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Preface

This book provides an introductory treatment of state space methods
applied to unobserved-component time series models which are also
known as structural time series models. The book started as a collection
of personal notes made by JJFC about what he discovered and understood
while studying state space methods for the first time. When colleagues
and friends also found these notes useful and helpful, the idea came up to
make them publicly available. SJK started to cooperate with JJFC on this
book project as part of the highly enjoyable joint projects for the SWOV
Institute for Road Safety Research in Leidschendam, the Netherlands.

Harvey (1989) and Durbin and Koopman (2001) treat the topic of
state space methods at an advanced level suitable for postgraduate and
advanced graduate courses in time series analysis. Elementary time series
books, on the other hand, provide only very limited space to the class
of unobserved-component models. Most of the attention is given to the
Box–Jenkins approach to time series analysis.

The intended audience for this book is practitioners and researchers
working in areas other than statistics, but who use time series on a daily
basis in areas such as the social sciences, quantitative history, biology and
medicine. This book offers a step-by-step approach to the analysis of the
salient features in time series such as the trend, seasonal and irregular
components. Practical problems such as forecasting and missing values
are treated in some detail. The book may also serve as an accompanying
textbook for a basic time series course in econometrics and statistics,
typically at an undergraduate level.

JJFC would like to acknowledge and thank the management and the
colleagues of the SWOV Institute for Road Safety Research for their mental
and financial contribution to this publication. The book is an important
component of the SWOV Research Programme 2003–2006.

Among all SWOV colleagues, JJFC is especially indebted to Frits
Bijleveld, whose never abating and infectious enthusiasm for state space
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methods was instrumental in stimulating JJFC to write this book. He
was always willing to answer any questions JJFC had, and is a genius in
exploiting the enormous flexibility that state space methods have to offer.

The authors are grateful to a referee for his positive remarks on an earlier
draft of the book. His many constructive comments have improved the
book considerably. Any mistakes and omissions remain the sole responsi-
bility of the authors.

JJFC also wishes to thank members (some of them, former members)
of the International Co-operation on Time Series Analysis (ICTSA): Peter
Christens, Ruth Bergel, Joanna Zukowska, Filip Van den Bossche, Geert
Wets, Stefan Hoeglinger, Ward Vanlaar, Phillip Gould, Max Cameron,
and Stewart Newstead, for their inspiring contributions to our in-depth
discussions on time series analysis, and for their encouraging response to
earlier drafts of the book.

SJK would like to thank his colleagues at the Department of Economet-
rics, Vrije Universiteit Amsterdam, for giving him the opportunity to work
on this book.

The book was written in LATEX using the MiKTeX system
(http://www.miktex.org). We thank Frits Bijleveld for his assistance
in setting up the LATEX system. The Ox and SsfPack code for carrying
out the analyses discussed in the book, as well as the data files,
can be downloaded from http://staff.feweb.vu.nl/koopman and from
http://www.ssfpack.com.
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1

Introduction

This book introduces time series analysis using state space methodology
to readers who are neither familiar with time series analysis nor with state
space methods. The only background required in order to understand the
material in this book is a basic knowledge of classical linear regression
models, of which a condensed review is provided first. A few sections
also assume familiarity with matrix algebra. These starred sections may
however be skipped without losing the flow of the exposition.

In classical regression analysis a linear relationship is assumed between
a criterion or dependent or endogenous variable y, and a predictor or
independent or exogenous variable x. Deviations from this relationship
are assumed to come from a random process (see Chapter 10 for the defin-
ition of a random process) centred at zero. The standard regression model
for n observations of y (denoted by yi for i = 1, . . . , n) and x (denoted by
xi for i = 1, . . . , n) is formally written as

yi = a + b xi + εi , εi ∼ NID(0, Û2
ε ) (1.1)

for i = 1, . . . , n. The statement

εi ∼ NID(0, Û2
ε ) (1.2)

in (1.1) is shorthand notation for the assumption that the disturbances
or errors or residuals εi are normally and independently distributed with
mean equal to zero and variance equal to Û2

ε .
The regression model (1.1) has three unknown coefficients that can

be estimated by least squares methods. In particular, the least squares
estimates of a and b, denoted by â and b̂, respectively, are calculated by

b̂ =
n∑

i=1

(xi − x̄)yi /

n∑
i=1

(xi − x̄)2, â = ȳ − b̂x̄,

1



Introduction

where ȳ and x̄ are the sample means of yi and xi , respectively, for i =
1, . . . , n. The least squares estimate of the disturbance variance Û2

ε , denoted
by Û̂2

ε , is calculated by

Û̂2
ε =

n∑
i=1

(yi − â − b̂xi )2 / (n − 2).

More detailed discussions on least squares methods can be found in many
textbooks on statistics and econometrics.

Suppose that the dependent variable yi in (1.1) refers to the log of the
monthly number of drivers killed or seriously injured (KSI) in the United
Kingdom (UK) for the period January 1969 to December 1984. Since the
period spans 16 years, we have n = 16 × 12 = 192 observations and yi is
observed for i = 1, . . . , 192. This set of observations for yi can be referred to
as a time series because it consists of repeated measurements in time of the
same phenomenon. Further, suppose that the independent variable xi in
(1.1) is the index of time points in the series, that is xi = i = 1, 2, . . . , 192.

A scatter plot of variable y on x together with the best fitting line
according to classical linear regression are presented in Figure 1.1. The

0 20 40 60 80 100 120 140 160 180

7.0

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9
log UK drivers KSI against time (in months) regression line 

Figure 1.1. Scatter plot of the log of the number of UK drivers KSI against time (in
months), including regression line.
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equation of the regression line in Figure 1.1 is

ŷi = â + b̂xi = 7.5458 − 0.00145 xi ,

with error variance Û̂2
ε = 0.022998. The standard F -test for fit yields

F(1,190) = 53.775 (p < 0.001), implying that the linear relationship
between the criterion variable y and the predictor variable x is highly
significant. Graphically, the intercept â = 7.5458 in model (1.1) is the
point where the regression line intersects with the y-axis, as is confirmed
by inspection of Figure 1.1. Therefore, the intercept determines the level
of the regression line on the y-axis. The value of the regression coefficient
or weight b̂ = −0.00145 determines the slope of the regression line (i.e. the
tangent of its angle with the x-axis).

Whether this analysis is satisfactory remains to be seen. We have
established that time is a significant predictor of the log of the num-
bers of drivers KSI, and that there is a negative relation between these
two variables: as time proceeds the log of the number of drivers killed
or seriously injured decreases. However, a key assumption of classical
regression analysis is not considered in the analysis. The observations
y, after their correction for the intercept and the exogenous variable x,
are assumed to be independent of each other. This is implied by (1.2). In
the present example these observations are not independent because they
are interrelated through time. This becomes more obvious by connecting
the consecutive observations in Figure 1.1 with lines, as is illustrated in
Figure 1.2. It shows that there is a systematic pattern in the time series yi

that can only partially be caught by the intercept and the time variable
xi = i. The residuals should be randomly distributed. However, Figure 1.3
shows that the residuals are clearly not randomly distributed.

A useful diagnostic tool for investigating the randomness of a set of
observations is the correlogram. The correlogram is a graph containing
correlations between an observed time series and the same time series
shifted k time points into the future. Thus, the correlogram of the least
squares errors Â̂i = yi − â − b̂xi in Figure 1.3 (which is also a time series)
consists of the correlation between Â̂i and Â̂i−1, the correlation between
Â̂i and Â̂i−2, the correlation between Â̂i and Â̂i−3, and so on. Table 1.1
illustrates for some arbitrary numbers how the residuals are shifted in time
in order to compute these correlations.

Using a more general notation, the correlogram contains the correla-
tions between Â̂i and Â̂i−k, for k = 1, 2, 3, . . . . Since k equals the distance
in time between the observations, it is called a lag. Moreover, since the

3
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Figure 1.2. Log of the number of UK drivers KSI plotted as a time series.
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Figure 1.3. Residuals of classical linear regression of the log of the number of UK
drivers KSI on time.
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Table 1.1. Shifting of residuals for
computation of autocorrelations.

k = 0 1 2 3
i Â̂i Â̂i −k Â̂i −k Â̂i −k

1 0.2 — — —
2 −0.4 0.2 — —
3 0.0 −0.4 0.2 —
4 0.3 0.0 −0.4 0.2
5 −0.2 0.3 0.0 −0.4
6 0.1 −0.2 0.3 0.0

correlations are computed between a variable and itself (albeit shifted in
time), they are called autocorrelations.

The correlogram of an independently distributed series of residuals
is expected to consist of zeroes. In this case, the correlogram typically
takes on the form shown in Figure 1.4. The two horizontal lines in the
correlogram are the 95% confidence limits ±2/

√
n = ±2/

√
192 = ±0.144.

If residuals are randomly distributed then they are independent of one
another. In the correlogram, the independence between random normally
distributed residuals is reflected in the fact that all autocorrelations (of

0 5 10 15
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−0.25

0.00

0.25

0.50

0.75

1.00
ACF−random residuals 

Figure 1.4. Correlogram of random time series.
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Figure 1.5. Correlogram of classical regression residuals.

which the first 14 are graphed in Figure 1.4) are close to zero, and do not
exceed the confidence limits.

In contrast, the correlogram containing the first 14 autocorrelations of
the classical regression residuals in Figure 1.3 takes on the form presented
in Figure 1.5. The non-random nature of these residuals is confirmed by
the fact that the correlogram in Figure 1.5 contains many autocorrelations
significantly different from zero.

In principle, there is nothing wrong in fitting a classical regression
model on the data in Figure 1.1 to obtain a rough idea of the linear trend
in the series. As soon as standard statistical tests are applied to ascertain
whether or not the relationship should be attributed to chance, however,
various problems arise. As noted above, the F -test (or, equivalently, the
t-test for the regression weight) would lead one to conclude that the
negative relationship between the number of UK drivers KSI and time is
highly significant. These tests are based on the assumption that the errors
are randomly distributed, an assumption that is clearly violated in this
case.

When the first order residual autocorrelation (i.e. the residual autocorre-
lation for lag 1) is positive and significantly different from zero, a positive
residual tends to be followed by one or more other positive residuals, and
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a negative residual tends to be followed by one or more other negative
residuals. As pointed out in the literature (see, e.g., Ostrom, 1990; Belle,
2002), the error variance for standard statistical tests is seriously underes-
timated in this case. This in turn leads to a large overestimation of the F -
or t-ratio, and therefore to overly optimistic conclusions about the linear
relation between the dependent variable and time.

On the other hand, when the first order residual autocorrelation is
negative and significantly deviates from zero, then a positive residual
tends to be followed by a negative residual, and vice versa. In this case the
error variance for the standard statistical test is seriously overestimated,
leading to a large underestimation of the F - or t-ratio. Therefore, overly
pessimistic conclusions about the linear relationship between the crite-
rion variable and time will be drawn.

Time series analysis has the primary task to uncover the dynamic evolu-
tion of observations measured over time. It is assumed that the dynamic
properties cannot be observed directly from the data. The unobserved
dynamic process at time t is referred to as the state of the time series.
The state of a time series may consist of several components, which will
be introduced one by one in the following chapters. First, in Chapters 2,
3, and 4, components are presented that are useful for obtaining an
adequate description of a time series. These components are the level,
the slope and the seasonal. Then, in Chapters 5 and 6, components of
the state are discussed that are helpful in finding explanations for the
underlying development in the series. These components are explanatory
and intervention variables. In Chapter 7 analyses are presented where
descriptive and explanatory components from the previous chapters are
combined into one model.

A third important application of time series analysis is the ability to
predict or forecast (unknown) time series observations in the future. This
aspect of time series analysis is discussed in Chapter 8. This chapter also
presents a general notation for univariate state space models and alterna-
tive ways of dealing with explanatory and intervention variables. Further,
confidence intervals, the filtered state, one-step ahead prediction errors
and their variances, diagnostic tests, and the handling of missing obser-
vations in state space methods are discussed in this chapter. Chapter 9
introduces multivariate analysis of time series data. In Chapter 10 a
very basic introduction to Box–Jenkins ARIMA models is provided, thus
allowing for an evaluation of the relative merits of state space and Box–
Jenkins methods for time series analysis. Finally, Chapter 11 shows how

7
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to perform all time series analyses discussed in Chapters 1 through 9 in
SsfPack, a set of C routines collected in a library which has been linked to
the Ox programming language.

Throughout the book, all univariate state space models are applied to
the log of the monthly number of drivers killed or seriously injured (KSI)
in the UK in the period January 1969 to December 1984 (see Figure 1.2).
The actual numbers in this series (not in logs) are given in Appendix A.
This is done even when the model under discussion is clearly not appro-
priate for this time series. In those cases, however, alternative illustrations
are provided for which the model is closer to a correctly specified model.
Moreover, in Chapters 4 and 7 results are presented of the analysis of
quarterly price changes in the UK in the years 1950 through 2001.

Finally, most state space models are presented in their deterministic as
well as in their stochastic form. What we mean by this distinction will
become clear in the following chapters. The purpose of discussing the
results of analyses with deterministic as well as with stochastic state space
models is twofold. First, it shows the great flexibility of state space models
in that both simple and multiple classical regression models are easily
fitted in the framework of state space modelling. Second, it provides a
means to offset the time series models presented in this book against clas-
sical regression analysis, showing the effectiveness of state space methods
when dealing with time series data.

In the next chapter, we start off with a state space model that is even
more simple than classical linear regression. In this model only the inter-
cept of (1.1) is taken into consideration.

8
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The local level model

A basic example of the state space model is the local level model. In
this model the level component is allowed to vary in time. The level
component can be conceived of as the equivalent of the intercept a
in the classical regression model (1.1). As the intercept determines the
level of the regression line, the level component plays the same role in
state space modelling. The important difference is that the intercept in
a regression model is fixed whereas the level component in a state space
model is allowed to change from time point to time point. In case the level
component does not change over time and is fixed for all time points, the
level component is equivalent to the intercept. In other words, it is then a
global level and applicable for all time points. In case the level component
changes over time, the level component applies locally and therefore the
corresponding model is referred to as the local level model.

The local level model can be formulated as

yt = Ït + εt, εt ∼ NID(0, Û2
ε )

Ït+1 = Ït + Ót, Ót ∼ NID(0, Û2
Ó )

(2.1)

for t = 1, . . . , n, where Ït is the unobserved level at time t, εt is the obser-
vation disturbance at time t, and Ót is what is called the level disturbance
at time t. In the literature on state space models, the observation dis-
turbances εt are also referred to as the irregular component. The observa-
tion and level disturbances are all assumed to be serially and mutually
independent and normally distributed with zero mean and variances Û2

ε

and Û2
Ó , respectively. The first equation in (2.1) is called the observation

or measurement equation, while the second equation is called the state
equation. Since the level equation in (2.1) defines a random walk (see
Chapter 10), the local level model is also referred to as the random walk
plus noise model (where the noise refers to the irregular component).

9



The local level model

The second equation in (2.1) is crucial in time series analysis. In the
state equation, time dependencies in the observed time series are dealt
with by letting the state at time t + 1 be a function of the state at time
t. Therefore, it takes into account that the observed value of the series at
time point t + 1 is usually more similar to the observed value of the time
series at time point t than to any other previous value in the series.

When the state disturbances are all fixed on Ót = 0 for t = 1, . . . , n, model
(2.1) reduces to a deterministic model: in this case the level does not vary
over time. On the other hand, when the level is allowed to vary over
time, it is treated as a stochastic process. In Section 2.1 we discuss the
results of the analysis of the log of the number of UK drivers KSI with a
deterministic level. Then in Section 2.2, the latter results are compared
with those obtained with a stochastic level component. As the local level
model is not appropriate for the UK drivers KSI series, the model is also
applied to the annual numbers of road traffic fatalities in Norway in
Section 2.3.

2.1. Deterministic level

If the level disturbances in (2.1) are all fixed on Ót = 0 for t = 1, . . . , n, it is
easily verified that:

for t = 1: y1 = Ï1 + ε1,

Ï2 = Ï1 + Ó1 = Ï1 + 0 = Ï1

for t = 2: y2 = Ï2 + ε2 = Ï1 + ε2,

Ï3 = Ï2 + Ó2 = Ï2 + 0 = Ï1

for t = 3: y3 = Ï3 + ε3 = Ï1 + ε3,

Ï4 = Ï3 + Ó3 = Ï3 + 0 = Ï1

and so on.

Summarising, in this case the local level model (2.1) simplifies to

yt = Ï1 + εt, εt ∼ NID(0, Û2
ε ) (2.2)

for t = 1, . . . , n. Therefore, in this special situation everything relies on
the value of Ï1, the value of the level at time t = 1. Once this value is
established, it remains constant for all other time points t = 2, . . . , n.

10



2.1. Deterministic level

Generally, in state space models the value of the unobserved state at
the beginning of the time series (i.e. at t = 1) is unknown. There are two
ways to deal with this problem. Either the researcher provides the first
value, based on theoretical considerations, or some previous research, for
example. Or this first value is estimated by a procedure that falls within
the class of state space methods. Since nothing is usually known about
the initial value of the state, the second approach is usually followed in
practice, and will be used in all further analyses discussed in the present
book. In state space modelling, the second approach is called diffuse
initialisation.

In classical regression analysis the unknown parameters are the inter-
cept and the regression coefficients, for which estimates can be obtained
analytically. In state space methods the unknown parameters include the
observation and state disturbance variances. These latter parameters are
also known as hyperparameters. Unlike classical regression analysis, when a
state space model contains two or more hyperparameters (i.e. disturbance
variances) the (maximum likelihood) estimation of these hyperparame-
ters requires an iterative procedure. The iterations aim to maximise the
likelihood value with respect to the hyperparameters (see also Chap-
ter 11). Numerical optimisation methods are employed for this task and
they are based on an iterative search process to find the maximum in a
numerically efficient way.

Since the variance of the level disturbances Û2
Ó is fixed at zero, only two

parameters need to be estimated in model (2.2). These two parameters are
Ï1 and Û2

ε . Using the diffuse initialisation method, the analysis of the log
of the number of UK drivers KSI with the deterministic level model yields
the following results:

it0 f= 0.3297597 df=9.731e-007 e1=2.690e-006 e2=3.521e-008
Strong convergence

This output reflects the numerical search procedure where it0 refers to the
initialisation step, f is the logged likelihood value for the hyperparameter
value considered at iteration 0 whereas df is the first derivative of the
likelihood function with respect to the hyperparameter and evaluated
at the value of the hyperparameter at iteration 0. The values e1 and e2
indicate other measures of convergence of the maximisation procedure.
In the numerical maximisation of the likelihood function, no iterations
are required for the estimation of the parameters of the deterministic level
model. This is in agreement with the fact that the parameter estimates
of classical linear regression models can be determined analytically. The
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The local level model

value of the log-likelihood function that is maximised in state space meth-
ods is 0.3297597. The maximum likelihood estimate of the variance of the
observation disturbances is Û̂2

ε = 0.029353, and the maximum likelihood
estimate of the level for t = 1 is Ï̂1 = 7.4061. The resulting equation for
model (2.2) is

yt = 7.4061 + εt.

Now, the sum of the log of the monthly number of UK drivers KSI in the
period 1969–1984 happens to be 1421.97. Since

ȳ =
1
n

n∑
t=1

yt =
1

192
1421.97 = 7.4061

for this time series, and

s2
y =

1
n − 1

n∑
t=1

(yt − ȳ)2 = 0.029353,

this extremely simple state space model actually computes the mean and
variance of the observed time series.

Thus, the best fitting decomposition based on model (2.2) is

yt = ȳ + (yt − ȳ). (2.3)

This is not surprising, since it is well known that the best estimate for the
parameter Ï minimising the least-squares function

f (Ï) =
n∑

t=1

(yt − Ï)2

equals

Ï̂ =
1
n

n∑
t=1

yt,

the mean of variable y.
The level for model (2.2) is displayed in Figure 2.1, together with the

observed time series. As the figure illustrates, the deterministic level is
indeed a constant and does not vary over time as a result. Figure 2.2
contains a plot of the observation disturbances εt corresponding to the
deterministic level model. Just as in the classical regression analysis dis-
cussed in Chapter 1, the disturbances εt of the deterministic level model
are not randomly distributed in this case, and follow a very systematic
pattern. In fact, the irregular component in Figure 2.2 simply consists

12



2.1. Deterministic level
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Figure 2.1. Deterministic level.
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Figure 2.2. Irregular component for deterministic level model.
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The local level model

Table 2.1. Diagnostic tests for deterministic level model and log UK
drivers KSI.

statistic value critical value assumption satisfied

independence Q(15) 415.210 25.00 −
r (1) 0.699 ±0.14 −

r (12) 0.677 ±0.14 −
homoscedasticity H (64) 2.058 1.67 −
normality N 0.733 5.99 +

of the deviations of the observed time series from its mean, as already
implied by (2.3).

Diagnostic tests for the assumptions of independence, homoscedas-
ticity, and normality of the residuals of the analysis are presented in
Table 2.1. A discussion of the exact definition, computation and inter-
pretation of these diagnostic tests is postponed until Section 8.5. Even
without this knowledge, however, it is easily seen that the values of the
autocorrelations at lags 1 and 12 (see also Chapter 1), which are r (1) =
0.699 and r (12) = 0.677, respectively, both far exceed the 95% confidence
limits of ±2/

√
n = ±0.144 for this time series with n = 192 observations.

The high amount of dependency between the residuals is confirmed
by the very large value of the Q-test in Table 2.1. The Q-statistic is a
general omnibus test that can be used to check whether the combined
first k (in this case 15) autocorrelations in the correlogram deviate from
zero. Since Q(15) = 415.210 and because this value is much larger than
˜2

(15;0.05) = 25.00 (see Table 2.1), evaluated as a whole the first 15 autocor-
relations significantly deviate from zero, meaning that the null hypothesis
of independence must be rejected.

The H-statistic in Table 2.1 tests whether the variances of two consec-
utive and equal parts of the residuals are equal to one another. In the
present case, the test shows that the variance of the first 64 elements
of the residuals is unequal to the variance of the last 64 elements of
the residuals, because H(64) = 2.058 is larger than the critical value of
F(64,64;0.025) ≈ 1.67. This means that the assumption of homoscedasticity
of the residuals is also not satisfied in the present analysis.

Finally, the N-statistic in Table 2.1 tests whether the skewness and
kurtosis of the distribution of the residuals comply with a normal or
Gaussian distribution. Since N = 0.733 is smaller than the critical value of
˜2

(2;0.05) = 5.99 (see Table 2.1), the null hypothesis of normally distributed
residuals is not rejected.
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2.2. Stochastic level

Summarising, the residuals of the deterministic level model neither
satisfy the assumption of independence nor that of homoscedasticity;
only the assumption of normality is not violated.

In order to compare the different state space models illustrated in the
present book, throughout the Akaike Information Criterion (AIC) will be
used:

AIC =
1
n

[−2n log Ld + 2(q + w)] ,

where n is the number of observations in the time series, log Ld is the
value of the diffuse log-likelihood function which is maximised in state
space modelling, q is the number of diffuse initial values in the state, and
w is the total number of disturbance variances estimated in the analysis.
When comparing different models with the AIC the following rule holds:
smaller values denote better fitting models than larger ones. A very useful
property of this criterion is that it compensates for the number of esti-
mated parameters in a model, thus allowing for a fair comparison between
models involving different numbers of parameters. In the deterministic
level model only one variance is estimated (Û2

ε ), and one initial value (Ï1).
Therefore, the Akaike information criterion for the analysis of the log of
the number of drivers KSI with the deterministic level model equals

AIC =
1

192
[−2(192)(0.3297597) + 2(1 + 1)] = −0.638686.

In the following sections, this value will be used for purposes of compari-
son with other state space models.

2.2. Stochastic level

When the level Ït in model (2.1) is allowed to vary over time, on the other
hand, the following results are obtained when estimating the hyperpara-
meters by the method of maximum likelihood.

it0 f= 0.5673434 df= 0.08018 e1= 0.2550 e2= 0.003223
it1 f= 0.5799665 df= 0.1032 e1= 0.3199 e2= 0.3542
it2 f= 0.6404443 df= 0.08408 e1= 0.2048 e2= 0.02733
it3 f= 0.6424964 df= 0.03334 e1= 0.1025 e2= 0.003279
it4 f= 0.6429869 df= 0.02961 e1= 0.09162 e2= 0.0006207
it5 f= 0.6449777 df= 0.006552 e1= 0.02114 e2= 0.004098
it6 f= 0.6451632 df= 0.002400 e1= 0.007856 e2= 0.001422
it7 f= 0.6451949 df= 0.0004676 e1= 0.001543 e2= 0.0007765
it8 f= 0.6451960 df=3.338e-005 e1= 0.0001103 e2= 0.0001597
it9 f= 0.6451960 df=3.557e-006 e1=8.776e-006 e2=1.508e-005
Strong convergence
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The local level model
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Figure 2.3. Stochastic level.

The algorithm converges in nine iterations. At convergence the value
of the log-likelihood function is 0.6451960. The maximum likelihood
estimate of the variance of the irregular component is Û̂2

ε = 0.00222157
and of the level disturbance variance is Û̂2

Ó = 0.011866. The maximum
likelihood estimate of the initial value of the level at time point t = 1 is
Ï̂1 = 7.4150.

The stochastic level is illustrated in Figure 2.3, together with the
observed time series. It shows that the observed time series is recovered
quite well when the level is allowed to vary over time. It is nevertheless
questionable whether the local level is appropriate for describing all the
dynamics in the time series yt.

Figure 2.4 contains a plot of the irregular component for this analysis.
In this figure, the systematic pattern that was found in the residuals of the
previous analysis is absent, and the observation disturbances seem to be
much closer to independent random values, or – as is also said in control
engineering where state space methods originated – to white noise.

To some extent, this is confirmed by the diagnostic tests of the residuals
given in Table 2.2. The autocorrelation at lag 1 no longer deviates from
zero, and the value of the overall Q-test for independence is much smaller
than in the previous analysis. The test for heteroscedasticity is also no
longer significant. However, both the values of r (12) (the autocorrelation
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2.2. Stochastic level
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Figure 2.4. Irregular component for local level model.

at lag 12) and of the general Q-test still indicate significant serial correla-
tion in the residuals. Moreover, according to Table 2.2 the residuals of the
local level model do not satisfy the assumption of normality.

In the stochastic level model two variances are estimated (Û2
ε and Û2

Ó ),
and one diffuse element (Ï1). Therefore, the Akaike information criterion
for this analysis equals

AIC =
1

192
[−2(192)(0.6451960) + 2(1 + 2)] = −1.25914.

This value is much smaller than for the deterministic level model, mean-
ing that the stochastic level model fits the data better.

In conclusion, the stochastic level model appears to be an improvement
upon the deterministic level model. A lot of the dependencies between
the observation disturbances in Figure 2.2 have disappeared in Figure 2.4.

Table 2.2. Diagnostic tests for local level model and log UK drivers KSI.

statistic value critical value assumption satisfied

independence Q(15) 105.390 23.68 −
r (1) 0.009 ± 0.14 +

r (12) 0.537 ± 0.14 −
homoscedasticity H (64) 1.064 1.67 +
normality N 13.242 5.99 −
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The local level model

Moreover, the Akaike information criterion indicates that the stochastic
level model yields a better representation of the time series than the
deterministic level model. However, the diagnostic tests in Table 2.2 also
reveal that the stochastic level model is by no means the appropriate
model for describing the time series at hand, as will become clearer in
Chapter 4. In the next section, therefore, an analysis is presented where
the local level model provides a more adequate description of the data.

2.3. The local level model and Norwegian fatalities

Applying the local level model to the log of the annual number of road
traffic fatalities in Norway as observed for the 34 years of 1970 through to
2003 (see Appendix B and Figure 2.5), the following results are obtained.

it0 f= 0.7755299 df= 0.1692 e1= 0.5779 e2= 0.006216
it1 f= 0.8205220 df= 0.1248 e1= 0.4053 e2= 0.009750
it2 f= 0.8464841 df= 0.02166 e1= 0.06664 e2= 0.01080
it3 f= 0.8468295 df= 0.005806 e1= 0.01800 e2= 0.0007435
it4 f= 0.8468620 df= 0.0003182 e1= 0.0009326 e2= 0.0003626
it5 f= 0.8468622 df=1.945e-005 e1=5.699e-005 e2=2.894e-005
Strong convergence

At convergence the value of the log-likelihood function is 0.8468622. The
maximum likelihood estimate of the irregular variance is Û̂2

ε = 0.00326838,
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6.3 log fatalities in Norway stochastic level

Figure 2.5. Stochastic level for Norwegian fatalities.
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2.3. The local level model and Norwegian fatalities
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Figure 2.6. Irregular component for Norwegian fatalities.

while the maximum likelihood estimate of the variance of the level distur-
bances equals Û̂2

Ó = 0.0047026. The maximum likelihood estimate of the
initial value of the level at time point t = 1 is Ï̂1 = 6.3048. The stochastic
level is illustrated in Figure 2.5, together with the observed time series.

Figure 2.6 contains a plot of the irregular component. The diagnostic
tests for independence, homoscedasticity, and normality of the residuals
of this analysis are given in Table 2.3. The autocorrelations at lags 1 and
4 are well within the 95% confidence limits of ±2/

√
n = ±0.343 for this

time series. Moreover, since Q(10) < ˜2
(9;0.05), H(11) < F(12,12;0.025), and N <

˜2
(2;0.05) (see also Section 8.5), these tests indicate that the residuals satisfy

all of the assumptions of the local level model (2.1).

Table 2.3. Diagnostic tests for local level model and log Norwegian
fatalities.

statistic value critical value assumption satisfied

independence Q(10) 6.228 16.92 +
r (1) −0.127 ±0.34 +
r (4) −0.105 ±0.34 +

homoscedasticity H (11) 1.746 3.28 +
normality N 1.191 5.99 +
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The local level model

The value of the Akaike information criterion for this analysis equals

AIC =
1

34
[−2(34)(0.8468622) + 2(1 + 2)] = −1.51725,

which is a great improvement upon the deterministic level model applied
to these data, since the AIC value for the deterministic model equals
0.040245. Adding a slope component (see Chapter 3) to model (2.1) does
not improve the description of this time series, as this results in an AIC
value of only −1.28035.
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3

The local linear trend model

The local linear trend model is obtained by adding a slope component Ìt to
the local level model, as follows:

yt = Ït + εt, εt ∼ NID(0, Û2
ε )

Ït+1 = Ït + Ìt + Ót, Ót ∼ NID(0, Û2
Ó ) (3.1)

Ìt+1 = Ìt + Êt, Êt ∼ NID(0, Û2
Ê )

for t = 1, . . . , n. The local linear trend model contains two state equations:
one for modelling the level, and one for modelling the slope. The slope Ìt

in (3.1) can be conceived of as the equivalent of the regression coefficient
b in classical regression model (1.1). The value of b determines the angle
of the regression line with the x-axis. For the local linear trend model, the
slope also determines the angle of the trend line with the x-axis. Again,
the important difference is that the regression coefficient or weight b is
fixed in classical regression, whereas the slope in (3.1) is allowed to change
over time. In the literature on time series analysis the slope is also referred
to as the drift.

First the results of the analysis of the UK drivers KSI with the determin-
istic linear trend model are presented in Section 3.1. Then in Section 3.2,
the latter results are compared with those obtained with the stochastic
linear trend model. Since the local linear trend model is still not the
correct model for describing this time series, Section 3.4 presents the
results of an analysis of the annual numbers of road traffic fatalities in
Finland with the local linear trend model.

