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Preface

This book is an introduction to the remarkable range and variety of finite group the-
ory for undergraduate and beginning graduate mathematicians, and all others with
an interest in the subject. My original plan was to develop the theory to the point
where I could present the proofs and supporting material for some of the main re-
sults in the subject. These were to include the theorems of Lagrange, Sylow, Burn-
side (Normal Complement), Jordan–Hölder, Hall and Schur–Zassenhaus amongst
others, and to provide an introduction to character theory developed to the point
where Burnside’s prqs -theorem could be derived and Frobenius kernels and com-
plements could be introduced. I have come to realise that this would have resulted
in a rather long book and so some material would have to go. It was at this point
that modern technology came to my aid. Solutions to the problems were also to be
included, but these would have taken at least 90 rather dense pages and an appendix
to this book was perhaps not the best place for this material. A number of textbooks
now put solutions on a web site attached to the book which is maintained jointly by
the author and the publisher. Extending this idea has allowed me to fulfil my original
intentions and keep the printed text to manageable proportions. So the web site now
attached to this book, which can be found by going to

www.springer.com

and following the product links, includes not only the Solution Appendix but also
extra sections to many of the chapters and two extra web chapters. These items are
listed on the contents pages, and present work that is not basic to a chapter’s topic
being either slightly more specialised or slightly more challenging. Also, perhaps
unfortunately, all work on character theory and applications (Chapters 13 and 14)
is now on the web. As this book goes to press, about half of this web material is
written and ‘latexed’, it is hoped that the remaining half will be available when the
book is published or soon after. Of course, more web items could be added later.
I attended Muchio Suzuki’s graduate group theory lectures given at the University
of Illinois in 1974 and 1975, and so in tribute to him and the insight he gave into
modern finite group theory I have ended the extended text with a discussion of his
simple groups Sz(2n) as an application of the Frobenius theory.

v

http://www.springer.com


vi Preface

Prerequisites

This book begins with the definition of a group, and Appendices A and B give a
brief résumé of the background material from Set Theory and Number Theory that
is required. So in one sense, the book needs no prerequisites, only the ability to
‘think-straight’ and a desire to learn the subject. On the other hand, it would help if
the reader had undertaken the following.

(a) We are assuming that the reader is familiar with the material of a basic abstract
algebra course, and so he or she has seen at least a few examples of groups and
fields, associative and commutative operations, et cetera, and also has had some
experience working in an abstract setting.

(b) We are also assuming that the reader is familiar with the basics of linear al-
gebra including facts about vector spaces, matrices and determinants, and the
definitions of inner and Hermitian forms. We also use the elementary opera-
tions, similarity and rational canonical forms, and related topics. Most standard
one-semester linear algebra textbooks provide more than is required.

(c) It would also help if the reader had undertaken a first course on analysis which
included the basic set operations, elementary properties of the standard num-
ber systems: integers Z, rational numbers Q, real numbers R, and the complex
numbers C, and the standard set-theoretic methods summarised in Appendix A.

(d) Lastly, some familiarity with elementary number theory would be an asset, Ap-
pendix B summarises most that is required. The Euclidean Algorithm is used
widely in this book, as are the basic congruence properties.

Plan of the Book

The author of an introductory group theory text has a problem: the theory is self-
contained and coherent, many topics are interconnected, and several are needed
more or less from the start. On the other hand, the material in a book has perforce
to be presented linearly starting at Page 1. During the planning and writing of this
book, I have assumed that most readers will not read it sequentially from cover to
cover, but will occasionally ‘dot-about’. Hence I have allowed some ‘forward refer-
ence’, mostly for examples.

The essential topics that the reader should ‘get to grips with’ first include the
basic facts about groups and subgroups, homomorphisms and isomorphisms, direct
products and solubility. Also some aspects of the theory of actions—conjugacy,
the centraliser and the normaliser—are not far behind. Of course, as noted above,
although the material has to be presented linearly, it need not be read linearly,
and there are considerable advantages in presenting the basic facts of a topic—
homomorphisms, for example—in one place. One consequence of this fact is that
the order of the chapters has some flexibility. So Chapter 7 could be read before
Chapters 5 and 6 with only a small amount of back-reference in the examples. Some
group-theorists may consider it essential for students to have a good grounding in
the Abelian theory before the non-Abelian theory is tackled. Similarly, Chapters 10
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and 11 can be read in either order with little back-reference required. So a possible
non-linear reading of the text is

Sections 2.1, 2.3, 2.4 and 4.1—the basic core of the subject, then the rest of
Chapter 2, Sections 4.2, 4.3, 7.1 and 11.1 in this order,

then the following sections where the reading order might be varied

Part or all of Chapters 3 and 5, Sections 7.2, 7.3, and 9.1, and Chapters 6
and 10.

Following this the remaining printed sections or possibly some of the web sections
could be tackled. In the text, I have sometimes introduced topics ‘early’ and out
of their logical order, for example, isomorphisms in Chapter 2, to deal with this
point. Also, as a general rule, the ‘easier’ and/or more elementary parts of a topic
come near the beginning of the chapter, and so the final sections often contain more
specialised and/or challenging material.

Further Reading

The reader would do not harm studying any of the books listed in the bibliogra-
phy, we suggest a few concentrating on the more recent titles. For a general further
development of the finite theory try:

Robinson (1982), Suzuki (1982, 1986), Aschbacher (1986), Kurzweil and
Stellmacher (2004), and Isaacs (2008).

Also the three volume Huppert and Blackburn (1967, 1982a, 1982b) is very com-
prehensive and deals with many topics not found elsewhere. For more specialised
topics, the following should be read:

Doerk and Hawkes (1992) for soluble groups,
Carter (1972), the ATLAS (1985), and Conway and Sloane (1993) for finite
simple groups,
James and Liebeck (1993), Huppert (1998) and Isaacs (2006) for character
theory, and
Kaplansky (1969), Fuchs (1970, 1973), and Rotman (1994) for infinite
Abelian groups.

Of course, some of the older books still have much to offer, these include

Burnside (1911, reprinted 2004), Kurosh (1955), Scott (1964) and Rose
(1978)—no relation!

Although 45 years old, in my opinion, Scott’s book remains one of the best in-
troductions to the subject.
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All errors and omissions that are still present in the text and/or web pages are
entirely my fault, please contact me with details at

h.e.rose@bris.ac.uk

General comments, including comments on the correctness and/or clarity of the text,
or shorter, clearer or better solutions to the problems (which could be added to the
web site), are also welcome.

Acknowledgements I have received a considerable amount of assistance during
the writing of this book for which I am extremely grateful. First, from my fam-
ily (especially from my wife Rita), from colleagues, both academic and compu-
tational (especially Richard Lewis and Peter Burton), at the University of Bristol,
and from the staff (both editorial and ‘Latex’ specialist) at Springer Verlag. I have
given courses based on preliminary versions of this book many times in Bristol, my
students have helped me to clarify many points and I thank them for this. But my
main debt of gratitude goes to those who read a final draft of the text and cleared up
many inconsistencies and errors on my part. These include the referees appointed by
Springer Verlag, John Bowers (formally of the University of Leeds), Robin Chap-
man (Universities of Bristol and Exeter), Robert Curtis for Chapter 12 (University
of Birmingham), and Ben Fairbairn (University of Birmingham). These last four
spent many hours going through the manuscript, and improved it greatly—they are
forever in my debt.

Harvey RoseBristol
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Chapter 1
Introduction—The Group Concept

Groups are all-pervasive in mathematics, there is hardly a branch of the subject
that does not use them in one way or another. They are also widely used in many
branches of the physical sciences. In one sense, this is to be expected because groups
are quite often formed when an operation like multiplication or composition is ap-
plied to a set or system. Groups occur as number systems or collections of matrices,
in permutation theory, as the symmetries of geometrical objects or as sets of maps,
and in many other guises. Also the theory contains many elegant, dramatic and illu-
minating theorems.

Group theory has developed sometimes slowly but at other times by great leaps
and bounds over the past two centuries. Often ideas and results appeared first im-
plicitly before they were explicitly written down. For example, it is thought that
Galois, in the 1820s, was the first to write down the axioms of a group, but some
forty years earlier Lagrange was working with permutations of the roots of equa-
tions and proved a result which led to the famous theorem that now bears his name,
the comments on actions given in the Introduction to Chapter 5 also apply here.
Galois introduced a number of other basic notions including, for example, simple
groups and normal subgroups. In 1850, Cayley showed that every group can be rep-
resented as a permutation group, and much of the nineteenth century work dealt with
this aspect of the theory. Results started to appear more quickly, Sylow produced
his ground-breaking work on p-subgroups in 1872, characters and representation
theory were introduced around the turn of the century, and Hall’s extensions of Sy-
low’s work appeared in the 1920s and 1930s—to mention only a few of the many
major developments. Another surge began around 1950 and led in the early 1980s
to the completion of the classification problem for finite simple group, hereafter re-
ferred to as CFSG, which must surely rank amongst the greatest achievements in all
mathematics. A number of important corollaries have followed from this work, for
example, the positive solution of the Restricted Burnside Problem (page 27).

The purpose of this book is to introduce the reader to the fine branch of mathe-
matics called group theory—there is a ‘great story’ to tell, and we hope that it will
encourage you, the reader, to develop an abiding interest in the subject, and a desire
to look further and deeper into the theory.

H.E. Rose, A Course on Finite Groups,
Universitext,
DOI 10.1007/978-1-84882-889-6_1, © Springer-Verlag London Limited 2009

1
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2 1 Introduction—The Group Concept

Group Examples

A group is a mathematical system (or set) with a single operation. We begin by
considering two familiar examples; the first is the integers Z. The elements are

. . . ,−2,−1,0,1,2,3, . . . ,

and the operation is standard addition ‘+’. There are a number of basic axioms
from which almost all additive properties follow. The first and in some ways the
most important is closure, or being well-defined; that is,

if a, b ∈ Z, then a + b ∈ Z.

This is equivalent to stating that + is an operation (Appendix A). Some so-called
partial systems have been studied, but all systems considered in this book satisfy an
axiom of this type. The next property is associativity; that is,

for all a, b, c ∈ Z we have (a + b) + c = a + (b + c).

When forming this sequence of additions, we obtain the same answer if we first add
a to b, and then add the result of this addition to c, or if we first add b to c and then
form the sum of a and the result of this last addition. Some algebraic systems lack
this property but, in general, non-associative systems have limited uses unless some
more complex rule is applied—for example, in Lie algebras—and again we shall
not consider such systems in this book.

In Z, a natural question to ask is: Does the equation

a + x = b (1.1)

have a solution x? In ancient times mathematicians only ‘allowed’ this equation to
have a solution if b > a, that is, if x is positive. But this is very restrictive, and in
the group Z Equation (1.1) is always uniquely soluble, and so we need to introduce
the ‘zero’ and ‘negative’ integers. The zero 0 satisfies

a + 0 = 0 + a = a for all a ∈ Z;
in the sequel, we use the term neutral element for the entity 0; see the discussion on
page 4. Further, we introduce the negative integers by

for all a ∈ Z there exists a unique c ∈ Z that satisfies a + c = 0.

We usually write −a for c (and a−1 for c if we are using a multiplicative notation
as is the case for almost all groups discussed in this book), and we call it the inverse
of a. It is now easy to show that (1.1) always has a unique solution. The system Z

has one extra basic property not shared by all groups: it is commutative, or Abelian.
This is given by

for all a, b ∈ Z we have a + b = b + a,
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the result of several additions does not depend on the order of the terms in the sum.
To recap, Z has the four basic properties: Closure, associativity, a neutral element
and inverses, and it has the extra property of Abelianness. Note also it is a countably
infinite system.

For our second example, we consider another familiar system—symmetries of
an equilateral triangle. Groups of symmetries provide a good range of examples,
they are widely used in both mathematical and physical systems, for example, by
chemists when they are studying the crystal structure of matter. The group of sym-
metries of a triangle has two aspects which are different from those in our first
example: It is finite, and it is not Abelian, but as we shall see below it shares the
four basic properties with Z. Consider an equilateral triangle with vertices labelled
A,B,C. This geometric object has a number of symmetries, that is, transformations
(rotations and reflections) that give another copy of the original triangle. We work
in the standard Euclidean plane.
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The elements of the group are the six rotations and reflections of the triangle illus-
trated above, and the operation is composition; that is, do one rotation or reflection,
and then do another on the result of the first. We take the basic rotation α to be
clockwise about the centre of the triangle by the angle 2π/3, see the top row of the
diagram above. Note that three applications of α (that is, α3, a rotation by 2π ) maps
the triangle to itself identically, and so can be taken as the neutral element. This also
shows that the inverse of α is α2; see the bottom row in the diagram. The triangle
has three reflections, they are mirror transformations about a line through a vertex
and the centre of the corresponding opposite edge. One, labelled β (three times)
in the diagram, is about a vertical line through the top vertex of the corresponding
triangle and the centre of its base. The other two reflections can be generated as
follows. If we first apply α to the top-left triangle and then apply β to the result,
we obtain the middle triangle in the bottom row. This gives the second reflection
of the top-left triangle, now about a line through the bottom right-hand vertex B

and the centre of the opposite edge AC. Note that we would obtain the same re-
sult if we first applied β to the top-left triangle, and then applied α2 to the result.
We can obtain the third reflection if we repeat this construction but begin by apply-
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ing α2 instead of α to the top-left triangle. Incidentally, this shows that the group
is not Abelian (that is, not commutative as βα = α2β �= αβ). The inverse of a re-
flection is itself: Two applications of a reflection gives the neutral element. We call
a group element of this type an involution, and we shall see later that these ele-
ments play an important role in the theory. It is straightforward to check that this
system is closed and has the associativity property (reader, try a few cases). Hence
the system contains the six symmetries of the triangle: Neutral element (where a
triangle is mapped to itself identically), α, α2, β , αβ, and α2β , and it satisfies the
four basic group axioms (closure, associativity, and possession of a neutral element
and inverses for all of its elements) as in our first example. It is also finite and not
Abelian. Later we shall call this system the dihedral group of the triangle and denote
it by D3.

Abstract Groups and Representations

With these and other examples in mind, we define a group as a system with a single
operation satisfying the four basic properties (axioms) described above, the for-
mal definition is given at the beginning of Chapter 2. Also, Section 2.2 provides
a substantial list of examples. The following point is important. In both cases, the
examples given above are particular ‘instances’ of the group in question; we call
them representations of the group. Referring to the second example, another repre-
sentation is given by considering the set of permutations of the set {1,2,3} with
composition as the operation; see page 19 and Section 3.1. A third representa-
tion using 2 × 2 matrices is given in Problem 4.2. Each group example given in
this book is a representation of its corresponding abstract group, see the discus-
sion in the Introduction to Chapter 3. Right from the start this is a characteristic
feature that the reader should note, and we use a corresponding nomenclature.
So when discussing a group in the abstract we call it a ‘group’, but when dis-
cussing a particular example or representation, say using permutations or matri-
ces or some analogous construction, we call it a ‘permutation group’ or a ‘matrix
group’ or analogous group. Similarly, the ‘neutral element’ which we always de-
note by e is the element in the abstract group satisfying the relevant axiom, and it
has many instances or representations in particular groups. In the examples given
in Section 2.2, it is 0, or 1, or −3, or a matrix, or a collection of maps, or the
point at infinity on a curve, et cetera. The term ‘neutral element’ is not standard,
nor is it ‘new’; for example, it occurs in Cohn (1965), page 50. Some authors
use either ‘identity’ or ‘trivial element’; the first only really applies to an ‘oper-
ation of multiplicative type’, whilst the second gives the wrong impression—this
element is an important one in the group, and certainly not trivial in the usual
sense of this word. We have extended this nomenclature to the single element
(sub)group 〈e〉 which we call the neutral (sub)group, see Definition 2.12. Also an
‘inverse’ can be an additive inverse, or a multiplicative inverse, or an inverse matrix,
et cetera.
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Classes of Groups

The class of all groups is a large one. Set-theorists call it a proper class as opposed to
a set, but as we are taking the usual naive view of set theory (Appendix A) we shall
treat sets and classes synonymously. We shall see that it is convenient to consider
subclasses defined by some of the basic properties. For example, groups can be finite
or infinite, and Abelian or non-Abelian; these distinctions are fundamental. We shall
study further distinctions later, for instance, in Chapter 11 between ‘soluble’ and
‘non-soluble’ groups. Here we divide the class of all groups into four subclasses
and, as we shall see, both the theory and the actual groups in each subclass have
distinct characteristics.

The first subclass contains the

Finite Abelian Groups In Chapter 7, we show that groups in this class can be
characterised completely, and they have a particularly simple form—that is, as
‘products of cyclic groups’. So in one sense they are ‘a bit boring’; but in an ap-
plication, if we know a priori that the group or groups under discussion are in this
subclass, then we can be sure that they take this simple form which can have a major
influence on the result. A good example occurs in the theory of rational points on
elliptic curves discussed on page 22. Amongst our four subclasses, this is the only
one for which we have a complete description of all of the groups involved.

The second subclass contains the

Finite Non-Abelian Groups Most of the work in this book deals with groups in
this class. For finite groups in general, there is a strong interplay between the ‘group
theory’ and the ‘number theory’ of the group in question. In part this is a conse-
quence of Lagrange’s Theorem which states that the order (number of elements) of
a subgroup H of a group G must divide the order of G; so the prime factorisation
of the order of a finite group is an important invariant of the group. One major de-
velopment from this is the Sylow theory discussed in Chapter 6 which asserts the
existence of subgroups with prime power order. Another important distinction in the
theory is between the so-called ‘simple’ and ‘non-simple’ groups; see the definition
on page 33. The Jordan–Hölder Theorem states, roughly speaking, that all finite
(and some infinite) groups can be ‘built up’ from simple groups using ‘extensions’;
this will be discussed in Chapter 9—note that one of the main aims our work is to
describe all groups. A theory of extensions has been developed, but a considerable
amount of work and many new ideas will be needed before it can be described as
finished; see Section 9.2. On the other hand, a complete list of finite simple groups
is now known, much of the development work was undertaken between 1955 and
1985 and, as noted above, it forms one of the crowning achievements of twentieth
century mathematics. We give a brief introduction to this topic in Chapter 12. Hence
considerable progress has been made in the theory of finite non-Abelian groups and
this will be discussed in the following chapters and web appendices, but work still
needs to be done.
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The third subclass contains the

Infinite Abelian Groups For infinite groups in general, number theory only plays
a small role, but questions concerning cardinality can be important. The so-called
finitely-generated Abelian groups are similar to those in the first subclass as they can
be represented as products of cyclic groups. But many groups in this class are not
finitely generated, for example, the rational numbers with addition or the positive
reals with multiplication. Apart from a brief survey in Web Section 7.5 we shall
not deal with these groups in this book. Much of the work develops ideas from
linear algebra, and good introductions to this topic are given in Kaplansky (1969),
and Fuchs (1970, 1973).

The final subclass contains the

Infinite Non-Abelian Groups This is perhaps the least well-understood part of
the theory. A number of extensions of the finite theory have been studied, but no
general classification is known, and it seems unlikely that one will be found in the
near future. One approach is to use topology. For example, the reals have a natu-
ral (metric) topology, and the interplay between the group theory and the topology
of this system can be exploited to gain new insights. Since 1950 a number of long-
standing problems have been solved, often showing that these groups are more com-
plicated than previously thought; for example, see Problem 6.7. A good introduction
is given in Kurosh (1955), also Robinson (1982) discusses a number of aspects of
this part of the theory. Infinite groups with some kind of ‘finiteness condition’, such
as being ‘finitely generated’ or ‘finitely presented’, have also been widely studied.

Summary of the Book

Below we give a brief summary of the contents of the printed Chapters 2 to 12,
Appendices A to E, the Web Chapters 13 and 14, and the Web Appendices.

Chapter 2—Elementary Group Properties The basic entities—semigroups,
groups, subgroups, cosets, normal subgroups and simple groups—are defined, La-
grange’s Theorem is derived, and the second section lists a number of standard ex-
amples.

Chapter 3—Group Construction and Representation The main construction
methods and group representations are discussed. Firstly, permutations are intro-
duced, the symmetric and alternating groups are defined, and an elementary proof of
the simplicity of An for n > 4 is given. Secondly, matrix groups are briefly consid-
ered, and lastly group presentations are introduced (this topic is completed in Web
Section 4.7 once the First Isomorphism Theorem has been proved). Web Sec-
tion 3.6 discusses some of the various representations of the alternating group A5
to illustrate the fact that groups can have a wide range of representations.
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Chapter 4—Homomorphisms The natural maps, called Homomorphisms (and
Isomorphisms when the map is a bijection), and factor groups are introduced,
and the four fundamental Isomorphism and Correspondence Theorems are derived.
Cyclic groups and the basic properties of the automorphism group of a group are
described. There are two Web Sections 4.6 and 4.7. The first introduces the
‘transfer’ which provides a useful example of a ‘real’ homomorphism, and the sec-
ond completes the work on group presentations begun in Chapter 3.

Chapter 5—Action and the Orbit-stabiliser Theorem This chapter, the last giv-
ing the basic material, introduces ‘actions’ which bring together a number of useful
constructions, and gives a proof of the Orbit-stabiliser Theorem. It also describes
three important particular actions: the coset action, the conjugate element action
leading to centralisers and the Class Equations, and the conjugate subgroup action
leading to normalisers and the N/C-theorem. Web Section 5.5 extends the work
on permutation theory begun in Chapter 3, and includes a discussion of ‘transitive’
and ‘primitive’ permutation groups, and Iwasawa’s simplicity lemma.

Chapter 6—p-Groups and Sylow Theory The basic theory of p-groups (where
all elements have order a power of p) is discussed, and the five Sylow theorems
are derived—these results form one of the most important aspects of the finite the-
ory. There are then two sections of applications, the first gives (a) some facts about
groups whose orders have a small number of factors, (b) proves the so-called Frattini
Argument, and (c) introduces nilpotent groups. The second is Web Section 6.5
which gives some more substantial applications including a proof of Burnside’s Nor-
mal Complement Theorem and a discussion of groups all of whose Sylow subgroups
are cyclic.

Chapter 7—Products and Abelian Groups Direct products are introduced, and
two proofs of the Fundamental Theorem of Abelian Groups are presented; see
page 5. The third section discusses ‘semi-direct products’, a variant of the direct
product construction, and the groups of order 12 are described (they can all be
treated as semi-direct products). Some basic facts, but no proofs, concerning in-
finite Abelian groups are given in Web Section 7.5. Except for some problems,
this is the only point where specifically infinite groups are considered in any detail.

