessing. At any rate, if there is such a method, I do not
know it, and quite certainly I do not pretend to offer
it in the following pages. . . . [P]lausible reasoning is a
practical skill and it is learned, as any other practical
skill, by imitation and practice.

Pólya (1990, volume 1)

These four books should be compulsory reading for
all serious mathematics educators, graduate students,
and mathematics lecturers. However, Pólya and others
failed to show how problem solving could be devel-
oped within the standard school mathematics curricu-
lum. Instead they concentrated on proposing general
rules that might “help students become better problem
solvers.” What is needed is to clarify (i) which aspects of
elementary mathematics have the potential to captivate
young minds—not because they are more “enjoyable”
in some superficial sense, but because they are more
“pregnant with meaning”; and (ii) how to teach such
material so as to convey this deeper meaning on an ele-
mentary level. This is not the place for a detailed analy-
sis, but we suspect such an analysis would strengthen
the position of many traditionally important topics and
themes, encouraging them to be taught in such a way
as to bring out their inherent richness, while recogniz-
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ing that these goals depend on prior mastery of cer-
tain basic techniques without which this richness can
scarcely be appreciated. In contrast, recent “reforms,”
whose declared intention was to enrich school mathe-
matics, have regularly reduced both the emphasis on,
and the time available for, serious elementary mathe-
matics.

Those who want good problems to enrich school
mathematics often fail to recognize that well-inten-
tioned “reforms” are usually unstable under the kind
of distortions that routinely affect large-scale educa-
tional change (where the cultivation of professional
competence, sensitivity, independence, and responsi-
bility among teachers is regularly replaced by central-
ized control via a fragmented list of separate “out-
comes,” which are then assessed in ways that actively
discourage good teaching).

Small-scale experiments can also have unintended
side effects! As a little-known example of a radical
attempt to cultivate the art of problem solving at school
level we offer Eisenstein’s account of his own education
at lower secondary school (1833–37).

[E]ach student had to prove the theorems consecu-
tively. No lecture took place at all. No one was allowed
to tell his solutions to anybody else and each student
received the next theorem to prove, independent of
the other students, as soon as he had proved the pre-
ceding one correctly, and as long as he had under-
stood the reasoning. . . . While my peers were still strug-
gling with the eleventh or twelfth, I had already proved
the hundredth. . . . [T]his method … can probably not be
adapted. . . . One does not obtain that overview of the
whole subject, which can only be achieved by a good
lecture. . . . In the end, the best mathematical genius
cannot discover alone what has been discovered by the
collaboration of many outstanding minds. . . . For stu-
dents this method is only practicable if it deals with
small fields of easily understandable knowledge, espe-
cially geometric theorems, which do not require new
insights and ideas.

Eisenstein (1975)

Eisenstein was a remarkable mathematician. Yet at the
tender age of twenty, on the threshold of the mathe-
matical world that he longed to inhabit, he could see the
limitations of this approach—even for students such as
himself.

Problems that cultivate a taste for problem solving
tend to incorporate certain characteristic features, such
as simplicity, rhythm, naturalness, elegance, and sur-
prise; and their solutions are often double-edged. But
their most important feature is that, while their solu-

tion should be within reach of those in the target audi-
ence, the statement of the problem should convey no
direct hint as to how to begin. Indeed, a good prob-
lem may continue to frustrate the would-be solver for
a disturbingly long period.

A tacit rite of passage for the mathematician is the first
sleepless night caused by an unsolved problem.

Reznick (1994)

The role of sleep and sleeplessness in creative problem
solving is well documented (if poorly understood). It
often features within the “incubation” phase of hada-
mard’s [??] “four phases” (discussed below), which
summarize the process through which the initial expe-
rience of helplessness and leaden frustration is some-
times transmuted into golden success.

Such success is neither mechanical, nor the result of
pure chance. In solving a good problem—as with a good
puzzle—there is no magic problem-solving method
that might relieve us of the need to struggle: the strug-
gle may sometimes be fruitless, but it is an important
part of the process. Thus, a successful outcome gen-
erally presupposes a certain kind of preparatory hard
work. When asked how he made his discoveries, gauss
[VI.26] is said to have answered, “Durch planmässiges
Tattonieren,” that is, through systematic and persistent
groping around!

Having discovered a way into a problem, one may
realize that it “should have been obvious” where to
begin; but things are often obvious only in retrospect.
One learns by experience how a certain kind of persis-
tence can cause the fog that initially surrounds an unfa-
miliar problem to magically evaporate; what was at first
invisible then stands out so clearly that one can scarcely
understand how it could ever have been missed.

When faced with an unfamiliar mathematical prob-
lem, the mathematician, young or old, is like someone
who is trying to open some fiendishly difficult Chinese
puzzle box with a hopelessly small bunch of keys. At
first glance the surface seems totally smooth, without
a single visible crack. If you were not convinced that
it was indeed a Chinese puzzle box, and that it could
in fact be opened, you would soon give up. Knowing
(or rather believing) that it can be opened, you may
be willing to keep searching until you eventually begin
to discern the slightest hint of a crack here and there.
You may still have no idea how the pieces are meant to
move, or which of your “keys” may help you to open
up the first layer of the puzzle, but by trying the most
appropriate-looking keys in the most promising cracks,



�

VIII.1. The Art of Problem Solving 967

you eventually stumble on one that fits exactly, and the
pieces begin to move. The job is certainly not done; but
the mood has changed and you feel you are well on the
way.

As we have already seen, this experience of initial
confusion, giving way as one grapples with a problem
to unexpected insight, is in no way confined to begin-
ners. It is part of the very nature of mathematics and of
the way human beings do mathematics. If a problem is
unfamiliar, its solution may require persistence, faith,
and much time. So one should never give up too eas-
ily, and should always be prepared to look back after
solving a problem to see what one could perhaps have
done differently.

It is most important in creative science not to give up.
If you are an optimist you will be willing to “try” more
than if you are a pessimist. It is the same in games
like chess. A really good chess player tends to believe
(sometimes mistakenly) that he holds a better position
than his opponent. This, of course, helps to keep the
game moving and does not increase the fatigue that
self-doubt engenders. Physical and mental stamina are
of crucial importance in chess and also in creative
scientific work.

Ulam (1991)

Persistence is of course easier to sustain if one has
a degree of optimism about the likely outcome, or
if one has cultivated the sheer “bloody-mindedness”
that makes one refuse to give up (as with Littlewood’s
surviving rat). However, there are dangers.

I learned, subconsciously, from Mazur how to con-
trol my inborn optimism and how to verify details. I
learned to go more slowly over intermediate steps with
a skeptical mind and not to let myself be carried away.

Ulam (1991)

At the International Congress of Mathematicians in
Paris in 1900, hilbert [VI.63] presented twenty-three
major research problems, which he judged would be
important for the development of mathematics in the
twentieth century. These problems seemed very hard;
yet in bringing them to the attention of his fellow
mathematicians Hilbert felt the need to stress that this
should not be used as an excuse for putting off trying
to solve them.

However unapproachable these problems may seem to
us and however helpless we stand before them, we
have, nevertheless, the firm conviction that their solu-
tion must follow by a finite number of purely logical
processes. . . . This conviction of the solvability of every

mathematical problem is a powerful incentive to the
worker. We hear within us the perpetual call: There is
the problem. Seek its solution. You can find it by pure
reason; for in mathematics there is no ignorabimus.

During the nineteenth century it became clear that the
more that scientists discovered about nature, the more
they realized how little they knew, and that one could
never hope to discover “the whole truth.” This realiza-
tion was summed up by the physiologist Emil du Bois-
Reymond in the phrase “ignoramus et ignorabimus”—
ignorant we are and ignorant we shall remain. As the
new century dawned, Hilbert felt that it was impor-
tant to state as clearly as he could that mathemat-
ics is different. In mathematics, he said, we can tackle
problems with “the firm conviction that their solution
must follow by a finite number of purely logical pro-
cesses.” As if to underline his assertion, one of his prob-
lems was solved almost immediately (though the most
famous, the riemann hypothesis [IV.2 §3], remains
unresolved).

Hilbert was talking about mathematical research: but
his principle applies even more strongly when tack-
ling problems from textbooks, Olympiads, or univer-
sity courses. When faced with an unfamiliar and appar-
ently very difficult mathematical problem, we have lit-
tle choice about how to proceed: we must either tackle
the problem using the “bunch of keys” or mathemat-
ical techniques that we already know (no matter how
limited they may be), or put off trying. Of course it is
important to learn new tricks, and to revise old ones, as
we go along. And of course there is always the tempta-
tion to imagine that the problem we face is simply too
hard, that progress toward a solution requires some
trick or technique that we have not yet learned and
that the solution is therefore beyond our powers. This
defeatist view is all the more plausible because it must
sometimes be true! Mathematicians know perfectly well
that, strictly speaking, the assumption that every prob-
lem can be solved is irrational (in that it cannot be
justified logically, and is in general clearly false: we
now know that some problems are intrinsically insol-
uble as stated). It is nevertheless an invaluable working
hypothesis. Thus we should never let such doubts inter-
fere with the basic hypothesis that every problem we
tackle has to be solved using essentially the techniques
that we already know (deployed with sufficient ingenu-
ity!). Though strictly illogical, the assumption that every
problem can be solved has justified itself so often in
practice that it becomes a powerful conviction—a con-
viction that is psychologically invaluable each time we
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experience that feeling of helplessness when trying to
get to grips with a hard mathematical problem.

Hilbert’s judgment that his problems would play a
central role in the mathematics of the twentieth cen-
tury was remarkably astute. But the most interesting
thing for us here is his rallying call: however unap-
proachable these problems may seem at first sight, and
however helpless we stand before them, we have the
firm conviction that their solution must be possible by
purely logical processes. “There is the problem. Seek
its solution. You can find it by pure reason.” As in
most printed mathematics, Hilbert offered no psycho-
logical guidance on how to proceed. Those who took
up Hilbert’s challenge were expected to discover such
things for themselves.

Like every social activity, mathematics has a “front”
and a “back”: the front is where the finished products
are displayed for public consumption, while the back
is where the real work is done in less presentable sur-
roundings. A naive realist might view the front as a

Terri: Tim says
that this is a
standard
juxtaposition in
analytic
philosophy. OK?

mere facade, insist that all serious “problem solving”
goes on “out back,” and declare this separation to be
artificial.

Sometime, in a future that is knocking at our door,
we shall have to retrain ourselves and our children to
properly tell the truth. The exercise will be particularly
painful in mathematics. The enrapturing discoveries of
our field systematically conceal, like footprints erased
in the sand, the analogical train of thought that is the
authentic life of mathematics. . . . Until that day, how-
ever, the truths of mathematics will make only fleeting
appearances, like shameful confessions whispered to
a priest, to a psychiatrist, or to a wife.

In the nineteenth chapter of “The Betrothed,” Man-
zoni describes as follows the one genuine moment in
a conversation between astute Milanese diplomats: “It
was as if, between acts in the performance of an opera,
the curtain were to be raised too soon, and the spec-
tators were given a glimpse of a half-dressed soprano
screaming at the tenor.”

Gian-Carlo Rota, in Kac et al. (1986)

However, the prospect of some mathematical equiva-
lent of being obliged to witness “a half-dressed soprano
screaming at the tenor” should cause us to hesitate
before embracing Rota’s vision of the future.

The front–back metaphor is due to the sociologist
Erving Goffman. One standard example is that of a
restaurant. We tend to think of a restaurant in terms
of what we see “out front,” where the manners, food,
and language are “all dressed up”; but everything we
see out front is totally dependent on the raw heat, the

steam and grease, the conflicts and curses “out back”
in the kitchen—where the hard work is done to tight
deadlines and in very different conditions.

The triumph of mathematics in the modern world has
been largely due to the fact that these two worlds—
the front and the back—have been deliberately and
systematically separated. It may seem curious that we
have no agreed way of discussing the dynamics of
the mathematical kitchen; but mathematics has grown
largely because its practitioners have learned to sepa-
rate its objective results, and the way they are validated
and presented, from the intriguing, but inscrutable
(and ultimately irrelevant!) subjective alchemy through
which these mathematical results are conjured up. This
formal separation has led to the adoption of a univer-
sally communicable format, which transcends personal
taste and style, and which can therefore be compre-
hended, checked, and improved by anyone. Any move
to pay greater attention to the mental, physical, and
emotional dynamics that underlie mathematical prob-
lem solving must understand the need for this sep-
aration and respect the formal world of “objective”
mathematics.

There are intriguing insights into the human dynam-
ics of the mathematical kitchen scattered throughout
the mathematical literature. One such insight is the
fact that different mathematicians may have very dif-
ferent styles, even though most of these differences are
rarely discussed. One example is the perceived role of
memory. Some mathematicians value memory highly.

It seems to me that a good memory—at least for math-
ematicians and physicists—forms a large part of their
talent. And what we call talent or perhaps genius itself
depends to a large extent on the ability to use one’s
memory properly to find the analogies, past, present
and future, which, as Banach said, are essential to the
development of new ideas.

Ulam (1991)

Others have an excellent memory for anything within
their own field of interest, but have considerable diffi-
culty storing information from outside that domain in
an easily retrievable form. And many would-be math-
ematicians are drawn to the subject precisely because
they see it as requiring markedly less memorizing than
most other disciplines. The important point would
seem to be not how much one remembers, but what
one makes automatic, and how accessibly this and other
information is stored. It is clearly worth making a seri-
ous effort to organize in one’s mind that material which
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is central to one’s own work—so that it is available for
instant use. It is also important, as we shall see, to col-
lect a penumbra of possibly useful ideas, information,
and examples—so that the mind is in a position to make
incidental connections which might be fruitful. But it is
not necessarily wise to learn in a uniform way every-
thing that might conceivably be needed for the prob-
lem at hand: knowing slightly less sometimes forces the
mind to get by on less, and hence to be more ingenious
or inventive.

Hadamard’s Four Phases

Littlewood’s (1986) numerous perceptive observations
concerning his contemporaries highlight other differ-
ences in style—such as speed and working habits. Sim-
ilar insights may be found in many of the livelier math-
ematical autobiographies, but Littlewood’s remarks are
especially valuable.

With a good deal of diffidence I will try to give some
practical advice about research and the strategy it calls
for. In the first place research work is of a different
“order” from the learning process of pre-research edu-
cation (essential as it is). The latter can easily be rote-
memory, with little associative power: on the other
hand, after a month’s immersion in research the mind
knows its problem as much as the tongue knows the
inside of one’s mouth. You must acquire the art of
“thinking vaguely”, an elusive idea that I can’t elabo-
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rate in short form. . . . I should stress the importance of
giving the subconscious every chance. There should be
relaxed periods during the working day, profitably I say
spent in walking.

Littlewood (1986)

At one stage Poincaré thought there might be just two
main styles of mathematical thinking:

The one sort are above all preoccupied with logic. . . .
The other sort are guided by intuition and at the
first stroke make quick but sometimes precarious
conquests. . . . [O]ne often says of the first that they are
analysts and calls the others geometers.

Poincaré (1904)

But in identifying the label “logical” with that of “ana-
lyst,” and the label “intuitive” with that of “geome-
ter,” he noticed that hermite [VI.47] constituted a
counterexample—an “intuitive analyst”! Clearly, the
range of mathematical styles is more complex (see
Hadamard 1945, chapter VII). One consequence is that
any analysis of the art of problem solving in general
needs to be drawn with a broad brush. Despite this

caveat, Hadamard’s “four-phase” model of mathemat-
ical creativity has found widespread acceptance, so it
may help if one’s work habits respect these phases:

It is usual to distinguish four phases in creation: prepa-
ration, incubation, illumination and verification, or Terri: again the
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working out. . . . Preparation is largely conscious, and
anyhow directed by the conscious. The essential prob-
lem has to be stripped of accidentals and brought
clearly into view; all relevant knowledge surveyed; pos-
sible analogues pondered. It should be kept constantly
before the mind during intervals of other work. . . .
Incubation is the work of the subconscious during
the waiting time, which may be several years. Illumi-
nation, which can happen in a fraction of a second,
is the emergence of the creative idea into the con-
scious. This almost always occurs when the mind is
in a state of relaxation and engaged lightly with ordi-
nary matters. . . . Illumination implies some mysterious
rapport between the subconscious and the conscious,
otherwise emergence could not happen. What rings the
bell at the right moment?

Littlewood (1986)

Pólya’s How to Solve It proposes a less convinc-
ing four-stage “recipe” for the problem-solving process
(“understand, plan, act, reflect”), which has neverthe-
less been widely used at school level. Hadamard’s four
phases provide a useful framework for thinking and
communicating about the creative process; they also
separate the relatively routine aspects (which one may
be able to influence more easily) from the more elu-
sive ones. The “conscious preparation” phase is per-
haps the most mundane stage, requiring a combination
of method and discipline. Littlewood again offers sound
advice. He recognizes that his advice may not suit all
tastes, but he insists that we would all benefit from try-
ing different patterns of working in order to identify
and cultivate habits that are as effective as possible.

Most people need half an hour or so before being able
to concentrate fully. . . . The natural impulse towards
the end of a day’s work is to finish the immediate job:
this is of course right if stopping would mean doing
work all over again. But try to end in the middle of
something; in a job of writing out, stop in the middle
of a sentence. The usual recipe for warming up is to
run over the latter part of the previous day’s work; this
dodge is a further improvement. . . . When I am working
really hard I wake around 5.30 a.m. ready and eager to
start; if I am slack I sleep till I am called.

Littlewood (1986)

At some ill-defined stage, this preparation achieves a
sufficiently clear understanding of the immediate prob-
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lem, together with a level of saturation in relevant back-

ground information, to enable the mind to begin try-

ing different approaches and combinations of ideas. We

have reached the incubation phase.

We cannot know all the facts, since they are practically
infinite in number. . . . Method is precisely the selection
of facts.

Poincaré (1908)

I’ve often observed too that once the first hurdle of
preparation has been surmounted, one runs up against
a wall. The main error to be avoided is trying to attack
the problem head-on. During the incubation phase you
have to proceed indirectly, obliquely. . . . Thought needs
to be liberated in such a way that subconscious work
can take place.

Alain Connes, in Changeux and Connes (1995)

Temperament, general character, and “hormonal” fac-
tors must play a very important role in what is consid-
ered to be purely “mental” activity. . . . A “subconscious
brewing” (or pondering) sometimes produces better
results than forced, systematic thinking. . . . [W]hat we
call originality … might to some extent consist of a
methodical way of exploring all avenues—an almost
automatic sorting of attempts. …

When I remember a mathematical proof, it seems
to me that I remember only salient points, markers, as
it were, of pleasure or difficulty. What is easy is eas-
ily passed over because it can be reconstructed log-
ically with ease. If, on the other hand, I want to do
something new or original, then it is no longer a ques-
tion of syllogism chains. When I was a boy I felt that
the role of rhyme in poetry was to compel one to
find the unobvious because of the necessity of find-
ing a word which rhymes. This forces novel associa-
tions and almost guarantees deviations from routine
chains or trains of thought. It becomes paradoxically
a sort of automatic mechanism of originality. . . . What
people think of as inspiration or illumination is really
the result of much subconscious work and association
through channels in the brain of which one is not aware
at all.

Ulam (1991)

It takes two to invent anything. The one makes up com-
binations; the other one chooses, recognizes what he
wishes and what is important to him in the mass of the
things which the former has imparted to him. What we
call genius is much less the work of the first one than
the readiness of the second one to grasp the value of
what has been laid before him and to choose it.

Paul Valéry, quoted in Hadamard (1945)

We have reached a double conclusion: that invention is
choice [and] that this choice is imperatively governed
by the sense of scientific beauty.

Hadamard (1945)

Part of the pleasure (and pain), the magic (and mas-
ochism) of mathematics stems from the fact that the
next step—from incubation to illumination—remains
so mysteriously elusive. Illumination can occur at any
time. In most cases—especially where the realization
is of something relatively straightforward—this occurs
during periods of “official work.” However, this need
not be so, especially when the corner to be illumi-
nated is especially dark or unfamiliar, or if the leap of
imagination required is large. In such cases it seems
that, after the hard graft of the preparation and incu-
bation phases, the mind often needs to “step back”
in order to see the way forward more clearly. That
is, hard work needs to be combined with relaxation,
as Connes implies when he warns against “trying to
attack the problem head-on.” In one oft-quoted exam-
ple, Poincaré recalls how he realized the profound con-
nection between Fuchsian functions and hyperbolic
geometry as he stepped aboard a bus while on a day
out! The first three extracts below show that the mind
may achieve this in-between state as a result of sleep-
lessness, or in the very act of waking. The fourth extract
concerns strenuous hill walking. What is common to
them all is that the moment of enlightenment does not
occur while the beneficiary is officially working!

It was his custom to tell his friends that if others would
meditate as long and as deeply as he did on mathemat-
ical truths, they would be able to make his discoveries.
He said that often he meditated for days on a piece
of research without finding a solution, which finally
became clear to him after a sleepless night.

Dunnington (1955)

One phenomenon is certain and I can vouch for its
absolute certainty: the sudden and immediate appear-
ance of a solution at the very moment of sudden awak-
ening. On being very abruptly awakened by an external
noise a solution long searched for appeared to me with-
out the slightest instant of reflection on my part … and
in a quite different direction from any of those which
I had previously tried to follow.

Hadamard (1945)

Most striking at first is this appearance of sudden
illumination, a manifest sign of long, conscious prior
work. . . . The role of this unconscious work in mathe-
matical invention appears to me incontestable. …
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For a fortnight I had been attempting to prove that
there could not be any function analogous to what I
have since called Fuchsian functions. I was at that time
very ignorant. Every day I sat down at my table and
spent an hour or two trying a great number of combina-
tions, and I arrived at no result. One night I took some
black coffee, contrary to my custom, and was unable
to sleep. A host of ideas kept surging in my head; I
could feel them jostling one another, until two of them
coalesced, so to speak, to form a stable combination.
When morning came, I had established the existence of
one class of Fuchsian functions, those that are derived
from the hypergeometric series. I had only to verify the
results, which only took a few hours.

Poincaré (1908)

I had been struggling for two months to prove a result
I was pretty sure was true. When … walking up a Swiss
mountain, fully occupied by the effort, a very odd
device emerged—so odd that though it worked I could
not grasp the resulting proof as a whole. . . . I had a
sense that my subconscious was saying, “Are you never
going to do it, confound you; try this.”

Littlewood (1986)

The resulting sense of satisfaction is familiar even to
those whose mathematical experience is limited.

Illumination is not only marked by the pleasure—
the exhilaration!—one inevitably experiences at the
moment it strikes, but also by the relief one suddenly
feels at seeing a fog abruptly lift, and disappear.

Alain Connes in Changeux and Connes (1995)

However, after months of hard work, such intoxication
can sometimes be deceptive.

In mathematics one cannot stop at drawing with a big,
wide brush; all the details have to be filled in at some
time.

Ulam (1991)

The verification, or working-out, process often appears
mundane; but it is rarely routine, and regularly reveals
hidden subtleties that force us to reassess the antic-
ipated approach. Unforeseen difficulties may remain
unresolved, and we may be obliged reluctantly to begin
the cycle all over again. It is tempting to think of this
as “failure.” But mathematics is not a mere machine
for solving problems; it is a way of life. In their differ-
ent ways success and failure both send us back to the
drawing board—as Gauss observed in a letter to bolyai
[VI.34] in 1808.

It is not knowledge, but the act of learning, not posses-
sion but the act of getting there, which grants the great-
est enjoyment. When I have clarified and exhausted a

subject, then I turn away from it, in order to go into
darkness again; the never-satisfied man is so strange—
if he has completed a structure, then it is not in order
to dwell in it peacefully, but in order to begin another. I
imagine the world conqueror must feel thus, who after
one kingdom is scarcely conquered, stretches out his
arms for others.
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VIII.2 “Why Mathematics?”
You Might Ask
Michael Harris

It seems to me that they have a poor opinion of
our religion if they think it needs the protection of
philosophy.

Lorenzo Valla, Dialogue on Free Will

1 A Metaphysical Burden

andré weil [VI.93], speaking at the 1978 International
Congress of Mathematicians at Helsinki, concluded his
address entitled “History of Mathematics: Why and
How?” with these words:

Thus my original question “Why mathematical his-
tory?” finally reduces itself to the question “Why math-
ematics?,” which fortunately I do not feel called upon
to answer.