3.1. Deterministic level and slope

Fixing all state disturbances Ót and Êt in (3.1) on zero, it is easily verified
that

21



The local linear trend model

for t = 1: y1 = Ï1 + ε1,

Ï2 = Ï1 + Ì1 + Ó1 = Ï1 + Ì1 + 0 = Ï1 + Ì1

Ì2 = Ì1 + Ê1 = Ì1 + 0 = Ì1

for t = 2: y2 = Ï2 + ε2 = Ï1 + Ì1 + ε2,

Ï3 = Ï2 + Ì2 + Ó2 = Ï1 + 2Ì1 + 0 = Ï1 + 2Ì1

Ì3 = Ì2 + Ê2 = Ì1 + 0 = Ì1

for t = 3: y3 = Ï3 + ε3 = Ï1 + 2Ì1 + ε3,

Ï4 = Ï3 + Ì3 + Ó3 = Ï1 + 3Ì1 + 0 = Ï1 + 3Ì1

Ì4 = Ì3 + Ê3 = Ì1 + 0 = Ì1

and so on.

Therefore, in this case the linear trend model simplifies to

yt = Ï1 + Ì1gt + εt, εt ∼ NID(0, Û2
ε )

for t = 1, . . . , n, where the predictor variable gt = t − 1 for t = 1, . . . , n is
effectively time, and Ï1 and Ì1 are the initial values of the level and the
slope. The latter equation can also be written as

yt = (Ï1 − Ì1) + Ì1(gt + 1) + εt

= (Ï1 − Ì1) + Ì1xt + εt

εt ∼ NID(0, Û2
ε ) (3.2)

with xt = gt + 1 = t = 1, 2, . . . , n.
The analysis of the log of the number of UK drivers KSI series using

diffuse initialisation of the unknown values for Ï1 and Ì1 yields the
following results:

it0 f= 0.4140728 df=1.297e-006 e1=3.742e-006 e2=4.492e-008
Strong convergence

Again, no iterations are required for the estimation of the parameters
of this deterministic model. The value of the log-likelihood function
is 0.4140728. The maximum likelihood estimate of the variance of the
irregular is Û̂2

ε = 0.022998. The maximum likelihood estimates of the level
and the slope at t = 1 are Ï̂1 = 7.5444 and Ì̂1 = −0.0014480, respectively.
Substituting the latter values in (3.2) yields

yt = 7.5458 − 0.00145xt + εt,
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3.2. Stochastic level and slope

Table 3.1. Diagnostic tests for deterministic linear trend model and log
UK drivers KSI.

statistic value critical value assumption satisfied

independence Q(15) 305.680 25.00 −
r (1) 0.610 ±0.14 −

r (12) 0.631 ±0.14 −
homoscedasticity H (63) 1.360 1.67 +
normality N 1.790 5.99 +

for t = 1, . . . , n and xt = t, with residual error variance Û̂2
ε = 0.022998, which

is identical to the classical regression equation discussed in Chapter 1.
The linear trend (consisting of level plus slope) for the deterministic

linear trend model is therefore identical to the regression line displayed
in Figure 1.1, and the irregular for this analysis is identical to the one
shown in Figure 1.3.

The results of the diagnostic tests for the residuals of the analysis are
given in Table 3.1. The tests for homoscedasticity and normality are sat-
isfactory, but the most important assumption of independence is clearly
violated in this analysis.

Since one variance is estimated in model (3.2) together with two initial
elements (i.e., Ï1 and Ì1), the Akaike information criterion for this model
equals

AIC =
1

192
[−2(192)(0.4140728) + 2(2 + 1)] = −0.796896.

The deterministic linear trend model (3.2) therefore yields a better fit for
the log of the number of UK drivers KSI series than the deterministic level
model (see Section 2.1). However, the fit of the model is not as good as
that obtained with the stochastic level model (see Section 2.2).

3.2. Stochastic level and slope

Allowing both the level and the slope to vary over time in model (3.1),
the following results are obtained:

it0 f= 0.4839008 df= 0.04716 e1= 0.1279 e2= 0.001858
it5 f= 0.5260923 df= 0.07616 e1= 0.2568 e2= 0.005020
it10 f= 0.6215185 df= 0.01589 e1= 0.03640 e2= 0.008347
it15 f= 0.6236505 df= 0.007679 e1= 0.02624 e2= 0.002837
it20 f= 0.6247839 df= 0.002160 e1= 0.004991 e2= 0.009222
it23 f= 0.6247935 df=2.575e-006 e1=5.967e-006 e2=5.852e-006
Strong convergence
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The local linear trend model
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Figure 3.1. Trend of stochastic linear trend model.

At convergence the value of the log-likelihood function equals 0.6247935.
The maximum likelihood estimate of the variance of the irregular is
Û̂2

ε = 0.0021181, and the maximum likelihood estimates of the state dis-
turbance variances are Û̂2

Ó = 0.012128 and Û̂2
Ê = 1.5E−11, respectively. The

maximum likelihood estimates of the initial values of the level and
the slope are Ï̂1 = 7.4157 and Ì̂1 = 0.00028896, respectively. The state
variance for the slope component is almost equal to zero, meaning that
the value of the slope hardly changes over time.

The trend (consisting of level plus slope) for the stochastic linear trend
model (3.1) is displayed in Figure 3.1, while Figure 3.2 contains the
separate development of the slope over time. It may seem that the change
of the slope over time is considerable in Figure 3.2, but when the scale on
the y-axis is taken into consideration (in relation to the variation in y), it
is clear that the slope is effectively constant. This is consistent with the
close-to-zero disturbance variance for this component.

The irregular component for model (3.1) is displayed in Figure 3.3.
The systematic pattern in the irregular of the deterministic linear trend
model as observed in Figure 1.3 has largely disappeared in Figure 3.3. The
values of the diagnostic tests for the residuals of the analysis are given in
Table 3.2. In contrast with the previous analysis, the first autocorrelation
in the correlogram (r (1)) is close to zero but the autocorrelation at lag 12 is

24



3.2. Stochastic level and slope
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Figure 3.2. Slope of stochastic linear trend model.

still too large. The overall Q-test for the first 15 autocorrelations confirms
that the assumption of independence is still not satisfied. The test for
homoscedasticity is satisfactory, but here the assumption of normality is
clearly violated.
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Figure 3.3. Irregular component of stochastic linear trend model.
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The local linear trend model

Table 3.2. Diagnostic tests for the local linear trend model applied to
the log of the UK drivers KSI.

statistic value critical value assumption satisfied

independence Q(15) 100.610 22.36 −
r (1) 0.005 ±0.14 +

r (12) 0.532 ±0.14 −
homoscedasticity H (63) 1.058 1.67 +
normality N 14.946 5.99 −

The Akaike information criterion for the stochastic linear trend model
equals

AIC =
1

192
[−2(192)(0.6247935) + 2(2 + 3)] = −1.1975.

For the log of the UK drivers KSI series the fit of the local linear trend
model is inferior to that obtained with the local level model (see Sec-
tion 2.2), but clearly superior to the fit obtained with a classical linear
regression analysis (as modelled by the deterministic linear trend model).
This suggests that the inclusion of a stochastic slope has not helped the
analysis in this case.

3.3. Stochastic level and deterministic slope

Another possibility is to consider model (3.1) where only the level is
allowed to vary over time whereas the slope is treated deterministically.
In this case it is not very difficult to verify that model (3.1) can written as

yt = Ït + εt, εt ∼ NID(0, Û2
ε )

Ït+1 = Ït + Ì1 + Ót, Ót ∼ NID(0, Û2
Ó )

(3.3)

for t = 1, . . . , n. The analysis of the log of the UK drivers KSI with model
(3.3) yields the following results:

it0 f= 0.5432387 df= 0.08367 e1= 0.2659 e2= 0.003367
it1 f= 0.5569736 df= 0.1072 e1= 0.3318 e2= 0.3264
it2 f= 0.6210248 df= 0.05154 e1= 0.1278 e2= 0.02498
it3 f= 0.6215160 df= 0.03132 e1= 0.09584 e2= 0.002430
it4 f= 0.6224598 df= 0.02822 e1= 0.08747 e2= 0.001277
it5 f= 0.6241177 df= 0.02014 e1= 0.04977 e2= 0.003469
it6 f= 0.6246745 df= 0.007840 e1= 0.01932 e2= 0.001947
it7 f= 0.6247859 df= 0.001003 e1= 0.003322 e2= 0.001153
it8 f= 0.6247932 df= 0.0001671 e1= 0.0004376 e2= 0.0003907
it9 f= 0.6247935 df=1.173e-005 e1=2.880e-005 e2=8.883e-005
Strong convergence
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3.3. Stochastic level and deterministic slope
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Figure 3.4. Trend of stochastic level and deterministic slope model.

At convergence the value of the log-likelihood function equals 0.6247935.
The maximum likelihood estimate of the variance of the observation
disturbances is Û̂2

ε = 0.00211869, and the maximum likelihood estimate
of the variance of the level disturbances is Û̂2

Ó = 0.0121271. The maximum
likelihood estimates of the values of the level and the slope right at the
start of the series are Ï̂1 = 7.4157 and Ì̂1 = 0.00028897, respectively.

The trend (consisting of stochastic level and deterministic slope) is
displayed in Figure 3.4. The deterministic slope is simply a constant,
equal to Ì̂1 = 0.00028897 for t = 1, . . . , n. The irregular component for this
model is virtually identical to the one in Figure 3.3, and the results of the
diagnostic tests on the residuals are virtually identical to those presented
in Table 3.2.

The Akaike information criterion for the linear trend model with sto-
chastic level and deterministic slope equals

AIC =
1

192
[−2(192)(0.6247935) + 2(2 + 2)] = −1.20792.

Thus, the AIC of this model is slightly better than the fit of the linear
trend model with stochastic level and stochastic slope. However, it is still
inferior to the AIC of the stochastic level model (see Section 2.2).
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The local linear trend model

It follows that the value of the variance for the slope component is
almost zero and it leads to an almost negligible fluctuation in the slope
(see Figure 3.2). In state space modelling, a near zero state disturbance
variance indicates that the corresponding state component may as well
be treated as a deterministic effect, resulting in a more parsimonious
model. Treating the slope component deterministically indeed yields a
slightly better fitting model. However, the fit of the latter model is still
inferior to the one obtained with the local level model. This means that
the addition of a slope component to the local level model is not effective
in improving the description of the observed time series. Therefore, the
slope is a redundant component in this case, and is removed from further
analyses of the UK drivers KSI series. A similar strategy is described by Ord
and Young (2004) on the basis of t-statistics rather than the AIC.

As the diagnostic tests in Table 3.2 indicate, the local linear trend model
is still not the appropriate model for obtaining a good description of the
log of the UK drivers KSI, for reasons that will be explained in Chapter 4.
In the next section we therefore discuss a time series for which the local
linear trend model is more appropriate.

3.4. The local linear trend model and Finnish fatalities

In this section the local linear trend model is applied to the log of the
annual numbers of road traffic fatalities in Finland as observed for the
years 1970 through 2003 (see Appendix B and Figure 3.5). Allowing both
the level and the slope component to vary over time, at convergence the
value of the log-likelihood function equals 0.7864746. The value of the
AIC for this analysis therefore equals

AIC =
1

34
[−2(34)(0.7864746) + 2(2 + 3)] = −1.27883.

The maximum likelihood estimates of the variances corresponding to
the irregular, level, and slope components are Û̂2

ε = 0.00320083, Û̂2
Ó =

9.69606E−26, and Û̂2
Ê = 0.00153314, respectively.

Since the variance of the level disturbances is, for all practical purposes,
equal to zero, the analysis is repeated with a deterministic level compo-
nent, yielding the following results:

it0 f= 0.7544891 df= 0.07002 e1= 0.2599 e2= 0.002318
it1 f= 0.7735067 df= 0.05625 e1= 0.2050 e2= 0.003601
it2 f= 0.7858661 df= 0.01570 e1= 0.04919 e2= 0.003735
it3 f= 0.7864624 df= 0.002545 e1= 0.007951 e2= 0.0006039
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3.4. The local linear trend model and Finnish fatalities
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Figure 3.5. Trend of deterministic level and stochastic slope model for Finnish
fatalities (top), and stochastic slope component (bottom).

it4 f= 0.7864746 df=4.601e-005 e1= 0.0001437 e2=6.199e-005
it5 f= 0.7864746 df=2.310e-005 e1=7.211e-005 e2=6.183e-007
Strong convergence

At convergence the value of the log-likelihood function equals 0.7864746.
The maximum likelihood estimates of the variances of the observation
and slope disturbances are Û̂2

ε = 0.00320083, and Û̂2
Ê = 0.00153314, respec-

tively. The maximum likelihood estimates of the values of the level and
the slope at the start of the series are Ï̂1 = 7.0133 and Ì̂1 = 0.0068482.

The trend (consisting of a deterministic level and a stochastic slope) of
this analysis is displayed at the top of Figure 3.5, while the stochastic slope
is shown separately at the bottom of the figure. Since the time varying
slope component in Figure 3.5 models the rate of change in the series, it
can be interpreted as follows. When the slope component is positive, the
trend in the series is increasing. Thus, the trend of fatalities in Finland was
increasing in the years 1970, 1982, 1984 through to 1988, and in 1998
(see Figure 3.5). On the other hand, the trend is decreasing when the slope
component is negative. The trend in the fatalities of Finland was therefore
decreasing in the remaining years of the series.

Moreover, when the slope is positive and increasing, the increase
becomes more pronounced, while the increase becomes less pronounced
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The local linear trend model
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Figure 3.6. Irregular component for Finnish fatalities.

when the slope is positive but decreasing. Conversely, when the slope is
negative and decreasing then the decrease becomes more pronounced,
while the decrease levels off when the slope is negative but increasing.

The irregular component of the analysis is shown in Figure 3.6. The
diagnostic tests for the residuals of the analysis are given in Table 3.3.
Since Q(10) < ˜2

(9;0.05), 1/H(11) < F(12,12;0.025), and N < ˜2
(2;0.05) (see also

Section 8.5), the assumptions of independence, homoscedasticity, and
normality are all satisfied, indicating that the deterministic level and
stochastic slope model yields an appropriate description of the log of the
annual traffic fatalities in Finland.

Table 3.3. Diagnostic tests for deterministic level and stochastic slope
model, and log Finnish fatalities.

statistic value critical value assumption satisfied

independence Q(10) 7.044 16.92 +
r (1) −0.028 ±0.34 +
r (4) −0.094 ±0.34 +

homoscedasticity 1/H (11) 1.348 3.28 +
normality N 0.644 5.99 +
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3.4. The local linear trend model and Finnish fatalities

The Akaike information criterion for the deterministic level and sto-
chastic slope model equals

AIC =
1
34

[−2(34)(0.7864746) + 2(2 + 2)] = −1.33766.

Thus, the fit of this model is slightly better than the fit of a model
with stochastic level and stochastic slope. Since the log-likelihood values
are identical for the two models, the improved fit of the second model
can be completely attributed to its greater parsimony. The model with
a deterministic level and stochastic slope is also called the smooth trend
model, reflecting the fact that the trend of such a model is relatively
smooth compared to a trend with a level disturbance variance different
from zero.

As Section 3.1 illustrates, the deterministic linear trend model actually
performs a classical regression analysis of time series observations on the
predictor variable time. This is an important and very useful result. By
way of the Akaike information criterion, it opens up the possibility of
a straightforward, fair and quantitative assessment of the relative merits
of state space methods and classical regression models when it comes to
the analysis of time series data. The reverse is also true: the state space
models discussed in the present book are regression models in which the
parameters (intercept and regression coefficient(s)) are allowed to vary
over time. State space models are therefore also sometimes referred to as
dynamic linear models.
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4

The local level model with seasonal

Most readers will probably have understood that an essential aspect of
the UK drivers KSI series has been overlooked in the analyses discussed
so far. The time series in Figure 1.2 has a yearly recurring pattern. The
nature of this pattern becomes even more clear in Figure 4.1 where
vertical lines separate each calendar year in the observed time series of
Figure 1.2.

Inspecting the monthly development for each year in Figure 4.1, the
following regularity emerges: more drivers are killed or seriously injured
at the end of a year than in other periods of a year. In time series analysis,
this recurring pattern is referred to as a seasonal effect. Whenever a time
series consists of hourly, daily, monthly, or quarterly observations with
respective periodicity of 24 (hours), 7 (days), 12 (months), or 4 (quarters),
one should always be on the alert for possible seasonal effects in the
series.

In a state space framework, the seasonal effect can be modelled by
adding a seasonal component either to the local level model or to the local
linear trend model. Since it was found in the previous chapter that the
slope component is redundant in describing the time series in Figure 4.1,
the investigation of the effect of adding a seasonal component will be
restricted to the local level model. In the case of quarterly data, this takes
the following form:

yt = Ït + „t + εt, εt ∼ NID(0, Û2
ε )

Ït+1 = Ït + Ót, Ót ∼ NID(0, Û2
Ó )

„1,t+1 = − „1,t − „2,t − „3,t + ˘t, ˘t ∼ NID(0, Û2
˘)

„2,t+1 = „1,t,

„3,t+1 = „2,t,

(4.1)
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The local level model with seasonal
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Figure 4.1. Log of number of UK drivers KSI with time lines for years.

for t = 1, . . . , n, where „t = „1,t denotes the seasonal component. The dis-
turbances ˘t in (4.1) allow the seasonal to change over time. The initial
values Ï1, „1,1, „2,1 and „3,1 are treated as fixed and unknown coefficients.

In contrast with the level and slope components, where each com-
ponent requires one state equation, the seasonal component generally
requires (s − 1) state equations where s is given by the periodicity of the
seasonal. For quarterly data (where we have s = 4), three state equations
are needed, as is shown in (4.1). The fourth and fifth equations are
identities which can be interpreted as follows. Define „i,t as the ith quarter
of time period t. Then the fourth equation tells you that the quarter of the
next period t + 1 is the next quarter i + 1 from the current period t. Since
this is a fact of life we cannot add disturbances to such identity equations!

The third equation in (4.1) can also be written as

„t+1 = −„t − „t−1 − „t−2 + ˘t, (4.2)

for t = s − 1, . . . , n. We notice that the time index for (4.2) starts at s − 1 =
3. Since it follows from (4.1) that „1 = „1,1, „2 = „1,2 = „2,1 and „3 = „1,3 =
„2,2 = „3,1, we also treat „1, „2 and „3 as fixed and unknown coefficients.
Given a set of values for {„1, „2, „3}, the recursion (4.2) is valid for t =
s − 1, . . . , n.
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The local level model with seasonal

When the seasonal effect „t is not allowed to change over time, we
require ˘t = 0 for all t = s − 1, . . . , n. This is achieved by setting Û2

˘ = 0. It
follows that

s−1∑
j=0

„t− j = 0, (4.3)

for t = s, . . . , n. When the seasonal is allowed to vary over time, that
is Û2

˘ > 0, (4.3) is not satisfied due to the random increments of ˘t.
However, the expectation of seasonal disturbance ˘t equals zero. As a
result, the expectation of the sum „t + „t−1 + . . . + „t−s+1 also equals zero
for t = s, . . . , n.

Since the log of the number of UK drivers KSI in Figure 4.1 consists of
monthly instead of quarterly data, the periodicity of the seasonal is s = 12,
implying that the modelling of (4.1) requires a total of 12 state equations
(one for the level and 11 for the seasonal). The seasonal specification in
(4.1) is called a dummy seasonal. It may be noted that other specifications
than the dummy seasonal can be used too. For example, the trigonometric
seasonal can be considered. For details about such alternative specifica-
tions of the seasonal we refer to Durbin and Koopman (2001), as these are
beyond the scope of the present book.

4.1. Deterministic level and seasonal

Fixing the level and seasonal disturbances Ót and ˘t in (4.1) to zero, the
analysis of the time series in Figure 4.1 using diffuse initialisation of the
values of the 12 state equations at t = 1 yields the following results:

it0 f= 0.4174873 df=1.613e-006 e1=4.871e-006 e2=5.340e-008
Strong convergence

As is the case for all completely deterministic models, the estimation
process requires no iterations. At convergence the value of the log-
likelihood function is 0.4174873. The maximum likelihood estimate of
the variance of the observation disturbances is Û̂2

ε = 0.0175885. The max-
imum likelihood estimate of Ï1 is Ï̂1 = 7.4061. Since the level is deter-
ministic we have Ï̂t = Ï̂1 = 7.4061 for t = 1, . . . , n. Therefore, the estimated
deterministic level is again equal to the mean of the observed time series
(see also Section 2.1). At this point, we refrain from giving the maximum
likelihood estimates of the initial values of the 11 state equations required
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4.1. Deterministic level and seasonal
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Figure 4.2. Combined deterministic level and seasonal.

for the modelling of the seasonal, because these are not very informative
in the present context.

The combined deterministic level and seasonal are displayed in
Figure 4.2, while these two components are plotted separately in
Figures 4.3 and 4.4, respectively.

By denoting ȳ as the overall mean of the log of the numbers of drivers
KSI and ȳ j as the mean of the log of the numbers of drivers KSI for month
j in the series ( j = 1, . . . , s), the deterministic level and seasonal model is
given by

ŷt = Ï̂t + „̂t = ȳ +
(
ȳ j − ȳ

)
for t = 1, . . . , n. Note that

s−1∑
j=0

„̂t− j =
s∑

j=1

(ȳ j − ȳ) = 0,

from which it follows that the seasonal component satisfies (4.3). The
deterministic level and seasonal model actually performs a one-way
ANOVA with 12 treatment levels (see, e.g., Kirk, 1968). The F -test for
the seasonal (with denominator Û̂2

ε = 0.0175885) is F(11,180) = 12.614 and
this is very significant (p < 0.01). The F -test is based on the assumption
of random errors. However, as Figure 4.5 clearly indicates, the observation
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The local level model with seasonal
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Figure 4.3. Deterministic level.

1970 1975 1980 1985

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25
deterministic seasonal

Figure 4.4. Deterministic seasonal.
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4.1. Deterministic level and seasonal
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Figure 4.5. Irregular component for deterministic level and seasonal model.

disturbances of the deterministic level and seasonal model are not inde-
pendently distributed, and the F -test is therefore seriously flawed.

This is confirmed by the results of the diagnostic tests in Table 4.1. They
show that the residuals do not satisfy any of the assumptions, except for
normality.

Since we are dealing with monthly data, model (4.1) contains 12 state
equations for which 12 initial state values need to be estimated. Given
the fact that in addition one variance is estimated for the deterministic
level and seasonal model, the Akaike information criterion for this model
equals

AIC =
1

192
[−2(192)(0.4174873) + 2(12 + 1)] = −0.699558.

Table 4.1. Diagnostic tests for deterministic level and seasonal model
and log UK drivers KSI.

statistic value critical value assumption satisfied

independence Q(15) 751.580 25.00 −
r (1) 0.724 ±0.14 −

r (12) 0.431 ±0.14 −
homoscedasticity H (60) 3.400 1.67 −
normality N 1.971 5.99 +
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The local level model with seasonal

Therefore, the AIC of the deterministic level and seasonal model is, some-
what surprisingly, not as good as that of the deterministic linear trend
model (−0.796896), although it is slightly better than the deterministic
level model (−0.638686).

In the previous chapters it was found that deterministic state space
models are identical to some form of classical regression analysis. This
suggests that the deterministic level and seasonal model must also have
its counterpart in classical regression analysis. The question is: which clas-
sical regression model is involved here? Results identical to the determin-
istic level and seasonal model presented above are obtained by performing
the following classical multiple regression analysis.

Eleven variables are constructed according to the following recipe. The
first variable is given the value 11 (i.e. s − 1) whenever an observation in
the time series falls in the month of January, and minus one for all the
other months of the year. The second variable is set equal to 11 whenever
an observation in the time series falls in the month of February and minus
one elsewhere. And so on, until the eleventh and last variable. This last
variable is given the value 11 for the month of November and minus
one elsewhere. A classical multiple regression analysis with an intercept
variable together with these 11 ‘dummy’ variables against the log of UK
drivers KSI, yields an estimate of the intercept identical to the level shown
in Figure 4.3, while the sum of the 11 dummy variables weighted by their
respective regression coefficients is identical to the seasonal in Figure 4.4.
The overal sum of the seasonal effect in one year is obviously equal to
zero.

4.2. Stochastic level and seasonal

The level and the seasonal in (4.1) can be allowed to vary over time. In
that case, the following results are obtained:

it0 f= 0.6967041 df= 0.1701 e1= 0.7878 e2= 0.003672
it5 f= 0.8803781 df= 0.08417 e1= 0.4735 e2= 0.002996
it10 f= 0.9353563 df= 0.01276 e1= 0.04076 e2= 0.001999
it15 f= 0.9369055 df= 0.0002212 e1= 0.0007954 e2= 0.0001283
it18 f= 0.9369063 df=6.131e-006 e1=1.809e-005 e2=8.189e-006
Strong convergence

At convergence the value of the log-likelihood function is 0.9369063. The
maximum likelihood estimate of the irregular variance is Û̂2

ε = 0.00341592
and the maximum likelihood estimates of the state variances are given
by Û̂2

Ó = 0.000935947 and Û̂2
˘ = 0.00000050, respectively. Plots of the
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4.2. Stochastic level and seasonal
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Figure 4.6. Stochastic level.

stochastic level and seasonal obtained from this analysis are displayed in
Figures 4.6 and 4.7, respectively. The variance of the seasonal disturbances
is very small. This indicates that the seasonal pattern in the observed time
series hardly changes over the years, which is confirmed by inspection of
Figure 4.7.

For a better understanding of the interpretation of the seasonal compo-
nent in Figure 4.7, we focus on the first year of the seasonal component
(i.e. on 1969), see Figure 4.8. It shows that the largest number of drivers in
Great Britain were killed or seriously injured in the months of November
and December of 1969, while April 1969 resulted in the smallest number.
This pattern is repeated in all the other years of the series.

The irregular component for the stochastic level and seasonal model is
displayed in Figure 4.9. The residuals of the stochastic model are much
closer to independent random values than those obtained with the deter-
ministic model (see Figure 4.5). Whether ‘much closer’ is close enough
can be determined by the diagnostic tests in Table 4.2.

The first autocorrelation in the correlogram does not deviate from zero
but also the autocorrelation at lag 12 is close to zero. This is the first
of our analyses where we yield such a satisfactory result for this KSI
series. In all previous analyses of the series, the autocorrelation at lag
12 was found to be unacceptably large, see Tables 2.1, 2.2, 3.1, and 3.2.
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The local level model with seasonal
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Figure 4.7. Stochastic seasonal.
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Figure 4.8. Stochastic seasonal for the year 1969.
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4.2. Stochastic level and seasonal
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Figure 4.9. Irregular component for stochastic level and seasonal model.

The same applies to the general Q-test for independence based on the
first 15 autocorrelations, which is for the first time smaller than the
critical value of ˜2

(13;0.05) = 22.36. The reason of these satisfactory results
is that the the seasonality is explicitly modelled in the present analysis,
whereas the residuals of the local level and local linear trend model con-
tained the neglected seasonality in monthly data. Since the assumptions
of homoscedasticity and normality are also realistic (see Table 4.2), the
residuals of this analysis satisfy all the required criteria.

The Akaike information criterion for the stochastic level and seasonal
model equals

AIC =
1

192
[−2(192)(0.9369063) + 2(12 + 3)] = −1.71756,

Table 4.2. Diagnostic tests for stochastic level and seasonal model
and log UK drivers KSI.

statistic value critical value assumption satisfied

independence Q(15) 14.150 22.36 +
r (1) 0.039 ±0.14 +

r (12) 0.014 ±0.14 +
homoscedasticity H (60) 1.060 1.67 +
normality N 5.289 5.99 +
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The local level model with seasonal

indicating that this is the preferred model for the log of the UK drivers
KSI series so far, even though it requires the estimation of a total of 15
parameters: one variance for the irregular component, two variances for
the level and seasonal component, and 12 initial values of the state (one
for the level, and 11 for the seasonal). Moreover, the present model also
fits the data much better than the classical multiple regression analysis
obtained with deterministic level and seasonal components.

Since the variance of the seasonal disturbances is found to be almost
zero, in the next section we present the results of the analysis of the UK
drivers KSI series with a stochastic level and a deterministic seasonal.

4.3. Stochastic level and deterministic seasonal

Fixing the seasonal disturbances ˘t in model (4.1) to zero, but still allow-
ing the level to vary over time yields the following results:

it0 f= 0.9362753 df= 0.003305 e1= 0.01239 e2= 0.0001078
it1 f= 0.9362925 df= 0.003487 e1= 0.01310 e2= 0.0003366
it2 f= 0.9363240 df= 0.002234 e1= 0.008362 e2= 0.0003377
it3 f= 0.9363352 df= 0.001322 e1= 0.004066 e2= 0.0002726
it4 f= 0.9363361 df= 0.0002666 e1= 0.0008200 e2=4.323e-005
it5 f= 0.9363361 df=1.145e-005 e1=3.522e-005 e2=8.119e-006
Strong convergence

At convergence the value of the log-likelihood function is 0.9363361. The
maximum likelihood estimate of the variance of the irregular component
is Û̂2

ε = 0.00351385, and the maximum likelihood estimate of the variance
of the level disturbances is Û̂2

Ó = 0.000945723. Plots of the results of this
analysis are not shown here, because they are very similar to the ones
presented in Section 4.2. The same applies to the results of the diagnostic
tests which are very similar to those given in Table 4.2.

The Akaike information criterion for this model equals

AIC =
1

192
[−2(192)(0.9363361) + 2(12 + 2)] = −1.72684

indicating a slight improvement upon the previous model: the small
reduction in the value of the log-likelihood function is compensated
by the fact that the present model requires the estimation of only two
variances instead of three in the previous model.

The AIC value of −1.72684 for the stochastic level and deterministic
seasonal model is a significant improvement upon the local level model,
which yields an AIC value of −1.25914. Therefore, and in contrast with
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4.4. The local level and seasonal model and UK inflation

the slope component, the addition of a seasonal component is essential
in obtaining a good description of the time series at hand.

In this chapter the first realistic and appropriate description of the log of
the number of UK drivers KSI is presented by combining a stochastic level
with a deterministic seasonal component. Furthermore it is shown that
a stochastic state space model can be reduced to its equivalent classical
regression model by fixing all state disturbances to zero. This means that
classical linear regression models can be viewed as deterministic state
space models.

4.4. The local level and seasonal model and UK inflation

We end this chapter by discussing the results of the analysis of a time
series consisting of quarterly UK inflation figures (as given in Appendix D,
and displayed at the top of Figure 4.10) with the local level and seasonal
model. In economics, the inflation is an important variable that refers
to a rise in the general level of prices (deflation usually refers to a fall in
prices). Economic policy makers find it important to have a good estimate
of inflation. In practice, inflation is taken as the relative price change,
usually expressed in a percentage.

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

0.00

0.05

quarterly price changes in UK stochastic level 

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

−0.0025

0.0000

0.0025

0.0050 stochastic seasonal 

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

−0.01

0.00

0.01

0.02 irregular

Figure 4.10. Stochastic level, seasonal and irregular in UK inflation series.
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The local level model with seasonal

The percentage change of the price level over a quarter is not considered
to be a reliable estimator of inflation. Instead, quarterly time series of
price changes are analysed by time series models to assess inflation. The
local level model is an appropriate candidate for this purpose. The final
estimate of the level is then an appropriate estimator of the underlying
rate of inflation as this represents the underlying inflation for the inter-
mediate and longer term. Inflation relates to average household purchases
that can be subject to seasonal variations due to events such as Christmas
and summer holiday. As we are dealing with quarterly data, we include a
stochastic seasonal component with a periodicity of s = 4 in the local level
model. This approach of measuring inflation is illustrated by applying it to
quarterly price changes in the United Kingdom for the 52 years from 1950
through to 2001 (yielding a total of n = 52 × 4 = 208 observations). The
estimation of the parameters in model (4.1) applied to the UK inflation
series gives the following results:

it0 f= 3.023196 df= 0.1800 e1= 1.119 e2= 0.002894
it1 f= 3.069515 df= 0.1586 e1= 1.015 e2= 0.01299
it2 f= 3.164341 df= 0.1016 e1= 0.5279 e2= 0.01150
it5 f= 3.194490 df= 0.02758 e1= 0.1484 e2= 0.001452
it10 f= 3.198464 df=4.081e-005 e1= 0.0002241 e2=5.183e-005
it11 f= 3.198464 df=3.960e-006 e1=2.175e-005 e2=3.472e-006
Strong convergence

At convergence the value of the log-likelihood function is 3.198464. The
maximum likelihood estimate of the irregular variance is Û̂2

ε = 3.3717 ×
10−5 and the maximum likelihood estimates of the variances of the
level and seasonal disturbances are equal to Û̂2

Ó = 2.1197 × 10−5 and Û̂2
˘ =

0.0109 × 10−5, respectively.
The estimate of the final value of the level at time point t = 208 is

Ï̂208 = 0.0020426. This is our estimate of inflation. As a result, relative
prices have increased overall by 0.20% in the final months of 2001.
This is rather low. The evolution of inflation over time is reflected by
the estimated level component and is presented in the upper graph of
Figure 4.10, together with the observed price changes. It is noteworthy
that the periods of highest inflation in the UK occurred in the middle of
the 1970s and at the end of the 1970s. These periods coincide with the
well-known oil and energy crises in the 1970s.

