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uild Skills

Learn basic and advanced skills that help
solve a broad range of physics problems.

This text's uniquely extensive set »

of Examples enables students
to explore problem-solving
challenges in exceptional detail.

Consistent

The Identify / Set Up /

Execute / Evaluate format, used in
all Examples, encourages students
to tackle problems thoughtfully
rather than skipping to the math.

Focused

All Examples and Problem-
Solving Strategies are revised
to be more concise and focused.

Visual

Most Examples employ a diagram—
often a pencil sketch that shows
what a student should draw.

Master{Dabhrsiad

Problem-Solving Strategies coach students in
how to approach specific types of problems.

v

IDENTIFY the relevant concepts: You have to use Newton’s second
law for any problem that involves forces acting on an accelerating

Newton’s Second Law: Dynamics of Particles @

accelerate in different directions, you can use a different set of
axes for each hody.

m Toboggan ride with friction 11

The same toboggan with the same coefficient of friction as in
Example 5.16 accelerates down a steeper hill. Derive an expres-
sion for the acceleration in terms of g, a, gy, and w.

IDENTIFY and SET UP: The toboggan is accelerating, so we must
use Newton's second law as given in Egs. (5.4). Our target variable
is the downhill acceleration.

Our sketch and free-body diagram (Flg 5.23) are almost the

d. identify any
ou might need
stant accelera-
ay be relation-
¥ be connected
nations relating

From the second equation and Eq. (5.5) we get an expression for fy:
n = mgcos a
fi = = pugng cos a
‘We substitute this into the x-component equation and solve for a,:
i forces along
present a force
wough the orig-
twice.
ntities. In your

mgsina + (—pumgcos @) = ma,
a, = g(sina — py cos a)

EVALUATE: As for the frictionless toboggan in Example 5.10, the
ion doesn’t depend on the mass m of the toboggan. That’s

same as for Example 5.16. The p of accel-
eration ay is still zero but the x- componenl a, is not, so we've
drawn the downhill component of weight as a longer vector than
the (uphill) friction force.

EXECUTE: It’s convenient to express the weight as w = mg. Then
Newton’s second law in component form says

SF = mgsina + (~f,) = ma,

SF,=n+ (~mgcosa) =0
5.23 Our sketches for this problem.

(@) The situation (b) Free-body diagram for toboggan

////

because all of the forces that act on the toboggan (weight, normal

force, and kinetic friction force) are proportional to m. jREorcnt of
Let’s check some special cases. If the hill is vertical (o = 90°) fon, write any
so that sin @ = 1 and cos & = 0, we have a, = g (the toboggan [+ of “Set Up.

variables.)
to find the tar-

falls freely). For a certain value of a the acceleration is zero; this
happens if

sina = py cos @ and py = tan a

¢ correct units?
m/s2.) Does it
sider particular
the results with

This agrees with our result for the constant-velocity toboggan in
Example 5.16. If the angle is even smaller, py cos « is greater than
sin @ and a, is negative; if we give the toboggan an initial down-
hill push to start it moving, it will slow down and stop. Finally, if
the hill is frictionless so that = 0, we retrieve the result of
Example 5.10: a, = gsina.

Notice that we started with a simple problem (Example 5.10)
and extended it to more and more general situations. The general
result we found in this example includes all the previous ones as
special cases. Don’t memorize this result, but do make sure you
understand how we obtained it and what it means.

Suppose instead we give the toboggan an initial push up the
hill. The direction of the kinetic friction force is now reversed, so
the acceleration is different from the downhill value. It turns out
that the expression for a, is the same as for downhill motion except
that the minus sign becomes plus. Can you show this?

—

w.“-c.-:::j‘pmsus

m Converting speed units

The world land speed record is 763.0 mifh. set on October 15,
1997, by Andy Green in the jet-engine car Thrat SSC. Express
this speed in meters per sccond. ]
m; —s m
: |
ﬂenh{} - mifh = m/s n—c

Setvp: Imi= 1,609 lkm  1lkm= /000

{ h= Z600s

Evecute

md(1.6oSlkem)f1oo 1h
263.0 mi/h=(7%3.0% )( ° ){;g“w

= 34(.0180) mfs = mo mfs

The sictcss g = = ¥=—i dy=1

formuls for tera nctisen

B pucture of fhe

Conide 4wt e 00 8 s ¥ 0 ks

2 B 8 specik Lime, thas
you ot 3 raph of whage yix) ¥ ih is 8 wimple
e e
than

. Rarscton by o mambar A . 5
magretudes # A > | and decrassing e magntudes § A < 1

G the muriam e maimum akses of the ncton § = Jain(r)

Ghw the sinimum valus SoBowed by the maxissm vabes, separated by 8 comma.

¥ you mave to Bhe right starting om £ = DL the dmction i = siniz)} begins 83 repeat s when you
thach B, This shows that the hnction ¥ = sinf) has & pariod T of du, Moo kaemally, 33 &
Aunction ha & paod of 3% rean the val of the kenction 5t i The aame 28 e vakos o 2 4 3%
F4dn o (mwel stz —3n. 7 — A=, and 5o o]

¥ o chiaeage th Rusction 15 = slafuie], Wi Slitirg o 5 = 0, Bhe Rosction bagies 1o sepeat Rvell
when wiz = r. Sehang ler 2, yius £8 34 1hat tha pavied has chaegged bomn Tm 22 08 T = Jef

What is e pariad T of ha hnction y = Juin{dx]?

Express your answr 1
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NEW! Video Tutor Solution for Every Example

Each Example is explained and solved by an instructor
in a Video Tutor solution provided in the Study Area
of MasteringPhysics® and in the Pearson eText.

NEW! Mathematics Review Tutorials

MasteringPhysics offers an extensive set of assignable mathematics
review tutorials—covering differential and integral calculus as well
as algebra and trigonometry.



uild Confidence

Develop problem-solving confidence through a range
of practice options—from guided to unguided.

NEW! Bridging Problems

At the start of each problem set, a
Bridging Problem helps students
make the leap from routine
exercises to challenging problems
with confidence and ease.

Each Bridging Problem poses a
moderately difficult, multi-concept
problem, which often draws on earlier
chapters. In place of a full solution,

it provides a skeleton solution guide
consisting of questions and hints.

A full solution is explained in

a Video Tutor, provided in the
Study Area of MasteringPhysics®
and in the Pearson eText.

Billiard Physics

A cue ball (a uniform solid sphere of mass m and radius R) is at
rest on a level pool table. Using a pool cue, you give the ball a
sharp, horizontal hit of magnitude F at a height h above the center
of the ball (Fig. 10.37). The force of the hit is much greater
than the friction force f that the table surface exerts on the ball.
The hit lasts for a short time Ar. (a) For what value of
1 will the ball roll without slipping? (b) If you hit the ball dead
center (h = 0), the ball will slide across the table for a while, but
eventually it will roll without slipping. What will the speed of its
center of mass be then?

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP

. Draw a free-body diagram for the ball for the situation in part (a),
including your choice of coordinate axes. Note that the cue
exerts both an impulsive force on the ball and an impulsive
torque around the center of mass.

The cue force applied for a time At gives the ball’s center of
mass a speed Ve, and the cue torque applied for that same
time gives the ball an angular speed w. What must be the
relationship between vy, and @ for the ball to roll without
slipping?

@

N

3. Draw two free-body diagrams for the ball in part (b): one show-
ing the forces during the hit and the other showing the forces
after the hit but before the ball is rolling without slipping.

4. What is the angular speed of the ball in part (b) just after the
hit? While the ball is sliding, does v, increase or decrease?
Does w increase or decrease? What is the relationship between
Ve and @ when the ball is finally rolling without slipping?

EXECUTE

In part (a), use the impulse-momentum theorem to find the
speed of the ball’s center of mass immediately after the hit.
Then use the rotational version of the impulse-momentum the-
orem to find the angular speed immediately after the hit. (Hint:
To write down the rotational version of the impulse-momentum
theorem, remember that the relationship between torque and
angular momentum is the same as that between force and linear
momentum.)

. Use your results from step 5 to find the value of / that will
cause the ball to roll without slipping immediately after the hit.
In part (b), again find the ball’s center-of-mass speed and
angular speed immediately after the hit. Then write Newton’s
second law for the translational motion and rotational motion

o

S

bl

of the ball as it is sliding. Use these equations to write
expressions for Ug, and w as functions of the elapsed time
 since the hit.

Using your results from step 7, find the time ¢ when vy, and w
have the correct relationship for rolling without slipping. Then
find the value of vy, at this time.

EVALUATE
9. If you have access to a pool table, test out the results of parts
() and (b) for yourself!
10. Can you show that if you used a hollow cylinder rather than a

o

4 solid ball, you would have to hit the top of the cylinder to
cause rolling without slipping as in part (a)?

< In response to professors, the Problem Sets now include more
biomedically oriented problems (BIO), more difficult problems
requiring calculus (CALC), and more cumulative problems that
draw on earlier chapters (CP).

1495 « CP In Fig. P1495 the
upper ball is released from rest,
collides with the stationary lower
ball, and sticks to it. The strings
are both 50.0 cm long. The upper
ball has mass 2,00 kg, and it is ini-
tially 10.0 cm higher than the
lower ball, which has mass
3.00 kg. Find the frequency and
maximum angular displacement
of the motion after the collision.
14.96 «+ CP BID T rex. Model
the leg of the T. rex in Example
14,10 (Section 14.6) as two uniform rods, each 1.55 m long,
joined rigidly end to end. Let the lower rod have mass M and the
upper rod mass 2M. The composite object is pivoted about the top
of the upper rod. Compute the oscillation period of this object for
small-amplitude  oscillations. Compare your result to that of
Example 14.10,

14.97 =+ CALC A slender, uni-
form, metal rod with mass M
is pivoted without friction about
an axis through its midpoint and
perpendicular to the rod. A hori-

Figure P14.95

About 20% of problems are new or revised. These revisions are
driven by detailed student-performance data gathered nationally
through MasteringPhysics.

Problem difficulty is now indicated by a three-dot ranking
system based on data from MasteringPhysics.

Figure P14.897

.|Tm=£6§' -’"ﬁ.\_ > "?-"'-TFEZ“?'-W.F

zontal spring with force constant e R T Tk e e
k is attached 1o the lower end of Mam“l“'”“' : pe———
the rod, with the other end of the H :w_:-:_-.:w::::::;ul-: Ragrovs pow sy pbenlly b wenbeeshs o hove shgelliommt Bpures, 00
spring attached o a rigid sup- H o | J P.-_-Mﬂ| . |
port. If the rod is displaced by a L o bl o e —— =
small asgle © from he vertical Y v —
(Fig. P14.97) and released. show :“m‘“__ P s L
that it moves in angular SHM Rapross. poor sovwwr nemsiosily in newieas por sostont io thise signilivunt Rgures.
and calculate the period. (Hins: Assume that the angle € is small
enough for the approximations sin © = © and cos © = 1 10 be £ nﬂ| N |
valid. The motion is simple harmonie if d°8/di® = —w’8, and the o —— ]
period is then T = 2w /w.) () e Seam P Pt .

hints

NEW! Enhanced End-of-Chapter Problems in MasteringPhysics
Select end-of-chapter problems will now offer additional support such
as problem-solving strategy hints, relevant math review and practice,
and links to the eText. These new enhanced problems bridge the gap
between guided tutorials and traditional homework problems.



ring Physics to Life

L = L Application Moment of Inertia of a
eepen knowledge of physics by building Bovers Wing
- h I Id When a bird flaps its wings, it rotates the
wings up and down around the shoulder. A
con n eCtI on s to t e rea WOI’ - hummingbird has small wings with a small
moment of inertia, so the bird can make its
wings move rapidly (up to 70 beats per sec-
ond). By contrast, the Andean condor (Vultur
gryphus) has immense wings that are hard to

Application Tendons Are Nonideal move due to their large moment of inertia.
Springs Condors flap their wings at about one beat per
Muscles exert forces via the tendons that second on takeoff, but at most times prefer to
attach them to bones. A tendon consists of soar while holding their wings steady.

long. stiffly elastic collagen fibers. The graph
shows how the tendon from the hind leg of
a wallaby (a small kangaroo) stretches in
response to an applied force. The tendon does
not exhibit the simple, straight-line behavior of
. . . an ideal spring, so the work it does has to be
NEW! Apphcatlons of Phy5|c5 P> | found by megrosion (=g, 5.7, Note thas the

- tendon exerts less force while relaxing than
while stretching. As a result, the relaxing ten-

Throughout the text, free-standing captioned photos o e ot Sk 557 f o ikt s
apply physics to real situations, with particular emphasis
on applications of biomedical and general interest.

|
Application Listening for Turbulent

Normal blood fiow in the human aorta is lami-
- - nar, but a small disturbance such as a heart
Lt e, S | | Lm0 pathology can cause the flow to become turbu-
lent. Turbulence makes noise, which is why

listening to blood flow with a stethoscope is a
useful diagnostic technique.

of T <€ NEW! PhET Simulations and Tutorials

Sixteen assignable PhET Tutorials enable students to make
connections between real-life phenomena and the underlying
physics. 76 PhET simulations are provided in the Study Area
of MasteringPhysics® and in the Pearson eText.

The comprehensive library of ActivPhysics applets
and applet-based tutorials is also available.

NEW! Video Tutor Demonstrations and Tutorials
“Pause and predict” demonstration videos of key physics Figure E21.23
concepts engage students by asking them to submit a prediction
before seeing the outcome. These videos are available through
the Study Area of MasteringPhysics and in the Pearson eText. A
set of assignable tutorials based on these videos challenge
students to transfer their understanding of the demonstration to
a related problem situation.

21.24 -+ BI0 Base Pairing in DNA, II. Refer to Exercise 21.23.
Figure E21.24 shows the bonding of the cytosine and guanine mol-

Biomedically Based End-of-Chapter Problems »

To serve biosciences Students, ’[he text adds ecules. The O—H and H—N distances are each 0.110 nm. In this
. case, assume that the bonding is due only to the forces along the

a substantial number of problems based on O—H—0, N—H—N, and O—H—N combinations, and
biOlOgicaI and biomedical situations. assume also that these three combinations are parallel to each other.

Calculate the net force that cytosine exerts on guanine due to the
preceding three combinations. Is this force attractive or repulsive?




Make a Difference with
MasteringPhysics®

MasteringPhysics is the most effective and widely
used online science tutorial, homework, and
assessment system available.

Masteriﬁ\ CS
K_Q/PHYSI S

www.masteringphysics.com

NEW! Pre-Built Assignments B [-Gwse

For every chapter in the book, MasteringPhysics RO R T

now provides pre-built assignments that cover et L SURRUNP————
the material with a tested mix of tutorials and F | st o i | [
end-of-chapter problems of graded difficulty. L [
Professors may use these assignments as-is or | ossOussamesossn [
take them as a starting point for modification. e o]

| Shastrds- Sachien tiesten's Lans [Fomeon =1

[ =]

Masteringbiorsied

r Chagser 07 - Potertial [Femawon =]

Snaceer 3 - Nomestum imoutse Aeed Colisions

Physics 101 o
My Coyryen

* | Courye Setings | View gy Sudent

B
e — e <« Gradebook

« Every assignment is graded automatically.

« Shades of red highlight vulnerable students

and challenging assignments.

TT T T T LN

Masterngbivsied

Physics 101 wseumn)
MiCrmmes + | o fSenng | Vi on Shetens

Class Performance on Assignment » | rmr=mEm - o3 R G

Click on a problem to see which step your
students struggled with most, and even their E bl el T o e
54 Buneeg e Wty 3 Hm 5 E]

most common wrong answers. Compare
results at every stage with the national
average or with your previous class.

[C ] © ™ Coviaay 7 e

Masterngbrvsied

Physics 101 weormn
My Covrsen = | Gourss Semngy

| Vi g8 Shudort

T e -

P ]

o [2mm tae [2]

<« Gradebook Diagnostics
This screen provides your favorite weekly diagnostics.
With a single click, charts summarize the most difficult
problems, vulnerable students, grade distribution, and
even improvement in scores over the course.



www.masteringphysics.com

ABOUT THE AUTHORS

Hugh D. Young is Emeritus Professor of Physics at Carnegie Mellon University.
He earned both his undergraduate and graduate degrees from that university. He
earned his Ph.D. in fundamental particle theory under the direction of the late
Richard Cutkosky. He joined the faculty of Carnegie Mellon in 1956 and retired
in 2004. He also had two visiting professorships at the University of California,
Berkeley.

Dr. Young’s career has centered entirely on undergraduate education. He has
written several undergraduate-level textbooks, and in 1973 he became a coauthor
with Francis Sears and Mark Zemansky for their well-known introductory texts.
In addition to his role on Sears and Zemansky’s University Physics, he is also
author of Sears and Zemansky’s College Physics.

Dr. Young earned a bachelor’s degree in organ performance from Carnegie
Mellon in 1972 and spent several years as Associate Organist at St. Paul’s Cathe-
dral in Pittsburgh. He has played numerous organ recitals in the Pittsburgh area.
Dr. Young and his wife, Alice, usually travel extensively in the summer, espe-
cially overseas and in the desert canyon country of southern Utah.

Roger A. Freedman is a Lecturer in Physics at the University of California,
Santa Barbara. Dr. Freedman was an undergraduate at the University of California
campuses in San Diego and Los Angeles, and did his doctoral research in nuclear
theory at Stanford University under the direction of Professor J. Dirk Walecka.
He came to UCSB in 1981 after three years teaching and doing research at the
University of Washington.

At UCSB, Dr. Freedman has taught in both the Department of Physics and the
College of Creative Studies, a branch of the university intended for highly gifted
and motivated undergraduates. He has published research in nuclear physics, ele-
mentary particle physics, and laser physics. In recent years, he has worked to
make physics lectures a more interactive experience through the use of classroom
response systems.

In the 1970s Dr. Freedman worked as a comic book letterer and helped organ-
ize the San Diego Comic-Con (now the world’s largest popular culture conven-
tion) during its first few years. Today, when not in the classroom or slaving over a
computer, Dr. Freedman can be found either flying (he holds a commercial pilot’s
license) or driving with his wife, Caroline, in their 1960 Nash Metropolitan con-
vertible.

A. Lewis Ford is Professor of Physics at Texas A&M University. He received a
B.A. from Rice University in 1968 and a Ph.D. in chemical physics from the Uni-
versity of Texas at Austin in 1972. After a one-year postdoc at Harvard Univer-
sity, he joined the Texas A&M physics faculty in 1973 and has been there ever
since. Professor Ford’s research area is theoretical atomic physics, with a special-
ization in atomic collisions. At Texas A&M he has taught a variety of undergrad-
uate and graduate courses, but primarily introductory physics.



TO THE STUDENT

HOW TO SUCCEED IN
PHYSICS BY REALLY
TRYING

Mark Hollabaugh Normandale Community College

Physics encompasses the large and the small, the old and the new. From the atom
to galaxies, from electrical circuitry to aerodynamics, physics is very much a part
of the world around us. You probably are taking this introductory course in calculus-
based physics because it is required for subsequent courses you plan to take in
preparation for a career in science or engineering. Your professor wants you to
learn physics and to enjoy the experience. He or she is very interested in helping
you learn this fascinating subject. That is part of the reason your professor chose
this textbook for your course. That is also the reason Drs. Young and Freedman
asked me to write this introductory section. We want you to succeed!

The purpose of this section of University Physics is to give you some ideas
that will assist your learning. Specific suggestions on how to use the textbook
will follow a brief discussion of general study habits and strategies.

Preparation for This Course

If you had high school physics, you will probably learn concepts faster than those
who have not because you will be familiar with the language of physics. If Eng-
lish is a second language for you, keep a glossary of new terms that you
encounter and make sure you understand how they are used in physics. Likewise,
if you are farther along in your mathematics courses, you will pick up the mathe-
matical aspects of physics faster. Even if your mathematics is adequate, you may
find a book such as Arnold D. Pickar’s Preparing for General Physics: Math Skill
Drills and Other Useful Help (Calculus Version) to be useful. Your professor
may actually assign sections of this math review to assist your learning.

Learning to Learn

Each of us has a different learning style and a preferred means of learning.
Understanding your own learning style will help you to focus on aspects of
physics that may give you difficulty and to use those components of your course
that will help you overcome the difficulty. Obviously you will want to spend
more time on those aspects that give you the most trouble. If you learn by hear-
ing, lectures will be very important. If you learn by explaining, then working
with other students will be useful to you. If solving problems is difficult for you,
spend more time learning how to solve problems. Also, it is important to under-
stand and develop good study habits. Perhaps the most important thing you can
do for yourself is to set aside adequate, regularly scheduled study time in a
distraction-free environment.

Answer the following questions for yourself:

* Am I able to use fundamental mathematical concepts from algebra, geometry
and trigonometry? (If not, plan a program of review with help from your
professor.)

* In similar courses, what activity has given me the most trouble? (Spend more
time on this.) What has been the easiest for me? (Do this first; it will help to
build your confidence.)

Xi



HOW TO SUCCEED IN PHYSICS BY REALLY TRYING

* Do I understand the material better if I read the book before or after the lec-
ture? (You may learn best by skimming the material, going to lecture, and then
undertaking an in-depth reading.)

* Do I spend adequate time in studying physics? (A rule of thumb for a class
like this is to devote, on the average, 2.5 hours out of class for each hour in
class. For a course meeting 5 hours each week, that means you should spend
about 10 to 15 hours per week studying physics.)

* Do I study physics every day? (Spread that 10 to 15 hours out over an entire
week!) At what time of the day am I at my best for studying physics? (Pick a
specific time of the day and stick to it.)

* Do I work in a quiet place where I can maintain my focus? (Distractions will
break your routine and cause you to miss important points.)

Working with Others

Scientists or engineers seldom work in isolation from one another but rather
work cooperatively. You will learn more physics and have more fun doing it if
you work with other students. Some professors may formalize the use of cooper-
ative learning or facilitate the formation of study groups. You may wish to form
your own informal study group with members of your class who live in your
neighborhood or dorm. If you have access to e-mail, use it to keep in touch with
one another. Your study group is an excellent resource when reviewing for
exams.

Lectures and Taking Notes

An important component of any college course is the lecture. In physics this is
especially important because your professor will frequently do demonstrations of
physical principles, run computer simulations, or show video clips. All of these are
learning activities that will help you to understand the basic principles of physics.
Don’t miss lectures, and if for some reason you do, ask a friend or member of your
study group to provide you with notes and let you know what happened.

Take your class notes in outline form, and fill in the details later. It can be very
difficult to take word for word notes, so just write down key ideas. Your professor
may use a diagram from the textbook. Leave a space in your notes and just add
the diagram later. After class, edit your notes, filling in any gaps or omissions and
noting things you need to study further. Make references to the textbook by page,
equation number, or section number.

Make sure you ask questions in class, or see your professor during office
hours. Remember the only “dumb’ question is the one that is not asked. Your col-
lege may also have teaching assistants or peer tutors who are available to help
you with difficulties you may have.

Examinations

Taking an examination is stressful. But if you feel adequately prepared and are
well-rested, your stress will be lessened. Preparing for an exam is a continual
process; it begins the moment the last exam is over. You should immediately go
over the exam and understand any mistakes you made. If you worked a problem
and made substantial errors, try this: Take a piece of paper and divide it down the
middle with a line from top to bottom. In one column, write the proper solution to
the problem. In the other column, write what you did and why, if you know, and
why your solution was incorrect. If you are uncertain why you made your mis-
take, or how to avoid making it again, talk with your professor. Physics continu-
ally builds on fundamental ideas and it is important to correct any
misunderstandings immediately. Warning: While cramming at the last minute
may get you through the present exam, you will not adequately retain the con-
cepts for use on the next exam.



TO THE INSTRUCTOR

PREFACE

This book is the product of more than six decades of leadership and innovation in
physics education. When the first edition of University Physics by Francis W.
Sears and Mark W. Zemansky was published in 1949, it was revolutionary
among calculus-based physics textbooks in its emphasis on the fundamental prin-
ciples of physics and how to apply them. The success of University Physics with
generations of several million students and educators around the world is a testa-
ment to the merits of this approach, and to the many innovations it has introduced
subsequently.

In preparing this new Thirteenth Edition, we have further enhanced and
developed University Physics to assimilate the best ideas from education
research with enhanced problem-solving instruction, pioneering visual and
conceptual pedagogy, the first systematically enhanced problems, and the most
pedagogically proven and widely used online homework and tutorial system in
the world.

New to This Edition

 Included in each chapter, Bridging Problems provide a transition between the
single-concept Examples and the more challenging end-of-chapter problems.
Each Bridging Problem poses a difficult, multiconcept problem, which often
incorporates physics from earlier chapters. In place of a full solution, it
provides a skeleton Solution Guide consisting of questions and hints, which
helps train students to approach and solve challenging problems with
confidence.

¢ All Examples, Conceptual Examples, and Problem-Solving Strategies are
revised to enhance conciseness and clarity for today’s students.

e The core modern physics chapters (Chapters 38—41) are revised extensively
to provide a more idea-centered, less historical approach to the material.
Chapters 4244 are also revised significantly.

e The fluid mechanics chapter now precedes the chapters on gravitation
and periodic motion, so that the latter immediately precedes the chapter on
mechanical waves.

e Additional bioscience applications appear throughout the text, mostly in the
form of marginal photos with explanatory captions, to help students see how
physics is connected to many breakthroughs and discoveries in the biosciences.

e The text has been streamlined for tighter and more focused language.

e Using data from MasteringPhysics, changes to the end-of-chapter content
include the following:

* 15%-20% of problems are new.

e The number and level of calculus-requiring problems has been increased.

* Most chapters include five to seven biosciences-related problems.

e The number of cumulative problems (those incorporating physics from
earlier chapters) has been increased.

e Over 70 PhET simulations are linked to the Pearson eText and provided in
the Study Area of the MasteringPhysics website (with icons in the print text).
These powerful simulations allow students to interact productively with the
physics concepts they are learning. PhET clicker questions are also included
on the Instructor Resource DVD.

e Video Tutors bring key content to life throughout the text:
¢ Dozens of Video Tutors feature ‘“pause-and-predict” demonstrations of

key physics concepts and incorporate assessment as the student progresses
to actively engage the student in understanding the key conceptual ideas
underlying the physics principles.

Standard, Extended,
and Three-Volume Editions

With MasteringPhysics:

Standard Edition: Chapters 1-37
(ISBN 978-0-321-69688-5)
Extended Edition: Chapters 1-44
(ISBN 978-0-321-67546-0)

Without MasteringPhysics:

Standard Edition: Chapters 1-37
(ISBN 978-0-321-69689-2)
Extended Edition: Chapters 1-44
(ISBN 978-0-321-69686-1)
Volume 1: Chapters 1-20

(ISBN 978-0-321-73338-2)
Volume 2: Chapters 21-37

(ISBN 978-0-321-75121-8)

Volume 3: Chapters 37-44
(ISBN 978-0-321-75120-1)
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PREFACE

* Every Worked Example in the book is accompanied by a Video Tutor
Solution that walks students through the problem-solving process, provid-
ing a virtual teaching assistant on a round-the-clock basis.

* All of these Video Tutors play directly through links within the Pearson
eText. Many also appear in the Study Area within MasteringPhysics.

Key Features of University Physics

e Deep and extensive problem sets cover a wide range of difficulty and exer-
cise both physical understanding and problem-solving expertise. Many prob-
lems are based on complex real-life situations.

e This text offers a larger number of Examples and Conceptual Examples than
any other leading calculus-based text, allowing it to explore problem-solving
challenges not addressed in other texts.

e A research-based problem-solving approach (Identify, Set Up, Execute,
Evaluate) is used not just in every Example but also in the Problem-Solving
Strategies and throughout the Student and Instructor Solutions Manuals and
the Study Guide. This consistent approach teaches students to tackle problems
thoughtfully rather than cutting straight to the math.

* Problem-Solving Strategies coach students in how to approach specific types
of problems.

* The Figures use a simplified graphical style to focus on the physics of a situa-
tion, and they incorporate explanatory annotation. Both techniques have
been demonstrated to have a strong positive effect on learning.

» Figures that illustrate Example solutions often take the form of black-and-
white pencil sketches, which directly represent what a student should draw in
solving such a problem.

e The popular Caution paragraphs focus on typical misconceptions and stu-
dent problem areas.

e End-of-section Test Your Understanding questions let students check their
grasp of the material and use a multiple-choice or ranking-task format to
probe for common misconceptions.

e Visual Summaries at the end of each chapter present the key ideas in words,
equations, and thumbnail pictures, helping students to review more effectively.

Instructor Supplements

Note: For convenience, all of the following instructor supplements (except for the
Instructor Resource DVD) can be downloaded from the Instructor Area, accessed
via the left-hand navigation bar of Mastering Physics (www.masteringphysics.com,).

Instructor Solutions, prepared by A. Lewis Ford (Texas A&M University)
and Wayne Anderson, contain complete and detailed solutions to all end-of-
chapter problems. All solutions follow consistently the same Identify/Set Up/
Execute/Evaluate problem-solving framework used in the textbook. Download
only from the MasteringPhysics Instructor Area or from the Instructor
Resource Center (www.pearsonhighered.com/irc).

The cross-platform Instructor Resource DVD (ISBN 978-0-321-69661-8) pro-
vides a comprehensive library of more than 420 applets from ActivPhysics
OnLine as well as all line figures from the textbook in JPEG format. In addition,
all the key equations, problem-solving strategies, tables, and chapter summaries
are provided in editable Word format. In-class weekly multiple-choice questions
for use with various Classroom Response Systems (CRS) are also provided,
based on the Test Your Understanding questions in the text. Lecture outlines in
PowerPoint are also included along with over 70 PhET simulations.
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MasteringPhysics® (www.masteringphysics.com) is the most advanced, educa-
tionally effective, and widely used physics homework and tutorial system in the
world. Eight years in development, it provides instructors with a library of exten-
sively pre-tested end-of-chapter problems and rich, multipart, multistep tutorials
that incorporate a wide variety of answer types, wrong answer feedback, individ-
ualized help (comprising hints or simpler sub-problems upon request), all driven
by the largest metadatabase of student problem-solving in the world. NSF-
sponsored published research (and subsequent studies) show that Mastering-
Physics has dramatic educational results. MasteringPhysics allows instructors to
build wide-ranging homework assignments of just the right difficulty and length
and provides them with efficient tools to analyze both class trends, and the work
of any student in unprecedented detail.

MasteringPhysics routinely provides instant and individualized feedback and
guidance to more than 100,000 students every day. A wide range of tools and
support make MasteringPhysics fast and easy for instructors and students to learn
to use. Extensive class tests show that by the end of their course, an unprece-
dented eight of nine students recommend MasteringPhysics as their preferred
way to study physics and do homework.

MasteringPhysics enables instructors to:

* Quickly build homework assignments that combine regular end-of-chapter
problems and tutoring (through additional multi-step tutorial problems that
offer wrong-answer feedback and simpler problems upon request).

* Expand homework to include the widest range of automatically graded activi-
ties available—from numerical problems with randomized values, through
algebraic answers, to free-hand drawing.

e Choose from a wide range of nationally pre-tested problems that provide
accurate estimates of time to complete and difficulty.

e After an assignment is completed, quickly identify not only the problems that
were the trickiest for students but the individual problem types where students
had trouble.

e Compare class results against the system’s worldwide average for each prob-
lem assigned, to identify issues to be addressed with just-in-time teaching.

e Check the work of an individual student in detail, including time spent on
each problem, what wrong answers they submitted at each step, how much
help they asked for, and how many practice problems they worked.

ActivPhysics OnLine™ (which is accessed through the Study Area within
www.masteringphysics.com) provides a comprehensive library of more than 420
tried and tested ActivPhysics applets updated for web delivery using the latest
online technologies. In addition, it provides a suite of highly regarded applet-
based tutorials developed by education pioneers Alan Van Heuvelen and Paul
D’ Alessandris. Margin icons throughout the text direct students to specific exer-
cises that complement the textbook discussion.

The online exercises are designed to encourage students to confront miscon-
ceptions, reason qualitatively about physical processes, experiment quantitatively,
and learn to think critically. The highly acclaimed ActivPhysics OnLine compan-
ion workbooks help students work through complex concepts and understand
them more clearly. More than 420 applets from the ActivPhysics OnLine library
are also available on the Instructor Resource DVD for this text.

The Test Bank contains more than 2,000 high-quality problems, with a range of
multiple-choice, true/false, short-answer, and regular homework-type questions.
Test files are provided both in TestGen (an easy-to-use, fully networkable pro-
gram for creating and editing quizzes and exams) and Word format. Download
only from the MasteringPhysics Instructor Area or from the Instructor Resource
Center (www.pearsonhighered.com/irc).

PREFACE
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Five Easy Lessons: Strategies for Successful Physics Teaching (ISBN 978-0-
805-38702-5) by Randall D. Knight (California Polytechnic State University, San
Luis Obispo) is packed with creative ideas on how to enhance any physics course.
It is an invaluable companion for both novice and veteran physics instructors.

Student Supplements

The Study Guide by Laird Kramer reinforces the text’s emphasis on problem-
solving strategies and student misconceptions. The Study Guide for Volume 1
(ISBN 978-0-321-69665-6) covers Chapters 1-20, and the Study Guide for Vol-
umes 2 and 3 (ISBN 978-0-321-69669-4) covers Chapters 21-44.

The Student Solutions Manual by Lewis Ford (Texas A&M University) and
Wayne Anderson contains detailed, step-by-step solutions to more than half of
the odd-numbered end-of-chapter problems from the textbook. All solutions fol-
low consistently the same Identify/Set Up/Execute/Evaluate problem-solving
framework used in the textbook. The Student Solutions Manual for Volume 1
(ISBN 978-0-321-69668-7) covers Chapters 1-20, and the Student Solutions
Manual for Volumes 2 and 3 (ISBN 978-0-321-69667-0) covers Chapters 21-44.

MasteringPhysics® (www.masteringphysics.com) is a homework, tutorial, and
assessment system based on years of research into how students work physics
problems and precisely where they need help. Studies show that students who use
MasteringPhysics significantly increase their scores compared to hand-written
homework. MasteringPhysics achieves this improvement by providing students
with instantaneous feedback specific to their wrong answers, simpler sub-problems
upon request when they get stuck, and partial credit for their method(s). This
individualized, 24/7 Socratic tutoring is recommended by nine out of ten students
to their peers as the most effective and time-efficient way to study.

Pearson eText is available through MasteringPhysics, either automatically when
MasteringPhysics is packaged with new books, or available as a purchased
upgrade online. Allowing students access to the text wherever they have access to
the Internet, Pearson eText comprises the full text, including figures that can be
enlarged for better viewing. With eText, students are also able to pop up defini-
tions and terms to help with vocabulary and the reading of the material. Students
can also take notes in eText using the annotation feature at the top of each page.

Pearson Tutor Services (www.pearsontutorservices.com). Each student’s subscrip-
tion to MasteringPhysics also contains complimentary access to Pearson Tutor Ser-
vices, powered by Smarthinking, Inc. By logging in with their MasteringPhysics ID
and password, students will be connected to highly qualified e-instructors who
provide additional interactive online tutoring on the major concepts of physics.
Some restrictions apply; offer subject to change.

ActivPhysics OnLine™ (which is accessed through the Study Area within
www.masteringphysics.com) provides students with a suite of highly regarded
applet-based tutorials (see above). The following workbooks help students work
through complex concepts and understand them more clearly.

ActivPhysics OnLine Workbook, Volume 1: Mechanics * Thermal Physics *
Oscillations & Waves (978-0-805-39060-5)

ActivPhysics OnLine Workbook, Volume 2: Electricity & Magnetism *
Optics * Modern Physics (978-0-805-39061-2)
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UNITS, PHYSICAL
QUANTITIES,
AND VECTORS

Being able to predict the path of a thunderstorm is essential for minimizing
the damage it does to lives and property. If a thunderstorm is moving at

20 km/h in a direction 53° north of east, how far north does the thunderstorm
move in 1 h?

hysics is one of the most fundamental of the sciences. Scientists of all dis-

ciplines use the ideas of physics, including chemists who study the struc-

ture of molecules, paleontologists who try to reconstruct how dinosaurs
walked, and climatologists who study how human activities affect the atmos-
phere and oceans. Physics is also the foundation of all engineering and technol-
ogy. No engineer could design a flat-screen TV, an interplanetary spacecraft, or
even a better mousetrap without first understanding the basic laws of physics.

The study of physics is also an adventure. You will find it challenging, some-
times frustrating, occasionally painful, and often richly rewarding. If you’ve ever
wondered why the sky is blue, how radio waves can travel through empty space,
or how a satellite stays in orbit, you can find the answers by using fundamental
physics. You will come to see physics as a towering achievement of the human
intellect in its quest to understand our world and ourselves.

In this opening chapter, we’ll go over some important preliminaries that we’ll
need throughout our study. We’ll discuss the nature of physical theory and the use
of idealized models to represent physical systems. We’ll introduce the systems of
units used to describe physical quantities and discuss ways to describe the accu-
racy of a number. We’ll look at examples of problems for which we can’t (or
don’t want to) find a precise answer, but for which rough estimates can be useful
and interesting. Finally, we’ll study several aspects of vectors and vector algebra.
Vectors will be needed throughout our study of physics to describe and analyze
physical quantities, such as velocity and force, that have direction as well as
magnitude.

LEARNING GOALS

By studying this chapter, you will
learn:

e Three fundamental quantities of
physics and the units physicists
use to measure them.

e How to keep track of significant
figures in your calculations.

e The difference between scalars and
vectors, and how to add and sub-
tract vectors graphically.

e \What the components of a vector
are, and how to use them in
calculations.

e \What unit vectors are, and how
to use them with components to
describe vectors.

e Two ways of multiplying vectors.
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1.1 Two research laboratories. (a) Accord-
ing to legend, Galileo investigated falling
bodies by dropping them from the Leaning
Tower in Pisa, Italy, and he studied pendu-
lum motion by observing the swinging of
the chandelier in the adjacent cathedral.
(b) The Large Hadron Collider (LHC) in
Geneva, Switzerland, the world’s largest
particle accelerator, is used to explore the
smallest and most fundamental con-
stituents of matter. This photo shows a
portion of one of the LHC’s detectors
(note the worker on the yellow platform).

(@)

1.1 The Nature of Physics

Physics is an experimental science. Physicists observe the phenomena of nature
and try to find patterns that relate these phenomena. These patterns are called
physical theories or, when they are very well established and widely used, physi-
cal laws or principles.

CAUTION  The meaning of the word “theory” Calling an idea a theory does not mean that
it’s just a random thought or an unproven concept. Rather, a theory is an explanation of
natural phenomena based on observation and accepted fundamental principles. An exam-
ple is the well-established theory of biological evolution, which is the result of extensive
research and observation by generations of biologists.

To develop a physical theory, a physicist has to learn to ask appropriate ques-
tions, design experiments to try to answer the questions, and draw appropriate
conclusions from the results. Figure 1.1 shows two famous facilities used for
physics experiments.

Legend has it that Galileo Galilei (1564-1642) dropped light and heavy
objects from the top of the Leaning Tower of Pisa (Fig. 1.1a) to find out whether
their rates of fall were the same or different. From examining the results of his
experiments (which were actually much more sophisticated than in the legend),
he made the inductive leap to the principle, or theory, that the acceleration of a
falling body is independent of its weight.

The development of physical theories such as Galileo’s often takes an indirect
path, with blind alleys, wrong guesses, and the discarding of unsuccessful theo-
ries in favor of more promising ones. Physics is not simply a collection of facts
and principles; it is also the process by which we arrive at general principles that
describe how the physical universe behaves.

No theory is ever regarded as the final or ultimate truth. The possibility always
exists that new observations will require that a theory be revised or discarded. It is
in the nature of physical theory that we can disprove a theory by finding behavior
that is inconsistent with it, but we can never prove that a theory is always correct.

Getting back to Galileo, suppose we drop a feather and a cannonball. They
certainly do not fall at the same rate. This does not mean that Galileo was wrong;
it means that his theory was incomplete. If we drop the feather and the cannon-
ball in a vacuum to eliminate the effects of the air, then they do fall at the same
rate. Galileo’s theory has a range of validity: It applies only to objects for which
the force exerted by the air (due to air resistance and buoyancy) is much less than
the weight. Objects like feathers or parachutes are clearly outside this range.

Often a new development in physics extends a principle’s range of validity.
Galileo’s analysis of falling bodies was greatly extended half a century later by
Newton’s laws of motion and law of gravitation.

1.2 Solving Physics Prohlems

At some point in their studies, almost all physics students find themselves think-
ing, “I understand the concepts, but I just can’t solve the problems.” But in
physics, truly understanding a concept means being able to apply it to a variety of
problems. Learning how to solve problems is absolutely essential; you don’t
know physics unless you can do physics.

How do you learn to solve physics problems? In every chapter of this book
you will find Problem-Solving Strategies that offer techniques for setting up and
solving problems efficiently and accurately. Following each Problem-Solving
Strategy are one or more worked Examples that show these techniques in action.
(The Problem-Solving Strategies will also steer you away from some incorrect
techniques that you may be tempted to use.) You’ll also find additional examples
that aren’t associated with a particular Problem-Solving Strategy. In addition,
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at the end of each chapter you’ll find a Bridging Problem that uses more than one
of the key ideas from the chapter. Study these strategies and problems carefully,
and work through each example for yourself on a piece of paper.

Different techniques are useful for solving different kinds of physics prob-
lems, which is why this book offers dozens of Problem-Solving Strategies. No
matter what kind of problem you’re dealing with, however, there are certain key
steps that you’ll always follow. (These same steps are equally useful for prob-
lems in math, engineering, chemistry, and many other fields.) In this book we’ve
organized these steps into four stages of solving a problem.

All of the Problem-Solving Strategies and Examples in this book will follow
these four steps. (In some cases we will combine the first two or three steps.) We
encourage you to follow these same steps when you solve problems yourself.
You may find it useful to remember the acronym I SEE—short for Identify,
Set up, Execute, and Evaluate.

CICLIED BTN ISGEICT A Solving Physics Problems

IDENTIFY the relevant concepts: Use the physical conditions
stated in the problem to help you decide which physics concepts
are relevant. Identify the target variables of the problem—that is,
the quantities whose values you’re trying to find, such as the speed
at which a projectile hits the ground, the intensity of a sound made
by a siren, or the size of an image made by a lens. Identify the
known quantities, as stated or implied in the problem. This step is
essential whether the problem asks for an algebraic expression or a
numerical answer.

SET UP the problem: Given the concepts you have identified and
the known and target quantities, choose the equations that you’ll
use to solve the problem and decide how you’ll use them. Make
sure that the variables you have identified correlate exactly with
those in the equations. If appropriate, draw a sketch of the situation
described in the problem. (Graph paper, ruler, protractor, and com-
pass will help you make clear, useful sketches.) As best you can,

Idealized Models

estimate what your results will be and, as appropriate, predict what
the physical behavior of a system will be. The worked examples in
this book include tips on how to make these kinds of estimates and
predictions. If this seems challenging, don’t worry—you’ll get
better with practice!

EXECUTE the solution: This is where you “do the math.” Study the
worked examples to see what’s involved in this step.

EVALUATE your answer: Compare your answer with your esti-
mates, and reconsider things if there’s a discrepancy. If your
answer includes an algebraic expression, assure yourself that it
represents what would happen if the variables in it were taken to
extremes. For future reference, make note of any answer that rep-
resents a quantity of particular significance. Ask yourself how you
might answer a more general or more difficult version of the prob-
lem you have just solved.

In everyday conversation we use the word “model” to mean either a small-scale
replica, such as a model railroad, or a person who displays articles of clothing (or
the absence thereof). In physics a model is a simplified version of a physical sys-
tem that would be too complicated to analyze in full detail.

For example, suppose we want to analyze the motion of a thrown baseball
(Fig. 1.2a). How complicated is this problem? The ball is not a perfect sphere (it
has raised seams), and it spins as it moves through the air. Wind and air resistance
influence its motion, the ball’s weight varies a little as its distance from the center
of the earth changes, and so on. If we try to include all these things, the analysis
gets hopelessly complicated. Instead, we invent a simplified version of the prob-
lem. We neglect the size and shape of the ball by representing it as a point object,
or particle. We neglect air resistance by making the ball move in a vacuum, and
we make the weight constant. Now we have a problem that is simple enough to
deal with (Fig. 1.2b). We will analyze this model in detail in Chapter 3.

We have to overlook quite a few minor effects to make an idealized model, but
we must be careful not to neglect too much. If we ignore the effects of gravity
completely, then our model predicts that when we throw the ball up, it will go in
a straight line and disappear into space. A useful model is one that simplifies a
problem enough to make it manageable, yet keeps its essential features.

1.2 To simplify the analysis of (a) a base-
ball in flight, we use (b) an idealized model.
(a) A real baseball in flight

Baseball spins and has a complex shape.

Air resistance and

wind exert forces --..,
on the ball. %

Direction of
motion

Gravitational force on ball
depends on altitude.

(b) An idealized model of the baseball

Baseball is treated as a point object (particle).

No air resistance. S
Direction of

o . motion
Gravitational force

on ball is constant.
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1.3 The measurements used to determine
(a) the duration of a second and (b) the
length of a meter. These measurements are
useful for setting standards because they
give the same results no matter where they
are made.

(a) Measuring the second

Microwave radiation with a frequency of
exactly 9,192,631,770 cycles per second ...

Outermost
electron
Cesium-133 2 1 @
atom N

... causes the outermost electron of a
cesium-133 atom to reverse its spin direction.

Cesium-133
atom

—~
. &
—

An atomic clock uses this phenomenon to tune
microwaves to this exact frequency. It then
counts 1 second for each 9,192,631,770 cycles.

(b) Measuring the meter

0:00 5] 0:01 5

Eii?4/\/\/\/\/\/\/\/\/\/\F\»

Light travels exactly !
299,792,458 min 1 s.

source

The validity of the predictions we make using a model is limited by the valid-
ity of the model. For example, Galileo’s prediction about falling bodies (see Sec-
tion 1.1) corresponds to an idealized model that does not include the effects of air
resistance. This model works fairly well for a dropped cannonball, but not so well
for a feather.

Idealized models play a crucial role throughout this book. Watch for them in
discussions of physical theories and their applications to specific problems.

1.3 Standards and Units

As we learned in Section 1.1, physics is an experimental science. Experiments
require measurements, and we generally use numbers to describe the results of
measurements. Any number that is used to describe a physical phenomenon
quantitatively is called a physical quantity. For example, two physical quantities
that describe you are your weight and your height. Some physical quantities are
so fundamental that we can define them only by describing how to measure them.
Such a definition is called an operational definition. Two examples are measur-
ing a distance by using a ruler and measuring a time interval by using a stop-
watch. In other cases we define a physical quantity by describing how to
calculate it from other quantities that we can measure. Thus we might define the
average speed of a moving object as the distance traveled (measured with a ruler)
divided by the time of travel (measured with a stopwatch).

When we measure a quantity, we always compare it with some reference stan-
dard. When we say that a Ferrari 458 Italia is 4.53 meters long, we mean that it is
4.53 times as long as a meter stick, which we define to be 1 meter long. Such a
standard defines a unit of the quantity. The meter is a unit of distance, and the
second is a unit of time. When we use a number to describe a physical quantity,
we must always specify the unit that we are using; to describe a distance as
simply “4.53” wouldn’t mean anything.

To make accurate, reliable measurements, we need units of measurement that
do not change and that can be duplicated by observers in various locations. The
system of units used by scientists and engineers around the world is commonly
called “the metric system,” but since 1960 it has been known officially as the
International System, or SI (the abbreviation for its French name, Systeme
International). Appendix A gives a list of all SI units as well as definitions of the
most fundamental units.

Time

From 1889 until 1967, the unit of time was defined as a certain fraction of the
mean solar day, the average time between successive arrivals of the sun at its high-
est point in the sky. The present standard, adopted in 1967, is much more precise.
It is based on an atomic clock, which uses the energy difference between the two
lowest energy states of the cesium atom. When bombarded by microwaves of pre-
cisely the proper frequency, cesium atoms undergo a transition from one of these
states to the other. One second (abbreviated s) is defined as the time required for
9,192,631,770 cycles of this microwave radiation (Fig. 1.3a).

Length

In 1960 an atomic standard for the meter was also established, using the wave-
length of the orange-red light emitted by atoms of krypton (®Kr) in a glow dis-
charge tube. Using this length standard, the speed of light in vacuum was
measured to be 299,792,458 m/s. In November 1983, the length standard was
changed again so that the speed of light in vacuum was defined to be precisely



299,792,458 m/s. Hence the new definition of the meter (abbreviated m) is the
distance that light travels in vacuum in 1/299,792,458 second (Fig. 1.3b). This
provides a much more precise standard of length than the one based on a wave-
length of light.

The standard of mass, the kilogram (abbreviated kg), is defined to be the mass of
a particular cylinder of platinum—iridium alloy kept at the International Bureau
of Weights and Measures at Sevres, near Paris (Fig. 1.4). An atomic standard of
mass would be more fundamental, but at present we cannot measure masses on
an atomic scale with as much accuracy as on a macroscopic scale. The gram
(which is not a fundamental unit) is 0.001 kilogram.

Unit Prefixes

Once we have defined the fundamental units, it is easy to introduce larger and
smaller units for the same physical quantities. In the metric system these other
units are related to the fundamental units (or, in the case of mass, to the gram) by
multiples of 10 or %. Thus one kilometer (1 km) is 1000 meters, and one cen-
timeter (1 cm) is ﬁ meter. We usually express multiples of 10 or % in exponential
notation: 1000 = 10{@ = 1073, and so on. With this notation, 1 km = 10° m
and 1cm = 1072 m.

The names of the additional units are derived by adding a prefix to the name
of the fundamental unit. For example, the prefix “kilo-,” abbreviated k, always
means a unit larger by a factor of 1000; thus

1 kilometer = 1 km = 10° meters = 10> m
1 kg 10% grams 10° g
1kW = 10° watts = 10° W

1 kilogram
1 kilowatt

A table on the inside back cover of this book lists the standard SI prefixes, with
their meanings and abbreviations.

Table 1.1 gives some examples of the use of multiples of 10 and their prefixes
with the units of length, mass, and time. Figure 1.5 shows how these prefixes are
used to describe both large and small distances.

The British System

Finally, we mention the British system of units. These units are used only in the
United States and a few other countries, and in most of these they are being replaced
by SI units. British units are now officially defined in terms of SI units, as follows:

Length: 1 inch = 2.54 cm (exactly)

Force: 1 pound = 4.448221615260 newtons (exactly)

Table 1.1 Some Units of Length, Mass, and Time
Length Mass

I nanometer = Ilnm = 10" m
(a few times the size of the largest atom)

I microgram = 1pug = 10_6g =107 kg
(mass of a very small dust particle)

1 milligram = 1mg = 1073 g = 10"%kg
(mass of a grain of salt)

1 gram =1lg = 1073 kg
(mass of a paper clip)

1 micrometer = 1 um = 10°m
(size of some bacteria and living cells)

1 millimeter = 1 mm = 10> m
(diameter of the point of a ballpoint pen)

1 centimeter = Icm = 1072m
(diameter of your little finger)

1 kilometer = 1km = 10°m
(a 10-minute walk)

1.3 Standards and Units B

1.4 The international standard kilogram
is the metal object carefully enclosed
within these nested glass containers.

Time

1 nanosecond = 1ns = 10%s
(time for light to travel 0.3 m)

1 microsecond = 1 us = 106
(time for space station to move 8§ mm)

1 millisecond = 1ms = 1035
(time for sound to travel 0.35 m)
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1.5 Some typical lengths in the universe. (f) is a scanning tunneling microscope image of atoms on a crystal surface; (g) is an artist’s
impression.

(@)10*° m
Limit of the (b)10'' m
observable Distance to ©10"m
universe the sun Diameter of (d)1m
the earth Human ()10 m L
dimensions Diameter of a 107 0m
red blood cell Radius of an (@10 “m
atom Radius of an

1.6 Many everyday items make use of
both SI and British units. An example is
this speedometer from a U.S.-built auto-
mobile, which shows the speed in both
kilometers per hour (inner scale) and miles
per hour (outer scale).

1
/
w - 100 ~
160 -

180 = —

200 _120—

~—
1490 ~
N

220 kmih
~
miles

atomic nucleus

The newton, abbreviated N, is the SI unit of force. The British unit of time is the
second, defined the same way as in SI. In physics, British units are used only in
mechanics and thermodynamics; there is no British system of electrical units.

In this book we use SI units for all examples and problems, but we occasion-
ally give approximate equivalents in British units. As you do problems using
ST units, you may also wish to convert to the approximate British equivalents if
they are more familiar to you (Fig. 1.6). But you should try to think in SI units as
much as you can.

1.4 Unit Consistency and Conversions

We use equations to express relationships among physical quantities, represented
by algebraic symbols. Each algebraic symbol always denotes both a number and
a unit. For example, d might represent a distance of 10 m, f a time of 5 s, and v a
speed of 2 m/s.

An equation must always be dimensionally consistent. You can’t add apples
and automobiles; two terms may be added or equated only if they have the same
units. For example, if a body moving with constant speed v travels a distance d in
a time f, these quantities are related by the equation

d = vt

If d is measured in meters, then the product vf must also be expressed in meters.
Using the above numbers as an example, we may write

10m = (22“)(5 )

Because the unit 1/s on the right side of the equation cancels the unit s, the prod-
uct has units of meters, as it must. In calculations, units are treated just like alge-
braic symbols with respect to multiplication and division.

CAUTION  Always use units in calculations When a problem requires calculations using
numbers with units, always write the numbers with the correct units and carry the units
through the calculation as in the example above. This provides a very useful check. If at
some stage in a calculation you find that an equation or an expression has inconsistent
units, you know you have made an error somewhere. In this book we will always carry
units through all calculations, and we strongly urge you to follow this practice when you
solve problems.
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CGLE BT EEICT I Soluing Physics Problems

IDENTIFY the relevant concepts: In most cases, it’s best to use the
fundamental SI units (lengths in meters, masses in kilograms, and
times in seconds) in every problem. If you need the answer to be in
a different set of units (such as kilometers, grams, or hours), wait
until the end of the problem to make the conversion.

SET UP the problem and EKECUTE the solution: Units are multi-
plied and divided just like ordinary algebraic symbols. This gives
us an easy way to convert a quantity from one set of units to
another: Express the same physical quantity in two different units
and form an equality.

For example, when we say that 1 min = 60 s, we don’t mean
that the number 1 is equal to the number 60; rather, we mean that
1 min represents the same physical time interval as 60 s. For this
reason, the ratio (1 min)/(60s) equals 1, as does its reciprocal
(60s)/(1 min). We may multiply a quantity by either of these

m Converting speed units

The world land speed record is 763.0 mi/h, set on October 15,
1997, by Andy Green in the jet-engine car Thrust SSC. Express
this speed in meters per second.

IDENTIFY, SET UP, and EXECUTE: We need to convert the units of a
speed from mi/h to m/s. We must therefore find unit multipliers
that relate (i) miles to meters and (ii) hours to seconds. In Appen-
dix E (or inside the front cover of this book) we find the equalities
1mi = 1.609 km, 1 km = 1000 m, and 1 h = 3600 s. We set up
the conversion as follows, which ensures that all the desired can-
cellations by division take place:

L i\ (1.609 ka1 \ / 1000 m 1k
763.0 mi/h = (763.0 W )( 1 >< 1 ket >(36OO s)

= 341.0 m/s

m Converting volume units

The world’s largest cut diamond is the First Star of Africa
(mounted in the British Royal Sceptre and kept in the Tower of
London). Its volume is 1.84 cubic inches. What is its volume in
cubic centimeters? In cubic meters?

IDENTIFY, SET UP, and EXECUTE: Here we are to convert the units
of a volume from cubic inches (in.3) to both cubic centimeters
(ecm?) and cubic meters (m*). Appendix E gives us the equality
1in. = 2.540 cm, from which we obtain 1 in.> = (2.54 cm)?. We
then have

2.54 cm>3

1.841in.> = (1.841in.’ (
in.” = (184 i\ =)

3

= (1.84)(2.54)3 o o

=302 cm’
i’

(we)
factors (which we call wunit multipliers) without changing that

quantity’s physical meaning. For example, to find the number of
seconds in 3 min, we write

3 min = (3 miﬁ)( 60s ) = 180s
1 min

EVALUATE your answer: If you do your unit conversions correctly,
unwanted units will cancel, as in the example above. If, instead, you
had multiplied 3 min by (1 min)/(60 s), your result would have
been the nonsensical % minz/ s. To be sure you convert units prop-
erly, you must write down the units at a// stages of the calculation.

Finally, check whether your answer is reasonable. For example,
the result 3 min = 180 s is reasonable because the second is a
smaller unit than the minute, so there are more seconds than min-
utes in the same time interval.

EVALUATE: Green’s was the first supersonic land speed record (the
speed of sound in air is about 340 m/s). This example shows a use-
ful rule of thumb: A speed expressed in m/s is a bit less than half
the value expressed in mi/h, and a bit less than one-third the value
expressed in km/h. For example, a normal freeway speed is about
30 m/s = 67 mi/h = 108 km/h, and a typical walking speed is
about 1.4 m/s = 3.1 mi/h = 5.0 km/h.

Appendix F also givesus1 m = 100 cm, so

Im \?
30.2 cm® = (30.2 cm?® ( )
em” = (302emI\ 100 em

(302)( ! )3 I’ ) % 1076 md
= . — = . m
100 car

=3.02X% 1075 m?

EVALUATE: Following the pattern of these conversions, you can
show that 1in.> = 16 cm® and that 1 m® =~ 60,000 in.3. These
approximate unit conversions may be useful for future reference.
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1.7 This spectacular mishap was the result
of a very small percent error—traveling a
few meters too far at the end of a journey of
hundreds of thousands of meters.

Table 1.2 Using Significant
Figures

Multiplication or division:

Result may have no more significant figures
than the starting number with the fewest
significant figures:

0.745 X 2.2
3.885
132578 X 107 X 4.11 X 10> = 5.45 X 10*

Addition or subtraction:

Number of significant figures is determined by
the starting number with the largest uncertainty
(i.e., fewest digits to the right of the decimal
point):

27153 + 1382 — 11.74 = 153.6

1.8 Determining the value of 7r from the
circumference and diameter of a circle.

424 mm
%

The measured values have only three significant
figures, so their calculated ratio (7) also has
only three significant figures.

1.5 Uncertainty and Significant Figures

Measurements always have uncertainties. If you measure the thickness of the
cover of a hardbound version of this book using an ordinary ruler, your measure-
ment is reliable only to the nearest millimeter, and your result will be 3 mm. It
would be wrong to state this result as 3.00 mm; given the limitations of the meas-
uring device, you can’t tell whether the actual thickness is 3.00 mm, 2.85 mm, or
3.11 mm. But if you use a micrometer caliper, a device that measures distances
reliably to the nearest 0.01 mm, the result will be 2.91 mm. The distinction
between these two measurements is in their uncertainty. The measurement using
the micrometer caliper has a smaller uncertainty; it’s a more accurate measure-
ment. The uncertainty is also called the error because it indicates the maximum
difference there is likely to be between the measured value and the true value.
The uncertainty or error of a measured value depends on the measurement tech-
nique used.

We often indicate the accuracy of a measured value—that is, how close it is
likely to be to the true value—by writing the number, the symbol =, and a sec-
ond number indicating the uncertainty of the measurement. If the diameter of a
steel rod is given as 56.47 = 0.02 mm, this means that the true value is unlikely
to be less than 56.45 mm or greater than 56.49 mm. In a commonly used short-
hand notation, the number 1.6454(21) means 1.6454 * 0.0021. The numbers in
parentheses show the uncertainty in the final digits of the main number.

We can also express accuracy in terms of the maximum likely fractional
error or percent error (also called fractional uncertainty and percent uncer-
tainty). A resistor labeled “47 ohms = 10%” probably has a true resistance that
differs from 47 ohms by no more than 10% of 47 ohms—that is, by about 5 ohms.
The resistance is probably between 42 and 52 ohms. For the diameter of the steel
rod given above, the fractional error is (0.02 mm)/(56.47 mm), or about 0.0004;
the percent error is (0.0004)(100%), or about 0.04%. Even small percent errors
can sometimes be very significant (Fig. 1.7).

In many cases the uncertainty of a number is not stated explicitly. Instead, the
uncertainty is indicated by the number of meaningful digits, or significant figures,
in the measured value. We gave the thickness of the cover of this book as 2.91 mm,
which has three significant figures. By this we mean that the first two digits are
known to be correct, while the third digit is uncertain. The last digit is in the hun-
dredths place, so the uncertainty is about 0.01 mm. Two values with the same
number of significant figures may have different uncertainties; a distance given as
137 km also has three significant figures, but the uncertainty is about 1 km.

When you use numbers that have uncertainties to compute other numbers, the
computed numbers are also uncertain. When numbers are multiplied or divided,
the number of significant figures in the result can be no greater than in the factor
with the fewest significant figures. For example, 3.1416 X 2.34 X 0.58 = 4.3.
When we add and subtract numbers, it’s the location of the decimal point that mat-
ters, not the number of significant figures. For example, 123.62 + 8.9 = 132.5.
Although 123.62 has an uncertainty of about 0.01, 8.9 has an uncertainty of about
0.1. So their sum has an uncertainty of about 0.1 and should be written as 132.5,
not 132.52. Table 1.2 summarizes these rules for significant figures.

As an application of these ideas, suppose you want to verify the value of 7,
the ratio of the circumference of a circle to its diameter. The true value of this
ratio to ten digits is 3.141592654. To test this, you draw a large circle and meas-
ure its circumference and diameter to the nearest millimeter, obtaining the values
424 mm and 135 mm (Fig. 1.8). You punch these into your calculator and obtain
the quotient (424 mm)/(135 mm) = 3.140740741. This may seem to disagree
with the true value of 7, but keep in mind that each of your measurements has
three significant figures, so your measured value of 77 can have only three signif-
icant figures. It should be stated simply as 3.14. Within the limit of three signifi-
cant figures, your value does agree with the true value.



1.5 Uncertainty and Significant Figures

In the examples and problems in this book we usually give numerical values
with three significant figures, so your answers should usually have no more than
three significant figures. (Many numbers in the real world have even less accu-
racy. An automobile speedometer, for example, usually gives only two significant
figures.) Even if you do the arithmetic with a calculator that displays ten digits, it
would be wrong to give a ten-digit answer because it misrepresents the accuracy
of the results. Always round your final answer to keep only the correct number of
significant figures or, in doubtful cases, one more at most. In Example 1.1 it
would have been wrong to state the answer as 341.01861 m/s. Note that when
you reduce such an answer to the appropriate number of significant figures, you
must round, not truncate. Your calculator will tell you that the ratio of 525 m to
311 mis 1.688102894; to three significant figures, this is 1.69, not 1.68.

When we calculate with very large or very small numbers, we can show sig-
nificant figures much more easily by using scientific notation, sometimes called
powers-of-10 notation. The distance from the earth to the moon is about
384,000,000 m, but writing the number in this form doesn’t indicate the number
of significant figures. Instead, we move the decimal point eight places to the left
(corresponding to dividing by 10%) and multiply by 103; that is,

384,000,000 m = 3.84 X 108 m

In this form, it is clear that we have three significant figures. The number
4.00 X 1077 also has three significant figures, even though two of them are
zeros. Note that in scientific notation the usual practice is to express the quantity
as a number between 1 and 10 multiplied by the appropriate power of 10.

When an integer or a fraction occurs in a general equation, we treat that
number as having no uncertainty at all. For example, in the equation
v = v + 2a,(x — xg), which is Eq. (2.13) in Chapter 2, the coefficient 2 is
exactly 2. We can consider this coefficient as having an infinite number of signif-
icant figures (2.000000. .. ). The same is true of the exponent 2 in vx2 and voxz.

Finally, let’s note that precision is not the same as accuracy. A cheap digital
watch that gives the time as 10:35:17 A.M. is very precise (the time is given to the
second), but if the watch runs several minutes slow, then this value isn’t very
accurate. On the other hand, a grandfather clock might be very accurate (that is,
display the correct time), but if the clock has no second hand, it isn’t very precise.
A high-quality measurement is both precise and accurate.

m Significant figures in multiplication

The rest energy E of an object with rest mass m is given by
Einstein’s famous equation E = mc?, where ¢ is the speed of light
in vacuum. Find E for an electron for which (to three significant
figures) m = 9.11 X 1073 kg. The SI unit for E is the joule (J);
1] = 1kg-m?/s%,

IDENTIFY and SET UP: Our target variable is the energy E. We are
given the value of the mass m; from Section 1.3 (or Appendix F)
the speed of light is ¢ = 2.99792458 X 108 m/s.

EKECUTE: Substituting the values of m and c into Einstein’s equa-
tion, we find

E = (9.11 x 103" kg)(2.99792458 X 10 m/s)?
(9.11)(2.99792458)*(10721)(10%)? kg - m?/s?
= (81.87659678) (10l 31+ (2X8)]) kg - m?/s?

= 8.187659678 X 10 kg - m?/s?

Since the value of m was given to only three significant figures, we
must round this to

E =819 X 107 ¥ kg-m?/s> = 8.19 X 107147

EVALUATE: While the rest energy contained in an electron may
seem ridiculously small, on the atomic scale it is tremendous.
Compare our answer to 107'°J, the energy gained or lost by a
single atom during a typical chemical reaction. The rest energy of
an electron is about 1,000,000 times larger! (We’ll discuss the sig-
nificance of rest energy in Chapter 37.)
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Test Your Understanding of Section 1.5 The density of a material is (‘\®
equal to its mass divided by its volume. What is the density (in kg/ m?) of a rock of w
mass 1.80 kg and volume 6.0 X 10~ m®? (i) 3 X 10% kg/m?; (ii) 3.0 X 10° kg /m>;

(iii) 3.00 X 10% kg/m?; (iv) 3.000 X 103 kg/m?; (v) any of these—all of these answers
are mathematically equivalent. |

1.6 Estimates and Orders of Magnitude

We have stressed the importance of knowing the accuracy of numbers that repre-
sent physical quantities. But even a very crude estimate of a quantity often gives
us useful information. Sometimes we know how to calculate a certain quantity,
but we have to guess at the data we need for the calculation. Or the calculation
might be too complicated to carry out exactly, so we make some rough approxi-
mations. In either case our result is also a guess, but such a guess can be useful
even if it is uncertain by a factor of two, ten, or more. Such calculations are often
called order-of-magnitude estimates. The great Italian-American nuclear physi-
cist Enrico Fermi (1901-1954) called them “back-of-the-envelope calculations.”

Exercises 1.16 through 1.25 at the end of this chapter are of the estimating, or
order-of-magnitude, variety. Most require guesswork for the needed input data.
Don’t try to look up a lot of data; make the best guesses you can. Even when they
are off by a factor of ten, the results can be useful and interesting.

3EL NN An order-of-magnitude estimate

R | o
MasteringPHYSIES
X
PhET: Estimation

You are writing an adventure novel in which the hero escapes
across the border with a billion dollars” worth of gold in his suit-
case. Could anyone carry that much gold? Would it fit in a suit-
case?

IDENTIFY, SET UP, and EXECUTE: Gold sells for around $400 an
ounce. (The price has varied between $200 and $1000 over the
past decade or so.) An ounce is about 30 grams; that’s worth
remembering. So ten dollars’ worth of gold has a mass of %
ounce, or around one gram. A billion (10?) dollars’ worth of gold

is a hundred million (10%) grams, or a hundred thousand (10°)
kilograms. This corresponds to a weight in British units of
around 200,000 1b, or 100 tons. No human hero could lift that
weight!

Roughly what is the volume of this gold? The density of gold is
much greater than that of water (1 g/cm®), or 1000 kg /m?; if its
density is 10 times that of water, this much gold will have a vol-
ume of 10 m®, many times the volume of a suitcase.

EVALUATE: Clearly your novel needs rewriting. Try the calculation
again with a suitcase full of five-carat (1-gram) diamonds, each
worth $100,000. Would this work?

Application Scalar Temperature,
Vector Wind

Test Your Understanding of Section 1.6 Can you estimate the total number
of teeth in all the mouths of everyone (students, staff, and faculty) on your campus?
(Hint: How many teeth are in your mouth? Count them!) |

This weather station measures temperature, a
scalar quantity that can be positive or negative
(say, +20°C or —5°C) but has no direction. It
also measures wind velocity, which is a vector
quantity with both magnitude and direction (for
example, 15 km/h from the west).

1.7 lectors and Vector Addition

Some physical quantities, such as time, temperature, mass, and density, can be
described completely by a single number with a unit. But many other important
quantities in physics have a direction associated with them and cannot be
described by a single number. A simple example is describing the motion of an
airplane: We must say not only how fast the plane is moving but also in what
direction. The speed of the airplane combined with its direction of motion
together constitute a quantity called velocity. Another example is force, which in
physics means a push or pull exerted on a body. Giving a complete description of
a force means describing both how hard the force pushes or pulls on the body and
the direction of the push or pull.




When a physical quantity is described by a single number, we call it a scalar
quantity. In contrast, a vector quantity has both a magnitude (the “how much”
or “how big” part) and a direction in space. Calculations that combine scalar quan-
tities use the operations of ordinary arithmetic. For example, 6 kg + 3 kg = 9 kg,
or4 X 2's = 8 s. However, combining vectors requires a different set of operations.

To understand more about vectors and how they combine, we start with the
simplest vector quantity, displacement. Displacement is simply a change in the
position of an object. Displacement is a vector quantity because we must state not
only how far the object moves but also in what direction. Walking 3 km north
from your front door doesn’t get you to the same place as walking 3 km southeast;
these two displacements have the same magnitude but different directions.

We usually represent a vector quantity such as displacement by a single letter,
such as 4 in Fig. 1.9a. In this book we always print vector symbols in boldface
italic type with an arrow above them. We do this to remind you that vector quan-
tities have different properties from scalar quantities; the arrow is a reminder that
vectors have direction. When you handwrite a symbol for a vector, always write
it with an arrow on top. If you don’t distinguish between scalar and vector quan-
tities in your notation, you probably won’t make the distinction in your thinking
either, and hopeless confusion will result.

We always draw a vector as a line with an arrowhead at its tip. The length of
the line shows the vector’s magnitude, and the direction of the line shows the
vector’s direction. Displacement is always a straight-line segment directed from
the starting point to the ending point, even though the object’s actual path may be
curved (Fig. 1.9b). Note that displacement is not related directly to the total
distance traveled. If the object were to continue on past P, and then return to P,
the displacement for the entire trip would be zero (Fig. 1.9¢).

If two vectors have the same direction, they are parallel. If they have the same
magnitude and the same direction, they are equal, no matter where they are located
in space. The vector A’ from pomt P; to point P; in Fig. 1.10 has the same length
and direction as the vector A from P, to P,. These two displacements are equal,
even though they start at different points. We write this as A =Ain Fig. 1.10;
the boldface equals sign emphasizes that equality of two vector quantities is not
the same relationship as equality of two scalar quantities. Two vector quantities
are equal only when they have the same magnitude and the same direction.

The vector B in Fig. 1.10, however, is not equal to A because its direction is
opposite to that of A. We define the negative of a vector as a vector having the
same magnltude as the original vector but the opposite direction. The negative of
vector quantity A is denoted as —A and we usea boldface minus s1gn to empha-
size the vector nature of the quantities. If Ais87 m south then —Ais 87 m
north Thus we can wr1te the relationship between A and B in Fig. 1.10 as
A= —Bor B= —A. When two vectors A and B have opposite directions,
whether their magnitudes are the same or not, we say that they are antiparallel.

We usually represent the magnitude of a vector quantity (in the case of a dis-
placement vector, its length) by the same letter used for the vector, but in light
italic type with no arrow on top. An alternative notation is the vector symbol with
vertical bars on both sides:

(Magnitude of A) = A = |4 (1.1

The magnitude of a vector quantity is a scalar quantity (a number) and is always
positive. Note that a vector can never be equal to a scalar because they are
different kinds of quantities. The expression “A = 6m” is just as wrong as
“2 oranges = 3 apples”!

When drawing diagrams with vectors, it’s best to use a scale similar to those
used for maps. For example, a displacement of 5 km might be represented in a
diagram by a vector 1 cm long, and a displacement of 10 km by a vector 2 cm

long. In a diagram for velocity vectors, a vector that is 1 cm long might represent
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1.9 Displacement as a vector quantity. A
displacement is always a straight-line seg-
ment directed from the starting point to the
ending point, even if the path is curved.

(a) We represent a displacement by an arrow
pointing in the direction of displacement.

Ending position: P,

Starting position: P

'
Displacement A

-

Handwritten notation: H

(b) Displacement depends only on the starting
and ending positions—not on the path taken

Path taken

P
A

2

(€) Total displacement for a round trip
is 0, regardless of the distance traveled.

1.10 The meaning of vectors that have
the same magnitude and the same or oppo-

site direction.

Displacements A and A’

are equal because they
have the same length
and direction.

Displacelnent B has
the same magnitude
as A but og)osite
direction; B is the
negative of A.
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1.11 Three ways to add two vectors.
As shown in (b), the order in vector addi-
tion doesn’t matter; vector addition is
commutative.

(a) We can add two vectors by placing them
head to tail.

B

=
a
B
=l

(b) Adding them in reverse order gives the
same result.

+A

=

¢

A

B

(€) We can also add them by constructing a
parallelogram.

1.12 (a) Only when two vectors A and
B are parallel does the magnitude of their
sum equal the sum of their magnitudes:
C=A+ B.(b) When A and B are
antiparallel, the magnitude of their sum
equals the difference of their magnitudes:
C=|A- B

(a) The sum of two parallel vectors

A B
—
—

C=A+B

(b) The sum of two antiparallel vectors

A

-

==

C=A+B B

+
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a velocity of magnitude 5 m/s. A velocity of 20 m/s would then be represented
by a vector 4 cm long.

Uector Addition and Subtraction

Suppose a particle undergoes a displacement A followed by a second displace-
ment B. The final result is the same as if the partlcle had started at the same initial
pomt and undergone a single displacement C (Fig. 1. 11a) We call displacement
C the vector sum, or resultant, of displacements A and B. We express this rela-
tionship symbolically as
C=4A+B (1.2)
The boldface plus sign emphasizes that adding two vector quantities requires a
geometrical process and is not the same operation as adding two scalar quantities
such as 2 + 3 = 5. In vector addition we usually place the fail of the second
vector at the head, or tip, of the ﬁrst vector (Fig. 1.11a).
If we make the displacements A and B in reverse order, with B firstand A sec-
ond, the result is the same (Fig. 1.11b). Thus
C=B+A and A+B=B+A4 (1.3)
This shows that the order of terms in a vector sum doesn’t matter. In other words,
vector addition obeys the commutative law.
Figure 1.11c shows another way to represent the vector sum: If vectors A and
B are both drawn with their talls at the same point, vector C is the diagonal of a
parallelogram constructed with A and B as two adjacent sides.

CAUTION Magnitudes in vector addition It's a common error to conclude that if
C=A4+ E then the magnitude C should equal the magnitude A plus the magnitude B. In
general, this conclusion is wron for the vectors shown in Fig. 1. 11 you can see that
C < A + B. The magnitude of A + B depends on the magnitudes of A and B and on the
angle between A and B (see Problem 1.90). Only in the special case in which A and B are
parallel is the magnitude of C=A+B equal to the sum of the magnitudes of A and B
(Fig. 1.12a). When the vectors are antiparallel (Fig. 1.12b), the magnitude of C equals
the difference of the magnitudes of A and B. Be careful about distinguishing between
scalar and vector quantities, and you’ll avoid making errors about the magnitude of a vec-
tor sum.

When we need to add more than two vectors, we may first find the vector sum
of any two, add this vectorlally to the third, and so on. Flgure 1.13a shows three
vectors A, B, and C. In Fig. 1.13b we first add A and B to give a vector
sum D we then add vectors C and D by the same process to obtain the vector
sum R:

—

+ B) +

=\

= (A C=D+C

1.13 Several constructions for finding the vector sum A+B+C.

(a) To find the sum of
these three vectors ...

(b) we could add Aand B
to get | D and then add

CwDto get the final

sum (resultant) R

-

R

(e) or we could add Z, 13,
and C in any other order
and still get R.

(€) or we could add Band C
to get E and then add
AtoEtogetR, ...

(d) or we could add A B,
and C to get R directly, ...

R

—

D

B
=
P

B

ay

P R

|
|

B g

c

R
1 %
?»
B

ST
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1.14 To construct the vector difference A — §, you can either place the tail of — B at the head of 4 or place the two vectors Aand B

head to head.

Subtracting B fromA4 ...

D

... is equivalent to adding —BtoA.

E) R
-8 A

&
I+
T—M"‘

\j\hthjt and -B head to tail,
A — B is the vector from the
tail of A to the head of —B.

Alternatlvely, we can first add B and C to obtain vector E (Fig. 1.13c¢), and then add
A and E to obtain R:
R=A+B+C)=A+E
We don’t even need to draw vectors D and E ; all we need to do is draw A , I_i and
Cin succession, with the tail of each at the head of the one preceding it. The
sum vector R extends from the tail of the first vector to the head of the last vector
(Fig. 1.13d). The order makes no difference; Fig. 1.13e shows a different order, and
we invite you to try others. We see that vector addition obeys the associative law.
We can subtract vectors as well as add them. To see how, recall that vector
—-A has the same magnitude as A but the opposite direction. We deﬁne the dif-
ference A — B of two vectors A and B to be the vector sum of A and — B:

A-B=A4+ (-B) (1.4)
Figure 1.14 shows an example of vector subtraction.

A vector quantity such as a displacement can be multiplied by a scalar quan-
tity (an ordinary number). The d1splacement 24 is a displacement (vector quan-
tity) in the same direction as the vector A but twice as long, this is the same as
adding A to itself (Flg 1.15a). In general, when a vector A is multiplied by a
scalar c, the result cA has magmtude ‘ ‘A (the absolute value of ¢ multiplied by
the magnitude of the vector A) If ¢ is positive, CA i is in the same direction as A
if ¢ is negatlve cA is in the direction opposite to A. Thus 34 is parallel to A
while —34 is antiparallel 0 A (Fig. 1.15b).

A scalar used to multiply a vector may also be a physwal quantity. For exam-
ple, you may be familiar with the relationship F = mad; the net force F (a vector
quantity) that acts on a body is equal to the product of the body’s mass m (a scalar
quantity) and its acceleration d (a vector quantity). The dlrectlon of F is the same
as that of @ because m is positive, and the magmtude of F is equal to the mass m
(which is positive) multiplied by the magnitude of @. The unit of force is the unit
of mass multiplied by the unit of acceleration.

m Addition of two vectors at right angles

Y}VlthﬁA and B head to head,
A - Bis the vector frgm the
tail of A to the tail of B .

Masterlng PHYSICS
PhET: Vector Addition

1.15 Multiplying a vector (a) by a posi-
tive scalar and (b) by a negative scalar.

(a) Multiplying a vector by a positive scalar
changes the magnitude (length) of the vector,
but not its direction.

—

A
——

—

2A

.,

2A is twice as long as A"

(b) Multiplying a vector by a negative scalar
changes its magnitude and reverses its direction.

—3A

< <,

—3A is three times as long as A and points‘:
in the opposite direction.

A cross-country skier skis 1.00 km north and then 2.00 km east on
a horizontal snowfield. How far and in what direction is she from
the starting point?

IDENTIFY and SET UP: The problem involves combining two dis-
placements at right angles to each other. In this case, vector addi-
tion amounts to solving a right triangle, which we can do using the
Pythagorean theorem and simple trigonometry. The target vari-
ables are the skier’s straight-line distance and direction from her

starting point. Figure 1.16 is a scale diagram of the two displace-
ments and the resultant net displacement. We denote the direction
from the starting point by the angle ¢ (the Greek letter phi). The
displacement appears to be about 2.4 km. Measurement with a pro-
tractor indicates that ¢ is about 63°.

EXECUTE: The distance from the starting point to the ending point
is equal to the length of the hypotenuse:

V/(1.00 km)? + (2.00 km)? =

2.24 km

Continued
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1.16 The vector diagram, drawn to scale, for a ski trip. Alittle trigonometry (from Appendix B) allows us to find angle ¢:
Opposite side  2.00 km
tan ¢ = - — =
Adjacent side  1.00 km
¢ = 63.4°

We can describe the direction as 63.4° east of north or
90° — 63.4° = 26.6° north of east.

EVALUATE: Our answers (2.24 km and ¢ = 63.4°) are close to our
predictions. In the more general case in which you have to add two
vectors not at right angles to each other, you can use the law of

cosines in place of the Pythagorean theorem and use the law of
sines to find an angle corresponding to ¢ in this example. (You’ll

1.17 Representing a vector A in terms
of (a) component vectors A » and A y and
(b) components A, and A, (which in this
case are both positive).

@

Y The component vectors of A

(b)

find these trigonometric rules in Appendix B.) We’ll see more
techniques for vector addition in Section 1.8.

Test Your Understanding of Section 1.7 Two displacement vectors, (‘x@,
S and 7‘, have magnitudes S = 3m and 7 = 4 m. Which of the following could w
be the magnitude of the difference vector S—-T2 (There may be more than one

correct answer.) (1) 9 m; (ii) 7 m; (iii) 5 m; (iv) 1 m; (v) O m; (vi) —1 m. |

1.8 Components of Vectors

In Section 1.7 we added vectors by using a scale diagram and by using properties
of right triangles. Measuring a diagram offers only very limited accuracy, and
calculations with right triangles work only when the two vectors are perpendicu-
lar. So we need a simple but general method for adding vectors. This is called the
method of components.

To define what we mean by the components of a vector A, we begin with a
rectangular (Cartesian) coordinate system of axes (Fig. 1.17a). We then draw the
vector with its tail at O, the origin of the coordinate system. We can represent any
vector lying in the xy-plane as the sum of a vector parallel to the x- axis and a vec-
tor parallel to the y-axis. These two vectors are labeled A and A in Fig. 1.17a;
they are called the component vectors of vector A, and their vector sum is equal
toA.In symbols,

— — —
A=A +A, (1.5)

Since each component vector lies along a coordlnate -axis direction, we need
only a single number to describe each one. When Ax points in the posmve
x- -direction, we define the number A, to be equal to the magnitude of A When
Ax points in the negative x-direction, we define the number A, to be equal to the
negative of that magnitude (the magnitude of a vector quantity is itself never neg-
ative). We define the number Ay in the same way. The two numbers A, and A,
are called the components of A (Flg 1.17b).

CAUTION  Components are not vectors The components A, and A, of a vector A are just
numbers; they are not vectors themselves. This is why we print the symbols for compo-
nents in light italic type with no arrow on top instead of in boldface italic with an arrow,
which is reserved for vectors.

We can calculate the components of the vector A if we know its magni-
tude A and its direction. We’ll describe the direction of a vector by its angle
relative to some reference direction. In Fig. 1.17b this reference direction is
the positive x-axis, and the angle between vector A and the positive x-axis
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is 6 (the Greek letter theta). Imagine that the vector A originally lies along the
+x-axis and that you then rotate it to its correct direction, as indicated by the
arrow in Fig. 1.17b on the angle 6. If this rotation is from the +x-axis toward ()

the +y-axis, as shown in Fig. 1.17b, then 0 is positive; if the rotation is from the y
+x-axis toward the —y-axis, 6 is negative. Thus the +y-axis is at an angle of 90°,
the —x-axis at 180°, and the —y-axis at 270° (or —90°). If 0 is measured in this
way, then from the definition of the trigonometric functions,

1.18 The components of a vector may
be positive or negative numbers.

B, is positive:
Its component
i vector points in
B, (+) the +y-direction.

Ax Ay . g x
X = cosf and X = sinf o By (=)

(1.8) B, is negative: Its component
A, = Acosf and Ay = A sin vector points in the —x-direction.

(6 measured from the +x-axis, rotating toward the +y-axis)

b
In Fig. 1.17b A, and A, are positive. This is consistent with Egs. (1.6); 6 is in ®

the first quadrant (between 0° and 90°), and both the cosine and the sine of an
angle in this quadrant are positive. But in Fig. 1.18a the component B, is nega-
tive. Again, this agrees with Egs. (1.6); the cosine of an angle in the second quad-
rant is negative. The component B, is positive (sinf is positive in the second
quadrant). In Fig. 1.18b both C, and C, are negative (both cos6 and sin6 are
negative in the third quadrant).

Both components of Care negative.

CAUTION  Relating a vector’s magnitude and direction to its components Equations (1.6)
are correct only when the angle 6 is measured from the positive x-axis as described above.
If the angle of the vector is given from a different reference direction or using a different
sense of rotation, the relationships are different. Be careful! Example 1.6 illustrates this
point.

Finding components

(a) What are the x- and y-components of vector D in Fig. 1.19a?
The magnitude of the vector is D = 3.00 m, and the angle
a = 45°. (b) What are the x- and y-components of vector E in
Fig. 1.19b? The magnitude of the vector is £ = 4.50 m, and the
angle 8 = 37.0°.

SOLUTION

IDENTIFY and SET UP: We can use Egs. (1.6) to find the compo-
nents of these vectors, but we have to be careful: Neither of the
angles « or B in Fig. 1.19 is measured from the +x-axis toward the
+y-axis. We estimate from the figure that the lengths of the com-

1.19 Calculating the x- and y-components of vectors.

(@) (b)

y N4

ponents in part (a) are both roughly 2 m, and that those in part (b)
are 3m and 4 m. We’ve indicated the signs of the components in
the figure.

EXECUTE: (a) The angle « (the Greek letter alpha) between the posi-
tive x-axis and D is measured toward the negative y-axis. The angle
we must use in Egs. (1.6) is 6 = —a = —45°. We then find

D, = Dcosf = (3.00m)(cos(—45°)) = +2.1m
D, = Dsinf = (3.00 m)(sin(—45°)) = —2.1 m

Had you been careless and substituted +45° for 6 in Egs. (1.6),
your result for D, would have had the wrong sign.

(b) The x- and y-axes in Fig. 1.19b are at right angles, so it
doesn’t matter that they aren’t horizontal and vertical, respec-
tively. But to use Egs. (1.6), we must use the angle
0 = 90.0° — B = 90.0° — 37.0° = 53.0°. Then we find

E, = Eco0s53.0° = (4.50 m)(cos 53.0°) = +2.71 m
E, = Esin 53.0° = (4.50 m)(sin 53.0°) = +3.59 m

EVALUATE: Our answers to both parts are close to our predictions.
But ask yourself this: Why do the answers in part (a) correctly

have only two significant figures?
I
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1.20 Drawing a sketch of a vector reveals
the signs of its x- and y-components.

A,
Suppose that tanf = /T‘ = —1. What is 6?
X
Two angles have tangents of —1: 135° and 315°.

Inspection of the diagram shows that # must be
3150 y

Doing Vector Calculations Using Components

Using components makes it relatively easy to do various calculations involving
vectors. Let’s look at three important examples.

1. Finding a vector’s magnitude and direction from its components. We
can describe a vector completely by giving either its magnitude and direction or
its x- and y-components. Equations (1.6) show how to find the components if we
know the magnitude and direction. We can also reverse the process: We can find
the magnitude and direction if we know the components. By applying the
Pythagorean theorem to Fig. 1.17b, we find that the magnitude of vector A is

A= VA2 + A} (1.7)

(We always take the positive root.) Equation (1.7) is valid for any choice of x-
axis and y-axis, as long as they are mutually perpendicular. The expression for
the vector direction comes from the definition of the tangent of an angle. If 6 is
measured from the positive x-axis, and a positive angle is measured toward the
positive y-axis (as in Fig. 1.17b), then

A, A,y
tanf = — and 0 = arctan— (1.8)

Ay Ay
We will always use the notation arctan for the inverse tangent function. The nota-
tion tan” ! is also commonly used, and your calculator may have an INV or 2ND
button to be used with the TAN button.

CAUTION  Finding the direction of a vector from its components There’s one slight com-
plication in using Eqgs. (1.8) to find 6: Any two angles that differ by 180° have the same
tangent. Suppose A, = 2m and A, = —2m as in Fig. 1.20; then tan® = —1. But both
135° and 315° (or —45°) have tangents of —1. To decide which is correct, we have to
look at the individual components. Because A, is positive and A, is negative, the angle
must be in the fourth quadrant; thus 6 = 315° (or —45°) is the correct value. Most pocket
calculators give arctan (—1) = —45°. In this case that is correct; but if instead we have
Ay = —2m and A, = 2m, then the correct angle is 135°. Similarly, when A, and A,
are both negative, the tangent is positive, but the angle is in the third quadrant. You
should always draw a sketch like Fig. 1.20 to check which of the two possibilities is the
correct one.

2. Multiplying a vector by a scalar. If we multiply a vector A by a scalar c,
each component of the product D = cA is the product of ¢ and the corresponding
component of A:

D, =cA;, D, =cA (components of D=cA ) (1.9)

For example, Eq. (1.9) says that each component of the vector 24 is twice as
great as the corresponding component of the VectorA 50 24 is in the same dlrec—
tion as A but has twice the magnitude. Each component of the vector 34 is
three times as great as the corresponding component of the vector A but has the
opposite sign, so —3A is in the opposite direction from A and has three times the
magnitude. Hence Eqgs. (1.9) are consistent with our discussion in Section 1.7 of
multiplying a vector by a scalar (see Fig. 1.15).

3. Using components to calculate the vector sum (resultant) of two or
more vectors. Figure 1.21 shows two vectors A and B and their vector sum R
along with the x- and y-components of all three vectors. You can see from the
diagram that the x-component R, of the vector sum is simply the sum (A, + B,)
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of the x-components of the vectors being added. The same is true for the
y-components. In symbols,

1.21 Finding the vector sum (resultant)
of A and B using components.

y R is the vector sum
(resultant) of A and B.

—

[, = Ay, T 08, 1%, = AL (components of R=A4 + B) (.10
Figure 1.21 shows this result for the case in which the components A,, A,, By,
and By, are all positive. You should draw additional diagrams to Verify for your-
self that Eqgs. (1.10) are valid for any signs of the components of A and B. Y
If we know the components of any two vectors A and B, perhaps by using
Eqgs. (1.6), we can compute the components of the vector sum R. Then if we need
the magnitude and direction of R we can obtain them from Eqs. (1.7) and (1.8)
with the A’s replaced by R’s.
We can extend thls procedure to find the sum of any number of vectors. If R is

the vector sum of A B C.D, E , the components of R are
R.=A +B, +C,+D,+E, + -
R,=A,+B,+C,+D,+E, + -

e >R,

Thc eomponcnts of R are thc sums
of the components of A and B:

R,=A,+B, R, =A, +B,

(1.11

We have talked only about vectors that lie in the xy-plane, but the component
method works just as well for vectors having any direction in space. We can
introduce a z-axis perpendicular to the xy-plane; then in general a vector A has
components A,, Ay, and A, in the three coordinate directions. Its magnitude A is

A= VAI+ A2+ A2

Again, we alwaxs take the positive root. Also, Egs. (1.11) for the components of
the vector sum R have an additional member:

(1.12)

R, =A,+B,+C,+D,+E, + -

We’ve focused on adding displacement vectors, but the method is applicable
to all vector quantities. When we study the concept of force in Chapter 4, we’ll
find that forces are vectors that obey the same rules of vector addition that we’ve
used with displacement.

IDENTIFY the relevant concepts: Decide what the target variable
is. It may be the magnitude of the vector sum, the direction, or
both.

SET UP the problem: Sketch the vectors being added, along with
suitable coordinate axes. Place the tail of the first vector at the
origin of the coordinates, place the tail of the second vector at the
head of the first vector, and so on. Draw the vector sum R from
the tail of the first vector (at the origin) to the head of the last
vector. Use your sketch to estimate the magnitude and direction
of R. Select the mathematical tools you’ll use for the full calcula-
tion: Egs. (1.6) to obtain the components of the vectors given, if
necessary, Eqgs. (1.11) to obtain the components of the vector
sum, Eq. (1.12) to obtain its magnitude, and Eqs. (1.8) to obtain
its direction.

EXECUTE rhe solution as follows:

1. Find the x- and y-components of each individual vector and
record your results in a table, as in Example 1.7 below. If a
vector is described by a magnitude A and an angle 6, measured

from the +x-axis toward the +y-axis, then its components
are given by Egs. 1.6:

A, = Acos 0 Ay, = Asin6

If the angles of the vectors are given in some other way, per-
haps using a different reference direction, convert them to
angles measured from the +x-axis as in Example 1.6 above.

2. Add the individual x-components algebraically (including
signs) to find R,, the x-component of the vector sum. Do the
same for the y-components to find R,. See Example 1.7 below.

3. Calculate the magnitude R and direction 6 of the vector sum
using Eqgs. (1.7) and (1.8):

R = VR>+ R/

Ry
6 = arctan—
X

EVALUATE your answer: Confirm that your results for the magni-
tude and direction of the vector sum agree with the estimates you
made from your sketch. The value of 6 that you find with a calcula-
tor may be off by 180°; your drawing will indicate the correct value.
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m Adding vectors using their components

Three players on a reality TV show are brought to the center of a
large, flat field. Each is given a meter stick, a compass, a calcula-
tor, a shovel, and (in a different order for each contestant) the fol-
lowing three displacements:

A:72.4 m, 32.0° east of north
B:573 m, 36.0° south of west
C: 17.8 m due south

The three displacements lead to the point in the field where the
keys to a new Porsche are buried. Two players start measuring
immediately, but the winner first calculates where to go. What
does she calculate?