Chapter 8—Groups of Order 24, Three Examples No new theory is presented
in this chapter, but three groups of order 24 are discussed in some detail. The work
constructs their subgroups including those of Frattini and Fitting, the subgroup lat-
tice, series and some of their representations. Appendix C, see pages 289 to 292,
gives data on the remaining twelve groups of order 24. The purpose of this chapter
is to challenge the reader to think more about the objects he or she is studying, and
to ask questions. For example: can the centre of a group equal its derived subgroup
or its Frattini subgroup? This chapter is also intended to motivate the remaining
topics, that is series, simple groups and (on the web) representation theory.
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Chapters 9—Series, Jordan–Hölder Theorem and the Extension Problem
This is the first of three shorter chapters dealing with series and the normal sub-
group structure of groups. In the first of these, we prove the theorem of Jordan and
Hölder on composition series—this demonstrates the importance of simple groups
to the theory. Secondly, we present a brief introduction to extension theory—that is
the construction of complex groups using some of their subgroups as components,
and we discuss one substantial example.

Chapter 10—Nilpotency Nilpotent groups lie between Abelian and soluble
groups, and this second shorter chapter continues the work on these groups be-
gun earlier. There is a surprising number of equivalent definitions which shows the
importance of the notion. The second section discusses two ‘special’ subgroups of
a group—the Frattini and Fitting subgroups; they have some remarkable properties
(including being nilpotent), and extensions of the latter have proved useful in the
completion of CFSG.

Chapter 11—Solubility After a brief historical introduction the last of the shorter
chapters introduces the basic facts about soluble groups, and discusses a number of
equivalent conditions. The most important is due to Philip Hall and extends the
Sylow theory in the soluble case.

Chapter 12—Simple Groups of Order Less than 10000 This is another ‘de-
scriptive’ chapter giving an account of simple groups with order less than 10000.
We introduce Steiner systems—their automorphisms provide a new way to con-
struct groups, prove the simplicity of the linear (matrix) groups Ln(q), and discuss
one ‘classical’ (U3(3), a unitary group) and one ‘sporadic’ (M11, the first Mathieu
group) group in detail. Some numerical data is also given but many proofs are omit-
ted. Appendix E, see page 295, gives data on the groups L2(q), and an appendix at
Web Section 12.6 provides more information about Steiner systems for Mathieu
groups, and data on simple groups of order less than 106.

Appendix A—Set Theory and Appendix B—Number Theory These two ap-
pendices give the basic definitions and results for the work on sets and number
theory which underlie all the material in the book.

Appendices C, D and E These appendices provide data on several aspects of the
theory. The first, C, lists properties of groups of order 24 (this is an appendix to
Chapter 8), D details the number of groups with order up to 520, and E provides
some representations of the linear groups L2(q) (this is an appendix to Chapter 12).

Web Chapter 13—Representation and Characters A brief introduction to
representation and character theory is presented sufficient for the applications given
in Web Chapter 14. This theory includes the basic definitions, Schur’s Lemma
and Maschke’s theorem, the orthogonality relations, and ‘lifts’, et cetera. This chap-
ter is entirely theoretical except for the examples.
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Web Chapter 14—Character Tables, and Theorems of Burnside and Frobe-
nius We give three applications of the work in Web Chapter 13 which have
strong connections with the earlier material. First, we construct some character ta-
bles including those for most of the groups of order 12 or less, and some others
including several of order 24 discussed in Chapter 8. These character tables provide
a surprising amount of information concerning the groups in question. Second, we
prove Burnside’s prqs -theorem (this completes the proof of Hall’s Theorem given
in Chapter 11). The third section introduces the Frobenius ‘kernel’ and ‘comple-
ment’, gives a proof of Frobenius’s Theorem concerning these notions, and finally it
provides some applications of this theorem including a discussion of Suzuki groups.

Web Solution Appendix This includes answers, hints on solutions, and in
some cases full solutions, for all of the problems given in Chapters 2 to 12, and
Appendices A and B.

Developing the theory and proving results are of course important, but two other
aspects are also important.

Problems Each chapter ends with a sequence of problems for the reader to try
of varying difficulty partly as indicated with a star � suggesting a greater challenge.
Some readers may find it difficult to decide which problems start with and which are
the most important, so some of these have been marked with the symbol �. These
are all fairly straightforward, theoretical, and contain minor results that are used in
the main part of the text. Other problems ask for examples to be constructed, these
have no indication mark but should also be tackled early. As noted above, hints,
sketch solutions, or in some cases detailed treatments of problems, are given in Web
Solution Appendix on the web site attached to this book.

‘Actual groups’ We are studying groups, and so it seems essential to us that the
reader ‘sees’ and ‘experiences’ as many ‘actual’ or ‘concrete’ groups as possible.
This will, we hope, illuminate the theory and so induce a greater understanding in
general. Some parts of the text and a number of the problems are given over to this
aspect including the whole of Chapter 8.

Computers in Group Theory

During the past thirty years, and more so recently, computers have become an in-
creasingly useful tool in pure mathematics, as well as in most other branches of
mathematics, many branches of the physical sciences, and beyond. In group theory,
they are particularly useful for doing matrix and permutation calculations, and for
producing examples. But they can also be used for more sophisticated constructions,
for example, looking for subgroups of a group or constructing homomorphisms.
A number of computer algebra packages, some ‘free’ and some commercially avail-
able, have been developed over the past decade or so, and the reader is encouraged
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to make use of at least one of these while reading this book. Also a number of the
problems are best tackled using one of these packages.

While writing this book, we have made extensive use of the computer algebra
package called GAP—Groups, Algorithms, and Programming. This package has
many authors based in Aachen in Germany, St. Andrews in Scotland, and at many
other sites; we would like to take this opportunity to compliment these authors on
the excellence of their product. It is available free from the St. Andrews web site at

http://www-gap.dcs.st-and.ac.uk/~gap

We have also made some use of the commercially available package called
MAGMA which incorporates many aspects of the GAP program.

One point should be borne in mind whilst working with any of these packages,
and it is one that we emphasise several times in this book. In a particular calcula-
tion, the program can only deal with a specified representation of the group under
discussion, say as a permutation group or as a matrix group. The package GAP is
particularly good when working with permutation groups, but it also deals well with
matrix groups defined over a specific field and with presentations.

http://www-gap.dcs.st-and.ac.uk/~gap


Chapter 2
Elementary Group Properties

In this chapter, we introduce our main objects of study—groups. A general overview
including some historical comments was given in Chapter 1. More detail on the his-
tory of the theory can be found in Wussing (1984), van der Waerden (1985), and
at www-gap.dcs.st-andrews.ac.uk/~history/. Here we give the basic definitions and
an extensive list of examples, introduce subgroups and cosets, normal subgroups
and simple groups, and prove the first major result in the theory—Lagrange’s The-
orem.

2.1 Basic Definitions

We begin by defining the group concept. Maps between groups will be discussed in
Chapter 4. As a preliminary to this we introduce semigroups as follows.

Definition 2.1 A semigroup is a non-empty set X = {. . . , x, y, z, . . .} together with
a binary operation � (page 281) which satisfies the following two conditions (ax-
ioms):

(i) it is closed, or well-defined: for all x, y ∈ X, we can perform the operation x �y

and

x � y ∈ X,

(ii) it is associative: for all x, y, z ∈ X,

x � (y � z) = (x � y) � z.

Note that (i) is implied by the definition of the operation �; see the comments below
Definition 2.2.

H.E. Rose, A Course on Finite Groups,
Universitext,
DOI 10.1007/978-1-84882-889-6_2, © Springer-Verlag London Limited 2009
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Examples The following sets with operations are semigroups.

(a) The positive integers with addition.
(b) The set of all one-variable functions with domain and codomain R, and with the

operation of composition of functions.

There is an extensive theory of semigroups which is of particular interest in some
branches of analysis and combinatorics. Also a number of similar systems that are
not quite groups have been studied, for instance, the operation may be only partially
defined, or there may be a neutral element but no inverses, et cetera. We shall not
consider these systems; Bruck (1966) provides a good introduction.

Definition 2.2 A group (G,�) is a semigroup which satisfies the following extra
conditions (axioms):

(iii) G contains a unique element e which satisfies, for all g ∈ G,

e � g = g � e = g,

(iv) for each g ∈ G, there exists a unique g′ ∈ G satisfying

g � g′ = g′ � g = e.

The element e is called the neutral element of the group G, see page 4. Some au-
thors use the term identity for e, and if the operation (�) is written additively (+)

then it is called the zero and denoted by 0. There are a number of redundancies in
this definition—in particular, in axioms (i), (iii) and (iv). Strictly speaking, (i) is un-
necessary as it is implied by the fact that � is an operation; see Appendix A. But we
have left it in to remind the reader that closure is vitally important—this property
must be checked whenever it is required to show that a particular set and product
form a group. For (iii) and (iv), see Theorem 2.5.

Definition 2.3 A group (G,�) is called Abelian, or occasionally commutative, if
its operation is commutative: For all g,h ∈ G

g � h = h � g.

The term ‘Abelian’ commemorates the Norwegian mathematician Niels Abel who
died at the age of 27 in 1829. He was working on solutions to polynomial equations,
and needed to apply a condition similar to the one above; see the Introduction to
Chapter 11 and van der Waerden (1985), page 88.

Examples We give four here, and an extensive list in the next section.

(a) The set {1,−1} with the operation of standard multiplication forms a finite
Abelian group which we denote by T1 (one copy of ‘two’). The neutral element
is 1, and each element is self-inverse.

(b) The set of permutations of a set {1,2,3}. The elements are the six permutations
of this set, and the operation is composition: Do the first permutation, then do the
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second permutation on the result of the first. For example, if the first permutation
maps 1 �→ 1,2 �→ 3 and 3 �→ 2, and the second maps 1 �→ 3,2 �→ 2 and 3 �→ 1,
then their composition maps 1 �→ 3,2 �→ 1 and 3 �→ 2. The neutral element is
the permutation that moves no symbols, and the inverse of a permutation is its
reverse (Section 3.1). This system forms a finite non-Abelian group which we
denote by S3 and call the symmetric group of the set {1,2,3}. Reader, why is
this group not Abelian?

(c) The positive real numbers R
+ with multiplication form an infinite Abelian

group. The neutral element is 1, and the inverse of x is 1/x.
(d) The set of all non-singular 2 × 2 matrices having rational number entries with

the operation of matrix multiplication is an example of an infinite non-Abelian
group, it is denoted by GL2(Q) and called the 2×2 general linear group over Q.
The neutral element is I2, the 2-dimensional identity matrix, and inverses exist
by definition.

The symbols (G,�), G, H , J , or K , sometimes with primes or subscripts, will
always denote groups. We use lower case Roman letters a, b, c, d , g, h, j , k, and l,
again sometimes with primes or suffixes, to stand for group elements, and we use
x, y and z for set elements or occasionally for group elements following the usual
mathematical convention that these letters denote entities which satisfy a proposition
or equation. The words ‘operation’, ‘multiplication’ and ‘product’ are used more or
less synonymously: If g,h ∈ G we say that we apply the operation � to form the
product g � h, or we multiply g by h to obtain g � h.

The underlying set of a group G is the set of elements of G stripped of its oper-
ation; where there is no confusion, this will also be denoted by G. Also, we some-
times say that a group G is generated by a set X, or X is a generating set for G,
where X is a subset of the underlying set of G, and we write G = 〈X〉. This means
that the collection of all products of powers (both positive and negative) of elements
of X coincides with G. For example, the set {1} is a generating set for Z, that is,
Z = 〈1〉 because every integer can be expressed as a sum of 1s or −1s. Note that a
group may have many different generating sets, and it always has at least one be-
cause the underlying set of G clearly acts as a generating set for G. This notion is
defined formally in Definition 2.16. We also write 〈e〉 for the (unique) group con-
taining the single element e (with operation e � e = e), we call it the neutral group.
Some authors use the term ‘trivial group’ for 〈e〉; it is an important component of a
group and certainly not ‘trivial’ using the normal meaning of this word, hence we
shall not use this term; see also the comments on page 4.

We noted above that Definition 2.2 can be weakened considerably without af-
fecting our objects of study. Consider

Definition 2.2′ A group (G,�) is a semigroup, see Definition 2.1, which satisfies
the following two conditions:

(iii)′ there is an element f ∈ G with the property: f � g = g, for all g ∈ G;
(iv)′ for each g ∈ G, and with f as in (iii)′, there exists h ∈ G satisfying h�g = f .
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These conditions imply that G has at least one left neutral element f , and each
g ∈ G has at least one left inverse h relative to f .

Definition 2.2′ is equivalent to Definition 2.2; see also Problem 2.4. Note that this
equivalence is useful, for when checking if the group axioms hold for a particular set
and map, once closure and associativity have been established (Axioms (i) and (ii)),
it is not necessary to prove that either the neutral element or the inverse operation is
unique, or two-sided, because these properties follow by Theorem 2.5 below. Also,
if we find an inverse of an element g, then we can be sure that it is the unique inverse
of g, again by Theorem 2.5.

We begin with the following result: In all groups, the only element which equals
its square is the neutral element (in algebra generally, such elements are called idem-
potents).

Lemma 2.4 Let (G,�) be a semigroup satisfying the conditions of Definition 2.2′.
If a ∈ (G,�) and a � a = a, then a = f where f is given by (iii)′.

Proof 1 By (iv)′, if a ∈ G we can find b ∈ G satisfying b � a = f , so by (iii)′

a = f � a = (b � a) � a = b � (a � a) = b � a = f,

by associativity, the hypothesis and (iv)′ again. �

Theorem 2.5 A semigroup (G,�) satisfying Conditions (iii)′ and (iv)′ in Defini-
tion 2.2′ forms a group as given by Definition 2.2.

Proof We need to show that f , and the inverses, apply both on the left and on
the right, and are unique; that is, f as the neutral element, and h as the inverse
of g. First, we show that if a ∈ (G,�) and b � a = f , then a � b = f (a left
inverse is also a right inverse). We have

b � (a � b) = (b � a) � b = f � b = b.

by (ii), (iv)′, and (iii)′. Hence, by (ii) again

(a � b) � (a � b) = a � (b � (a � b)) = a � b.

By Lemma 2.4, this shows that a � b = f ; the first part follows. Secondly f

is a right identity. We have, using the above subresult and (ii),

a � f = a � (b � a) = (a � b) � a = f � a = a

by (iii)′. Thirdly, we show that b is unique (that is, inverses are unique). For
suppose c � a = f , then we have by the above and (ii)

c = c � f = c � (a � b) = (c � a) � b = f � b = b,

1To emphasise their importance, and to aid clarity, all proofs are typeset indented.
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by hypothesis and (iii)′ applied to b. Lastly, the neutral element. For if e also
satisfies (iii)′, that is e � a = a for a ∈ G, then substituting e for a we obtain
e � e = e, and so, by Lemma 2.4, e = f . This completes the proof. �

From now on, we adopt the following conventions. We write ab for a � b, e for
the neutral element, and G for (G,�) when it is clear which operation is being used.
Also, the inverse of g given by (iv) in Definition 2.2 will be written in the standard
notation g−1 (and −g if we are using addition). We normally drop brackets and
write xyz for either x(yz), or (xy)z. In some cases, we do not delete the brackets if
this aids clarity.

The next three results apply to all groups, and they will often be used in the
sequel usually without being specifically identified. Note that no restrictions apply,
a rare occurrence in the theory!

Theorem 2.6 (Cancellation) Suppose a, b, x, y ∈ G. If ax = bx, or if ya = yb, then
a = b.

Proof From ax = bx we obtain, by Definition 2.2 and associativity,

a = ae = a
(
xx−1) = (ax)x−1 = (bx)x−1 = b

(
xx−1) = b.

A similar argument applies in the second case. �

Theorem 2.7 Suppose a and b are elements of a group G.

(i) (ab)−1 = b−1a−1.
(ii) (a−1)−1 = a.
(iii) If G is finite, then a−1 equals some positive power of a.
(iv) If a commutes with b, then a−1 also commutes with b.

Proof (i) As (b−1a−1)(ab) = b−1(a−1a)b = b−1b = e and, by Theorem 2.5,
inverses are unique and two-sided, it follows that b−1a−1 is the inverse of ab.
A similar argument applies for (ii).

(iii) If G has n elements and a 	= e, then an integer m must exist satisfying
1 < m ≤ n and am = e (the powers of a cannot all be distinct in the finite
case). Now am−1 = a−1am = a−1.

(iv) If ab = ba then b = a−1ba, and so ba−1 = a−1b. �

Using induction we can extend (i) to prove that (a1 · · ·an)
−1 = a−1

n · · ·a−1
1 .

Theorem 2.8 If we treat the group G as a set (that is, we consider the underlying
set of G) then, for all fixed a ∈ G,

G = {ag : g ∈ G} = {g−1 : g ∈ G}.

Proof Use Theorems 2.6 and 2.7; see Problem 2.1. �
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Most elementary exponent properties apply to groups. Note that as the group
in question may not be Abelian some properties do not always hold. For example,
(ab)2 may, or may not, equal a2b2.

For all elements a in a group, if n ≥ 0 we write

a0 = e and an+1 = ana, that is an = aa · · ·a (n copies of a).

Also, again if n ≥ 0 we write a−n in place of (a−1)n. By Theorem 2.7, this also
equals (an)−1; reader, why?

Theorem 2.9 Suppose a is a group element, and r, s ∈ Z.

(i) ar+s = aras .
(ii) (ar )s = ars .

Proof (i) By induction on s. Suppose s is non-negative. We have ar+0 =
ar = are = ara0 and, using the inductive hypothesis in the third equation,

ar+(s+1) = a(r+s)+1 = ar+sa = arasa = aras+1.

Now apply induction. Using this we have ar−sas = a(r−s)+s = ar , hence
ar−s = ar(as)−1 = ara−s and (i) follows for negative s.

(ii) Assume first that s is non-negative. As above we use induction on s,
we have (ar )0 = e = a0r and

(
ar

)(s+1) = (
ar

)s
ar = arsar = ar(s+1),

and this case follows by the inductive hypothesis and (i). The reader should
do the remaining case using a similar method to that given in the last part of
the proof of (i). �

We shall see below that an important invariant of a group is the number of ele-
ments in its underlying set, we define this as follows.

Definition 2.10 (i) Two groups G and H are called equal, G = H , if and only if
their underlying sets are equal (page 277), and they have the same operation.

(ii) The order of a group G is the number (or cardinality) of elements in the
underlying set of G, this is denoted by o(G).

Some comments on cardinality are given in Appendix A. One or two authors
reserve the word ‘order’ for groups and use the word ‘size’ for sets, we shall use
‘order’ for both. Note that o(G) can be finite or infinite, and this distinction is im-
portant; see page 5. If the order of G is finite, then the usual number-theoretic rules
apply and, as we shall show later, they have a powerful controlling influence on the
structure of G. If o(G) is infinite, then different considerations apply and care is
needed when interpreting results.
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Isomorphism—A Preliminary Note

Several groups can appear to be distinct but are, in fact, identical from the group-
theoretical point of view. If we have two groups G1 and G2 with a bijection θ be-
tween their underlying sets which preserves or transforms all group-theoretic prop-
erties of G1 to G2, and vice versa, then we say they are isomorphic, and θ is an
isomorphism between them, symbolically this is written G1 � G2. The main prop-
erty is

(ab)θ = aθ · bθ, (2.1)

for all a, b ∈ G1; see page 68. We shall give a formal definition of this concept at
the beginning of Chapter 4, but it will be convenient to be able to use this notion
from now on. As an illustration, we give two examples here. If G = H , see Def-
inition 2.10(i), then the identity map (page 281) clearly acts as an isomorphism.
Secondly, the real numbers with addition R, and the positive reals with multiplica-
tion R

+, both form groups. They are isomorphic, and one isomorphism θ defined by

xθ = 2x, for x ∈ R,

demonstrates this fact. The map θ : R → R
+ is a bijection (with inverse log2) and

it transfers all group-theoretic properties of the first group to the second, and vice
versa via (2.1). For instance, the neutral element 0 of R is mapped to 20 = 1, the
neutral element of R

+, and if a, b ∈ R then (a + b)θ = 2a+b = 2a2b = aθbθ which
verifies (2.1) in this case.

Isomorphism Class

Consider the statement: “There are only two groups of order 6” (Problem 2.20). This
is not correct as it stands because there are infinitely many distinct groups of order 6,
but many are isomorphic to one another. So to be more precise, we should say that
“there are exactly two isomorphism classes of groups of order 6”. If we take the
group with elements {0,1,2,3,4,5} and operation addition modulo 6 (Z/6Z, the
cyclic group of order 6), and D3 (page 3) as our ‘standard’ groups of order 6, then
it is true that all groups of order 6 are isomorphic to one of these two groups. When
discussing groups of a fixed size we shall often use this short-hand.

2.2 Examples

Groups are found throughout mathematics, there is hardly a branch of the subject
where they do not occur, they are also widely used in many branches of the physi-
cal sciences. We give here an extensive list of examples to illustrate the range and
applicability of the group concept. No proofs will be given, in most cases it is not
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difficult to check that the group axioms are satisfied. Note that the notation for indi-
vidual groups given in this section will be used throughout the book, see pages 303
and 304.

Number Systems

Our first examples are the standard number systems. The integers Z, the rational
numbers Q, the real numbers R, and the complex numbers C, with the operation of
standard addition in each case, all form infinite Abelian groups. The non-zero ra-
tional numbers Q

∗, non-zero real numbers R
∗, and non-zero complex numbers C

∗,
with the operation of multiplication in each case, also form infinite Abelian groups
distinct from the above. In general, for a ring or field F we let F ∗ denote the mul-
tiplicative group of the non-zero elements of F . Further, the positive rationals Q

+
with multiplication form a group (which is a subgroup of Q

∗; see Section 2.3), with
a similar construction for R

+. Note that neither the non-zero integers with multipli-
cation nor the positive integers with multiplication form groups as inverses do not
exist.

Modular Arithmetic

Our second collection of examples are finite groups from number theory. If m > 0,
the congruence

a ≡ b (mod m)

stands for: a and b have the same remainder after division by m (in symbols,
m | b − a). This notation was first introduced by C.F. Gauss in 1801 in his famous
number theory text called ‘Disquisitiones arithmeticae’. Let Z/mZ denote the set
{0,1, . . . ,m − 1}. If a, b ∈ Z/mZ, the operation +m is given by

a +m b = a + b, if a + b < m, and

a +m b = a + b − m, if a + b ≥ m,

(so a +m b ≡ a + b (mod m), this is called addition modulo m). The set Z/mZ

with the operation +m is an Abelian group of order m, the notation Z/mZ which
relates to cosets and factor groups will be explained in Chapter 4. This implies that
at least one group of order m exists for each positive integer m; in some cases this
is essentially the only group of this order (that is, up to isomorphism); for example,
when m = 13 or 15, see Appendix D.