Graphs of the stochastic seasonal and irregular components are also
displayed in Figure 4.10. Although the variance of the seasonal distur-
bances is smaller than that of the other two components, the changes over
time in the estimated seasonal component of inflation series are clearly
visible. The level component reflects the underlying level of inflation and
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4.4. The local level and seasonal model and UK inflation

Table 4.3. Diagnostic tests for local level and seasonal model and UK
inflation series.

statistic value critical value assumption satisfied

independence Q(10) 7.573 15.507 +
r (1) 0.049 ±0.14 +
r (4) −0.0622 ±0.14 +

homoscedasticity H (68) 2.738 1.48 −
normality N 171.550 5.99 −

its evolution over time is quite smooth. The residuals of this level plus
seasonal model are close to independent random values (white noise).
Some outlier observations appear in the irregular component but apart
from these, the residuals seem quite random. Whether the residuals of the
local level and seasonal model are close enough to a random process (see
Section 10.1.2 for the definition of a random process) can be established
by inspection of the diagnostic tests given in Table 4.3.

The last column in Table 4.3 shows that the diagnostics for indepen-
dence are quite satisfactory. However, the assumptions of homoscedastic-
ity and normality tests are clearly violated. The local level and seasonal
model is therefore able to represent the dynamic features in the UK
inflation series, but there are also some aspects in the series that still need
to be accounted for. Specifically, the neglect in the present model of the
large shocks in the estimated irregular component for the UK inflation
series at the time points corresponding to the second quarter of 1975 and
to the third quarter of 1979 deserve closer attention. It should not come
as a surprise that these two time points are related to the world-wide oil
and energy crises in the 1970s. An appropriate treatment of these ‘outlier
observations’ will be discussed in Section 7.4.

The AIC for the present model equals

AIC =
1

208
[−2(208)(3.198464) + 2(4 + 3)] = −6.32962,

and this value will be used for reference purposes in Chapter 7.
In Chapters 5 and 6, components of the state are introduced that can

be used to obtain explanations for the observed developments of a time
series. The discussion of these components will be illustrated by adding
them to the UK drivers KSI series. To keep the exposition as simple as
possible, the seasonal component will temporarily be removed from these
analyses, even though this component is clearly essential in describing the
UK drivers KSI series. In the next two chapters, we are not concerned with
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The local level model with seasonal

the appropriateness of the models when applied to the UK drivers KSI
series (and diagnostic residual tests will therefore not be presented). We
mainly focus on various issues concerning the inclusion of explanatory
variables in the state space models of Chapters 2 and 3. Nevertheless,
in Chapter 7 – where a model is presented for the combined description
and explanation of the log of the UK number of drivers KSI – the seasonal
component will be added to the state equations.
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5

The local level model with
explanatory variable

To investigate the effects of other variables on the development of a
particular time series, the explanatory or regression variables can be added
to the measurement equation of the model. If regression variables are
added to the local level model, for example, then the measurement equa-
tion becomes

yt = Ït +
k∑

j=1

‚ j t xjt + εt, (5.1)

where xjt is a continuous predictor variable and ‚ j t is an unknown regres-
sion weight or coefficient, for j = 1, . . . , k. For one predictor variable with
‚t = ‚1t, the model takes the form

yt = Ït + ‚txt + εt, εt ∼ NID(0, Û2
ε )

Ït+1 = Ït + Ót, Ót ∼ NID(0, Û2
Ó )

‚t+1 = ‚t + Ùt, Ùt ∼ NID(0, Û2
Ù )

(5.2)

for t = 1, . . . , n. The modelling of k explanatory variables requires k addi-
tional state equations, one for each explanatory variable. The state distur-
bances Ùt for the regression component in (5.2) are usually fixed on zero
to establish a stable relationship between yt and xt for all t. As model (5.2)
indicates, however, if required a stochastic regression component can be
incorporated in the state space methodology. In the next two sections the
results are presented of applying both the deterministic and the stochastic
level model to the log of UK drivers KSI series, including one explanatory
variable.
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The local level model with explanatory variable

5.1. Deterministic level and explanatory variable

Fixing all state disturbances Ót and Ùt in (4.1) to zero, we have

for t = 1: y1 = Ï1 + ‚1x1 + ε1,

Ï2 = Ï1 + Ó1 = Ï1 + 0 = Ï1

‚2 = ‚1 + Ù1 = ‚1 + 0 = ‚1

for t = 2: y2 = Ï2 + ‚2x2 + ε2 = Ï1 + ‚1x2 + ε2,

Ï3 = Ï2 + Ó2 = Ï2 + 0 = Ï1

‚3 = ‚2 + Ù2 = ‚2 + 0 = ‚1

for t = 3: y3 = Ï3 + ‚3x3 + ε3 = Ï1 + ‚1x3 + ε3,

Ï4 = Ï3 + Ó3 = Ï3 + 0 = Ï1

‚4 = ‚3 + Ù3 = ‚3 + 0 = ‚1

and so on.

Therefore, in this case the level model with explanatory variable simplifies
to

yt = Ï1 + ‚1 xt + εt, εt ∼ NID(0, Û2
ε ) (5.3)

for t = 1, . . . , n, where Ï1 and ‚1 are the values of the level and the regres-
sion coefficient at the beginning of the series and apply to all t.

For example, taking the variable TIME = 1, 2, . . . , 192 as the predictor
variable, and fixing the state disturbances Át and Ùt in (5.2) to zero, yields
the following results:

it0 f= 0.4140728 df=1.287e-006 e1=3.715e-006 e2=4.460e-008
Strong convergence

Again the estimation of the parameters of this deterministic model
requires no iterations. The value of the log-likelihood function is
0.4140728. The maximum likelihood estimate of the variance of the
observation disturbances is 0.0229981, and the maximum likelihood esti-
mates of Ï1 and ‚1 are 7.5458 and −0.00145, respectively. Therefore, this
state space model provides a classical linear regression analysis for the
log of UK drivers KSI on time (see also Chapter 1 and Section 3.1). The
regression equation is

ŷt = 7.5458 − 0.00145 xt

for t = 1, . . . , n, with a residual variance of Û̂2
ε = 0.0229981.
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5.1. Deterministic level and explanatory variable

The plot of the combined deterministic level and regression compo-
nents is identical to the regression line in Figure 1.1, and the residuals of
the deterministic level model with explanatory variable TIME are identical
to the residuals shown in Figure 1.3.

The value of the Akaike information criterion for this model equals

AIC =
1

192
[−2(192)(0.4140728) + 2(2 + 1)] = −0.796896,

which is identical to the AIC value obtained with the deterministic linear
trend model (see Section 3.1), as expected.

More generally, and in contrast with the deterministic linear trend
model, the present state space model allows a classical regression analysis
using any continuous predictor variable. For example, in the period 1969–
1984 the price of petrol in the UK showed substantial variations (see
Appendix A). Higher petrol prices may well have resulted in a reduction
of the number of vehicles circulating in traffic, thus reducing the number
of drivers killed or seriously injured. Such a hypothesis can be investi-
gated by inserting the log of the monthly petrol prices in the UK as an
explanatory variable in model (5.3). This yields the following results:

it0 f= 0.4457201 df=7.918e-007 e1=2.285e-006 e2=2.744e-008
Strong convergence

The optimum of the log-likelihood function equals 0.4457201. The max-
imum likelihood estimate of the variance of the irregular disturbances
is 0.0230137, and the maximum likelihood estimates of Ï1 and ‚1 are
Ï̂1 = 5.8787 and ‚̂1 = −0.67166, respectively. This state space model yields
a classical linear regression solution, with regression equation

ŷt = 5.8787 − 0.67166 xt (5.4)

for t = 1, . . . , n, and error variance Û̂2
ε = 0.0230137. The negative value of

‚̂1 indicates a negative relationship between the number of drivers KSI and
petrol price: lower petrol prices are associated with more drivers killed
and seriously injured, and vice versa. Moreover, since the predictor and
criterion variable are in logarithms, the regression coefficient ‚1 may be
interpreted as what is known as an elasticity, a well-known concept in the
economic literature (see, e.g., Varian, 1999).

Generally, elasticity is defined as the percent change in y divided by the
percent change in x, and can be written algebraically as

s∗ =
x
y

∂y
∂x

. (5.5)
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The local level model with explanatory variable

Since the predictor and criterion variables in (5.3) are in logarithms, the
regression equation actually equals

log y = a + b log x, (5.6)

where y here denotes the actual monthly numbers of drivers killed or
seriously injured, and x the actual monthly petrol prices. The subscripts
t have temporarily been omitted in (5.6) to simplify notation. Taking
the exponent of (5.6) to re-express the relation in terms of the original
variables y and x yields

elog y = ea+b log x,

and therefore

y = ea eb log x = ea xb = c xb, (5.7)

with c = ea. Applying (5.5) to (5.7), the elasticity value equals

s∗ =
x

c xb

∂c xb

∂x
=

x
c xb

c b xb

x
= b. (5.8)

This shows that the curve defined by y = c xb satisfies the special property
of constant elasticity. In the present case, the value of ‚̂1 = −0.67 in (5.4)
therefore indicates that a 1% increase in the petrol price resulted in a
0.67% decrease in the numbers of drivers KSI.

Figure 5.1 shows the development of the estimated level and explana-
tory variable ‘log petrol price’ as a function of time. In Figure 5.2 the
results of the same analysis are shown as is usual in a classical regression
context: displaying the regression line in the scatter plot of dependent
variable yt against the predictor variable ‘log petrol price’. The residuals
for this analysis are displayed in Figure 5.3.

The Akaike information criterion for this deterministic model equals

AIC =
1

192
[−2(192)(0.4457201) + 2(2 + 1)] = −0.86019.

Since the model requires the maximum likelihood estimation of two
initial elements, and one variance (of the irregular component), we have
the term (2 + 1) in the calculation of the AIC.
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5.1. Deterministic level and explanatory variable
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Figure 5.1. Deterministic level and explanatory variable ‘log petrol price’.
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Figure 5.2. Conventional classical regression representation of deterministic level
and explanatory variable ‘log petrol price’.
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The local level model with explanatory variable
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Figure 5.3. Irregular component for deterministic level model with explanatory
variable ‘log petrol price’.

5.2. Stochastic level and explanatory variable

The analysis of the local level model with explanatory variable ‘log petrol
price’ and for which the level in model (5.2) is allowed to vary over time,
yields the following results.

it0 f= 0.5733865 df= 0.07555 e1= 0.2408 e2= 0.003029
it1 f= 0.5845338 df= 0.09740 e1= 0.3031 e2= 0.2138
it2 f= 0.6351207 df= 0.06160 e1= 0.1661 e2= 0.01541
it3 f= 0.6426605 df= 0.03384 e1= 0.1028 e2= 0.005960
it4 f= 0.6433967 df= 0.03190 e1= 0.09833 e2= 0.001475
it5 f= 0.6443015 df= 0.03043 e1= 0.07582 e2= 0.001665
it6 f= 0.6454830 df= 0.01032 e1= 0.02562 e2= 0.002765
it7 f= 0.6456257 df= 0.001269 e1= 0.004136 e2= 0.001098
it8 f= 0.6456353 df= 0.0005193 e1= 0.001287 e2= 0.0003957
it9 f= 0.6456361 df= 0.0001071 e1= 0.0002651 e2= 0.0001274
it10 f= 0.6456361 df=9.594e-006 e1=2.375e-005 e2=8.169e-006
Strong convergence

At convergence the value of the log-likelihood function is 0.6456361.
The maximum likelihood estimate of the variance of the observation
disturbances is 0.00234791, and that of the variance of the level distur-
bances equals 0.0116673. The maximum likelihood estimates of Ï1 and
‚1 are Ï̂1 = 6.8204 and ‚̂1 = −0.26105, respectively. The negative value of
‚1 again indicates a negative relationship between the number of drivers
KSI and petrol price. Interpreting ‚1 as an elasticity (see Section 5.1), the
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5.2. Stochastic level and explanatory variable
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Figure 5.4. Stochastic level and deterministic explanatory variable ‘log petrol
price’.
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Figure 5.5. Irregular for stochastic level model with deterministic explanatory
variable ‘log petrol price’.
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The local level model with explanatory variable

present model suggests that a 1% increase in petrol price was associated
with a 0.26% decrease in the number of drivers KSI on UK roads.

Figure 5.4 contains the graph of the stochastic level and deterministic
explanatory variable ‘log petrol price’, while Figure 5.5 shows the irregular
component corresponding to this model. The differences between these
disturbances and the ones displayed in Figure 5.3 are noticeable.

The Akaike information criterion for this model equals

AIC =
1

192
[−2(192)(0.6456361) + 2(2 + 2)] = −1.24961,

indicating an important improvement upon the classical regression
model with deterministic level and explanatory variable ‘log of petrol
price’.

For the moment, we do not draw any practical conclusions from the
analyses of the UK drivers KSI series presented in this chapter as an
essential component is missing in model (5.2), which is the seasonal.
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6

The local level model with
intervention variable

In time series analysis of road traffic safety data, for example, it is often
required to be able to assess the effect of road safety measures on the
development in traffic safety over time. In state space methods such
effects can be evaluated by adding intervention variables to any of the
models discussed in the previous chapters.

There are a number of different ways in which interventions can be
expected to influence the development in a time series. One possible
effect is that of a level shift, where the value of the level of the time series
suddenly changes at the time point where the intervention took place,
and where the level change is permanent after the intervention. A second
possible effect is that of a slope shift in the series. In this case it is the value
of the slope that shows a significant and permanent change after the
intervention was made. A third possible effect is that of a pulse, where the
value of the level suddenly changes at the moment of the intervention,
and then immediately returns to the value before the intervention
took place. The latter effect only affects the current observation and is
temporary.

Below we will present a detailed assessment of the level shift. In Feb-
ruary 1983, the seat belt law was introduced in the UK. To investigate
whether the introduction of this law resulted in a level shift in the log of
the monthly number of drivers KSI in the UK, an intervention variable is
added to the local level model, as follows:

yt = Ït + Ît wt + εt, εt ∼ NID(0, Û2
ε )

Ït+1 = Ït + Ót, Ót ∼ NID(0, Û2
Ó )

Ît+1 = Ît + Òt, Òt ∼ NID(0, Û2
Ò )

(6.1)
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The local level model with intervention variable

for t = 1, . . . , n. In (6.1), the dummy variable wt equals zero at all time
points before the introduction of the seat belt law, and equals unity at
time points after the introduction of the law. The coefficient Î1 = Ît is
treated as a fixed regression parameter. Therefore, the state disturbances
Òt in (6.1) are fixed to zero for all t = 1, . . . , n. In this way, an intervention
effect is introduced in the model. Since the seat belt law was introduced
in February 1983, the first 169 values of wt are set to zero, whereas the last
23 values are set to unity.

In the next two sections, the results are discussed of adding this inter-
vention variable to both a deterministic and a stochastic level model.

6.1. Deterministic level and intervention variable

Analogous to Section 5.1 where both the level and the intervention
variable are treated deterministically, model (6.1) simplifies to

yt = Ï1 + Î1wt + εt, εt ∼ NID(0, Û2
ε ) (6.2)

for t = 1, . . . , n, where Ï1 and Î1 are the values of Ït and Ît for all time
periods t = 1, . . . , n.

When the seat belt intervention variable wt is added to the level model,
and the state disturbances Ót and Òt in (6.1) are fixed to zero, the following
results are obtained:

it0 f= 0.4573681 df=1.297e-006 e1=3.764e-006 e2=4.466e-008
Strong convergence

Since the model is completely deterministic, no iterations are required.
The value of the log-likelihood function is 0.4573681. The maximum like-
lihood estimate of the variance of the irregular component is 0.0222426,
and the maximum likelihood estimates of Ï1 and Î1 are Ï̂1 = 7.4374 and
Î̂1 = −0.26111, respectively.

Therefore, this state space model yields a classical linear regression
solution with regression equation

ŷt = 7.4374 − 0.26111 wt (6.3)

and residual variance Û̂2
ε = 0.0222426.

In Figure 6.1 the combined deterministic level and intervention variable
are plotted against time. The figure clearly illustrates why this type of
intervention effect is called a level shift: from February 1983 onwards there
is a sudden drop of 0.26111 units in the level of the series.
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6.1. Deterministic level and intervention variable

1970 1975 1980 1985

7.0

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9
log UK drivers KSI deterministic level + lambda∗(SEATBELT LAW)

Figure 6.1. Deterministic level and intervention variable.

In Figure 6.2 the results of the same analysis are shown as is usual in a
classical regression context: by drawing the regression line in the scatter
plot of dependent variable yt against the dummy predictor variable wt.

The regression line in Figure 6.2 is the line connecting the two
points with coordinates (0, 7.4372) and (1, 7.1756), respectively. Letting
ȳ1 denote the mean of the log of the number of UK drivers KSI in the first
169 time points of the series, and ȳ2 the mean of the log of the number
of UK drivers KSI in the last 23 time points of the series, it is interesting
to note that ȳ1 = 7.4374 and ȳ2 = 7.1763. Therefore, equation (6.3) can be
written as

ŷt = ȳ1 + (ȳ2 − ȳ1) wt (6.4)

for t = 1, . . . , n, and the present analysis is actually a one-way ANOVA with
two treatment levels (see, e.g., Kirk, 1968). The t-ratio for the regression
weight in (6.3) equals t = −7.877, while the F -test for the ANOVA is
F = t2 = (−7.877)2 = 62.054. Of course, both significance tests are seriously
flawed because they are based on the assumption of random errors.

Since the intervention variable wt is not in logarithms, the value of
regression weight Î1 cannot be interpreted as an elasticity, as was done
in Chapter 5. Still, the percent change in the number of UK drivers KSI
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The local level model with intervention variable
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Figure 6.2. Conventional classical regression representation of deterministic level
and intervention variable.

as a result of the intervention variable can be established as follows. Let
ŷpre denote the value of Ï1 + Î1wt = Ï1 before the intervention, and ŷpost

the value of Ï1 + Î1wt = Ï1 + Î1 after the intervention. Then – since yt is in
logarithms – the percent change due to the intervention equals

100

(
eŷpost − eŷpre

eŷpre

)
,

where eŷpre = eÏ1+Î1wt = eÏ1 (since wt is coded 0 before the intervention), and
eŷpost = eÏ1+Î1wpost = eÏ1+Î1 (since wt is coded 1 at and after the intervention),
respectively. The percent change due to the seat belt law therefore equals

100
(

eÏ1+Î1 − eÏ1

eÏ1

)
= 100

(
(eÏ1 )(eÎ1 ) − eÏ1

eÏ1

)
= 100(eÎ1 − 1). (6.5)

Since the deterministic level and intervention variable model leads to
the estimate Î̂1 = −0.26111, we conclude that the introduction of the
seat belt law in the UK resulted in a reduction of 23% in the number
of drivers killed or seriously injured. This follows from the calculation
100(e−0.26111 − 1) = −22.98.
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6.2. Stochastic level and intervention variable
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Figure 6.3. Irregular component for deterministic level model with intervention
variable.

The residuals of this classical regression analysis are shown in Figure 6.3
and they display a very systematic pattern. It is interesting to note, how-
ever, that the large residual in February 1983 (in absolute terms) observed
in the irregular component of all previous deterministic analyses (see
Figures 2.2, 4.5, and 5.3) is no longer present in Figure 6.3.

The Akaike information criterion for the deterministic level and inter-
vention variable model equals

AIC =
1

192
[−2(192)(0.4573681) + 2(2 + 1)] = −0.883486,

showing that for the log of the UK drivers KSI this is the best fitting
deterministic model so far.

6.2. Stochastic level and intervention variable

The analysis where the level of model (6.1) is allowed to vary over time
yields the following results:

it0 f= 0.6002860 df= 0.07065 e1= 0.2274 e2= 0.002798
it1 f= 0.6099381 df= 0.09065 e1= 0.2854 e2= 0.1146
it2 f= 0.6573212 df= 0.04074 e1= 0.1099 e2= 0.01672
it3 f= 0.6610085 df= 0.02811 e1= 0.08506 e2= 0.003747
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The local level model with intervention variable
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Figure 6.4. Stochastic level and intervention variable.
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Figure 6.5. Irregular component for stochastic level model with intervention
variable.
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6.2. Stochastic level and intervention variable

it4 f= 0.6617649 df= 0.02642 e1= 0.08131 e2= 0.001678
it5 f= 0.6623236 df= 0.02294 e1= 0.06187 e2= 0.001210
it6 f= 0.6630441 df= 0.004739 e1= 0.01336 e2= 0.002168
it7 f= 0.6630834 df= 0.0005152 e1= 0.001650 e2= 0.0005872
it8 f= 0.6630850 df= 0.0001960 e1= 0.0004964 e2= 0.0001568
it9 f= 0.6630851 df=2.574e-005 e1=6.519e-005 e2=2.906e-005
Strong convergence

At convergence the value of the log-likelihood function is 0.6630851. The
maximum likelihood estimate of the irregular variance is 0.00269276, and
that of the variance of the level disturbances equals 0.0104111. The max-
imum likelihood estimates of Ï1 and Î1 are Ï̂1 = 7.4107 and Î̂1 = −0.3785.
Since e−0.3785 − 1 = −0.315 (see Section 6.1), according to this model the
introduction of the seat belt law in the UK resulted in a 31.5% reduction
of the absolute numbers of drivers KSI.

The sum of the stochastic level and deterministic intervention com-
ponents is presented in Figure 6.4. The irregular component of the
present model is shown in Figure 6.5. Again, the difference in randomness
between Figures 6.3 and 6.5 is very noticeable. Also, the large negative
residual observed for the month of February 1983 in the plots of the
irregular component of all previous stochastic analyses of the UK data
(see Figures 2.4, 3.3, 4.9, and 5.5) has disappeared in Figure 6.5. This is
the result of including the intervention variable in the state space model.

The Akaike information criterion for this model equals

AIC =
1

192
[−2(192)(0.6630851) + 2(2 + 2)] = −1.2845,

which is again better than the deterministic level and intervention model.
Again, we do not draw any practical conclusions from these two interven-
tion analyses until the seasonal has been reintroduced into the model.
This is done in the following chapter.
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7

The UK seat belt and inflation models

Combining all the state components discussed in the previous chapters,
we obtain the first realistic model for both describing and explaining the
development of the monthly number of drivers KSI in UK road accidents
in the period 1969–1984. Level, seasonal, the log of petrol price and the
introduction of the seat belt law in February 1983 are combined into the
following model:

yt = Ït + „1,t + ‚t xt + Ît wt + εt, εt ∼ NID(0, Û2
ε )

Ït+1 = Ït + Ót, Ót ∼ NID(0, Û2
Ó )

„1,t+1 = − „1,t − „2,t − „3,t + ˘t, ˘t ∼ NID(0, Û2
˘)

„2,t+1 = „1,t,

„3,t+1 = „2,t,

‚t+1 = ‚t + Ùt, Ùt ∼ NID(0, Û2
Ù )

Ît+1 = Ît + Òt, Òt ∼ NID(0, Û2
Ò )

(7.1)

for t = 1, . . . , n, where xt is the continuous predictor variable ‘log petrol
price’, and wt is the dummy variable consisting of zeroes at all time
points before the introduction of the seat belt law in February 1983, and
ones at time points of and after the introduction in February 1983. It is
important to note that model (7.1) is presented for quarterly data. The
actual model requires a total of 14 state equations since the UK drivers
KSI series consists of monthly observations. Results of the analysis of
the UK drivers KSI series with deterministic and stochastic components
are presented in Sections 7.1 through 7.3. In Section 7.4 model (7.1) is
also applied to the quarterly UK inflation series previously presented in
Section 4.4. In that case, however, the variables xt and wt consist of pulse
intervention variables.
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7.1. Deterministic level and seasonal

7.1. Deterministic level and seasonal

Fixing all state disturbances Ót, ˘t, Ùt, and Òt to zero for all t in model (7.1),
we obtain the following estimation results:

it0 f= 0.8023778 df=2.913e-006 e1=1.006e-005 e2=8.437e-008
Strong convergence

Since the model is completely deterministic, no iterations during the
estimation process are required. The value of the log-likelihood function
is 0.8023778, and the maximum likelihood estimate of the variance of
the observation disturbances is Û̂2

ε = 0.00740223. The maximum likeli-
hood estimate of the level at the beginning of the series is Ï̂1 = 6.4016.
The maximum likelihood estimates of the regression weights for the
log of petrol price and for the intervention variable at the beginning
of the series are ‚̂1 = −0.45213 and Î̂1 = −0.19714, respectively. Inter-
preting ‚1 as an elasticity, and keeping all other components constant,
an increase of 1% in petrol price is associated with a 0.45% decrease
in the number of drivers killed or seriously injured. Moreover, since
e−0.19714 − 1 = −0.179, this model suggests a reduction of 17.9% in the
actual numbers of drivers KSI as a result of the introduction of the seat belt
law.

It may be noted that a classical multiple regression analysis with the
dummy coding scheme for the seasonal effect described in Section 4.1,
together with the log of petrol price and an additional dummy variable
for the intervention in February 1983, yields identical results. The com-
bined deterministic level and effects of the explanatory and intervention
variables are displayed in Figure 7.1. Inspection of the diagnostic tests in
Table 7.1 shows that the assumptions of homoscedasticity and normal-
ity are met in this analysis, but not the most important assumption of
residual independence.

The Akaike information criterion for this analysis equals

AIC =
1

192
[−2(192)(0.8023778) + 2(14 + 1)] = −1.44851,

meaning that, for the UK drivers KSI series, this is the best fitting deter-
ministic (and therefore classical regression) model that we have presented
so far.
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The UK seat belt and inflation models
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Figure 7.1. Deterministic level plus variables log petrol price and seat belt law.

7.2. Stochastic level and seasonal

When the level and the seasonal components in model (7.1) are allowed
to vary over time, the estimation procedure yields the following results:

it0 f= 0.8182950 df= 0.08087 e1= 0.3864 e2= 0.001692
it5 f= 0.8955023 df= 0.1184 e1= 0.6119 e2= 0.01222
it10 f= 0.9792069 df= 0.01363 e1= 0.08855 e2= 0.007211
it15 f= 0.9822971 df= 0.003844 e1= 0.01596 e2= 0.0006901
it20 f= 0.9825225 df=5.511e-006 e1=2.328e-005 e2=7.949e-005
Strong convergence

At convergence the value of the log-likelihood function is 0.9825225,
and the maximum likelihood estimate of the variance of the irregular is

Table 7.1. Diagnostic tests for the deterministic model applied to the
UK drivers KSI series.

statistic value critical value assumption satisfied

independence Q(15) 147.020 25.00 −
r (1) 0.426 ±0.14 −

r (12) 0.198 ±0.14 −
homoscedasticity 1/H (59) 1.110 1.67 +
normality N 0.560 5.99 +

64



7.2. Stochastic level and seasonal
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Figure 7.2. Stochastic level plus variables log petrol price and seat belt law.

Û̂2
ε = 0.00378629. The maximum likelihood estimates of the variances of

the state disturbances are Û̂2
Ó = 0.000267632 and Û̂2

˘ = 0.0000011622. The
maximum likelihood estimates of the regression weights for the log of
petrol price and for the intervention variable at the beginning of the series
are ‚̂1 = −0.29141 and Î̂1 = −0.23774, respectively. Keeping the other
components constant and according to this model, a 1% increase in petrol
price yields a 0.29% decrease in the number of drivers KSI. Moreover, since
e−0.23774 − 1 = −0.212, this model indicates that the introduction of the
seat belt law resulted in a reduction of 21.2% in the absolute numbers of
drivers KSI.

The combined stochastic level and deterministic effects of the explana-
tory and intervention variables are displayed in Figure 7.2, while Fig-
ure 7.3 contains the stochastic seasonal. The irregular component for
model (7.1) with stochastic level and seasonal is plotted in Figure 7.4.

As Table 7.2 shows, the residuals of this analysis do not indicate any
departure from independence, homoscedasticity, and normality, and are
therefore completely satisfactory. The Akaike information criterion for
model (7.1) with stochastic level and seasonal equals

AIC =
1

192
[−2(192)(0.9825225) + 2(14 + 3)] = −1.78796.
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The UK seat belt and inflation models
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Figure 7.3. Stochastic seasonal.
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Figure 7.4. Irregular component for stochastic level and seasonal model.
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7.3. Stochastic level and deterministic seasonal

Table 7.2. Diagnostic tests for the stochastic model applied to the UK
drivers KSI series.

statistic value critical value assumption satisfied

independence Q(15) 15.937 22.36 +
r (1) 0.069 ±0.14 +

r (12) 0.025 ±0.14 +
homoscedasticity 1/H (59) 1.110 1.67 +
normality N 1.475 5.99 +

This is the best AIC so far. Since the variance for the stochastic seasonal
is almost zero, in the next section we conclude the analysis by presenting
the results of the analysis of model (7.1) with a stochastic level and a
deterministic seasonal.

7.3. Stochastic level and deterministic seasonal

Modelling a stochastic level but a deterministic seasonal yields the follow-
ing results:

it0 f= 0.9699348 df= 0.03177 e1= 0.1209 e2= 0.001020
it1 f= 0.9715092 df= 0.03493 e1= 0.1341 e2= 0.003300
it2 f= 0.9748103 df= 0.03373 e1= 0.1182 e2= 0.003195
it3 f= 0.9780184 df= 0.04283 e1= 0.1285 e2= 0.004638
it4 f= 0.9796652 df= 0.01785 e1= 0.05356 e2= 0.003426
it5 f= 0.9798642 df= 0.0005501 e1= 0.001654 e2= 0.001182
it6 f= 0.9798650 df=5.342e-005 e1= 0.0001606 e2= 0.0001097
it7 f= 0.9798650 df=6.202e-006 e1=1.865e-005 e2=8.033e-006
Strong convergence

At convergence the value of the log-likelihood function is 0.9798650,
and the maximum likelihood estimate of the variance of the irregular
component is Û̂2

ε = 0.00403394. The maximum likelihood estimate of the
variance of the level disturbances is Û̂2

Ó = 0.000268082. The maximum like-
lihood estimates of the regression weights for the log of petrol price and
for the intervention variable are ‚̂1 = −0.27674 and Î̂1 = −0.23759, respec-
tively. In this case, a 1% increase in petrol price yields a 0.28% decrease in
number of drivers KSI. The estimated reduction in the actual number of
drivers KSI as a result of the introduction of the seat belt law is the same
as in the previous model: 21.1% (note that e−0.23759 − 1 = −0.211).