Proceedings of the ICM, Helsinki, 1978
(pp. 227–36, quotation on p. 236)

I heard Weil’s address, and the applause that followed,
and remember imagining circumstances in which that
final question could not be so easily evaded. For
instance, in 1991 the House Committee on Science,
Space, and Technology called upon the American Math-
ematical Society (AMS) to answer a very similar ques-
tion: “What are the main goals in the mathematical sci-
ences?” Weil knew his audience, and the committee of

twelve mathematicians responding to the government
body responsible for research budgets knew theirs:

The most important long-term goals for the mathe-
matical sciences are: provision of fundamental tools
for science and technology, improvement of mathe-
matics education, discovery of new mathematics, facil-
itation of technology transfer, and support of efficient
computation.1

“Meaning is what makes things sell,” wrote Roland
Barthes (1967), and the AMS adopted the posture of
fourier [VI.25], who, according to a celebrated com-
ment of jacobi [VI.35], included in a letter to legendre
[VI.24] of July 2, 1830,

… had the opinion that the principal aim of mathemat-
ics was public utility and explanation of natural phe-
nomena; but a philosopher like him should have known
that the sole end of science is the honor of the human
mind.

It might seem that the AMS has left a place for “honor”
in its third goal, but a later elaboration of that goal
directs the reader toward “unexpected” applications of
pure mathematics.

Few pure mathematicians are as indifferent to practi-
cal applications as hardy [VI.73], who in A Mathemati-
cian’s Apology famously claimed that: “Judged by all
practical standards, the value of my mathematical life is
nil.” But it is fair to assume that, when they are address-
ing one another rather than government committees,
most pure mathematicians (including those who repre-
sented the AMS in 1991) would choose a quite different
list of “most important long-term goals.”

In this they have long been able to count on the
protection of philosophy. It has been a commonplace
since Plato to grant mathematics intrinsic value on
metaphysical grounds.2 The topos of mathematics as
a source of certain knowledge was already well estab-
lished by the second century, when Ptolemy wrote

1. From “Pilot assessment of the mathematical sciences (prepared
for the House Committee on Science, Space, and Technology),” Notices
of the American Mathematical Society 39 (1992):101–10.

2. The present essay is mainly concerned with metaphysical cer-
tainty. Descartes wrote in Principles of Philosophy (chapter CCVI)
of “certainty … founded on the metaphysical ground that, as God is
supremely good and the source of all truth, the faculty of distinguish-
ing truth from error which he gave us, cannot be fallacious so long
as we use it aright, and distinctly perceive anything by it,” and cites
“the demonstrations of mathematics” as his first example. Plato (in
Republic, VII, 522–31) saw mathematics rather as a source of “know-
ledge of that which exists forever.” Certainty and its cognates are
some, but only some, of the apparent blessings of mathematics that
so impressed certain philosophers as to “infect” the whole of their
work, as Ian Hacking (2000) argues.
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Only mathematics, if one attacks it critically, provides
for those who practice it sure and unswerving know-
ledge, since the demonstration comes about through
incontrovertible means, by arithmetic and geometry.3

the crisis in the foundations of mathemat-
ics [II.7] of the early twentieth century, which culmi-
nated in gödel’s incompleteness theorems [V.18],
was largely motivated by a desire to make mathemat-
ical certainty safe from dependence on human frailty.
As russell [VI.71] wrote in Reflections on my Eightieth
Birthday :

I wanted certainty in the kind of way in which people
want religious faith. I thought that certainty is more
likely to be found in mathematics than elsewhere. . . .
Mathematics is, I believe, the chief source of the belief
in eternal and exact truth.

Quoted in Hersh (1997)

Russell’s hope to ground certainty in logic is largely
a thing of the past—as Marvin Minsky wrote in another
context, “without an intimate connection between our
knowledge and our intentions, logic leads to madness,
not intelligence” (Minsky 1985/1986)4—but his words
continue to echo. After Jean-Pierre Serre was named
first recipient of the Abel Prize, he was quoted in Libéra-
tion (May 23, 2003) to the effect that mathematics is the
only producer of “totally reliable and verifiable” truths.
And Landon T. Clay III, announcing the creation of the
$7 000 000 Millennium Prize Fund, linked his decision
to devote much of his personal fortune to the support
of pure mathematics to “the decline in religious cer-
titude … the pursuit of proof continues to be a strong
motivating force in human actions.” 5

The mind saves its honor, as Jacobi would have it,
but only through indenture to a higher power. I would
like to express my opinion that the bargain implicit in
comments like those just quoted, placing pure mathe-
maticians on the front lines in defense of metaphysical
certainty or some other normative concern of philoso-
phers, is an unnecessary burden that fails to do justice
to what is uniquely valuable about mathematics. It also

3. See Lloyd (2002), in which is cited Ptolemy’s Syntaxis, I, chapter 1,
16.17–21.

4. Compare René Thom’s comment in connection with his criti-
cism of attempts to reduce mathematics to set theory: “In attempt-
ing to attach meaning to all the phrases constructed in ordinary lan-
guages, according to Boolean rules, the logician proceeds to a phantas-
mic, delirious reconstruction of the universe” (reprinted in Tymoczko
1998).

5. Transcript of interview by Francois Tisseyre conducted on the
occasion of the Paris Millennium Meeting, May 24, 2000, graciously
provided by the Clay Mathematics Institute.

fails to protect pure mathematics from the real existen-
tial dangers it faces, of which budget cuts are only the
most obvious expression. Mathematics is not likely to
collapse for lack of a coherent account of its certainty,
but it may well collapse for lack of an account of its
value.

2 Postmodernism versus Mathematics?

One danger that should not worry mathematicians is
that of postmodernism. Many thousands of pages have
been written on this topic, although it is not clear that
the word designates anything specific. I will neverthe-
less add a few pages of my own, because the term
has come to be used as shorthand for a radical rela-
tivism that is thought to call into question not only
certainty but rationality in all its forms.6 One thus
finds mathematicians who are skeptical of certainty in
Russell’s sense but who nonetheless express hostility
to something they call “postmodernism” as they try
to defend reason and the value of mathematics as a
rational activity.

Applied to architecture, postmodernism designates
a reasonably precise tendency. As a trend defining the
spirit of the times, it has been called “the cultural
logic of late capitalism,” differing from modernism by
emphasizing space rather than time, multiple perspec-
tives and fragmentation rather than unity of meaning
and totality, pastiche (sampling)7 rather than progress,
and much more along the same lines. As a movement in
philosophy it is most typically (if abusively) associated
with Michel Foucault, Jacques Derrida, Gilles Deleuze,
Roland Barthes, Jean-François Lyotard, and more gen-
erally the “French theory” of the 1960s and 1970s.
Postmodern prose is eclectic, ironic, self-referential,
and hostile to linear narrative. The variant known
as posthumanism celebrates the fading of conceptual
and material boundaries between human beings and
machines.

We are all postmodernists insofar as we have experi-
enced the degradation of public discourse under the
influence of advertising slogans, and are therefore
likely, in spite of ourselves, to read Jacobi’s invoca-
tion of “the honor of the human mind” as a precur-
sor of that genre. Mathematicians can even claim to be

6. For example, Lakoff and Núñez (2000) write of a “radical form of
postmodernism which claims that mathematics is purely historically
and culturally contingent and fundamentally subjective.” No examples
are given of texts espousing this point of view.

7. “Because his … artistry comes from combining other people’s
art, … the DJ is the epitome of a postmodern artist” (www.jahsonic.
com/postmodernism.html).
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the first postmodernists: compare an art critic’s def-
inition of postmodernism—“meaning is suspended in
favor of a game involving free-floating signs”—with
the definition of mathematics, attributed to hilbert
[VI.63], as “a game played according to certain simple
rules with meaningless marks on paper.” 8 Mathemat-
ics could nevertheless (or for that very reason) safely
ignore postmodernism, were it not that the latter is sup-
posed to have no room for certainty, metaphysical or
otherwise.9 So it is not surprising that authors who are
considered postmodernists have had some perplexing
run-ins with science and mathematics.

The typically controversial postmodernist account of
science sounds like this:

Science and philosophy must jettison their grandiose
metaphysical claims and view themselves more mod-
estly as just another set of narratives.

Terry Eagleton’s caricature of postmodernism,
quoted in Harvey (1989)

As far as mathematics is concerned, relativism of this
kind has more to do with English-language postmod-
ernism than with the French original. One might have
thought that mathematical progress from axioms to
theorems and from lesser to greater abstraction or gen-
erality constituted a prime example of the sort of “mas-
ter narrative” that French postmodernists regarded
with suspicion, and a particularly tempting target
given the special role Enlightenment thinking reserved
for mathematical explanation; but that seems not to
have been the case. Although the most prominent
French philosophers associated with postmodernism
were metaphysical skeptics in other regards, they had
no quarrel with mathematics’ metaphysical preten-
sions per se; but they did question their relevance to
the human sciences. For Derrida, thinking of leibniz
[VI.15] in particular, “[mathematics] was always the
exemplary model of scientificity” (in Of Grammatology,
p. 27), and Foucault claimed that:

Mathematics has certainly served as a model for most
scientific discourse[s] in their efforts to attain formal

8. Otto Karnik, in “Attraction and repulsion,” article in Kai KeinRe-
spekt, p. 48, Exhibition Catalogue of the Institute of Contemporary Art
(Bridge House Publishing, Boston, MA, 2004). The Hilbert quotation is
easy to find but is probably apocryphal, which does not make it any
less significant. Mathematics and the Roots of Postmodern Thought,
by Vladimir Tasíc, is an extended speculation on postmodernism’s
mathematical antecedents; see my review in Notices of the American
Mathematical Society 50 (2003):790–99.

9. For example, “[Derrida’s] thought is based on his disapproval of
the search for an ultimate metaphysical certainty or source of mean-
ing that has characterized most of Western philosophy.” From the
Encyclopedia Britannica Online (www.britannica.com).

rigor and demonstrativity; but for the historian who
questions the actual development of the sciences, it
is … an example … from which one cannot generalize.10

The Archeology of Knowledge (pp. 188–89)

At least one of postmodernism’s canonical French
texts does take on the issue of certainty in science and
mathematics directly. Alluding to the trilogy of Gödel’s
theorems, uncertainty in quantum mechanics, and frac-
tals,11 Lyotard saw in contemporary mathematics

a current that calls into question precise measure-
ment and prediction of the behavior of objects at the
human scale … postmodern science … produces not
the known, but the unknown.

Lyotard (1979)

Various authors have reminded readers that Gödel’s
theorems and the uncertainty principle (and chaos) are
statements about formal systems in mathematics and
particle physics (and nonlinear differential equations),
respectively, and as such have no bearing on meta-
physics.12 The arguments are often eloquent but alto-
gether beside the point, and of little comfort to seekers
of certainty like Russell. Metaphysical certainty, what-
ever it may be, cannot be any less binding than a math-
ematical proof. Gödel’s theorem, that it is impossible
to prove, within a formal system, that that formal sys-
tem is consistent, can reasonably be taken to mean that
metaphysical certainty cannot be guaranteed by math-
ematical means alone.13 But Serre, in his comments to
Libération, surely meant something more than the tau-
tology that mathematical truth is totally reliable and

10. “Why don’t you ask a physicist or a mathematician about dif-
ficulty?” was Derrida’s response to a 1998 New York Times question
about deconstruction: see Jacques Derrida, Abstruse Theorist, dies at
74, New York Times, October 10, 2004. Appeals to the presumed value
of even the most abstruse mathematics, in order to legitimate obscu-
rity elsewhere, are common. I first encountered such an argument
in an article by composer (and former mathematician) Milton Bab-
bitt entitled “Who cares if you listen?” (High Fidelity, February 1958):
“Why should the layman be other than bored and puzzled by what
he is unable to understand, music or anything else?” With this sort
of talk, the justification of pure mathematics on aesthetic grounds is
turned upside down. That is why I address aesthetic answers to the
question of my title—which are by far the most popular among my
colleagues—only in a footnote.

11. A cliché for the succeeding generation of literary critics: for a
sample emphasizing chaos rather than Gödel, see N. Katherine Hayles
(ed.), Chaos and Order (University of Chicago Press, 1991).

12. Much of Prodiges et vertiges de l’analogie by Jacques Bouveresse
(Raisons d’Agir, 1999) is devoted to just this sort of reminder.

13. Predictably, religion steps in to fill the gap: see www.asa3.org/
ASA/topics/Astronomy-Cosmology/PSCF9-89Hedman.html#16. John
D. Barrow takes the implications of Gödel’s theorems for physics seri-
ously, while denying that they necessarily limit scientific objectivity
(see, for example, “Domande senza risposta,” in Matematica e Cultura
2002, edited by M. Emmer, pp. 13–24 (Springer, 2002)).
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verifiable by the standards of mathematics. The strug-
gle to pin down this “something more,” to find what one
might call the “essence” of mathematics, is why the phi-
losophy of mathematics keeps visiting the scenes of its
many past defeats.

Even if Lyotard does not make the case very well, one
can detect a “postmodern” sensibility in much of recent
science, from Stephen Jay Gould’s insistence that evo-
lution is highly contingent, to complexity theory, to the
study of consciousness as an “emergent” phenomenon.
What these developments have in common is a rejec-
tion of reductionism and related top-down “master
narratives,” not because they are wrong but because
they are irrelevant and useless. It would be going too
far to describe this kind of science as a new Kuhnian
paradigm (the notion is, in any case, widely criticized
as oversimplified), but it is noticeably different from
the disciplines that inspired the analytic philosophy of
science. As for mathematics, there have been sugges-
tions that it too has postmodern aspects—for exam-
ple, Jürgen Jost has written a book entitled Postmodern
Analysis and some specialists now claim to be working
in “postmodern algebra”—but I do not see any genuine
signs of this sensibility. Indeed, I am not even sure that
it makes sense to draw the line between modern and
postmodern. Hilbert’s definition of mathematics as a
game does sound like something from Derrida, but if
Hilbert’s foundational program (“wir müssen wissen,
wir werden wissen”) is not a prime example of high
modernism, then what is? On the other hand, the aban-
donment of all forms of foundationalism in an anthol-
ogy of Tymoczko (1998) is a rejection of “master nar-
ratives” within philosophy of mathematics, and indeed
the blurb calls the anthology “postmodern.” 14

3 Sociology Aims for the High Ground

While Weil is supposed to have discounted Gödel’s
metaphysical menace by making it into a joke—“God
exists since mathematics is consistent, and the Devil
exists since we cannot prove it”—his fellow Bourbakist
Dieudonné attempted a counterattack:

Just as physicists and biologists believe in the per-
manence of the laws of nature, solely because they
have observed this up to now, … the mathematicians
called—wrongly—“formalists” (… at present the near
totality of mathematical researchers) are convinced

14. The anti-foundationalism of Tymoczko’s anthology is largely
inspired by Gödel’s theorems.

that no contradiction will appear in set theory, none
having manifested themselves for 80 years.15

This is either an inductive (empirical), sociological,
or pragmatist argument. All these trends are indeed
present in postmodernism, more typically in English
sociology of science than in French philosophy:

The compelling force of mathematical procedures does
not derive from their being transcendent, but from
their being accepted and used by a group of people.
The procedures are not used because they are correct,
or correspond to an ideal; they are deemed correct
because they are accepted.

David Bloor, in Wittgenstein: A Social Theory of
Knowledge (Macmillan, London, 1983)

The Sociology of Scientific Knowledge (SSK) move-
ment, of which David Bloor was a founder, is firmly
rooted in postwar philosophy of science in the analytic
tradition. The later Wittgenstein’s discussion of math-
ematics, and knowledge more generally, in terms of
“language-games,” “forms of life,” and learning to fol-
low rules emphasizes social factors, and SSK is enthu-
siastically Wittgensteinian. Of course, Wittgenstein’s
work is notoriously unsystematic and lends itself to
a variety of interpretations. I find it wrong to see the
Wittgenstein who wrote “Grounds for doubt are lack-
ing!” as a skeptic. Beyond the social factors to which
Wittgenstein drew explicit attention, he clearly per-
ceived “something more” specifically in mathematics
(“the hardness of the logical must”), to which our
language and philosophy are not able to do justice.16

Can sociology succeed where philosophy failed?
Bloor’s militant “naturalist” response to the question of
“whether sociology can touch the very heart of math-
ematical knowledge” (Bloor 1976) is less an exercise
in debunking metaphysics than an attempt to seize
the metaphysical high ground for sociology. An other-
wise subtle ethnographic study by Claude Rosental of
the resolution of a conflict among logicians betrays a
similar sensibility, as does his suggestion that train-
ing in mathematics and logic might have constituted a
“serious handicap” to carrying out his project (Rosental

15. Weil’s joke is quoted in at least eighty-five sites found via
Google; no primary source is given. Dieudonné’s comment is naturally
from Pour l’Honneur de l’Esprit Humain, pp. 244–45 (Hachette, 1987).
Borel’s remarks on the “self-correcting power of mathematics,” in his
contribution to the discussion of the article “Theoretical mathematics:
toward a cultural synthesis of mathematics and theoretical physics”
by A. Jaffe and F. Quinn, express a more modest form of pragmatism
(Bulletin of the American Mathematical Society 29 (1993):1–13).

16. Quotations from Wittgenstein (1969, paragraph 4; 1958, para-
graph 437).
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2003). The classic declaration of the latter kind is due
to Bruno Latour and Stephen Woolgar:

[W]e do not regard prior cognition … as a necessary
prerequisite for understanding scientists’ work. This
is similar to an anthropologist’s refusal to bow before
the knowledge of a primitive sorcerer. There are, as
far as we know, no a priori reasons for supposing
that scientists’ practice is more rational than that of
outsiders.

Latour and Woolgar, Laboratory Life, pp. 29–30
(Princeton University Press, Princeton, NJ, 1986)

But one can also imagine sociologists paying serious
attention to mathematicians’ accounts of their experi-
ence, addressing in the process the question that Weil
did not. For example, Bettina Heintz, in fieldwork at
the Max-Planck-Institut in Bonn, which was billed as
the first study of mathematics from the perspective
of constructivist sociology of science, worries about
“going native” and “overidentifying with the dominant
culture.” But her subject is the eminently sociological
one of determining how mathematicians reach consen-
sus, and her methodology, far from treating practic-
ing mathematicians as “primitive sorcerers,” records
their epistemic perspectives sympathetically and at
length. One has the impression that, in spite of the
limitations of her methodology, Heintz is more inter-
ested in accounting for “real mathematics,” to which
we shall return below, whereas Bloor and Rosental are
preoccupied with marshaling evidence to counter the
metaphysical preoccupations of philosophers.

Under siege from Gödel’s theorem, Popper’s attack
on verificationism, Kuhn’s theory of scientific revolu-
tions, Lakatos’s dialectical approach to the contents
of knowledge in Proofs and Refutations, as well as
Wittgenstein, certainty in Russell’s sense has largely
been scrapped.17 As for the social, philosophical, and
spiritual needs that the notion of metaphysical cer-
tainty was designed to address, they remain. Thus,
on the one hand, those with tendencies that I have
described as postmodernist continue to express skepti-
cism regarding certainty, seemingly unaware that their

17. Lakatos’s posthumous “A renaissance of empiricism in the
recent philosophy of mathematics,” presents a long series of quota-
tions by mathematicians and a few philosophers, including Russell in
1924, acknowledging that mathematics is uncertain, after all. Natu-
rally, most of those cited refer directly or indirectly to Gödel’s the-
orem. The article was reprinted in Tymoczko (1998). “Only dogma
or theory has made people say that mathematics as a whole has a
peculiar certainty,” writes Hacking (2000). Certainty persists, however,
in the titles of philosophy books, e.g., Marcus Giaquinto’s optimistic
The Search for Certainty: A Philosophical Account of Foundations of
Mathematics (Oxford University Press, Oxford, 2004).

target is now little more than an advertising slogan that
has little to do with the real concerns of mathemati-
cians; while, on the other hand, analytic philosophy has
sought to substitute more flexible notions. The term
“warrant,” for example, is used in an attempt by Philip
Kitcher to develop a consistent account of mathemat-
ics on empirical rather than aprioristic grounds. Kitcher
recalls frege’s [VI.56] frustration with the mathemati-
cians of his time, observing that, “When Frege empha-
sizes the possibility of complete clarity and certainty in
mathematical knowledge, he is advancing a picture of
mathematics that is almost irrelevant to the working
mathematician” (Kitcher 1984). However, Kitcher and
the SSK remain obsessed by the problem of “how our
mathematical knowledge [is] acquired” (Kitcher 1984),
where knowledge is taken to be true and justified belief.

Reading Heintz (2000), one learns that now, as in
Frege’s day, mathematicians themselves widely con-
sider these problems to be outdated or beside the point.
The most controversial aspect of the SSK’s “strong pro-
gramme,” formulated by Bloor and Barry Barnes, is
the “thesis of symmetry”: the insistence that truth or
falsity not be taken into account when investigating
how a scientific claim comes to be accepted as know-
ledge. Heintz’s fieldwork suggests that this is compat-
ible with the view prevailing among mathematicians
regarding acceptance of a mathematical proof, a “kind
of consensus theory of truth” (Heintz 2000).18

A striking instance of “how a mathematical proof
comes to be accepted as knowledge” is playing out
even as I am writing these lines. Grigori Perelman’s
announced proof of the poincaré conjecture [V.28]
is undergoing unprecedented scrutiny in a small num-
ber of specialized centers, with the hope of deter-
mining the truth or falsity of Perelman’s claim. This
is going on completely beyond the spotlight of soci-
ology, as far as I know, and with no guidance from
philosophy, even though the $1 000 000 prize offered
by the Clay Mathematical Institute is in no sense Pla-

18. Heintz quotes Yu. I. Manin—“A proof only becomes a proof after
the social act of ‘accepting it as a proof’ ”—as well as René Thom’s
“community” theory of truth. One can of course always ask whether
Heintz selectively quoted mathematicians whose positions support
her thesis. This question can be asked of any sociological study, and
it is best to let the sociologists work out their methodological issues.
An important remark, however: though Heintz’s original goal was to
account for the formation of consensus among mathematicians within
a science studies framework—with questionable success, but that is
another matter—she does not defend a particular school within phi-
losophy of mathematics. In this she differs from Bloor, for instance,
who identifies himself explicitly as an empiricist.
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tonic,19 and the rules for awarding the prize presup-
pose the fallibility of the mathematical community,
in terms very similar to those that Heintz’s infor-
mants expressed spontaneously (see the third and sub-
sequent paragraphs at www.claymath.org/millennium/
rules_etc). The case is exceptional, however; “certify-
ing knowledge,” in Rosental’s sense, is as such rela-
tively unimportant to mathematicians, and Perelman’s
close readers would probably describe what they are
doing as attempting to understand his proof rather
than “certifying” it as knowledge (for the sake of the
community, or a generous benefactor, or philosophers
or sociologists).20

4 Truth and Knowledge

“By far the larger part of activity in what goes by
the name philosophy of mathematics is dead to what
mathematicians think and have thought, aside from an
unbalanced interest in the ‘foundational’ ideas of the
1880–1930 period, yielding too often a distorted pic-
ture of that time,” announced David Corfield, present-
ing his efforts to develop a “philosophy of real math-
ematics.” 21 Corfield contrasted the traditional aprior-
ist’s concerns, “How should we talk about mathemati-
cal truth? Do mathematical terms or statements refer?
If so, what are the referents and how do we have access
to them?” (Corfield 2003), with the list of questions
Aspray and Kitcher consider typical of the “maverick
tradition” in philosophy of mathematics: “How does
mathematical knowledge grow? What is mathemati-
cal progress? What makes some mathematical ideas
(or theories) better than others? What is mathematical
explanation?” (quoted by Corfield 2003).

The mavericks, well represented in Tymoczko’s
anthology, have moved a welcome step away from cer-

19. This article was written in late 2004. The proof is now accepted
as correct, and in 2006 Perelman was offered a Fields medal, which he
declined. He has also refused the Clay Mathematical Institute prize.

20. “Having shown how the production of certified knowledge in
logic could constitute an object of a sociological investigation and
analysis, a vast field of research takes shape” (Rosental 2003). I sus-
pect that identifying and accounting for the priorities expressed by
mathematicians themselves would constitute a much richer field of
research.

21. The quotation is from Corfield’s Towards a Philosophy of Real
Mathematics (Corfield 2003). Compare it with Ian Hacking’s comment
that “the most striking single feature of [twentieth century philosophy
of mathematics] is that it is very largely banal” (Hacking 2002). For
Hacking’s philosophy of mathematics, see his What Mathematics Has
Done.