If m is a prime number p, then (Z/pZ)∗ = (Z/pZ)\0 with multiplication mod-
ulo p, defined similarly to addition modulo p, forms another finite Abelian group.
Inverses exist by the Euclidean Algorithm (Theorem B.2 in Appendix B). Also note
that the group T1 = {−1,1} (page 42) is isomorphic both to the group Z/2Z, and to
the group (Z/3Z)∗.



2.2 Examples 19

Product Groups

Given groups G1, . . . ,Gn, we can form a new group by taking all (ordered) n-tuples
of the form (g1, . . . , gn), where gi ∈ Gi for i = 1, . . . , n, as the new elements, and
defining the new operation component-wise using the operations of each Gi in turn.
In many cases, several different operations can be defined; see Chapter 7. For exam-
ple, suppose n = 2 and G1 = G2 = T1. The elements of the product group are

(1,1), (1,−1), (−1,1), (−1,−1),

and the operation is given by (a, b)(c, d) = (ac, bd). This group is called the
4-group and is denoted by T2, it is a product of two copies of T1; in Chapter 7,
we use the standard notation C2 ×C2 for this group. Some authors use K (for Klein
group) or V (for ‘Viergruppe’ the German word for ‘4-group’ or ‘fours group’) for
this group. Note that the square of every element in T2 is the neutral element (1,1),
and it is an example of an Elementary Abelian Group as defined in Problem 4.18.

Matrix Groups

Matrix groups form one of the most important collections in the theory. Let F be a
field (for instance, the rational numbers Q) and let m ≥ 1. The set of non-singular
m × m matrices with entries from F and operation matrix multiplication forms a
non-Abelian group (if m > 1) called the m × m general linear group over F , it is
denoted by GLm(F). The group axioms can be shown to hold using some elemen-
tary matrix algebra; the matrices are non-singular, and so inverses exist by definition.
See Section 3.3 for further details.

As we shall show later, subgroups (Section 2.3) of these matrix groups provide a
further wide range of examples. For instance, (a) by considering only those matrices
with determinant 1 in GLm(F) we obtain the m × m special linear group denoted
by SLm(F), or (b) by considering those matrices that have zeros at all entries below
the main diagonal we obtain the group of m × m upper triangular matrices denoted
by UTm(F); see Section 3.3. Also many examples can be obtained by choosing
different fields F . So if F is finite, these matrix groups provide a variety of exam-
ples of finite non-Abelian groups. For instance, SL2(F4) (which we usually write
as SL2(4), the group of all 2 × 2 matrices A with detA = 1 and entries in the four
element field F4—see page 254) is an important example of a simple group; as
given by Definition 2.33. Many other simple groups can be defined using similar
constructions; see Sections 12.2 and 12.3.

Symmetries of Geometric Objects

The symmetry properties of geometric objects provide a number of group examples.
In Chapter 1 (page 3), we discussed the symmetries of an equilateral triangle, the
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group in question being called the dihedral group of the triangle denoted by D3. The
elements of the group are the rotations and reflections that give the same geometric
figure, and the operation is composition. A similar construction can be carried out
for a regular polygon with n sides: the clockwise rotations about the centre are now
by 2π/n, and ‘reflection’ or ‘turning over’ is as before. This group is denoted by Dn

and again called dihedral. For example, D4 is the group of symmetries of the square,
it has order 8. (Note that a few authors write D2n for Dn, see page 303.) Some
other regular geometric objects have non-neutral (rotational) symmetry groups, for
example, the tetrahedron (A4, see Problem 3.10), the octahedron (S4, see page 170)
and the dodecahedron (A5, see Section 3.2 and Web Section 3.6).

Also under this heading is the topic of sphere packing in various dimensions.
Consider a large container filled with identical balls, some will touch adjacent balls
and some will not. In dimension 2, where we have identical discs, a regular pattern
forms and the set of disc centres gives a lattice (of equilateral triangles), and we
can consider the symmetries of this lattice just as we have done for the triangle.
In dimension 3, no such regular pattern forms where all adjacent balls touch. In
this case, there are infinitely many ways to fit twelve balls around a central ball
all touching it (there is always some room to spare), but thirteen never quite fit. In
dimensions 8 and 24, ‘regular touching’ patterns do again form, the lattices given
by the centres of the ‘spheres’ have some remarkable properties and give rise to
some remarkable groups. For further details, see Conway and Sloane (1993). As a
preliminary to this you should consider the following. The kissing number for these
lattices is the maximum number of spheres that can fit around a central sphere S

so that every sphere touches (kisses) S. In dimension 2, the kissing number is well-
known to be six, and in dimension 3 it is, as noted above, twelve with some room to
spare. But in dimension 8 it is 240, and in dimension 24 it is 196560 ! The first of
these lattices has connections with the Mathieu group M24, and the second with the
sporadic group called the ‘Monster’ or ‘Friendly Giant’, see Chapter 12, the ATLAS

(1985), and the reference quoted above.

Permutations

Permutations play a vital role in group theory, especially in the early development. If
X is a set and SX denotes the collection of all permutations on X (that is, bijections
of X to itself), then this collection forms a group under the operation of composition
called the symmetric group on X. If X is finite with n elements, we usually take X

to be the set {1,2, . . . , n} and write Sn for SX . See page 12 for the case n = 3. Note
that Sn is non-Abelian if n > 2, and has order n! (count all possible maps). As with
many other groups, the symmetric groups have a number of important subgroups,
that is, subsets that form groups; see Definition 2.11. For example, the alternating
group An which is the group contained in Sn of all even permutations (a permutation
is even if it can be expressed as an even number of interchanges of pairs of symbols;
see Section 3.1)
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Examples from Analysis

Some classes of functions form groups. For example, let Z denote the set of all
continuous, strictly-increasing functions f which map [0,1] onto [0,1], and satisfy
f (0) = 0 and f (1) = 1. This set Z forms a group if the operation is taken to be
composition of functions (the identity function f0, where f0(x) = x for all x, acts
as the neutral element, and inverses exist as the functions f are continuous and
strictly monotonic). We can construct further groups (subgroups) inside this one,
for instance, we could consider only those functions in Z which are differentiable.
These are examples of ‘topological groups’, see page 6.

Free Groups and Presentations

This construction provides another way to introduce groups, it will be discussed
in more detail in Section 3.4 and Web Section 4.7. Consider an alphabet of
letters A = {a, a′, b, b′, . . .}. The letter a′ is going to act as the inverse of a, et
cetera, see page 57. A word c1c2 · · · ck consists of a finite string of letters ci from
the alphabet A, for example,

aabb′a′, b, or ababa

are words. The set of words with the operation of concatenation forms a semigroup;
to obtain a group we proceed as follows. We define a reduced word as a word in
which all pairs of consecutive letters aa′, a′a, bb′, . . . do not occur or have been
removed, for example, aabb′a′ reduces to a, whilst b and aba′b′a are reduced. As
a′ will act as the inverse of a, et cetera, each of these removals corresponds to the use
of axiom (iv) in Definition 2.2. The operation of the group is as for the semigroup,
that is concatenation—write one reduced word and then write the second reduced
word immediately following the first, except that the resulting word must be reduced
by removing all pairs aa′, a′a, bb′, . . . if they are formed by the concatenation, or
by previous removals. For instance,

the product of ac′b and b′ca′c is c.

The empty word—that is the word with no symbols from A which is written as
e where e /∈ A—acts as the neutral element of the group, and inverses are con-
structed as in the example above—for instance, the inverse of aab′cbc′ is cb′c′ba′a′.
The group is denoted by 〈a, b, c, . . .〉 (in this notation it is assumed that the letters
e, a′, b′, . . . are also present), and the letters a, b, c, . . . are the generators. It is called
free because there are no constraints on possible words other than those ensuring the
group properties hold; note that all free groups are necessarily infinite. A free group
with just one generator a, say, is called an infinite cyclic group, it is isomorphic to
Z and so we denote it either by 〈a〉 or by Z. Non-free groups have more condi-
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tions called relations, or sometimes defining relations. For example, the finite cyclic
group Cn of order n can be treated as the infinite cyclic group Z � 〈a〉 with the extra
relation

an = e.

In this group, each time an occurs it is replaced by the neutral element e in the same
way that terms of the form aa′ or a′a are replaced by e. In Section 3.4, we shall
see that this method for constructing groups has a number of advantages, but also
some disadvantages. For instance, in a few cases it may be difficult, or sometimes
impossible, to determine the group order.

Elliptic Curves

The collection of solutions of some equations can be formed into groups. For exam-
ple, consider the set of rational solutions of the equation

y2 = x3 + k where k ∈ Z\{0}. (2.2)

Suppose P1 = (x1, y1) and P2 = (x2, y2) lie on the curve. The straight line P1P2

passing through the points P1 and P2 meets the curve in exactly one further point
P3 = (x3, y3), say, and the pair (x3, y3) forms a new solution of (2.2), and if
x1, . . . , y2 ∈ Q then also x3, y3 ∈ Q. If P1 = P2, then the line is the tangent to the
curve at P1; and the whole procedure is called the chord–tangent process.

Points on the curve with rational coordinates form the elements of a group, and
the operation is defined using the chord–tangent process. It is closed because, given
rational points P1 and P2 on C, a rational point P3 on C always exists, and we set
P1 + P2 = −P3. The neutral element is the ‘point at infinity’ on the curve in the
y-direction. (To set this procedure up properly we use homogeneous coordinates
(x : y : z), where

(tx : ty : tz) = (x : y : z) for all t ∈ Q
∗.

The usual notation for a point (x, y) is identified with (x : y : 1), and the point (x :
y : 0) lies on the ‘line at infinity’. Equation (2.2) becomes y2z = x3 +kz3. The point
(0 : 1 : 0), the neutral element of the group, clearly lies on the curve, and is the ‘point
at infinity’ in the y-axis direction. We set P1 + P2 to equal ‘minus’ P3 to obtain a
valid inverse operation, so using the standard two variable (affine) coordinates, the
inverse of the point P1 = (x1, y1) is −P1 = (x1,−y1).) In this ‘projective geometry’
all vertical lines ‘meet’ at the point at infinity (0 : 1 : 0), and some results from
algebraic geometry are needed to prove associativity. These groups can be finite or
infinite, and they are Abelian because the line through the points P1 and P2 is clearly
the same as the line through P2 and P1. See for example Rose (1999), Chapters 15
and 16, for further details.
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Examples from Topology

The basic structure of a topological space is best described using groups. For exam-
ple, the fundamental group of a space, which was first defined by H. Poincaré over
a century ago, is constructed as follows:

Fix a point P in a path-wise connected topological space T , and consider the set
of all continuous closed and directed loops from P to P . Call two loops ‘equivalent’
if one can be continuously deformed into the other (topologists call them ‘homo-
topic’), the group operation is composition. The neutral element is the set of loops
that can be continuously contracted to the point P , and the inverse of the loop L is
L with its direction reversed. For instance, the fundamental group of the real plane
R

2 with the origin removed is the infinite cyclic group (all loops through P that do
not enclose the origin can be contracted to P , but, for example, a loop that passes
around the origin clockwise four times, say, cannot be contracted and ‘equals’ four
times a loop which passes around the origin clockwise only once).

Although the definition appears to depend on the point P ∈ T , it can be shown
that fundamental groups for different points P are isomorphic; that is, there exists
a fundamental group for the space T . Further details can be found in a standard
book on general topology, for example, Kelley (1955) or Willard (1970). Algebraic
topology is another area where groups—homology and cohomology groups-provide
insights into the structure of topological spaces, see for example Benson (1991).

Examples from the Physical Sciences

Particle physicists make extensive use of group theory. Many of the essential prop-
erties of the basic constituents of matter are best described using the language and
properties of groups. At least one elementary particle was discovered using the
abstract theory. A collection of particles was associated with a particular class of
groups, and it was realised that there was one more group (that is, 28) than known
particles in this collection (at the time, 27); this led the experimental workers to
look for the ‘missing’ particle (called Ω−), and it was duly found a few years later!
An excellent ‘down-to-earth’ account of this topic is given in Close (2006), and
Williams (1994) provides a good technical introduction.

Some chemists use groups to describe the structure of molecules. A notable ex-
ample was given in 1985 when a crystalline form of carbon, called Carbon60, was
discovered by the chemists Kroto, Curl and Smalley;2 its structure is closely related
to that of a dodecahedron, and so also to the alternating group A5; the subsection on
symmetries above, Section 3.2, and Web Section 3.6 all give some details.

2They were awarded the Nobel prize in chemistry for this work.
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2.3 Subgroups, Cosets and Lagrange’s Theorem

Most groups contain a number of smaller groups using the same operation, we shall
consider these now.

Definition 2.11 A subgroup H of a group G is a non-empty subset of G which
forms a group under the operation of G.

We write H ≤ G when H is a subgroup of G. For example, if G is the group Q,
then Z is a subgroup, that is, Z ≤ Q. But note that Q

+ is not a subgroup of Q even
though the underlying set in the first group is contained in the second; reader, why?

Definition 2.12 (i) A subgroup J of a group G is called proper if J 	= G, this is
denoted by J < G.

(ii) The singleton set {e} forms a subgroup of all groups, it is called the neutral
subgroup and is denoted by 〈e〉.

(iii) A subgroup H of a group G is called maximal in G if it is a proper subgroup
of G, and whenever a subgroup J exists satisfying H ≤ J ≤ G, then either J = H

or J = G, so no subgroup lies strictly between H and G.

Notes (a) The neutral subgroup 〈e〉 is sometimes called the identity, trivial, or unit,
subgroup; see page 4.

(b) Clearly G ≤ G; so all groups with more than one element have at least two
subgroups; some have no more, see Theorem 2.34.

(c) Maximal subgroups are not necessarily ‘large’. For an extreme example, con-
sider the alternating group A13 which has order 3113510400, remarkably it pos-
sesses a maximal subgroup of order 78. Also arbitrarily large groups with maximal
subgroups of order 2 exist—Problems 3.20 and Corollary 6.12.

(d) There are connections between maximal subgroups and generators, see Prob-
lem 2.13 and Section 10.2, and reasoning with maximal subgroups is used in several
proofs, for example, in that for the Frattini Argument (Lemma 6.14).

The next result gives conditions for a group subset to be a subgroup.

Theorem 2.13 If H is a subset of G, then H ≤ G if, and only if,

(a) H is non-empty, and
(b) whenever a, b ∈ H , we also have a−1b ∈ H .

Proof Clearly (a) and (b) are valid if H ≤ G (Definitions 2.2 and 2.11).
Conversely, suppose (a) and (b) hold for a subset H of G. By (a), there
is at least one element a ∈ H , and so, by (b), e = a−1a ∈ H . Applying
(b) again, we have, as a, e ∈ H , a−1 = a−1e ∈ H , and so H is closed un-
der inverses. Thirdly, if a, b ∈ H , then a−1 ∈ H , and so together these give
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ab = (a−1)−1b ∈ H by Theorem 2.7(ii), that is, H is closed under the opera-
tion of G. Finally, we note that associativity holds in H because it holds in G;
the result follows. �

There is also a ‘right-hand version’ of this result where in (b) ‘a−1b ∈ H ’ is substi-
tuted by ‘ab−1 ∈ H ’. In practice, it is often better to replace (b) by:

(b1) if a, b ∈ H then ab ∈ H , and
(b2) if a ∈ H then a−1 ∈ H .

For example, suppose G = GL2(Q) and H is the subset of these matrices with de-
terminant 1. The identity matrix I2 belongs to H , and so H is not empty. Also if
A,B ∈ H , then detA = detB = 1 and so, as det(AB) = det(A)det(B) = 1, we de-
duce AB ∈ H . Finally, if C ∈ H , then 1 = detC = detC−1, and so C−1 ∈ H ; this
gives H ≤ G. We use the notation SL2(Q) for H , see Section 3.3. Some further
examples are given in Problem 2.10.

We consider now some set-theoretic operations on subgroups.

Corollary 2.14 (i) If H ≤ J and J ≤ G, then H ≤ G, that is the subgroup relation
is transitive.

(ii) If H,J ≤ G and H ⊆ J , then H ≤ J .

Proof Both of these results follow from Theorem 2.13, see Problem 2.5. �

Intersections of subgroups are always subgroups (but unions are usually not sub-
groups because closure fails). See the note concerning subgroup lattices on page 32.

Theorem 2.15 Suppose I is a non-empty index set. If Hi ≤ G, for each i ∈ I , and
J = ⋂

i∈I Hi , then J ≤ G.

Proof As e ∈ Hi for all i ∈ I , we have e ∈ J , so J is not empty. Secondly, if
a, b ∈ J , then a, b ∈ Hi for all i ∈ I , but each Hi ≤ G so, by Theorem 2.13,
a−1b ∈ Hi , for all i ∈ I , which shows that a−1b ∈ J . Now use Theorem 2.13
again. �

In Section 2.1 (page 13), we introduced the notion of a generating set for a group,
this can be formally defined by

Definition 2.16 A subset X of the underlying set of a group G is said to generate
G if the intersection of all subgroups of G that contain X coincides with G, or
to put this another way, the only subgroup of G that contains X is G itself. This
intersection is denoted by 〈X〉.

Theorem 2.17 Suppose X is a non-empty subset of the underlying set of the
group G. The set X generates G if and only if the set of all products of powers
(positive and negative) of elements of X equals G.
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Proof By Theorem 2.15 and Definition 2.16, 〈X〉 ≤ G. Suppose 〈X〉 = G.
Let Z denote the set of all powers of products of elements of X; Z ⊆ G). The
set Z is non-empty as X is non-empty, and so Z ≤ G by Theorem 2.13 and
the definition of Z. Also X ⊆ Z, and so Z is one of the subgroups used in
the formation of the intersection 〈X〉; hence 〈X〉 ≤ Z ≤ G. Therefore, as X

generates G (by supposition), we have Z = G.
For the converse suppose Z = G. Now for given H , if X ⊆ H and H ≤ G,

then Z ≤ H , again by Theorem 2.13 and the definition of Z. This holds for
all such H , and so it holds for 〈X〉 by Theorem 2.15; that is, Z ≤ 〈X〉. But by
our supposition Z = G, and so 〈X〉 = G, and the result is proved. �

We set 〈X〉 = 〈e〉, if X is empty.
Now we consider group elements in more detail. For g ∈ G we write 〈g〉 for the

set of powers of g ∈ G, that is 〈g〉 = {gt : t ∈ Z}; see Section 4.3. We have

Theorem 2.18 If g ∈ G then 〈g〉 ≤ G.

Proof The set 〈g〉 is clearly not empty, and if m,n ∈ Z, then gm,gn ∈ 〈g〉,
and (gm)−1gn = gn−m ∈ 〈g〉. Result follows by Theorems 2.9 and 2.13. �

We say that g is a generator of the subgroup 〈g〉 of G (page 13). This result
ensures that almost all groups have at least some non-neutral proper subgroups, see
Theorem 2.34 for the exceptions.

Examples (a) Let G = Z and g = 7, then 〈7〉 is the proper subgroup of Z consisting
of the set of integers divisible by 7.

(b) Secondly, let G = (Z/7Z)∗ and g = 3. In this case, the subgroup 〈3〉 is G

itself because the powers of 3 modulo 7 generate the whole group; the reader should
check this and also consider the case g = 2.

Theorem 2.18 and these examples suggest the following

Definition 2.19 Let g ∈ G.

(i) The subgroup 〈g〉 given by Theorem 2.18 is called cyclic.
(ii) The order of g, denoted by o(g), is defined by o(g) = o(〈g〉); that is, o(g)

equals the order of the cyclic subgroup generated by g in G.
(iii) An element of order 2 is called an involution.
(iv) The exponent, if it exists, of a group G is the least common multiple of the

orders of all of the elements of G; that is, the least positive integer m with the
property: gm = e for all g ∈ G.

Notes (a) All parts of this definition are relative to a fixed group G.
(b) Orders can be finite or infinite, and if the orders of two elements are finite it

does not follow that the order of their product is finite (Problem 2.7).
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(c) If G is finite, it has an exponent which is not greater than o(G). The group Q

is an example of an infinite group with no exponent. In 1902, W. Burnside (1852–
1927) conjectured that a group G with finite generating set and finite exponent must
be finite, and this is true if G is Abelian. But it can be false if G is not Abelian as
was shown by Adian and Novikov in 1968 for a group with an exponent larger than
665; see Vaughan-Lee (1993).

(d) Elements of order 2 are called involutions to signal the fact that they play
a unique role in the theory, particularly to CFSG. (It is the subgroups called cen-
tralisers of these involutions, see Section 5.2, that play this vital role.) Also, apart
from the neutral element e they are the only group elements which equal their own
inverses. Further properties are given in Problems 2.28, 3.1(iv) and 3.20, and in the
note about Coxeter Groups on page 64.

We illustrate these concepts with the following result.

Corollary 2.20 If a group G has exponent 2, then it is Abelian.

Proof Suppose a, b ∈ G, then ab ∈ G and e = (ab)2 = abab. Multiplying on
the left by a and on the right by b, we obtain

ab = aeb = a(abab)b = a2bab2 = ba

as both a and b have order 2. This holds for all a, b ∈ G. �

Given a prime p, an Abelian group all of whose non-neutral elements have order
p is called an Elementary Abelian p-group. We shall see later (Problem 4.18) that
these groups can be treated as vector spaces defined over a p-element field. The
corollary above shows that all groups of exponent 2 are of this type, this is not true
for primes p > 2; an example is given in Problem 6.5.

Cosets and Lagrange’s Theorem

For our next results, we require some new notation. If X and Y are non-empty
subsets of a group G, then we write XY for the subset

XY = {xy : x ∈ X and y ∈ Y } ⊆ G.

If X is the singleton set {x}, then we write xY for {x}Y (and Yx for Y {x}). Note
that if X,Y,Z ⊆ G then, by associativity,

(i) X(YZ) = (XY)Z, and
(ii) XY = YX, if G is Abelian.

Definition 2.21 For H ≤ G and g ∈ G, the set gH = {gh : h ∈ H } is called a left
coset of H in G, and the set Hg is called a right coset of H in G.
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Cosets play an important role in the theory, here they lead to our first major
result—Lagrange’s Theorem, and in Chapter 4 they form part of the important ideas
associated with factor groups. One of the origins of this work is Gauss’s develop-
ment of modular arithmetic undertaken two centuries ago (page 18): if G = Z and
H = nZ, then the cosets are

kH = {k + nz : z ∈ Z} for k = 0, . . . , n − 1;
the coset kH equals the set of integers congruent to k modulo n.