IDENTIFY and SET UP: The goal is to find the sum (resultant) of
the three displacements, so this is a problem in vector addition.
Figure 1.22 shows the situation. We have chosen the +x-axis as

41.22 Three successive displacements Z, ﬁ, and C and the
resultant (vector sum) displacement R = A + B + C.

y (north)

17.8 m

x (east)

east and the +yjlxis as north. We estimate from the diagram that
the vector sum R is about 10 m, 40° west of north (which corre-
sponds to 6 ~ 130°).

EXECUTE: The angles of the vectors, measured from the +x-axis
toward the +y-axis, are (90.0° — 32.0°) = 58.0°, (180.0° +
36.0°) = 216.0°, and 270.0°, respectively. We may now use
Egs. (1.6) to find the components of A:

A, = Acos 0y = (72.4 m)(cos 58.0°) = 38.37 m
A, = Asinfy = (72.4 m)(sin 58.0°) = 61.40m

We’ve kept an extra significant figure in the components; we’ll
round to the correct number of significant figures at the end of
our calculation. The table below shows the components of all the
displacements, the addition of the components, and the other cal-
culations.

Distance Angle Xx-component y-component
A=724m 58.0° 38.37m 61.40 m
B =573m 216.0° —46.36 m —33.68 m
C=178m 270.0° 0.00 m —17.80 m

R, = —-799m R, =992m

R=V(-799m)> + (9.92m)? = 12.7m

9.92m
0 = arctan———— = —51°
arotan —_oo"
Comparing to Fig. 1.22 shows that the calculated angle is clearly
off by 180°. The correct value is 6 = 180° — 51° = 129°, or 39°
west of north.

EVALUATE: Our calculated answers for R and 0 agree with our esti-
mates. Notice how drawing the diagram in Fig. 1.22 made it easy
to avoid a 180° error in the direction of the vector sum.

3L CRE BN A simple vector addition in three dimensions

After an airplane takes off, it travels 10.4 km west, 8.7 km north, and 2.1 km up. How far
is it from the takeoff point?

Let the +x-axis be east, the +y-axis north, and the +z-axis up. Then the components of
the airplane’s displacement are A, = —10.4 km, A, = 8.7 km, and A, = 2.1 km. From
Eq. (1.12), the magnitude of the displacement is

A=V(-104km)> + (8.7km)? + (2.1 km)? = 13.7 km



Test Your Understanding of Section 1.8 Two vectors A and B both lie in

the xy-plane. (a) Is it possible for A to have the same magnitude as B but different
components? (b) Is it possible for A to have the same components as B but a different
magnitude? |

1.9 Unit Vectors

A unit vector is a vector that has a magnitude of 1, with no units. Its only pur-
pose is to point—that is, to describe a direction in space. Unit vectors provide a
convenient notation for many expressions involving components of vectors. We
will always include a caret or “hat” (*) in the symbol for a unit vector to distin-
guish it from ordinary vectors whose magnitude may or may not be equal to 1.

In an x-y coordinate system we can define a unit vector 7 that points in the
direction of the positive x-axis and a unit vector J that points in the direction of
the positive y-axis (Fig. 1.23a). Then we can express the relationship between
component vectors and components, described at the beginning of Section 1.8, as
follows:

e ~
A, = Al
R R (1.13)
Ay = Ay

5

Similarly, we can write a vector A in terms of its components as
-2 A ~
A=Al+Ay (1.14)

Equations (1.13) and (1.14) are vector equations; each term, such as A1, is a vec-
tor quantity (Fig. 1.23b). . . R

Using unit vectors, we can express the vector sum R of two vectors A and B as
follows:

A=Al+Aj
B = B\1 + B,j
R=A+B
= (Ad + AJ) + (Bd + Byj) (1.13]

Il
~—~

A+ Bl + (A, + B))j

R + Ry

Equation (1.15) restates the content of Egs. (1.10) in the form of a single vector
equation rather than two component equations.

If the vectors do not all lie in the xy-plane, then we need a third component.
We introduce a third unit vector k that points in the direction of the positive
z-axis (Fig. 1.24). Then Eqs. (1.14) and (1.15) become

A=Ad+Aj+Ak
- N a ~ (1.18)
B =B, + B,j + Bk
R= (A +B)i+ (A, + B)J + (A, + Bk
(1.17)

=Ri+R,j+Rk

1.9 Unit Vectors 19

1.23 (a) The unit vectors 7 and j.
(b) Expressing a vector A in
terms of its components.

(@

The unit vectors 7 and J point in the
directions of the x- and y-axes and
| have a magnitude of 1.

.
y We can express a vector A in
| terms of its components as

1.24 The unit vectors i, , and k.
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3ELCNE N Using unit vectors

Given the two displacements

D = (6.007 + 3.00j — 1.00k) m
E = (4.007 — 5.00j + 8.00k)m
find the magnitude of the displacement 2D - E.

IDENTIFY and SET UP: We are to multiply the vector D by 2 (a scalar)
and subtract the vector E from the result, so as to obtain the vector
F=2D-E. Equation (1.9) says that to multiply D by 2, we

EKECUTE: We have
and F = 2(6.00i + 3.00j — 1.00k) m — (4.00i — 5.00] + 8.00k) m
= [(12.00 — 4.00)7 + (6.00 + 5.00)] + (—2.00 — 8.00)k] m
= (8.007 + 11.00j — 10.00k) m
From Eq. (1.12) the magnitude of Fis
F=VF2+F+F?
V(8.00m)? + (11.00 m)? + (—
16.9 m

10.00 m)?

multiply each of its components by 2. We can use Eq. (1.17) to do

the subtraction; recall from Section 1.7 that subtracting a vector is
the same as adding the negative of that vector.

1.25 Calculating the scalar product of
two vectors, A-B=AB cos ¢.

@)

Place the vectors tail to tail.
4 -

A

|

(b) A - B equals A(B cos ).

(Magnitude Of.X) times (Component of B
in direction of A)

> 4\
B/ |\
|
¢
- S
ra—— A
Bcos ¢

(o A - B also equals B(A cos ¢)

(Magnitude of E) times (Component of 5
in direction of B)

Acosd/, &/\\\
B \\\
N
¢ S
— A

EVALUATE: Our answer is of the same order of magnitude as the
larger components that appear in the sum. We wouldn’t expect our

answer to be much larger than this, but it could be much smaller.
I

Test Your Understanding of Section 1.9 Arrange the following vectors

in order of their nglgnitude, with the vector of largeﬁst magnitude first. (i) A= (3iﬁ+ ( MP)
5] — 2k) m; (i) B = (=31 +5 —2k)m; (i) C = (31 — 5] — 2k) m; (iv) D =
(3t + 57 + 2k) m. 1

1.10 Products of Vectors

Vector addition develops naturally from the problem of combining displacements
and will prove useful for calculating many other vector quantities. We can also
express many physical relationships by using products of vectors. Vectors are not
ordinary numbers, so ordinary multiplication is not directly applicable to vectors.
We will define two different kinds of products of vectors. The first, called the
scalar product, yields a result that is a scalar quantity. The second, the vector
product, yields another vector.

Scalar Product

The scalar product of two vectors A and B is denoted by A-B. Because of this
notation, the scalar product is also called the dot product. Although A and B are
vectors, the quantity A B is a scalar.

To define the scalar product A - B we draw the two vectors A and B with their
tails at the same point (Fig. 1.25a). The angle ¢ (the Greek letter phi) between their
directions ranges from 0° to 180°. Figure 1.25b shows the projection of the vector
B onto the direction of A ; this projection is the component of B in the direction of
A and is equal to Bcos ¢. (We can take components along any direction that’s con-
venient, not just the x- and y-axes.) We define A - B tobe the magnitude of A multi-
plied by the component of B in the direction of A. Expressed as an equation,

(definition of the scalar

(dot) product) .18

A-B = ABcos¢ = |Z||§|cosd)
Alternatively, we can define A+ B to be the magnitude of B multlphed by
the component of A in the direction of B, as in Fig. 1.25c. Hence A-B=
B(Acos¢) = ABcos¢, which is the same as Eq. (1.18).
The scalar product is a scalar quantity, not a vector, and it may be positive, neg-

ative, or zero. When ¢ is between 0° and 90°, cos ¢ > 0 and the scalar product is



positive (Fig. 1. 26a) When ¢ is between 90° and 180° so that cos¢p < 0,
the component of B in the d1rect10n of A is negative, and A-Bis negative
(Fig. 1.26b). Finally, when ¢ = 90°, A-B=0 (Fig. 1.26¢). The scalar product
of two perpendicular vectors is always zero.

For any two vectors A and l?f, ABcos¢ = BAcos¢. This means that
A-B = B-A. The scalar product obeys the commutative law of multiplication;
the order of the two vectors does not matter.

We will use the scalar product in Chapter 6 to describe work done by a force.
When a constant force F is applied to a body that undergoes a displacement s,
the work W (a scalar quantity) done by the force is given by

W=F-%

The work done by the force is positive if the angle between Fands 1s between
0° and 90°, negative if this angle is between 90° and 180°, and zero if F and § are
perpendicular. (This is another example of a term that has a special meaning in
physics; in everyday language, “work™ isn’t something that can be positive or
negative.) In later chapters we’ll use the scalar product for a variety of purposes,
from calculating electric potential to determining the effects that varying mag-
netic fields have on electric circuits.

Calculating the Scalar Product Using Components

We can calculate the scalar product A-B directly if we know the x-, y-, and z-
components of A and B. To see how this is done, let’s first work out the scalar
products of the unit vectors. This is easy, since , J, and k all have magnitude 1
and are perpendicular to each other. Using Eq. (1.18), we find

= (1)(1)cos0° = 1
= (1)(1)cos90° =0

Pei=7-
A (1.19)
l

g =

Now we express A and B in terms of their components, expand the product, and
use these products of unit vectors:

A-B = (Ad + AjJ + Ak)- (Bi + Bj + B.k)

= Ad-Bi + Ad-B,j + Ad-Bk
+AJ B + Aj-Bj + Aj-B.k
+ Ak-Bi + Ak-B,j + Ak-B.k (1.20)
=ABi-1+ ABJIj+ ABIk
+ ABJi + ABj ]+ ABJ -k
+ ABk-1 + ABk-j+ ABk-k

From Eqgs. (1.19) we see that six of these nine terms are zero, and the three that
survive give simply

(scalar (dot) product in

A-B = + AB, +
A'B =AB, + AB, + A.B, terms of components)

(1.21)
Thus the scalar product of two vectors is the sum of the products of their respec-
tive components.

The scalar product gives a straightforward way to find the angle ¢ between
any two vectors A and B whose components are known. In this case we can use
Eq. (1.21) to find the scalar product of A and B. Example 1.11 on the next page
shows how to do this.

1.10 Products of Vectors 21

1.26 The scalar productz B = ABcos ¢
can be positive, negative, or zero, depend-
ing on the angle between A and B.

(@

If ¢ is bctwgcn N

_ A\
B/ \ 0°and90°,A-B
| is positive ...
¢ —
‘ —
—— A

... because B cos ¢ > 0.

(b)

lj ¢is between 90° and 180°,
7 A - B is negative ...

uy
|
|

l

... because B cos ¢ < 0.

©

If$p = 90°A-B =0
—| because B has zero component
in the direction of A.
¢ = 90°

I

e A
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3EL NN Calculating a scalar product

Find the scalar product A B of the two vectors in Fig. 1.27. The
magnitudes of the vectors are A = 4.00 and B = 5.00.

IDENTIFY and SET UP: We can calculate the scalar product in two
ways: using the magnitudes of the vectors and the angle between
them (Eq. 1.18), and using the components of the vectors
(Eq. 1.21). We’ll do it both ways, and the results will check each
other.

1.27 Two vectors in two dimensions.

y

B

¢:

ENECUTE: The angle between the two vectors is
130.0° — 53.0° = 77.0°, so Eq. (1.18) gives us

A-B = ABcos ¢ = (4.00)(5.00) cos 77.0° = 4.50

To use Eq. (1.21), we must first find the components of the vectors.
The angles of A and B are given with respect to the +x-axis and
are measured in the sense from the +x-axis to the +y-axis, so we
can use Egs. (1.6):

(4.00) cos 53.0° = 2.407
(4.00) sin 53.0° = 3.195

= (5.00) cos 130.0° = —3.214
B, = (5.00) sin 130.0° = 3.830

Ax
Ay
By

As in Example 1.7, we keep an extra significant figure in the com-
ponents and round at the end. Equation (1.21) now gives us

A-B=AB, +AB, + AB,
= (2407)(—3.214) + (3.195)(3.830) + (0)(0) = 4.50

EVALUATE: Both methods give the same result, as they should.

m Finding an angle with the scalar product

Find the angle between the vectors

=200i + 3.00j + 1.00k  and

~4.00f + 2.00j — 1.00k

S T

IDENTIFY and SET UP: We’re given the x-, y-, and z-components
of two vectors. Our target variable is the angle ¢ between
them (Fig. 1.28). To find this, we’ll solve Eq. (1.18), A+B =
AB cos ¢, for ¢ in terms of the scalar product A - B and the magni-
tudes A and B. We can evaluate the scalar product using Eq. (1.21),

1.28 Two vectors in three dimensions.

y

A extends from origin

g ~
B extends from origin to near corner of red box.

to far corner of blue box.

AB= AB, + AB, + A.B,, and we can find A and B using
Eq. (1.7).

EXECUTE: We solve Eq. (1.18) for cos ¢» and write A-B using
Eq. (1. 21). Our result is

A-B  AB.+AB +AB

AB AB

cos ¢ =

XVe can use this formula to find the angle between any two vectors
A and B. Here we have A, = 2.00, A, = 3.00, and A, = 1.00, and
B, = —4.00, B, = 2.00, and B, = —1.00. Thus

A-B=AB, +AB, + AB,
= (2.00)(—4.00) + (3.00)(2.00) + (1.00)(—1.00)
= —3.00
A= VA2 + A2+ A2 = V(200)% + (3.00)% + (1.00)2
= V14.00
B=VBZ2+B2+B2=V(-4.00)+ (2.00)* + (~1.00)?
= V21.00

AB, + AB, + A.B, B —3.00

AB V14.00 V/21.00

= —0.175

cos ¢ =
¢ = 100°

EJHLI.UATE: As a check on this result, note that the scalar product
A * B is negative. This means that ¢ is between 90° and 180° (see
Fig. 1.26), which agrees with our answer.



Vector Product

The vector product of two vectors A and B, also called the cross product, is
denoted by A X B. As the name suggests, the vector product is itself a vector.
We’ll use this product in Chapter 10 to describe torque and angular momentum;
in Chapters 27 and 28 we’ll use 1t to descrlbe magnetic fields and forces.

To define the vector product A X B, we again draw the two vectors A and B
with their tails at the same point (Fig. 1.29a). The two vectors then lie in a plane.
We define the vector product to be a vector quant1ty w1th a direction perpendicu-
lar to this plane (that is, perpendlcular to both A and B) and a magnitude equal to
ABsin ¢. That is, if C=4X B then

C = ABsin¢g (magnitude of the vector (cross) product of A and B) (1.22)

We measure the angle ¢ from A toward B and take it to be the smaller of the two
possible angles, so ¢ ranges from 0° to 180°. Then sin¢ = 0 and C in Eq. (1.22)
1s never negatwe as must be the case for a vector magnitude. Note also that when
A and B are parallel or antiparallel, ¢ = 0 or 180° and C = 0. That is, the vector
product of two parallel or antiparallel vectors is always zero. In particular, the
vector product of any vector with itself is zero.

CAUTION  Vector product us. scalar product Be careful not to confuse the expression
ABsin ¢ for the magmtude of the vector product;f X B with the similar expression ABcos ¢
for the scalar product A-B. To see the d1fference between these two expressions,
1magme that we vary the angle between A and B while keeping their magnitudes constant.
When A and B are parallel, the ma, nltude of the vector product will be zero and the scalar
product will be maximum. When A and B are perpendicular, the magnitude of the vector
product will be maximum and the scalar product will be zero.

There are always two directions perpendicular to a given plane _one on each
side of the plane. We choose which of these is the direction of A X B as follows
Imagine rotating vector A about the perpendicular line unt1l it is al1gned with B
choosing the smaller of the two possible angles between A and B. Curl the fin-
gers of your right hand around the perpendicular line so that the fingertips point
in the direction of rotation; your thumb will then point in the direction of A X B.
Figure 1.29a shows this right-hand rule and describes a second way to think
about this rule.

Similarly, we determine the direction of BXA by rotatmg B mto A as in
Fig. 1.29b. The result is a vector that is opposite to the vectorA X B. The vector
product is not commutative! In fact, for any two vectors A and B

AXB=-BXA (1.23)

Just as we did for the scalar product, we can give a geometrical interpretation
of the magmtude of the vector product. In Fig. 1.30a, Bsin <;b is the component of
vector B that i is per_]gendzcular to the dlrectlon of vector A. From Eq. (1.22) the
magnitude of A X B equals the magnitude of A multiplied by the component of B
perpendicular to A. Flgure 1.30b shows that the magmtude of A X B also equals
the magnitude of B multiplied by the component of A perpendicular to B. Note
that Fig. 1.30 shows the case in which ¢ is between 0° and 90°; you should draw a
similar diagram for ¢ between 90° and 180° to show that the same geometrical
interpretation of the magnitude of A X B still applies.

Calculating the Vector Product Using Components

- -
If we know the components of A and B, we can calculate the components of the
vector product using a procedure similar to that for the scalar product. First we
work out the multiplication table for the unit vectors 1, J, and k. all three of which

1.10 Products of Vectors 23

1.29 (a) The vector product A X B
determined by the right-hand rule.

(b) B X A = —A X B; the vector product
is anticommutative.

(a) Using the right-hand rule to find the
direction of A X B

Place A and B tail to tail. AXB

Point fingers of right hand
along A, with palm facing B.

Curl fingers toward B.

®e O

A
Thumb points in b

direction of A X B. 5
B

(b) B x A = —A x B (the vector product is
anticommutative)

B A
Same magnitude but --..,
o

opposite direction BxA

1.30 Calculating the magnitude ABsin ¢
of the yector product of two vectors,
A X B.

(@)
(Magnitude of/{ X B) equals A(B sin ¢).

(Magnitude of;{) times (Component ofB
perpendicular to A)

(b)
(Magnitude of;{ X E) also equals B(A sin ¢).

(Magnitude of B) times (Component of A
perpendicular to B)
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1.31 (a) We will always use a right-
handed coordinate system, like this one.
(b) We will never use a left-handed coordi-
nate system (in whichz X j = —k, and

SO on).

(a) A right-handed coordinate system

(b) A left-handed coordinate system;
we will not use these.

are perpendicular to each other (Fig. 1.31a). The vector product of any vector
with itself is zero, so

IXi=jxXj=kxk=0

The boldface zero is a reminder that each product is a zero vector—that is, one
with all components equal to zero and an undefined direction. Using Eqs. (1.22)
and (1.23) and the right-hand rule, we find

ixXj=—-jxi=h
jxk=—-kxj=1i (1.24)
kxi=—-ixk=]

You can verify these fquatigns by referring to Fig. 1.31a.

Next we express A and B in terms of their components and the corresponding
unit vectors, and we expand the expression for the vector product:

AXB=(Ai+AjJ+Ak) X (Bi+B,j+ Bk)
= Ad X B, + AJd X Bj + A X B.k
+ Aj X B + Aj X B,j + A,j X Bk (1.25)
+ Ak X BJi + Ak X B,j + Ak X Bk
We can also rewrite the individual terms in Eq. (1.25) as A X Byf =

(AxBy)i X J, and so on. Evaluating these by using the multiplication table for
the unit vectors in Egs. (1.24) and then grouping the terms, we get

AXB= (AyB, — AB))1 + (AB, — A;B,)] + (A.B, — AyBX)I} (1.28)

Thus the components of C=AXBare given by

C,=AB, —AB, C,=AB,—AB, C,=AB,~AB, o

(components of C = A X B)

The vector product can also be expressed in determinant form as

=

1
AXB=|A,
B,

>

N

y

o>

o]

y

If you aren’t familiar with determinants, don’t worry about this form.

With the axis system of Fig. 1.31a, if we reverse the direction of the z-axis, we
get the system shown in Fig. 1.31b. Then, as you may verify, the definition of the
vector product gives I X j = —k instead of 7 X j = k. In fact, all vector prod-
ucts of the unit vectors z, J, and k would have signs opposite to those in Egs. (1.24).
We see that there are two kinds of coordinate systems, differing in the signs of
the vector products of unit vectors. An axis system in which 7 X J = k, as in
Fig. 1.31a, is called a right-handed system. The usual practice is to use only
right-handed systems, and we will follow that practice throughout this book.



m Calculating a vector product

Vector A has magnitude 6 units and is in the direction of the
+x-axis. Vector B has magnitude 4 units and lies in the xy-plane,
making an angle of 30° with the +x-axis (Fig. 1.32). Find the vec-
tor product C=A4XB.

IDENTIFY and SET UP: We’ll find the vector product in two ways,
which will provide a check of our calculations. First we’ll use
Eq. (1.22) and the right-hand rule; then we’ll use Egs. (1.27) to
find the vector product using components.

-

1.32 Vectors A and B and their vector product C=A4XB.
The vector B lies in the xy-plane.

1.10 Products of Vectors 29

EXECUTE: From Eq. (1.22) the magnitude of the vector product is
ABsin ¢ = (6)(4)(sin 30°) = 12

By the right-hand rule, the direction of A X B is along the
+z—ax1s (the direction of the unit vector k) so we have
C=AXB = 12. .
Tg use Eqs. (1.27), we first determine the components of A
and B:
A, =6
B, = 4 cos 30° = 2V3

Then Eqgs. (1.27) yield

Ay =0 A, =
B,=4sin30°=2 B, =0

= (0)(0) — (0)(2) =
(0)(2 \f>—<6><0>:o
(6)(2) — (0)(2V3) = 12

Thus again we have Z’ = 12k.

EVALUATE: Both methods give the same result. Depending on the
situation, one or the other of the two approaches may be the more
convenient one to use.

Test Your Understanding of Section 1.10 Vector A has magnitude 2 and

vector B has magnitude 3. The angle ¢ between A and B is known to be 0°, 90°, or 180°.
For each of the following situations, state what the value of ¢ must be. (In each situation
there may be more than one correct answer.) (a);f ‘B = 0; (b) AXB= 0; (¢c) A-B = 6;

d)A-B = —6; (e) (Magnitude of A X B) = 6.



SUMMARY

CHAPTER /|

Physical guantities and units: Three fundamental physical quantities are mass, length, and time.
The corresponding basic SI units are the kilogram, the meter, and the second. Derived units for
other physical quantities are products or quotients of the basic units. Equations must be dimension-
ally consistent; two terms can be added only when they have the same units. (See Examples 1.1
and 1.2.)

Significant figures: The accuracy of a measurement can be indicated by the number of significant
figures or by a stated uncertainty. The result of a calculation usually has no more significant figures
than the input data. When only crude estimates are available for input data, we can often make use-
ful order-of-magnitude estimates. (See Examples 1.3 and 1.4.)

Scalars, vectors, and vector addition: Scalar quantities are numbers and combine with the usual
rules of arithmetic. Vector quantities have direction as well as magnitude and combine according
to the rules of vector addition. The negative of a vector has the same magnitude but points in the
opposite direction. (See Example 1.5.)

Vector components and vector addition: Vector addi- R, = A, + B,

tion can be carried ouj usirLg corilponents of vectors. R, = A, + B, 1.10)
The x-component _gf R = A + B is the sum of the R,= A, + B,

x-components of A and B, and likewise for the y- and

z-components. (See Examples 1.6—-1.8.)

Unit vectors: Unit vectors describe directions in space. A=Aj+ A+ AZIAc (1.18)

A unit vector has a magnitude of 1, with no units. The
unit vectors z, J, and k, aligned with the x-, y-, and
z-axes of a rectangular coordinate system, are espe-
cially useful. (See Example 1.9.)

Scalar product: The scalar product C = A - B of two A-B = ABcos¢ = |Z||§|cos¢ (1.18)
vectors A and B is a scalar quantity. It can be expressed - —

in terms of the magnitudes of A and B and the angle ¢ AL = A8, 82 N1, 5 L (.21
between the two vectors, or in terms of the components

of A and B The scalar product is commutative;

A-B = B-A. The scalar product of two perpendicular

vectors is zero. (See Examples 1.10 and 1.11.)

Vector product: The vector product C = A X Boftwo C = ABsin¢ (1.22)
vectors A and B is another vector C. The magnitude of _ _

SN i = = C,=AB, — AB,

A X B depends on the magnitudes of A and B and ’

the angle ¢ between the two vectors. The direction of C, = AB, — AB; (1.27)
A X Bis perpendicular to the plane of the two vectors C.= AB, — AB,

being multiplied, as given by the right-hand rule. The
components of C=A X Bcanbe expressed in terms
of the components of A and B. The vector product is not
commutative; A X B = —B X A. The vector product
of two parallel or antiparallel vectors is zero. (See
Example 1.12.)

Significant figures in magenta

C _ 0424m
= 27 T 2(0.06750 m)

123.62 + 8.9 = 132.5

Scalar productA> . B> = AB cos ¢

=

|

(Magnitude of A X E) =

A X Bis perpendlcular
to the plane of A and B.

AB sin ¢



Vlectors on the Roof

An air-conditioning unit is fastened to a roof that slopes at an angle of
35° above the horizontal (Fig. 1.33). Its weight is a force on the air
conditioner that is directed vertically downward. In order that the
unit not crush the roof tiles, the component of the unit’s weight per-
pendicular to the roof cannot exceed 425 N. (One newton, or 1 N, is
the SI unit of force. It is equal to 0.2248 1b.) (a) What is the maxi-
mum allowed weight of the unit? (b) If the fasteners fail, the unit
slides 1.50 m along the roof before it comes to a halt against a ledge.
How much work does the weight force do on the unit during its slide
if the unit has the weight calculated in part (a)? As we described in
Section 1.10, the work done by a force Fonan object that undergoes
a displacement § is W = F - 5.

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution. ‘ M ’

IDENTIFY and SET UP

1. This problem involves vectors and components. What are the
known quantities? Which aspect(s) of the weight vector (mag-
nitude, direction, and/or particular components) represent the
target variable for part (a)? Which aspect(s) must you know to
solve part (b)?

2. Make a sketch based on Fig. 1.33. Add x- and y-axes, choosing
the positive direction for each. Your axes don’t have to be hori-
zontal and vertical, but they do have to be mutually perpendicu-
lar. Make the most convenient choice.

3. Choose the equations you’ll use to determine the target
variables.

EXECUTE
4. Use the relationship between the magnitude and direction of a
vector and its components to solve for the target variable in

Problems

For instructor-assigned homework, go to www.masteringphysics.com
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1.33 An air-conditioning unit on a slanted roof.

part (a). Be careful: Is 35° the correct angle to use in the equa-
tion? (Hint: Check your sketch.)

5. Make sure your answer has the correct number of significant
figures.

6. Use the definition of the scalar product to solve for the target
variable in part (b). Again, make sure to use the correct number
of significant figures.

EVALUATE

7. Did your answer to part (a) include a vector component whose
absolute value is greater than the magnitude of the vector? Is
that possible?

8. There are two ways to find the scalar product of two vectors,
one of which you used to solve part (b). Check your answer by
repeating the calculation using the other way. Do you get the
same answer?

@

e, e, eeo: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems

requiring calculus. BID: Biosciences problems.

DISCUSSION QUESTIONS

@1.1 How many correct experiments do we need to disprove a the-
ory? How many do we need to prove a theory? Explain.

@1.2 A guidebook describes the rate of climb of a mountain trail
as 120 meters per kilometer. How can you express this as a number
with no units?

@1.3 Suppose you are asked to compute the tangent of 5.00 meters.
Is this possible? Why or why not?

@1.4 A highway contractor stated that in building a bridge deck he
poured 250 yards of concrete. What do you think he meant?

@1.5 What is your height in centimeters? What is your weight in
newtons?

@1.6 The U.S. National Institute of Standards and Technology
(NIST) maintains several accurate copies of the international stan-
dard kilogram. Even after careful cleaning, these national standard

kilograms are gaining mass at an average rate of about 1 ug/y
(y = year) when compared every 10 years or so to the standard
international kilogram. Does this apparent change have any impor-
tance? Explain.

@1.7 What physical phenomena (other than a pendulum or cesium
clock) could you use to define a time standard?

@1.8 Describe how you could measure the thickness of a sheet of
paper with an ordinary ruler.

01.9 The quantity 7= = 3.14159... is a number with no dimen-
sions, since it is a ratio of two lengths. Describe two or three other
geometrical or physical quantities that are dimensionless.

@1.10 What are the units of volume? Suppose another student tells
you that a cylinder of radius r and height / has volume given by
ar3h. Explain why this cannot be right.
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@1.11 Three archers each fire four arrows at a target. Joe’s four
arrows hit at points 10 cm above, 10 cm below, 10 cm to the left,
and 10 cm to the right of the center of the target. All four of
Moe’s arrows hit within 1 cm of a point 20 cm from the center,
and Flo’s four arrows all hit within 1 cm of the center. The contest
judge says that one of the archers is precise but not accurate,
another archer is accurate but not precise, and the third archer is
both accurate and precise. Which description goes with which
archer? Explain your reasoning.

01.12 A circular racetrack has a radius of 500 m. What is the dis-
placement of a bicyclist when she travels around the track from the
north side to the south side? When she makes one complete circle
around the track? Explain your reasoning.

@1.13 Can you find two vectors with different lengths that have a
vector sum of zero? What length restrictions are required for three
vectors to have a vector sum of zero? Explain your reasoning.
@1.14 One sometimes speaks of the “direction of time,” evolving
from past to future. Does this mean that time is a vector quantity?
Explain your reasoning.

@1.15 Air traffic controllers give instructions to airline pilots telling
them in which direction they are to fly. These instructions are
called “vectors.” If these are the only instructions given, is the name
“vector” used correctly? Why or why not?

@1.16 Can you find a vector quantity that has a magnitude of zero
but components that are different from zero? Explain. Can the
magnitude of a vector be less than the magnitude of any of its com-
ponents? Explain.

@1.17 (a) Does it make sense to say that a vector is negative?
Why? (b) Does it make sense to say that one vector is the negative
of another? Why? Does your answer here contradict what you said
in part (a)?

01.18 If C is the vector sum of A and I}, C=A+ l_i what must
be true about the directions and magnitudes of A and B if
C = A + B? What must be true about the directions and mag-
nitudes of A and B if C = 0?

81.19 If A and B are nonzero vectors, is it possible for A-Band
A X B both to be zero? Explain.

01.20 What does A ~Z, the scalar product of a vector with itself,
give? What about A X K, the vector product of a vector with
itself?

81.21 LetA represent any nonzero vector. Why is A /A a unit vec-
tor, and what is its direction? If 6 is the angle that A makes with the
+x-axis, explain why (K JA) -1 is called the direction cosine for
that axis.

@1.22 Which of the following are legitimate mathematical opera-
tions: (a) A4 - (l_f - Z’), (b) (Z - E) xC; () A- (l_f X 6),
(A x (ﬁ X 6'), () A X (E . Z')" In each case, give the reason
for your answer.

81.23 Consider the two repeated vector products A X (ﬁ X Z‘)
and (Z X E) X C. Give an example that illustrates the general
rule that these two vector products do not have the same magni-
tude or direction. Can you choose the vectors A R B , and C such that
these two vector products are equal? If so, give an example.

01.24 Show that, no matter what A and B are, A- (Z X l_§) = 0.
(Hint: Do not look for an elaborate mathematical proof. Rather
look at the definition of the direction of the cross product.)

081.25 (a) If A-B = 0, does it necessarily follow that A = 0 or
B = 0? Explain. (b) If AXB= 0, does it necessarily follow that
A = 0or B = 0?7 Explain.

@1.26 If A = 0 for a vector in the xy-plane, does it follow that
A, = —A,? What can you say about Ay and A,?

EXERCISES

Section 1.3 Standards and Units

Section 1.4 Unit Consistency and Conversions

1.1 - Starting with the definition 1 in. = 2.54 cm, find the num-
ber of (a) kilometers in 1.00 mile and (b) feet in 1.00 km.

1.2 = According to the label on a bottle of salad dressing, the
volume of the contents is 0.473 liter (L). Using only the conver-
sions 1 L = 1000 cm® and 1in. = 2.54 cm, express this volume
in cubic inches.

1.3 ++ How many nanoseconds does it take light to travel 1.00 ft
in vacuum? (This result is a useful quantity to remember.)

1.4 ++ The density of gold is 19.3 g/cm’. What is this value in
kilograms per cubic meter?

1.5 ¢ The most powerful engine available for the classic 1963
Chevrolet Corvette Sting Ray developed 360 horsepower and had
a displacement of 327 cubic inches. Express this displacement in
liters (L) by using only the conversions 1L = 1000 cm’® and
lin. = 2.54 cm.

1.6 << A square field measuring 100.0 m by 100.0 m has an area
of 1.00 hectare. An acre has an area of 43,600 ft”. If a country lot
has an area of 12.0 acres, what is the area in hectares?

1.7 = How many years older will you be 1.00 gigasecond from
now? (Assume a 365-day year.)

1.8 ¢ While driving in an exotic foreign land you see a speed limit
sign on a highway that reads 180,000 furlongs per fortnight. How
many miles per hour is this? (One furlong is % mile, and a fortnight
is 14 days. A furlong originally referred to the length of a plowed
furrow.)

1.9 « A certain fuel-efficient hybrid car gets gasoline mileage of
55.0 mpg (miles per gallon). (a) If you are driving this car in
Europe and want to compare its mileage with that of other European
cars, express this mileage in km/L (L = liter). Use the conver-
sion factors in Appendix E. (b) If this car’s gas tank holds 45 L,
how many tanks of gas will you use to drive 1500 km?

1.10 « The following conversions occur frequently in physics and
are very useful. (a) Use 1 mi = 5280 ft and 1 h = 3600 s to con-
vert 60 mph to units of ft/s. (b) The acceleration of a freely falling
object is 32 ft/sz. Use 1 ft = 30.48 cm to express this acceleration
in units of m/s2. (c) The density of water is 1.0 g/cm®. Convert
this density to units of kg/m>.

1.11 = Neptunium. In the fall of 2002, a group of scientists at
Los Alamos National Laboratory determined that the critical mass
of neptunium-237 is about 60 kg. The critical mass of a fissionable
material is the minimum amount that must be brought together to
start a chain reaction. This element has a density of 19.5 g/ cm’.
What would be the radius of a sphere of this material that has a
critical mass?

1.12 - BID (a) The recommended daily allowance (RDA) of the
trace metal magnesium is 410 mg/day for males. Express this
quantity in pg/day. (b) For adults, the RDA of the amino acid
lysine is 12 mg per kg of body weight. How many grams per day
should a 75-kg adult receive? (c) A typical multivitamin tablet can
contain 2.0 mg of vitamin B, (riboflavin), and the RDA is
0.0030 g/day. How many such tablets should a person take each
day to get the proper amount of this vitamin, assuming that he gets
none from any other sources? (d) The RDA for the trace element
selenium is 0.000070 g/day. Express this dose in mg/day.

Section 1.5 Uncertainty and Significant Figures
1.13 -¢ Figure 1.7 shows the result of unacceptable error in the
stopping position of a train. (a) If a train travels 890 km from Berlin



to Paris and then overshoots the end of the track by 10 m, what is
the percent error in the total distance covered? (b) Is it correct to
write the total distance covered by the train as 890,010 m? Explain.
1.14 - With a wooden ruler you measure the length of a rectangu-
lar piece of sheet metal to be 12 mm. You use micrometer calipers
to measure the width of the rectangle and obtain the value 5.98
mm. Give your answers to the following questions to the correct
number of significant figures. (a) What is the area of the rectangle?
(b) What is the ratio of the rectangle’s width to its length? (c) What
is the perimeter of the rectangle? (d) What is the difference
between the length and width? (e) What is the ratio of the length to
the width?

1.15 << A useful and easy-to-remember approximate value for the
number of seconds in a year is 77 X 107. Determine the percent
error in this approximate value. (There are 365.24 days in one year.)

Section 1.6 Estimates and Orders of Magnitude

1.16 < How many gallons of gasoline are used in the United
States in one day? Assume that there are two cars for every three
people, that each car is driven an average of 10,000 mi per year,
and that the average car gets 20 miles per gallon.

1.17 -- EI0 A rather ordinary middle-aged man is in the hospital
for a routine check-up. The nurse writes the quantity 200 on his
medical chart but forgets to include the units. Which of the follow-
ing quantities could the 200 plausibly represent? (a) his mass in
kilograms; (b) his height in meters; (c) his height in centimeters;
(d) his height in millimeters; (e) his age in months.

1.18 < How many kernels of corn does it take to fill a 2-L soft
drink bottle?

1.19 + How many words are there in this book?

1.20 - EID Four astronauts are in a spherical space station. (a) If,
as is typical, each of them breathes about 500 cm?® of air with each
breath, approximately what volume of air (in cubic meters) do
these astronauts breathe in a year? (b) What would the diameter (in
meters) of the space station have to be to contain all this air?

1.21 - BID How many times does a typical person blink her eyes
in a lifetime?

1.22 - EID How many times does a human heart beat during a
lifetime? How many gallons of blood does it pump? (Estimate that
the heart pumps 50 cm® of blood with each beat.)

1.23 « In Wagner’s opera Das Rheingold, the goddess Freia is
ransomed for a pile of gold just tall enough and wide enough to
hide her from sight. Estimate the monetary value of this pile. The
density of gold is 19.3 g/ em?, and its value is about $10 per gram
(although this varies).

1.24  You are using water to dilute small amounts of chemicals
in the laboratory, drop by drop. How many drops of water are in a
1.0-L bottle? (Hint: Start by estimating the diameter of a drop of
water.)

1.25 < How many pizzas are consumed each academic year by
students at your school?

Section 1.7 Vectors and Vector Addition

1.26 -+ Hearing rattles from a snake, you make two rapid dis-
placements of magnitude 1.8 m and 2.4 m. In sketches (roughly to
scale), show how your two displacements might add up to give a
resultant of magnitude (a) 4.2 m; (b) 0.6 m; (c) 3.0 m.

1.27 <+ A postal employee drives a delivery truck along the route
shown in Fig. E1.27. Determine the magnitude and direction of the
resultant displacement by drawing a scale diagram. (See also Exer-
cise 1.34 for a different approach to this same problem.)
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Figure E1.27
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1.28 - For the vectors A and
B in Fig. E1.28, use a scale
drawing to find the magnitude
and direction of (a) the vector
sum A + B and (b) the vector
difference A — B. Use your
answers to find the magnitude
and direction of (c) —-A-B
and (d) B-—A. (See also Exer-

Figure E1.28

Y

B (15.0 m)

D (10.0 m)

X
cise 1.35 for a different ap-
proach to this problem.)
1.29 << A spelunker i - C -
9 spelunker is survey C (12.0 m) A 8.00m)

ing a cave. She follows a pas-
sage 180 m straight west, then
210 m in a direction 45° east of
south, and then 280 m at 30° east of north. After a fourth unmea-
sured displacement, she finds herself back where she started. Use a
scale drawing to determine the magnitude and direction of the
fourth displacement. (See also Problem 1.69 for a different
approach to this problem.)

Section 1.8 Components of Uectors

1.30 - Let the angle 6 be the angle that the vector A makes with
the +x-axis, measured counterclockwise from that axis. Find
the angle 6 for a vector that has the following components:
(@A, =200m,A, = —=1.00m; (b) A, = 2.00 m, A, = 1.00 m;
(©A,=—-2.00m,A, = 1.00m; (d) A, = =2.00m, A, = —1.00 m.
1.31 » Compute the x- and y-components of the vectors A.B.C,
and D in Fig. E1.28.

1.32 - Vector A is in the direction 34.0° clockwise from the
—y-axis. The x-component of Ais A, = —16.0 m. (a) What is the
y-component of A? (b) What is the magnitude of A?

1.33 « Vector A has y-component A, = +13.0m. A makes an
angle of 32.0° counterclockwise from the + y-axis. (a) What is the
x-component of A? (b) What is the magnitude of A?

1.34 -+ A postal employee drives a delivery truck over the route
shown in Fig. E1.27. Use the method of components to determine
the magnitude and direction of her resultant displacement. In a
vector-addition diagram (roughly to scale), show that the resultant
displacement found from your diagram is in qualitative agreement
with the result you obtained using the method of components.

1.35 ¢ For the vectors A and B in Fig. E1.28, use the method of
components to find the magnitude and direction of (a) the vector
sum A + ﬁ; (b) the vector sum B + X; (c) the vector difference
A- l_f; (d) the vector difference B-A.

1.36 ° Find the magnitude and direction of the vector represented
by the following pairs of components: (a) A, = —8.60 cm,



30 CHAPTER 1 Units, Physical Quantities, and Vectors

A, =520cm; (b) A, =—-970m, A, =
7.75 km, A, = —2.70 km. V
1.37 - A disoriented physics professor drives 3.25 km north, then
2.90 km west, and then 1.50 km south. Find the magnitude and direc-
tion of the resultant displacement, using the method of components.
In a vector-addition diagram (roughly to scale), show that the result-
ant displacement found from your diagram is in qualitative agree-
ment with the result you obtained using the method of components.
1.38 <= Two ropes in a vertical plane exert equal-magnitude
forces on a hanging weight but pull with an angle of 86.0° between
them. What pull does each one exert if their resultant pull is 372 N
directly upward?

1.39 - Vector A is 2.80 cm
long and is 60.0° above the x-
axis in the first quadrant. Vector
B is 1.90 cm long and is 60.0°
below the x-axis in the fourth
quadrant (Fig. E1.39). Use com-
ponents to find the ma, mtude 60.0°
and_direction of (a) A + B: ON J60.0° *
(b) A- B, (c) B — A. In each

case, sketch the vector addition

or subtraction and show that

your numerical answers are in
qualitative agreement with your sketch.

—245m; (c) A, =

Figure E1.39
y

A (2.80 cm)

B (1.90 cm)

Section 1.9 Unit Vectors

1.40 - In each case, find the x- and y-components of vector A:
(@A =500 — 63];(b)A = 11.2] — 9917; () A = —15.01 +
22.4j; (d)A = 5.0B, where B = 41 — 6.

1.41 -+ Write each vector in Fig. E1.28 in terms of the unit vec-
tors 7 and J.

1.82 - Given two vectors A = 4.007 + 7.007 and B = 5.007 —
2.007, (a) find the magnitude of each vector; (b) write an expres-
sion for the vector difference A — B using unit vectors; (c) find
the magnitude and direction of the vector difference A - B. (d) In
a vector diagram show Z, E, and A — ﬁ, and also show that your
diagram agrees qualitatively with your answer in part (c).

1.43 -+ (a) Write each vector
in Fig. E1.43 in terms of the
unit vectors z and J. (b) Use unit
vectors to express the vector
C. where C = 3.004 — 4.00B.
(c) Find the magnitude and direc-
tion of C.

144 -- (a) Is the vector
(1 + J + k) a unit vector? Jus-
tify your answer. (b) Can a unit
vector have any components
with magnitude greater than
unity? Can it have any negative components? In each case justify
your answer. (c) If A= a(3.01 + 4.0J), where a is a constant,
determine the value of a that makes A a unit vector.

Figure E1.43

y
A (3.60 m)

70.0°

30.0° o

B (2.4 m)

Section 1.10 Products of Vectors

1.45 « For the vectors Z, ﬁ, and C in Fig. E1.28, find the scalar
products (a)Z . ﬁ; (b) B- Z‘; (C)Z . C.

1.46 - (a) Find the scalar product of the two vectors A and B
given in Exercise 1.42. (b) Find the angle between these two vectors.
1.47 - Find the angle between each of the following pairs of
vectors:

(@) A = —2.00i + 600 and B = 2.00i — 3.00f
(b) A = 3.00i + 5.00j and B = 10.00i + 6.00]
(c) A = —4.00i + 200j and B = 7.00i + 14.00]

1.48 <+ Find the vector product;{ X B (expressed in unit vectors)
of the two vectors given in Exercise 1.42. What is the magnitude
of the vector product?

1.49 - For the vectors A and D in Fig. E1.28, (a) find the magni-
tude and direction of the vector product A X D (b) find the mag-
nitude and direction of D X A.

1.50 - For the two vectors in Fig. E1.39, (a) find the magnitude
and direction of the vector product A x l_§; (b) find the magnitude
and direction of B X A.

1.51 ¢ For the two_vectors A and B in Fig. E1.43, (a) find the
scalar product A- B (b) find the magnitude and direction of
the vector productA X B.

1.52 « The vector A is 3.50 cm long and is directed into this page.
Vector B points from the lower right corner of this page to the
upper left corner of this page. Define an appropriate right-handed
coordmate system, and find the three components of the vector
productA X B, measured in cm Ina dlagram show your coordi-
nate system and the vectors A B andA X B.

1.53 « Given two vectors A = —2.00i + 3.00] + 4.00k and
B = 3.001 + 1.00j — 3.00k, do the following. (a) Find the mag-
nitude of each vector. (b) Write an expression for the vector differ-
ence A — B usmg umt vectors. (¢) Find the magnitude of the
vector difference A — B. Is this the same as the magnitude of
B — A? Explain.

PROBLEMS

1.54 * An acre, a unit 0f land measurement still in wide use, has a
length of one furlong ( mi) and a width one-tenth of its length.
(a) How many acres are in a square mile? (b) How many square
feet are in an acre? See Appendix E. (¢) An acre-foot is the volume
of water that would cover 1 acre of flat land to a depth of 1 foot.
How many gallons are in 1 acre-foot?

1.55 = An Earthlike Planet. In January 2006 astronomers
reported the discovery of a planet comparable in size to the earth
orbiting another star and having a mass about 5.5 times the earth’s
mass. It is believed to consist of a mixture of rock and ice, similar
to Neptune. If this planet has the same density as Neptune
(1.76 g/ cm?), what is its radius expressed (a) in kilometers and (b)
as a multiple of earth’s radius? Consult Appendix F for astronomi-
cal data.

1.56 - The Hydrogen Maser. You can use the radio waves
generated by a hydrogen maser as a standard of frequency. The fre-
quency of these waves is 1,420,405,751.786 hertz. (A hertz is another
name for one cycle per second.) A clock controlled by a hydro-
gen maser is off by only 1 s in 100,000 years. For the following
questions, use only three significant figures. (The large number of
significant figures given for the frequency simply illustrates the
remarkable accuracy to which it has been measured.) (a) What is
the time for one cycle of the radio wave? (b) How many cycles
occur in 1 h? (¢) How many cycles would have occurred during the
age of the earth, which is estimated to be 4.6 X 10° years? (d) By
how many seconds would a hydrogen maser clock be off after a
time interval equal to the age of the earth?

1.57 - EID Breathing Oxygen. The density of air under stan-
dard laboratory conditions is 1.29 kg/ m?>, and about 20% of that
air consists of oxygen. Typically, people breathe about % L of air
per breath. (a) How many grams of oxygen does a person breathe



in a day? (b) If this air is stored uncompressed in a cubical tank,
how long is each side of the tank?

1.58 e+ A rectangular piece of aluminum is 7.60 = 0.01 cm long
and 1.90 = 0.01 cm wide. (a) Find the area of the rectangle and
the uncertainty in the area. (b) Verify that the fractional uncertainty
in the area is equal to the sum of the fractional uncertainties in the
length and in the width. (This is a general result; see Challenge
Problem 1.98.)

1.89 ¢+ As you eat your way through a bag of chocolate chip
cookies, you observe that each cookie is a circular disk with a
diameter of 8.50 % 0.02 cm and a thickness of 0.050 = 0.005 cm.
(a) Find the average volume of a cookie and the uncertainty in the
volume. (b) Find the ratio of the diameter to the thickness and the
uncertainty in this ratio.

1.60 - BID Biological tissues are typically made up of 98% water.
Given that the density of water is 1.0 X 10° kg/ m®, estimate the
mass of (a) the heart of an adult human; (b) a cell with a diameter
of 0.5 wum; (c) a honey bee.

1.61 - BID Estimate the number of atoms in your body. (Hint:
Based on what you know about biology and chemistry, what are
the most common types of atom in your body? What is the mass of
each type of atom? Appendix D gives the atomic masses for differ-
ent elements, measured in atomic mass units; you can find the
value of an atomic mass unit, or 1 u, in Appendix E.)

1.62 <+ How many dollar bills would you have to stack to reach
the moon? Would that be cheaper than building and launching a
spacecraft? (Hint: Start by folding a dollar bill to see how many
thicknesses make 1.0 mm.)

1.63 <<+ How much would it cost to paper the entire United
States (including Alaska and Hawaii) with dollar bills? What
would be the cost to each person in the United States?

1.64 - Stars in the Universe. Astronomers frequently say that
there are more stars in the universe than there are grains of sand on
all the beaches on the earth. (a) Given that a typical grain of sand is
about 0.2 mm in diameter, estimate the number of grains of sand
on all the earth’s beaches, and hence the approximate number of
stars in the universe. It would be helpful to consult an atlas and do
some measuring. (b) Given that a typical galaxy contains about
100 billion stars and there are more than 100 billion galaxies in the
known universe, estimate the number of stars in the universe and
compare this number with your result from part (a).

1.65 <<+ Two workers pull horizontally on a heavy box, but one
pulls twice as hard as the other. The larger pull is directed at 25.0°
west of north, and the resultant of these two pulls is 460.0 N
directly northward. Use vector components to find the magnitude
of each of these pulls and the direction of the smaller pull.

1.66 ¢ Three horizontal I0pes  ioirg P1.66

pull on a large stone stuck in the

ground,  producing _the vector Y

forces A, B, and C shown in B (80.0N)

Fig. P1.66. Find the magnitude 30.0° A (100.0 N)
and direction of a fourth force on

the stone that will make the vec-

tor sum of the four forces zero. 'Y 30.0°

1.67 <+ You are to program a 5300\ /10

robotic arm on an assembly line

to move in the xy-plane. Its first C (40.0N)

displacement is A; its second

displacement is l_{ of magnitude 6.40 cm and direction 63.0° meas-
ured in the sense from the +x-axis toward the —y-axis. The result-
ant C =A + B of the two displacements should also have a
magnitude of 6.40 cm, but a direction 22.0° measured in the sense
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from the +x-axis toward the +y-axis. (a) Draw the vector-addition
diagram for these vectors, roughly to scale. (b) Find the components
of A. (c) Find the magnitude and direction of A.

1.68 <<+ Emergency Landing. A plane leaves the airport in
Galisteo and flies 170 km at 68° east of north and then changes
direction to fly 230 km at 48° south of east, after which it makes
an immediate emergency landing in a pasture. When the airport
sends out a rescue crew, in which direction and how far should this
crew fly to go directly to this plane?

1.69 <<+ As noted in Exercise 1.29, a spelunker is surveying a
cave. She follows a passage 180 m straight west, then 210 m in a
direction 45° east of south, and then 280 m at 30° east of north.
After a fourth unmeasured displacement she finds herself back
where she started. Use the method of components to determine
the magnitude and direction of the fourth displacement. Draw the
vector-addition diagram and show that it is in qualitative agree-
ment with your numerical solution.

1.70 -+ (a) Find the magnitude and direction of the vector R that
is the sum of the three vectors Z, E, and C in Fig. E1.28. In a dia-
gram, show how R is formed from these three vectors. (b) Find the
magnitude and direction of the vector §=C—A — B.Inadia-
gram, show how S is formed from these three vectors.

1.711 -+ A rocket fires two engines simultaneously. One produces
a thrust of 480 N directly forward, while the other gives a 513-N
thrust at 32.4° above the forward direction. Find the magnitude
and direction (relative to the forward direction) of the resultant
force that these engines exert on the rocket.

1.72 <+ Asailor in a small sailboat encounters shifting winds. She
sails 2.00 km east, then 3.50 km southeast, and then an additional
distance in an unknown direction. Her final position is 5.80 km
directly east of the starting point (Fig. P1.72). Find the magnitude
and direction of the third leg of the journey. Draw the vector-
addition diagram and show that it is in qualitative agreement with
your numerical solution.

Figure P1.72

FINISH

1.713 -+ BID Dislocated Shoulder. A patient with a dislocated
shoulder is put into a traction apparatus as shown in Fig. P1.73.
The pulls A and B have equal magnitudes and must combine to
produce an outward traction force of 5.60 N on the patient’s arm.
How large should these pulls be?

Figure P1.73
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1.74 - On a training flight, a  Figure P1.74

student pilot flies from Lincoln,

Nebraska, to Clarinda, Iowa, 147 km IOWA
then to St. Joseph, Missouri, and [ incoln 850 Clarinda

then to Manhattan, Kansas
(Fig. P1.74). The directions are
shown relative to north: 0° is ~ NEBRASKA
north, 90° is east, 180° is south,
and 270° is west. Use the method
of components to find (a) the
distance she has to fly from N
Manhattan to get back to Lincoln,
and (b) the direction (relative to
north) she must fly to get there.
Illustrate your solutions with a
vector diagram.

1.75 <+ Equilibrium. We say
an object is in equilibrium if all
the forces on it balance (add up
to zero). Figure P1.75 shows a
beam weighing 124 N that is
supported in equilibrium 11y a
100.0-N pull and a force F at
the floor. The third force on the
beam is the 124-N weight that acts vertically downward. (a) Use
vector components to find the magnitude and direction of F. (b)
Check the reasonableness of your answer in part (a) by doing a
graphical solution approximately to scale.

1.76 <<+ Getting Back. An explorer in the dense jungles of
equatorial Africa leaves his hut. He takes 40 steps northeast, then
80 steps 60° north of west, then 50 steps due south. Assume his
steps all have equal length. (a) Sketch, roughly to scale, the three
vectors and their resultant. (b) Save the explorer from becoming
hopelessly lost in the jungle by giving him the displacement,
calculated using the method of components, that will return him to
his hut.

1.77 <=+ A graphic artist is creating a new logo for her company’s
website. In the graphics program she is using, each pixel in an
image file has coordinates (x, y), where the origin (0, 0) is at the
upper left corner of the image, the +x-axis points to the right, and
the +y-axis points down. Distances are measured in pixels. (a) The
artist draws a line from the pixel location (10, 20) to the location
(210, 200). She wishes to draw a second line that starts at
(10, 20), is 250 pixels long, and is at an angle of 30° measured
clockwise from the first line. At which pixel location should this
second line end? Give your answer to the nearest pixel. (b) The
artist now draws an arrow that connects the lower right end of the
first line to the lower right end of the second line. Find the length
and direction of this arrow. Draw a diagram showing all three lines.
1.78 <+ A ship leaves the island of Guam and sails 285 km at
40.0° north of west. In which direction must it now head and how
far must it sail so that its resultant displacement will be 115 km
directly east of Guam?

1.79 -+ BI0 Bones and Muscles. A patient in therapy has a
forearm that weighs 20.5 N and that lifts a 112.0-N weight. These
two forces have direction vertically downward. The only other
significant forces on his forearm come from the biceps muscle
(which acts perpendicularly to the forearm) and the force at the
elbow. If the biceps produces a pull of 232 N when the forearm is
raised 43° above the horizontal, find the magnitude and direction
of the force that the elbow exerts on the forearm. (The sum of the
elbow force and the biceps force must balance the weight of the

St. Joseph

S KANSAS MISSOURI

Figure P1.75
100.0-N pull

30.0°

—

et

40.0°

arm and the weight it is carrying, so their vector sum must be
132.5 N, upward.)

1.80 <+ You are hungry and decide to go to your favorite neigh-
borhood fast-food restaurant. You leave your apartment and take
the elevator 10 flights down (each flight is 3.0 m) and then go 15 m
south to the apartment exit. You then proceed 0.2 km east, turn
north, and go 0.1 km to the entrance of the restaurant. (a) Deter-
mine the displacement from your apartment to the restaurant. Use
unit vector notation for your answer, being sure to make clear your
choice of coordinates. (b) How far did you travel along the path
you took from your apartment to the restaurant, and what is the
magnitude of the displacement you calculated in part (a)?

1.81 <+ While following a treasure map, you start at an old oak
tree. You first walk 825 m directly south, then turn and walk 1.25 km
at 30.0° west of north, and finally walk 1.00 km at 40.0° north of
east, where you find the treasure: a biography of Isaac Newton!
(a) To return to the old oak tree, in what direction should you head
and how far will you walk? Use components to solve this problem.
(b) To see whether your calculation in part (a) is reasonable, check
it with a graphical solution drawn roughly to scale.

1.82 < A fence post is 52.0 m from where you are standing, in a
direction 37.0° north of east. A second fence post is due south from
you. What is the distance of the second post from you, if the dis-
tance between the two posts is 80.0 m?

1.83 <+ Adogin an open field runs 12.0 m east and then 28.0 m in
a direction 50.0° west of north. In what direction and how far must
the dog then run to end up 10.0 m south of her original starting
point?

1.84 <<+ Ricardo and Jane are standing under a tree in the middle
of a pasture. An argument ensues, and they walk away in different
directions. Ricardo walks 26.0 m in a direction 60.0° west of north.
Jane walks 16.0 m in a direction 30.0° south of west. They then
stop and turn to face each other. (a) What is the distance between
them? (b) In what direction should Ricardo walk to go directly
toward Jane?

1.85 ¢¢ John, Paul, and George are standing in a strawberry
field. Paul is 14.0 m due west of John. George is 36.0 m from Paul,
in a direction 37.0° south of east from Paul’s location. How far is
George from John? What is the direction of George’s location from
that of John?

1.86 <<+ You are camping with two friends, Joe and Karl. Since
all three of you like your privacy, you don’t pitch your tents close
together. Joe’s tent is 21.0 m from yours, in the direction 23.0°
south of east. Karl’s tent is 32.0 m from yours, in the direction
37.0° north of east. What is the distance between Karl’s tent and
Joe’s tent?

1.87 - Vectors A and B have scalar product — 6.00 and their vec-
tor product has magnitude + 9.00. What is the angle between these
two vectors?

1.88 <+ Bond Angle in Methane. In the methane molecule,
CHy, each hydrogen atom is at a corner of a regular tetrahedron
with the carbon atom at the center. In coordinates where one of the
C-H bonds is in the direction of 7 + j + k, an adjacent C—H
bond is in the 7 — j — k direction. Calculate the angle between
these two bonds.

1.89 «+ Vector A has magnitude 12.0 m and vector B has magni-
tude 16.0 m. The scalar product A B is 90.0 m%. What is the mag-
nitude of the vector product between these two vectors?

1.90 <= When two vectors A and B are drawn from a common
point, the angle between them is ¢. (a) Using vector techniques,
show that the magnitude of their vector sum is given by

VA2 + B? + 24Bcos ¢




(b) If A and B have the same magnitude, for whrch value of ¢ will
their vector sum have the same magnitude as Aor B?

191 - A eube is place.d so that Figure P1.91

one corner is at the origin and
three edges are along the x-, y-,
and z-axes of a coordinate sys-
tem (Fig. P1.91). Use vectors to
compute (a) the angle between
the edge along the z-axis (line
ab) and the diagonal from the
origin to the opposite corner
(line ad), and (b) the angle i
between line ac (the diagonal of
a face) and line ad.

1.92 - Vector A has magnitude 6.00 m and vector B has magni-
tude 3.00 m. The vector product between these two vectors has
magnitude 12.0 m?. What are the two possible values for the scalar
product of these two vectors? For each value of A -§, draw a
sketch that shows A and B and explain why the vector products in
the two sketches are the same but the scalar products differ.

1.93 - The scalar product of vectors A and B is +48.0 m?.
Vector A has magnitude 9.00 m and direction 28.0° west of south.
If vector B has direction 39.0° south of east, what is the magnitude
of B?

1.94 <+ Obtain a unit vector perpendicular to the two vectors
given in Exercise 1.53.

1.95 *« You are given vectors A =507 — 6.5 and
B = —3.51 + 7.0j. A third vector C lies in the xy-plane. Vector C
is perpendicular to vector Z, and the scalar product of C with B is

b > C

- ——y

X

15.0. From this information, find the components of vector C.
1.96 <= Two vectors A and B have magnitudes A = 3.00 and
B = 3.00. Their vector product is A X B = —5.00k + 2.00i.
What is the angle between A and B?

1.97 -¢ Later in our study of physics we will encounter quantities
represented by (A X B) C. (a) Prove that for any three
vectors A, B, and C, A - (B X C) (A X B) C. (b) Calculate
(A x B) - C for the three vectors A with magnitude A = 5.00 and
angle 0, = 26.0° measured in the sense from the +x-axis toward
the +y-axis, B with B = 4.00 and 8 = 63.0°, and C with magni-
tude 6.00 and in the +z-direction. Vectors A and B are in the
xy-plane.

CHALLENGE PROBLEMS

1.98 <+ The length of a rectangle is given as L * [ and its width
as W = w. (a) Show that the uncertainty in its area A is
a = Lw + [W. Assume that the uncertainties / and w are small, so
that the product /w is very small and you can ignore it. (b) Show
that the fractional uncertainty in the area is equal to the sum of the
fractional uncertainty in length and the fractional uncertainty in
width. (c) A rectangular solid has dimensions L * [, W = w, and
H = h. Find the fractional uncertainty in the volume, and show
that it equals the sum of the fractional uncertainties in the length,
width, and height.

1.99 - Completed Pass. At Enormous State University
(ESU), the football team records its plays using vector displace-
ments, with the origin taken to be the position of the ball before the
play starts. In a certain pass play, the receiver starts at
+1.0z — 5.07, where the units are yards, 7 is to the right, and
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J is downfield. Subsequent displacements of the receiver are
+9.07 (in motion before the snap), +11.0J (breaks downfield),
—6.01 + 4.0] (zigs), and +12.07 + 18.0j (zags). Meanwhile, the
quarterback has dropped straight back to a position —7.0J. How
far and in which direction must the quarterback throw the ball?
(Like the coach, you will be well advised to diagram the situation
before solving it numerically.)

1.100 -+ Navigating in the Solar System. The Mars Polar
Lander spacecraft was launched on January 3, 1999. On December
3, 1999, the day Mars Polar Lander touched down on the Martian
surface, the positions of the earth and Mars were given by these
coordinates:

x y z
Earth 0.3182 AU 0.9329 AU 0.0000 AU
Mars 1.3087 AU —0.4423AU —0.0414 AU

In these coordinates, the sun is at the origin and the plane of the
earth’s orbit is the xy-plane. The earth passes through the +x-axis
once a year on the autumnal equinox, the first day of autumn in the
northern hemisphere (on or about September 22). One AU, or
astronomical unit, is equal to 1.496 X 103 km, the average dis-
tance from the earth to the sun. (a) In a diagram, show the posi-
tions of the sun, the earth, and Mars on December 3, 1999. (b) Find
the following distances in AU on December 3, 1999: (i) from the
sun to the earth; (ii) from the sun to Mars; (iii) from the earth to
Mars. (c) As seen from the earth, what was the angle between the
direction to the sun and the direction to Mars on December 3,
19997 (d) Explain whether Mars was visible from your location at
midnight on December 3, 1999. (When it is midnight at your loca-
tion, the sun is on the opposite side of the earth from you.)

1.101 -+ Navigating in the Big Dipper. All the stars of the
Big Dipper (part of the constellation Ursa Major) may appear to be
the same distance from the earth, but in fact they are very far from
each other. Figure P1.101 shows the distances from the earth to
each of these stars. The distances are given in light-years (ly), the
distance that light travels in one year. One light-year equals
9.461 X 10" m. (a) Alkaid and Merak are 25.6° apart in the
earth’s sky. In a diagram, show the relative positions of Alkaid,
Merak, and our sun. Find the distance in light-years from Alkaid to
Merak. (b) To an inhabitant of a planet orbiting Merak, how many
degrees apart in the sky would Alkaid and our sun be?

Figure P1.101

Dubhe
) Megrez 1051
Mizar 811y y
731y
/ A
Alioth \ Merak
641 — 771y
. y
Alkaid Phad
1381y 80 ly

1.102 <=+ The vector ¥ = xi + yj + 2k, called the position vec-
tor, points from the origin (0, 0, 0) to an arbitrary point in space
with coordinates (x, y, z). Use what you know about vectors to
prove the following: All points (x, y, z) that satisfy the equation
Ax + By + Cz = 0, where A, B, and C are constants, lie in a
plane that passes through the origin and that is perpendicular to the
vector Al + BJ + Ck. Sketch this vector and the plane.
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Chapter Opening Question

Take the +x-axis to point east and the +y-axis to point north. Then
what we are trying to find is the y-component of the velocity vec-
tor, which has magnitude v = 20 km/h and is at an angle 6 = 53°
measured from the +x-axis toward the +y-axis. From Egs. (1.6)
we have v, = vsinf = (20 km/h)sin53° = 16 km/h. So the
thunderstorm moves 16 km north in 1 h.

Test Your Understanding Questions

1.5 Answer: (i) Density = (1.80 kg)/(6.0 X 107#m?) = 3.0 X
103 kg/m . When we multiply or divide, the number with the
fewest significant figures controls the number of significant figures
in the result.

1.6 The answer depends on how many students are enrolled at
your campus.

1.7 Answers: (ii), (iii), and (lv) The vector — T has the same
magnitude as the vector T, so § — T = § + (=T) is the sum of
one vector of magnitude 3 m and one of magnitude 4 m. This sum
has magmtude 7mif S and —T are parallel and magmtude 1m 1f
S and —T are antiparallel. The magnitude of S - T is 5 m if S
and —T are perpendicular, so that the vectors S T and S —
form a 3—4-5 right triangle. Answer (i) is impossible because the
magnitude of the sum of two vectors cannot be greater than the
sum of the magnitudes; answer (v) is impossible because the sum
of two vectors can be zero only if the two vectors are antiparallel
and have the same magnitude; and answer (vi) is impossible
because the magnitude of a vector cannot be negative.

1.8 Answers: (a) yes, (b) no Vectors A and B can have the
same magnitude but different components if they point in different
directions. If they have the same components, however, they are
the same vector (Z =B ) and so must have the same magnitude.
1.9 Answer: all have the same magnitude The four vectors X,
fi, ?? , and D all point in different directions, but all have the same
magnitude:

A=B=C=D=\V(£3m)> + (x5m)2 + (2 m)?
=Vom2+25m?+4m? = V38m?=62m

1.10 Answers: (a) ¢ =90°, (b) ¢ =0° or ¢ = 180°,
() d =0° (d) ¢ = 180° (e) ¢ = 90° (a) The scalar product
is zero only if A and B are perpendicular. (b) The vector product is
zero only if A and B are either parallel or antiparallel. (c) The
scalar product is equal to the product of the magnitudes
(K B = AB) only if A and B are parallel. (d) The scalar product
is egual to the negatlve of the product of the magnitudes
(A B = —AB) only if A and B are antiparallel. (e) The magni-
tude of the vector product is equal to the product of the magni-
tudes [(magnitude of A X I_§) = AB] only if A and B are
perpendicular.

Bridging Prohlem

(@) 5.2 X 102N
() 4.5 X 103N +m

Answers:



MOTION ALONG
A STRAIGHT LINE

A bungee jumper speeds up during the first part of his fall, then slows to a halt
as the bungee cord stretches and becomes taut. Is it accurate to say that the
jumper is accelerating as he slows during the final part of his fall?

hat distance must an airliner travel down a runway before reaching

takeoff speed? When you throw a baseball straight up in the air, how

high does it go? When a glass slips from your hand, how much time
do you have to catch it before it hits the floor? These are the kinds of questions
you will learn to answer in this chapter. We are beginning our study of physics
with mechanics, the study of the relationships among force, matter, and motion.
In this chapter and the next we will study kinematics, the part of mechanics that
enables us to describe motion. Later we will study dynamics, which relates
motion to its causes.

In this chapter we concentrate on the simplest kind of motion: a body moving
along a straight line. To describe this motion, we introduce the physical quantities
velocity and acceleration. In physics these quantities have definitions that are
more precise and slightly different from the ones used in everyday language.
Both velocity and acceleration are vectors: As you learned in Chapter 1, this
means that they have both magnitude and direction. Our concern in this chapter is
with motion along a straight line only, so we won’t need the full mathematics of
vectors just yet. But using vectors will be essential in Chapter 3 when we con-
sider motion in two or three dimensions.

We’ll develop simple equations to describe straight-line motion in the impor-
tant special case when the acceleration is constant. An example is the motion
of a freely falling body. We’ll also consider situations in which the acceleration
varies during the motion; in this case, it’s necessary to use integration to
describe the motion. (If you haven’t studied integration yet, Section 2.6 is
optional.)

LEARNING GOALS

By studying this chapter, you will
learn:

e How to describe straight-line motion

in terms of average velocity,
instantaneous velocity, average
acceleration, and instantaneous
acceleration.

How to interpret graphs of position
versus time, velocity versus time,
and acceleration versus time for
straight-line motion.

How to solve problems involving
straight-line motion with constant
acceleration, including free-fall
problems.

How to analyze straight-line motion
when the acceleration is not
constant.
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CHAPTER 2 Moation Along a Straight Line

2.1 Displacement, Time, and Average VUelocity

Suppose a drag racer drives her AA-fuel dragster along a straight track (Fig. 2.1).
To study the dragster’s motion, we need a coordinate system. We choose the x-
axis to lie along the dragster’s straight-line path, with the origin O at the starting
line. We also choose a point on the dragster, such as its front end, and represent
the entire dragster by that point. Hence we treat the dragster as a particle.

A useful way to describe the motion of the particle that represents the dragster
is in terms of the change in the particle’s coordinate x over a time interval. Sup-
pose that 1.0 s after the start the front of the dragster is at point P;, 19 m from the
origin, and 4.0 s after the start it is at point P, 277 m from the origin. The
displacement of the particle is a vector that points from P to P, (see Section 1.7).
Figure 2.1 shows that this vector points along the x-axis. The x-component of
the displacement is the change in the value of x, (277 m — 19 m) = 258 m,
that took place during the time interval of (4.0s — 1.0s) = 3.0s. We
define the dragster’s average velocity during this time interval as a vector
quantity whose x-component is the change in x divided by the time interval:
(258 m)/(3.0s) = 86 m/s.

In general, the average velocity depends on the particular time interval cho-
sen. For a 3.0-s time interval before the start of the race, the average velocity
would be zero because the dragster would be at rest at the starting line and would
have zero displacement.

Let’s generalize the concept of average velocity. At time #; the dragster is at
point P, with coordinate x, and at time ¢, it is at point P, with coordinate x,.
The displacement of the dragster during the time interval from ¢ to #, is the vec-
tor from P; to P,. The x-component of the displacement, denoted Ax, is the
change in the coordinate x:

Ax = xy — x| 2.1

The dragster moves along the x-axis only, so the y- and z-components of the dis-
placement are equal to zero.

CAUTION  The meaning of Ax Note that Ax is not the product of A and x; it is a single
symbol that means “the change in the quantity x.” We always use the Greek capital letter
A (delta) to represent a change in a quantity, equal to the final value of the quantity minus
the initial value—never the reverse. Likewise, the time interval from ¢, to 7, is A, the
change in the quantity : At = t, — ¢ (final time minus initial time).

The x-component of average velocity, or average x-velocity, is the x-
component of displacement, Ax, divided by the time interval At during which

2.1 Positions of a dragster at two times during its run.

Positionatt; = 1.0s Positionatt, = 4.0's
START | | FINISH
| fa |
Py O 0. P
i _ 0
| | Displacement from #; to t, | /
1 H 1 /
x-axis —x
O yx =19m x2:277rm'
PO Ax =(x, —x) =258m >
i . 4 g .
i “x-coordinate of x-coordinate of
dragster at 1.0's dragster at 4.0’ s
X is positive to the right of the When the dragster moves in the +x-direction, the displacement
origin (0), negative to the left Ax is positive and so is the average x-velocity:
of it. _ Ax _ 258m

v = = 86 m/s

ax T Ar T 305
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3

Position at t, = 25.0 s Position at t; = 16.0 s
START | | FINISH
| P2 P
* >
| ! Displacement from ¢, to, !
| 1 /1l x
1
0| X
|
!

»=19m x| = 277’m
1Ax =(x, —x) = —258m |

This position is now x,. This position is now x;.

When the truck moves in the —x-direction, Ax is
negative and so is the average x-velocity:
_ Ax _ —258m

wr = Ar = 905 - 20mps

v

the displacement occurs. We use the symbol v,,., for average x-velocity (the
subscript “av” signifies average value and the subscript x indicates that this is
the x-component):

Xy — X Ax i i i .
Vayx = 7: —, L= Ar (average x-velocity, straight-line motion) (2.2
2 1

As an example, for the dragster x; = 19m, x, = 277 m, t; = 1.0s, and
t, = 4.0s,s0Eq. (2.2) gives

277m — 19m 258 m 26 /
Y 408 —1.0s 3.0s

The average x-velocity of the dragster is positive. This means that during the time
interval, the coordinate x increased and the dragster moved in the positive
x-direction (to the right in Fig. 2.1).

If a particle moves in the negative x-direction during a time interval, its aver-
age velocity for that time interval is negative. For example, suppose an official’s
truck moves to the left along the track (Fig. 2.2). The truck is at x; = 277 m at
t; = 16.0sand is at x, = 19 mat 1, = 25.0s. Then Ax = (19 m — 277 m)=
—258m and At = (25.0s — 16.0s) = 9.0s. The x-component of average
velocity is Uay.e = Ax/Ar = (=258 m)/(9.0s) = —29 m/s. Table 2.1 lists
some simple rules for deciding whether the x-velocity is positive or negative.

CAUTION  choice of the positive x-direction You might be tempted to conclude that
positive average x-velocity must mean motion to the right, as in Fig. 2.1, and that negative
average x-velocity must mean motion to the left, as in Fig. 2.2. But that’s correct only if
the positive x-direction is to the right, as we chose it to be in Figs. 2.1 and 2.2. Had we
chosen the positive x-direction to be to the left, with the origin at the finish line, the drag-
ster would have negative average x-velocity and the official’s truck would have positive
average x-velocity. In most problems the direction of the coordinate axis will be yours to
choose. Once you’ve made your choice, you must take it into account when interpreting
the signs of v,,., and other quantities that describe motion!

With straight-line motion we sometimes call Ax simply the displacement
and v,,., simply the average velocity. But be sure to remember that these are
really the x-components of vector quantities that, in this special case, have only
x-components. In Chapter 3, displacement, velocity, and acceleration vectors
will have two or three nonzero components.

Figure 2.3 is a graph of the dragster’s position as a function of time—that is,
an x-t graph. The curve in the figure does not represent the dragster’s path in
space; as Fig. 2.1 shows, the path is a straight line. Rather, the graph is a pictorial
way to represent how the dragster’s position changes with time. The points p;
and p, on the graph correspond to the points P; and P, along the dragster’s path.
Line p;p, is the hypotenuse of a right triangle with vertical side Ax = x, — x;

2.2 Positions of an official’s truck at
two times during its motion. The points P,
and P, now indicate the positions of the
truck, and so are the reverse of Fig. 2.1.

Table 2.1 Rules for the Sign

of x-Velocity
If the x-coordinate is:

Positive & increasing
(getting more positive)

Positive & decreasing
(getting less positive)

Negative & increasing
(getting less negative)

Negative & decreasing
(getting more negative)

... the x-velocity is:

Positive: Particle is
moving in +x-direction

Negative: Particle is
moving in —x-direction

Positive: Particle is
moving in +x-direction

Negative: Particle is
moving in —x-direction

Note: These rules apply to both the average
x-velocity v,,._, and the instantaneous x-velocity
v, (to be discussed in Section 2.2).
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2.3 The position of a dragster as a x (m) For a displacement along the x-axis, an object’s average x-velocity
function of time. U,y €quals the slope of a line connecting the corresponding points
Dragster track 400 = ona graph of position (x)
(not to scale) versus time (7).
300 - H
Py @ —— Xy oo )23
: I
) |
y I
200 - &8 !
'y 46\ I
¥ :Ax =x, — X
L ¥ S s 1.2
l 100 %\OQ o I L  Ax
o : - Slope = rise over run = AL
Pi Ar=t—1 |
Pl X - g-——— -1 L (s
o 2 3 4 5
t 15}
Table 2.2 Typical Velocity and horizontal side Ar = t, — t;. The average x-velocity v,,., = Ax/At of the
Magnitudes dragster equals the slope of the line p|p,—that is, the ratio of the triangle’s verti-
A snail’s pace 103 m/s cal side Ax to its horizontal side At.
A brisk walk 2m/s The average x-velocity depends only on the total displacement Ax = x, — x;

that occurs during the time interval At = t, — ¢, not on the details of what

Fastest human 1 m/s happens during the time interval. At time ¢ a motorcycle might have raced past
Freeway speeds 30m/s the dragster at point P, in Fig. 2.1, then blown its engine and slowed down to
Fastest car 341 m/s pass through point P, at the same time ¢, as the dragster. Both vehicles have the
Random motion of air molecules 500 m/s same displacement during the same time interval and so have the same average
) x-velocity.
Fastest airplane 1000 m/s If distance is given in meters and time in seconds, average velocity is meas-
Orbiting communications satellite 3000 m/s ured in meters per second (m/s). Other common units of velocity are kilometers
Electron orbiting in a per hour (km/h), feet per second (ft/s), miles per hour (mi/h), and knots
hydrogen atom 2x10°m/s (1 knot = 1 nautical mile/h = 6080 ft/h). Table 2.2 lists some typical velocity
Light traveling in a vacuum 3% 108m/s  magnitudes.

Test Your Understanding of Section 2.1 Each of the following auto- ('\a
mobile trips takes one hour. The positive x-direction is to the east. (i) Automobile w
A travels 50 km due east. (ii) Automobile B travels 50 km due west. (iii) Automo-

bile C travels 60 km due east, then turns around and travels 10 km due west. (iv) Auto-
mobile D travels 70 km due east. (v) Automobile E travels 20 km due west, then turns
around and travels 20 km due east. (a) Rank the five trips in order of average x-velocity
from most positive to most negative. (b) Which trips, if any, have the same average
x-velocity? (c) For which trip, if any, is the average x-velocity equal to zero? |

2.4 The winner of a 50-m swimming 2.2 Instantaneous “elocitv

race is the swimmer whose average veloc-

ity has the greatest magnitude—that is, the . o C 1
swimmer who traverses a displacement Ax Sometimes the average velocity is all you need to know about a particle’s

of 50 m in the shortest elapsed time Af. motion. For example, a race along a straight line is really a competition to see
whose average velocity, v,,.,, has the greatest magnitude. The prize goes to the
competitor who can travel the displacement Ax from the start to the finish line in
the shortest time interval, At (Fig. 2.4).

But the average velocity of a particle during a time interval can’t tell us how
fast, or in what direction, the particle was moving at any given time during the
interval. To do this we need to know the instantaneous velocity, or the velocity
at a specific instant of time or specific point along the path.

CAUTION  How long is an instant? Note that the word “instant” has a somewhat differ-
ent definition in physics than in everyday language. You might use the phrase “It lasted
just an instant” to refer to something that lasted for a very short time interval. But in
physics an instant has no duration at all; it refers to a single value of time.




To find the instantaneous velocity of the dragster in Fig. 2.1 at the point P, we
move the second point P, closer and closer to the first point P, and compute the
average velocity v,y,., = Ax/Ar over the ever-shorter displacement and time
interval. Both Ax and Az become very small, but their ratio does not necessarily
become small. In the language of calculus, the limit of Ax/Az as At approaches
zero is called the derivative of x with respect to ¢ and is written dx/dt. The
instantaneous velocity is the limit of the average velocity as the time interval
approaches zero; it equals the instantaneous rate of change of position with time.
We use the symbol v,, with no “av” subscript, for the instantaneous velocity
along the x-axis, or the instantaneous x-velocity:

dx
v, = lim — = — (instantaneous x-velocity, straight-line motion) (2.3)
A0 Ar dr ( J = )

The time interval At is always positive, so v, has the same algebraic sign as
Ax. A positive value of v, means that x is increasing and the motion is in the pos-
itive x-direction; a negative value of v, means that x is decreasing and the motion
is in the negative x-direction. A body can have positive x and negative v,, or the
reverse; x tells us where the body is, while v, tells us how it’s moving (Fig. 2.5).
The rules that we presented in Table 2.1 (Section 2.1) for the sign of average
x-velocity v,,., also apply to the sign of instantaneous x-velocity v,.

Instantaneous velocity, like average velocity, is a vector quantity; Eq. (2.3)
defines its x-component. In straight-line motion, all other components of instan-
taneous velocity are zero. In this case we often call v, simply the instantaneous
velocity. (In Chapter 3 we’ll deal with the general case in which the instanta-
neous velocity can have nonzero x-, y-, and z-components.) When we use the
term “velocity,” we will always mean instantaneous rather than average velocity.

The terms “velocity” and “speed” are used interchangeably in everyday lan-
guage, but they have distinct definitions in physics. We use the term speed to
denote distance traveled divided by time, on either an average or an instantaneous
basis. Instantaneous speed, for which we use the symbol v with no subscripts,
measures how fast a particle is moving; instantaneous velocity measures how fast
and in what direction it’s moving. Instantaneous speed is the magnitude of instan-
taneous velocity and so can never be negative. For example, a particle with instan-
taneous velocity v, = 25 m/s and a second particle with v, = —25 m/s are
moving in opposite directions at the same instantaneous speed 25 m/s.

CAUTION  Average speed and average velocity Average speed is not the magnitude of
average velocity. When César Cielo set a world record in 2009 by swimming 100.0 m in
46.91 s, his average speed was (100.0 m)/(46.91 s) = 2.132 m/s. But because he swam
two lengths in a 50-m pool, he started and ended at the same point and so had zero total
displacement and zero average velocity! Both average speed and instantaneous speed are
scalars, not vectors, because these quantities contain no information about direction.

m Average and instantaneous velocities
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2.5 Even when he’s moving forward, this
cyclist’s instantaneous x-velocity can be
negative—if he’s traveling in the negative
x-direction. In any problem, the choice of
which direction is positive and which is
negative is entirely up to you.

A cheetah is crouched 20 m to the east of an observer (Fig. 2.6a). At  expression for the cheetah’s instantaneous velocity as a function of
time r = 0 the cheetah begins to run due east toward an antelope that  time, and use itto find v, att = 1.0 sand r = 2.0 s.

is 50 m to the east of the observer. During the first 2.0 s of the attack,
the cheetah’s coordinate x varies with time according to the equation
x=20m + (5.0 m/s?)t% (a) Find the cheetah’s displacement m

between t; = 1.0 s and t, = 2.0 s. (b) Find its average velocity ~IDENTIFY and SET UP: Figure 2.6b shows our sketch of the
during that interval. (c) Find its instantaneous velocity at f; = 1.0 s cheetah’s motion. We use Eq. (2.1) for displacement, Eq. (2.2) for
by taking A7 = 0.1 s, then 0.01 s, then 0.001 s. (d) Derive an  average velocity, and Eq. (2.3) for instantaneous velocity.

Continued
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2.6 A cheetah attacking an antelope from ambush. The animals are not drawn to the same scale as the axis.

el N
4
V/ Z o
> y e oA B ~
Lo f‘l%x R Qs
(a) The situation A - /’i ::D
Cheetah |~ -
Vehicle sfarts iy Antelope
(b) Our sketch é ° ° ° T x{m)
X0=200m  X1=¢ Xz=¢ 50.0m
t=0 t,=10¢ 1,=20s
F— Ax=? —
Vay-x =¢
(c) Decisions @ Point axis in @ Place origin @ Mark initial @ Mark positions @ Add the known
direction cheetah runs, at vehicle. positions of cheetah for cheetah at 1 s and unknown
so that all values will and antelope. and 2 s. quantities.

be positive.

EXECUTE: (a) At; = 1.0 sand , = 2.0 s the cheetah’s positions

x and x, are
20m + (5.0m/s?)(1.0's)?
20m + (5.0 m/s%)(2.0s)?

The displacement during this 1.0-s interval is

X1 =

X2

Following this pattern, you can calculate the average x-velocities
for 0.01-s and 0.001-s intervals: The results are 10.05 m/s and
10.005 m/s. As At gets smaller, the average x-velocity gets closer
to 10.0 m/s, so we conclude that the instantaneous x-velocity at
t = 1.0s is 10.0 m/s. (We suspended the rules for significant-
figure counting in these calculations.)

(d) To find the instantaneous x-velocity as a function of time,

=25m
=40m

Ax=x,—x1=40m — 25m = 15m
(b) The average x-velocity during this interval is

_40m —25m
h — 20s — 1.0s

15m
1.0s

X2 7™ X

Vayx =

= 15m/s

(c) With Az = 0.1 s the time interval is from 7; = 1.0 s to a

we take the derivative of the expression for x with respect to ¢. The

derivative of a constant is zero, and for any n the derivative of " is
n—1

nt"~ ! so the derivative of % is 2¢. We therefore have
dx 2 2
vy = (5.0 m/s7)(2t) = (10 m/s*)¢

new f, = 1.1 s. At 1, the position is

x, =20m + (5.0m/s?)(1.1s)*> = 26.05m

The average x-velocity during this 0.1-s interval is

26.05m — 25m

Vo T T “r0s O
Ry | N
MasteringPHYSIES
R/

ActivPhysics 1.1: Analyzing Motion Using
Diagrams

At = 1.0s, this yields v, = 10 m/s, as we found in part (c); at
t=20s,v, =20m/s.

EVALUATE: Our results show that the cheetah picked up speed from
t =0 (when it was at rest) to r=1.0s (v, = 10m/s) to
t = 2.0s (v, = 20 m/s). This makes sense; the cheetah covered
only 5 m during the interval # = 0 tor = 1.0 s, but it covered 15 m
during the interval t = 1.0stot = 2.0s.

5m/s

Finding Velocity on an x-7 Graph

We can also find the x-velocity of a particle from the graph of its position as
a function of time. Suppose we want to find the x-velocity of the dragster in
Fig. 2.1 at point P;. As point P, in Fig. 2.1 approaches point P;, point p, in the
x-t graphs of Figs. 2.7a and 2.7b approaches point p; and the average x-velocity
is calculated over shorter time intervals Az, In the limit that Az — 0, shown in
Fig. 2.7c, the slope of the line p;p, equals the slope of the line tangent to the
curve at point py. Thus, on a graph of position as a function of time for straight-
line motion, the instantaneous x-velocity at any point is equal to the slope of the
tangent to the curve at that point.

If the tangent to the x-f curve slopes upward to the right, as in Fig. 2.7c, then
its slope is positive, the x-velocity is positive, and the motion is in the positive
x-direction. If the tangent slopes downward to the right, the slope of the x-r graph
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2.7 Using an x-7 graph to go from (a), (b) average x-velocity to (c) instantaneous x-velocity v,. In (c) we find the slope of the tangent
to the x-7 curve by dividing any vertical interval (with distance units) along the tangent by the corresponding horizontal interval (with

time units).

=

(@) (b) ©
x (m) x (m)
400 - 400 -
300 300
200 200
100 - 100
| |
o 5 FE) 1 2 3 4 5 a2

As the average x-velocity v, _, is calculated

over shorter and shorter time intervals ...

... its value v,,_, = Ax/Ar approaches the
instantaneous x-velocity.

2.8 (@) The x-t graph of the motion of a particular particle. The slope of the tangent at any point equals the velocity at that point.
(b) A motion diagram showing the position and velocity of the particle at each of the times labeled on the x-¢ graph.

(a) x-t graph (b) Particle’s motion

The instantaneous x-velocity v, at any
given point equals the slope of the tangent
to the x- curve at that point.

@

Slope zero: v, = 0 & S .
s o ’ (=0 v | N The particle is at x < 0 and moving
A . A . 0 in the +x-direction.
.Slope negative: 7
e T et T
S < : v . .
D v, <0 g le‘ 3 x From 4 to it speeds up, ...
“E
' | v =0 4" and from 7 to ¢ it slows down,
Ic o—x -
0 then halts momentarily at 7.
; v e x From - to t, it speeds up in the
b 0 —x-direction, ...
Slope positive: ' ‘ ty U e x ... and from 7}, to t it slows down
v, >0 0 in the —x-direction.

The steeper the slope (positive or negative) of an object’s x-f graph, the
greater is the object’s speed in the positive or negative x-direction.

and the x-velocity are negative, and the motion is in the negative x-direction.
When the tangent is horizontal, the slope and the x-velocity are zero. Figure 2.8
illustrates these three possibilities.

Figure 2.8 actually depicts the motion of a particle in two ways: as (a) an x-t
graph and (b) a motion diagram that shows the particle’s position at various
instants (like frames from a video of the particle’s motion) as well as arrows to
represent the particle’s velocity at each instant. We will use both x-¢ graphs and
motion diagrams in this chapter to help you understand motion. You will find it
worth your while to draw both an x-t graph and a motion diagram as part of solv-
ing any problem involving motion.

Test Your Understanding of Section 2.2 Figure 2.9 is an x-f graph of
the motion of a particle. (a) Rank the values of the particle’s x-velocity v, at the
points P, O, R, and S from most positive to most negative. (b) At which points is
v, positive? (c) At which points is v, negative? (d) At which points is v, zero? (e) Rank
the values of the particle’s speed at the points P, Q, R, and S from fastest to slowest. |

@

2.9 An x-t graph for a particle.
x 0
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2.3 Average and Instantaneous Acceleration

Just as velocity describes the rate of change of position with time, acceleration
describes the rate of change of velocity with time. Like velocity, acceleration is a
vector quantity. When the motion is along a straight line, its only nonzero compo-
nent is along that line. As we’ll see, acceleration in straight-line motion can refer
to either speeding up or slowing down.

Average Acceleration

Let’s consider again a particle moving along the x-axis. Suppose that at time #;
the particle is at point P; and has x-component of (instantaneous) velocity v,
and at a later time 7, it is at point P, and has x-component of velocity v,,. So the
x-component of velocity changes by an amount Av, = v,, — vy, during the time
interval Ar = 1, — 1.

We define the average acceleration of the particle as it moves from P, to P, to
be a vector quantity whose x-component a,,_, (called the average x-acceleration)
equals Av,, the change in the x-component of velocity, divided by the time inter-
val At

Ugy — Vix Avx

= (average x-acceleration,
avs h — 1 At

; : . (2.4)
straight-line motion)

For straight-line motion along the x-axis we will often call a,,., simply the aver-
age acceleration. (We’ll encounter the other components of the average accelera-
tion vector in Chapter 3.)

If we express velocity in meters per second and time in seconds, then average
acceleration is in meters per second per second, or (m/s)/s.This is usually writ-
ten as m/ s? and is read “meters per second squared.”

CAUTION  Acceleration vs. velocity Be very careful not to confuse acceleration with
velocity! Velocity describes how a body’s position changes with time; it tells us how
fast and in what direction the body moves. Acceleration describes how the velocity
changes with time; it tells us how the speed and direction of motion are changing. It
may help to remember the phrase “acceleration is to velocity as velocity is to position.”
It can also help to imagine yourself riding along with the moving body. If the body
accelerates forward and gains speed, you feel pushed backward in your seat; if it accel-
erates backward and loses speed, you feel pushed forward. If the velocity is constant
and there’s no acceleration, you feel neither sensation. (We’ll see the reason for these
sensations in Chapter 4.)

m Average acceleration

An astronaut has left an orbiting spacecraft to test a new personal
maneuvering unit. As she moves along a straight line, her partner
on the spacecraft measures her velocity every 2.0 s, starting at time
t=10s:

t v, t v,
1.0s 0.8 m/s 9.0s —0.4m/s
305 1.2 mfs 11.0s —1.0m/s
5058 1.6 m/s 13.0's —1.6m/s
7.0s 1.2 mfs 15.0s —0.8 m/s

Find the average x-acceleration, and state whether the speed of the
astronaut increases or decreases over each of these 2.0-s time
intervals: (a)t; = 1.0stot, = 3.0 s;(b)t; = 5.0 stot, = 7.0 s;
(¢)t; =9.0stot, = 11.0s;(d)t; = 13.0 stot, = 15.0 s.

IDENTIFY and SET UP: We’ll use Eq. (2.4) to determine the aver-
age acceleration a,,., from the change in velocity over each time
interval. To find the changes in speed, we’ll use the idea that speed
v is the magnitude of the instantaneous velocity v,.



The upper part of Fig. 2.10 is our graph of the x-velocity as a
function of time. On this v -t graph, the slope of the line connect-
ing the endpoints of each interval is the average x-acceleration
Qayx = Av,/At for that interval. The four slopes (and thus the
signs of the average accelerations) are, respectively, positive, neg-
ative, negative, and positive. The third and fourth slopes (and thus
the average accelerations themselves) have greater magnitude than
the first and second.

2.10 Our graphs of x-velocity versus time (top) and average
x-acceleration versus time (bottom) for the astronaut.
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EXECUTE: Using Eq. (2.4), we find:
(@) dgyr = (1.2 m/s — 0.8 m/s)/(3.0s — 1.0 s) =
0.2 m/ s?. The speed (magnitude of instantaneous x-velocity)
increases from 0.8 m/s to 1.2 m/s.
(b) dpyx = (1.2 m/s — 1.6 m/s)/(7.0 s — 5.0 s) =
—0.2 m/s>. The speed decreases from 1.6 m/sto 1.2 m/s.
(©) dayx = [-1.0m/s — (=04 m/s)]/(11.0s — 9.0 s) =
—0.3 m/s2. The speed increases from 0.4 m/s to 1.0 m/s.
(d)ayy.x = [—0.8 m/s — (—=1.6 m/s)]/(15.0 s — 13.0 5) =
0.4 m/s>. The speed decreases from 1.6 m/sto 0.8 m/s.