“Real mathematics,” for Corfield, who is remarkably well-informed
about trends in the most diverse branches of mathematics, is “real” in
the same way as “real ale.” I readily agree that skepticism toward this
sort of realism is self-defeating.

tainty. Nevertheless, the philosophers and philosophi-
cally minded sociologists I have mentioned—with the
partial exception of Corfield, to be explored below—
still often write as though mathematicians were creat-
ing Truth or Knowledge,22 almost as a favor to philos-
ophy or sociology, to show how such a feat is possi-
ble. Or just to show that it is possible.23 We mathe-
maticians, on the other hand, are quite convinced that
we are creating mathematics, and it is the “why” of
that activity, without the ennobling assimilation to the
generic objects of interest to epistemology, that, as Weil
understood, required no explanation in Helsinki.

“Whoever undertakes to set himself up as a judge in
the field of Truth and Knowledge is shipwrecked by the
laughter of the gods,” wrote Einstein. Mathematicians
tend to respond with dismay rather than laughter, and
then only to blunders so egregious as to be universally
recognized as such.24 Although those who find fault
with philosophical speculation regarding the nature of
mathematics seem to be under an implicit obligation to
propose a speculative alternative, experience suggests
that the practice of mathematics renders one unfit to
do so. This, more than the fear of ridicule, is the main
reason I would not venture my own speculative philos-
ophy of mathematics. If it is hard “for those who are
used to thought processes stemming from geometry
and algebra” to “develop the sort of intuition common
among physicists” (R. MacPherson, quoted in Quan-
tum Fields and Strings: A Course for Mathematicians
by Deligne (volume 1, p. 2)), bridging the gap between
mathematicians and metaphysicians is probably hope-
less. There are superficial parallels, to be sure: a meta-
physical abstraction such as “essence,” like a mathe-
matical abstraction such as “set,” designates nothing in
itself, but rather refers to a canonical body of special-

22. See, however, Hacking: “The truth of a sentence (of a kind intro-
duced by a style of reasoning) is what we find out by reasoning using
that style” (Hacking 2002).

23. Many of the authors in Tymoczko (1998) also look to the
(real) practice of mathematics for philosophical insight, but Truth
and Knowledge keep creeping in. Arriving in France in 1994, I was
astonished to discover that the concerns of twentieth-century French
philosophers of mathematics are entirely different. Following Husserl,
the French concentrate largely on the phenomenological experience
of the individual mathematical subject. It is only a slight exaggera-
tion to say that the French-language and English-language traditions
in philosophy of mathematics have become mutually incomprehensi-
ble. Fortunately, mathematicians writing in French and in English have
no trouble citing each others’ works.

24. As Serre put it in his comments to Libération, “Si vous ne voulez
pas que les choses soient parfaites, ne faites pas de maths.” Heintz’s
book is an inquiry into the roots of this apparent universal tendency to
consensus, and finds it in the institution of the proof; Rosental treats a
(highly unusual) case in which universal consensus apparently failed.
The Einstein quotation is in Kline (1980).
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ized texts in which the term plays a central role. I would
like to argue that the nothing designated by “set” is
somehow different, and more fruitful, than the nothing
designated by “essence.” But the means at my disposal
for making such an argument take the form of mathe-
matical reasoning, which leads me, at best, to a vicious
circle.25 More bluntly, and for reasons akin to those
Serre invoked in his Libération interview, I cannot be
satisfied with an answer that is less certain than the sort
of answer mathematics provides; for a mathematician,
a pragmatist answer to Weil’s question is an admis-
sion of defeat. And yet I am aware that (metaphysi-
cally certain) grounds for distinguishing mathematical
certainty from pragmatic certainty are lacking!

Another, possibly more profound, reason to steer
clear of speculation is that, whereas philosophy
presents itself as a dialogue extending over millennia,
so that to understand each new contribution one would
ideally be familiar with all previous contributions,
mathematics is in principle supposed to be derivable
by pure reason from a small number of axioms. A philo-
sophical proposition, in other words, remains attached
to its origins and context; a mathematical proposition
floats free. This principle, an important constituent
of the aura of metaphysical certainty surrounding
mathematics, does not in fact bear much resemblance
to mathematics as it is actually practiced—“one of
humankind’s longest conversations,” as Barry Mazur
puts it. I am nonetheless painfully aware that my per-
sonal “conversation” with the philosophical tradition
is thoroughly unreliable, and my choice of footnotes is
primarily the fruit of a random walk (or random surf, or
remix) among scraps of the literature I have happened
to encounter.

If I am nevertheless writing about philosophy, it is
in large part because of a question that was put to
me in 1995, during a presentation of Wiles’s proof of
fermat’s last theorem [V.12] to an audience of sci-
entists. An October 1993 article in Scientific Ameri-
can entitled “The death of proof” had called Wiles’s
proof a “splendid anachronism,” citing Laszlo Babai
and his collaborators, among others, in support of the
thesis that, in the future, deductive proof in mathe-
matics will be largely supplanted by computer-assisted
proofs and probabilistic arguments. That same month
the Notices of the American Mathematical Society (40:

25. “Truth is always the possibility of its proper destruction,”
according to the (nonpostmodern) French philosopher, Alain Badiou,
taking Gödel’s theorem as an example (www.egs.edu/faculty/badiou/
badiou-truth-process-2002.html).

978–81) published Doron Zeilberger’s manifesto “Theo-
rems for a price,” predicting a rapid transition from rig-
orous proofs to an “age of semi-rigorous mathematics,
in which identities (and perhaps other kinds of theo-
rems) will carry price tags” measured in computer time
and proportional to the degree of certainty desired, to
be followed in turn by “abandoning the task of keep-
ing track of price altogether, and … the metamorphosis
to non-rigorous mathematics” (John Horgan, Scientific
American October 1993:92–102).26

Feeling called upon to answer the question Weil
avoided, I argued that the basic unit of mathematics
is the concept rather than the theorem, that the pur-
pose of a proof is to illuminate a concept rather than
merely confirm a theorem, and that the replacement of
deductive proofs by probabilistic or mechanical proofs
should be compared not to the introduction of a new
technology for producing shoes, say, but rather to the
attempt to replace shoes by the sales receipts, or per-
haps the cash profits, of the shoe factory. The audience
had its own question: Was I talking about certainty? Of
course not. That option has been philosophically dis-
credited, as I have tried to explain. And other normative
prescriptions fall victim no less easily to the laughter
of philosophers. On the other hand, I see no pragmatic
reason why probabilistic or mechanical proofs would
not suit the five goals on the AMS committee’s list just
as well as deductive proofs, nor any sociological reason
why they should not be as effective in commanding con-
sensus in the event of a paradigm shift. So what was I
talking about?

Such a question, at this point in the essay, practi-
cally begs to be answered by an advertising slogan. For
example:

The practice of making what one writes “reliable and
verifiable” fosters critical thinking in general.

This is a popular argument for teaching proofs, and
is probably even true, but how would one go about
verifying such a claim? I am very much tempted to
say that the concepts that serve as material for “one
of humankind’s longest conversations,” deserve to be

26. In the pop posthumanist scenarios promoted by Hans Moravec,
Ray Kurzweil, and the like, computers acquire all human capabilities,
including the ability to generate and prove theorems—for some reason
this is always considered a landmark—by the middle of the twenty-
first century. The distinction between humans and computers sub-
sequently fades away rather rapidly, making Zeilberger’s prediction
moot.

A more recent, and much more nuanced, discussion of prospects
for automatic theorem proving has been posted on the Internet by
Maggesi and Simpson (undated).
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appreciated on their own terms. Note that nothing is
more “emergent” than a conversation. But that would
be unfaithful to the spirit of Mazur’s book, one of
whose strengths is its refusal to conform to a linear
narrative. In any case, on its own the argument does
not seem to be sufficient: a similar argument could be
made in favor of religious faith.

5 “Ideas, Even Dreams”

Rather than hazard an answer to Weil’s (non)question
here, I will take a cue from Corfield and suggest that
one can best account for the value of pure mathemat-
ics by attending to what mathematicians write and say.
A handful of commonplace words appear consistently,
invested with unexpected power, when mathematicians
attempt to account, formally as well as informally, for
their value judgments, and these collectively constitute
an answer to the question Weil left hanging.

weyl [VI.80] wrote a book with the provocative title
The Idea of a Riemann Surface27 and referred in his
preface to Plato. The word “concept” that was central in
my reply to the audience is closer to this use of the term
“Idea” as used by any number of philosophers, includ-
ing most of those mentioned in this essay. A square, or
a riemannian manifold [I.3 §6.10], would be a con-
cept or “Idea” in this sense, and this is how the word
“concept” tends to be used by mathematicians, who
generally reserve the word “idea” to designate some-
thing else. In Plato’s Meno, the proof of the doubling
of the square—draw diagonals and fit the resulting tri-
angles together—which the slave “remembers” under
Socrates’ coaching, is taken by Plato to be contained in
the “Idea” of the square. For a mathematician, drawing
the diagonals and moving the triangles are the ideas.

That a contrast can be drawn, as I did in 1995,
between “illuminating concepts” and “confirming the-
orems” is something of a truism among mathemati-
cians and even some philosophers. Even by 1950 Pop-
per had argued that “a calculator … will not distinguish
ingenious proofs and interesting theorems from dull
and uninteresting ones” (quoted in Heintz 2000). Cor-
field correctly states that “what mathematicians are
largely looking for from each other’s proofs are new
concepts, techniques, and interpretations”; they are not
merely “establishing the truth or correctness of propo-
sitions” (p. 56). However, although he devotes a chap-

27. Weyl used the word Idee in his title but applied the term Begriff
(concept) elsewhere in the text. Both terms arrived in English as
“concept.”

ter to the “extremely complex subject” of “mathemati-
cal conceptualization,” he does not dwell on concepts
(or “Ideas”) as such; and neither will I. It is almost
impossible to talk in general terms about mathematical
concepts without getting caught up in the debate over
their reality (and provoking the laughter of the philoso-
phers). Those who write about mathematics (mathe-
maticians included: see Hersh (1997)) have an irritating
tendency to claim that most mathematicians are Platon-
ists, whether or not they have committed themselves
explicitly to a philosophical position. Maybe it can be
argued that Platonism is implicit in the syntax of math-
ematical statements; maybe this is what Weil meant
by his claim, quoted by Bourguignon (2001), that most
mathematicians “spend a good portion of their profes-
sional time behaving as if they were [Platonists].” 28 In
practice I would guess that most mathematicians are
pragmatists, in the spirit of the remarks of Dieudonné
quoted above.

On the other hand, there is no doubt whatsoever
that the “ideas” that matter to mathematicians are real.
A mathematician, according to a joke attributed to
Weil,29 can be defined as someone who has had two
ideas (mathematical, of course). But then, Weil wor-
ried, so-and-so would be a mathematician. In a cele-
brated account by poincaré [VI.61] of the role of the
unconscious in a mathematical discovery, the climactic
moment was the arrival of an idea (“the idea came to
me”) as he placed his foot on the steps of the omnibus
(“L’idée me vint,” Poincaré (1999)).

More to the point, consider Hacking’s justification of
his own commitment to a realist ontology of electrons:
“So far as I’m concerned, if you can spray them then
they are real” (Hacking 1983). By the same token, if you
can steal ideas, then they are real. Every mathematician
knows that ideas can be and often are stolen. Polemics
then ensue, considerably juicier than the epistemic
controversy studied by Rosental.

Nothing in the life of mathematics has more of the
attributes of materiality than (lowercase) ideas. They
have “features” (Gowers 2002), they can be “tried out”
(Singer30), they can be “passed from hand to hand”
(Corfield 2003), they sometimes “originate in the real

28. Plato saw things quite the other way around: “Their language
[speaking of mathematicians] is most ludicrous, though they cannot
help it, for they speak as if they were doing something and as if all their
words were directed toward action” (Republic VII.527a, my emphasis).

29. I heard this joke reported by several people who claimed to have
heard it from Shimura, and I believe but am not certain that I too first
heard it from Shimura.

30. Quoted at www.abelprisen.no/en/prisvinnere/2004/interview_
2004_7.html.
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world” (Atiyah in the preface to Arnold et al. (2000)) or
are promoted from the status of calculations by becom-
ing “an integral part of the theory” (Godement 2001). At
some point they come into being: it is generally under-
stood, for example, that “new ideas” will be needed
to solve the Clay Millennium Problems. They can also
be counted. I once heard Serre introduce the proof of
a famous conjecture by saying that it contained two
or three real ideas, where “real” was intended as high
praise. The ambiguity did not concern the number of
ideas—there were three, which Serre enumerated—but
whether all three were original to the author. Ideas are
public: necessarily so, in order to be stolen, or to be pre-
sentable as Serre did in his lecture. Poincaré’s idea was
a sentence (“the transformations of which I had made
use to define Fuchsian functions were identical to those
of non-Euclidean geometry”); the slave’s idea in Meno
was a line in the sand.

Early in his unpublished memoirs Récoltes et
Semailles, Grothendieck wrote that “ideas, even
dreams” were, in Allyn Jackson’s terminology, the
“essence and power” of his mathematical work (Jackson
2004). An idea is typically symptomatic of “insight,”
and the capacity for insight is generally called “intu-
ition.” Mathematicians have borrowed all of these terms
from philosophy but use them to completely different
ends. Philosophers tend to follow Kant in attributing
intuitions—the ones that without concepts are blind—
to transcendental subjects or their more down-to-earth
offspring. Intuition in this sense is a poor substitute
for certainty, as even the mavericks recognize. “Intu-
ition … is frequently a prelude to mathematical know-
ledge,” wrote Kitcher. “By itself it does not warrant
belief.” Poincaré called intuition “the tool of invention,”
a “je ne sais quoi” that holds a proof together, but he
contrasted it with logic, “the tool of demonstration,”
which “alone can provide certainty.” Saunders Mac Lane
expressed himself in much the same terms nearly a cen-
tury later. David Ruelle considered reliance on (visual)
intuition a characteristic feature of human (as opposed
to extraterrestrial) mathematics.31

In each case intuition belongs to the private sphere,
and is relegated to the “context of discovery,” as
opposed to the “context of justification” deemed wor-
thy of philosophy’s full attention. When mathemati-
cians refer to “intuition” in the sense I have in mind, it

31. Kitcher (1984, p. 61); Poincaré (1970, pp. 36–37); Mac Lane,
in his contribution to the discussion of the Jaffe–Quinn article cited
in note 15, Bulletin of the American Mathematical Society 30 (1994):
178–207; Ruelle’s quote is from an article entitled “Conversations on
mathematics with a visitor from outer space” from Arnold et al. (2000).

is crucially public.32 As in the quotation from MacPher-
son a few paragraphs back, it can be transmitted from
teacher to student, or through a successful lecture, or
developed collectively by running a seminar and writ-
ing a book on the proceedings. It has something in com-
mon with a “style of reasoning,” but on a smaller scale.
Grothendieck resorted to perceptual metaphor when
describing Serre’s ability to communicate something
akin to intuition:

The essential thing was that Serre each time strongly
sensed the rich meaning behind a statement that, on
the page, would doubtless have left me neither hot nor
cold—and that he could “transmit” this perception of a
rich, tangible, and mysterious substance—this percep-
tion that is at the same time the desire to understand
this substance, to penetrate it.

Récoltes et Semailles, p. 556

“Even those who try to articulate, to classify, the
fruits of the imagination, and who are committed to the
existence of an inner experience concomitant with it,
admit to dark difficulty in describing it,” wrote Mazur,
elaborating an unusual array of literary and rhetorical
strategies to chip away at the difficulty (Mazur 2003).
This much is certain: this inner experience of imagi-
nation, or of understanding, is what drives people to
become mathematicians, and it is why Weil could count
on his audience’s silent assent. Heintz recorded some
of her informants’ attempts to describe this inner expe-
rience: “[In mathematics] you have concrete objects
before you and you interact with them, talk with them.
And sometimes they answer you.” She even talks about
the “idea” that helps put the pieces together. “And sud-
denly you see the picture,” she was told. Yet all this
raw ethnographic data is presented in a chapter whose
title, “Beauty and experiment: discovery of truth in
mathematics,” betrays her relentlessly epistemological
preoccupations (Heintz 2000).

“The specific ways that mathematical truths move
from person to person, and how they are transformed
in the process, are as difficult to capture as the truths
themselves,” wrote Mazur (2003), in what could have
been a comment on Grothendieck’s remarks on Serre.
The central notion in Mazur’s book is that of “imagina-
tion.” I have chosen the terms “idea” and “intuition” not
for their intrinsic importance, though I believe each of
the terms points to ways of talking about the famous

32. This is also true of the normative program of intuitionism asso-
ciated with brouwer [VI.75], but that is definitely not what I have in
mind.
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“flash in the middle of a long night” that ends Poincaré’s
The Value of Science: “But this flash is everything.” What
strikes me about these terms is how their pervasiveness
in mathematicians’ conversations—the sense that they,
more than the definitive theorems, are “everything”—
contrasts so starkly with their near exclusion from
philosophical consideration, even though the words
themselves can be seen on practically every page of
philosophy of mathematics. Maybe their very banality
makes them appear philosophically trivial. Or maybe
the problem is that the same words serve so many
distinct purposes. Corfield uses the same word to
designate what I am calling “ideas” (“the ideas in
Hopf’s 1942 paper”) as well as “Ideas” (“the idea of
groups”) and something halfway between the two (the
“idea” of decomposing representations into their irre-
ducible components for a variety of purposes, p. 206).
Elsewhere, the word crops up in connection with
what mathematicians often call “philosophy,” as in
the “Langlands philosophy” (“Kronecker’s ideas” about
divisibility, p. 202), and in many completely unrelated
places as well. Corfield proposes to resolve what he sees
as an anomaly in Lakatos’s “methodology of scientific
research programmes” as applied to mathematics by “a
shift of perspective from seeing a mathematical theory
as a collection of statements making truth claims, to
seeing it as the clarification and elaboration of certain
central ideas” (p. 181). He sees “a kind of creative vague-
ness to the central idea” in each of the four examples he
offers to represent this shift of perspective; but on my
count the ideas he chooses include two “philosophies,”
one “Idea,” and one which is neither of these.

Other value-laden terms are no less important. In the
wake of bourbaki [VI.96], quite a few philosophers
(Cavaillès, Lautman, Piaget, and more recently Tiles)
have made serious attempts to make sense of “struc-
ture” in mathematics. I have read a number of philo-
sophical attempts to account for mathematical aesthet-
ics, though none has left much of an impression. The
practically universal use of dynamical or spatiotempo-
ral metaphors (“the spaceX is fibered over Y ,” etc.), and
the pronounced tendency to present proofs as series
of actions playing out in time (“now choose an orbit
passing arbitrarily close to the point x”) have attracted
little attention from philosophers.33 These phenomena

33. Nuñez’s article “Do real numbers really move?” (in Hersh 2006)
makes interesting points regarding mathematicians’ use of metaphors
of motion, though he limits his analysis to examples specifically
related to the mathematics of motion. Plato specifically disapproved
of mathematicians’ use of action metaphors.

may be linked to the curious preference of many math-
ematicians for blackboards over contemporary audio-
visual technology, which in turn draws attention to the
neglected (and emergent) aspect of mathematical com-
munication as performance, a word that manages to be
typically postmodern and premodern at the same time.

For his part, Corfield does not talk much about
“intuition” and is ambiguous about what he means by
“ideas,” but his discussions of “natural” and “impor-
tance,” in the context of an analysis of the debate on
the relative merits of groups and groupoids, are philo-
sophically insightful while remaining faithful to the
use of the terms by “real” mathematicians. His treat-
ment of “postmodern algebra,” where “diagrams are
not just there to illustrate, they are used to calculate
and to prove results rigorously” (p. 254), also has street
credibility. It is true that much of his book remains
concerned with “maverick” questions, such as account-
ing for plausible reasoning. But there is no question
that Corfield likes mathematics, and for the right rea-
sons; his book, unlike most treatises in philosophy of
mathematics, is definitely part of the “conversation.”

Morris Kline called the “loss of certainty” entailed
by Gödel’s theorems an “intellectual tragedy” and actu-
ally counseled “prudence” in designing bridges “using
theory involving infinite sets or the axiom of choice”
(Kline 1980). The word “tragedy” seems misplaced but
the pathos is real, as it was for Russell. Pathos and its
twin, resolute optimism, have found an unlikely home
in the philosophy of mathematics:

If this conception of mathematics [as “human know-
ledge of structures gained by employing reason beyond
the bounds of logic”] can be sustained, mathematics
could once again serve as a source of an image of
reason liberated from formal imprisonment, freed to
confront apocalyptic post-modern visions.

Mary Tiles, Mathematics and the Image of Reason, p. 4
(Routledge, London, 1991)

Whether or not it carries weight with congressional
committees, I find this goal appealing, but it is a goal
for philosophers, not for mathematicians. I’m willing to
apply the “principle of charity” to philosophers if they
will do the same for me. Corfield wrote (p. 39):

Human mathematicians pride themselves on produc-
ing beautiful, clear, explanatory proofs, and devote
much of their effort to reworking results in con-
ceptually illuminating ways. Philosophers must not
evade their duty to treat these value judgments in
mathematics.
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They also have a duty, it seems to me, to account
for terms like “idea” and “intuition”—and “concep-
tual” for that matter. An answer to the question “Why
philosophy?” might well begin there.

Postscript

In December 2004 my university joined a number of
other institutions in France and elsewhere in host-
ing a traveling UNESCO-sponsored exhibition entitled
“Pourquoi les mathématiques?” Hoping to learn the
answer before my submission deadline, I spent a few
hours at the exhibition. It was clever and engaging, pre-
senting a variety of (pure) mathematical ideas with a
sprinkling of practical applications, but in no way did it
address the “Pourquoi?” of the title. An organizer was
on hand, and when I turned to her for guidance she
explained that the French title was a solution to a prob-
lem of translation. The English title, which came first,
was “Experiencing mathematics.” This, she assured me,
has no adequate French translation, so “Pourquoi les
mathématiques?” was chosen as the best substitute.

Maybe the solution to the problem of my title is
simply to accept the translation in the opposite direc-
tion. Even the most ruthless funding agency is not
yet so post-human as to require an answer to “Why
experience?” 34
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VIII.3 The Ubiquity of Mathematics
T. W. Körner

1 Introduction

We live surrounded by mathematics: when we open a
door or use a nutcracker, we exploit archimedes’ [??]
law of the lever; when a bus goes around the corner,
we experience at first hand newton’s [VI.14] law that a
body continues to travel in uniform motion in a straight
line unless acted on by an external force; when we use a
rapidly accelerating elevator, we can feel for ourselves
the equivalence of gravitational and accelerational iner-
tia that lies at the heart of general relativity [IV.13];
and when we run a tap fast into a kitchen sink we see
a thin and flat circle of water with a clear boundary,
which is the chaotic “hydraulic jump” between two well-
behaved solutions of a certain partial differential
equation [I.3 §5.4].

Because mathematics and physics are so interlinked,
almost everything we see involves mathematics. With
the help of elementary calculus, we know that a base-
ball, after it leaves the bat, will have a trajectory in
the shape of a parabola. This calculation assumes that
there is no air resistance, but a more complicated
calculation can take air resistance into account too.
If a chain hangs between two points, then the curve
it forms can again be explained mathematically. This
time, the technique used is the calculus of varia-
tions [III.96]: the curve is the one that minimizes the
potential energy of the chain, and the calculus of vari-
ations allows you to work it out. (It is called a cate-
nary. The rough idea of the calculation is to consider
small perturbations of the chain. Since the potential
energy is minimized, we know that however we perturb
it, we cannot decrease the potential energy. This infor-
mation can be used to derive a differential equation
that determines the curve. In general, the differential
equations that arise from this technique are called the
Euler–Lagrange equations.) Even the way that wet sand
behaves when you walk across it involves interesting
mathematics, as Reynolds realized in 1885. Typically,
the sand just around where you tread dries out—if you

have not noticed this strange phenomenon, then have
a look next time you are on a beach. The reason this
occurs is that when the tide goes out the sea tends to
leave the grains of sand extremely well-packed. If you
then tread on the sand, you disturb this packing, creat-
ing a less well-packed part of the sand near where you
tread. This has more room for water, so it draws water
in and down, temporarily drying out the sand around
your foot.

It would be easy to give hundreds more examples
of physical phenomena that can be analyzed mathe-
matically. However, if one accepts that physics gov-
erns the universe and that mathematics is the language
of physics, then it is not surprising that these appli-
cations exist. Therefore, this article will focus on the
appearance of mathematics in other areas, and in par-
ticular geography, design, biology, communication, and
sociology.