When referring to the set T of cosets of H in G, we often write T = {gH :
g ∈ G}. Here we are using the convention that in an un-ordered set duplication is
ignored, for instance, the set {. . . , a, a, . . . , a, . . .} is the same as {. . . , a, . . .}. If we
did not use this convention in the coset case, we would need to specify a unique g

in each coset gH , and this would cause problems.
We begin with some basic lemmas. The first will be used often in the following

pages, it characterises the coset representatives.

Lemma 2.22 If H ≤ G and a, b ∈ G, then

aH = bH if and only if a ∈ bH if and only if b−1a ∈ H.

There is an exactly similar result for right cosets; the reader should write it out and
redo the following proof in this second case.

Proof Suppose firstly aH = bH . As H is a subgroup, e ∈ H and so a =
ae ∈ aH = bH . Secondly, suppose a ∈ bH , then there exists h ∈ H satisfying
a = bh, and so b−1a = h ∈ H . Lastly, suppose b−1a ∈ H . As above this gives
a = bh for some h ∈ H , and hence

ah1 = bhh1 ∈ bH for all h1 ∈ H ;
that is, aH ⊆ bH . For the converse inclusion, as H ≤ G, we have by Theo-
rem 2.13, a−1b = (b−1a)−1 ∈ H , and so we can repeat the previous argument
with a and b interchanged, the equation aH = bH follows. �

To derive Lagrange’s Theorem, we require the following three lemmas, the first
shows that cosets are either disjoint or identical.

Lemma 2.23 If H ≤ G, then the underlying set of G can be expressed as a disjoint
union of the collection of all left cosets of H in G. There is an exactly similar result
for right cosets.

Proof Clearly, each element g ∈ G belongs to a left coset because g ∈ gH .
Suppose further g ∈ aH and g ∈ bH , then by Lemma 2.22, aH = gH = bH ,
and the lemma follows. The right coset version follows similarly. �
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Lemma 2.24 If H ≤ G and g ∈ G, then o(H) = o(gH) = o(Hg).

Proof We give the proof for left cosets, the right coset result is proved sim-
ilarly. To establish this lemma, we construct a bijection between the sets in-
volved. Let φ be the map from H to gH defined by

hφ = gh;
see note on ‘left or right’ on page 68. If hφ = h′φ then gh = gh′, and by
cancellation (Theorem 2.6) this gives h = h′, and so φ is injective, hence it is
bijective because it is clearly surjective. �

Lemma 2.25 If H ≤ G, then the number (cardinality) of left cosets equals the num-
ber of right cosets.

Proof As in the previous proof, we construct a bijection between the sets. Let
θ be the map from the set of left cosets to the set of right cosets given by

(gH)θ = Hg−1.

This is well-defined; for if gH = g1H , then Hg−1 = Hg−1
1 (use left and

right versions of Lemma 2.22 and closure under inverses). It is also clearly
surjective because each element of G is the inverse of some element in G

(Theorem 2.8). To prove injectivity, suppose

(gH)θ = (g1H)θ, that is Hg−1 = Hg−1
1 .

Using the right-hand version of Lemma 2.22, this gives g−1
1 ∈ Hg−1, and

hence g−1
1 = hg−1 for some h ∈ H . Therefore, g1 = gh−1 ∈ gH (as H is a

subgroup), and so g1H = gH by Lemma 2.22 again. �

Having established these lemmas, we can now derive Lagrange’s Theorem. Much
of the early work in algebra was concerned with properties of polynomials defined
over the rational numbers. J.-L. Lagrange (1736–1813), an Italian mathematician
working in France, studied these polynomials as well as in many other topics in
mathematics. He postulated a result similar to that given in the last part of Prob-
lem 5.1 which relies on what we now call ‘Lagrange’s Theorem’; and it is for this
reason that the following result is so named. In fact, Galois gave the first proof of the
theorem for permutation groups in 1832, and it was probably C. Jordan (1838–1932)
who gave the first proof for general groups some thirty years later.

We begin by making the following

Definition 2.26 Let H ≤ G. The number (cardinality) of left cosets of H in G is
called the index of H in G, it is denoted by [G : H ].

By Lemma 2.25, this equals the number of right cosets of H in G.
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Theorem 2.27 (Lagrange’s Theorem) If H ≤ G then o(G) = o(H)[G : H ].

Proof By Lemma 2.23, the underlying set of G is a disjoint union of [G : H ]
cosets, and by Lemma 2.24, each of these cosets has the same cardinality
(number of elements), that is o(H), the theorem follows. �

This result is particularly useful in the finite case where it shows that H can only
be a subgroup of G if o(H) | o(G); that is, the prime factorisation of the order of
a group G is an important invariant of G. For instance, a group of order 30 cannot
have subgroups of order 4,7,8,9,11, . . . ,29. Also, it cannot have elements of order
4,7, . . . , see Definition 2.19. In the infinite case, the theorem shows that either the
order of the subgroup, or the index (or both), must be infinite. Note that there exist
infinite groups all of whose proper subgroups are finite, see Problem 6.7.

2.4 Normal Subgroups

The last topic in this chapter concerns a special type of subgroup in which left and
right cosets are equal, they play a vital role in the theory. These subgroups were first
defined by Galois in the 1820s when he was working on the solution of polynomial
equations by radicals; see the Introduction to Chapter 11.

Definition 2.28 (i) Let K ≤ G. The subgroup K is called normal in G if, and
only if,

gK = Kg for all g ∈ G.

This is denoted by K � G.
(ii) If g,h ∈ G, h−1gh is called the conjugate of g by h in the group G.
(iii) For a fixed element g ∈ G, the set {h−1gh : h ∈ G}, that is, the set of conju-

gates of g in G, is called the conjugacy class of g in G; see also Definition 5.17.

Notes (a) The subgroups 〈e〉 and G are normal in G for all groups G.
(b) If G is Abelian, all subgroups are normal, all conjugates of g equal g, and so

the conjugacy class of g in G is {g}.
(c) We reserve the symbol ‘K’, possibly with primes or subscripts, to denote

a normal subgroup, but other symbols will occasionally be used where necessary.
In Chapter 4, we discuss the connection between normal subgroups and kernels of
homomorphisms—K for kernels and so also for normal subgroups.

(d) Conditions stronger than normality are useful at times. The first is character-
istic, for a definition and basic properties see Problem 4.22; the main point is that
characteristic is a transitive property whereas normality is not. Some authors use an
even stronger property called fully invariant which is defined similarly to character-
istic except that in the definition on page 89 the word ‘automorphism’ is replaced
by ‘endomorphism’, see Definition 4.2.
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The following theorem gives two conditions for normality, see note below the
statement of Lemma 4.6.

Theorem 2.29 (i) If K ≤ G, then the following conditions are equivalent:

(ia) K � G;
(ib) for all g ∈ G, g−1Kg ⊆ K ;
(ic) for all g ∈ G and all k ∈ K , g−1kg ∈ K .

(ii) Suppose K � G. If k ∈ K , then all conjugates of k in G belong to K , and K

is the union of a collection of the conjugacy classes of G.

Proof Note first that both parts of (ii) follow immediately from (i). Suppose
(ia) holds, so if g ∈ G, gK = Kg by definition. Hence, for all k ∈ K , we can
find k′ ∈ K to satisfy

gk′ = kg, that is g−1kg = k′ ∈ K,

which gives (ib). Secondly, note that (ic) follows immediately from (ib) (as
g−1kg ∈ g−1Kg). Finally, suppose (ic) holds. So if g ∈ G and k ∈ K , we can
find k′ ∈ K to satisfy

g−1kg = k′, which gives kg = gk′ and so Kg ⊆ gK,

as this argument holds for all k ∈ K . For the converse, we have gkg−1 =
(g−1)−1kg−1 ∈ K , and so we can find k′′ ∈ K to satisfy gkg−1 = k′′ or gk =
k′′g. This gives the reverse inclusion and (ia) follows. �

Notes To prove that K � G it is necessary to prove both K ≤ G and K is normal
in G. Secondly, normality is not transitive (cf. Corollary 2.14); that is, if K � G and
H � K , it does not follow that H � G; see Problem 2.19(iii) for an example. On the
other hand, if K � G and K ≤ H ≤ G, then K � H ; see Problem 2.14. A stronger
property called characteristic which is transitive was mentioned in (d) opposite.

Our first application of the normal subgroup concept answers the question: When
is the product HJ of two subgroups H and J itself a subgroup? Note that in general
HJ is not a subgroup because it is not closed under the group operation. We use
the notation H ∨ J (or sometimes 〈H,J 〉)—the join of H and J —for the group
generated by the elements of both H and J (Definition 2.16). Clearly HJ ⊆ H ∨J ,
we have

Theorem 2.30 Suppose H,J ≤ G.

(i) If either H or J is a normal subgroup of G, then HJ ≤ G and H ∨ J = HJ =
JH .

(ii) If both H � G and J � G, then HJ � G.
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Proof (i) Suppose hi ∈ H,ji ∈ J , i = 1,2, and H � G (the proof is similar
if J � G). Then j−1

1 (h−1
1 h2)j1 = h∗ for some h∗ ∈ H (as h−1

1 h2 ∈ H,j1 ∈ J

and H � G). Hence

(h1j1)
−1(h2j2) = j−1

1 h−1
1 h2j1j

−1
1 j2 = h∗j−1

1 j2 ∈ HJ,

and, as HJ is clearly not empty, HJ ≤ G follows by Theorem 2.13. A sim-
ilar argument shows that a product of terms each of the form hj , for h ∈ H

and j ∈ J , is itself of this form; that is, HJ = H ∨ J . The last equation in
(i) follows because H ∨ J = J ∨ H , or we can show directly as above that
HJ ⊆ JH and JH ⊆ HJ .

(ii) By (i), we only need to check normality. If g ∈ G, h ∈ H and j ∈ J ,
we have g−1hjg = g−1hgg−1jg ∈ HJ by hypothesis, the result follows. �

Subgroup Lattices

Using Corollary 2.14 and Theorems 2.15 and 2.30, the collection of subgroups of a
group forms a (complete) lattice L, that is, a non-empty partially ordered set (Def-
inition A.5 in Appendix A) in which every subset has a greatest lower bound and
a least upper bound in L. Note that both the intersection and the join of two sub-
groups of a group G are themselves subgroups of G. Some examples are given in
Chapter 8. The structure of this lattice can have an important bearing on the group
in question. The first major result (Ore 1938) states that the lattice of a finite group
G is distributive (that is, H ∨ (J ∩ K) = (H ∨ J ) ∩ (H ∨ K), et cetera.) if and only
if G is cyclic. It should be noted that non-isomorphic groups can have identical sub-
group lattices; see Problem 6.4. For a detailed account of this aspect of the theory,
the reader should consult Schmidt (1994).

The centre of a group is an important example of a normal subgroup, it is given
by

Lemma 2.31 In a group G, the set

J = {a ∈ G : ag = ga for all g ∈ G}
forms a normal Abelian subgroup of G.

Proof Suppose a ∈ J . For all g ∈ G, we have eg = ge, ag = ga im-
plies a−1g−1 = g−1a−1 by Theorem 2.7, and if ag = ga and bg = gb then
abg = agb = gab; and so J ≤ G by Theorem 2.13. Also J is Abelian by
definition. Lastly, note that ag = ga implies g−1ag = a, and so J � G by
Theorem 2.29. �

Definition 2.32 The subgroup J of G given in Lemma 2.31 is called the centre
of G, it is denoted by Z(G).
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Notes The notation Z(G) is used because German authors call this subgroup the
Zentrum. The centre of a group G gives some important information about G.
Clearly, Z(G) = G if and only if G is Abelian. On the other hand, some groups
are centreless, that is, Z(G) = 〈e〉; examples are D3 and S4, see Problem 2.26.
A centreless group can in some ways be treated as the opposite of an Abelian group.

We end this chapter by introducing simple groups. We shall show later they can
be treated as the basic ‘building blocks’ for the construction of all finite and some
infinite groups; see Chapter 9.

Definition 2.33 A group G is called simple if it contains no proper non-neutral
normal subgroup.

The term ‘simple’ is perhaps not well-chosen because some simple groups are
very complicated! But as noted above they can be used as the basic constituents of
all groups; of course, they are all centreless. A full list of finite simple groups is
now known; see the ATLAS (1985) and Chapter 12. Many simple groups are given
by Lagrange’s Theorem for we have

Theorem 2.34 If o(G) is a prime number, then the group G is simple and cyclic.

For the converse see Theorem 9.6.

Proof By Lagrange’s Theorem (Theorem 2.27), the order of a subgroup of
G divides o(G). But in this case, the only positive divisors of the integer
o(G) are 1 and p, hence G has no proper non-neutral subgroups at all, and so
clearly no proper non-neutral normal subgroups. Also by Theorem 2.18 and
Definition 2.19, every element has order 1 or p. There is only one element,
e, of order 1 (Lemma 2.4). Hence G has p − 1 elements of order p; let a be
one of them. As a has p distinct powers (including p0 = e), it follows that all
elements of G equal powers of a, and so G is cyclic. �

In fact, ‘most’ simple groups (counted by the size of their orders) are of this
type, that is Abelian (and cyclic). For example, there are 173 (isomorphism classes
of) simple groups with order less than 1000 but only five are non-Abelian. The
construction of non-Abelian simple groups is a much more difficult task, in the
next chapter we introduce the first groups of this type—alternating groups, and
more will be discussed in Chapter 12. These include a number of infinite classes
of matrix groups, especially the linear groups Ln(q) and the unitary groups Un(q),
and also 26 (!) so called sporadic groups. These groups range in size from 7920
(Mathieu group M11) to about 1084 (Friendly giant M) and they have a wide variety
of constructions. The existence of these non-Abelian simple groups is surely one of
the most interesting and challenging aspects of the theory.
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2.5 Problems

A number of the problems given below have important applications in the sequel.
For an explanation of the symbols � and �, see page 9.

Problem 2.1 (i) Write out a proof of Theorem 2.8.
(ii) Using induction on n, prove the generalised associativity law for groups: If

g1, . . . , gn ∈ G, then all expressions formed by inserting or deleting brackets (in
corresponding pairs) in the term g1 � · · · � gn are equal.

Problem 2.2 Show that the following sets with operations form groups, and indi-
cate which are Abelian.

(i) Z/7Z with addition modulo 7.
(ii) (Z/7Z)∗ with multiplication modulo 7.
(iii) The set Q with the operation ∗ where, for a, b ∈ Q, we have a ∗b = a + b + 3.
(iv) GL2(Q) with matrix multiplication, see also Problem 2.10 below.
(v) The set of powers of products Q (that is, the group generated by) of the com-

plex matrices A = ( 0 1
−1 0

)
and B = ( 0 i

i 0

)
with the operation of matrix multi-

plication. What is the order of this group?
(vi) Let R = R ∪ {∞} where the symbol ∞ satisfies the usual naive rules:

1/0 = ∞, 1/∞ = 0, ∞/∞ = 1 and 1 − ∞ = ∞ = ∞ − 1. Define six func-
tions mapping R onto itself by:

f1(x) = x, f2(x) = 1

x
, f3(x) = 1 − x,

f4(x) = 1

1 − x
, f5(x) = x

x − 1
, f6(x) = x − 1

x
.

Show that this set forms a finite group under the operation of composition.
(vii) Let R denote the real plane R

2, let d denote the standard distance function
(metric) on R, and let � denote the set of bijective maps of R to itself which
preserve distance—if x, y ∈ R and θ ∈ �, then d(x, y) = d(θ(x), θ(y)).
A function of this type is called an isometry; rotation by π/3 about the origin
is an example. Show that � with the operation of composition forms a group.

The reader needs to be convinced that all the sets with operations described in
Section 2.2 are, in fact, groups.

Problem 2.3 Why are the following sets with operations not groups?

(i) The integers Z with subtraction.
(ii) The set of odd integers with addition.
(iii) The set

{( a r
0 b

)} ∪ {(
c 0
s d

)}
where a, b, . . . , s ∈ R and ab = 1 = cd , with matrix

multiplication.
(iv) The rational numbers Q with multiplication.
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Problem 2.4 (i) Let S be a semigroup with cancellation, so it has closure under its
operation which is associative, and for all a, b ∈ S, we can find x, y ∈ S to solve the
equations

ax = b and ya = b.

Show that S forms a group.
(ii)� If T is a semigroup, and for all a ∈ T there is a unique a∗ ∈ T satisfying

aa∗a = a,

prove that T is a group.

Problem � 2.5 If H,J ≤ G and in (iii) p is a prime, show that

(i) If H is a subset of J , then H ≤ J .
(ii) H ∩ J = H if, and only if, H ≤ J .
(iii) If o(H) = o(J ) = p, then either H = J or H ∩ J = 〈e〉.
Problem 2.6 Prove that if G is a group and S ≤ G, then SS = S. Conversely, if T

is a non-empty finite subset of G and T T = T , prove that T ≤ G. Is this true if T is
infinite?

Problem � 2.7 (Order Function) Let g,h ∈ G. Prove the following properties of
the order function.

(i) o(gh) = o(hg).
(ii) If o(g) = n and m ∈ Z, then o(gm) = n/(m,n); see page 284.
(iii) If o(g) = m and (m,n) = 1, there exists h ∈ G satisfying hn = g.
(iv) If o(g) = m, o(h) = n, and g and h commute, then o(gh) = LCM(m,n); see

part (vii).
(v) If G is finite and g ∈ G, then go(G) = e, and o(g) | ex(G) where ex denotes

the exponent of G, see Definition 2.19.
(vi) Suppose g ∈ G and o(g) = mn where (m,n) = 1. Show how to find unique

a, b ∈ G to satisfy ab = g = ba, o(a) = m and o(b) = n.
(vii) In (iv), if we drop the commutativity condition show that o(gh) can be infinite.

(Hint. Try G = GL2(Q).)

Problem 2.8 (i) Suppose G is a finite group and o(G) is even. Is the number of
elements of order 2 in G odd—does a group of even order always contain an invo-
lution? See also Cauchy’s Theorem (Theorem 6.2).

(ii) Using the group (Z/pZ)∗ where p is prime, see the definition on page 18,
give a proof of Fermat’s Theorem:

ap−1 ≡ 1 (mod p) if (a,p) = 1.

(iii) Using the same group as in (ii), show that (p − 1)! ≡ −1 (mod p), a re-
sult sometimes (wrongly) known as Wilson’s Theorem. You are given: If p > 2,
then (Z/pZ)∗ contains exactly two elements of order at most 2 (Theorem B.13 in
Appendix B).
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Problem 2.9 (Multiplication Tables) Given a group G of order n with elements
g1, . . . , gn where g1 = e, we can form a square array or table, with n rows and n

columns, whose (i, j )th entry is the product gigj . Show that each row and each
column of this table is a permutation of the elements g1, . . . , gn. What can you say
about the first row and first column?

Is the converse true? That is, if we have a square array of elements such that
each row and each column is a permutation of some fixed set, and the first row and
column have the property mentioned above, does the corresponding array always
form the multiplication table of a group?

Problem 2.10 Show that the following subsets are subgroups of the corresponding
groups, and determine whether they are normal.

(i) The set {1,−1} in R
∗.

(ii) The set of permutations on Y = {1, . . . ,6} which leave 3 fixed in S6, the set of
all permutations on Y ; see Section 3.2.

(iii) The subsets of GL2(Q) of matrices (a) which have determinant 1, and (b) which
are upper triangular (that is, the bottom left-hand entry is zero); see page 19 and
Section 3.3.

(iv) The set of complex numbers with absolute value 1 in C
∗.

(v) The set of differentiable functions in the group Z described in the subsection
on groups in analysis on page 21.

Problem 2.11 (i) Show that a finite subgroup of the multiplicative group of the
complex numbers C

∗ is cyclic. (Hint. Consider roots of unity.)
(ii) Find as many subgroups as you can of the additive group of the rational

numbers Q; see Web Section 7.5.

Problem 2.12 List the left and right cosets of the subgroups given in Problem 2.10;
note that the last part is not easy!

Problem 2.13 (i) Can a subset of a group G be the left coset of two distinct sub-
groups of G?

(ii) If G is finite and has a unique maximal subgroup H , show that it is cyclic.
(Hint. Consider an element in G\H .)

Problem � 2.14 (Normality Properties) Prove the following statements—all widely
used in the sequel.

(i) If K � G and K ≤ H ≤ G, then K � H .
(ii) A subgroup of the centre of a group G is normal in G.
(iii) If Ki � G for i = 1,2, . . . , n, then

⋂n
i=1 Ki � G.

(iv) If H,J,K ≤ G and K � J , then K ∩ H � J ∩ H .
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Problem � 2.15 (i) Show that if [G : H ] is finite and H ≤ J ≤ G, then

[G : H ] = [G : J ][J : H ].
(ii) Prove that if H,J ≤ G with [G : H ] = m and [G : J ] = n, then [G : H ∩ J ] ≥
LCM(m,n), and equality occurs if, and only if, m and n are coprime.

Problem � 2.16 (Derived Subgroup) If g,h ∈ G we set [g,h] = g−1h−1gh, it is
called the commutator of g and h. Also the subgroup of G generated by the set of all
products of powers of the commutators of G is called the derived (or commutator)
subgroup of G, and it is denoted by G′. In some cases, the set of commutators of a
group does, in fact, form a subgroup of the group, but not always; for an example,
see Rotman (1994), page 34. More generally, if H,J ≤ G, we let [H,J ] denote the
subgroup generated by all commutators of the form [h, j ] where h ∈ H and j ∈ J ;
so, for example, [G,G] = G′. See also Problem 4.6(ii), and Section 11.1, especially
page 234.

(i) Show that G′ � G.
(ii) Find G′ when G is (a) Z, (b) D3, and (c) Q, see Problem 2.2(v).
(iii) Prove that if J ≤ G and J ⊇ G′, then J � G—an important fact with many

applications.
(iv) Show that if K � G and K ∩ G′ = 〈e〉, then K ≤ Z(G), and so in particular K

is Abelian.
(v) Finally, prove that if K � G and J = [K,G], then J ≤ K and J � G.

Problem 2.17 (Commutator Identities) Prove the following identities where
[a, b, c] = [[a, b], c] for a, b and c in the same group G. Identity (iv) is called
the Hall–Witt Identity.

(i) [b, a] = [a, b]−1,
(ii)� If a, b ∈ G, and both a and b commute with [a, b], show that

[ar , bs] = [a, b]rs for r, s ∈ Z,

(ab)t = atbt [b, a]t (t−1)/2 if t ≥ 0.