In the lower part of Fig. 2.10, we graph the values of a,,_,.

EVALUATE: The signs and relative magnitudes of the average accel-
erations agree with our qualitative predictions. For future refer-
ence, note this connection among speed, velocity, and acceleration:
Our results show that when the average x-acceleration has the
same direction (same algebraic sign) as the initial velocity, as in
intervals (a) and (c), the astronaut goes faster. When a,,_, has the
opposite direction (opposite algebraic sign) from the initial velocity,
as in intervals (b) and (d), she slows down. Thus positive x-accelera-
tion means speeding up if the x-velocity is positive [interval (a)]
but slowing down if the x-velocity is negative [interval (d)]. Simi-
larly, negative x-acceleration means speeding up if the x-velocity is
negative [interval (c)] but slowing down if the x-velocity is posi-
tive [interval (b)].

We can now define instantaneous acceleration following the same procedure
that we used to define instantaneous velocity. As an example, suppose a race
car driver is driving along a straightaway as shown in Fig. 2.11. To define the
instantaneous acceleration at point Pj, we take the second point P in Fig. 2.11
to be closer and closer to P; so that the average acceleration is computed over
shorter and shorter time intervals. The instantaneous acceleration is the limit of
the average acceleration as the time interval approaches zero. In the language
of calculus, instantaneous acceleration equals the derivative of velocity with

time. Thus

Av,

dv,
a, = =

= lim . . .
At—0 At dt straight-line motion)

(instantaneous x-acceleration,

(2.5)

Note that a, in Eq. (2.5) is really the x-component of the acceleration vec-
tor, or the instantaneous x-acceleration; in straight-line motion, all other
components of this vector are zero. From now on, when we use the term
“acceleration,” we will always mean instantaneous acceleration, not average

acceleration.

2.11 A Grand Prix car at two points on the straightaway.

Speed v,
| - . x-velocity vy,

Speed v,
x-velocity v, ,
P, —
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m Average and instantaneous accelerations

Suppose the x-velocity v, of the car in Fig. 2.11 at any time 7 is
given by the equation

v, = 60 m/s + (0.50 m/s*)r>

(a) Find the change in x-velocity of the car in the time interval
t; = 1.0 s to t, = 3.0 s. (b) Find the average x-acceleration in
this time interval. (c¢) Find the instantaneous x-acceleration at time
t; = 1.0 s by taking Af to be first 0.1 s, then 0.01 s, then 0.001 s.
(d) Derive an expression for the instantaneous x-acceleration as a
function of time, and use it to find a, atz = 1.0 sand t = 3.0 s.

IDENTIFY and SET UP: This example is analogous to Example 2.1
in Section 2.2. (Now is a good time to review that example.) In
Example 2.1 we found the average x-velocity from the change in
position over shorter and shorter time intervals, and we obtained
an expression for the instantaneous x-velocity by differentiating
the position as a function of time. In this example we have an exact
parallel. Using Eq. (2.4), we’ll find the average x-acceleration
from the change in x-velocity over a time interval. Likewise, using
Eq. (2.5), we’ll obtain an expression for the instantaneous
x-acceleration by differentiating the x-velocity as a function of
time.

EXECUTE: (a) Before we can apply Eq. (2.4), we must find the
x-velocity at each time from the given equation. At #; = 1.0 s and
t, = 3.0 s, the velocities are

vy = 60 m/s + (0.50 m/s%)(1.0 s)> = 60.5 m/s
vy, = 60 m/s + (0.50 m/s>)(3.0 5)? = 64.5 m/s
The change in x-velocity Av, between r; = 1.0 sand#, = 3.0 sis
Av, = vy — v, = 645 m/s — 60.5 m/s = 4.0 m/s

(b) The average x-acceleration during this time interval of dura-
tiont, — t; = 2.0 sis

Aay-x =

Vo ~ Ulx _ 4.0 m/s

= 2.0 m/s?
th — Iy 2.0 s

During this time interval the x-velocity and average x-acceleration
have the same algebraic sign (in this case, positive), and the car
speeds up.

(c) When Ar = 0.1s, we have f, = l.I s. Proceeding as
before, we find

vy = 60 m/s + (0.50 m/s?)(1.1 s)> = 60.605 m/s

Av, = 0.105 m/s
Av, 0.105 m/s
=" =" =105m/s’
v T Ay 0.1s m/s

You should follow this pattern to calculate a,,., for At = 0.01 s
and Ar = 0.001 s; the results are a,,, = 1.005 m/s2 and
Aayx = 1.0005 m/ s2, respectively. As At gets smaller, the average
x-acceleration gets closer to 1.0 m/s?, so the instantaneous
x-acceleration at 1 = 1.0 s is 1.0 m/s%

(d) By Eq. (2.5) the instantaneous x-acceleration is
a, = dv,/dt. The derivative of a constant is zero and the deriva-
tive of 12 is 21, so

= (050 m/s*)(2r) = (1.0 m/s%)z
Whent = 1.0 s,

a, = (1.0 m/s?)(1.0 s) = 1.0 m/s>
Whent = 3.0 s,

a, = (1.0 m/s*)(3.0 s) = 3.0 m/s>

EVALUATE: Neither of the values we found in part (d) is equal to
the average x-acceleration found in part (b). That’s because the
car’s instantaneous x-acceleration varies with time. The rate of
change of acceleration with time is sometimes called the “jerk.”

Finding Acceleration on a v,-7 Graph or an x-¢ Graph

In Section 2.2 we interpreted average and instantaneous x-velocity in terms of the
slope of a graph of position versus time. In the same way, we can interpret aver-
age and instantaneous x-acceleration by using a graph with instantaneous veloc-
ity v, on the vertical axis and time 7 on the horizontal axis—that is, a v,-f graph
(Fig. 2.12). The points on the graph labeled p; and p, correspond to points P, and
P, in Fig. 2.11. The average x-acceleration a,,_, = Av,/At during this interval is
the slope of the line pp,. As point P, in Fig. 2.11 approaches point P;, point p,
in the v,-t graph of Fig. 2.12 approaches point py, and the slope of the line pp;
approaches the slope of the line tangent to the curve at point p. Thus, on a graph
of x-velocity as a function of time, the instantaneous x-acceleration at any point
is equal to the slope of the tangent to the curve at that point. Tangents drawn at
different points along the curve in Fig. 2.12 have different slopes, so the instanta-
neous x-acceleration varies with time.
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For a displacement along the x-axis, an object’s average x-acceleration

v

graph of x-velocity (v,) versus time (7).
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CAUTION  The signs of x-acceleration and x-velocity By itself, the algebraic sign of

the x-acceleration does not tell you whether a body is speeding up or slowing down.

You must compare the signs of the x-velocity and the x-acceleration. When v, and a, have
the same sign, the body is speeding up. If both are positive, the body is moving in the pos-
itive direction with increasing speed. If both are negative, the body is moving in the nega-
tive direction with an x-velocity that is becoming more and more negative, and again the
speed is increasing. When v, and a, have opposite signs, the body is slowing down. If v,
is positive and a, is negative, the body is moving in the positive direction with decreasing
speed; if v, is negative and a, is positive, the body is moving in the negative direction
with an x-velocity that is becoming less negative, and again the body is slowing down.
Table 2.3 summarizes these ideas, and Fig. 2.13 illustrates some of these possibilities.

The term “deceleration” is sometimes used for a decrease in speed. Because it
may mean positive or negative a,, depending on the sign of v,, we avoid this term.
We can also learn about the acceleration of a body from a graph of its position

x equals the slope of a line connecting the corresponding points on a

versus time. Because a, = dv,/dt and v, = dx/dt, we can write

_dvx_d<
ST T oar

>:

2.13 (a) A vt graph of the motion of a different particle from that shown in Fig. 2.8. The slope of the tangent at any point
equals the x-acceleration at that point. (b) A motion diagram showing the position, velocity, and acceleration of the particle at

d*x

dr?

.3 Average and Instantaneous Acceleration

45

2.12 Av,-t graph of the motion in
Fig. 2.11.

----- Slope of tangent to v - curve at a given point
= instantaneous x-acceleration at that point.

Table 2.3 Rules for the Sign
of x-Acceleration

If x-velocity is: ... x-acceleration is:

Positive: Particle is
moving in +x-direction
& speeding up

Positive & increasing
(getting more positive)

Positive & decreasing
(getting less positive)

Negative: Particle is
moving in +x-direction
& slowing down

Positive: Particle is
moving in —x-direction
& slowing down

Negative & increasing
(getting less negative)

Negative & decreasing
(getting more negative)

Negative: Particle is
moving in —x-direction
& speeding up

Note: These rules apply to both the average
x-acceleration a,,., and the instantaneous
x-acceleration a,.

(2.6)

@

each of the times labeled on the v,-¢ graph. The positions are consistent with the v,-¢ graph; for instance, from 74 to 7 the velocity is
negative, so at 7 the particle is at a more negative value of x than at 74.

(a) v,-t graph for an object
moving on the x-axis

v
* Slope zero: a, = 0 0
. =
o A
Ig
) /0\\;D [

N\, -
a. >0 >§E

Slope nggativc: \
a, <0

The steeper the slope (positive or negative) of an 5
object’s v -t graph, the greater is the object’s
acceleration in the positive or negative x-direction.

A ee—n
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h 0
A e—
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0 v=0
(I
| v :
- ® X
0

(b) Object’s position, velocity, and acceleration on the x-axis

Object is at x < 0, moving in the —x-direction (v, < 0),
and slowing down (v, and a, have opposite signs).

Object is at x < 0, instantaneously at rest (v, = 0), and
about to move in the +x-direction (a, > 0).

Object is at x > 0, moving in the +x-direction (v, > 0);
its speed is instantaneously not changing (a, = 0).

Object is at x > 0, instantaneously at rest (v, = 0), and
about to move in the —x-direction (a, < 0).

Object is at x > 0, moving in the —x-direction (v, < 0),
and speeding up (v, and a, have the same sign).
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2.14 (a) The same x-7 graph as shown in Fig. 2.8a. The x-velocity is equal to the slope of the graph, and the acceleration is given
by the concavity or curvature of the graph. (b) A motion diagram showing the position, velocity, and acceleration of the particle at

each of the times labeled on the x-7 graph.
(a) x-t graph

Slope zero: v, = 0
Curvature downward: a, <0

(b) Object’s motion

Object is at x < 0, moving in the +x-direction

i ative: v .
¥ o, C s Sl(i)eonegatlve. 1, =0 == (I) x (v, > 0), and speeding up (v, and a, have the
> é‘ i same sign).
i at ard: e L L L
Di g uilc(l)ure upwar a=0 & v * Object is at x = 0, moving in the +x-direction
B 153 »— x (v, > 0); speed is instantaneously not
B 0 . .
B “FE a changing (a, = 0).
0 = ; 4 —_ 6 """" * Object is at x > 0, instantaneously at rest
" Slope negative: v, < 0 tc (I) ® x (v, = 0), and about to move in the
R ¢ . .
. Curvature zero:a, =0 —x-direction (a, < 0).
Slope positive: v, > 0 p a=0 e + Object is at x > 0, moving in the —x-direction
A Curvature zero: ()X =0 Ip (I)‘ x (v, < 0); speed is instantaneously not
/ . changing (a, = 0).
* 17 P . . X X . .
Slope positive: v, > 0 v AT Object is at x > 0, moving in the —x-direction
Curvature upward: a, > 0 g “JOL‘ x (v, <0), and slowing down (v, and a, have

The greater the curvature (upward or downward) of

an object’s x-f graph, the greater is the object’s

acceleration in the positive or negative x-direction.

2.15 A motion diagram for a particle
moving in a straight line in the positive
x-direction with constant positive
x-acceleration a . The position, velocity,
and acceleration are shown at five equally
spaced times.

- If a particle moves in a
straight line with constant

s
a x-acceleration a ...
| U
t=0 0‘> X
I ... the x-velocity changes
} by equal amounts in equal
I 2 time intervals.
/! v
t= At 0; -—r-“ : = X
o a F
[ :
e L
0 [ a 3
[ [ %
r=3Ar L ‘ > fx
o | [ [ B
I I I I a H
[ [ [ :
U .
1= 4Ar ('); — "

However, the position changes by different
amounts in equal time intervals because the
velocity is changing.

opposite signs).

That is, a, is the second derivative of x with respect to ¢. The second derivative of
any function is directly related to the concavity or curvature of the graph of that
function (Fig. 2.14). Where the x-t graph is concave up (curved upward), the
x-acceleration is positive and v, is increasing; at a point where the x-¢ graph is
concave down (curved downward), the x-acceleration is negative and v, is
decreasing. At a point where the x-f graph has no curvature, such as an inflection
point, the x-acceleration is zero and the velocity is not changing. Figure 2.14
shows all three of these possibilities.

Examining the curvature of an x-¢ graph is an easy way to decide what the
sign of acceleration is. This technique is less helpful for determining numeri-
cal values of acceleration because the curvature of a graph is hard to measure
accurately.

Test Your Understanding of Section 2.3 Look again at the x-7 graph in (“-r&
Fig. 2.9 at the end of Section 2.2. (a) At which of the points P, Q, R, and S is the w
x-acceleration a, positive? (b) At which points is the x-acceleration negative? (c)
At which points does the x-acceleration appear to be zero? (d) At each point state
whether the velocity is increasing, decreasing, or not changing.

2.4 Motion with Constant Acceleration

The simplest kind of accelerated motion is straight-line motion with constant
acceleration. In this case the velocity changes at the same rate throughout the
motion. As an example, a falling body has a constant acceleration if the effects of
the air are not important. The same is true for a body sliding on an incline or
along a rough horizontal surface, or for an airplane being catapulted from the
deck of an aircraft carrier.

Figure 2.15 is a motion diagram showing the position, velocity, and accelera-
tion for a particle moving with constant acceleration. Figures 2.16 and 2.17 depict
this same motion in the form of graphs. Since the x-acceleration is constant, the
a,~t graph (graph of x-acceleration versus time) in Fig. 2.16 is a horizontal line.
The graph of x-velocity versus time, or v,-t graph, has a constant slope because
the acceleration is constant, so this graph is a straight line (Fig. 2.17).
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When the x-acceleration a, is constant, the average x-acceleration a,,., for any
time interval is the same as a,. This makes it easy to derive equations for the
position x and the x-velocity v, as functions of time. To find an expression for v,
we first replace a,,., in Eq. (2.4) by a,:

Uy = Uiy

a, = (2.7)

I = 1

Now we let #; = 0 and let 7, be any later time 7. We use the symbol v, for the
x-velocity at the initial time ¢ = 0; the x-velocity at the later time ¢ is v,. Then
Eq. (2.7) becomes

_ Uy 7 Ugx

= — or

a
x t—0

U, = Vg, T a,t (constant x-acceleration only) (2.8

In Eq. (2.8) the term a,t is the product of the constant rate of change of
x-velocity, a,, and the time interval f. Therefore it equals the fofal change in
x-velocity from the initial time ¢ = O to the later time 7. The x-velocity v, at any
time ¢ then equals the initial x-velocity v, (at t = 0) plus the change in x-velocity
at (Fig. 2.17).

Equation (2.8) also says that the change in x-velocity v, — v, of the particle
between ¢ = 0 and any later time ¢ equals the area under the a,-t graph between
those two times. You can verify this from Fig. 2.16: Under this graph is a rectangle
of vertical side a,, horizontal side 7, and area a7 . From Eq. (2.8) this is indeed equal
to the change in velocity v, — vg,. In Section 2.6 we’ll show that even if the
x-acceleration is not constant, the change in x-velocity during a time interval is still
equal to the area under the a,-t curve, although in that case Eq. (2.8) does not apply.

Next we’ll derive an equation for the position x as a function of time when the
x-acceleration is constant. To do this, we use two different expressions for the
average x-velocity v,,., during the interval from ¢ = 0 to any later time ¢. The first
expression comes from the definition of v,,.,, Eq. (2.2), which is true whether or
not the acceleration is constant. We call the position at time t = 0 the initial posi-
tion, denoted by x(. The position at the later time ¢ is simply x. Thus for the time
interval Ar = ¢t — 0 the displacement is Ax = x — x,, and Eq. (2.2) gives

X — Xp

= (2.9)
t

vav—x

We can also get a second expression for v,,., that is valid only when the

x-acceleration is constant, so that the x-velocity changes at a constant rate. In this

case the average x-velocity for the time interval from O to ¢ is simply the average
of the x-velocities at the beginning and end of the interval:

Uoy + Uy

Vavx = N (constant x-acceleration only) (2.10)

(This equation is not true if the x-acceleration varies during the time interval.) We
also know that with constant x-acceleration, the x-velocity v, at any time ¢ is given
by Eq. (2.8). Substituting that expression for v, into Eq. (2.10), we find

1
Vay-x = E(UOx + vy axt)

= Uy T %axt (constant x-acceleration only) 2.11

2.16 An acceleration-time (a,-t) graph
for straight-line motion with constant
positive x-acceleration a,.

a

X
Constant x-acceleration: a,-f graph
is a horizontal line (slope = 0).

Y

|
\
\
\
\
|
0 t
Area under a,-f graph = v, — v,
= change in x-velocity from time O to time 7.

2.17 A velocity-time (v,-t) graph for
straight-line motion with constant positive
x-acceleration a,. The initial x-velocity v,
is also positive in this case.

Constant

x-acceleration:

vt graphis a
Ux straight line.

During time
interval 7, the
x-velocity changes
by Uy = Ugy = Gyl

0 t

Total area under v,-f graph = x — X,
= change in x-coordinate from time 0 to time 7.
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Application Testing Humans at High
Accelerations

In experiments carried out by the U.S. Air Force
in the 1840s and 1950s, humans riding a
rocket sled demonstrated that they could with-
stand accelerations as great as 440 m/s”. The
first three photos in this sequence show Air
Force physician John Stapp speeding up from
rest to 188 m/s (678 km/h = 421 mi/h) in
just 5 s. Photos 4-6 show the even greater
magnitude of acceleration as the rocket sled
braked to a halt.

2.18 (a) Straight-line motion with con-
stant acceleration. (b) A position-time (x-f)
graph for this motion (the same motion as
is shown in Figs. 2.15, 2.16, and 2.17). For
this motion the initial position x, the ini-
tial velocity vy,, and the acceleration a,
are all positive.

2.19 (a) How a constant
x-acceleration affects a body’s
(a) x-t graph and (b) vt graph.

@

Finally, we set Egs. (2.9) and (2.11) equal to each other and simplify:

1 X~ Xo
Vox + 3a,t = — or

2

X = Xxg t Vgt + %axt (constant x-acceleration only)  (2.12)

Here’s what Eq. (2.12) tells us: If at time r = 0 a particle is at position x and
has x-velocity vg,, its new position x at any later time ¢ is the sum of three
terms—its initial position x, plus the distance v, that it would move if its
x-velocity were constant, plus an additional distance %axt2 caused by the change
in x-velocity.

A graph of Eq. (2.12)—that is, an x-f graph for motion with constant x-
acceleration (Fig. 2.18a)—is always a parabola. Figure 2.18b shows such a
graph. The curve intercepts the vertical axis (x-axis) at x(, the position at t = 0.
The slope of the tangent at ¢+ = 0 equals v,, the initial x-velocity, and the slope
of the tangent at any time ¢ equals the x-velocity v, at that time. The slope and
x-velocity are continuously increasing, so the x-acceleration a, is positive; you
can also see this because the graph in Fig. 2.18b is concave up (it curves
upward). If a, is negative, the x-¢ graph is a parabola that is concave down (has
a downward curvature).

If there is zero x-acceleration, the x-¢ graph is a straight line; if there is a con-
stant x-acceleration, the additional %axt2 term in Eq. (2.12) for x as a function of
t curves the graph into a parabola (Fig. 2.19a). We can analyze the v,-f graph in
the same way. If there is zero x-acceleration this graph is a horizontal line (the
x-velocity is constant); adding a constant x-acceleration gives a slope to the v,-¢
graph (Fig. 2.19b).

(b) The x- graph

(a) A race car moves in the x-direction
with constant acceleration.

Slope = v,

During time interval ¢,
e the x-velocity changes
by v, — vy, = a,t.

Constant x-acceleration:
x-t graph is a parabola.

(a) An x- graph for an object moving with (b) The v~ graph for the same object

positive constant x-acceleration
vX
The graph with constant x-acceleration:

X=X+ Vgt + 5a,t?

The graph with constant x-acceleration:
Uy 7 Uiy + ayt

.+ The effect of The added velocity
o ,f»acceleration: «“due to x-acceleration:
7 A ayt
- UVpff==—5——7——-———— .
- *... The graph with zero x-acceleration:
% The graph we would get v, =,
"+ with zero x-acceleration: - - t

Xo
X = Xg T Vgt
t
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Just as the change in x-velocity of the particle equals the area under the a,-¢
graph, the displacement—that is, the change in position—equals the area under
the v,-t graph. To be specific, the displacement x — x( of the particle between
t = 0 and any later time 7 equals the area under the v,-¢ graph between those two
times. In Fig. 2.17 we divide the area under the graph into a dark-colored rectan-
gle (vertical side v,, horizontal side ¢, and area v(,f) and a light-colored right
triangle (vertical side a,#, horizontal side 7, and area %(axt)(t) = %axtz). The total
area under the v,-f graph is

X — X = Uyt T+ %axt2

in agreement with Eq. (2.12).

The displacement during a time interval is always equal to the area under the
v,-t curve. This is true even if the acceleration is not constant, although in that
case Eq. (2.12) does not apply. (We’ll show this in Section 2.6.)

It’s often useful to have a relationship for position, x-velocity, and (constant)
x-acceleration that does not involve the time. To obtain this, we first solve
Eq. (2.8) for t and then substitute the resulting expression into Eq. (2.12):

Ux = Ugx
Ay

— _ 2
_ Ux Uox 1 Ux Uox
X = Xp + UOx 761 + zax 7(1
X X

We transfer the term x to the left side and multiply through by 2a,:

t:

2a,(x — x9) = 2000 — 2v0x2+ sz_ 200,05 + onz

Finally, simplifying gives us

2

v2= vl + 2a,(x — x) (constant x-acceleration only)  (2.13)

We can get one more useful relationship by equating the two expressions
for v,y Egs. (2.9) and (2.10), and multiplying through by 7. Doing this, we
obtain

Uoy T U
X — Xg = <0xx>t (constant x-acceleration only)  (2.14)

Note that Eq. (2.14) does not contain the x-acceleration a,. This equation can be
handy when a, is constant but its value is unknown.

Equations (2.8), (2.12), (2.13), and (2.14) are the equations of motion with
constant acceleration (Table 2.4). By using these equations, we can solve any
problem involving straight-line motion of a particle with constant acceleration.

For the particular case of motion with constant x-acceleration depicted in
Fig. 2.15 and graphed in Figs. 2.16, 2.17, and 2.18, the values of x, v,, and a,
are all positive. We invite you to redraw these figures for cases in which one,
two, or all three of these quantities are negative.

~
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Table 2.4 Equations of Motion
with Constant Acceleration

Includes
Equation Quantities
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GO ED BT TG A M Motion with Constant Acceleration

IDENTIFY the relevant concepts: In most straight-line motion prob-
lems, you can use the constant-acceleration equations (2.8), (2.12),
(2.13), and (2.14). If you encounter a situation in which the accelera-
tion isn 't constant, you’ll need a different approach (see Section 2.6).

SET UP the problem using the following steps:

1. Read the problem carefully. Make a motion diagram showing
the location of the particle at the times of interest. Decide
where to place the origin of coordinates and which axis direc-
tion is positive. It’s often helpful to place the particle at the ori-
gin at time ¢ = 0; then xy = 0. Remember that your choice of
the positive axis direction automatically determines the posi-
tive directions for x-velocity and x-acceleration. If x is positive
to the right of the origin, then v, and a, are also positive toward
the right.

2. Identify the physical quantities (times, positions, velocities, and
accelerations) that appear in Egs. (2.8), (2.12), (2.13), and
(2.14) and assign them appropriate symbols — x, xq, Uy, Ugy,
and a,, or symbols related to those. Translate the prose into
physics: “When does the particle arrive at its highest point”
means “What is the value of # when x has its maximum value?”
In Example 2.4 below, “Where is the motorcyclist when his
velocity is 25 m/s?” means “What is the value of x when
v, = 25 m/s?” Be alert for implicit information. For example,
“A car sits at a stop light” usually means vy, = 0.

3. Make a list of the quantities such as x, xg, Uy, Uy, dy, and t.
Some of them will be known and some will be unknown.

IE] I Constant-acceleration calculations

A motorcyclist heading east through a small town accelerates at a
constant 4.0 m/ s after he leaves the city limits (Fig. 2.20). At
time ¢+ = 0 he is 5.0 m east of the city-limits signpost, moving east
at 15 m/s. (a) Find his position and velocity at ¢t = 2.0 s.
(b) Where is he when his velocity is 25 m/s?

IDENTIFY and SET UP: The x-acceleration is constant, so we can
use the constant-acceleration equations. We take the signpost as the
origin of coordinates (x = 0) and choose the positive x-axis to point
east (see Fig. 2.20, which is also a motion diagram). The known
variables are the initial position and velocity, x; = 5.0 m and
Vo = 15 m/s, and the acceleration, a, = 4.0 m/s?. The unknown
target variables in part (a) are the values of the position x and the
x-velocity v, at ¢ = 2.0 s; the target variable in part (b) is the value
of xwhenv, = 25 m/s.

ENECUTE: (a) Since we know the values of x, vg,, and a,, Table
2.4 tells us that we can find the position x at # = 2.0 s by using

2.20 A motorcyclist traveling with constant acceleration.

x (east)

Write down the values of the known quantities, and decide
which of the unknowns are the target variables. Make note of
the absence of any of the quantities that appear in the four
constant-acceleration equations.

4. Use Table 2.4 to identify the applicable equations. (These are often
the equations that don’t include any of the absent quantities that
you identified in step 3.) Usually you’ll find a single equation that
contains only one of the target variables. Sometimes you must find
two equations, each containing the same two unknowns.

5. Sketch graphs corresponding to the applicable equations.
The v -t graph of Eq. (2.8) is a straight line with slope a,. The
x-t graph of Eq. (2.12) is a parabola that’s concave up if a, is
positive and concave down if a, is negative.

6. On the basis of your accumulated experience with such prob-
lems, and taking account of what your sketched graphs tell you,
make any qualitative and quantitative predictions you can about
the solution.

EXECUTE the solution: If a single equation applies, solve it for the
target variable, using symbols only; then substitute the known val-
ues and calculate the value of the target variable. If you have two
equations in two unknowns, solve them simultaneously for the
target variables.

EVALUATE your answer: Take a hard look at your results to see
whether they make sense. Are they within the general range of val-
ues that you expected?

Eq. (2.12) and the x-velocity v, at this time by using Eq. (2.8):

X =xg+ gt + %axt2

50 m + (15 m/s)(2.0 s) + 5 (4.0 m/s?)(2.0 s)?
=43 m

Uy = Vg, T ayt
15 m/s + (4.0 m/s?)(2.0 s) = 23 m/s

(b) We want to find the value of x when v, = 25 m/s, but we
don’t know the time when the motorcycle has this velocity. Table
2.4 tells us that we should use Eq. (2.13), which involves x, v,, and
a, but does not involve .

sz = U0x2+ zax(x - xO)

Solving for x and substituting the known values, we find
2 2
7 Uy — Uox
xX=xyg+——
2a,

(25 m/s)? — (15 m/s)? 3

=50m + 5 =5
2(4.0 m/s%)

5m

EVALUATE: You can check the result in part (b) by first using
Eq. (2.8), vy = vg, + ay, to find the time at which v, = 25 m/s,
which turns out to be + = 2.5 s. You can then use Eq. (2.12),
x = xqgtvgt + %axtz, to solve for x. You should find x = 55 m,
the same answer as above. That’s the long way to solve the problem,
though. The method we used in part (b) is much more efficient.



2.4 Motion with Constant Acceleration 51

m Two bodies with different accelerations

A motorist traveling with a constant speed of 15 m/s (about
34 mi/h) passes a school-crossing corner, where the speed limit is
10 m/s (about 22 mi/h). Just as the motorist passes the school-
crossing sign, a police officer on a motorcycle stopped there starts
in pursuit with a constant acceleration of 3.0 m/ s2 (Fig. 2.21a). (a)
How much time elapses before the officer passes the motorist? (b)
What is the officer’s speed at that time? (c) At that time, what dis-
tance has each vehicle traveled?

IDENTIFY and SET UP: The officer and the motorist both move
with constant acceleration (equal to zero for the motorist), so we
can use the constant-acceleration formulas. We take the origin at
the sign, so xy = 0 for both, and we take the positive direction
to the right. Let xp and x), represent the positions of the officer and
the motorist at any time; their initial velocities are vpy, = 0 and
Umox = 15 m/s, and their accelerations are ap, = 3.0 m/s> and
ape = 0. Our target variable in part (a) is the time when the offi-
cer passes the motorist—that is, when the two vehicles are at the
same position x; Table 2.4 tells us that Eq. (2.12) is useful for this
part. In part (b) we’re looking for the officer’s speed v (the magni-
tude of his velocity) at the time found in part (a). We’ll use
Eq. (2.8) for this part. In part (c) we’ll use Eq. (2.12) again to find
the position of either vehicle at this same time.

Figure 2.21b shows an x-t graph for both vehicles. The straight
line represents the motorist’s motion, Xy = Xpo + Umont =
Umoxt- The graph for the officer’s motion is the right half of a
concave—up parabola:

_ Lo _ 1 2
Xp = Xpo t Upgyl T 5ap ™ = 5apt

A good sketch will show that the officer and motorist are at the
same position (xp = xy;) at about = 10s, at which time both
have traveled about 150 m from the sign.

EXECUTE: (a) To find the value of the time ¢ at which the motorist
and police officer are at the same position, we set xp = xp; by
equating the expressions above and solving that equation for #:

Umox! = %antz
2v 2(15 m/s)
t=0 or p= MO > =
apy 3.0 m/s

Both vehicles have the same x-coordinate at two times, as Fig. 2.21b
indicates. At ¢+ = 0 the motorist passes the officer; at = 10 s the
officer passes the motorist.

(b) We want the magnitude of the officer’s x-velocity vp, at the
time ¢ found in part (a). Substituting the values of vp(, and ap, into
Eq. (2.8) along with ¢+ = 10 s from part (a), we find

Upy = Upgy + apt = 0 + (3.0 m/s?)(10s) = 30 m/s

The officer’s speed is the absolute value of this, which is also
30 m/s.
(¢) In 10 s the motorist travels a distance

XM = Umod = (15 m/s)(10 s) = 150 m

and the officer travels
xp = yapt? = 5(3.0 m/s?)(10 5)> = 150 m

This verifies that they have gone equal distances when the officer
passes the motorist.

EVALUATE: Our results in parts (a) and (c) agree with our estimates
from our sketch. Note that at the time when the officer passes the
motorist, they do not have the same velocity. At this time the
motorist is moving at 15 m/s and the officer is moving at 30 m/s.
You can also see this from Fig. 2.21b. Where the two x-f curves
cross, their slopes (equal to the values of v, for the two vehicles)
are different.

Is it just coincidence that when the two vehicles are at the same
position, the officer is going twice the speed of the motorist? Equa-
tion (2.14), x — xog = [(voy t vy)/2]t, gives the answer. The
motorist has constant velocity, so Upjor = Umy and the distance
x — x that the motorist travels in time 7 is vyo,. The officer has
zero initial velocity, so in the same time ¢ the officer travels a dis-
tance %vpxt. If the two vehicles cover the same distance in the same
amount of time, the two values of x — x(, must be the same.
Hence when the officer passes the motorist vy = %vpxt and
Upy = 2upmox—that is, the officer has exactly twice the motorist’s
velocity. Note that this is true no matter what the value of the offi-
cer’s acceleration.

2.21 (a) Motion with constant acceleration overtaking motion with constant velocity. (b) A graph of x versus 7 for each vehicle.

@
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Test Your Understanding of Section 2.4 Four possible v,-f graphs are o
shown for the two vehicles in Example 2.5. Which graph is correct?

2.22 Multiflash photo of a freely falling
ball.

PhET: Lunar Lander
ActivPhysics 1.7: Balloonist Drops Lemonade
ActivPhysics 1.10: Pole-Vaulter Lands
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2.5 Freely Falling Bodies

The most familiar example of motion with (nearly) constant acceleration is a
body falling under the influence of the earth’s gravitational attraction. Such
motion has held the attention of philosophers and scientists since ancient times.
In the fourth century B.C., Aristotle thought (erroneously) that heavy bodies fall
faster than light bodies, in proportion to their weight. Nineteen centuries later,
Galileo (see Section 1.1) argued that a body should fall with a downward acceler-
ation that is constant and independent of its weight.

Experiment shows that if the effects of the air can be neglected, Galileo is
right; all bodies at a particular location fall with the same downward acceleration,
regardless of their size or weight. If in addition the distance of the fall is small
compared with the radius of the earth, and if we ignore small effects due to the
earth’s rotation, the acceleration is constant. The idealized motion that results
under all of these assumptions is called free fall, although it includes rising as
well as falling motion. (In Chapter 3 we will extend the discussion of free fall to
include the motion of projectiles, which move both vertically and horizontally.)

Figure 2.22 is a photograph of a falling ball made with a stroboscopic light
source that produces a series of short, intense flashes. As each flash occurs, an
image of the ball at that instant is recorded on the photograph. There are equal
time intervals between flashes, so the average velocity of the ball between suc-
cessive flashes is proportional to the distance between corresponding images.
The increasing distances between images show that the velocity is continuously
changing; the ball is accelerating downward. Careful measurement shows that
the velocity change is the same in each time interval, so the acceleration of the
freely falling ball is constant.

The constant acceleration of a freely falling body is called the acceleration
due to gravity, and we denote its magnitude with the letter g. We will frequently
use the approximate value of g at or near the earth’s surface:

(approximate value near

_ 2 _ 2 _ 2
g = 9.8m/s” = 980 cm/s” = 32 ft/s the earth’s surface)

The exact value varies with location, so we will often give the value of g at the
earth’s surface to only two significant figures. On the surface of the moon, the
acceleration due to gravity is caused by the attractive force of the moon rather
than the earth, and g = 1.6 m/s%. Near the surface of the sun, g = 270 m/s’.

CAUTION g is always a positive number Because g is the magnitude of a vector quan-
tity, it is always a positive number. If you take the positive direction to be upward, as we
do in Example 2.6 and in most situations involving free fall, the acceleration is negative
(downward) and equal to —g. Be careful with the sign of g, or else you’ll have no end of
trouble with free-fall problems.

In the following examples we use the constant-acceleration equations devel-
oped in Section 2.4. You should review Problem-Solving Strategy 2.1 in that sec-
tion before you study the next examples.



3L PN A freely falling coin

A one-euro coin is dropped from the Leaning Tower of Pisa and
falls freely from rest. What are its position and velocity after 1.0 s,
2.0s,and 3.0 s?

IDENTIFY and SET UP: “Falls freely” means “falls with constant
acceleration due to gravity,” so we can use the constant-accelera-
tion equations. The right side of Fig. 2.23 shows our motion dia-
gram for the coin. The motion is vertical, so we use a vertical

2.23 A coin freely falling from rest.

The Leaning Tower Our sketch for the problem

Y

0
o —+1,=0,y,=0
V,=0 0= %Yo
° — T1=1S,yl=?
Wy =°

¢ ayz"g =—q‘8m/sz

o — T2=ZS,\/2=?
ot
° —T3=35,Y3=?
o

m Up-and-down motion in free fall

You throw a ball vertically upward from the roof of a tall building.
The ball leaves your hand at a point even with the roof railing with
an upward speed of 15.0 m/s; the ball is then in free fall. On its
way back down, it just misses the railing. Find (a) the ball’s posi-
tion and velocity 1.00 s and 4.00 s after leaving your hand; (b) the
ball’s velocity when it is 5.00 m above the railing; (c) the maxi-
mum height reached; (d) the ball’s acceleration when it is at its
maximum height.

IDENTIFY and SET UP: The words “in free fall” mean that the accel-
eration is due to gravity, which is constant. Our target variables are
position [in parts (a) and (c)], velocity [in parts (a) and (b)], and
acceleration [in part (d)]. We take the origin at the point where the
ball leaves your hand, and take the positive direction to be upward
(Fig. 2.24). The initial position y is zero, the initial y-velocity v,

is +15.0 m/s, and the y-acceleration is a, = —¢g = —9.80 m/s?.
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coordinate axis and call the coordinate y instead of x. We take the
origin O at the starting point and the upward direction as positive.
The initial coordinate yq and initial y-velocity v, are both zero.
The y-acceleration is downward (in the negative y-direction), so
a,=—g=-98 m/sz. (Remember that, by definition, g itself is
a positive quantity.) Our target variables are the values of y and v,
at the three given times. To find these, we use Egs. (2.12) and (2.8)
with x replaced by y. Our choice of the upward direction as posi-
tive means that all positions and velocities we calculate will be
negative.

EXECUTE: At a time 7 after the coin is dropped, its position and
y-velocity are

Y =yo + Vot +3a0> =0+ 0+ 5(—g)? = (—4.9 m/s)r?

vy = Vg, +ayt =0+ (—g)t=(-98 m/s?)t

When t = 1.0s, y = (4.9 m/s?)(1.0 5)> = —4.9m and v, =
(—9.8 m/s2)(1.0 s) = —9.8 m/s; after 1s, the coin is 49m
below the origin (y is negative) and has a downward velocity (v, is
negative) with magnitude 9.8 m/s. -
We can find the positions and y-velocities at 2.0 s and 3.0 s in
the same way. The results are y = —20 m and v, = —20 m/s at
t=20sandy = —44 mandv, = =29 m/sats = 3.0 s.

EVALUATE: All our answers are negative, as we expected. If we had
chosen the positive y-axis to point downward, the acceleration
would have been a, = +g and all our answers would have been
positive.

In part (a), as in Example 2.6, we’ll use Egs. (2.12) and (2.8) to
find the position and velocity as functions of time. In part (b) we
must find the velocity at a given position (no time is given), so
we’ll use Eq. (2.13).

Figure 2.25 shows the y-¢ and v,-t graphs for the ball. The y-¢
graph is a concave-down parabola that rises and then falls, and the
v\-t graph is a downward-sloping straight line. Note that the ball’s
velocity is zero when it is at its highest point.

EXECUTE: (a) The position and y-velocity at time ¢ are given by
Egs. (2.12) and (2.8) with x’s replaced by y’s:

1 1
y =yt l)Oyt + antz =y + l)()yl‘ + 5(—g)12

= (0) + (15.0 m/s)t + 3(—9.80 m/s?)r>
Voy + (_g)t
15.0 m/s + (—9.80 m/s)z

Uy = Ugy + ayt =

Continued
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When ¢ = 1.00s, these equations give y = +10.1 m and
vy = +5.2 m/s. That is, the ball is 10.1 m above the origin (y is
positive) and moving upward (v, is positive) with a speed of
5.2 m/s. This is less than the initial speed because the ball slows
as it ascends. When ¢ =4.00s, those equations give
y = —18.4 mand v, = —24.2 m/s. The ball has passed its high-
est point and is 18.4 m below the origin (y is negative). It is mov-
ing downward (v, is negative) with a speed of 24.2 m/s. The ball
gains speed as it descends; Eq. (2.13) tells us that it is moving at
the initial 15.0-m/s speed as it moves downward past the ball’s
launching point, and continues to gain speed as it descends further.

(b) The y-velocity at any position y is given by Eq. (2.13) with
x’s replaced by y’s:

Uyzz v0y2+ zay(y - yO) = U0y2+ 2(_g)(y - 0)
= (15.0 m/s)> + 2(—9.80 m/s?)y

When the ball is 5.00 m above the origin we have y = +5.00 m, so

v,2 = (15.0 m/s)? + 2(—9.80 m/s?)(5.00 m) = 127 m?/s?
vy, = *11.3 m/s

We get two values of v, because the ball passes through the point
y = +5.00 m twice, once on the way up (so v, is positive) and
once on the way down (so v, is negative) (see Figs. 2.24 and
2.25a).

2.24 Position and velocity of a ball thrown vertically upward.

The ball actually moves straight up and y
then straight down; we show ..., . v =0
a U-shaped path for clarity. “y tyz 9 _,
t=1.00s,vy=?P ——————— =1
t=2%0v,="? Ft—:—?————y=5-00m
t=0,v =150m/st vy =7
HHHHH’HOTyTHH.HHH T y=0
| | [ |
[ 1 ] s
| | [ |
| | [ | -
ios]’ ]
| | [ | 0=

(AE] IR Two solutions or one?

At what time after being released has the ball in Example 2.7 fallen
5.00 m below the roof railing?

IDENTIFY and SET UP: We treat this as in Example 2.7, 50 y, U,
and a, = —g have the same values as there. In this example, how-
ever, the target variable is the time at which the ball isaty = —5.00 m.

(c) At the instant at which the ball reaches its maximum height
Y1, its y-velocity is momentarily zero: v, = 0. We use Eq. (2.13) to
find y;. Withv, = 0,y = 0, and @, = —g, we get

0 = v+ 2(=g)(y1 — 0)
vos  (15.0 m/s)>

= =+115m
2¢  2(9.80 m/s?)

Y1 =

(d) CAUTION A free-fall misconception It’s a common mis-
conception that at the highest point of free-fall motion, where the
velocity is zero, the acceleration is also zero. If this were so, once
the ball reached the highest point it would hang there suspended in
midair! Remember that acceleration is the rate of change of veloc-
ity, and the ball’s velocity is continuously changing. At every
point, including the highest point, and at any velocity, including
zero, the acceleration in free fall is always a, = —g =
—9.80 m/s>.

EVALUATE: A useful way to check any free-fall problem is to draw
the y-t and v,-t graphs as we did in Fig. 2.25. Note that these are
graphs of Eqé. (2.12) and (2.8), respectively. Given the numerical
values of the initial position, initial velocity, and acceleration, you
can easily create these graphs using a graphing calculator or an
online mathematics program.

2.25 (a) Position and (b) velocity as functions of time for a
ball thrown upward with an initial speed of 15 m/s.

(a) y-t graph (curvature is
downward because a, = —g
is negative)

(b) v, graph (straight line with
negative slope because ay,=—g
is constant and negative)

y (m) Before r = 1.53 s the Uy (m/s) .
15 = ball moves upward. 15 | Beforer=153s
> the y-velocity is
10 F 7\ After 7= 1.53 s 10 positive.
} the ball moves 5L
51 } downward. | | | |
0 f—11 Lo O 34 '
1 2 3 S\ - Aftert = 1.53 s
ST —10 - the y»‘velocity is
—10 + negative.
_15 -
—15 —20 F
=20 - =25 F

The best equation to use is Eq. (2.12), which gives the position y as
a function of time :

_ 12 _ 1 2
Y =y vyt + za” =y + vot + 5(—g)t

This is a quadratic equation for ¢, which we want to solve for the
value of  when y = —5.00 m.



EXECUTE: We rearrange the equation so that is has the standard form
of a quadratic equation for an unknown x, Ax> + Bx + C = 0:

Gg)? + (—vg)t + (y —yo) =A2 + Bt + C =0

By comparison, we identify A = %g, B = —vgy, and C =y — yp.
The quadratic formula (see Appendix B) tells us that this equation
has two solutions:

B? — 4AC

2A

—(=voy) = V(=voy)* = 4(3¢)(y — 0))
2(3¢)

voy = Vvg'— 28(y — o)

8

Substituting the values yo = 0, vg, = +15.0 m/s, g = 9.80 m/s?,
and y = —5.00 m, we find

-B =

V(15.0 m/s)> — 2(9.80 m/s%)(—5.00 m — 0)

(15.0 m/s) =
t =
9.80 m/s’
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sense, since it refers to a time before the ball left your hand at
t = 0. So the correct answer is t = +3.36 s.

EVALUATE: Why did we get a second, fictitious solution? The
explanation is that constant-acceleration equations like Eq. (2.12)
are based on the assumption that the acceleration is constant for all
values of time, whether positive, negative, or zero. Hence the solu-
tion + = —0.30 s refers to an imaginary moment when a freely
falling ball was 5.00 m below the roof railing and rising to meet
your hand. Since the ball didn’t leave your hand and go into free
fall until # = 0, this result is pure fiction.

You should repeat these calculations to find the times when the
ball is 5.00 m above the origin (y = +5.00 m). The two answers
are t = +0.38 s and + = +2.68 s. These are both positive values
of £, and both refer to the real motion of the ball after leaving your
hand. At the earlier time the ball passes through y = +5.00 m
moving upward; at the later time it passes through this point mov-
ing downward. [Compare this with part (b) of Example 2.7, and
again refer to Fig. 2.25a.]

You should also solve for the times when y = +15.0 m. In this
case, both solutions involve the square root of a negative number, so
there are no real solutions. Again Fig. 2.25a shows why; we found in
part (c) of Example 2.7 that the ball’s maximum height is

y = +11.5 m, so it never reaches y = +15.0 m. While a quadratic
equation such as Eq. (2.12) always has two solutions, in some situa-

You can confirm that the numerical answers are t = +3.36 s
and r = —0.30 s. The answer ¢+ = —0.30 s doesn’t make physical

tions one or both of the solutions will not be physically reasonable.
I

Test Your Understanding of Section 2.5 If you toss a ball upward with (\@

a certain initial speed, it falls freely and reaches a maximum height / a time 7 after w

it leaves your hand. (a) If you throw the ball upward with double the initial speed,

what new maximum height does the ball reach? (i) h V2 ; (ii) 2h; (iii) 4k; (iv) 8h; (v) 16h.

(b) If you throw the ball upward with double the initial speed, how long does it take to

reach its new maximum height? (i) #/2; (ii) ¢/ V2 (iii) 1; (iv) V25 (v) 2t.

2.6 llelocity and Position hy Integration

This section is intended for students who have already learned a little integral
calculus. In Section 2.4 we analyzed the special case of straight-line motion with
constant acceleration. When a, is not constant, as is frequently the case, the equa-
tions that we derived in that section are no longer valid (Fig. 2.26). But even
when a, varies with time, we can still use the relationship v, = dx/dt to find the
x-velocity v, as a function of time if the position x is a known function of time.
And we can still use a, = dv,/dr to find the x-acceleration a, as a function of
time if the x-velocity v, is a known function of time.

In many situations, however, position and velocity are not known functions of
time, while acceleration is (Fig. 2.27). How can we find the position and velocity
in straight-line motion from the acceleration function a,()?

We first consider a graphical approach. Figure 2.28 is a graph of x-acceleration
versus time for a body whose acceleration is not constant. We can divide the time
interval between times #; and t, into many smaller intervals, calling a typical one
At. Let the average x-acceleration during At be a,,.,. From Eq. (2.4) the change
in x-velocity Av, during At is

2.26 When you push your car’s acceler-
ator pedal to the floorboard, the resulting
acceleration is not constant: The greater
the car’s speed, the more slowly it gains
additional speed. A typical car takes twice
as long to accelerate from 50 km/h to

100 km/h as it does to accelerate from O to
50 km/h.

Av, = a,,., At

Graphically, Av, equals the area of the shaded strip with height a,,., and width
At—that is, the area under the curve between the left and right sides of Az. The
total change in x-velocity during any interval (say, ¢ to t,) is the sum of the x-
velocity changes Av, in the small subintervals. So the total x-velocity change is
represented graphically by the foral area under the a,-f curve between the vertical
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2.27 The inertial navigation system
(INS) on board a long-range airliner keeps
track of the airliner’s acceleration. The
pilots input the airliner’s initial position
and velocity before takeoff, and the INS
uses the acceleration data to calculate the
airliner’s position and velocity throughout
the flight.

2.28 An a,- graph for a body whose
x-acceleration is not constant.

Area of this strip = Av,
= Change in x-velocity

a
* during time interval At
| 7
-
—
Qayx |77 7777 =
W t

ol 1 = 1

Ar

Total area under the x-¢ graph from ¢, to 1,
= Net change in x-velocity from ¢, to 7,

lines #; and 7,. (In Section 2.4 we showed this for the special case in which the
acceleration is constant.)

In the limit that all the A#’s become very small and their number very large,
the value of a,,., for the interval from any time 7 to ¢ + Af approaches the instan-
taneous x-acceleration a, at time ¢. In this limit, the area under the a,-¢ curve is
the integral of a, (which is in general a function of 7) from #, to t,. If vy, is the
x-velocity of the body at time 7| and v,, is the velocity at time 7,, then

Uoy 5]
Upy — Upy = / dv, = / a, dt
Ulx 3

The change in the x-velocity v, is the time integral of the x-acceleration a,.

We can carry out exactly the same procedure with the curve of x-velocity ver-
sus time. If x is a body’s position at time 7, and x, is its position at time #,, from
Eq. (2.2) the displacement Ax during a small time interval Az is equal to v,,._, At,
where v,,., is the average x-velocity during Az. The total displacement x, — x;
during the interval t, — ¢, is given by

X2 5]
xz—xlz/ de/Uth
X1 51

The change in position x—that is, the displacement—is the time integral of
x-velocity v,. Graphically, the displacement between times ¢, and ¢, is the area
under the v,-f curve between those two times. [This is the same result that we
obtained in Section 2.4 for the special case in which v, is given by Eq. (2.8).]

If 1, = 0 and 1, is any later time #, and if x( and v, are the position and
velocity, respectively, at time ¢ = 0, then we can rewrite Egs. (2.15) and (2.16)

as follows:
t
U, = Vg + / a, dt
0

t
x=x0+/vxdt
0

Here x and v,, are the position and x-velocity at time . If we know the x-acceleration
a, as a function of time and we know the initial velocity v,, we can use Eq. (2.17)
to find the x-velocity v, at any time; in other words, we can find v, as a function
of time. Once we know this function, and given the initial position x(, we can use
Eq. (2.18) to find the position x at any time.

(2.15)

(2.16)

(2.17)

(2.18)

36D PRI Motion with changing acceleration

Sally is driving along a straight highway in her 1965 Mustang. At
t = 0, when she is moving at 10 m/s in the positive x-direction,
she passes a signpost at x = 50 m. Her x-acceleration as a func-

tion of time is

a, = 2.0 m/s> — (0.10 m/s)z

IDENTIFY and SET UP: The x-acceleration is a function of time, so
we cannot use the constant-acceleration formulas of Section 2.4.
Instead, we use Eq. (2.17) to obtain an expression for v, as a func-
tion of time, and then use that result in Eq. (2.18) to find an expres-
sion for x as a function of 7. We’ll then be able to answer a variety

(a) Find her x-velocity v, and position x as functions of time.
(b) When is her x-velocity greatest? (c) What is that maximum
x-velocity? (d) Where is the car when it reaches that maximum
x-velocity?

of questions about the motion.



ENECUTE: (a) At r = 0, Sally’s position is x; = 50 m and her
x-velocity is vg, = 10 m/s. To use Eq. (2.17), we note that the inte-
gral of 1" (except for n = —1)is [1"dt = -——1""". Hence we
find

v, = 10 m/s + /1[2.0 m/s> — (0.10 m/s*)¢]dr
0

=10 m/s + (2.0 m/s?)r — $(0.10 m/s%)s2

Now we use Eq. (2.18) to find x as a function of #:
t
x =50m + /[10 m/s + (2.0 m/s?)t — 3(0.10 m/s%)r?] dt
0
=50 m + (10 m/s)t + 3(2.0 m/s?)r> — £(0.10 m/s>)13

Figure 2.29 shows graphs of a,, v,, and x as functions of time as
given by the equations above. Note that for any time ¢, the slope of
the v -t graph equals the value of a, and the slope of the x-f graph
equals the value of v,.

(b) The maximum value of v, occurs when the x-velocity stops
increasing and begins to decrease. At that instant, dv,/dr = a, = 0.
So we set the expression for a, equal to zero and solve for #:

0 =20 m/s> — (0.10 m/s*)z

2.0 m/s?
t=——">= 20 s
0.10 m/s°

2.6 Velocity and Position by Integration 57

(c) We find the maximum x-velocity by substituting r = 20 s,
the time from part (b) when velocity is maximum, into the equa-
tion for v, from part (a):

Umaxx = 10 m/s + (2.0 m/s2)(20 s) — 5(0.10 m/s)(20 s)?
=30 m/s

(d) To find the car’s position at the time that we found in part
(b), we substitute r = 20 s into the expression for x from part (a):

x =50m + (10 m/s)(20 s) + 3(2.0 m/s?)(20 s)?
— 1(0.10 m/s%)(20 s)?

= 51

N

m

EVALUATE: Figure 2.29 helps us interpret our results. The top
graph shows that a, is positive between r = 0 and # = 20 s and
negative after that. It is zero at r = 20 s, the time at which v, is
maximum (the high point in the middle graph). The car speeds up
until + = 20 s (because v, and a, have the same sign) and slows
down after + = 20 s (because v, and a, have opposite signs).

Since v, is maximum at ¢ = 20 s, the x-¢ graph (the bottom
graph in Fig. 2.29) has its maximum positive slope at this time.
Note that the x- graph is concave up (curved upward) from ¢ = 0
to t = 20 s, when a, is positive. The graph is concave down
(curved downward) after # = 20 s, when a, is negative.

2.29 The position, velocity, and acceleration of the car in Example 2.9 as functions of time. Can you show that if this motion contin-

ues, the car will stop at t = 44.5 s?

x (m)
800 -t ora <
v, (m/s) x-t graph curves
upward before
30 - _
a, (m/fs?) 7 600 1=120 3 _
20 leration i 20 I 400 : | x-t graph curves
0= - x-acceleration is i (I ) | downward after
positive before = 20 s. x-velocity } x-velocity (=205
10 10 increases before | decreases after 200 } ’
t=20s. } t=20s. }
| | | | | L t(s) 1 1 1 | 1 L (s) | | | ] | L £ (s)
o 5 10 15 20 2§ 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
—1.0 + x-acceleration is ="
negative after t = 20 s.
I

Test Your Understanding of Section 2.6 If the x-acceleration a,
is increasing with time, will the v,-¢ graph be (i) a straight line, (ii) concave up

(i.e., with an upward curvature), or (iii) concave down (i.e., with a downward

curvature)?



ciarter 2 SUMMARY

Straight-line motion, average and instantaneous
x-uelocity: When a particle moves along a straight line,
we describe its position with respect to an origin O by
means of a coordinate such as x. The particle’s average
x-velocity vy, during a time interval At = t, — 7y is
equal to its displacement Ax = x, — x; divided by Ar.
The instantaneous x-velocity v, at any time ¢ is equal to
the average x-velocity for the time interval from ¢ to

t + At in the limit that A¢ goes to zero. Equivalently, v,
is the derivative of the position function with respect to
time. (See Example 2.1.)

Average and instantaneous x-acceleration: The average
x-acceleration a,,_, during a time interval Az is equal
to the change in velocity Av, = v,, — vy, during

that time interval divided by Az. The instantaneous
x-acceleration a, is the limit of a,,., as At goes to zero,
or the derivative of v, with respect to 7. (See Examples
2.2 and 2.3.)

Straight-line motion with constant acceleration: When
the x-acceleration is constant, four equations relate the
position x and the x-velocity v, at any time ¢ to the
initial position x(, the initial x-velocity v, (both
measured at time ¢ = 0), and the x-acceleration a,.
(See Examples 2.4 and 2.5.)

Freely falling bodies: Free fall is a case of motion with
constant acceleration. The magnitude of the acceleration
due to gravity is a positive quantity, g. The acceleration
of a body in free fall is always downward. (See Exam-
ples 2.6-2.8.)

Straight-line motion with varying acceleration: When the
acceleration is not constant but is a known function of
time, we can find the velocity and position as functions
of time by integrating the acceleration function. (See
Example 2.9.)

X2 — X1 Ax
Voyypoy = ————— = —
WE -1 At

. Ax  dx
v = lim — = —

= lim =
At—0 At dt

Uy = Vix Av,

h — 1 At
Av, dv,

a, = lim
Y A0 At dr

aav—x =

Constant x-acceleration only:
Uy = Ugy T ayt

X = XxXqo T Ugyt + %axt2

sz = UOJ(Z+ 2ax(x - xO)

. T = <v0x + Ux)t
—xo=|—7
2

t
vx:vm+/axdt
0
2
x:x0+/vxdl
0

(2.2)

(2.3)

(2.4)

(2.5)

(2.8)

(2.12)

(2.13)

(2.14)

(2.17)

(2.18)

Ax =x, — x|

Av)[ = UZX - UI/\




The Fall of a Superhero

The superhero Green Lantern steps from the top of a tall building.
He falls freely from rest to the ground, falling half the total dis-
tance to the ground during the last 1.00 s of his fall. What is the
height 4 of the building?

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.‘ ,

IDENTIFY and SET UP

1. You’re told that Green Lantern falls freely from rest. What does
this imply about his acceleration? About his initial velocity?

2. Choose the direction of the positive y-axis. It’s easiest to make
the same choice we used for freely falling objects in Section 2.5.

3. You can divide Green Lantern’s fall into two parts: from the top
of the building to the halfway point and from the halfway point
to the ground. You know that the second part of the fall lasts
1.00 s. Decide what you would need to know about Green

Prohlems

For instructor-assigned homework, go to www.masteringphysics.com

Discussion Questions 99

Lantern’s motion at the halfway point in order to solve for the
target variable 4. Then choose two equations, one for the first
part of the fall and one for the second part, that you’ll use
together to find an expression for /. (There are several pairs of
equations that you could choose.)

EXECUTE

4. Use your two equations to solve for the height 4. Note that
heights are always positive numbers, so your answer should be
positive.

EVALUATE

5. To check your answer for h, use one of the free-fall equations to
find how long it takes Green Lantern to fall (i) from the top of
the building to half the height and (ii) from the top of the build-
ing to the ground. If your answer for & is correct, time (ii)
should be 1.00 s greater than time (i). If it isn’t, you’ll need to
go back and look for errors in how you found h.

0

e, *=, eeo: Prablems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALE: Problems

requiring calculus. BI0: Biosciences problems.

DISCUSSION QUESTIONS

@2.1 Does the speedometer of a car measure speed or velocity?
Explain.

02.2 The top diagram in Fig. Q2.2 represents a series of high-
speed photographs of an insect flying in a straight line from left to
right (in the positive x-direction). Which of the graphs in Fig. Q2.2
most plausibly depicts this insect’s motion?

Figure @2.2

[ [ ] [ ] [ ] [ ] [ ]

UX a,( X UA UX

0 "ol "ol "ol "ol !
@ (b) © (d) (e

02.3 Can an object with constant acceleration reverse its direction
of travel? Can it reverse its direction twice? In each case, explain
your reasoning.

@2.4 Under what conditions is average velocity equal to instanta-
neous velocity?

@2.5 Ts it possible for an object (a) to be slowing down while its
acceleration is increasing in magnitude; (b) to be speeding up
while its acceleration is decreasing? In each case, explain your
reasoning.

02.6 Under what conditions does the magnitude of the average
velocity equal the average speed?

@2.7 When a Dodge Viper is at Elwood’s Car Wash, a BMW Z3 is
at Elm and Main. Later, when the Dodge reaches Elm and Main,

the BMW reaches Elwood’s Car Wash. How are the cars’ average
velocities between these two times related?

02.8 A driver in Massachusetts was sent to traffic court for speeding.
The evidence against the driver was that a policewoman observed the
driver’s car alongside a second car at a certain moment, and the
policewoman had already clocked the second car as going faster than
the speed limit. The driver argued, “The second car was passing me.
I was not speeding.” The judge ruled against the driver because, in
the judge’s words, “If two cars were side by side, you were both
speeding.” If you were a lawyer representing the accused driver, how
would you argue this case?

02.9 Can you have a zero displacement and a nonzero average
velocity? A nonzero velocity? [llustrate your answers on an x-¢ graph.
082.10 Can you have zero acceleration and nonzero velocity?
Explain using a v,-f graph.

@2.11 Can you have zero velocity and nonzero average accelera-
tion? Zero velocity and nonzero acceleration? Explain using a v,-¢
graph, and give an example of such motion.

02.12 An automobile is traveling west. Can it have a velocity
toward the west and at the same time have an acceleration toward
the east? Under what circumstances?

02.13 The official’s truck in Fig. 2.2 is at x; = 277 m at
t; = 16.0 s and is at x, = 19 m at t, = 25.0 s. (a) Sketch two
different possible x-¢ graphs for the motion of the truck. (b) Does
the average velocity v,,., during the time interval from #; to t,
have the same value for both of your graphs? Why or why not?
02.14 Under constant acceleration the average velocity of a parti-
cle is half the sum of its initial and final velocities. Is this still true
if the acceleration is not constant? Explain.
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@2.15 You throw a baseball straight up in the air so that it rises to
a maximum height much greater than your height. Is the magni-
tude of the acceleration greater while it is being thrown or after it
leaves your hand? Explain.

082.16 Prove these statements: (a) As long as you can neglect the
effects of the air, if you throw anything vertically upward, it will
have the same speed when it returns to the release point as when it
was released. (b) The time of flight will be twice the time it takes
to get to its highest point.

02.17 A dripping water faucet steadily releases drops 1.0 s apart.
As these drops fall, will the distance between them increase,
decrease, or remain the same? Prove your answer.

02.18 If the initial position and initial velocity of a vehicle are
known and a record is kept of the acceleration at each instant, can
you compute the vehicle’s position after a certain time from these
data? If so, explain how this might be done.

082.19 From the top of a tall building you throw one ball straight
up with speed vy and one ball straight down with speed v.
(a) Which ball has the greater speed when it reaches the ground?
(b) Which ball gets to the ground first? (c) Which ball has a greater
displacement when it reaches the ground? (d) Which ball has trav-
eled the greater distance when it hits the ground?

02.20 A ball is dropped from rest from the top of a building of
height /. At the same instant, a second ball is projected vertically
upward from ground level, such that it has zero speed when it
reaches the top of the building. When the two balls pass each other,
which ball has the greater speed, or do they have the same speed?
Explain. Where will the two balls be when they are alongside each
other: at height 2/2 above the ground, below this height, or above
this height? Explain.

02.21 An object is thrown straight up into the air and feels no air
resistance. How is it possible for the object to have an acceleration
when it has stopped moving at its highest point?

02.22 When you drop an object from a certain height, it takes time
T to reach the ground with no air resistance. If you dropped it from
three times that height, how long (in terms of 7') would it take to
reach the ground?

Section 2.1 Displacement, Time, and Average Velocity
2.1 ¢ A car travels in the +x-direction on a straight and level
road. For the first 4.00 s of its motion, the average velocity of the
car is Uy, = 6.25 m/s. How far does the car travel in 4.00 s?

2.2 °¢ In an experiment, a shearwater (a seabird) was taken from
its nest, flown 5150 km away, and released. The bird found its way
back to its nest 13.5 days after release. If we place the origin in the
nest and extend the +x-axis to the release point, what was the
bird’s average velocity in m/s (a) for the return flight, and (b) for
the whole episode, from leaving the nest to returning?

2.3 °¢ Trip Home. You normally drive on the freeway between
San Diego and Los Angeles at an average speed of 105 km/h
(65 mi/h), and the trip takes 2 h and 20 min. On a Friday after-
noon, however, heavy traffic slows you down and you drive the
same distance at an average speed of only 70 km/h (43 mi/h).
How much longer does the trip take?

2.4 -+ From Pillar to Post. Starting from a pillar, you run 200 m
east (the +x-direction) at an average speed of 5.0 m/s, and then
run 280 m west at an average speed of 4.0 m/s to a post. Calculate
(a) your average speed from pillar to post and (b) your average
velocity from pillar to post.

2.5 ¢ Starting from the front door of your ranch house, you walk
60.0 m due east to your windmill, and then you turn around and
slowly walk 40.0 m west to a bench where you sit and watch the
sunrise. It takes you 28.0 s to walk from your house to the wind-
mill and then 36.0 s to walk from the windmill to the bench. For
the entire trip from your front door to the bench, what are (a) your
average velocity and (b) your average speed?

2.6 °= A Honda Civic travels in a straight line along a road. Its
distance x from a stop sign is given as a function of time ¢ by the
equation x(7) = ar? — B3, where o = 1.50 m/s> and B =
0.0500 m/ s°. Calculate the average velocity of the car for each
time interval: (a) t = 0 to t = 2.00 s; (b) r = 0 to t = 4.00 s;
(c)t =200 stor = 4.00 s.

Section 2.2 Instantaneous Velocity

2.1  CALC A car is stopped at a traffic light. It then travels along
a straight road so that its distance from the light is given by
x(t) = bt? — ct®, where b = 2.40 m/s*>and ¢ = 0.120 m/s>. (a)
Calculate the average velocity of the car for the time interval = 0
to t = 10.0 s. (b) Calculate the instantaneous velocity of the car at
t=0,t=5.0s,and t = 10.0 s. (c) How long after starting from
rest is the car again at rest?

2.8 ¢ CALC A bird is flying due east. Its distance from a tall build-
ing is given by x(z) = 28.0m + (12.4m/s)r — (0.0450 m/s*)z>.
What is the instantaneous velocity of the bird when ¢ = 8.00 s?
2.9 = A ball moves in a straight line (the x-axis). The graph in
Fig. E2.9 shows this ball’s velocity as a function of time. (a) What are
the ball’s average speed and average velocity during the first 3.0 s?
(b) Suppose that the ball moved in such a way that the graph seg-
ment after 2.0 s was —3.0 m/s instead of +3.0 m/s. Find the ball’s
average speed and average velocity in this case.

Figure E2.9
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2.10 - A physics professor leaves her house and walks along the
sidewalk toward campus. After 5 min it starts to rain and she
returns home. Her distance from her house as a function of time is
shown in Fig. E2.10. At which of the labeled points is her velocity
(a) zero? (b) constant and positive? (c) constant and negative?
(d) increasing in magnitude? (e) decreasing in magnitude?

Figure E2.10
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Figure E2.11
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2.11 -+ A test car travels in a straight line along the x-axis. The

graph in Fig. E2.11 shows the car’s position x as a function of
time. Find its instantaneous velocity at points A through G.

Section 2.3 Average and Instantaneous Acceleration
2.12 - Figure E2.12 shows the velocity of a solar-powered car as
a function of time. The driver accelerates from a stop sign, cruises
for 20 s at a constant speed of 60 km/h, and then brakes to come
to a stop 40 s after leaving the stop sign. (a) Compute the average
acceleration during the following time intervals: (i) # = 0 to
t=10s; (i)t =30stot =40 s; (i) r = 10 stot = 30 s; (iv)
t =0 tot =40 s. (b) What is the instantaneous acceleration at
t =20 sandatt = 35 s?

Figure E2.12
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2.13 ¢ The Fastest (and Most Expensive) Car! The table
shows test data for the Bugatti Veyron, the fastest car made. The
car is moving in a straight line (the x-axis).

20.0 53
200 253

Time (s) 0 2.1
Speed (mi/h) 0 60

(a) Make a v,-t graph of this car’s velocity (in mi/h) as a function
of time. Is its acceleration constant? (b) Calculate the car’s average
acceleration (in m/ $2) between (i) 0 and 2.1 s; (ii) 2.1 s and 20.0's;
(iii) 20.0 s and 53 s. Are these results consistent with your graph in
part (a)? (Before you decide to buy this car, it might be helpful to
know that only 300 will be built, it runs out of gas in 12 minutes at
top speed, and it costs $1.25 million!)

2.14 -« CALC A race car starts from rest and travels east along
a straight and level track. For the first 5.0 s of the car’s motion,
the eastward component of the car’s velocity is given by
v,(1) = (0.860 m/s*)r2 What is the acceleration of the car when
v, = 16.0 m/s?

2.15 « CALC A turtle crawls along a straight line, which we will
call the x-axis with the positive direction to the right. The equation
for the turtle’s position as a function of time is x(z) = 50.0 cm +
(2.00 cm/s)r — (0.0625 cm/s?)z2. (a) Find the turtle’s initial
velocity, initial position, and initial acceleration. (b) At what time ¢
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is the velocity of the turtle zero? (c) How long after starting does it
take the turtle to return to its starting point? (d) At what times 7 is
the turtle a distance of 10.0 cm from its starting point? What is the
velocity (magnitude and direction) of the turtle at each of these
times? (e) Sketch graphs of x versus ¢, v, versus ¢, and a, versus t,
for the time interval = Oto t = 40 s.

2.16 - An astronaut has left the International Space Station to test
a new space scooter. Her partner measures the following velocity
changes, each taking place in a 10-s interval. What are the magni-
tude, the algebraic sign, and the direction of the average accelera-
tion in each interval? Assume that the positive direction is to the
right. (a) At the beginning of the interval the astronaut is moving
toward the right along the x-axis at 15.0 m/s, and at the end of the
interval she is moving toward the right at 5.0 m/s. (b) At the
beginning she is moving toward the left at 5.0 m/s, and at the end
she is moving toward the left at 15.0 m/s. (c) At the beginning she
is moving toward the right at 15.0 m/s, and at the end she is mov-
ing toward the left at 15.0 m/s.

217 - CALC A car’s velocity as a function of time is given by
v,(1) = a + Br?, where @ = 3.00 m/s and B = 0.100 m/s>. (a)
Calculate the average acceleration for the time interval + = 0 to
t = 5.00 s. (b) Calculate the instantaneous acceleration for t = 0
and r = 5.00 s. (c) Draw v,-f and a,-t graphs for the car’s motion
betweent = O and t = 5.00 s.

2.18 - CALC The position of the front bumper of a test car
under microprocessor control is given by x(r) = 2.17 m +
(4.80 m/s?)% — (0.100 m/s®)7%. (a) Find its position and accel-
eration at the instants when the car has zero velocity. (b) Draw x-t,
v,-t, and a,-t graphs for the motion of the bumper between ¢ = 0
and t = 2.00 s.

Section 2.4 Motion with Constant Acceleration

2.19 - An antelope moving with constant acceleration covers the
distance between two points 70.0 m apart in 7.00 s. Its speed as it
passes the second point is 15.0 m/s. (a) What is its speed at the
first point? (b) What is its acceleration?

2.20 -« BID Blackout? A jet fighter pilot wishes to accelerate
from rest at a constant acceleration of 5g to reach Mach 3 (three
times the speed of sound) as quickly as possible. Experimental
tests reveal that he will black out if this acceleration lasts for more
than 5.0 s. Use 331 m/s for the speed of sound. (a) Will the period
of acceleration last long enough to cause him to black out? (b)
What is the greatest speed he can reach with an acceleration of 5g
before blacking out?

2.21 - A Fast Pitch. The fastest measured pitched baseball left
the pitcher’s hand at a speed of 45.0 m/s. If the pitcher was in
contact with the ball over a distance of 1.50 m and produced con-
stant acceleration, (a) what acceleration did he give the ball, and
(b) how much time did it take him to pitch it?

2.22 ¢ A Tennis Serve. In the fastest measured tennis serve,
the ball left the racquet at 73.14 m/s. A served tennis ball is typi-
cally in contact with the racquet for 30.0 ms and starts from rest.
Assume constant acceleration. (a) What was the ball’s accelera-
tion during this serve? (b) How far did the ball travel during the
serve?

2.23 -¢ BID Automobile Airbags. The human body can survive
an acceleration trauma incident (sudden stop) if the magnitude
of the acceleration is less than 250 m/sz. If you are in an auto-
mobile accident with an initial speed of 105 km/h (65 mi/h)
and you are stopped by an airbag that inflates from the dashboard,
over what distance must the airbag stop you for you to survive
the crash?
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2.24 - BID If a pilot accelerates at more than 4g, he begins to
“gray out” but doesn’t completely lose consciousness. (a) Assum-
ing constant acceleration, what is the shortest time that a jet pilot
starting from rest can take to reach Mach 4 (four times the speed of
sound) without graying out? (b) How far would the plane travel
during this period of acceleration? (Use 331 m/s for the speed of
sound in cold air.)

2.25 ¢ BID Air-Bag Injuries. During an auto accident, the
vehicle’s air bags deploy and slow down the passengers more gen-
tly than if they had hit the windshield or steering wheel. According
to safety standards, the bags produce a maximum acceleration of
60g that lasts for only 36 ms (or less). How far (in meters) does a
person travel in coming to a complete stop in 36 ms at a constant
acceleration of 60g?

2.26 - BID Prevention of Hip Fractures. Falls resulting in hip
fractures are a major cause of injury and even death to the elderly.
Typically, the hip’s speed at impact is about 2.0 m/s. If this can be
reduced to 1.3 m/s or less, the hip will usually not fracture. One
way to do this is by wearing elastic hip pads. (a) If a typical pad is
5.0 cm thick and compresses by 2.0 cm during the impact of a fall,
what constant acceleration (in m/ s? and in g’s) does the hip
undergo to reduce its speed from 2.0 m/s to 1.3 m/s? (b) The
acceleration you found in part (a) may seem rather large, but to
fully assess its effects on the hip, calculate how long it lasts.

2.27 - BID Are We Martians? It has been suggested, and not
facetiously, that life might have originated on Mars and been car-
ried to the earth when a meteor hit Mars and blasted pieces of rock
(perhaps containing primitive life) free of the surface. Astronomers
know that many Martian rocks have come to the earth this way.
(For information on one of these, search the Internet for “ALH
84001.”) One objection to this idea is that microbes would have to
undergo an enormous lethal acceleration during the impact. Let us
investigate how large such an acceleration might be. To escape
Mars, rock fragments would have to reach its escape velocity of
5.0 km/s, and this would most likely happen over a distance of
about 4.0 m during the meteor impact. (a) What would be the
acceleration (in m/ s? and g’s) of such a rock fragment, if the accel-
eration is constant? (b) How long would this acceleration last? (c)
In tests, scientists have found that over 40% of Bacillius subtilis
bacteria survived after an acceleration of 450,000g. In light of your
answer to part (a), can we rule out the hypothesis that life might
have been blasted from Mars to the earth?

2.28 - Entering the Freeway. A car sits in an entrance ramp to
a freeway, waiting for a break in the traffic. The driver accelerates
with constant acceleration along the ramp and onto the freeway.
The car starts from rest, moves in a straight line, and has a speed of
20 m/s (45 mi/h) when it reaches the end of the 120-m-long
ramp. (a) What is the acceleration of the car? (b) How much time
does it take the car to travel the length of the ramp? (c) The traffic
on the freeway is moving at a constant speed of 20 m/s. What dis-
tance does the traffic travel while the car is moving the length of
the ramp?

2.29 - Launch of the Space Shuttle. At launch the space
shuttle weighs 4.5 million pounds. When it is launched from rest, it
takes 8.00 s to reach 161 km/h, and at the end of the first 1.00 min
its speed is 1610 km/h. (a) What is the average acceleration (in
m/ $2) of the shuttle (i) during the first 8.00 s, and (ii) between 8.00 s
and the end of the first 1.00 min? (b) Assuming the acceleration is
constant during each time interval (but not necessarily the same in
both intervals), what distance does the shuttle travel (i) during the
first 8.00 s, and (ii) during the interval from 8.00 s to 1.00 min?

2.30 -+ A cat walks in a straight line, which we shall call the
x-axis with the positive direction to the right. As an observant
physicist, you make measurements of this cat’s motion and con-
struct a graph of the feline’s velocity as a function of time
(Fig. E2.30). (a) Find the cat’s velocity at + = 4.0 s and at
t = 7.0 s. (b) What is the cat’s acceleration at t = 3.0 s? At
t = 6.0 s?Att = 7.0 s? (c) What distance does the cat move dur-
ing the first 4.5 s? Fromr = Otot = 7.5 s? (d) Sketch clear graphs
of the cat’s acceleration and position as functions of time, assuming
that the cat started at the origin.

Figure E2.30
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2.31 ++ The graph in Fig. E2.31 shows the velocity of a motorcycle
police officer plotted as a function of time. (a) Find the instantaneous
acceleration at t = 3 s, at r = 7 s, and at t = 11 s. (b) How far
does the officer go in the first 5 s? The first 9 s? The first 13 s?

Figure E2.31
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2.32 + Two cars, A and B, move  Figure E2.32
along the x-axis. Figure E2.32 is
a graph of the positions of A and  x (m)

B versus time. (a) In motion dia- 25 -

grams (like Figs. 2.13b and 20} A
2.14b), show the position, veloc- ;5| B
ity, and acceleration of each of 10k

the two cars at t = 0, t = 1 s, sL

and r = 3 s. (b) At what time(s),

if any, do A and B have the same i é : I
position? (c¢) Graph velocity ver-

sus time for both A and B. (d) At what time(s), if any, do A and B
have the same velocity? (e) At what time(s), if any, does car A pass
car B? (f) At what time(s), if any, does car B pass car A?

1(s)



2.33 -+ Mars Landing. In January 2004, NASA landed explo-
ration vehicles on Mars. Part of the descent consisted of the fol-
lowing stages:

Stage A: Friction with the atmosphere reduced the speed from
19,300 km/h to 1600 km/h in 4.0 min.

Stage B: A parachute then opened to slow it down to 321 km/h in
94 s.

Stage C: Retro rockets then fired to reduce its speed to zero over a
distance of 75 m.

Assume that each stage followed immediately after the preceding
one and that the acceleration during each stage was constant.
(a) Find the rocket’s acceleration (in m/ 52) during each stage.
(b) What total distance (in km) did the rocket travel during stages
A, B, and C?

2.34 - At the instant the traffic light turns green, a car that has been
waiting at an intersection starts ahead with a constant acceleration
of 3.20 m/ s2. At the same instant a truck, traveling with a constant
speed of 20.0 m/s, overtakes and passes the car. (a) How far
beyond its starting point does the car overtake the truck? (b) How
fast is the car traveling when it overtakes the truck? (c) Sketch an
x-t graph of the motion of both vehicles. Take x = 0 at the inter-
section. (d) Sketch a v,-t graph of the motion of both vehicles.

Section 2.5 Freely Falling Bodies

2.35 ¢ (a) If a flea can jump straight up to a height of 0.440 m,
what is its initial speed as it leaves the ground? (b) How long is it
in the air?

2.36 - A small rock is thrown vertically upward with a speed of
18.0 m/s from the edge of the roof of a 30.0-m-tall building. The
rock doesn’t hit the building on its way back down and lands in the
street below. Air resistance can be neglected. (a) What is the speed
of the rock just before it hits the street? (b) How much time elapses
from when the rock is thrown until it hits the street?

2.37 - A juggler throws a bowling pin straight up with an initial
speed of 8.20 m/s. How much time elapses until the bowling pin
returns to the juggler’s hand?

2.38 ¢ You throw a glob of putty straight up toward the ceiling,
which is 3.60 m above the point where the putty leaves your hand.
The initial speed of the putty as it leaves your hand is 9.50 m/s.
(a) What is the speed of the putty just before it strikes the ceiling?
(b) How much time from when it leaves your hand does it take the
putty to reach the ceiling?

2.39 - Atennis ball on Mars, where the acceleration due to grav-
ity is 0.379g and air resistance is negligible, is hit directly upward
and returns to the same level 8.5 s later. (a) How high above its
original point did the ball go? (b) How fast was it moving just after
being hit? (c) Sketch graphs of the ball’s vertical position, vertical
velocity, and vertical accelera-
tion as functions of time while
it’s in the Martian air.

2.40 -+ Touchdown on the
Moon. A lunar lander is
making its descent to Moon
Base I (Fig. E2.40). The lander
descends slowly under the retro-
thrust of its descent engine. The
engine is cut off when the lan-
der is 5.0 m above the surface
and has a downward speed of
0.8 m/s. With the engine off,

Figure E2.40

Exercises B3

the lander is in free fall. What is the speed of the lander just
before it touches the surface? The acceleration due to gravity on
the moon is 1.6 m/s>,

2.41 -- A Simple Reaction-Time Test. A meter stick is held ver-
tically above your hand, with the lower end between your thumb
and first finger. On seeing the meter stick released, you grab it with
these two fingers. You can calculate your reaction time from the
distance the meter stick falls, read directly from the point where
your fingers grabbed it. (a) Derive a relationship for your reaction
time in terms of this measured distance, d. (b) If the measured dis-
tance is 17.6 cm, what is the reaction time?

2.42 -« A brick is dropped (zero initial speed) from the roof of a
building. The brick strikes the ground in 2.50 s. You may ignore air
resistance, so the brick is in free fall. (a) How tall, in meters, is the
building? (b) What is the magnitude of the brick’s velocity just
before it reaches the ground? (c) Sketch a,-1, v,-t, and y-t graphs
for the motion of the brick.

2.43 -+ Launch Failure. A 7500-kg rocket blasts off vertically
from the launch pad with a constant upward acceleration of
2.25 m/ s? and feels no appreciable air resistance. When it has
reached a height of 525 m, its engines suddenly fail so that the
only force acting on it is now gravity. (a) What is the maximum
height this rocket will reach above the launch pad? (b) How much
time after engine failure will elapse before the rocket comes crash-
ing down to the launch pad, and how fast will it be moving just
before it crashes? (c) Sketch ay-t, Uyt and y-t graphs of the
rocket’s motion from the instant of blast-off to the instant just
before it strikes the launch pad.
2.44 -- A hot-air balloonist, ris-
ing vertically with a constant
velocity of magnitude 5.00 m/s,
releases a sandbag at an instant
when the balloon is 40.0 m above
the ground (Fig. E2.44). After it is
released, the sandbag is in free fall.
(a) Compute the position and
velocity of the sandbag at 0.250 s
and 1.00 s after its release. (b) How
many seconds after its release will
the bag strike the ground? (c¢) With
what magnitude of velocity does it
strike the ground? (d) What is the
greatest height above the ground
that the sandbag reaches? (e)
Sketch a1, vy-t, and y-f graphs for
the motion.

2.45 - BID The rocket-driven sled Sonic Wind No. 2, used for
investigating the physiological effects of large accelerations, runs
on a straight, level track 1070 m (3500 ft) long. Starting from rest,
it can reach a speed of 224 m/s (500 mi/h) in 0.900 s. (a) Com-
pute the acceleration in m/ s, assuming that it is constant. (b)
What is the ratio of this acceleration to that of a freely falling body
(2)? (c) What distance is covered in 0.900 s? (d) A magazine article
states that at the end of a certain run, the speed of the sled
decreased from 283 m/s (632 mi/h) to zero in 1.40 s and that
during this time the magnitude of the acceleration was greater than
40g. Are these figures consistent?

2.46 - An egg is thrown nearly vertically upward from a point
near the cornice of a tall building. It just misses the cornice on the
way down and passes a point 30.0 m below its starting point 5.00 s
after it leaves the thrower’s hand. Air resistance may be ignored.

Figure E2.44
*U =5.00 m/s

LEZAL111 =
40.0 m to ground
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(a) What is the initial speed of the egg? (b) How high does it rise
above its starting point? (c) What is the magnitude of its velocity at
the highest point? (d) What are the magnitude and direction of its
acceleration at the highest point? (e) Sketch ayt, Uyt and y-t
graphs for the motion of the egg.

2.47 -- A 15-kg rock is dropped from rest on the earth and
reaches the ground in 1.75 s. When it is dropped from the same
height on Saturn’s satellite Enceladus, it reaches the ground in
18.6 s. What is the acceleration due to gravity on Enceladus?

2.48 - A large boulder is ejected vertically upward from a volcano
with an initial speed of 40.0 m/s. Air resistance may be ignored.
(a) At what time after being ejected is the boulder moving at
20.0 m/s upward? (b) At what time is it moving at 20.0 m/s down-
ward? (c) When is the displacement of the boulder from its initial
position zero? (d) When is the velocity of the boulder zero? (e) What
are the magnitude and direction of the acceleration while the boulder
is (i) moving upward? (ii) Moving downward? (iii) At the highest
point? (f) Sketch ay-t, v\, and y-f graphs for the motion.

2.49 - Two stones are thrown vertically upward from the
ground, one with three times the initial speed of the other. (a) If the
faster stone takes 10 s to return to the ground, how long will it take
the slower stone to return? (b) If the slower stone reaches a maxi-
mum height of H, how high (in terms of H) will the faster stone
go? Assume free fall.

Section 2.6 Velocity and Position hy Integration

2.50 ¢ CALC For constant a,, use Egs. (2.17) and (2.18) to find v,
and x as functions of time. Compare your results to Egs. (2.8)
and (2.12).

2.51 ¢ CALC A rocket starts from rest and moves upward from the
surface of the earth. For the first 10.0 s of its motion, the vertical
acceleration of the rocket is given by a, = (2.80 m/s*), where
the +y-direction is upward. (a) What is the height of the rocket
above the surface of the earth at # = 10.0 s? (b) What is the speed
of the rocket when it is 325 m above the surface of the earth?
2.52 <o CALC The acceleration of a bus is given by a,(7) = at,
where @« = 1.2 m/s3. (a) If the bus’s velocity at time r = 1.0 s is
5.0 m/s, what is its velocity at time 7 = 2.0 s? (b) If the bus’s
position at time t = 1.0 s is 6.0 m, what is its position at time
t = 2.0 s? (c) Sketch a,-t, v,-t, and x-t graphs for the motion.

2.53 ¢ CALC The acceleration of a motorcycle is given by
a,(t) = At — Bt?, where A = 1.50 m/s> and B = 0.120 m/s*.
The motorcycle is at rest at the origin at time ¢+ = 0. (a) Find its
position and velocity as functions of time. (b) Calculate the maxi-
mum velocity it attains.

2.54 - BID Flying Leap of the Flea. High-speed motion pic-
tures (3500 frames/second) of a jumping, 210-ug flea yielded the
data used to plot the graph given in Fig. E2.54. (See “The Flying
Leap of the Flea” by M. Rothschild, Y. Schlein, K. Parker,
C. Neville, and S. Sternberg in the November 1973 Scientific

Figure E2.54
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American.) This flea was about 2 mm long and jumped at a nearly
vertical takeoff angle. Use the graph to answer the questions. (a) Is
the acceleration of the flea ever zero? If so, when? Justify your
answer. (b) Find the maximum height the flea reached in the first
2.5 ms. (c) Find the flea’s acceleration at 0.5 ms, 1.0 ms, and
1.5 ms. (d) Find the flea’s height at 0.5 ms, 1.0 ms, and 1.5 ms.

PROBLEMS

2.55 « BID A typical male sprinter can maintain his maximum
acceleration for 2.0 s and his maximum speed is 10 m/s. After
reaching this maximum speed, his acceleration becomes zero and
then he runs at constant speed. Assume that his acceleration is con-
stant during the first 2.0 s of the race, that he starts from rest, and
that he runs in a straight line. (a) How far has the sprinter run when
he reaches his maximum speed? (b) What is the magnitude of his
average velocity for a race of the following lengths: (i) 50.0 m,
(ii) 100.0 m, (iii) 200.0 m?

2.56 °¢ On a 20-mile bike ride, you ride the first 10 miles at an
average speed of 8 mi/h. What must your average speed over the
next 10 miles be to have your average speed for the total 20 miles
be (a) 4 mi/h? (b) 12 mi/h? (c) Given this average speed for the
first 10 miles, can you possibly attain an average speed of 16 mi/h
for the total 20-mile ride? Explain.

2.57 <« CALC The position of a particle between ¢t = 0 and
¢ = 2.00 s is given by x(7) = (3.00 m/s*)z3 — (10.0 m/s?)t% +
(9.00 m/s)t. (a) Draw the x-t, v,-t, and a,-t graphs of this particle.
(b) At what time(s) between t = 0 and t = 2.00 s is the particle
instantaneously at rest? Does your numerical result agree with
the v~ graph in part (a)? (c) At each time calculated in part (b), is the
acceleration of the particle positive or negative? Show that in each
case the same answer is deduced from a, () and from the v - graph.
(d) At what time(s) between t = 0 and r = 2.00 s is the velocity of
the particle instantaneously not changing? Locate this point on the
v,-t and a,-t graphs of part (a). (¢) What is the particle’s greatest dis-
tance from the origin (x = 0) between# = 0 and r = 2.00 s? (f) At
what time(s) between ¢ = 0 and r = 2.00 s is the particle speeding
up at the greatest rate? At what time(s) between r = 0 and
t = 2.00 s is the particle slowing down at the greatest rate? Locate
these points on the v,-f and a,-t graphs of part (a).

2.58 ¢« CALC A lunar lander is descending toward the moon’s
surface. Until the lander reaches the surface, its height above
the surface of the moon is given by y(¢#) = b — ¢t + dt?, where
b = 800 m is the initial height of the lander above the surface,
¢ = 60.0m/s, and d = 1.05 m/sz. (a) What is the initial velocity
of the lander, at #+ = 0? (b) What is the velocity of the lander just
before it reaches the lunar surface?

2.59 -e¢ Earthquake Analysis. Earthquakes produce several
types of shock waves. The most well known are the P-waves (P for
primary or pressure) and the S-waves (S for secondary or shear).
In the earth’s crust, the P-waves travel at around 6.5 km/s, while
the S-waves move at about 3.5 km/s. The actual speeds vary
depending on the type of material they are going through. The time
delay between the arrival of these two waves at a seismic record-
ing station tells geologists how far away the earthquake occurred.
If the time delay is 33 s, how far from the seismic station did the
earthquake occur?

2.60 - Relay Race. Ina relay race, each contestant runs 25.0 m
while carrying an egg balanced on a spoon, turns around, and
comes back to the starting point. Edith runs the first 25.0 m in
20.0 s. On the return trip she is more confident and takes only
15.0 s. What is the magnitude of her average velocity for (a) the



first 25.0 m? (b) The return trip? (c) What is her average velocity
for the entire round trip? (d) What is her average speed for the
round trip?

2.61 °° A rocket carrying a satellite is accelerating straight up
from the earth’s surface. At 1.15 s after liftoff, the rocket clears the
top of its launch platform, 63 m above the ground. After an addi-
tional 4.75 s, it is 1.00 km above the ground. Calculate the magni-
tude of the average velocity of the rocket for (a) the 4.75-s part of
its flight and (b) the first 5.90 s of its flight.

2.62 +° The graph in Fig. P2.62 describes the acceleration as a
function of time for a stone rolling down a hill starting from rest.
(a) Find the stone’s velocity at + =25s and at t = 7.5 s.
(b) Sketch a graph of the stone’s velocity as a function of time.

Figure P2.62
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2.63 - Dan gets on Interstate Highway I-80 at Seward,
Nebraska, and drives due west in a straight line and at an average
velocity of magnitude 88 km/h. After traveling 76 km, he reaches
the Aurora exit (Fig. P2.63). Realizing he has gone too far, he turns
around and drives due east 34 km back to the York exit at an aver-
age velocity of magnitude 72 km/h. For his whole trip from
Seward to the York exit, what are (a) his average speed and (b) the
magnitude of his average velocity?

Figure P2.63
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2.64 << A subway train starts from rest at a station and acceler-
ates at a rate of 1.60 m/s for 14.0 s. It runs at constant speed for
70.0 s and slows down at a rate of 3.50 m/s2 until it stops at the
next station. Find the total distance covered.

2.65 -+ A world-class sprinter accelerates to his maximum speed
in 4.0 s. He then maintains this speed for the remainder of a 100-m
race, finishing with a total time of 9.1 s. (a) What is the runner’s
average acceleration during the first 4.0 s? (b) What is his average

Problems B35

acceleration during the last 5.1 s? (¢c) What is his average accelera-
tion for the entire race? (d) Explain why your answer to part (c) is
not the average of the answers to parts (a) and (b).

2.66 - A sled starts from rest at the top of a hill and slides down
with a constant acceleration. At some later time the sled is 14.4 m
from the top, 2.00 s after that it is 25.6 m from the top, 2.00 s later
40.0 m from the top, and 2.00 s later it is 57.6 m from the top. (a)
What is the magnitude of the average velocity of the sled during
each of the 2.00-s intervals after passing the 14.4-m point?
(b) What is the acceleration of the sled? (c) What is the speed of
the sled when it passes the 14.4-m point? (d) How much time
did it take to go from the top to the 14.4-m point? (e) How far
did the sled go during the first second after passing the 14.4-m
point?

2.67 A gazelle is running in a straight line (the x-axis). The
graph in Fig. P2.67 shows this animal’s velocity as a function of
time. During the first 12.0 s, find (a) the total distance moved and
(b) the displacement of the gazelle. (c) Sketch an a,-t graph
showing this gazelle’s acceleration as a function of time for the
first 12.0 s.

Figure P2.67
v, (m/s)
12.0
8.00
4.00
1 1 1 1 I £(s)
O| 2.00 4.00 6.00 8.00 10.0 12.0

2.68 - A rigid ball traveling in a straight line (the x-axis) hits a
solid wall and suddenly rebounds during a brief instant. The v,-¢
graph in Fig. P2.68 shows this ball’s velocity as a function of time.
During the first 20.0 s of its motion, find (a) the total distance the
ball moves and (b) its displacement. (c) Sketch a graph of a,- for
this ball’s motion. (d) Is the graph shown really vertical at 5.00 s?
Explain.

Figure P2.68
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2.69 --< A ball starts from rest and rolls down a hill with uniform
acceleration, traveling 150 m during the second 5.0 s of its motion.
How far did it roll during the first 5.0 s of motion?