Plots of the results of this analysis are not shown here, because they
are virtually identical to the ones presented in Section 7.2. The diagnostic
tests for the residuals are also very similar to those given in Table 7.2.
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Figure 7.5. Correlogram of irregular component of completely deterministic level
and seasonal model.

The Akaike information criterion for this model equals

AIC =
1

192
[−2(192)(0.9798650) + 2(14 + 2)] = −1.79306,

yielding a slightly better fit than the model with stochastic level and
seasonal.

When the level component in (7.1) is allowed to vary over time and
the seasonal effect is treated as a deterministic component, we obtain
a model that can effectively be used for the analysis of the UK drivers
KSI series. The model requires the estimation of 14 initial values of
state variables and two variances. In contrast with the classical regres-
sion model discussed in Section 7.1, the residuals of the model with a
stochastic level satisfy a selection of diagnostic statistics. Finally, to show
the differences clearly, correlograms of the residuals of these analyses are
presented in Figures 7.5 and 7.6. Twelve of the first 14 autocorrelations of
the model with a stochastic level are within the 95% confidence limits of
±2/

√
n = ±2/

√
192 = ±0.144 while those for a fully deterministic model

are all outside this range. The latter case has serious implications for the
significance tests of the regression coefficients for the explanatory and
intervention variables, see the discussion in Chapter 1.
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7.3. Stochastic level and deterministic seasonal
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Figure 7.6. Correlogram of irregular component of stochastic level and determin-
istic seasonal model.

In the deterministic model corresponding to Figure 7.5, the estimated
standard errors of the regression estimates, −0.45213 for the log of
petrol price and −0.19714 for the intervention variable, are 0.05640 and
0.02073, respectively. Therefore, the t-ratio for the log of petrol price
equals −0.45213/0.05640 = −8.01705, while the t-ratio for the interven-
tion variable equals −0.19714/0.02073 = −9.51098. On the other hand, in
the model with stochastic level and deterministic seasonal the estimated
standard errors of the regression coefficients −0.27674 for the log of the
petrol price and −0.23759 for the intervention variable are 0.098407
and 0.04645, respectively. Thus, the t-ratio for the log of the petrol
price equals −0.27674/0.098407 = −2.81221 in this case, while the
t-ratio for the intervention variable equals −0.23759/0.04645 = −5.11535.
When the model with a stochastic level is taken as the true model,
the t-ratio for the log of the petrol price in classical regression is over-
estimated by 287%, while the t-ratio for the intervention variable is
overestimated by 183%. In the present case all t-values happen to be
significant at the 1% level, but it is not very difficult to see that clas-
sical regression may easily result in overoptimistic or even incorrect
conclusions.
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7.4. The UK inflation model

The analysis of the UK inflation time series discussed previously in
Section 4.4 concerns the inflation in the UK, as measured on a quarterly
basis for the years of 1950–2001 (see Appendix D). As mentioned in Sec-
tion 4.4, the local level and seasonal model does provide an appropriate
description of this time series. However, the diagnostics have not been
fully satisfactory, and the model has not accounted for two inflation
shocks that coincide with the oil and energy crises in the 1970s.

The inclusion of two intervention variables for the second quarter of
1975 and for the third quarter of 1979 is therefore considered in the
analysis in this section. To this end, the local level and seasonal model
discussed in Section 4.4 is extended by adding two pulse intervention
variables to the model. A pulse intervention variable contains a one at the
time point corresponding to the outlier observation, and zeroes elsewhere.
Estimation of the parameters in model (7.1) (where xt and wt are pulse
intervention variables) for the UK inflation series extending from 1950 to
2001 on a quarterly basis yields the following results:

it0 f= 3.124249 df= 0.1826 e1= 1.160 e2= 0.002872
it1 f= 3.172349 df= 0.1622 e1= 1.060 e2= 0.01354
it2 f= 3.272544 df= 0.1170 e1= 0.6254 e2= 0.01192
it5 f= 3.303308 df= 0.01574 e1= 0.08757 e2= 0.0009218
it10 f= 3.305023 df=2.155e-005 e1= 0.0001311 e2=4.425e-005
it11 f= 3.305023 df=4.115e-006 e1=2.287e-005 e2=3.060e-006
Strong convergence

At convergence the value of the log-likelihood function is 3.305023 which
is higher than the likelihood reported in Section 4.4. The maximum
likelihood estimate of the irregular variance is Û̂2

ε = 2.1990 × 10−5 and
the maximum likelihood estimates of the state variances are given by
Û̂2

Ó = 1.8595 × 10−5 and Û̂2
˘ = 0.0110 × 10−5. The estimates of the irregular

and level variances in the model without the interventions in Section 4.4
are equal to 2.1198 × 10−5 and 0.0109 × 10−5, respectively. The seasonal
variance has not changed while the variance of the level disturbance has
decreased somewhat due to the inclusion of the two pulse intervention
variables.

However, the largest impact of the interventions is on the estimated
variance of the irregular component. Its estimate in Section 4.4 was
3.3717 × 10−5, which is larger than the one obtained in the current
analysis, being 2.1990 × 10−5. It is clear that the two pulse intervention
variables have accounted for the two large residuals corresponding to the
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7.4. The UK inflation model
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Figure 7.7. Local level (including pulse interventions), local seasonal and irregular
for UK inflation time series data.

second quarter of 1975 and the third quarter of 1979 in the estimated
irregular component in Section 4.4.

The stochastic level plus pulse intervention variables are displayed at
the top of Figure 7.7, while the seasonal and irregular components are
displayed in the middle and at the bottom of Figure 7.7. The estimated
level and seasonal components are similar to those obtained in the earlier
analysis discussed in Section 4.4. However, the stochastic level plus pulse
intervention variables now capture the two large outlier observations in
the second quarter of 1975 and in the third quarter of 1979 (see the top
graph in Figure 7.7). The estimated irregular is also quite distinct from
that obtained in the analysis of Section 4.4: the two outlier values in the
second quarter of 1975 and in the third quarter of 1979 in Figure 4.10
have disappeared in the bottom graph of Figure 7.7.

The diagnostics presented in Table 7.3 have improved in comparison
with those presented in Section 4.4. There is one notable difference. The
normality test of the residuals of the model including the two pulse inter-
ventions is satisfactory, while the residuals for the model without inter-
ventions do not satisfy the assumption of normality at all (see Table 4.3).
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Table 7.3. Diagnostic tests for the local level and seasonal model
including pulse intervention variables for the UK inflation series.

statistic value critical value assumption satisfied

independence Q(10) 11.644 12.59 +
r (1) 0.0349 ±0.14 +
r (4) −0.0703 ±0.14 +

homoscedasticity H (67) 2.504 1.48 −
normality N 0.095 5.99 +

This may not be surprising since the two interventions remove the two
large shocks in the residuals, resulting in a distribution of the residuals
with tails that are not so heavy (compared to those with shocks). The
remaining unsatisfactory diagnostic is that for homoscedasticity. Inspec-
tion of the estimated irregular in Figure 7.7 reveals that the variation
at the beginning of the sample is indeed larger than at the end of the
sample. This is clearly indicative of heteroscedasticity. This phenomenon
in inflation series (and other macroeconomic time series) is recognised
by many economists and is debated in the literature, see for example
Stock and Watson (1996). Approaches to address heteroscedasticity in
time series analysis are beyond the scope of the present book.

The improvement of the model involving pulse intervention variables
is also confirmed by the value of the Akaike information criterion which
is equal to

AIC =
1

208
[−2(208)(3.305023) + 2(6 + 3)] = −6.5235.

This value implies that the model yields a better fit than the stochastic
level and seasonal model without pulse intervention variables discussed
in Section 4.4, even though two extra parameters are estimated in the
present model.
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8

General treatment of univariate
state space models

This chapter provides a unified treatment of all univariate state space
models, including those presented in Chapters 2–7. It also introduces
a number of additional common features of state space methods not
mentioned previously.

First, in Section 8.1 a general unified notation is presented for all
univariate state space models. Then, alternative ways are discussed for
handling explanatory and intervention variables in state space models in
Section 8.2. In Section 8.3, the possibility of obtaining confidence inter-
vals for all modelled state components is discussed. Next, the Kalman fil-
ter, as well as the concept of a filtered state, and prediction errors and their
variances are introduced in Section 8.4. In Section 8.5, diagnostic tests
are presented for testing the three basic assumptions of the distribution
of residuals (independence, homoscedasticity, and normality), and for
detecting structural breaks and outlier observations. Finally, Section 8.6
introduces the important issue of forecasting in time series analysis, while
Section 8.7 illustrates how missing observations are handled in state space
methods.

8.1. State space representation of univariate models∗

All univariate state space models discussed in Chapters 2–7 can be
expressed algebraically in one unified formulation. Using matrix algebra,
all these models can be written in the following general format:

yt = z ′
t ·t + εt, εt ∼ NID(0, Û2

ε ) (8.1)

·t+1 = Tt·t + RtÁt Át ∼ NID(0, Qt) (8.2)
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General treatment of univariate state space models

for t = 1, . . . , n. The terms yt and εt are still scalars (i.e. of order 1 × 1),
as before. However, the remaining terms in (8.1) and (8.2) denote vectors
and matrices. Specifically, zt is an m× 1 observation or design vector, Tt is an
m× m transition matrix, ·t is an m× 1 state vector, and m therefore denotes
the number of elements in the state vector. In many state space models Rt

in (8.2) is simply the identity matrix of order m× m. However, in various
models it is of order m× r with r < m, and consists of the first r columns
of the identity matrix Im. In this case Rt is called a selection matrix since
it selects the rows of the state equation which have non-zero disturbance
terms. Finally, the r × 1 vector Át contains the r state disturbances with
zero means, and unknown variances collected in an r × r diagonal matrix
Qt. In this general formulation, equation (8.1) is called the observation or
measurement equation, while equation (8.2) is called the transition or state
equation.

By appropriate definitions of the vectors zt, ·t, and Át, and of the
matrices Tt, Rt and Qt, all the models discussed in Chapters 2–7 can be
derived as special cases of (8.1) and (8.2). In this section, these definitions
are provided for all the models discussed so far. In Section 8.2, matrix for-
mulations (8.1) and (8.2) are used to present an alternative way of dealing
with explanatory variables: by incorporating the regression coefficients in
the state vector.

The local level model is the simplest special case of (8.1) and (8.2). Since
the state vector of the local level model consists of only one element (i.e.
the level), m = 1 in this case. Defining

·t = Ït, Át = Ót, zt = Tt = Rt = 1, Qt = Û2
Ó ,

(all of order 1 × 1) for t = 1, . . . , n, it is easily verified that (8.1) and (8.2)
simplifies into the local level model which can be written as

yt = Ït + εt, εt ∼ NID(0, Û2
ε )

Ït+1 = Ït + Ót, Ót ∼ NID(0, Û2
Ó );

see also Chapter 2.
The local linear trend model of Chapter 3 requires a 2 × 1 state vec-

tor: one element for the level Ït and one element for the slope Ìt.
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8.1. State space representation of univariate models∗

By defining

·t =

(
Ït

Ìt

)
, Át =

(
Ót

Êt

)
, Tt =

[
1 1
0 1

]
, zt =

(
1
0

)
,

Qt =

[
Û2

Ó 0
0 Û2

Ê

]
, and Rt =

[
1 0
0 1

]
,

and for those familiar with matrix algebra, it is easily verified that the
scalar notation of (8.1) and (8.2) leads to

yt = Ït + εt, εt ∼ NID(0, Û2
ε )

Ït+1 = Ït + Ìt + Ót, Ót ∼ NID(0, Û2
Ó )

Ìt+1 = Ìt + Êt, Êt ∼ NID(0, Û2
Ê )

which is the local linear trend model of Chapter 3.
The local level model can also be extended with a stochastic seasonal

dummy effect, see Chapter 4. By defining

·t =


Ït

„1,t

„2,t

„3,t

 , Át =

(
Ót

˘t

)
, Tt =


1 0 0 0
0 −1 −1 −1
0 1 0 0
0 0 1 0

 , zt =


1
1
0
0

 ,

Qt =

[
Û2

Ó 0
0 ˘2

Ê

]
, and Rt =


1 0
0 1
0 0
0 0

 ,

and expanding (8.1) and (8.2) in scalar notation, we obtain

yt = Ït + „1,t + εt, εt ∼ NID(0, Û2
ε )

Ït+1 = Ït + Ót, Ót ∼ NID(0, Û2
Ó )

„1,t+1 = − „1,t − „2,t − „3,t + ˘t, ˘t ∼ NID(0, Û2
˘)

„2,t+1 = „1,t,

„3,t+1 = „2,t,

which is the local level and dummy seasonal model for a quarterly time
series, see Chapter 4.
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General treatment of univariate state space models

Another extension of the local level model is considered in Chapter 5
and concerns the incorporation of explanatory effects. In the case of
one regression variable, we have yt = Ït + ‚xt + Ât and a state vector of
two elements is required: one element for the level Ït and one for the
regression coefficient ‚. By the substitution of

·t =

(
Ït

‚t

)
, Át = Ót, Tt =

[
1 0
0 1

]
, zt =

(
1
xt

)
,

Qt = Û2
Ó , and Rt =

[
1
0

]
,

in (8.1) and (8.2), we obtain

yt = Ït + ‚t xt + εt, εt ∼ NID(0, Û2
ε )

Ït+1 = Ït + Ót, Ót ∼ NID(0, Û2
Ó )

‚t+1 = ‚t,

where ‚ = ‚t = ‚t+1. This is the local level model with one deterministic
explanatory variable xt as discussed in Chapter 5.

In the same way, the local level model with an intervention variable of
Chapter 6 has the matrix representation

·t =

(
Ït

Ît

)
, Át = Ót, Tt =

[
1 0
0 1

]
, zt =

(
1
wt

)
,

Qt = Û2
Ó , and Rt =

[
1
0

]
,

for (8.1) and (8.2) that results in

yt = Ït + Ît wt + εt, εt ∼ NID(0, Û2
ε )

Ït+1 = Ït + Ót, Ót ∼ NID(0, Û2
Ó )

Ît+1 = Ît,

where Î = Ît = Ît+1. This is the local level model with an intervention effect
Îwt of Chapter 6.
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8.1. State space representation of univariate models∗

For the seat belt model discussed in Chapter 7, we define

·t =



Ït

„1,t

„2,t

„3,t

‚t

Ît


, Át =

(
Ót

˘t

)
, Tt =



1 0 0 0 0 0
0 −1 −1 −1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, zt =



1
1
0
0
xt

wt


,

Qt =

[
Û2

Ó 0
0 Û2

˘

]
, and Rt =



1 0
0 1
0 0
0 0
0 0
0 0


.

for (8.1) and (8.2). Expanding the matrix equations in scalar notation
gives

yt = Ït + „1,t + ‚t xt + Ît wt + εt, εt ∼ NID(0, Û2
ε )

Ït+1 = Ït + Ót, Ót ∼ NID(0, Û2
Ó )

„1,t+1 = − „1,t − „2,t − „3,t + ˘t, ˘t ∼ NID(0, Û2
˘)

„2,t+1 = „1,t,

„3,t+1 = „2,t,

‚t+1 = ‚t,

Ît+1 = Ît,

for t = 1, . . . , n, which is the local level and dummy seasonal model for
quarterly data together with a deterministic explanatory variable xt and
an intervention variable wt.

In the next section and in Chapter 9, where multivariate state space
models are introduced, we will use matrix formulation (8.1) and (8.2)
more extensively.

State space models are typically called time-invariant when matrices Tt

and Qt, vector zt and scalar Û2
ε in (8.1) and (8.2) do not change over time.

Examples of time-invariant state space models are the local level model,
the local linear trend model, and the local level and seasonal model. For
these models the subscript t in Tt, Qt, and zt is redundant and may be
dropped.
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General treatment of univariate state space models

If one or more of these elements in (8.1) and (8.2) change over time,
however, the corresponding model is said to be time-varying. Examples
of time-varying models are, therefore, all state space models involving
explanatory and/or intervention variables, since vector zt then contains
elements like xt and/or wt which do change over time.

The values of ŷt = yt − Ât = z ′
t ·t in (8.1) (i.e., of y predicted in classical

linear regression terms) are generically called the signal.

8.2. Incorporating regression effects∗

Until now, the effects of explanatory and intervention variables on a
time series were typically investigated by adding these variables to the
observation equation (8.1) (see Chapters 5, 6, and 7). However, their effects
can also be evaluated by adding them to the state equation (8.2). In this
section we show how the vectors and matrices in (8.1) and (8.2) should
be defined in order to achieve the latter effect, and how this alternative
method relates to the previous one. To illustrate the two methods of
handling explanatory variables, an explanatory variable will be added to
the local linear trend model (see Chapter 3).

From Section 8.1 we have learned that the addition of an explanatory
variable xt to the observation equation (8.1) of the local linear trend
model is achieved by defining

·t =

Ït

Ìt

‚t

 , Át =

(
Ót

Êt

)
, Tt =

1 1 0
0 1 0
0 0 1

 , zt =

1
0
xt

 ,

Qt =

[
Û2

Ó 0
0 Û2

Ê

]
, and Rt =

1 0
0 1
0 0

 .

In scalar notation, we obtain the model

yt = Ït + ‚t xt + εt, εt ∼ NID(0, Û2
ε )

Ït+1 = Ït + Ìt + Ót, Ót ∼ NID(0, Û2
Ó )

Ìt+1 = Ìt + Êt, Êt ∼ NID(0, Û2
Ê )

‚t+1 = ‚t.
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8.2. Incorporating regression effects∗

An explanatory variable xt can also be incorporated in the level equation
of the local linear trend model. We can achieve this by defining

·t =

Ït

Ìt

‚t

 , Át =

(
Ót

Êt

)
, Tt =

1 1 xt

0 1 0
0 0 1

 , zt =

1
0
0

 ,

Qt =

[
Û2

Ó 0
0 Û2

Ê

]
, and Rt =

1 0
0 1
0 0

 ,

leading to the model equations

yt = Ït + εt, εt ∼ NID(0, Û2
ε )

Ït+1 = Ït + Ìt + ‚t xt + Ót, Ót ∼ NID(0, Û2
Ó )

Ìt+1 = Ìt + Êt, Êt ∼ NID(0, Û2
Ê )

‚t+1 = ‚t.

Further, by fixing all state disturbances in this model at zero, the recursive
nature of the level equation implies the following classical regression
model

yt = Ï1 + Ì1(t − 1) + ‚1

t−1∑
i=1

xi + εt,

with

t−1∑
i=1

xi = 0 when t = 1.

Thus, the effect of adding an explanatory variable to the level equation
of a deterministic linear trend model is identical to regressing the depen-
dent variable on two predictor variables: time, and the cumulative sum of
the explanatory variable. If the level and slope components are treated
stochastically, the regression coefficient ‚1 still reflects the effect of the
cumulative sum of the explanatory variable. When an explanatory vari-
able xt is added to the level equation, therefore, the regression coefficient
is estimated differently than when xt is included in the measurement
equation.
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This difference vanishes, however, when the explanatory variable is
included in first differences, not in levels, in the level equation, that is

x∗
t = xt+1 − xt, (8.3)

and x∗
n = 0. The effect of (8.3) is that the original variable is transformed

into its first differences, and that the whole resulting series is shifted
back one point in time. By replacing xt by x∗

t in the above definition of
transition matrix Tt, the same results are obtained as when the original
variable xt is included in the observation equation. When dealing with a
level shift intervention variable wt (see Chapter 6), (8.3) effectively turns
the level shift into a pulse but for one time point earlier in the series than
the level shift.

When an explanatory or intervention variable is added to the mea-
surement equation with the aim to influence the slope component of the
model, then the cumulative sum

∑t
i=1 xi must be added to the measurement

equation. Similarly, when adding an explanatory variable to the slope
equation of the local linear trend model, we define

·t =

Ït

Ìt

‚t

 , Át =

(
Ót

Êt

)
, Tt =

1 1 0
0 1 xt

0 0 1

 , zt =

1
0
0

 ,

Qt =

[
Û2

Ó 0
0 Û2

Ê

]
, and Rt =

1 0
0 1
0 0

 ,

and yield in scalar notation,

yt = Ït + εt, εt ∼ NID(0, Û2
ε )

Ït+1 = Ït + Ìt + Ót, Ót ∼ NID(0, Û2
Ó )

Ìt+1 = Ìt + ‚t xt + Êt, Êt ∼ NID(0, Û2
Ê )

‚t+1 = ‚t.

By fixing all state disturbances in the latter model at zero and by expand-
ing these equations, it is not very difficult to show that the following
classical regression model is actually considered,

yt = Ï1 + Ì1(t − 1) + ‚1

t−1∑
i=1

t−1∑
i=1

xi + εt,
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with

t−1∑
i=1

t−1∑
i=1

xi = 0 when t = 1, 2.

The explanatory variable passes through two recursions (i.e. the slope and
the level equation). It follows that adding an explanatory variable xt to the
slope equation is equivalent to adding a double cumulative sum to
the measurement equation. A different result is obtained compared to
the inclusion of a (single) cumulative sum in the measurement equation.
When adding an explanatory variable to the slope equation, therefore, the
following second differences of the cumulative sum of the original variable
xt must be used

x∗∗
t = x∗∗∗

t+2 − 2x∗∗∗
t+1 + x∗∗∗

t , (8.4)

with x∗∗∗
t =

∑t
i=1 xi , and x∗∗

t = 0 for t = n − 1, n. When dealing with a slope
shift intervention variable, x∗∗∗

t contains zeroes before the intervention
and the values 1, 2, 3, 4, . . . at and after the intervention. In that case,
(8.4) effectively turns the slope shift into a pulse applied two time points
earlier than the first non-zero value in x∗∗∗

t . For further details on handling
explanatory and intervention variables in the state equation, we refer to
Harvey (1989, Chapter 7).

8.3. Confidence intervals

In state space methods, the estimated state components discussed in
Chapters 2–7 are associated with what are known as estimation error vari-
ances. Under the assumption of normality, this allows the construction
of confidence intervals for each of the state components, thus allowing
for an evaluation of the uncertainty in the modelled developments. As
an example, again consider the time series analysis of the log of UK
drivers KSI with the stochastic level and deterministic seasonal model
discussed in Section 4.3. Figure 8.1 contains a plot of the estimation error
variance corresponding to the stochastic level of this analysis. Note that
the estimation error level variance, and therefore the uncertainty, is larger
at the beginning and at the end of the series, as one would expect on
intuitive grounds.

Letting Var(Ït) denote the level estimation error variance displayed in
Figure 8.1 for t = 1, . . . , n, the 90% confidence limits of the stochastic level
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Figure 8.1. Level estimation error variance for stochastic level and deterministic
seasonal model applied to the log of UK drivers KSI.

Ït are computed by the well-known formula

Ït ± 1.64
√

Var(Ït),

where +1.64 and −1.64 are the z-scores corresponding to the 90% interval
around the mean of a normal distribution.

A plot of the obtained 90% confidence interval for the stochastic level is
shown in Figure 8.2, together with the level itself as well as the observed
values of the time series (see also Figure 4.6). Similarly, 90% confidence
limits can be established for the deterministic seasonal, of which the last
four years in the series are depicted in Figure 8.3.

Finally, the last four years of the 90% confidence limits for the com-
bined prediction obtained by summing the stochastic level and determin-
istic seasonal are shown in Figure 8.4.

It is important to note that the appropriateness of the calculated confi-
dence limits depends on whether the model residuals satisfy the assump-
tions of independence, homoscedasticity, and normality, as discussed in
Chapter 2 and Section 8.5. If the first autocorrelation in the correlogram
of the model residuals significantly deviates from zero and is positive, for
example, then the estimation error variance of a state component will be
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Figure 8.2. Stochastic level and its 90% confidence interval for stochastic level
and deterministic seasonal model applied to the log of UK drivers KSI.
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Figure 8.3. Deterministic seasonal and its 90% confidence interval for stochastic
level and deterministic seasonal model applied to the log of UK drivers KSI.
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Figure 8.4. Stochastic level plus deterministic seasonal and its 90% confidence
interval for stochastic level and deterministic seasonal model applied to the log of
UK drivers KSI.

too small, and the estimated boundaries of the confidence interval will
also be too small.

8.4. Filtering and prediction

In time series analysis by state space methods, the state components
can be estimated in different ways. Throughout Chapters 2–7, and in
Section 8.3, we have presented the smoothed state. This is the smoothed
estimate of the state vector for which all observations are used. The filtered
state is the estimate of the state vector based on all past observations and
the current observations. The predicted state is based on only the past
observations. In this section we explore the different estimates of the
state vector further. The state estimates are considered for given values
of hyperparameters (i.e. the variances of the irregular and of the state
disturbances) and for given initial values of the state components. The
estimations of the state vector are carried out by performing two passes
through the data:
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8.4. Filtering and prediction

1. a forward pass, from t = 1, . . . , n, using a recursive algorithm known
as the Kalman filter that is applied to the observed time series;

2. a backward pass from t = n, . . . , 1, using recursive algorithms known
as state and disturbance smoothers that are applied to the output of the
Kalman filter.

The forward pass through the data with the well-known Kalman (1960)
filter provides all the estimates that are relevant for the predicted or
filtered state. In the case of filtering, these estimates include the filtered
state and the filtered state estimation error variances. The variances are
useful for the construction of confidence limits in the same ways as for the
smoothed state in Section 8.3. In the case of prediction, the observation
prediction errors and their variances are of particular interest, see below.
The main purpose of the Kalman filter is to obtain optimal values of the
state at time point t, only considering the observations {y1, y2, . . . , yt−1}. A
key property of the predicted state and its related estimates is therefore
that they are only based on past values of the observed time series.

The backward pass through the data is only required for smoothing
that leads to estimates such as the smoothed states and smoothed dis-
turbances. Smoothing also produces the smoothed state estimation error
variances (see Section 8.3), the smoothed irregular component and the
smoothed state disturbances and their variances (see Chapters 2–7). The
main purpose of state and disturbance smoothing is to obtain estimated
values of the state and disturbance vectors at time point t, considering all
available observations {y1, y2, . . . , yn}.

In Figure 8.5 both versions of the state are displayed for the local level
model applied to the Norwegian road traffic fatalities series discussed in
Section 2.3. As Figure 8.5 points out, and for reasons that will be explained
below, the changes in the filtered state always lag one time point (in this
example: one year) behind the changes in the smoothed state.

Letting at denote the Kalman filtered state at time point t, the central
formula in the recursive Kalman filter updating scheme is:

at+1 = at + Kt(yt − z ′
t at). (8.5)

For the local level model, (8.5) simplifies into

at+1 = at + Kt(yt − at). (8.6)

Figure 8.6 illustrates two steps of the Kalman filter process (8.6) for the
local level model applied to the time series discussed in Section 2.3. For
a better understanding of the Kalman updating process, the figure only
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Figure 8.5. Smoothed and filtered state of the local level model applied to Norwe-
gian road traffic fatalities.
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Figure 8.6. Illustration of computation of the filtered state for the local level
model applied to Norwegian road traffic fatalities.
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displays that part of the observed time series and of the filtered state (here
one-dimensional since the state only contains the level) corresponding to
the years 1978 through 1983.

Picking up the Kalman filter process at time point t = 1980, the
current value of the filtered level based on all past observations
{y1970, y1971, . . . , y1979} of the log of Norwegian road traffic fatalities in
Figure 8.5 is at (i.e. a1980). Now, suppose that the value of yt were unknown
(because the time series had only been observed up to y1979 for example, or
because information on y1980 happened to be missing). Lacking new infor-
mation about the observed time series, and since the value of the filtered
state a1980 represents all that could be learned from the past observations
{y1970, y1971, . . . , y1979}, the best option would simply be to move the
filtered state forward unchanged. In the absence of new data, therefore,
the best prediction of the filtered state at time point (t + 1) would simply
be to have at+1 = at, or in this case a1981 = a1980. Since at only consists of a
level component in the present example, in Figure 8.6 this prediction is
indicated by the horizontal arrow extending from at. However, since the
value for yt (i.e. of y1980) is known in the present situation, the latter value
can be fed into the Kalman filter (8.6), and the discrepancy between yt

and at in 1980 (i.e. the vertical double arrow labelled yt − at in Figure 8.6)
is used to update the estimate for at in 1980, yielding the value labelled
at+1 for 1981 in the figure. Since the discrepancy yt − at is negative in this
case, the update at+1 in Figure 8.5 results in a decrease of the filtered level.

In the next step of the filter (8.6), if information on y1981 is not avail-
able, the best estimate for a1982 is the current best estimate a1981. This
corresponds to the horizontal arrow at at+1 in Figure 8.6. Since the value of
y1981 happens to be available in the present case, the discrepancy between
y1981 and a1981 (the vertical double arrow labelled yt+1 − at+1 in Figure 8.6)
can be used to update the state in 1982, yielding the value labelled at+2

in the figure. Since the update of the filtered state at time point (t + 1) is
based on the difference between yt and at at time point t, the update at+1

always lags one observation. This can be clearly seen in Figure 8.5.
Letting vt = yt − at for t = 1, . . . , n, the values of vt are called the one-

step ahead prediction errors or the forecast (or prediction) errors, since they
quantify the lack of accuracy of at in predicting the observed value of yt at
time point t. The prediction errors are also denoted as innovations because
they bring in new information, thus allowing the system to adapt itself
to the new incoming information. The top of Figure 8.7 displays all the
prediction errors vt obtained in the analysis of the Norwegian fatalities,
two of which were already shown in Figure 8.6.
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Figure 8.7. One-step ahead prediction errors (top) and their variances (bottom)
for the local level model applied to Norwegian road traffic fatalities.

The value of Kt in (8.6), which is a scalar in the local level model,
typically determines how much the prediction error at time point t is
allowed to influence the estimate of the state at time point (t + 1). The
larger the value of Kt, the larger the impact vt will have on the next
filtered state. The value of Kt is therefore called the Kalman gain and can
be interpreted as a simultaneous compromise between the (un)certainty
of two issues, all rolled into one. When the uncertainty of the state based
on past observations {y1, y2, . . . , yt−1} is large (relative to the uncertainty of
the new observation yt), then the value of Kt will tend to one, allowing the
newly incoming information yt to have a large impact on the next value of
the state. At the same time, when the uncertainty of the new observation
yt is large (relative to the uncertainty based on the past observations
{y1, y2, . . . , yt−1}), then the value of Kt will tend to zero, disallowing the
newly incoming information yt to have much impact on the next value
of the state. When both (un)certainties cancel each other out, this is
typically reflected in a value of 0.5 for the Kalman gain.

The value of Kt is equal to Pt/Ft, where Pt denotes the filtered state
estimation error variance, and Ft the variance of the one-step prediction
errors vt. The prediction error variances corresponding to the analysis
of the Norwegian fatalities are displayed at the bottom of Figure 8.7.
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As Figure 8.7 shows, the prediction error variances (sometimes abbrevi-
ated as PEV in the literature on state space methods) are monotonically
decreasing with time. Moreover, for time-invariant models, the prediction
error variance converges to a constant value. These properties also apply
to the filtered state estimation error variances Pt. This means that the
Kalman gain Kt (being the ratio of Pt and Ft) also converges to a constant
value. This simplifies the computations in the Kalman filter (8.6) after
convergence to what is called a steady state.

The prediction errors vt and their variances Ft also play a key role in the
maximisation of the log-likelihood function in state space methods. For
univariate state space models the diffuse log-likelihood is defined as:

log Ld = −n
2

log (2 ) − 1
2

n∑
t=d+1

(
log Ft +

v2
t

Ft

)
, (8.7)

where d is the number of diffuse initial elements of the state. It follows
from (8.7) that the value of the log-likelihood function is maximised
by simultaneously minimising the prediction errors vt and their vari-
ances Ft. Unlike classical regression, therefore, in state space methods
the (hyper)parameter estimates are obtained by minimising the prediction
errors vt and their variances Ft, not by minimising the observation errors
or disturbances εt and their variance Û2

ε .
The maximisation of the likelihood is based for an important part

on the minimisation of the prediction or one-step ahead forecast error.
Given the model structure, we aim to find those parameters that weight
the past observations in an optimal way in order to provide the best
prediction of the current observation. This is somewhat different than
classical regression where issues like ‘past’ and ‘future’ play no role.