(Use induction on t , (i), and the given relationship between G′ and Z(G).)
(iii) [ab, c] = (b−1[a, c]b)[b, c] and [a, bc] = [a, c](c−1[a, b]c),
(iv) b−1[a, b−1, c]bc−1[b, c−1, a]ca−1[c, a−1, b]a = e.
(v) If a1, . . . , am, b1, . . . , bn ∈ G and H = 〈a1, . . . , bn〉, then we can express

[a1 . . . am, b1 . . . bn] as a product of conjugates of [ai, bj ] by some cij ∈ H .
(vi) If H,J ≤ G where G = 〈H,J 〉, then [H,J ] � G.

Problem � 2.18 Suppose A,B,C ≤ G and A ≤ B . Show that

(i) B ∩ (AC) = A(B ∩ C),
(ii) if G = AC then B = A(B ∩ C),
(iii) if AC = BC and A ∩ C = B ∩ C, then A = B .
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(Note that AC and/or BC may not be subgroups of G, also (i) and (ii) are sometimes
known as Dedekind’s Modular Laws.)

(iv) Now suppose A,B,C,D ≤ G where also AB,CD ≤ G. Show that if A ≤ D

and C ≤ B then

AB ∩ CD = AC(B ∩ D).

Problem � 2.19 Let H,J ≤ G. Prove the following results.

(i) If [G : H ] = 2, then (a) H � G, and (b) a2 ∈ H for all a ∈ G—facts we use
many times.

(ii) If G is finite and o(H) > o(G)/2, then H = G—no finite group can have
a proper subgroup of order larger than half the group order. Further, if G is
also simple and J ≤ G, then o(J ) ≤ o(G)/3. For large simple groups, the
denominator 3 can be replaced by a much bigger integer; see example below
Theorem 5.15, page 101.

(iii) Show that normality is not transitive (that is if H � J and J � G, it does not
follow that H � G); one example occurs in D4 using (i).

(iv) If H and J are proper subgroups of G, prove that there exists g ∈ G which
does not belong to either H or J .

(v) Show that HJ ≤ G, if HJ = JH ; cf. Theorem 2.30(i).

Problem 2.20 Using Corollary 2.20, Lagrange’s Theorem (Theorem 2.27) and
Problem 2.5, show that up to isomorphism there are only two groups of order 4,
and only two groups of order 6—that is, there are exactly two isomorphism classes
of groups of order 4, and also exactly two of order 6. (Hint. For order 6, show that the
group always contains an element of order 3.) See Problem 4.2(i), different methods
to prove these facts are given in Chapters 5 and 6.

Problem 2.21 Let G be a group. If Hi ≤ G and [G : Hi] is finite for i = 1, . . . , n,
show that

[
G :

⋂n

i=1
Hi

]
≤

∏n

i=1
[G : Hi].

(Hint. Derive the result for n = 2 first.)

Problem 2.22 (Poincaré’s Theorem) Prove that the intersection of a finite number
of subgroups of G, each with finite index, is itself a subgroup of G with finite index.

Problem � 2.23 If H ≤ G and g ∈ G, then g−1Hg is called a conjugate subgroup
of H (Definition 2.28). Prove the following statements:

(i) g−1Hg ≤ G,
(ii) o(g−1Hg) = o(H),
(iii) g−1Hg = {j ∈ G : gjg−1 ∈ H }.
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Problem � 2.24 (Core of a Subgroup) If H ≤ G, the core of H in G, core(H), is
defined by

core(H) =
⋂

g∈G
g−1Hg,

see Section 5.2. Show that

(i) core(H) � G,
(ii) core(H) is the join of all normal subgroups of G which are contained in H ,
(iii) core(H) is the unique largest normal subgroup of G contained in H .

Problem 2.25 (Normal Closure of a Subgroup) If H ≤ G, then the normal clo-
sure H ∗ of H is defined as the intersection of all normal subgroups of G which
contain H . Show that

(i) H ∗ � G,
(ii) H ∗ = 〈g−1Hg : g ∈ G〉,
(iii) H ∗ is the smallest normal subgroup of G containing H .

Problem 2.26 Find the centres of the following groups.

(i) Integers Z,
(ii) Dihedral group D4,
(iii) Dihedral group D5,
(iv) 2 × 2 General linear group GL2(Q), and
(v) Permutation group S3.

Problem 2.27 Prove that if H,J ≤ G, then

o(HJ)o(H ∩ J ) = o(H)o(J ).

One method is as follows. Define a map θ : H × J → HJ by (h, j)θ = hj . Show
that if g = hj where h ∈ H and j ∈ J , then

gθ−1 = {(
ha,a−1j

) : a ∈ H ∩ J
}
,

by proving inclusion both ways round. Further, show that if (ha, a−1j) = (hb, b−1j)

then a = b, and so o(gθ−1) = o(H ∩ J ). Lastly, count ordered pairs using the prop-
erty o(H × J ) = o(H)o(J ).

Note that (a) HJ need not be a subgroup of G, and (b) a second proof of this
result is given in Theorem 5.8.

Problem � 2.28 Suppose G is a finite simple group of even order. Using Prob-
lem 2.8, show that G is generated by its involutions. (Hint. Note that an involution
is self-inverse.) By the Feit–Thompson Theorem (Chapters 11 and 12), this shows
that all finite non-Abelian simple groups are generated by a set of their involutions.
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Problem 2.29 (Double Cosets) Suppose H,J ≤ G and a ∈ G. The set HaJ =
{haj : h ∈ H,j ∈ J } is called the double coset of a with respect to H and J . Show
that

(i) Each element of G belongs to exactly one double coset.
(ii) G is the disjoint union of its double cosets.
(iii) Each double coset (with respect to H and J ) is a union of right cosets of H ,

and a union of left cosets of J .
(iv) The number of right cosets of H in the double coset HaJ is [J : J ∩ a−1Ha].

Hence

[G : H ] =
∑

c∈C
[J : c−1Hc]

provided this sum is finite, where C is a set of double coset representatives for
H and J .

(v) Using the notation set up in Section 3.1, if G = S4, a = (1,2), H = 〈(1,2,3)〉,
J1 = 〈(1,2,3,4)〉 and J2 = 〈(1,4)(2,3)〉, write out the double cosets HaJi for
i = 1,2.

Problem 2.30 (i) Suppose J1 ≤ J2 ≤ · · · ≤ G, that is we have an infinite sequence
of subgroups of G. Let J = ⋃∞

i=1 Ji . Show that J ≤ G. Note that in general a union
of subgroups is not itself a subgroup.

(ii) In (i), if Ji is simple for infinitely many i, show that J is also simple.

Problem 2.31 (Project) Whilst reading this book, list all those theorems which ap-
ply without restriction or caveat, for example, one of the first is Cancellation (The-
orem 2.6).



Chapter 3
Group Construction and Representation

Bertrand Russell defined the integer ‘3’ as that property common to all sets having
three elements, with similar definitions for other positive integers. The abstract en-
tity ‘3’ has many representations in the myriad of sets with three elements.1 So it
also is with groups. For example, the alternating group A5 to be introduced in Sec-
tion 3.2 is defined as the group of even permutations on a five-element set—the first
representation of this group we give is expressed in terms of permutations. But it
has several other representations (as a matrix group or a symmetry group, et cetera,
see Web Section 3.6). The point being that when we discuss an individual group,
we almost always discuss a particular representation of the group, as a matrix, or
permutation, or other type of group, and the corresponding ‘abstract’ group is that
entity common to all of these representations—this is an important point to bear in
mind when discussing individual groups. Also these ideas have led to a branch of
the subject called “group representation theory” which we shall introduce in Web
Chapter 13.

There is one type of representation which comes close to the ‘abstract’ group,
that is a ‘group presentation’ which was introduced briefly on page 21. The group is
defined on an ‘alphabet’, the elements are the ‘words’ in this alphabet, and the oper-
ation is defined using concatenation. For instance, one presentation of the dihedral
group D3 described on page 3 is

〈
a, b

∣∣ a3 = b2 = (ab)2 = e
〉
.

In this representation, the elements of D3 are given by the products of powers of a

and b subject to the conditions given above. Assuming that we can apply the usual
elementary group rules, it is easy to show that this system only has six members:
e, a, a2, b, ab, and a2b, and that they ‘correspond’ to the six symmetries of the tri-
angle described on page 3. We shall consider this topic in more detail in Section 3.4.

1Nowadays a more inductive definition is given using the integer zero and the successor function.
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In this chapter, we discuss three methods for defining groups, that is, three types
of group construction or representation. For another, see Section 12.1. They are de-
fined using (a) permutations, (b) matrices, or (c) generators and relations, that is,
presentations, and they all have important roles to play in the theory. We begin by
describing the basic properties of permutations, and the symmetric and alternating
groups. Historically, the development of the theory started with them and A. Cayley
(1821–1895) in 1850 showed that every group can be represented as a permutation
group (Theorem 4.7). And it is for this reason that some authors describe group the-
ory as ‘the science of symmetry’; see Weyl (1952). Next we give the basic properties
of matrix groups, many of the more ‘interesting’ groups in the theory, especially
many simple groups, arise first as matrix groups; see Chapter 12. Lastly, we give
the formal definition of a group presentation which will be further discussed and
verified in Web Section 4.7.

3.1 Permutations

We begin by developing the basic properties of permutations. Remember that we
always read from left to right. Most of the work in this section first appeared in print
in a series of papers published in the 1840s by the French mathematician A. Cauchy
(1789–1857); see Section 6.1. The notation introduced below is also due to him.

Definition 3.1 A permutation σ on a set X is a bijection of X to itself.

As we shall normally be using finite sets X, it is convenient, but not essential,
to take X = {1,2, . . . , n} when o(X) = n. Apart from their natural ordering, no
arithmetical properties of the integers 1 to n are used, they are just easily recognised
labels for the elements of a set with n elements. We use two notations. First we have
the ‘matrix’ form:

σ =
(

1 2 . . . n

a1 a2 . . . an

)
, (3.1)

where ai ∈ X and iσ = ai , for i = 1, . . . , n; see the note on ‘left and right’ on
page 68. Each element in the second row of (3.1) is the result of applying the per-
mutation σ to the element in the first row directly above it: i �→ ai , i = 1, . . . , n,
so no two elements in the second row are equal (some authors just print the second
row taking our first row as read). The order of the columns is unimportant, but we
usually write them as in (3.1).

Using the fact that composition of two bijections is a bijection (Appendix A), we
define the ‘product’ of two permutations by

Definition 3.2 Let σ and τ be permutations on the same set X, where, for i ∈ X,
iσ = ai and iτ = bi . The product στ is given by

i(σ τ) = (iσ )τ = bai
for all i ∈ X.
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Using the matrix form (3.1) above, we can rewrite this as

στ =
(

1 2 . . . n

a1 a2 . . . an

)(
1 2 . . . n

b1 b2 . . . bn

)

=
(

1 2 . . . n

a1 a2 . . . an

)(
a1 a2 . . . an

ba1 ba2 . . . ban

)

=
(

1 2 . . . n

ba1 ba2 . . . ban

)
,

where the second matrix in the second line is the same as the second matrix in the
first line except that its columns have been permuted by σ . This does not affect the
result.

In the next section, we show that this product generates a number of new groups.
The neutral element is the permutation that moves no element of X (the identity
map ι on X), and the inverse of a permutation is its reverse, that is, if σ is given
by (3.1), then

σ−1 =
(

a1 a2 . . . an

1 2 . . . n

)
.

The second notation for permutations uses cycles. We begin with an example.
Let

σ1 =
(

1 2 3 4 5 6 7 8 9
7 3 1 8 5 2 6 9 4

)
.

This permutation maps 1 �→ 7,7 �→ 6,6 �→ 2,2 �→ 3 and 3 �→ 1 so forming a cycle
with five entries (1,7,6,2,3). Alternatively, we can write

1σ1 = 7, 1σ 2
1 = 6, 1σ 3

1 = 2, 1σ 4
1 = 3, and 1σ 5

1 = 1.

As the symbol 4 has not been used so far, we can start again: σ1 maps 4 �→ 8,8 �→ 9
and 9 �→ 4, giving another cycle with three entries (4,8,9) in this case, which is
disjoint from the first cycle. Finally, 5 is the only symbol in X which has not so far
been used, and 5σ1 = 5 giving a third cycle with only one element. So we can treat
σ1 as the ‘product’ of these three cycles, that is, we write

σ1 = (1,7,6,2,3)(4,8,9)(5)

(although sometimes single cycles, like (5), are taken as read and not printed). Note
that the cycles are disjoint from one another, and the order in which they are written
does not affect the final outcome.

This example is typical as we show below.
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Definition 3.3 Let σ be a permutation on the finite set X and let x ∈ X. The ordered
k-tuple

(
x, xσ, xσ 2, . . . , xσ k−1),

where k is the smallest positive integer with the property x = xσ k is called the cycle
of length k, or the k-cycle, containing x. The integer k is called the length of the
cycle.2 Some authors use the term ‘transposition’ for a 2-cycle, say (x, y), that is, a
permutation which maps x �→ y and y �→ x.

Notes We use the same notation for an ordered k-tuple and a cycle, no confusion
should arise. No two elements of a cycle are equal and 1 ≤ k ≤ o(X). Also compared
with our first ‘matrix’ notation, cycle maps are horizontal left to right except that the
last entry is mapped to the first, see footnote.

The following result gives the essential facts about cycles.

Theorem 3.4 Suppose σ is a permutation of the set X = {1,2, . . . , n}.
(i) If τ is the cycle (a1, a2, . . . , an), then τ−1 = (an, an−1, . . . , a1).
(ii) The permutation σ can be expressed as a product of cycles τ1, τ2, . . . , τk , where

k ≥ 1. They are disjoint and commute in pairs.
(iii) The representation of σ given in (ii) is unique except for the order in which the

cycles τi appear in the product.

Proof (i) This follows immediately from the definition.
(ii) We repeat the argument given in the example above. The sequence

1, 1σ, 1σ 2, . . .

forms a cycle C1 of length k1, where k1 is the least positive integer satisfying
1σk1 = 1. If C1 = X, the result follows, for then σ forms a single cycle. If
not, let a1 be the least positive integer in X not used in C1, and consider the
cycle C2 = (a1, a1σ,a1σ

2, . . .) of length k2, where k2 is defined in a similar
way to k1. Now

C1 ∩ C2 = ∅. (3.2)

For if not, positive integers m and n exist satisfying 1σ r = a1σ
s , which gives

a1 = 1σ r−s contrary to our assumption that a1 /∈ C1. We can continue this
process forming C3,C4, . . . until all of X is used up, and then σ = C1C2 · · · .
By (3.2), each Ci is disjoint from the other cycles, and they commute for the
same reason.

(iii) The result clearly holds for 1-cycles. Suppose σ = τ1 · · · τr = ν1 · · ·νs

where τ1, . . . , τr (ν1, . . . , νs , respectively) are disjoint cycles each of which

2For ease of typesetting, cycles are printed linearly, but perhaps they should be printed in a circle
as this would more truly represent them.
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moves at least two entries. Let 1 ≤ i ≤ n, and suppose both τk and νl move
i, so iτk = iσ = iνl . Then iτ t

k = iσ t = iνt
l for all t by assumption. Us-

ing Problem 3.4(iii), this shows that τk = νl , and so τ1 · · · τk−1τk+1 · · · τr =
ν1 · · ·νl−1νl+1 · · ·νs . We can repeat this argument, so use induction. �

Note that in this proof k1 + k2 + · · · = n = o(X).
We need to prove the following two results before we can introduce the next

topic—even and odd permutations.

Lemma 3.5 Every permutation on a finite set can be expressed as a product of
2-cycles.

Proof By Theorem 3.4, every permutation σ can be expressed as a product of
cycles. Hence we need to show that every cycle equals a product of 2-cycles.
But this follows by relabelling from the identity

(1,2, . . . , n) = (1,2)(1,3) · · · (1, n),

which the reader should check noting we read from left to right. �

We can extend this result to: Every permutation on X = {1,2, . . . , n} can be ex-
pressed in terms of the 2-cycles (1,2), (1,3), . . . , (1, n); see Problem 3.1.

Cyclic structure is preserved by conjugation, see Definition 2.28. We have

Theorem 3.6 Suppose σ and τ are permutations on X = {1,2, . . . , n}. The permu-
tations σ and τ are conjugate (a permutation α on X exists satisfying τ = α−1σα) if
and only if σ and τ have the same cyclic structure, in which case τ can be obtained
by applying α to the symbols of σ .

First, we consider an example. Let X = {1, . . . ,6}, and let

σ = (1,5)(3)(2,6,4), τ = (2,3)(6)(4,5,1) and α = (1,2,4)(3,6,5).

We have 2α−1 = 1, 1σ = 5 and 5α = 3, and so 2α−1σα = 3. This agrees with
τ which also maps 2 to 3. Repeating this for the other members of X shows that
α−1σα = τ . Also as 1α = 2, . . . ,6α = 5, we have

(1α,5α)(3α)(2α,6α,4α) = (2,3)(6)(4,5,1) = τ,

that is, if we replace the entries in σ by their images under α, we obtain τ . Con-
versely, note that if we construct a ‘permutation matrix’ whose top row is the entries
of σ , and whose bottom row is the entries of the cycle τ , we obtain α, viz.:

α =
(

1 5 3 2 6 4
2 3 6 4 5 1

)
,
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which is a matrix form of α. This only works because σ and τ have the same cyclic
structure—a product of a 2-cycle, a 1-cycle and a 3-cycle.

Proof Suppose first σ and τ have the same cyclic structure with cycle lengths
corresponding:

σ = (. . .) · · · (. . . , l,m, . . .) · · · (. . .),
τ = (. . .) · · · (. . . , l′,m′, . . .) · · · (. . .).

Form α (using its ‘matrix’ form, see (3.1)) by taking the entries of σ as its top
row and the entries of τ as its bottom row:

α =
(

. . . l m . . .

. . . l′ m′ . . .

)
. (3.3)

Now as lσ = m, lα = l′ so l′α−1 = l, and mα = m′, we have

mα = m′ so lσα = m′, and so l′α−1σα = m′.

But l′τ = m′, therefore we can deduce τ = α−1σα, that is, σ and τ are con-
jugate, because the above calculation can be applied to all corresponding con-
secutive pairs of entries in σ and τ (if l is the last entry in a cycle then m is
the first; see footnote on page 44).

For the converse, suppose σ has the form

σ = (. . .) · · · (. . . , j, k, . . .) · · · (. . .),
as above. Further, suppose jα = r and kα = s, then as jσ = k we have

kα = s so jσα = s, and so rα−1σα = s.

Now as α and σ are permutations (bijections on X), so is α−1σα. Therefore,
if we define τ by

τ = α−1σα,

the conjugate of σ by α, then it has the same cyclic structure as σ because
the replacements l �→ r and m �→ s are themselves bijective, and the cyclic
structure of σ is unaltered by this procedure. �

Returning to the example on page 45, we note that to obtain the given α we had
to write σ and τ in the ‘right’ way. The cycles (4,5,1), (1,4,5) and (5,1,4) are
identical, and so a number of different α can be constructed using the process given
in the proof of the theorem. This is to be expected because there is likely to be a
number of different solutions α to the equation ατ = σα. For example, we can use

α′ =
(

1 5 3 2 6 4
2 3 6 1 4 5

)
= (1,2)(3,6,4,5).
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The reader should check that this new α′ also gives the correct answer, and write
out the remaining possible solutions (Problem 3.2).

Even and Odd Permutations

A permutation is even (odd) if it can be expressed as a product of an even (odd,
respectively) number of 2-cycles. This is not a definition as it stands because there
are many ways of expressing a permutation as a product of 2-cycles (Lemma 3.5).
For example, the permutation (5,6)(3,4) equals, amongst others,

(1,2)(4,3)(5,6)(2,1), (2,3)(2,4)(2,3)(6,5) and

(5,1)(2,3)(2,4)(1,6)(1,5)(3,2),

and so they all represent the same permutation. But in each case the number of
2-cycles is even; this is typical of the general situation as we show now.

Suppose o(X) = n and we are considering permutations on X. We introduce the
following polynomial f which we use to ‘codify’ all possible 2-cycles. It is given
by

f (x1, . . . , xn) =
∏

1≤i<j≤n
(xj − xi). (3.4)

Each 2-cycle (i, j) is associated with exactly one linear factor of f . Further, if σ is
a permutation on X, we define the polynomial f σ by

f σ(x1, . . . , xn) = f (x1σ , . . . , xnσ ) =
∏

1≤i<j≤n
(xjσ − xiσ ).

Clearly, as σ is a permutation on X, each factor xj − xi of f in (3.4) occurs as a
factor of f σ and vice versa, but the sign of this factor may be altered by σ . Hence,
for all σ we have f σ = ±f , and we use this fact to define the terms even and
odd.

Definition 3.7 (i) Using the notation set out above, we say that the permutation σ

is even if f σ = f , and odd if f σ = −f .
(ii) The sign, sgn(σ ), of the permutation σ is given by

sgn(σ ) =
{

1 if σ is even,
−1 if σ is odd.

We show now that our two ‘definitions’ agree, and begin by proving

Lemma 3.8 If the permutation σ is a single 2-cycle, then sgn(σ ) = −1, that is
f σ = −f where f is given by (3.4).
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Proof Suppose σ is the 2-cycle (i, j) where 1 ≤ i < j ≤ n. When σ is applied
to f , the factor xj − xi is replaced by xi − xj introducing a minus sign. This
gives the result as the remaining changes have no overall effect. For if i 
= k 
=
j , the term xk − xi is replaced by xk − xj , and xj − xk is replaced by xi − xk .
Some of these replacements introduce minus signs. If k < i, or if j < k, no
sign changes occur, but if i < k < j , then

(xk − xi)σ = −(xj − xk) and (xj − xk)σ = −(xk − xi).

These sign changes occur in pairs and so when combined they have no overall
effect, the result follows. �

Theorem 3.9 (i) If σ, τ are permutations on X, then

sgn(στ) = sgn(σ ) sgn(τ ).

(ii) If σ = τ1 · · · τk and each τi is a 2-cycle, then sgn(σ ) = (−1)k .

Part (ii) shows that our two definitions of even and odd agree.

Proof (i) For i ∈ X, we have (iσ )τ = i(σ τ) by associativity of composition
(Appendix A), hence

f (στ)(x1, . . . , xn) =
∏

1≤i<j≤n

(
xj (στ) − xi(στ)

)

=
∏

1≤i<j≤n

(
x(jσ)τ − x(iσ )τ

) = (f σ )τ(x1, . . . , xn).