2.70 - Collision. The engineer of a passenger train traveling at
25.0 m/s sights a freight train whose caboose is 200 m ahead on
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Figure P2.70

the same track (Fig. P2.70). The freight train is traveling at
15.0 m/s in the same direction as the passenger train. The engi-
neer of the passenger train immediately applies the brakes, causing
a constant acceleration of 0.100 m/ s? in a direction opposite to the
train’s velocity, while the freight train continues with constant
speed. Take x = 0 at the location of the front of the passenger train
when the engineer applies the brakes. (a) Will the cows nearby wit-
ness a collision? (b) If so, where will it take place? (c) On a single
graph, sketch the positions of the front of the passenger train and
the back of the freight train.

2.71 ++« Large cockroaches can run as fast as 1.50 m/s in short
bursts. Suppose you turn on the light in a cheap motel and see one
scurrying directly away from you at a constant 1.50 m/s. If you
start 0.90 m behind the cockroach with an initial speed of
0.80 m/s toward it, what minimum constant acceleration would
you need to catch up with it when it has traveled 1.20 m, just short
of safety under a counter?

2.72 <+ Two cars start 200 m apart and drive toward each other at
a steady 10 m/s. On the front of one of them, an energetic
grasshopper jumps back and forth between the cars (he has strong
legs!) with a constant horizontal velocity of 15 m/s relative to the
ground. The insect jumps the instant he lands, so he spends no time
resting on either car. What total distance does the grasshopper
travel before the cars hit?

2.13 + An automobile and a truck start from rest at the same
instant, with the automobile initially at some distance behind the
truck. The truck has a constant acceleration of 2.10 m/ 32, and the
automobile an acceleration of 3.40 m/ s2. The automobile over-
takes the truck after the truck has moved 40.0 m. (a) How much
time does it take the automobile to overtake the truck? (b) How far
was the automobile behind the truck initially? (c) What is the
speed of each when they are abreast? (d) On a single graph, sketch
the position of each vehicle as a function of time. Take x = 0 at
the initial location of the truck.

2.74 ++= Two stunt drivers drive directly toward each other. At
time r = 0 the two cars are a distance D apart, car 1 is at rest, and
car 2 is moving to the left with speed v,. Car 1 begins to move at
t = 0, speeding up with a constant acceleration a,. Car 2 contin-
ues to move with a constant velocity. (a) At what time do the two
cars collide? (b) Find the speed of car 1 just before it collides with
car 2. (c¢) Sketch x-t and v -t graphs for car 1 and car 2. For each
of the two graphs, draw the curves for both cars on the same set
of axes.

2.715 = A marble is released from one rim of a hemispherical
bowl of diameter 50.0 cm and rolls down and up to the opposite
rim in 10.0 s. Find (a) the average speed and (b) the average veloc-
ity of the marble.

2.76 <+ CALC An object’s velocity is measured to be v, (f) =
a — Bt?, where a = 4.00 m/s and B = 2.00 m/s>. At7 = 0 the
objectis at x = 0. (a) Calculate the object’s position and acceleration
as functions of time. (b) What is the object’s maximum positive dis-
placement from the origin?

2.17 <= Passing. The driver of a car wishes to pass a truck that is
traveling at a constant speed of 20.0 m/s (about 45 mi/h). Ini-
tially, the car is also traveling at 20.0 m/s and its front bumper is
24.0 m behind the truck’s rear bumper. The car accelerates at a
constant 0.600 m/ sz, then pulls back into the truck’s lane when the
rear of the car is 26.0 m ahead of the front of the truck. The car is
4.5 m long and the truck is 21.0 m long. (a) How much time is
required for the car to pass the truck? (b) What distance does the
car travel during this time? (c) What is the final speed of the car?
2.718 <« On Planet X, you drop a

25-kg stone from rest and measure ~ Figure P2.78

its speed at various times. Then

you use the data you obtained to v (m/s)

construct a graph of its speed v as a

function of time ¢ (Fig. P2.78).

From the information in the graph, ;g

answer the following questions: (a) 10

What is g on Planet X? (b) An I I 1 (s)
astronaut drops a piece of equip- ol 1 2

ment from rest out of the landing
module, 3.5 m above the surface of Planet X. How long will it take
this equipment to reach the ground, and how fast will it be moving
when it gets there? (c) How fast would an astronaut have to project
an object straight upward to reach a height of 18.0 m above the
release point, and how long would it take to reach that height?

2.79 <+ CALC The acceleration of a particle is given by a,(r) =
—2.00 m/s? + (3.00 m/s*)z. (a) Find the initial velocity vg, such
that the particle will have the same x-coordinate at r = 4.00 s as it
had at ¢+ = 0. (b) What will be the velocity at t = 4.00 s?

2.80 - Egg Drop. You are on

the roof of the physics building, Figure P2.80

46.0 m above the ground (Fig. . ] _
P2.80). Your physics professor, 000od

who is 1.80 m tall, is walking 000g
alongside the building at a con- 0000

stant speed of 1.20 m/s. If you 0000
wish to drop an egg on your pro- 0000
fessor’s head, where should the 46.0m
professor be when you release UL

the egg? Assume that the egg is LU

in free fall. v =120ms 2|2518

2.81 < A certain volcano on \ 8|858
earth can eject rocks vertically to ~ 1:80m J f=={ LILILILJ

a maximum height H. (a) How

high (in terms of H) would these rocks go if a volcano on Mars
ejected them with the same initial velocity? The acceleration due
to gravity on Mars is 3.71 m/ s, and you can neglect air resistance
on both planets. (b) If the rocks are in the air for a time 7 on earth,
for how long (in terms of 7) will they be in the air on Mars?

2.82 -« An entertainer juggles balls while doing other activities.
In one act, she throws a ball vertically upward, and while it is in
the air, she runs to and from a table 5.50 m away at a constant
speed of 2.50 m/s, returning just in time to catch the falling ball.
(a) With what minimum initial speed must she throw the ball
upward to accomplish this feat? (b) How high above its initial
position is the ball just as she reaches the table?



2.83 - Visitors at an amusement park watch divers step off a plat-
form 21.3 m (70 ft) above a pool of water. According to the
announcer, the divers enter the water at a speed of 56 mi/h
(25 m/s). Air resistance may be ignored. (a) Is the announcer cor-
rect in this claim? (b) Is it possible for a diver to leap directly
upward off the board so that, missing the board on the way down,
she enters the water at 25.0 m/s? If so, what initial upward speed
is required? Is the required initial speed physically attainable?
2.84 -+ A flowerpot falls off a windowsill and falls past the win-
dow below. You may ignore air resistance. It takes the pot 0.420 s to
pass from the top to the bottom of this window, which is 1.90 m
high. How far is the top of the window below the windowsill from
which the flowerpot fell?

2.85 ¢°¢ Look Out Below. Sam heaves a 16-1b shot straight
upward, giving it a constant upward acceleration from rest of
35.0 m/ s for 64.0 cm. He releases it 2.20 m above the ground.
You may ignore air resistance. (a) What is the speed of the shot
when Sam releases it? (b) How high above the ground does it go?
(c) How much time does he have to get out of its way before it
returns to the height of the top of his head, 1.83 m above the
ground?

2.86 -+ A Multistage Rocket. In the first stage of a two-stage
rocket, the rocket is fired from the launch pad starting from rest but
with a constant acceleration of 3.50 m/s? upward. At 25.0 s after
launch, the second stage fires for 10.0 s, which boosts the rocket’s
velocity to 132.5 m/s upward at 35.0 s after launch. This firing
uses up all the fuel, however, so after the second stage has finished
firing, the only force acting on the rocket is gravity. Air resistance
can be neglected. (a) Find the maximum height that the stage-two
rocket reaches above the launch pad. (b) How much time after the
end of the stage-two firing will it take for the rocket to fall back to
the launch pad? (c) How fast will the stage-two rocket be moving
just as it reaches the launch pad?

2.87 - Juggling Act. A juggler performs in a room whose ceil-
ing is 3.0 m above the level of his hands. He throws a ball upward
so that it just reaches the ceiling. (a) What is the initial velocity of
the ball? (b) What is the time required for the ball to reach the ceil-
ing? At the instant when the first ball is at the ceiling, the juggler
throws a second ball upward with two-thirds the initial velocity of
the first. (¢) How long after the second ball is thrown do the two
balls pass each other? (d) At what distance above the juggler’s
hand do they pass each other?

2.88 -« A physics teacher performing an outdoor demonstration
suddenly falls from rest off a high cliff and simultaneously shouts
“Help.” When she has fallen for 3.0 s, she hears the echo of her
shout from the valley floor below. The speed of sound is 340 m/s.
(a) How tall is the cliff? (b) If air resistance is neglected, how fast
will she be moving just before she hits the ground? (Her actual
speed will be less than this, due to air resistance.)

2.89 << A helicopter carrying Dr. Evil takes off with a constant
upward acceleration of 5.0 m/ s?. Secret agent Austin Powers
jumps on just as the helicopter lifts off the ground. After the two
men struggle for 10.0 s, Powers shuts oft the engine and steps out
of the helicopter. Assume that the helicopter is in free fall after its
engine is shut off, and ignore the effects of air resistance. (a) What
is the maximum height above ground reached by the helicopter?
(b) Powers deploys a jet pack strapped on his back 7.0 s after leav-
ing the helicopter, and then he has a constant downward accelera-
tion with magnitude 2.0 m/s>. How far is Powers above the
ground when the helicopter crashes into the ground?

2.90 -~ CIiff Height. You are climbing in the High Sierra where
you suddenly find yourself at the edge of a fog-shrouded cliff. To
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find the height of this cliff, you drop a rock from the top and 10.0 s
later hear the sound of it hitting the ground at the foot of the cliff.
(a) Ignoring air resistance, how high is the cliff if the speed of
sound is 330 m/s? (b) Suppose you had ignored the time it takes
the sound to reach you. In that case, would you have overestimated
or underestimated the height of the cliff? Explain your reasoning.
2.91 -+ Falling Can. A painter is standing on scaffolding that is
raised at constant speed. As he travels upward, he accidentally
nudges a paint can off the scaffolding and it falls 15.0 m to the
ground. You are watching, and measure with your stopwatch that it
takes 3.25 s for the can to reach the ground. Ignore air resistance.
(a) What is the speed of the can just before it hits the ground? (b)
Another painter is standing on a ledge, with his hands 4.00 m above
the can when it falls off. He has lightning-fast reflexes and if the
can passes in front of him, he can catch it. Does he get the chance?
2.92 < Determined to test the law of gravity for himself, a student
walks off a skyscraper 180 m high, stopwatch in hand, and starts his
free fall (zero initial velocity). Five seconds later, Superman arrives
at the scene and dives off the roof to save the student. Superman
leaves the roof with an initial speed v that he produces by pushing
himself downward from the edge of the roof with his legs of steel.
He then falls with the same acceleration as any freely falling body.
(a) What must the value of v be so that Superman catches the stu-
dent just before they reach the ground? (b) On the same graph,
sketch the positions of the student and of Superman as functions of
time. Take Superman’s initial speed to have the value calculated in
part (a). (c) If the height of the skyscraper is less than some mini-
mum value, even Superman can’t reach the student before he hits the
ground. What is this minimum height?

2.93 <<+ During launches, rockets often discard unneeded parts. A
certain rocket starts from rest on the launch pad and accelerates
upward at a steady 3.30 m/ s2. When it is 235 m above the launch
pad, it discards a used fuel canister by simply disconnecting it.
Once it is disconnected, the only force acting on the canister is
gravity (air resistance can be ignored). (a) How high is the rocket
when the canister hits the launch pad, assuming that the rocket does
not change its acceleration? (b) What total distance did the canister
travel between its release and its crash onto the launch pad?

2.94 -« A ball is thrown straight up from the ground with speed
vg. At the same instant, a second ball is dropped from rest from a
height H, directly above the point where the first ball was thrown
upward. There is no air resistance. (a) Find the time at which the
two balls collide. (b) Find the value of H in terms of v, and g so
that at the instant when the balls collide, the first ball is at the high-
est point of its motion.

2.95 « CALC Two cars, A and B, travel in a straight line. The dis-
tance of A from the starting point is given as a function of time by
x4(1) = at + Br?, with a = 2.60 m/s and B = 1.20 m/s>. The
distance of B from the starting point is xz(t) = yt> — 8¢, with
y = 2.80 m/s?> and 6 = 0.20 m/s>. (a) Which car is ahead just
after they leave the starting point? (b) At what time(s) are the cars
at the same point? (c) At what time(s) is the distance from A to B
neither increasing nor decreasing? (d) At what time(s) do A and B
have the same acceleration?

CHALLENGE PROBLEMS

2.96 - In the vertical jump, an athlete starts from a crouch and
jumps upward to reach as high as possible. Even the best athletes
spend little more than 1.00 s in the air (their “hang time”). Treat
the athlete as a particle and let y,,,, be his maximum height above
the floor. To explain why he seems to hang in the air, calculate the
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ratio of the time he is above yn,.¢/2 to the time it takes him to go
from the floor to that height. You may ignore air resistance.

2.97 --- Catching the Bus. A student is running at her top speed
of 5.0 m/s to catch a bus, which is stopped at the bus stop. When
the student is still 40.0 m from the bus, it starts to pull away, mov-
ing with a constant acceleration of 0.170 m/ s, (a) For how much
time and what distance does the student have to run at 5.0 m/s
before she overtakes the bus? (b) When she reaches the bus, how
fast is the bus traveling? (c) Sketch an x-z graph for both the stu-
dent and the bus. Take x = 0 at the initial position of the student.
(d) The equations you used in part (a) to find the time have a sec-
ond solution, corresponding to a later time for which the student
and bus are again at the same place if they continue their specified
motions. Explain the significance of this second solution. How fast
is the bus traveling at this point? (e) If the student’s top speed is
3.5 m/s, will she catch the bus? (f) What is the minimum speed
the student must have to just catch up with the bus? For what time
and what distance does she have to run in that case?

2.98 --< An alert hiker sees a boulder fall from the top of a distant
cliff and notes that it takes 1.30 s for the boulder to fall the last
third of the way to the ground. You may ignore air resistance.

Chapter Opening Buestion

Yes. Acceleration refers to any change in velocity, including both
speeding up and slowing down.

Test Your Understanding Questions

2.1 Answer to (a): (iv), (i) and (iii) (tie), (v), (ii); answer to (b): (i)
and (iii); answer to (c¢): (v) In (a) the average x-velocity is
Uavx = Ax/At. For all five trips, Az = 1 h. For the individual trips,
we have (i) Ax = +50 km, v,y = +50 km/h; (ii) Ax = —50 km,
Uavr = —50km/h; (i)  Ax = 60 km — 10 km = +50 km,
Uayr = +50km/h;  (iv) Ax = +70km, v, = +70 km/h;
(v) Ax = —20km + 20km = 0, v,., = 0. In (b) both have
Vayx = 150 km/h.

2.2 Answers: (a) P, Q and S (tie), R The x-velocity is (b) positive
when the slope of the x-¢ graph is positive (P), (¢) negative when
the slope is negative (R), and (d) zero when the slope is zero
(Q and S). (e) R, P, Q and S (tie) The speed is greatest when the
slope of the x-r graph is steepest (either positive or negative) and
zero when the slope is zero.

2.3 Answers: (a) S, where the x-r graph is curved upward (con-
cave up). (b) @, where the x-f graph is curved downward (concave
down). (¢) P and R, where the x-f graph is not curved either up or
down. (d) At P, a, = 0 (velocity is not changing); at Q, a, < 0

(a) What is the height of the cliff in meters? (b) If in part (a) you
get two solutions of a quadratic equation and you use one for your
answer, what does the other solution represent?

2.99 .-« Aball is thrown straight up from the edge of the roof of a
building. A second ball is dropped from the roof 1.00 s later. You
may ignore air resistance. (a) If the height of the building is
20.0 m, what must the initial speed of the first ball be if both are to
hit the ground at the same time? On the same graph, sketch the
position of each ball as a function of time, measured from when
the first ball is thrown. Consider the same situation, but now let the
initial speed v of the first ball be given and treat the height & of
the building as an unknown. (b) What must the height of the build-
ing be for both balls to reach the ground at the same time (i) if v is
6.0 m/s and (ii) if vy is 9.5 m/s? (c) If v, is greater than some
value vy,,y, a value of /& does not exist that allows both balls to hit
the ground at the same time. Solve for v ,,x. The value v,;,, has a
simple physical interpretation. What is it? (d) If v is less than
some value vy, a value of /4 does not exist that allows both balls
to hit the ground at the same time. Solve for v,,;,. The value v,
also has a simple physical interpretation. What is it?

(velocity is decreasing, i.c., changing from positive to zero to neg-
ative); at R, a, = 0 (velocity is not changing); and at S, a, > 0
(velocity is increasing, i.e., changing from negative to zero to pos-
itive).

2.4 Answer: (b) The officer’s x-acceleration is constant, so her
v,-t graph is a straight line, and the officer’s motorcycle is moving
faster than the motorist’s car when the two vehicles meet at
t=10s.

2.5 Answers: (a) (iii) Use Eq. (2.13) with x replaced by y and
a, = g vy2 = voy2 — 2g(y — yo). The starting height is yo = 0
and the y-velocity at the maximum heighty = hisv, = 0,500 =
v0y2 — 2ghand h = voyz/ 2g. If the initial y-velocity is increased by
a factor of 2, the maximum height increases by a factor of 2> = 4
and the ball goes to height 44. (b) (v) Use Eq. (2.8) with x replaced
by y and a, = g; v, = vo, — gt. The y-velocity at the maximum
height is vy, = 0, so 0 = vg, — gr and ¢ = vg,/g. If the initial
y-velocity is increased by a factor of 2, the time to reach the maxi-
mum height increases by a factor of 2 and becomes 2.

2.6 Answer: (ii) The acceleration a, is equal to the slope of the
v,-t graph. If a, is increasing, the slope of the v,-¢ graph is also
increasing and the graph is concave up.

Bridging Problem

Answer: 4 = 57.1 m



MOTION IN TWO OR
THREE DIMENSIONS

If a cyclist is going around a curve at constant speed, is he accelerating? If so,
in which direction is he accelerating?

hat determines where a batted baseball lands? How do you describe

the motion of a roller coaster car along a curved track or the flight of

a circling hawk? Which hits the ground first: a baseball that you sim-
ply drop or one that you throw horizontally?

We can’t answer these kinds of questions using the techniques of Chapter 2,
in which particles moved only along a straight line. Instead, we need to extend
our descriptions of motion to two- and three-dimensional situations. We’ll still
use the vector quantities displacement, velocity, and acceleration, but now
these quantities will no longer lie along a single line. We’ll find that several
important kinds of motion take place in two dimensions only—that is, in a
plane. We can describe these motions with two components of position, velocity,
and acceleration.

We also need to consider how the motion of a particle is described by different
observers who are moving relative to each other. The concept of relative velocity
will play an important role later in the book when we study collisions, when we
explore electromagnetic phenomena, and when we introduce Einstein’s special
theory of relativity.

This chapter merges the vector mathematics of Chapter 1 with the kinematic
language of Chapter 2. As before, we are concerned with describing motion,
not with analyzing its causes. But the language you learn here will be an essen-
tial tool in later chapters when we study the relationship between force and
motion.

LEARNING GOALS

By studying this chapter, you will

learn:

How to represent the position of a
body in two or three dimensions
using vectors.

How to determine the vector velocity
of a body from a knowledge of its
path.

How to find the vector acceleration
of a body, and why a body can have
an acceleration even if its speed is
constant.

How to interpret the components of
a body’s acceleration parallel to and
perpendicular to its path.

How to describe the curved path
followed by a projectile.

The key ideas behind motion in a
circular path, with either constant
speed or varying speed.

How to relate the velocity of a mov-
ing body as seen from two different
frames of reference.
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3.1 The position vector 7 from the origin
to point P has components x, y, and z. The
path that the particle follows through space
is in general a curve (Fig. 3.2).

Y

Position P of a particle
at a given time has

Yo _coordinates x, y, z.
s =S

~ V 4
Position vector of point P
has components x, y, z:
F=xi+y+ zk.

3.2 The average velocity U,, between
points Py and P, has the same direction as
the displacement AF.

y Position at time #,
'.‘ﬂ 77
. =48

Uy = At
\
\
Displacement

/.....vector AF points
from P, to P,.

/
il P]

<z %,

Re wn at time 7,
/

1 X
Particle’s path

3.3 The vectors U; and U, are the instan-
taneous velocities at the points P and P,
shown in Fig. 3.2.

y

Ea 7P,
The instantaneous \
velocity vector U is
tangent to the path
at each point. ._

Particle’s path

3.1 Position and Velocity Vectors

To describe the motion of a particle in space, we must first be able to describe the
particle’s position. Consider a particle that is at a point P at a certain instant. The
position vector 7 of the particle at this instant is a vector that goes from the ori-
gin of the coordinate system to the point P (Fig. 3.1). The Cartesian coordinates
x, y, and z of point P are the x-, y-, and z-components of vector 7. Using the unit
vectors we introduced in Section 1.9, we can write

F=xi +yj +zk (position vector) (3.1)
During a time interval Ar the particle moves from P;, where its position vector
is 7|, to P,, where its position vector is 7,. The change in position (the displace-
ment) during this interval is A7 =7, — F1 = (xo —x))i + (y2 — y1)] +
(zo — z1)k. We define the average velocity U,, during this interval in the same
way we did in Chapter 2 for straight-line motion, as the displacement divided by

the time interval:

P =P AF

= — (3.2)
thy — I At

Uy = (average velocity vector)

Dividing a vector by a scalar is really a special case of multiplying a vector by a
scalar, described in Section 1.7; the average velocity U,, is equal to the displace-
ment vector A7 multiplied by 1/A¢, the reciprocal of the time interval. Note that
the x-component of Eq. (3.2) is v,y = (xp — x1)/(t — t;) = Ax/Ar. This is
just Eq. (2.2), the expression for average x-velocity that we found in Section 2.1
for one-dimensional motion.

We now define instantaneous velocity just as we did in Chapter 2: It is the
limit of the average velocity as the time interval approaches zero, and it equals
the instantaneous rate of change of position with time. The key difference is that
position 7 and instantaneous velocity U are now both vectors:

S i o

= lim — = (instantaneous velocity vector) (3.3)
At—0 At dt

The magnitude of the vector U at any instant is the speed v of the particle at that
instant. The direction of U at any instant is the same as the direction in which the
particle is moving at that instant.

Note that as Az — 0, points P; and P, in Fig. 3.2 move closer and closer
together. In this limit, the vector A7 becomes tangent to the path. The direction
of A7 in this limit is also the direction of the instantaneous velocity U. This leads
to an important conclusion: At every point along the path, the instantaneous
velocity vector is tangent to the path at that point (Fig. 3.3).

It’s often easiest to calculate the instantaneous velocity vector using compo-
nents. During any displacement A7, the changes Ax, Ay, and Az in the three
coordinates of the particle are the components of AF. It follows that the compo-
nents vy, vy, and v, of the instantaneous velocity U are simply the time deriva-
tives of the coordinates x, y, and z. That is,

_dx
dt

&

_dz
U7 dr

(components of (3.4
YT '

Ux instantaneous velocity)

The x-component of U is v, = dx/dt, which is the same as Eq. (2.3)—the
expression for instantaneous velocity for straight-line motion that we obtained in
Section 2.2. Hence Eq. (3.4) is a direct extension of the idea of instantaneous
velocity to motion in three dimensions.



We can also get Eq. (3.4) by taking the derivative of Eq. (3.1). The unit vec-
tors Z, J, and k are constant in magnitude and direction, so their derivatives are
zero, and we find

N dr  dx. dy,. dz»
=—=—1+4+—"—7+ —k (3.5)
v dt dtl dtJ dt

This shows again that the components of U are dx/dt, dy/dt, and dz/dt.
The magnitude of the instantaneous velocity vector t—that is, the speed—is
given in terms of the components v,, v,, and v, by the Pythagorean relation:

o = v = Vul+vi+v? (3.6)

Figure 3.4 shows the situation when the particle moves in the xy-plane. In this
case, z and v, are zero. Then the speed (the magnitude of U) is

v="\Vuvl+ vy2

and the direction of the instantaneous velocity U is given by the angle « (the
Greek letter alpha) in the figure. We see that

Uy
tana = — (3.7)
U)C

(We always use Greek letters for angles. We use « for the direction of the instan-
taneous velocity vector to avoid confusion with the direction 0 of the position
vector of the particle.)

The instantaneous velocity vector is usually more interesting and useful than the
average velocity vector. From now on, when we use the word “velocity,” we will
always mean the instantaneous velocity vector ¥ (rather than the average velocity
vector). Usually, we won’t even bother to call U a vector; it’s up to you to remem-
ber that velocity is a vector quantity with both magnitude and direction.

m Calculating average and instantaneous velocity

A robotic vehicle, or rover, is exploring the surface of Mars. The

3.1 Position and Velocity Vectors 11

3.4 The two velocity components for
motion in the xy-plane.

The instantaneous velocity vector U
is always tangent to the path.

Particle’s path in
the xy-plane
_——s=l>

X

O| vy and v, are the x- and y-
components of U.

3.5 Att = 0.0 s the rover has position vector 7 and instanta-

statiorllary Mar.s lander is .the.origin of coordinates, and ﬂ}e sur-  peous velocity vector ¥ Likewise, 7| and U, are the vectors at
rounding Martian surface lies in the xy-plane. The rover, which we ¢ = 1.0 s; 7, and U, are the vectors at ¢ = 2.0 s.

represent as a point, has x- and y-coordinates that vary with time:

x =20m — (0.25 m/s*)r y (m)

y = (1.0 m/s)t + (0.025 m/s)7 a5l

(a) Find the rover’s coordinates and distance from the lander at
t = 2.0s. (b) Find the rover’s displacement and average velocity 20 L
vectors for the interval r = 0.0s to r = 2.0 s. (c¢) Find a general
expression for the rover’s instantaneous velocity vector U. Express

. . . 15 F
U att = 2.0 s in component form and in terms of magnitude and
direction.
1.0 -
[ SOLUTION | 0s |

IDENTIFY and SET UP: This problem involves motion in two
dimensions, so we must use the vector equations obtained in this

section. Figure 3.5 shows the rover’s path (dashed line). We’ll use 1o}
Eq. (3.1) for position 7, the expression A7 = 7, — 7, for displace-
ment, Eq. (3.2) for average velocity, and Egs. (3.5), (3.6), and (3.7)

Continued
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for instantaneous velocity and its magnitude and direction. The tar-
get variables are stated in the problem.

EKECUTE: (a) At = 2.0 s the rover’s coordinates are

x=20m — (0.25m/s2)(2.0s)> = 1.0m
y = (1.0m/s)(2.0s) + (0.025m/s*)(2.05)* =22 m

The rover’s distance from the origin at this time is

r=Vx*+ y: = \/(1.0 m)? + (22m)? =24m

(b) To find the displacement and average velocity over the
given time interval, we first express the position vector 7 as a func-
tion of time ¢. From Eq. (3.1) this is

F=x+ yj
= [2.0m — (0.25 m/s?*)7~]i
+ [(LOm/s)r + (0.025 m/s*)F]j

Att = 0.0 s the position vector 7 is

7o = (20m)i + (0.0 m)J
From part (a), the position vector 7, at t = 2.0 s is

F, = (1.0m)7 + (22m)j
The displacement from ¢t = 0.0 s to # = 2.0 s is therefore

AF =7, — 7o = (1L0m)i + (22 m)j — (2.0 m)i
(-=1.0m)7 + (2.2m)J

During this interval the rover moves 1.0 m in the negative
x-direction and 2.2 m in the positive y-direction. From Eq. (3.2),
the average velocity over this interval is the displacement divided
by the elapsed time:
. A7 (=1.0m)7 + (22 m)j
Yo T AT T T 205 - 005
= (—0.50m/s)t + (1.1 m/s)]

The components of this average velocity are v,,., = —0.50 m/s

and vyy., = 1.1 m/s.

Test Your Understanding of Section 3.1
would the average velocity vector Uy, over an interval be equal to the instanta-

(c) From Eq. (3.4) the components of instantaneous velocity
are the time derivatives of the coordinates:

dx
v == (=025 m/s?)(2t)

dy 3y(2,2
vy = T 1.0 m/s + (0.025 m/s”)(3¢7)

Hence the instantaneous velocity vector is
U=vd+0v,)=(-050m/s)n
+ [1.0 m/s + (0.075 m/s*)]]
Att = 2.0 s the velocity vector U, has components
U = (—0.50 m/s?)(2.0s) = —1.0m/s
vy = 1.O0m/s + (0.075m/s*)(2.05)* = 1.3m/s

The magnitude of the instantaneous velocity (that is, the speed) at
t =20sis

vy = Voo 2+ vzyz = \/(—1.0 m/s)? + (1.3 m/s)?
1.6 m/s

Figure 3.5 shows the direction of the velocity vector U5, which is at
an angle a between 90° and 180° with respect to the positive
x-axis. From Eq. (3.7) we have

Uy 1.3m/s

arctan— = arctan————— = —52°

Uy —1.0m/s
This is off by 180°; the correct value of the angle is « = 180° —
52° = 128°, or 38° west of north.

EVALUATE: Compare the components of average velocity that we
found in part (b) for the interval from ¢t = 0.0s to r = 2.0s
(Vay-x = —0.50m/s, v,y = 1.1 m/s) with the components of
instantaneous velocity at t+ = 2.0 s that we found in part (c)
(voe = —1.0m/s, vy, = 1.3 m/s). The comparison shows that,
just as in one dimension, the average velocity vector U,, over an
interval is in general not equal to the instantaneous velocity U at
the end of the interval (see Example 2.1).

Figure 3.5 shows the position vectors 7 and instantaneous
velocity vectors U att = 0.0's, 1.0's, and 2.0 s. (You should calcu-
late these quantities for # = 0.0 s and r = 1.0 s.) Notice that U is
tangent to the path at every point. The magnitude of ¥ increases as
the rover moves, which means that its speed is increasing.

In which of these situations

(‘j

neous velocity U at the end of the interval? (i) a body moving along a curved path
at constant speed; (ii) a body moving along a curved path and speeding up; (iii) a body
moving along a straight line at constant speed; (iv) a body moving along a straight line

and speeding up.

3.2 The Acceleration Vector

Now let’s consider the acceleration of a particle moving in space. Just as for
motion in a straight line, acceleration describes how the velocity of the particle
changes. But since we now treat velocity as a vector, acceleration will describe
changes in the velocity magnitude (that is, the speed) and changes in the direc-
tion of velocity (that is, the direction in which the particle is moving).

In Fig. 3.6a, a car (treated as a particle) is moving along a curved road. The vec-
tors ¥} and U, represent the car’s instantaneous velocities at time ¢;, when the car
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3.6 (a) A car moving along a curved road from P to P,. (b) How to obtain the change in velocity AU = U, — U, by vector subtrac-
tion. (c) The vector d,, = AU /At represents the average acceleration between P and P,.

©)} (b) ©

U
y _—->

, This car accelerates by slowing
while rounding a curve. (Its
instantaneous velocity changes in
both magnitude and direction.)

! ! ;

To find the car’s average acceleration between
P, and P,, we first find the change in velocity
AU by subtracting ¥, from U,. (Notice that

v, + AU =1,.)

The average acceleration has the same direction
as the change in velocity, AU.

is at point Py, and at time f,, when the car is at point P,. The two velocities may
differ in both magnitude and direction. During the time interval from 7, to ¢,, the
vector change in velocity is U, — U; = AU, so U, = U, + AU (Fig. 3.6b). We
define the average acceleration d,, of the car during this time interval as the
velocity change divided by the time interval 1, — 1 = Ar:

6, -0 _ Av

= — average acceleration vector (3.8)
t, — I At ( . )

av

Average acceleration is a vector quantity in the same direction as the vector AU~ 3.7 (a) Instantaneous acceleration @ at
(Fig. 3.6¢c). The x-component of Eq. (3.8) is .. = (Voy — U1,)/(fy — t;) = point P in Fig. 3.6. (b) Instantaneous
Av,/At, which is just Eq. (2.4) for the average acceleration in straight-line acceleration for motion along a straight
motion. line.

As in Chapter 2, we define the instantaneous acceleration @ (a vector quan-  (a) Acceleration: curved trajectory
tity) at point P; as the limit of the average acceleration vector when point P,

. N K . To find the instantaneous 32
approaches point Py, so AU and Ar both approach zero (Fig. 3.7). The instanta- . cjeration P o>
neous acceleration is also equal to the instantaneous rate of change of velocity datr,.. g 2

1
with time: ... we take the limit of @,,
L ¥,
*. as P, approaches P ...
R Av _ du )
ad= —
-

= lim — = — (instantaneous acceleration vector)  (3.9)
Ar—0 At dt

The velocity vector U, as we have seen, is tangent to the path of the particle.
The instantaneous acceleration vector @, however, does not have to be tangent to
the path. Figure 3.7a shows that if the path is curved, @ points toward the concave
side of the path—that is, toward the inside of any turn that the particle is making.
The acceleration is tangent to the path only if the particle moves in a straight line
(Fig. 3.7b).

- Acceleration points to
concave side of path.

CAUTION  Any particle following a curved path is accelerating When a particle is moving
in a curved path, it always has nonzero acceleration, even when it moves with constant  (b) Acceleration: straight-line trajectory
speed. This conclusion may seem contrary to your intuition, but it’s really just contrary to
the everyday use of the word “acceleration” to mean that speed is increasing. The more pre- 1Y if the trajectoryis 7

. .. . . . . straight line ... v
cise definition given in Eq. (3.9) shows that there is a nonzero acceleration whenever the a straight line 2
velocity vector changes in any way, whether there is a change of speed, direction, or both. P,

P -

- A N

. . . o -7~ Y = lim A8

To convince yourself that a particle has a nonzero acceleration when mov- / A0 At
ing on a curved path with constant speed, think of your sensations when you ok s the acceleration in the

ride in a car. When the car accelerates, you tend to move inside the car in a direction of the trajectory.
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direction opposite to the car’s acceleration. (We’ll discover the reason for this
behavior in Chapter 4.) Thus you tend to slide toward the back of the car when it
accelerates forward (speeds up) and toward the front of the car when it acceler-
ates backward (slows down). If the car makes a turn on a level road, you tend to
slide toward the outside of the turn; hence the car has an acceleration toward the
inside of the turn.

We will usually be interested in the instantaneous acceleration, not the average
acceleration. From now on, we will use the term “acceleration” to mean the instan-
taneous acceleration vector d.

Each component of the acceleration vector is the derivative of the correspon-
ding component of velocity:

Application Horses on a Curved
Path

By leaning to the side and hitting the ground
with their hooves at an angle, these horses
give themselves the sideways acceleration
necessary to make a sharp change in direction.

dv, dv, dv, (components of (3101
4 = Y= %= 4 instantaneous acceleration) '
g G : In terms of unit vectors,
dv,. dv,  dv,.
a=— —— (3.11)

1+ —j + k
) ) dt dt dt
3.8 When the arrow is released, its
acceleration vector has both a horizontal
component (a,) and a vertical

component (ay).

The x-component of Egs. (3.10) and (3.11), a, = dv,/dt, is the expression
from Section 2.3 for instantaneous acceleration in one dimension, Eq. (2.5).
Figure 3.8 shows an example of an acceleration vector that has both x- and
a y-components.

Since each component of velocity is the derivative of the corresponding coordi-
nate, we can express the components a,, a,, and a; of the acceleration vector d as

QU

dx —dzy d’z (3.12)
ToaP Y ar Coa
The acceleration vector d itself is
L dx. Ay, dPz-
a= 1+ JJ + —k (3.13)

dr? dr? dr?

m Calculating average and instantaneous acceleration

Let’s return to the motions of the Mars rover in Example 3.1.
(a) Find the components of the average acceleration for the inter-

then use Eq. (3.8) to calculate the components of the average
acceleration. In part (b) we obtain expressions for the instanta-

val t = 0.0s tot = 2.0 s. (b) Find the instantaneous acceleration
att = 2.0s.

IDENTIFY and SET UP: In Example 3.1 we found the components
of the rover’s instantaneous velocity at any time #:

d

v, = ?); = (—0.25m/s%)(21) = (—0.50 m/s?)¢
_¥_ 1o 0.025 m/s’)(3t>

vy_E—.m/s-l-(. m/s”)(317)

= 1.0m/s + (0.075 m/s)r>

We’ll use the vector relationships among velocity, average acceler-
ation, and instantaneous acceleration. In part (a) we determine the
values of v, and v, at the beginning and end of the interval and

neous acceleration components at any time ¢ by taking the time
derivatives of the velocity components as in Eqgs. (3.10).

EXECUTE: (a) In Example 3.1 we found that at = 0.0 s the veloc-
ity components are
v, =00m/s v,=10m/s
and that at r = 2.00 s the components are
vy =—-10m/s v, =13m/s
Thus the components of average acceleration in the interval
t=00stor=2.0sare

Av, —1.0m/s —00m/s

=—== = —0.50 m/s*
Gav-x = "7y 20s — 00s m/s
Av 1.3m/s — 1.0m/s
y . . 2
=2 2R TR s
Gavy = "7y 20s — 00s m/s



(b) Using Egs. (3.10), we find
dv dv
a,=""=-050m/s" a = 7: = (0.075 m/s3)(21)
Hence the instantaneous acceleration vector @ at time ¢ is
d=ad+ aj=(-050m/s?)i + (0.15m/s*)ij

At t = 2.0 s the components of acceleration and the acceleration
vector are

a, = —050m/s*>  a, = (0.15m/s*)(2.0s) = 0.30 m/s?

3.2 The Acceleration Vector 15

the results of part (b) to calculate the instantaneous acceleration at
t =0.0s and t = 1.0 s for yourself.) Note that ¥ and @ are not in
the same direction at any of these times. The velocity vector T is
tangent to the path at each point (as is always the case), and the
acceleration vector & points toward the concave side of the path.

3.9 The path of the robotic rover, showing the velocity and
acceleration at 1 = 0.0's (Upand dg), ¢ = 1.0s (U; and @), and
t =2.0s (0, and @,).

d = (—0.50m/s?)i + (0.30 m/s?)j

The magnitude of acceleration at this time is
a=V axz-i- ayz
= \/(—0.50 m/s?)? + (0.30 m/s2)?> = 0.58 m/s>

A sketch of this vector (Fig. 3.9) shows that the direction angle 8
of @ with respect to the positive x-axis is between 90° and 180°.
From Eq. (3.7) we have

a 0.30 m/s? L
arctan*y = arctani/2 = —3]1° L0
Gy —0.50 m/s
Hence B = 180° + (—31°) = 149°. 05

EVALUATE: Figure 3.9 shows the rover’s path and the velocity and

Rover’s path

acceleration vectors at = 0.0's, 1.0 s, and 2.0 s. (You should use 0 0.5

Parallel and Perpendicular Components of Acceleration

Equations (3.10) tell us about the components of a particle’s instantaneous accel-
eration vector & along the x-, y-, and z-axes. Another useful way to think about @
is in terms of its component parallel to the particle’s path—that is, parallel to the
velocity—and its component perpendicular to the path—and hence perpendicu-
lar to the velocity (Fig. 3.10). That’s because the parallel component g tells us
about changes in the particle’s speed, while the perpendicular component a |
tells us about changes in the particle’s direction of motion. To see why the paral-
lel and perpendicular components of @ have these properties, let’s consider two
special cases.

In Fig. 3.11a the acceleration vector is in the same direction as the velocity U,
so d has only a parallel component g (that is, @, = 0). The velocity change AU
during a small time interval At is in the same direction as @ and hence in the
same direction as U;. The velocity U, at the end of Af is in the same direction as
¥, but has greater magnitude. Hence during the time interval At the particle in
Fig. 3.11a moved in a straight line with increasing speed (compare Fig. 3.7b).

In Fig. 3.11b the acceleration is perpendicular to the velocity, so @ has only a
perpendicular component a; (that is, ¢y = 0). In a small time interval Az, the

3.11 The effect of acceleration directed (a) parallel to and (b) perpendicular to a parti-
cle’s velocity.

(@) Acceleration parallel to velocity (b) Acceleration perpendicular to velocity

Changes only magnitude
of velocity: speed changes;
direction doesn’t.

Changes only direction of AU
velocity: particle follows
curved path at constant
speed.

QY

t=10s"
\ =2
\V 0
. 1 =005
ay
I | X (m)
1.0 1.5

3.10 The acceleration can be resolved
into a component g parallel to the path
(that is, along the tangent to the path) and a
component @; perpendicular to the path
(that is, along the normal to the path).

/‘ ..... Tangent to path at P

Component of v
@ parallel -t.(.), _ ——==——> Particle’s path
the path ™y £ _~
I ,> ~
4 ~N
~N
NS 5 [7
A /
Soa / .~Normal to
il s
1 path at P

Component of @
perpendicular to the path
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velocity change AU is very nearly perpendicular to ¥}, and so U; and U, have dif-
ferent directions. As the time interval Ar approaches zero, the angle ¢ in the fig-
ure also approaches zero, AU becomes perpendicular to both U, and U, and ¥,
and U, have the same magnitude. In other words, the speed of the particle stays
the same, but the direction of motion changes and the path of the particle curves.

In the most general case, the acceleration @ has components both parallel and
perpendicular to the velocity U, as in Fig. 3.10. Then the particle’s speed will
change (described by the parallel component a;) and its direction of motion will
change (described by the perpendicular component a, ) so that it follows a
curved path.

Figure 3.12 shows a particle moving along a curved path for three different
situations: constant speed, increasing speed, and decreasing speed. If the speed is
constant, d is perpendicular, or normal, to the path and to ¥ and points toward the
concave side of the path (Fig. 3.12a). If the speed is increasing, there is still a per-
pendicular component of @, but there is also a parallel component having the
same direction as U (Fig. 3.12b). Then @ points ahead of the normal to the path.
(This was the case in Example 3.2.) If the speed is decreasing, the parallel com-

Mast rm‘\ . ponent has the direction opposite to U, and @ points behind the normal to the path
aste kg,PHYSIGS (Fig. 3.12c; compare Fig. 3.7a). We will use these ideas again in Section 3.4
PhET: Maze Game when we study the special case of motion in a circle.

3.12 Velocity and acceleration vectors for a particle moving through a point P on a curved path with (a) constant speed, (b) increas-
ing speed, and (c) decreasing speed.

(a) When speed is constant along a curved (b) When speed is increasing along a curved (c) When speed is decreasing along a curved

path pllth palh

N
v

>
/’ -
- . .
... acceleration points

ahead of the normal.

... acceleration is ... acceleration points

/ normal to the path. . behind the normal.
,’ V L, <
, o / a ’
/ a / !
II / ,' Normal at P
] \ / 1
/ ! !
Normal at P Normal at P

m Calculating parallel and perpendicular components of acceleration

For the rover of Examples 3.1 and 3.2, find the parallel and perpen- 3,13 The parallel and perpendicular components of the acceler-
dicular components of the acceleration at r = 2.0 s. ation of the roveratz = 2.0 s.

IDENTIFY and SET UP: We want to find the components of the
acceleration vector d that are parallel and perpendicular to the veloc-
ity vector 0. We found the directions of ¥ and @ in Examples 3.1 and
3.2, respectively; Fig. 3.9 shows the results. From these directions H</21?§‘\<g‘,
we can find the angle between the two vectors and the components AN &

) \ \ s _
of @ with respect to the direction of U. Perpendicular Ve Position of roverats =2.0s

component of acceleration ¥~ @, > Path of rover

<

Parallel component of acceleration

EXECUTE: From Example 3.2, at + = 2.0 s the particle has an
acceleration of magnitude 0.58 m/s? at an angle of 149° with
respect to the positive x-axis. In Example 3.1 we found that at this
time the velocity vector is at an angle of 128° with respect to the ~EVALUATE: r[jle parallel component q is positive (in the same
positive x-axis. The angle between @ and U is therefore direction as U), which means that the speed is increasing at this

149° — 128° = 21° (Fig. 3.13). Hence the components of acceler- instant. The value ay = +0.54 m/ s> tells us that the speed is
ation parallel and perpendicular to T are increasing at this instant at a rate of 0.54 m/s per second. The per-

B ) . ) pendicular component a; is not zero, which means that at this
= a cos 21° = (0.58 m/s")cos 21° = 0.54 m/s instant the rover is turning—that is, it is changing direction and

a, = asin 21° = (0.58 m/s%)sin 21° = 0.21 m/s> following a curved path.

a



Acceleration of a skier

3.3 Projectile Motion 77

A skier moves along a ski-jump ramp (Fig. 3.14a). The ramp is 3.14 (a) The skier’s path. (b) Our solution.

straight from point A to point C and curved from point C onward.

The skier speeds up as she moves downhill from point A to point E, (a)
where her speed is maximum. She slows down after passing point

E. Draw the direction of the acceleration vector at each of the
points B, D, E, and F.

Figure 3.14b shows our solution. At point B the skier is moving in
a straight line with increasing speed, so her acceleration points
downhill, in the same direction as her velocity. At points D, E, and
F the skier is moving along a curved path, so her acceleration has a (b) AN
component perpendicular to the path (toward the concave side of N
the path) at each of these points. At point D there is also an accel- N
eration component in the direction of her motion because she is N
speeding up. So the acceleration vector points ahead of the normal N
to her path at point D, as Fig. 3.14b shows. At point E, the skier’s R
speed is instantaneously not changing; her speed is maximum at
this point, so its derivative is zero. There is therefore no parallel
component of @, and the acceleration is perpendicular to her
motion. At point F' there is an acceleration component opposite to
the direction of her motion because now she’s slowing down. The
acceleration vector therefore points behind the normal to her path.

In the next section we’ll consider the skier’s acceleration after
she flies off the ramp.

Test Your Understanding of 3 (‘\®
Section 3.2 Asled travels over 2 4 w
the crest of a snow-covered hill. The

sled slows down as it climbs up one ,,—L N e - _Sled’s path

side of the hill and gains speed as it e ] 6 AN
descends on the other side. Which of 7

the vectors (1 through 9) in the figure or 9: acceleration = 0
correctly shows the direction of the

sled’s acceleration at the crest? (Choice 9 is that the acceleration is zero.) |

A

3.3 Projectile Motion

A projectile is any body that is given an initial velocity and then follows a path
determined entirely by the effects of gravitational acceleration and air resistance.
A batted baseball, a thrown football, a package dropped from an airplane, and a
bullet shot from a rifle are all projectiles. The path followed by a projectile is
called its trajectory.

To analyze this common type of motion, we’ll start with an idealized model,
representing the projectile as a particle with an acceleration (due to gravity) that
is constant in both magnitude and direction. We’ll neglect the effects of air resist-
ance and the curvature and rotation of the earth. Like all models, this one has lim-
itations. Curvature of the earth has to be considered in the flight of long-range
missiles, and air resistance is of crucial importance to a sky diver. Nevertheless,
we can learn a lot from analysis of this simple model. For the remainder of this
chapter the phrase “projectile motion” will imply that we’re ignoring air resist-
ance. In Chapter 5 we will see what happens when air resistance cannot be
ignored.

Projectile motion is always confined to a vertical plane determined by the
direction of the initial velocity (Fig. 3.15). This is because the acceleration due to

Direction
of motion

-

Normlal at €
N Normal at D i Normal af £

3.15 The trajectory of an idealized
projectile.

* A projectile moves in a vertical plane that
contains the initial velocity vector Uj,.

+ Its trajectory depends only on v and
on the downward acceleration due to gravity.

- -~

g, -~ So \/Trajectory
~
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3.16 The red ball is dropped from rest,
and the yellow ball is simultaneously pro-
jected horizontally; successive images in
this stroboscopic photograph are sepa-
rated by equal time intervals. At any given
time, both balls have the same y-position,
y-velocity, and y-acceleration, despite hav-
ing different x-positions and x-velocities.

®

~
Mastering G
| -

ActivPhysics 3.1: Solving Projectile Motion
Problems

ActivPhysics 3.2: Two Balls Falling
ActivPhysics 3.3: Changing the x-velocity
ActivPhysics 3.4: Projecting x-y-Accelerations

3.17 If air resistance is negligible, the trajectory of a projectile is a combination of horizontal motion with constant velocity
and vertical motion with constant acceleration.

Dimensions

gravity is purely vertical; gravity can’t accelerate the projectile sideways.
Thus projectile motion is two-dimensional. We will call the plane of motion the
xy-coordinate plane, with the x-axis horizontal and the y-axis vertically upward.

The key to analyzing projectile motion is that we can treat the x- and
y-coordinates separately. The x-component of acceleration is zero, and the
y-component is constant and equal to —g. (By definition, g is always positive;
with our choice of coordinate directions, a, is negative.) So we can analyze pro-
Jjectile motion as a combination of horizontal motion with constant velocity and
vertical motion with constant acceleration. Figure 3.16 shows two projectiles with
different x-motion but identical y-motion; one is dropped from rest and the other is
projected horizontally, but both projectiles fall the same distance in the same time.

We can then express all the vector relationships for the projectile’s position,
velocity, and acceleration by separate equations for the horizontal and vertical
components. The components of @ are

a, =0 a, = —g (projectile motion, no air resistance) (3.14)

Since the x-acceleration and y-acceleration are both constant, we can use Egs.
(2.8), (2.12), (2.13), and (2.14) directly. For example, suppose that at time ¢ = 0
our particle is at the point (x(, yg) and that at this time its velocity components
have the initial values v, and v,. The components of acceleration are a, = 0,

a, = —g. Considering the x-motion first, we substitute O for a, in Egs. (2.8) and
(2.12). We find

Ux = Uox (3.19)
X = xg T vyl (3.16)
For the y-motion we substitute y for x, v, for v,, vg, for v, and a, = —g for a,:
v, = vgy — gt (3.17)
_ 1 2
Yy =yt vot — 38t (3.18)

It’s usually simplest to take the initial position (at 7 = Q) as the origin; then
xo = yo = 0. This might be the position of a ball at the instant it leaves the
thrower’s hand or the position of a bullet at the instant it leaves the gun barrel.

Figure 3.17 shows the trajectory of a projectile that starts at (or passes
through) the origin at time ¢+ = 0, along with its position, velocity, and velocity

(‘J

At the top of the trajectory, the projectile has zero vertical

velocity (v, = 0), but its vertical acceleration is still —g.
y : 2
U, “«
I . e L 1
. - =
Uiy SN Uty . ..
; A SN Usx S ! Vertically, the projectile
s a ] is in constant-acceleration
L7 oy e N Dl vsy S 'LO',td t-acceleratio
’ . 3y U3 | motion in response to the
I . .
e ; ! ‘\\ : | earth’s gravitational pull.
%, R : a,= —g . I : Thus its vertical velocity
A 7 ‘ R 1 changes by equal amounts
Yoy i R Yoy : during equal time intervals.
' \
! \ 1
o ‘ \ !
—4 ‘ : —x - ---- -6
O] Vox ) ! ' |
© Vo o Uiy . Uoyx . Uz .
= = = = = ——— e ————— e —————— PP = ————— -@

Horizontally, the projectile is in constant-velocity motion: Its horizontal acceleration
is zero, so it moves equal x-distances in equal time intervals.



components at equal time intervals. The x-component of acceleration is zero, so
v, is constant. The y-component of acceleration is constant and not zero, so vy,
changes by equal amounts in equal times, just the same as if the projectile were
launched vertically with the same initial y-velocity.

We can also represent the initial velocity ¥, by its magnitude v (the initial
speed) and its angle «( with the positive x-axis (Fig. 3.18). In terms of these
quantities, the components v, and v, of the initial velocity are

Vox = UoCOS g Vgy = Vpsinag (3.19)

If we substitute these relationships in Egs. (3.15) through (3.18) and set

X0 = yo = 0, we find

x = (vgcosag)t (projectile motion) (3.20)

y = (vgsinag)t — %gt2 (projectile motion) (3.21)
U, = UpCoSagy (projectile motion) (3.22)

vy, = vgsinag — gt (projectile motion) (3.23)

These equations describe the position and velocity of the projectile in Fig. 3.17 at
any time 7.

We can get a lot of information from Egs. (3.20) through (3.23). For example,
at any time the distance r of the projectile from the origin (the magnitude of the
position vector 7) is given by

r = \/xz-i—y2

(3.24)
The projectile’s speed (the magnitude of its velocity) at any time is
v="Vuvl+v? (3.25)

The direction of the velocity, in terms of the angle « it makes with the positive
x-direction (see Fig. 3.17), is given by

vy

tana = (3.26)

UX
The velocity vector U is tangent to the trajectory at each point.
We can derive an equation for the trajectory’s shape in terms of x and y by

eliminating ¢. From Egs. (3.20) and (3.21), which assume xy = yy = 0, we find
t = x/(vgcosag) and

8 2

y = (tanag)x — X (3.27)

2\102cos2 o

Don’t worry about the details of this equation; the important point is its general
form. Since v, tan «y, cos ay, and g are constants, Eq. (3.27) has the form

y =bx — ex?
where b and c are constants. This is the equation of a parabola. In our simple
model of projectile motion, the trajectory is always a parabola (Fig. 3.19).

When air resistance isn 't always negligible and has to be included, calculating
the trajectory becomes a lot more complicated; the effects of air resistance
depend on velocity, so the acceleration is no longer constant. Figure 3.20 shows a
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3.18 The initial velocity components v,
and v, of a projectile (such as a kicked
soccer ball) are related to the initial speed
g and initial angle a.

—_—————

— X

Vgy = Vg Sin ay

=z

[ Uox = UoCOs &

-
Mastering a
R~

PhET: Projectile Motion

ActivPhysics 3.5: Initial Velocity Components
ActivPhysics 3.6: Target Practice |
ActivPhysics 3.7: Target Practice Il

3.19 The nearly parabolic trajectories of
(a) a bouncing ball and (b) blobs of molten
rock ejected from a volcano.

(@)  Successive images of ball are
separated by equal time intervals.

Successive peaks decrease
in height because ball
loses energy with
each bounce.

(b

* Trajectories
are nearly
parabolic.
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3.20 Air resistance has a large cumula-
tive effect on the motion of a baseball. In
this simulation we allow the baseball to
fall below the height from which it was
thrown (for example, the baseball could
have been thrown from a cliff).

abolic shape.)

Baseball’s initial velocity:
vo = 50 mfs, o = 53.1°

y (m)
100

50
1 1 1 1 1 1
0 00\ 200 \ 300 * ™
—50
—100
With air No air
resistance resistance

computer simulation of the trajectory of a baseball both without air resistance and
with air resistance proportional to the square of the baseball’s speed. We see that air
resistance has a very large effect; the maximum height and range both decrease,
and the trajectory is no longer a parabola. (If you look closely at Fig. 3.19b, you’ll
see that the trajectories of the volcanic blobs deviate in a similar way from a par-

Acceleration of a skier, continued

Let’s consider again the skier in Conceptual Example 3.4. What is
her acceleration at each of the points G, H, and / in Fig. 3.21a after
she flies off the ramp? Neglect air resistance.

Figure 3.21b shows our answer. The skier’s acceleration changed
from point to point while she was on the ramp. But as soon as she

3.21 (a) The skier’s path during the jump. (b) Our solution.

(@) H

LD BTV GETCT A Projectile Motion

NOTE: The strategies we used in Sections 2.4 and 2.5 for straight-
line, constant-acceleration problems are also useful here.

IDENTIFY the relevant concepts: The key concept to remember is
that throughout projectile motion, the acceleration is downward
and has a constant magnitude g. Note that the projectile-motion
equations don’t apply to throwing a ball, because during the throw
the ball is acted on by both the thrower’s hand and gravity. These
equations apply only after the ball leaves the thrower’s hand.

SET UP the problem using the following steps:

1. Define your coordinate system and make a sketch showing
your axes. Usually it’s easiest to make the x-axis horizontal and
the y-axis upward, and to place the origin at the initial (+ = 0)
position where the body first becomes a projectile (such as
where a ball leaves the thrower’s hand). Then the components
of the (constant) acceleration are a, = 0, a, = —g, and the
initial position is xo = 0,y¢ = 0.

2. List the unknown and known quantities, and decide which
unknowns are your target variables. For example, you might be
given the initial velocity (either the components or the magni-
tude and direction) and asked to find the coordinates and veloc-
ity components at some later time. In any case, you’ll be using

-~o

leaves the ramp, she becomes a projectile. So at points G, H, and /,
and indeed at all points after she leaves the ramp, the skier’s accel-
eration points vertically downward and has magnitude g. No mat-
ter how complicated the acceleration of a particle before it
becomes a projectile, its acceleration as a projectile is given by
ay=0,a, = —g.

Egs. (3.20) through (3.23). (Equations (3.24) through (3.27)
may be useful as well.) Make sure that you have as many equa-
tions as there are target variables to be found.

3. State the problem in words and then translate those words into
symbols. For example, when does the particle arrive at a certain
point? (That is, at what value of #?) Where is the particle when its
velocity has a certain value? (That is, what are the values of x and y
when v, or v, has the specified value?) Since v, = 0 at the highest
point in a trajectory, the question “When does the projectile reach
its highest point?” translates into “What is the value of ¢ when
vy, = 0?” Similarly, “When does the projectile return to its initial
elevation?” translates into “What is the value of t wheny = y(?”

EXECUTE the solution: Find the target variables using the equa-
tions you chose. Resist the temptation to break the trajectory into
segments and analyze each segment separately. You don’t have to
start all over when the projectile reaches its highest point! It’s
almost always easier to use the same axes and time scale through-
out the problem. If you need numerical values, use g = 9.80 m/ s2.

EVALUATE your answer: As always, look at your results to see
whether they make sense and whether the numerical values seem
reasonable.



3EL LA A hody projected horizontally

A motorcycle stunt rider rides off the edge of a cliff. Just at the
edge his velocity is horizontal, with magnitude 9.0 m/s. Find the
motorcycle’s position, distance from the edge of the cliff, and
velocity 0.50 s after it leaves the edge of the cliff.

IDENTIFY and SET UP: Figure 3.22 shows our sketch of the motor-
cycle’s trajectory. He is in projectile motion as soon as he leaves
the edge of the cliff, which we choose to be the origin of coordi-
nates so xo = 0 and yy = 0. His initial velocity Uy at the edge of
the cliff is horizontal (that is, &y = 0), so its components are
Ugyr = Vg cos ap = 9.0 m/s and Vgy = Vg sin ag = 0. To find
the motorcycle’s position at t = 0.50 s, we use Eqgs. (3.20) and
(3.21); we then find the distance from the origin using Eq. (3.24).
Finally, we use Eqgs. (3.22) and (3.23) to find the velocity compo-
nents at ¢ = 0.50s.

EXECUTE: From Egs. (3.20) and (3.21), the motorcycle’s x- and
y-coordinates at = 0.50 s are

x =vot = (9.0m/s)(0.50s) = 45m

y = —3gf = —5(980 m/s)(0.505)* = ~12m
The negative value of y shows that the motorcycle is below its
starting point.

From Eq. (3.24), the motorcycle’s distance from the origin at
t=0.50sis

r=Vxr+y =V(45m)? + (-12m)> =47m

From Egs. (3.22) and (3.23), the velocity components at
t =0.50s are

Uy = Vo = 9.0m/s
v, = —gt = (—9.80 m/s?)(0.50s) = —4.9 m/s
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3.22 Our sketch for this problem.

9 At this point, the bike and
rider become a projectile.

x

The motorcycle has the same horizontal velocity v, as when it left
the cliff at # = 0, but in addition there is a downward (negative)
vertical velocity v,. The velocity vector at = 0.50 s is

v=uvd+0v,)=(90m/s)i + (—49m/s)j

From Eq. (3.25), the speed (magnitude of the velocity) at ¢ =
0.50 s is

v = \/vx2+ vy2

=V(9.0m/s)2 + (-49m/s)? = 102 m/s

From Eq. (3.26), the angle « of the velocity vector is

Uy, —49m/s
« = arctan — = arctan| ———— | = —29°
Uy 9.0m/s

The velocity is 29° below the horizontal.

EVALUATE: Just as in Fig. 3.17, the motorcycle’s horizontal motion
is unchanged by gravity; the motorcycle continues to move hori-
zontally at 9.0 m/s, covering 4.5 m in 0.50 s. The motorcycle ini-
tially has zero vertical velocity, so it falls vertically just like a body

released from rest and descends a distance %th =12min0.50s.
—

m Height and range of a projectile I: A hatted hasehall

A batter hits a baseball so that it leaves the bat at speed
vo = 37.0 m/s at an angle «y = 53.1°. (a) Find the position of the
ball and its velocity (magnitude and direction) at # = 2.00 s. (b) Find
the time when the ball reaches the highest point of its flight, and its
height /£ at this time. (c) Find the horizontal range R—that is, the
horizontal distance from the starting point to where the ball hits the
ground.

IDENTIFY and SET UP: As Fig. 3.20 shows, air resistance strongly
affects the motion of a baseball. For simplicity, however, we’ll
ignore air resistance here and use the projectile-motion equations
to describe the motion. The ball leaves the bat at + = 0 a meter or
so above ground level, but we’ll neglect this distance and assume
that it starts at ground level (yy = 0). Figure 3.23 shows our

3.23 Our sketch for this problem.

17

-

X
=1
R=7
V2

sketch of the ball’s trajectory. We'll use the same coordinate
system as in Figs. 3.17 and 3.18, so we can use Egs. (3.20) through
Continued
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(3.23). Our target variables are (a) the position and velocity of the
ball 2.00 s after it leaves the bat, (b) the time ¢ when the ball is at
its maximum height (that is, when v, = 0) and the y-coordinate at
this time, and (c) the x-coordinate when the ball returns to ground
level (y = 0).

EXECUTE: (a) We want to find x, y, v, and v, at t = 2.00 s. The
initial velocity of the ball has components

Vox = Ugcos ag = (37.0 m/s)cos53.1° = 22.2 m/s
Uoy = Ugsinag = (37.0m/s)sin53.1° = 29.6 m/s
From Egs. (3.20) through (3.23),
X = vt = (222 m/s)(2.00s) = 444 m
y = vgyt — 387
= (29.6m/5)(2.00s) — 3(9.80 m/s%)(2.00 s)?
39.6 m

Uy = Vg, = 22.2m/s

vy, = vgy — gt = 29.6m/s — (9.80 m/s%)(2.00s)
=10.0m/s

The y-component of velocity is positive at = 2.00 s, so the ball is

still moving upward (Fig. 3.23). From Eqgs. (3.25) and (3.26), the
magnitude and direction of the velocity are

v = \/vxz—i- vy2 = \/(22.2 m/s)> + (10.0 m/s)?
=244 m/s

10.0 m/s
a = arctan | ———— | = arctan 0.450 = 24.2°
22.2m/s

The direction of the velocity (the direction of the ball’s motion) is
24.2° above the horizontal.
(b) At the highest point, the vertical velocity v, is zero. Call the

time when this happens ¢{; then

Uy = Ugy — 811 = 0

Voy 29.6 m/s

f :—yzi/zzaozs

8 9.80 m/s

The height £ at the highest point is the value of y at time #1:
- %8112

(29.6 m/s)(3.02s) — 3(9.80 m/s2)(3.02'5)*
=447 m

h = UO),I]

(c) We'll find the horizontal range in two steps. First, we find the
time ¢, when y = 0 (the ball is at ground level):

—0 = 12 1
y=0=vpp — 2807 = lz(UOy - 58t2>

This is a quadratic equation for #,. It has two roots:

200y 2(29.6 m/s)

=———- =0604s

=0
: g 9.80m/s

and 1)

The ball is at y = 0 at both times. The ball leaves the ground at
t, = 0, and it hits the ground at 1, = 2v¢,/g = 6.04s.

The horizontal range R is the value of x when the ball returns to
the ground at 1, = 6.04 s:

R = vgty = (222 m/s)(6.04s) = 134 m

The vertical component of velocity when the ball hits the
ground is

vy = vgy — gtr = 29.6m/s — (9.80 m/s2)(6.04 s)

—29.6 m/s

That is, v, has the same magnitude as the initial vertical velocity
gy but the opposite direction (down). Since v, is constant, the
angle « = —53.1° (below the horizontal) at this point is the nega-
tive of the initial angle oy = 53.1°.

EVALUATE: It’s often useful to check results by getting them in a
different way. For example, we can also find the maximum height
in part (b) by applying the constant-acceleration formula Eq. (2.13)
to the y-motion:
vy2: UOy2+ zay(y - yO) = vOyz_ Zg(y - yO)

At the highest point, v, = 0 and y = h. You should solve this
equation for /; you should get the same answer that we obtained in
part (b). (Do you?)

Note that the time to hit the ground, #, = 6.04 s, is exactly
twice the time to reach the highest point, #; = 3.02 s. Hence the
time of descent equals the time of ascent. This is always true if the
starting and end points are at the same elevation and if air resist-
ance can be neglected.

Note also that 7 = 44.7 m in part (b) is comparable to the 52.4-m
height above the playing field of the roof of the Hubert H.
Humphrey Metrodome in Minneapolis, and the horizontal range
R = 134 m in part (c) is greater than the 99.7-m distance from
home plate to the right-field fence at Safeco Field in Seattle. In
reality, due to air resistance (which we have neglected) a batted
ball with the initial speed and angle we’ve used here won’t go as
high or as far as we’ve calculated (see Fig. 3.20).

3L DRI Height and range of a projectile 1I: Maximum height, maximum range

Find the maximum height / and horizontal range R (see Fig. 3.23)
of a projectile launched with speed v at an initial angle o
between 0° and 90°. For a given v, what value of «( gives maxi-
mum height? What value gives maximum horizontal range?

IDENTIFY and SET UP: This is almost the same as parts (b) and (c)
of Example 3.7, except that now we want general expressions for /
and R. We also want the values of « that give the maximum values



of & and R. In part (b) of Example 3.7 we found that the projectile
reaches the high point of its trajectory (so that v, = 0) at time
H = voy/ g, and in part (c) we found that the projectile returns to
its starting height (so that y = yy) at time r, = 2v¢,/g = 21;.
We’ll use Eq. (3.21) to find the y-coordinate h at #; and
Eq. (3.20) to find the x-coordinate R at time #,. We’ll express our
answers in terms of the launch speed v and launch angle o
using Eqgs. (3.19).
ENECUTE: From Eqgs. (3.19), vg, = vgcos gy and vy, = vgsin ay.
Hence we can write the time 7; when v, = 0 as

Voy  vgsin oy

W =—=
8 8

Equation (3.21) gives the height y = £ at this time:

) v sin ag . {(vosinag\?
h= (vosingg)| —— | — 358l ———
8 8
B ¢ sin 2y
2g

For a given launch speed v, the maximum value of / occurs for
sinag = 1 and oy = 90°—that is, when the projectile is launched
straight up. (If it is launched horizontally, as in Example 3.6,
oy = 0 and the maximum height is zero!)
The time #, when the projectile hits the ground is
2U0y
th=—""=
8 8
The horizontal range R is the value of x at this time. From
Eq. (3.20), this is

2v¢ sin ag

20 sin ag
R R

(vgcos ag)tr = (vgcos ap)

¢ sin 2a
8

Different initial and final heights

You throw a ball from your window 8.0 m above the ground.
When the ball leaves your hand, it is moving at 10.0 m/s at an
angle of 20° below the horizontal. How far horizontally from your
window will the ball hit the ground? Ignore air resistance.

IDENTIFY and SET UP: As in Examples 3.7 and 3.8, we want to
find the horizontal coordinate of a projectile when it is at a given
y-value. The difference here is that this value of y is not the same
as the initial value. We again choose the x-axis to be horizontal and
the y-axis to be upward, and place the origin of coordinates at
the point where the ball leaves your hand (Fig. 3.25). We have
vg = 10.0 m/s and g = —20° (the angle is negative because the
initial velocity is below the horizontal). Our target variable is
the value of x when the ball reaches the ground at y = —8.0 m.
We’ll use Eq. (3.21) to find the time # when this happens, then use
Eq. (3.20) to find the value of x at this time.
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(We used the trigonometric identity 2 sin o cos oy = sin 2e,
found in Appendix B.) The maximum value of sin2¢ is 1; this
occurs when 2y = 90° or oy = 45°. This angle gives the
maximum range for a given initial speed if air resistance can be
neglected.

EVALUATE: Figure 3.24 is based on a composite photograph of
three trajectories of a ball projected from a small spring gun at
angles of 30°, 45°, and 60°. The initial speed v is approximately
the same in all three cases. The horizontal range is greatest for
the 45° angle. The ranges are nearly the same for the 30° and 60°
angles: Can you prove that for a given value of v, the range is
the same for both an initial angle «y and an initial angle
90° — a? (This is not the case in Fig. 3.24 due to air resistance.)

CAUTION  Height and range of a projectile We don’t recom-
mend memorizing the above expressions for /, R, and R ., . They
are applicable only in the special circumstances we have
described. In particular, the expressions for the range R and maxi-
mum range R .., can be used only when launch and landing
heights are equal. There are many end-of-chapter problems to
which these equations do not apply.

3.24 A launch angle of 45° gives the maximum horizontal
range. The range is shorter with launch angles of 30° and 60°.

A 45° launch angle gives the greatest range;
other angles fall shorter.

...oo..

Launch o:c'....:.'.:
angle: | > s ]
ay = 30° R

ap = 45°

an = 60°

3.25 Our sketch for this problem.

9
O thdOW X =79
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~ o= —20° 1

SN Ve=100ms

N 1
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N |

\ |

A 1

A |

AN 1

\ |

N |

N |

\ |

Ny
v =—80m \Ground

EXECUTE: To determine ¢, we rewrite Eq. (3.21) in the standard
form for a quadratic equation for #:

%gt2 — (vgsinag)t +y =0

Continued
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The roots of this equation are

\/(—UO sinag)? — 4(%g>y

2(3¢)
* \/vo2 sin 2a0 — 2gy

4
Elo.o m/s) sin(—20°)
+1/(10.0 m/s)? sin?(—20°) — 2(9.80 m/s%)(—8.0 m)
9.80 m/s?

0.98 s

U Sin a

U sin oy

—1.7s

The zookeeper and the monkey

A monkey escapes from the zoo and climbs a tree. After failing to
entice the monkey down, the zookeeper fires a tranquilizer dart
directly at the monkey (Fig. 3.26). The monkey lets go at the
instant the dart leaves the gun. Show that the dart will always hit
the monkey, provided that the dart reaches the monkey before he
hits the ground and runs away.

IDENTIFY and SET UP: We have two bodies in projectile motion:
the dart and the monkey. They have different initial positions and
initial velocities, but they go into projectile motion at the same time
t = 0. We'll first use Eq. (3.20) to find an expression for the time ¢
when the x-coordinates xponkey and Xqay are equal. Then we’ll use
that expression in Eq. (3.21) to see whether yponkey and ygqr are
also equal at this time; if they are, the dart hits the monkey. We

or

3.26 The tranquilizer dart hits the falling monkey.

We discard the negative root, since it refers to a time before the
ball left your hand. The positive root tells us that the ball reaches
the ground at r = 0.98 s. From Eq. (3.20), the ball’s x-coordinate at
that time is

x = (vgcosag)t = (10.0 m/s)[cos(—20°)](0.98 s)
=92m

The ball hits the ground a horizontal distance of 9.2 m from your
window.

EVALUATE: The root r = —1.7 s is an example of a “fictional” solu-
tion to a quadratic equation. We discussed these in Example 2.8 in
Section 2.5; you should review that discussion.

make the usual choice for the x- and y-directions, and place the ori-
gin of coordinates at the muzzle of the tranquilizer gun (Fig. 3.26).

ENECUTE: The monkey drops straight down, S0 Xponkey = d at all
times. From Eq. (3.20), x 4.« = (vg cos ag)t. We solve for the time
t when these x-coordinates are equal:

d
U( COS

d = (vpcosap)t so =
We must now show that yponkey = Ydar at this time. The monkey is
in one-dimensional free fall; its position at any time is given by
Eq. (2.12), with appropriate symbol changes. Figure 3.26 shows
that the monkey’s initial height above the dart-gun’s muzzle is
Ymonkey—0 = d tan g, SO

1
Ymonkey — dtanag — Egtz

Dashed arrows show how far the dart and monkey have fallen at
specific times relative to where they would be without gravity.
At any time, they have fallen by the same amount..

y Without gravity

» The monkey remains in its initial position. K3 N
* The dart travels straight to the monkey., < E E‘ Monkey’s
* Therefore, the dart hits the monkey. _ 7 : E fall
S - H K
i g : n“‘ !
' //’// iDart’s
Tr'a]ectory of. dart 4 dtan o Hfall
without gravity -7 , 0%
e : Dart’s H
-7 i fall ; H
- : i i
7 B S T
v “Dart’sfall _ _+——~
1 -
L .
A Trajectory of dart
- o with gravity
’/
| X
d |

With gravity
« The monkey falls straight down."”
* At any time ¢, the dart has fallen by the same amount
as the monkey relative to where either would be in the
. _ __1_ 5
absence ofgrawty.‘ A)vdarl - Aymonkey = 281"
* Therefore, the dart always hits the monkey.




From Eq. (3.21),

Yaan = (vosinag)t — 37
Comparing these two equations, we see that we’ll have
Ymonkey = Ydart (and a hit) if dtanag = (vgsinap)r at the time
when the two x-coordinates are equal. To show that this happens,
we replace ¢ with d/(vgcos ap), the time when xponkey = Xdart-
Sure enough, we find that
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EVALUATE: We’ve proved that the y-coordinates of the dart and
the monkey are equal at the same time that their x-coordinates
are equal; a dart aimed at the monkey always hits it, no matter
what v is (provided the monkey doesn’t hit the ground first).
This result is independent of the value of g, the acceleration due
to gravity. With no gravity (g = 0), the monkey would remain
motionless, and the dart would travel in a straight line to hit him.
With gravity, both fall the same distance gt2/2 below their# = 0
positions, and the dart still hits the monkey (Fig. 3.26).

(vosinag)t = (vgsin ag) = dtan ag

U COS gy

Test Your Understanding of Section 3.3
In Example 3.10, suppose the tranquilizer dart
has a relatively low muzzle velocity so that

@

the dart reaches a maximum height at a 7

point P before striking the monkey, s oA
as shown in the figure. When the R

dart is at point P, will the monkey e P B

. . . —-—®-==__2
be (i) at point A (higher than P), ~oC
(ii) at point B (at the same height
as P), or (iii) at point C (lower

than P)? Ignore air resistance.

3.4 Motion in a Circle

When a particle moves along a curved path, the direction of its velocity changes.
As we saw in Section 3.2, this means that the particle must have a component of
acceleration perpendicular to the path, even if its speed is constant (see Fig. 3.11b).
In this section we’ll calculate the acceleration for the important special case of
motion in a circle.

Uniform Circular Motion

When a particle moves in a circle with constant speed, the motion is called
uniform circular motion. A car rounding a curve with constant radius at constant
speed, a satellite moving in a circular orbit, and an ice skater skating in a circle
with constant speed are all examples of uniform circular motion (Fig. 3.27c;
compare Fig. 3.12a). There is no component of acceleration parallel (tangent) to
the path; otherwise, the speed would change. The acceleration vector is perpendi-
cular (normal) to the path and hence directed inward (never outward!) toward the
center of the circular path. This causes the direction of the velocity to change
without changing the speed.

3.27 A car moving along a circular path. If the car is in uniform circular motion as in (c), the speed is constant and the acceleration is

directed toward the center of the circular path (compare Fig. 3.12).

(a) Car speeding up along a circular path (b) Car slowing down along a circular path

Component of acceleration parallel to velocity:
Changes car’s speed

A /
/9' N Component of acceleration
\ AN o perpendicular to velocity:
’ N Changes car’s direction
/ R s
’ e
/ H -
/ H a ’
I’ Component of acceleration perpendicular to / A i

,' Component of acceleration parallel
to velocity: Changes car’s speed

1 velocity: Changes car’s direction

() Uniform circular motion: Constant speed
along a circular path

R S

.+Acceleration is exactly
. perpendicular to velocity;
’ no parallel component

/ N
I r\A
To center of circle
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3.28 Finding the velocity change AD,
average acceleration @, and instanta-
neous acceleration d ,q for a particle mov-
ing in a circle with constant speed.

(a) A particle moves a distance As at
constant speed along a circular path.

]
1
I
I
|
|
\

(b) The corresponding change in velocity and
average acceleration :

AU These two triangles

v, urc‘similur.
DR
Ao/,
U

(c) The instantaneous acceleration

—-——>
/”

The instantaneous acceleration
in uniform circular motion
. R always points toward the
center of the circle.

N
fad \

We can find a simple expression for the magnitude of the acceleration in uni-
form circular motion. We begin with Fig. 3.28a, which shows a particle moving
with constant speed in a circular path of radius R with center at O. The particle
moves from P; to P, in a time Atz. The vector change in velocity AT during this
time is shown in Fig. 3.28b.

The angles labeled A¢ in Figs. 3.28a and 3.28b are the same because U is
perpendicular to the line OP, and U, is perpendicular to the line OP,. Hence the
triangles in Figs. 3.28a and 3.28b are similar. The ratios of corresponding sides of
similar triangles are equal, so

|AB]  As v
=== o |AB = FAs
U R R
The magnitude a,, of the average acceleration during At is therefore

_ 188 _ v As
ST A TR At

The magnitude a of the instantaneous acceleration @ at point P, is the limit of this
expression as we take point P, closer and closer to point P;:
) Uq As [ %5 As
a= lim ——=— lim —
Ar>0 R At R A0 At
If the time interval Ar is short, As is the distance the particle moves along its
curved path. So the limit of As/At is the speed vy at point P;. Also, P can be any
point on the path, so we can drop the subscript and let v represent the speed at
any point. Then

(uniform circular motion) (3.28)

_ U
Arad _}

We have added the subscript “rad” as a reminder that the direction of the instan-
taneous acceleration at each point is always along a radius of the circle (toward
the center of the circle; see Figs. 3.27c and 3.28c). So we have found that in uni-
form circular motion, the magnitude a.,q of the instantaneous acceleration is
equal to the square of the speed v divided by the radius R of the circle. Its direc-
tion is perpendicular to U and inward along the radius.

Because the acceleration in uniform circular motion is always directed toward
the center of the circle, it is sometimes called centripetal acceleration. The word
“centripetal” is derived from two Greek words meaning “seeking the center.”
Figure 3.29a shows the directions of the velocity and acceleration vectors at sev-
eral points for a particle moving with uniform circular motion.

3.29 Acceleration and velocity (a) for a particle in uniform circular motion and (b) for
a projectile with no air resistance.

(a) Uniform circular motion (b) Projectile motion

v Acceleration has  Velocity and acceleration are perpendicular
~e——— ANt ., i .
prg ~J\7 constant magni only at the peak of the trajectory.

tude but varying

~
4 rad di . U _: v
irection. pE A

N - \v\ - - T~
v /1 @rad \ v e U

[ ' . \

1
\ a a
\ Arad B . N \\
v, 4 Velocity and ata a \

Arad a4 4 - Acceleration is

[ -.acceleration /!
. ‘. . . =
it \~~_. LN are always _, constant in magnitude v
v perpendicular. a and direction. a



CAUTION  uniform circular motion vs. projectile motion The acceleration in uniform cir-
cular motion (Fig. 3.29a) has some similarities to the acceleration in projectile motion
without air resistance (Fig. 3.29b), but there are also some important differences. In both
kinds of motion the magnitude of acceleration is the same at all times. However, in uni-
form circular motion the direction of d changes continuously so that it always points
toward the center of the circle. (At the top of the circle the acceleration points down; at the
bottom of the circle the acceleration points up.) In projectile motion, by contrast, the direc-
tion of @ remains the same at all times.

We can also express the magnitude of the acceleration in uniform circular
motion in terms of the period T of the motion, the time for one revolution (one
complete trip around the circle). In a time 7 the particle travels a distance equal to

3.4 Motion in a Circle 817

the circumference 27 R of the circle, so its speed is

_ 2mR
T

v

(3.29)

When we substitute this into Eq. (3.28), we obtain the alternative expression

47°R
Urad = ?

(uniform circular motion)

Masteriﬁ-\ €S
kg/PHYSI S

PhET: Ladybug Revolution
PhET: Motion in 2D

(3.30)

m Centripetal acceleration on a curved road

An Aston Martin V8 Vantage sports car has a “lateral acceleration”
of 0.96g = (0.96)(9.8 m/s?) = 9.4 m/s. This is the maximum
centripetal acceleration the car can sustain without skidding out of
a curved path. If the car is traveling at a constant 40 m/s (about
89 mi/h, or 144 km/h) on level ground, what is the radius R of the
tightest unbanked curve it can negotiate?

IDENTIFY, SET UP, and EXECUTE: The car is in uniform circular
motion because it’s moving at a constant speed along a curve that
is a segment of a circle. Hence we can use Eq. (3.28) to solve for
the target variable R in terms of the given centripetal acceleration

ayqq and speed v:

2 (40 m/s)?
v
R=—= 5, = 170 m (about 560 ft)
Qrad 9.4 m/s
This is the minimum radius because a,q is the maximum cen-
tripetal acceleration.

EVALUATE: The minimum turning radius R is proportional to the
square of the speed, so even a small reduction in speed can make R
substantially smaller. For example, reducing v by 20% (from 40 m/s
to 32 m/s) would decrease R by 36% (from 170 m to 109 m).

Another way to make the minimum turning radius smaller is to
bank the curve. We’ll investigate this option in Chapter 5.

m Centripetal acceleration on a carnival ride

Passengers on a carnival ride move at constant speed in a horizon-
tal circle of radius 5.0 m, making a complete circle in 4.0 s. What
is their acceleration?

IDENTIFY and SET UP: The speed is constant, so this is uniform
circular motion. We are given the radius R = 5.0 m and the period
T = 4.0, so we can use Eq. (3.30) to calculate the acceleration
directly, or we can calculate the speed v using Eq. (3.29) and then
find the acceleration using Eq. (3.28).

EXECUTE: From Egq. (3.30),
47*(5.0 m)

@0 = 12m/s*> = 1.3g

Arad =

We can check this answer by using the second, roundabout
approach. From Eq. (3.29), the speed is

27R  27(5.0m)
p=n T

=179
T 40 m/s
The centripetal acceleration is then
2 (79m/s)?
v
Ugg = — = ————— = 12m/s?

R 5.0m

EVALUATE: As in Example 3.11, the direction of @ is always
toward the center of the circle. The magnitude of @ is relatively
mild as carnival rides go; some roller coasters subject their passen-
gers to accelerations as great as 4g.
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Application Watch Out: Tight
Curves Ahead!

These roller coaster cars are in nonuniform
circular motion: They slow down and speed up
as they move around a vertical loop. The large
accelerations involved in traveling at high
speed around a tight loop mean extra stress
on the passengers’ circulatory systems, which
is why people with cardiac conditions are cau-
tioned against going on such rides.

3.30 A particle moving in a vertical loop
with a varying speed, like a roller coaster
car.

Speed slowest, a,,4 minimum, a,,, zero

Speeding up; a,, in Slowing down;
same direction as U Ay OPPOSite to U

/h" =~

e SN
Ve N
/

Speed fastest, a,,q maximum, a,,, zero

Nonuniform Circular Motion

We have assumed throughout this section that the particle’s speed is constant as it
goes around the circle. If the speed varies, we call the motion nonuniform circu-
lar motion. In nonuniform circular motion, Eq. (3.28) still gives the radial com-
ponent of acceleration agq = vz/R, which is always perpendicular to the
instantaneous velocity and directed toward the center of the circle. But since the
speed v has different values at different points in the motion, the value of a,,q is
not constant. The radial (centripetal) acceleration is greatest at the point in the
circle where the speed is greatest.

In nonuniform circular motion there is also a component of acceleration that is
parallel to the instantaneous velocity (see Figs. 3.27a and 3.27b). This is the com-
ponent g that we discussed in Section 3.2; here we call this component gy, to
emphasize that it is fangent to the circle. The tangential component of accelera-
tion ag,, is equal to the rate of change of speed. Thus

v dlo| . . .

Araq = y and Aian = o (nonuniform circular motion)  (3.31)
The tangential component is in the same direction as the velocity if the particle
is speeding up, and in the opposite direction if the particle is slowing down
(Fig. 3.30). If the particle’s speed is constant, gy, = 0.

CAUTION  uniform vs. nonuniform circular motion Note that the two quantities
d[v| dv

a " dr

are not the same. The first, equal to the tangential acceleration, is the rate of change of
speed; it is zero whenever a particle moves with constant speed, even when its direction of
motion changes (such as in uniform circular motion). The second is the magnitude of the
vector acceleration; it is zero only when the particle’s acceleration vector is zero—that is,
when the particle moves in a straight line with constant speed. In uniform circular motion
|d3/ dt| = Qg = v2/ r; in nonuniform circular motion there is also a tangential component

of acceleration, so |d3/dt| = Vand + au’-

Test Your Understanding of Section 3.4 Suppose that the particle in .
Fig. 3.30 experiences four times the acceleration at the bottom of the loop as it @
does at the top of the loop. Compared to its speed at the top of the loop, is its

speed at the bottom of the loop (i) V2 times as great; (ii) 2 times as great; (iii) 2 V2
times as great; (iv) 4 times as great; or (v) 16 times as great? |

3.5 Relative Velocity

You’ve no doubt observed how a car that is moving slowly forward appears to
be moving backward when you pass it. In general, when two observers meas-
ure the velocity of a moving body, they get different results if one observer is
moving relative to the other. The velocity seen by a particular observer is
called the velocity relative to that observer, or simply relative velocity. Figure
3.31 shows a situation in which understanding relative velocity is extremely
important.

We'll first consider relative velocity along a straight line, then generalize to
relative velocity in a plane.

Relative Velocity in One Dimension

A passenger walks with a velocity of 1.0 m/s along the aisle of a train that is
moving with a velocity of 3.0 m/s (Fig. 3.32a). What is the passenger’s velocity?
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It’s a simple enough question, but it has no single answer. As seen by a second  3.31 Airshow pilots face a complicated
passenger sitting in the train, she is moving at 1.0 m/s. A person on a bicycle  problem involving relative velocities. They
standing beside the train sees the walking passenger moving at 1.0 m/s + $2Sf:ii“«(:tegIgzicrll(ta?ifltgsglm}?gﬁgéilla;g;tt(f)le
3.0 m/s = 4.0 m/s. An observer in another train going in the opposite direction wings to sustain lift), el agtive t0 cach other
would give still another answer. We have to specify which observer we mean, (¢ keep a tight formation without collid-
and we speak of the velocity relative to a particular observer. The walking pas-  ing), and relative to their audience (to
senger’s velocity relative to the train is 1.0 m/s, her velocity relative to the  remain in sight of the spectators).

cyclist is 4.0 m/s, and so on. Each observer, equipped in principle with a meter
stick and a stopwatch, forms what we call a frame of reference. Thus a frame of
reference is a coordinate system plus a time scale.

Let’s use the symbol A for the cyclist’s frame of reference (at rest with respect
to the ground) and the symbol B for the frame of reference of the moving train. In
straight-line motion the position of a point P relative to frame A is given by xp/4
(the position of P with respect to A), and the position of P relative to frame B is
given by x p/p (Fig. 3.32b). The position of the origin of B with respect to the ori-
gin of A is xp/4. Figure 3.32b shows that

xP/A = xP/B + xB/A (3.32)

In words, the coordinate of P relative to A equals the coordinate of P relative to B
plus the coordinate of B relative to A.

The x-velocity of P relative to frame A, denoted by vp/4.,, is the derivative
of xp/4 with respect to time. The other velocities are similarly obtained. So the
time derivative of Eq. (3.32) gives us a relationship among the various
velocities:

dx P/A dx P/B dx BJA
= + or
dt dt dt

Up/ax = Up/px + Upjax (relative velocity along a line) ~ (3.33) 332 (a) Apassenger walkingina (5
/ / / y g )
train. (b) The position of the passen-
ger relative to the cyclist’s frame of refer-

Getting back to the passenger on the train in Fig. 3.32, we see that A is the ence and the train’s frame of reference.

cyclist’s frame of reference, B is the frame of reference of the train, and point P (a)
represents the passenger. Using the above notation, we have

P (pass\enger) 1;3 (train)

vp/px = +1.0m/s Ug/ax = +3.0m/s

From Eg. (3.33) the passenger’s velocity vp/, relative to the cyclist is

Upjax = T1.0m/s + 3.0m/s = +4.0 m/s

as we already knew.
In this example, both velocities are toward the right, and we have taken this as
the positive x-direction. If the passenger walks toward the left relative to the

train, then vpg, = —1.0m/s, and her x-velocity relative to the cyclist is  (b)
Upjax = —1.0m/s + 3.0 m/s = +2.0 m/s. The sum in Eq. (3.33) is always an Ya Yo Velocity of train
algebraic sum, and any or all of the x-velocities may be negative. Cyclist's vgl  relative to cyclist
When the passenger looks out the window, the stationary cyclist on the ground frame
appears to her to be moving backward; we can call the cyclist’s velocity relative " Train’s Position of passenger
to her vy p.,. Clearly, this is just the negative of the passenger’s velocity relative frame inboth tr{f‘mes
to the cyclist, Up/a,. In general, if A and B are any two points or frames of N P
reference, Oy Oy T
VA/Bx = ~UB/Ax (3.34) *B/A | Xp/B
Xp/a
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L TEL BT VEGETCT TR Relative Velocity

IDENTIFY the relevant concepts: Whenever you see the phrase
“velocity relative to” or “velocity with respect to,” it’s likely that
the concepts of relative velocity will be helpful.

SET UP the problem: Sketch and label each frame of reference in
the problem. Each moving body has its own frame of reference; in
addition, you’ll almost always have to include the frame of refer-
ence of the earth’s surface. (Statements such as “The car is travel-
ing north at 90 km/h” implicitly refer to the car’s velocity relative
to the surface of the earth.) Use the labels to help identify the target
variable. For example, if you want to find the x-velocity of a car
(C) with respect to a bus (B), your target variable is U¢/p.,-

EXECUTE the solution: Solve for the target variable using Eq. (3.33).
(If the velocities aren’t along the same direction, you’ll need to use
the vector form of this equation, derived later in this section.) It’s

m Relative velocity on a straight road

You drive north on a straight two-lane road at a constant 88 km/h.

A truck in the other lane approaches you at a constant 104 km/h
(Fig. 3.33). Find (a) the truck’s velocity relative to you and (b)
your velocity relative to the truck. (c) How do the relative veloci-
ties change after you and the truck pass each other? Treat this as a
one-dimensional problem.

IDENTIFY and SET UP: In this problem about relative velocities
along a line, there are three reference frames: you (Y), the truck (T),
and the earth’s surface (E). Let the positive x-direction be north
(Fig. 3.33). Then your x-velocity relative to the earth is
Uy/Ex = 88 km/h. The truck is initially approaching you, so it
is moving south and its x-velocity with respect to the earth is
U/Ex = —104 km/h. The target variables in parts (a) and (b) are
UT/y-x and Uy ., respectively. We’ll use Eq. (3.33) to find the first
target variable and Eq. (3.34) to find the second.

ENECUTE: (a) To find vr)y.,, we write Eq. (3.33) for the known
UT/E-y and rearrange:

UT/Ex = UT/Yx T Uy/Ex

UT/Y-x = UT/Ex — UY/Ex
—104 km/h — 88 km/h = —192 km/h

The truck is moving at 192km/h in the negative x-direction
(south) relative to you.
(b) From Eq. (3.34),

vY/T-x = *UT/Y_X = *(*192 km/h) = +192 km/h

important to note the order of the double subscripts in Eq. (3.33):
Up/a-x means “x-velocity of B relative to A.” These subscripts obey
a kind of algebra, as Eq. (3.33) shows. If we regard each one as a
fraction, then the fraction on the left side is the product of the frac-
tions on the right side: P/A = (P/B)(B/A). You can apply this
rule to any number of frames of reference. For example, if there
are three different frames of reference A, B, and C, Eq. (3.33)
becomes

Up/Ax = Up/cx T Vc/Bx T UBjax

EVALUATE your answer: Be on the lookout for stray minus signs in
your answer. If the target variable is the x-velocity of a car relative
to a bus (v¢/p.c), make sure that you haven’t accidentally calcu-
lated the x-velocity of the bus relative to the car (vg/c..). If you've
made this mistake, you can recover using Eq. (3.34).

3.33 Reference frames for you and the truck.

Truck (T)

Earth (E)

You are moving at 192 km/h in the positive x-direction (north) rel-
ative to the truck.

(c) The relative velocities do not change after you and the truck
pass each other. The relative positions of the bodies don’t matter.
After it passes you the truck is still moving at 192 km/h toward the
south relative to you, even though it is now moving away from you
instead of toward you.

EVALUATE: To check your answer in part (b), use Eq. (3.33)
directly in the form vy 1., = Uy/Ex + Vg/Tore (The x-velocity of
the earth with respect to the truck is the opposite of the x-velocity
of the truck with respect to the earth: vg/r., = —Ur/g..) Do you

get the same result?
I

Relative Velocity in Two or Three Dimensions

We can extend the concept of relative velocity to include motion in a plane or in
space by using vector addition to combine velocities. Suppose that the passenger
in Fig. 3.32a is walking not down the aisle of the railroad car but from one side
of the car to the other, with a speed of 1.0 m/s (Fig. 3.34a). We can again
describe the passenger’s position P in two different frames of reference: A for



the stationary ground observer and B for the moving train. But instead of coordi-
nates x, we use position vectors 7 because the problem is now two-dimensional.
Then, as Fig. 3.34b shows,

7P/A = ?P/B + 7B/A (3.39)

Just as we did before, we take the time derivative of this equation to get a rela-

tionship among the various velocities; the velocity of P relative to A is 3P/A =
- ..

dr pjs/dt and so on for the other velocities. We get

Up/a = Upjp + Upja (relative velocity in space) (3.36)

Equation (3.36) is known as the Galilean velocity transformation. It relates
the velocity of a body P with respect to frame A and its velocity with respect to
frame B (Up /4 and 3P/B, respectively) to the velocity of frame B with respect to
frame A (EB/A). If all three of these velocities lie along the same line, then Eq.
(3.36) reduces to Eq. (3.33) for the components of the velocities along that line.