This also explains why the stochastic level and deterministic seasonal
models applied to the log UK drivers KSI series (as discussed in Sections 4.3
and 7.3) result in a better fit according to the Akaike information criterion
(which is based on the value of log-likelihood function (8.7)) than the
local level model discussed in Section 2.2, even though the observation
errors or disturbances are smaller for the latter model (see Figure 2.4) than
for the former models (see Figures 4.9 and 7.4).

The prediction errors vt (and their variances Ft) are further instrumental
in establishing whether the residuals of a state space model are indepen-
dently, identically, and normally distributed (as will be discussed in the
next section), while the Kalman filter can be used to extrapolate time
series observations into the unknown future (see Section 8.6).
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8.5. Diagnostic tests

All significance tests in linear Gaussian models are based on three assump-
tions concerning the residuals of the analysis. These residuals should
satisfy the following three properties, which are listed here in decreasing
order of importance:

1. independence;
2. homoscedasticity;
3. normality.

In this section tests are discussed that can be used to establish whether
the residuals of state space methods satisfy these three assumptions. In
state space methods, these tests are applied to what are known as the
standardised prediction errors, which are defined as

et =
vt√
Ft

. (8.8)

For the definitions of vt and Ft in (8.8), we refer to Section 8.4. It fol-
lows from (8.8) that the variance of the standardised prediction errors is
approximately equal to one.

The diagnostic tests will be illustrated with the standardised predic-
tion errors (8.8) obtained wih the combined descriptive and explanatory
model applied to the UK drivers KSI series in Section 7.3. A graph of the
standardised prediction errors (8.8) of this analysis is shown in Figure 8.8.
Note that the residuals corresponding to t = 1, . . . , 14 are not plotted in
the figure, nor are they used in the diagnostic tests, because they corre-
spond to the 14 diffuse initial state values which need to be estimated
for the level, the seasonal, and the intervention and explanatory variable
components in model (7.1) (see Section 7.3).

We start with the first and most important assumption: independence.
The assumption of independence of the residuals can be checked with
the Box–Ljung statistic. Letting

rk =
∑n−k

t=1 (et − ē) (et+k − ē)∑n
t=1 (et − ē)2

denote the residual autocorrelation for lag k, where ē is the mean of the n
residuals, the Box–Ljung statistic is defined as

Q(k) = n (n + 2)
k∑

l=1

r 2
l

n − l
,
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Figure 8.8. Standardised one-step prediction errors of model in Section 7.3.

for lags l = 1, . . . , k. Since there are n = 192 − 14 = 178 residuals in
Figure 8.8, and because the values of the autocorrelations of the residuals
at lags 1 through 10 (see Figure 8.9) are 0.078, 0.070, −0.062, −0.108,
0.062, 0.00018, 0.0050, −0.164, −0.0589, and −0.114, respectively, the
Box–Ljung statistic for the first 10 lags equals

Q(10) = (178)(180)
(

0.0782

178 − 1
+

0.0702

178 − 2
+

(−0.062)2

178 − 3
+ · · · +

(−0.114)2

178 − 10

)
= 13.719.

Thus, for the first 10 autocorrelations Q(10) = 13.719. This should be
tested against a ˜2-distribution with (k − w + 1) degrees of freedom, where
w is the number of estimated hyperparameters (i.e. disturbance variances).
In the present case there are (k − w + 1) = (10 − 2 + 1) = 9 degrees of free-
dom, and the critical value at the 5% level in the latter distribution equals
16.92. Since the observed value of Q(10) satisfies

Q(k) < ˜2
(k−w+1;0.05),

the null hypothesis of independence is not rejected, and there is no reason
to assume that the residuals in Figure 8.8 are serially correlated.

The second most important assumption is homoscedasticity of the resid-
uals. Homoscedasticity of the residuals can be checked with the following
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Figure 8.9. Correlogram of standardised one-step prediction errors in Figure 8.8,
first 10 lags.

test statistic:

H(h) =

∑n
t=n−h+1 e2

t∑d+h
t=d+1 e2

t

where d is the number of diffuse initial elements, and h is the nearest inte-
ger to (n − d)/3. The statistic therefore tests whether the variance of the
residuals in the first third part of the series is equal to the variance of the
residuals corresponding to the last third part of the series. This typically
calls for a two-tailed test. For the analysis discussed in Section 7.3, the
integer nearest to (n − d)/3 = (192 − 14)/3 = 59.33 is h = 59, and the value
of the test statistic equals

H(59) =
∑192

t=133 e2
t∑73

t=15 e2
t

= 1.0248.

This should be tested against an F-distribution with (h, h) degrees of
freedom. Applying the usual 5% rule for rejection of the null hypothesis
of equal variances, for a two-tailed test we must find the critical values
corresponding to the upper and lower 2.5% in the two tails of the F-
distribution. If H(h) is larger than 1, it is enough to check whether
H(h) < F (h, h; 0.025). On the other hand, if H(h) is smaller than 1 we have
to use the reciprocal of H(h), and check whether 1/H(h) < F (h, h; 0.025).
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8.5. Diagnostic tests

Since H(59) > 1 in the present case and H(59) < F (59, 59; 0.025), the null
hypothesis of equal variances is not rejected, and there is no reason to
assume departure from homoscedasticity for the residuals in Figure 8.8.

The least important assumption is that the residuals are normally distrib-
uted. Normality of the residuals can be checked with the following test
statistic:

N = n
(

S2

6
+

(K − 3)2

24

)
,

with

S =
1
n

∑n
t=1 (et − ē)3√(

1
n

∑n
t=1 (et − ē)2

)3
, K =

1
n

∑n
t=1 (et − ē)4(

1
n

∑n
t=1 (et − ē)2

)2 ,

where S denotes the skewness of the residuals, and K the kurtosis. In the
present example,

S =
−0.11213√
(0.99505)3

= −0.11297, K =
2.5952

0.995052
= 2.6211,

and

N = 178
(

(−0.11297)2

6
+

(2.6211 − 3)2

24

)
= 1.4435.

This should be tested against a ˜2-distribution with two degrees of free-
dom. Since the critical value at the 5% level in the latter distribution
equals 5.99, and the observed value of N satisfies

N < ˜2
(2;0.05),

the null hypothesis of normality is not rejected, and there is no reason to
assume that the residuals in Figure 8.8 are not normally distributed (see
also Figure 8.10).

A second important diagnostic tool for determining the appropriateness
of a model is provided by the inspection of what are known as the
auxiliary residuals. As already mentioned in Section 8.4, the disturbance
smoothing filters applied in the backward pass through the data yield,
amongst others, estimates of the smoothed observation and state dis-
turbances, and of their variances. The auxiliary residuals are obtained
by dividing the smoothed disturbances with the square root of their
corresponding variances, as follows:

Â̂t√
Var(Â̂t)

, and
Á̂t√

Var(Á̂t)
,
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Figure 8.10. Histogram of standardised one-step prediction errors in Figure 8.8.

for t = 1, . . . , n, resulting in standardised smoothed disturbances. Inspec-
tion of the standardised smoothed observation disturbances allows the
detection of possible outlier observations in a time series, while the inspec-
tion of the standardised smoothed state disturbances makes it possible to
detect structural breaks in the underlying development of a time series.

As an example, consider the stochastic level and deterministic seasonal
model applied to the UK drivers KSI series (see Section 4.3). The standard-
ised smoothed level disturbances of this analysis are presented at the top
of Figure 8.11, while the standardised smoothed observation disturbances
are shown at the bottom of the same figure.

Each of the auxiliary residuals at the top of Figure 8.11 can be consid-
ered as a t-test for the null hypothesis that there was no structural break in
the level of the observed time series. Applying the usual 95% confidence
limits of ±1.96 corresponding to a two-tailed t-test (shown in the figure as
two straight horizontal lines), we see that possible structural level breaks
occurred at five time points. This is less than the n/20 = 192/20 = 9.6 ≈ 10
time points expected to exceed the 95% confidence limits, purely based
on chance. Even so, the auxiliary residual for January 1983 at the top of
Figure 8.11 particularly stands out as being located far outside the 95%
confidence limits.

94



8.5. Diagnostic tests
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Figure 8.11. Standardised smoothed level disturbances (top) and standardised
smoothed observation disturbances (bottom) for analysis of UK drivers KSI in
Section 4.3.

Analogously, each of the auxiliary residuals at the bottom of Figure 8.11
can also be considered as a t-test, but now for the null hypothesis that the
corresponding observation in the time series is not an outlier. Since only
seven out of the 192 standardised smoothed observation disturbances
exceed the confidence limits, while we would expect only 10 of them to
exceed the confidence limits according to chance (see above), and since,
moreover, none of them are extreme, we conclude that the series does not
contain outlier observations.

If an outlier is detected the first thing to do is to check the value of the
corresponding observation in the time series for possible measurement
or typing errors, and then correct the value accordingly. If the value
seems appropriate, on the other hand, then the outlier observation can be
handled by adding a pulse intervention variable to the model, consisting
of a one at the time point corresponding to the outlier observation, and
zeroes elsewhere (see Section 7.4 for an example). A structural break in
the level is typically handled by adding a level shift intervention variable
to the model (see also Chapter 6 and Section 8.2).
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However, care should be taken not to indiscriminately add pulse and/or
level shift intervention variables for each and every outlier and structural
break detected in the auxiliary residuals. First of all, although the addition
of pulse intervention variables for each outlier observation may well
improve the fit of the model, it may also result in an equally false sense
of confidence in the forecasts obtained from a thus improved model (see
also Section 8.6). Second, the insertion of an intervention variable as the
result of an observed structural break in the auxiliary residuals should
always be based on a theory concerning the possible cause of the structural
break.

In the present case the extreme value of the auxiliary residual observed
in January 1983 at the top of Figure 8.11 coincides with an actual out-
side event in the United Kingdom: the introduction of legislation from
February 1983 onwards that obliges motor vehicle drivers and front seat
passengers to wear a seat belt.

Since the introduction of this important road traffic safety measure was
neglected in the analysis of Section 4.3, this clearly shows up as a large
standardised level disturbance at the top of Figure 8.11.

Adding a level shift intervention variable for the introduction of the
seat belt law in February 1983 to the stochastic level and deterministic
seasonal model (see Section 7.3) yields the standardised smoothed level
disturbances shown at the top of Figure 8.12, and the standardised obser-
vation disturbances displayed at the bottom of Figure 8.12.

In this case, the theory is that the structural level break was caused by
the introduction of the seat belt law. This theory is not only confirmed
by the significant value of the regression coefficient corresponding to the
intervention variable (indicating a 21% decrease in the number of UK
drivers KSI, as discussed in Section 7.3), but also by the disappearance
of the large auxiliary residual in January 1983 (see the plot displayed at
the top of Figure 8.12). For a detailed investigation of the properties of
auxiliary residuals, we refer to Harvey and Koopman (1992).

8.6. Forecasting

In state space methods it is easy to compute the forecasts of a time series.
They are simply obtained by continuing the Kalman filter (8.5) after the
end of the observed time series. As already mentioned in Section 8.4 for
the local level model, in the absence of new observations the best option
is to move the filtered state forward as is. When we arrive at the end of a
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Figure 8.12. Standardised smoothed level disturbances (top) and standardised
smoothed observation disturbances (bottom) for analysis of UK drivers KSI in
Section 7.3.

series, the update of the filtered state at time point t = n equals

an = an−1 + Kn−1(yn−1 − z ′
n−1an−1), (8.9)

(see (8.5)). At this point there is still one observation left which has
not yet been used in the Kalman filter updating process. This is the last
observation yn of the series. This last observation can be used to update
the filtered state at time point t = n + 1, as follows:

an+1 = an + Kn(yn − z ′
nan). (8.10)

Now, all the available information in the series has been used, and from
n + 1 onwards the filtered state no longer changes. Letting ān+1 = an+1, the
forecasts are simply obtained from

ān+1+ j = ān+ j , (8.11)

for j = 1, . . . , J − 1, where J (the number of time points for which fore-
casts are calculated) is called the lead time. It may be noted that the
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same values are obtained by continuing the Kalman filter recursions (8.5)
provided that we set vn+ j = 0 and Kn+ j = 0 for j = 1, . . . , J − 1.

Forecasts are useful not only because they provide information on
future developments based on the past, but also because they make it
possible to investigate whether data that become newly available in a
series behave according to expectation or not. We present three examples
of forecasting. The third and last example is an application of forecast-
ing that combines both aspects in the same way as has been discussed
in Harvey and Durbin (1986). The first two examples present forecasts
obtained with the local level model, and with the smooth trend model
(see Chapter 2 and Section 3.4).

The analysis of the log of the annual number of traffic fatalities in
Norway (see Section 2.3) was used to obtain forecasts for the series using
a lead time of five years. The observations of the series are shown in
Figure 8.13, together with the filtered level and the forecasted values for
the years 2004–2008. When the local level model is used for forecasting,
the forecasts are always located on a straight horizontal line whose level is
equal to the filtered level at t = n + 1. This is in complete agreement with
the fact that for a correctly specified model the best source of information
for the future is the filtered state at t = n + 1, since this time point contains
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Figure 8.13. Filtered level, and five year forecasts for Norwegian fatalities, includ-
ing their 90% confidence interval.
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the most updated information concerning the past observations of the
series. In the present case, the value of the level at t = n + 1 equals 5.6627.
Since the dependent variable is analysed in its logarithm, the forecasted
values imply that there will be a constant number of e5.6627 = 288 road
traffic fatalities per year in Norway in the years 2004–2008.

Forecasts are, by their very nature, bound to be subject to more uncer-
tainty than any estimated value falling within the time range of the
observed time series. It is therefore customary to be somewhat less conser-
vative than usual in setting up the confidence limits of forecasted values.
Instead of the usual 95% values, for forecasts confidence limits of 90%
or 85%, or even lower are often used. In Figure 8.13 the 90% confidence
interval has been used, which is computed as

at ± 1.64
√

Pt,

where at is the filtered level and Pt is the filtered level estimation error
variance (see also Section 8.4). Note that the uncertainty of the estimated
forecasts quickly increases with time.

The forecasts obtained with the smooth trend model applied to the log
of the annual number of traffic fatalities in Finland (see Section 3.4) are
shown in Figure 8.14, including their 90% confidence interval. When the
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Figure 8.14. Filtered trend, and five-year forecasts for Finnish fatalities, including
their 90% confidence limits.
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local linear trend model is used for forecasting, from t = n + 1 onwards
the forecasts always are located on a straight line with constant level and
slope. The values of the forecasts are 5.9332, 5.8976, 5.8620, 5.8264, and
5.7908, respectively. In terms of absolute numbers, this means that the
predicted numbers of road traffic fatalities in Finland are 377, 364, 351,
339, and 327 for the years 2004, 2005, 2006, 2007, and 2008, respectively.

As a last example, the first 169 time points of the log of the numbers
of UK drivers KSI before the introduction of the seat belt law are analysed
first. Then, forecasts of the latter analysis are determined and compared
with the actual development in the number of drivers KSI after the intro-
duction of the seat belt law in the UK in February 1983. The idea is that,
if the forecasted values from the analysis up till February 1983 are (very)
different from the actual and/or modelled values after the introduction
of the seat belt law, this provides additional confirmation of the effect of
this law.

Time series analysis of the first 169 time points in the series (up to
February 1983) of the log of the numbers of drivers KSI with a stochastic
level and seasonal model, and including the log of petrol price as an
explanatory variable, yields the following results:

it0 f= 0.7926428
it5 f= 0.8010981
it10 f= 0.8029273
it15 f= 0.8927482
it20 f= 0.9535592
it25 f= 0.9552286
it30 f= 0.9556553
it34 f= 0.9556575
Strong convergence

The estimated value of the regression weight for the log of petrol price is
equal to −0.29506 for t = 1, . . . , 169, which is associated with an elasticity
value of 0.295%. The Akaike information criterion for this model equals

AIC =
1

169
[−2(169)(0.9556575) + 2(13 + 3)] = −1.72197.

Since the variance of the seasonal disturbances is almost zero, the analysis
is repeated with a deterministic seasonal yielding the following results.

it0 f= 0.9455970
it1 f= 0.9470922
it2 f= 0.9502790
it3 f= 0.9534790
it4 f= 0.9553035
it5 f= 0.9555801
it6 f= 0.9555823
it7 f= 0.9555823
Strong convergence
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In this case, the estimated value of the regression weight for the log of
petrol price equals −0.29212 for t = 1, . . . , 169. In the present analysis,
the estimated variance of the observation disturbances is 0.00414 and the
estimated variance of the level disturbances equals 0.000253.

Note the close similarity between these parameter estimates and those
obtained with the analysis of the complete series. For the complete series,
the estimated variances are 0.00403 and 0.000268, respectively, and the
regression weight for the log of petrol price is −0.27674 (see Section 7.3).

The Akaike information criterion for the stochastic level and determin-
istic seasonal model applied to the first 169 observations of the UK drivers
KSI series equals

AIC =
1

169
[−2(169)(0.9555823) + 2(13 + 2)] = −1.73365.

The latter AIC is slightly smaller than the previous one, meaning that the
second model results in a slightly better fit to the data.

Therefore, the second model was used to calculate forecasts for the next
23 time points in the series (i.e. for t = 170, . . . , 192). In these calculations
the observed values of the log of petrol price for t = 170, . . . , 192 were
used, but not those for the log of the number of drivers KSI. The forecasted
values for the log of the number of drivers KSI for t = 170, . . . , 192 (i.e.
for February 1983 up to and including December 1984) are shown in
Figure 8.15.

In Figure 8.15 the 90% confidence limits for the 23 forecasted values are
also displayed. As can be seen in the latter figure, the confidence limits
become larger and larger as the forecasts are for observations further into
the future. This is as one would expect on intuitive grounds.

Figure 8.16 contains the last three years of the observed log of the
number of drivers KSI, together with the forecasts from Figure 8.15, and
the modelled complete series including an intervention variable for the
introduction of the seat belt law (see also Section 7.3). Figure 8.16 provides
confirmation of the effect of this law, since the predicted values of the
series including the intervention variable are very similar to the observed
values from February 1983 onwards, whereas the 23 forecasted values
from Figure 8.15 are all much larger than the observed values.

It may finally be noted that the results reported here are slightly differ-
ent from the results obtained in Harvey and Durbin (1986). The reason
for the difference is twofold. First, Harvey and Durbin used a slightly
different dummy variable for modelling the intervention effect in the
complete series. They coded the dummy variable as 0.18 in January 1983,
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Figure 8.15. Forecasts for t = 170, . . . , 192 including their 90% confidence
interval.
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Figure 8.16. Last four years (1981–1984) in the time series of the log of numbers
of drivers KSI: observed series, forecasts obtained from the analysis up to February
1983, and modelled development for the complete series including an interven-
tion variable for February 1983.
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Figure 8.17. Stochastic level estimation error variance for log drivers KSI with
observations at t = 48, . . . , 62 and t = 120, . . . , 140 treated as missing.

while here the dummy variable was coded zero at this time point. Second,
Harvey and Durbin fixed the observation and state error variances in the
analysis of the complete series on the values obtained in the analysis of
the series up till February 1983. Here these variances were re-estimated in
the analysis of the complete series containing the intervention variable.

8.7. Missing observations

In state space methods, missing observations in a time series are easily
dealt with. As an example, the log of the UK drivers KSI were re-analysed
using a stochastic level and deterministic seasonal model (see also
Section 4.3), but now treating the observations at time points t = 48
through 62, and at time points t = 120 through 140 as missing.

The analysis of the (192 − 15 − 21) = 156 remaining non-missing obser-
vations leads to a level estimation error variance that is shown in
Figure 8.17. As discussed in Section 8.3, this variance can be used to
construct confidence intervals for the level component. The stochastic
level and its 90% confidence interval are displayed in Figure 8.18, together
with the 156 available observations.
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Figure 8.18. Stochastic level and its 90% confidence interval for log drivers KSI
with observations at t = 48, . . . , 62 and t = 120, . . . , 140 treated as missing.
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Figure 8.19. Seasonal estimation error variance for log drivers KSI with observa-
tions missing at t = 48, . . . , 62 and t = 120, . . . , 140.
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Figure 8.20. Deterministic seasonal and its 90% confidence interval for t =
25, . . . , 72.
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Figure 8.21. Irregular component.
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Figures 8.17 and 8.18 nicely reflect that the uncertainty in the modelled
level is larger at the time points for which no observations are available,
as would be expected intuitively.

Figure 8.19 is the estimation error variance for the deterministic sea-
sonal, while Figure 8.20 shows part of the seasonal (for t = 25, . . . , 72)
and the 90% confidence interval. As both figures illustrate, the seasonal
variance and confidence interval are larger for time points corresponding
to missing observations.

Figure 8.21 shows the irregular resulting from the analysis of an incom-
plete time series.

Finally, it is interesting to note that missing data are treated in the same
way as forecasts are handled (see Sections 8.4 and 8.6). In estimating the
filtered state, for example, the values of the prediction errors vt = yt − z ′

t at

and of the Kalman gains Kt in Kalman filter recursions (8.5) are simply set
to zero whenever the value of an observation yt is missing. This means,
of course, that the reverse is also true: forecasts for the unknown future
are simply obtained by treating the observations at time points n + 1,

n + 2, n + 3, . . . as missing.
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Multivariate time series analysis∗

All state space models discussed in the previous chapters are concerned
with the analysis of only one time series. In state space methods such
univariate analyses are easily generalised to the situation where two or
more (say p) time series need to be analysed simultaneously. This chapter
presents an introduction to multivariate state space analysis and discusses
some particular issues of interest.

9.1. State space representation of multivariate models

The multivariate time series model can also be represented by the state
space form

yt = Zt·t + εt, εt ∼ NID(0, Ht) (9.1)

·t+1 = Tt·t + RtÁt Át ∼ NID(0, Qt) (9.2)

for t = 1, . . . , n. The observation or measurement equation (9.1) is for a
p × 1 vector yt containing the values of the p observed time series at time
point t. The p × 1 irregular vector εt contains the p observation distur-
bances, one for each time series in yt. The p observation disturbances
are assumed to have zero means and an unknown variance–covariance
structure represented by a variance matrix Ht of order p × p. The m× 1
state vector ·t contains unobserved variables and unknown fixed effects.
Matrix Zt of order p × m links the unobservable factors and regression
effects of the state vector with the observation vector. Matrix Tt in (9.2)
is called the transition matrix of order m× m. The r × 1 vector Át con-
tains the state disturbances with zero means and unknown variances and
covariances collected in the variance matrix Qt of order r × r . In many
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standard cases, r = m and matrix Rt is the identity matrix Im. In other
cases, matrix Rt is an m× r selection matrix with r < m. Although matrix
Rt can be specified freely, it is often composed of a selection from the r
columns of the identity matrix Im.

9.2. Multivariate trend model with regression effects

To illustrate that the general framework of a state space model can be
used for multivariate time series analyses, we consider a case with p = 2
and with vectors and matrices given by

·t =



Ï
(1)
t

Ì
(1)
t

‚
(1)
t

Ï
(2)
t

Ì
(2)
t

‚
(2)
t


, Át =


Ó

(1)
t

Ê
(1)
t

Ó
(2)
t

Ê
(2)
t

 , Tt =



1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 0
0 0 0 0 1 0
0 0 0 0 0 1


,

Rt =



1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0


,

Zt =

[
1 0 xt 0 0 0
0 0 0 1 0 xt

]
, Ht =

[
Û2

ε(1) cov(ε(1), ε(2))
cov(ε(1), ε(2)) Û2

ε(2)

]
, and

Qt =


Û2

Ó(1) 0 cov(Ó(1), Ó(2)) 0
0 Û2

Ê(1) 0 cov(Ê(1), Ê(2))
cov(Ó(1), Ó(2)) 0 Û2

Ó(2) 0
0 cov(Ê(1), Ê(2)) 0 Û2

Ê(2)

 .

These matrices imply a bivariate local linear trend model with the same
explanatory variable xt applied to both series in yt. The superscripts
(1) and (2) in the matrices and vectors denote whether they belong
to the first or to the second series, respectively. The particular system
matrices for matrix equation (9.1) lead to the following two observation
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equations:

y(1)
t = Ï

(1)
t + ‚

(1)
t xt + ε

(1)
t ,

y(2)
t = Ï

(2)
t + ‚

(2)
t xt + ε

(2)
t ,

and those for matrix equation (9.2) result in the following six state equa-
tions:

Ï
(1)
t+1 = Ï

(1)
t + Ì

(1)
t + Ó

(1)
t ,

Ì
(1)
t+1 = Ì

(1)
t + Ê

(1)
t ,

‚
(1)
t+1 = ‚

(1)
t ,

Ï
(2)
t+1 = Ï

(2)
t + Ì

(2)
t + Ó

(2)
t ,

Ì
(2)
t+1 = Ì

(2)
t + Ê

(2)
t ,

‚
(2)
t+1 = ‚

(2)
t .

In this example the same model is applied to the two time series under
consideration. However, we may also use different state space models
for the two series. For example, suppose that we want to include the
explanatory variable only in the first equation and not in the second
equation. In this case, the vectors and matrices in (9.1) and (9.2) can be
set up as:

·t =


Ï

(1)
t

Ì
(1)
t

‚
(1)
t

Ï
(2)
t

Ì
(2)
t

, Át =


Ó

(1)
t

Ê
(1)
t

Ó
(2)
t

Ê
(2)
t

, Tt =


1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

, Rt =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

,

Zt =

[
1 0 xt 0 0
0 0 0 1 0

]
, Ht =

[
Û2

ε(1) cov(ε(1), ε(2))
cov(ε(1), ε(2)) Û2

ε(2)

]
, and

Qt =


Û2

Ó(1) 0 cov(Ó(1), Ó(2)) 0
0 Û2

Ê(1) 0 cov(Ê(1), Ê(2))
cov(Ó(1), Ó(2)) 0 Û2

Ó(2) 0
0 cov(Ê(1), Ê(2)) 0 Û2

Ê(2)

 .
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We then obtain the observation equations

y(1)
t = Ï

(1)
t + ‚

(1)
t xt + ε

(1)
t ,

y(2)
t = Ï

(2)
t + ε

(2)
t ,

and the five state equations

Ï
(1)
t+1 = Ï

(1)
t + Ì

(1)
t + Ó

(1)
t ,

Ì
(1)
t+1 = Ì

(1)
t + Ê

(1)
t ,

‚
(1)
t+1 = ‚

(1)
t ,

Ï
(2)
t+1 = Ï

(2)
t + Ì

(2)
t + Ó

(2)
t ,

Ì
(2)
t+1 = Ì

(2)
t + Ê

(2)
t .

In some cases it may be convenient to have matrix Qt as a block diagonal
matrix. After some permutations of rows and columns of the vectors and
matrices, matrix Qt can be represented as a block diagonal matrix without
any alteration to the underlying model. For example, in this case the state
space vectors and matrices are

·t =


Ï

(1)
t

Ï
(2)
t

Ì
(1)
t

Ì
(2)
t

‚
(1)
t

, Át =


Ó

(1)
t

Ó
(2)
t

Ê
(1)
t

Ê
(2)
t

, Tt =


1 0 1 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

, Rt =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

,

Zt =

[
1 0 0 0 xt

0 1 0 0 0

]
, Ht =

[
Û2

ε(1) cov(ε(1), ε(2))
cov(ε(1), ε(2)) Û2

ε(2)

]
, and

Qt =


Û2

Ó(1) cov(Ó(1), Ó(2)) 0 0
cov(Ó(1), Ó(2)) Û2

Ó(2) 0 0
0 0 Û2

Ê(1) cov(Ê(1), Ê(2))
0 0 cov(Ê(1), Ê(2)) Û2

Ê(2)

 ,

leading to

y(1)
t = Ï

(1)
t + ‚

(1)
t xt + ε

(1)
t ,

y(2)
t = Ï

(2)
t + ε

(2)
t ,
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for the observation equations and

Ï
(1)
t+1 = Ï

(1)
t + Ì

(1)
t + Ó

(1)
t ,

Ï
(2)
t+1 = Ï

(2)
t + Ì

(2)
t + Ó

(2)
t ,

Ì
(1)
t+1 = Ì

(1)
t + Ê

(1)
t ,

Ì
(2)
t+1 = Ì

(2)
t + Ê

(2)
t ,

‚
(1)
t+1 = ‚

(1)
t ,

for the five state equations. Apart from the fact that the order of appear-
ance in the state vector has changed, the equations of the underlying
model remain completely identical.

9.3. Common levels and slopes

In a multivariate state space analysis, the observation and state equa-
tions have disturbances associated with a particular component or irreg-
ular. In the examples of the previous sections, the disturbances Ê

(1)
t and

Ê
(2)
t are associated with the slope components Ì

(1)
t and Ì

(2)
t , respectively.

When the disturbances are uncorrelated, that is cov(Ê(1), Ê(2)) = 0, the slope
components are independent. The slope components become related to
each other when the slope disturbances are correlated, that is, when
cov(Ê(1), Ê(2)) =/ 0. The multivariate time series model with unobserved
component vectors that depend on correlated disturbances is referred to
as a seemingly unrelated time series equations model. The name underlines
the fact that although the disturbances of the components can be corre-
lated, the equations remain ‘seemingly unrelated’.

The level of dependence is measured most effectively by the correlation
between the two disturbances as given by

corr(Ê(1), Ê(2)) =
cov(Ê(1), Ê(2))√

Û2
Ê(1)Û

2
Ê(2)

,

where −1 ≤ corr(Ê(1), Ê(2)) ≤ 1. When the correlation is close to zero, the
slope components do not have much in common. The slopes have much
in common when the correlation is close to plus or minus one. In the
extreme case of corr(Ê(1), Ê(2)) = ±1, a particular slope component, say Ì

(2)
t ,

can be expressed as a linear combination of the other slope, say Ì
(1)
t . In

particular, we have Ì
(2)
t = a + bÌ

(1)
t when the slope disturbances are perfectly
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correlated. In this case, slope components are said to be common. In the
case of −1 < corr(Ê(1), Ê(2)) < 1, the variance matrix[

Û2
Ê(1) cov(Ê(1), Ê(2))

cov(Ê(1), Ê(2)) Û2
Ê(2)

]
,

has rank two. In the case of corr(Ê(1), Ê(2)) = ±1, the rank of this variance
matrix equals 1.

It follows that the rank of the variance matrix determines whether com-
ponents are common. For multivariate models with p > 2 and a variance
matrix with rank q > 0, the number of common components is equal
to q and the number of rank restrictions is r = p − q. This framework is
closely related to factor analysis and principal component analysis. When
r = p − q rank restrictions are exercised, the p slope components are the
result of linear combinations of q common slope components. In the
literature, a multivariate state space model is therefore sometimes also
referred to as a dynamic factor analysis model.

The same arguments apply to the disturbances of other components
and the irregular vector Ât. For example, when the variance matrix of the
disturbance vector associated with the level component, that is[

Û2
Ó(1) cov(Ó(1), Ó(2))

cov(Ó(1), Ó(2)) Û2
Ó(2)

]
,

has rank one, we have corr(Ó(1), Ó(2)) = ±1. In the case of a bivariate local
level model (this is the trend model of the previous section but without
a slope component and a regression effect), the level component is said
to be common. The two level components in the model can be expressed
as linear combinations of each other. However, for a level component
with a stochastic bivariate slope component that has a full rank variance
matrix for Ê

(1)
t and Ê

(2)
t and with disturbances Ó

(1)
t and Ó

(2)
t that are fully

correlated, the resulting level component is not common. Due to the
slope component, the level components cannot be expressed as linear
functions of each other. Such issues are important in practice for a correct
interpretation of the results in a multivariate time series analysis.