2 Uses of Geometry

If you travel about on Earth’s surface, then you need
to make small adjustments to your watch as you move
from one time zone to another. There is one exception
to this, however: if you cross the international date line,
then you have to make a big adjustment (assuming, that
is, that your watch shows not just the time but the date
as well). Why is it necessary to have a discontinuity of
this kind? Well, suppose that it is midnight on a Tues-
day in Lisbon, for example, and imagine a path that goes
westward right around the globe. If the time changes
along this path are all small ones that reflect where one
is in relation to the sun, then the time of day goes back
by one hour for every 15 degrees of longitude that we
move. Therefore, when one gets back to Lisbon it is mid-
night on Monday. (Remember that we are talking about
a mental path here, and not an actual journey.) Some-
thing is clearly not right. The practical consequences of
this theoretical problem were first felt by the tattered
remnants of Magellan’s first circumnavigation of the
globe who had to do penance for performing religious
ceremonies on the wrong day!

Here is another argument for the necessity of the
date line. Let us ask exactly when the year 2000 began.
The answer depends, of course, on what part of the
world you are talking about, and more particularly on
its longitude, but for any part the answer is midnight at
the beginning of January 1. In other words, in any par-
ticular place the year began when the Sun was (approx-
imately) over the opposite side of the world. It follows
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that at any given time at most a small fraction of the
world was celebrating the very beginning of the year
2000. Therefore, at least somewhere had to go first,
which means that parts of the world just to the east
of it had missed their chance and had to wait almost
24 hours. Thus, again we see that there has to be a
discontinuity.

These phenomena reflect the fact that a certain con-
tinuous map has no continuous inverse. The map in
question takes a real number w to the point w �→
(cosw, sinw), which lives in the unit circle. Notice that
if we add 2π to w then we do not affect the values of
cosw and sinw. Now let us try to invert the map. This
means that for each point (x,y) in the unit circle we
must pick some w such that cosw = x and sinw = y .
Thisw is the angle that the line from 0 to (x,y)makes
with the horizontal, with the all-important proviso that
you can add any multiple of 2π to it. So the question
becomes, can we choose the appropriate multiple in
a continuous way? Again, the answer is no, since if
you go around the circle once and let the angle vary
continuously, you find that you have added 2π to it.

The above fact is one of the simplest theorems of
topology [IV.6], the branch of mathematics that you
turn to if you want to know about the existence or non-
existence of continuous functions with given proper-
ties. Another situation where continuous functions are
useful is when one is creating a map (in the geogra-
pher’s sense) of the world. Such maps are more conve-
nient if they are drawn on a flat piece of paper, so a
preliminary question we might ask is whether there is
a continuous function from the surface of the sphere
to the plane such that any two different points in the
sphere go to different points in the plane. Not only is
the answer no, but Borsuk’s antipodal theorem tells us
that there must be some pair of antipodal points (that
is, points of the sphere that are exactly opposite each
other, such as the North and South Poles) that go to the
same point in the plane.

However, perhaps we do not mind too much about
continuity. If we take our sphere and make a cut from
the North Pole to the South Pole, then we can open it
up at the cut and flatten it out onto a plane. (To see
this, imagine that it is made of particularly stretchy
rubber.) Alternatively, we could cut the sphere into
two hemispheres and draw maps of each hemisphere
separately.

Now another problem arises: it does not seem to be
possible to draw a map of even half the world with-
out distortions. This is not a topological problem, but

a geometrical one, in the sense that we are interested
in finer properties of Earth’s surface—shape, angle,
area, and so on—than those that are preserved by con-
tinuity. Because the sphere has positive curvature
[III.80], no part of it can be mapped to the plane in a
length-preserving manner, so some distortion is neces-
sary. However, we have a certain amount of freedom
to decide what kind of distortion we are prepared to
accept and what kind we would like to avoid. There is,
it turns out, a conformal map from the sphere (minus
the poles) to a cylinder (which one can cut and roll out
so that it fits into a plane)—it is the famous “Merca-
tor projection.” A conformal map is one that preserves
angles, so the Mercator projection is particularly use-
ful for navigation purposes: if it looks as though you
need to head north-northwest, then you really do. A
disadvantage of the Mercator projection is that as you
move away from the equator, the countries look big-
ger and bigger (though the angle-preserving property
means that in close-up they are always the right shape).
There is another projection that distorts shapes but
preserves area. To work out the details of these pro-
jections, one must use mathematics—and in particular
solve differential equations.

Here are a few simple applications of geometry to
everyday life. If you have ever wondered what the best
shape is for a manhole cover, then mathematics can
come to your aid. Of course, it depends what one means
by “best,” but if you often need to lift manhole covers,
then you may be annoyed if they keep falling down the
manholes. Can this be avoided? If the cover is rectan-
gular, then the length of any side is less than the length
of the diagonal, so it can drop down the hole, but if it
is circular, then its width is the same in all directions
and this is not possible.

Does this mean that only circular manhole covers
are safe from dropping down their manholes? Actu-
ally, no. If you draw the three vertices of an equilat-
eral triangle and join each pair of them by a circu-
lar arc centered on the third, then you obtain a sort
of “curved triangle,” known as the Reuleaux triangle.
(This is commonly misspelt “Rouleaux” in the mistaken
belief that it has something to do with rolling. Actually,
it is named after a nineteenth-century German engineer
called Franz Reuleaux.)

Have you ever wondered why coins are the shapes
they are? Most of them are circular, but the British
fifty pence piece, for example, is a slightly curved poly-
gon with seven sides. A moment’s thought makes it
clear that for any odd number n � 3 you can have
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a Reuleaux polygon with n sides, and the fifty pence
piece is indeed a Reuleaux heptagon. This is convenient
for slot machines: it means that you can have a slot into
which the coin only just fits, however you push it in.

What about the best shape for a conveyor belt? If we
construct it in the obvious manner, then one of its two
sides will be exposed and the other not. Eventually, the
exposed side will wear out, but the other side will be
in pristine condition, since it will not have been used
at all. However, as any mathematician will tell you, not
all surfaces have two sides. The most famous example
of a one-sided surface is the möbius strip [IV.7 §2.3],
which is obtained from a flat strip of paper by twisting
one end through 180 degrees and joining it to the other
end. If you have a long enough conveyor belt for it to
be practical to give it a twist somewhere, then you can
wear out both sides equally (this makes sense locally
even if globally the belt now has just one side), thereby
doubling the use you get out of the belt. (You might
think it simpler just to turn the belt over after a while,
but the Möbius-strip design has been taken seriously
enough to be patented, and similar designs have been
used as typewriter ribbons and in tape recorders.)

3 Scaling and Chirality

Why are Arctic mammals large? Is it just a fluke that
they have evolved that way? This does not sound like a
mathematical question, but some simple mathematics
can easily convince us that it is not a fluke at all. Since
the Arctic is cold and animals need heat, animals that
are better at preserving heat are more likely to thrive.
The rate at which an object loses heat is proportional to
its surface area, but the rate at which it generates heat
is proportional to its volume. So if you double the size
of an animal in every direction, then the rate at which
heat is generated goes up by a factor of eight, while the
rate at which it is lost goes up by a factor of only four.
That is, larger animals find it easier to preserve heat.

But why, in that case, are Arctic animals not much
bigger still? This can be explained by a similar scaling
argument. If you scale an animal up by a factor of t,
then its volume, and hence its weight (animals, being
made predominantly of water, tend to have roughly the
same density), will multiply by t3. The animal has to
support this weight with its bones. The amount of force
you need to snap a bone is roughly proportional to the
area of a cross-section of that bone, and areas go up by
a factor of t2. So if t is too large, the animal will not be
able to support its own weight. It does have the option

of increasing the relative thickness of its bones, but if
t is very large then its legs will be too thick for this to
be a practical solution.

A similar sort of scaling argument explains why, if
you drop a mouse down a 1000 foot mine shaft, then,
to quote Haldane, “on arriving at the bottom, [it] gets a
slight shock and walks away.” In this case, air resistance
is roughly proportional to surface area, while the grav-
itational pull is proportional to mass, and therefore to
volume. It follows that, the smaller you are, the smaller
your terminal velocity, and the less you are bothered
by a fall.

A simple fact with many scientific ramifications is
that two shapes can be reflections of each other without
being rotations or translations. For example, if you see
a hand without seeing the body to which it is attached,
then you can tell whether it is a right hand or a left
hand. (If you can shake it naturally with your right hand,
then it is a right hand.) This phenomenon is known as
chirality: a shape is chiral if it cannot be obtained from
its mirror image by rotation or translation.

The notion of chirality appears in many parts of sci-
ence. For example, many elementary particles have a
fundamental property known as “spin,” which means
that they often have right-handed versions and left-
handed versions. In pharmacology, it is now under-
stood that many molecules are chiral, and that the two
different versions can have radically different proper-
ties. An example that had tragic consequences is the
drug thalidomide: one form of it is effective against
morning sickness while the other causes birth defects.
Unfortunately, in the late 1950s several thousand preg-
nant women were given a 50:50 mixture of the two
forms. Less harmful examples of the importance of
chirality abound. For instance, there are many chemi-
cals that smell or taste different when you look at their
reflected versions. (This may seem paradoxical, but the
explanation is simple: the sensors in our noses and
mouths also contain molecules with chirality.)

So far we have been considering rigid motions, but
some shapes are chiral in the stronger sense that
not even a continuous motion in space is enough to
turn them into their mirror images. Two interesting
examples are the trefoil knot (see knot polynomials
[III.46]), which comes in a “right-handed” and a “left-
handed” version (the proof that these two versions are
genuinely distinct is not at all easy), and the Möbius
strip, which was mentioned earlier. The rough reason
that the Möbius strip is chiral is that when you do
the twist, you do it either according to the “corkscrew
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rule”—that is, twisting it as if you were pushing a
corkscrew into the cork—or the opposite way. If you
try to visualize it, you may be able to convince yourself
that the direction of twist is not altered by continu-
ous deformations, and also that the mirror image of a
Möbius strip that obeys the corkscrew rule is a Möbius
strip that does not obey the corkscrew rule.

4 Hearing Numerical Coincidences

Legend has it that Pythagoras, passing a blacksmith
hammering a set of iron bars in a particularly pleasing
way, was led to discover the laws of harmony. In mod-
ern terms, these laws say that two sounds go together
particularly well (at least in the European tradition) if
their frequencies are in the ratio r to s for some pair
of small integers r and s: the smaller the better. As a
result, people have tried to devise musical scales that
have as many of these pleasing intervals as possible.

Unfortunately, there are limits to how well you can
do. If you take a very simple ratio such as 3/2, which
corresponds to what musicians call a perfect fifth, then
its powers—9/4, 27/8, 81/16, and so on—get succes-
sively more complicated. However, by great good for-
tune it happens that 219 is rather close to 312. To be
precise, 219 = 524 288 and 312 = 531 441, which is a
difference of about 1.4%. It follows that (3/2)12 is close
to 27. Since doubling a frequency raises the note by
an octave, this says that twelve perfect fifths make an
interval close to seven octaves. This allows one to build
up a scale in which the fifths are approximately perfect.

There are many ways of doing the approximation.
Early choices of musical scale would make some of
the fifths perfect, at the expense of others. The mod-
ern compromise adopted by Western music for the last
250 years is to distribute the inaccuracies equally. If
successive notes in a musical scale have frequencies in
the ratio 1 to α, then starting from a frequency u the
notes will have frequencies u, αu, α2u, and so on. If
you want k notes in the scale, then αk should equal 2
(so that after k steps you have gone up by an octave).
This means that all smaller powers of α must be irra-
tional, so that all the other intervals in the scale are
inharmonious! However, when k = 12, the fact that 312

and 219 are close has the consequence that α7, which
equals 27/12, is close to 3/2 (more precisely, it is just
over 1.4983), which means that all the fifths are close
to perfect.

Tuning systems are discussed in more detail in
mathematics and music [VII.13 §2].

5 Information

Few things illustrate better how the abstract mathemat-
ical theory of one generation can become the common
sense of the next than the following two closely related
ideas: that all information can be expressed as a series
of 0s and 1s, and that the “quantity of information” car-
ried by a book, a picture, or a sound is proportional to
the number of 0s and 1s required to express it.

A famous theorem of Shannon (described in reli-
able transmission of information [VII.6 §3]) tells us
that the rate at which information can be transferred
by signals depends on the range of frequencies avail-
able. For example, it is the change from signaling elec-
trically along copper wires (with a narrow range of fre-
quencies) to signaling by light (with a very wide range)
that has allowed the massive data transfers required
by the Internet. The sound waves we hear belong to a
very narrow range of frequencies, while the light waves
that we see belong to a wide range, and this is why we
need much more memory on our computers to store
an hour of film than an hour of music. Similarly, it may
feel as though visual perception is a passive process—
we point our eyes in a certain direction, they behave a
bit like video cameras, and we just watch the video—but
because light carries so much information, our brains
actually have to resort to a wide variety of tricks to
deal with it. What we think we see is actually a theatri-
cal representation of reality that our brains have cun-
ningly manipulated. This is why there are optical illu-
sions, and why they continue to work even when you
know how they work. By contrast, since sound carries
so little information, our brains can process it in a much
more direct way (though still not completely direct—
there are aural illusions too, and the brain has tricks
that help us to pick out the information we are actually
interested in from all the sound waves that enter our
ears).

When information is transmitted, there are almost
always faults in the transmission system, so that our
messages are not transmitted perfectly. How do we
then recover the messages? Here is a Victorian par-
lor trick that shows how in a very simple case. One
begins by writing down all sequences (x1, x2, . . . , x7)
such that every xi is either 0 or 1 and such that the
numbers x1 + x3 + x5 + x7, x2 + x3 + x6 + x7, and
x4 + x5 + x6 + x7 are all even. An example of such a
sequence is (0,0,1,1,0,0,1).

If you think of these sequences as vectors in the
vector space F7

2 (that is, the seven-dimensional space
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where the scalars belong to the field of integers mod 2),

then you will readily convince yourself that these three

properties of a sequence are independent linear con-

ditions, so the set of sequences in question is a four-

dimensional subspace of F7
2. Therefore, there are six-

teen such sequences. A member of the audience is

asked to take one of them and change it in one place.

The magician can at once identify which digit has been

changed. Let us see how this works if we change the

third digit of the sequence above, so we now have the

sequence (y1, . . . , y7) = (0,0,0,1,0,0,1).
The first step is to note that y1 + y3 + y5 + y7 and

y2+y3+y6+y7 have become odd, while y4+y5+y6+
y7 is still even (since it is y3 that has changed). Now

the only number that belongs to the first two of the

sets {1,3,5,7}, {2,3,6,7}, and {4,5,6,7} but not the

third is 3. This tells us that x3 is the variable that has

been changed. How are the sets chosen so that this sort

of argument will always work? The answer becomes

clearer if we use the binary representations of the inte-

gers instead and put in a couple of leading zeros. Then

the sets are {001,011,101,111}, {010,011,110,111},
and {100,101,110,111} and we see that the ith set is

the set of integers with a 1 in the ith digit from the

end. So if we know which of the three parities have

been changed, then we know the binary representation

of the place where the sequence was altered. Therefore,

we can reconstruct the original sequence.

This trick, rediscovered by Hamming, is the ancestor

of all the error-correcting methods (also discussed in

reliable transmission of information [VII.6]) that

allow our CDs and DVDs to perform flawlessly even if

they are slightly scuffed.

The fact that there is a precise mathematical way

of measuring information content is of considerable

importance in genetics. It has been suggested that the

amount of information carried by our DNA, though very

large, is much smaller than the information required

to describe our bodies completely. This would explain

what experimental evidence also corroborates: that the

DNA carries a set of general instructions, but the fine

detail of our anatomy, such as our fingerprints and the

precise arrangements of our capillaries, is partly a mat-

ter of chance. So, for example, if it were possible to

rerun the growth of the fertilized egg that ended up

as you, the result would be broadly similar to you, but

small environmental differences would result in a dif-

ferent set of fingerprints and a different arrangement

of capillaries.

Under certain circumstances, it is not enough just to
transmit information: it must also be protected. If we
send our credit card number over the Internet, we want
to do so in such a way that it would be very hard for an
eavesdropper to find that number. A mathematical way
of doing this is described in cryptography [VII.7 §5].

Here is a slightly different but closely related prob-
lem. Suppose that Albert has a secret that he would
like to share with Bertha (and only Bertha) in a conver-
sation that everyone can hear. What is he to do? A first
step is to think of any piece of information that they
can share secretly—it turns out to be a short step from
this to sharing a particular piece of information. The
following procedure achieves this. First, Albert shouts
out a large integer n and an integer u. Next, he chooses
a large integer a, which he keeps secret (including from
Bertha—obviously, since he does not yet know how
to share secrets with her), and shouts out the value
of ua modulo n. Bertha then chooses an integer b,
which she keeps secret, and shouts out the value of
ub modulo n. Now Albert is in a position to work out
uab = (ub)a modulo n, since Bertha has told him ub

and he knows a. Similarly, Bertha can use her secret
number to work out uab = (ua)b modulo n. Albert and
Bertha now both know the number uab modulo n. This
is a good example of a shared secret, because all that
the eavesdroppers know is ua, ub , and n, and when n
is large there is no known way of calculating uab mod-
ulo n from ua and ub modulo n, apart from methods
that take far too long to be practical.

Now suppose that Albert wants to send a credit card
number N to Bertha. Assuming that 1 � N � n, then
all he needs to do is shout out the number uab + N
modulon. Bertha then subtracts the secret numberuab

and obtains N . (Albert should convey only one secret
this way, or he will reveal information. For instance, if
he sent another credit card number M using the same
uab , then the eavesdroppers would know the value of
M − N . But if he and Bertha choose new numbers n,
u, a, and b and use those to share the value of M , the
eavesdroppers will effectively know nothing about the
pair (M,N).)

Why do we believe that it is “hard” to calculate uab

from ua and ub? What if tomorrow somebody dis-
covers a simple trick for doing it? Surprisingly, even
though we cannot be absolutely sure that the prob-
lem is hard, there are very precise ways of discussing
the question. In particular, there are extremely plausi-
ble conjectures, the truth of which would imply that it
really is impossible to calculate uab in a short time.
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These issues are discussed in considerable detail in
computational complexity [IV.20].

6 Mathematics in Society

A street in which all houses have front gardens is much
prettier than a street in which all those front gardens
have been converted into parking places. For some peo-
ple, aesthetics are more important than convenience,
so the effect of converting all the front gardens in
a street may well be to reduce the values of all the
houses. However, if you convert just one front garden,
then it will increase the convenience for that household
without making too much of a difference to the look
of the street, so the value of that house will increase
and the values of all the other houses will decrease
slightly. Thus, for each individual house owner there is
a financial incentive to convert the front garden, even
though if everybody does so then everybody will lose
financially.

Clearly, to avoid this unfortunate result the house-
holds must cooperate. Nash has shown how, starting
from simple assumptions about fairness, there must be
a system of mutual payments—for example, a house-
hold that wishes to convert its front garden might have
to pay a charge that was shared between the other
households—which will change their incentives in such
a way that they will no longer want to ruin the street.

If the households do not wish to cooperate, Nash
has shown that they come to a (usually less favorable)
agreement which it is not in the interest of any single
individual to break. A simple example of a situation in
which no single individual may wish to change but a
group acting in concert may wish to change is given by
the following game. Suppose that three people hand to
an umpire an envelope containing either the word “yes”
or the word “no.” If two players have written the same
thing and the third has not, then those two players get
$400 each and the third player gets nothing. However,
if all three have written the same, then all three play-
ers get $300. Suppose that the players meet before the
game and agree that they will all write “yes” (in order to
maximize their average gain). Then no single player will
gain by writing “no” instead, but if two players decide
to change then they will both gain.

Nash’s ingenious argument starts with an agreement
that is not necessarily in equilibrium, and allows the
parties to the agreement to modify their actions very
slightly in a way that would improve their own situ-
ation if nobody else changed their actions. (However,

since the other parties are changing their actions, the
total change may be preferable to nobody.) This results
in a function that takes agreements to agreements. This
function turns out to obey the conditions of the kaku-
tani fixed-point theorem [V.13 §2], from which it
follows that there is an agreement that no single indi-
vidual wishes to change. (See mathematics and eco-
nomic reasoning [VII.8], particularly section 4, for a
further discussion of Nash’s theorem. Another situ-
ation where individual and collective self-interest do
not necessarily coincide is the flow of traffic (see the
mathematics of traffic in networks [VII.4 §4]).)

Not all applications of mathematical thought to
social problems have such satisfactory outcomes. Sup-
pose that there is to be an election (or, more gener-
ally, that society has to make a choice between vari-
ous possibilities) with n candidates and m voters. Let
us use the term “voting system” to mean any method
of putting the n candidates in order given the pref-
erences of the individual voters. Kenneth Arrow has
shown that, under normal circumstances, there is no
good voting system. More precisely, he has identified a
small set of very reasonable sounding properties that
one would wish a voting system to have, and shown
that no voting system has all these properties. To give
two examples of these properties, it is surely desir-
able that the final ranking of the candidates should
depend on more than just the ranking of one individ-
ual voter, and one would also expect that if every voter
prefers one candidate x to another candidate y , then x
should be ranked higher than y . Instead of listing the
other properties, we present a simpler result, known
as Condorcet’s paradox, that gives some of the fla-
vor of Arrow’s theorem. (Indeed, Arrow’s theorem can
be regarded as a descendant of Condorcet’s paradox.)
Consider three voters A, B, and C with the following
preferences.

A B C

First preferences x y z
Second preferences y z x
Third preferences z x y

Observe that the majority of the voters prefer x to y ,
a majority prefer y to z, and a majority prefer z to
x. Therefore, majority preference is not a transitive
relation [I.2 §2.3]. One consequence of this is that if
voters are first asked to vote between two of x, y , and
z and there is then a run-off between the winner of the



�

VIII.4. Numeracy 989

first vote and whichever of x, y , and z is left, then the

remaining candidate will always win.

Probability is another branch of mathematics that

plays a central role in modern society. In earlier soci-

eties people worked until they died. Today people can

stop working and live off their savings. You can, of

course, just live off the interest of your savings but

this means that you will die with a large sum unspent.

Alternatively, you can assume that you will live a cer-

tain number of years and run down your savings, reach-

ing zero at precisely the moment you expect to expire.

This will not be satisfactory if you live longer than you

expect. The solution is to make a bet with a wealthy

corporation. You pay them your capital and in return

they pay you a certain sum every year until you die. If

you die early then they have won their bet, and if you

die late then they have lost. By taking a large number of

such bets and relying on results like the strong law

of large numbers [III.73 §4], the corporation can be

almost certain of making a profit in the long run. In

effect you have paid a certain amount to transfer the

risk (from the financial point of view) that you might

live a long time from yourself to the corporation.

One of the earliest ways for mathematicians to make

money was to become actuaries—that is, advisers on

the appropriate price for transfer of risk in the situa-

tion described above. Nowadays, all sorts of risk (Will

next year’s coffee crop fail? Will the euro fall against

the dollar?) are bought and sold and have to be priced.

A discussion of risk pricing in general can be found in

the mathematics of money [VII.9].

7 Conclusion

In the past, mathematics has had a dramatic impact

on physics and engineering. At one time this led

to hopes that biological and sociological phenomena

would eventually come to be explained mathematically

as well. Later, such hopes came to seem unrealistic:

it was understood that these areas contain “emergent

phenomena” that are not easily amenable to a reduc-

tionist approach and are therefore genuinely harder

to describe mathematically than the phenomena stud-

ied in the “harder sciences.” However, mathematicians

are now beginning to grapple with such phenomena: as

even the simple examples in this article have shown,

one can apply mathematics to many areas outside its

traditional domain, and doing so can be extremely

illuminating.

VIII.4 Numeracy
Eleanor Robson

1 Introduction

Most of this Companion is rightly concerned with the
theories and practices of professional mathematicians.
But all human beings have ideas about numbers, space,
and shape, and ways of putting these ideas to use. It
could be said that numeracy is to mathematics what lit-
eracy is to literature: everyday, routine application ver-
sus expert, elite innovation. But while literacy is now a
wildly fashionable subject of academic study, the word
“numeracy” is not even recognized by my mass-market
word processor. Yet an array of interesting work has
been done on nonprofessional mathematical concepts,
practices, and attitudes. They range from historical
studies and ethnographies to cognitive analyses and
developmental psychologies, and cover such diverse
periods and places as ancient Iraq, the pre-Columbian
Andes, and the European Middle Ages, as well as many
parts of the contemporary world. By surveying selected
studies on five broadly construed topics in numeracy
and artisanal mathematics, I hope to make the case in
this essay that numeracy is as valuable a topic of aca-
demic research as professional mathematics on the one
hand and literacy on the other.