Now if sgn(σ ) = sgn(τ ) = 1, then f σ = f , so (f σ )τ = f τ = f which gives
f (στ) = f , and sgn(στ) = 1 follows. The other cases can be treated simi-
larly, and so (i) is proved.

(ii) This follows from (i) and Lemma 3.8. �

3.2 Permutation Groups

In the previous section, we studied properties of permutations, here we use these
properties to construct a number of groups. Historically, these developments had
a considerable influence on the progress of the theory as a whole; in the next
chapter (Theorem 4.7), we show that every group can be treated as a group of
permutations—a result due to Cayley. Note that there is nothing unique about per-
mutations, in Problem 4.17 we show that every finite group can also be treated as a
matrix group in many different ways; see also Web Section 4.7. First, we prove
that the collection of all permutations on a set forms a group.

Theorem 3.10 Suppose X is a set. The collection of all permutations on X, with
composition as the operation, forms a group.
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Proof A permutation is a bijection on X. The facts that composition of two
bijections is a bijection, and composition of maps is associative, are proved in
Appendix A. The neutral element is the permutation which moves no elements
of X (the identity map ι, page 281), and the inverse of a permutation σ is its
reverse: If a, b ∈ X and aσ = b, then bσ−1 = a; see page 43. This proves the
theorem. �

The group of all permutations on X is denoted by SX . If o(X) = n (where we
usually take X = {1,2, . . . , n}), the group is denoted by Sn and called the symmetric
group on n symbols. These groups have the following basic properties:

(a) o(Sn) = n!. There are n! distinct bijections of an n-element set to itself.
(b) If m ≤ n, then Sm ≤ Sn. In Sn, consider all permutations which keep the same

n − m elements fixed. For instance, S4 ≤ S5; in fact, S5 contains five copies of
S4; see Problem 4.20(ii).

(c) S1 = 〈e〉, S2 is cyclic, and Sn is not Abelian if n > 2; for instance, the cycles
(1,2) and (1,2,3) do not commute.

(d) By Lemma 3.5, Sn is generated by its 2-cycles, it can also be generated by a two
element set; see Problem 3.1.

(e) By Theorem 3.6, two elements σ, τ ∈ Sn are conjugate in Sn (Definition 2.28) if
and only if they have the same cyclic structure—a result we use several times.

The subset (subgroup, see Theorem 3.11 below) of even permutations in Sn given
by Definition 3.7 forms an important subgroup of Sn; for n > 4, this provides our
first example of a class of non-Abelian simple groups. We begin with

Theorem 3.11 For n > 1, the set of even permutations in Sn forms a normal sub-
group of Sn with order n!/2.

Proof A permutation is even if it can be expressed as an even number of
2-cycles (Theorem 3.9). Clearly, the identity permutation is even. Also the
product of two permutations each a product of an even number of 2-cycles is
itself a product of an even number of 2-cycles, and the inverse of a product
of 2-cycles is the product written in reverse order. Hence, by Theorem 2.13,
the set of even permutations forms a subgroup of Sn. It is normal by Theo-
rems 2.29 and 3.6, as this last result shows that conjugation does not alter the
cyclic structure of a permutation.

Exactly half of all permutations in Sn are even, hence the order of the
subgroup is n!/2. We prove this as follows. Define a map θ from the set of
even permutations to the set of odd permutations by

σθ = (1,2)σ where σ is even.

This is a bijection, for if τ is odd, then (1,2)τ is even and (1,2)τθ =
(1,2)(1,2)τ = τ . Hence θ is surjective. A surjective map on a finite set onto
itself is injective (Appendix A). The result follows. �
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This last property extends to all subgroups of Sn, see the example on page 77 and
Problem 3.7(ii).

Alternating Groups

The subgroup of even permutations of Sn given by Theorem 3.11 is called the alter-
nating group on n symbols, it is denoted by An. Note that o(A1) = o(A2) = 1, and
o(A3) = 3 as A3 contains just two 3-cycles [(1,2,3) and (1,3,2)] and the identity
permutation. A4 is the only non-Abelian alternating group that contains a (proper
non-neutral) normal subgroup; see Problem 3.10 and page 158.

For n > 4, the groups An are simple,3 and they form our second infinite collection
of simple groups. We give an elementary proof of this simplicity result now; see
comments at the end of the proof. The first step is to show that An is generated by
its 3-cycles in the same way that Sn is generated by its 2-cycles (Lemma 3.5).

Theorem 3.12 The group An is generated by its 3-cycles, provided n > 2.

Proof By Theorem 3.9, every element in An is equal to a product of an
even number of 2-cycles. We prove the result by showing that all products
of two 2-cycles are products of 3-cycles. Suppose 1 ≤ i, j, k, l ≤ n, and
they are distinct. Then we have (i, j)(i, j) = e, (i, j)(i, k) = (i, j, k) and
(i, j)(k, l) = (i, l, j)(j, k, l); the result follows. �

We come now to the main simplicity proof. We begin by assuming the contrary,
that is, a proper subgroup K exists satisfying 〈e〉 
= K  An, then we show

(a) if K contains a 3-cycle, then K contains all 3-cycles, and so by Theorem 3.12,
K = An; and

(b) K contains a 3-cycle if n > 4.

These two propositions prove the theorem because they show that An does not con-
tain a proper non-neutral normal subgroup. First, we prove (a).

Lemma 3.13 If K  An and K contains a 3-cycle, then K = An.

Proof As K  An, K contains conjugates of all of its elements by Theo-
rem 2.29. Hence, by Theorem 3.12, we need to show that 3-cycles are conju-
gate in An. By Theorem 3.6, all 3-cycles are conjugate in Sn, but we cannot
apply this directly because the conjugating element relating two 3-cycles may
not belong to An; we must prove that all 3-cycles are conjugate by even ele-
ments. We show this directly using elementary permutation arguments, later

3For n = 5 this result is effectively due to Abel, it was a corollary of his work on the non-solubility
of the quintic.
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(Problem 5.25) we give another proof of this result which ‘sheds more light’
on the underlying structure.

We consider A5 first. Two distinct 3-cycles will overlap by one or two
elements. Suppose there is a single overlap then, relabelling if necessary, we
can take the 3-cycles in the form

(1,2,3) and (1,4,5).

We have (2,4)(3,5) ∈ A5 and

(2,4)(3,5)(1,2,3)(3,5)(2,4) = (1,4,5).

Similarly, if there is a double overlap, that is, the cycles are of the type (1,2,3)

and (1,2,4), or (1,2,3) and (2,1,4), then (1,4,3), (3,4,5) ∈ A5 and

(5,4,3)(1,2,3)(3,4,5) = (1,2,4)

(3,4,1)(1,2,3)(1,4,3) = (2,1,4).

The result follows for A5 by permuting the symbols 1, . . . ,5.
Secondly, we use this to prove the general result. If n > 5, then An contains

copies of A5 obtained by considering only those permutations that move the
symbols of a fixed 5-element subset of {1, . . . , n}. In one of these copies of A5,
moving the symbols 1,2,3, l,∗ only, we have (1,2,3) is conjugate to (1,2, l),
and so they are also conjugate in An. In a second copy, moving the symbols
1,2, j, k, l only, we have (1,2, l) is conjugate to (j, k, l) in An. Hence (1,2,3)

is conjugate to (j, k, l) in An, and the lemma is proved when n > 4. (It is also
true when n = 3 or 4, the reader should check this.) �

Theorem 3.14 If n > 4, then the group An is simple.

Proof We use a similar method to that given in the previous proof. Suppose
K  An and 〈e〉 
= K . As noted above ((b) on page 50), we need to show
that K contains a 3-cycle, the theorem then follows by Lemma 3.13. Let τ

( 
= e) be an element of K which moves the least number of symbols in the
underlying set {1, . . . , n}. We show that τ is a 3-cycle. It cannot be a 2-cycle
because 2-cycles are odd, hence if it is not a 3-cycle, it must move at least four
symbols. It cannot be a 4-cycle because 4-cycles are odd. Hence it satisfies
one of:

(i) τ is a product of an even number of disjoint 2-cycles,
(ii) τ is a product of a cycle of length at least 3 and further disjoint cycle(s).

Therefore, τ is one of the following types τ1 or τ2, where σi is a cycle or a
product of cycles whose entries are disjoint from those of its predecessors:

(i) τ1 = (1,2)(3,4)σ1
(ii) τ2 = (1,2,3, . . .)(4,5, . . .)σ2.
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In each case σi may be absent, and in (ii) the first cycle in τ2 has length
at least 3, also the second cycle may have length 2 or may be longer, but we
write (one of) the longest cycles first. We use τi to construct a new permutation
which is not e and which moves fewer symbols than τi , this contradicts our
supposition and so proves the theorem. In both cases, this new permutation is

[τi, α] = τ−1
i α−1τiα where α = (3,4,5).

We show [τi, α] moves fewer symbols than τi . Note that as τi ∈ K  An, all
conjugates of τi by elements of An belong to K , and so [τi, α] ∈ K .

(i) Applying the permutations that make up [τ1, α] in turn, we have:

beginning with the base set 1 2 3 4 5 . . . ,

applying τ−1
1 we obtain 2 1 4 3 ∗ . . . ,

applying α−1 we obtain 2 1 3 5 ∗ . . . ,

applying τ1 we obtain 1 2 4 ∗ ∗ . . . ,

applying α we obtain 1 2 5 ∗ ∗ . . . .

So if we apply [τ1, α] to our base set we obtain a permutation which fixes 1
and 2, and maps 3 to 5, that is, we have in K a non-neutral permutation which
moves fewer symbols than τ1, contradicting our assumption.

(ii) If we apply the permutation [τ2, α] to our base set {1,2,3,4,5, . . .} we
obtain a permutation which fixes 2 and maps 3 to 4, and so again we have a
contradiction; the reader should check this.

In both cases, we have constructed in K a non-neutral permutation moving
fewer symbols than those moved by τ . Therefore, our assumption is false, τ is
a 3-cycle, and the theorem follows. �

There are many proofs of this result in the literature. The proof given above
has the advantage that it uses a minimal amount of ‘apparatus’, and so it can be
presented here. Further proofs of this result are given in Problems 3.16 (using con-
jugation), 5.25 (using centralisers), and 6.16 (using the Sylow theory) and in Web
Sections 3.6 and 14.1. Suzuki (1982, page 295) gives a proof that uses Bertrand’s
postulate! He shows that o(An) = o(K)2 if K  An, and then he applies the postulate
(which states that for all positive integers m a prime p can be found lying between
m and 2m). Up to isomorphism, A5 is the only non-Abelian simple group with order
less than 168, see Problems 6.15 and 6.17, and Chapter 12.

3.3 Matrix Groups

Matrix algebra provides a wide range of group examples. Given a field F and a
positive integer n, we consider the set of all n×n non-singular matrices with entries
in F . (An n × n matrix A is non-singular if and only if another n × n matrix B
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exists satisfying AB = BA = In. A standard theorem of linear algebra states that A

is non-singular if and only if detA 
= 0 where detA denotes the determinant of A.)
This set of matrices forms a group called the general linear group over F , and
it is denoted by GLn(F ). The neutral element is the n × n identity matrix In, and
inverses exist by definition. The normal subgroup (Theorem 3.15 below) of matrices
with determinant 1 is denoted by SLn(F ) and called the n × n special linear group
over F .

We shall mainly be concerned with the case when F is finite, see Section 12.2.
Up to isomorphism, unique finite fields exist of order pm for each prime number p

and positive integer m; they are usually called Galois fields, and denoted by Fpm ,
after their discoverer É. Galois;4 see page 229. The general linear group defined over
a field with pm elements, that is, GLn(Fpm), is denoted by GLn(q) where q = pm.
Similarly, we write SLn(q) for SLn(Fpm).

The basic properties of these groups are given by

Theorem 3.15 Suppose F is a field and n ≥ 1.

(i) The set of matrices GLn(F ) with matrix multiplication forms a group.
(ii) SLn(F )  GLn(F ).
(iiia) If q = pm, where p is prime and m > 0, then

o
(
GLn(q)

) = qn(n−1)/2(qn − 1
)(

qn−1 − 1
) · · · (q − 1).

(iiib) If n > 1, o(SLn(q)) = o(GLn(q))/(q − 1), and o(SL1(q)) = 1.

Proof (i) and (ii) Both of these follow from the fact that detAB = detAdetB
for all A,B ∈ GLn(F ), and its corollaries detA−1 = 1/detA, and det In = 1.

(iiia) Let A ∈ GLn(q). As A is non-singular, every sequence of n elements
of Fq is a possible top row of A except {0,0, . . . ,0}, that is, there are qn − 1
possible top rows for A. Again as A is non-singular, a possible second row of
A is a sequence of n elements of Fq which is not a linear multiple of the first
row. There are q multiples of the first row (this includes the row {0,0, . . . ,0}),
so qn − q = q(qn−1 − 1) second rows of A are possible. We can continue this
process, the third row must not be a linear combination of the first two rows,
and so on. The result follows by collecting terms.

(iiib) This is a consequence of (ii) and (iiia) as the number of non-zero ele-
ments of Fq is q −1, see page 76, or we can use the following argument. In the
last stage of the procedure given in (iiia), there are qn − qn−1 = qn−1(q − 1)

choices for the last row of the matrix. So there are qn−1 choices if we also
stipulate that the determinant of the matrix in question has a particular value.
This gives (iiib) if we choose this value to be 1; the reader should check this. �

For example, we have o(GL3(2)) = 168 and o(SL2(3)) = 24.

4The fact that all finite fields have this form was first proved by E.H. Moore in 1893.
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The groups SLn(q) give rise to our third class of simple groups. If SLn(q) is
‘factored’ by its centre then the resulting linear group which is denoted by Ln(q)

is simple, except when n = 2 and q = 2 or 3. The operation of forming a factor
group will be discussed in the next chapter, and a simplicity proof will be given in
Chapter 12. This result implies that SLn(q) is ‘nearly’ simple, its only (proper non-
neutral) normal subgroup being its centre which has order (q −1, n). In some cases,
SLn(q) is itself simple (when its centre has order 1), examples are SL2(4) (which is
isomorphic to A5, see Problem 6.16) and SL3(3) (Section 12.2).

Subgroups of GLn(q)

The group GLn(q) has a number of important subgroups, one is SLn(q) as dis-
cussed above. Another type is the subgroup of permutation matrices discussed in
Problem 3.12. A third type is the subgroup of ‘upper triangular’ matrices. (For a
full list, see Dickson 2003, or Kleidman and Liebeck 1990.) A matrix A ∈ GLn(q)

is called upper triangular if every entry in A below the main diagonal is zero, this
subgroup is denoted by UTn(q). Lower triangular matrices can also be introduced.
Note that each diagonal entry of a non-singular upper triangular matrix is non-zero
because the determinant of this matrix equals the product of its diagonal elements.
We have

Lemma 3.16 UTn(q) ≤ GLn(q).

Proof Clearly, In ∈ UTn(q), and the product of two upper triangular matrices
is itself upper triangular. Hence, by Theorem 2.13, we need to show that the
inverses are also upper triangular. Let A = (aij ) ∈ UTn(q) (where aij is the
(i, j)th entry in the matrix A) and so aij = 0 if j < i, and let B = (bij ) ∈
GLn(q) where AB = In. The (i, j)th entry of AB is

sij = aiibij + · · · + ainbnj ,

with n − (i − 1) summands as ai1 = · · · = ai(i−1) = 0. If j < n, snj =
annbnj = 0, and so bnj = 0 because ann 
= 0. Secondly, if j < n − 1, then

s(n−1)j = a(n−1)(n−1)b(n−1)j + a(n−1)nbnj = 0.

This gives b(n−1)j = 0 when j < n−1 by the first part and as a(n−1)(n−1) 
= 0.
Continuing this process for i = n − 2, . . . ,2 completes the proof. �

Suppose A ∈ GLn(q). We can find U1,U2 ∈ UTn(q) and a permutation matrix P

(Problem 3.12) to satisfy

A = U1PU2.

This result is known as the Bruhat Decomposition Theorem, and it has a number of
useful applications. We shall give a simple proof in the case n = 2, the proof of the
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general case follows similar lines. Let A = (
a b
c d

)
. If c = 0, then the result follows

by putting U1 = A and P = U2 = I2, the 2 × 2 identity matrix. So we may assume
that c 
= 0. In this case, we let P = ( 0 1

1 0

)
, U1 = ( x1 y1

0 1

)
and U2 = ( x2 y2

0 1

)
. Then, if

U1PU2 = A we have
(

x1 y1
0 1

)(
0 1
1 0

)(
x2 y2
0 1

)
=

(
y1x2 y1y2 + x1
x2 y2

)
=

(
a b

c d

)
.

This gives x2 = c 
= 0, y2 = d , y1 = ac−1 and x1 = b − dac−1 
= 0, as detA 
= 0.
Now this defines both U1 and U2.

A 2 × 2 transvection is a matrix of the form
( 1 r

0 1

)
or

( 1 0
r 1

)
where r 
= 0; we shall

consider these matrices in more detail in Chapter 12. Here we use them to derive a
consequence of Bruhat’s result as follows.

Theorem 3.17 The group GL2(q) is generated by its diagonal matrices and its
transvections.

Proof By Bruhat’s Theorem we need to show that we can construct the up-
per triangular and permutation matrices as products of diagonal matrices and
transvections. We have

(
a 0
0 c

)(
1 ba−1

0 1

)
=

(
a b

0 c

)
,

(
1 1
0 1

)(
1 0

−1 1

)
=

(
0 1

−1 1

)
, and

(
0 1

−1 1

)(−1 1
0 1

)
=

(
0 1
1 0

)
,

which proves the result as there are only two permutation matrices in the
2-dimensional case. �

3.4 Group Presentation

The American mathematician W. von Dyck (1856–1934) in about 1880 introduced
the ‘presentation’ of a group, as an example he derived the presentation of S4 given
in Problem 3.18. This work has led to a branch of the theory called Combinatorial
Group Theory, we shall only give the basic ideas and definitions, the interested
reader should consult Lyndon and Schupp (1976) or Chandler and Magnus (1982).
In the second section of Chapter 2, we introduced briefly a method for defining
groups using so-called generators and relations, here and in Web Section 4.7
we give the formal definitions and proofs. The method is important in the theory
because many groups are best defined in these terms, see, for example, the group E

discussed in Section 8.3. Although it is a representation, it is the nearest ‘approach’
to an abstract definition of the group.
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Suppose we are given an alphabet or list A of letters or symbols which we usually
assume to be finite (but this is not essential):

a1, a2, . . . , b1, . . . , c1, . . . .

A word is defined as a finite sequence of letters written using concatenation, for
example,

b2, c3c3b1a2c1, and a1a1a1a1

are words. In this section, we use lower case characters at the beginning of the al-
phabet a, b, c, . . . for letters, and lower case characters at the end of the alphabet
x, y, z, . . . for words. If the word x has the form x = y1zy2, then z is called a sub-
word of x (as are both y1 and y2). The operation is as suggested above, that is,
concatenation. For example, if x = aiaj bk and y = bkclc1am, then

xy = aiaj bkbkclc1am.

It follows immediately that the system of all words on a fixed alphabet A with the
operation of concatenation forms a semigroup.

To construct a group we need to bring the neutral element and inverses into the
system, and we do this as follows. The word containing no letters from A will act as
the neutral element. Mainly for typographical reasons, it is necessary to introduce a
symbol for this element, and so as previously we let e stand for it where e /∈ A. Note
that the symbol e and the blank symbol are synonymous. For the inverse operation
to apply, the alphabets have the form A ∪ A′, where A ∩ A′ = ∅ and there exists a
bijection ′ between A and A′. So the alphabet has the structure:

a1, a
′
1, a2, a

′
2, . . . , b1, b

′
1, . . . , c1, c

′
1, . . . ,

and the given prime bijection ′ between A and A′ satisfies (a′)′ = a, for all letters
a ∈ A and a′ ∈ A′. The basic idea here is that we want a′ to act as the inverse of a,
et cetera. We define the set of reduced words on A by

Definition 3.18 A word x on the alphabet A (it is assumed that the second alphabet
A′ is also present; see above) is called a reduced word if (a) it contains no pairs
of consecutive letters (symbols) of the form aia

′
i , a

′
iai , bj b

′
j , . . . , that is, it contains

no letter, with or without a prime ′, immediately followed by its image under the
′-map, and (b) all blank symbols have been removed except that if no alphabet letters
remain, then a single blank symbol should remain.

For example,

c3, a1b2, a1a1a1, e

are reduced, and

a3a
′
3, b2e, b1c1c

′
1, a2a2a

′
2a

′
2

are not reduced.
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We now adapt the semigroup concatenation operation to construct a group opera-
tion. Suppose x and y are reduced words. To form their ‘product’, which we call the
reduced concatenation of x and y, we first construct the semigroup concatenation
xy of x and y, and then we remove (that is, replace by the empty word) all pairs of
consecutive symbols of the form aia

′
i , or a′

iai , or bjb
′
j , et cetera, that are formed

by the concatenation, or by previous removals. For example, if x = a′
1a

′
1b2c

′
1 and

y = c1b
′
2a1, then

xy = a′
1a

′
1b2c

′
1c1b

′
2a1 = a′

1a
′
1b2b

′
2a1 = a′

1a
′
1a1 = a′

1;
and yx = c1b

′
2a1a

′
1a

′
1b2c

′
1 = c1b

′
2a

′
1b2c

′
1. (This construction is a generalisation of

one that will be familiar to the reader. In the group of integers Z, we have, for
instance,

3 = 4 − 1 = 5 − 2 = · · · = (n + 3) − n.

Note (n + 3) − n = 3 + (n − n) = 3 for all n ∈ Z, that is, each time we encounter
n − n we replace it by 0, and delete it if other symbols are present. This is exactly
mirrored in the general case described above.)

This system forms a group. Two words are equal if each can be obtained from the
other by the insertion and/or deletion of pairs of consecutive symbols of the form
aa′ or a′a. To be more precise this procedure defines an equivalence relation on the
set of words, and the group elements are the corresponding equivalence classes, see
Web Section 4.7 (In our example using the group Z given above, we associate
3 with the set of differences {(n + 3) − n : n ∈ Z}.) The set of words has a neu-
tral element and is closed under the inverse operation, hence we need to establish
associativity. We have

Theorem 3.19 The system of reduced words on a fixed alphabet A (that is, A ∪ A′,
see page 56), with the operation of reduced concatenation defined above, forms a
group.