Generally, a variance matrix is unknown and needs to be estimated.
The estimated coefficients determine the rank of the matrix and therefore
the nature of the relationship between the individual elements of the
component vector. In particular cases, it may be necessary or interesting
to enforce rank restrictions. The rank of a particular variance matrix can
be imposed by considering the decomposition of a symmetric positive
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semi-definite matrix such as[
Û2

Ê(1) cov(Ê(1), Ê(2))
cov(Ê(1), Ê(2)) Û2

Ê(2)

]
=

[
a 0
b c

][
a b
0 c

]
,

with coefficients a, c ≥ 0. The lower triangular structure of the right-hand
side matrices is chosen to have the same number of coefficients as in
the variance matrix of the left-hand side and to enforce a positive semi-
definite variance matrix. By restricting c = 0 and estimating the remain-
ing b and c, the resulting estimated variance matrix is clearly always of
rank one.

The issue of common levels and slopes is important since it is often
of interest to find the common behaviour between the different time
series in a multivariate time series analysis. The existence of a common
component can lead to more insights in certain aspects of the time series
of interest. An illustration of this is given in the next section.

Finally, if the variance matrices Ht and Qt in (9.1) and (9.2) are restricted
to be diagonal (and the rows of Zt are orthogonal, and Tt is appropriately
chosen), we actually carry out p separate univariate analyses. In this case
we should label the model as a ‘really unrelated’ time series equations
model. For further details and extensions of multivariate time series analy-
sis, we refer to Harvey (1989).

9.4. An illustration of multivariate state space analysis

This section addresses the practical implications of a multivariate state
space analysis. Various results of a simultaneous analysis of two time series
will be discussed in some detail. The first series consists of the log of the
monthly numbers of front seat passengers killed or seriously injured in
the UK for the period 1969–1984. The second series consists of the log
of the monthly numbers of rear seat passengers killed or seriously injured
(KSI) in the UK during the same period. The graphs of these two series are
shown in Figure 9.1. Appendix C contains the actual numbers from these
two series (not their logs).

Two explanatory variables and one intervention variable are added to
the local level model with a seasonal component for both series. The
explanatory variables are the log of the petrol price (as given in Appen-
dix A), and the log of the number of kilometres travelled (as given in
Appendix C). The intervention variable is the introduction of the seat
belt law in February 1983.
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Figure 9.1. Log of monthly numbers of front seat passengers (top) and rear seat
passengers (bottom) killed or seriously injured in the UK in the period 1969–1984.

The bivariate time series analysis aims to assess the effect of the intro-
duction of the seat belt law in a more convincing setting than was done
in Sections 7.3 and 8.6. The intervention is expected to affect the front
seat car passengers and not the rear seat car passengers. Therefore, the
former series can be considered as a treatment series while the latter series
can be used as a control series. If we can show that the treatment series
was significantly affected by the seat belt law, while the control series was
not, we have an even stronger case in favour of the effect of this law than
before.

The multivariate analysis of the two series starts with considering the
local level model with seasonal of Chapter 4 but applied to both series
simultaneously. Subsequently, the intervention variable for the introduc-
tion of the law in February 1983 and the explanatory variables (petrol
price and number of kilometres travelled, both in logs) are included in
the two equations of the bivariate model. Since the variances for the
seasonal components of the treatment and control series are both found
to be almost equal to zero, this component is treated deterministically
in both series. Unrestricted estimation of the level variance matrix of the
treatment and control series yields the following results. The estimate of
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Figure 9.2. Level disturbances for rear seat (horizontal) versus front seat KSI (ver-
tical) in a seemingly unrelated model.

the variance matrix of the two irregular components for this bivariate
state space model equals

H =

[
0.0054281 0.0044834
0.0044834 0.0085138

]
,

while the estimate of the variance matrix of the level disturbances corre-
sponding to the front and rear seat passengers KSI is

Q =

[
0.00025881 0.00022546
0.00022546 0.00023227

]
.

Figure 9.2 contains a scatter plot of the level disturbances obtained with
this analysis, together with the best fitting regression line. It shows the
strong positive linear relationship between the level disturbances of the
treatment and the control series. Their correlation is, in fact, 0.9743. This
means that the two levels themselves, which are displayed in Figure 9.3,
must also be highly correlated.

This is confirmed by the scatter plot of the two level components (see
Figure 9.4), together with the best fitting regression line. As Figures 9.3
and 9.4 indicate, the two level components have a tendency to increase
and decrease at the same points in time.

115



Multivariate time series analysis∗

1970 1975 1980 1985

4.5

4.6

4.7

4.8
level front

1970 1975 1980 1985

0.5

0.6

0.7

level rear 

Figure 9.3. Levels of treatment and control series in the seemingly unrelated
model.
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Figure 9.4. Level of treatment against level of control series in the seemingly
unrelated model.
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The estimated regression coefficient for the intervention variable is
−0.3372 in the treatment series and 0.0021 in the control series. The t-
tests indicate that the intervention coefficient for the treatment series
is highly significant while it is not significant for the control series.
The analysis is therefore repeated but with two important modifications.
First, the intervention variable is removed from the model for rear seat
passengers KSI (the control series). Second, the rank of the corresponding
variance matrix is restricted to one since the level disturbances of the two
series are highly correlated in the first analysis. The implications of a rank
reduction are discussed in the previous section. The number of parameters
in the second model is reduced by two (i.e. one for the intervention in the
control series, and one for the variance matrix of the level disturbances).
We therefore have a more parsimonious description of the data.

The estimate of the variance matrix of the irregular components for this
second bivariate state space model equals

H =

[
0.0054747 0.0044166
0.0044166 0.0088022

]
,

while the estimate of the variance matrix of the level disturbances is

Q =

[
0.00023264 0.00022096
0.00022096 0.00020986

]
.

The rank of the latter variance matrix is indeed one, because the second
eigenvalue in the eigenvalue decomposition of the matrix is zero. Specifi-
cally, this variance matrix can be written as

Q =

[
0.01525259
0.01448661

] [
0.01525259 0.01448661

]
,

meaning that the level disturbances of the treatment and control series are
now proportional to one another. This property is illustrated graphically in
Figure 9.5, which contains a scatter plot of these two level disturbances.

The level disturbance of the treatment series can be perfectly predicted
from those of the control series with the regression equation

Ó
(1)
t = 1.0529 Ó

(2)
t

for t = 1, . . . , n. This automatically implies that the levels of the two series
must also be perfectly linearly related (see Figure 9.6). The regression
equation for the two level components in Figure 9.6 is

Ï
(1)
t = 2.3115 + 1.0529 Ï

(2)
t ,
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Figure 9.5. Level disturbances for rear (horizontal) against front seat KSI (vertical),
rank one model.
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Figure 9.6. Level of treatment against level of control series in rank one model.
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Figure 9.7. Levels of treatment and control series, rank one model.
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Figure 9.8. Level of treatment series plus intervention, and level of control series,
rank one model.
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Figure 9.9. Deterministic seasonal of treatment and control series, rank one
model.

for t = 1, . . . , n. The perfect linear relationship between the two stochastic
levels is also confirmed by inspecting their graphs in Figure 9.7: they are
identical up to an overall difference in level (which is equal to 2.3115)
and in rate of change (which is equal to 1.0529).

The estimated value of the regression weight for the intervention vari-
able applied to the treatment series only is −0.3387, and the result of
adding this state component to the level of the treatment series is shown
in Figure 9.8 (compared to Figure 9.7 the level of the control series is
unchanged since no intervention was modelled for this series). To com-
plete the output of the analysis, graphs of the estimated deterministic
seasonal components of the treatment and control series in the restricted
bivariate analysis are presented in Figure 9.9.

An interesting by-product of the second analysis is the considerable
increase in the value of the t-test for the intervention coefficient of the
treatment series. The value of this t-test in the second analysis is more
than two and a half times larger than the one in the first analysis.
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While the t-value for the intervention parameter is −6.8167 in the first
analysis, it is −17.2852 in the second analysis. Since the intervention
coefficients themselves are quite similar in the two analyses (i.e. −0.3372
and −0.3387 in the first and second analyses, respectively), the most
important reason for the increase in the value of the t-test is the large
decrease in the sum of squared one-step ahead prediction errors.
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10

State space and Box–Jenkins methods
for time series analysis

Box–Jenkins methods for time series analysis are popular and widely
applied. The purpose of this chapter is to provide a short introduction to
these methods and to discuss the relative merits of state space and Box–
Jenkins methods. For a more in-depth exposition of Box–Jenkins time
series analysis, we refer to the very accessible book by Chatfield (2004),
and to the mathematically advanced classic book by Box and Jenkins
(1976). The Box–Jenkins approach is based on autoregressive integrated
moving average (ARIMA) models. To provide some discussion of the dif-
ferent approaches of time series, we need to introduce concepts related to
stationary time series, autoregressive processes, moving average processes
and differencing. Further it is shown how these concepts are used in
the Box–Jenkins approach to time series analysis. Finally, the relation
with unobserved components is hinted at and a short discussion on the
differences between both approaches is presented.

10.1. Stationary processes and related concepts

Short definitions of stochastic processes involved in the modelling of
times series with the Box–Jenkins approach are covered in the following
sections.

10.1.1. Stationary process

A stochastic process Ït is called a second-order stationary (or weakly sta-
tionary) process if its mean, variance and autocovariances are constant
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over time. The autocovariances vary with the corresponding lag peri-
ods. Similarly to autocorrelations (see Chapter 1), autocovariances are
the covariances between a series Ït and the same series shifted k time
points into the future. The stationary property states that the covariances
between Ït and Ït+k are the same, irrespective of index t, but may be
different for different k. Note that the covariance becomes a variance
when k = 0. Examples of realisations of weakly stationary processes can be
found in Figures 10.1, 10.5, 10.7 and 10.9 below. In contrast, Figure 10.3
contains a typical example of the realisation of a non-stationary process,
since the mean of this series continuously changes over time.

10.1.2. Random process

A stochastic process is called a purely random process if it consists of ran-
dom variables Át which are mutually independent and identically distrib-
uted. Since this implies that the process has constant mean and variance,
a purely random process is always a stationary process. Moreover, for all
k =/ t the autocorrelations between Át and Át+k of a purely random process
are zero. Figure 10.1 contains an example of the realisation of a random
process obtained by drawing a random sample of N = 200 observations
from a normal distribution. The residual plots displayed in Figures 2.6,
3.6, 4.9, and 7.4 for stochastic state space models may also be considered
as examples of realisations of a random process.

An important diagnostic tool for unravelling the possible theoretical
processes underlying an observed time series is the correlogram, as dis-
cussed in Chapter 1. The correlogram for the first 12 lags of the data
shown in Figure 10.1 is given in Figure 10.2. As noted before, the inde-
pendence of the variables Át of a random process is reflected in the fact
that all autocorrelation coefficients are approximately equal to zero.

Let Át be a purely random process. Then a process Ït is called a random
walk if

Ït+1 = Ï1 +
t∑

j=1

Á j = Ït + Át, (10.1)

for some unknown value of Ï1. Many state components in the models
presented in Chapters 2–7 are random walks or variations of it. It follows
from (10.1) that the first differences of a random walk equal

�Ït = Ït − Ït−1 = Át−1.

123



State space and Box–Jenkins methods

0 20 40 60 80 100 120 140 160 180 200

−3

−2

−1

0

1

2

random process 

Figure 10.1. Realisation of a random process.
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Figure 10.2. Correlogram for lags 1 to 12 of data in Figure 10.1.
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Figure 10.3. Example of a random walk with Ï1 = 0.

The first differences of a random walk yield a stationary random process.
If we compute the values of Ït with (10.1) using the values for Át shown
in Figure 10.1, and start with Ï1 = 0, we obtain the time series displayed
in Figure 10.3. As Figure 10.3 clearly indicates, a random walk is a non-
stationary process because the mean of the series changes over time.
Figure 10.4 displays the correlogram of the data in Figure 10.3. The pattern
of autocorrelations displayed in Figure 10.4 is typical for non-stationary
processes: the values of the autocorrelations only start approaching zero
for very large values of the lag.

10.1.3. Moving average process

Let Át be a purely random process with mean zero and variance Û2. Then
a process Ït is called a moving average process of order q (abbreviated as
an MA(q) process) if

Ït = ‚0 Át + ‚1 Át−1 + ‚2 Át−2 + · · · + ‚q Át−q . (10.2)

An example of a first-order MA(1) process is given by

Ït = Át + 0.5 Át−1.

125



State space and Box–Jenkins methods

0 5 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
ACF−random walk 

Figure 10.4. Correlogram for lags 1 to 12 of the data in Figure 10.3.

If we compute the values of Ït with the latter formula using the values for
Át shown in Figure 10.1, we obtain the time series displayed in Figure 10.5.
The correlogram for the series in Figure 10.5 is given in Figure 10.6.

In case ‚0 = 1 in (10.2), the first order autocorrelation of a pure MA(1)
process equals

‚1

1 + ‚2
1

=
0.5

1 + 0.52
= 0.4,

as can be verified in the correlogram in Figure 10.6. Moreover, the first q
autocorrelations of a pure MA(q) process typically deviate from zero, while
they are zero for lags j > q. A pure MA(q) process is always a stationary
process.

10.1.4. Autoregressive process

Let Át be a purely random process with mean zero and variance Û2. Then
a process Ït is called an autoregressive process of order p (abbreviated as
an AR(p) process) if

Ït = ·1 Ït−1 + ·2 Ït−2 + · · · + ·p Ït−p + Át. (10.3)
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Figure 10.5. Realisation of a MA(1) process with ‚0 = 1 and ‚1 = 0.5.
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Figure 10.6. Correlogram for lags 1 to 12 of data in Figure 10.5.
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Figure 10.7. Realisation of an AR(1) process with ·1 = 0.5.

In this case, Ït is regressed on past values of itself. For example, if we
compute the values of Ït according to the first-order AR(1) process

Ït = 0.5 Ït−1 + Át,

and use the values for Át shown in Figure 10.1, we obtain the time series
displayed in Figure 10.7.

The first autocorrelation of a pure AR(1) process can be proven to
be equal to ·1 in (10.3). For the AR(1) process in Figure 10.7, the first
autocorrelation is therefore ·1 = 0.5, as can be verified to be approximately
true in the correlogram in Figure 10.8. The higher autocorrelations for the
AR(1) process are given by ·k

1 where k is the corresponding lag. A pure
AR(p) process is a stationary process when the coefficients are within the
unit circle. For the AR(1) process, it implies that |·1| < 1.

10.1.5. Autoregressive moving average process

By combining moving average (10.2) and autoregressive (10.3) processes,
what is known as the autoregressive moving average (ARMA) model is
obtained. An ARMA model with p AR terms and q MA terms is called an
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Figure 10.8. Correlogram for lags 1 to 12 of time series in Figure 10.7.

ARMA(p, q) process, and is written as

Ït = ·1 Ït−1 + ·2 Ït−2 + · · · + ·p Ït−p + Át + ‚1 Át−1

+ ‚2 Át−2 + · · · + ‚q Át−q, (10.4)

where the variables Át are a random process. For example, if we compute
the values of Ït according to the ARMA(1, 1) process

Ït = 0.5 Ït−1 + Át + 0.5 Át−1,

and use the values for Át shown in Figure 10.1, we obtain the stationary
process shown in Figure 10.9. Figure 10.10 contains the correlogram for
the series in Figure 10.9.

10.2. Non-stationary ARIMA models

A typical Box–Jenkins approach to time series analysis proceeds along
the following lines. In practice, some non-stationary features in the time
series are present due to trend and/or seasonal effects. As a first step, the
observed time series is transformed into a stationary series using time and
lag functions. In practice, the trend and/or seasonal are removed from the
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Figure 10.9. Realisation of an ARMA(1, 1) process with ·1 = ‚1 = 0.5.
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Figure 10.10. Correlogram for lags 1 to 12 of data in Figure 10.9.
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series by differencing. A non-stationary random walk Ït can be turned into
a random (stationary) process by taking the first differences since

�Ït = Ït − Ït−1 = Át−1.

Similarly, letting yt denote an observed time series, differencing involves
the computation of a new variable y∗

t satisfying

y∗
t = �yt = yt − yt−1,

to remove the trend in the series, and

y∗
t = �s yt = yt − yt−s,

to remove a seasonal with periodicity s from the series. In some cases a
combined removal of trend and seasonal is necessary and is achieved by

y∗
t = ��s yt = (yt − yt−s) − (yt−1 − yt−s−1).

In cases y∗
t is still not stationary, the differencing procedure can be con-

tinued by taking second differences

y∗
t = �2�2

s yt,

or even third differences. This process of differencing an observed time
series in order to obtain an approximate stationary series is referred to as
integration. After sufficient differencing is applied to obtain an approxi-
mate stationary time series, the appropriate AR(p), MA(q) or ARMA(p, q)
models need to be identified that can best account for the differenced
observed time series.

For example, suppose that the transformed time series of interest is
the series displayed in Figure 10.9. The task of the researcher is to deter-
mine the correct ARMA(1, 1) model. The optimal parameter estimates of
the model are ·1 = ‚1 = 0.5. Of course, once the correct model is identi-
fied, the residuals Át in equation (10.4) should satisfy the properties of a
random process, and therefore should result in a correlogram similar to
the one displayed in Figure 10.2.

Summarising, ARIMA models are fitted using the following steps:

1. Non-stationary features due to trend and seasonal effects are
removed from the observed time series by differencing. The resulting
time series should be (more or less) stationary.

2. The actual analysis is performed by fitting an ARMA(p, q) model on
the transformed time series. The residuals of the best fitting ARMA(p,
q) model should follow a random process.
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ARIMA models are usually written as ARIMA(p, d, q) where

p is the order of the autoregressive component,
q is the order of the moving average component, and
d is the number of differences taken prior to the actual analysis.

For example, if an observed time series is generated by a random walk
process, the ARIMA(0, 1, 0) model should provide the best representation
of the series. Taking first differences yields a series that is both stationary
and random. No further analysis is required in this case.

10.3. Unobserved components and ARIMA

There are a number of important similarities between state space and
ARIMA models. For instance, the local level model (see Chapter 2) is given
by

yt = Ït + εt, (10.5)

Ït = Ït−1 + Át. (10.6)

The first differences of yt are equal to

�yt = yt − yt−1 = Ït − Ït−1 + εt − εt−1. (10.7)

It follows from (10.6) that

Ït − Ït−1 = Át, (10.8)

and substitution of (10.8) in (10.7) yields

�yt = yt − yt−1 = Át + εt − εt−1. (10.9)

It can be shown that (10.9) is a stationary process which has the same
correlogram as the MA(1) process. This implies that the local level model
is equivalent to an ARIMA(0, 1, 1) model.

For a second example of the similarity between state space and ARIMA
modelling, we consider the local linear trend model (see Chapter 3) as
given by

yt = Ït + εt, (10.10)

Ït = Ït−1 + Ìt−1 + Ót−1, (10.11)

Ìt = Ìt−1 + Êt−1. (10.12)
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Taking first differences of yt in (10.10) yields

�yt = yt − yt−1 = Ït − Ït−1 + εt − εt−1, (10.13)

and the second differences are therefore equal to

�2yt = yt − yt−1 − (yt−1 − yt−2) = yt − 2 yt−1 + yt−2

= Ït + εt − 2(Ït−1 + εt−1) + (Ït−2 + εt−2)

= (Ït − Ït−1) − (Ït−1 − Ït−2) + εt − 2 εt−1 + εt−2. (10.14)

It follows from (10.11) that

Ït − Ït−1 = Ìt−1 + Ót−1, (10.15)

and

Ït−1 − Ït−2 = Ìt−2 + Ót−2. (10.16)

Substitution of (10.15) and (10.16) in (10.14) yields

�2yt = (Ìt−1 + Ót−1) − (Ìt−2 + Ót−2) + εt − 2 εt−1 + εt−2

= (Ìt−1 − Ìt−2) + Ót−1 − Ót−2 + εt − 2 εt−1 + εt−2.
(10.17)

Finally, it follows from (10.12) that

Ìt−1 − Ìt−2 = Êt−2, (10.18)

and substitution of (10.18) in (10.17) yields

�2yt = Êt−2 + Ót−1 − Ót−2 + εt − 2 εt−1 + εt−2. (10.19)

It can be shown that (10.19) is a stationary process yielding the same
correlogram as a MA(2) model. The local linear trend model is therefore
equivalent to an ARIMA(0, 2, 2) model. For a comprehensive overview
of these equivalencies between state space and ARIMA models, we refer
to Appendix 1 in Harvey (1989). Finally, it should be noted that ARIMA
models can also be put in state space form and fitted by state space
methods too.

10.4. State space versus ARIMA approaches

Despite the relationships between ARIMA and unobserved components
time series models, the Box–Jenkins and state space approaches to time
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series analysis are distinct. Chapters 2, 3, and 4 present explicit descrip-
tions of non-stationary time series in terms of trend and seasonal com-
ponents. Such components are explicitly modelled in the state space
approach. In the Box–Jenkins approach, trend and seasonal effects are
treated as nuisance parameters. These effects are removed from the series
before any analysis can begin. As a result, state space methods provide
an explicit structural framework for the decomposition of time series in
order to diagnose all the dynamics in the time series data simultaneously.
Box–Jenkins methods are concerned with the short-term dynamics only
and are therefore primarily concerned with forecasting only.

A successful application of ARIMA models requires the (differenced)
time series to be stationary. However, as Durbin and Koopman (2001,
p. 53) pointed out: ‘In the economic and social fields, real series are
never stationary however much differencing is done. The investigator has
to face the question, how close to stationary is close enough? This is a
hard question to answer.’ In state space methods, stationarity of the time
series is not required. Furthermore, missing data, time-varying regression
coefficients and multivariate extensions are easily handled in the state
space framework. This handling is relatively difficult in a pure ARIMA
modelling context.
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State space modelling in practice

In this chapter we discuss how to perform a time series analysis based
on models discussed in Chapters 1–9 and by using software tools. In
particular, we shall consider two time series packages. The first is the user-
friendly software package STAMP of Koopman et al. (2000). The second
software package is SsfPack of Koopman et al. (1999).
STAMP is an easy-to-use package designed to model and forecast time

series, based on structural time series models. The program uses advanced
techniques, such as Kalman filtering, but is set up so as to be easy to
use. The required basic level that is required is presented in the earlier
Chapters 1–9. The hard work is done by the STAMP program, leaving
the user free to concentrate on formulating models and analysing time
series. In many cases the ultimate aim is then to use the models to make
forecasts.
SsfPack is a set of C routines collected in a library that can be linked

to the Ox matrix programming language of Doornik (2001). Another link
that is established is with S-PLUS, see Zivot and Wang (2003). The analyses
presented in this book have been carried out by SsfPack using the link
with Ox Professional. All figures in the book are generated by the Ox
Professional package. In the following sections, we assume that you
are familiar with the Ox programming language. If you are not, please
consult the introductory treatment by Doornik and Ooms (2002) or the
comprehensive documentation on Doornik’s website www.doornik.com.

11.1. The STAMP program and SsfPack

STAMP is the acronym for structural time series analyser, modeller and
predictor. It started as a software program for the MS-DOS operating
system and since 2000 it has been available for the MS Windows system.
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The software operates within the OxMetrics family of econometric and
statistical software products. For example, STAMP works with the GiveWin
program that enables the handling of data, produces graphical and text
output, etc. Nowadays, the program is multi-platform and can be used,
for example, on both Windows and Linux platforms.

All models that are discussed in this book except for the models used
in the Box–Jenkins approach of time series analysis, can be treated by the
STAMP program. This includes both univariate and multivariate models.
Although the results in this book are generated by the Ox/SsfPack software
(see next sections), most results are verified with STAMP. All results have
been similar apart from some numerical differences.
SsfPack is a library of C functions for state space methods. The functions

can be linked to C programs in a standard way. However, a link is also
established for the object-oriented matrix programming language Ox of
Doornik (2001). This link is user-friendly so that state space computations
can be implemented in a fast way. This link is documented in Koopman
et al. (1999) and details of installation can be found at www.ssfpack.com. In
the remainder of this chapter we present an introduction to how SsfPack
can be used. Further, some details are given about how parameters are
estimated in state space models.

11.2. State space representation in SsfPack∗

As discussed earlier in Chapter 9, linear state space models can be repre-
sented in the following general format:

yt = Zt·t + εt, εt ∼ NID(0, Ht) (11.1)

·t+1 = Tt·t + RtÁt Át ∼ NID(0, Qt) (11.2)

for t = 1, . . . , n. In SsfPack the matrix representation of state space models
is even more compact:(

·t+1

yt

)
= �t·t + ut, ut ∼ NID(0,�t) (11.3)

for t = 1, . . . , n, where

�t =

(
Tt

Zt

)
, ut =

(
Át

εt

)
and �t =

[
Rt Qt R′

t 0
0 Ht

]
.
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The system matrix �t is of order (m + p) × m and �t is of order
(m + p) × (m + p). The sum of unobserved components (i.e. the predic-
tion of yt in classical regression terminology) is defined by the p × 1
vector

Ët = Zt·t, (11.4)

and is referred to as the signal.
The state space formulation is not complete without defining the initial

state vector ·1. Generally we assume that

·1 ∼ NID(a1, P1),

where the m× 1 vector a1 and m× m matrix P1 are fixed. In many cases
the initial conditions are implied by the model. For example, the uncon-
ditional properties of the AR(1) model where yt = ·t and ·t+1 = ˆ·t + Át

imposes a1 = 0 and P1 = Û2
Á/(1 − ˆ2). In cases that the state vector contains

regression coefficients or non-stationary processes, the initial state cannot
be properly defined and we let P1 → ∞ or attach very large values to P1.
In SsfPack, the initial conditions can be defined explicitly by the system
matrix � that is defined as

� =

(
P1

a′
1

)
.

The user is free to design the SsfPack state space matrices �t, �t and �

as long as they are consistent with each other and as long as the implied
model is properly specified. For this matter, some basic checks concerning
dimensions are carried out by SsfPack but the actual design of the system
matrices is the sole responsibility of the user.

The construction of the system matrices for even some basic time
series models can be intricate. Therefore, SsfPack offers some basic func-
tions that create the appropriate system matrices for a range of time
series models including the standard regression model, the ARIMA model
and the structural time series model. For example, the SsfPack routine
GetSsfStsm() provides the relevant system matrices for any univariate
structural time series model:

GetSsfStsm(mStsm, &mPhi, &mOmega, &mSigma);
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The routine requires one input matrix containing the model information
in the following form

mStsm = < CMP_LEVEL, ÛÓ, 0, 0;
CMP_SLOPE, ÛÊ, 0, 0;
CMP_SEAS_DUMMY, Û˘, s, 0;
CMP_IRREG, Ûε, 0, 0 >;

The rows in the input matrix may have a different sequential order.
However, the resulting state vector is always organised in the sequence
level, slope, seasonal and irregular. The first column of matrix mStsm uses
predefined constants, and the remaining columns contain real values. The
second column is for the standard deviation of the disturbance that drives
a particular component. The s in the third column of the CMP_SEAS_DUMMY
row is the periodicity of the (dummy) seasonal. The final zero column
is an auxiliary column that is used for other possible components in
the model. The function GetSsfStsm() returns three system matrices mPhi,
mOmega, and mSigma. For example, in the case of a local linear trend model,
we have

mStsm = < CMP_LEVEL, ÛÓ, 0, 0;
CMP_SLOPE, ÛÊ, 0, 0;
CMP_IRREG, Ûε, 0, 0 >;

with the returned matrices mPhi, mOmega, and mSigma given by

�t =

(
Tt

Zt

)
=

1 1
0 1
1 0

, �t =

[
Qt 0
0 Ht

]
=

Û2
Ó 0 0

0 Û2
Ê 0

0 0 Û2
ε

, � =

−1 0
0 −1
0 0

,

respectively, also compare with (11.3). It is implied that the state vector is
given by ·t = (Ït , Ìt)′. Matrix mSigma determines whether the initialisations
of the level and the slope at t = 1 are diffuse or not (a minus one indicating
that they are diffuse, which is the default).

The following Ox code illustrates how to set up system matrices for the
local linear trend model.

#include <oxstd.h>
#include <packages/ssfpack/ssfpack.h>

main()
{

// declare variables
decl mStsm, mPhi, mOmega, mSigma;
// set up state space definition matrix local linear trend model
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mStsm = < CMP_LEVEL, 0.5, 0, 0;
CMP_SLOPE, 0.3, 0, 0;
CMP_IRREG, 0.4, 0, 0>;

// set up system matrices local linear trend model
GetSsfStsm(mStsm, &mPhi, &mOmega, &mSigma);

// print state space definition matrix and system matrices
print("mStsm", mStsm, "mPhi", mPhi, "mOmega", mOmega, "mSigma", mSigma);

}

The output of this introductory Ox program is given below.

mStsm
0.00000 0.50000 0.00000 0.00000
1.0000 0.30000 0.00000 0.00000
16.000 0.40000 0.00000 0.00000

mPhi
1.0000 1.0000
0.00000 1.0000
1.0000 0.00000

mOmega
0.25000 0.00000 0.00000
0.00000 0.090000 0.00000
0.00000 0.00000 0.16000

mSigma
-1.0000 0.00000
0.00000 -1.0000
0.00000 0.00000

Note that the entries on the diagonal of mOmega are equal to the squared
entries in the second column of mStsm, as they should be.

In the documentation of SsfPack more illustrations are given of how
some standard time series models can be represented in state space using
functions such as GetSsfArma() and GetSsfReg(), see Koopman et al. (1999,
Section 2). In the next section we show how regression and intervention
effects can be incorporated in the model.

11.3. Incorporating regression and intervention effects∗

Structural time series models and ARMA models can be represented by
time-invariant state space models. However, regression models lead to
time-varying models since the explanatory variable xt is placed in the Zt

matrix of (11.1) while the regression coefficient is part of the state vector
(see also Section 8.1). The multiple regression model (5.1) of Chapter 5,
with Ït = 0, is given by

yt =
k∑

j=1

‚ j xjt + εt,
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for t = 1, . . . , n. In state space form, we have the state vector ·t =
(‚1, . . . , ‚k)′

Zt = (x1t, . . . , xkt), Tt = Rt = I, Qt = 0,

where I is the k × k identity matrix. The system matrix Zt is therefore
time-varying. The three basic SsfPack matrices are not time-varying; they
represent fixed values. The SsfPack routines can be informed about the
time-variation of mPhi and mOmega via what are called the index matrices
mJPhi and mJOmega which have the same dimensions as mPhi and mOmega,
respectively. All elements of the index matrices are set equal to −1 as a
default. When a particular element of an index matrix is equal to a non-
negative integer (0, 1, 2, . . .), the corresponding element of the system
matrix is regarded as time-varying. The time-varying values are placed
in a data matrix with n columns. The non-negative value of a particular
element in one of the two index matrices indicates the row of the data
matrix that contains the time-varying values of the corresponding ele-
ment of the corresponding system matrix. Since the system matrices need
to be known for every t, the data matrix must be a full and known matrix.
When a particular system matrix is time-invariant, the corresponding
index matrix does not need to be created and can be taken as an empty
matrix. In the Ox system, an empty matrix is indicated by <>.