Mathematics has rarely been considered part of the
sociology or anthropology of knowledge, as it has often
been assumed to stand outside culture. That is to say,
many people have held the view that one can only think
mathematics, not think about it. Furthermore, such
work as has been done on the place of mathematics
in culture is fragmented: mathematical thinking in the
developed world has tended to be studied by sociolo-
gists, but in the developing world by anthropologists;
historians of mathematics have mostly taken as their
subject the literate mathematics of the professional
elite, while psychologists have generally focused on the
acquisition of numeracy, by adults and children.

But, as we shall see, the way that societies and indi-
viduals regard mathematics is strongly contingent on
many environmental factors. Educational, linguistic,
visual, and intellectual cultures all shape mathematical
thinking in different ways. That is not to say that there
are no constraints, however. Humans all share basic
anatomical similarities that influence our ways of think-
ing: we are approximately symmetrical about one verti-
cal axis, for instance, which gives rise to arguably innate
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concepts of left and right, front and back. And we all
have fingers and opposable thumbs and the ability to
subitize (that is, to recognize the size of a small set
without counting its individual members). This, Reviel
Netz has argued, makes human beings uniquely good
at manipulating small groups of small objects, which
has given rise to sophisticated systems of accounting
and coinage. We shall return to Netz’s work later.

The examples in this essay have been selected from
studies of three very different clusters of world cul-
tures. The ancient Middle East and Mediterranean
(Egypt and Mesopotamia, classical Greece and Rome)
have strongly influenced modern global culture in a
variety of ways. Most obviously, the Euclidean tradi-
tion has been central to Western educational ideals
for centuries, along with the teaching of Latin. And
while the languages and writings of ancient Egypt and
Mesopotamia are essentially nineteenth-century redis-
coveries, their cultural influence runs in deep undercur-
rents throughout Western thinking, having percolated
through classical and biblical learning. We should not
be surprised, then, to discover the familiar as well as
the alien in the world’s oldest evidence for numeracy
and artisanal mathematics. By contrast, the cultures
of the pre-Columbian Americas are important for their
very lack of contact with the premodern old world and
thus their isolation from modernity. Virtually extin-
guished by the European conquests of the sixteenth
and seventeenth centuries, and yet structurally simi-
lar to many old-world societies, they give a useful sense
both of the constraints on numerate practice and think-
ing and of their diversity. Finally, this article also draws
material from studies of the contemporary Americas,
both South and North, in an attempt to break down
the traditional disciplinary boundaries between past
and present and between the developed world and the
developing world. Numeracy is a feature of all human
culture, wherever and whenever we have lived, and this
should be reflected in how it is investigated.

2 Number Words and Social Values

Number words are usually studied for their mathemat-
ical content. French, for instance, shows traces of a
vigesimal system in words such as quatre-vingt, mean-
ing “four twenties,” while the English word eighty is
clearly derived from “eight tens.” But in all languages
number words also have social values attached, espe-
cially the counting numbers and words for sets. This is
a rather different phenomenon from mystical numerol-
ogy such as that of Late Antique Neo-Pythagoreanism.

For instance, Nichomachus’s book The Theology of

Arithmetic (written in the second century b.c.e. but

now known only from later summaries) assigned eso-

teric meanings to the first ten integers, understand-

ing those numbers to represent fundamental attributes

of the cosmos. But the social values of number words

are often much more prosaic than that. English, for

instance, has a variety of words for “group of three,”

each of which is applicable to a particular range of

objects and has particular social connotations. “Three-

some” is not a synonym of “trinity” in everyday lan-

guage, just as in musical terminology “trio” does not

have the same referents as “triad” or “triplet.” There is

nothing mystical or esoteric in the use of these words;

it is simply that, in addition to their semantic con-

tent, these words also carry implicit qualitative infor-

mation about the sort of objects that are being grouped

(sexually active adults, divine beings, musicians, musi-

cal notes, criminals, babies), about which society and

individuals tend to form value judgments.

That numbers have a “social life” was first recog-

nized by Gary Urton in his ethnographic study of the

Quechua-speaking inhabitants of the Bolivian Andes.

Structurally, Quechua numeration is straightforwardly

decimal, much like modern European number systems,

and is written with Arabic numerals. This has ensured

its survival side by side with Spanish, but the fact that

it is not particularly exotic relative to Western norms

has caused it to be somewhat neglected academically.

However, as Urton shows, there are two predominant

social aspects to Quechua numeration: family relations

on the one hand, and the idea of completeness or “rec-

tification” on the other. There are also clear boundaries

around what may be counted and who may count them.

All Quechua number words are composed of a dozen

basic lexemes—one to ten, hundred, and thousand—

which may be combined additively or multiplicatively,

just as in English the word thirteen means “three and

ten” and thirty means “three tens.” Also as in English,

Quechua number words tend to be a distinct lexical set;

for instance, kinsa means “three” and nothing else. But

where synonyms for cardinal numbers are fairly rare in

English (one example is dozen for “twelve”), they are a

normal part of Quechua speech:

• iskaypaq chaupin, “the middle of (sets of) twos,”

used of the third item in a group of five;

• iskay aysana, “double puller” (because the symbol

3 looks like two handles);
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• uquti, “anus” (because the symbol 3 also looks like
a human bottom);

• uj yunta ch’ullayuq, “one pair, possessor of one
standing alone” (2+ 1 = 3).

Family relations are most clearly visible in ordinal
sequences, especially the names of the fingers, which
are themselves important everyday counting tools.
Urton lists six very similar sets of names, attested over
the past 500 years. The most recent, collected by the
Bolivian anthropologist Primitivo Nina Llanos in 1994,
goes as follows:

• thumb, mama riru, “mother finger”;
• index finger, juch’uy riru, “small[er] finger”;
• middle finger, chawpi riru, “middle finger”;
• ring finger, sullk’a riru, “younger finger”;
• little finger, sullk’aq sullk’an riru, “younger sibling

of the younger finger.”

Thus the thumb is considered both the oldest and
the antecedent of the others and the little finger the
youngest; this is true of all six attested variants of the
finger names. The hands themselves are considered
as two symmetrical halves of a unified whole—as are
paired items in general. In Quechua, one hand alone
(or indeed an odd number) is not in its natural state.
As Urton explains:

[T]he motivation for two is the “loneliness” (ch’ulla) of
one. “One” is an incomplete, alienated entity: it needs a
“partner” (ch’ullantin). The principle and motivational
force obtain … regardless of whether the unit that com-
poses the “one” is indivisible (e.g., a single digit) or
divisible (e.g., a hand with five digits).

And more generally, Urton shows that in Quechua, odd
numbers (ch’ulla) are incomplete while even numbers
(ch’ullantin, “the part together with its pair”) represent
the normal state of being.

But in Quechua society not everything is permissi-
bly countable, even when there is no obvious difficulty
in doing so. For example, they inventorize their herds,
on whom they are often heavily economically depen-
dent, not by counting but by naming. It is thought that
counting individualizes the constituent members of the
inseparable group, and thereby threatens its unity and
fertility. If a herd must be counted then only a woman
may do so; it is an unacceptably effeminate action for
a man to carry out.

While restrictions on counting are not a notable fea-
ture of contemporary English-speaking culture, taboos

on particular numbers are still common. Why is thir-
teen considered so unlucky, for instance, particularly
in North American hotels or on Fridays, while seven
is regarded as lucky? In ancient Babylonia (modern-
day southern Iraq) in the second and first millennia
b.c.e., seven was thought to be particularly uncanny
and unworldly. There were seven heavenly bodies (the
Sun, the Moon, five visible planets), seven books of the
Epic of Creation, and seven nights in each phase of the
Moon. Demons, both beneficent and malevolent, were
said to operate in groups of seven.

The Babylonians’ primary numerical base for count-
ing and recording groups of discrete objects was 60,
factored into six groups of ten. The number 7 is, of
course, the smallest one that is coprime to 60 and thus
became a favorite subject of mathematics problems
designed to be solved by trainee scribes. Further sexa-
gesimal coprimes—11, 13, 17, 19—also featured promi-
nently in ancient Babylonian mathematical problems
and riddles. More often than not, however, the parame-
ters were chosen in such a way that the tricky coprimes
factored out or were otherwise disposed of, leaving an
arithmetically innocuous answer:

I found a stone; I did not weigh it. I added a seventh. I
added an eleventh. I weighed it: 1 mina. What was the
original (weight of the) stone? The original stone was
2
3 mina 8 shekels, 22 1

2 grains. (180 grains = 1 shekel;
60 shekel = 1 mina, ca. 0.5 kg.)

It is probably otiose to speculate whether the diffi-
cult mathematical properties of seven led directly to
its cosmological demonization; the link is never made
explicitly in any surviving cuneiform sources. But just
as Babylonian demons failed to adhere to the norms of
human behavior, so certain integers did not conform
to the numerical patterns of the sexagesimally regular
majority and the conceptual tools were not yet in place
to explain that phenomenon in mathematical terms.

3 Counting and Calculating

While anyone can have views on whether particular
numbers are lucky or unlucky, lonely or partnered, the
ability to manipulate numbers arithmetically, and to
take pleasure in doing so, is not universally shared.
Both personal cognitive skills and social constraints are
at work here. Patricia Cline Cohen argues that there
were two key factors in the rapid rise in numerical com-
petence in the early nineteenth-century United States. It
was not that people suddenly became smarter. On the
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one hand, the decimalization of money in the late eigh-

teenth century meant that at last accountants, shop-

keepers, and business owners were working with a

single number base. At the same time, a new educa-

tional movement forsook the rote learning of arithmeti-

cal rules, applied mechanically to particular situations,

for inductive instruction that encouraged pupils to cal-

culate with fingers and counters, and in their heads,

before they progressed to pen and paper. In this way

some basic structural impediments were removed, both

to the learning of number relationships, and to their

application in commercial life.

Because modern decimal notation is a calculating sys-

tem as well as a recording device, it is easily forgot-

ten that other methods are just as effective. Indeed, for

most communities, most of the time, numerals were

simply a means to record the outcome of operations

performed on the body or with other calculating tools.

Finger counting and abacus use remained ubiquitous in

the medieval Islamic world and Christian Europe long

after knowledge of decimal numerals, together with

al-khwārizmı̄’s [VI.5] treatise on how to use them,

and cheap paper on which to write them, began to

spread outward from Baghdad in the ninth century c.e.

Their retention was not a knee-jerk reaction in the face

of an overwhelmingly superior technology; rather, it

took into account such factors as portability, speed of

use, and a long-established trust in and institutional

sanction of the old methods.

Indeed, it is difficult to overestimate just how old aba-

cus calculation is. Reviel Netz identifies two evolution-

ary prerequisites for what he calls “counter culture,” by

which he means the uniquely and ubiquitously human

use of small objects to represent other objects that are

being counted, in one–one or one–many relationships.

One is physiological: one needs to be able to pick up

and manipulate small objects such as pebbles or shells.

All primates share this ability thanks to prehensile fin-

gers and opposable thumbs. The other is cognitive: one

must be able to subitize, or recognize the size of a small

set of up to about seven objects, without counting them

individually. Stringed-bead abacuses exploit this most

obviously, whether in the Russian-style ten-bead vari-

ety, whose fifth and sixth beads are always a different

color from the others, or in the Japanese version, whose

strings contain just four unit-beads and one five-bead

each.

But, as Netz so powerfully puts it, “The abacus is not

an artefact: it is a state of mind.” All one needs is a

flat surface and a pile of small objects to act as coun-
ters. This extreme ephemerality makes the use of aba-
cuses almost impossible to detect in the archaeological
record, except in the rare cases where abacus counters
can be recognized as such. Denise Schmandt-Besserat
has argued that a sophisticated accounting system was
developed in the Neolithic Middle East from the ninth
millennium b.c.e. She proposes that the tiny, unbaked
pieces of clay, crudely shaped into various simple geo-
metrical figures and found in preliterate archaeologi-
cal contexts from eastern Turkey to Iran, are ancient
accounting tokens. It is certainly true that the earliest
written numerals in the area, from southern Iraq in the
late fourth millennium b.c.e., are marks on clay tablets
that look remarkably like stylized impressions of such
objects, and are visually distinct from the signs for the
objects that were being counted, which were scratched
onto the clay rather than impressed. It is also true that
these earliest written records are almost exclusively
accounting records, drawn up by temple administra-
tors in the management of assets such as land, labor,
and agricultural products. And from the fifth millen-
nium b.c.e. onward, those tiny clay tokens are found in
archaeological contexts—sealed into jars, for instance,
or wrapped in little clay bundles, or carefully piled in
the corners of storerooms—that are entirely compati-
ble with their use as abacus counters. But Schmandt-
Besserat’s claim for a universally standardized system
across the Middle East from several millennia before
then is not provable: there is no way of establishing that
they were not sometimes gaming pieces, for instance,
or sling shot, or any number of other possibilities, and
certainly no way of determining what specific shapes
signified and to whom.

In fact, ad hoc means of counting and measuring are
still everyday occurrences in all our lives, even among
those with a high level of formal mathematics edu-
cation. A team of anthropologists and psychologists,
headed by Jean Lave, observed newcomers to a Cali-
fornian Weight Watchers scheme in the 1980s as they
adjusted to careful quantification of the food they were
allowed to consume on the diet. One participant, who
had taken a calculus course at college, was asked to
modify a recipe calling for two-thirds of a cup of cot-
tage cheese so that it contained three-quarters of that
amount. Lave recalls: “He filled a measuring cup two-
thirds full of cottage cheese, dumped it out on a cut-
ting board, patted it into a circle, marked a cross on it,
scooped away one quadrant, and served the rest.” She
comments:
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Thus, “take three-quarters of two-thirds of a cup of
cottage cheese” was not just the problem statement
but also the solution to the problem and the proce-
dure for solving it. The setting was part of the calcu-
lating process and the solution was simply the prob-
lem statement enacted within the setting. At no time
did the Weight Watcher check his procedure against
a paper and pencil algorithm, which would have pro-
duced 3

4 × 2
3 = 1

2 cup. Instead, the coincidence of prob-
lem, setting, and enactment was the means by which
checking took place.

In other words, there are many situations in many
people’s lives in which potentially applicable literate,
school-taught mathematical procedures are ignored in
favor of equally effective nonliterate ones that produce
the correct result with the tools at hand. Numeracy
takes many forms, not all of which entail writing.

4 Measurement and Control

The Weight Watcher invented a system of cottage-
cheese measurement that satisfied him in its accu-
racy and fulfilled his immediate culinary needs. But
as individuals and social groups we also accept the
accuracy and consistency of standardized measure-
ment systems, and the institutional necessity of count-
ing and measuring particular things but not others.
Theodore Porter has written eloquently of the twen-
tieth century’s growing “trust in numbers,” whether
of census statistics or environmental data. But insti-
tutionally sanctioned quantification is often contested,
and it frequently alters the very phenomenon that is
being pinned down. Cohen’s description of nineteenth-
century North America is more generally apposite:

What people chose to count and measure reveals
not only what was important to them but what they
wanted to understand and, often, what they wanted
to control. Further, how people counted and mea-
sured reveals underlying assumptions about the sub-
ject under study, assumptions ranging from plain old
bias … to ideas about the structure of society and of
knowledge. In some cases, the activity of counting and
measuring itself altered the way people thought about
what they were quantifying: numeracy could be an
agent of change.

Cohen and Porter both explore problems raised
by early nineteenth-century census taking. Porter de-
scribes the obstacles that the under-resourced Bureau
de Statistique faced in obtaining accurate population
data in post-revolutionary France. Without resorting to
the old class categorizations of the ancien régime, it

needed to acknowledge the huge diversity of occupa-
tions and social structures across the country. To do
so it relied on local officials to return a mass of quanti-
tative data that was simply not readily available—and
so the prefectures commissioned qualitative descrip-
tions of their regions instead. As Porter puts it, in 1800
“France was not yet capable of being reduced to statis-
tics.” Cohen analyzes the U.S. Census of 1840, which
appeared to demonstrate a much higher rate of insanity
among the black population in the abolitionist north-
ern states than in the south. Pro-slavery factions took
this as irrefutable evidence that slavery suited the black
population much better than freedom did; abolition-
ists queried the trustworthiness of the census itself.
Whether or not one chose to believe the data was more
or less a matter of what one’s preexisting political con-
victions were. As Cohen shows, the source of the error
lay in clumsily designed recording sheets, in which the
“idiot white” and “idiot black” columns were easily con-
fused, resulting in the misrecording of many elderly
senile inhabitants of all-white households. In the 1840s,
however, the public debate was not about methodology,
but whether fraud had been committed: the numbers
themselves could not lie.

Two thousand years earlier, as Serafina Cuomo has
shown, the Roman land surveyor Frontinus opined that
the world was essentially unknowable without quanti-
tative intervention, and that the trustworthiness of that
measure was dependent on professional expertise:

The basis of the art of measuring lies in the experi-
ence of the agent. It is in fact impossible to express
the truth of the places or of the size without calcu-
lable lines, because the wavy and uneven edge of any
piece of land is enclosed by a boundary which, because
of the great quantity of unequal angles, can be con-
tracted or expanded, even when their number [that is,
the number of the angles] remains the same. Indeed
pieces of land which are not finally demarcated have
a fluctuating space and an uncertain determination of
iugera.

The natural world is problematically irregular, Fron-
tinus believed, and must be disciplined into quanti-
fied straight lines—and, ideally, marked out into grids
of 2400 foot squares (iugera)—in order to be brought
under control. The Roman reshaping of the landscape
through its quantification is still visible throughout
Europe, the Middle East, and North Africa today, both
on land and from the air.

The Incas, by contrast, brought time, space, soci-
ety, and the gods under control through radial lines
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in the landscape, tied to the ceremonial year. Before
Spanish-led Christianization in the sixteenth-century,
the heart of the Inca cosmos was the sacred city of
Cuzco in the Peruvian Andes. The Incas divided the
world into unequal quarters or tawantinsuyu “the four
parts together,” radiating out from the Temple of the
Sun. Through each suyu ran nine to fourteen ceque
paths through the mountains, forty-one in total, with
an average of eight huaca shrines stationed on each.
The local inhabitants performed a ritual at one of the
328 huacas every day of the sacred year (composed of
twelve months of 27 1

3 days). Thus the religious focus
of the Inca state moved systematically around its ter-
ritory, day by day and from community to community,
binding every social group into the same calendar, cult,
and cosmos.

Numeracy, then, is a powerful institutional tool:
measuring, quantifying, and classifying can transform
an unknowable mass of individual people, places, or
things into manageable categories of known entities—
and this institutionally imposed structure in turn
shapes the self-identities of those being managed.
Institutional numeracy, while imposed from above,
is always dependent to some degree on community-
wide support and cooperation, if not necessarily forTerri: very tricky

to know what to
do with this
sentence that the
proofreader
pointed out wasn’t
great before. Tim
has suggested this
version – OK with
you?

the objects of account then always for the counters.
Attempts at censuses in the eighteenth century did not
fail because people refused to be reduced to numbers
in boxes, but because those charged with collecting the
data had neither the infrastructural means to do so nor
an intellectual outlook that valued quantification. Inca
and Roman societies, by contrast, were able to produce
whole classes of the professionally numerate who did.

5 Numeracy and Gender

In modern anglophone culture, academic mathematics
is popularly considered a male pursuit—and women
supposedly have to subordinate or compromise their
femininity if they are to succeed in it. But such percep-
tions are far from universal: studies collected by Bar-
bro Grevholm and Gila Hanna, for instance, show that
in the early 1990s some 80% of Kuwaiti and over half of
Portuguese undergraduate mathematics majors were
women. However, as the following examples demon-
strate, this has more to do with how particular societies
construct ideals of femininity and masculinity and with
what they count as mathematical activity than with any
intrinsically gendered properties of mathematics itself.

For most of the second millennium b.c.e., Babylo-
nian scribes understood professional numeracy to be

a divine gift—not from the gods in general but from
a handful of powerful goddesses. In the literary works
that scribal students memorized as part of their profes-
sional training, creator gods bestowed land-measuring
equipment and numeracy on those goddesses to enable
them to manage household estates equitably. In a myth
now known as Enki and the World Order the great god
Enki announces:

My illustrious sister, holy Nisaba,
Is to receive the 1-rod measuring reed.
The lapis lazuli rope is to hang from her arm.
She is to proclaim all the great divine powers.
She is to fix boundaries and mark borders. She is

to be the scribe of the Land.
The gods’ eating and drinking are to be in her

hands.

The scribes’ literary works also portrayed Nisaba as
the patron of institutional numeracy in the real world:
she in turn provided mensuration tools to scribes and
kings to enable them to uphold justice in society.

Another scholastic literary genre was the scribal dia-
logue, in which the protagonists argue over the ideals of
scribal professionalism. In one such debate the young
scribe Enki-manshum explicitly relates metrological
competence to social justice:

When I go to divide a plot, I can divide it; when
I go to apportion a field, I can apportion the
pieces,

So that when wronged men have a quarrel I
soothe their hearts and … .

Brother will be at peace with brother, their
hearts … .

This was not merely a literary trope: law codes promul-
gated by real-life Babylonian kings often began with
prologues claiming that they would uphold fairness
in commercial measuring, weighing, and counting, and
included provisions for punishing metrological fraud.
Many hundreds of legal records survive, attesting to the
settlement of land disputes through accurate profes-
sional measurement and calculation. In the nineteenth-
century b.c.e. city of Sippar, the judges who held court
in the temple of Shamash, god of justice, employed
female scribes and surveyors as well as male (often
from the same families). Further, the personal seals
of fourteenth-century b.c.e. royal land surveyors were
often dedicated to Nin-sumun, the divine mother of the
legendary hero Gilgamesh: for them the numerate god-
dess who bestows numerate justice was no school story
but at the very heart of their professional self-identity.
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In ancient Babylonia, then, numeracy and metrol-
ogy gained institutional authority and power as much
through association with divine femininity as with
royal masculinity. Many modern societies, by contrast,
defeminize numerate thought and activity by deny-
ing its mathematical status when it is carried out by
women. Gary Urton’s study of Quechua numeration
started out as an ethnography of Bolivian weaving,
which, he discovered, was based on highly intricate
symmetrical patterns that the (female) weavers know
by heart. They count off threads effortlessly, unerringly
picking up where they have left off after interruptions
to nurse babies, prepare food, or attend to other domes-
tic matters. And yet the men of the area categorically
told Urton that the weavers “can’t count”—because
when a woman sells her finished weavings at market
she will invariably ask another woman of the group
to check her takings to ensure that she has not been
cheated.

Urton was taught to weave by Irene Flores Condori, a
twelve-year-old girl. He recalls:

On one occasion, a stern old woman … asked me point
blank if, by weaving, I was trying to be like a woman.
I answered by telling her that in some villages I know
of, it is the men rather than the women who do the
weaving. . . . The old woman gave us both a wry look and
asked, if that was the case, then is it the women in those
villages who have the penises!

Weaving was such a strongly gendered activity that
this and other incidents led Urton to feel that “my
behavior was being tolerated to the degree that it was
only because, as an outsider, I was not subject to the
same rules and expectations as local men.” Weaving is
exclusively women’s work and therefore its intrinsically
numerate character is socially invisible; women are
more reluctant than men to trust strangers to handle
money fairly and are therefore considered innumerate.

Mary Harris shows how a similarly powerful gender
divide developed in Victorian Britain as primary educa-
tion became available to an ever-widening section of the
populace. Mathematics was regarded as the quintessen-
tially male school subject, while needlework was the
epitome of femininity. Yet:

Every garment knitted to fit a particular body depends
on the principle of ratio. Every pinafore pattern copied
from a blackboard requires visual interpretation of
scaling and the ability to draw a smooth curve. All the
fine stitching that the early Inspectors were unable to
tell from machine stitching depended on the ability to

judge equal distances by eye and maintain them in a
straight row.

In other words, wherever girls and women weave,
knit, or sew they are unwittingly engaging numerate
aptitudes and skills, often highly creatively, just as
Molière’s Monsieur Jourdain had been speaking prose
all his life “without knowing anything about it.”

6 Numeracy and Literacy,
School and Supermarket

Perhaps one reason that women’s work is not often
thought to belong to the realm of professional numer-
acy is that numeracy is so often considered (when it is
considered at all) as a subset of literacy. As Reviel Netz
puts it,

With Arabic numerals, numbers appear as secondary
to writing, benefiting from tools that were largely
invented to record verbal systems and not numerical
symbols. In broad historical perspective, this is the
exception and not the rule. The rule is that, across
cultures, and especially in early cultures, the record
and manipulation of visual symbols precede and pre-
dominate over the record and manipulation of verbal
symbols.