We shall not give a proof of this result here. This is best done once we have
proved the First Isomorphism Theorem which is given in Chapter 4; see Web Sec-
tion 4.7. It is also possible to give an ad hoc proof which splits the result into a
number of particular cases, but it is somewhat unsatisfactory in that it does not il-
lustrate the underlying structure, and it is not easy to be sure that all cases have been
considered. Reader, try it.

The group defined by the above theorem is called the free group on the alpha-
bet A. It is called free because there are no constraints on the words in the group
other than those needed to form the group. It is necessarily infinite, for if a ∈ A

then a, aa, aaa, . . . all belong to the group, and they are distinct. A range of new
groups can be defined by introducing more constraints. Consider the following ex-
ample. Let A = {a}, that is, the alphabet consists of the two letters a and a′ where
aa′ = a′a = e, the empty word, and let G be the free group on A. Then the (reduced)
elements are

. . . , a′a′, a′, e, a, aa, aaa, . . . ,
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and G is called the infinite cyclic group, it is denoted by Z. We can introduce a
relation in the form

an = e

where n is a positive integer and an stands for aa · · ·a with n copies of a. It is easily
seen that the elements of the new structure are

e, a, a2, . . . , an−1,

and that it forms a group with n elements. It is called the cyclic group of order n

and is denoted by Cn. We can treat the elements of Cn in the same way as those of
the infinite cyclic group except each time we encounter an we delete it (replace it
by the empty word) as we do for aa′ and a′a. Further cyclic group properties are
given in Section 4.3.

The procedure illustrated in this example can be applied to all free groups. Sup-
pose A is an alphabet and R is a set of words on A (that is, on A ∪ A′), then we can
form the structure (group) H called a presentation. It is denoted by

H = 〈A | R〉, (3.5)

and consists of the free group on A with the constraints (relations) x = e, for all x ∈
R. If R = {x1, . . . , xk}, we usually write x1 = · · · = xk = e for R in this presentation.
The elements of A are called the generators of H , for x ∈ R the equation x = e is
called a relation of H , and this method of defining H is called a presentation of H .
(Some authors use the term relator for a word x in R.) To study H we work in
the free group on A, and each time we encounter a word in R we replace it by
the empty word just as we do for aia

′
i , a

′
iai , . . . in the free group. In the example

above, we have Cn = 〈a | an = e〉 and an is replaced by the empty word each time
it occurs. For all A and R the structure H forms a group, we shall prove this in Web
Section 4.7 using the Isomorphism Theorems. We show that H can be defined as
a ‘factor group’ of the free group on A. We also show that all groups can be treated
in a similar manner.

It can be difficult, and in some cases impossible, to determine the properties of H

(see (3.5)), its order, or even if it is finite or infinite. For a general discussion of this
and related considerations, including the Word Problem for Groups, see Rotman
(1994). One difficulty is of the following type: Given a collection of relations R and
a generator a, we might be able to deduce both am = e and an = e where (m,n) = 1,
this would give a = e (use the Euclidean algorithm) and so a would be redundant.
In the ‘worst’ case, the whole construction could collapse to the neutral group. To
avoid this, and similar problems, in most cases it is necessary to find another repre-
sentation of the group in question, as a matrix, permutation, or similar group, and
to construct a bijection between the corresponding elements. We illustrate this in
the following two examples. Todd and Coxeter have devised a method called coset
enumeration which can be used to determine the structure of a group given by a
presentation; see Coxeter and Moser (1984), Chapter 2.

Example 1 (Dihedral group Dn) Let A1 = {a, b} and R1 = {an, b2, (ab)2}. Then
〈a, b | an = b2 = abab = e〉 gives a presentation of the dihedral group Dn; see
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Section 2.2. The order is 2n because it can easily be shown that every element of
the free group on {a, b} can be reduced to a member of the set

e, a, a2, . . . , an−1, b, ab, . . . , an−1b

using the relations in R1. There is no collapse, see above, because our first repre-
sentation of this group was as the symmetry group of the regular polygon with n

sides and 2n symmetries. The group can also be generated by two involutions, see
Problem 3.20.

Example 2 (Dicyclic Group Qn) Again let A1={a, b}, and let R2={anb−2, abab−1},
and so Qn = 〈a, b | an = b2 = (ab)2〉. We show first that the relation

a2n = e (3.6)

is a consequence of the relations in R2; note we are assuming that the structure
〈a, b | R2〉 is a group, this is proved in Web Section 4.7. Hence we can apply
basic group properties. Assume first that n is even. The relations R2 give an = b2

and b = aba, and so we have, replacing b by aba several times:

an = b2 = (aba)(aba) = a2ba4ba2 = · · · = an/2banban/2 = an/2b4an/2 = a3n,

and so in this case (3.6) follows by cancellation; we leave it as an exercise for the
reader to derive the remaining case. Now as in the first example we can show that a
member of the group is of the form atbu where 0 ≤ t < 2n and 0 ≤ u ≤ 1, and so
the group has order 4n. Matrix representations of these groups are given in Prob-
lems 3.13 and 3.22. We use the term quaternion group for the dicyclic group Q2,
see Section 6.1. Also the term generalised quaternion group is used for the group
Q2n (with order 2(n+2)) when n = 2,3, . . . ; see Problem 3.22.

3.5 Problems

Problem � 3.1 Show that Sn can be generated by each of the following sets:

(i) {(1,2), (1,3), . . . , (1, n)};
(ii) {(1,2), (2,3), . . . , (n − 1, n)};
(iii) {(1,2), (1,2, . . . , n)}.
As every finite group G can be treated as a subgroup of Sm for some suitably chosen
m where m ≤ o(G) (Cayley’s Theorem, page 72), (iii) shows that every finite group
is a subgroup of a group with two generators, or to put this another way, increasing
the number of generators (above two) does not necessarily increase the complexity
of the group. Also all finite non-cyclic simple groups have two element generating
sets; see Cameron (1999).

(iv) Show that An, for n > 4, is generated by its involutions. Note that this property
holds for all non-Abelian simple groups (Problem 2.28).
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Problem 3.2 If σ = (1,2,3)(4,5,6) and τ = (1,5,6)(2,3,4), find all α such that
α−1σα = τ ; see the example given after Theorem 3.6.

Problem � 3.3 List the conjugacy classes of (i) S3, (ii) S4, (iii) S5, (iv) A3, (v) A4,
and (vi) A5. Note that (v) and (vi) are not straightforward, some permutation cal-
culations are needed; for a more detailed explanation, see the subsection on the
Class Equations in Chapter 5. Secondly, find the normal subgroups of (vii) S4 and
(viii) A4.

Problem 3.4 Let σ, τ and ν be cycles in Sn.

(i) Show that if σ and τ are disjoint and στ = e, then σ = e = τ .
(ii) If σ commutes with τ and τ commutes with ν, does it follow that σ commutes

with ν?
(iii) Suppose σ and τ belong to SX where X = {1, . . . , n} and both σ and τ move

i ∈ X. Prove that if iσ r = iτ r for all r ≥ 0, then σ = τ .
(iv) Let p be a prime. Show that if σp = ι, the identity permutation, then σ = ι or

σ is a product (with possibly only one factor) of p-cycles.

Problem 3.5 Give formulas for the orders of the elements of (i) Sn, and (ii) An, and
list them when n = 7.

Problem 3.6 Let p and q be primes where p | q − 1, let σ = (1,2, . . . , q), and let

τr =
(

1 2 . . . q
r 2r . . . rq

)
, where 0 < r < q,

and the lower row is to be read modulo q . Show that r can be chosen so that τr

is a product of (q − 1)/p disjoint p-cycles (and one 1-cycle). With this choice of
r prove that σ and τr generate a subgroup of Sq with order pq , and give a pre-
sentation on a 2-symbol alphabet. See also Problems 6.14, 7.21 and 9.14, and Web
Section 14.3. (Hint. Use primitive roots, see Appendix B.)

Problem � 3.7 (i) Show that Sn isomorphic to a subgroup of An+2.
(ii) Using Theorem 3.11 and its extension given in the example on page 77, show

that if J is a simple subgroup of the symmetric group Sn, then it is also a (simple)
subgroup of the alternating group An.

Problem 3.8 (Semi-regularity) A permutation σ on X = {1, . . . , n} is called semi-
regular if (a) every element of X is moved by σ , and (b) σ can be expressed as a
product of disjoint cycles all of the same length. The identity permutation is also
called semi-regular (it is a product of n cycles each of length 1). (A permutation is
called regular if it is semi-regular and transitive.)

(i) Prove that σ is semi-regular if and only if it is a power of an n-cycle.

(Hint, if σ = (a1, . . . , ar )(b1, . . . , br ) · · · (d1, . . . , dr ), consider the cycle

θ = (a1, b1, . . . , d1, a2, b2, . . . , d2, a3, . . . , dr ).)
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(ii) If τ is an n-cycle, show that τ s is a product of (n, s) disjoint cycles each of
length n/(n, s) (note that (n, s) denotes the GCD of n and s). Deduce that if
p is a prime, then each positive power of a p-cycle is either a p-cycle or the
identity permutation.

Problem 3.9 (Maximal Subgroups of Sn) (i) Show that Sk ≤ Sn, for 1 ≤ k ≤ n, and
determine a lower bound on the number of copies of Sk that occur in Sn; see also
Problem 4.20(ii).

(ii) For 1 ≤ k ≤ n, let Sk ×Sn−k denote the set of elements in Sn with the form of
a permutation using the symbols in {1,2, . . . , k} = Y only, multiplied by a permuta-
tion using the symbols in {k + 1, k + 2, . . . , n} = Z only. (This is the direct product
of Sk and Sn−k , see Chapter 7—you need to check that Sk  Sk × Sn−k , et cetera)
Show that

Sk × Sn−k forms a subgroup of Sn.

If k 
= n − k, this subgroup is maximal in Sn. This can be proved as follows: Show
that the subgroup generated by the elements of Sk, Sn−k and a 2-cycle (u, v) where
u ∈ Y and v ∈ Z is the whole of Sn; you are not asked to prove this here, but you
could try it, say when n = 5 or 6. Note that the same general argument applies if we
replace the first set Y by an arbitrary k-element subset of {1,2, . . . , n} = N provided
the second set Z is replaced by its complement in N .

(iii)� By (ii) we have Sn × Sn is a subgroup of S2n; show that it is not maximal
by constructing a new subgroup of S2n of order 2(n!)2. (Hint. Begin with Sn × Sn,
add an element of order 2, and then show that the new set forms a proper subgroup
of S2n.) As in (ii) the new subgroup constructed here is maximal in S2n.

The properties described in (ii) and (iii) form part of the O’Nan–Scott Theorem
which provides a complete description of the maximal subgroups of the symmet-
ric groups. A number of these subgroups involve so-called wreath products which
are introduced on page 156. For further details, the reader should consult Cameron
(1999), page 107.

Problem 3.10 (Alternating Group A4) There are four main ways to represent A4 as
follows:

(a) The group of even permutations on the set {1,2,3,4},
(b) The group with presentation

〈
a, b | a2 = b3 = (ab)3 = e

〉
,

(c) The symmetry group of a regular tetrahedron (with four equilateral triangular
sides), and

(d) SL2(3) ‘factored by its centre’; see Chapters 4, 8 and 12.

(i) Using direct calculation show that (a), (b) and (c) define isomorphic groups, see
Problem 4.4(iv) for (d).

(ii) Find the subgroups of A4, and indicate which are normal.
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Problem 3.11 (i) In this problem you are asked to construct a subgroup J of S5 with
order 20. Let σ = (1,2,3,4,5). Choose a 4-cycle τ so that the subgroup J = 〈σ, τ 〉
has this order. One method is as follows. Show that the group H = 〈a, b | a5 =
b4 = e, ba2 = ab〉 has order 20, then find an isomorphism between H and J . It
can be shown that J is a maximal subgroup of S5, it is usually called metacyclic
and denoted by F5,4, see Theorem 6.18 and Web Section 6.5. Can a similar
construction be undertaken in S7?

(ii) Using Lagrange’s Theorem (Theorem 2.27) and Problem 2.20 find the sub-
groups of A5 of order less than 10. It does also have proper subgroups of order 10
and 12, but none larger; see page 101.

Problem 3.12 (Permutation Matrices) Permutation theory can be developed as a
part of matrix algebra as follows. Given a permutation σ ∈ Sn, the n × n per-
mutation matrix Pn is formed from the n × n identity matrix In by permuting its
rows by σ , that is, the first row (1,0, . . . ,0) becomes the 1σ th row, the second row
(0,1,0, . . . ,0) becomes the 2σ th row, and so on. Prove the following properties:

(i) Each row and each column of Pn contains a single ‘1’ and n − 1 zeros.
(ii) The determinant of Pn, detPn, equals ±1.
(iii) The inverse of a permutation matrix is a permutation matrix, and so the set of

all n × n permutation matrices forms a subgroup of GLn(F ) for all fields F . Is
this subgroup normal?

(iv) A permutation σ is even if and only if the determinant of the corresponding
permutation matrix is positive.

Note that if the definition of the determinant function Δ uses the notions of even
and odd permutations to determine the signs in the basic sums, then (iv) cannot be
applied to define these permutations, but it can be so applied if Δ is defined as a
multilinear alternating function which takes the value 1 on the identity matrix; see,
for example, Rose (2002), Chapter 4.

Problem 3.13 Let η = eπi/3 and C = ( η 0
0 η−1

)
.

(i) Calculate C3,C6 and C−1.
(ii) Choose a 2 × 2 matrix D to satisfy CD = DC−1 and D2 = C3.
(iii) Show that the group generated by C and D subject to the conditions in (ii) has

order12, and gives a representation of the dicyclic group Q3.

This construction can easily be extended to give representations of the groups Q2n+1
for all positive integers n.

Problem 3.14� Show that GL2(4) is isomorphic to a subgroup of GL4(2) as fol-
lows. First, note that the set of non-zero elements of a field of four elements forms
a multiplicative cyclic group of order 3. Second, use this fact to show that GL1(4)

is isomorphic to a subgroup of GL2(2). Now repeat this procedure in the case un-
der consideration using block multiplication of matrices. A fair knowledge of linear
algebra is needed to complete this problem.
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Problem � 3.15 Suppose F is a field. Let ITn(F ) be the subset of UTn(F ) (the
group of n × n upper triangular matrices, see page 54) of those matrices with 1 at
each main diagonal entry—they are sometimes called ‘unipotent’, and let IZTn,r (F )

be the subset of ITn(F ) of those matrices whose ith superdiagonals consist entirely
of zeros for i = 1, . . . , r . We shall return to this example in Chapter 10 when dis-
cussing nilpotent groups. Show that

(i) ITn(F )  UTn(F ).
(ii) IZTn,r (F )  ITn(F ), and IZTn,r (F )  IZTn,r−1(F ) if r = 1, . . . , n − 1.
(iii) If o(F ) = p (and so we work modulo p) show that ITn(F ) is a Sylow

p-subgroup of GLn(F ), that is o(ITn(F )) = pr where pr is the largest power
of p dividing o(GLn(F )); see Section 6.2.

(iv) If A ∈ IZTn,r (F ) and B ∈ ITn(F ), then [A,B] ∈ IZTn,r+1(F ).

Problem 3.16 Use Problem 3.3(vi) and Theorem 2.29(ii) to give another proof of
the simplicity of A5. You should begin by noting that the neutral element e belongs
to all subgroups.

Problem 3.17 Show that the group Q does not have a finite generating set.

Problem 3.18 Prove that S4 has the presentation 〈a, b | a4 = b3 = (ab)2 = e〉.
Show also that if the powers 4, 3 and 2 are permuted, then further presentations
of S4 are given.

Problem 3.19 (i) Show that the group SL2(p) possesses only one involution when
p is an odd prime. Also note Problem 12.5.

(ii) Using a suitable computer program (or working by hand) show that the con-
jugacy classes (Definition 2.11(iii)) of the group SL2(5) have orders (and number of
classes) 1(2), 12(4), 20(2) and 30, with nine classes in all.

(iii) Use (ii) to show that the only proper non-neutral normal subgroup of SL2(5)

is isomorphic to C2.
(iv) The maximal subgroups of SL2(5) are isomorphic to SL2(3), Q5 and Q3

with orders 24, 20 and 12, respectively. Find subgroups in SL2(5) isomorphic to
these groups.

The group SL2(5) has a special connection with so-called Frobenius comple-
ments, this will be discussed in Web Section 14.3.

Problem � 3.20 Let D = 〈c, d | c2 = d2 = e〉, A = 〈c〉, and K = 〈cd〉.
(i) Show that A ≤ D, K  D, A ∩ K = 〈e〉, and AK = D if o(D) > 2.
(ii) Use this to give new presentations of the dihedral groups Dn.

Proposition (i) shows that D is isomorphic to a semi-direct product of K by A;
see Section 7.3. As noted earlier (page 26) involutions (that is, elements of order 2)
play an important role in the theory, especially in simple group theory. This also
applies to groups of the form D generated by two involutions; see, for example,
Aschbacher (1986), page 242. Note also that the jump from two to three generators
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can have dramatic effect, for very large and complex groups exist which have a
generating set with just three involutions—for example, L3(3) with order 5616, see
pages 264 and 265, and Problem 12.10. Problems 2.28, 3.21� and 3.23 should also
be consulted.

Problem 3.21� (A Presentation of Sn+1 for n > 1) Let a1, . . . , an be symbols satis-
fying the following conditions, where Qj,k does not apply if n = 2,

Pi : a2
i = e for 1 ≤ i ≤ n,

Qj,k : (aj ak)
2 = e for 1 ≤ k < j − 1 < n,

Rl : (alal+1)
3 = e for 1 ≤ l < n.

(∗)

(i) Show that (a) aj and ak commute if 1 ≤ k < j − 1 < n, and (b) alal+1al =
al+1alal+1 if 1 ≤ l < n.

Let G be the group generated by the set {a1, . . . , an} with the relations (∗), let H be
the subgroup generated by the subset {a1, . . . , an−1}, and let Z be the set of cosets

Z = {H,Han,Hanan−1, . . . ,Hanan−1 . . . a1}.
(ii) Using (i), show that if Hy ∈ Z and 1 ≤ i ≤ n, then Hyai ∈ Z. There are a

number of cases to consider.
(iii) Use (ii) to show that [G : H ] ≤ n + 1, and so by induction deduce o(G) ≤

(n + 1)!.
(iv) By considering maps from G to Sn+1 of the form ai �→ (i, i + 1), show that G

is a presentation of Sn+1 using Problem 3.1 and (iii).

When Sn+1 is represented in this way, that is, when it is generated by a set of invo-
lutions, it is known as a Coxeter Group. The theory of these groups has developed
considerably in the past 30 years; see, for example, Suzuki (1982) and Björner and
Brenti (2005).

Problem 3.22 Suppose m is a positive even integer.

(i) Let Rm be the subgroup of GL2(C) generated by

Am =
(

0 ω

ω 0

)
and B =

(
0 1

−1 0

)
,

where ω is a primitive 2mth root of unity. Prove Rm � Qm; see page 59.
(ii) Prove that Qm has a unique involution C, and Z(Qm) = 〈C〉.
(iii) Further, show that Qm/Z(Qm) � Dm. (Note that factor groups are discussed

in Chapter 4.)

If G is a 2-group (one whose order is a power of 2, see Chapter 6) and it has a single
subgroup of order 2, then it has been shown that G is either cyclic or dicyclic; see
Kurzweil and Stellmacher (2004), page 114.
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Problem 3.23 Working in S8, investigate the subgroup F generated by the permu-
tations a = (3,4)(5,6), b = (1,3)(2,4)(5,7)(6,8) and c = (1,5)(2,6)(3,8)(4,7).
Construct a list of the elements with their orders, and so calculate o(F ). Secondly,
list the subgroups of F , and determine their orders, their normality status, and which
of them is the centre. Finally, find a presentation for F , that is, find a collection of
properties of a, b and c from which all remaining properties can be derived. The
calculations can be done by hand, or by using a computer algebra package which
includes the basic permutation operations. See also Problem 8.12.

Problem 3.24 (Project—The Group GL2(3)) A number of groups play a special
role in the theory, A5 being one of these. Another is the general linear group
GL2(3), later (in Chapter 12) we shall describe some of its properties. Here you
are asked to give representations in terms of the three main construction methods
discussed in this chapter. In particular, (a) find three 2 × 2 matrices with orders 2,
3 and 8, respectively, which generate the group, (b) find three permutations of the
set {1,2,3,4,5,6,7,8} which generate the group as a subgroup of S8, and (c) show
that the group has a presentation in the form

〈
a, b, c | a8 = b2 = c3 = e, bab = a3, bcb = c2, c2a2c = ab, c2abc = aba2〉.

You will need to find inclusion maps between these systems, and then show that each
contains 48 elements (Theorem 3.15). Note that there is no unique answer to this
problem, and that it can be done by hand, but a suitable computer algebra package
would help with the calculations. This project will be continued in Problem 6.23.



Chapter 4
Homomorphisms

During the past half century and more, one of the underlying ‘themes’ in mathe-
matics has been the realisation that maps are equally as important as objects or sets,
particularly those that preserve or transfer properties from one object or system to
another. They have been called natural maps, morphisms, or sometimes structure-
preserving maps. We use the first of these names as a general term for these maps.
Therefore, as we have introduced groups, our basic objects of study, we must now
discuss the natural maps between them. In group theory, they are called homomor-
phisms, and isomorphisms when the correspondence is ‘exact’; isomorphisms were
introduced informally on page 17 in Section 2.1.

Two groups can appear to be distinct, but are, in fact, identical from the group-
theoretical point of view. For example, consider D3, the dihedral group of the tri-
angle defined on page 3, and S3, the group of all permutations on the set {1,2,3}.
They have identical group-theoretic properties, and a bijection θ between them that
satisfies

ghθ = gθhθ (4.1)

articulates this fact; equation (4.1) is called the homomorphism equation. The map
θ : D3 → S3 can be defined as follows (it is not the only possible map; see Sec-
tion 4.4). Referring to the definitions given on page 3, the rotation α ∈ D3 about the
centre of the triangle by angle 2π/3 clockwise is mapped to (1,2,3), that is, we set
αθ = (1,2,3). Using (4.1) we have

α2θ = αθαθ = (1,2,3)2 = (1,3,2),

and

ιθ = α3θ = (αφ)3 = (1,2,3)3 = e

where ι denotes the ‘identity map’, see page 281. Also, the reflection β ∈ D3 about
a vertical axis is mapped to (2,3), that is, we set βθ = (2,3). Then by (4.1) again
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we have

αβθ = αθβθ = (1,2,3)(2,3) = (1,3),

and

α2βθ = α2θβθ = (1,3,2)(2,3) = (1,2).