If the train is moving at vg/4 = 3.0 m/s relative to the ground and the passen-
ger is moving at up/p = 1.0 m/s relative to the train, then the passenger’s veloc-
ity vector 3P/A relative to the ground is as shown in Fig. 3.34c. The Pythagorean
theorem then gives us

Up/ja = \/(3.0 m/s)? + (1.0 m/s)? = V10 m?/s? = 3.2 m/s

Figure 3.34c also shows that the direction of the passenger’s velocity vector rel-
ative to the ground makes an angle ¢ with the train’s velocity vector U /4, Where

vp/g 1.0m/s q 18
= = — an = o

vgja  3.0m/s ¢

As in the case of motion along a straight line, we have the general rule that if
A and B are any two points or frames of reference,

3A/B = —753/14 (3.37)

The velocity of the passenger relative to the train is the negative of the velocity
of the train relative to the passenger, and so on.

In the early 20th century Albert Einstein showed in his special theory of rela-
tivity that the velocity-addition relationship given in Eq. (3.36) has to be modi-
fied when speeds approach the speed of light, denoted by c. It turns out that if the
passenger in Fig. 3.32a could walk down the aisle at 0.30c and the train could
move at 0.90c, then her speed relative to the ground would be not 1.20c but
0.94c¢; nothing can travel faster than light! We’ll return to the special theory of
relativity in Chapter 37.
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3.34 (a) A passenger walking across a railroad car. (b) Position of the passenger relative to the cyclist’s frame and the train’s frame.
() Vector diagram for the velocity of the passenger relative to the ground (the cyclist’s frame), 3P/A.

(@) (b)

Cyclist’s

AN
Tp/B
frame

Py..

. Velocity of train

_ ¥ relative to cyclist
Up/a

- Position of passenger

in both frames

Xp

XA

(c) Relative velocities
(seen from above)

s/w 0¢ = V/d o
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Flying in a crosswind

An airplane’s compass indicates that it is headed due north, and its
airspeed indicator shows that it is moving through the air at
240 km/h. If there is a 100-km/h wind from west to east, what is
the velocity of the airplane relative to the earth?

IDENTIFY and SET UP: This problem involves velocities in two
dimensions (northward and eastward), so it is a relative velocity
problem using vectors. We are given the magnitude and direction
of the velocity of the plane (P) relative to the air (A). We are also
given the magnitude and direction of the wind velocity, which is
the velocity of the air A with respect to the earth (E):

6P/A = 240 km/h
Ba/e = 100 km/h

due north
due east
We’ll use Eq. (3.36) to find our target variables: the magnitude

and direction of the velocity 75P/E of the plane relative to the
earth.

EXECUTE: From Eq. (3.36) we have
Up/g = Up/a + Uasg

Figure 3.35 shows that the three relative velocities constitute a
right-triangle vector addition; the unknowns are the speed vp/g and
the angle . We find

vpe = V(240 km/h)> + (100 km/h)> = 260 km/h

( 100 km/h> 53 E of N
= t. R = o
@ = ACHN 240 km/h ©

m Correcting for a crosswind

With wind and airspeed as in Example 3.14, in what direction
should the pilot head to travel due north? What will be her velocity
relative to the earth?

IDENTIFY and SET UP: Like Example 3.14, this is a relative
velocity problem with vectors. Figure 3.36 is a scale drawing of
the situation. Again the vectors add in accordance with Eq. (3.36)
and form a right triangle:
Up/g = Up/a + Upje

As Fig. 3.36 shows, the pilot points the nose of the airplane at an
angle B into the wind to compensate for the crosswind. This
angle, which tells us the direction of the vector ﬂp/ A (the velocity
of the airplane relative to the air), is one of our target variables.
The other target variable is the speed of the airplane over the
ground, which is the magnitude of the vector 3P/E (the velocity
of the airplane relative to the earth). The known and unknown
quantities are

ﬂp/E = magnitude unknown due north
BP/A = 240 km/h
100 km/h

direction unknown

due east

N
UA/E

EVALUATE: You can check the results by taking measurements on
the scale drawing in Fig. 3.35. The crosswind increases the speed
of the airplane relative to the earth, but pushes the airplane off
course.

3.35 The plane is pointed north, but the wind blows east,
giving the resultant velocity Up /g relative to the earth.

Ty = 100 km}h,
east

Upja =
240 km/h,
north

3.36 The pilot must point the plane in the direction of the
vector Up /4 to travel due north relative to the earth.

Uye = 100 km/h,
east

Upya = Upk,
240 kmyh, north
at angle B8

We’ll solve for the target variables using Fig. 3.36 and
trigonometry.
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ENECUTE: From Fig. 3.36 the speed vp/g and the angle 3 are EVALUATE: There were two target variables—the magnitude of a
vector and the direction of a vector—in both this example and
Up/E = \/(240 km/ h)z — (100 km/ h)2 = 218 km/h Example 3.14. In Example 3.14 the magnitude and direction
100 km/h referrid to the iame vector (Up /E); here they refer to different vec-
B = arcsm(m) = 25° tors (vl.)/E and Up/ 5 ). . .

While we expect a headwind to reduce an airplane’s speed rela-
The pilot should point the airplane 25° west of north, and her tive to the ground, this example shows that a crosswind does, too.

ground speed is then 218 km/h. That’s an unfortunate fact of aeronautical life.
I

Test Your Understanding of Section 3.5 Suppose the nose of an &?g

airplane is pointed due east and the airplane has an airspeed of 150 km/h. Due to

the wind, the airplane is moving due north relative to the ground and its speed rel-

ative to the ground is 150 km/h. What is the velocity of the air relative to the earth?

(i) 150 km/h from east to west; (ii) 150 km/h from south to north; (iii) 150 km/h from
southeast to northwest; (iv) 212 km/h from east to west; (v) 212 km/h from south to
north; (vi) 212 km/h from southeast to northwest; (vii) there is no possible wind velocity
that could cause this. |



CHAPTER 3 SUMMARY

Pasition, velocity, and acceleration vectors: The position
vector 7 of a point P in space is the vector from the
origin to P. Its components are the coordinates x, y, and z.

The average velocity vector U, during the time
interval At is the displacement A7 (the change in the
position vector 7) divided by At. The instantaneous
velocity vector U is the time derivative of 7, and its
components are the time derivatives of x, y, and z. The
instantaneous speed is the magnitude of ¥. The velocity
o of a particle is always tangent to the particle’s path.
(See Example 3.1.)

The average acceleration vector d, during the time
interval At equals AU (the change in the velocity vector
U) divided by Ar. The instantaneous acceleration vector
d is the time derivative of U, and its components are the
time derivatives of v, Uy, and v,. (See Example 3.2.)

The component of acceleration parallel to the
direction of the instantaneous velocity affects the speed,
while the component of @ perpendicular to U affects the
direction of motion. (See Examples 3.3 and 3.4.)

Projectile motion: In projectile motion with no air
resistance, a, = 0 and a, = —g. The coordinates and
velocity components are simple functions of time, and
the shape of the path is always a parabola. We usually
choose the origin to be at the initial position of the
projectile. (See Examples 3.5-3.10.)

Uniform and nonuniform circular motion: When a particle
moves in a circular path of radius R with constant speed v
(uniform circular motion), its acceleration d is directed
toward the center of the circle and perpendicular to U.
The magnitude a,,q of the acceleration can be expressed
in terms of v and R or in terms of R and the period 7
(the time for one revolution), where v = 2R /T. (See
Examples 3.11 and 3.12.)

If the speed is not constant in circular motion
(nonuniform circular motion), there is still a radial
component of @ given by Eq. (3.28) or (3.30), but there
is also a component of @ parallel (tangential) to the
path. This tangential component is equal to the rate of
change of speed, dv/dt.

Relative velocity: When a body P moves relative to a
body (or reference frame) B, and B moves relative to A,
we denote the velocity of P relative to B by ﬂp/B, the
velocity of P relative to A by 31)/,4, and the velocity of B
relative to A by 33/,4. If these velocities are all along the
same line, their components along that line are related
by Eq. (3.33). More generally, these velocities are
related by Eq. (3.36). (See Examples 3.13-3.15.)
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CLINH] 1R Launching Up an Incline

You fire a ball with an initial speed v at an angle ¢ above the sur-
face of an incline, which is itself inclined at an angle 6 above the
horizontal (Fig. 3.37). (a) Find the distance, measured along the
incline, from the launch point to the point when the ball strikes the
incline. (b) What angle ¢ gives the maximum range, measured
along the incline? Ignore air resistance.

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution. ‘ ,

IDENTIFY and SET UP

1. Since there’s no air resistance, this is a problem in projectile
motion. The goal is to find the point where the ball’s parabolic
trajectory intersects the incline.

2. Choose the x- and y-axes and the position of the origin. When
in doubt, use the suggestions given in Problem-Solving Strat-
egy 3.1 in Section 3.3.

3. In the projectile equations from Section 3.3, the launch angle
a is measured from the horizontal. What is this angle in terms
of 6 and ¢? What are the initial x- and y-components of the
ball’s initial velocity?

4. You’ll need to write an equation that relates x and y for points
along the incline. What is this equation? (This takes just geom-
etry and trigonometry, not physics.)

For instructor-assigned homework, go to www.masteringphysics.com
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3.37 Launching a ball from an inclined ramp.

)

EXECUTE

5. Write the equations for the x-coordinate and y-coordinate of the
ball as functions of time 7.

6. When the ball hits the incline, x and y are related by the equa-
tion that you found in step 4. Based on this, at what time ¢ does
the ball hit the incline?

7. Based on your answer from step 6, at what coordinates x and y
does the ball land on the incline? How far is this point from the
launch point?

8. What value of ¢ gives the maximum distance from the launch
point to the landing point? (Use your knowledge of calculus.)

EVALUATE

9. Check your answers for the case § = 0, which corresponds to
the incline being horizontal rather than tilted. (You already know
the answers for this case. Do you know why?)

(‘J

e, e eeo: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems

requiring calculus. BID: Biosciences problems.

DISCUSSION QUESTIONS

@3.1 A simple pendulum (a mass swinging at the end of a string)
swings back and forth in a circular arc. What is the direction of the
acceleration of the mass when it is at the ends of the swing? At the
midpoint? In each case, explain how you obtain your answer.

@3.2 Redraw Fig. 3.11a if @ is antiparallel to ¥;. Does the particle
move in a straight line? What happens to its speed?

@3.3 A projectile moves in a parabolic path without air resistance.
Is there any point at which @ is parallel to ¥? Perpendicular to T?
Explain.

@3.4 When a rifle is fired at a distant target, the barrel is not lined
up exactly on the target. Why not? Does the angle of correction
depend on the distance to the target?

@3.5 At the same instant that you fire a bullet horizontally from a
rifle, you drop a bullet from the height of the barrel. If there is no
air resistance, which bullet hits the ground first? Explain.

@3.6 A package falls out of an airplane that is flying in a straight
line at a constant altitude and speed. If you could ignore air resist-
ance, what would be the path of the package as observed by the
pilot? As observed by a person on the ground?

@3.7 Sketch the six graphs of the x- and y-components of position,
velocity, and acceleration versus time for projectile motion with
X0 =y =0and 0 < oy < 90°.

@3.8 If a jumping frog can give itself the same initial speed regard-
less of the direction in which it jumps (forward or straight up), how
is the maximum vertical height to which it can jump related to its
maximum horizontal range R ,,x = 002/ g?

@3.9 A projectile is fired upward at an angle 6 above the horizon-
tal with an initial speed vg. At its maximum height, what are its
velocity vector, its speed, and its acceleration vector?

@3.10 In uniform circular motion, what are the average velocity
and average acceleration for one revolution? Explain.

083.11 In uniform circular motion, how does the acceleration
change when the speed is increased by a factor of 3? When the
radius is decreased by a factor of 2?

@3.12 In uniform circular motion, the acceleration is perpendicu-
lar to the velocity at every instant. Is this still true when the motion
is not uniform—that is, when the speed is not constant?

@3.13 Raindrops hitting the side windows of a car in motion often
leave diagonal streaks even if there is no wind. Why? Is the
explanation the same or different for diagonal streaks on the
windshield?

@3.14 In a rainstorm with a strong wind, what determines the best
position in which to hold an umbrella?

@3.15 You are on the west bank of a river that is flowing north
with a speed of 1.2 m/s. Your swimming speed relative to the


www.masteringphysics.com

96 CHAPTER 3 Motion In Two Or Three Dimensions

water is 1.5 m/s, and the river is 60 m wide. What is your path rel-
ative to the earth that allows you to cross the river in the shortest
time? Explain your reasoning.

@3.16 A stone is thrown into the air at an angle above the horizon-
tal and feels negligible air resistance. Which graph in Fig. Q3.16
best depicts the stone’s speed v as a function of time ¢ while it is in
the air?

Figure @3.16
1% 1% v v 1%
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EXERCISES

Section 3.1 Position and Velocity Vectors

3.1 » A squirrel has x- and y-coordinates (1.1 m, 3.4 m) at time
t; = 0 and coordinates (5.3 m, —0.5 m) at time 7, = 3.0s. For
this time interval, find (a) the components of the average velocity,
and (b) the magnitude and direction of the average velocity.

3.2 ¢ A rhinoceros is at the origin of coordinates at time 7; = 0.
For the time interval from #; = 0 to t, = 12.0 s, the rhino’s aver-
age velocity has x-component —3.8m/s and y-component
4.9 m/s. At time 1, = 12.0 s, (a) what are the x- and y-coordinates
of the rhino? (b) How far is the rhino from the origin?

3.3 - CALC A web page designer creates an animation in which a
dot on a computer screen has a position of ¥ = [4.0cm +
(2.5em/s?)2)7 + (5.0cm/s)zj. (a) Find the magnitude and
direction of the dot’s average velocity between ¢t = 0 and
t = 2.0s. (b) Find the magnitude and direction of the instanta-
neous velocity at t = 0, r = 1.0s, and r = 2.0 s. (c) Sketch the
dot’s trajectory from # = 0 to r = 2.0's, and show the velocities
calculated in part (b).

3.4 - CALC The position of a squirrel running in a park is given
by F = [(0.280 m/s)r + (0.0360 m/s?)*]i + (0.0190 m/s*)rj.
(a) What are v,(r) and v,(f), the x- and y-components of the
velocity of the squirrel, as functions of time? (b) At = 5.00s,
how far is the squirrel from its initial position? (¢) At = 5.00 s,
what are the magnitude and direction of the squirrel’s
velocity?

Section 3.2 The Acceleration Vector

3.5 ¢ A jet plane is flying at a constant altitude. At time #; = 0 it
has components of velocity v, = 90 m/s, v, = 110 m/s. At time
tp = 30.0 s the components are v, = —170m/s, v, = 40 m/s.
(a) Sketch the velocity vectors at ¢; and t,. How do these two vec-
tors differ? For this time interval calculate (b) the components of
the average acceleration, and (c) the magnitude and direction of
the average acceleration.

3.6 °- A dog running in an open field has components of veloc-
ity v, = 2.6 m/s and v, = —1.8 m/sat 1; = 10.0 s. For the time
interval from 7; = 10.0 sto #, = 20.0 s, the average acceleration
of the dog has magnitude 0.45 m/s2 and direction 31.0° meas-
ured from the +x-axis toward the +y-axis. At t, = 20.0s,
(a) what are the x- and y-components of the dog’s velocity?
(b) What are the magnitude and direction of the dog’s velocity?
(c) Sketch the velocity vectors at #; and #,. How do these two
vectors differ?

3.7 + CALC The coordinates of a bird flying in the xy-plane are
given by x(1) = atand y(r) = 3.0 m — Br% where @ = 2.4 m/s
and B = 1.2 m/ s2. (a) Sketch the path of the bird between t = 0
and ¢t = 2.0s. (b) Calculate the velocity and acceleration vectors
of the bird as functions of time. (c) Calculate the magnitude and
direction of the bird’s velocity and acceleration at t = 2.0s.
(d) Sketch the velocity and acceleration vectors at + = 2.0 s. At
this instant, is the bird speeding up, is it slowing down, or is its
speed instantaneously not changing? Is the bird turning? If so, in
what direction?

Section 3.3 Projectile Motion

3.8 ¢« CALC A remote-controlled car is moving in a vacant parking
lot. The velocity of the car as a function of time is given by U =
[5.00m/s — (0.0180 m/s*)2]i + [2.00 m/s + (0.550 m/s?)t]].
(a) What are a,() and a(t), the x- and y-components of the veloc-
ity of the car as functions of time? (b) What are the magnitude and
direction of the velocity of the car at + = 8.00 s? (b) What are the
magnitude and direction of the acceleration of the car at + = 8.00 s?
3.9 < A physics book slides off a horizontal tabletop with a speed
of 1.10 m/s. It strikes the floor in 0.350 s. Ignore air resistance.
Find (a) the height of the tabletop above the floor; (b) the horizon-
tal distance from the edge of the table to the point where the book
strikes the floor; (c) the horizontal and vertical components of the
book’s velocity, and the magnitude and direction of its velocity,
just before the book reaches the floor. (d) Draw x-t, y-t, v,-t, and
v,~t graphs for the motion.

3.10 -+ A daring 510-N swim-
mer dives off a cliff with a run-
ning horizontal leap, as shown in
Fig. E3.10. What must her mini-
mum speed be just as she leaves
the top of the cliff so that she will
miss the ledge at the bottom,
which is 1.75 m wide and 9.00 m
below the top of the clift?

3.11 - Two crickets, Chirpy and
Milada, jump from the top of a vertical cliff. Chirpy just drops and
reaches the ground in 3.50 s, while Milada jumps horizontally with
an initial speed of 95.0 cm/s. How far from the base of the cliff
will Milada hit the ground?

3.12 - A rookie quarterback throws a football with an initial
upward velocity component of 12.0 m/s and a horizontal velocity
component of 20.0 m/s. Ignore air resistance. (a) How much time
is required for the football to reach the highest point of the trajec-
tory? (b) How high is this point? (¢) How much time (after it is
thrown) is required for the football to return to its original level?
How does this compare with the time calculated in part (a)?
(d) How far has the football traveled horizontally during this time?
(e) Draw x-t, y-t, v,-t, and Uyt graphs for the motion.

3.13 - Leaping the River I. A car traveling on a level horizontal
road comes to a bridge during a storm and finds the bridge washed
out. The driver must get to the other side, so he decides to try leap-
ing it with his car. The side of the road the car is on is 21.3 m
above the river, while the opposite side is a mere 1.8 m above the
river. The river itself is a raging torrent 61.0 m wide. (a) How fast
should the car be traveling at the time it leaves the road in order just
to clear the river and land safely on the opposite side? (b) What is
the speed of the car just before it lands on the other side?

3.14 - BI0 The Champion Jumper of the Insect World. The
froghopper, Philaenus spumarius, holds the world record for

Figure E3.10
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insect jumps. When leaping at an angle of 58.0° above the hori-
zontal, some of the tiny critters have reached a maximum height
of 58.7 cm above the level ground. (See Nature, Vol. 424,
July 31, 2003, p. 509.) (a) What was the takeoff speed for such a
leap? (b) What horizontal distance did the froghopper cover for
this world-record leap?

3.15 -° Inside a starship at rest on the earth, a ball rolls off the
top of a horizontal table and lands a distance D from the foot of
the table. This starship now lands on the unexplored Planet X. The
commander, Captain Curious, rolls the same ball off the same
table with the same initial speed as on earth and finds that it lands
a distance 2.76D from the foot of the table. What is the accelera-
tion due to gravity on Planet X?

3.16 - On level ground a shell is fired with an initial velocity of
50.0 m/s at 60.0° above the horizontal and feels no appreciable air
resistance. (a) Find the horizontal and vertical components of the
shell’s initial velocity. (b) How long does it take the shell to reach
its highest point? (¢) Find its maximum height above the ground.
(d) How far from its firing point does the shell land? (e) At its
highest point, find the horizontal and vertical components of its
acceleration and velocity.

3.17 + A major leaguer hits a baseball so that it leaves the bat at a
speed of 30.0 m/s and at an angle of 36.9° above the horizontal.
You can ignore air resistance. (a) At what two times is the baseball
at a height of 10.0 m above the point at which it left the bat? (b)
Calculate the horizontal and vertical components of the baseball’s
velocity at each of the two times calculated in part (a). (c) What
are the magnitude and direction of the baseball’s velocity when it
returns to the level at which it left the bat?

3.18 - A shot putter releases the shot some distance above the
level ground with a velocity of 12.0 m/s, 51.0° above the horizon-
tal. The shot hits the ground 2.08 s later. You can ignore air resist-
ance. (a) What are the components of the shot’s acceleration while
in flight? (b) What are the components of the shot’s velocity at the
beginning and at the end of its trajectory? (c) How far did she
throw the shot horizontally? (d) Why does the expression for R in
Example 3.8 not give the correct answer for part (c)? (e) How high
was the shot above the ground when she released it? (f) Draw x-t,
y-1, Uy-t, and vt graphs for the motion.

3.19 -« Win the Prize. In a carnival booth, you win a stuffed
giraffe if you toss a quarter into a small dish. The dish is on a shelf
above the point where the quarter leaves your hand and is a hori-
zontal distance of 2.1 m from this point (Fig. E3.19). If you toss
the coin with a velocity of 6.4 m/s at an angle of 60° above the
horizontal, the coin lands in the dish. You can ignore air resist-
ance. (a) What is the height of the shelf above the point where the

Figure E3.19
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quarter leaves your hand? (b) What is the vertical component of
the velocity of the quarter just before it lands in the dish?

3.20 -« Suppose the departure angle ag in Fig. 3.26 is 42.0° and
the distance d is 3.00 m. Where will the dart and monkey meet if
the initial speed of the dart is (a) 12.0 m/s? (b) 8.0 m/s? (c) What
will happen if the initial speed of the dart is 4.0 m/s? Sketch the
trajectory in each case.

3.21 <= A man stands on the roof of a 15.0-m-tall building and
throws a rock with a velocity of magnitude 30.0 m/s at an angle of
33.0° above the horizontal. You can ignore air resistance. Calculate
(a) the maximum height above the roof reached by the rock; (b) the
magnitude of the velocity of the rock just before it strikes the
ground; and (c) the horizontal range from the base of the building
to the point where the rock strikes the ground. (d) Draw x-7, y-t,
U,-t, and v,~t graphs for the motion.

3.22 - Firemen are shooting a stream of water at a burning build-
ing using a high-pressure hose that shoots out the water with a
speed of 25.0 m/s as it leaves the end of the hose. Once it leaves
the hose, the water moves in projectile motion. The firemen adjust
the angle of elevation « of the hose until the water takes 3.00 s to
reach a building 45.0 m away. You can ignore air resistance;
assume that the end of the hose is at ground level. (a) Find the
angle of elevation «. (b) Find the speed and acceleration of the water
at the highest point in its trajectory. (¢) How high above the ground
does the water strike the building, and how fast is it moving just
before it hits the building?

3.23 = A 124-kg balloon carrying a 22-kg basket is descending
with a constant downward velocity of 20.0 m/s. A 1.0-kg stone is
thrown from the basket with an initial velocity of 15.0 m/s perpen-
dicular to the path of the descending balloon, as measured relative
to a person at rest in the basket. The person in the basket sees the
stone hit the ground 6.00 s after being thrown. Assume that the bal-
loon continues its downward descent with the same constant speed
of 20.0 m/s. (a) How high was the balloon when the rock was
thrown out? (b) How high is the balloon when the rock hits the
ground? (c) At the instant the rock hits the ground, how far is it
from the basket? (d) Just before the rock hits the ground, find its
horizontal and vertical velocity components as measured by an
observer (i) at rest in the basket and (ii) at rest on the ground.

Section 3.4 Motion in a Circle

3.24 -+ BI0 Dizziness. Our balance is maintained, at least in
part, by the endolymph fluid in the inner ear. Spinning displaces
this fluid, causing dizziness. Suppose a dancer (or skater) is spin-
ning at a very fast 3.0 revolutions per second about a vertical axis
through the center of his head. Although the distance varies from
person to person, the inner ear is approximately 7.0 cm from the
axis of spin. What is the radial acceleration (in m/ s2 and in g’s) of
the endolymph fluid?

3.25 ¢« The earth has a radius of 6380 km and turns around once
on its axis in 24 h. (a) What is the radial acceleration of an object at
the earth’s equator? Give your answer in m/ s and as a fraction of g.
(b) If a,,q at the equator is greater than g, objects will fly off the
earth’s surface and into space. (We will see the reason for this in
Chapter 5.) What would the period of the earth’s rotation have to
be for this to occur?

3.26 ° A model of a helicopter rotor has four blades, each 3.40 m
long from the central shaft to the blade tip. The model is rotated in
a wind tunnel at 550 rev/min. (a) What is the linear speed of the
blade tip, in m/s? (b) What is the radial acceleration of the blade
tip expressed as a multiple of the acceleration of gravity, g?
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3.27 - BIO Pilot Blackout in Figure E3.27

a Power Dive. A jet plane

comes in for a downward dive

as shown in Fig. E3.27. The

bottom part of the path is a

quarter circle with a radius of

curvature of 350 m. According

to medical tests, pilots lose

consciousness at an accelera-

tion of 5.5g. At what speed (in

m/s and in mph) will the pilot

black out for this dive?

3.28  The radius of the earth’s orbit around the sun (assumed to
be circular) is 1.50 X 108 km, and the earth travels around this
orbit in 365 days. (a) What is the magnitude of the orbital velocity
of the earth, in m/s? (b) What is the radial acceleration of the earth
toward the sun, in m/ 29 (c) Repeat parts (a) and (b) for the
motion of the planet Mercury (orbit radius = 5.79 X 107 km,
orbital period = 88.0 days).
3.29 <+ A Ferris wheel with
radius 14.0 m is turning about a
horizontal axis through its cen-
ter (Fig. E3.29). The linear
speed of a passenger on the rim
is constant and equal to b(g‘“
7.00 m/s. What are the magni- 2
tude and direction of the passen-

ger’s acceleration as she passes

through (a) the lowest point in

her circular motion? (b) The 2
highest point in her circular
motion? (¢) How much time
does it take the Ferris wheel to
make one revolution?

3.30 -+ BID Hypergravity. At its Ames Research Center,
NASA uses its large “20-G” centrifuge to test the effects of very
large accelerations (“hypergravity”) on test pilots and astronauts. In
this device, an arm 8.84 m long rotates about one end in a horizontal
plane, and the astronaut is strapped in at the other end. Suppose that
he is aligned along the arm with his head at the outermost end. The
maximum sustained acceleration to which humans are subjected in
this machine is typically 12.5g. (a) How fast must the astronaut’s
head be moving to experience this maximum acceleration? (b) What
is the difference between the acceleration of his head and feet if the
astronaut is 2.00 m tall? (c) How fast in rpm (rev/min) is the arm
turning to produce the maximum sustained acceleration?

Figure E3.29

Section 3.5 Relative Velocity

3.31 © A “moving sidewalk” in an airport terminal building
moves at 1.0 m/s and is 35.0 m long. If a woman steps on at one
end and walks at 1.5m/s relative to the moving sidewalk, how
much time does she require to reach the opposite end if she walks
(a) in the same direction the sidewalk is moving? (b) In the oppo-
site direction?

3.32 - A railroad flatcar is traveling to the right at a speed of
13.0 m/s relative to an observer standing on the ground. Someone
is riding a motor scooter on the flatcar (Fig. E3.32). What is the
velocity (magnitude and direction) of the motor scooter relative to
the flatcar if its velocity relative to the observer on the ground is
(a) 18.0 m/s to the right? (b) 3.0 m/s to the left? (c) zero?

Figure E3.32
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3.33 -¢ A canoe has a velocity of 0.40 m/s southeast relative to
the earth. The canoe is on a river that is flowing 0.50 m/s east rela-
tive to the earth. Find the velocity (magnitude and direction) of the
canoe relative to the river.

3.34 - Two piers, A and B, are located on a river: B is 1500 m
downstream from A (Fig. E3.34). Two friends must make round
trips from pier A to pier B and return. One rows a boat at a constant
speed of 4.00 km/h relative to the water; the other walks on the
shore at a constant speed of 4.00 km/h. The velocity of the river is
2.80 km/h in the direction from A to B. How much time does it
take each person to make the round trip?

Figure E3.34
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3.35 ¢ Crossing the River I. A river flows due south with a
speed of 2.0 m/s. A man steers a motorboat across the river; his
velocity relative to the water is 4.2 m/s due east. The river is 800 m
wide. (a) What is his velocity (magnitude and direction) relative to
the earth? (b) How much time is required to cross the river?
(c) How far south of his starting point will he reach the opposite
bank?

3.36 * Crossing the River II. (a) In which direction should the
motorboat in Exercise 3.35 head in order to reach a point on the
opposite bank directly east from the starting point? (The boat’s
speed relative to the water remains 4.2 m/s.) (b) What is the veloc-
ity of the boat relative to the earth? (c) How much time is required
to cross the river?

3.37 - The nose of an ultralight plane is pointed south, and its
airspeed indicator shows 35 m/s. The plane is in a 10-m/s wind
blowing toward the southwest relative to the earth. (a) In a vector-
addition diagram, show the relationship of Up /E (the velocity of the
plane relative to the earth) to the two given vectors. (b) Letting x
be east and y be north, find the components of Up /g (¢) Find the
magnitude and direction of Up JE-

3.38 -« An airplane pilot wishes to fly due west. A wind of
80.0 km/h (about 50 mi/h) is blowing toward the south. (a) If the
airspeed of the plane (its speed in still air) is 320.0 km/h (about
200 mi/h), in which direction should the pilot head? (b) What is
the speed of the plane over the ground? Illustrate with a vector
diagram.

3.39 -~ BID Bird Migration. Canadian geese migrate essen-
tially along a north—south direction for well over a thousand kilo-
meters in some cases, traveling at speeds up to about 100 km/h. If
one such bird is flying at 100 km/h relative to the air, but there is a



40 km/h wind blowing from west to east, (a) at what angle relative
to the north—south direction should this bird head so that it will be
traveling directly southward relative to the ground? (b) How long
will it take the bird to cover a ground distance of 500 km from
north to south? (Note: Even on cloudy nights, many birds can
navigate using the earth’s magnetic field to fix the north—south
direction.)

PROBLEMS
3.40 -» An athlete starts at Figure P3.40
point A and runs at a constant

y

speed of 6.0 m/s around a circu-

lar track 100 m in diameter, as B
shown in Fig. P3.40. Find the x-

and y-components of this run- /\ ’\

ner’s average velocity and aver- C .
age acceleration between points A

(a) A and B, (b) A and C, (¢) C

and D, and (d) A and A (a full

lap). (e) Calculate the magnitude D
of the runner’s average velocity

between A and B. Is his average speed equal to the magnitude of
his average velocity? Why or why not? (f) How can his velocity be
changing if he is running at constant speed?

3.41 - CALC A rocket is fired at an angle from the top of a tower
of height iy = 50.0 m. Because of the design of the engines, its
position coordinates are of the form x(f) = A + Br> and
y(t) =C + Dt3, where A, B, C, and D are constants. Further-
more, the acceleration of the rocket 1.00 s after firing is
@ = (4.007 + 3.007) m/s% Take the origin of coordinates to be at
the base of the tower. (a) Find the constants A, B, C, and D, includ-
ing their ST units. (b) At the instant after the rocket is fired, what
are its acceleration vector and its velocity? (c) What are the x- and
y-components of the rocket’s velocity 10.0 s after it is fired, and
how fast is it moving? (d) What is the position vector of the rocket
10.0 s after it is fired?

3.42 - CALC A faulty model rocket moves in the xy-plane (the
positive y-direction is vertically upward). The rocket’s accelera-
tion has components a,(t) = ar> and ay(t) = B — yt, where
a =250m/s* B =9.00m/s% and y = 1.40 m/s>. Atz = O the
rocket is at the origin and has velocity Dy = vl + voyj with
vox = 1.00m/s and vy, = 7.00 m/s. (a) Calculate the velocity
and position vectors as functions of time. (b) What is the maxi-
mum height reached by the rocket? (c) Sketch the path of the
rocket. (d) What is the horizontal displacement of the rocket when
itreturns to y = 0?7

3.43 <« CALC If 7 = bt + cr’], where b and ¢ are positive con-
stants, when does the velocity vector make an angle of 45.0° with
the x- and y-axes?

3.44 - CALC The position of a dragonfly that is flying
parallel to the ground is given as a function of time by
F=[2.90m + (0.0900 m/s?)]i — (0.0150 m/s*)}j. (a) At
what value of 7 does the velocity vector of the insect make an angle
of 30.0° clockwise from the +x-axis? (b) At the time calculated in
part (a), what are the magnitude and direction of the acceleration
vector of the insect?

3.45 - CP CALC A small toy airplane is flying in the xy-plane
parallel to the ground. In the time interval # = 0 to t = 1.00 s,
its velocity as a function of time is given by
U= (1.20m/s®)ti + [12.0m/s — (2.00 m/s?)r]j. At what
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value of r is the velocity of the plane perpendicular to its
acceleration?

3.46 - CALC Abird flies in the xy-plane with a velocity vector given
by ¥ = (a — BA)T + yij, with = 2.4 m/s, B = 1.6 m/s>, and
vy =40m/ s>. The positive y-direction is vertically upward. At
t = 0 the bird is at the origin. (a) Calculate the position and accel-
eration vectors of the bird as functions of time. (b) What is the
bird’s altitude (y-coordinate) as it flies over x = 0 for the first time
after r = 0?7

3.47 <+« CP A test rocket is
launched by accelerating it
along a 200.0-m incline at
1.25 m/s? starting from rest at
point A (Fig. P3.47). The
incline rises at 35.0° above
the horizontal, and at the
instant the rocket leaves it, its
engines turn off and it is sub-
ject only to gravity (air resistance can be ignored). Find (a) the
maximum height above the ground that the rocket reaches, and (b)
the greatest horizontal range of the rocket beyond point A.

3.48 - Martian Athletics. In the long jump, an athlete launches
herself at an angle above the ground and lands at the same height,
trying to travel the greatest horizontal distance. Suppose that on
earth she is in the air for time 7, reaches a maximum height 4, and
achieves a horizontal distance D. If she jumped in exactly the same
way during a competition on Mars, where gy 1s 0.379 of its
earth value, find her time in the air, maximum height, and horizon-
tal distance. Express each of these three quantities in terms of its
earth value. Air resistance can be neglected on both planets.

3.49 .- Dynamite! A demolition crew uses dynamite to blow an
old building apart. Debris from the explosion flies off in all direc-
tions and is later found at distances as far as 50 m from the explo-
sion. Estimate the maximum speed at which debris was blown
outward by the explosion. Describe any assumptions that you
make.

3.50 -~ BID Spiraling Up. It is common to see birds of prey
rising upward on thermals. The paths they take may be spiral-like.
You can model the spiral motion as uniform circular motion com-
bined with a constant upward velocity. Assume a bird completes a
circle of radius 6.00 m every 5.00 s and rises vertically at a con-
stant rate of 3.00 m/s. Determine: (a) the speed of the bird relative
to the ground; (b) the bird’s acceleration (magnitude and direc-
tion); and (c) the angle between the bird’s velocity vector and the
horizontal.

3.51 - A jungle veterinarian with a blow-gun loaded with a tran-
quilizer dart and a sly 1.5-kg monkey are each 25 m above the
ground in trees 70 m apart. Just as the hunter shoots horizontally at
the monkey, the monkey drops from the tree in a vain attempt to
escape being hit. What must the minimum muzzle velocity of the
dart have been for the hunter to have hit the monkey before it
reached the ground?

3.52 e A movie stuntwoman drops from a helicopter that is
30.0 m above the ground and moving with a constant velocity
whose components are 10.0 m/s upward and 15.0 m/s horizontal
and toward the south. You can ignore air resistance. (a) Where on
the ground (relative to the position of the helicopter when she
drops) should the stuntwoman have placed the foam mats that
break her fall? (b) Draw x-t, y-t, v,-t, and v,~f graphs of her motion.

Figure P3.47

3.53 ¢ In fighting forest fires, airplanes work in support of
ground crews by dropping water on the fires. A pilot is practicing
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by dropping a canister of red dye, hoping to hit a target on the
ground below. If the plane is flying in a horizontal path 90.0 m
above the ground and with a speed of 64.0 m/s (143 mi/h), at
what horizontal distance from the target should the pilot release the
canister? Ignore air resistance.

3.94 -+ A cannon, located 60.0 m from the base of a vertical
25.0-m-tall cliff, shoots a 15-kg shell at 43.0° above the horizontal
toward the cliff. (a) What must the minimum muzzle velocity be
for the shell to clear the top of the cliff? (b) The ground at the top
of the cliff is level, with a constant elevation of 25.0 m above the
cannon. Under the conditions of part (a), how far does the shell
land past the edge of the cliff?

3.55 ¢ An airplane is flying with a velocity of 90.0 m/s at an
angle of 23.0° above the horizontal. When the plane is 114 m
directly above a dog that is standing on level ground, a suitcase
drops out of the luggage compartment. How far from the dog will
the suitcase land? You can ignore air resistance.

3.56 <+ As aship is approaching the dock at 45.0 cm/s, an impor-
tant piece of landing equipment needs to be thrown to it before it can
dock. This equipment is thrown at 15.0 m/s at 60.0° above the hori-
zontal from the top of a tower at the edge of the water, 8.75 m above
the ship’s deck (Fig. P3.56). For this equipment to land at the front
of the ship, at what distance D from the dock should the ship be
when the equipment is thrown? Air resistance can be neglected.

Figure P3.56
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3.57  CPCALC A toy rocket is launched with an initial velocity of
12.0 m/s in the horizontal direction from the roof of a 30.0-m-tall
building. The rocket’s engine produces a horizontal acceleration of
(1.60 m/s?)z, in the same direction as the initial velocity, but in the
vertical direction the acceleration is g, downward. Air resistance
can be neglected. What horizontal distance does the rocket travel
before reaching the ground?

3.58 ¢ An Errand of Mercy. An airplane is dropping bales of
hay to cattle stranded in a blizzard on the Great Plains. The pilot
releases the bales at 150 m above the level ground when the plane
is flying at 75 m/s in a direction 55° above the horizontal. How far
in front of the cattle should the pilot release the hay so that the
bales land at the point where the cattle are stranded?

3.59 ¢c¢ The Longest Home Run. According to the Guinness
Book of World Records, the longest home run ever measured was
hit by Roy “Dizzy” Carlyle in a minor league game. The ball
traveled 188 m (618 ft) before landing on the ground outside the
ballpark. (a) Assuming the ball’s initial velocity was in a
direction 45° above the horizontal and ignoring air resistance,
what did the initial speed of the ball need to be to produce such a
home run if the ball was hit at a point 0.9 m (3.0 ft) above ground
level? Assume that the ground was perfectly flat. (b) How far

would the ball be above a fence 3.0 m (10 ft) high if the fence
was 116 m (380 ft) from home plate?

3.60 --- A water hose is used to fill a large cylindrical storage
tank of diameter D and height 2D. The hose shoots the water at 45°
above the horizontal from the same level as the base of the tank
and is a distance 6D away (Fig. P3.60). For what range of launch
speeds (vg) will the water enter the tank? Ignore air resistance, and
express your answer in terms of D and g.

Figure P3.60
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3.61 - A projectile is being launched from ground level with no
air resistance. You want to avoid having it enter a temperature inver-
sion layer in the atmosphere a height /2 above the ground. (a) What is
the maximum launch speed you could give this projectile if you shot
it straight up? Express your answer in terms of /2 and g. (b) Suppose
the launcher available shoots projectiles at twice the maximum
launch speed you found in part (a). At what maximum angle above
the horizontal should you launch the projectile? (c) How far (in
terms of /1) from the launcher does the projectile in part (b) land?

3.62 -~ Kicking a Field Goal. In U.S. football, after a touch-
down the team has the opportunity to earn one more point by kick-
ing the ball over the bar between the goal posts. The bar is 10.0 ft
above the ground, and the ball is kicked from ground level, 36.0 ft
horizontally from the bar (Fig. P3.62). Football regulations are
stated in English units, but convert them to SI units for this prob-
lem. (a) There is a minimum angle above the ground such that if
the ball is launched below this angle, it can never clear the bar, no
matter how fast it is kicked. What is this angle? (b) If the ball is
kicked at 45.0° above the horizontal, what must its initial speed be
if it is to just clear the bar? Express your answer in m/s and in km/h.

Figure P3.62
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3.63 - A grasshopper leaps
into the air from the edge of a
vertical cliff, as shown in Fig.
P3.63. Use information from
the figure to find (a) the initial
speed of the grasshopper and
(b) the height of the cliff.

3.64 -- AWorld Record. In
the shot put, a standard track-
and-field event, a 7.3-kg
object (the shot) is thrown by
releasing it at approximately
40° over a straight left leg.
The world record for distance,
set by Randy Barnes in 1990, is 23.11 m. Assuming that Barnes
released the shot put at 40.0° from a height of 2.00 m above the
ground, with what speed, in m/s and in mph, did he release it?

Figure P3.63
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3.65 cc Look Out! A snow-

ball rolls off a barn roof that

slopes downward at an angle of

40° (Fig. P3.65). The edge of the

roof is 14.0 m above the ground,

and the snowball has a speed of

7.00 m/s as it rolls off the roof.

Ignore air resistance. (a) How far

from the edge of the barn does

the snowball strike the ground if

it doesn’t strike anything else

while falling? (b) Draw x-t, y-f, M
-

Uyt, and vyt graphs for the

motion in part (a). (c) Aman 1.9 m 40m

tall is standing 4.0 m from the

edge of the barn. Will he be hit by the snowball?

3.66 -<- On the Flying Trapeze. Figure P3.66

A new circus act is called the

Texas Tumblers. Lovely Mary

Figure P3.65
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Belle swings from a trapeze, proj-
ects herself at an angle of 53°, and
is supposed to be caught by Joe

Bob, whose hands are 6.1 m above

and 8.2 m horizontally from her 6
launch point (Fig. P3.66). You Vo

can ignore air resistance. (a) %30

What initial speed vy must Mary 8.2m

Belle have just to reach Joe Bob? 8.6

(b) For the initial speed calculated

in part (a), what are the magnitude

and direction of her velocity when Mary Belle reaches Joe Bob?
(c) Assuming that Mary Belle has the initial speed calculated in
part (a), draw x-, y-t, U,-t, and vyt graphs showing the motion of
both tumblers. Your graphs should show the motion up until the point
where Mary Belle reaches Joe Bob. (d) The night of their debut per-
formance, Joe Bob misses her completely as she flies past. How far
horizontally does Mary Belle travel, from her initial launch point,
before landing in the safety net 8.6 m below her starting point?

3.67 - Leaping the River II. A physics professor did daredevil
stunts in his spare time. His last stunt was an attempt to jump
across a river on a motorcycle (Fig. P3.67). The takeoff ramp was
inclined at 53.0°, the river was 40.0 m wide, and the far bank was
15.0 m lower than the top of the ramp. The river itself was 100 m
below the ramp. You can ignore air resistance. (a) What should his
speed have been at the top of the ramp to have just made it to the
edge of the far bank? (b) If his speed was only half the value found
in part (a), where did he land?

Figure P3.67
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Problems

3.68 - Arock is thrown from the roof of a building with a veloc-
ity vy at an angle of «( from the horizontal. The building has
height 4. You can ignore air resistance. Calculate the magnitude of
the velocity of the rock just before it strikes the ground, and show
that this speed is independent of «.

3.69 - A 5500-kg cart carrying a vertical rocket launcher moves
to the right at a constant speed of 30.0 m/s along a horizontal
track. It launches a 45.0-kg rocket vertically upward with an initial
speed of 40.0 m/s relative to the cart. (a) How high will the rocket
go? (b) Where, relative to the cart, will the rocket land? (c) How
far does the cart move while the rocket is in the air? (d) At what
angle, relative to the horizontal, is the rocket traveling just as it
leaves the cart, as measured by an observer at rest on the ground?
(e) Sketch the rocket’s trajectory as seen by an observer (i) station-
ary on the cart and (ii) stationary on the ground.

3.70 - A 2.7-kg ball is thrown upward with an initial speed of
20.0 m/s from the edge of a 45.0-m-high cliff. At the instant the
ball is thrown, a woman starts running away from the base of the
cliff with a constant speed of 6.00 m/s. The woman runs in a
straight line on level ground, and air resistance acting on the ball
can be ignored. (a) At what angle above the horizontal should the
ball be thrown so that the runner will catch it just before it hits
the ground, and how far does the woman run before she catches
the ball? (b) Carefully sketch the ball’s trajectory as viewed by
(1) a person at rest on the ground and (ii) the runner.

3.71 + A 76.0-kg boulder is rolling horizontally at the top of a
vertical cliff that is 20 m above the surface of a lake, as shown in
Fig. P3.71. The top of the vertical face of a dam is located 100 m
from the foot of the cliff, with the top of the dam level with the sur-
face of the water in the lake. A level plain is 25 m below the top of
the dam. (a) What must be the minimum speed of the rock just as it
leaves the cliff so it will travel to the plain without striking the
dam? (b) How far from the foot of the dam does the rock hit the
plain?

Figure P3.71
Vo
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3.72 <¢ Tossing Your Lunch. Henrietta is going off to her
physics class, jogging down the sidewalk at 3.05 m/s. Her hus-
band Bruce suddenly realizes that she left in such a hurry that she
forgot her lunch of bagels, so he runs to the window of their apart-
ment, which is 38.0 m above the street level and directly above the
sidewalk, to throw them to her. Bruce throws them horizontally
9.00 s after Henrietta has passed below the window, and she
catches them on the run. You can ignore air resistance. (a) With
what initial speed must Bruce throw the bagels so Henrietta can
catch them just before they hit the ground? (b) Where is Henrietta
when she catches the bagels?

3.73 -+ Two tanks are engaged in a training exercise on level
ground. The first tank fires a paint-filled training round with a
muzzle speed of 250 m/s at 10.0° above the horizontal while
advancing toward the second tank with a speed of 15.0 m/s rela-
tive to the ground. The second tank is retreating at 35.0 m/s rela-
tive to the ground, but is hit by the shell. You can ignore air
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resistance and assume the shell hits at the same height above
ground from which it was fired. Find the distance between the
tanks (a) when the round was first fired and (b) at the time of
impact.

3.74 -+ CP Bang! A student sits atop a platform a distance A
above the ground. He throws a large firecracker horizontally with a
speed v. However, a wind blowing parallel to the ground gives the
firecracker a constant horizontal acceleration with magnitude a.
This results in the firecracker reaching the ground directly under
the student. Determine the height 4 in terms of v, a, and g. You can
ignore the effect of air resistance on the vertical motion.

3.75 ¢ In a Fourth of July celebration, a firework is launched
from ground level with an initial velocity of 25.0 m/s at 30.0°
from the vertical. At its maximum height it explodes in a starburst
into many fragments, two of which travel forward initially at
20.0 m/s at =53.0° with respect to the horizontal, both quantities
measured relative to the original firework just before it exploded.
With what angles with respect to the horizontal do the two frag-
ments initially move right after the explosion, as measured by a
spectator standing on the ground?

3.76 + When it is 145 m above the ground, a rocket traveling ver-
tically upward at a constant 8.50 m/s relative to the ground
launches a secondary rocket at a speed of 12.0 m/s at an angle of
53.0° above the horizontal, both quantities being measured by an
astronaut sitting in the rocket. After it is launched the secondary
rocket is in free-fall. (a) Just as the secondary rocket is launched,
what are the horizontal and vertical components of its velocity rel-
ative to (i) the astronaut sitting in the rocket and (ii) Mission Con-
trol on the ground? (b) Find the initial speed and launch angle of
the secondary rocket as measured by Mission Control. (¢) What
maximum height above the ground does the secondary rocket
reach?

3.77 +++ In an action-adventure film, the hero is supposed to
throw a grenade from his car, which is going 90.0 km/h, to his
enemy’s car, which is going 110 km/h. The enemy’s car is 15.8 m
in front of the hero’s when he lets go of the grenade. If the hero
throws the grenade so its initial velocity relative to him is at an
angle of 45° above the horizontal, what should the magnitude of
the initial velocity be? The cars are both traveling in the same
direction on a level road. You can ignore air resistance. Find the
magnitude of the velocity both relative to the hero and relative to
the earth.

3.78 <+ A 400.0-m-wide river flows from west to east at
30.0 m/min. Your boat moves at 100.0 m/min relative to the water
no matter which direction you point it. To cross this river, you start
from a dock at point A on the south bank. There is a boat landing
directly opposite at point B on the north bank, and also one at point
C, 75.0 m downstream from B (Fig. P3.78). (a) Where on the north
shore will you land if you point your boat perpendicular to the
water current, and what distance will you have traveled? (b) If you
initially aim your boat directly toward point C and do not change
that bearing relative to the shore, where on the north shore will you

Figure P3.78
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land? (c) To reach point C: (i) at what bearing must you aim your
boat, (ii) how long will it take to cross the river, (iii) what distance
do you travel, and (iv) and what is the speed of your boat as meas-
ured by an observer standing on the river bank?

3.79 - CALC Cycloid. A particle moves in the xy-plane. Its coor-
dinates are given as functions of time by

x(t) = R(wt — sin wt) (1) = R(1 — cos wt)

where R and w are constants. (a) Sketch the trajectory of the parti-
cle. (This is the trajectory of a point on the rim of a wheel that is
rolling at a constant speed on a horizontal surface. The curve
traced out by such a point as it moves through space is called a
cycloid.) (b) Determine the velocity components and the accelera-
tion components of the particle at any time 7. (c) At which times is
the particle momentarily at rest? What are the coordinates of the
particle at these times? What are the magnitude and direction of
the acceleration at these times? (d) Does the magnitude of the
acceleration depend on time? Compare to uniform circular motion.
3.80 - A projectile is fired from point A at an angle above the
horizontal. At its highest point, after having traveled a horizontal
distance D from its launch point, it suddenly explodes into two
identical fragments that travel horizontally with equal but opposite
velocities as measured relative to the projectile just before it
exploded. If one fragment lands back at point A, how far from A (in
terms of D) does the other fragment land?

3.81 < An airplane pilot sets a compass course due west and
maintains an airspeed of 220 km/h. After flying for 0.500 h, she
finds herself over a town 120 km west and 20 km south of her
starting point. (a) Find the wind velocity (magnitude and direc-
tion). (b) If the wind velocity is 40 km/h due south, in what direc-
tion should the pilot set her course to travel due west? Use the
same airspeed of 220 km/h.

3.82 -+ Raindrops. When a train’s velocity is 12.0 m/s east-
ward, raindrops that are falling vertically with respect to the earth
make traces that are inclined 30.0° to the vertical on the windows
of the train. (a) What is the horizontal component of a drop’s
velocity with respect to the earth? With respect to the train?
(b) What is the magnitude of the velocity of the raindrop with
respect to the earth? With respect to the train?

3.83 -¢ In a World Cup soccer match, Juan is running due north
toward the goal with a speed of 8.00 m/s relative to the ground. A
teammate passes the ball to him. The ball has a speed of 12.0 m/s
and is moving in a direction 37.0° east of north, relative to the
ground. What are the magnitude and direction of the ball’s velocity
relative to Juan?

3.84 -« An elevator is moving upward at a constant speed of
2.50 m/s. A bolt in the elevator ceiling 3.00 m above the elevator
floor works loose and falls. (a) How long does it take for the bolt to
fall to the elevator floor? What is the speed of the bolt just as it hits
the elevator floor (b) according to an observer in the elevator?
(c) According to an observer standing on one of the floor landings
of the building? (d) According to the observer in part (c), what dis-
tance did the bolt travel between the ceiling and the floor of the
elevator?

3.85  CP Suppose the elevator in Problem 3.84 starts from rest
and maintains a constant upward acceleration of 4.00 m/s?, and
the bolt falls out the instant the elevator begins to move. (a) How
long does it take for the bolt to reach the floor of the elevator? (b)
Just as it reaches the floor, how fast is the bolt moving according to
an observer (i) in the elevator? (ii) Standing on the floor landings
of the building? (c) According to each observer in part (b), how far
has the bolt traveled between the ceiling and floor of the elevator?



3.86 = Two soccer players, Mia and Alice, are running as Alice
passes the ball to Mia. Mia is running due north with a speed of
6.00 m/s. The velocity of the ball relative to Mia is 5.00 m/s in a
direction 30.0° east of south. What are the magnitude and direction
of the velocity of the ball relative to the ground?

3.87 << Projectile Motion on an Incline. Refer to the Bridging
Problem in Chapter 3. (a) An archer on ground that has a constant
upward slope of 30.0° aims at a target 60.0 m farther up the
incline. The arrow in the bow and the bull’s-eye at the center of the
target are each 1.50 m above the ground. The initial velocity of the
arrow just after it leaves the bow has magnitude 32.0 m/s. At what
angle above the horizontal should the archer aim to hit the bull’s-
eye? If there are two such angles, calculate the smaller of the two.
You might have to solve the equation for the angle by iteration—
that is, by trial and error. How does the angle compare to that
required when the ground is level, with O slope? (b) Repeat the
problem for ground that has a constant downward slope of 30.0°.

CHALLENGE PROBLEMS

3.88 <<« CALC A projectile is thrown from a point P. It moves in
such a way that its distance from P is always increasing. Find the
maximum angle above the horizontal with which the projectile
could have been thrown. You can ignore air resistance.

3.89 -¢ Two students are canoeing on a river. While heading
upstream, they accidentally drop an empty bottle overboard. They
then continue paddling for 60 minutes, reaching a point 2.0 km far-
ther upstream. At this point they realize that the bottle is missing

Chapter Opening Question

A cyclist going around a curve at constant speed has an accelera-
tion directed toward the inside of the curve (see Section 3.2, espe-
cially Fig. 3.12a).

Test Your Understanding Questions

3.1 Answer: (iii) If the instantaneous velocity U is constant over
an interval, its value at any point (including the end of the interval)
is the same as the average velocity U,, over the interval. In (i) and
(ii) the direction of U at the end of the interval is tangent to the path
at that point, while the direction of Ty, points from the beginning
of the path to its end (in the direction of the net displacement). In
(iv) U and U,, are both directed along the straight line, but ¥ has a
greater magnitude because the speed has been increasing.

3.2 Answer: vector 7 At the high point of the sled’s path, the
speed is minimum. At that point the speed is neither increasing nor
decreasing, and the parallel component of the acceleration (that is,
the horizontal component) is zero. The acceleration has only a per-
pendicular component toward the inside of the sled’s curved path.
In other words, the acceleration is downward.

3.3 Answer: (i) If there were no gravity (g = 0), the monkey
would not fall and the dart would follow a straight-line path
(shown as a dashed line). The effect of gravity is to make the
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Answers

and, driven by ecological awareness, they turn around and head
downstream. They catch up with and retrieve the bottle (which has
been moving along with the current) 5.0 km downstream from the
turn-around point. (a) Assuming a constant paddling effort
throughout, how fast is the river flowing? (b) What would the
canoe speed in a still lake be for the same paddling effort?

3.90 -« CP A rocket designed to place small payloads into orbit
is carried to an altitude of 12.0 km above sea level by a converted
airliner. When the airliner is flying in a straight line at a constant
speed of 850 km/h, the rocket is dropped. After the drop, the air-
liner maintains the same altitude and speed and continues to fly in
a straight line. The rocket falls for a brief time, after which its
rocket motor turns on. Once its rocket motor is on, the combined
effects of thrust and gravity give the rocket a constant acceleration
of magnitude 3.00g directed at an angle of 30.0° above the hori-
zontal. For reasons of safety, the rocket should be at least 1.00 km
in front of the airliner when it climbs through the airliner’s alti-
tude. Your job is to determine the minimum time that the rocket
must fall before its engine starts. You can ignore air resistance.
Your answer should include (i) a diagram showing the flight paths
of both the rocket and the airliner, labeled at several points with
vectors for their velocities and accelerations; (ii) an x-¢ graph
showing the motions of both the rocket and the airliner; and (iii) a
y-t graph showing the motions of both the rocket and the airliner.
In the diagram and the graphs, indicate when the rocket is
dropped, when the rocket motor turns on, and when the rocket
climbs through the altitude of the airliner.

monkey and the dart both fall the same distance %gt2 below their
g = 0 positions. Point A is the same distance below the monkey’s
initial position as point P is below the dashed straight line, so point
A is where we would find the monkey at the time in question.

3.4 Answer: (ii) At both the top and bottom of the loop, the accel-
eration is purely radial and is given by Eq. (3.28). The radius R is
the same at both points, so the difference in acceleration is due
purely to differences in speed. Since a,,q is proportional to the
square of v, the speed must be twice as great at the bottom of the
loop as at the top.

3.5 Answer: (vi) The effect of the wind is to cancel the airplane’s
eastward motion and give it a northward motion. So the velocity of
the air relative to the ground (the wind velocity) must have one
150-km/h component to the west and one 150-km/h component to
the north. The combination of these is a vector of magnitude
V(150 km/h)? + (150 km/h)? = 212 km/h that points to the
northwest.

Bridging Problem

20 cos(0 + ¢)sin

Answers: (a) R = ? (b) ¢ = 45° —

RIS

cos%0



NEWTON'S LAWS
OF MOTION

LEARNING GOALS

By studying this chapter, you will
learn:

e \What the concept of force means in
physics, and why forces are vectors.

* The significance of the net force on
an object, and what happens when
the net force is zero.

e The relationship among the net force
on an object, the object’s mass, and
its acceleration.

e How the forces that two bodies
exert on each other are related.
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This pit crew member is pushing a race car forward. Is the race car pushing
back on him? If so, does it push back with the same magnitude of force or a
different amount?

e’ve seen in the last two chapters how to use the language and mathe-

matics of kinematics to describe motion in one, two, or three dimen-

sions. But what causes bodies to move the way that they do? For
example, how can a tugboat push a cruise ship that’s much heavier than the tug?
Why is it harder to control a car on wet ice than on dry concrete? The answers to
these and similar questions take us into the subject of dynamics, the relationship
of motion to the forces that cause it.

In this chapter we will use two new concepts, force and mass, to analyze the
principles of dynamics. These principles were clearly stated for the first time by
Sir Isaac Newton (1642—-1727); today we call them Newton’s laws of motion.
The first law states that when the net force on a body is zero, its motion doesn’t
change. The second law relates force to acceleration when the net force is not
zero. The third law is a relationship between the forces that two interacting bod-
ies exert on each other.

Newton did not derive the three laws of motion, but rather deduced them from
a multitude of experiments performed by other scientists, especially Galileo
Galilei (who died the same year Newton was born). These laws are truly funda-
mental, for they cannot be deduced or proved from other principles. Newton’s laws
are the foundation of classical mechanics (also called Newtonian mechanics);
using them, we can understand most familiar kinds of motion. Newton’s laws
need modification only for situations involving extremely high speeds (near the
speed of light) or very small sizes (such as within the atom).

Newton’s laws are very simple to state, yet many students find these laws diffi-
cult to grasp and to work with. The reason is that before studying physics, you’ve
spent years walking, throwing balls, pushing boxes, and doing dozens of things
that involve motion. Along the way, you’ve developed a set of “common sense”



ideas about motion and its causes. But many of these “common sense” ideas
don’t stand up to logical analysis. A big part of the job of this chapter—and of the
rest of our study of physics—is helping you to recognize how “common sense”
ideas can sometimes lead you astray, and how to adjust your understanding of the
physical world to make it consistent with what experiments tell us.

4.1 Force and Interactions

In everyday language, a force is a push or a pull. A better definition is that a force is
an interaction between two bodies or between a body and its environment (Fig. 4.1).
That’s why we always refer to the force that one body exerts on a second body.
When you push on a car that is stuck in the snow, you exert a force on the car; a
steel cable exerts a force on the beam it is hoisting at a construction site; and so
on. As Fig. 4.1 shows, force is a vector quantity; you can push or pull a body in
different directions.

When a force involves direct contact between two bodies, such as a push or
pull that you exert on an object with your hand, we call it a contact force.
Figures 4.2a, 4.2b, and 4.2c show three common types of contact forces. The
normal force (Fig. 4.2a) is exerted on an object by any surface with which it is in
contact. The adjective normal means that the force always acts perpendicular to
the surface of contact, no matter what the angle of that surface. By contrast, the
friction force (Fig. 4.2b) exerted on an object by a surface acts parallel to the
surface, in the direction that opposes sliding. The pulling force exerted by a
stretched rope or cord on an object to which it’s attached is called a tension force
(Fig. 4.2c). When you tug on your dog’s leash, the force that pulls on her collar is
a tension force.

In addition to contact forces, there are long-range forces that act even when
the bodies are separated by empty space. The force between two magnets is an
example of a long-range force, as is the force of gravity (Fig. 4.2d); the earth
pulls a dropped object toward it even though there is no direct contact between
the object and the earth. The gravitational force that the earth exerts on your body
is called your weight.

To describe a force vector F , we need to describe the direction in which it acts
as well as its magnitude, the quantity that describes “how much” or “how hard”
the force pushes or pulls. The SI unit of the magnitude of force is the newton,
abbreviated N. (We’ll give a precise definition of the newton in Section 4.3.)
Table 4.1 lists some typical force magnitudes.

Table 4.1 Typical Force Magnitudes

Sun’s gravitational force on the earth 3.5 X 102N
Thrust of a space shuttle during launch 3.1 X 10’N
Weight of a large blue whale 19 X 10°N
Maximum pulling force of a locomotive 8.9 X 10°N
Weight of a 250-1b linebacker 1.1 X 10°N
Weight of a medium apple IN

Weight of smallest insect eggs 2X 10°N
Electric attraction between the proton and the electron in a hydrogen atom 82 X 108N
Weight of a very small bacterium 1 X 1078N
Weight of a hydrogen atom 1.6 X 107N
Weight of an electron 8.9 X 107N
Gravitational attraction between the proton and the electron in a hydrogen atom 3.6 X 1074 N
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4.1 Force and Interactions

4.1 Some properties of forces.

« A force is a push or a pull.

« A force is an interaction between two objects
or between an object and its environment.

« A force is a vector quantity, with magnitude
and direction.

g’y‘ F (force)
—

F
p—
Pull

4.2 Four common types of forces.

(a) Normal force 1: When an object rests or
pushes on a surface, the surface exerts a push on
it that is directed perpendicular to the surface.

_
(b) Friction force f: In addition to the normal
force, a surface may exert a frictional force on
an object, directed parallel to the surface.

171

F<—p

(¢) Tension force T: A pulling force exerted on
an object by a rope, cord, etc.

—
R

Ny

(d) Weight w: The pull of gravity on an object
is a long-range force (a force that acts over
a distance).

—f—
<
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4.3 Using a vector arrow to denote the A common instrument for measuring force magnitudes is the spring balance.
force that we exert when (a) pulling a It consists of a coil spring enclosed in a case with a pointer attached to one end.
block with a string or (b) pushing a block  When forces are applied to the ends of the spring, it stretches by an amount that
with a stick. depends on the force. We can make a scale for the pointer by using a number of

(a) A 10-N pull directed 30° above identical bodies with weights of exactly 1 N each. When one, two, or more of

the horizontal these are suspended simultaneously from the balance, the total force stretching
the spring is 1 N, 2 N, and so on, and we can label the corresponding positions of
the pointer 1 N, 2 N, and so on. Then we can use this instrument to measure the
magnitude of an unknown force. We can also make a similar instrument that
measures pushes instead of pulls.

Figure 4.3 shows a spring balance being used to measure a pull or push that
we apply to a box. In each case we draw a vector to represent the applied force.
The length of the vector shows the magnitude; the longer the vector, the greater
the force magnitude.

(b) A 10-N push directed 45° below

the horizontal Superposition of Forces

~ When you throw a ball, there are at least two forces acting on it: the push of your

_ hand and the downward pull of gravity. Experiment shows that when two forces
F 1 and F » act at the same time at the same point on a  body (Fig. 4.4), the effect

10N on the body’s motion is the same as if a smgle force R were acting equal to the

450 vector sum of the original forces: R=F 1+ F ». More generally, any number of

== forces applied at a point on a body have the same effect as a single force equal to

the vector sum of the forces. This important principle is called superposition of

forces.

The principle of superposition of forces is of the utmost importance, and we
will use it throughout our study of physics. For example, in Fig. 4.5a, force F
acts on a body at pomt O.The component vectors of F in the directions Ox and Oy
are F and F - When F and F are applied 51multaneously, as in Fig. 4.5b, the

4.4 Superposition of forces.

Two forces F, and F, acting on a body at effect is exactly the same as the effect of the original force F. Hence any force

point O have the same effect as a single force can be replaced by its component vectors, acting at the same point.
K equal 1o their vector sum. _ It's frequently more convenient to describe a force F in terms of its x- and
Fo A "S5 A y-components F', and F rather than by its component vectors (recall from Section 1.8
R // that component vectors are vectors, but components are just numbers). For the case
,/ shown in Fig. 4.5, both F and F), are positive; for other orientations of the force F,

0 > s either F, or F,, may be negative or zero.

F, Our coordlnate axes don’t have to be Vertlcal and horizontal. Figure 4.6 shows

a crate being pulled up a ramp by a force F, represented by its components F

and F), parallel and perpendicular to the sloping surface of the ramp.

4.5 The force F, which acts at an angle 6 from the x-axis, may be replaced by its
rectangular component vectors F, and F,.

(a) Component vectors: F‘x and F‘) (b) Component vectors F and F together
Components: F,, = F cos 6 and F, = F sin 0 have the same effect as original force F.
N
Y AR
________ y
SA -
Fl & |
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Y

=

Q ()
el

\

=
&




4.1 Force and Interactions 107

CAUTION  using a wiggly line in force diagrams In Fig. 4.6 we draw a wiggly line 4.6 F, and F, are the components of F
through the force vector F to show that we have replaced it by its x- and y-components.  parallel and perpendicular to the sloping
Otherwise, the diagram would include the same force twice. We will draw such a wiggly  surface of the inclined plane.
line in any force diagram where a force is replaced by its components. Look for this wig-
gly line in other figures in this and subsequent chapters.

We cross out a vector when we replace
it with its components. 9>

We will often need to find the vector sum (resultant) of all the forces acting on
a body. We call this the net force acting on the body. We will use the Greek letter
> (capital sigma, equivalent to the Roman S) as a shorthand notation for a sum.
If the forces are labeled F 1s F 2, F 3, and so on, we abbreviate the sum as

R=F +F,+F3+ ---=>F (4.1)

We read X F as “the vector sum of the forces” or “the net force.” The compo-

. . . . 4.7 Finding th ts of th
nent version of Eq. (4.1) is the pair of component equations [mawe e compenens o7 e

vector sum (resultant) R of two forces F

R.= XF. R = >F, wa 42

. . R is the sum (resultant) of F, and F,.
Here X F, is the sum of the x-components and X F), is the sum of the y-components ( )orhy ’

. . . o Th tof R
(Fig. 4.7). Each component may be positive or negative, so be careful with signs oo compenen e

) - equals the sum of the y- The same goes for
when you evaluate these sums. (You may want to review Section 1.8.) components of | and F,. the x-components.
Once we have R, and R, we can find the magnitude and direction of the net y :

forceR = SF acting on the body. The magnitude is
R = VR + Ry

and the angle 6 between R and the +x-axis can be found from the relationship .
tanf = R,/R,. The components R, and R, may be positive, negative, or zero, and R,
the angle 6 may be in any of the four quadrants.

In three-dimensional problems, forces may also have z-components; then we
add the equation R, = X F, to Eq. (4.2). The magnitude of the net force is then

R=VRZ+R}+R}

Superposition of forces

Three professional wrestlers are fighting over a champion’s belt. 4.8 (a) Three forces acting on a belt. (b) The net force R=3F
Figure 4.8a shows the horizontal force each wrestler applies to — and its components.

the belt, as viewed from above. The forces have magnitudes

Fi=250N, F, =50 N, and F3 = 120 N. Find the x- and (@ 7 (b) "
y-components of the net force on the belt, and find its magnitude A F,, Net force
and direction.

IDENTIFY and SET UP: This is a problem in vector addition in
which the vectors happen to represent forces We want to find =
h d mponents of the net force R so we’ll use the Fs has zero

the x- and y-comp X-component. F;
component method of vector addition expressed by Eqs. (4.2). |
Once we know the components of R, we can find its magnitude

and direction.

<+ x- and y-components
of F,
-
F
—
v =
*F, has zero
y-component.

X

EXECUTE: From Fig. 4.8a the angles between the three forces f*’l, Foy = GO N) sin 0° =0 N

F, and F5 and the +x-axis are 6, = 180° — 53° = 127°, 6, = 0°, F3, = (120 N) c0s270° = O N
and 03 = 270°. The x- and y-components of the three forces are F3, = (120 N) sin270° = —120 N
Fi, = (250 N) cos 127° = =150 N From Eqgs. (4.2) the net force R = EI? has components
= (250 N) sin 127° = 200 N Ry = Fiy + For + F3 = (=150 N) + 50 N+ ON = —100 N
sz:(SON)COS °=50N Ry:F]}+F2y+F3y:200N+ON+(_IZON):goN

Continued
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The net force has a negative x-component and a positive The arctangent of —0.80 is —39°, but Fig. 4.8b shows that the net

y-component, as showil in Fig. 4.8b.
The magnitude of R is

force lies in the second quadrant. Hence the correct solution is
0 = —39° + 180° = 141°.

R ="VRX+R} = V/(-100 N)?

+ (80N)? =128 N

EVALUATE: The net force is not zero. Your intuition should suggest
that wrestler 1 (who exerts the largest force on the belt,

To find the angle between the net force and the +x-axis, we use F1 = 250 N) will walk away with it when the struggle ends.

Eq. (1.8):

6 = arctanﬁ = arctan _8ON_
R —100 N

X

4.9 The slicker the surface, the farther a

puck slides after being given an initial
velocity. On an air-hockey table (c) the
friction force is practically zero, so the
puck continues with almost constant
velocity.

(a) Table: puck stops short.
U \\_
et Y

@lx

(b) Ice: puck slides farther.

() Air-hockey table: puck slides even farther.

. You should check the direction of R by adding the vectors
F F,, F2, and Fg graphically. Does your drawing show that
R=F |+ F2 + F3 points in the second quadrant as we found

= arctan (—0.80) above?

®

Test Your Understanding of Section 4.1 Figure 4.6 shows a force F (\
acting on a crate. With the x- and y-axes shown in the figure, which statement \)
about the components of the gravitational force that the earth exerts on the crate

(the crate’s weight) is correct? (i) The x- and y-components are both positive. (ii) The
x-component is zero and the y-component is positive. (iii) The x-component is negative
and the y-component is positive. (iv) The x- and y-components are both negative.

(v) The x-component is zero and the y-component is negative. (vi) The x-component is
positive and the y-component is negative. |

4.2 Newton’s First Law

How do the forces that act on a body affect its motion? To begin to answer this
question, let’s first consider what happens when the net force on a body is zero.
You would almost certainly agree that if a body is at rest, and if no net force acts
on it (that is, no net push or pull), that body will remain at rest. But what if there
is zero net force acting on a body in motion?

To see what happens in this case, suppose you slide a hockey puck along a
horizontal tabletop, applying a horizontal force to it with your hand (Fig. 4.9a).
After you stop pushing, the puck does not continue to move indefinitely; it slows
down and stops. To keep it moving, you have to keep pushing (that is, applying a
force). You might come to the “common sense” conclusion that bodies in motion
naturally come to rest and that a force is required to sustain motion.

But now imagine pushing the puck across a smooth surface of ice (Fig. 4.9b).
After you quit pushing, the puck will slide a lot farther before it stops. Put it on
an air-hockey table, where it floats on a thin cushion of air, and it moves still far-
ther (Fig. 4.9¢). In each case, what slows the puck down is friction, an interaction
between the lower surface of the puck and the surface on which it slides. Each
surface exerts a frictional force on the puck that resists the puck’s motion; the dif-
ference in the three cases is the magnitude of the frictional force. The ice exerts
less friction than the tabletop, so the puck travels farther. The gas molecules of
the air-hockey table exert the least friction of all. If we could eliminate friction
completely, the puck would never slow down, and we would need no force at all
to keep the puck moving once it had been started. Thus the “common sense” idea
that a force is required to sustain motion is incorrect.

Experiments like the ones we’ve just described show that when no net
force acts on a body, the body either remains at rest or moves with constant
velocity in a straight line. Once a body has been set in motion, no net force is
needed to keep it moving. We call this observation Newton’s first law of
motion:

Newton’s first law of motion: A body acted on by no net force moves with
constant velocity (which may be zero) and zero acceleration.



The tendency of a body to keep moving once it is set in motion results from a
property called inertia. You use inertia when you try to get ketchup out of a bot-
tle by shaking it. First you start the bottle (and the ketchup inside) moving for-
ward; when you jerk the bottle back, the ketchup tends to keep moving forward
and, you hope, ends up on your burger. The tendency of a body at rest to remain
at rest is also due to inertia. You may have seen a tablecloth yanked out from
under the china without breaking anything. The force on the china isn’t great
enough to make it move appreciably during the short time it takes to pull the
tablecloth away.

It’s important to note that the ner force is what matters in Newton’s first law.
For example, a physics book at rest on a horizontal tabletop has two forces act-
ing on it: an upward supporting force, or normal force, exerted by the tabletop
(see Fig. 4.2a) and the downward force of the earth’s gravitational attraction (a
long-range force that acts even if the tabletop is elevated above the ground; see
Fig. 4.2d). The upward push of the surface is just as great as the downward pull
of gravity, so the net force acting on the book (that is, the vector sum of the two
forces) is zero. In agreement with Newton’s first law, if the book is at rest on
the tabletop, it remains at rest. The same principle applies to a hockey puck
sliding on a horizontal, frictionless surface: The vector sum of the upward push
of the surface and the downward pull of gravity is zero. Once the puck is in
motion, it continues to move with constant velocity because the net force acting
on it is zero.

Here’s another example. Suppose a hockey puck rests on a horizontal surface
with negligible friction, such as an air-hockey table or a slab of wet ice. If the puck
is initially at rest and a single horizontal force F 1 acts on it (Fig. 4.10a), the puck
starts to move. If the puck is in motion to begin with, the force changes its speed,
its direction, or both, depending on the direction of the force. In this case the net
force is equal to F 1, wWhich is not zero. (There are also two vertical forces: the
earth’s gravitational attraction and the upward normal force exerted by the sur-
face. But as we mentioned earlier, these two forces cancel.)

Now suppose we apply a second force i’z (Fig. 4.10b), equal in magnitude
to F 1 but opposite in direction. The two forces are negatives of each other,
f’z = —f’l, and their vector sum is zero:

—

Eﬁ=l—%l+ﬁ2=ﬁl+(_Fl)=0

Again, we find that if the body is at rest at the start, it remains at rest; if it is ini-
tially moving, it continues to move in the same direction with constant speed.
These results show that in Newton’s first law, zero net force is equivalent to no
force at all. This is just the principle of superposition of forces that we saw in
Section 4.1.

When a body is either at rest or moving with constant velocity (in a straight
line with constant speed), we say that the body is in equilibrium. For a body to
be in equilibrium, it must be acted on by no forces, or by several forces such that
their vector sum—that is, the net force—is zero:

S'F =0 (body in equilibrium) (4.3)
For this to be true, each component of the net force must be zero, so
>F,=0 > F,=0 (body in equilibrium) (4.4)

We are assuming that the body can be represented adequately as a point particle.
When the body has finite size, we also have to consider where on the body the
forces are applied. We will return to this point in Chapter 11.
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4.10 (a) A hockey puck accelerates in
the direction of a net applied force F.
(b) When the net force is zero, the
acceleration is zero, and the puck is

in equilibrium.

(a) A puck on a frictionless surface
accelerates when acted on by a
single horizontal force.

]

(b) An object acted on by forces
whose vector sum is zero behaves
as though no forces act on it.

3

8Ty
o
[

Application Sledding with Newton’s
First Law

The downward force of gravity acting on the
child and sled is balanced by an upward nor-
mal force exerted by the ground. The adult’s
foot exerts a forward force that balances the
backward force of friction on the sled. Hence
there is no net force on the child and sled, and
they slide with a constant velocity.
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(ML E RS EL TR 2 7ero net force means constant velocity

In the classic 1950 science fiction film Rocketship X-M, a space-
ship is moving in the vacuum of outer space, far from any star or
planet, when its engine dies. As a result, the spaceship slows down
and stops. What does Newton’s first law say about this scene?

After the engine dies there are no forces acting on the spaceship, so
according to Newton’s first law it will not stop but will continue to
move in a straight line with constant speed. Some science fiction
movies are based on accurate science; this is not one of them.
I

(LI EIRAEL LR Constant velocity means zero net force

You are driving a Maserati GranTurismo S on a straight testing track
at a constant speed of 250 km/h. You pass a 1971 Volkswagen Beetle
doing a constant 75 km/h. On which car is the net force greater?

The key word in this question is “net.” Both cars are in equilibrium
because their velocities are constant; Newton’s first law therefore
says that the net force on each car is zero.

This seems to contradict the “common sense” idea that the
faster car must have a greater force pushing it. Thanks to your

Maserati’s high-power engine, it’s true that the track exerts
a greater forward force on your Maserati than it does on the
Volkswagen. But a backward force also acts on each car due to
road friction and air resistance. When the car is traveling with
constant velocity, the vector sum of the forward and backward
forces is zero. There is more air resistance on the fast-moving
Maserati than on the slow-moving Volkswagen, which is why
the Maserati’s engine must be more powerful than that of the
Volkswagen.

Inertial Frames of Reference

In discussing relative velocity in Section 3.5, we introduced the concept of frame
of reference. This concept is central to Newton’s laws of motion. Suppose you are
in a bus that is traveling on a straight road and speeding up. If you could stand in
the aisle on roller skates, you would start moving backward relative to the bus as
the bus gains speed. If instead the bus was slowing to a stop, you would start
moving forward down the aisle. In either case, it looks as though Newton’s first
law is not obeyed; there is no net force acting on you, yet your velocity changes.
What’s wrong?

The point is that the bus is accelerating with respect to the earth and is not a
suitable frame of reference for Newton’s first law. This law is valid in some
frames of reference and not valid in others. A frame of reference in which
Newton’s first law is valid is called an inertial frame of reference. The earth
is at least approximately an inertial frame of reference, but the bus is not. (The
earth is not a completely inertial frame, owing to the acceleration associated
with its rotation and its motion around the sun. These effects are quite small,
however; see Exercises 3.25 and 3.28.) Because Newton’s first law is used to
define what we mean by an inertial frame of reference, it is sometimes called
the law of inertia.

Figure 4.11 helps us understand what you experience when riding in a vehicle
that’s accelerating. In Fig. 4.11a, a vehicle is initially at rest and then begins to
accelerate to the right. A passenger on roller skates (which nearly eliminate the
effects of friction) has virtually no net force acting on her, so she tends to remain
at rest relative to the inertial frame of the earth. As the vehicle accelerates
around her, she moves backward relative to the vehicle. In the same way, a pas-
senger in a vehicle that is slowing down tends to continue moving with con-
stant velocity relative to the earth, and so moves forward relative to the vehicle
(Fig. 4.11b). A vehicle is also accelerating if it moves at a constant speed but is
turning (Fig. 4.11c). In this case a passenger tends to continue moving relative to



4.11 Riding in an accelerating vehicle.
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(a) Initially, you and the ., (b) Initially, you and the (c) The vehicle rounds a turn
vehicle are at rest. vehicle are in motion. ™. at constant speed.
> U
t=0 = @3]
a
p
F
p
r= At
t=Ar
5 <>
a
t=2At
t = 3At t = 2At
=
a
: : .
You tend to remain at rest as the You tend to continue moving
vehicle accelerates around you. with constant velocity as the

vehicle slows down around you.

the earth at constant speed in a straight line; relative to the vehicle, the passenger
moves to the side of the vehicle on the outside of the turn.

In each case shown in Fig. 4.11, an observer in the vehicle’s frame of refer-
ence might be tempted to conclude that there is a net force acting on the passen-
ger, since the passenger’s velocity relative to the vehicle changes in each case.
This conclusion is simply wrong; the net force on the passenger is indeed zero.
The vehicle observer’s mistake is in trying to apply Newton’s first law in the
vehicle’s frame of reference, which is not an inertial frame and in which New-
ton’s first law isn’t valid (Fig. 4.12). In this book we will use only inertial frames
of reference.

We’ve mentioned only one (approximately) inertial frame of reference: the
earth’s surface. But there are many inertial frames. If we have an inertial frame
of reference A, in which Newton’s first law is obeyed, then any second frame
of reference B will also be inertial if it moves relative to A with constant
velocity T}B/A. We can prove this using the relative-velocity relationship
Eq. (3.36) from Section 3.5:

— = —
Up/a = Up/p + Up/a

Suppose that P is a body that moves with constant velocity 3P/A with respect
to an inertial frame A. By Newton’s first law the net force on this body is zero.
The velocity of P relative to another frame B has a different value, 3P/B =
Up/a — Upa. But if the relative velocity U4 of the two frames is constant, then
Up /p is constant as well. Thus B is also an inertial frame; the velocity of P in this
frame is constant, and the net force on P is zero, so Newton’s first law is obeyed
in B. Observers in frames A and B will disagree about the velocity of P, but they
will agree that P has a constant velocity (zero acceleration) and has zero net force
acting on it.

—

v

You tend to continue moviilg ina
straight line as the vehicle turns.

4.12 From the frame of reference of the
car, it seems as though a force is pushing
the crash test dummies forward as the car
comes to a sudden stop. But there is really
no such force: As the car stops, the dum-
mies keep moving forward as a conse-
quence of Newton’s first law.
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CHAPTER 4 Newton’s Laws of Motion

There is no single inertial frame of reference that is preferred over all others for
formulating Newton’s laws. If one frame is inertial, then every other frame moving
relative to it with constant velocity is also inertial. Viewed in this light, the state of
rest and the state of motion with constant velocity are not very different; both occur
when the vector sum of forces acting on the body is zero.

Test Your Understanding of Section 4.2 1In which of the following (?@
situations is there zero net force on the body? (i) an airplane flying due north at a \)
steady 120 m/s and at a constant altitude; (ii) a car driving straight up a hill with a

3° slope at a constant 90 km/h; (iii) a hawk circling at a constant 20 km/h at a constant
height of 15 m above an open field; (iv) a box with slick, frictionless surfaces in the back
of a truck as the truck accelerates forward on a level road at 5 m/ s2. |

4.3 Newton’s Second Law

Newton’s first law tells us that when a body is acted on by zero net force, it
moves with constant velocity and zero acceleration. In Fig. 4.13a, a hockey
puck is sliding to the right on wet ice. There is negligible friction, so there are
no horizontal forces acting on the puck; the downward force of gravity and the
up&vard normal force exerted by the ice surface sum to zero. So the net force
> F acting on the puck is zero, the puck has zero acceleration, and its velocity
is constant.

But what happens when the net force is not zero? In Fig. 4.13b we apply a
constant horizontgl force to a sliding puck in the same direction that the puck is
moving. Then 2 F is constant and in the same horizontal direction as . We find that
during the time the force is acting, the velocity of the puck changes at a constant rate;

4.13 Exploring the relationship between the acceleration of a body and the net force
acting on the body (in this case, a hockey puck on a frictionless surface).

(a) A puck moving with constant velocity (in equilibrium): Eﬁ =0,a=0

n—— —_— —_—
v 1 v

D)
N—
—

1 0

=
v

(b) A constant net force in the direction of motion causes a constant acceleration in the same
direction as the net force.

SF SF SF SF SF
p a - a P a a a a a
N N N e
—— — _— —_— —_—
1) 1 1) 1)) U

(€) A constant net force opposite the direction of motion causes a constant acceleration in the same
direction as the net force.

SF SF SF SF SF
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that is, the puck moves with constant acceleration. The spegd of the puck increases,
so the acceleration d is in the same direction as U and 2 F.

In Fig. 4.13c we reverse the direction of the force on the puck so that SF acts
opposite to U. In this case as well, the puck has an acceleration; the puck moves
more and more slowly to the right. The acceleration @ in this case is to the
left, in the same direction as Ei’ . As in the previous case, experiment shows that
the acceleration is constant if SF is constant.

We conclude that a net force acting on a body causes the body to accelerate in
the same direction as the net force. If the magnitude of the net force is constant,
as in Figs. 4.13b and 4.13c, then so is the magnitude of the acceleration.

These conclusions about net force and acceleration also apply to a body
moving along a curved path. For example, Fig. 4.14 shows a hockey puck mov-
ing in a horizontal circle on an ice surface of negligible friction. A rope is
attached to the puck and to a stick in the ice, and this rope exerts an inward ten-
sion force of constant magnitude on the puck. The net force and acceleration
are both constant in magnitude and directed toward the center of the circle. The
speed of the puck is constant, so this is uniform circular motion, as discussed in
Section 3.4.

Figure 4.15a shows another experiment to explore the relationship between
acceleration and net force. We apply a constant horizontal force to a puck on a
frictionless horizontal surface, using the spring balance described in Section 4.1
with the spring stretched a constant amount. As in Figs. 4.13b and 4.13c, this hor-
izontal force equals the net force on the puck. If we change the magnitude of the
net force, the acceleration changes in the same proportion. Doubling the net force
doubles the acceleration (Fig. 4.15b), halving the net force halves the accelera-
tion (Fig. 4.15¢), and so on. Many such experiments show that for any given
body, the magnitude of the acceleration is directly proportional to the magnitude
of the net force acting on the body.

Mass and Force

Our results mean that for a given body, the ratio of the magnitude |Ef7 | of the net
force to the magnitude a = || of the acceleration is constant, regardless of the
magnitude of the net force. We call this ratio the inertial mass, or simply the
mass, of the body and denote it by m. That is,

| S

a

m = (4.5)

Y
m

oo |XF=ma o a

Mass is a quantitative measure of inertia, which we discussed in Section 4.2. The
last of the equations in Egs. (4.5) says that the greater its mass, the more a body
“resists” being accelerated. When you hold a piece of fruit in your hand at the
supermarket and move it slightly up and down to estimate its heft, you’re apply-
ing a force and seeing how much the fruit accelerates up and down in response. If
a force causes a large acceleration, the fruit has a small mass; if the same force
causes only a small acceleration, the fruit has a large mass. In the same way, if
you hit a table-tennis ball and then a basketball with the same force, the basket-
ball has much smaller acceleration because it has much greater mass.

The SI unit of mass is the kilogram. We mentioned in Section 1.3 that the
kilogram is officially defined to be the mass of a cylinder of platinum—iridium
alloy kept in a vault near Paris. We can use this standard kilogram, along with
Egs. (4.5), to define the newton:

One newton is the amount of net force that gives an acceleration of 1 meter per
second squared to a body with a mass of 1 kilogram.
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4.14 A top view of a hockey puck in
uniform circular motion on a frictionless
horizontal surface.

Puck moves at constant speed
around circle.

Atall points, the acceleration @ and the net
force ZF point in the same direction—always
toward the center of the circle.

4.15 For a body of a given mass m, the
magnitude of the body’s acceleration is
directly proportional to the magnitude of
the net force acting on the body.

.
(@) A constant net force 2 F causes a
constant acceleration d.

—

a

— —

" SF=F

(b) Doubling the net force doubles the
acceleration.

2d
O —
(=W,

(c) Halving the force halves the
acceleration.
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4.16 For a given net force SF acting
on a body, the acceleration is inversely
proportional to the mass of the body.
Masses add like ordinary scalars.

(@) A known force 2.F causes an object
with mass m, to have an acceleration @,.
a,
5
=t
Uity

(b) Applying the same force 2 F to a
second object and noting the acceleration
allow us to measure the mass.
N
a
o
SF
—
X
Uiz

(c) When the two objects are fastened
together, the same method shows that
their composite mass is the sum of their
individual masses.

a5
H:H SF
——
my + my, *

This definition allows us to calibrate the spring balances and other instruments
used to measure forces. Because of the way we have defined the newton, it is
related to the units of mass, length, and time. For Eqgs. (4.5) to be dimensionally
consistent, it must be true that

1 newton = (1 kilogram)( 1 meter per second squared)
or
IN = 1kg-m/s’

We will use this relationship many times in the next few chapters, so keep it in
mind.

We can also use Egs. (4.5) to compare a mass with the standard mass and
thus to measure masses. Suppose we apply a constant net force Ei;’ to a body hav-
ing a known mass m; and we find an acceleration of magnitude a; (Fig. 4.16a).
We then apply the same force to another body having an unknown mass m,
and we find an acceleration of magnitude a, (Fig. 4.16b). Then, according to
Egs. (4.5),

mpay = mpap

my 4 (same net force) (4.6)
mp  a

For the same net force, the ratio of the masses of two bodies is the inverse of the
ratio of their accelerations. In principle we could use Eq. (4.6) to measure an
unknown mass m,, but it is usually easier to determine mass indirectly by meas-
uring the body’s weight. We’ll return to this point in Section 4.4.

When two bodies with masses m and m, are fastened together, we find
that the mass of the composite body is always m; + m, (Fig. 4.16¢). This
additive property of mass may seem obvious, but it has to be verified experi-
mentally. Ultimately, the mass of a body is related to the number of protons,
electrons, and neutrons it contains. This wouldn’t be a good way to define
mass because there is no practical way to count these particles. But the con-
cept of mass is the most fundamental way to characterize the quantity of mat-
ter in a body.

Stating Newton’s Second Law

We’ve been careful to state that the net force on a body is what causes thgt body
to accelerate. Experiment shows that if a combination of forces Fy, F,, F3, and
so on is applied to a body, the body will have the same acceleration (magnitude
and direction) as vihen o_t}ly a s_i)ngle force is applied, if that single force is equal
to the vector sum F| + F, + F3 + - - - In other words, the principle of super-
position of forces (see Fig. 4.4) also holds true when the net force is not zero and
the body is accelerating.

Equations (4.5) relate the magnitude of the net force on a body to the magni-
tude of the acceleration that it produces. We have also seen that the direction of
the net force is the same as the direction of the acceleration, whether the body’s
path is straight or curved. Newton wrapped up all these relationships and experi-
mental results in a single concise statement that we now call Newton's second law
of motion:

Newton’s second law of motion: If a net external force acts on a body, the
body accelerates. The direction of acceleration is the same as the direction of the
net force. The mass of the body times the acceleration of the body equals the net
force vector.



In symbols,

Ei‘ = ma (Newton’s second law of motion) 4.7)

An alternative statement is that the acceleration of a body is in the same direc-
tion as the net force acting on the body, and is equal to the net force divided by

the body’s mass:
. _SF
a="—
m

Newton’s second law is a fundamental law of nature, the basic relationship
between force and motion. Most of the remainder of this chapter and all of the
next are devoted to learning how to apply this principle in various situations.

Equation (4.7) has many practical applications (Fig. 4.17). You’ve actually
been using it all your life to measure your body’s acceleration. In your inner ear,
microscopic hair cells sense the magnitude and direction of the force that they
must exert to cause small membranes to accelerate along with the rest of your
body. By Newton’s second law, the acceleration of the membranes—and hence
that of your body as a whole—is proportional to this force and has the same
direction. In this way, you can sense the magnitude and direction of your acceler-
ation even with your eyes closed!

Using Newton’s Second Law

There are at least four aspects of Newton’s second law that deserve special atten-
tion. First, Eq. (4.7) is a vector equation. Usually we will use it in component
form, with a separate equation for each component of force and the correspon-
ding component of acceleration:

(Newton’s second
law of motion)

EFX= EFZ = ma,

(4.8)

may EFY = ma,

This set of component equations is equivalent to the single vector equation (4.7).
Each component of the net force equals the mass times the corresponding com-
ponent of acceleration.

Second, the statement of Newton’s second law refers to external forces. By
this we mean forces exerted on the body by other bodies in its environment. It’s
impossible for a body to affect its own motion by exerting a force on itself; if it
were possible, you could lift yourself to the ceiling by pulling up on your belt!
That’s why only external forces are included in the sum Ef’ in Egs. (4.7) and (4.8).

Third, Egs. (4.7) and (4.8) are valid only when the mass m is constant. It’s easy
to think of systems whose masses change, such as a leaking tank truck, a rocket
ship, or a moving railroad car being loaded with coal. But such systems are better
handled by using the concept of momentum; we’ll get to that in Chapter 8.

Finally, Newton’s second law is valid only in inertial frames of reference, just
like the first law. Thus it is not valid in the reference frame of any of the acceler-
ating vehicles in Fig. 4.11; relative to any of these frames, the passenger acceler-
ates even though the net force on the passenger is zero. We will usually assume
that the earth is an adequate approximation to an inertial frame, although because
of its rotation and orbital motion it is not precisely inertial.