Netz is thinking here of counters and abacuses, but
the Bolivian weavers remind us that numeracy does
not have to entail symbolic manipulation at all. One
may count threads, llamas, ideas, anything, and per-
form calculations without the intervention of exter-
nal tools. The use of fingers and other body parts
has cropped up repeatedly in the examples presented
in this essay. Much of the weavers’ mental work is
so naturalized within the rhythms and movements of
their bodies that they can no longer verbalize the men-
tal or physical processes involved. (That is why Urton
chose a young girl as his teacher, who was still learning
the craft, rather than a fully competent adult woman.)
Nonliterate numerate practices and ideas, especially in
the developing world, are often labeled by academic
observers as “ethnomathematics.” But this raises diffi-
cult questions about the appropriate use of the “ethno”
prefix and about the border between numeracy and
mathematics. How do we distinguish numeracy from
mathematics, and where does ethnomathematics fit in?

When Ubiratan D’Ambrosio coined the term “ethno-
mathematics” in the mid 1970s it was to describe the
study of mathematics “in direct relation to [its] social,
economic, and cultural backgrounds,” a subject lying
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“on the borderline between the history of mathematics
and cultural anthropology.” However, for many, partic-
ularly within mathematics education, it has come to
mean the study of culturally “other” mathematics, as
if only the academically marginalized have ethnicity
(just as, according to some lazy academic views, only
women have gender). This semantic shrinkage is dou-
bly damaging, for it implies that “ethnic” cultures are
not fully numerate, while rendering the mainstream of
academic mathematics, both past and present, invis-
ible to sociological, anthropological, or ethnographic
research. Nor does it distinguish between the intel-
lectual creativity that is mathematics and the routine
application of numeracy.

If “ethnomathematics” is an unhelpful term, there
are useful alternatives. An influential Brazilian study
of childhood numeracy, by Terezinha Nunes and col-
leagues, distinguishes formally learned “school mathe-
matics” from “street mathematics” created informally
by the same children. Jean Lave’s ethnography of
adult numeracy in 1980s California likewise contrasts
“school arithmetic” with “supermarket arithmetic.” The
participants in her study often described themselves
as arithmetically incompetent and “were unaware of
the efficacy of their math practice in the supermar-
ket, and some did not know, even that they used arith-
metic practices there.” Yet often the supermarket set-
ting required the solution of mathematical problems
of much greater complexity than superficially similar
scholastic “word problems”:

The shopper was standing in front of a produce dis-
play. As she spoke she put apples, one at a time, into a
bag. She put the bag in the cart as she finished talking:
“There’s only about three or four [apples] at home, and
I have four kids, so you figure at least two apiece in the
next three days. These are the kinds of things I have to
resupply. I only have a certain amount of storage space
in the refrigerator, so I can’t load it up totally. . . . Now
that I’m home in the summertime, this is a good snack
food. And I like an apple sometimes at lunchtime when
I come home.”

While explicitly considering such variables as the num-
ber of apple-consumers in the household, their rate
of consumption, fridge storage space, and perhaps
implicitly the apples’ price and probably shelf life,
the shopper selected nine apples to buy. She might
also have compared the prices of different varieties
of apple and/or considered whether loose or prepack-
aged apples were the better buy—all typical supermar-
ket activities that Lave and her researchers observed

and correlated with the same subjects’ performance in
written tests of arithmetically similar skills. They found
“not a single significant correlation between frequency
of calculation in a supermarket, and scores on math
test, multiple choice test or number facts. . . . Success
and frequency of calculation in supermarket and simu-
lation experiment bear no statistical relationship with
schooling, years since schooling was completed, or
age.”

Rather depressingly for educators, perhaps, Lave’s
work suggests that training in school mathematics has
little or no impact on numerical competence in adult
life. (Interestingly, this finding conflicts with Cohen’s
historical argument discussed above, relating improve-
ments in mathematics education to rising standards of
numeracy in early nineteenth-century North America.)
Rather, as she and Étienne Wenger argue, learning takes
place most effectively when it is situated in the social
and professional context to which it pertains, through
interaction and collaboration with competent practi-
tioners, rather than through abstract, decontextualized
classroom learning. Learners become part of a “com-
munity of practice” that inculcates not only the neces-
sary technical skills but also the beliefs, standards, and
behaviors of the group. Through gains in competence,
confidence, and social acceptance, the learner moves
from the periphery toward the center of the practice
community, in due course becoming accepted as a fully
fledged expert. It is perhaps in this light, then, that
we should understand the process of becoming profes-
sionally numerate. But if situated learning is so effec-
tive, the development of supra-utilitarian educational
mathematics in the societies of the ancient Middle East
and Mediterranean is a major historical conundrum
that has hitherto gone unrecognized.

7 Conclusions

This essay began by suggesting that “numeracy is to
mathematics what literacy is to literature.” But the case
studies presented here show that numeracy has a far
greater cognitive reach than that. Throughout time and
across the world countless individuals and societies
have managed perfectly well, and continue to thrive,
without writing; none has yet been attested without
counting, measuring, or pattern-making in some form
or other. In this light a better formulation might be that
“numeracy is to mathematics what language is to litera-
ture.” Indeed babies, toddlers, and young children learn
many essential mathematical skills through engage-
ment with their immediate environment well before
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formal school learning begins. Just as some children
grow into more articulate adults than others, with or
without highly developed skills in reading and writing,
so they may become more or less numerate in their
everyday practices, independently of their competence
in school mathematics.

There are many deep and important questions about
the relationships between numeracy and mathematics,
language and literacy that have hardly yet been formu-
lated, let alone explored: this is perhaps one of the most
open fields of enquiry in academia today. This essay has
only scratched the surface of a fascinating and complex
subject that has paradoxically been overlooked because
of its very ubiquity and centrality to human existence.
In the next few decades, a wide range of interdisci-
plinary approaches will almost certainly yield impor-
tant and surprising discoveries about numeracy that
today we can only guess at.
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VIII.5 Mathematics: An Experimental
Science
Herbert S. Wilf

1 The Mathematician’s Telescope

Albert Einstein once said, “You can confirm a theory
with experiment, but no path leads from experiment
to theory.” But that was before computers. In mathe-
matical research now, there’s a very clear path of that
kind. It begins with wondering what a particular situ-
ation looks like in detail; it continues with some com-
puter experiments to show the structure of that situa-
tion for a selection of small values of the parameters
of the problem; and then comes the human part: the
mathematician gazes at the computer output, attempt-
ing to see and to codify some patterns. If this seems
fruitful, then the final step requires the mathematician
to prove that the apparent pattern is really there, and
is not a shimmering mirage above the desert sands.

A computer is used by a pure mathematician in much
the same way that a telescope is used by a theoret-
ical astronomer. It shows us “what’s out there.” Neither
the computer nor the telescope can provide a theoret-
ical explanation for what it sees, but both of them
extend the reach of the mind by providing numerous
examples that might otherwise be hidden, and from
which one has some chance of perceiving, and then
demonstrating, the existence of patterns, or universal
laws.

In this article I would like to show you some exam-
ples of this process at work. Naturally the focus will
be on examples in which some degree of success has
been realized, rather than on the much more numer-
ous cases where no pattern could be perceived, at least
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by my eyes. Since my work is mainly in combinator-
ics and discrete mathematics, the focus will also be on
those areas of mathematics. It should not be inferred
that experimental methods are not used in other areas;
only that I don’t know those applications well enough
to write about them.

In one short article we cannot even begin to do jus-
tice to the richly varied, broad, and deep achievements
of experimental mathematics. For further reading, see
the journal Experimental Mathematics and the books
by Borwein and Bailey (2003) and Borwein et al. (2004).

In the following sections we give first a brief descrip-
tion of some of the useful tools in the armament of
experimental mathematics, and then some successful
examples of the method, if it is a method. The examples
have been chosen subject to fairly severe restrictions:

(i) the use of computer exploration was vital to the
success of the project; and

(ii) the outcome of the effort was the discovery of a
new theorem in pure mathematics.

I must apologize for including several examples from
my own work, but those are the ones with which I am
most familiar.

2 Some of the Tools in the Toolbox

2.1 Computer Algebra Systems

The mathematician who enjoys using computers will
find an enormous number of programs and packages
available, beginning with the two major computer alge-
bra systems (CASs), Maple and Mathematica. These pro-
grams can provide so much assistance to a working
mathematician that they must be regarded as essen-
tial pieces of one’s professional armamentarium. They
are extremely user-friendly and capable.

Typically one uses a CAS in interactive mode, mean-
ing that you type in a one-line command and the pro-
gram responds with its output, then you type in another
line, etc. This modus operandi will suffice for many pur-
poses, but for best results one should learn the pro-
gramming languages that are embedded in these pack-
ages. With a little knowledge of programming, one can
ask the computer to look at larger and larger cases until
something nice happens, then take the result and use
another package to learn something else, and so forth.
Many are the times when I have written little programs
in Mathematica or Maple and then gone away for the
weekend leaving the computer running and searching
for interesting phenomena.

2.2 Neil Sloane’s Database of Integer Sequences

Aside from a CAS, another indispensable tool for

experimentally inclined mathematicians, particularly

for combinatorialists, is Neil Sloane’s “On-Line Ency-

clopedia of Integer Sequences,” which is on the Web at

www.research.att.com/˜njas. At present, this contains

nearly 100 000 integer sequences and has full search

capabilities. A great deal of information is given for

each sequence.

Suppose that for each positive integer n you have an

associated set of objects that you want to count. You

might, for example, be trying to determine the number

of sets of sizenwith some given property, or you might

wish to know how many prime divisors n has (which is

the same as counting the set of these prime divisors).

Suppose further that you’ve found the answer for n =
1,2,3, . . . ,10, say, but you haven’t been able to find any

simple formula for the general answer.

Here’s a concrete example. Suppose you’re working

on such a problem, and the answers that you get for

n = 1,2, . . . ,10 are 1, 1, 1, 1, 2, 3, 6, 11, 23, 47. The

next step should be to look online to see if the human

race has encountered your sequence before. You might

find nothing at all, or you might find that the result

that you’d been hoping for has long since been known,

or you might find that your sequence is mysteriously

the same as another sequence that arose in quite a dif-

ferent context. In the third case, an example of which

is described below in section 3, something interesting

will surely happen next. If you haven’t tried this before,

do look up the little example sequence above, and see

what it represents.

2.3 Krattenthaler’s Package “Rate”

A very helpful Mathematica package for guessing the

form of hypergeometric sequences has been written

by Christian Krattenthaler and is available from his

Web site. The name of the package is Rate (rot’-eh),

which is the German word for “guess.”

To say what a hypergeometric sequence is let’s first

recall that a rational function of n is a quotient of

two polynomials inn, like (3n2 + 1)/(n3 + 4). A hyper-

geometric sequence {tn}n�0 is one in which the ratio

tn+1/tn is a rational function of the index n. For

example, if tn =
(
n
7

)
then tn+1/tn works out to be

(n+ 1)/(n− 6), which is a rational function of n, so

{tn}n�0 is a hypergeometric sequence. Other examples
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are

n!, (7n+ 3)!,
(
n
7

)
tn,

(3n+ 4)!(2n− 3)!
4nn!4

,

all of which are easily seen to be hypergeometric.

If you input the first several members of the un-
known sequence, Rate will look for a hypergeometric
sequence that takes those values. It will also look for a
hyper-hypergeometric sequence (i.e., one in which the
ratio of consecutive terms is hypergeometric), and a
hyper-hyper-hypergeometric sequence, etc.

For example, the line

Rate[1, 1/4, 1/4, 9/16, 9/4, 225/16]

elicits the (somewhat inscrutable) output

{41−i0(−1+ i0)!2}.
Here i0 is the running index of Rate, so we would
normally write that answer as, say,

(n− 1)!2

4n−1
(n = 1,2,3,4,5,6),

which fits the input sequence perfectly. Rate is a part
of the Superseeker front end to the Integer Sequences
database, discussed in section 2.2 above.

2.4 Identification of Numbers

Suppose that, in the course of your work, you encoun-
tered a number, let’s call it β, which, as nearly as you
could calculate it, was 1.218041583332573. It might be
that β is related to other famous mathematical con-
stants, like π , e,

√
2, and so forth, or it might not. But

you’d like to know.

The general problem that is posed here is the fol-
lowing. We are given k numbers, α1, . . . , αk (the basis),
and a target number α. We want to find integers
m,m1, . . . ,mk such that the linear combination

mα+m1α1 +m2α2 + · · · +mkαk (1)

is an extremely close numerical approximation to 0.

If we had a computer program that could find such
integers, how would we use it to identify the mystery
constant β = 1.218041583332573? We would take the
αi to be a list of the logarithms of various well-known
universal constants and prime numbers, and we would
take α = logβ. For example, we might use

{logπ,1, log 2, log 3} (2)

as our basis. If we then find integers m,m1, . . . ,m4

such that

m logβ+m1 logπ +m2 +m3 log 2+m4 log 3 (3)

is extremely close to 0, then we will have found that our
mystery number β is extremely close to

β = π−m1/me−m2/m2−m3/m3−m4/m. (4)

At this point we will have a judgment to make. If the
integersmi seem rather large, then the presumed eval-
uation (4) is suspect. Indeed, for any target α and basis
{αi} we can always find huge integers {mi} such that
the linear combination (1) is exactly 0, to the limits of
machine precision. The real trick is to find a linear com-
bination that is extraordinarily close to 0, while using
only “small” integers m, mi, and that is a matter of
judgment. If the judgment is that the relation found is
real, rather than spurious, then there remains the little
job of proving that the suspected evaluation ofα is cor-
rect, but that task is beyond our scope here. For a nice
survey of this subject, see Bailey and Plouffe (1997).

There are two major tools that can be used to dis-
cover linear dependencies such as (1) among the mem-
bers of a set of real numbers. They are the algorithms
PSLQ, of Ferguson and Forcade (1979), and LLL, of
Lenstra et al. (1982), which uses their lattice basis
reduction algorithm. For the working mathematician,
the good news is that these tools are available in CASs.
For example, Maple has a package, IntegerRelations
[LinearDependency], which places the PSLQ and the
LLL algorithms at the immediate disposal of the user.
Similarly there are Mathematica packages on the Web
that can be freely downloaded and which perform the
same functions.

An application of these methods will be given in sec-
tion 7. For a quick illustration, though, let us try to rec-
ognize the mystery number β = 1.218041583332573.
We use as a basis the list in (2) above, and we put
this list, augmented by log 1.218041583332573, into
the IntegerRelations[LinearDependency] pack-
age. The output is the integer vector [2,−6,0,3,4],
which tells us that β = π3

√
2/36, to the number of

decimal places carried.

2.5 Solving Partial Differential Equations

I had occasion recently to need the solution to a cer-
tain partial differential equation (PDE) that arose in
connection with a research problem that was posed
by Graham et al. (1989). It was a first-order linear
PDE, so in principle the method of characteristics
[III.51 §2.1] gives the solution. As those who have tried
that method know, it can be fraught with technical
difficulties relating to the solution of the associated
ordinary differential equations.
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Table 1 The first ninety-five values of b(n).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 5 4 7

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

3 8 5 7 2 7 5 8 3 7 4 5 1 6 5 9 4 11 7

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

10 3 11 8 13 5 12 7 9 2 9 7 12 5 13 8 11 3 10

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

7 11 4 9 5 6 1 7 6 11 5 14 9 13 4 15 11 18 7

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

17 10 13 3 14 11 19 8 21 13 18 5 17 12 19 7 16 9 11

However, some extremely intelligent packages are
available for solving PDEs. I used the Maple command
pdsolve to handle the equation

(1−αx −α′y)∂u(x,y)
∂x

= y(β+ β′y)∂u(x,y)
∂y

+ (γ + (β′ + γ′)y)u(x,y)

with u(0, y) = 1. pdsolve found that

u(x,y)= (1−αx)−γ/α
(1+ (β′/β)y(1− (1−αx)−β/α))1+γ′/β′

is the solution, and that enabled me to find explicit for-
mulas for certain combinatorial quantities, with much
less work and fewer errors than would otherwise have
been possible.

3 Thinking Rationally

The following problem appeared in the September/
October 1997 issue of Quantum (and was chosen by
Stan Wagon for the Problem of the Week archive).

How many ways can 90 316 be written as

a+ 2b + 4c + 8d+ 16e+ 32f + · · · ,
where the coefficients can be any of 0, 1, or 2?

In standard combinatorial terminology, the question
asks for the number of partitions of the integer 90 316

into powers of 2, where the multiplicity of each part is
at most 2.

Let’s define b(n) to be the number of partitions of n,
subject to the same restrictions. Thus b(5) = 2 and the
two relevant partitions are 5 = 4+ 1 and 5 = 2+ 2+ 1.
Then it is easy to see that b(n) satisfies the recurrences
b(2n+1) = b(n) and b(2n+2) = b(n)+b(n+1), for
n = 0,1,2 . . . , with b(0) = 1.

It is now easy to calculate particular values of b(n).
This can be done directly from the recurrence, which is
quite fast for computational purposes. Alternatively, it
can be shown quite easily that our sequence {b(n)}∞0
has the generating function

∞∑
n=0

b(n)xn =
∞∏
j=0

(1+ x2j + x2·2j ).

(For more information on generating functions,
see algebraic and enumerative combinatorics
[IV.18 §§2.4, 3], or see Wilf (1994).) This helps us to
avoid much programming when working with the
sequence, because we can use the built-in series-
expansion instructions in Mathematica or Maple to
show us a large number of terms in this series quite
rapidly. Returning to the original question from Quan-
tum, it is a simple matter to compute b(90 316) = 843
from the recurrence. But let’s try to learn more about
the sequence {b(n)} in general. To do that we open up
our telescope, and calculate the first ninety-five mem-
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bers of the sequence, i.e., {b(n)}94
0 , which are shown in

table 1. The question is now, as it always is in the math-T&T note: check
position of table
before CRC – make
sure it appears on
the page
containing the
table citation or on
the following page.

ematics laboratory, what patterns do you see in these
numbers?

Just as an example, one might notice that when n
is 1 less than a power of 2, it seems that b(n) = 1.
The reader who is fond of such puzzles is invited to
cease reading here for the moment (without peeking
at the next paragraph), and look at table 1 to spend
some time finding whatever interesting patterns seem
to be there. Computations up to n = 94 aren’t as help-
ful for a quest like this as computations up ton = 1000
or so might be, so the reader is also invited to com-
pute a much longer table of values of b(n), using the
above recurrence formulas, and to study it carefully for
fruitful patterns.

OK, did you notice that if n = 2a then b(n) appears
to be a+ 1? How about this one: in the block of values
ofn between 2a and 2a+1−1, inclusive, the largest value
of b(n) that seems to occur is the Fibonacci number
Fa+2. There are many intriguing things going on in this
sequence, but the one that was of crucial importance in
understanding it was the observation that consecutive
values of b(n) seem always to be relatively prime.1

It was totally unexpected to find a property of the
values of this sequence that involved the multiplica-
tive structure of the positive integers, rather than their
additive structure, which would have been quite natu-
ral. This is because the theory of partitions of integers
belongs to the additive theory of numbers, and multi-
plicative properties of partitions are rare and always
cherished.

Once this relative primality is noticed, the proof is
easy. If m is the smallest n for which b(n), b(n+ 1)
fail to be relatively prime, then suppose p > 1 divides
both of them. If m = 2k + 1 is odd, then the recur-
rence implies that p divides b(k) and b(k+ 1), contra-
dicting the minimality, whereas if m = 2k is even, the
recurrence again gives that result, finishing the proof.

Why was it so interesting that consecutive values
appeared to be relatively prime? Well, at once that
raised the question of whether every possible relatively
prime pair (r , s) of positive integers occurs as a pair of
consecutive values of this sequence, and if so, whether
every such pair occurs once and only once. Both of
those possibilities are supported by the table of val-
ues above, and upon further investigation both turned
out to be true. See Calkin and Wilf (2000) for details.

1. Two positive integers are relatively prime if they have no common
factor.

Figure 1 The Ferrers board.

The bottom line here is that every positive rational
number occurs once and only once, and in reduced form,
among the members of the sequence {b(n)/b(n+1)}∞0 .
Hence the partition function b(n) induces an enu-
meration of the rational numbers, a result which was
found by gazing at a computer screen and looking for
patterns.

Moral: be sure to spend many hours each day gazing at
your computer screen and looking for patterns.

4 An Unexpected Factorization

One of the great strengths of computer algebra systems
is that they are very good at factoring. They can factor
very large integers and very complicated expressions.
Whenever you run into some large expression as the
answer to a problem that interests you, it is good prac-
tice to ask your CAS to factor it for you. Sometimes the
results will surprise you. This is one such story.

The theory of Young tableaux forms an important
part of modern combinatorics. To create a Young
tableau we choose a positive integer n and a partition
n = a1+a2+· · ·+ak of that integer. We’ll use the inte-
ger n = 6 and the partition 6 = 3+2+1 as an example.
Next we draw the Ferrers board of the partition, which
is a truncated chessboard that has a1 squares in its
first row, a2 in its second row, etc., the rows being left-
justified. In our example, the Ferrers board is as shown
in figure 1.

To make a tableau, we insert the labels 1,2, . . . , n
into the n cells of the board in such a way that the
labels increase from left to right across each row and
increase from top to bottom down every column. With
our example, one way to do this is as shown in figure 2.

One of the important properties of tableaux is
that there is a one-to-one correspondence, known as
the Robinson–Schensted–Knuth (RSK) correspondence,
which assigns to every permutation of n letters a pair
of tableaux of the same shape. One use of the RSK cor-
respondence is to find the length of the longest increas-
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1

3

4

5

6

2

Figure 2 A Young tableau.

ing subsequence in the vector of values of a given per-
mutation. It turns out that this length is the same as
the length of the first row of either of the tableaux
to which the permutation corresponds under the RSK
mapping. This fact gives us a good way, algorithmically
speaking, of finding the length of the longest increasing
subsequence of a given permutation.

Now suppose that uk(n) is the number of permuta-
tions of n letters that have no increasing subsequence
of length greater than k. A spectacular theorem of
Gessel (1990) states thatTerri: I can confirm

that ‘Gessel’ and
‘Bessel’ are two
different
mathematicians.

∑
n�0

uk(n)
n!2

x2n = det(I|i−j|(2x))i,j=1,...,k, (5)

in which Iν(t) is (the modified Bessel function)

Iν(t) =
∞∑
j=0

( 1
2 t)

2j+ν

j!(j + ν)! .

At any rate, it seems fairly “spectacular” to me that
when you place various infinite series such as the above
into a k× k determinant and then expand the deter-
minant, you should find that the coefficient of x2n,
when multiplied by n!2, is exactly the number of per-
mutations of n letters with no increasing subsequence
longer than k.

Let’s evaluate one of these determinants, say the one
with k = 2. We find that

det(I|i−j|(2x))i,j=1,2 = I20 − I21 ,
which of course factors as (I0 + I1)(I0 − I1). The argu-
ments of the Iν are all 2x and have been omitted.

When k = 3, no such factorization occurs. If you ask
your CAS for this determinant when k = 4, it will show
you

I40 − 3I20 I
2
1 + I41 + 4I0I21 I2

− 2I20 I
2
2 − 2I21 I

2
2 + I42 − 2I31 I3

+ 4I0I1I2I3 − 2I1I22 I3 − I20 I23 + I21 I23 ,
where now we have abbreviated Iν(2x) simply by Iν .
If we ask our CAS to factor this last expression, it

(surprisingly) replies with

(I20 − I0I1 − I21 + 2I1I2 − I22 − I0I3 + I1I3)
× (I20 + I0I1 − I21 − 2I1I2 − I22 + I0I3 + I1I3),

which is actually of the form (A+B)(A−B), as a quick

inspection will reveal.

We have now observed, experimentally, that for k = 2

and k = 4 Gessel’s k× k determinant has a nontriv-

ial factorization of the form (A + B)(A − B), in which

A and B are certain polynomials of degree k/2 in the

Bessel functions. Such a factorization of a large expres-

sion in terms of formal Bessel functions simply cannot

be ignored. It demands explanation. Does this factor-

ization extend to all even values of k? It does. Can we

say anything in general about what the factors mean?

We can.

The key point, as it turns out, is that in Gessel’s deter-

minant (5), the matrix entries depend only on |i − j|
(such a matrix is called a Toeplitz matrix). The determi-

nants of such matrices have a natural factorization, as

follows. If a0, a1, . . . is some sequence, and a−i = ai,
then we have

det(ai−j)2mi,j=1

= det(ai−j + ai+j−1)mi,j=1 det(ai−j − ai+j−1)mi,j=1.