This administration for time-varying system matrices is quite flexible.
As long as a data matrix is available that contains the time-varying values
of the system matrices, the SsfPack functions can exploit these using the
index matrices mJPhi and mJOmega. In practice, this facility will be used
most frequently for regression and intervention effects. In case of the
standard regression model, the data matrix

X =


x11 . . . x1n

...
xk1 . . . xkn


needs to be created and in Ox may be labelled as mX. Some of the explana-
tory variables may be designed as a particular intervention effect that
usually consists of 0 and 1 values. The SsfPack system then further needs
the index matrix mJPhi. The function GetSsfReg() creates the three system
matrices and the index matrix mJPhi for a given data matrix X, that is

GetSsfReg(mX, &mPhi, &mOmega, &mSigma, &mJPhi);

140



11.3. Incorporating regression and intervention effects∗

To add explanatory and intervention variables in the local linear trend
model, the SsfPack function AddSsfReg() can be used. This is illustrated in
the following Ox program. It considers the model

yt = Ït + ‚xt + Îwt + εt,

where Ït is modelled as a local linear trend, the explanatory variable
xt is for the log of petrol price and the intervention variable wt is for
the introduction of the seat belt law (as discussed in the illustrations in
Chapters 5–7). The program creates a state space model for the state vector
·t = (‚, Î, Ït, Ìt)′.

#include <oxstd.h>
#include <packages/ssfpack/ssfpack.h>

main()
{

decl mX, mStsm, mPhi, mOmega, mSigma, mJPhi = <>;

// set up data matrix with explanatory and intervention variables
mX = loadmat("logpetrol.dat")’ | (constant(0, 1, 169) ~ constant(1, 1, 23));

// set up state space definition matrix local linear trend model
mStsm = < CMP_LEVEL, 0.5, 0, 0;

CMP_SLOPE, 0.3, 0, 0;
CMP_IRREG, 0.4, 0, 0>;

// set up system matrices local linear trend model
GetSsfStsm(mStsm, &mPhi, &mOmega, &mSigma);
// add explanatory and intervention variables to system matrices
AddSsfReg(mX, &mPhi, &mOmega, &mSigma, &mJPhi);

// print state space definition matrix and system matrices
print("mStsm", mStsm, "mPhi", mPhi, "mOmega", mOmega);
print("mSigma", mSigma, "mJPhi", mJPhi);

}

The output is:

mStsm
0.00000 0.50000 0.00000 0.00000
1.0000 0.30000 0.00000 0.00000
16.000 0.40000 0.00000 0.00000

mPhi
1.0000 0.00000 0.00000 0.00000
0.00000 1.0000 0.00000 0.00000
0.00000 0.00000 1.0000 1.0000
0.00000 0.00000 0.00000 1.0000
0.00000 0.00000 1.0000 0.00000

mOmega
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.25000 0.00000 0.00000
0.00000 0.00000 0.00000 0.090000 0.00000
0.00000 0.00000 0.00000 0.00000 0.16000
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mSigma
-1.0000 0.00000 0.00000 0.00000
0.00000 -1.0000 0.00000 0.00000
0.00000 0.00000 -1.0000 0.00000
0.00000 0.00000 0.00000 -1.0000
0.00000 0.00000 0.00000 0.00000

mJPhi
-1.0000 -1.0000 -1.0000 -1.0000
-1.0000 -1.0000 -1.0000 -1.0000
-1.0000 -1.0000 -1.0000 -1.0000
-1.0000 -1.0000 -1.0000 -1.0000
0.00000 1.0000 -1.0000 -1.0000

11.4. Estimation of a model in SsfPack∗

In the previous section it was shown how the SsfPack system can be
informed about the model that is used for analysis and forecasting.
However, a model can be subject to unknown parameters. For the local
linear trend model, for example, the variances of the level, slope, and
observation disturbances are unknown. They can be randomly chosen
but such values may be of no relevance to the time series that is analysed.
We therefore need to estimate the unknown parameters for a given time
series. In most earlier chapters of this book, the unknown variances and
other parameters are estimated by maximum likelihood. These estimated
values are presented and used in the model for further analysis. In this sec-
tion we show how such unknown parameters are estimated by maximum
likelihood in practice using the Ox and SsfPack systems.

The likelihood function is the joint density of a set of stochastic vari-
ables that are assumed generated by a particular model. When the stochas-
tic variables are observed and available to the researcher, these variables
are treated as realisations and referred to as observations. Furthermore,
the observations are taken as fixed such that the likelihood function
only varies when the parameters change for a given model. In our situ-
ation, where the observations consist of a univariate or multivariate time
series, the model can be represented in state space and the parameters
are unknown and need to be estimated. When we have p time series
consisting of n observations each, and when the time series are collected
in a data vector y of order np × 1 and the distributional assumptions are
based on normal density, we have

y ∼ N(Ï, V),

with mean vector Ï of order np × 1 and variance matrix V of order np × np.
In a time series context, the observations are subject to serial correlation
such that the variance matrix is a full matrix (whose inverse has a very
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special band structure). In this case the log-likelihood function of the np ×
1 data vector y is given by

log p(y) = −np
2

log(2) − 1
2

log |V| − 1
2

(y − Ï)′V−1(y − Ï),

for a given y and a vector of unknown parameters ¯. The mean vector
Ï and variance matrix V depend on the parameter vector ¯. When np
is large, the dimension of V becomes large and the computations for
log p(y) become cumbersome since |V| (the determinant of matrix V)
and its inverse V−1 need to be calculated. Given that the model can
be represented as a state space model, matrix V has the just mentioned
special band structure. This structure of matrix V allows the Kalman filter
of Section 8.4 to be used for the computation of |V| and x′V−1x with
x = y − Ï. More specifically, the log-likelihood function is given by

log L (y|¯) = −np
2

log (2 ) − 1
2

n∑
t=1

(
log |Ft| + v′

t F
−1
t vt

)
, (11.5)

where vt is the one-step ahead prediction error and Ft is its variance for
t = 1, . . . , n (see also Section 8.4).

For a given value of ¯ = ¯∗, the Kalman filter is used to compute the log-
likelihood value log L(y|¯). For different values of ¯, the likelihood value
is different and we aim to find the value of ¯ that produces the maximum
likelihood value. This value of ¯ is referred to as the maximum likelihood
value and is given by

̂̄ = arg max¯ log L(y|¯).

Numerical optimisation methods exist that maximise log L(y|¯) with
respect to ¯ in a computationally efficient way. In the Ox system, the
Broyden–Fletcher–Goldfarb–Shannon (BFGS) algorithm is available to
maximise the log-likelihood value (11.5). This method of estimation is
based on a numerical optimisation method that uses the gradient of the
likelihood function with respect to ¯. The gradient is then evaluated at
some location for ¯ = ¯∗ and it provides information about the direction
in the search for the optimum of the log-likelihood function. The gradient
or score vector is defined by

∂1(¯) =
∂ log L(y|¯)

∂¯
. (11.6)

The score vector can be evaluated numerically (see Section 11.4.2). In
Sections 11.4.2 and 11.4.3 an analytical method for the computation of
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the score vector is also discussed. Further, the EM algorithm is introduced
in Section 11.4.4 as an alternative for the BFGS algorithm for estimating
parameters in state space models.

11.4.1. Likelihood evaluation using SsfLikEx

The SsfPack function SsfLikEx() is provided for the computation of the
log-likelihood for given values of the state space matrices:

SsfLikEx(&dLogLik, &dVar, mYt, mPhi, mOmega, mSigma);

This function returns a 1 to indicate that it is successful, and 0 other-
wise. The input arguments are the p × n data matrix mYt, and the state
space model consisting of matrices mPhi, mOmega, and mSigma. The function
returns variables that are prefixed by &. These are the variables &dLogLik
and &dVar as given by

dLogLik = log L (y|¯) = −np
2

log (2 ) − 1
2

n∑
t=1

(
log |Ft| + v′

t F
−1
t vt

)
,

and

dVar =
1

np − d

n∑
t=1

v′
t F

−1
t vt, (11.7)

where n is the number of time points (as before), p is the number of
dependent variables in yt (also as before), and d is the number of diffuse
initial elements of the state.

The following Ox code illustrates how to evaluate the value of log-
likelihood function (11.5) for given state and observation disturbance
variances �t using the SsfPack routine SsfLikEx().

#include <oxstd.h>
#include <packages/ssfpack/ssfpack.h>

main()
{

decl mStsm, mPhi, mOmega, mSigma, mYt, dLogLik, dVar;

// load Norwegian fatalities, transpose and log()
mYt = log(loadmat("norway.dat")’);

// set up state space definition matrix local linear trend model
mStsm = < CMP_LEVEL, 0.5, 0, 0;

CMP_SLOPE, 0.3, 0, 0;
CMP_IRREG, 0.4, 0, 0>;

// set up system matrices local linear trend model
GetSsfStsm(mStsm, &mPhi, &mOmega, &mSigma);
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// print state space definition matrix and system matrices
print("mStsm", mStsm, "mPhi", mPhi, "mOmega", mOmega, "mSigma", mSigma);

//evaluate log-likelihood
SsfLikEx(&dLogLik, &dVar, mYt, mPhi, mOmega, mSigma);
print("\ndLogLik = ", dLogLik);
print("\ndVar = ", dVar);

}

The main() function starts off by loading the Norwegian fatalities series in
mYt, transposing the column vector into a row vector, and then taking the
logarithm:

mYt = log(loadmat("norway.dat")’);

The ASCII file norway.dat has the following format (compare with Appen-
dix B):

34 1 // yearly traffic casualties in Norway (1970-2003, 34 observations)
560
533
490
:
312
280

Then the state space definition matrix is defined as the local linear trend
model and stored in mStsm. Next, the SsfPack routine GetSsfStsm() is called
to set up system matrices mPhi, mOmega, and mSigma, as before. Then the
SsfPack routine SsfLikEx() is called to evaluate loglikelihood function
(11.5) (and store the result in dLogLik), and to compute scale factor (11.7)
(and store the result in dVar). The output of this Ox program is as follows.

mStsm
0.00000 0.50000 0.00000 0.00000
1.0000 0.30000 0.00000 0.00000
16.000 0.40000 0.00000 0.00000

mPhi
1.0000 1.0000
0.00000 1.0000
1.0000 0.00000

mOmega
0.25000 0.00000 0.00000
0.00000 0.090000 0.00000
0.00000 0.00000 0.16000

mSigma
-1.0000 0.00000
0.00000 -1.0000
0.00000 0.00000

dLogLik = -27.876
dVar = 0.0152944

Thus, for the log of Norwegian traffic casualties (where p = 1 since there
is only one dependent variable in this case), and given the present values
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of the level, slope and observation disturbance variances (which are 0.25,
0.09 and 0.16, respectively), we obtain as output

dLogLik = log L (y|¯) = −n
2

log (2 ) − 1
2

n∑
t=3

(
log |Ft| + v′

t F
−1
t vt

)
= −27.876,

and

dVar =
1

n − 2

n∑
t=3

v′
t F

−1
t vt = 0.0152944.

Note that the initial state vector contains two diffuse elements in the
local linear trend model and therefore prediction errors are only properly
defined from t = 3 and onwards.

11.4.2. The score vector

The ith element of the score vector ∂1(¯) in (11.6) can be approximated
numerically by

∂1(¯)i ≈ log L (y|¯ + Âei ) − log L (y|¯ − Âei )
2Â

, Â > 0,

where ei is the ith column of the identity matrix and for some suitably
small chosen Â. The score vector can also be evaluated analytically. In the
case that all parameters in ¯ are associated with variances of the state space
model, the score vector can be expressed by

∂1(¯) = − 1
2

∂

∂¯

n∑
t=1

[log |Ht| + log |Qt−1|

+ tr
({

ε̂t ε̂
′
t + Var(εt|y)

}
H−1

t

)
+ tr

({
Á̂t−1Á̂′

t−1 + Var(Át−1|y)
}

Q−1
t

)
].

(11.8)

Expressions for ε̂t, Var(εt|y), Á̂t and Var(Át|y) can be presented in terms of
quantities from the Kalman filter and smoothing algorithms, of which
more details can be found in Durbin and Koopman (2001, Chapters 4 and
7).

To provide more practical details, the univariate local linear trend model
of Chapter 3 is considered. For this model, the vector ¯ in (11.8) is taken
as

¯ =

¯1

¯2

¯3

 =

 1
2 log Û2

Ó
1
2 log Û2

Ê
1
2 log Û2

ε

 =

log ÛÓ

log ÛÊ

log Ûε

 , (11.9)
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by noting that log au = u log a. The reason for this reparametrisation is
that the BFGS optimisation algorithm yields unconstrained parameter
estimates. The reparametrisation ensures non-negative variances that can
be recovered by Û2

Ó

Û2
Ê

Û2
ε

 = exp (2 ¯). (11.10)

For this particular choice of ¯, the score vector is given by

∂ log L(y|¯)
∂¯

= − 1
2

∂

∂¯
[n log Û2

ε + (n − 1) log Û2
Ó + (n − 1) log Û2

Ê

+
1
Û2

ε

c + tr

B

 1
Û2

Ó

0

0 1
Û2

Ê

],

(11.11)

where

c =
n∑

t=1

{
ε̂2

t + Var(εt|y)
}
, (a scalar),

B =
n∑

t=1

{
Á̂t−1Á̂′

t−1 + Var(Át−1|y)
}
, (a 2 × 2 matrix).

(11.12)

It follows that (11.11) can be simplified into

∂1(¯) =
∂ log L(y|¯)

∂¯
=


b11

exp (2 ¯1) − (n − 1)
b22

exp (2 ¯2) − (n − 1)
c

exp (2 ¯3) − n

 , (11.13)

where the scalar bi j is the (i, j) element of B.
The ith element of the score vector (11.13) can also be written as

∂1(¯)i =
∂ log L(y|¯)

∂¯i
=

1
2

tr
(

M
∂�

∂¯i

)
, (11.14)

where

� =

Û2
Ó 0 0

0 Û2
Ê 0

0 0 Û2
ε

 ,
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and with the diagonal elements of M equal to
1
Û2

Ó

[
b11

Û2
Ó

− (n − 1)
]

1
Û2

Ê

[
b22

Û2
Ê

− (n − 1)
]

1
Û2

ε

[
c
Û2

ε

− n
]

 =


1

exp (2 ¯1)

[
b11

exp (2 ¯1) − (n − 1)
]

1
exp (2 ¯2)

[
b22

exp (2 ¯2) − (n − 1)
]

1
exp (2 ¯3)

[
c

exp (2 ¯3) − n
]

 . (11.15)

To show that the result in (11.14) is valid, we consider the first element of
¯, that is ¯1 = 1

2 log Û2
Ó and observe that

∂Û2
Ó

∂¯1
= 2Û2

Ó (11.16)

since

∂Û2
Ó

∂¯1
=

∂ exp (2 ¯1)
∂¯1

=
∂ exp (u)

∂u
∂u
∂¯1

= 2 exp (u) = 2 exp (2¯1) = 2 Û2
Ó ,

where u = 2¯1. Also, it is noticed that

∂�t

∂¯1
=

2Û2
Ó 0 0

0 0 0
0 0 0

 =

2 exp (2¯1) 0 0
0 0 0
0 0 0

 .

The first element of (11.14) is then equal to

∂1(¯)1 =
∂ log L(y|¯)

∂¯1
=

1
2

tr
(

M
∂�t

∂¯1

)
=

1
2

(
1

exp (2 ¯1)

[
b11

exp (2 ¯1)
− (n − 1)

])
(2 exp (2 ¯1))

=
b11

exp (2 ¯1)
− (n − 1)

and is identical to the first element of the score vector (11.13), as is
required. The same arguments apply to the second and third elements
of ¯. Similar results apply for other models as well.

The SsfPack function SsfLikScoEx() operates in a similar way as the
function that evaluates the likelihood function SsfLikEx() but addition-
ally it also outputs matrix M in (11.14). The function call is

SsfLikScoEx(&dLogLik, &dVar, &mSco, mYt, mPhi, mOmega, mSigma);

where mSco represents matrix M. The same Ox code as in the previous
section can be used to illustrate the SsfLikScoEx() function.
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#include <oxstd.h>
#include <packages/ssfpack/ssfpack.h>

main()
{

decl mStsm, mPhi, mOmega, mSigma, mYt, dLogLik, dVar, mSco;

...

//evaluate log-likelihood and matrix M
SsfLikScoEx(&dLogLik, &dVar, &mSco, mYt, mPhi, mOmega, mSigma);
print("\ndLogLik = ", dLogLik);
print("\ndVar = ", dVar);
print("\nmSco = ", mSco);

}

The final part of this code produces the output

dLogLik = -27.876
dVar = 0.0152944
mSco =

-43.455 21.727 0.00000
21.727 -75.999 0.00000
0.00000 0.00000 -86.294

11.4.3. Numerical maximisation of likelihood in Ox

Different methods of numerical optimisation are available in Ox. For
our purposes, the most effective methods are the ones that use gradient
information from the likelihood function for ¯. During the search to the
optimum, the gradient or score vector (11.6) is evaluated at some location
for ¯ = ¯∗ to provide information about the direction in the search to
the optimum of the log-likelihood function. The score vector can be
evaluated numerically or analytically. In practice, it does not make much
difference how the score vector is evaluated. However, analytical methods
are usually more efficient from a computational perspective.

Given some trial value ˜̄ for ¯, the quasi-Newton step provides a revised
value ˜̄+ and is given by

˜̄+ = ˜̄ + sG ∂1(¯)
∣∣
¯=˜̄ , (11.17)

where the score vector contains the individual directions towards the
optimum, matrix G modifies these directions and s is a scalar that deter-
mines the step size. Matrix G is usually determined by the second order
derivative or Hessian matrix

∂2(¯) =
∂2 log L(y|¯)

∂¯∂¯′ (11.18)

but it can also be based on another appropriately chosen matrix, see
Durbin and Koopman (2001, p.143). The MaxBFGS function in Ox is based
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on this quasi-Newton algorithm. The score vector and matrix G can be
provided explicitly although this is not needed.

In summary, the optimisation algorithm consists of the following basic
steps:

1. Initialise parameter vector ¯ = ¯∗, as in (11.9).

2. Apply the Kalman filter and smoothing algorithms to obtain matrix
M and thus the score vector (11.14) for ¯ = ¯∗.

3. Use (11.17) to obtain new values for ¯ given by ¯+. Replace ¯∗ by ¯+

and go to step 2 until the value of log-likelihood function (11.5) no
longer improves.

In Section 11.4.5 Ox code is provided to give an illustrative example of
how this method works in practice.

11.4.4. The EM algorithm

The EM algorithm is a maximum likelihood estimation procedure that
consists of two steps: the E(xpectation)-step and the M(aximisation)-step.
The two steps are repeated many times (EMEMEMEM . . . ) until parameter
estimates have converged. In the context of state space models, the EM
algorithm is a recursive method to obtain maximum likelihood estimates
for unknown parameters in the system matrices �t and �t of the SsfPack
model, see Durbin and Koopman (2001, p. 143) for more background. A
simple method for unknown and time-invariant variances in � is given
below.

For the local linear trend model, the following EM algorithm can be
considered for the estimation of ¯ which is now defined as

¯ =

¯1

¯2

¯3

 =

Û2
Ó

Û2
Ê

Û2
ε

 . (11.19)

1. Initialise parameter vector ¯ = ¯∗ in (11.19).

2. E-step: Apply the Kalman filter and smoothing algorithms for ¯ = ¯∗

to obtain matrix M and thus scalar c and matrix B as defined in
(11.12).

3. M-step: Solve ∂1(¯) = 0 with ∂1(¯) given by (11.13) with c and B
obtained from the previous E-step. For the local linear trend model,
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we have

¯+
1 =

b11

n − 1
, ¯+

2 =
b22

n − 1
,

and

¯+
3 =

c
n

.

4. Replace ¯∗ by ¯+ and go to step 2 until the value of log-likelihood
function (11.5) no longer improves.

The advantages of the EM algorithm are that it guarantees non-negativity
of the estimated hyperparameters, and that it satisfies monotone con-
vergence. However, convergence can be extremely slow, especially when
there are many parameters to be estimated. Although the BFGS algorithm
does not necessarily satisfy monotone convergence, it is usually much
faster than the EM algorithm. A mixture of the two methods, where first
the EM algorithm is used and next the BFGS algorithm is considered, often
leads to an effective estimation method.

11.4.5. Some illustrations in Ox

To illustrate the estimation methods we return to Section 2.3 where the
parameters of the local level model are estimated for the Norwegian
fatalities data. The log-likelihood function is evaluated by the SsfPack
function SsfLikEx() and the log-likelihood function is numerically max-
imised using the Ox routine MaxBFGS(). An example of Ox code for this
approach to maximum likelihood estimation is given by

...
static decl s_mY, s_cT; // data (1 x n) and n
static decl s_mStsm, s_vVarCmp; // matrices for state space model

SetStsmModel(const vP)
{

s_mStsm = < CMP_LEVEL, 0.5, 0, 0;
CMP_IRREG, 1, 0, 0>;

decl vr = exp(2.0 * vP);
s_vVarCmp = vr[0] | vr[1];

}
LogLikStsm(const vY, const pdLik, const pdVar)
{

decl mphi, momega, msigma, ret_val;
GetSsfStsm(s_mStsm, &mphi, &momega, &msigma);
momega = diag(s_vVarCmp); // create Omega from s_vVarCmp
return = SsfLikEx(pdLik, pdVar, vY, mphi, momega, msigma);

}
LogLikScoStsm(const vY, const pdLik, const pvSco)
{
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decl mphi, momega, msigma, msco, ret_val, dvar, vs;
GetSsfStsm(s_mStsm, &mphi, &momega, &msigma);
momega = diag(s_vVarCmp);
ret_val = SsfLikScoEx(pdLik, &dvar, &msco, vY, mphi, momega, msigma);
vs = (diagonal(msco)’ .* s_vVarCmp);
pvSco[0][0:1] = vs[0:1] / s_cT;
pdLik[0] /= s_cT;
return ret_val;

}
Likelihood(const vP, const pdLik, const pvSco, const pmHes)
{

decl ret_val, dvar;
SetStsmModel(vP);
return pvSco ?

LogLikScoStsm(s_mY, pdLik, pvSco) : LogLikStsm(s_mY, pdLik, &dvar);
}
InitialPar()
{

decl dlik, dvar, vp = log(<0.5; 1>);
SetStsmModel(vp);
LogLikStsm(s_mY, &dlik, &dvar);
return vp + 0.5 * log(dvar);

}
MaxLik()
{

decl vp, dlik, ir;

vp = InitialPar();
MaxControl(10, 1, 1);
ir = MaxBFGS(Likelihood, &vp, &dlik, 0, FALSE);

...
}

This code is a standard setup for the estimation of variances in state
space models. Here the analytical score function is evaluated. The Ox
function Likelihood() always returns the likelihood value at vP, where
vP is the parameter vector defined as ¯ in the previous sections. When an
address is given for variable pvSco, it also computes the analytical score
function. The Ox function MaxLik() produces the output that is discussed
in Section 2.3. The line

vs = (diagonal(msco)’ .* s_vVarCmp);

in the Ox function LogLikScoStsm() represents the computations

∂(¯)1 =
1
2

tr
(

M
∂�t

∂¯1

)
, ∂(¯)2 =

1
2

tr
(

M
∂�t

∂¯2

)
,

where ¯1 = 1
2 log Û2

Ó and ¯2 = 1
2 log Û2

ε , see Section 11.4.2. Note that the
program variable msco represents the matrix M.

The EM algorithm for estimating the two variances Û2
Ó and Û2

Â of the local
level model can also be implemented in a straightforward way in Ox. An
example of an Ox implementation of the EM algorithm is

EM()
{

decl vp, dLikold, dLik, dVar, iter, maxiter = 100;
decl mphi, momega, msigma, msco, vs;
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s_mStsm = < CMP_LEVEL, 0.5, 0, 0;
CMP_IRREG, 1, 0, 0>;

GetSsfStsm(s_mStsm, &mphi, &momega, &msigma);
s_vPar = diagonal(momega)’;
SsfLikScoEx(&dLikold, &dVar, &msco, s_mY, mphi, momega, msigma); // E-step
s_vPar *= dVar; // initial parameter values

for(iter=0; iter <= maxiter; ++iter)
{

vs = (diagonal(msco)’ .* s_vPar); // score
s_vPar = ((s_vPar .* vs) ./ (s_cT-1 | s_cT)) + s_vPar; // M-step
momega = diag(s_vPar); // new variance matrix

SsfLikScoEx(&dLik, &dVar, &msco, s_mY, mphi, momega, msigma); // E-step
dLik /= s_cT;
if(fabs((dLik - dLikold)/dLikold) < 10^(-12))
{

print("\nConvergence in iteration ", iter);
print("\nloglikelihood = ", dLik);
print("\nparameter vector = ", s_vPar);
return TRUE;
break;

}
dLikold = dLik;

}
return FALSE;

}

Since

s_vPar =

(
Û2

Ó

Û2
ε

)

and

diagonal(msco) =

 1
Û2

Ó

[
b11

Û2
Ó

− (n − 1)
]

1
Û2

ε

[
c
Û2

ε

− n
]  ,

the lines

vs = (diagonal(msco)’ .* s_vPar); // score
s_vPar = ((s_vPar .* vs) ./ (s_cT-1 | s_cT)) + s_vPar; // M-step

first result in

vs =

 1
Û2

Ó

[
b11

Û2
Ó

− (n − 1)
]

1
Û2

ε

[
c
Û2

ε

− n
]  ×

(
Û2

Ó

Û2
ε

)
=

( b11

Û2
Ó

− (n − 1)
c
Û2

ε

− n

)
,
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and then in

s_vPar =

[(
Û2

Ó

Û2
ε

)
×

( b11

Û2
Ó

− (n − 1)
c
Û2

ε

− n

)
×

(
1

n−1
1
n

)]
+

(
Û2

Ó

Û2
ε

)
=

(
b11
n−1

c
n

)
,

as mentioned in step 3 of the EM algorithm in Section 11.4.4.
When applied to the Norwegian fatalities data discussed in Section 2.3,

the output is given by

Convergence in iteration 72
loglikelihood = 0.846862
parameter vector = 0.0047030

0.0032682

The parameter estimates are very close to the ones obtained in Section 2.3
where the BFGS algorithm with analytical evaluation of the score vector
is used for the maximisation of the likelihood.

11.5. Prediction, filtering, and smoothing∗

Once the unknown parameters are estimated, it can be of interest to
investigate the implied components such as trend, seasonal and irregular.
In SsfPack some functions are provided for the prediction, filtering and
smoothing of the state vector, see Section 8.4. The most useful function
for this purpose is SsfMomentEstEx() that outputs the estimates of the state
vector and their variances:

·̂it = E(·it|D), Vit = Var(·it|D),

where ·it is the ith element of the state vector ·t (i = 1, . . . , m) and D refers
to a data set. For prediction (ST_PRED) we have D = {y1, . . . , yt−1}, for filter-
ing (ST_FIL) we have D = {y1, . . . , yt} and for smoothing (ST_SMO) we have
D = {y1, . . . , yn}. The signal of the model is defined by the p × 1 vector
Ët = Zt·t in (11.4). SsfMomentEstEx() also outputs the estimates concerning
the signal, that is

Ë̂ j t = Zjt̂·t = ZjtE(·t|D), � j t = ZjtVar(·t|D)Z′
j t,

where Ë j t is the jth element of the signal Ët and Zjt is the jth row of the
matrix Zt ( j = 1, . . . , p). The output of the function SsfMomentEstEx() is
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the matrix
·̂11 . . . ·̂m1 Ë̂11 . . . Ë̂p1 V11 . . . Vm1 �11 . . . �p1

...
...

·̂1n . . . ·̂mn Ë̂1n . . . Ë̂pn V1n . . . Vmn �1n . . . �pn


′

.

The next Ox program is to illustrate the SsfMomentEstEx() function. It is
based on the earlier Ox program for the Norwegian casualties discussed in
Section 11.4.1 where we add the following lines:

#include <oxstd.h>
#include <packages/ssfpack/ssfpack.h>

main()
{

decl mStsm, mPhi, mOmega, mSigma, mYt, dLogLik, dVar, mSco;

...

// prediction, filtering and smoothing
decl mPrd, mFil, mSmo;
SsfMomentEstEx(ST_PRED, &mPrd, mYt, mPhi, mOmega, mSigma);
SsfMomentEstEx(ST_FIL, &mFil, mYt, mPhi, mOmega, mSigma);
SsfMomentEstEx(ST_SMO, &mSmo, mYt, mPhi, mOmega, mSigma);
print("\nPrediction, filtering and smoothing of LEVEL");
print("\nwith corresponding s.e.’s (last 3 columns)\n");
print((mPrd[0][] | mFil[0][] | mSmo[0][] | sqrt(mPrd[3][] | mFil[3][]

| mSmo[3][]))’);
print("\nPrediction, filtering and smoothing of SLOPE");
print("\nwith corresponding s.e.’s (last 3 columns)\n");
print((mPrd[1][] | mFil[1][] | mSmo[1][] | sqrt(mPrd[4][] | mFil[4][]

| mSmo[4][]))’);
}

The final part of this code produces the output

Prediction, filtering and smoothing of LEVEL
with corresponding s.e.’s (last 3 columns)

0.00000 6.3279 6.3202 0.00000 0.40000 0.36146
6.3279 6.2785 6.2738 0.64031 0.40000 0.30439
6.2291 6.1980 6.2243 1.1790 0.37879 0.30308
6.1302 6.2200 6.2330 0.93753 0.36791 0.30287

:
5.7589 5.8185 5.7745 0.84393 0.36146 0.30287
5.8506 5.6597 5.6835 0.84393 0.36146 0.30308
5.6166 5.7198 5.7026 0.84393 0.36146 0.30439
5.7174 5.6499 5.6499 0.84393 0.36146 0.36146

Prediction, filtering and smoothing of SLOPE
with corresponding s.e.’s (last 3 columns)

0.00000 0.00000 -0.034245 0.00000 0.00000 0.37254
0.00000 -0.049415 -0.029871 0.30000 0.81240 0.31196

-0.049415 -0.067773 -0.018449 0.86603 0.56231 0.28773
-0.067773 -0.026818 -0.016803 0.63733 0.50155 0.27992

:
0.0086568 0.032095 -0.026126 0.56461 0.47831 0.28773
0.032095 -0.043014 -0.020438 0.56461 0.47831 0.31196
-0.043014 -0.0024259 -0.028962 0.56461 0.47831 0.37254

-0.0024259 -0.028962 -0.028962 0.56461 0.47831 0.47831
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The output reveals various features of prediction, filtering and smoothing.
The predictive estimates, including their variances, are only valid from
t = 3 in the case of the local linear trend model. The output for t = 1 and
t = 2 is not relevant for prediction. The filtered estimates are valid from
t = 2 and the smoothed estimates are valid for all t. The final filtered
estimates for t = n are equivalent to the smoothed estimates at t = n.

We end this chapter by noting that the Ox and SsfPack code for per-
forming all the analyses discussed in the book – as well as the data
files – can be downloaded from http://staff.feweb.vu.nl/Koopman and
from http://www.ssfpack.com.
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12

Conclusions

In Chapters 2–7 a practical stepwise approach to univariate time series
analysis by state space methods was presented. First, those state compo-
nents were discussed that can be used to obtain an adequate description
of the time series at hand: the level, the slope and the seasonal. For the
log of the annual number of traffic fatalities in Norway, the local level
model provides a good description of the data, while the smooth trend
model was found to provide a good description of the same type of data in
Finland. In the case of the log of the monthly number of drivers killed or
seriously injured in the UK in the period January 1969 to December 1984,
the model consisting of a stochastic level and a deterministic seasonal was
found to give the best description of this time series. For the quarterly
price changes in the UK in the period of 1950–2001 this was a stochastic
level and stochastic seasonal model.

Next, it was illustrated how other components can be added to the
model in order to obtain explanations for the time series: explanatory and
intervention variables. The log of the petrol price and the introduction of
the seat belt law in February 1983 in the UK are both significant predictors
of the UK development in drivers killed or seriously injured. There is a
negative relation between petrol price and number of drivers KSI. More
specifically, keeping all other components constant a 1% increase in petrol
price results in a 0.28% reduction in the numbers of drivers KSI. This could
be explained by the fact that higher petrol prices result in a reduction
of the number of vehicles circulating in traffic. The significant value of
the regression coefficient for the intervention variable indicates that the
introduction of the seat belt law in February 1983 in the UK resulted in
a reduction of 21.3% in the number of drivers KSI. The addition of two
pulse intervention variables to the UK quarterly price changes series also
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improved the fit of the model as well as the results of the diagnostic tests
on the residuals.