CAUTION ;4 is not a force You must keep in mind that even though the vector mad is
equal to the vector sum X F of all the forces acting on the body, the vector md is not a

force. Acceleration is a result of a nonzero net force; it is not a force itself. It’s “common
sense” to think that there is a “force of acceleration” that pushes you back into your seat
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4.17 The design of high-performance
motorcycles depends fundamentally on
Newton’s second law. To maximize the
forward acceleration, the designer makes
the motorcycle as light as possible (that is,
minimizes the mass) and uses the most
powerful engine possible (thus maximiz-
ing the forward force).

Powerful engine
(large F)

Application Blame Newton’s
Second Law

This car stopped because of Newton’s second
law: The tree exerted an external force on the
car, giving the car an acceleration that
changed its velocity to zero.

Masteriﬁ-\ €S
kg/PHYSI S

ActivPhysics 2.1.3: Tension Change
ActivPhysics 2.1.4: Sliding on an Incline



116 CHAPTER 4 Newton’s Laws of Mation

when your car accelerates forward from rest. But there is no such force; instead, your iner-
tia causes you to tend to stay at rest relative to the earth, and the car accelerates around
you (see Fig. 4.11a). The “common sense” confusion arises from trying to apply Newton’s
second law where it isn’t valid, in the noninertial reference frame of an accelerating car.
We will always examine motion relative to inertial frames of reference only.

In learning how to use Newton’s second law, we will begin in this chapter
with examples of straight-line motion. Then in Chapter 5 we will consider more

general cases and develop more detailed problem-solving strategies.

FeL XM Determining acceleration from force

A worker applies a constant horizontal force with magnitude 20 N
to a box with mass 40 kg resting on a level floor with negligible
friction. What is the acceleration of the box?

IDENTIFY and SET UP: This problem involves force and accelera-
tion, so we’ll use Newton’s second law. In any problem involving
forces, the first steps are to choose a coordinate system and to iden-
tify all of the forces acting on the body in question. It’s usually
convenient to take one axis either along or opposite the direction
of the body’s acceleration, which in this case is horizontal. Hence
we take the +x-axis to be in the direction of the applied horizontal
force (that is, the direction in which the box accelerates) and the
+y-axis to be upward (Fig. 4.18). In most force problems that
you’ll encounter (including this one), the force vectors all lie in a
plane, so the z-axis isn’t used.

The forces acting on the box are (i) the horizontal force F
exerted by the worker, of magnitude 20 N; (ii) the weight w of the
box—that is, the downward gravitational force exerted by the
earth; and (iii) the upward supporting force 7 exerted by the floor.
As in Section 4.2, we call 7 a normal force because it is normal
(perpendicular) to the surface of contact. (We use an italic letter n
to avoid confusion with the abbreviation N for newton.) Friction is
negligible, so no friction force is present.

The box doesn’t move vertically, so the y-acceleration is zero:
ay, = 0. Our target variable is the x-acceleration, a,. We’ll find it
using Newton’s second law in component form, Egs. (4.8).

EXECUTE: From Fig. 4.18 only the 20-N force exerted by the
worker has a nonzero x-component. Hence the first of Egs. (4.8)
tells us that

EFXZFZZON:max

BELTICERIE Determining force from acceleration

A waitress shoves a ketchup bottle with mass 0.45 kg to her right
along a smooth, level lunch counter. The bottle leaves her hand
moving at 2.8 m/s, then slows down as it slides because of a con-
stant horizontal friction force exerted on it by the countertop. It
slides for 1.0 m before coming to rest. What are the magnitude and
direction of the friction force acting on the bottle?

4.18 Our sketch for this problem. The tiles under the box are
freshly waxed, so we assume that friction is negligible.

The box has no vertical acceleration, so the vertical
components of the net force sum to zero. Nevertheless, for
completeness, we show the vertical forces acting on the box.

' ,.-":F=20N
> ————— X

m=40k3

The x-component of acceleration is therefore

DFx 20N 20 kg-m/s’
m  40kg 40 kg

a, = = 0.50 m/s’

EVALUATE: The acceleration is in the +x-direction, the same direc-
tion as the net force. The net force is constant, so the acceleration is
also constant. If we know the initial position and velocity of the
box, we can find its position and velocity at any later time from the
constant-acceleration equations of Chapter 2.

To determine a,, we didn’t need the y-component of Newton’s
second law from Egs. (4.8), EFy = ma,. Can you use this equa-
tion to show that the magnitude n of the normal force in this situa-
tion is equal to the weight of the box?

IDENTIFY and SET UP: This problem involves forces and acceler-
ation (the slowing of the ketchup bottle), so we’ll use Newton’s
second law to solve it. As in Example 4.4, we choose a coordinate
system and identify the forces acting on the bottle (Fig. 4.19). We
choose the +x-axis to be in the direction that the bottle slides, and



4.19 Our sketch for this problem.

We draw one diagram for the bottle’s motion and one showing the forces
on the bottle.

m = 0.45 k%
Vo=2.9m|s
o | @\/X=o
J
X
O 1.0m X

take the origin to be where the bottle leaves the waitress’s hand.
The friction force f slows the bottle down, so its direction must be
opposite the direction of the bottle’s velocity (see Fig. 4.13c).

Our target variable is the magnitude f of the friction force.
We’ll find it using the x-component of Newton’s second law from
Egs. (4.8). We aren’t told the x-component of the bottle’s accelera-
tion, a,, but we know that it’s constant because the friction force that
causes the acceleration is constant. Hence we can calculate a, using
a constant-acceleration formula from Section 2.4. We know the bot-
tle’s initial and final x-coordinates (xo = 0 and x = 1.0 m) and its
initial and final x-velocity (v, = 2.8 m/s and v, = 0), so the easi-
est equation to use is Eq. (2.13), vx2 = vaz + 2a,(x — xq).

Some Notes on Units

A few words about units are in order. In the cgs metric system (not used in this
book), the unit of mass is the gram, equal to 1073 kg, and the unit of distance is
the centimeter, equal to 1072 m. The cgs unit of force is called the dyne:

ldyne = 1g-cm/s®> = 107°N

In the British system, the unit of force is the pound (or pound-force) and the unit
of mass is the slug (Fig. 4.20). The unit of acceleration is 1 foot per second

squared, so
1 pound = 1 slug - ft/s>
The official definition of the pound is
1 pound = 4.448221615260 newtons
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EXECUTE: We solve Eq. (2.13) for a,:

" v2— v _ (0 m/s)*> — (2.8 m/s)? 3o ms?
T2(x — xq) 2(1.0 m — 0 m) '

The negative sign means that the bottle’s acceleration is toward the
left in Fig. 4.19, opposite to its velocity; this is as it must be,
because the bottle is slowing down. The net force in the x-direction
is the x-component —f of the friction force, so

N F, = —f=ma, = (045 kg)(—3.9 m/s?)
= -18kg-m/s’ = —1.8 N

The negative sign shows that the net force on the bottle is toward
the left. The magnitude of the friction force is f = 1.8 N.

EVALUATE: As a check on the result, try repeating the calcula-
tion with the +x-axis to the leff in Fig. 4.19. You'll find that 2 F, is
equal to +f = +1.8 N (because the friction force is now in the
+x-direction), and again you’ll find f = 1.8 N. The answers
for the magnitudes of forces don’t depend on the choice of coor-
dinate axes!

4.20 Despite its name, the English unit
of mass has nothing to do with the type
of slug shown here. A common garden
slug has a mass of about 15 grams, or
about 1073 slug.

It is handy to remember that a pound is about 4.4 N and a newton is about
0.22 pound. Another useful fact: A body with a mass of 1 kg has a weight of about

2.2 Ib at the earth’s surface.

Table 4.2 lists the units of force, mass, and acceleration in the three systems.

Test Your Understanding of Section 4.3 Rank the following situations
in order of the magnitude of the object’s acceleration, from lowest to highest. Are

there any cases that have the same magnitude of acceleration? (i) a 2.0-kg object (N)
acted on by a 2.0-N net force; (ii) a 2.0-kg object acted on by an 8.0-N net force;
(iii) an 8.0-kg object acted on by a 2.0-N net force; (iv) an 8.0-kg object acted on

by a 8.0-N net force.

4.4 Mass and Weight

Table 4.2 Units of Force, Mass,
and Acceleration

System
(‘\@ of Units Force Mass Acceleration
MP
\) SI newton  kilogram mjs>
(kg)
cgs dyne gram cm/s?
: (dyn) (@
British pound slug ft/s?

(Ib)

One of the most familiar forces is the weight of a body, which is the gravitational
force that the earth exerts on the body. (If you are on another planet, your weight
is the gravitational force that planet exerts on you.) Unfortunately, the terms mass
and weight are often misused and interchanged in everyday conversation. It is
absolutely essential for you to understand clearly the distinctions between these

two physical quantities.
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4.21 The relationship of mass and

weight.
Falling body, Hanging body,
mass m mass m
T
i=g E] a=0
Weight - Weight -
%= mg| 2F=V W= mg|2F=0

« The relationship of mass to weight: w = mg.

« This relationship is the same whether a body
is falling or stationary.

Mass characterizes the inertial properties of a body. Mass is what keeps the
china on the table when you yank the tablecloth out from under it. The greater the
mass, the greater the force needed to cause a given acceleration; this is reflected
in Newton’s second law, Ef’ = md.

Weight, on the other hand, is a force exerted on a body by the pull of the earth.
Mass and weight are related: Bodies having large mass also have large weight. A
large stone is hard to throw because of its large mass, and hard to lift off the
ground because of its large weight.

To understand the relationship between mass and weight, note that a freely
falling body has an acceleration of magnitude g. Newton’s second law tells us
that a force must act to produce this acceleration. If a 1-kg body falls with an
acceleration of 9.8 m/ s? the required force has magnitude

F=ma = (1kg)(9.8 m/s?) = 9.8kg-m/s> = 9.8 N

The force that makes the body accelerate downward is its weight. Any body
near the surface of the earth that has a mass of 1 kg must have a weight of 9.8 N
to give it the acceleration we observe when it is in free fall. More generally, a
body with mass m must have weight with magnitude w given by

w = mg (magnitude of the weight of a body of mass m) (4.9)

Hence the magnitude w of a body’s weight is directly proportional to its mass
m. The weight of a body is a force, a vector quantity, and we can write Eq. (4.9)
as a vector equation (Fig. 4.21):

— —

w = mg (4.10)
Remember that g is the magnitude of g, the acceleration due to gravity, so g is
always a positive number, by definition. Thus w, given by Eq. (4.9), is the
magnitude of the weight and is also always positive.

CAUTION A body’s weight acts at all times It is important to understand that the weight
of a body acts on the body all the time, whether it is in free fall or not. If we suspend an
object from a rope, it is in equilibrium, and its acceleration is zero. But its weight, given
by Eq. (4.10), is still pulling down on it (Fig. 4.21). In this case the rope pulls up on the
object, applying an upward force. The vector sum of the forces is zero, but the weight
still acts.

L CENOEINSELTICEA I Net force and acceleration in free fall

In Example 2.6, a one-euro coin was dropped from rest from the
Leaning Tower of Pisa. If the coin falls freely, so that the effects
of the air are negligible, how does the net force on the coin vary
as it falls?

In free fall, the acceleration @ of the coin is constant and equal to
g. Hence by Newton’s second law the net force SF = mad is also
constant and equal to mg, which is the coin’s weight w (Fig. 4.22).
The coin’s velocity changes as it falls, but the net force acting on it
is constant. (If this surprises you, reread Conceptual Example 4.3.)

The net force on a freely falling coin is constant even if you ini-
tially toss it upward. The force that your hand exerts on the coin to
toss it is a contact force, and it disappears the instant the coin

leaves your hand. From then on, the only force acting on the coin
is its weight w.

4.22 The acceleration of a freely falling object is constant, and
so is the net force acting on the object.




Variation of g with Location

We will use g = 9.80 m/ s for problems set on the earth (or, if the other data in
the problem are given to only two significant figures, g = 9.8 m/ s?). In fact, the
value of g varies somewhat from point to point on the earth’s surface—from about
9.78 to 9.82 m/ s’ —because the earth is not perfectly spherical and because of
effects due to its rotation and orbital motion. At a point where g = 9.80 m/ 52,
the weight of a standard kilogram is w = 9.80 N. At a different point, where
g =978 m/sz, the weight is w = 9.78 N but the mass is still 1 kg. The weight
of a body varies from one location to another; the mass does not.

If we take a standard kilogram to the surface of the moon, where the accelera-
tion of free fall (equal to the value of g at the moon’s surface) is 1.62 m/ s2,
its weight is 1.62 N, but its mass is still 1 kg (Fig. 4.23). An 80.0-kg astronaut
has a weight on earth of (80.0 kg)(9.80 m/s?) = 784 N, but on the moon the
astronaut’s weight would be only (80.0 kg)(1.62 m/s?) = 130 N. In Chapter 13
we’ll see how to calculate the value of g at the surface of the moon or on other
worlds.

Measuring Mass and Weight

In Section 4.3 we described a way to compare masses by comparing their accel-
erations when they are subjected to the same net force. Usually, however, the eas-
iest way to measure the mass of a body is to measure its weight, often by
comparing with a standard. Equation (4.9) says that two bodies that have the
same weight at a particular location also have the same mass. We can compare
weights very precisely; the familiar equal-arm balance (Fig. 4.24) can determine
with great precision (up to 1 part in 10®) when the weights of two bodies are equal
and hence when their masses are equal.

The concept of mass plays two rather different roles in mechanics. The weight
of a body (the gravitational force acting on it) is proportional to its mass; we call
the property related to gravitational interactions gravitational mass. On the other
hand, we call the inertial property that appears in Newton’s second law the
inertial mass. If these two quantities were different, the acceleration due to grav-
ity might well be different for different bodies. However, extraordinarily precise
experiments have established that in fact the two are the same to a precision of
better than one part in 102,

CAUTION  pon’t confuse mass and weight The SI units for mass and weight are often
misused in everyday life. Incorrect expressions such as “This box weighs 6 kg” are
nearly universal. What is meant is that the mass of the box, probably determined indi-
rectly by weighing, is 6 kg. Be careful to avoid this sloppy usage in your own work!
In SI units, weight (a force) is measured in newtons, while mass is measured in
kilograms.

el IEN AN Mass and weight
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4.23 The weight of a 1-kilogram mass
(a) on earth and (b) on the moon.

On earth:
g =9.80 m/s2
w=mg =9.80N

On the moon:
g =162 m/s2
w=mg = 162N

4.24 An equal-arm balance determines
the mass of a body (such as an apple) by
comparing its weight to a known weight.

A2.49 X 10* N Rolls-Royce Phantom traveling in the +x-direction
makes an emergency stop; the x-component of the net force acting
onitis —1.83 X 10* N. What is its acceleration?

SOLUTION

IDENTIFY and SET UP: Our target variable is the x-component of
the car’s acceleration, a,. We use the x-component portion of New-
ton’s second law, Egs. (4.8), to relate force and acceleration. To do
this, we need to know the car’s mass. The newton is a unit for

force, however, so 2.49 X 10* N is the car’s weight, not its mass.
Hence we’ll first use Eq. (4.9) to determine the car’s mass from its
weight. The car has a positive x-velocity and is slowing down, so
its x-acceleration will be negative.

EXECUTE: The mass of the car is
249 X 10*N 249 X 10* kg-m/s”

9.80 m/s> 9.80 m/s?
= 2540 kg

Continued
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Then X F, = ma, gives

DFc  —183x 10N —1.83 X 10* kg-m/s?

of this acceleration is pretty high; passengers in this car will expe-
rience a lot of rearward force from their shoulder belts.
The acceleration is also equal to —0.735g. The number

a, =

m 2540 kg
—7.20 m/s?

2540 kg —0.735 is also the ratio of —1.83 X 10* N (the x-component of
the net force) to 2.49 X 10* N (the weight). In fact, the acceler-
ation of a body, expressed as a multiple of g, is always equal to

EVALUATE: The negative sign means that the acceleration vector  the ratio of the net force on the body to its weight. Can you see
points in the negative x-direction, as we expected. The magnitude  why?

4.25 If body A exerts a force f’A on B ON
body B, then body B exerts a force Fg o, 4
on body A that is equal in magnitude and

. . . . p=d
opposite in direction: Fy oy g = —Fpona-

ns

FAonB

yrd

FBonA

I
Test Your Understanding of Section 4.4 Suppose an astronaut landed o
on a planet where g = 19.6 m/ 52, Compared to earth, would it be easier, harder, ‘_)
or just as easy for her to walk around? Would it be easier, harder, or just as easy

for her to catch a ball that is moving horizontally at 12 m/s? (Assume that the astronaut’s
spacesuit is a lightweight model that doesn’t impede her movements in any way.) |

4.5 Newton’s Third Law

A force acting on a body is always the result of its interaction with another body,
so forces always come in pairs. You can’t pull on a doorknob without the door-
knob pulling back on you. When you kick a football, the forward force that your
foot exerts on the ball launches it into its trajectory, but you also feel the force the
ball exerts back on your foot. If you kick a boulder, the pain you feel is due to the
force that the boulder exerts on your foot.

In each of these cases, the force that you exert on the other body is in the opposite
direction to the force that body exerts on you. Experiments show that whenever two
bodies interact, the two forces that they exert on each other are always equal in mag-
nitude and opposite in direction. This fact is called Newton's third law of motion:

Newton’s third law of motion: If body A exerts a force on body B (an
“action”), then body B exerts a force on body A (a “reaction”). These two forces
have the same magnitude but are opposite in direction. These two forces act on
different bodies.

For example, in Fig. 4.25 F 'Aon g 1 the force applied by body A (first sub-
script) on body B (second subscript), and F Bona 18 the force applied by body B
(first subscript) on body A (second subscript). The mathematical statement of
Newton’s third law is

l?'A onB = — ﬁB on A (Newton’s third law of motion) 4.11

It doesn’t matter whether one body is inanimate (like the soccer ball in
Fig. 4.25) and the other is not (like the kicker): They necessarily exert forces
on each other that obey Eq. (4.11).

In the statement of Newton’s third law, “action” and “reaction” are the two
opposite forces (in Fig. 4.25, F A on g and F BonA); We sometimes refer to them as
an action-reaction pair. This is nof meant to imply any cause-and-effect rela-
tionship; we can consider either force as the “action” and the other as the “reac-
tion.” We often say simply that the forces are “equal and opposite,” meaning that
they have equal magnitudes and opposite directions.

CAUTION  The two forces in an action-reaction pair act on different hodies We stress that
the two forces described in Newton’s third law act on different bodies. This is important in
problems involving Newton’s first or second law, which involve the forces that act on a single
body. For instance, the net force on the soccer ball in Fig. 4.25 is the vector sum of the weight
of the ball and the force F ‘4 on B €xerted by the kicker. You wouldn’t include the force F BonA
because this force acts on the kicker, not on the ball.
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In Fig. 4.25 the action and reaction forces are contact forces that are present only
when the two bodies are touching. But Newton’s third law also applies to long-
range forces that do not require physical contact, such as the force of gravitational
attraction. A table-tennis ball exerts an upward gravitational force on the earth that’s
equal in magnitude to the downward gravitational force the earth exerts on the ball.
When you drop the ball, both the ball and the earth accelerate toward each other. The
net force on each body has the same magnitude, but the earth’s acceleration is
microscopically small because its mass is so great. Nevertheless, it does move!

(HLLTOEI R e ICER I Which force is greater?

After your sports car breaks down, you start to push it to the near-
est repair shop. While the car is starting to move, how does the
force you exert on the car compare to the force the car exerts on
you? How do these forces compare when you are pushing the car
along at a constant speed?

Newton’s third law says that in both cases, the force you exert
on the car is equal in magnitude and opposite in direction to the
force the car exerts on you. It’s true that you have to push harder to
get the car going than to keep it going. But no matter how hard you
push on the car, the car pushes just as hard back on you. Newton’s
third law gives the same result whether the two bodies are at rest,
moving with constant velocity, or accelerating.

You may wonder how the car “knows” to push back on you
with the same magnitude of force that you exert on it. It may help
to visualize the forces you and the car exert on each other as inter-
actions between the atoms at the surface of your hand and the
atoms at the surface of the car. These interactions are analogous to
miniature springs between adjacent atoms, and a compressed
spring exerts equally strong forces on both of its ends.

Fundamentally, though, the reason we know that objects of dif-
ferent masses exert equally strong forces on each other is that
experiment tells us so. Physics isn’t merely a collection of rules
and equations; rather, it’s a systematic description of the natural
world based on experiment and observation.

(HLLTOE R EL TR Applying Newton’s third law: Objects at rest

An apple sits at rest on a table, in equilibrium. What forces act on
the apple? What is the reaction force to each of the forces acting on
the apple? What are the action—reaction pairs?

Figure 4.26a shows the forces acting on the apple. F carth on apple 1S
the weight of the apple—that is, the downward _gravitational force
exerted Dy the earth on the apple. Similarly, Fipie on apple 18 the
upward force exerted by the table on the apple.

Figure 4.26b shows one of the action-reaction pairs involving
the apple. As the earth pulls down on the apple, with force
F carth op apples the apple exerts an equally strong upward pull on the
earth Fyppie on carth- By Newton’s third law (Eq. 4.11) we have

=

-
F apple on earth — -F earth on apple

. -2

Also, as the table pushes up on the apple with force Fypie on apples
L

the corresponding reaction is the downward force Fyppie on table

4.26 The two forces in an action—reaction pair always act on different bodies.

(a) The forces acting on the apple (b) The action-reaction pair for
the interaction between the
apple and the earth

N
F table on apple

= —

F F earth ¢on apple

| |

earth on apple

\_‘ fFapple En carth

= =

Fapple on earth f —F

earth on apple

"Action—reaction pairs always represent a
mutual interaction of two different objects.

(€) The action—reaction pair for (d) We eliminate one of the forces
the interaction between the apple acting on the apple
and the table

fﬁ « F table on apple — 0

table on apple 4=**==+-. v §

ot

—

R Feathon apple

-

‘F apple on table

|| Table

removed

H

-

F apple on earth

— <f—

= =

apple on table T —-F table on apple

o]

The two forces on the apple CANNOT
be an action—reaction pair because
they act on the same object. We see
that if we eliminate one, the other
remains.

Continued



122 CHAPTER 4 Newton’s Laws of Mation

exerted by the apple on the table (Fig. 4.26¢). For this action—
reaction pair we have

=

-
Fapple on table = Fable on apple

. The two forces acting on the.a app!e, F table on apple and
F carth on apples ar€ not an action-reaction pair, despite being equal
in magnitude and opposite in direction. They do not represent the
mutual interaction of two bodies; they are two different forces act-

ing on the same body. Figure 4.26d shows another way to see this. If
we suddenly yank the table out from under the apple, the forces
IZ’ apple on table  and _f" table on apple Suddenly become  zero, but
Fappie on carth @0d Fearin on apple are unchanged (the gravitational

interaction is still present). Becauie F table on apple 1S NOW ZeTO, it can’t
be the negative of the nonzero Feyn on apples and these two forces
can’t be an action—reaction pair. The two forces in an action—reaction
pair never act on the same body.

(LT R ELT IR Applying Newton’s third law: Objects in motion

A stonemason drags a marble block across a floor by pulling on a
rope attached to the block (Fig. 4.27a). The block is not necessarily
in equilibrium. How are the various forces related? What are the
action—reaction pairs?

We’ll use the subscripts B for the block, R for the rope, and M for
the mason. In Fig. 4.27b the vector F M on R Tepresents the force
exerted by the mason on the rope. The corresponding reaction is
the equal and opposite force F R on M €xerted by the rope on the
mason. Similarly, F R on B represents the force exerted by the rope
on the block, and the corresponding reaction is the equal and oppo-
site force F B on R €xerted by the block on the rope. For these two
action—reaction pairs, we have

—FronB

-
and FBDHR=

— —
FRonM= _FMonR

Be sure you understand that the forces F M on R and F B on R
(Fig. 4.27¢) are not an action—reaction pair, because both of these
forces act on the same body (the rope); an action and its reaction
must always act on different bodies. Furthermore, the forces
F M on R and F B on R are not necessarily equal in magnitude. Apply-
ing Newton’s second law to the rope, we get

»_4» = _ —
EF _FM omR T FB on R = Myope@rope

If the block and rope are accelerating (spegding up or slowing
down), the rope is not in equilibrium, and F; ,, g must have a

dlfferent magmtude than F B on R- BY contrast, the action—reaction
forces F M on R and F R on M are always equal in magnitude, as are
F R on B and Fg o, r- Newton’s third law holds whether or not the
bodies are accelerating.

In the special case in which the rope is in equilibrium, the forces
I?‘M on R and f‘B on R are equal in magnitude, and they are opposite in
direction. But this is an example of Newton’s first law, not his third;
these are two forces on the same body, not forces of two bodies on
each other. Another way to look at this 1s that in equlhbnum
ampe = 0 in the preceding equation. Then F BonR = -F M on R
because of Newton’s first or second law.

Another special case is if the rope is accelerating but has negligibly
small mass compared to that of the block or the mason. In this case,
Mygpe = 0 in the above equation, so again 1_5‘3 onR = —f‘M on R-
Since Newton’s third law says that F B on R @lways equals -F Fron B
(they are an action—reaction pair), in this “massless-rope” case F R on B
also equals fM on R+

For both the “massless-rope” case and the case of the rope in
equilibrium, the force of the rope on the block is equal in magnitude
and direction to the force of the mason on the rope (Fig. 4.27d).
Hence we can think of the rope as “transmitting” to the block the
force the mason exerts on the rope. This is a useful point of view,
but remember that it is valid only when the rope has negligibly
small mass or is in equilibrium.

4.27 Identifying the forces that act when a mason pulls on a rope attached to a block.

(a) The block, the rope, and the mason (b) The action—reaction pairs

—
FRonM FMonR

%<_T>
FBonR FRonB

|~

(€) Not an action-reaction pair (d) Not necessarily equal

:"‘)FRonB _-'&FMonR

These forces are equal only if
the rope is in equilibrium (or
can be treated as massless).

These forces cannot be
an action—reaction pair
because they act on the
same object (the rope).



A TR EL I CEANE A Newton’s third law paradox?

We saw in Conceptual Example 4.10 that the stonemason pulls as
hard on the rope-block combination as that combination pulls
back on him. Why, then, does the block move while the stonema-
son remains stationary?

To resolve this seeming paradox, keep in mind the difference
between Newton’s second and third laws. The only forces involved
in Newton’s second law are those that act on a given body. The
vector sum of these forces determines the body’s acceleration, if
any. By contrast, Newton’s third law relates the forces that two
different bodies exert on each other. The third law alone tells you
nothing about the motion of either body.

If the rope-block combination is initially at rest, it begins to
slide if the stonemason exerts a force F M on R that is greater in
magnitude than the friction force that the floor exerts on the block
(Fig. 4.28). (The block has a smooth underside, which helps to
minimize friction.) Then there is a net force to the right on the
rope-block combination, and it accelerates to the right. By con-
trast, the stonemason doesn 't move because the net force acting on
him is zero. His shoes have nonskid soles that don’t slip on the
floor, so the friction force that the floor exerts on him is strong
enough to balance the pull of the rope on him, F R on M- (Both the
block and the stonemason also experience a downward force of
gravity and an upward normal force exerted by the floor. These
forces balance each other and cancel out, so we haven’t included
them in Fig. 4.28.)

Once the block is moving at the desired speed, the stonemason
doesn’t need to pull as hard; he must exert only enough force to
balance the friction force on the block. Then the net force on the
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4.28 The horizontal forces acting on the block-rope combina-
tion (left) and the mason (right). (The vertical forces are not
shown.)

These forces are an action—reaction

pair. They have the same magnitude

but act on different objects.

Friction force Friction force

@\

of floor on 7 i 7 5 P of floor on
block MonR #RonM l?j)/ B mason
e

2 % 4

Mason

Block + rope

The block begins sliding if
Fy1 o g Overcomes the
friction force on the block.

The mason remains at rest if
4

Fyg ., m1s balanced by the
friction force on the mason.

moving block is zero, and the block continues to move toward the
mason at a constant velocity, in accordance with Newton’s first
law.

So the block accelerates but the stonemason doesn’t because
different amounts of friction act on them. If the floor were freshly
waxed, so that there was little friction between the floor and the
stonemason’s shoes, pulling on the rope might start the block slid-
ing to the right and start him sliding to the left.

The moral of this example is that when analyzing the motion of
a body, you must remember that only the forces acting on a body
determine its motion. From this perspective, Newton’s third law is
merely a tool that can help you determine what those forces are.

I

A body that has pulling forces applied at its ends, such as the rope in Fig. 4.27,
is said to be in tension. The tension at any point is the magnitude of force acting
at that point (see F1g 4.2¢). In Flg 4.27b the tension at the right end of the rope is
the magmtude of FM onR (or of F R on M)s and the tension at the left end equals the
magnitude of FB onR (or of FR on B)- If the rope is in equilibrium and if no forces
act except at its ends, the tensmn is the same at both ends and throughout the
rope. Thus, if the magnitudes of FB onR and F MonR are 50N each the tension in
the rope is 50 N (not 100 N). The fotal force vector F BonR + F M on R acting on

the rope in this case is zero!

We emphasize once more a fundamental truth: The two forces in an
action—reaction pair never act on the same body. Remembering this simple fact
can often help you avoid confusion about action—reaction pairs and Newton’s

third law.

Test Your Understanding of Section 4.5 You are driving your car on a
country road when a mosquito splatters on the windshield. Which has the greater

@

magnitude: the force that the car exerted on the mosquito or the force that the
mosquito exerted on the car? Or are the magnitudes the same? If they are different,
how can you reconcile this fact with Newton’s third law? If they are equal, why is the

mosquito splattered while the car is undamaged?
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4.29 The simple act of walking depends
crucially on Newton’s third law. To start
moving forward, you push backward on
the ground with your foot. As a reaction,
the ground pushes forward on your foot
(and hence on your body as a whole) with
a force of the same magnitude. This
external force provided by the ground is
what accelerates your body forward.

4.6 Free-Body Diagrams

Newton’s three laws of motion contain all the basic principles we need to solve a
wide variety of problems in mechanics. These laws are very simple in form, but
the process of applying them to specific situations can pose real challenges. In
this brief section we’ll point out three key ideas and techniques to use in any
problems involving Newton’s laws. You’ll learn others in Chapter 5, which also
extends the use of Newton’s laws to cover more complex situations.

1. Newton’s first and second laws apply to a specific body. Whenever you use
Newton’s first law, Eﬁ = 0, for an equilibrium situation or Newton’s second
law, Ef’ = md, for a nonequilibrium situation, you must decide at the
beginning to which body you are referring. This decision may sound triv-
ial, but it isn’t.

2. Only forces acting on the body matter. The sum SF includes all the forces
that act on the body in question. Hence, once you’ve chosen the body to
analyze, you have to identify all the forces acting on it. Don’t get confused
between the forces acting on a body and the forces exerted by that body on
some other body. For example, to analyze a person walking, you would
include in D F the force that the ground exerts on the person as he walks,
but not the force that the person exerts on the ground (Fig. 4.29). These
forces form an action—reaction pair and are related by Newton’s third law,
but only the member of the pair that acts on the body you’re working with
goes into DF.

3. Free-body diagrams are essential to help identify the relevant forces. A
free-body diagram is a diagram showing the chosen body by itself,
“free” of its surroundings, with vectors drawn to show the magnitudes
and directions of all the forces applied to the body by the various other
bodies that interact with it. We have already shown some free-body dia-
grams in Figs. 4.18, 4.19, 4.21, and 4.26a. Be careful to include all the
forces acting on the body, but be equally careful not to include any forces
that the body exerts on any other body. In particular, the two forces in an
action—reaction pair must never appear in the same free-body diagram
because they never act on the same body. Furthermore, forces that a body
exerts on itself are never included, since these can’t affect the body’s
motion.

CAUTION  Forces in free-body diagrams When you have a complete free-body diagram,
you must be able to answer this question for each force: What other body is applying this
force? If you can’t answer that question, you may be dealing with a nonexistent force. Be
especially on your guard to avoid nonexistent forces such as “the force of acceleration” or
“the md force,” discussed in Section 4.3.

When a problem involves more than one body, you have to take the problem
apart and draw a separate free-body diagram for each body. For example, Fig. 4.27¢
shows a separate free-body diagram for the rope in the case in which the rope is
considered massless (so that no gravitational force acts on it). Figure 4.28 also
shows diagrams for the block and the mason, but these are not complete free-
body diagrams because they don’t show all the forces acting on each body. (We
left out the vertical forces—the weight force exerted by the earth and the upward
normal force exerted by the floor.)

Figure 4.30 presents three real-life situations and the corresponding complete
free-body diagrams. Note that in each situation a person exerts a force on some-
thing in his or her surroundings, but the force that shows up in the person’s free-
body diagram is the surroundings pushing back on the person.
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Test Your Understanding of Section 4.6 The buoyancy force shown @@
in Fig. 4.30c is one half of an action-reaction pair. What force is the other half of ,,._)
this pair? (i) the weight of the swimmer; (ii) the forward thrust force; (iii) the
backward drag force; (iv) the downward force that the swimmer exerts on the water;
(v) the backward force that the swimmer exerts on the water by kicking.

4.30 Examples of free-body diagrams. Each free-body diagram shows all of the external forces that act on the object in question.

@ OF

N
n
To jump up, this
player will push
down against the
O e gkl . floor, increasing
P : Fojock on runner the upward reaction
B force 72 of the floor
3 W on him.
X r «
The force of the starting block on the : >
runner has a vertical component that Thi.s player is a W

counteracts her weight and a large
horizontal component that accelerates her.

freely falling object.

.- The water exerts a buoyancy force that
_¥ counters the swimmer’s weight.
F buoyancy

o ——— 4o,
o Fiprust F drag

Kicking causes the water to
exert a forward reaction force,
or thrust, on the swimmer.

Thrust is countered by drag
W forces exerted by the water
on the moving swimmer.




CHAPTER 4 SUMMARY

Force as a vector: Force is a quantitative measure
of the interaction between two bodies. It is a vector
quantity. When several forces act on a body, the
effect on its motion is the same as when a single
force, equal to the vector sum (resultant) of the
forces, acts on the body. (See Example 4.1.)

The net force on a body and Newton’s first law: 217‘ =0
Newton'’s first law states that when the vector sum

of all forces acting on a body (the net force) is

zero, the body is in equilibrium and has zero

acceleration. If the body is initially at rest, it

remains at rest; if it is initially in motion, it

continues to move with constant velocity. This

law is valid only in inertial frames of reference.

(See Examples 4.2 and 4.3.)

Mass, acceleration, and Newton’s second law: The 217’ = ma
inertial properties of a body are characterized by its

mass. The acceleration of a body under the action E F, = ma,
of a given set of forces is directly proportional to

the vector sum of the forces (the net force) and E F, = may
inversely proportional to the mass of the body. This

relationship is Newton’s second law. Like Newton’s >F, = ma,

first law, this law is valid only in inertial frames of
reference. The unit of force is defined in terms of
the units of mass and acceleration. In SI units, the
unit of force is the newton (N), equal to 1 kg - m/ s2.
(See Examples 4.4 and 4.5.)

Weight: The weight w of a body is the gravitational w = mg
force exerted on it by the earth. Weight is a vector

quantity. The magnitude of the weight of a body

at any specific location is equal to the product

of its mass m and the magnitude of the acceleration

due to gravity g at that location. While the weight

of a body depends on its location, the mass is

independent of location. (See Examples 4.6

and 4.7.)

Newton’s third law and action—-reaction pairs: ﬁ‘A onB = — ﬁ'B onA
Newton’s third law states that when two bodies

interact, they exert forces on each other that at each

instant are equal in magnitude and opposite in

direction. These forces are called action and reac-

tion forces. Each of these two forces acts on only

one of the two bodies; they never act on the same

body. (See Examples 4.8-4.11.)
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Links in a Chain

A student suspends a chain consisting of three links, each of mass
m = 0.250 kg, from a light rope. She pulls upward on the rope, so
that the rope applies an upward force of 9.00 N to the chain. (a) Draw
a free-body diagram for the entire chain, considered as a body, and
one for each of the three links. (b) Use the diagrams of part (a) and
Newton’s laws to find (i) the acceleration of the chain, (ii) the force
exerted by the top link on the middle link, and (iii) the force exerted
by the middle link on the bottom link. Treat the rope as massless.

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP

1. There are four objects of interest in this problem: the chain as a
whole and the three individual links. For each of these four
objects, make a list of the external forces that act on it. Besides
the force of gravity, your list should include only forces exerted
by other objects that touch the object in question.

2. Some of the forces in your lists form action—reaction pairs (one
pair is the force of the top link on the middle link and the force
of the middle link on the top link). Identify all such pairs.

3. Use your lists to help you draw a free-body diagram for each of
the four objects. Choose the coordinate axes.

O

Prohlems

For instructor-assigned homework, go to www.masteringphysics.com

1217

Discussion Questions

4. Use your lists to decide how many unknowns there are in this
problem. Which of these are target variables?

EXECUTE

5. Write a Newton’s second law equation for each of the four
objects, and write a Newton’s third law equation for each
action—reaction pair. You should have at least as many equa-
tions as there are unknowns (see step 4). Do you?

6. Solve the equations for the target variables.

EVALUATE

7. You can check your results by substituting them back into the
equations from step 6. This is especially important to do if you
ended up with more equations in step 5 than you used in step 6.

8. Rank the force of the rope on the chain, the force of the top link
on the middle link, and the force of the middle link on the bot-
tom link in order from smallest to largest magnitude. Does this
ranking make sense? Explain.

9. Repeat the problem for the case where the upward force that
the rope exerts on the chain is only 7.35 N. Is the ranking in
step 8 the same? Does this make sense?

(‘J

e, *o, eso: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALE: Problems

requiring calculus. BI0: Biosciences problems.

DISCUSSION QUESTIONS

04.1 Can a body be in equilibrium when only one force acts on it?
Explain.

084.2 A ball thrown straight up has zero velocity at its highest
point. Is the ball in equilibrium at this point? Why or why not?
@84.3 A helium balloon hovers in midair, neither ascending nor
descending. Is it in equilibrium? What forces act on it?

04.4 When you fly in an airplane at night in smooth air, there is no
sensation of motion, even though the plane may be moving at
800 km/h (500 mi/h). Why is this?

04.5 If the two ends of a rope in equilibrium are pulled with forces
of equal magnitude and opposite direction, why is the total tension
in the rope not zero?

04.6 You tie a brick to the end of a rope and whirl the brick around
you in a horizontal circle. Describe the path of the brick after you
suddenly let go of the rope.

04.7 When a car stops suddenly, the passengers tend to move for-
ward relative to their seats. Why? When a car makes a sharp turn,
the passengers tend to slide to one side of the car. Why?

04.8 Some people say that the “force of inertia” (or “force of
momentum”) throws the passengers forward when a car brakes
sharply. What is wrong with this explanation?

04.9 A passenger in a moving bus with no windows notices that a
ball that has been at rest in the aisle suddenly starts to move toward

the rear of the bus. Think of two different possible explanations,
and devise a way to decide which is correct.

04.10 Suppose you chose the fundamental SI units to be force,
length, and time instead of mass, length, and time. What would be
the units of mass in terms of those fundamental units?

084.11 Some of the ancient Greeks thought that the “natural state”
of an object was to be at rest, so objects would seek their natural
state by coming to rest if left alone. Explain why this incorrect
view can actually seem quite plausible in the everyday world.
04.12 Why is the earth only approximately an inertial reference
frame?

04.13 Does Newton’s second law hold true for an observer in a
van as it speeds up, slows down, or rounds a corner? Explain.
04.14 Some students refer to the quantity ma as “the force of
acceleration.” Is it correct to refer to this quantity as a force? If so,
what exerts this force? If not, what is a better description of this
quantity?

04.15 The acceleration of a falling body is measured in an eleva-
tor traveling upward at a constant speed of 9.8 m/s. What result is
obtained?

084.16 You can play catch with a softball in a bus moving with
constant speed on a straight road, just as though the bus were at
rest. Is this still possible when the bus is making a turn at constant
speed on a level road? Why or why not?
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04.17 Students sometimes say that the force of gravity on an
object is 9.8 m/sz. What is wrong with this view?

04.18 The head of a hammer begins to come loose from its
wooden handle. How should you strike the handle on a concrete
sidewalk to reset the head? Why does this work?

84.19 Why can it hurt your foot more to kick a big rock than a
small pebble? Must the big rock hurt more? Explain.

04.20 “It’s not the fall that hurts you; it’s the sudden stop at the
bottom.” Translate this saying into the language of Newton’s laws
of motion.

04.21 A person can dive into water from a height of 10 m without
injury, but a person who jumps off the roof of a 10-m-tall building
and lands on a concrete street is likely to be seriously injured. Why
is there a difference?

04.22 Why are cars designed to crumple up in front and back for
safety? Why not for side collisions and rollovers?

04.23 When a bullet is fired from a rifle, what is the origin of the
force that accelerates the bullet?

04.24 When a string barely strong enough lifts a heavy weight, it
can lift the weight by a steady pull; but if you jerk the string, it will
break. Explain in terms of Newton’s laws of motion.

04.25 A large crate is suspended from the end of a vertical rope. Is
the tension in the rope greater when the crate is at rest or when it is
moving upward at constant speed? If the crate is traveling upward,
is the tension in the rope greater when the crate is speeding up or
when it is slowing down? In each case explain in terms of Newton’s
laws of motion.

04.26 Which feels a greater pull due to the earth’s gravity, a 10-kg
stone or a 20-kg stone? If you drop them, why does the 20-kg
stone not fall with twice the acceleration of the 10-kg stone?
Explain your reasoning.

04.27 Why is it incorrect to say that 1.0 kg equals 2.2 1b?

04.28 A horse is hitched to a wagon. Since the wagon pulls back on
the horse just as hard as the horse pulls on the wagon, why doesn’t the
wagon remain in equilibrium, no matter how hard the horse pulls?
04.29 True or false? You exert a push P on an object and it pushes
back on you with a force F. If the object is moving at constant
velocity, then F'is equal to P, but if the object is being accelerated,
then P must be greater than F.

04.30 A large truck and a small compact car have a head-on collision.
During the collision, the truck exerts a force i‘T on c on the car, and
the car exerts a force f’c on T On the truck. Which force has the larger
magnitude, or are they the same? Does your answer depend on how
fast each vehicle was moving before the collision? Why or why not?
04.31 When a car comes to a stop on a level highway, what force
causes it to slow down? When the car increases its speed on the
same highway, what force causes it to speed up? Explain.

04.32 A small compact car is pushing a large van that has broken
down, and they travel along the road with equal velocities and
accelerations. While the car is speeding up, is the force it exerts on
the van larger than, smaller than, or the same magnitude as the
force the van exerts on it? Which object, the car or the van, has the
larger net force on it, or are the net forces the same? Explain.
04.33 Consider a tug-of-war between two people who pull in
opposite directions on the ends of a rope. By Newton’s third law,
the force that A exerts on B is just as great as the force that B exerts
on A. So what determines who wins? (Hint: Draw a free-body dia-
gram showing all the forces that act on each person.)

04.34 On the moon, g = 1.62 m/s”. If a 2-kg brick drops on your
foot from a height of 2 m, will this hurt more, or less, or the same if it
happens on the moon instead of on the earth? Explain. If a 2-kg brick
is thrown and hits you when it is moving horizontally at 6 m/s, will
this hurt more, less, or the same if it happens on the moon instead of

on the earth? Explain. (On the moon, assume that you are inside a
pressurized structure, so you are not wearing a spacesuit.)

04.35 A manual for student pilots contains the following passage:
“When an airplane flies at a steady altitude, neither climbing nor
descending, the upward lift force from the wings equals the air-
plane’s weight. When the airplane is climbing at a steady rate, the
upward lift is greater than the weight; when the airplane is
descending at a steady rate, the upward lift is less than the weight.”
Are these statements correct? Explain.

04.36 If your hands are wet and no towel is handy, you can
remove some of the excess water by shaking them. Why does this
get rid of the water?

04.37 If you are squatting down (such as when you are examining
the books on the bottom shelf in a library or bookstore) and suddenly
get up, you can temporarily feel light-headed. What do Newton’s
laws of motion have to say about why this happens?

04.38 When a car is hit from behind, the passengers can receive a
whiplash. Use Newton’s laws of motion to explain what causes
this to occur.

04.39 In a head-on auto collision, passengers not wearing seat
belts can be thrown through the windshield. Use Newton’s laws of
motion to explain why this happens.

04.40 In a head-on collision between a compact 1000-kg car and a
large 2500-kg car, which one experiences the greater force?
Explain. Which one experiences the greater acceleration? Explain
why. Now explain why passengers in the small car are more likely
to be injured than those in the large car, even if the bodies of both
cars are equally strong.

04.41 Suppose you are in a rocket with no windows, traveling in
deep space far from any other objects. Without looking outside the
rocket or making any contact with the outside world, explain how you
could determine if the rocket is (a) moving forward at a constant 80%
of the speed of light and (b) accelerating in the forward direction.

EXERCISES

Section 4.1 Force and Interactions

4.1 - Two forces have the same magnitude F. What is the angle
betyveen the two Ve.ctors if Figure E4.2

their sum has a magnitude of y

(a) 2F? (b) V2F? (c) zero?
Sketch the three vectors in
each case.

4.2 <+ Workmen are trying to 32°
free an SUV stuck in the mud.

To extricate the vehicle, they

use three horizontal ropes, pro- X
ducing the force vectors shown 530
in Fig. E4.2. (a) Find the x- and
y-components of each of the
three pulls. (b) Use the compo-
nents to find the magnitude
and direction of the resultant
of the three pulls.

4.3 - BI0 Jaw Injury. Due
to a jaw injury, a patient must
wear a strap (Fig. E4.3) that
produces a net upward force of
5.00 N on his chin. The tension
is the same throughout the
strap. To what tension must
the strap be adjusted to provide
the necessary upward force?

788 N

985 N

411N

Figure E4.3




Figure E4.4

44 - A man is dragging a
trunk up the loading ramp of a
mover’s truck. The ramp has
a slope angle of 20.0°, and the
man pulls upward with a force
F whose direction makes an
angle of 30.0° with the ramp
(Fig. E4.4). (a) How large a
force F is necessary for the
component F, parallel to the
ramp to be 60.0 N? (b) How large will the component F perpendi-
cular to the ramp then be?

4.5 - Two dogs pull horizontally on ropes attached to a post; the
angle between the ropes is 60.0°. If dog A exerts a force of 270 N
and dog B exerts a force of 300 N, find the magnitude of the
resultant force and the angle it makes with dog A’s rope.

4.6 - Two forces, F 1 and FQ, act at a point. The magnitude of F 1
is 9.00 N, and its direction is 60.0° above the x-axis in the second
quadrant. The magnitude of f‘z is 6.00 N, and its direction is 53.1°
below the x-axis in the third quadrant. (a) What are the x- and
y-components of the resultant force? (b) What is the magnitude of
the resultant force?

Section 4.3 Newton’s Second Law

4.7 -+ A 68.5-kg skater moving initially at 2.40 m/s on rough
horizontal ice comes to rest uniformly in 3.52 s due to friction
from the ice. What force does friction exert on the skater?

4.8 -+ You walk into an elevator, step onto a scale, and push the
“up” button. You also recall that your normal weight is 625 N.
Start answering each of the following questions by drawing a free-
body diagram. (a) If the elevator has an acceleration of magnitude
2.50 m/sz, what does the scale read? (b) If you start holding a
3.85-kg package by a light vertical string, what will be the tension
in this string once the elevator begins accelerating?

4.9 - A box rests on a frozen pond, which serves as a frictionless
horizontal surface. If a fisherman applies a horizontal force with
magnitude 48.0 N to the box and produces an acceleration of mag-
nitude 3.00 m/sz, what is the mass of the box?

4.10 -- A dockworker applies a constant horizontal force of 80.0 N
to a block of ice on a smooth horizontal floor. The frictional force is
negligible. The block starts from rest and moves 11.0 m in 5.00 s.
(a) What is the mass of the block of ice? (b) If the worker stops
pushing at the end of 5.00 s, how far does the block move in the
next 5.00 s?

4.11 - A hockey puck with mass 0.160 kg is at rest at the origin
(x = 0) on the horizontal, frictionless surface of the rink. At time
t = 0 a player applies a force of 0.250 N to the puck, parallel to
the x-axis; he continues to apply this force until # = 2.00 s.
(a) What are the position and speed of the puck at + = 2.00 s?
(b) If the same force is again applied at + = 5.00 s, what are the
position and speed of the puck at r = 7.00 s?

4.12 - A crate with mass 32.5 kg initially at rest on a warehouse
floor is acted on by a net horizontal force of 140 N. (a) What accel-
eration is produced? (b) How far does the crate travel in 10.0 s?
(c) What is its speed at the

end of 10.0 s Figure E4.13
413 -+ A 4.50-kg toy cart a, (mfs?)
undergoes an acceleration in IOXO -

a straight line (the x-axis).
The graph in Fig. E4.13 5.0
shows this acceleration as a
function of time. (a) Find the

Lt (s)
ol 20 40 60
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maximum net force on this cart. When does this maximum force
occur? (b) During what times is the net force on the cart a con-
stant? (c) When is the net force equal to zero?

4.14 - A2.75-kg cat moves  Figure E4.14

in a straight line (the x-
axis). Figure E4.14 shows a
graph of the x-component of
this cat’s velocity as a func-
tion of time. (a) Find the max-
imum net force on this cat.
When does this force occur?
(b) When is the net force on
the cat equal to zero? (c) What is the net force at time 8.5 s?

. L1 11 1)
O| 20 40 6.0 8.0 10.0

4.15 - A small 8.00-kg rocket burns fuel that exerts a time-varying
upward force on the rocket as the rocket moves upward from the
launch pad. This force obeys the equation ¥ = A + Bt?. Measure-
ments show that at t = 0, the force is 100.0 N, and at the end of
the first 2.00 s, it is 150.0 N. (a) Find the constants A and B, includ-
ing their ST units. (b) Find the net force on this rocket and its accel-
eration (i) the instant after the fuel ignites and (ii) 3.00 s after fuel
ignition. (c) Suppose you were using this rocket in outer space, far
from all gravity. What would its acceleration be 3.00 s after fuel
ignition?

4.16 - An electron (mass = 9.11 X 107! kg) leaves one end of
a TV picture tube with zero initial speed and travels in a straight
line to the accelerating grid, which is 1.80 cm away. It reaches the
grid with a speed of 3.00 X 10° m/s. If the accelerating force is
constant, compute (a) the acceleration; (b) the time to reach the
grid; (c) the net force, in newtons. (You can ignore the gravita-
tional force on the electron.)

Section 4.4 Mass and Weight

4.17 - Superman throws a 2400-N boulder at an adversary. What
horizontal force must Superman apply to the boulder to give it a
horizontal acceleration of 12.0 m/s>?

4.18 - BID (a) An ordinary flea has a mass of 210 ug. How many
newtons does it weigh? (b) The mass of a typical froghopper is
12.3 mg. How many newtons does it weigh? (c) A house cat typi-
cally weighs 45 N. How many pounds does it weigh, and what is
its mass in kilograms?

4.19 - At the surface of Jupiter’s moon Io, the acceleration due
to gravity is g = 1.81 m/sz. A watermelon weighs 44.0 N at the
surface of the earth. (a) What is the watermelon’s mass on the
earth’s surface? (b) What are its mass and weight on the surface
of Io?

4.20 - An astronaut’s pack weighs 17.5 N when she is on earth
but only 3.24 N when she is at the surface of an asteroid. (a) What
is the acceleration due to gravity on this asteroid? (b) What is the
mass of the pack on the asteroid?

Section 4.5 Newton’s Third Law

4.21 - BID World-class sprinters can accelerate out of the starting
blocks with an acceleration that is nearly horizontal and has mag-
nitude 15 m/ s2. How much horizontal force must a 55-kg sprinter
exert on the starting blocks during a start to produce this accelera-
tion? Which body exerts the force that propels the sprinter: the
blocks or the sprinter herself?

4.22 A small car (mass 380 kg) is pushing a large truck (mass
900 kg) due east on a level road. The car exerts a horizontal force
of 1200 N on the truck. What is the magnitude of the force that the
truck exerts on the car?
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4.23 Boxes A and B are in Figure E4.23

contact on a horizontal, fric-

tionless surface, as shown in 100N

Fig. E4.23. Box A has mass A

20.0 kg and box B has mass J B

5.0 kg. A horizontal force of
100 N is exerted on box A.
What is the magnitude of the
force that box A exerts on box B?

4.24 -+ The upward normal force exerted by the floor is 620 N on
an elevator passenger who weighs 650 N. What are the reaction
forces to these two forces? Is the passenger accelerating? If so,
what are the magnitude and direction of the acceleration?

4.25 -+ A student with mass 45 kg jumps off a high diving board.
Using 6.0 X 10%* kg for the mass of the earth, what is the acceler-
ation of the earth toward her as she accelerates toward the earth
with an acceleration of 9.8 m/s?? Assume that the net force on the
earth is the force of gravity she exerts on it.

Section 4.6 Free-Body Diagrams

4.26 - An athlete throws a ball of mass m directly upward, and it
feels no appreciable air resistance. Draw a free-body diagram of
this ball while it is free of the athlete’s hand and (a) moving
upward; (b) at its highest point; (c) moving downward. (d) Repeat
parts (a), (b), and (c) if the athlete throws the ball at a 60° angle
above the horizontal instead of directly upward.

4.27 -+ Two crates, A and B, sit at rest side by side on a friction-
less horizontal surface. The crates have masses m, and mpg. A
horizontal force F is applied to crate A and the two crates move off
to the right. (a) Draw clearly labeled free-body diagrams for crate
A and for crate B. Indicate which pairs of forces, if any, are third-
law action—reaction pairs. (b) If the magnitude of force F is less
than the total weight of the two crates, will it cause the crates to
move? Explain.

4.28 - A person pulls hori- Figure E4.28
zontally on block B in Fig.
E4.28, causing both blocks to ‘ A ‘

move together as a unit. While
this system is moving, make a
carefully labeled free-body dia-
gram of block A if (a) the table
is frictionless and (b) there is friction between block B and the
table and the pull is equal to the friction force on block B due to
the table.

4.29 - A ball is hanging from a long string that is tied to the ceil-
ing of a train car traveling eastward on horizontal tracks. An
observer inside the train car sees the ball hang motionless. Draw a
clearly labeled free-body diagram for the ball if (a) the train has a
uniform velocity, and (b) the train is speeding up uniformly. Is the
net force on the ball zero in either case? Explain.

4.30 -+ CP A .22 rifle bullet, traveling at 350 m/s, strikes a large
tree, which it penetrates to a depth of 0.130 m. The mass of the
bullet is 1.80 g. Assume a constant retarding force. (a) How much
time is required for the bullet to stop? (b) What force, in newtons,
does the tree exert on the bullet?

4.31 < A chair of mass 12.0 kg is sitting on the horizontal floor;
the floor is not frictionless. You push on the chair with a force
F = 40.0 N that is directed at an angle of 37.0° below the horizon-
tal and the chair slides along the floor. (a) Draw a clearly labeled
free-body diagram for the chair. (b) Use your diagram and Newton’s
laws to calculate the normal force that the floor exerts on the chair.

B p— Pull

Horizontal table

4.32 - A skier of mass 65.0 kg is pulled up a snow-covered slope
at constant speed by a tow rope that is parallel to the ground. The
ground slopes upward at a constant angle of 26.0° above the hori-
zontal, and you can ignore friction. (a) Draw a clearly labeled free-
body diagram for the skier. (b) Calculate the tension in the tow rope.

PROBLEMS

4.33 CP A 4.80-kg bucket of water is accelerated upward by a
cord of negligible mass whose breaking strength is 75.0 N. If the
bucket starts from rest, what is the minimum time required to raise
the bucket a vertical distance of 12.0 m without breaking the cord?
4.34 --- A large box containing your new computer sits on the
bed of your pickup truck. You are stopped at a red light. The light
turns green and you stomp on the gas and the truck accelerates. To
your horror, the box starts to slide toward the back of the truck.
Draw clearly labeled free-body diagrams for the truck and for the
box. Indicate pairs of forces, if any, that are third-law action—
reaction pairs. (The bed of the truck is not frictionless.)

4.35 < Two horses pull horizontally on ropes attached to a
stump. The two forces 771 and F’z that they apply to the stump are
such that the net (resultant) force R hasa magnitude equal to that
of 771 and makes an angle of 90° with 771. Let F; = 1300 N and
R = 1300 N also. Find the magnitude of F » and its direction (rela-
tive to F D-

4.36 -+ CP You have just landed on Planet X. You take out a 100-g
ball, release it from rest from a height of 10.0 m, and measure that
it takes 2.2 s to reach the ground. You can ignore any force on the
ball from the atmosphere of the planet. How much does the 100-g
ball weigh on the surface of Planet X?

4.37 -+ Two adults and a child
want to push a wheeled cart in the
direction marked x in Fig. P4.37.
The two adults push with hori-
zontal forces F 1 and F > as shown
in the figure. (a) Find the magni-
tude and direction of the smallest
force that the child should exert.
You can ignore the effects of fric-
tion. (b) If the child exerts the
minimum force found in part (a),
the cart accelerates at 2.0 m/s>
in the +x-direction. What is the
weight of the cart?

4.38 - CP An oil tanker’s engines have broken down, and the
wind is blowing the tanker straight toward a reef at a constant
speed of 1.5 m/s (Fig. P4.38). When the tanker is 500 m from the
reef, the wind dies down just as the engineer gets the engines going
again. The rudder is stuck, so the only choice is to try to accelerate
straight backward away from the reef. The mass of the tanker and
cargo is 3.6 X 107 kg, and the engines produce a net horizontal
force of 8.0 X 10* N on the tanker. Will the ship hit the reef? If it
does, will the oil be safe? The hull can withstand an impact at a
speed of 0.2 m/s or less. You can ignore the retarding force of the
water on the tanker’s hull.

Figure P4.37

Figure P4.38

F =
8.0 X 10*N
IR G—

3.6 X 107 kg '

v=15 m/s
——

500 m




4.39 -+ CP BID A Standing Vertical Jump. Basketball player
Darrell Griffith is on record as attaining a standing vertical jump of
1.2 m (4 ft). (This means that he moved upward by 1.2 m after his
feet left the floor.) Griffith weighed 890 N (200 1b). (a) What is his
speed as he leaves the floor? (b) If the time of the part of the jump
before his feet left the floor was 0.300 s, what was his average
acceleration (magnitude and direction) while he was pushing
against the floor? (c) Draw his free-body diagram (see Section 4.6).
In terms of the forces on the diagram, what is the net force on him?
Use Newton’s laws and the results of part (b) to calculate the aver-
age force he applied to the ground.

4.40 -+ CP An advertisement claims that a particular automobile
can “stop on a dime.” What net force would actually be necessary
to stop a 850-kg automobile traveling initially at 45.0 km/h in a
distance equal to the diameter of a dime, which is 1.8 cm?

4.41 -+ BEI0 Human Biomechanics. The fastest pitched baseball
was measured at 46 m/s. Typically, a baseball has a mass of 145 g. If
the pitcher exerted his force (assumed to be horizontal and constant)
over a distance of 1.0 m, (a) what force did he produce on the ball
during this record-setting pitch? (b) Draw free-body diagrams of the
ball during the pitch and just affer it left the pitcher’s hand.

4.42 -- BI0 Human Biomechanics. The fastest served tennis
ball, served by “Big Bill” Tilden in 1931, was measured at
73.14 m/s. The mass of a tennis ball is 57 g, and the ball is typi-
cally in contact with the tennis racquet for 30.0 ms, with the ball
starting from rest. Assuming constant acceleration, (a) what force
did Big Bill’s tennis racquet exert on the tennis ball if he hit it
essentially horizontally? (b) Draw free-body diagrams of the tennis
ball during the serve and just after it moved free of the racquet.
4.43 - Two crates, one with mass 4.00 kg and the other with
mass 6.00 kg, sit on the frictionless surface of a frozen pond,
connected by a light rope (Fig. P4.43). A woman wearing golf
shoes (so she can get traction on the ice) pulls horizontally on the
6.00-kg crate with a force F' that gives the crate an acceleration of
2.50 m/sz. (a) What is the acceleration of the 4.00-kg crate?
(b) Draw a free-body diagram for the 4.00-kg crate. Use that
diagram and Newton’s second law to find the tension 7 in the
rope that connects the two crates. (c) Draw a free-body diagram
for the 6.00-kg crate. What is the direction of the net force on
the 6.00-kg crate? Which is larger in magnitude, force T or force
F? (d) Use part (c) and Newton’s second law to calculate the
magnitude of the force F.

Figure P4.43
6.00 kg
40k g F

4.44 - An astronaut is tethered by a strong cable to a spacecraft.
The astronaut and her spacesuit have a total mass of 105 kg, while
the mass of the cable is negligible. The mass of the spacecraft is
9.05 X 10* kg. The spacecraft is far from any large astronomical
bodies, so we can ignore the gravitational forces on it and the
astronaut. We also assume that both the spacecraft and the astro-
naut are initially at rest in an inertial reference frame. The astro-
naut then pulls on the cable with a force of 80.0 N. (a) What force
does the cable exert on the astronaut? (b) Since Ef*’ = md, how
can a “massless” (m = 0) cable exert a force? (c) What is the
astronaut’s acceleration? (d) What force does the cable exert on the
spacecraft? (e) What is the acceleration of the spacecraft?
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4.45 - CALC To study damage to aircraft that collide with large
birds, you design a test gun that will accelerate chicken-sized
objects so that their displacement along the gun barrel is given
by x = (9.0 X 103 m/s?)t> — (8.0 X 10* m/s®)r>. The object
leaves the end of the barrel at # = 0.025 s. (a) How long must the
gun barrel be? (b) What will be the speed of the objects as they
leave the end of the barrel? (c) What net force must be exerted on a
1.50-kg object at (i) + = 0 and (ii) + = 0.025 s?

4.46 - A spacecraft descends vertically near the surface of Planet X.
An upward thrust of 25.0 kN from its engines slows it down at a
rate of 1.20 m/s%, but it speeds up at a rate of 0.80 m/s” with an
upward thrust of 10.0 kN. (a) In each case, what is the direction of the
acceleration of the spacecraft? (b) Draw a free-body diagram for
the spacecraft. In each case, speeding up or slowing down, what is the
direction of the net force on the spacecraft? (c) Apply Newton’s sec-
ond law to each case, slowing down or speeding up, and use this to
find the spacecraft’s weight near the surface of Planet X.

4.47 -+ CP A 6.50-kg instrument is hanging by a vertical wire
inside a space ship that is blasting off at the surface of the earth.
This ship starts from rest and reaches an altitude of 276 min 15.0 s
with constant acceleration. (a) Draw a free-body diagram for the
instrument during this time. Indicate which force is greater. (b)
Find the force that the wire exerts on the instrument.

4.48 -+ Suppose the rocket in Problem 4.47 is coming in for a
vertical landing instead of blasting off. The captain adjusts the
engine thrust so that the magnitude of the rocket’s acceleration is
the same as it was during blast-off. Repeat parts (a) and (b).

4.49 -+ BI0 Insect Dynamics. The froghopper (Philaenus spumar-
ius), the champion leaper of the insect world, has a mass of 12.3
mg and leaves the ground (in the most energetic jumps) at 4.0 m/s
from a vertical start. The jump itself lasts a mere 1.0 ms before the
insect is clear of the ground. Assuming constant acceleration, (a)
draw a free-body diagram of this mighty leaper while the jump is
taking place; (b) find the force that the ground exerts on the
froghopper during its jump; and (c) express the force in part (b) in
terms of the froghopper’s weight.

4.50 - A loaded elevator with very worn cables has a total mass
of 2200 kg, and the cables can withstand a maximum tension of
28,000 N. (a) Draw the free-body force diagram for the elevator. In
terms of the forces on your diagram, what is the net force on the
elevator? Apply Newton’s second law to the elevator and find the
maximum upward acceleration for the elevator if the cables are not
to break. (b) What would be the answer to part (a) if the elevator
were on the moon, where g = 1.62 m/s>?

4.51 -+ CP Jumping to the Ground. A 75.0-kg man steps off a
platform 3.10 m above the ground. He keeps his legs straight as he
falls, but at the moment his feet touch the ground his knees begin to
bend, and, treated as a particle, he moves an additional 0.60 m
before coming to rest. (a) What is his speed at the instant his feet
touch the ground? (b) Treating him as a particle, what is his accel-
eration (magnitude and direction) as he slows down, if the acceler-
ation is assumed to be constant? (c) Draw his free-body diagram
(see Section 4.6). In terms of the forces on the diagram, what is the
net force on him? Use Newton’s laws and the results of part (b) to
calculate the average force his feet exert on the ground while he
slows down. Express this force in newtons and also as a multiple
of his weight.

4.52 <o CP A 4.9-N hammer head is stopped from an initial
downward velocity of 3.2 m/s in a distance of 0.45 cm by a nail in
a pine board. In addition to its weight, there is a 15-N downward
force on the hammer head applied by the person using the hammer.
Assume that the acceleration of the hammer head is constant while
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it is in contact with the nail and moving downward. (a) Draw a
free-body diagram for the hammer head. Identify the reaction force
to each action force in the diagram. (b) Calculate the downward
force F exerted by the hammer head on the nail while the hammer
head is in contact with the nail and moving downward. (c) Suppose
the nail is in hardwood and the distance the hammer head travels in
coming to rest is only 0.12 cm. The downward forces on the ham-
mer head are the same as in part (b). What then is the force F
exerted by the hammer head on the nail while the hammer head is
in contact with the nail and moving downward?

4.53 -+ A uniform cable of weight w hangs vertically downward,
supported by an upward force of magnitude w at its top end. What
is the tension in the cable (a) at its top end; (b) at its bottom end;
(c) at its middle? Your answer to each part must include a free-
body diagram. (Hint: For each question choose the body to analyze
to be a section of the cable or a point along the cable.) (d) Graph
the tension in the rope versus the distance from its top end.

4.54 -+ The two blocks in Fig. P4.54 Figure P4.54

are connected by a heavy uniform rope
with a mass of 4.00 kg. An upward force

of 200 N is applied as shown. (a) Draw 1F = 200N
three free-body diagrams: one for the

6.00-kg block, one for the 4.00-kg rope,

and another one for the 5.00-kg block. 6.00kg
For each force, indicate what body
exerts that force. (b) What is the accel-
eration of the system? (c) What is the
tension at the top of the heavy rope?
(d) What is the tension at the midpoint
of the rope?

4.55 <« CP An athlete whose mass is
90.0 kg is performing weight-lifting exer-
cises. Starting from the rest position, he
lifts, with constant acceleration, a barbell
that weighs 490 N. He lifts the barbell a distance of 0.60 m in 1.6 s.
(a) Draw a clearly labeled free-body force diagram for the barbell
and for the athlete. (b) Use the diagrams in part (a) and Newton’s
laws to find the total force that his feet exert on the ground as he
lifts the barbell.

4.56 --- A hot-air balloon consists of a basket, one passenger, and
some cargo. Let the total mass be M. Even though there is an

Chapter Opening Question

22210

22

DOz

| 4.00 kg

5.00 kg

Newton’s third law tells us that the car pushes on the crew member
just as hard as the crew member pushes on the car, but in the oppo-
site direction. This is true whether the car’s engine is on and the
car is moving forward partly under its own power, or the engine is
off and being propelled by the crew member’s push alone. The
force magnitudes are different in the two situations, but in either
case the push of the car on the crew member is just as strong as the
push of the crew member on the car.

Test Your Understanding Questions

4.1 Answer: (iv) The gravitational force on the crate points
straight downward. In Fig. 4.6 the x-axis points up and to the right,
and the y-axis points up and to the left. Hence the gravitational force
has both an x-component and a y-component, and both are negative.

upward lift force on the balloon, the balloon is initially accelerat-
ing downward at a rate of g/3. (a) Draw a free-body diagram for
the descending balloon. (b) Find the upward lift force in terms of
the initial total weight Mg. (c) The passenger notices that he is
heading straight for a waterfall and decides he needs to go up.
What fraction of the total weight must he drop overboard so that
the balloon accelerates upward at a rate of g/2? Assume that the
upward lift force remains the same. Figure P4.57

4.57 CP Two boxes, A and B, are connected to
each end of a light vertical rope, as shown in F

Fig. P4.57. A constant upward force F =

80.0 N is applied to box A. Starting from rest, D]

box B descends 12.0 m in 4.00 s. The tension in

the rope connecting the two boxes is 36.0 N.

(a) What is the mass of box B? (b) What is the

mass of box A? E

4.58 +<- CALC The position of a 2.75 X 10°-N

training helicopter under test is given by 7 = (0.020 m/s*)F’1 +
(2.2 m/s)j — (0.060 m/s?)’k. Find the net force on the helicopter
att = 5.0 s.

4.59 - CALC An object with mass m moves along the x-axis. Its
position as a function of time is given by x(1) = Ar — B13, where
A and B are constants. Calculate the net force on the object as a
function of time.

4.60 - CALC An object with mass m initially at rest is acted on by
aforce F = kit + k2t3j, where k| and k, are constants. Calculate
the velocity T(t) of the object as a function of time.

4.61 - CP CALC A mysterious rocket-propelled object of mass
45.0 kg is initially at rest in the middle of the horizontal, frictionless
surface of an ice-covered lake. Then a force directed east and with

magnitude F(7) = (16.8 N/s)t is applied. How far does the object
travel in the first 5.00 s after the force is applied?

CHALLENGE PROBLEMS

4.62 --- CALC An object of mass m is at rest in equilibrium at the
origin. At = 0 a new force F(t) is applied that has components

Fx(t) = k] + k2y Fy(t) = k3l

where k1, k,, and k3 are constants. Calculate the position 7(t) and
velocity U(t) vectors as functions of time.

4.2 Answer: (i), (ii), and (iv) In (i), (ii), and (iv) the body is not
accelerating, so the net force on the body is zero. [In (iv), the box
remains stationary as seen in the inertial reference frame of the
ground as the truck accelerates forward, like the skater in Fig. 4.11a.]
In (iii), the hawk is moving in a circle; hence it is accelerating and
is not in equilibrium.

4.3 Answer: (iii), (i) and (iv) (tie), (ii) The acceleration is equal
to the net force divided by the mass. Hence the magnitude of the
acceleration in each situation is

(@) a = (20N)/(2.0kg) = 1.0 m/s%;
(i) @ = (8.0N)/(20N) = 4.0 m/s%;
(iii) @ = (20N)/(8.0kg) = 0.25 m/s?;
(iv) a = (8.0N)/(8.0kg) = 1.0 m/s%.



4.4 Tt would take twice the effort for the astronaut to walk around
because her weight on the planet would be twice as much as on
the earth. But it would be just as easy to catch a ball moving hori-
zontally. The ball’s mass is the same as on earth, so the horizontal
force the astronaut would have to exert to bring it to a stop (i.e., to
give it the same acceleration) would also be the same as on earth.
4.5 By Newton’s third law, the two forces have equal magnitudes.
Because the car has much greater mass than the mosquito, it under-
goes only a tiny, imperceptible acceleration in response to the
force of the impact. By contrast, the mosquito, with its minuscule
mass, undergoes a catastrophically large acceleration.

4.6 Answer: (iv) The buoyancy force is an upward force that
the water exerts on the swimmer. By Newton’s third law, the
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Answers

other half of the action-reaction pair is a downward force that
the swimmer exerts on the water and has the same magnitude as
the buoyancy force. It’s true that the weight of the swimmer is
also downward and has the same magnitude as the buoyancy
force; however, the weight acts on the same body (the swimmer)
as the buoyancy force, and so these forces aren’t an action—
reaction pair.

Bridging Problem

Answers: (a) See a Video Tutor solution on MasteringPhysics®

(b) (1)2.20 m/sz; (ii) 6.00 N; (iii) 3.00 N



APPLYING
NEWTON'S LAWS

LEARNING GOALS

By studying this chapter, you will
learn:

How to use Newton'’s first law to
solve problems involving the forces
that act on a body in equilibrium.

How to use Newton’s second law to
solve problems involving the forces
that act on an accelerating body.

The nature of the different types of
friction forces — static friction, kinetic
friction, rolling friction, and fluid
resistance—and how to solve prob-
lems that involve these forces.

How to solve problems involving the
forces that act on a body moving
along a circular path.

The key properties of the four funda-
mental forces of nature.
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This skydiver is descending under a parachute at a steady rate. In this
situation, which has a greater magnitude: the force of gravity or the upward
force of the air on the skydiver?

e saw in Chapter 4 that Newton’s three laws of motion, the founda-

tion of classical mechanics, can be stated very simply. But applying

these laws to situations such as an iceboat skating across a frozen
lake, a toboggan sliding down a hill, or an airplane making a steep turn requires
analytical skills and problem-solving technique. In this chapter we’ll help you
extend the problem-solving skills you began to develop in Chapter 4.

We’ll begin with equilibrium problems, in which we analyze the forces that
act on a body at rest or moving with constant velocity. We’ll then consider bodies
that are not in equilibrium, for which we’ll have to deal with the relationship
between forces and motion. We’ll learn how to describe and analyze the contact
force that acts on a body when it rests on or slides over a surface. We’ll also ana-
lyze the forces that act on a body that moves in a circle with constant speed. We
close the chapter with a brief look at the fundamental nature of force and the
classes of forces found in our physical universe.

5.1 Using Newton’s First Law:
Particles in Equilibrium

We learned in Chapter 4 that a body is in equilibrium when it is at rest or mov-
ing with constant velocity in an inertial frame of reference. A hanging lamp, a
kitchen table, an airplane flying straight and level at a constant speed—all are
examples of equilibrium situations. In this section we consider only equilibrium
of a body that can be modeled as a particle. (In Chapter 11 we’ll see how to ana-
lyze a body in equilibrium that can’t be represented adequately as a particle,
such as a bridge that’s supported at various points along its span.) The essential
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physical principle is Newton’s first law: When a particle is in equilibrium, the
net force acting on it—that is, the vector sum of all the forces acting on it—must
be zero:

Ei’ =0 (particle in equilibrium, vector form) (5.1
We most often use this equation in component form:
EF » =20 EF), =0 (particle in equilibrium, component form) (5.2

This section is about using Newton’s first law to solve problems dealing with
bodies in equilibrium. Some of these problems may seem complicated, but the
important thing to remember is that all problems involving particles in equilib-
rium are done in the same way. Problem-Solving Strategy 5.1 details the steps
you need to follow for any and all such problems. Study this strategy carefully,
look at how it’s applied in the worked-out examples, and try to apply it yourself
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when you solve assigned problems.

Newton’s First Law: Equilibrium of a Particle O

IDENTIFY the relevant concepts: You must use Newton’s first
law for any problem that involves forces acting on a body in
equilibrium—that is, either at rest or moving with constant veloc-
ity. For example, a car is in equilibrium when it’s parked, but also
when it’s traveling down a straight road at a steady speed.

If the problem involves more than one body and the bodies inter-
act with each other, you’ll also need to use Newton’s third law. This
law allows you to relate the force that one body exerts on a second
body to the force that the second body exerts on the first one.

Identify the target variable(s). Common target variables in
equilibrium problems include the magnitude and direction (angle)
of one of the forces, or the components of a force.

SET UP the problem using the following steps:

1. Draw a very simple sketch of the physical situation, showing
dimensions and angles. You don’t have to be an artist!

2. Draw a free-body diagram for each body that is in equilibrium.
For the present, we consider the body as a particle, so you can
represent it as a large dot. In your free-body diagram, do not
include the other bodies that interact with it, such as a surface it
may be resting on or a rope pulling on it.

3. Ask yourself what is interacting with the body by touching it or
in any other way. On your free-body diagram, draw a force vec-
tor for each interaction. Label each force with a symbol for the
magnitude of the force. If you know the angle at which a force is
directed, draw the angle accurately and label it. Include the
body’s weight, unless the body has negligible mass. If the mass
is given, use w = mg to find the weight. A surface in contact
with the body exerts a normal force perpendicular to the surface
and possibly a friction force parallel to the surface. A rope or
chain exerts a pull (never a push) in a direction along its length.

4. Do not show in the free-body diagram any forces exerted by the
body on any other body. The sums in Egs. (5.1) and (5.2)

include only forces that act on the body. For each force on the
body, ask yourself “What other body causes that force?” If you
can’t answer that question, you may be imagining a force that
isn’t there.

5. Choose a set of coordinate axes and include them in your
free-body diagram. (If there is more than one body in the
problem, choose axes for each body separately.) Label the
positive direction for each axis. If a body rests or slides on a
plane surface, it usually simplifies things to choose axes that
are parallel and perpendicular to this surface, even when the
plane is tilted.

EXECUTE the solution as follows:

1. Find the components of each force along each of the body’s
coordinate axes. Draw a wiggly line through each force vector
that has been replaced by its components, so you don’t count it
twice. The magnitude of a force is always positive, but its
components may be positive or negative.

2. Set the sum of all x-components of force equal to zero. In a sep-
arate equation, set the sum of all y-components equal to zero.
(Never add x- and y-components in a single equation.)

3. If there are two or more bodies, repeat all of the above steps for
each body. If the bodies interact with each other, use Newton’s
third law to relate the forces they exert on each other.

4. Make sure that you have as many independent equations as the
number of unknown quantities. Then solve these equations to
obtain the target variables.

EVALUATE your answer: Look at your results and ask whether they
make sense. When the result is a symbolic expression or formula,
check to see that your formula works for any special cases (partic-
ular values or extreme cases for the various quantities) for which
you can guess what the results ought to be.
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m One-dimensional equilibrium: Tension in a massless rope

A gymnast with mass mg = 50.0 kg suspends herself from the
lower end of a hanging rope of negligible mass. The upper end of
the rope is attached to the gymnasium ceiling. (a) What is the gym-
nast’s weight? (b) What force (magnitude and direction) does the
rope exert on her? (c) What is the tension at the top of the rope?

IDENTIFY and SET UP: The gymnast and the rope are in equilib-
rium, so we can apply Newton’s first law to both bodies. We’ll use
Newton’s third law to relate the forces that they exert on each
other. The target variables are the gymnast’s weight, wg; the force
that the bottom of the rope exerts on the gymnast (call it T o, )3
and the force that the ceiling exerts on the top of the rope
(call it T¢ oy g ). Figure 5.1 shows our sketch of the situation and
free-body diagrams for the gymnast and for the rope. We take the
positive y-axis to be upward in each diagram. Each force acts in
the vertical direction and so has only a y-component.

The forces Tg on g (the upward force of the rope on the gym-
nast, Fig. 5.1b) and 7 o, r (the downward force of the gymnast on
the rope, Fig. 5.1c) form an action-reaction pair. By Newton’s
third law, they must have the same magnitude.

5.1 Our sketches for this problem.

(a) The situation (b) Free-body

diagram for gymnast

(c) Free-body
diagram for rope

Cer’lr’ng y y
I I
Rope k
TR onG Action— Tc onR
reaction
X pair X
GymnasT
...... >
We =Mgg Toong

Note that Fig. 5.1c includes only the forces that act on the rope.
In particular, it doesn’t include the force that the rope exerts on the
ceiling (compare the discussion of the apple in Conceptual Exam-
ple 4.9 in Section 4.5). Similarly, the force that the rope exerts on
the ceiling doesn’t appear in Fig. 5.1c.

EXECUTE: (a) The magnitude of the gymnast’s weight is the prod-
uct of her mass and the acceleration due to gravity, g:

wg = mgg = (50.0kg)(9.80 m/s?) = 490 N
(b) The gravitational force on the gymnast (her weight) points
in the negative y-direction, so its y-component is —wg. The
upward force of the rope on the gymnast has unknown magnitude

Tk ong and positive y-component +7g o, g. We find this using
Newton’s first law:

>Fy=Thong + (—wg) =0 so
TRonG = wWg = 490N

Gymnast:

The rope pulls up on the gymnast with a force Ty o, g of magnitude
490 N. (By Newton’s third law, the gymnast pulls down on the
rope with a force of the same magnitude, 7G o, g = 490 N.)

(c) We have assumed that the rope is weightless, so the only
forces on it are those exerted by the ceiling (upward force of
unknown magnitude 7¢ ,, g) and by the gymnast (downward force
of magnitude 75 o, g = 490 N). From Newton’s first law, the net
vertical force on the rope in equilibrium must be zero:

EF)':T&ZonR"'(_TGOnR) =0 so
T6onr = 490N

Rope:

TConR =

EVALUATE: The fension at any point in the rope is the magnitude of
the force that acts at that point. For this weightless rope, the ten-
sion TG,y r at the lower end has the same value as the tension
1¢ on r at the upper end. For such an ideal weightless rope, the ten-
sion has the same value at any point along the rope’s length. (See

the discussion in Conceptual Example 4.10 in Section 4.5.)
I

m One-dimensional equilibrium: Tension in a rope with mass

Find the tension at each end of the rope in Example 5.1 if the
weight of the rope is 120 N.

IDENTIFY and SET UP: As in Example 5.1, the target variables are
the magnitudes 7 o, g and ¢ o, g Of the forces that act at the bot-
tom and top of the rope, respectively. Once again, we’ll apply
Newton’s first law to the gymnast and to the rope, and use New-
ton’s third law to relate the forces that the gymnast and rope exert
on each other. Again we draw separate free-body diagrams for the
gymnast (Fig. 5.2a) and the rope (Fig. 5.2b). There is now a third
force acting on the rope, however: the weight of the rope, of mag-
nitude wg = 120 N.

ENECUTE: The gymnast’s free-body diagram is the same as in
Example 5.1, so her equilibrium condition is also the same. From

Newton’s third law, Tg on g = 1G on r» @and We again have

2F =

TRonG =

Gymnast: TRong + (—wg) =0  so

TGonR = WwWg = 490 N

The equilibrium condition X F, = 0 for the rope is now

EFy =Tconr T (_TGonR) + (_WR) =0

Note that the y-component of 7 o, g is positive because it points in
the +y-direction, but the y-components of both 7 ,, g and wg are
negative. We solve for 7r,,gr and substitute the values
TGonR = TRonG = 490 N and WR = 120 N:

TconR = Igong T Wr = 490N + 120N = 610N

Rope:

EVALUATE: When we include the weight of the rope, the tension
is different at the rope’s two ends: 610 N at the top and 490 N at



the bottom. The force 1¢ o, g = 610 N exerted by the ceiling has to
hold up both the 490-N weight of the gymnast and the 120-N
weight of the rope.

To see this more clearly, we draw a free-body diagram for a
composite body consisting of the gymnast and rope together
(Fig. 5.2c). Only two external forces act on this composite body:
the force 7o, ,r exerted by the ceiling and the total weight
wg + wg = 490N + 120N = 610 N. (The forces TG ,,r and
TR onG are internal to the composite body. Newton’s first law
applies only to external forces, so these internal forces play no
role.) Hence Newton’s first law applied to this composite body is

EFy = TConR + [_(WG + WR)] =0

and so Tc gng = WG T wr = 610 N.

Treating the gymnast and rope as a composite body is simpler,
but we can’t find the tension 7, r at the bottom of the rope by
this method. Moral: Whenever you have more than one body in a
problem involving Newton’s laws, the safest approach is to treat
each body separately.

Composite body:

m Two-dimensional equilibrium

In Fig. 5.3a, a car engine with weight w hangs from a chain that is
linked at ring O to two other chains, one fastened to the ceiling and
the other to the wall. Find expressions for the tension in each of the
three chains in terms of w. The weights of the ring and chains are
negligible compared with the weight of the engine.

IDENTIFY and SET UP: The target variables are the tension magni-
tudes T, 75, and Tj in the three chains (Fig. 5.3a). All the bodies are
in equilibrium, so we’ll use Newton’s first law. We need three
independent equations, one for each target variable. However,
applying Newton’s first law to just one body gives us only two
equations, as in Egs. (5.2). So we’ll have to consider more than
one body in equilibrium. We’ll look at the engine (which is acted
on by 7) and the ring (which is acted on by all three chains and so
is acted on by all three tensions).

Figures 5.3b and 5.3c show our free-body diagrams and choice
of coordinate axes. There are two forces that act on the engine: its
weight w and the upward force 7} exerted by the vertical chain.

5.3 (@) The situation. (b), (c) Our free-body diagrams.

(a) Engine, chains, and ring

W
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5.2 Our sketches for this problem, including the weight of the
rope.

(a) Free-body
diagram for gymnast

(b) Free-body
diagram for rope

(c) Free-body diagram
for gymnast and rope
as a composite body

Y Y Y
| I
A
L .
TR onG Action— Tc onR Tc onR
reaction % d x
pair 3
weight wg ™. R
Toone Welght wg+We
&Wefgh‘r We v

Three forces act on the ring: the tensions from the vertical chain
(T;), the horizontal chain (75), and the slanted chain (7).
Because the vertical chain has negligible weight, it exerts forces
of the same magnitude 7] at both of its ends (see Example 5.1). (If
the weight of this chain were not negligible, these two forces
would have different magnitudes like the rope in Example 5.2.)
The weight of the ring is also negligible, which is why it isn’t
included in Fig. 5.3c.

EXECUTE: The forces acting on the engine are along the y-axis
only, so Newton’s first law says

SF, =T+ (-w) =0

The horizontal and slanted chains don’t exert forces on the
engine itself because they are not attached to it. These forces do
appear when we apply Newton’s first law to the ring, however. In
the free-body diagram for the ring (Fig. 5.3c), remember that 7,
T, and T; are the magnitudes of the forces. We resolve the force
with magnitude 73 into its x- and y-components. The ring is in
equilibrium, so using Newton’s first law we can write (separate)

Engine: and T} =w

(b) Free-body
diagram for engine

(c) Free-body
diagram for ring O

Y
A [
Tl T3 sin60°
—X <«
T, O
W T
v v Continued
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equations stating that the x- and y-components of the net force on
the ring are zero:

>F,=Ticos60° + (—5) =0
> Fy=Tsin60° + (=7;) =0

Ring:

Ring:
Because 7} = w (from the engine equation), we can rewrite the
second ring equation as
i w

L =— = -
sin 60° sin 60°

= 12w

‘We can now use this result in the first ring equation:

cos 60°
T, = Ticos 60° = w——— = 0.58w
sin 60°

An inclined plane

A car of weight w rests on a slanted ramp attached to a trailer
(Fig. 5.4a). Only a cable running from the trailer to the car pre-
vents the car from rolling off the ramp. (The car’s brakes are off
and its transmission is in neutral.) Find the tension in the cable
and the force that the ramp exerts on the car’s tires.

IDENTIFY: The car is in equilibrium, so we use Newton’s first law.
The ramp exerts a separate force on each of the car’s tires, but for
simplicity we lump these forces into a single force. For a further
simplification, we’ll neglect any friction force the ramp exerts on
the tires (see Fig. 4.2b). Hence the ramp only exerts a force on the
car that is perpendicular to the ramp. As in Section 4.1, we call
this force the normal force (see Fig. 4.2a). The two target variables
are the magnitude n of the normal force and the magnitude 7 of the
tension in the cable.

SET UP: Figure 5.4 shows the situation and a free-body diagram
for the car. The three forces acting on the car are its weight (mag-
nitude w), the tension in the cable (magnitude 7'), and the normal
force (magnitude n). Note that the angle « between the ramp and
the horizontal is equal to the angle a between the weight vector
w and the downward normal to the plane of the ramp. Note also
that we choose the x- and y-axes to be parallel and perpendicular
to the ramp so that we only need to resolve one force (the weight)
into x- and y-components. If we chose axes that were horizontal
and vertical, we’d have to resolve both the normal force and the
tension into components.

5.4 A cable holds a car at rest on a ramp.
(a) Car on ramp (b) Free-body diagram for car

We replace the weight
by its components.

<

EVALUATE: The chain attached to the ceiling exerts a force on the
ring with a vertical component equal to 7j, which in turn is equal
to w. But this force also has a horizontal component, so its magni-
tude 73 is somewhat larger than w. This chain is under the greatest
tension and is the one most susceptible to breaking.

To get enough equations to solve this problem, we had to con-
sider not only the forces on the engine but also the forces acting on
a second body (the ring connecting the chains). Situations like this
are fairly common in equilibrium problems, so keep this technique
in mind.

EKECUTE: To write down the x- and y-components of Newton’s first
law, we must first find the components of the weight. One complica-
tion is that the angle « in Fig. 5.4b is not measured from the +x-axis
toward the +y-axis. Hence we cannot use Eqgs. (1.6) directly to
find the components. (You may want to review Section 1.8 to make
sure that you understand this important point.)

One way to find the components of W is to consider the
right triangles in Fig. 5.4b. The sine of « is the magnitude of the
x-component of w (that is, the side of the triangle opposite a)
divided by the magnitude w (the hypotenuse of the triangle).
Similarly, the cosine of « is the magnitude of the y-component
(the side of the triangle adjacent to «) divided by w. Both com-
ponents are negative, so wy = —w sin @ and w, = —w cos a.

Another approach is to recognize that one component of w
must involve sin « while the other component involves cos a. To
decide which is which, draw the free-body diagram so that the
angle « is noticeably smaller or larger than 45°. (You'll have to
fight the natural tendency to draw such angles as being close to 45°.)
We’ve drawn Fig. 5.4b so that « is smaller than 45°, so sin « is less
than cos a. The figure shows that the x-component of w is smaller
than the y-component, so the x-component must involve sin a and
the y-component must involve cos «. We again find w, = —w sin o
and wy = —w cos a.

In Fig. 5.4b we draw a wiggly line through the original vector
representing the weight to remind us not to count it twice. New-
ton’s first law gives us

SF, =T+ (—wsina) =0
>SFy=n+ (~wcosa) =0
(Remember that 7, w, and n are all magnitudes of vectors and are
therefore all positive.) Solving these equations for 7 and n, we find
T = wsina
n = wcosa
EVALUATE: Our answers for T and n depend on the value of «. To
check this dependence, let’s look at some special cases. If the ramp
is horizontal (a = 0), we get 7= 0 and n = w. As you might
expect, no cable tension 7'is needed to hold the car, and the normal

force n is equal in magnitude to the weight. If the ramp is vertical
(@ =90°), weget T = wand n = 0. The cable tension T supports



all of the car’s weight, and there’s nothing pushing the car against
the ramp.

CAUTION Normal force and weight may not be equal It’s a com-
mon error to automatically assume that the magnitude 7 of the nor-
mal force is equal to the weight w: Our result shows that this is not
true in general. It’s always best to treat n as a variable and solve for
its value, as we have done here.
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How would the answers for 7 and n be affected if the car
were being pulled up the ramp at a constant speed? This,
too, is an equilibrium situation, since the car’s velocity is con-
stant. So the calculation is the same, and 7 and n have the same
values as when the car is at rest. (It’s true that 7 must be greater
than w sin « to start the car moving up the ramp, but that’s not
what we asked.)

m Equilibrium of hodies connected hy cahle and pulley

Blocks of granite are to be hauled up a 15° slope out of a quarry,
and dirt is to be dumped into the quarry to fill up old holes. To sim-
plify the process, you design a system in which a granite block on
a cart with steel wheels (weight wy, including both block and cart)
is pulled uphill on steel rails by a dirt-filled bucket (weight wy,
including both dirt and bucket) that descends vertically into the
quarry (Fig. 5.5a). How must the weights w; and w, be related in
order for the system to move with constant speed? Ignore friction
in the pulley and wheels, and ignore the weight of the cable.

IDENTIFY and SET UP: The cart and bucket each move with a con-
stant velocity (in a straight line at constant speed). Hence each
body is in equilibrium, and we can apply Newton’s first law to
each. Our target is an expression relating the weights wy and wy.
Figure 5.5b shows our idealized model for the system, and
Figs. 5.5¢ and 5.5d show our free-body diagrams. The two forces
on the bucket are its weight w, and an upward tension exerted by
the cable. As for the car on the ramp in Example 5.4, three forces
act on the cart: its weight wy, a normal force of magnitude n
exerted by the rails, and a tension force from the cable. (We're
ignoring friction, so we assume that the rails exert no force on the
cart parallel to the incline.) Note that we orient the axes differ-

ently for each body; the choices shown are the most convenient
ones.

We’re assuming that the cable has negligible weight, so the ten-
sion forces that the cable exerts on the cart and on the bucket have
the same magnitude 7. As we did for the car in Example 5.4, we
represent the weight of the cart in terms of its x- and y-components.

EXECUTE: Applying 2 F, = 0 to the bucket in Fig. 5.5¢, we find

DFE, =T+ (-wy) =0 so T=w

Applying 2 F, = 0 to the cart (and block) in Fig. 5.5d, we get

SF, =T+ (—w;sinl5°) =0 so T =wsinl15°

Equating the two expressions for 7, we find
Wy = Wi sin 15° = 026W1

EVALUATE: Our analysis doesn’t depend at all on the direction in
which the cart and bucket move. Hence the system can move with
constant speed in either direction if the weight of the dirt and bucket
is 26% of the weight of the granite block and cart. What would
happen if w, were greater than 0.26w,? If it were less than 0.26w;?

Notice that we didn’t need the equation X F, = 0 for the cart
and block. Can you use this to show that n = wy cos 15°?

5.5 (@) The situation. (b) Our idealized model. (c), (d) Our free-body diagrams.