When we apply this fact to the present situation it cor-

rectly reproduces the above factorizations for k = 2,4,

and generalizes them to all even k, as follows.

Letyk(n) be the number of Young tableaux ofn cells

whose first row is of length at most k, and let

Uk(x) =
∑
n�0

uk(n)
n!2

x2n and Yk(x) =
∑
n�0

yk(n)
n!

xn.

In terms of these two generating functions, the general

factorization theorem states that

Uk(x) = Yk(x)Yk(−x) (k = 2,4,6, . . . ).

Why is it useful to have such factorizations? For one

thing we can equate the coefficients of like powers of x
on both sides of this factorization (try it!). We then find

an interesting explicit formula that relates the number

of Young tableaux ofn cells whose first row is of length

at most k, on the one hand, and the number of permuta-

tions of n letters that have no increasing subsequence

of length greater than k, on the other. No more direct

proof of this relationship is known. For more details

and some further consequences, see Wilf (1992).

Moral: cherchez les factorisations!
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5 A Score for Sloane’s Database

Here is a case study in which, as it happens, not only
was Sloane’s database utilized, but Sloane himself was
one of the authors of the ensuing research paper.

Eric Weisstein, the creator of the invaluable Web re-
source MathWorld, became interested in the enumera-
tion of 0–1 matrices whose eigenvalues are all positive
real numbers. If f(n) is the number of n×n matrices
whose entries are all 0s and 1s and whose eigenvalues
are all real and positive, then by computation, Weisstein
found for f(n) the values

1, 3, 25, 543, 29 281 (for n = 1,2, . . . ,5).

Upon looking up this sequence in Sloane’s database,
Weisstein found, interestingly, that this sequence is
identical, as far as it goes, with sequence A003024 in
the database. The latter sequence counts vertex-labeled
acyclic directed graphs (“digraphs”) of n vertices, and
so Weisstein’s conjecture was born:

[T]he number of vertex-labeled acyclic digraphs of n
vertices is equal to the number of n×n 0–1 matrices
whose eigenvalues are all real and positive.

This conjecture was proved in McKay et al. (2003).
En route to the proof of the result, the following
somewhat surprising fact was shown.

Theorem 1. If a 0–1 matrix A has only real positive
eigenvalues, then those eigenvalues are all equal to 1.

To prove this, let {λi}ni=1 be the eigenvalues of A.
Then

1 � 1
n

trace(A) (since all Ai,i � 1)

= 1
n
(λ1 + λ2 + · · · + λn)

� (λ1λ2 · · ·λn)1/n
= (detA)1/n

� 1,

in which the third line uses the arithmetic–geometric
mean inequality, and the last line uses the fact that
detA is a positive integer. Since the arithmetic and
geometric means of the eigenvalues are equal, the
eigenvalues are all equal, and in fact all λi(A) = 1.

The proof of the conjecture itself works by finding
an explicit bijection between the two sets that are being
counted. Indeed, let A be an n×n matrix of 0s and 1s
with positive eigenvalues only. Then those eigenvalues
are all 1s, so the diagonal of A is all 1s, whence the
matrix A − I also has solely 0s and 1s as its entries.

RegardA−I as the vertex adjacency matrix of a digraph
G. Then (it turns out that) G is acyclic.

Conversely, if G is such a digraph, let B be its ver-
tex adjacency matrix. By renumbering the vertices ofG,
if necessary, B can be brought to triangular form with
zero diagonal. Then A = I+B is a 0–1 matrix with posi-
tive real eigenvalues only. But then the same must have
been true for the matrix I + B before simultaneously
renumbering its rows and columns. For more details
and more corollaries, see McKay et al. (2003).

Moral: look for your sequence in the online encyclo-
pedia!

6 The Twenty-One-Stage Rocket

Now we’ll describe a successful attack that was carried
out by Andrews (1998) on the problem of evaluating
the Mills–Robbins–Rumsey determinant, which is the
determinant of the n×n matrix

Mn(µ) =
((
i+ j + µ

2j − i

))
0�i,j�n−1

. (6)

This problem arose (Mills et al. 1987) in connection with
the study of plane partitions. A plane partition of an
integer n is an (infinite) array ni,j of nonnegative inte-
gers whose sum is n, subject to the restriction that the
entriesni,j are nonincreasing across each row, and also
down each column.

It turns out that detMn(µ) can be expressed neatly
as a product, namely as

detMn(µ) = 2−n
n−1∏
k=0

∆k(2µ), (7)

in which

∆2j(µ) =
(µ + 2j + 2)j( 1

2µ + 2j + 3
2 )j−1

(j)j( 1
2µ + j + 3

2 )j−1
,

and (x)j is the rising factorial x(x+1) · · · (x+ j−1).
The strategy of Andrews’s proof is elegant in concep-

tion and difficult in execution: we are going to find an
upper triangular matrix En(µ), whose diagonal entries
are all 1s, such that

Mn(µ)En(µ) = Ln(µ) (8)

is a lower triangular matrix, with the numbers
{ 1

2∆2j(2µ)}n−1
j=0 on its diagonal. Of course, if we can do

this, then from (8), since detEn(µ) = 1, we will have
proved the theorem (7), since the determinant of the
product of two matrices is the product of their deter-
minants, and the determinant of a triangular matrix
(i.e., of a matrix all of whose entries below the diagonal
are 0s) is simply the product of its diagonal entries.
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But how shall we find this matrix En(µ)? By holding
tightly to the hand of our computer and letting it guide
us there. More precisely,

(i) we will look at the matrix En(µ) for various small
values of n, and from those data we will conjec-
ture the formula for the general (i, j) entry of the
matrix; and then

(ii) we will (well actually “we” won’t, but Andrews did)
prove that the conjectured entries of the matrix
are correct.

It was in step (ii) above that an extraordinary twenty-
one-stage event occurred which was successfully man-
aged by Andrews. What he did was to set up a system of
twenty-one propositions, each of them a fairly technical
hypergeometric identity. Next, he carried out a simul-
taneous induction on these twenty-one propositions.
That is to say, he showed that if, say, the thirteenth
proposition was true for a certain value of n, then so
was the fourteenth, etc., and if they were all true for
that value of n, then the first proposition was true for
n+ 1. The reader should be sure to look at Andrews
(1998) to gain more of the flavor and substance of what
was done than can be conveyed in this short summary.

Here we will confine ourselves to a few comments
about step (i) of the program above. So, let’s look at the
matrix En(µ) for some small values of n. The condition
that En(µ) is upper triangular with 1s on the diagonal
means that

j−1∑
k=0

(Mn)i,kek,j = −(Mn)i,j ,

for 0 � i � j−1 and 1 � j � n−1. We can regard these
as
(
n
2

)
equations in the

(
n
2

)
above-diagonal entries of

En(µ) and we can ask our CAS to find those entries, for
some small values of n. Here is E4(µ):⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 − 1
µ + 2

6(µ + 5)
(µ + 2)(µ + 3)(2µ + 11)

0 0 1 − 6(µ + 5)
(µ + 3)(2µ + 11)

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

At this point the news is all good. While it is true that
the matrix entries are fairly complicated, the fact that
leaps off the page and warms the heart of the experi-
mental mathematician is that all of the polynomials in µ
factor into linear factors with pleasant-looking integer
coefficients. So there is hope for conjecturing a gen-
eral form of the E matrix. Will this benign situation

persist when n = 5? A further computation reveals
that E5(µ) is as shown in figure 3. Now it is a “cer-
tainty” that some nice formulas exist for the entries of
the general matrix En(µ). The Rate package, described
in section 2.3, would certainly facilitate the next step,
which is to find general formulas for the entries of the
Ematrix. The final result is that the (i, j) entry of En(µ)
is 0 if i > j and

(−1)j−i(i)2(j−i)(2µ + 2j + i+ 2)j−i
4j−i(j − i)!(µ + i+ 1)j−i(µ + j + i+ 1

2 )j−i
otherwise.

After divining that the E matrix has the above form,
Andrews now faced the task of proving that it works,
i.e., that MnEn(µ) is lower triangular and has the
diagonal entries specified above. It was in this part
of the work that the twenty-one-fold induction was
unleashed. Another proof of the evaluation of the Mills–
Robbins–Rumsey determinant is in Petkovšek and Wilf
(1996). That proof begins with Andrews’s discovery of
the above form of the En(µ) matrix, and then uses the
machinery of the so-called WZ method (Petkovšek et al.
1996), instead of a twenty-one-stage induction, to prove
that the matrix performs the desired triangulation (8).

Moral: never give up, even when defeat seems certain.

7 The Computation of π

In 1997, a remarkable formula for π was found (Bailey
et al. 1997). This formula permits the computation of
just a single hexadecimal digit of π , if desired, using
minimal space and time. For example, we might com-
pute the trillionth digit of π , without ever having to
deal with any of the earlier ones, in a time that is faster
than what we might attain if we had to calculate all of
the first trillion digits. For example, Bailey et al. found
that in the hexadecimal expansion of π , the block of
fourteen digits in positions 1010 through 1010 +13 are
921C73C6838FB2. The formula is Terri: I can confirm

that the letters are
OK here – this is a
hexadecimal
number.π =

∞∑
i=0

1
16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
. (9)

In our discussion here we will limit ourselves to de-
scribing how we might have found the specific expan-
sion (9) once we had decided that an interesting expan-
sion of the form

π =
∞∑
i=0

1
ci

b−1∑
k=1

ak
bi+ k . (10)

might exist. This, of course, leaves open the question
of how the discovery of the form (10) was singled out
in the first place.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 − 1
µ + 2

6(µ + 5)
(µ + 2)(µ + 3)(2µ + 11)

− 30(µ + 6)
(µ + 2)(µ + 3)(µ + 4)(2µ + 15)

0 0 1 − 6(µ + 5)
(µ + 3)(2µ + 11)

30(µ + 6)
(µ + 3)(µ + 4)(2µ + 15)

0 0 0 1 − 6(2µ + 13)
(µ + 4)(2µ + 15)

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 3 The upper triangular matrix E5(µ).

The strategy will be to use the linear dependency
algorithm, described above in section 2.4. More pre-
cisely, we want to find a nontrivial integer linear com-
bination of π and the seven numbers

αk =
∞∑
i=0

1

(8i+ k)16i
(k = 1, . . . ,7)

that sums to 0. As in equation (3), we now compute theTerri: equation
reference is
correct here. seven numbers αj and we look for a relation

mπ +m1α1 +m2α2 + · · · +m7α7 = 0 (m,mi ∈ Z)
using, for example, the Maple IntegerRelations

package. The output vector,

(m,m1,m2, . . . ,m7) = (1,−4,0,0,2,1,1,0),

yields the identity (9). You should do this calculation
for yourself, then prove that the apparent identity is in
fact true, and, finally, look for something similar that
uses powers of 64 instead of 16. Good luck!

Moral: even as late as the year 1997 c.e., something new
and interesting was said about the number π .

8 Conclusions

When computers first appeared in mathematicians’
environments the almost universal reaction was that
they would never be useful for proving theorems since
a computer can never investigate infinitely many cases,
no matter how fast it is. But computers are useful
for proving theorems despite that handicap. We have
seen several examples of how a mathematician can act
in concert with a computer to explore a world within
mathematics. From such explorations there can grow
understanding, and conjectures, and roads to proofs,
and phenomena that would not have been imaginable in
the pre-computer era. This role of computation within
pure mathematics seems destined only to expand over
the coming years and to be imbued into our students

along with euclid’s [VI.2] axioms and other staples of
mathematical education.

At the other end of the rainbow there may lie a more
far-reaching role for computers. Perhaps one day we
will be able to input some hypotheses and a desired
conclusion, press the “Enter” key, and get a printout
of a proof. There are a few fields of mathematics in
which we can do such things, notably in the proofs of
identities (Petkovšek et al. 1996; Greene and Wilf 2007),
but in general the road to that brave new world remains
long and uncharted.
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VIII.6 Advice to a Young Mathematician

The most important thing that a young mathematician
needs to learn is of course mathematics. However, it
can also be very valuable to learn from the experiences
of other mathematicians. The five contributors to this
article were asked to draw on their experiences of math-
ematical life and research, and to offer advice that they
might have liked to receive when they were just setting
out on their careers. (The title of this entry is a nod
to Sir Peter Medawar’s well-known book, Advice to a
Young Scientist.) The resulting contributions were every
bit as interesting as we had expected; what was more
surprising was that there was remarkably little overlap
between the contributions. So here they are, five gems
intended for young mathematicians but surely destined
to be read and enjoyed by mathematicians of all ages.

I. Sir Michael Atiyah

Warning

What follows is very much a personal view based on my
own experience and reflecting my personality, the type
of mathematics that I work on, and my style of work.
However, mathematicians vary widely in all these char-
acteristics and you should follow your own instinct.

You may learn from others but interpret what you learn

in your own way. Originality comes by breaking away,

in some respects, from the practice of the past.

Motivation

A research mathematician, like a creative artist, has

to be passionately interested in the subject and fully

dedicated to it. Without strong internal motivation you

cannot succeed, but if you enjoy mathematics the sat-

isfaction you can get from solving hard problems is

immense.

The first year or two of research is the most difficult.

There is so much to learn. One struggles unsuccess-

fully with small problems and one has serious doubts

about one’s ability to prove anything interesting. I went

through such a period in my second year of research,

and Jean-Pierre Serre, perhaps the outstanding math-

ematician of my generation, told me that he too had

contemplated giving up at one stage.

Only the mediocre are supremely confident of their

ability. The better you are, the higher the standards

you set yourself—you can see beyond your immediate Terri: Tim prefers
‘set yourself’ to
‘set for yourself’ –
OK to keep it as it
is?

reach.

Many would-be mathematicians also have talents and

interests in other directions and they may have a dif-

ficult choice to make between embarking on a mathe-

matical career and pursuing something else. The great

Gauss is reputed to have wavered between mathematics

and philology, Pascal deserted mathematics at an early

age for theology, while Descartes and Leibniz are also

famous as philosophers. Some mathematicians move

into physics (e.g., Freeman Dyson) while others (e.g.,

Harish Chandra, Raoul Bott) have moved the other way.

You should not regard mathematics as a closed world,

and the interaction between mathematics and other

disciplines is healthy both for the individual and for

society.

Psychology

Because of the intense mental concentration required

in mathematics, psychological pressures can be consid-

erable, even when things are going well. Depending on

your personality this may be a major or only a minor

problem, but one can take steps to reduce the ten-

sion. Interaction with fellow students—attending lec-

tures, seminars, and conferences—both widens one’s

horizons and provides important social support. Too

much isolation and introspection can be dangerous,
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and time spent in apparently idle conversation is not
really wasted.

Collaboration, initially with fellow students or one’s
supervisor, has many benefits, and long-term collabo-
ration with coworkers can be extremely fruitful both in
mathematical terms and at the personal level. There is
always the need for hard quiet thought on one’s own,
but this can be enhanced and balanced by discussion
and exchange of ideas with friends.

Problems versus Theory

Mathematicians are sometimes categorized as either
“problem solvers” or “theorists.” It is certainly true
that there are extreme cases that highlight this divi-
sion (Erdős versus Grothendieck, for example) but most
mathematicians lie somewhere in between, with their
work involving both the solution of problems and the
development of some theory. In fact, a theory that does
not lead to the solution of concrete and interesting
problems is not worth having. Conversely, any really
deep problem tends to stimulate the development of
theory for its solution (Fermat’s last theorem being a
classic example).

What bearing does this have on a beginning student?
Although one has to read books and papers and absorb
general concepts and techniques (theory), realistically,
a student has to focus on one or more specific prob-
lems. This provides something to chew on and to test
one’s mettle. A definite problem, which one struggles
with and understands in detail, is also an invaluable
benchmark against which to measure the utility and
strength of available theories.

Depending on how the research goes, the eventual
Ph.D. thesis may strip away most of the theory and
focus only on the essential problem, or else it may
describe a wider scenario into which the problem nat-
urally fits.

The Role of Curiosity

The driving force in research is curiosity. When is a par-
ticular result true? Is that the best proof, or is there a
more natural or elegant one? What is the most general
context in which the result holds?

If you keep asking yourself such questions when
reading a paper or listening to a lecture, then sooner or
later a glimmer of an answer will emerge—some pos-
sible route to investigate. When this happens to me I
always take time out to pursue the idea to see where
it leads or whether it will stand up to scrutiny. Nine

times out of ten it turns out to be a blind alley, but
occasionally one strikes gold. The difficulty is in know-
ing when an idea that is initially promising is in fact
going nowhere. At this stage one has to cut one’s losses
and return to the main road. Often the decision is not
clear-cut, and in fact I frequently return to a previously
discarded idea and give it another try.

Ironically, good ideas can emerge unexpectedly from
a bad lecture or seminar. I often find myself listening to
a lecture where the result is beautiful and the proof ugly
and complicated. Instead of trying to follow a messy
proof on the blackboard, I spend the rest of the hour
thinking about producing a more elegant proof. Usu-
ally, but not always, without success, but even then my
time is better spent, since I have thought hard about
the problem in my own way. This is much better than
passively following another person’s reasoning.

Examples

If you are, like me, someone who prefers large vistas
and powerful theories (I was influenced but not con-
verted by Grothendieck), then it is essential to be able
to test general results by applying them to simple exam-
ples. Over the years I have built up a large array of
such examples, drawn from a variety of fields. These
are examples where one can do concrete calculations,
sometimes with elaborate formulas, that help to make
the general theory understandable. They keep your
feet on the ground. Interestingly enough, Grothendieck
eschewed examples, but fortunately he was in close
touch with Serre, who was able to rectify this omis-
sion. There is no clear-cut distinction between exam-
ple and theory. Many of my favorite examples come
from my early training in classical projective geom-
etry: the twisted cubic, the quadric surface, or the Klein
representation of lines in 3-space. Nothing could be
more concrete or classical and all can be looked at
algebraically or geometrically, but each illustrates and
is the first case in a large class of examples which
then become a theory: the theory of rational curves, of
homogeneous spaces, or of Grassmannians.

Another aspect of examples is that they can lead off
in different directions. One example can be generalized
in several different ways or illustrate several different
principles. For instance, the classical conic is a rational
curve, a quadric, and a Grassmannian all in one.

But most of all a good example is a thing of beauty. It
shines and convinces. It gives insight and understand-
ing. It provides the bedrock of belief.
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Proof

We are all taught that “proof” is the central feature
of mathematics, and Euclidean geometry with its care-
ful array of axioms and propositions has provided
the essential framework for modern thought since
the Renaissance. Mathematicians pride themselves on
absolute certainty, in comparison with the tentative
steps of natural scientists, let alone the woolly thinking
of other areas.

It is true that, since Gödel, absolute certainty has
been undermined, and the more mundane assault of
computer proofs of interminable length has induced
some humility. Despite all this, proof retains its car-
dinal role in mathematics, and a serious gap in your
argument will lead to your paper being rejected.

However, it is a mistake to identify research in math-
ematics with the process of producing proofs. In fact,
one could say that all the really creative aspects of
mathematical research precede the proof stage. To take
the metaphor of the “stage” further, you have to start
with the idea, develop the plot, write the dialogue, and
provide the theatrical instructions. The actual produc-
tion can be viewed as the “proof”: the implementation
of an idea.

In mathematics, ideas and concepts come first, then
come questions and problems. At this stage the search
for solutions begins, one looks for a method or strat-
egy. Once you have convinced yourself that the prob-
lem has been well-posed, and that you have the right
tools for the job, you then begin to think hard about
the technicalities of the proof.

Before long you may realize, perhaps by finding
counterexamples, that the problem was incorrectly for-
mulated. Sometimes there is a gap between the ini-
tial intuitive idea and its formalization. You left out
some hidden assumption, you overlooked some techni-
cal detail, you tried to be too general. You then have to
go back and refine your formalization of the problem.
It would be an unfair exaggeration to say that mathe-
maticians rig their questions so that they can answer
them, but there is undoubtedly a grain of truth in the
statement. The art in good mathematics, and mathe-
matics is an art, is to identify and tackle problems that
are both interesting and solvable.

Proof is the end product of a long interaction between
creative imagination and critical reasoning. Without
proof the program remains incomplete, but without
the imaginative input it never gets started. One can see
here an analogy with the work of the creative artist in

other fields: writer, painter, composer, or architect. The
vision comes first, it develops into an idea that gets
tentatively sketched out, and finally comes the long
technical process of erecting the work of art. But the
technique and the vision have to remain in touch, each
modifying the other according to its own rules.

Strategy

In the previous section I discussed the philosophy of
proof and its role in the whole creative process. Now
let me turn to the most down-to-earth question of inter-
est to the young practitioner. What strategy should one
adopt? How do you actually go about finding a proof?

This question makes little sense in the abstract.
As I explained in the previous section a good prob-
lem always has antecedents: it arises from some back-
ground, it has roots. You have to understand these
roots in order to make progress. That is why it is always
better to find your own problem, asking your own ques-
tions, rather than getting it on a plate from your super-
visor. If you know where a problem comes from, why
the question has been asked, then you are halfway
toward its solution. In fact, asking the right question is
often as difficult as solving it. Finding the right context
is an essential first step.

So, in brief, you need to have a good knowledge of the
history of the problem. You should know what sort of
methods have worked with similar problems and what
their limitations are.

It is a good idea to start thinking hard about a prob-
lem as soon as you have fully absorbed it. To get to
grips with it, there is no substitute for a hands-on
approach. You should investigate special cases and try
to identify where the essential difficulty lies. The more
you know about the background and previous meth-
ods, the more techniques and tricks you can try. On
the other hand, ignorance is sometimes bliss. J. E. Lit-
tlewood is reported to have set each of his research
students to work on a disguised version of the Rie-
mann hypothesis, letting them know what he had done
only after six months. He argued that the student would
not have the confidence to attack such a famous prob-
lem directly, but might make progress if not told of the
fame of his opponent! The policy may not have led to
a proof of the Riemann hypothesis, but it certainly led
to resilient and battle-hardened students.

My own approach has been to try to avoid the di-
rect onslaught and look for indirect approaches. This
involves connecting your problem with ideas and tech-
niques from different fields that may shed unexpected
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light on it. If this strategy succeeds, it can lead to a beau-
tiful and simple proof, which also “explains” why some-
thing is true. In fact, I believe the search for an expla-
nation, for understanding, is what we should really be
aiming for. Proof is simply part of that process, and
sometimes its consequence.

As part of the search for new methods it is a good
idea to broaden your horizons. Talking to people will
extend your general education and will sometimes
introduce you to new ideas and techniques. Very occa-
sionally you may get a productive idea for your own
research or even for a new direction.

If you need to learn a new subject, consult the liter-
ature but, even better, find a friendly expert and get
instruction “from the horse’s mouth”—it gives more
insight more quickly.

As well as looking forward, and being alert to
new developments, you should not forget the past.
Many powerful mathematical results from earlier eras
have got buried and have been forgotten, coming toTerri: Tim would

prefer to keep this
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keep the authors’
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articles than in
most of the
Companion. OK?

light only when they have been independently rediscov-
ered. These results are not easy to find, partly because
terminology and style change, but they can be gold
mines. As usual with gold mines, you have to be lucky
to strike one, and the rewards go to the pioneers.

Independence

At the start of your research your relationship with
your supervisor can be crucial, so choose carefully,
bearing in mind subject matter, personality, and track
record. Few supervisors score highly on all three. More-
over, if things do not work out well during the first year
or so, or if your interests diverge significantly, then do
not hesitate to change supervisors or even universities.
Your supervisor will not be offended and may even be
relieved!

Sometimes you may be part of a large group and may
interact with other members of the faculty, so that you
effectively have more than one supervisor. This can be
helpful in that it provides different inputs and alterna-
tive modes of work. You may also learn much from fel-
low students in such large groups, which is why choos-
ing a department with a large graduate school is a good
idea.

Once you have successfully earned your Ph.D. you
enter a new stage. Although you may still carry on col-
laborating with your supervisor and remain part of the
same research group, it is healthy for your future devel-
opment to move elsewhere for a year or more. This

opens you up to new influences and opportunities. This
is the time when you have the chance to carve out a
niche for yourself in the mathematical world. In gen-
eral, it is not a good idea to continue too closely in the
line of your Ph.D. thesis for too long. You have to show
your independence by branching out. It need not be a
radical change of direction but there should be some
clear novelty and not simply a routine continuation of
your thesis.