As discussed in the present book, whether a state component should be
treated stochastically or deterministically can be determined by evaluat-
ing the variance estimate of the disturbance(s) associated with the state
component. If the variance of the stochastic component is very small (i.e.
almost zero), then the component should be handled deterministically,
since this leads to a more parsimonious model. This can be verified by
comparing the values of the Akaike information criterion of the two
models with stochastic and with deterministic component. The AIC for
the model with a deterministic component should be somewhat smaller
than the one with a stochastic component. In the present book, this was
found to be the case for the seasonal component of the UK drivers KSI
series for example.

A useful property of state space methods is that fully deterministic
state space models can be treated as classical linear regression models.
This makes it particularly easy to evaluate the benefits obtained from
analysing time series with stochastic state space models instead of classical
regression models. The first important advantage of state space methods
over classical regression is that the former methods usually result in a
much better fit to the data. At least as important is the fact that state
space methods explicitly take the time dependencies between the obser-
vations of a time series into account. This leads to residuals that are much
closer to independent random values than in classical linear regression. As
discussed in the present book, significance tests for the contributions of
explanatory and intervention variables to the models are therefore much
more reliable in state space methods than in classical regression analysis
of time series data.

In Chapter 8, a general notation for univariate state space models
was presented, as well as a number of alternative options for handling
explanatory and intervention variables. Moreover, the possibility of estab-
lishing confidence intervals for each modelled state component was dis-
cussed together with the handling of missing data and the estimation
of unknown future observations. Chapter 8 further presented diagnostic
test statistics for time series residuals (independence, homoscedasticity
and normality) and introduced the one-step ahead prediction error and
its variance. In Chapter 9 multivariate time series analysis by state space
methods was introduced.

In Chapter 10 the popular Box–Jenkins approach to time series analy-
sis was discussed, allowing for an evaluation of the relative merits of
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Box–Jenkins and state space methods. This evaluation turned out in
favour of time series analysis by state space methods, because the latter
methods explicitly model the trend and seasonal in a series (hence the
name structural time series models), and easily handle missing data,
explanatory variables and multivariate time series while this is more
intricate in ARIMA modelling.

Finally, in Chapter 11 it was shown how to perform a time
series analysis based on models discussed in Chapters 1–9 in Ox and
SsfPack.

With this book, we not only hope to have provided an easier access
to the understanding of the exciting new field of state space time series
analysis than can be found in the current literature on this subject, but
also to have convinced researchers of the substantial advantages of using
this approach in comparison with other available techniques for the
analysis of time series data.

12.1. Further reading

This book has presented a complete introduction to the basic con-
cepts of state space and unobserved components time series models.
We have restricted ourselves to review basic examples of univariate and
multivariate linear Gaussian time series models. We have discussed a
number of interesting structural time series models with trend and sea-
sonal components. However, it should be emphasized that all linear
time series models can be formulated in state space. A classic mono-
graph on unobserved components models (theory and methods) is Har-
vey (1989). This book shows that the unobserved-component model is
not restricted to the basic decomposition of trend plus seasonal plus
irregular. Other components such as cycles and ARMA processes can
be incorporated in the model as well. In economics, the cycle com-
ponent may capture the business cycle fluctuations which play an
important role in macroeconomic policy decision-making. Furthermore,
unobserved components can be considered in more general settings
than the univariate model. For example, Harvey (1989) presents mul-
tivariate generalisations, nonlinear and non-Gaussian extensions and
continuous-time formulations of the structural time series model. The
observation equation in the state space model can also be represented
as a sum of unobserved components which are modelled as stationary
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and nonstationary dynamic processes. Such models are sometimes
referred to as RegComponent models, see Bell (2004). It is convenient
that state space models can include such a wide range of time series
models.

Furthermore, the methods associated with state space (Kalman filter,
smoothing algorithm) are discussed but the equations and their deriva-
tions are not given. Although the details are not given, the reader should
have a clear idea of the purpose of the various algorithms related to
the Kalman filter. Those who are interested in a more technical expo-
sition of the Kalman filter and associated smoothing algorithms are
referred to the textbook of Durbin and Koopman (2001, Part I) but also
classic references such as Anderson and Moore (1979), Harvey (1989),
and West and Harrison (1997) provide good treatments. Issues such
as numerically stable implementations, exact diffuse initialisations of
non-stationary processes and efficient treatments of multivariate models
are covered in the more recent literature and reviewed in Durbin and
Koopman (2001, Part I). From a closer inspection of the algorithms, it
will emerge that the methods are quite flexible in their handling of
messy features such as missing observations, irregular spacing, treatment
of outliers and breaks, special effects; see Harvey et al. (1998) for a
detailed discussion of treatments of messy aspects in the analysis of time
series.

There are various textbooks that treat linear Gaussian state space models
and methods. A few examples are Brockwell and Davis (1987), Hamilton
(1994), West and Harrison (1997), and Shumway and Stoffer (2000). This
book has given an introduction for which only an introductory course
in regression analysis is required. A more complete introduction in the
statistical analysis of time series that includes state space and unobserved
components is presented in, for example, the books of Harvey (1993) and
Brockwell and Davis (2002).

An up-to-date treatment of state space methods is presented by Durbin
and Koopman (2001, Part I). The class of linear Gaussian models can
be regarded as restrictive when one is dealing with non-standard time
series processes for binary, count and categorical data. Furthermore, time
series from fields such as engineering, biostatistics and financial markets
have features that cannot be treated by linear Gaussian processes. In such
situations, observation and state variables require model formulations
that incorporate nonlinear and/or non-Gaussian dynamic processes. The
range of such models is large and it is a challenging task to develop
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methods for the time series analysis of nonlinear and non-Gaussian time
series models including parameter estimation and signal extraction. This
introductory book has shown that such methods are widely available for
linear Gaussian time series but more advanced methods are needed for the
analysis of more general models. This research area is very active. Some
recent textbook references are Akaike and Kitagawa (1999), Doucet et al.
(2000), and Durbin and Koopman (2001, Part II).
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APPENDIX A

UK drivers KSI and petrol price

date drivers KSI petrol price

1969-JAN 1687 0.1030
1969-FEB 1508 0.1024
1969-MAR 1507 0.1021
1969-APR 1385 0.1009
1969-MAY 1632 0.1010
1969-JUN 1511 0.1006
1969-JUL 1559 0.1038
1969-AUG 1630 0.1041
1969-SEP 1579 0.1038
1969-OCT 1653 0.1030
1969-NOV 2152 0.1027
1969-DEC 2148 0.1020
1970-JAN 1752 0.1013
1970-FEB 1765 0.1007
1970-MAR 1717 0.1001
1970-APR 1558 0.0986
1970-MAY 1575 0.0983
1970-JUN 1520 0.0981
1970-JUL 1805 0.0973
1970-AUG 1800 0.0974
1970-SEP 1719 0.0974
1970-OCT 2008 0.0964
1970-NOV 2242 0.0957
1970-DEC 2478 0.0951
1971-JAN 2030 0.0967
1971-FEB 1655 0.0961
1971-MAR 1693 0.0954
1971-APR 1623 0.0947
1971-MAY 1805 0.0941
1971-JUN 1746 0.0935
1971-JUL 1795 0.0930
1971-AUG 1926 0.0928
1971-SEP 1619 0.0927
1971-OCT 1992 0.0923
1971-NOV 2233 0.0917
1971-DEC 2192 0.0913
1972-JAN 2080 0.0907
1972-FEB 1768 0.0903
1972-MAR 1835 0.0900
1972-APR 1569 0.0891

date drivers KSI petrol price

1972-MAY 1976 0.0887
1972-JUN 1853 0.0882
1972-JUL 1965 0.0889
1972-AUG 1689 0.0882
1972-SEP 1778 0.0889
1972-OCT 1976 0.0877
1972-NOV 2397 0.0874
1972-DEC 2654 0.0870
1973-JAN 2097 0.0864
1973-FEB 1963 0.0859
1973-MAR 1677 0.0854
1973-APR 1941 0.0838
1973-MAY 2003 0.0846
1973-JUN 1813 0.0841
1973-JUL 2012 0.0838
1973-AUG 1912 0.0835
1973-SEP 2084 0.0828
1973-OCT 2080 0.0812
1973-NOV 2118 0.0829
1973-DEC 2150 0.0942
1974-JAN 1608 0.0924
1974-FEB 1503 0.1082
1974-MAR 1548 0.1072
1974-APR 1382 0.1140
1974-MAY 1731 0.1125
1974-JUN 1798 0.1113
1974-JUL 1779 0.1103
1974-AUG 1887 0.1082
1974-SEP 2004 0.1070
1974-OCT 2077 0.1049
1974-NOV 2092 0.1194
1974-DEC 2051 0.1176
1975-JAN 1577 0.1330
1975-FEB 1356 0.1308
1975-MAR 1652 0.1283
1975-APR 1382 0.1235
1975-MAY 1519 0.1186
1975-JUN 1421 0.1163
1975-JUL 1442 0.1152
1975-AUG 1543 0.1145
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date drivers KSI petrol price

1975-SEP 1656 0.1135
1975-OCT 1561 0.1119
1975-NOV 1905 0.1106
1975-DEC 2199 0.1153
1976-JAN 1473 0.1138
1976-FEB 1655 0.1123
1976-MAR 1407 0.1118
1976-APR 1395 0.1096
1976-MAY 1530 0.1084
1976-JUN 1309 0.1079
1976-JUL 1526 0.1091
1976-AUG 1327 0.1076
1976-SEP 1627 0.1062
1976-OCT 1748 0.1063
1976-NOV 1958 0.1048
1976-DEC 2274 0.1035
1977-JAN 1648 0.1014
1977-FEB 1401 0.1004
1977-MAR 1411 0.0989
1977-APR 1403 0.1025
1977-MAY 1394 0.1030
1977-JUN 1520 0.1022
1977-JUL 1528 0.0998
1977-AUG 1643 0.0926
1977-SEP 1515 0.0918
1977-OCT 1685 0.0907
1977-NOV 2000 0.0900
1977-DEC 2215 0.0893
1978-JAN 1956 0.0884
1978-FEB 1462 0.0884
1978-MAR 1563 0.0868
1978-APR 1459 0.0850
1978-MAY 1446 0.0846
1978-JUN 1622 0.0844
1978-JUL 1657 0.0844
1978-AUG 1638 0.0836
1978-SEP 1643 0.0834
1978-OCT 1683 0.0827
1978-NOV 2050 0.0852
1978-DEC 2262 0.0848
1979-JAN 1813 0.0845
1979-FEB 1445 0.0854
1979-MAR 1762 0.0876
1979-APR 1461 0.0904
1979-MAY 1556 0.0908
1979-JUN 1431 0.1087
1979-JUL 1427 0.1141
1979-AUG 1554 0.1130
1979-SEP 1645 0.1113
1979-OCT 1653 0.1091
1979-NOV 2016 0.1077
1979-DEC 2207 0.1076
1980-JAN 1665 0.1038
1980-FEB 1361 0.1071
1980-MAR 1506 0.1074
1980-APR 1360 0.1117

date drivers KSI petrol price

1980-MAY 1453 0.1106
1980-JUN 1522 0.1119
1980-JUL 1460 0.1097
1980-AUG 1552 0.1082
1980-SEP 1548 0.1063
1980-OCT 1827 0.1042
1980-NOV 1737 0.1019
1980-DEC 1941 0.1028
1981-JAN 1474 0.1048
1981-FEB 1458 0.1040
1981-MAR 1542 0.1167
1981-APR 1404 0.1152
1981-MAY 1522 0.1130
1981-JUN 1385 0.1139
1981-JUL 1641 0.1191
1981-AUG 1510 0.1245
1981-SEP 1681 0.1232
1981-OCT 1938 0.1207
1981-NOV 1868 0.1210
1981-DEC 1726 0.1170
1982-JAN 1456 0.1128
1982-FEB 1445 0.1081
1982-MAR 1456 0.1088
1982-APR 1365 0.1113
1982-MAY 1487 0.1113
1982-JUN 1558 0.1155
1982-JUL 1488 0.1148
1982-AUG 1684 0.1172
1982-SEP 1594 0.1191
1982-OCT 1850 0.1180
1982-NOV 1998 0.1174
1982-DEC 2079 0.1170
1983-JAN 1494 0.1126
1983-FEB 1057 0.1137
1983-MAR 1218 0.1131
1983-APR 1168 0.1185
1983-MAY 1236 0.1180
1983-JUN 1076 0.1177
1983-JUL 1174 0.1201
1983-AUG 1139 0.1194
1983-SEP 1427 0.1189
1983-OCT 1487 0.1185
1983-NOV 1483 0.1180
1983-DEC 1513 0.1177
1984-JAN 1357 0.1178
1984-FEB 1165 0.1148
1984-MAR 1282 0.1157
1984-APR 1110 0.1154
1984-MAY 1297 0.1148
1984-JUN 1185 0.1148
1984-JUL 1222 0.1149
1984-AUG 1284 0.1148
1984-SEP 1444 0.1141
1984-OCT 1575 0.1165
1984-NOV 1737 0.1160
1984-DEC 1763 0.1161
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APPENDIX B

Road traffic fatalities in Norway and Finland

date Norway Finland

1970 560 1055
1971 533 1143
1972 490 1156
1973 511 1086
1974 509 865
1975 539 910
1976 471 804
1977 442 709
1978 434 610
1979 437 650
1980 362 551
1981 338 555
1982 401 569
1983 409 604
1984 407 541
1985 402 541
1986 452 612
1987 398 581
1988 378 653
1989 381 734
1990 332 649
1991 323 632
1992 325 601
1993 281 484
1994 283 480
1995 305 441
1996 255 404
1997 303 438
1998 352 400
1999 304 431
2000 341 396
2001 275 433
2002 312 415
2003 280 379

Source: IRTAD.
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APPENDIX C

UK front and rear seat passengers KSI

date front seat rear seat travel kms

1969-JAN 867 269 9059
1969-FEB 825 265 7685
1969-MAR 806 319 9963
1969-APR 814 407 10955
1969-MAY 991 454 11823
1969-JUN 945 427 12391
1969-JUL 1004 522 13460
1969-AUG 1091 536 14055
1969-SEP 958 405 12106
1969-OCT 850 437 11372
1969-NOV 1109 434 9834
1969-DEC 1113 437 9267
1970-JAN 925 316 9130
1970-FEB 903 311 8933
1970-MAR 1006 351 11000
1970-APR 892 362 10733
1970-MAY 990 486 12912
1970-JUN 866 429 12926
1970-JUL 1095 551 13990
1970-AUG 1204 646 14926
1970-SEP 1029 456 12900
1970-OCT 1147 475 12034
1970-NOV 1171 456 10643
1970-DEC 1299 468 10742
1971-JAN 944 356 10266
1971-FEB 874 271 10281
1971-MAR 840 354 11527
1971-APR 893 427 12281
1971-MAY 1007 465 13587
1971-JUN 973 440 13049
1971-JUL 1097 539 16055
1971-AUG 1194 646 15220
1971-SEP 988 457 13824
1971-OCT 1077 446 12729
1971-NOV 1045 402 11467
1971-DEC 1115 441 11351
1972-JAN 1005 359 10803
1972-FEB 857 334 10548
1972-MAR 879 312 12368
1972-APR 887 427 13311

date front seat rear seat travel kms

1972-MAY 1075 434 13885
1972-JUN 1121 486 14088
1972-JUL 1190 569 16932
1972-AUG 1058 523 16164
1972-SEP 939 418 14883
1972-OCT 1074 452 13532
1972-NOV 1089 462 12220
1972-DEC 1208 497 12025
1973-JAN 903 354 11692
1973-FEB 916 347 11081
1973-MAR 787 276 13745
1973-APR 1114 472 14382
1973-MAY 1014 487 14391
1973-JUN 1022 505 15597
1973-JUL 1114 619 16834
1973-AUG 1132 640 17282
1973-SEP 1111 559 15779
1973-OCT 1008 453 13946
1973-NOV 916 418 12701
1973-DEC 992 419 10431
1974-JAN 731 262 11616
1974-FEB 665 299 10808
1974-MAR 724 303 12421
1974-APR 744 401 13605
1974-MAY 910 413 14455
1974-JUN 883 426 15019
1974-JUL 900 516 15662
1974-AUG 1057 600 16745
1974-SEP 1076 459 14717
1974-OCT 919 443 13756
1974-NOV 920 412 12531
1974-DEC 953 400 12568
1975-JAN 664 278 11249
1975-FEB 607 302 11096
1975-MAR 777 381 12637
1975-APR 633 279 13018
1975-MAY 791 442 15005
1975-JUN 790 409 15235
1975-JUL 803 416 15552
1975-AUG 884 511 16905
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1975-SEP 769 393 14776
1975-OCT 732 345 14104
1975-NOV 859 391 12854
1975-DEC 994 470 12956
1976-JAN 704 266 12177
1976-FEB 684 312 11918
1976-MAR 671 300 13517
1976-APR 643 373 14417
1976-MAY 771 412 15911
1976-JUN 644 322 15589
1976-JUL 828 458 16543
1976-AUG 748 427 17925
1976-SEP 767 346 15406
1976-OCT 825 421 14601
1976-NOV 810 344 13107
1976-DEC 986 370 12268
1977-JAN 714 291 11972
1977-FEB 567 224 12028
1977-MAR 616 266 14033
1977-APR 678 338 14244
1977-MAY 742 298 15287
1977-JUN 840 386 16954
1977-JUL 888 479 17361
1977-AUG 852 473 17694
1977-SEP 774 332 16222
1977-OCT 831 391 14969
1977-NOV 889 370 13624
1977-DEC 1046 431 13842
1978-JAN 889 366 12387
1978-FEB 626 250 11608
1978-MAR 808 355 15021
1978-APR 746 304 14834
1978-MAY 754 379 16565
1978-JUN 865 440 16882
1978-JUL 980 500 18012
1978-AUG 959 511 18855
1978-SEP 856 384 17243
1978-OCT 798 366 16045
1978-NOV 942 432 14745
1978-DEC 1010 390 13726
1979-JAN 796 306 11196
1979-FEB 643 232 12105
1979-MAR 794 342 14723
1979-APR 750 329 15582
1979-MAY 809 394 16863
1979-JUN 716 355 16758
1979-JUL 851 385 17434
1979-AUG 931 463 18359
1979-SEP 834 453 17189
1979-OCT 762 373 16909
1979-NOV 880 401 15380
1979-DEC 1077 466 15161
1980-JAN 748 306 14027
1980-FEB 593 263 14478
1980-MAR 720 323 16155
1980-APR 646 310 16585

date front seat rear seat travel kms

1980-MAY 765 424 18117
1980-JUN 820 403 17552
1980-JUL 807 406 18299
1980-AUG 885 466 19361
1980-SEP 803 381 17924
1980-OCT 860 369 17872
1980-NOV 825 378 16058
1980-DEC 911 392 15746
1981-JAN 704 284 15226
1981-FEB 691 316 14932
1981-MAR 688 321 16846
1981-APR 714 358 16854
1981-MAY 814 378 18146
1981-JUN 736 382 17559
1981-JUL 876 433 18655
1981-AUG 829 506 19453
1981-SEP 818 428 17923
1981-OCT 942 479 17915
1981-NOV 782 370 16496
1981-DEC 823 349 13544
1982-JAN 595 238 13601
1982-FEB 673 285 15667
1982-MAR 660 324 17358
1982-APR 676 346 18112
1982-MAY 755 410 18581
1982-JUN 815 411 18759
1982-JUL 867 496 20668
1982-AUG 933 534 21040
1982-SEP 798 396 18993
1982-OCT 950 470 18668
1982-NOV 825 385 16768
1982-DEC 911 411 16551
1983-JAN 619 281 16231
1983-FEB 426 300 15511
1983-MAR 475 318 18308
1983-APR 556 391 17793
1983-MAY 559 398 19205
1983-JUN 483 337 19162
1983-JUL 587 477 20997
1983-AUG 615 422 20705
1983-SEP 618 495 18759
1983-OCT 662 471 19240
1983-NOV 519 368 17504
1983-DEC 585 345 16591
1984-JAN 483 296 16224
1984-FEB 434 319 16670
1984-MAR 513 349 18539
1984-APR 548 375 19759
1984-MAY 586 441 19584
1984-JUN 522 465 19976
1984-JUL 601 472 21486
1984-AUG 644 521 21626
1984-SEP 643 429 20195
1984-OCT 641 408 19928
1984-NOV 711 490 18564
1984-DEC 721 491 18149
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APPENDIX D

UK price changes

date price change

1950-1 0.0084490544865279
1950-2 −0.0050487986543660
1950-3 0.0038461526886055
1950-4 0.0214293914558992
1951-1 0.0232839389540449
1951-2 0.0299121323429455
1951-3 0.0379293285389640
1951-4 0.0212773984472849
1952-1 0.0270006018185058
1952-2 0.0140346711715057
1952-3 0.0112575217306222
1952-4 0.0109290705321903
1953-1 0.0088539683172550
1953-2 0.0034966658522944
1953-3 0.0023627259115981
1953-4 0.0009732360865522
1954-1 0.0038835000263977
1954-2 −0.0004528823156743
1954-3 0.0196473295718213
1954-4 0.0094608085042291
1955-1 0.0112360732669257
1955-2 0.0011711843376171
1955-3 0.0181931828441741
1955-4 0.0261393882030352
1956-1 0.0079752305743703
1956-2 0.0103805802278299
1956-3 0.0010280560188484
1956-4 0.0121423868257255
1957-1 0.0136988443581618
1957-2 −0.0037022279212015
1957-3 0.0180545215605451
1957-4 0.0158007445313437
1958-1 0.0049382816405825
1958-2 0.0051786958236232
1958-3 −0.0076447883188165
1958-4 0.0163268932874288
1959-1 0.0072610242370472
1959-2 −0.0191951645920371
1959-3 0.0013520310244529

date price change

1959-4 0.0105821093305369
1960-1 0.0016181233304105
1960-2 −0.0022161098990638
1960-3 0.0054445227111829
1960-4 0.0128104233856403
1961-1 0.0079239717308917
1961-2 0.0031766212577034
1961-3 0.0171365771930149
1961-4 0.0138251049918425
1962-1 0.0121305505685076
1962-2 0.0109338371002675
1962-3 0.0010513250907626
1962-4 0.0014880955127019
1963-1 0.0169558061465560
1963-2 −0.0033302898966649
1963-3 −0.0017998056343648
1963-4 0.0095064701308285
1964-1 0.0101376682844552
1964-2 0.0094758423054643
1964-3 0.0140211447248867
1964-4 0.0098040000966209
1965-1 0.0110881246904664
1965-2 0.0162381708431379
1965-3 0.0096136089566831
1965-4 0.0080267989494529
1966-1 0.0092838863100080
1966-2 0.0101169774642052
1966-3 0.0088440351770464
1966-4 0.0096681384730552
1967-1 0.0063938836752557
1967-2 0.0001032615226096
1967-3 0.0005338840867116
1967-4 0.0132871299954331
1968-1 0.0155912107432541
1968-2 0.0145713278135854
1968-3 0.0110867688006139
1968-4 0.0131817367020646
1969-1 0.0212022076506031
1969-2 0.0070642343063755
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date price change

1969-3 0.0085475311657376
1969-4 0.0142411976775678
1970-1 0.0190481949706944
1970-2 0.0151617430647947
1970-3 0.0170550754091731
1970-4 0.0228429587090599
1971-1 0.0274557520447654
1971-2 0.0264244321843404
1971-3 0.0195147486584831
1971-4 0.0145351396191131
1972-1 0.0166948785721703
1972-2 0.0092396314485979
1972-3 0.0224203685142349
1972-4 0.0257874502057387
1973-1 0.0185846056856334
1973-2 0.0222739735666356
1973-3 0.0214722812477185
1973-4 0.0358579525232807
1974-1 0.0416313834758135
1974-2 0.0485323461922063
1974-3 0.0309426125903717
1974-4 0.0459165989737005
1975-1 0.0595156501226990
1975-2 0.0811647817310722
1975-3 0.0493763472194563
1975-4 0.0356186790234685
1976-1 0.0367678608789195
1976-2 0.0266673169265613
1976-3 0.0294365225999917
1976-4 0.0460103056488332
1977-1 0.0505673588211266
1977-2 0.0343095760155300
1977-3 0.0226226190699194
1977-4 0.0154778877023167
1978-1 0.0183453133256850
1978-2 0.0178327965494397
1978-3 0.0244341357802717
1978-4 0.0172756554004234
1979-1 0.0321743570278561
1979-2 0.0267465059845203
1979-3 0.0720527654075770
1979-4 0.0286118473932619
1980-1 0.0473115932904111
1980-2 0.0476589558588506
1980-3 0.0283462500655419
1980-4 0.0190315906164793
1981-1 0.0244504006677975
1981-2 0.0387816301941518
1981-3 0.0248700352276362
1981-4 0.0243422367363619
1982-1 0.0173385271622735
1982-2 0.0232646260176713
1982-3 0.0120010100385709

date price change

1982-4 0.0076572844519269
1983-1 0.0049519999739722
1983-2 0.0127254485193250
1983-3 0.0196367663747411
1983-4 0.0114817150006719
1984-1 0.0058637707537912
1984-2 0.0128263136879202
1984-3 0.0157648196413390
1984-4 0.0124005131984548
1985-1 0.0125746558779243
1985-2 0.0268797663676002
1985-3 0.0091890175453887
1985-4 0.0049140148024289
1986-1 0.0068600206661635
1986-2 0.0066148920918364
1986-3 0.0072720769491554
1986-4 0.0126885933190888
1987-1 0.0116327023754623
1987-2 0.0095762452607891
1987-3 0.0082107849419403
1987-4 0.0107161278768428
1988-1 0.0048332621880194
1988-2 0.0175719935723567
1988-3 0.0202754753545044
1988-4 0.0202212772472334
1989-1 0.0162458446655789
1989-2 0.0219954787795547
1989-3 0.0157780062516547
1989-4 0.0196335798779765
1990-1 0.0175957618903793
1990-2 0.0392123740767577
1990-3 0.0227793019512109
1990-4 0.0154921766157710
1991-1 0.0053660535046385
1991-2 0.0149308220794474
1991-3 0.0107309634350358
1991-4 0.0096404157821741
1992-1 0.0051527533956559
1992-2 0.0148187052139855
1992-3 0.0055308342012944
1992-4 0.0043072571975804
1993-1 −0.0064678630074857
1993-2 0.0094870915838486
1993-3 0.0090848707858470
1993-4 0.0035323244075451
1994-1 0.0014094435032339
1994-2 0.0112024499512261
1994-3 0.0069418021721774
1994-4 0.0062047768868832
1995-1 0.0088950295688681
1995-2 0.0119752766503259
1995-3 0.0089220122778103
1995-4 0.0013333335308641
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UK price changes

date price change

1996-1 0.0053156271343875
1996-2 0.0062625109586168
1996-3 0.0082114259312180
1996-4 0.0058612997499914
1997-1 0.0058271450091931
1997-2 0.0065789123161647
1997-3 0.0157648196413382
1997-4 0.0081735758406412
1998-1 0.0031259794132925
1998-2 0.0123034078957472
1998-3 0.0093090418470826
1998-4 0.0042669982449910

date price change

1999-1 −0.0042669982449910
1999-2 0.0046857104400285
1999-3 0.0068540471340416
1999-4 0.0072202479734873
2000-1 0.0041878613404744
2000-2 0.0120882837924579
2000-3 0.0080069550639669
2000-4 0.0064158866919071
2001-1 −0.0011634672632974
2001-2 0.0058994118100820
2001-3 0.0068248778542918
2001-4 −0.0011500863832374
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Index

Akaike information criterion (AIC), 15
ANOVA, 35, 57
ARIMA models, 122

ARIMA(0, 1, 0), 132
ARIMA(0, 1, 1), 132
ARIMA(0, 2, 2), 133

autocorrelation, 5, 90
autoregressive process, 126
auxiliary residuals, 93

BFGS
(Broyden–Fletcher–Goldfarb–Shannon)
algorithm, 143

Box–Ljung test statistic, see also
independence, 90

classical linear regression, 1, 26, 43, 48, 49,
56, 89, 158

component
explanatory, 47
intervention, 55
irregular, 9
level, 9
seasonal, 32
slope, 21

confidence interval, 81
correlogram, 3, 68, 123

descriptive time series analysis, 7, 18, 30, 43,
62, 157

deterministic level and seasonal model, 34
deterministic level model, 11
deterministic level model and explanatory

variable, 48
deterministic level model and intervention

variable, 56
deterministic linear trend model, 22
disturbance smoothing filter, 85
drift, see also slope component, 21
dummy seasonal, see seasonal component,

34

dynamic factor analysis, see also multivariate
time series analysis, 112

dynamic linear model, 31

elasticity, 49
EM (Expectation–Maximisation) algorithm,

144, 150
estimation error variance, 81, 85
explanatory time series analysis, 7, 45, 62,

157
explanatory variable, 79, 80

in level equation, 79
in measurement equation, 47
in slope equation, 80

explanatory variable, see also component, 47

filtered state, see also state, 84, 154
forecast errors, see also prediction errors, 87
forecasting, 96

homoscedasticity, see also residual test
statistics, 82, 91

hyperparameters, 11, 84, 91

independence, see also residual test statistics,
82, 90

initialisation, 11, 137
innovations, see also prediction errors, 87
intercept, 3, 9, 31, 38
intervention variable, 55, 80

level shift, 55, 80, 95
pulse, 55, 70, 80, 81, 95
slope shift, 55, 81

irregular component, see also component, 9

Kalman filter, 85, 143
Kalman gain, 88

lag, 3, 90
lead time, 97
level component, see also component, 9
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Index

level shift, see also intervention variable, 55,
80, 95

local level and deterministic seasonal model,
42

local level and seasonal model, 38
local level model, 15
local level model and explanatory variable,

52
local level model and intervention variable,

59
local linear trend model, 23
log-likelihood, 89, 143, 144
lower rank model, see also multivariate time

series analysis, 112

measurement equation, 9, 74
missing observations, 103
moving average process, 125
multivariate time series analysis, 107, 113

dynamic factor analysis, 112
lower rank model, 112
reduced rank model, 112
seemingly unrelated time series equations,

111

normality, see also residual test statistics, 82,
93

observation equation, 9, 74
one-step ahead prediction errors, 87, 143
outlier observations, 94
Ox, 135, 136

predicted state, see also state, 84, 154
prediction error variance (PEV), 88, 90, 143
prediction errors, 87, 90
pulse, see also intervention variable, 55, 70,

80, 95

random process, 1, 45, 123
random walk, 9, 123
random walk plus noise model, 9

reduced rank model, see also multivariate
time series analysis, 112

regression coefficient, 3, 21
residual test statistics, 90

homoscedasticity, 82, 91
independence, 82, 90
normality, 82, 93

score vector, 143, 146, 149, 152
seasonal component

dummy seasonal, 34
trigonometric seasonal, 34

seasonal component, see also component,
32

seemingly unrelated time series equations,
see also multivariate time series analysis,
111

signal, 78, 137
slope component see also component, 21
slope shift, see also intervention variable, 55,

81
smooth trend model, 31
smoothed state, see also state, 84, 154
SsfPack, 136
STAMP, 135
standardised prediction errors, 90
state, 7

filtered state, 84, 154
predicted state, 84, 154
smoothed state, 84, 154

state equation, 9, 74
state smoothing filter, 85
state vector, 74
stationary process, 122
structural breaks, 94

time series, 2
time-invariant state space model, 77, 139
time-varying state space model, 78, 139
transition equation, 74

white noise, 16
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