(a) Dirt-filled bucket pulls cart with granite block

Cart

Test Your Understanding of Section 5.1 A traffic light of weight w
hangs from two lightweight cables, one on each side of the light. Each cable hangs

(d) Free-body
diagram for cart

Y
\
(c) Free-body
diagram for bucket
Y
|
T . —*
_ S °
1% Wy sin 1\2___
\\ " 150
\
\ .
\ .
YW cos 15°
Wy

at a 45° angle from the horizontal. What is the tension in each cable? (i) w/2;

(i) w/V2; (iii) w; (iv) wV2; (V) 2w.
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5.6 Correct and incorrect free-body dia- : ’ .
ramms for s falling body, 5.2 Using Newton’s Second Law:

@ Dynamics of Particles

We are now ready to discuss dynamics problems. In these problems, we apply

Newton’s second law to bodies on which the net force is not zero. These bodies
Only the force of gravity are not in equilibrium and hence are accelerating. The net force on the body is
acts on this falling fruit. equal to the mass of the body times its acceleration:

- — 9
(b) Correct free-body diagram EF = ma (Newton’s second law, vector form) (5.3)

| We most often use this relationship in component form:

Newton’s second law,
w| |a, <RIGHT! D F.=ma, > F,=ma, E omponent form) (5.4)
You can safely draw
Ltii:;f;cgégfiie The following problem-solving strategy is very similar to Problem-Solving
of the diagram. Strategy 5.1 for equilibrium problems in Section 5.1. Study it carefully, watch

how we apply it in our examples, and use it when you tackle the end-of-chapter

(€) Incorrect free-body diagram problems. You can solve any dynamics problem using this strategy.

y CAUTION 74 doesn’t belong in free-body diagrams Remember that the quantity md is
| the result of forces acting on a body, not a force itself; it’s not a push or a pull exerted by

— anything in the body’s environment. When you draw the free-body diagram for an acceler-
" ating body (like the fruit in Fig. 5.6a), make sure you never include the “md force”

N ) , because there is no such force (Fig. 5.6c). You should review Section 4.3 if you’re not
This vector doesn’t . . . . - .
clear on this point. Sometimes we draw the acceleration vector @ alongside a free-body

w belong in a free-body R R . Lo, . .
diagram because md diagram, as in Fig. 5.6b. But we never draw the acceleration vector with its tail touching

X‘mﬁ < WRONG
<

is not a force. the body (a position reserved exclusively for the forces that act on the body).

Newton’s Second Law: Dynamics of Particles O
IDENTIFY the relevant concepts: You have to use Newton’s second accelerate in different directions, you can use a different set of
law for any problem that involves forces acting on an accelerating axes for each body.
body. 4. In addition to Newton’s second law, SF = md, identify any

Identify the target variable—usually an acceleration or a force. other equations you might need. For example, you might need
If the target variable is something else, you’ll need to select another one or more of the equations for motion with constant accelera-
concept to use. For example, suppose the target variable is how tion. If more than one body is involved, there may be relation-
fast a sled is moving when it reaches the bottom of a hill. Newton’s ships among their motions; for example, they may be connected
second law will let you find the sled’s acceleration; you’ll then use by a rope. Express any such relationships as equations relating
the constant-acceleration relationships from Section 2.4 to find the accelerations of the various bodies.

velocity from acceleration. EXKECUTE the solution as follows:

SET UP the problem using the following steps: 1. For each body, determine the components of the forces along
1. Draw a simple sketch of the situation that shows each moving each of the body’s coordinate axes. When you represent a force

body. For each body, draw a free-body diagram that shows all
the forces acting on the body. (The acceleration of a body is
determined by the forces that act on it, not by the forces that it
exerts on anything else.) Make sure you can answer the ques-
tion “What other body is applying this force?” for each force in
your diagram. Never include the quantity md in your free-body
diagram; it’s not a force!

in terms of its components, draw a wiggly line through the orig-
inal force vector to remind you not to include it twice.

2. Make a list of all the known and unknown quantities. In your
list, identify the target variable or variables.

3. For each body, write a separate equation for each component of
Newton’s second law, as in Egs. (5.4). In addition, write any
additional equations that you identified in step 4 of “Set Up.”

2. Label each force with an algebraic symbol for the force’s (You need as many equations as there are target variables.)
magnitude. Usually, one of the forces will be the body’s weight; 4. Do the easy part—the math! Solve the equations to find the tar-
it’s usually best to label this as w = mg. get variable(s).

3. Choose your x- and y-coordinate axes for each body, and show

them in its free-body diagram. Be sure to indicate the positive
direction for each axis. If you know the direction of the acceler-
ation, it usually simplifies things to take one positive axis along
that direction. If your problem involves two or more bodies that

EVALUATE your answer: Does your answer have the correct units?
(When appropriate, use the conversion 1 N = 1 kg+m/ s2.) Does it
have the correct algebraic sign? When possible, consider particular
values or extreme cases of quantities and compare the results with

your intuitive expectations. Ask, “Does this result make sense?”
—
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3L LUK Straight-line motion with a constant force

An iceboat is at rest on a frictionless horizontal surface (Fig. 5.7a).
A wind is blowing along the direction of the runners so that 4.0 s
after the iceboat is released, it is moving at 6.0 m/s (about
22 km/h, or 13 mi/h). What constant horizontal force Fyy does the
wind exert on the iceboat? The combined mass of iceboat and rider
is 200 kg.

IDENTIFY and SET UP: Our target variable is one of the forces (Fyy)
acting on the accelerating iceboat, so we need to use Newton’s
second law. The forces acting on the iceboat and rider (considered
as a unit) are the weight w, the normal force n exerted by the sur-
face, and the horizontal force Fy. Figure 5.7b shows the free-body
diagram. The net force and hence the acceleration are to the right,
so we chose the positive x-axis in this direction. The acceleration
isn’t given; we’ll need to find it. Since the wind is assumed to exert
a constant force, the resulting acceleration is constant and we can
use one of the constant-acceleration formulas from Section 2.4.

5.7 (@) The situation. (b) Our free-body diagram.

(b) Free-body diagram
for iceboat and rider

(a) Iceboat and rider on frictionless ice

m Straight-line motion with friction

Suppose a constant horizontal friction force with magnitude 100 N
opposes the motion of the iceboat in Example 5.6. In this case,
what constant force Fy must the wind exert on the iceboat to cause
the same constant x-acceleration a, = 1.5 m/s>?

IDENTIFY and SET UP: Again the target variable is Fy. We are
given the x-acceleration, so to find Fy all we need is Newton’s
second law. Figure 5.8 shows our new free-body diagram. The
only difference from Fig. 5.7b is the addition of the friction force
?, which points opposite the motion. (Note that the magnitude
f=100N is a positive quantity, but the component in the
x-direction f, is negative, equal to —f or —100 N.) Because the wind
must now overcome the friction force to yield the same accelera-
tion as in Example 5.6, we expect our answer for Fy, to be greater
than the 300 N we found there.

The iceboat starts at rest (its initial x-velocity is vg, = 0) and it
attains an x-velocity v, = 6.0 m/s after an elapsed time 7 = 4.0 s.
To relate the x-acceleration a, to these quantities we use Eq. (2.8),
U, = Vg, + a,t. There is no vertical acceleration, so we expect
that the normal force on the iceboat is equal in magnitude to the
iceboat’s weight.

ENECUTE: The known quantities are the mass m = 200 kg, the
initial and final x-velocities vy, = 0 and v, = 6.0 m/s, and the
elapsed time ¢t = 4.0 s. The three unknown quantities are the accel-
eration a,, the normal force n, and the horizontal force Fy. Hence
we need three equations.

The first two equations are the x- and y-equations for Newton’s
second law. The force Fyy is in the positive x-direction, while the
forces n and w = mg are in the positive and negative y-directions,
respectively. Hence we have

EF x =

2
The third equation is the constant-acceleration relationship,
Eq. (2.8):

Fyw = may

n+(-mg)=0 so n=mg

Uy = Ugy T ayt
To find Fyy, we first solve this third equation for a, and then
substitute the result into the > F, equation:
Uy — Ugy 6.0m/s — 0m/s
r 40
Fw = ma, = (200 kg)(1.5 m/s?) = 300 kg - m/s>

a, = = 1.5 m/s?

Since 1 kg-m/s> = 1N, the final answer is

Fy = 300N (about 67 1b)

EVALUATE: Our answers for Fy and n have the correct units for a
force, and (as expected) the magnitude n of the normal force is
equal to mg. Does it seem reasonable that the force Fyy is substan-
tially /ess than mg?

5.8 Our free-body diagram for the iceboat and rider with a fric-
tion force f opposing the motion.

&'—h
!
3

Continued
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EXECUTE: Two forces now have x-components: the force of the
wind and the friction force. The x-component of Newton’s second
law gives

EFx:FW+ (_f):max
Fyw =ma, + f = (ZOOkg)(l.S m/sz) + (IOON) = 400N

FELCER Tension in an elevator cable

An elevator and its load have a combined mass of 800 kg (Fig. 5.9a).
The elevator is initially moving downward at 10.0 m/s; it slows to
a stop with constant acceleration in a distance of 25.0 m. What is
the tension 7 in the supporting cable while the elevator is being
brought to rest?

IDENTIFY and SET UP: The target variable is the tension 7, which
we’ll find using Newton’s second law. As in Example 5.6, we’ll
determine the acceleration using a constant-acceleration formula.
Our free-body diagram (Fig. 5.9b) shows two forces acting on the
elevator: its weight w and the tension force 7 of the cable. The ele-
vator is moving downward with decreasing speed, so its accelera-
tion is upward; we chose the positive y-axis to be upward.

The elevator is moving in the negative y-direction, so its initial
y-velocity v, and its y-displacement y — yo are both negative:
vgy = —10.0 m/s and y — yp = —25.0 m. The final y-velocity is
vy, = 0. To find the y-acceleration a, from this information, we’ll
use Eq. (2.13) in the form vy2 = voy2 + 2a,(y — yp). Once we
have a,, we’ll substitute it into the y-component of Newton’s sec-
ond law from Egs. (5.4) and solve for 7. The net force must be
upward to give an upward acceleration, so we expect 7'to be greater
than the weight w = mg = (800 kg)(9.80 m/s>) = 7840 N.

EXECUTE: First let’s write out Newton’s second law. The tension
force acts upward and the weight acts downward, so

>F, =T+ (—w) = ma,
We solve for the target variable 7:

T=w+ ma, = mg + ma, = m(g + a,)

EVALUATE: The required value of Fy is 100 N greater than in
Example 5.6 because the wind must now push against an addi-
tional 100-N friction force.

5.9 (a) The situation. (b) Our free-body diagram.

(b) Free-body diagram
for elevator

(a) Descending elevator

Y
|

foy

Moving down with
decreasing speed

-0 0-

X

W=m
l 9

To determine a,, we rewrite the constant-acceleration equation

Uy2 = U0y2 + zay(y - yO):
2 2 2 2
v," — vy 0)* — (—10.0 m/s
a, = ? - © ( /s) = +2.00 m/s>
20— v0) 2(~25.0m)

The acceleration is upward (positive), just as it should be.
Now we can substitute the acceleration into the equation for the
tension:

T =m(g + a,) = (800 kg)(9.80 m/s* + 2.00 m/s?)
= 9440 N

EVALUATE: The tension is greater than the weight, as expected. Can
you see that we would get the same answers for a, and T if the
elevator were moving upward and gaining speed at a rate of
2.00 m/s%?

GELTICE R Apparent weight in an accelerating elevator

A 50.0-kg woman stands on a bathroom scale while riding in the
elevator in Example 5.8. What is the reading on the scale?

IDENTIFY and SET UP: The scale (Fig. 5.10a) reads the magnitude
of the downward force exerted by the woman on the scale. By
Newton’s third law, this equals the magnitude of the upward nor-
mal force exerted by the scale on the woman. Hence our target
variable is the magnitude n of the normal force. We’ll find n by
applying Newton’s second law to the woman. We already know
her acceleration; it’s the same as the acceleration of the elevator,
which we calculated in Example 5.8.

Figure 5.10b shows our free-body diagram for the woman.
The forces acting on her are the normal force n exerted by the
scale and her weight w = mg = (50.0 kg)(9.80 m/s?) = 490 N.

5.10 (a) The situation. (b) Our free-body diagram.

(b) Free-body diagram
for woman

(a) Woman in a
descending elevator

Moving down with
decreasing speed X

-0 0~




(The tension force, which played a major role in Example 5.8,
doesn’t appear here because it doesn’t act on the woman.) From
Example 5.8, the y-acceleration of the elevator and of the woman
is a, = +2.00 m/ s2. As in Example 5.8, the upward force on the
body accelerating upward (in this case, the normal force on the
woman) will have to be greater than the body’s weight to produce
the upward acceleration.
EXECUTE: Newton’s second law gives

EF). =n+ (—mg) = ma,

n = mg + ma, = m(g + a)

(50.0 kg)(9.80 m/s?> + 2.00 m/s?) = 590 N

EVALUATE: Our answer for n means that while the elevator is stop-
ping, the scale pushes up on the woman with a force of 590 N. By
Newton’s third law, she pushes down on the scale with the same
force. So the scale reads 590 N, which is 100 N more than her actual

Apparent Weight and Apparent Weightlessness

Let’s generalize the result of Example 5.9. When a passenger with mass m rides
in an elevator with y-acceleration a,, a scale shows the passenger’s apparent

weight to be

n=m(g+ ay)

When the elevator is accelerating upward, a, is positive and » is greater than the
passenger’s weight w = mg. When the elevator is accelerating downward, a, is
negative and n is less than the weight. If the passenger doesn’t know the elevator
is accelerating, she may feel as though her weight is changing; indeed, this is just

what the scale shows.

The extreme case occurs when the elevator has a downward acceleration
a, = —g—that is, when it is in free fall. In that case n = 0 and the passenger
seems to be weightless. Similarly, an astronaut orbiting the earth with a space-
craft experiences apparent weightlessness (Fig. 5.11). In each case, the person
is not truly weightless because a gravitational force still acts. But the person’s
sensations in this free-fall condition are exactly the same as though the person
were in outer space with no gravitational force at all. In both cases the person
and the vehicle (elevator or spacecraft) fall together with the same accelera-
tion g, so nothing pushes the person against the floor or walls of the vehicle.

Acceleration down a hill

A toboggan loaded with students (total weight w) slides down a
snow-covered slope. The hill slopes at a constant angle «, and the
toboggan is so well waxed that there is virtually no friction. What
is its acceleration?

IDENTIFY and SET UP: Our target variable is the acceleration,
which we’ll find using Newton’s second law. There is no friction,
so only two forces act on the toboggan: its weight w and the nor-
mal force n exerted by the hill.

Figure 5.12 shows our sketch and free-body diagram. As in
Example 5.4, the surface is inclined, so the normal force is not verti-
cal and is not equal in magnitude to the weight. Hence we must use
both components of SF = md in Eqgs. (5.4). We take axes parallel
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weight. The scale reading is called the passenger’s apparent weight.
The woman feels the floor pushing up harder on her feet than when
the elevator is stationary or moving with constant velocity.

What would the woman feel if the elevator were accelerating
downward, so that a, = —2.00 m/ s2? This would be the case if the
elevator were moving upward with decreasing speed or moving
downward with increasing speed. To find the answer for this situa-
tion, we just insert the new value of a, in our equation for n:

n=m(g + a,) = (50.0 kg)[9.80 m/s* + (—2.00 m/s?)]
= 390N

Now the woman feels as though she weighs only 390 N, or 100 N
less than her actual weight w.

You can feel these effects yourself; try taking a few steps in an
elevator that is coming to a stop after descending (when your
apparent weight is greater than w) or coming to a stop after ascend-

ing (when your apparent weight is less than w).
I

5.11 Astronauts in orbit feel “weightless”
because they have the same acceleration as
their spacecraft—not because they are “out-
side the pull of the earth’s gravity.” (If no
gravity acted on them, the astronauts and
their spacecraft wouldn’t remain in orbit, but
would fly off into deep space.)

5.12 Our sketches for this problem.

(a) The situation (b) Free-body diagram for toboggan

Y
X
RN
LW sin o<
/> x Oy
(24 N

Continued
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and perpendicular to the surface of the hill, so that the acceleration
(which is parallel to the hill) is along the positive x-direction.

EXECUTE: The normal force has only a y-component, but the
weight has both x- and y-components: w, = wsina and w, =
—w cos a. (In Example 5.4 we had w, = —w sin «. The difference
is that the positive x-axis was uphill in Example 5.4 but is downhill
in Fig. 5.12b.) The wiggly line in Fig. 5.12b reminds us that we
have resolved the weight into its components. The acceleration is
purely in the +x-direction, so a, = 0. Newton’s second law in
component form then tells us that

EFx:
EFy=n* wcos @ = ma, = 0

Since w = mg, the x-component equation tells us that mg sin ¢ =
may, or

wsin @ = ma,

a, = gsina

Note that we didn’t need the y-component equation to find the
acceleration. That’s part of the beauty of choosing the x-axis to lie
along the acceleration direction! The y-equation tells us the mag-

nitude of the normal force exerted by the hill on the toboggan:

n=wcosa = mg Ccos o

EVALUATE: Notice that the normal force n is not equal to the tobog-
gan’s weight (compare Example 5.4). Notice also that the mass m
does not appear in our result for the acceleration. That’s because
the downhill force on the toboggan (a component of the weight)
is proportional to m, so the mass cancels out when we use
> F, = may, to calculate a,. Hence any toboggan, regardless of its
mass, slides down a frictionless hill with acceleration g sin a.

If the plane is horizontal, « = 0 and a, = 0 (the toboggan does
not accelerate); if the plane is vertical, « = 90° and a, = g (the
toboggan is in free fall).

CAUTION common free-hody diagram errors Figure 5.13 shows
both the correct way (Fig. 5.13a) and a common incorrect way
(Fig. 5.13b) to draw the free-body diagram for the toboggan. The
diagram in Fig. 5.13b is wrong for two reasons: The normal force
must be drawn perpendicular to the surface, and there’s no such
thing as the “md force.” If you remember that “normal” means
“perpendicular” and that md is not itself a force, you’ll be well on
your way to always drawing correct free-body diagrams.

5.13 Correct and incorrect free-body diagrams for a toboggan on a frictionless hill.

(a) Correct free-body diagram for the sled

Y
RIGHT! » /
o It’s OK to draw the
Normal }‘orce 15 ...~ acceleration vector
perpendwglar ey " adjacent to (but not
to the surface. . touching) the body.
Qi < RIGHT!

X
W=mg

(b) Incorrect free-body diagram for the sled

Y
h T
wronG> > X -
Normal force is not o The quantity ma 1s
vertical because the s not a force.
surface (which is [ X 24 <WRONG
along the x-axis) \\
is inclined. X
W=mg
v

m Two bodies with the same acceleration

You push a 1.00-kg food tray through the cafeteria line with a con-
stant 9.0-N force. The tray pushes on a 0.50-kg carton of milk (Fig.
5.14a). The tray and carton slide on a horizontal surface so greasy
that friction can be neglected. Find the acceleration of the tray and
carton and the horizontal force that the tray exerts on the carton.

IDENTIFY and SET UP: Our rwo target variables are the accelera-
tion of the tray—carton system and the force of the tray on the car-
ton. We’ll use Newton’s second law to get two equations, one for
each target variable. We set up and solve the problem in two ways.

Method 1: We treat the milk carton (mass m¢) and tray (mass
mT) as separate bodies, each with its own free-body diagram
(Figs. 5.14b and 5.14c). The force F that you exert on the tray
doesn’t appear in the free-body diagram for the carton, which is
accelerated by the force (of magnitude Fr o, ¢) exerted on it by the
tray. By Newton’s third law, the carton exerts a force of equal mag-
nitude on the tray: Fconr = Fronc. We take the acceleration to

be in the positive x-direction; both the tray and milk carton move
with the same x-acceleration a,.

Method 2: We treat the tray and milk carton as a composite
body of mass m = mp + mc = 1.50 kg (Fig. 5.14d). The only
horizontal force acting on this body is the force F that you exert.
The forces Fr o, c and F¢ o, T don’t come into play because they’re
internal to this composite body, and Newton’s second law tells
us that only external forces affect a body’s acceleration (see
Section 4.3). To find the magnitude Fr,,c we’ll again apply
Newton’s second law to the carton, as in Method 1.

EXECUTE: Method 1: The x-component equations of Newton’s sec-
ond law are

D Fc=F = Fcont = F = Fronc = mra,
zFx = FTonC = mcay

Tray:

Carton:

These are two simultaneous equations for the two target variables
a, and Fr, c. (Two equations are all we need, which means that



5.14 Pushing a food tray and milk carton in the cafeteria line.

(b) Free-body diagram
for milk carton

(a) A milk carton and a food tray

the y-components don’t play a role in this example.) An easy way
to solve the two equations for a, is to add them; this eliminates

FT on C» giVing

F = mra, + mca, = (mt + mc)a,

F 9.0N
mr + mc  1.00kg + 0.50 kg

= 6.0m/s> = 0.6lg

a, =

Substituting this value into the carton equation gives
Fronc = mcay = (0.50kg)(6.0m/s?) = 3.0N

Method 2: The x-component of Newton’s second law for the
composite body of mass m is

EFX=F=max

5.2 Using Newton’s Second Law: Dynamics of Particles
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(c) Free-body diagram (d) Free-body diagram for

for food tray carton and tray as a composite body
y
|
y
| n
a, ny a,
F ConT —
F F TonC F
X —— < ——— X — f—

The acceleration of this composite body is

F 90N
a,=— =

m  1.50kg

= 6.0m/s?

Then, looking at the milk carton by itself, we see that to give it an
acceleration of 6.0 m/ s? requires that the tray exert a force

Fronc = mca, = (0.50kg)(6.0 m/s?) = 3.0N

EVALUATE: The answers are the same with both methods. To check
the answers, note that there are different forces on the two sides
of the tray: F' = 9.0 N on the right and Fc o, 7 = 3.0 N on the left.
The net horizontal force on the tray is F — Fconr = 6.0N,
exactly enough to accelerate a 1.00-kg tray at 6.0 m/ s2.

Treating two bodies as a single, composite body works only if
the two bodies have the same magnitude and direction of accelera-
tion. If the accelerations are different we must treat the two bodies
separately, as in the next example.

m Two bhodies with the same magnitude of acceleration

Figure 5.15a shows an air-track glider with mass 7| moving on a
level, frictionless air track in the physics lab. The glider is con-
nected to a lab weight with mass m, by a light, flexible, non-
stretching string that passes over a stationary, frictionless pulley.
Find the acceleration of each body and the tension in the string.

IDENTIFY and SET UP: The glider and weight are accelerating, so
again we must use Newton’s second law. Our three target vari-
ables are the tension 7 in the string and the accelerations of the
two bodies.

The two bodies move in different directions—one horizontal,
one vertical—so we can’t consider them together as we did
the bodies in Example 5.11. Figures 5.15b and 5.15¢ show our
free-body diagrams and coordinate systems. It’s convenient to
have both bodies accelerate in the positive axis directions,

5.15 (a) The situation. (b), (c) Our free-body diagrams.

(a) Apparatus (b) Free-body (c) Free-body
diagram for glider ~ diagram for weight
Y
|
A l oy,
n
I
my T A1x T
—>—X X
m;9
Mg
v |
Y

Continued
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so we chose the positive y-direction for the lab weight to be
downward.

We consider the string to be massless and to slide over the pul-
ley without friction, so the tension 7 in the string is the same
throughout and it applies a force of the same magnitude 7T to each
body. (You may want to review Conceptual Example 4.10, in
which we discussed the tension force exerted by a massless string.)
The weights are m g and m,g.

While the directions of the two accelerations are different, their
magnitudes are the same. (That’s because the string doesn’t
stretch, so the two bodies must move equal distances in equal
times and their speeds at any instant must be equal. When the
speeds change, they change at the same rate, so the accelerations
of the two bodies must have the same magnitude a.) We can
express this relationship as a;, = ap, = a, which means that we
have only two target variables: a and the tension 7.

What results do we expect? If m; = 0 (or, approximately, for
m1 much less than m,) the lab weight will fall freely with acceler-
ation g, and the tension in the string will be zero. For m, = 0 (or,
approximately, for m, much less than m ) we expect zero acceler-
ation and zero tension.

EXECUTE: Newton’s second law gives
Glider: EFX =T=ma;, = ma
Glider: EFy =
Lab weight: EFy =

n+ (—mg) =mua,=0
myg + (=T) = maar, = ma

(There are no forces on the lab weight in the x-direction.) In these
equations we’ve used a;, = 0 (the glider doesn’t accelerate verti-
cally) and a;, = ap, = a.

-
Mastering G
| g

PhET: Lunar Lander

The x-equation for the glider and the equation for the lab
weight give us two simultaneous equations for 7" and a:

Glider:
Lab weight:

T=ma

myg — T = mpa

We add the two equations to eliminate 7, giving
mog = ma + moa = (m; + my)a

and so the magnitude of each body’s acceleration is

my

mi + nmoy
Substituting this back into the glider equation T = m ja, we get

mimsy
r=——"-—"-¢
mi + moy
EVALUATE: The acceleration is in general less than g, as you might
expect; the string tension keeps the lab weight from falling freely.
The tension T is not equal to the weight m,g of the lab weight, but
is less by a factor of m/(m| + my). If T were equal to m,g, then
the lab weight would be in equilibrium, and it isn’t.
As predicted, the acceleration is equal to g for m; = 0 and
equal to zero for m, = 0, and T = 0 for either m; = O orm, = 0.

CAUTION  Tension and weight may not be equal It’s a common
mistake to assume that if an object is attached to a vertical string,
the string tension must be equal to the object’s weight. That was
the case in Example 5.5, where the acceleration was zero, but it’s
not the case in this example! The only safe approach is always to

treat the tension as a variable, as we did here.
A

o Test Your Understanding of Section 5.2 Suppose you hold the glider in
Example 5.12 so that it and the weight are initially at rest. You give the glider a push to

ActivPhysics 2.1.5: Car Race

ActivPhysics 2.2: Lifting a Crate
ActivPhysics 2.3: Lowering a Crate
ActivPhysics 2.4: Rocket Blasts Off
ActivPhysics 2.5: Modified Atwood Machine

5.16 The sport of ice hockey depends on
having the right amount of friction between
a player’s skates and the ice. If there were
too much friction, the players would move
too slowly; if there were too little friction,
they would fall over.

the left in Fig. 5.15a and then release it. The string remains taut as the glider moves to the
left, comes instantaneously to rest, then moves to the right. At the instant the glider has
zero velocity, what is the tension in the string? (i) greater than in Example 5.12; (ii) the
same as in Example 5.12; (iii) less than in Example 5.12, but greater than zero; (iv) zero. |

5.3 Frictional Forces

We’ve seen several problems where a body rests or slides on a surface that exerts
forces on the body. Whenever two bodies interact by direct contact (touching) of
their surfaces, we describe the interaction in terms of contact forces. The normal
force is one example of a contact force; in this section we’ll look in detail at
another contact force, the force of friction.

Friction is important in many aspects of everyday life. The oil in a car engine
minimizes friction between moving parts, but without friction between the tires
and the road we couldn’t drive or turn the car. Air drag—the frictional force
exerted by the air on a body moving through it—decreases automotive fuel econ-
omy but makes parachutes work. Without friction, nails would pull out, light bulbs
would unscrew effortlessly, and ice hockey would be hopeless (Fig. 5.16).

Kinetic and Static Friction

When you try to slide a heavy box of books across the floor, the box doesn’t
move at all unless you push with a certain minimum force. Then the box starts
moving, and you can usually keep it moving with less force than you needed to



get it started. If you take some of the books out, you need less force than before
to get it started or keep it moving. What general statements can we make about
this behavior?

First, when a body rests or slides on a surface, we can think of the surface as
exerting a single contact force on the body, with force components perpendicular
and parallel to the surface (Fig. 5.17). The perpendicular component vector is the
normal force, denoted by 7. The component vector Earallel to the surface (and
perpendicg}ar to 1) is the friction force, denoted by f. If the surface is friction-
less, then f is zero but there is still a normal force. (Frictionless surfaces are an
unattainable idealization, like a massless rope. But we can approximate a surface
as frictionless if the effects of friction are negligibly small.) The direction of the
friction force is always such as to oppose relative motion of the two surfaces.

The kind of frictiog that acts when a body slides over a surface is called a
kinetic friction force f. The adjective “kinetic” and the subscript “k” remind us
that the two surfaces are moving relative to each other. The magnitude of the
kinetic friction force usually increases when the normal force increases. This is
why it takes more force to slide a box across the floor when it’s full of books than
when it’s empty. Automotive brakes use the same principle: The harder the brake
pads are squeezed against the rotating brake disks, the greater the braking effect.
In many cases the magnitude of the kinetic friction force f is found experimen-
tally to be approximately proportional to the magnitude n of the normal force. In
such cases we represent the relationship by the equation

(magnitude of kinetic friction force) (5.5)

fi = mn

where uy (pronounced “mu-sub-k”) is a constant called the coefficient of Kkinetic
friction. The more slippery the surface, the smaller this coefficient. Because it is
a quotient of two force magnitudes, uy is a pure number without units.

CAUTION  Friction and normal forces are always perpendicular Remember that Eq. (5.5)
— — . .
is not a vector equation because f) and 7 are always perpendicular. Rather, it is a scalar
relationship between the magnitudes of the two forces.

Equation (5.5) is only an approximate representation of a complex phenome-
non. On a microscopic level, friction and normal forces result from the intermol-
ecular forces (fundamentally electrical in nature) between two rough surfaces at
points where they come into contact (Fig. 5.18). As a box slides over the floor,
bonds between the two surfaces form and break, and the total number of such
bonds varies; hence the kinetic friction force is not perfectly constant. Smoothing
the surfaces can actually increase friction, since more molecules are able to inter-
act and bond; bringing two smooth surfaces of the same metal together can cause
a “cold weld.” Lubricating oils work because an oil film between two surfaces
(such as the pistons and cylinder walls in a car engine) prevents them from com-
ing into actual contact.

Table 5.1 lists some representative values of w;. Although these values are
given with two significant figures, they are only approximate, since friction
forces can also depend on the speed of the body relative to the surface. For now
we’ll ignore this effect and assume that u, and fy are independent of speed, in
order to concentrate on the simplest cases. Table 5.1 also lists coefficients of
static friction; we’ll define these shortly.

Friction forces may also act when there is no relative motion. If you try to
slide a box across the floor, the box may not move at all because the floor exerts
an equal and opposite friction force on the box. This is called a static friction
force _?S. In Fig. 5.19a, the box is at rest, in equilibrium, under the action of its
weight w and the upward normal force 7. The normal force is equal in magnitude
to the weight (n = w) and is exerted on the box by the floor. Now we tie a rope
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5.17 When a block is pushed or pulled
over a surface, the surface exerts a contact
force on it.

The friction and normal forces are really
components of a single contact force.

Contact force

N A

: Normal-force
: component n
|

|

Friction-force

=3 Push or pull
component f

Weight

5.18 The normal and friction forces
arise from interactions between molecules
at high points on the surfaces of the block
and the floor.

Block

Floor

Magnified view

On a microscopic level, even smooth surfaces
are rough; they tend to catch and cling.

Table 5.1 Approximate
Coefficients of Friction

Coefficient  Coefficient
of Static of Kinetic
Materials Friction, gy Friction, py
Steel on steel 0.74 0.57
Aluminum on steel 0.61 0.47
Copper on steel 0.53 0.36
Brass on steel 0.51 0.44
Zinc on cast iron 0.85 0.21
Copper on cast iron 1.05 0.29
Glass on glass 0.94 0.40
Copper on glass 0.68 0.53
Teflon on Teflon 0.04 0.04
Teflon on steel 0.04 0.04
Rubber on concrete 1.0 0.8
(dry)

Rubber on concrete 0.30 0.25

(wet)
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5.19 (a), (b), (c) When there is no relative motion, the magnitude of the static friction force f is less than or equal to un.
(d) When there is relative motion, the magnitude of the kinetic friction force fy equals uyn. (€) A graph of the friction force
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magnitude f as a function of the magnitude 7 of the applied force. The kinetic friction force varies somewhat as intermolecular
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Application Static Friction and
Windshield Wipers

The squeak of windshield wipers on dry glass
is a stick-slip phenomenon. The moving wiper
blade sticks to the glass momentarily, then
slides when the force applied to the blade by
the wiper motor overcomes the maximum
force of static friction. When the glass is
wet from rain or windshield cleaning solution,
friction is reduced and the wiper blade
doesn't stick.

~~
Box at rest; static friction
equals applied force.

Box moving; kinetic friction
is essentially constant.

to the box (Fig. 5.19b) and gradually increase the tension 7 in the rope. At first
the box remains at rest because the force of static friction f, also increases and
stays equal in magnitude to 7.

At some point 7' becomes greater than the maximum static friction force f the
surface can exert. Then the box “breaks loose” (the tension 7 is able to break the
bonds between molecules in the surfaces of the box and floor) and starts to slide.
Figure 5.19c shows the forces when T is at this critical value. If 7 exceeds this
value, the box is no longer in equilibrium. For a given pair of surfaces the maxi-
mum value of f; depends on the normal force. Experiment shows that in many
cases this maximum value, called (f;)max» is approximately proportional to n; we
call the proportionality factor u, the coefficient of static friction. Table 5.1 lists
some representative values of w. In a particular situation, the actual force of
static friction can have any magnitude between zero (when there is no other force
parallel to the surface) and a maximum value given by ugn. In symbols,

=

fs (5.6)

jTN7} (magnitude of static friction force)

Like Eq. (5.5), this is a relationship between magnitudes, not a vector relation-
ship. The equality sign holds only when the applied force T has reached the criti-
cal value at which motion is about to start (Fig. 5.19¢c). When T is less than this
value (Fig. 5.19b), the inequality sign holds. In that case we have to use the equi-
librium conditions (Eﬁ' = 0) to find f;. If there is no applied force (T = 0) as
in Fig. 5.19a, then there is no static friction force either (f; = 0).

As soon as the box starts to slide (Fig. 5.19d), the friction force usually
decreases (Fig. 5.19e); it’s easier to keep the box moving than to start it moving.
Hence the coefficient of kinetic friction is usually less than the coefficient of
static friction for any given pair of surfaces, as Table 5.1 shows.



In some situations the surfaces will alternately stick (static friction) and slip
(kinetic friction). This is what causes the horrible sound made by chalk held at
the wrong angle while writing on the blackboard and the shriek of tires sliding on
asphalt pavement. A more positive example is the motion of a violin bow against

the string.

When a body slides on a layer of gas, friction can be made very small. In the
linear air track used in physics laboratories, the gliders are supported on a layer
of air. The frictional force is velocity dependent, but at typical speeds the effec-

tive coefficient of friction is of the order of 0.001.

m Friction in horizontal motion

You want to move a 500-N crate across a level floor. To start the
crate moving, you have to pull with a 230-N horizontal force.
Once the crate “breaks loose” and starts to move, you can keep it
moving at constant velocity with only 200 N. What are the coeffi-
cients of static and kinetic friction?

IDENTIFY and SET UP: The crate is in equilibrium both when it is
at rest and when it is moving with constant velocity, so we use
Newton’s first law, as expressed by Eqgs. (5.2). We use Egs. (5.5)
and (5.6) to find the target variables s and pu.

Figures 5.20a and 5.20b show our sketch and free-body
diagram for the instant just before the crate starts to move,
when the static friction force has its maximum possible value

5.20 Our sketches for this problem.

(b) Free-body diagram
for crate just before it
starts to move

(c) Free-body diagram
for crate moving at
constant speed

(a) Pulling a crate

(f))
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R | o
MasteringPHYSIES
R

PhET: Forces in 1 Dimension

PhET: Friction

PhET: The Ramp

ActivPhysics 2.5: Truck Pulls Crate
ActivPhysics 2.6: Pushing a Crate Up a Wall
ActivPhysics 2.7: Skier Goes Down a Slope
ActivPhysics 2.8: Skier and Rope Tow
ActivPhysics 2.10: Truck Pulls Two Crates

(fs)max = msn. Once the crate is moving, the friction force changes
to its kinetic form (Fig. 5.20c). In both situations, four forces act
on the crate: the downward weight (magnitude w = 500 N), the
upward normal force (magnitude n) exerted by the floor, a ten-
sion force (magnitude T) to the right exerted by the rope, and a
friction force to the left exerted by the ground. Because the rope in
Fig. 5.20a is in equilibrium, the tension is the same at both ends.
Hence the tension force that the rope exerts on the crate has the
same magnitude as the force you exert on the rope. Since it’s easier
to keep the crate moving than to start it moving, we expect that
M < M.

EXECUTE: Just before the crate starts to move (Fig. 5.20b), we have
from Egs. (5.2)

EFx:T+(_(fs)max) =0 so (fs)max:T:230N
n

SF,=n+(-w)=0 so n=w=500N
Now we solve Eq. (5.6), (fs)max = Mg/, for the value of u:
fodmax 230N
MS _ ( s)ma _ _ 046
n 500 N

After the crate starts to move (Fig. 5.20c) we have

SE, =T+ (—fi) =0 so fy=T=200N

SF,=n+(-w)=0 so n=w=500N
Using fi = un from Eq. (5.5), we find
fi 200N
=—=——=040
M= 7 500N

EVALUATE: As expected, the coefficient of kinetic friction is less
than the coefficient of static friction.

(FEL RN LE Static friction can be less than the maximum

In Example 5.13, what is the friction force if the crate is at rest on
the surface and a horizontal force of 50 N is applied to it?

IDENTIFY and SET UP: The applied force is less than the maximum
force of static friction, (fs)max = 230 N. Hence the crate remains
at rest and the net force acting on it is zero. The target variable is
the magnitude f; of the friction force. The free-body diagram is the

same as in Fig. 5.20b, but with (fs)max replaced by f¢ and
T = 230 N replaced by 7' = 50 N.

EXECUTE: From the equilibrium conditions, Egs. (5.2), we have
EFX =T+ (=f) =0 so

EVALUATE: The friction force can prevent motion for any horizon-
tal applied force up to (fy)max = M5 = 230 N. Below that value,
f; has the same magnitude as the applied force.

fo=T=50N
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m Minimizing kinetic friction

In Example 5.13, suppose you move the crate by pulling upward
on the rope at an angle of 30° above the horizontal. How hard must
you pull to keep it moving with constant velocity? Assume that
m = 0.40.

IDENTIFY and SET UP: The crate is in equilibrium because its
velocity is constant, so we again apply Newton’s first law. Since
the crate is in motion, the floor exerts a kinetic friction force. The
target variable is the magnitude T of the tension force.

Figure 5.21 shows our sketch and free-body diagram. The
kinetic friction force fy is still equal to wn, but now the normal

CHAPTER 5 Applying Newton’s Laws

5.21 Our sketches for this problem.

(b) Free-body diagram for moving crate

(a) Pulling a crate at an angle

GELICRALE Toboggan ride with friction |

Let’s go back to the toboggan we studied in Example 5.10. The
wax has worn off, so there is now a nonzero coefficient of kinetic
friction uy. The slope has just the right angle to make the toboggan
slide with constant velocity. Find this angle in terms of w and .

IDENTIFY and SET UP: Our target variable is the slope angle «.
The toboggan is in equilibrium because its velocity is constant, so
we use Newton’s first law in the form of Egs. (5.2).

Three forces act on the toboggan: its weight, the normal force,
and the kinetic friction force. The motion is downhill, so the friction
force (which opposes the motion) is directed uphill. Figure 5.22
shows our sketch and free-body diagram (compare Fig. 5.12b in
Example 5.10). The magnitude of the kinetic friction force is
fx = mn. We expect that the greater the value of wy, the steeper
will be the required slope.

EXECUTE: The equilibrium conditions are
EFX =wsina + (—=f) = wsina — wyn =0
>Fy=n+ (~wcosa) =0
Rearranging these two equations, we get
mn = wsina and n = wcos a

As in Example 5.10, the normal force is not equal to the weight.
We eliminate n by dividing the first of these equations by the

force n is not equal in magnitude to the crate’s weight. The force
exerted by the rope has a vertical component that tends to lift the
crate off the floor; this reduces n and so reduces fy.

ENECUTE: From the equilibrium conditions and the equation
fx = mxn, we have

ZFX = Tcos30° + (—fx) =0 so Tcos30°= wn

> F,=Tsin30° +n+ (—w) =0 so n=w— Tsin30°
These are two equations for the two unknown quantities 7 and n.
One way to find T is to substitute the expression for » in the second
equation into the first equation and then solve the resulting equa-
tion for 7

T cos 30° = w(w — T'sin 30°)
MW

T= - = 188N
cos 30° + uy sin 30°

We can substitute this result into either of the original equations to
obtain n. If we use the second equation, we get

n=w — Tsin30° = (500 N) — (188 N) sin 30° = 406 N

EVALUATE: As expected, the normal force is less than the 500-N
weight of the box. It turns out that the tension required to keep the
crate moving at constant speed is a little less than the 200-N force
needed when you pulled horizontally in Example 5.13. Can you
find an angle where the required pull is minimum? (See Challenge
Problem 5.121.)

5.22 Our sketches for this problem.

(a) The situation (b) Free-body diagram for toboggan

/1)

second, with the result

sin «
ny = =tana SO
Cos «

a = arctan

EVALUATE: The weight w doesn’t appear in this expression. Any
toboggan, regardless of its weight, slides down an incline with
constant speed if the coefficient of kinetic friction equals the tan-
gent of the slope angle of the incline. The arctangent function
increases as its argument increases, so it’s indeed true that the
slope angle « increases as wy increases.



m Tohoggan ride with friction 1l

The same toboggan with the same coefficient of friction as in
Example 5.16 accelerates down a steeper hill. Derive an expres-
sion for the acceleration in terms of g, a, uy, and w.

IDENTIFY and SET UP: The toboggan is accelerating, so we must
use Newton’s second law as given in Egs. (5.4). Our target variable
is the downhill acceleration.

Our sketch and free-body diagram (Fig. 5.23) are almost the
same as for Example 5.16. The toboggan’s y-component of accel-
eration ay is still zero but the x-component a, is not, so we’ve
drawn the downhill component of weight as a longer vector than
the (uphill) friction force.

EXECUTE: 1t’s convenient to express the weight as w = mg. Then
Newton’s second law in component form says

2F =
2F =

5.23 Our sketches for this problem.

(a) The situation

mgsina + (—fx) = ma,

n+ (—mgcosa) =0
(b) Free-body diagram for toboggan

N
N

Rolling Friction
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From the second equation and Eq. (5.5) we get an expression for f:
n = mg cos «
fi = = png cos
We substitute this into the x-component equation and solve for a,:
mgsin a + (—pmgcos @) = ma,
a, = g(sina — py cos a)

EVALUATE: As for the frictionless toboggan in Example 5.10, the
acceleration doesn’t depend on the mass m of the toboggan. That’s
because all of the forces that act on the toboggan (weight, normal
force, and kinetic friction force) are proportional to m.

Let’s check some special cases. If the hill is vertical (« = 90°)
so that sin@ = 1 and cos @ = 0, we have a, = g (the toboggan
falls freely). For a certain value of « the acceleration is zero; this
happens if

sina = py cos and M = tan a

This agrees with our result for the constant-velocity toboggan in
Example 5.16. If the angle is even smaller, . cos « is greater than
sin @ and a, is negative; if we give the toboggan an initial down-
hill push to start it moving, it will slow down and stop. Finally, if
the hill is frictionless so that u;, = 0, we retrieve the result of
Example 5.10: a, = gsina.

Notice that we started with a simple problem (Example 5.10)
and extended it to more and more general situations. The general
result we found in this example includes all the previous ones as
special cases. Don’t memorize this result, but do make sure you
understand how we obtained it and what it means.

Suppose instead we give the toboggan an initial push up the
hill. The direction of the kinetic friction force is now reversed, so
the acceleration is different from the downhill value. It turns out
that the expression for a, is the same as for downhill motion except
that the minus sign becomes plus. Can you show this?

It’s a lot easier to move a loaded filing cabinet across a horizontal floor using a
cart with wheels than to slide it. How much easier? We can define a coefficient of
rolling friction ., which is the horizontal force needed for constant speed on a
flat surface divided by the upward normal force exerted by the surface. Trans-
portation engineers call w, the tractive resistance. Typical values of w, are 0.002
to 0.003 for steel wheels on steel rails and 0.01 to 0.02 for rubber tires on con-
crete. These values show one reason railroad trains are generally much more fuel
efficient than highway trucks.

Fluid Resistance and Terminal Speed

Sticking your hand out the window of a fast-moving car will convince you of the
existence of fluid resistance, the force that a fluid (a gas or liquid) exerts on a
body moving through it. The moving body exerts a force on the fluid to push it
out of the way. By Newton’s third law, the fluid pushes back on the body with an
equal and opposite force.

The direction of the fluid resistance force acting on a body is always opposite
the direction of the body’s velocity relative to the fluid. The magnitude of the
fluid resistance force usually increases with the speed of the body through the fluid.
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5.24 A metal ball falling through a fluid

(oil).

(a) Metal ball falling

through oil for ball in oil

Application Pollen and Fluid
Resistance

These spiky spheres are pollen grains from the
ragweed flower (Ambrosia psilostachya) and a
common cause of hay fever. Because of their
small radius (about 10 pm = 0.01 mm), when

they are released into the air the fluid resist-
ance force on them is proportional to their

speed. The terminal speed given by Eq. (5.9)
is only about 1 cm/s. Hence even a moderate

wind can keep pollen grains aloft and carry

them substantial distances from their source.

(b) Free-body diagram

This is very different from the kinetic friction force between two surfaces in con-
tact, which we can usually regard as independent of speed. For small objects
moving at very low speeds, the magnitude f of the fluid resistance force is
approximately proportional to the body’s speed v:

f=kv (fluid resistance at low speed) (5.7)

where k is a proportionality constant that depends on the shape and size of the
body and the properties of the fluid. Equation (5.7) is appropriate for dust parti-
cles falling in air or a ball bearing falling in oil. For larger objects moving
through air at the speed of a tossed tennis ball or faster, the resisting force is
approximately proportional to v? rather than to v. It is then called air drag or
simply drag. Airplanes, falling raindrops, and bicyclists all experience air drag.
In this case we replace Eq. (5.7) by

f = Dv? (fluid resistance at high speed) (5.8)

Because of the v? dependence, air drag increases rapidly with increasing speed.
The air drag on a typical car is negligible at low speeds but comparable to or
greater than rolling resistance at highway speeds. The value of D depends on the
shape and size of the body and on the density of the air. You should verify that
the units of the constant k in Eq. (5.7) are N -s/m or kg/s, and that the units of
the constant D in Eq. (5.8) are N - s2/m? or kg/m.

Because of the effects of fluid resistance, an object falling in a fluid does not
have a constant acceleration. To describe its motion, we can’t use the constant-
acceleration relationships from Chapter 2; instead, we have to start over using
Newton’s second law. As an example, suppose you drop a metal ball at the sur-
face of a bucket of oil and let it fall to the bottom (Fig. 5.24a). The fluid resist-
ance force in this situation is given by Eq. (5.7). What are the acceleration,
velocity, and position of the metal ball as functions of time?

Figure 5.24b shows the free-body diagram. We take the positive y-direction to
be downward and neglect any force associated with buoyancy in the oil. Since
the ball is moving downward, its speed v is equal to its y-velocity v, and the fluid
resistance force is in the —y-direction. There are no x-components, so Newton’s
second law gives

>F, = mg + (—kv,) = ma,
When the ball first starts to move, v, = 0, the resisting force is zero, and the initial
acceleration is a, = g. As the speed increases, the resisting force also increases,
until finally it is equal in magnitude to the weight. At this time mg — kv, = 0, the

acceleration becomes zero, and there is no further increase in speed. The final speed
vy, called the terminal speed, is given by mg — kv, = 0, or
m
v = Tg (terminal speed, fluid resistance f = kv) (5.9

Figure 5.25 shows how the acceleration, velocity, and position vary with time. As
time goes by, the acceleration approaches zero and the velocity approaches v,

5.25 Graphs of the motion of a body falling without fluid resistance and with fluid resistance proportional to the speed.

Acceleration versus time

- No fluid resistance:
" constant acceleration.

..... With fluid resistance:
acceleration decreases.

Velocity versus time
v, No fluid resistance:

Position versus time . )
No fluid resistance:

parabolic curve.
Tt

y
velocity keeps increasing. Y

"o With fluid resistance: ) ) .
velocity has an upper limit. “+ With fluid resistance:

curve straightens out.

t t




(remember that we chose the positive y-direction to be down). The slope of the
graph of y versus # becomes constant as the velocity becomes constant.

To see how the graphs in Fig. 5.25 are derived, we must find the relationship
between velocity and time during the interval before the terminal speed is
reached. We go back to Newton’s second law, which we rewrite using
a, = dv,/dt:

dv, L
m-— = = mg vy,

After rearranging terms and replacing mg/k by v, we integrate both sides, noting

that vy = Owhent = O:
Uodv k /’
y
/0 Uy = Uy m Jo

Vg — Uy k v,
In———=——¢ or —
m

which integrates to

and finally

v, = v [1 — e */mn

§ (5.10)

Note that v, becomes equal to the terminal speed v, only in the limit that  — o0,
the ball cannot attain terminal speed in any finite length of time.

The derivative of v, gives a, as a function of time, and the integral of v, gives
y as a function of time. We leave the derivations for you to complete; the results
are

a, = ge (m (5.11)

y=ut— %(1 — ¢ (Kmy (5.12)
Now look again at Fig. 5.25, which shows graphs of these three relationships.

In deriving the terminal speed in Eq. (5.9), we assumed that the fluid resist-
ance force is proportional to the speed. For an object falling through the air at
high speeds, so that the fluid resistance is equal to Dv? as in Eq. (5.8), the termi-
nal speed is reached when Dv? equals the weight mg (Fig. 5.26a). You can show
that the terminal speed v, is given by

m
U = ne (terminal speed, fluid resistance f = Dv?)  (5.13)
D

This expression for terminal speed explains why heavy objects in air tend to fall
faster than light objects. Two objects with the same physical size but different
mass (say, a table-tennis ball and a lead ball with the same radius) have the same
value of D but different values of m. The more massive object has a higher termi-
nal speed and falls faster. The same idea explains why a sheet of paper falls faster
if you first crumple it into a ball; the mass m is the same, but the smaller size
makes D smaller (less air drag for a given speed) and v, larger. Skydivers use the
same principle to control their descent (Fig. 5.26b).

Figure 5.27 shows the trajectories of a baseball with and without air drag,
assuming a coefficient D = 1.3 X 1073 kg/m (appropriate for a batted ball at
sea level). You can see that both the range of the baseball and the maximum
height reached are substantially less than the zero-drag calculation would lead
you to believe. Hence the baseball trajectory we calculated in Example 3.8 (Sec-
tion 3.3) by ignoring air drag is unrealistic. Air drag is an important part of the
game of baseball!
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5.26 (a) Air drag and terminal speed.

(b) By changing the positions of their arms
and legs while falling, skydivers can
change the value of the constant D in

Eq. (5.8) and hence adjust the terminal
speed of their fall [Eq. (5.13)].

(a) Free-body diagrams for falling with air drag

Dv? = mg
\ Dv? < mg
@y @
mg mg
y y
Before ten.ninal At terminal speed v,:
speed: Object Object in equilibrium,

accelerating, drag
force less than
weight.

drag force equals
weight.

(b) A skydiver falling at terminal speed

5.27 Computer-generated trajectories of
a baseball launched at 50 m/s at 35° above
the horizontal. Note that the scales are dif-
ferent on the horizontal and vertical axes.

50 No air drag: path is a parabola.

y (m)
T

"""" With air drag: range and
= maximum height are less;
- path is not parabolic.

0 x (m)
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Terminal speed of a skydiver

For a human body falling through air in a spread-eagle position
(Fig. 5.26b), the numerical value of the constant D in Eq. (5.8) is
about 0.25 kg/m. Find the terminal speed for a lightweight 50-kg

CHAPTER 5 Applying Newton’s Laws

EVALUATE: The terminal speed is proportional to the square root of
the skydiver’s mass. A skydiver with the same drag coefficient D
but twice the mass would have a terminal speed V2 = 1.41 times

skydiver.

IDENTIFY and SET UP: This example uses the relationship among
terminal speed, mass, and drag coefficient. We use Eq. (5.13) to

find the target variable v,.

EXECUTE: We find for m = 50 kg:

lmg /(50 kg)(9.8 m/s?)
0.25 kg/rn

greater, or 63 m/s. (A more massive skydiver would also have
more frontal area and hence a larger drag coefficient, so his termi-
nal speed would be a bit less than 63 m/s.) Even the lightweight
skydiver’s terminal speed is quite high, so skydives don’t last very
long. A drop from 2800 m (9200 ft) to the surface at the terminal
speed takes only (2800 m)/(44 m/s) = 64 s.

When the skydiver deploys the parachute, the value of D
increases greatly. Hence the terminal speed of the skydiver and
parachute decreases dramatically to a much lower value.

= 44 m/s (about 160 km/h, or 99 mi/h)

5.28 Net force, acceleration, and veloc-
ity in uniform circular motion.
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5.29 What happens if the inward radial
force suddenly ceases to act on a body in
circular motion?

A ball attached to a string whirls in a
circle on a frictionless surface.

P ~-=a
- ey
(e ~

Suddenly, the %\
string breaks.

<

B —
No net force now acts on the ball, so it Y
obeys Newton’s first law—it moves in a

straight line at constant velocity.

Test Your Understanding of Section 5.3 Consider a box that is placed (\@
on different surfaces. (a) In which situation(s) is there no friction force acting on

the box? (b) In which situation(s) is there a static friction force acting on the box?

(¢) In which situation(s) is there a kinetic friction force on the box? (i) The box is at rest
on a rough horizontal surface. (ii) The box is at rest on a rough tilted surface. (iii) The
box is on the rough-surfaced flat bed of a truck—the truck is moving at a constant veloc-
ity on a straight, level road, and the box remains in the same place in the middle of the
truck bed. (iv) The box is on the rough-surfaced flat bed of a truck—the truck is speeding
up on a straight, level road, and the box remains in the same place in the middle of the
truck bed. (v) The box is on the rough-surfaced flat bed of a truck—the truck is climbing
a hill, and the box is sliding toward the back of the truck. 1

5.4 Dynamics of Circular Motion

We talked about uniform circular motion in Section 3.4. We showed that when a
particle moves in a circular path with constant speed, the particle’s acceleration is
always directed toward the center of the circle (perpendicular to the instanta-
neous velocity). The magnitude a,,q of the acceleration is constant and is given in
terms of the speed v and the radius R of the circle by

2

Qrad = ry (uniform circular motion) (5.14)

The subscript “rad” is a reminder that at each point the acceleration is radially
inward toward the center of the circle, perpendicular to the instantaneous veloc-
ity. We explained in Section 3.4 why this acceleration is often called centripetal
acceleration.

We can also express the centripetal acceleration a,q in terms of the period T,
the time for one revolution:

27R
= — (5.158)
v
In terms of the period, a,,q is
47°R . . .
Araq = ? (uniform circular motion) (5.16)

Uniform circular motion, like all other motion of a particle, is governed by
Newton’s second law. To make the particle accelerate toward the center of the
circle, the net force SF on the particle must always be directed toward the center
(Fig. 5.28). The magnitude of the acceleration is constant, so the magnitude Fie
of the net force must also be constant. If the inward net force stops acting, the
particle flies off in a straight line tangent to the circle (Fig. 5.29).



The magnitude of the radial acceleration is given by a,,q = vz/ R, so the mag-
nitude F. of the net force on a particle with mass m in uniform circular motion
must be

2

v . . .
Fret = Magy = m; (uniform circular motion) (5.17)

Uniform circular motion can result from any combination of forces, just so the net
force SF is always directed toward the center of the circle and has a constant mag-
nitude. Note that the body need not move around a complete circle: Equation (5.17)
is valid for any path that can be regarded as part of a circular arc.

CAUTION  Avoid using “centrifugal force” Figure 5.30 shows both a correct free-body
diagram for uniform circular motion (Fig. 5.30a) and a common incorrect diagram
(Fig. 5.30b). Figure 5.30b is incorrect because it includes an extra outward force of magni-
tude m(v%/R) to “keep the body out there” or to “keep it in equilibrium.” There are three
reasons not to include such an outward force, usually called centrifugal force (“centrifugal”
means “fleeing from the center”). First, the body does not “stay out there”: It is in constant
motion around its circular path. Because its velocity is constantly changing in direction,
the body accelerates and is not in equilibrium. Second, if there were an additional outward
force that balanced the inward force, the net force would be zero and the body would
move in a straight line, not a circle (Fig. 5.29). And third, the quantity m(v?/R) is not a
force; it corresponds to the md side of SF = ma and does not appear in SF (Fig. 5.30a).
It’s true that when you ride in a car that goes around a circular path, you tend to slide to the
outside of the turn as though there was a “centrifugal force.” But we saw in Section 4.2
that what really happens is that you tend to keep moving in a straight line, and the outer
side of the car “runs into” you as the car turns (Fig. 4.11c). In an inertial frame of refer-
ence there is no such thing as “centrifugal force.” We won’t mention this term again, and
we strongly advise you to avoid using it as well.

e NCEAEN Force in uniform circular motion
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5.4 Dynamics of Circular Motion

5.30 (a) Correct and (b) incorrect free-
body diagrams for a body in uniform cir-
cular motion.

(a) Correct free-body diagram

1
\ VRIGHT! !
\ /

\ /
\ F Qrad 7
Ny 7
~eod L

If you include the acceleration, draw it to one
side of the body to show that it’s not a force.

(b) Incorrect free-body diagram

< WRONG

>V< )4

The quantity va/R is not a force—it
doesn’t belong in a free-body diagram.

¥

A sled with a mass of 25.0 kg rests on a horizontal sheet of essen-
tially frictionless ice. It is attached by a 5.00-m rope to a post set in
the ice. Once given a push, the sled revolves uniformly in a circle
around the post (Fig. 5.31a). If the sled makes five complete revo-
lutions every minute, find the force F exerted on it by the rope.

IDENTIFY and SET UP: The sled is in uniform circular motion, so it
has a constant radial acceleration. We’ll apply Newton’s second
law to the sled to find the magnitude F of the force exerted by the
rope (our target variable).

5.31 (a) The situation. (b) Our free-body diagram.

(b) Free-body diagram
for sled

(a) A sled in uniform circular motion

We point the positive
x-direction toward the
center of the circle. v

Figure 5.31b shows our free-body diagram for the sled. The accel-
eration has only an x-component; this is toward the center of the cir-
cle, so we denote it as a;,4. The acceleration isn’t given, so we’ll need
to determine its value using either Eq. (5.14) or Eq. (5.16).

EXECUTE: The force F appears in Newton’s second law for the
x-direction:

EFx = F = magy

We can find the centripetal acceleration a,,q using Eq. (5.16). The
sled moves in a circle of radius R = 5.00 m with a period
T = (60.0s)/(5rev) = 12.0s, so

4m2R  Am(5.00 m)
7 (12.0s)?
The magnitude F of the force exerted by the rope is then

F = magy = (25.0kg)(1.37 m/s?)
= 343 kg-m/s? = 343N

rgq = = 1.37 m/s?

EVALUATE: You can check our value for a.,q by first finding the
speed using Eq. (5.15), v = 27R/T, and then using a,q = v>/R
from Eq. (5.14). Do you get the same result?

A greater force would be needed if the sled moved around the
circle at a higher speed v. In fact, if v were doubled while R
remained the same, F' would be four times greater. Can you show
this? How would F change if v remained the same but the radius R
were doubled?
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Fe LRI A conical pendulum

An inventor designs a pendulum clock using a bob with mass m at
the end of a thin wire of length L. Instead of swinging back and
forth, the bob is to move in a horizontal circle with constant speed v,
with the wire making a fixed angle 8 with the vertical direction
(Fig. 5.32a). This is called a conical pendulum because the sus-
pending wire traces out a cone. Find the tension F in the wire and
the period T (the time for one revolution of the bob).

SOLUTION

IDENTIFY and SET UP: To find our target variables, the tension F
and period 7, we need two equations. These will be the horizontal
and vertical components of Newton’s second law applied to the
bob. We’ll find the radial acceleration of the bob using one of the
circular motion equations.

Figure 5.32b shows our free-body diagram and coordinate sys-
tem for the bob at a particular instant. There are just two forces on
the bob: the weight mg and the tension F in the wire. Note that the

5.32 (a) The situation. (b) Our free-body diagram.

(a) The situation

(b) Free-body diagram
for pendulum bob

We point the positive
x-direction toward the
center of the circle.

m Rounding a flat curve

The sports car in Example 3.11 (Section 3.4) is rounding a flat,
unbanked curve with radius R (Fig. 5.33a). If the coefficient of
static friction between tires and road is u,, what is the maximum
speed v . at which the driver can take the curve without sliding?

IDENTIFY and SET UP: The car’s acceleration as it rounds the
curve has magnitude a,,g = v*/R. Hence the maximum speed v,y
(our target variable) corresponds to the maximum acceleration a,,q
and to the maximum horizontal force on the car toward the center
of its circular path. The only horizontal force acting on the car is
the friction force exerted by the road. So to solve this problem
we’ll need Newton’s second law, the equations of uniform circular
motion, and our knowledge of the friction force from Section 5.3.
The free-body diagram in Fig. 5.33b includes the car’s weight
w = mg and the two forces exerted by the road: the normal force n
and the horizontal friction force f. The friction force must point
toward the center of the circular path in order to cause the radial
acceleration. The car doesn’t slide toward or away from the center

center of the circular path is in the same horizontal plane as the
bob, not at the top end of the wire. The horizontal component of
tension is the force that produces the radial acceleration ay,q4.

EXECUTE: The bob has zero vertical acceleration; the horizontal
acceleration is toward the center of the circle, which is why we use
the symbol a,4. Newton’s second law says

EFX = Fsin B = magy

> F,=Fcos B + (—mg) =0
These are two equations for the two unknowns F and 8. The equa-
tion for 3 F, gives F = mg/cos 3; that’s our target expression for

F in terms of B. Substituting this result into the equation for X F,
and using sin B/cos B = tan B3, we find

Qrad = g lan B

To relate B to the period 7, we use Eq. (5.16) for a,,q, solve for 7,
and insert a,,q = gtan B:
47*R 2 4m’R
Arad = 2 SO T =
T Qrad

T =2m,/ R
m gtan B

Figure 5.32a shows that R = Lsin 3. We substitute this and use
sin B/ tan B = cos B:

Lcos B
8

T =2

EVALUATE: For a given length L, as the angle B increases, cos 3
decreases, the period 7 becomes smaller, and the tension
F = mg/cos B increases. The angle can never be 90°, however;
this would require that 7 = 0, F = o0, and v = 0. A conical
pendulum would not make a very good clock because the period
depends on the angle B in such a direct way.

of the circle, so the friction force is static friction, with a maximum
magnitude f;,.x = wt [see Eq. (5.6)].

5.33 (a) The situation. (b) Our free-body diagram.

(b) Free-body
diagram for car

(a) Car rounding flat curve




EXECUTE: The acceleration toward the center of the circular path is
Arad = vz/ R. There is no vertical acceleration. Thus we have
2 F.=f=may, = muf2
X rad R
SF,=n+ (-mg) =0

The second equation shows that n = mg. The first equation shows
that the friction force needed to keep the car moving in its circular
path increases with the car’s speed. But the maximum friction
force available is f.x = mst = pgng, and this determines the
car’s maximum speed. Substituting ugng for f and vy, for v in
the first equation, we find

2
U
pomg = m=p= S0 Unax = ViugR

m Rounding a banked curve

For a car traveling at a certain speed, it is possible to bank a curve at
just the right angle so that no friction at all is needed to maintain the
car’s turning radius. Then a car can safely round the curve even on
wet ice. (Bobsled racing depends on this same idea.) Your engineer-
ing firm plans to rebuild the curve in Example 5.21 so that a car mov-
ing at a chosen speed v can safely make the turn even with no friction
(Fig. 5.34a). At what angle 3 should the curve be banked?

IDENTIFY and SET UP: With no friction, the only forces acting on
the car are its weight and the normal force. Because the road is
banked, the normal force (which acts perpendicular to the road sur-
face) has a horizontal component. This component causes the car’s
horizontal acceleration toward the center of the car’s circular path.
We’ll use Newton’s second law to find the target variable (3.

Our free-body diagram (Fig. 5.34b) is very similar to the dia-
gram for the conical pendulum in Example 5.20 (Fig. 5.32b). The
normal force acting on the car plays the role of the tension force
exerted by the wire on the pendulum bob.

EXECUTE: The normal force 7 is perpendicular to the roadway
and is at an angle B with the vertical (Fig. 5.34b). Thus it has a
vertical component n cos 3 and a horizontal component n sin 3.

5.34 (a) The situation. (b) Our free-body diagram.

(a) Car rounding banked curve
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As an example, if u, = 0.96 and R = 230 m, we have
Umax = V/(0.96)(9.8 m/s2)(230 m) = 47 m/s

or about 170 km/h (100 mi/h). This is the maximum speed for
this radius.

EVALUATE: If the car’s speed is slower than v ,x = V ugR, the
required friction force is less than the maximum value
fmax = msmg, and the car can easily make the curve. If we try to
take the curve going faster than v ,,,, we will skid. We could still
go in a circle without skidding at this higher speed, but the radius
would have to be larger.

The maximum centripetal acceleration (called the “lateral
acceleration” in Example 3.11) is equal to usg. That’s why it’s best
to take curves at less than the posted speed limit if the road is wet

or icy, either of which can reduce the value of wg and hence ug.
I

The acceleration in the x-direction is the centripetal acceleration
raq = vz/R; there is no acceleration in the y-direction. Thus the
equations of Newton’s second law are

EFX = nsin B = magy
>Fy=ncos B + (—mg) =0
From the X F, equation, n = mg/cos B. Substituting this into the

> F, equation and using dg,q = U2/ R, we get an expression for the
bank angle:
Qrad v? v?

— SO
gR

tan B =

EVALUATE: The bank angle depends on both the speed and the
radius. For a given radius, no one angle is correct for all speeds. In
the design of highways and railroads, curves are often banked for
the average speed of the traffic over them. If R = 230 m and
v = 25 m/s (equal to a highway speed of 88 km/h, or 55 mi/h),
then
(25 m/s)?
B =actan——————— =
(9.8 m/s?)(230 m)

This is within the range of banking angles actually used in highways.

o

(b) Free-body
diagram for car
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5.35 An airplane banks to one side in
order to turn in that direction. The vertical
component of the lift force L balances the
force of gravity; the horizontal component
of L causes the acceleration v*/R.

Masteriﬁ-\ €S
kg/PHYSI S

ActivPhysics 4.2: Circular Motion Problem
Solving

ActivPhysics 4.3: Cart Goes over Circular
Path

ActivPhysics 4.4: Ball Swings on a String
ActivPhysics 4.5: Car Circles a Track

CHAPTER 5 Applying Newton’s Laws

Banked Curves and the Flight of Airplanes

The results of Example 5.22 also apply to an airplane when it makes a turn in
level flight (Fig. 5.35). When an airplane is flying in a straight line at a constant
speed and at a steady altitude, the airplane’s weight is exactly balanced by the lift
force L exerted by the air. (The upward lift force that the air exerts on the wings
is a reaction to the downward push the wings exert on the air as they move
through it.) To make the airplane turn, the pilot banks the airplane to one side so
that the lift force has a horizontal component as Fig. 5.35 shows. (The pilot also
changes the angle at which the wings “bite” into the air so that the vertical com-
ponent of lift continues to balance the weight.) The bank angle is related to the
airplane’s speed v and the radius R of the turn by the same expression as in
Example 5.22: tan3 = vz/ gR. For an airplane to make a tight turn (small R) at
high speed (large v), tan 3 must be large and the required bank angle 8 must
approach 90°.

We can also apply the results of Example 5.22 to the pilot of an airplane. The
free-body diagram for the pilot of the airplane is exactly as shown in Fig. 5.34b; the
normal force n = mg/cos B is exerted on the pilot by the seat. As in Example 5.9,
n is equal to the apparent weight of the pilot, which is greater than the pilot’s true
weight mg. In a tight turn with a large bank angle 3, the pilot’s apparent weight
can be tremendous: n = 5.8mg at B = 80° and n = 9.6mg at B = 84°. Pilots
black out in such tight turns because the apparent weight of their blood increases
by the same factor, and the human heart isn’t strong enough to pump such appar-
ently “heavy” blood to the brain.

Motion in a Vertical Circle

In Examples 5.19, 5.20, 5.21, and 5.22 the body moved in a horizontal circle.
Motion in a vertical circle is no different in principle, but the weight of the body
has to be treated carefully. The following example shows what we mean.

m Uniform circular motion in a vertical circle

A passenger on a carnival Ferris wheel moves in a vertical circle of ~ Hence a,, = —v? /R and Newton’s second law tells us that
radius R with constant speed v. The seat remains upright during V2
the motion. Find expressions for the force the seat exerts on the Top: EFy =nr+ (—-mg) = —m ® or

passenger at the top of the circle and at the bottom.

v?
nt = mg l—ng

IDENTIFY and SET UP: The target variables are nt, the upward
normal force the seat applies to the passenger at the top of the
circle, and npg, the normal force at the bottom. We’ll find these
using Newton’s second law and the uniform circular motion
equations.

Figure 5.36a shows the passenger’s velocity and acceleration at
the two positions. The acceleration always points toward the center
of the circle—downward at the top of the circle and upward at the
bottom of the circle. At each position the only forces acting are
vertical: the upward normal force and the downward force of grav-
ity. Hence we need only the vertical component of Newton’s sec-
ond law. Figures 5.36b and 5.36¢ show free-body diagrams for the
two positions. We take the positive y-direction as upward in both
cases (that is, opposite the direction of the acceleration at the top of
the circle).

ENECUTE: At the top the acceleration has magnitude v?/R, but its
vertical component is negative because its direction is downward.

5.36 Our sketches for this problem.

(b) Free-body diagram
for passenger at top
(€) Free-body diagram

(a) Sketch of two positions

\I/ for passenger at bottom
nt 14
etv X A
l s
W=mg
GYT q X
W=mg
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At the bottom the acceleration is upward, so a, = +02/R and  in magnitude than the passenger’s weight w = mg. If the ride goes

Newton’s second law says fast enough that g — vz/ R becomes zero, the seat applies no force,
s and the passenger is about to become airborne. If v becomes still

Bottom: E Fy=ng + (—mg) = +mi or larger, nt becomes negative; this means that a downward force

(such as from a seat belt) is needed to keep the passenger in the

v? seat. By contrast, the normal force ng at the bottom is always

' = mg (1 + g?) greater than the passenger’s weight. You feel the seat pushing up

on you more firmly than when you are at rest. You can see that ny
EVALUATE: Our result for ny tells us that at the top of the Ferris  and ny are the values of the passenger’s apparent weight at the top
wheel, the upward force the seat applies to the passenger is smaller  and bottom of the circle (see Section 5.2).

When we tie a string to an object and whirl it in a vertical circle, the analysis
in Example 5.23 isn’t directly applicable. The reason is that v is not constant in
this case; except at the top and bottom of the circle, the net force (and hence the
acc_g:leration) does not point toward the center of the circle (Fig. 5.37). So both
> F and d have a component tangent to the circle, which means that the speed
changes. Hence this is a case of nonuniform circular motion (see Section 3.4).
Even worse, we can’t use the constant-acceleration formulas to relate the speeds
at various points because neither the magnitude nor the direction of the accelera-
tion is constant. The speed relationships we need are best obtained by using the
concept of energy. We’ll consider such problems in Chapter 7.

Test Your Understanding of Section 5.4 Satellites are held in orbit by

the force of our planet’s gravitational attraction. A satellite in a small-radius orbit )

moves at a higher speed than a satellite in an orbit of large radius. Based on this
information, what you can conclude about the earth’s gravitational attraction for the satel-
lite? (i) It increases with increasing distance from the earth. (ii) It is the same at all dis-
tances from the earth. (iii) It decreases with increasing distance from the earth. (iv) This
information by itself isn’t enough to answer the question. |

5.5 The Fundamental Forces of Nature

We have discussed several kinds of forces—including weight, tension, friction,
fluid resistance, and the normal force—and we will encounter others as we con-
tinue our study of physics. But just how many kinds of forces are there? Our cur-
rent understanding is that all forces are expressions of just four distinct classes of
Jfundamental forces, or interactions between particles (Fig. 5.38). Two are famil-
iar in everyday experience. The other two involve interactions between sub-
atomic particles that we cannot observe with the unaided senses.

Gravitational interactions include the familiar force of your weight, which
results from the earth’s gravitational attraction acting on you. The mutual gravita-
tional attraction of various parts of the earth for each other holds our planet
together (Fig. 5.38a). Newton recognized that the sun’s gravitational attraction for
the earth keeps the earth in its nearly circular orbit around the sun. In Chapter 13
we will study gravitational interactions in greater detail, and we will analyze their
vital role in the motions of planets and satellites.

The second familiar class of forces, electromagnetic interactions, includes
electric and magnetic forces. If you run a comb through your hair, the comb ends
up with an electric charge; you can use the electric force exerted by this charge to
pick up bits of paper. All atoms contain positive and negative electric charge, so
atoms and molecules can exert electric forces on one another (Fig. 5.38b). Con-
tact forces, including the normal force, friction, and fluid resistance, are the com-
bination of all such forces exerted on the atoms of a body by atoms in its
surroundings. Magnetic forces, such as those between magnets or between a
magnet and a piece of iron, are actually the result of electric charges in motion.
For example, an electromagnet causes magnetic interactions because electric

5.37 Aball moving in a vertical circle.
+When a ball moves in a vertical circle ...
:‘.4//
I/ ... the net force on the ball has
A a component toward the center

,’ . of the circle ...
s

e et but also a component
tangent to the circle...
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5.38 Examples of the fundamental inter-
actions in nature. (a) The moon and the
earth are held together and held in orbit by
gravitational forces. (b) This molecule of
bacterial plasmid DNA is held together by
electromagnetic forces between its atoms.
() The sun shines because in its core,
strong forces between nuclear particles
cause the release of energy. (d) When a
massive star explodes into a supernova, a
flood of energy is released by weak interac-
tions between the star’s nuclear particles.

(a) Gravitational forces hold planets together.

(b) Electromagnetic forces hold molecules
together.

(c) Strong forces release energy to power the sun.

(d) Weak forces play a role in exploding stars.

CHAPTER 5 Applying Newton’s Laws

charges move through its wires. We will study electromagnetic interactions in
detail in the second half of this book.

On the atomic or molecular scale, gravitational forces play no role because
electric forces are enormously stronger: The electrical repulsion between two
protons is stronger than their gravitational attraction by a factor of about 10%.
But in bodies of astronomical size, positive and negative charges are usually
present in nearly equal amounts, and the resulting electrical interactions nearly
cancel out. Gravitational interactions are thus the dominant influence in the
motion of planets and in the internal structure of stars.

The other two classes of interactions are less familiar. One, the strong inter-
action, is responsible for holding the nucleus of an atom together. Nuclei contain
electrically neutral neutrons and positively charged protons. The electric force
between charged protons tries to push them apart; the strong attractive force
between nuclear particles counteracts this repulsion and makes the nucleus sta-
ble. In this context the strong interaction is also called the strong nuclear force. It
has much shorter range than electrical interactions, but within its range it is much
stronger. The strong interaction plays a key role in thermonuclear reactions that
take place at the sun’s core and generate the sun’s heat and light (Fig. 5.38c¢).

Finally, there is the weak interaction. Its range is so short that it plays a role
only on the scale of the nucleus or smaller. The weak interaction is responsible
for a common form of radioactivity called beta decay, in which a neutron in a
radioactive nucleus is transformed into a proton while ejecting an electron and a
nearly massless particle called an antineutrino. The weak interaction between the
antineutrino and ordinary matter is so feeble that an antineutrino could easily
penetrate a wall of lead a million kilometers thick! Yet when a giant star under-
goes a cataclysmic explosion called a supernova, most of the energy is released
by way of the weak interaction (Fig. 5.38d).

In the 1960s physicists developed a theory that described the electromagnetic
and weak interactions as aspects of a single electroweak interaction. This theory
has passed every experimental test to which it has been put. Encouraged by this
success, physicists have made similar attempts to describe the strong, electro-
magnetic, and weak interactions in terms of a single grand unified theory (GUT),
and have taken steps toward a possible unification of all interactions into a theory
of everything (TOE). Such theories are still speculative, and there are many unan-
swered questions in this very active field of current research.



CHAPTER 5 SUMMARY

Using Newton’s first law: When a body is in equilibrium
in an inertial frame of reference—that is, either at rest or
moving with constant velocity—the vector sum of
forces acting on it must be zero (Newton’s first law).
Free-body diagrams are essential in identifying the
forces that act on the body being considered.

Newton’s third law (action and reaction) is also fre-
quently needed in equilibrium problems. The two forces
in an action—reaction pair never act on the same body.
(See Examples 5.1-5.5.)

The normal force exerted on a body by a surface is not
always equal to the body’s weight. (See Example 5.3.)

Using Newton’s second law: If the vector sum of forces
on a body is not zero, the body accelerates. The acceler-
ation is related to the net force by Newton’s second law.

Just as for equilibrium problems, free-body diagrams
are essential for solving problems involving Newton’s
second law, and the normal force exerted on a body is
not always equal to its weight. (See Examples
5.6-5.12.)

Friction and fluid resistance: The contact force between
two bodies can always be represented in terms of a nor-
mal force 7 perpendicular to the surface of contact and a
friction force ? parallel to the surface.

When a body is sliding over the surface, the friction
force is called kinetic friction. Its magnitude fy is
approximately equal to the normal force magnitude n
multiplied by the coefficient of kinetic friction .
When a body is not moving relative to a surface, the
friction force is called static friction. The maximum pos-
sible static friction force is approximately equal to the
magnitude n of the normal force multiplied by the coef-
ficient of static friction u,. The actual static friction
force may be anything from zero to this maximum
value, depending on the situation. Usually u is greater
than uy for a given pair of surfaces in contact. (See
Examples 5.13-5.17.)

Rolling friction is similar to kinetic friction, but the
force of fluid resistance depends on the speed of an
object through a fluid. (See Example 5.18.)

Forces in circular motion: In uniform circular motion,
the acceleration vector is directed toward the center of
the circle. The motion is governed by Newton’s second
law, SF = md. (See Examples 5.19-5.23.)

21_5' = 0 (vector form) (5.1)
>F, =0

sz _ o (component form)  (5.2)
Vector form:

SF = md (5.3)
Component form:

> F,=ma, > F,=ma, (54
Magnitude of kinetic friction force:
fx = mgn (5.5)
Magnitude of static friction force:

s = Mgt (5.8)

Acceleration in uniform circular motion:

v>  4Am’R
Arad = ; = T2

(5.14), (5.16)

Static
friction
f

Kinetic
friction

=
/’—--:\ ¢
/ = a
SF rad
o/l a =
|arad SF
\
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L DTN I8 In a Rotating Cone

A small block with mass m is placed inside an inverted cone that is
rotating about a vertical axis such that the time for one revolution
of the cone is T (Fig. 5.39). The walls of the cone make an angle 3
with the horizontal. The coefficient of static friction between the
block and the cone is ug. If the block is to remain at a constant
height & above the apex of the cone, what are (a) the maximum
value of 7 and (b) the minimum value of 7'? (That is, find expres-
sions for Ty, and Ty, in terms of B and h.)

SOLUTION GUIDE

See MasteringPhysics® Study Area for a Video Tutor solution. ‘ ’

IDENTIFY and SET UP

1. Although we want the block to not slide up or down on the
inside of the cone, this is not an equilibrium problem. The block
rotates with the cone and is in uniform circular motion, so it has
an acceleration directed toward the center of its circular path.

2. Identify the forces on the block. What is the direction of the fric-
tion force when the cone is rotating as slowly as possible, so T’
has its maximum value 7},,,,? What is the direction of the fric-
tion force when the cone is rotating as rapidly as possible, so T’
has its minimum value 7,,;,? In these situations does the static
friction force have its maximum magnitude? Why or why not?

3. Draw a free-body diagram for the block when the cone is rotat-
ing with 7 = Ty, and a free-body diagram when the cone is
rotating with 7' = T,,;,. Choose coordinate axes, and remember
that it’s usually easiest to choose one of the axes to be in the
direction of the acceleration.

4. What is the radius of the circular path that the block follows?
Express this in terms of 8 and A.

5. Make a list of the unknown quantities, and decide which of
these are the target variables.

Prohlems

For instructor-assigned homework, go to www.masteringphysics.com

5.39 A block inside a spinning cone.

| Time for 1 rotation = T'

EXECUTE

6. Write Newton’s second law in component form for the case in
which the cone is rotating with 7 = T,,,,,. Write the accelera-
tion in terms of T, B, and A, and write the static friction
force in terms of the normal force 7.

7. Solve these equations for the target variable 7,.

8. Repeat steps 6 and 7 for the case in which the cone is rotating
with T = Ty,in. and solve for the target variable 7).

EVALUATE
9. You’ll end up with some fairly complicated expressions for

Timax and Tpin, so check them over carefully. Do they have the
correct units? Is the minimum time 7,;, less than the maxi-
mum time 7}y, as it must be?

10. What do your expressions for T, and T, become if
s = 0?7 Check your results by comparing with Example
5.22 in Section 5.4.

G

e, e, es: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems

requiring calculus. BID: Biosciences problems.

DISCUSSION QUESTIONS

@5.1 A man sits in a seat that is suspended from a rope. The rope
passes over a pulley suspended from the ceiling, and the man holds
the other end of the rope in his hands. What is the tension in the
rope, and what force does the seat exert on the man? Draw a free-
body force diagram for the man.

@5.2 “In general, the normal force is not equal to the weight.”
Give an example where these two forces are equal in magnitude,
and at least two examples where they are not.

@5.3 A clothesline hangs between two poles. No matter how tightly
the line is stretched, it always sags a little at the center. Explain why.
@5.4 A car is driven up a steep hill at constant speed. Discuss all
the forces acting on the car. What pushes it up the hill?

@5.5 For medical reasons it is important for astronauts in outer
space to determine their body mass at regular intervals. Devise a
scheme for measuring body mass in an apparently weightless
environment.

@5.6 To push a box up a ramp, is the force required smaller if you
push horizontally or if you push parallel to the ramp? Why?

@5.7 A woman in an elevator lets go of her briefcase but it does
not fall to the floor. How is the elevator moving?

@5.8 You can classify scales for weighing objects as those that use
springs and those that use standard masses to balance unknown
masses. Which group would be more accurate when used in an
accelerating spaceship? When used on the moon?

@5.9 When you tighten a nut on a bolt, how are you increasing the
frictional force? How does a lock washer work?

@5.10 A block rests on an inclined plane with enough friction to
prevent it from sliding down. To start the block moving, is it easier
to push it up the plane or down the plane? Why?

@5.11 A crate of books rests on a level floor. To move it along the
floor at a constant velocity, why do you exert a smaller force if you
pull it at an angle 6 above the horizontal than if you push it at the
same angle below the horizontal?


www.masteringphysics.com

@5.12 In a world without friction, which of the following activities
could you do (or not do)? Explain your reasoning. (a) drive around
an unbanked highway curve; (b) jump into the air; (c) start walking
on a horizontal sidewalk; (d) climb a vertical ladder; (e) change
lanes on the freeway.

@5.13 Walking on horizontal slippery ice can be much more tiring
than walking on ordinary pavement. Why?

@5.14 When you stand with bare feet in a wet bathtub, the grip
feels fairly secure, and yet a catastrophic slip is quite possible.
Explain this in terms of the two coefficients of friction.

@5.15 You are pushing a large crate from the back of a freight ele-
vator to the front as the elevator is moving to the next floor. In
which situation is the force you must apply to move the crate the
smallest and in which is it the largest: when the elevator is acceler-
ating upward, when it is accelerating downward, or when it is trav-
eling at constant speed? Explain.

@5.16 The moon is accelerating toward the earth. Why isn’t it get-
ting closer to us?

@5.17 An automotive magazine calls decreasing-radius curves
“the bane of the Sunday driver.” Explain.

@5.18 You often hear people say that “friction always opposes
motion.” Give at least one example where (a) static friction causes
motion, and (b) kinetic friction causes motion.

@5.19 If there is a net force on a particle in uniform circular
motion, why doesn’t the particle’s speed change?

@5.20 A curve in a road has the banking angle calculated and
posted for 80 km/h. However, the road is covered with ice so you
cautiously plan to drive slower than this limit. What may happen to
your car? Why?

@5.21 You swing a ball on the end of a lightweight string in a hor-
izontal circle at constant speed. Can the string ever be truly hori-
zontal? If not, would it slope above the horizontal or below the
horizontal? Why?

@5.22 The centrifugal force is not included in the free-body dia-
grams of Figs. 5.34b and 5.35. Explain why not.

@5.23 A professor swings a rubber stopper in a horizontal circle
on the end of a string in front of his class. He tells Caroline, in the
first row, that he is going to let the string go when the stopper is
directly in front of her face. Should Caroline worry?

@5.24 To keep the forces on the riders within allowable limits,
loop-the-loop roller coaster rides are often designed so that the
loop, rather than being a perfect circle, has a larger radius of curva-
ture at the bottom than at the top. Explain.

@5.25 A tennis ball drops from rest at the top of a tall glass cylinder,
first with the air pumped out of the cylinder so there is no air resist-
ance, and then a second time after the air has been readmitted to the
cylinder. You examine multiflash photographs of the two drops.
From these photos how can you tell which one is which, or can you?
@5.26 If you throw a baseball straight upward with speed v, how
does its speed, when it returns to the point from where you threw
it, compare to v (a) in the absence of air resistance and (b) in the
presence of air resistance? Explain.

@5.27 You throw a baseball straight upward. If air resistance is not
ignored, how does the time required for the ball to go from the
height at which it was thrown up to its maximum height compare to
the time required for it to fall from its maximum height back down
to the height from which it was thrown? Explain your answer.
@5.28 You take two identical tennis balls and fill one with water.
You release both balls simultaneously from the top of a tall build-
ing. If air resistance is negligible, which ball strikes the ground
first? Explain. What is the answer if air resistance is not
negligible?
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@5.29 A ball is dropped from rest and feels air resistance as it falls.
Which of the graphs in Fig. Q5.29 best represents its acceleration
as a function of time?

Figure @5.29

a a a a a

(@) (b) © (d (e

@5.30 A ball is dropped from rest and feels air resistance as it falls.
Which of the graphs in Fig. Q5.30 best represents its vertical
velocity component as a function of time?

Figure @5.30

1% 1% v v v
= M L =
(@ (b) © (d) (®

@5.31 When does a baseball in flight have an acceleration with a
positive upward component? Explain in terms of the forces on the
ball and also in terms of the velocity components compared to the
terminal speed. Do not ignore air resistance.

@5.32 When a batted baseball moves with air drag, does it travel a
greater horizontal distance while climbing to its maximum height
or while descending from its maximum height back to the ground?
Or is the horizontal distance traveled the same for both? Explain in
terms of the forces acting on the ball.

@5.33 “A ball is thrown from the edge of a high cliff. No matter
what the angle at which it is thrown, due to air resistance, the ball
will eventually end up moving vertically downward.” Justify this
statement.

EXERCISES

Section 5.1 Using Newton’s First Law:

Particles in Equilibrium

5.1 < Two 25.0-N weights are suspended at opposite ends of a
rope that passes over a light, frictionless pulley. The pulley is
attached to a chain that goes to the ceiling. (a) What is the tension
in the rope? (b) What is the tension in the chain?

5.2 ¢ In Fig. E5.2 each of the suspended blocks has weight w. The
pulleys are frictionless and the ropes have negligible weight. Cal-
culate, in each case, the tension 7 in the rope in terms of the weight
w. In each case, include the free-body diagram or diagrams you
used to determine the answer.

Figure E5S.2
(@ (b) ©
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5.3 - A 75.0-kg wrecking ball hangs from a uniform heavy-duty
chain having a mass of 26.0 kg. (a) Find the maximum and mini-
mum tension in the chain. (b) What is the tension at a point three-
fourths of the way up from the bottom of the chain?

5.4 - BID Injuries to the Spinal Column. In the treatment of
spine injuries, it is often necessary to provide some tension along
the spinal column to stretch the backbone. One device for doing
this is the Stryker frame, illustrated in Fig. E5.4a. A weight W is
attached to the patient (sometimes around a neck collar, as
shown in Fig. E5.4b), and friction between the person’s body and
the bed prevents sliding. (a) If the coefficient of static friction
between a 78.5-kg patient’s body and the bed is 0.75, what is the
maximum traction force along the spinal column that W can pro-
vide without causing the patient to slide? (b) Under the conditions
of maximum traction, what is the tension in each cable attached to
the neck collar?

Figure ES.4

@ Ny

5.5 ¢« A picture frame hung against a wall is suspended by two
wires attached to its upper corners. If the two wires make the same
angle with the vertical, what must this angle be if the tension in
each wire is equal to 0.75 of the weight of the frame? (Ignore any
friction between the wall and the picture frame.)

5.6 - A large wrecking ball _

is held in place by two light Figure ES.6
steel cables (Fig. E5.6). If the
mass m of the wrecking ball is
4090 kg, what are (a) the ten-
sion 73 in the cable that makes
an angle of 40° with the verti-
cal and (b) the tension 7 in the
horizontal cable?

5.7 - Find the tension in
each cord in Fig. ES.7 if the
weight of the suspended object is w.

Figure E5.7
(@ (b)

5.8 = A 1130-kg car is held in place by a light cable on a very
smooth (frictionless) ramp, as shown in Fig. E5.8. The cable

makes an angle of 31.0° above
the surface of the ramp, and
the ramp itself rises at 25.0°
above the horizontal. (a) Draw
a free-body diagram for the
car. (b) Find the tension in
the cable. (c) How hard does the
surface of the ramp push on the
car?

5.9 e« A man pushes on a
piano with mass 180 kg so that
it slides at constant velocity down a ramp that is inclined at 11.0°
above the horizontal floor. Neglect any friction acting on the piano.
Calculate the magnitude of the force applied by the man if he
pushes (a) parallel to the incline and (b) parallel to the floor.

5.10 -~ In Fig. ES.10 the weight w is 60.0 N. (a) What is the ten-
sion in the diagonal string? (b) Find the magnitudes of the horizon-
tal forces 7’1 and 772 that must be applied to hold the system in the
position shown.

Figure E5.8

Figure E5.10
90.0°
ﬁl 90.0

Section 5.2 Using Newton’s Second Law:

Dynamics of Particles

5.11 - BI0 Stay Awake! An astronaut is inside a 2.25 X 10° kg
rocket that is blasting off vertically from the launch pad. You want
this rocket to reach the speed of sound (331 m/s) as quickly as
possible, but you also do not want the astronaut to black out. Medical
tests have shown that astronauts are in danger of blacking out at an
acceleration greater than 4g. (a) What is the maximum thrust the
engines of the rocket can have to just barely avoid blackout? Start
with a free-body diagram of the rocket. (b) What force, in terms of
her weight w, does the rocket exert on the astronaut? Start with a
free-body diagram of the astronaut. (c) What is the shortest time it
can take the rocket to reach the speed of sound?

5.12 -« A 125-kg (including all the contents) rocket has an engine
that produces a constant vertical force (the thrust) of 1720 N.
Inside this rocket, a 15.5-N electrical power supply rests on the
floor. (a) Find the acceleration of the rocket. (b) When it has
reached an altitude of 120 m, how hard does the floor push on the
power supply? (Hint: Start with a free-body diagram for the power
supply.)

5.13 -« CP Genesis Crash. On September 8, 2004, the Genesis
spacecraft crashed in the Utah desert because its parachute did not
open. The 210-kg capsule hit the ground at 311 km/h and pene-
trated the soil to a depth of 81.0 cm. (a) Assuming it to be constant,
what was its acceleration (in m/ s? and in g’s) during the crash?
(b) What force did the ground exert on the capsule during the
crash? Express the force in newtons and as a multiple of the cap-
sule’s weight. (c¢) For how long did this force last?



5.14 - Three sleds are being pulled horizontally on frictionless
horizontal ice using horizontal ropes (Fig. E5.14). The pull is of
magnitude 125 N. Find (a) the acceleration of the system and (b)
the tension in ropes A and B.

Figure E5.14
30.0 kg

.

20.0 kg

—

10.0 kg

?—7

Pull

5.15 - Atwood’s Machine. A
15.0-kg load of bricks hangs from
one end of a rope that passes over
a small, frictionless pulley. A 28.0-
kg counterweight is suspended
from the other end of the rope, as
shown in Fig. E5.15. The system
is released from rest. (a) Draw
two free-body diagrams, one for
the load of bricks and one for the
counterweight. (b) What is the
magnitude of the upward acceler-
ation of the load of bricks? (c)
What is the tension in the rope
while the load is moving? How
does the tension compare to the
weight of the load of bricks? To
the weight of the counterweight?
5.16 -« CP A 8.00-kg block of ice, released from rest at the top of
a 1.50-m-long frictionless ramp, slides downbhill, reaching a speed
of 2.50 m/s at the bottom. (a) What is the angle between the ramp
and the horizontal? (b) What would be the speed of the ice at the
bottom if the motion were opposed by a constant friction force of
10.0 N parallel to the surface of the ramp?