Style

In writing up your thesis your supervisor will normally
assist you in the manner of presentation and organi-
zation. But acquiring a personal style is an important
part of your mathematical development. Although the
needs may vary, depending on the kind of mathemat-
ics, many aspects are common to all subjects. Here are
a number of hints on how to write a good paper.

(i) Think through the whole logical structure of the
paper before you start to write.

(ii) Break up long complex proofs into short interme-
diate steps (lemmas, propositions, etc.) that will
help the reader.

(iii) Write clear coherent English (or the language of
your choice). Remember that mathematics is also
a form of literature.

(iv) Be as succinct as it is possible to be while remain-
ing clear and easy to understand. This is a difficult
balance to achieve.

(v) Identify papers that you have enjoyed reading and
imitate their style.

(vi) When you have finished writing the bulk of your
paper go back and write an introduction that
explains clearly the structure and main results as
well as the general context. Avoid unnecessary jar-
gon and aim at a general mathematical reader, not
just a narrow expert.

(vii) Try out your first draft on a colleague and take
heed of any suggestions or criticisms. If even your
close friend or collaborator has difficulty under-
standing it, then you have failed and need to try
harder.

(viii) If you are not in a desperate hurry to publish,
put your paper aside for a few weeks and work
on something else. Then return to your paper and
read it with a fresh mind. It will read differently
and you may see how to improve it.

(ix) Do not hesitate to rewrite the paper, perhaps
from a totally new angle, if you become convinced
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that this will make it clearer and easier to read.
Well-written papers become “classics” and are
widely read by future mathematicians. Badly writ-
ten papers are ignored or, if they are sufficiently
important, they get rewritten by others.

II. Béla Bollobás

“There is no permanent place in this world for ugly
mathematics,” wrote Hardy; I believe that it is just as
true that there is no place in this world for unenthusias-
tic, dour mathematicians. Do mathematics only if you
are passionate about it, only if you would do it even if
you had to find the time for it after a full day’s work in
another job. Like poetry and music, mathematics is not
an occupation but a vocation.

Taste is above everything. It is a miracle of our sub-
ject that there seems to be a consensus as to what con-
stitutes good mathematics. You should work in areas
that are important and unlikely to dry up for a long
time, and you should work on problems that are beau-
tiful and important: in a good area there will be plenty
of these, and not just a handful of well-known prob-
lems. Indeed, aiming too high all the time may lead to
long barren periods: these may be tolerated at some
stage of your life, but at the beginning of your career it
is best to avoid them.

Strive for a balance in your mathematical activity:
research should and does come first for real mathe-
maticians, but in addition to doing research, do plenty
of reading and teach well. Have fun with mathematics
at all levels, even if it has (almost) no bearing on your
research. Teaching should not be a burden but a source
of inspiration.

Research should never be a chore (unlike writing up):
you should choose problems that you find it difficult
not to think about. This is why it is good if you get your-
self hooked on problems rather than working on prob-
lems as if you were doing a task imposed on you. At the
very beginning of your career, when you are a research
student, you should use your experienced supervisor to
help you judge problems that you have found and like,
rather than working on a problem that he has handed
to you, which may not be to your taste. After all, your
supervisor should have a fairly good idea whether a
certain problem is worth your efforts or not, while he
may not yet know your strength and taste. Later in your
career, when you can no longer rely on your super-
visor, it is frequently inspiring to talk to sympathetic
colleagues.

I would recommend that at any one time you have
problems of two types to work on.

(i) A “dream”: a big problem that you would love to
solve, but you cannot reasonably expect to solve.

(ii) Some very worthwhile problems that you feel
you should have a good chance of solving, given
enough time, effort, and luck.

In addition, there are two more types you should
consider, although these are less important than the
previous ones.

(i) From time to time, work on problems that should
be below your dignity and that you can be confi-
dent of doing rather quickly, so that time spent
on them will not jeopardize your success with the
proper problems.

(ii) On an even lower level, it is always fun to do
problems that are not really research problems
(although they may have been some years ago) but
are beautiful enough to spend time on: doing them
will give you pleasure and will sharpen your ability
to be inventive.

Be patient and persistent. When thinking about a
problem, perhaps the most useful device you can
employ is to bear the problem in mind all the time: it
worked for Newton, and it has worked for many a mor-
tal as well. Give yourself time, especially when attacking
major problems; promise yourself that you will spend
a certain amount of time on a big problem without
expecting much, and after that take stock and decide
what to do next. Give your approach a chance to work,
but do not be so wrapped up in it that you miss other
ways of attacking the problem. Be mentally agile: as
Paul Erdős put it, keep your brain open.

Do not be afraid to make mistakes. A mistake for a
chess player is fatal; for a mathematician it is par for the
course. What you should be terrified of is a blank sheet
in front of you after having thought about a problem for
a little while. If after a session your wastepaper basket
is full of notes of failed attempts, you may still be doing
very well. Avoid pedestrian approaches, but always be
happy to put in work. In particular, doing the simplest
cases of a problem is unlikely to be a waste of time and
may well turn out to be very useful.

When you spend a significant amount of time on a
problem, it is easy to underestimate the progress you
have made, and it is equally easy to overestimate your
ability to remember it all. It is best to write down even
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your very partial results: there is a good chance that
your notes will save you a great deal of time later.

If you are lucky enough to have made a breakthrough,
it is natural to feel fed up with the project and to want
to rest on your laurels. Resist this temptation and see
what else your breakthrough may give you.

As a young mathematician, your main advantage is
that you have plenty of time for research. You may not
realize it, but it is very unlikely that you will ever again
have as much time as you do at the beginning of your
career. Everybody feels that there is not enough time to
do mathematics, but as the years pass this feeling gets
more and more acute, and more and more justified.

Turning to reading, young people are at a disadvan-
tage when it comes to the amount of mathematics they
have read, so to compensate for this, read as much as
you can, both in your general area and in mathemat-
ics as a whole. In your own research area, make sure
that you read many papers written by the best people.
These papers are often not as carefully written as they
could be, but the quality of the ideas and results should
amply reward you for the effort you have to make to
read them. Whatever you read, be alert: try to antici-
pate what the author will do and try to think up a bet-
ter attack. When the author takes the route you had in
mind, you will be happy, and when he chooses to go a
different way, you can look forward to finding out why.
Ask yourself questions about the results and proofs,
even if they seem simpleminded: they will greatly help
your understanding.

On the other hand, it is often useful not to read
up everything about an open problem you are about
to attack: once you have thought deeply about it and
apparently got nowhere, you can (and should) read the
failed attempts of others.

Keep your ability to be surprised, do not take phe-
nomena for granted, appreciate the results and ideas
you read. It is all too easy to think that you know what
is going on: after all, you have just read the proof. Out-
standing people often spend a great deal of time digest-
ing new ideas. It is not enough for them to know a circle
of theorems and understand their proofs: they want to
feel them in their blood.

As your career progresses, always keep your mind
open to new ideas and new directions: the mathemati-
cal landscape changes all the time, and you will proba-
bly have to as well if you do not want to be left behind.
Always sharpen your tools and learn new ones.

Above everything, enjoy mathematics and be enthusi-
astic about it. Enjoy your research, look forward to read-

ing about new results, feed the love of mathematics in
others, and even in your recreation have fun with math-
ematics by thinking about beautiful little problems you
come across or hear from your colleagues.

If I wanted to sum up the advice we should all follow
in order to be successful in the sciences and the arts, I
could hardly do better than recall what Vitruvius wrote
over two thousand years ago:

Neque enim ingenium sine disciplina aut disciplina sine
ingenio perfectum artificem potest efficere.

For neither genius without learning nor learning with-
out genius can make a perfect artist.

III. Alain Connes

Mathematics is the backbone of modern science and a
remarkably efficient source of new concepts and tools
for understanding the “reality” in which we partici-
pate. The new concepts themselves are the result of
a long process of “distillation” in the alembic of human
thought.

I was asked to write some advice for young math-
ematicians. My first observation is that each mathe-
matician is a special case, and in general mathemati-
cians tend to behave like “fermions,” i.e., they avoid
working in areas that are too trendy, whereas physi-
cists behave a lot more like “bosons,” which coalesce in
large packs, often “overselling” their achievements—an
attitude that mathematicians despise.

It might be tempting at first to regard mathematics
as a collection of separate branches, such as geometry,
algebra, analysis, number theory, etc., where the first is
dominated by the attempt to understand the concept of
“space,” the second by the art of manipulating symbols,
the third by access to “infinity” and the “continuum,”
and so on.

This, however, does not do justice to one of the most
important features of the mathematical world, namely
that it is virtually impossible to isolate any of the above
parts from the others without depriving them of their
essence. In this way the corpus of mathematics resem-
bles a biological entity, which can only survive as a
whole and which would perish if separated into disjoint
pieces.

The scientific life of mathematicians can be pictured
as an exploration of the geography of the “mathemat-
ical reality” which they unveil gradually in their own
private mental frame.

This process often begins with an act of rebellion
against the dogmatic descriptions of that space that
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can be found in existing books. Young, prospective
mathematicians begin to realize that their own percep-
tion of the mathematical world captures some features
that do not quite fit in with the existing dogma. This
initial rebellion is, in most cases, due to ignorance, but
it can nevertheless be beneficial, as it frees people from
reverence for authority and allows them to rely on their
intuition, provided that that intuition can be backed up
by actual proofs. Once a mathematician truly gets to
know, in an original and “personal” manner, some small
part of the mathematical world, however esoteric it may
look at first,1 the journey can properly start. It is of
course vital not to break the “fil d’Arianne” (“Ariadne’s
thread”): that way one can constantly keep a fresh eye
on whatever one encounters along the way, but one can
also go back to the source if one ever begins to feel lost.

It is also vital to keep moving. Otherwise, one risks
confining oneself to a relatively small area of extreme
technical specialization, thereby limiting one’s percep-
tion of the mathematical world and of its huge, even
bewildering, diversity.

The fundamental point in this respect is that, even
though many mathematicians have spent their lives
exploring different parts of that world, with different
perspectives, they all agree on its contours and inter-
connections. Whatever the origin of one’s journey, one
day, if one walks far enough, one is bound to stumble
on a well-known town: for instance, elliptic functions,
modular forms, or zeta functions. “All roads lead to
Rome,” and the mathematical world is “connected.” Of
course, this is not to say that all parts of mathematics
look alike, and it is worth quoting what Grothendieck
says (in Récoltes et Semailles) in comparing the land-
scape of analysis in which he first worked with that of
algebraic geometry, in which he spent the rest of his
mathematical life:

Je me rappelle encore de cette impression saisissante
(toute subjective certes), comme si je quittais des
steppes arides et revêches, pour me retrouver soudain
dans une sorte de “pays promis” aux richesses luxu-
riantes, se multipliant à l’infini partout où il plait à la
main de se poser, pour cueillir ou pour fouiller.2

1. My own starting point was the localization of roots of polyno-
mials. Fortunately, I was invited at a very early age to attend a confer-
ence in Seattle, at which I was introduced to the roots of all my future
work on factors.

2. Translation: “I still remember this strong impression (completely
subjective of course), as if I was leaving dry and gloomy steppes and
finding myself suddenly in a sort of ‘promised land’ of luxuriant rich-
ness, which spread out to infinity wherever one might wish to put out
one’s hand to gather from it or delve about in it.”

Most mathematicians adopt a pragmatic attitude
and see themselves as explorers of this “mathematical
world” whose existence they do not have any wish to
question, and whose structure they uncover by a mix-
ture of intuition and a great deal of rational thought.
The former is not so different from “poetical desire”
(as emphasized by the French poet Paul Valery), while
the latter requires intense periods of concentration.

Each generation builds a mental picture that reflects Terri: Tim would
prefer to keep this
sentence as it is.
OK?

their own understanding of this world. They construct
mental tools that penetrate more and more deeply into
it, so that they can explore aspects of it that were
previously hidden.

Where things get really interesting is when unex-
pected bridges emerge between parts of the mathemat-
ical world that were remote from each other in the men-
tal picture that had been developed by previous gener-
ations of mathematicians. When this happens, one gets
the feeling that a sudden wind has blown away the fog
that was hiding parts of a beautiful landscape. In my
own work this type of great surprise has come mostly
from the interaction with physics. The mathematical
concepts that arise naturally in physics often turn out
to be fundamental, as Hadamard pointed out. For him
they exhibit

not this short lived novelty which can too often influ-
ence the mathematician left to his own devices, but the
infinitely fecund novelty that springs from the nature
of things.

I will end this article with some more “practical”
advice. Note, though, that each mathematician is a
“special case” and one should not take the advice too
seriously.

Walks. One very sane exercise, when fighting with a
very complicated problem (often involving computa-
tions), is to go for a long walk (no paper or pencil)
and do the computation in one’s head, irrespective of
whether one initially feels that “it is too complicated
to be done like that.” Even if one does not succeed, it
trains the live memory and sharpens one’s skills.

Lying down. Mathematicians usually have a hard time
explaining to their partner that the times when they
work with most intensity are when they are lying
down in the dark on a sofa. Unfortunately, with e-mail
and the invasion of computer screens in all mathe-
matical institutions, the opportunity to isolate oneself
and concentrate is becoming rarer, and all the more
valuable.
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Being brave. There are several phases in the pro-
cess that leads to the discovery of new mathematics.
While the checking phase is scary, but involves just
rationality and concentration, the first, more creative,
phase is of a totally different nature. In some sense, it
requires a kind of protection of one’s ignorance, since
this also protects one from the billions of reasons there
will always be for not looking at a problem that has
already been unsuccessfully attacked by many other
mathematicians.

Setbacks. Throughout their working lives, including
at the very early stages, mathematicians will receive
preprints from competitors and feel disrupted. The
only suggestion I have here is to try to convert this feel-
ing of frustration into an injection of positive energy
for working harder. However, this is not always easy.

Grudging approbation. A colleague of mine once
said, “We [mathematicians] work for the grudging
approbation of a few friends.” It is true that, since
research work is of a rather solitary nature, we badly
need that approbation in one way or another, but quite
frankly one should not expect much. In fact, the only
real judge is oneself. Nobody else is in as good a posi-
tion to know what work was involved, and caring too
much about the opinion of others is a waste of time: so
far no theorem has been proved as the result of a vote.
As Feynman put it, “Why do you care what other people
think?”

IV. Dusa McDuff

I started my adult life in a very different situation
from most of my contemporaries. Always brought up
to think I would have an independent career, I had
also received a great deal of encouragement from my
family and school to do mathematics. Unusually, my
girls’ school had a wonderful mathematics teacher who
showed me the beauty of Euclidean geometry and cal-
culus. In contrast, I did not respect the science teach-
ers, and since those at university were not much better
I never really learned any physics.

Very successful within this limited sphere, I was
highly motivated to be a research mathematician. While
in some respects I had enormous self-confidence, in
other ways I grew to feel very inadequate. One basic
problem was that somehow I had absorbed the mes-
sage that women are second rate as far as professional
life is concerned and are therefore to be ignored. I had
no female friends and did not really value my kind of

intelligence, thinking it boring and practical (female),

and not truly creative (male). There were many ways of

saying this: women keep the home fires burning while

men go out into the world, women are muses not poets,

women do not have the true soul needed to be a math-

ematician, etc. And there still are many ways of saying

this. Recently an amusing letter circulated among my

feminist friends: it listed various common and contra-

dictory prejudices in different scientific fields, the mes-

sage being that women are perceived to be incapable of

whatever is most valued.

Another problem that became apparent a little later

was that I had managed to write a successful Ph.D. the-

sis while learning very little mathematics. My thesis was

in von Neumann algebras, a specialized topic that did

not relate to anything with real meaning for me. I could

see no way forward in that field, and yet I knew almost

nothing else. When I arrived in Moscow in my last year

of graduate study, Gel’fand gave me a paper to read on Terri: strange
apostrophe is
correct here.the cohomology of the Lie algebra of vector fields on

a manifold, and I did not know what cohomology was,

what a manifold was, what a vector field was, or what

a Lie algebra was.

Though this ignorance was partly the fault of an over-

specialized educational system, it also resulted from

my lack of contact with the wider world of mathemat-

ics. I had solved the problem of how to reconcile being a

woman with being a mathematician by essentially lead-

ing two separate lives. My isolation increased upon my

return from Moscow. Having switched fields from func-

tional analysis to topology, I had little guidance, and I

was too afraid of appearing ignorant to ask many ques-

tions. Also, I had a baby while I was a postdoc, and

was therefore very busy coping with practical matters.

At that stage, with no understanding of the process

of doing mathematics, I was learning mostly by read-

ing, unaware of the essential role played by formulat-

ing questions and trying out one’s own, perhaps naive,

ideas. I also had no understanding of how to build a

career. Good things do not just happen: one has to

apply for fellowships and jobs and keep an eye out for

interesting conferences. It would certainly have helped

to have had a mentor to suggest better ways of dealing

with all these difficulties.

I probably most needed to learn how to ask good

questions. As a student, one’s job is not only to learn

enough to be able to answer questions posed by others,

but also to learn how to frame questions that might lead

somewhere interesting. When studying something new
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I often used to start in the middle, using some com-

plicated theory already developed by others. But often

one sees further by starting with the simplest questions

and examples, because that makes it easier to under-

stand the basic problem and then perhaps to find a new

approach to it. For example, I have always liked work-

ing with Gromov’s nonsqueezing theorem in symplec-

tic geometry, which imposes restrictions on the ways a

ball can be manipulated in a symplectic way. This very

fundamental and geometric result somehow resonates

for me, and so forms a solid basis from which to start

exploring.

These days people are much more aware that math-

ematics is a communal endeavor: even the most bril-

liant idea gets meaning only from its relation to the

whole. Once one has an understanding of the context,

it is often very important and fruitful to work by one-

self. However, while one is learning it is vital to interact

with others.

There have been many successful attempts to facili-

tate such communication, by changing the structure of

buildings, of conferences and meetings, of departmen-

tal programs, and also, less formally, of seminars and

lectures. It is amazing how the atmosphere in a semi-

nar changes when a senior mathematician, instead of

going to sleep or looking bored, asks questions that

clarify and open up the discussion for everyone there.

Often people (both young and old) are intimidated into

silence because they fear showing their ignorance, lack

of imagination, or other fatal defect. But in the face of a

subject as difficult and beautiful as mathematics, every-

one has something to learn from others. Now there

are many wonderful small conferences and workshops,

organized so that it is easy to have discussions both

about the details of specific theories and also about

formulating new directions and questions.

The problem of how to reconcile being a woman and

a mathematician is still of concern, although the idea

that mathematics is intrinsically unfeminine is much

less prevalent. I do not think that we women are as fully

present in the world of mathematics as we could be, but

there are enough of us that we can no longer be dis-

missed as exceptions. I have found meetings intended

primarily for women to be unexpectedly worthwhile;

the atmosphere is different when a lecture room is full

of women discussing mathematics. Also, as is increas-

ingly understood, the real question is how any young

person can build a satisfying personal life while still

managing to be a creative mathematician. Once people

start working on this in a serious way, we will have truly
come a long way.

V. Peter Sarnak

I have guided quite a number of Ph.D. students over the
years, which perhaps qualifies me to write as an expe-
rienced mentor. When advising a brilliant student (and
I have been fortunate enough to have had my fair share
of these) the interaction is a bit like telling someone Terri: again Tim

would like this
sentence to stay as
it is. OK?

to dig for gold in some general area and offering just
a few vague suggestions. Once they move into action
with their skill and talent they find diamonds instead
(and of course, after the fact one cannot resist saying
“I told you so”). In these cases, and in most others as
well, the role of a senior mentor is more like that of
a coach: one provides encouragement and makes sure
that the person being mentored is working on interest-
ing problems and is aware of the basic tools that are
available. Over the years I have found myself repeating
certain comments and suggestions that may have been
found useful. Here is a list of some of them.

(i) When learning an area, one should combine read-
ing modern treatments with a study of the original
papers, especially papers by the masters of our sub-
ject. One of the troubles with recent accounts of certain
topics is that they can become too slick. As each new
author finds cleverer proofs or treatments of a theory,
the treatment evolves toward the one that contains the
“shortest proofs.” Unfortunately, these are often in a
form that causes the new student to ponder, “How did
anyone think of this?” By going back to the original
sources one can usually see the subject evolving nat-
urally and understand how it has reached its modern
form. (There will remain those unexpected and bril-
liant steps at which one can only marvel at the genius
of the inventor, but there are far fewer of these than
you might think.) As an example, I usually recommend
reading Weyl’s original papers on the representation
theory of compact Lie groups and the derivation of
his character formula, alongside one of the many mod-
ern treatments. Similarly, I recommend his book The
Concept of a Riemann Surface to someone who knows
complex analysis and wants to learn about the modern
theory of Riemann surfaces, which is of central impor-
tance to many areas of mathematics. It is also instruc-
tive to study the collected works of superb mathemati-
cians such as Weyl. Besides learning their theorems one
uncovers how their minds work. There is almost always
a natural line of thought that leads from one paper to
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the next and certain developments are then appreciated
as inevitable. This can be very inspiring.

(ii) On the other hand, you should question dogma
and “standard conjectures,” even if these have been
made by brilliant people. Many standard conjectures
are made on the basis of special cases that one under-
stands. Beyond that, they are sometimes little more
than wishful thinking: one just hopes that the gen-
eral picture is not significantly different from the pic-
ture that the special cases suggest. There are a num-
ber of instances that I know of where someone set
out to prove a result that was generally believed to be
true and made no progress until they seriously ques-Terri: and again,

Tim would prefer
things to stay as
they are here. OK?

tioned it. Having said that, I also find it a bit irritat-
ing when, for no particularly good reason, skepticism
is thrown on certain special conjectures, such as the
Riemann hypothesis, or on their provability. While as a
scientist one should certainly adopt a critical attitude
(especially toward some of the artificial objects that we
mathematicians have invented), it is important psycho-
logically that we have beliefs about our mathematical
universe and about what is true and what is provable.

(iii) Do not confuse “elementary” with “easy”: a proof
can certainly be elementary without being easy. In fact,
there are many examples of theorems for which a lit-
tle sophistication makes the proof easy to understand
and brings out the underlying ideas, whereas an ele-
mentary treatment that avoids sophisticated notions
hides what is going on. At the same time, beware of
equating sophistication with quality or with the “beef
of an argument” (an expression that I apparently like to
use a lot in this context: many of my former students
have teased me about it). There is a tendency among
some young mathematicians to think that using fancy
and sophisticated language means that what they are
doing is deep. Nevertheless, modern tools are power-
ful when they are understood properly and when they
are combined with new ideas. Those working in certain
fields (number theory, for example) who do not put in
the time and substantial effort needed to learn these
tools are putting themselves at a great disadvantage.
Not to learn the tools is like trying to demolish a build-
ing with just a chisel. Even if you are very adept at using
the chisel, somebody with a bulldozer will have a huge
advantage and will not need to be nearly as skilful as
you.

(iv) Doing research in mathematics is frustrating and if
being frustrated is something you cannot get used to,
then mathematics may not be an ideal occupation for

you. Most of the time one is stuck, and if this is not
the case for you, then either you are exceptionally tal-
ented or you are tackling problems that you knew how
to solve before you started. There is room for some
work of the latter kind, and it can be of a high qual-
ity, but most of the big breakthroughs are earned the
hard way, with many false steps and long periods of lit-
tle progress, or even negative progress. There are ways
to make this aspect of research less unpleasant. Many
people these days work jointly, which, besides the obvi-
ous advantage of bringing different expertise to bear
on a problem, allows one to share the frustration. For
most people this is a big positive (and in mathemat-
ics the corresponding sharing of the joy and credit on
making a breakthrough has not, so far at least, led to
many big fights in the way that it has in some other
areas of science). I often advise students to try to have
a range of problems at hand at any given moment. The
least challenging should still be difficult enough that
solving it will give you satisfaction (for without that,
what is the point?) and with luck it will be of interest
to others. Then you should have a range of more chal-
lenging problems, with the most difficult ones being
central unsolved problems. One should attack these
on and off over time, looking at them from different
points of view. It is important to keep exposing oneself
to the possibility of solving very difficult problems and
perhaps benefiting from a bit of luck.

(v) Go to your departmental colloquium every week, and
hope that its organizers have made some good choices
for speakers. It is important to have a broad aware-
ness of mathematics. Besides learning about interest-
ing problems and progress that people are making in
other fields, you can often have an idea stimulated in
your mind when the speaker is talking about some-
thing quite different. Also, you may learn of a tech-
nique or theory that could be applied to one of the
problems that you are working on. In recent times, a
good number of the most striking resolutions of long-
standing problems have come about from an unex-
pected combination of ideas from different areas of
mathematics.
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