5.17 -+ Alight rope is attached to a block with mass 4.00 kg that
rests on a frictionless, horizontal surface. The horizontal rope
passes over a frictionless, massless pulley, and a block with mass m
is suspended from the other end. When the blocks are released, the
tension in the rope is 10.0 N. (a) Draw two free-body diagrams,
one for the 4.00-kg block and one for the block with mass m.
(b) What is the acceleration of either block? (¢) Find the mass m of
the hanging block. (d) How does the tension compare to the weight
of the hanging block?

5.18 -« CP Runway Design. A transport plane takes off from a
level landing field with two gliders in tow, one behind the other.
The mass of each glider is 700 kg, and the total resistance (air drag
plus friction with the runway) on each may be assumed constant
and equal to 2500 N. The tension in the towrope between the trans-
port plane and the first glider is not to exceed 12,000 N. (a) If a
speed of 40 m/s is required for takeoff, what minimum length of
runway is needed? (b) What is the tension in the towrope between
the two gliders while they are accelerating for the takeoft?

5.19 -« CP A 750.0-kg boulder is raised from a quarry 125 m
deep by a long uniform chain having a mass of 575 kg. This chain
is of uniform strength, but at any point it can support a maximum
tension no greater than 2.50 times its weight without breaking. (a)
What is the maximum acceleration the boulder can have and still
get out of the quarry, and (b) how long does it take to be lifted out
at maximum acceleration if it started from rest?

5.20 - Apparent Weight. A 550-N physics student stands on a
bathroom scale in an 850-kg (including the student) elevator that is
supported by a cable. As the elevator starts moving, the scale reads

Figure ES.15

15.0 kg
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450 N. (a) Find the acceleration of the elevator (magnitude and
direction). (b) What is the acceleration if the scale reads 670 N?
(c) If the scale reads zero, should the student worry? Explain.
(d) What is the tension in the cable in parts (a) and (c)?

5.21 -« CP BID Force During a Jump. An average person can
reach a maximum height of about 60 cm when jumping straight up
from a crouched position. During the jump itself, the person’s
body from the knees up typically rises a distance of around 50 cm.
To keep the calculations simple and yet get a reasonable result,
assume that the entire body rises this much during the jump.
(a) With what initial speed does the person leave the ground to
reach a height of 60 cm? (b) Draw a free-body diagram of the per-
son during the jump. (c) In terms of this jumper’s weight w, what
force does the ground exert on him or her during the jump?

5.22 = CP CALC A 2540-kg test rocket is launched vertically from
the launch pad. Its fuel (of negligible mass) provides a thrust force so
that its vertical velocity as a function of time is given by v(¢) =
At + Bt2, where A and B are constants and time is measured from the
instant the fuel is ignited. At the instant of ignition, the rocket has an
upward acceleration of 1.50 m/ s2and 1.00 s later an upward velocity
of 2.00 m/s. (a) Determine A and B, including their SI units. (b) At
4.00 s after fuel ignition, what is the acceleration of the rocket, and (c)
what thrust force does the burning fuel exert on it, assuming no air
resistance? Express the thrust in newtons and as a multiple of the
rocket’s weight. (d) What was the initial thrust due to the fuel?

5.23 -« CP CALC A 2.00-kg box is moving to the right with speed
9.00 m/s on a horizontal, frictionless surface. At r = 0 a horizon-
tal force is applied to the box. The force is directed to the left and
has magnitude F(r) = (6.00 N/s?)r2. (a) What distance does the
box move from its position at ¢ = 0 before its speed is reduced to
zero? (b) If the force continues to be applied, what is the speed of
the box at t = 3.00 s?

5.24 -« CP CALC A 5.00-kg crate is suspended from the end of a
short vertical rope of negligible mass. An upward force F(r) is
applied to the end of the rope, and the height of the crate above its
initial position is given by y(7) = (2.80 m/s)s + (0.610 m/s®)3.
What is the magnitude of the force F when ¢ = 4.00 s?

Section 5.3 Frictional Forces

5.25 ¢« BI0 The Trendelenburg Position. In emergencies with
major blood loss, the doctor will order the patient placed in the
Trendelenburg position, in which the foot of the bed is raised to get
maximum blood flow to the brain. If the coefficient of static fric-
tion between the typical patient and the bedsheets is 1.20, what is
the maximum angle at which the bed can be tilted with respect to
the floor before the patient begins to slide?

5.26 - In a laboratory experiment on friction, a 135-N block rest-
ing on a rough horizontal table is pulled by a horizontal wire. The
pull gradually increases until the block begins to move and contin-
ues to increase thereafter. Figure E5.26 shows a graph of the fric-
tion force on this block as a function of the pull. (a) Identify the

Figure E5.26
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regions of the graph where static and kinetic friction occur.
(b) Find the coefficients of static and kinetic friction between the
block and the table. (¢) Why does the graph slant upward in the
first part but then level out? (d) What would the graph look like if a
135-N brick were placed on the box, and what would the coeffi-
cients of friction be in that case?

5.27 = CP A stockroom worker pushes a box with mass 11.2 kg
on a horizontal surface with a constant speed of 3.50 m/s. The
coefficient of kinetic friction between the box and the surface is
0.20. (a) What horizontal force must the worker apply to maintain
the motion? (b) If the force calculated in part (a) is removed, how
far does the box slide before coming to rest?

5.28 -« A box of bananas weighing 40.0 N rests on a horizontal
surface. The coefficient of static friction between the box and the
surface is 0.40, and the coefficient of kinetic friction is 0.20. (a) If
no horizontal force is applied to the box and the box is at rest, how
large is the friction force exerted on the box? (b) What is the magni-
tude of the friction force if a monkey applies a horizontal force of
6.0 N to the box and the box is initially at rest? (c) What minimum
horizontal force must the monkey apply to start the box in motion?
(d) What minimum horizontal force must the monkey apply to keep
the box moving at constant velocity once it has been started? (e) If
the monkey applies a horizontal force of 18.0 N, what is the magni-
tude of the friction force and what is the box’s acceleration?

5.29 -« A 45.0-kg crate of tools rests on a horizontal floor. You
exert a gradually increasing horizontal push on it and observe that
the crate just begins to move when your force exceeds 313 N. After
that you must reduce your push to 208 N to keep it moving at a
steady 25.0 cm/s. (a) What are the coefficients of static and kinetic
friction between the crate and the floor? (b) What push must you
exert to give it an acceleration of 1.10 m/ 27 (¢) Suppose you were
performing the same experiment on this crate but were doing it on the
moon instead, where the acceleration due to gravity is 1.62 m/ 52
(i) What magnitude push would cause it to move? (ii) What would its
acceleration be if you maintained the push in part (b)?

5.30 - Some sliding rocks approach the base of a hill with a
speed of 12 m/s. The hill rises at 36° above the horizontal and has
coefficients of kinetic and static friction of 0.45 and 0.65, respec-
tively, with these rocks. (a) Find the acceleration of the rocks as
they slide up the hill. (b) Once a rock reaches its highest point, will
it stay there or slide down the hill? If it stays there, show why. If it
slides down, find its acceleration on the way down.

5.31 ¢ You are lowering two boxes, one on top of the other,
down the ramp shown in Fig. E5.31 by pulling on a rope parallel to
the surface of the ramp. Both boxes move together at a constant
speed of 15.0 cm/s. The coefficient of kinetic friction between the
ramp and the lower box is 0.444, and the coefficient of static fric-
tion between the two boxes is 0.800. (a) What force do you need to
exert to accomplish this? (b) What are the magnitude and direction
of the friction force on the upper box?

Figure E5.31
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5.32 - A pickup truck is carrying a toolbox, but the rear gate of
the truck is missing, so the box will slide out if it is set moving.
The coefficients of kinetic and static friction between the box and
the bed of the truck are 0.355 and 0.650, respectively. Starting
from rest, what is the shortest time this truck could accelerate uni-
formly to 30.0 m/s without causing the box to slide? Include a
free-body diagram of the toolbox as part of your solution.

5.33 -« CP Stopping Distance. (a) If the coefficient of kinetic
friction between tires and dry pavement is 0.80, what is the short-
est distance in which you can stop an automobile by locking the
brakes when traveling at 28.7 m/s (about 65 mi/h)? (b) On wet
pavement the coefficient of kinetic friction may be only 0.25. How
fast should you drive on wet pavement in order to be able to stop in
the same distance as in part (a)? (Note: Locking the brakes is not
the safest way to stop.)
5.34 - Consider the
system shown in Fig.
ES5.34. Block A weighs A
45.0 N and block B
weighs 25.0 N. Once
block B is set into
downward motion, it
descends at a constant
speed. (a) Calculate the coefficient of kinetic friction between
block A and the tabletop. (b) A cat, also of weight 45.0 N, falls
asleep on top of block A. If block B is now set into downward
motion, what is its acceleration (magnitude and direction)?

5.35 ¢ Two crates connected by a rope lie on a horizontal surface
(Fig. E5.35). Crate A has mass m 4 and crate B has mass mg. The
coefficient of kinetic friction between each crate and the surface
is . The crates are pulled to the right at constant velocity by a
horizontal force F. In terms of m A4, mp, and uy, calculate (a) the
magnitude of the force Fand (b) the tension in the rope connecting
the blocks. Include the free-body diagram or diagrams you used to
determine each answer.

Figure E5.34

1

Figure ES.35

F
- —

5.36 -« CP A 25.0-kg box of textbooks rests on a loading ramp
that makes an angle a with the horizontal. The coefficient of
kinetic friction is 0.25, and the coefficient of static friction is 0.35.
(a) As the angle « is increased, find the minimum angle at which
the box starts to slip. (b) At this angle, find the acceleration once
the box has begun to move. (c) At this angle, how fast will the box
be moving after it has slid 5.0 m along the loading ramp?

5.37 -« CP Asshown in Fig. E5.34, block A (mass 2.25 kg) rests on a
tabletop. It is connected by a horizontal cord passing over a light, fric-
tionless pulley to a hanging block B (mass 1.30 kg). The coefficient of
kinetic friction between block A and the tabletop is 0.450. After the
blocks are released from rest, find (a) the speed of each block after
moving 3.00 cm and (b) the tension in the cord. Include the free-body
diagram or diagrams you used to determine the answers.

5.38 < A box with mass m is dragged across a level floor having
a coefficient of kinetic friction wy by a rope that is pulled upward
at an angle 6 above the horizontal with a force of magnitude F.
(a) In terms of m, py, 0, and g, obtain an expression for the magni-
tude of the force required to move the box with constant speed. (b)
Knowing that you are studying physics, a CPR instructor asks you



how much force it would take to slide a 90-kg patient across a floor
at constant speed by pulling on him at an angle of 25° above the
horizontal. By dragging some weights wrapped in an old pair of
pants down the hall with a spring balance, you find that u = 0.35.
Use the result of part (a) to answer the instructor’s question.

5.39 ¢ A large crate with mass m rests on a horizontal floor. The
coefficients of friction between the crate and the floor are pg and .
A woman pushes downward at an angle 6 below the horizontal on
the crate with a force F. (a) What magnitude of force Fis required
to keep the crate moving at constant velocity? (b) If u is greater
than some critical value, the woman cannot start the crate moving no
matter how hard she pushes. Calculate this critical value of .

5.40 - You throw a baseball straight up. The drag force is pro-
portional to v2. In terms of g, what is the y-component of the ball’s
acceleration when its speed is half its terminal speed and (a) it is
moving up? (b) It is moving back down?

5.41 - (a) In Example 5.18 (Section 5.3), what value of D is
required to make v, = 42 m/s for the skydiver? (b) If the sky-
diver’s daughter, whose mass is 45 kg, is falling through the air
and has the same D (0.25 kg/m) as her father, what is the daugh-
ter’s terminal speed?

Section 5.4 Dynamics of Circular Motion
5.42 < A small car with mass
0.800 kg travels at constant
speed on the inside of a track
that is a vertical circle with
radius 5.00 m (Fig. E5.42). If
the normal force exerted by the
track on the car when it is at the
top of the track (point B) is 6.00
N, what is the normal force on
the car when it is at the bottom
of the track (point A)?

5.43 - A machine part con-
sists of a thin 40.0-cm-long bar
with small 1.15-kg masses fas-
tened by screws to its ends. The
screws can support a maximum
force of 75.0 N without pulling out. This bar rotates about an axis
perpendicular to it at its center. (a) As the bar is turning at a constant
rate on a horizontal, frictionless surface, what is the maximum
speed the masses can have without pulling out the screws? (b)
Suppose the machine is redesigned so that the bar turns at a con-
stant rate in a vertical circle. Will one of the screws be more likely
to pull out when the mass is at the top of the circle or at the bot-
tom? Use a free-body diagram to see why. (c) Using the result of
part (b), what is the greatest speed the masses can have without
pulling a screw?

5.44 - A flat (unbanked) curve on a highway has a radius of
220.0 m. A car rounds the curve at a speed of 25.0 m/s. (a) What
is the minimum coefficient of friction that will prevent sliding?
(b) Suppose the highway is icy and the coefficient of friction
between the tires and pavement is only one-third what you found
in part (a). What should be the maximum speed of the car so it can
round the curve safely?

5.45 - A 1125-kg car and a 2250-kg pickup truck approach a
curve on the expressway that has a radius of 225 m. (a) At what
angle should the highway engineer bank this curve so that vehicles
traveling at 65.0 mi/h can safely round it regardless of the condi-
tion of their tires? Should the heavy truck go slower than the

Figure E5.42
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lighter car? (b) As the car and truck round the curve at find the
normal force on each one due to the highway surface.

5.46 - The “Giant Swing” at a county fair consists of a vertical
central shaft with a number of horizontal arms attached at its upper
end (Fig. E5.46). Each arm supports a seat suspended from a cable
5.00 m long, the upper end of the cable being fastened to the arm at
a point 3.00 m from the central shaft. (a) Find the time of one rev-
olution of the swing if the cable supporting a seat makes an angle
of 30.0° with the vertical. (b) Does the angle depend on the weight
of the passenger for a given rate of revolution?

Figure E5.46

Figure E5.47

5.47 -+ In another version of
the “Giant Swing” (see Exer-
cise 5.46), the seat is connected
to two cables as shown in Fig.
E5.47, one of which is horizon-
tal. The seat swings in a hori-
zontal circle at a rate of 32.0
rpm (rev/min). If the seat
weighs 255 N and an 825-N per-
son is sitting in it, find the ten-
sion in each cable.

5.48 - A small button placed
on a horizontal rotating plat- =
form with diameter 0.320 m

will revolve with the platform when it is brought up to a speed of
40.0 rev/min, provided the button is no more than 0.150 m from
the axis. (a) What is the coefficient of static friction between the
button and the platform? (b) How far from the axis can the button
be placed, without slipping, if the platform rotates at 60.0 rev/min?
5.49 .- Rotating Space Stations. One problem for humans
living in outer space is that they are apparently weightless. One way
around this problem is to design a space station that spins about its
center at a constant rate. This creates “artificial gravity” at the outside
rim of the station. (a) If the diameter of the space station is 800 m,
how many revolutions per minute are needed for the “artificial grav-
ity” acceleration to be 9.80 m/ 27 (b) If the space station is a waiting
area for travelers going to Mars, it might be desirable to simulate the
acceleration due to gravity on the Martian surface (3.70 m/s*). How
many revolutions per minute are needed in this case?

5.50 ¢ The Cosmoclock 21 Ferris wheel in Yokohama City,
Japan, has a diameter of 100 m. Its name comes from its 60 arms,
each of which can function as a second hand (so that it makes one
revolution every 60.0 s). (a) Find the speed of the passengers
when the Ferris wheel is rotating at this rate. (b) A passenger

40.0°

7.50 m
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weighs 882 N at the weight-guessing booth on the ground. What
is his apparent weight at the highest and at the lowest point on the
Ferris wheel? (c) What would be the time for one revolution if the
passenger’s apparent weight at the highest point were zero?
(d) What then would be the passenger’s apparent weight at the
lowest point?

5.51 ¢ An airplane flies in a loop (a circular path in a vertical
plane) of radius 150 m. The pilot’s head always points toward the
center of the loop. The speed of the airplane is not constant; the
airplane goes slowest at the top of the loop and fastest at the bot-
tom. (a) At the top of the loop, the pilot feels weightless. What is
the speed of the airplane at this point? (b) At the bottom of the
loop, the speed of the airplane is 280 km/h. What is the apparent
weight of the pilot at this point? His true weight is 700 N.

5.52 <= A 50.0-kg stunt pilot who has been diving her airplane
vertically pulls out of the dive by changing her course to a circle
in a vertical plane. (a) If the plane’s speed at the lowest point of
the circle is 95.0 m/s, what is the minimum radius of the circle for
the acceleration at this point not to exceed 4.00g? (b) What is the
apparent weight of the pilot at the lowest point of the pullout?
5.53 - Stay Dry! You tie a cord to a pail of water, and you
swing the pail in a vertical circle of radius 0.600 m. What mini-
mum speed must you give the pail at the highest point of the circle
if no water is to spill from it?

5.54 - A bowling ball weighing 71.2 N (16.0 Ib) is attached to
the ceiling by a 3.80-m rope. The ball is pulled to one side and
released; it then swings back and forth as a pendulum. As the rope
swings through the vertical, the speed of the bowling ball is
4.20 m/s. (a) What is the acceleration of the bowling ball, in mag-
nitude and direction, at this instant? (b) What is the tension in the
rope at this instant?

5.55 <« BID Effect on Blood of Walking. While a person is
walking, his arms swing through approximately a 45° angle in % S.
As a reasonable approximation, we can assume that the arm moves
with constant speed during each swing. A typical arm is 70.0 cm
long, measured from the shoulder joint. (a) What is the acceleration
of a 1.0-g drop of blood in the fingertips at the bottom of the swing?
(b) Draw a free-body diagram of the drop of blood in part (a). (c)
Find the force that the blood vessel must exert on the drop of blood
in part (a). Which way does this force point? (d) What force would
the blood vessel exert if the arm were not swinging?

PROBLEMS

5.56 <= An adventurous archaeologist crosses between two rock
cliffs by slowly going hand over hand along a rope stretched between
the cliffs. He stops to rest at the middle of the rope (Fig. P5.56).
The rope will break if the tension in it exceeds 2.50 X 10* N, and
our hero’s mass is 90.0 kg. (a) If the angle 6 is 10.0°, find the
tension in the rope. (b) What is the smallest value the angle 6 can
have if the rope is not to break?

Figure P5.56

5.57 <<¢ Two ropes are connected Figure P5.57

to a steel cable that supports a

hanging weight as shown in Fig. 60°  40°

P5.57. (a) Draw a free-body dia-

gram showing all of the forces act-

ing at the knot that connects the

two ropes to the steel cable. Based

on your force diagram, which of the

two ropes will have the greater ten-

sion? (b) If the maximum tension either rope can sustain without
breaking is 5000 N, determine the maximum value of the hanging
weight that these ropes can safely support. You can ignore the
weight of the ropes and the steel cable.

5.58 ¢ In Fig. P5.58 a worker _.

lifis a weight w by pulling | 9U€P9-58

down on a rope with a force F.
The upper pulley is attached to
the ceiling by a chain, and the
lower pulley is attached to the
weight by another chain. In
terms of w, find the tension in
each chain and the magnitude
of the force F if the weight is
lifted at constant speed. Include
the free-body diagram or dia-
grams you used to determine
your answers. Assume that the
rope, pulleys, and chains all
have negligible weights. 7\
559 e« A solid uniform
45.0-kg ball of diameter 32.0 cm
is supported against a vertical,
frictionless wall using a thin
30.0-cm wire of negligible
mass, as shown in Fig. P5.59.
(a) Draw a free-body diagram
for the ball and use it to find
the tension in the wire. (b)
How hard does the ball push
against the wall?

5.60 -~ A horizontal wire
holds a solid uniform ball of
mass m in place on a tilted
ramp that rises 35.0° above the
horizontal. The surface of this
ramp is perfectly smooth, and
the wire is directed away from
the center of the ball (Fig.
P5.60). (a) Draw a free-body
diagram for the ball. (b) How hard does the surface of the ramp push
on the ball? (¢) What is the tension in the wire?

5.61 - CP BI0 Forces During Chin-ups. People who do chin-
ups raise their chin just over a bar (the chinning bar), supporting
themselves with only their arms. Typically, the body below the
arms is raised by about 30 cm in a time of 1.0 s, starting from rest.
Assume that the entire body of a 680-N person doing chin-ups is
raised this distance and that half the 1.0 s is spent accelerating
upward and the other half accelerating downward, uniformly in
both cases. Draw a free-body diagram of the person’s body, and
then apply it to find the force his arms must exert on him during
the accelerating part of the chin-up.

5.62 <« CP BID Prevention of Hip Injuries. People (espe-
cially the elderly) who are prone to falling can wear hip pads to

Figure P5.59
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cushion the impact on their hip from a fall. Experiments have
shown that if the speed at impact can be reduced to 1.3 m/s or less,
the hip will usually not fracture. Let us investigate the worst-case
scenario in which a 55-kg person completely loses her footing
(such as on icy pavement) and falls a distance of 1.0 m, the dis-
tance from her hip to the ground. We shall assume that the person’s
entire body has the same acceleration, which, in reality, would not
quite be true. (a) With what speed does her hip reach the ground?
(b) A typical hip pad can reduce the person’s speed to 1.3 m/s
over a distance of 2.0 cm. Find the acceleration (assumed to be
constant) of this person’s hip while she is slowing down and the
force the pad exerts on it. (¢c) The force in part (b) is very large. To
see whether it is likely to cause injury, calculate how long it lasts.
5.63 <« CALC A 3.00-kg box that is several hundred meters
above the surface of the earth is suspended from the end of a short
vertical rope of negligible mass. A time-dependent upward force is
applied to the upper end of the rope, and this results in a tension in
the rope of 7(7) = (36.0 N/s)z. The box is at rest at # = 0. The only
forces on the box are the tension in the rope and gravity. (a) What is
the velocity of the box at (i) # = 1.00 s and (ii) + = 3.00 s? (b) What
is the maximum distance that the box descends below its initial posi-
tion? (c) At what value of ¢ does the box return to its initial position?
5.64 - CP A 5.00-kg box sits at rest at the bottom of a ramp that
is 8.00 m long and that is inclined at 30.0° above the horizontal.
The coefficient of kinetic friction is uy = 0.40, and the coefficient
of static friction is g = 0.50. What constant force F, applied par-
allel to the surface of the ramp, is required to push the box to the
top of the ramp in a time of 4.00 s?

5.65 = Two boxes connected by a light horizontal rope are on a
horizontal surface, as shown in Fig. P5.35. The coefficient of
kinetic friction between each box and the surface is w = 0.30.
One box (box B) has mass 5.00 kg, and the other box (box A) has
mass m. A force F with magnitude 40.0 N and direction 53.1° above
the horizontal is applied to the 5.00-kg box, and both boxes move to
the right with a = 1.50 m/s2. (a) What is the tension 7 in the rope
that connects the boxes? (b) What is the mass m of the second box?
5.66 <<+ A 6.00-kg box sits on a ramp that is inclined at 37.0° above
the horizontal. The coefficient of kinetic friction between the box and
the ramp is i, = 0.30. What horizontal force is required to move the
box up the incline with a constant acceleration of 4.20 m/ s2?

5.67 - CP In Fig. P5.34 block A has mass m and block B has
mass 6.00 kg. The coefficient of kinetic friction between block A
and the tabletop is ux = 0.40. The mass of the rope connecting the
blocks can be neglected. The pulley is light and frictionless. When
the system is released from rest, the hanging block descends 5.00 m
in 3.00 s. What is the mass m of block A?

5.68 - CP In Fig. P5.68

m; = 20.0kg and =
53.1°. The coefficient of
kinetic friction between the
block and the incline is p, =
0.40. What must be the mass
m of the hanging block if it
is to descend 12.0 m in the
first 3.00 s after the system is
released from rest?

5.69 <+« CP Rolling Friction. Two bicycle tires are set rolling
with the same initial speed of 3.50 m/s on a long, straight road,
and the distance each travels before its speed is reduced by half
is measured. One tire is inflated to a pressure of 40 psi and goes
18.1 m; the other is at 105 psi and goes 92.9 m. What is the coeffi-
cient of rolling friction w, for each? Assume that the net horizontal
force is due to rolling friction only.

Figure P5.68
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5.70 -« A Rope with Mass. A block with mass M is attached to
the lower end of a vertical, uniform rope with mass m and length L.
A constant upward force Fis applied to the top of the rope, caus-
ing the rope and block to accelerate upward. Find the tension in the
rope at a distance x from the top end of the rope, where x can have
any value from O to L.

5.71 -+ Ablock with mass m is placed on an inclined plane with
slope angle « and is connected to a second hanging block with mass
m, by a cord passing over a small, frictionless pulley (Fig. P5.68).
The coefficient of static friction is ug and the coefficient of kinetic
friction is puy. (a) Find the mass m, for which block m; moves up
the plane at constant speed once it is set in motion. (b) Find the
mass m, for which block m; moves down the plane at constant
speed once it is set in motion. (¢) For what range of values of m,
will the blocks remain at rest if they are released from rest?

5.72 -+ Block A in Fig. P5.72 weighs 60.0 N. The coefficient of
static friction between the block and the surface on which it rests is
0.25. The weight w is 12.0 N and the system is in equilibrium.
(a) Find the friction force exerted on block A. (b) Find the maxi-
mum weight w for which the system will remain in equilibrium.

Figure P5.72
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5.73 -« Block A in Fig. P5.73 weighs 2.40 N and block B weighs
3.60 N. The coefficient of kinetic friction between all surfaces is
0.300. Find the magnitude of the horizontal force F necessary to
drag block B to the left at constant speed (a) if A rests on B and
moves with it (Fig. P5.73a). (b) If A is held at rest (Fig. P5.73b).

Figure P5.73
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5.74 -e- Awindow washer pushes  Figure P5.74

his scrub brush up a vertical win-
dow at constant speed by applying
a force F as shown in Fig. P5.74.
The brush weighs 15.0 N and the
coefficient of kinetic friction is
mk = 0.150. Calculate (a) the
magnitude of the force F and
(b) the normal force exerted by the
window on the brush.

5.75 - BID The Flying Leap
of a Flea. High-speed motion
pictures (3500 frames/second) of
a jumping 210-pg flea yielded
the data to plot the flea’s acceler-
ation as a function of time as

N
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shown in Fig. P5.75. (See “The Flying Leap of the Flea,” by M.
Rothschild et al. in the November 1973 Scientific American.) This
flea was about 2 mm long and jumped at a nearly vertical takeoff
angle. Use the measurements shown on the graph to answer the
questions. (a) Find the initial net external force on the flea. How
does it compare to the flea’s weight? (b) Find the maximum net
external force on this jumping flea. When does this maximum
force occur? (c) Use the graph to find the flea’s maximum speed.

Figure P5.75
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5.76 - CP A 25,000-kg rocket blasts off vertically from the
earth’s surface with a constant acceleration. During the motion
considered in the problem, assume that g remains constant (see
Chapter 13). Inside the rocket, a 15.0-N instrument hangs from a
wire that can support a maximum tension of 45.0 N. (a) Find the
minimum time for this rocket to reach the sound barrier (330 m/s)
without breaking the inside wire and the maximum vertical thrust
of the rocket engines under these conditions. (b) How far is the
rocket above the earth’s surface when it breaks the sound barrier?
5.77 <+« CP CALC You are standing on a bathroom scale in an ele-
vator in a tall building. Your mass is 64 kg. The elevator starts from
rest and travels upward with a speed that varies with time according
to v(t) = (3.0 m/s?)t + (0.20 m/s®)z2. When 7 = 4.0's, what is
the reading of the bathroom scale?

5.78 <<« CP Elevator Design. You are designing an elevator for
a hospital. The force exerted on a passenger by the floor of the ele-
vator is not to exceed 1.60 times the passenger’s weight. The eleva-
tor accelerates upward with constant acceleration for a distance
of 3.0 m and then starts to slow down. What is the maximum speed
of the elevator?

5.79 < CP You are working for a shipping company. Your job is to
stand at the bottom of a 8.0-m-long ramp that is inclined at 37°
above the horizontal. You grab packages off a conveyor belt and pro-
pel them up the ramp. The coefficient of kinetic friction between the
packages and the ramp is p = 0.30. (a) What speed do you need to
give a package at the bottom of the ramp so that it has zero speed at
the top of the ramp? (b) Your coworker is supposed to grab the pack-
ages as they arrive at the top of the ramp, but she misses one and it
slides back down. What is its speed when it returns to you?

5.80 -+ A hammer is hanging by a light rope from the ceiling of a
bus. The ceiling of the bus is parallel to the roadway. The bus is
traveling in a straight line on a horizontal street. You observe that
the hammer hangs at rest with respect to the bus when the angle
between the rope and the ceiling of the bus is 67°. What is the
acceleration of the bus?

5.81 -- A steel washer is suspended inside an empty shipping crate
from a light string attached to the top of the crate. The crate slides
down a long ramp that is inclined at an angle of 37° above the hori-
zontal. The crate has mass 180 kg. You are sitting inside the crate

(with a flashlight); your mass is 55 kg. As the crate is sliding down
the ramp, you find the washer is at rest with respect to the crate when
the string makes an angle of 68° with the top of the crate. What is the
coefficient of kinetic friction between the ramp and the crate?

5.82 ¢ CP Lunch Time! You are riding your motorcycle one
day down a wet street that slopes downward at an angle of 20°
below the horizontal. As you start to ride down the hill, you notice
a construction crew has dug a deep hole in the street at the bottom
of the hill. A Siberian tiger, escaped from the City Zoo, has taken
up residence in the hole. You apply the brakes and lock your
wheels at the top of the hill, where you are moving with a speed of
20 m/s. The inclined street in front of you is 40 m long. (a) Will
you plunge into the hole and become the tiger’s lunch, or do you
skid to a stop before you reach the hole? (The coefficients of fric-
tion between your motorcycle tires and the wet pavement are
ms = 0.90 and w = 0.70.) (b) What must your initial speed be if
you are to stop just before reaching the hole?

5.83 e<¢ In the system shown in Fig. P5.34, block A has mass m 4,
block B has mass m g, and the rope connecting them has a nonzero
mass 1 ope. The rope has a total length L, and the pulley has a very
small radius. You can ignore any sag in the horizontal part of the
rope. (a) If there is no friction between block A and the tabletop, find
the acceleration of the blocks at an instant when a length d of rope
hangs vertically between the pulley and block B. As block B falls,
will the magnitude of the acceleration of the system increase,
decrease, or remain constant? Explain. (b) Let m, = 2.00 kg,
mp = 0.400 kg, my,e = 0.160 kg, and L = 1.00 m. If there is
friction between block A and the tabletop, with w, = 0.200 and
ms = 0.250, find the minimum value of the distance d such that the
blocks will start to move if they are initially at rest. (c) Repeat part
(b) for the case 1 qp. = 0.040 kg. Will the blocks move in this case?
5.84 --- If the coefficient of static friction between a table and a
uniform massive rope is ug what fraction of the rope can hang
over the edge of the table without the rope sliding?

5.85 ¢« A 40.0-kg packing case is initially at rest on the floor of a
1500-kg pickup truck. The coefficient of static friction between the
case and the truck floor is 0.30, and the coefficient of kinetic fric-
tion is 0.20. Before each acceleration given below, the truck is
traveling due north at constant speed. Find the magnitude and
direction of the friction force acting on the case (a) when the truck
accelerates at 2.20 m/ s2 northward and (b) when it accelerates at
3.40 m/s? southward.

5.86 ¢ CP Traffic Court. You are called as an expert witness in
the trial of a traffic violation. The facts are these: A driver slammed
on his brakes and came to a stop with constant acceleration. Mea-
surements of his tires and the skid marks on the pavement indicate
that he locked his car’s wheels, the car
traveled 192 ft before stopping, and the
coefficient of kinetic friction between the
road and his tires was 0.750. The charge is
that he was speeding in a 45-mi/h zone.
He pleads innocent. What is your conclu-
sion, guilty or innocent? How fast was he
going when he hit his brakes?

5.87 -+ Two identical 15.0-kg balls, each
25.0 cm in diameter, are suspended by two
35.0-cm wires as shown in Fig. P5.87. The
entire apparatus is supported by a single
18.0-cm wire, and the surfaces of the balls
are perfectly smooth. (a) Find the tension
in each of the three wires. (b) How hard
does each ball push on the other one?

Figure P5.87




5.88 < CP Losing Cargo. A 12.0-kg box rests on the flat floor
of a truck. The coefficients of friction between the box and floor
are ug = 0.19 and uy = 0.15. The truck stops at a stop sign and
then starts to move with an acceleration of 2.20 m/s>. If the box is
1.80 m from the rear of the truck when the truck starts, how much
time elapses before the box falls off the truck? How far does the
truck travel in this time?

5.89 ec Block A in Fig. Figure P5.89

P5.89 weighs 1.90 N, and
block B weighs 4.20 N. The
coefficient of kinetic friction
between all surfaces is 0.30.
Find the magnitude of the
horizontal force F necessary
to drag block B to the left at
constant speed if A and B
are connected by a light,
flexible cord passing around a fixed, frictionless pulley.

5.90 <+« CP You are part of a design team for future exploration
of the planet Mars, where g = 3.7 m/ 2. An explorer is to step out
of a survey vehicle traveling horizontally at 33 m/s when it is
1200 m above the surface and then fall freely for 20 s. At that time,
a portable advanced propulsion system (PAPS) is to exert a con-
stant force that will decrease the explorer’s speed to zero at the
instant she touches the surface. The total mass (explorer, suit,
equipment, and PAPS) is 150 kg. Assume the change in mass of
the PAPS to be negligible. Find the horizontal and vertical compo-
nents of the force the PAPS must exert, and for what interval of
time the PAPS must exert it. You can ignore air resistance.

5.91 -« Block A in Fig. P5.91 has a mass of 4.00 kg, and block B
has mass 12.0 kg. The coefficient of kinetic friction between block B
and the horizontal surface is 0.25. (a) What is the mass of block C
if block B is moving to the right and speeding up with an accelera-
tion of 2.00 m/ $27 (b) What is the tension in each cord when block
B has this acceleration?

Figure P5.91
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5.92 - Two blocks connected by a cord passing over a small,
frictionless pulley rest on frictionless planes (Fig. P5.92). (a) Which
way will the system move when the blocks are released from rest?
(b) What is the acceleration of the blocks? (c) What is the tension
in the cord?

Figure P5.92
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5.93 < In terms of m,, Figure P5.93
m,, and g, find the accel-
eration of each block in

m

Fig. P5.93. There is no
friction anywhere in the
system. ]
5.94 <<« Block B, with

mass 5.00 kg, rests on

block A, with mass

8.00 kg, which in turn is

on a horizontal tabletop

(Fig. P5.94). There is no

friction between block A and the tabletop, but the coefficient of
static friction between block A and block B is 0.750. A light string
attached to block A passes over a frictionless, massless pulley, and
block C is suspended from the other end of the string. What is the
largest mass that block C can have so that blocks A and B still slide
together when the system is released from rest?

Figure P5.94

B |

A

!

5.95 e Two objects with masses 5.00 kg and 2.00 kg hang
0.600 m above the floor from the ends of a cord 6.00 m long pass-
ing over a frictionless pulley. Both objects start from rest. Find the
maximum height reached by the 2.00-kg object.

5.96 - Friction in an Elevator. You are riding in an elevator
on the way to the 18th floor of your dormitory. The elevator is
accelerating upward with a = 1.90 m/ s2. Beside you is the box
containing your new computer; the box and its contents have a
total mass of 28.0 kg. While the elevator is accelerating upward,
you push horizontally on the box to slide it at constant speed
toward the elevator door. If the coefficient of kinetic friction
between the box and the elevator floor is w, = 0.32, what magni-
tude of force must you apply?

5.9? . Ablockils placed Figure P5.97

against the vertical front
of a cart as shown in A\
Fig. P5.97. What accel- I
eration must the cart

have so that block A

does not fall? The coef-

ficient of static friction ( J
between the block and Q Q
the cart is u,. How

would an observer on

QY

the cart describe the Figure P5.98

behavior of the block? 8.00
5.98 e« Two  blocks kg
with masses 4.00 kg and

8.00 kg are connected 41-(%0

by a string and slide
down a 30.0° inclined
plane (Fig. P5.98). The
coefficient of Kkinetic 30°
friction between the
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4.00-kg block and the plane is 0.25; that between the 8.00-kg
block and the plane is 0.35. (a) Calculate the acceleration of each
block. (b) Calculate the tension in the string. (c) What happens if the
positions of the blocks are reversed, so the 4.00-kg block is above
the 8.00-kg block?

5.99 << Block A, with weight
3w, slides down an inclined
plane S of slope angle 36.9° at a
constant speed while plank B,
with weight w, rests on top of
A. The plank is attached by a
cord to the wall (Fig. P5.99). (a)
Draw a diagram of all the forces
acting on block A. (b) If the
coefficient of kinetic friction is
the same between A and B and
between S and A, determine its
value.

5.100 - Accelerometer. The system shown in Fig. P5.100 can
be used to measure the acceleration of the system. An observer rid-
ing on the platform measures the angle 6 that the thread supporting
the light ball makes with the vertical. There is no friction any-
where. (a) How is 6 related to the acceleration of the system? (b) If
my = 250 kg and m, = 1250 kg, what is 6? (c) If you can vary
my and m,, what is the largest angle 6 you could achieve? Explain
how you need to adjust m and m, to do this.

Figure P5.99

Figure P5.100

Ball 6

Platform (m,)

e —
lir

Horizontal surface my

5.101 .-+ Banked Curve I. A curve with a 120-m radius on a
level road is banked at the correct angle for a speed of 20 m/s. If
an automobile rounds this curve at 30 m/s, what is the minimum
coefficient of static friction needed between tires and road to pre-
vent skidding?

5.102 - Banked Curve II. Consider a wet roadway banked as
in Example 5.22 (Section 5.4), where there is a coefficient of static
friction of 0.30 and a coefficient of kinetic friction of 0.25 between
the tires and the roadway. The radius of the curve is R = 50 m.
(a) If the banking angle is B = 25°, what is the maximum speed
the automobile can have before sliding up the banking? (b) What is
the minimum speed the automobile can have before sliding down the
banking?

5.103 <-- Blocks A, B, and C are placed as in Fig. P5.103 and
connected by ropes of negligible mass. Both A and B weigh 25.0 N
each, and the coefficient of kinetic friction between each block
and the surface is 0.35. Block C descends with constant velocity.
(a) Draw two separate free-body diagrams showing the forces
acting on A and on B. (b) Find the tension in the rope connecting
blocks A and B. (c) What is the weight of block C? (d) If the rope
connecting A and B were cut, what would be the acceleration
of C?

Figure P5.103

5.104 - You are riding in a school bus. As the bus rounds a flat
curve at constant speed, a lunch box with mass 0.500 kg, sus-
pended from the ceiling of the bus by a string 1.80 m long, is found
to hang at rest relative to the bus when the string makes an angle of
30.0° with the vertical. In this position the lunch box is 50.0 m
from the center of curvature of the curve. What is the speed v of
the bus?

5.105 ¢+ The Monkey and Bananas
Problem. A 20-kg monkey has a
firm hold on a light rope that passes
over a frictionless pulley and is
attached to a 20-kg bunch of bananas
(Fig. P5.105). The monkey looks up,
sees the bananas, and starts to climb
the rope to get them. (a) As the monkey
climbs, do the bananas move up, down,
or remain at rest? (b) As the monkey
climbs, does the distance between the
monkey and the bananas decrease,
increase, or remain constant? (c) The
monkey releases her hold on the rope.
What happens to the distance between
the monkey and the bananas while she
is falling? (d) Before reaching the
ground, the monkey grabs the rope to stop her fall. What do the
bananas do?

5.106 - CALC You throw a rock downward into water with a
speed of 3mg/k, where k is the coefficient in Eq. (5.7). Assume that
the relationship between fluid resistance and speed is as given in
Eq. (5.7), and calculate the speed of the rock as a function of time.
5.107 - A rock with mass m = 3.00 kg falls from rest in a vis-
cous medium. The rock is acted on by a net constant downward
force of 18.0 N (a combination of gravity and the buoyant force
exerted by the medium) and by a fluid resistance force f = kv,
where v is the speed in m/s and k = 2.20 N - s/m (see Section 5.3).
(a) Find the initial acceleration a. (b) Find the acceleration when
the speed is 3.00 m/s. (c) Find the speed when the acceleration
equals 0.1ag. (d) Find the terminal speed v;. (e) Find the coordi-
nate, speed, and acceleration 2.00 s after the start of the motion. (f)
Find the time required to reach a speed of 0.9v,.

5.108 .- CALC A rock with mass m slides with initial velocity v
on a horizontal surface. A retarding force Fy that the surface exerts
on the rock is proportional to the square root of the instantaneous
velocity of the rock (Fr = —kv'/ 2). (a) Find expressions for the
velocity and position of the rock as a function of time. (b) In terms
of m, k, and v(, at what time will the rock come to rest? (c) In
terms of m, k, and v, what is the distance of the rock from its start-
ing point when it comes to rest?

5.109 -+ You observe a 1350-kg sports car rolling along flat
pavement in a straight line. The only horizontal forces acting on it
are a constant rolling friction and air resistance (proportional to the

Figure P5.105




square of its speed). You take the following data during a time
interval of 25 s: When its speed is 32 m/s, the car slows down at a
rate of —0.42 m/s%, and when its speed is decreased to 24 m/s, it
slows down at —0.30 m/ s2. (a) Find the coefficient of rolling fric-
tion and the air drag constant D. (b) At what constant speed will
this car move down an incline that makes a 2.2° angle with the
horizontal? (c) How is the constant speed for an incline of angle 3
related to the terminal speed of this sports car if the car drops off a
high cliff? Assume that in both cases the air resistance force is pro-
portional to the square of the speed, and the air drag constant is the
same.

5.110 =< The 4.00-kg block in Figure P5.110
Fig. P5.110 is attached to a verti- -

cal rod by means of two strings.
When the system rotates about
the axis of the rod, the strings are
extended as shown in the dia-
gram and the tension in the
upper string is 80.0 N. (a) What
is the tension in the lower cord?
(b) How many revolutions per
minute does the system make?
(c) Find the number of revolu-
tions per minute at which the D )

lower cord just goes slack.

(d) Explain what happens if the

number of revolutions per minute is less than in part (c).

5.111 -« CALC Equation (5.10) applies to the case where the ini-
tial velocity is zero. (a) Derive the corresponding equation for
vy(t) when the falling object has an initial downward velocity with
magnitude vg. (b) For the case where vy < v, sketch a graph of v,,
as a function of ¢ and label v, on your graph. (c) Repeat part (b) for
the case where vy > v,. (d) Discuss what your result says about
vy(t) when vy = vy

1.25m
2.00 m 4.00 kg

1.25m

5.112 <+ CALC A small rock moves in water, and the force
exerted on it by the water is given by Eq. (5.7). The terminal speed
of the rock is measured and found to be 2.0 m/s. The rock is pro-
jected upward at an initial speed of 6.0 m/s. You can ignore the
buoyancy force on the rock. (a) In the absence of fluid resistance,
how high will the rock rise and how long will it take to reach this
maximum height? (b) When the effects of fluid resistance are
included, what are the answers to the questions in part (a)?

5.113 - Merry-Go-Round. One December identical twins
Jena and Jackie are playing on a large merry-go-round (a disk
mounted parallel to the ground, on a vertical axle through its cen-
ter) in their school playground in northern Minnesota. Each twin
has mass 30.0 kg. The icy coating on the merry-go-round surface
makes it frictionless. The merry-go-round revolves at a constant
rate as the twins ride on it. Jena, sitting 1.80 m from the center of
the merry-go-round, must hold on to one of the metal posts
attached to the merry-go-round with a horizontal force of 60.0 N to
keep from sliding off. Jackie is sitting at the edge, 3.60 m from the
center. (a) With what horizontal force must Jackie hold on to keep
from falling off? (b) If Jackie falls off, what will be her horizontal
velocity when she becomes airborne?

5.114 -+ A 70-kg person rides in a 30-kg cart moving at 12 m/s at
the top of a hill that is in the shape of an arc of a circle with a
radius of 40 m. (a) What is the apparent weight of the person as the
cart passes over the top of the hill? (b) Determine the maximum
speed that the cart may travel at the top of the hill without losing
contact with the surface. Does your answer depend on the mass of
the cart or the mass of the person? Explain.
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Problems

5.115 = On the ride “Spindletop” at the amusement park Six
Flags Over Texas, people stood against the inner wall of a hollow
vertical cylinder with radius 2.5 m. The cylinder started to rotate,
and when it reached a constant rotation rate of 0.60 rev/s, the
floor on which people were standing dropped about 0.5 m. The
people remained pinned against the wall. (a) Draw a force dia-
gram for a person on this ride, after the floor has dropped.
(b) What minimum coefficient of static friction is required if the
person on the ride is not to slide downward to the new position of
the floor? (c) Does your answer in part (b) depend on the mass of
the passenger? (Note: When the ride is over, the cylinder is
slowly brought to rest. As it slows down, people slide down the
walls to the floor.)

5.116 - A passenger with mass 85 kg rides in a Ferris wheel like
that in Example 5.23 (Section 5.4). The seats travel in a circle of
radius 35 m. The Ferris wheel rotates at constant speed and makes
one complete revolution every 25 s. Calculate the magnitude and
direction of the net force exerted on the passenger by the seat when
she is (a) one-quarter revolution past her lowest point and (b) one-
quarter revolution past her highest point.

5.117 - Ulterior Motives. You are driving a classic 1954 Nash
Ambassador with a friend who is sitting to your right on the pas-
senger side of the front seat. The Ambassador has flat bench seats.
You would like to be closer to your friend and decide to use
physics to achieve your romantic goal by making a quick turn.
(a) Which way (to the left or to the right) should you turn the car to
get your friend to slide closer to you? (b) If the coefficient of static
friction between your friend and the car seat is 0.35, and you keep
driving at a constant speed of 20 m/s, what is the maximum radius
you could make your turn and still have your friend slide your
way?

5.118 - A physics major is working to pay his college tuition by
performing in a traveling carnival. He rides a motorcycle inside a
hollow, transparent plastic sphere. After gaining sufficient speed,
he travels in a vertical circle with a radius of 13.0 m. The physics
major has mass 70.0 kg, and his motorcycle has mass 40.0 kg.
(a) What minimum speed must he have at the top of the circle if
the tires of the motorcycle are not to lose contact with the sphere?
(b) At the bottom of the circle, his speed is twice the value calcu-
lated in part (a). What is the magnitude of the normal force exerted
on the motorcycle by the sphere at this point?

5.119 o A srr}al% bead can e P5.119

slide without friction on a cir-
cular hoop that is in a vertical | )
plane and has a radius of
0.100 m. The hoop rotates at
a constant rate of 4.00 rev/s
about a vertical diameter (Fig.
P5.119). (a) Find the angle 3 at
which the bead is in vertical
equilibrium. (Of course, it has
a radial acceleration toward
the axis.) (b) Is it possible for
the bead to “ride” at the same
elevation as the center of the
hoop? (c) What will happen if
the hoop rotates at 1.00 rev/s?
5120 -« A small remote-
controlled car with mass 1.60 kg moves at a constant speed of
v = 12.0 m/s in a vertical circle inside a hollow metal cylinder
that has a radius of 5.00 m (Fig. P5.120). What is the magnitude of
the normal force exerted on the car by the walls of the cylinder at

<—0.100 m
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(a) point A (at the bottom of the vertical circle) and (b) point
B (at the top of the vertical circle)?

Figure P5.120

CHALLENGE PROBLEMS

5.121 -+« CALC Angle for Minimum Force. A box with weight
w is pulled at constant speed along a level floor by a force F that is
at an angle 6 above the horizontal. The coefficient of kinetic fric-
tion between the floor and box is . (a) In terms of 6, wy, and w,
calculate F. (b) For w = 400 N and w, = 0.25, calculate F for 6
ranging from 0° to 90° in increments of 10°. Graph F versus 6.
(c) From the general expression in part (a), calculate the value of 6
for which the value of F, required to maintain constant speed, is a
minimum. (Hint: At a point where a function is minimum, what
are the first and second derivatives of the function? Here F is a
function of 6.) For the special case of w = 400 N and uy, = 0.25,
evaluate this optimal # and compare your result to the graph you
constructed in part (b).

5.122 --« Moving Wedge. A wedge with mass M rests on a fric-
tionless, horizontal tabletop. A block with mass m is placed on the
wedge (Fig. P5.122a). There is no friction between the block and
the wedge. The system is released from rest. (a) Calculate the accel-
eration of the wedge and the horizontal and vertical components of
the acceleration of the block. (b) Do your answers to part (a) reduce
to the correct results when M is very large? (c) As seen by a station-
ary observer, what is the shape of the trajectory of the block?

Figure P5.122
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(b) 4

5.123 -+ A wedge with mass M rests on a frictionless horizontal
tabletop. A block with mass m is placed on the wedge and a hori-
zontal force F is applied to the wedge (Fig. P5.122b). What must
the magnitude of F be if the block is to remain at a constant height
above the tabletop?

5.124 --- CALC Falling Baseball. You drop a baseball from the
roof of a tall building. As the ball falls, the air exerts a drag force
proportional to the square of the ball’s speed (f = sz). (a)Ina
diagram, show the direction of motion and indicate, with the aid of
vectors, all the forces acting on the ball. (b) Apply Newton’s sec-
ond law and infer from the resulting equation the general proper-
ties of the motion. (c) Show that the ball acquires a terminal speed

that is as given in Eq. (5.13). (d) Derive the equation for the speed
at any time. (Note:

/ dx 1 <x>
——— = —arctanh | —
a2 — x2 a a

2)(_1

where

Y —e e

hix) = &
tanh(x) = e A
defines the hyperbolic tangent.)
5.125 <<= Double Atwood’s
Machine. In Fig. P5.125
masses m and m, are con-
nected by a light string A over
a light, frictionless pulley B.
The axle of pulley B is con-
nected by a second light string
C over a second light, fric-
tionless pulley D to a mass
my. Pulley D is suspended
from the ceiling by an attach-
ment to its axle. The system is
released from rest. In terms of
my, mo, ms, and g, what are
(a) the acceleration of block m
m3; (b) the acceleration of pul-

ley B; (c) the acceleration of

block m1; (d) the acceleration of block m,; (e) the tension in string
A; (f) the tension in string C? (g) What do your expressions give for
the special case of m| = myand m3 = m + m,? Is this sensible?
5126 ¢ec The masses of
blocks A and B in Fig. P5.126
are 20.0 kg and 10.0 kg,
respectively. The blocks are
initially at rest on the floor and
are connected by a massless
string passing over a massless
and frictionless pulley. An
upward force F is applied to
the pulley. Find the accelera-
tions @ 4 of block A and @y of
block B when F' is (a) 124 N;
(b) 294 N; (c) 424 N.

5.127 -+ A ball is held at
rest at position A in Fig. P5.127
by two light strings. The hori-
zontal string is cut and the ball starts swinging as a pendulum.
Point B is the farthest to the right the ball goes as it swings back
and forth. What is the ratio of the tension in the supporting string at
position B to its value at A before the horizontal string was cut?

Figure P5.127

Figure P5.126

20.0 kg




Chapter Opening Question

Neither; the upward force of the air has the same magnitude as the
force of gravity. Although the skydiver and parachute are descending,
their vertical velocity is constant and so their vertical acceleration is
zero. Hence the net vertical force on the skydiver and parachute must
also be zero, and the individual vertical forces must balance.

Test Your Understanding Questions

5.1 Answer: (ii) The two cables are arranged symmetrically, so
the tension in either cable has the same magnitude 7. The vertical
component of the tension from each cable is 7'sin45° (or, equiva-
lently, Tcos45°), so Newton’s first law applied to the vertical forces
tells us that 27sin45° — w = 0. Hence T = w/(2sin45°) =
w/V2 = 0.71w. Each cable supports half of the weight of the traf-
fic light, but the tension is greater than w/2 because only the verti-
cal component of the tension counteracts the weight.

5.2 Answer: (ii) No matter what the instantaneous velocity of
the glider, its acceleration is constant and has the value found in
Example 5.12. In the same way, the acceleration of a body in free
fall is the same whether it is ascending, descending, or at the high
point of its motion (see Section 2.5).
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Answers

5.3 Answers to (a): (i), (iii); answers to (b): (ii), (iv); answer to
(¢): (v) In situations (i) and (iii) the box is not accelerating (so
the net force on it must be zero) and there is no other force acting
parallel to the horizontal surface; hence no friction force is needed
to prevent sliding. In situations (ii) and (iv) the box would start to
slide over the surface if no friction were present, so a static friction
force must act to prevent this. In situation (v) the box is sliding
over a rough surface, so a kinetic friction force acts on it.

5.4 Answer: (iii) A satellite of mass m orbiting the earth at
speed v in an orbit of radius r has an acceleration of magnitude
vz/ r, so the net force acting on it from the earth’s gravity has mag-
nitude F = mvz/r. The farther the satellite is from earth, the
greater the value of r, the smaller the value of v, and hence the
smaller the values of vz/ r and of F. In other words, the earth’s
gravitational force decreases with increasing distance.

Bridging Prohlem

h(cos B + pgsin B)
gtan B(sin B — pcos B)
- \/ h(cos B — ugsin B)
(b) Thyin = 27 gtan B(s]nB + g cos B)

Answers: (a) Thux = 277\/




VWORK AND
KINETIC ENERGY

LEARNING GOALS

By studying this chapter, you will

learn:

What it means for a force to do work
on a body, and how to calculate the
amount of work done.

The definition of the kinetic energy
(energy of motion) of a body, and
what it means physically.

How the total work done on a body
changes the body'’s kinetic energy,
and how to use this principle to
solve problems in mechanics.

How to use the relationship between
total work and change in kinetic
energy when the forces are not
constant, the body follows a

curved path, or both.

How to solve problems involving
power (the rate of doing work).
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After finding a piece of breakfast cereal on the floor, this ant picked it up and
= carried it away. As the ant was lifting the piece of cereal, did the cereal do
work on the ant?

uppose you try to find the speed of an arrow that has been shot from a bow.

You apply Newton’s laws and all the problem-solving techniques that

we’ve learned, but you run across a major stumbling block: After the
archer releases the arrow, the bow string exerts a varying force that depends on
the arrow’s position. As a result, the simple methods that we’ve learned aren’t
enough to calculate the speed. Never fear; we aren’t by any means finished with
mechanics, and there are other methods for dealing with such problems.

The new method that we’re about to introduce uses the ideas of work and
energy. The importance of the energy idea stems from the principle of conserva-
tion of energy: Energy is a quantity that can be converted from one form to
another but cannot be created or destroyed. In an automobile engine, chemical
energy stored in the fuel is converted partially to the energy of the automobile’s
motion and partially to thermal energy. In a microwave oven, electromagnetic
energy obtained from your power company is converted to thermal energy of the
food being cooked. In these and all other processes, the fotal energy—the sum of
all energy present in all different forms—remains the same. No exception has
ever been found.

We’ll use the energy idea throughout the rest of this book to study a tremen-
dous range of physical phenomena. This idea will help you understand why a
sweater keeps you warm, how a camera’s flash unit can produce a short burst of
light, and the meaning of Einstein’s famous equation £ = mc?.

In this chapter, though, our concentration will be on mechanics. We’ll learn
about one important form of energy called kinetic energy, or energy of motion,
and how it relates to the concept of work. We’ll also consider power, which is the
time rate of doing work. In Chapter 7 we’ll expand the ideas of work and kinetic
energy into a deeper understanding of the concepts of energy and the conserva-
tion of energy.



6.1 Work

You’d probably agree that it’s hard work to pull a heavy sofa across the room, to
lift a stack of encyclopedias from the floor to a high shelf, or to push a stalled car
off the road. Indeed, all of these examples agree with the everyday meaning of
work—any activity that requires muscular or mental effort.

In physics, work has a much more precise definition. By making use of this
definition we’ll find that in any motion, no matter how complicated, the total
work done on a particle by all forces that act on it equals the change in its kinetic
energy—a quantity that’s related to the particle’s speed. This relationship holds
even when the forces acting on the particle aren’t constant, a situation that can be
difficult or impossible to handle with the techniques you learned in Chapters 4
and 5. The ideas of work and kinetic energy enable us to solve problems in
mechanics that we could not have attempted before.

In this section we’ll see how work is defined and how to calculate work in a
variety of situations involving constant forces. Even though we already know
how to solve problems in which the forces are constant, the idea of work is still
useful in such problems. Later in this chapter we’ll relate work and kinetic
energy, and then apply these ideas to problems in which the forces are not
constant.

The three examples of work described above—pulling a sofa, lifting encyclo-
pedias, and pushing a car—have something in common. In each case you do
work by exerting a force on a body while that body moves from one place to
another—that is, undergoes a displacement (Fig. 6.1). You do more work if the
force is greater (you push harder on the car) or if the displacement is greater (you
push the car farther down the road).

The physicist’s definition of work is based on these observations. Consider a
body that undergoes a displacement of magnitude s along a straight line. (For
now, we’ll assume that any body we discuss can be treated as a particle so that
we can ignore any rotation or changes in shape of the body.) While the body
moves, a constant force F acts on it in the same direction as the displacement s
(Fig. 6.2). We define the work W done by this constant force under these
circumstances as the product of the force magnitude F and the displacement
magnitude s:

W = Fs (constant force in direction of straight-line displacement) (6.1)

The work done on the body is greater if either the force F or the displacement s is
greater, in agreement with our observations above.

CAUTION  wWork = W, weight = w Don’t confuse uppercase W (work) with lowercase w
(weight). Though the symbols are similar, work and weight are different quantities.

The SI unit of work is the joule (abbreviated J, pronounced “jool,” and named
in honor of the 19th-century English physicist James Prescott Joule). From Eq. (6.1)
we see that in any system of units, the unit of work is the unit of force multiplied
by the unit of distance. In SI units the unit of force is the newton and the unit of
distance is the meter, so 1 joule is equivalent to 1 newton-meter (N +m):

1 joule = (1 newton)(1 meter) or 1J=1N-m

In the British system the unit of force is the pound (Ib), the unit of distance is the
foot (ft), and the unit of work is the foot-pound (ft-1b). The following conver-
sions are useful:

1J =0.7376 ft- 1b 1ft-lb = 13561

As an illustration of Eq. (6.1), think of a person pushing a _§talled car. If he
pushes the car through a displacement § with a constant force F in the direction

6.1 Work 1717

6.1 These people are doing work as they
push on the stalled car because they exert a
force on the car as it moves.

6.2 The work done by a constant force
acting in the same direction as the
displacement.

If a body moves through a
displacement vahile a
constant force F acts on it
in the same direction ...

& X

F
——
H u
s
... the work done by

the force on the
body is W = Fs.

Application Work and Muscle Fibers
Our ability to do work with our bodies comes
from our skeletal muscles. The fiberlike cells
of skeletal muscle, shown in this micrograph,
have the ability to shorten, causing the muscle
as a whole to contract and to exert force on
the tendons to which it attaches. Muscle can
exert a force of about 0.3 N per square mil-
limeter of cross-sectional area: The greater
the cross-sectional area, the more fibers the
muscle has and the more force it can exert
when it contracts.




178  CHAPTER 6 Work and Kinetic Energy

6.3 The work done by a constant force acting at an angle to the displacement.

F | does no work on car. g~ =———~=—-— F 5
Carmoves though "~ = »F, = Fsing
displacement?yhile LN . e N (5 ) S VR e Only F, does work on car:
constant force F acts =9 B (- ——m—mmm e - - S W= Fys = (Fcos¢)s
on it at an angle ¢ to = Fcos¢ = Fscos¢
the displacement. : I
s

of motion, the amount of work he does on the car is given by Eq. (6.1): W = Fs.
But what if the person pushes at an angle ¢ to the car’s displacement (Fig. 6.3)?
Then F has a component F; = F cos ¢ in the direction of the displacement and a
component F| = Fsin¢ that acts perpendicular to the displacement. (Other
forces must act on the car so that it moves along §, not in the direction of F.
We’re interested only in the work that the person does, however, so we’ll
consider only the force he exerts.) In this case only the parallel component
F) is effective in moving the car, so we define the work as the product of this
force component and the magnitude of the displacement. Hence W = Fjs =
(Fcosd)s, or

Maste riﬁ\pﬁysms@
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ActivPhysics 5.1: Work Calculations

W = Fscos¢ (constant force, straight-line displacement)  (6.2)

We are assummg that F and ¢ are constant during the displacement. If ¢ = 0,
so that F and § are in the same direction, then cos ¢ = 1 and we are back to
Eq. (6.1).

Equation (6.2) has the form of the scalar product of two vectors, which we
introduced in Section 1.10: A « B = AB cos¢. You may want to review that defi-
nition. Hence we can write Eq. (6.2) more compactly as

W=F-% (constant force, straight-line displacement) (6.3
CAUTION  work is a scalar Here’s an essential point: Work is a scalar quantity, even
though it’s calculated by using two vector quantities (force and displacement). A 5-N force
toward the east acting on a body that moves 6 m to the east does exactly the same amount
of work as a 5-N force toward the north acting on a body that moves 6 m to the north.

3EL LN Work done by a constant force

(a) Steve exerts a steady force of magnitude 210 N (about 47 1b) on
the stalled car in Fig. 6.3 as he pushes it a distance of 18 m. The car
also has a flat tire, so to make the car track straight Steve must
push at an angle of 30° to the direction of motion. How much work
does Steve do? (b) In a helpful mood, Steve pushes a second
stalled car with a steady force F = (160 N)i — (40 N)j. The
displacement of the car is ¥ = (14 m)z + (11 m)j. How much
work does Steve do in this case?

of components, o it’s best to calculate the scalar product using
Eq.(1.21):AB = A\B, + A\B, + A_B..

EXECUTE: (a) From Eq. (6.2),
W = Fs cos ¢ = (210 N)(18 m)cos 30° = 3.3 X 107 J

(b) The components of Fare F r =160 N and F,, = —40 N,
and the components of s are x = 14 m and y = 11 m. (There are
no z-components for either vector.) Hence, using Egs. (1.21)
and (6.3), we have

IDENTIFY and SET UP: In both parts (a) and (b), the target variable
is the work W done by Steve. In each case the force is constant and
the displacement is along a stralght line, so we can use Eq. (6.2) or

W=F-5=Fux+Fy
= (160 N)(14 m) +
=18x%x10%7J

(—40 N)(11 m)

(6.3). The angle between Fand§ is glven in part (a), so we can
apply Eq. (6.2) directly. In part (b) both F and § are given in terms

EVALUATE: In each case the work that Steve does is more than
1000 J. This shows that 1 joule is a rather small amount of work.
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6.4 A constant force F can do positive, negative, or zero work depending on the angle between F and the displacement s'. (mp )
Direction of Force (or Force Component) Situation Force Diagram
. F F
(a) Force F has a component in direction of displacement: / an
W = F;s = (Fcos¢)s ¢
Work is positive. e | -—=>
5 F, = Fcos¢
" ) - ) F F F F
(b) Force F has a component opposite to direction of displacement: \ \é
W = F;s = (Fcos¢)s ¢
Work is negative (because F cos ¢ is negative for 90° < ¢ < 180°). > -=>
s F, = Fcos¢
) { .
(c) Force F (or force component F)) is perpendicular to direction F
of displacement: The force (or force component) does no work ¢ = 90°
-———>

on the object. —
s

Work: Positive, Negative, or Zero

In Example 6.1 the work done in pushing the cars was positive. But it’s important
to understand that work can also be negative or zero. This is the essential way in
which work as defined in physics differs from the “everyday” definition of work.
When the force has a component in the same direction as the displacement
(¢ between zero and 90°), cos ¢ in Eq. (6.2) is positive and the work W is positive
(Fig. 6.4a). When the force has a component opposite to the displacement
(¢ between 90° and 180°), cos ¢ is negative and the work is negative (Fig. 6.4b).
When the force is perpendicular to the displacement, ¢¢ = 90° and the work done
by the force is zero (Fig. 6.4c). The cases of zero work and negative work bear
closer examination, so let’s look at some examples.

There are many situations in which forces act but do zero work. You might think
it’s “hard work™ to hold a barbell motionless in the air for 5 minutes (Fig. 6.5). But
in fact, you aren’t doing any work at all on the barbell because there is no dis-
placement. You get tired because the components of muscle fibers in your arm do
work as they continually contract and relax. This is work done by one part of the
arm exerting force on another part, however, not on the barbell. (We’ll say more
in Section 6.2 about work done by one part of a body on another part.) Even
when you walk with constant velocity on a level floor while carrying a book, you
still do no work on it. The book has a displacement, but the (vertical) supporting
force that you exert on the book has no component in the direction of the (hori-
zontal) motion. Then ¢ = 90° in Eq. (6.2), and cos¢ = 0. When a body slides
along a surface, the work done on the body by the normal force is zero; and when
a ball on a string moves in uniform circular motion, the work done on the ball by
the tension in the string is also zero. In both cases the work is zero because the
force has no component in the direction of motion.

What does it really mean to do negative work? The answer comes from
Newton’s third law of motion. When a weightlifter lowers a barbell as in
Fig. 6.6a, his hands and the barbell move together with the same displacement .
The barbell exerts a force i'barbell on hands ON his hands in the same direction as the
hands’ displacement, so the work done by the barbell on his hands is positive
(Fig. 6.6b). But by Newton’s third law the weightlifter’s hands exert an equal and
opposite force i‘hands on barbell = —F’barhe“ on hands ON the barbell (Fig. 6.6c). This
force, which keeps the barbell from crashing to the floor, acts opposite to the bar-
bell’s displacement. Thus the work done by his hands on the barbell is negative.

6.5 A weightlifter does no work on a
barbell as long as he holds it stationary.

- The weightlifter exerts

an upward force on the
barbell ...

barbell is stationary (its
displacement is zero),
he does no work on it.
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6.6 This weightlifter’s hands do negative work on a barbell as the barbell does positive work on his hands.

(a) A weightlifter lowers a barbell to the floor.

-

—@ -

(b) The barbell does positive work on the
weightlifter’s hands.

Ty Oy

F barbell on hands
Y. Y.

The force of the barbell on the _..
weightlifter’s hands is in the same
direction as the hands’ displacement.

() The weightlifter’s hands do negative work
on the barbell.

N
v N

The force of the weightlifter’s hands
on the barbell is opposite to the —
barbell’s displacement.

Because the weightlifter’s hands and the barbell have the same displacement, the
work that his hands do on the barbell is just the negative of the work that the bar-
bell does on his hands. In general, when one body does negative work on a second
body, the second body does an equal amount of positive work on the first body.

CAUTION  Keep track of who’s doing the work We always speak of work done on a partic-
ular body by a specific force. Always be sure to specify exactly what force is doing the work
you are talking about. When you lift a book, you exert an upward force on the book and the
book’s displacement is upward, so the work done by the lifting force on the book is positive.
But the work done by the gravitational force (weight) on a book being lifted is negative
because the downward gravitational force is opposite to the upward displacement.

Total Work

How do we calculate work when several forces act on a body? One way is to use
Eq. (6.2) or (6.3) to compute the work done by each separate force. Then,
because work is a scalar quantity, the total work W, done on the body by all the
forces is the algebraic sum of the quantities of work done by the individual
forces. An alternative way to find the total work W, is to compute the vector sum
of the forces (that is, the net force) and then use this vector sum as Fin Eq. (6.2)

or (6.3). The following example illustrates both of these techniques.

Work done by several forces

A farmer hitches her tractor to a sled loaded with firewood and
pulls it a distance of 20 m along level ground (Fig. 6.7a). The total
weight of sled and load is 14,700 N. The tractor exerts a constant
5000-N force at an angle of 36.9° above the horizontal. A 3500-N
friction force opposes the sled’s motion. Find the work done by
each force acting on the sled and the total work done by all the
forces.

IDENTIFY AND SET UP: Each force is constant and the sled’s dis-
placement is along a straight line, so we can calculate the work
using the ideas of this section. We’ll find the total work in two
ways: (1) by adding the work done on the sled by each force and
(2) by finding the work done by the net force on the sled. We first
draw a free-body diagram showing all of the forces acting on the
sled, and we choose a coordinate system (Fig. 6.7b). For each
force—weight, normal force, force of the tractor, and friction force—
we know the angle between the displacement (in the positive
x-direction) and the force. Hence we can use Eq. (6.2) to calculate
the work each force does.

As in Chapter 5, we’ll find the net force by adding the compo-
nents of the four forces. Newton’s second law tells us that because
the sled’s motion is purely horizontal, the net force can have only a
horizontal component.

EXECUTE: (1) The work W,, done by the weight is zero because its
direction is perpendicular to the displacement (compare Fig. 6.4c).
For the same reason, the work W, done by the normal force is also
zero. (Note that we don’t need to calculate the magnitude n to con-
clude this.) So W,, = W, = 0.

That leaves the work Wy done by the force Fr exerted by the
tractor and the work W} done by the friction force f. From Eq. (6.2),

Wr = Frscos¢ = (5000 N)(20 m)(0.800) = 80,000 N -m
=80 kJ

The friction force 7‘ is opposite to the displacement, so for this
force ¢ = 180° and cos ¢ = —1. Again from Eq. (6.2),

W; = fscos180° = (3500 N)(20 m)(—1) = —70,000 N+m
=70 kJ



6.7 Calculating the work done on a sled of firewood being
pulled by a tractor.

(a) (b) Free-body diagram for sled

<
f=3500N

The total work W,,, done on the sled by all forces is the algebraic
sum of the work done by the individual forces:

Wit = W,, + W, + Wy + Wy =0+ 0 + 80 kI + (=70 kJ)
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(2) In the second approach, we first find the vector sum of all
the forces (the net force) and then use it to compute the total
work. The vector sum is best found by using components. From
Fig. 6.7b,

> F, = Frcos¢ + (—f) = (5000 N) cos36.9° — 3500 N
=500 N

>F, = Frsing +n + (—w)
= (5000 N) sin36.9° + n — 14,700 N

We don’t need the second equation; we know that the y-component
of force is perpendicular to the displacement, so it does no work.
Besides, there is no y-component of acceleration, so X F, must be
zero anyway. The total work is therefore the work done by the total
x-component:

Wi = (SF) -5 = (D F)s = (500 N)(20 m) = 10,000 J
=10k

EVALUATE: We get the same result for W, with either method, as
we should. Note also that the net force in the x-direction is not
zero, and so the sled must accelerate as it moves. In Section 6.2
we’ll return to this example and see how to use the concept of

10 kJ

Test Your Understanding of Section 6.1 An electron moves in a (‘\®
straight line toward the east with a constant speed of 8 X 107 m/s. It has electric, w
magnetic, and gravitational forces acting on it. During a 1-m displacement, the

total work done on the electron is (i) positive; (ii) negative; (iii) zero; (iv) not enough
information given to decide. I

6.2 Kinetic Energy and the
Work—Energy Theorem

The total work done on a body by external forces is related to the body’s
displacement—that is, to changes in its position. But the total work is also related
to changes in the speed of the body. To see this, consider Fig. 6.8, which shows
three examples of a block sliding on a frictionless table. The forces acting on the
block are its weight w, the normal force 7, and the force F exerted on it by the
hand.

In Fig. 6.8a the net force on the block is in the direction of its motion. From
Newton’s second law, this means that the block speeds up; from Eq. (6.1), this
also means that the total work W, done on the block is positive. The total work is
negative in Fig. 6.8b because the net force opposes the displacement; in this case
the block slows down. The net force is zero in Fig. 6.8c, so the speed of the block
stays the same and the total work done on the block is zero. We can conclude that
when a particle undergoes a displacement, it speeds up if Wy, > 0, slows down if
Wiot < 0, and maintains the same speed if W, = 0.

Let’s make these observations more quantitative. Consider a particle with
mass m moving along the x-axis under the action of a constant net force with
magnitude F directed along the positive x-axis (Fig. 6.9). The particle’s accelera-
tion is constant and given by Newton’s second law, F = ma,. Suppose the speed
changes from v to v, while the particle undergoes a displacement s = x, — x

work to explore the sled’s changes of speed.

MaSterTll P Y :
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6.8 The relationship between the total work done on a body and how the body’s speed changes.

(©)

A block slides to the right on a frictionless surface.

B v

& = If you push to the right
— on the moving block,
2 | the net force on the

block is to the right.

w

* The total work done on the block during
a displacement s is positive: W, > 0.
* The block speeds up.

R
6.9 A constant net force F does work on
a moving body.

Speed v, Speed v, N
Net force F
—_—

m m

e | !

X1 5 ox

6.10 Comparing the Kinetic energy
K= %mv2 of different bodies.

-
v
m
-
v
m

A 2

Same mass, same speed, different directions
of motion: same kinetic energy

2m

v
—

*

Twice the mass, same speed:
twice the kinetic energy

2v
p——

B

3 3
<l el
3

Same mass, twice the speed:
four times the kinetic energy

(b) ©
\ |
/
v 32 v
= If you push to the left If you push straight
lsssgy—— On the moving block, down on the moving
%/\ the net force on the block, the net force
block is to the left. on the block is zero.
n
n -
s s
— —
F
lF
w w
« The total work done on the block during « The total work done on the block during
a displacement’s is negative: W, < 0. a displacement § is zero: W,,, = 0.
» The block slows down. » The block’s speed stays the same.

from point x; to x,. Using a constant-acceleration equation, Eq. (2.13), and
replacing vy, by vy, v, by Uy, and (x — x;) by s, we have

1)22 = 1)12 + 2(1xS
U22_ 1112
A= 2s

When we multiply this equation by m and equate ma, to the net force F, we find

1)22— U12
F=ma, =m——— and
2s
Fs = ymv?— 5 mu (6.4)

The product F's is the work done by the net force F and thus is equal to the total
work W, done by all the forces acting on the particle. The quantity %mv2 is
called the kinetic energy K of the particle:

K = %mv2 (definition of kinetic energy) (6.5)

Like work, the kinetic energy of a particle is a scalar quantity; it depends on only
the particle’s mass and speed, not its direction of motion (Fig. 6.10). A car
(viewed as a particle) has the same kinetic energy when going north at 10 m/s as
when going east at 10 m/s. Kinetic energy can never be negative, and it is zero
only when the particle is at rest.

We can now interpret Eq. (6.4) in terms of work and kinetic energy. The first
term on the right side of Eq. (6.4) is K, = %mvzz, the final kinetic energy of the
particle (that is, after the displacement). The second term is the initial kinetic
energy, K; = %mvlz, and the difference between these terms is the change in
kinetic energy. So Eq. (6.4) says:

The work done by the net force on a particle equals the change in the particle’s
kinetic energy:

Weoit = Ko — K; = AK (work—energy theorem) (6.6)

This result is the work—energy theorem.
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The work—energy theorem agrees with our observations about the block in
Fig. 6.8. When W,y is positive, the kinetic energy increases (the final kinetic
energy K, is greater than the initial kinetic energy K) and the particle is going
faster at the end of the displacement than at the beginning. When W, is
negative, the kinetic energy decreases (K is less than K ) and the speed is less
after the displacement. When W, = 0, the kinetic energy stays the same
(K; = K,) and the speed is unchanged. Note that the work—energy theorem by
itself tells us only about changes in speed, not velocity, since the kinetic energy
doesn’t depend on the direction of motion.

From Eq. (6.4) or Eq. (6.6), kinetic energy and work must have the same units.
Hence the joule is the SI unit of both work and kinetic energy (and, as we will see
later, of all kinds of energy). To verify this, note that in SI units the quantity
K = ymv*has units kg -+ (m/s)? or kg - m?/s%; we recall that 1 N = 1 kg - m/s?, so

17=1N-m = 1(kg-m/s?)-m = 1kg-m?*/s’
In the British system the unit of kinetic energy and of work is
1ft-1b = 1 ft-slug-ft/s?> = 1 slug - ft?/s>

Because we used Newton’s laws in deriving the work—energy theorem, we can
use this theorem only in an inertial frame of reference. Note also that the
work—energy theorem is valid in any inertial frame, but the values of W, and
K, — K| may differ from one inertial frame to another (because the displacement
and speed of a body may be different in different frames).

We’ve derived the work—energy theorem for the special case of straight-
line motion with constant forces, and in the following examples we’ll apply it
to this special case only. We’ll find in the next section that the theorem is valid
in general, even when the forces are not constant and the particle’s trajectory
is curved.

COGLIEL BT ISIGELCT TR Work and Kinetic Energy O

IDENTIFY the relevant concepts: The work—energy theorem,
Wit = Ko — K, is extremely useful when you want to relate a
body’s speed v, at one point in its motion to its speed v, at a
different point. (It’s less useful for problems that involve the time
it takes a body to go from point 1 to point 2 because the
work—energy theorem doesn’t involve time at all. For such prob-
lems it’s usually best to use the relationships among time, position,
velocity, and acceleration described in Chapters 2 and 3.)

SET UP the problem using the following steps:

1. Identify the initial and final positions of the body, and draw a
free-body diagram showing all the forces that act on the body.

2. Choose a coordinate system. (If the motion is along a straight
line, it’s usually easiest to have both the initial and final posi-
tions lie along one of the axes.)

3. List the unknown and known quantities, and decide which
unknowns are your target variables. The target variable may be
the body’s initial or final speed, the magnitude of one of the
forces acting on the body, or the body’s displacement.

EXECUTE the solution: Calculate the work W done by each force. If
the force is constant and the displacement is a straight line, you can
use Eq. (6.2) or Eq. (6.3). (Later in this chapter we’ll see how to
handle varying forces and curved trajectories.) Be sure to check
signs; W must be positive if the force has a component in the

direction of the displacement, negative if the force has a compo-
nent opposite to the displacement, and zero if the force and dis-
placement are perpendicular.

Add the amounts of work done by each force to find the total
work W. Sometimes it’s easier to calculate the vector sum of the
forces (the net force) and then find the work done by the net force;
this value is also equal to Wy.

Write expressions for the initial and final kinetic energies, K;
and K, . Note that kinetic energy involves mass, not weight; if you
are given the body’s weight, use w = mg to find the mass.

Finally, use Eq. (6.6), W = K, — Ky, and Eq. (6.5),
K = %mvz, to solve for the target variable. Remember that the
right-hand side of Eq. (6.6) represents the change of the body’s
kinetic energy between points 1 and 2; that is, it is the final kinetic
energy minus the initial Kinetic energy, never the other way
around. (If you can predict the sign of Wy, you can predict
whether the body speeds up or slows down.)

EVALUATE your answer: Check whether your answer makes
sense. Remember that kinetic energy K = %mv2 can never be neg-
ative. If you come up with a negative value of K, perhaps you inter-
changed the initial and final kinetic energies in W,, = K, — K or
made a sign error in one of the work calculations.
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Using work and energy to calculate speed

Let’s look again at the sled in Fig. 6.7 and our results from
Example 6.2. Suppose the sled’s initial speed v is 2.0 m/s. What is
the speed of the sled after it moves 20 m?

IDENTIFY and SET UP: We’ll use the work—energy theorem,
Eq. (6.6), W, = K, — K|, since we are given the initial speed
vy = 2.0 m/s and want to find the final speed v,. Figure 6.11
shows our sketch of the situation. The motion is in the positive
x-direction. In Example 6.2 we calculated the total work done by
all the forces: W,,, = 10 kJ. Hence the kinetic energy of the sled
and its load must increase by 10 kJ, and the speed of the sled must
also increase.

ENECUTE: To write expressions for the initial and final kinetic
energies, we need the mass of the sled and load. The combined
weight is 14,700 N, so the mass is
w 14700 N
m=—=——">=1500 kg
& 98 m/s

Then the initial kinetic energy K is

Ky = 3mv? = 3(1500 kg)(2.0 m/s)? = 3000 kg - m?/s>

3000 J

6.11 Our sketch for this problem.

vy=2.0 m/s V= ?
7 /
Sled| 7/, 2y

s=20m

FELCE T Forces on a hammerhead

The 200-kg steel hammerhead of a pile driver is lifted 3.00 m
above the top of a vertical I-beam being driven into the ground
(Fig. 6.12a). The hammerhead is then dropped, driving the
I-beam 7.4 cm deeper into the ground. The vertical guide rails
exert a constant 60-N friction force on the hammerhead. Use the
work—energy theorem to find (a) the speed of the hammerhead
just as it hits the I-beam and (b) the average force the hammer-
head exerts on the I-beam. Ignore the effects of the air.

IDENTIFY: We’ll use the work—energy theorem to relate the ham-
merhead’s speed at different locations and the forces acting on it.
There are three locations of interest: point 1, where the hammer-
head starts from rest; point 2, where it first contacts the I-beam;
and point 3, where the hammerhead and I-beam come to a halt
(Fig. 6.12a). The two target variables are the hammerhead’s speed
at point 2 and the average force the hammerhead exerts between
points 2 and 3. Hence we’ll apply the work—energy theorem

The final kinetic energy K, is
K, = ymvy? = 1 (1500 kg)v,

The work—energy theorem, Eq. (6.6), gives
K, = K| + W = 3000 J + 10,000 J = 13,000 J

Setting these two expressions for K, equal, substituting 1 J =
1 kg m? / s2, and solving for the final speed v,, we find

v, =42 m/s

EVALUATE: The total work is positive, so the kinetic energy
increases (K, > K) and the speed increases (v, > vy).

This problem can also be solved without the work—energy theo-
rem. We can find the acceleration from Eff’ = mad and then use the
equations of motion for constant acceleration to find v,. Since the
acceleration is along the x-axis,

_ XF. 500N
m 1500 kg

= 0.333 m/s?

a=a,

Then, using Eq. (2.13),

v = v+ 2as = (2.0 m/s)? + 2(0.333 m/s?)(20 m)
17.3 m?/s?
v, = 4.2 m/s

This is the same result we obtained with the work—energy
approach, but there we avoided the intermediate step of finding the
acceleration. You will find several other examples in this chapter
and the next that can be done without using energy considerations
but that are easier when energy methods are used. When a problem
can be done by two methods, doing it by both methods (as we did
here) is a good way to check your work.

twice: once for the motion from 1 to 2, and once for the motion
from 2 to 3.

SET UP: Figure 6.12b shows the vertical forces on the hammerhead
as it falls from point 1 to point 2. (We can ignore any horizontal
forces that may be present because they do no work as the ham-
merhead moves vertically.) For this part of the motion, our target
variable is the hammerhead’s final speed v,.

Figure 6.12c shows the vertical forces on the hammerhead dur-
ing the motion from point 2 to point 3. In addition to the forces
shown in Fig. 6.12b, the I-beam exerts an upward normal force of
magnitude n on the hammerhead. This force actually varies as the
hammerhead comes to a halt, but for simplicity we’ll treat n as a
constant. Hence n represents the average value of this upward
force during the motion. Our target variable for this part of the
motion is the force that the hammerhead exerts on the I-beam; it is
the reaction force to the normal force exerted by the I-beam, so by
Newton'’s third law its magnitude is also n.



EXECUTE: (a) From point 1 to point 2, the vertical forces are
the downward weight w = mg = (200 kg)(9.8 m/s?) = 1960 N
and the upward friction force f = 60 N. Thus the net downward
force is w — f = 1900 N. The displacement of the hammerhead
from point 1 to point 2 is downward and equal to 51, = 3.00 m.
The total work done on the hammerhead between point 1 and point 2
is then

Wit = (W = f)s12 = (1900 N)(3.00 m) = 5700 J

At point 1 the hammerhead is at rest, so its initial kinetic energy K
is zero. Hence the kinetic energy K, at point 2 equals the total
work done on the hammerhead between points 1 and 2:

VVm[—Kz K2—0—2m02—0

Wy _[2057003)
25N TN 200 ke m/s

This is the hammerhead’s speed at point 2, just as it hits the
I-beam.

(b) As the hammerhead moves downward from point 2 to point
3, its displacement is 553 = 7.4 cm = 0.074 m and the net down-
ward force acting on it is w — f — n (Fig. 6.12c). The total work
done on the hammerhead during this displacement is

Wot = (W — f — n)sp3
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The initial kinetic energy for this part of the motion is K,, which
from part (a) equals 5700 J. The final kinetic energy is K3 = 0 (the
hammerhead ends at rest). From the work—energy theorem,

Wt = (w—f —n)spz = K3 — K
Ky — K,

523

n=w-—f—

0J — 5700 ]

=1960 N — 60N —
0.074 m

= 79,000 N

The downward force that the hammerhead exerts on the I-beam
has this same magnitude, 79,000 N (about 9 tons)—more than 40
times the weight of the hammerhead.

EVALUATE: The net change in the hammerhead’s kinetic energy
from point 1 to point 3 is zero; a relatively small net force does
positive work over a large distance, and then a much larger net
force does negative work over a much smaller distance. The
same thing happens if you speed up your car gradually and then
drive it into a brick wall. The very large force needed to reduce
the kinetic energy to zero over a short distance is what does the
damage to your car—and possibly to you.

6.12 (a) A pile driver pounds an I-beam into the ground. (b), (c) Free-body diagrams. Vector lengths are not to scale.

(C) I

~—— Point 1

4 13.00m

Point 2
*__/7 4 cm
Point 3

The Meaning of Kinetic Energy

(b) Free-body diagram
for falling hammerhead

(c) Free-body diagram for hammerhead
when pushing I-beam

y

f=60N Lx

w = mg

Example 6.4 gives insight into the physical meaning of kinetic energy. The ham-
merhead is dropped from rest, and its kinetic energy when it hits the I-beam
equals the total work done on it up to that point by the net force. This result is
true in general: To accelerate a particle of mass m from rest (zero kinetic energy)
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6.13 When a billiards player hits a cue
ball at rest, the ball’s kinetic energy after
being hit is equal to the work that was
done on it by the cue. The greater the force
exerted by the cue and the greater the
distance the ball moves while in contact
with it, the greater the ball’s kinetic energy.

CHAPTER 6 Work and Kinetic Energy

up to a speed , the total work done on it must equal the change in kinetic energy

1
from zero to K = 3mv*:

Wo =K —-0=K

So the kinetic energy of a particle is equal to the total work that was done to
accelerate it from rest to its present speed (Fig. 6.13). The definition K = %mvz,
Eq. (6.5), wasn’t chosen at random; it’s the only definition that agrees with this
interpretation of kinetic energy.

In the second part of Example 6.4 the kinetic energy of the hammerhead did
work on the I-beam and drove it into the ground. This gives us another inter-
pretation of kinetic energy: The kinetic energy of a particle is equal to the
total work that particle can do in the process of being brought to rest. This is
why you pull your hand and arm backward when you catch a ball. As the ball
comes to rest, it does an amount of work (force times distance) on your hand
equal to the ball’s initial kinetic energy. By pulling your hand back, you maxi-
mize the distance over which the force acts and so minimize the force on your

hand.

Comparing kinetic energies

Two iceboats like the one in Example 5.6 (Section 5.2) hold a race
on a frictionless horizontal lake (Fig. 6.14). The two iceboats have
masses m and 2m. The iceboats have identical sails, so the wind
exerts the same constant force F on each iceboat. They start from
rest and cross the finish line a distance s away. Which iceboat
crosses the finish line with greater kinetic energy?

If you use the definition of kinetic energy, K = %mvz, Eq. (6.5),
the answer to this problem isn’t obvious. The iceboat of mass 2m
has greater mass, so you might guess that it has greater kinetic
energy at the finish line. But the lighter iceboat, of mass m, has
greater acceleration and crosses the finish line with a greater speed,
so you might guess that this iceboat has the greater kinetic energy.
How can we decide?

The key is to remember that the kinetic energy of a particle is
equal to the total work done to accelerate it from rest. Both ice-
boats travel the same distance s from rest, and only the horizontal
force F in the direction of motion does work on either iceboat.
Hence the total work done between the starting line and the finish
line is the same for each iceboat, W,,;, = F's. At the finish line, each
iceboat has a kinetic energy equal to the work Wy, done on it,
because each iceboat started from rest. So both iceboats have the
same Kinetic energy at the finish line!

6.14 A race between iceboats.

$ Finish

Start

You might think this is a “trick” question, but it isn’t. If you
really understand the meanings of quantities such as kinetic energy,
you can solve problems more easily and with better insight.

Notice that we didn’t need to know anything about how much
time each iceboat took to reach the finish line. This is because the
work—energy theorem makes no direct reference to time, only to
displacement. In fact the iceboat of mass m has greater accelera-
tion and so takes less time to reach the finish line than does the ice-
boat of mass 2m.

Work and Kinetic Energy in Composite Systems

In this section we’ve been careful to apply the work—energy theorem only to
bodies that we can represent as particles—that is, as moving point masses. New
subtleties appear for more complex systems that have to be represented as many
particles with different motions. We can’t go into these subtleties in detail in this
chapter, but here’s an example.



6.3 Work and Energy with Varying Forces

Suppose a boy stands on frictionless roller skates on a level surface, facing a
rigid wall (Fig. 6.15). He pushes against the wall, which makes him move to the
right. The forces acting on him are his weight w, the upward normal forces 7,
and 11, exerted by the ground on his skates, and the horizontal force F exerted
on him by the wall. There is no vertical displacement, so w, 1, and 1, do no
work. Force F accelerates him to the right, but the parts of his body where that
force is applied (the boy’s hands) do not move while the force acts. Thus the
force F also does no work. Where, then, does the boy’s kinetic energy come
from?

The explanation is that it’s not adequate to represent the boy as a single point
mass. Different parts of the boy’s body have different motions; his hands remain
stationary against the wall while his torso is moving away from the wall. The var-
ious parts of his body interact with each other, and one part can exert forces and
do work on another part. Therefore the fotal kinetic energy of this composite sys-
tem of body parts can change, even though no work is done by forces applied by
bodies (such as the wall) that are outside the system. In Chapter 8 we’ll consider
further the motion of a collection of particles that interact with each other. We’ll
discover that just as for the boy in this example, the total kinetic energy of such a
system can change even when no work is done on any part of the system by any-
thing outside it.

Test Your Understanding of Section 6.2 Rank the following bodies
in order of their kinetic energy, from least to greatest. (i) a 2.0-kg body moving at
5.0 m/s; (ii) a 1.0-kg body that initially was at rest and then had 30 J of work
done on it; (iii) a 1.0-kg body that initially was moving at 4.0 m/s and then had 20 J of
work done on it; (iv) a 2.0-kg body that initially was moving at 10 m/s and then did 80 J
of work on another body. 1

6.3 Work and Energy with Varying Forces

So far in this chapter we’ve considered work done by constant forces only. But
what happens when you stretch a spring? The more you stretch it, the harder you
have to pull, so the force you exert is not constant as the spring is stretched.
We’ve also restricted our discussion to straight-line motion. There are many situ-
ations in which a body moves along a curved path and is acted on by a force that
varies in magnitude, direction, or both. We need to be able to compute the work
done by the force in these more general cases. Fortunately, we’ll find that the
work—energy theorem holds true even when varying forces are considered and
when the body’s path is not straight.

Work Done by a Varying Force, Straight-Line Motion

To add only one complication at a time, let’s consider straight-line motion along
the x-axis with a force whose x-component F, may change as the body moves.
(A real-life example is driving a car along a straight road with stop signs, so the
driver has to alternately step on the gas and apply the brakes.) Suppose a particle
moves along the x-axis from point x; to x, (Fig. 6.16a). Figure 6.16b is a graph
of the x-component of force as a function of the particle’s coordinate x. To find
the work done by this force, we divide the total displacement into small segments
Ax,, Axy, and so on (Fig. 6.16¢c). We approximate the work done by the force
during segment Ax, as the average x-component of force F,, in that segment
multiplied by the x-displacement Ax,. We do this for each segment and then add
the results for all the segments. The work done by the force in the total displace-
ment from x to x, is approximately

W= F,Ax, + FpAxp+---

1817

6.15 The external forces acting on a
skater pushing off a wall. The work done
by these forces is zero, but the skater’s
kinetic energy changes nonetheless.

F
— |

6.16 Calculating the work done by a
varying force F) in the x-direction as a
particle moves from x| to x,.

(@) Particle moving from x; to x, in response
to a changing force in the x-direction
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6.17 The work done by a constant force
F in the x-direction as a particle moves
from x| to x,.

The rectangular area under the
graph represents the work done by
the constant force of magnitude F

F, during displacement s:
W = Fs
F T+ l_.._\
| A4 |
| |
| |
| |
| |
| |
| |
| |
| |
1 1 x
o X )
S =X, —X;

6.18 The force needed to stretch an ideal

spring is proportional to the spring’s elon-
gation: F, = kx.

X
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6.19 Calculating the work done to
stretch a spring by a length X.

The area under the graph represents the work
done on the spring as the spring is stretched
from x = 0 to a maximum value X:
W= kx>
F

kX

X—>

In the limit that the number of segments becomes very large and the width of
each becomes very small, this sum becomes the integral of F, from x| to x,:

EY)
W= / F, dx
X

Note that F,, Ax, represents the area of the first vertical strip in Fig. 6.16c and
that the integral in Eq. (6.7) represents the area under the curve of Fig. 6.16b
between x| and x,. On a graph of force as a function of position, the total work
done by the force is represented by the area under the curve between the initial
and final positions. An alternative interpretation of Eq. (6.7) is that the work W
equals the average force that acts over the entire displacement, multiplied by the
displacement.

In the special case that F, the x-component of the force, is constant, it may be
taken outside the integral in Eq. (6.7):

X X2
W=/ dex=Fx/ dx = Fy(xy 