It is now easily seen that θ is a bijection and (4.1) holds for all elements of D3; we
say that D3 and S3 are isomorphic.

Isomorphisms are bijections; on the other hand, there is much to be gained by
considering maps that preserve the group operation (they satisfy (4.1)) but are not
necessarily bijective, these maps are called homomorphisms. For example, suppose
G1 = GL2(Q), G2 = Q

∗ and φ : G1 → G2 is defined by

Aφ = detA for A ∈ G1.

As detA �= 0 and detAB = detAdetB , for all A,B ∈ G1, the map φ is a homomor-
phism, that is, it satisfies (4.1). We shall refer to this example repeatedly in the next
few sections, and so we call it the standard example.

In this chapter, we define homomorphisms, isomorphisms and factor groups, de-
rive their basic properties—the Isomorphism and Correspondence Theorems, dis-
cuss the cyclic groups, and introduce automorphisms (that is, isomorphisms of a
group to itself). There are two Web Sections, 4.6 and 4.7, the first discusses a
special kind of homomorphism called the transfer used in Web Section 6.5, and
the second extends our work on presentations introduced in Chapter 3.

Maps—Left or Right

In algebraic contexts, we write maps and functions on the right, and in most cases
we do not use brackets; that is, we write

aφ and not φ(a)

for the value of the map φ at the argument a. In the western world, we read and
write from left to right, and so this is a more natural notation—when applying a
map φ to an argument a, we first choose a in the domain, then we apply φ to obtain
the value aφ in the range (co-domain); see Appendix A. This notational convention
may seem strange at first, but it does make many constructions clearer, especially
those involving composition or permutations. Also we use lower case Greek letters
for maps or functions (including permutations) throughout. The argument of a map
φ is given by the Roman letter or letters immediately to its left. For example, in the
expression abcφ the argument is abc, but in the expression aφbψ the argument of
ψ is b (and this expression is the product of aφ and bψ). On some occasions we
use brackets to aid clarity, so we might write (abc)φ for abcφ, or (aφ)(bψ) for
aφbψ , but (aφb)ψ when the argument of ψ is aφb, that is when the argument is
the product of aφ and b.
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4.1 Homomorphisms and Isomorphisms

The basic notions are given by

Definition 4.1 Let G1 and G2 be groups, and let φ be a map from G1 to G2. The
map φ is called a homomorphism from G1 to G2 if

ghφ = gφhφ for all g,h ∈ G1.

Note that the product gh on the left-hand side of this equation is in G1, and the
product gφhφ (or (gφ)(hφ)) on the right-hand side is in G2.

Definition 4.2 Let φ be a homomorphism mapping G1 to G2.

(i) φ is called the trivial homomorphism if aφ = e, for all a ∈ G1;
(ii) φ is called an isomorphism if it is also a bijection from G1 to G2, the groups

G1 and G2 are said to be isomorphic, and we write G1 � G2 in this case;1

(iii) φ is called an endomorphism if it is a homomorphism of G1 to itself;
(iv) φ is called an automorphism if it is an isomorphism of G1 to itself.

Isomorphisms were first introduced by Jordan in 1865 whilst he was working on
his proof of the Jordan–Hölder Theorem; see Chapter 9.

We use the word ‘trivial’ in (i) above to imply that the map trivialises, or destroys,
all properties of the group except those associated with the neutral element. The
identity map ι : G → G which is given by gι = g for all g ∈ G is an example of
an automorphism of G. The reader should also refer to the note on ‘isomorphism
classes’ on page 17.

Examples One homomorphism was discussed on page 68 (the standard example),
four more are given now; see also the examples on pages 17 and 84, and in Prob-
lem 4.1.

(a) If G1 = R, G2 is the group of complex numbers having absolute value 1 with
the operation complex multiplication, and φ1 : G1 → G2 where

xφ1 = cosx + i sinx,

for x ∈ R, then φ1 is a homomorphism mapping G1 to G2. It is not an isomor-
phism because xφ1 = (x + 2kπ)φ1 for each k ∈ Z.

(b) If G1 = Z/6Z (the set {0,1,2,3,4,5} with operation addition modulo 6), G2 =
(Z/7Z)∗ (the set {1,2,3,4,5,6} with operation multiplication modulo 7), and
φ2 : G1 → G2 is given by

aφ2 = 3a modulo 7,

for a ∈ G1, then φ2 is an isomorphism; the reader should check this.

1Some authors use the symbol ∼= in place of �.
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(c) If G1 = C
∗, the multiplication group of the non-zero compex numbers, and

φ3 : G1 → G1 satisfies

zφ3 = z2,

then φ3 is an endomorphism. Reader, why is φ3 not an automorphism?
(d) If G1 = Z and φ4 : G1 → G1 satisfies aφ4 = −a for a ∈ G1, then φ4 is an

automorphism of G1.

The basic properties of these maps are given by the following lemmas.

Lemma 4.3 Suppose φ is a homomorphism between the groups G1 and G2 with
neutral elements e1 and e2, respectively.

(i) e1φ = e2.
(ii) If g ∈ G1 then g−1φ = (gφ)−1.

Note that in (ii) the inverse on the left-hand side is in G1, and the inverse on the
right-hand side is in G2.

Proof (i) As g = ge1 for all g ∈ G1, we have gφ = ge1φ = gφe1φ and (i) fol-
lows by cancellation.

(ii) Using the group axioms and (i) we have

e2 = e1φ = (
gg−1)φ = gφg−1φ,

the result follows as inverses are unique and two-sided (Theorem 2.5). �

From now on we use the symbol e for the neutral element of every group.

Lemma 4.4 Suppose φ : G1 → G2, ψ : G2 → G3, and both φ and ψ are homo-
morphisms.

(i) φ ◦ ψ is a homomorphism mapping G1 to G3.
(ii) The image of φ is a subgroup of G2.
(iii) If H ≤ G1 and φ′ is the map φ with its domain restricted to H , then φ′ is a

homomorphism from H into G2.
(iv) If φ is an isomorphism, so is φ−1.

The image of φ, see (ii), is denoted by imφ. Also φ′ in (iii) is sometimes written
φ|H and described as ‘φ restricted to H ’.

Proof Straightforward, see Problem 4.3. �

We now define the kernel, an important entity in the theory. It is a normal sub-
group, the reader should review the material of these subgroups given in Chapter 2.
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Definition 4.5 Let φ be a homomorphism mapping G1 to G2. The subset of G1

defined by

{a ∈ G1 : aφ = e}
is called the kernel of φ, and it is denoted by kerφ.

In the standard example φ : GL2(Q) → Q
∗ where Aφ = detA (page 68), kerφ is

the set of 2 × 2 matrices A with determinant 1, the neutral element of Q
∗. Hence

kerφ equals SL2(Q) in this example. (Note SL2(Q) � GL2(Q).)
The basic properties of the kernel are given by

Lemma 4.6 Suppose φ : G1 → G2 is a homomorphism.

(i) kerφ � G1, see Definition 4.5.
(ii) φ is injective if and only if kerφ = 〈e〉.

This lemma is useful in its own right, but it is also useful because it provides a
second method (apart from Theorem 2.29) for showing that a subset of a group is
a normal subgroup, that is, by showing the subset in question is the kernel of a
homomorphism; see, for example, the proof of the N/C-theorem (Theorem 5.26).

Proof (i) The property kerφ ≤ G1 follows from Theorem 2.13, Defini-
tion 4.1, and Lemma 4.3. Now by Lemma 4.3 again, if a ∈ G and g ∈ kerφ,

a−1gaφ = a−1φgφaφ = (aφ)−1eaφ = e,

which shows that a−1ga ∈ kerφ. Normality follows by Theorem 2.29.
(ii) Suppose first φ is injective. If kerφ �= 〈e〉, we can find c ∈ G1 such

that c �= e and cφ = e = eφ; but as φ is injective, this implies c = e which
contradicts our assumption. Hence kerφ = 〈e〉. Conversely, if kerφ = 〈e〉 and
bφ = cφ, for b, c ∈ G1, then

e = (cφ)−1bφ = c−1bφ, and so c−1b ∈ kerφ.

But kerφ = 〈e〉, and so b = c. This holds for all b, c ∈ G1, and so the result
follows. �

As an example we give a proof of Cayley’s Theorem. It was first proved in 1850,
and was a development of some work undertaken by Cauchy during the previous
decade; see page 42. Note that there is nothing unique about the symmetric group
here, for it can be shown that every group of order n is isomorphic to a group of
m × m matrices, for some m ≤ n, defined over an arbitrarily given field, see Prob-
lem 4.17. Also, in Web Section 4.7 we show that every group is a factor group
of a free group.
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Theorem 4.7 (Cayley’s Theorem) Every group is isomorphic to a subgroup of a
symmetric group.

Proof Let G be a group. For fixed g ∈ G, define the map σg : G → G by

aσg = ag for all a ∈ G.

Using cancellation (Theorem 2.6), we see immediately that σg is a bijection;
that is, σg is a permutation of the underlying set of G. Also, if g,h ∈ G,

aσgh = a(gh) = (ag)h = (aσg)σh = a(σg ◦ σh) for all a ∈ G. (4.2)

Hence we can define a map θ : G → SG, where SG is the group of permuta-
tions of the elements of the set G, by

gθ = σg for all g ∈ G,

and it is a homomorphism by (4.2). The result follows by Lemma 4.4(ii). �

This result is usually not the best possible. For example, the group D4 has order
8 and so, by Cayley’s Theorem, it is isomorphic to a subgroup of S8 (with order
40320). But, in fact, it is isomorphic to a subgroup of S4 (with order 24), see Chap-
ter 8. On the other hand, for a few groups the theorem is best possible, for example,
Q2 (which also has order 8) is isomorphic to no subgroup of Sn if n < 8.

Factor Groups

Cosets were defined in Chapter 2. Here we ask:

Is it possible to make the set of cosets of a subgroup H of G into a new group?

The answer is yes, but only when H is a normal subgroup of G (Definition 2.28).
Consider the following simple example which is typical of the general situation. Let
G = Z and H = 2Z, the even integers under addition. Clearly H � G, and there are
just two cosets: the even integers 2Z, and the odd integers 2Z + 1. Now

an even integer plus an even integer is even,
an even integer plus an odd integer is odd, and
an odd integer plus an odd integer is even.

(∗)

This suggests that we can treat the set of cosets in this example as a new two element
group with the operation given by (∗), and this will characterise the terms ‘even’ and
‘odd’ when applied to the integers. Hence we make the following
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Definition 4.8 Given K � G, g,h ∈ G and using the operation in G, we define the
coset product, or coset multiplication, of gK and hK by

gKhK = ghK.

There is an important point concerning this definition which can cause some
misunderstanding at first. By Lemma 2.22, if j ∈ gK then jK = gK ; that is, the
representative g in the coset gK is not unique. Therefore, in the definition above
we must check (in Theorem 4.9 below) that it is a product of cosets considered as
entities in their own right, and it does not depend on the coset representatives g

and h—we say the product is “well-defined”.

Theorem 4.9 Suppose K � G.

(i) If aK = a′K and bK = b′K , then abK = a′b′K .
(ii) The set of cosets of K in G with coset multiplication given by Definition 4.8

forms a group.

Proof (i) The hypotheses and Lemma 2.22 give k1, k2 ∈ K to satisfy

a′ = ak1 and b′ = bk2,

which shows that

a′b′ = ak1bk2.

By Theorem 2.29 and as K is a normal subgroup, we can find k3 ∈ K to satisfy
k1b = bk3, so

a′b′ = ak1bk2 = abk3k2 ∈ abK,

and (i) follows by Lemma 2.22 again.
(ii) By (i), the set of cosets is closed under (well-defined) coset multiplica-

tion. Using the corresponding properties of G, coset multiplication is associa-
tive, the neutral element is K (as eK = K), and the inverse of the coset aK is
a−1K (as aKa−1K = aa−1K = K); the result follows. �

We give an example to show that normality is essential in this result. Let G =
D3 = 〈c, d | c3 = d2 = e, dc = c2d〉 and let J = 〈d〉. We have cJ = {c, cd} and
Jc = {c, c2d}, that is, J is not normal in G. Property (i) also fails, for if we let
a = c, a′ = cd and b = b′ = c, then aJ = cJ = {c, cd} = a′J (as d2 = e), and bJ =
cJ = b′J . But abJ = c2J = {c2, c2d} whilst a′b′J = cdcJ = {d, e} = J which
shows that abJ �= a′b′J .

Definition 4.10 The group of cosets given by Theorem 4.9(ii) is called the factor
group, or sometimes the quotient group, of G by K , and it is denoted by G/K .
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In some contexts, G/K is referred to as “G over K”. We shall show below,
especially in Theorem 4.17, that this ‘fractional’ notation is a reasonable choice
but it needs to be treated with care. However, we can see already by Lagrange’s
Theorem (Theorem 2.27) that, if o(G) < ∞, then

o(G/K) = o(G)/o(K).

Example The notation Z/nZ used in Chapter 2 can now be explained. As nZ � Z

(the groups are Abelian) we can form the factor group Z/nZ using Definitions 4.8
and 4.10. By the First Isomorphism Theorem to be proved below, this group is iso-
morphic to the group N of integers modulo n with addition modulo n as its op-
eration, see page 18. The factor group Z/nZ contains n cosets, they are r + nZ,
for r = 0, . . . , n − 1, and the coset product mirrors the standard addition modulo
n in N exactly. As Z/nZ is isomorphic to N , we use this (distinctive) notation for
both—a slight ‘abuse of the notation’, but as the groups are isomorphic, no problems
should arise.

4.2 Isomorphism Theorems

We come now to what is probably the single most important collection of results
in the theory—the Isomorphism Theorems. Note that the naming and numbering of
the theorems given below is not universally accepted. Although many of the ideas,
theorems and proofs had been ‘known’ for some time previously, they were first sys-
tematically formulated and proved in detail2 by the German mathematician Emmy
Noether (1882–1935) during the 1920s; and one of their first appearances in print
was in Moderne Algebra by B.L. van der Waerden. This two-volume work was first
published in the 1930s and it has had a considerable impact on the development of
algebra in general during the twentieth century.

We begin by returning to the example concerning even and odd integers discussed
on page 72. Define a map φ : Z → T1 (page 12) by

aφ = 1 if a is even, and aφ = −1 if a is odd.

Clearly, this is a surjective homomorphism mapping Z to T1 with kernel 2Z, and

Z/2Z � T1,

see (∗) on page 72. This is typical of the general situation given by the following
major result.

2A proof of the First Theorem appears in Burnside’s classic text written a quarter of a century
before; see also the comment below Definition 4.2.
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Theorem 4.11 (First Isomorphism Theorem) If G1 and G2 are groups, and φ :
G1 → G2 is a surjective homomorphism with kernel kerφ = K , then

G1/K � G2.

Proof By Theorem 4.9 and Lemma 4.6, G1/K is a group. We define a map
θ : G1/K → G2 as follows. If a ∈ G1 then aK ∈ G1/K , and we set

(aK)θ = aφ.

First, we need to show that θ is well-defined. Suppose aK = a′K , then by
Lemma 2.22 we have a′a−1 ∈ K = kerφ, and so a′a−1φ = e which gives
a′φ = aφ. This shows that aKθ = aφ = a′φ = a′Kθ as required. The map
θ is surjective because φ is surjective. It is also injective, for if aKθ = bKθ ,
then by definition aφ = bφ which gives in turn e = (aφ)−1bφ = a−1bφ and
a−1b ∈ kerφ = K . By Lemma 2.22 again, this shows that aK = bK , so θ is
injective, and therefore it is a bijection. For the homomorphism property we
have

(
(aK)θ

)(
(bK)θ

) = aφbφ by definition
= abφ as φ is a homomorphism
= (abK)θ by definition
= (

(aK)(bK)
)
θ by coset product,

and the theorem follows. �

All is not lost if the homomorphism is not surjective, for we have the corollary
given below where the symbol � stands for ‘is isomorphic to a subgroup of’.

Corollary 4.12 If ψ : G1 → G2 is a homomorphism with kernel kerψ = K , then

G1/K � G2.

Proof By Theorem 4.11, G1/K � imψ , and by Lemma 4.4(ii) we have
imψ ≤ G2, the corollary follows. �

If in this corollary the group G1 is simple, then it is isomorphic to a subgroup of G2

provided ψ is not the trivial homomorphism.

Examples Let G1 = C
∗, G2 = R

∗, see page 18, and let φ be the absolute value
function given by

zφ = |z| for z ∈ C
∗.

This is a non-surjective homomorphism with image R
+. Now kerφ is the subgroup

of C
∗ of those complex numbers which have absolute value 1. Corollary 4.12 gives
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C
∗/kerφ � R

∗;
that is, associated with every non-zero complex number there is a unique non-zero
real number, its absolute value. This value belongs to R

+ a subgroup of R
∗.

Returning to the standard example we note that the det function is a surjective ho-
momorphism mapping GLn(Q) onto Q

∗ with kernel SLn(Q), hence Theorem 4.11
gives

GLn(Q)/SLn(Q) � Q
∗. (4.3)

Also if we replace the field Q by a finite field F with o(F ) = q , then a similar
isomorphism applies and we obtain o(GLn(F )) = o(SLn(F ))(q − 1) by Lagrange’s
Theorem (Theorem 2.27) as F has q − 1 non-zero elements.

We single out for special mention the following homomorphism.

Definition 4.13 Let K � G, and let φ be the surjective homomorphism G → G/K

given by

gφ = gK for all g ∈ G,

where K = kerφ. The map φ is called the natural homomorphism, from G to the
factor group G/K = imφ.

There are three further isomorphism theorems, see also Section 9.1. Some will
not be required until later but as they are all consequences of the First Theorem
(Theorem 4.11) we shall present them now. The Second and Third Theorems give
conditions under which factor groups can be simplified, that is, parts cancelled out,
whilst the remaining result, called the Correspondence Theorem, is not a single
theorem but a collection of results which relate the properties of G ‘above a normal
subgroup K’ to the properties of G/K , it or one of its extensions will be used many
times in the sequel. We begin with a lemma about intersections and we restate the
basic facts concerning products, see Theorem 2.30.

Lemma 4.14 Suppose H ≤ G and K � G.

(i) H ∩ K � H .
(ii) HK ≤ G and HK = KH .
(iii) HK � G if we also have H � G.
(iv) If J � H then JK � HK .

Proof (i) By Theorem 2.15, we have H ∩ K ≤ H . For normality we argue as
follows. Let h ∈ H . If j ∈ H then h−1jh ∈ H . Also as K � G, h−1jh ∈ K if
j ∈ K . Hence if j ∈ H ∩ K , then h−1jh ∈ H ∩ K and the result follows by
Theorem 2.29.

For the remaining proofs, see Theorem 2.30 for (ii) and (iii), and Prob-
lem 4.6(iv) for (iv). �
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We come now to the Second Theorem, as it will be used mainly in our work on
series in Chapters 9 to 11, it can be omitted on a first reading of the early chapters.

Theorem 4.15 (Second Isomorphism Theorem) If H ≤ G and K � G, then K �
HK ≤ G and

H/H ∩ K � HK/K.

Proof As K � G, by Lemma 4.14 we have HK ≤ G. Also clearly K ≤ HK ,
and so Problem 2.14(ii) gives K � HK and we can form the factor group
HK/K . We define a map θ : H → HK/K by

hθ = hK for h ∈ H.

As hkK = hK for all h ∈ H and k ∈ K , it follows that θ is a surjective map. It
is also a homomorphism for if h1, h2 ∈ H we have using coset multiplication
(Definition 4.8)

h1h2θ = h1h2K = h1Kh2K = h1θh2θ.

Hence the conditions for the First Isomorphism Theorem (Theorem 4.11) ap-
ply, and so to prove the theorem we need to show that ker θ = H ∩ K . Now
h ∈ ker θ if, and only if, hK = K . If this equation holds then h ∈ K , and
so h ∈ H ∩ K . Conversely, if h ∈ H ∩ K , then h ∈ K and hK = K clearly
follows. Therefore, Theorem 4.11 now gives

H/ker θ = H/H ∩ K � HK/K. �

Note that one consequence of this result is: If H ≤ G,K � G and H ∩ K = 〈e〉,
then HK/K � H .

Example We give a proof of a permutation result to illustrate the use of this theorem,
see page 49. We show that if G ≤ Sn and G contains an odd permutation, then
exactly half of the elements of G are even and half are odd. By Theorem 3.11,
An � Sn, and G ≤ Sn by hypothesis, so the Second Isomorphism Theorem gives

G/(G ∩ An) � GAn/An = Sn/An.

This last equation follows because GAn contains all even and at least one odd per-
mutation, and so has an order larger than o(Sn)/2, which gives GAn = Sn by Prob-
lem 2.19. Now, as o(Sn/An) = 2 (Theorem 3.11), we have

o(G ∩ An) = o(G)/2;
that is exactly half of the elements of G belong to An. So if G is simple and G < Sn,
then we also have G ≤ An.
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Correspondence Theorem

The Correspondence Theorem which some authors call the ‘Third Isomorphism
Theorem’ will be considered now. It is an important result with many applications,
and it is a direct consequence of the First Isomorphism Theorem (Theorem 4.11).
As noted above, it has a number of parts, some of which will be added later. Suppose
θ is a surjective homomorphism mapping G1 to G2 with ker θ = K ; that is, θ maps
G1 onto G2, and K onto 〈e〉. Informally, the theorem says that the properties and
structure of that part of G1 which lies above K is exactly mirrored by the properties
and structure of G2, and vice versa. This is illustrated in the diagram below.

G1
θ−→ G2

· ·
H

θ−→ Hθ and G1/H � G2/Hθ if H � G1
· ·

Jθ−1 θ−→ J and G2/J � G1/Jθ−1 if J � G2
· ·

K
θ−→ 〈e〉

There are also some upward inclusions. If H satisfies K ≤ H ≤ G1, then Hθ ≤ G2,
and if H � G1, then Hθ � G1; also if J ≤ G2, then K ≤ Jθ−1 ≤ G1, et cetera.
Hence we have

Theorem 4.16 (Correspondence Theorem) Suppose G1 and G2 are groups,
H ≤ G1, J ≤ G2, and θ is a surjective homomorphism mapping G1 to G2 with
ker θ = K . This implies G1θ � G2 and Kθ = 〈e〉.
(i) If K ≤ H ≤ G1, then Hθ ≤ G2.
(ii) If K ≤ H � G1, then Hθ � G2 and G1/H � G2/Hθ .
(iii) K ≤ Jθ−1 ≤ G1.
(iv) If J � G2, then Jθ−1 � G1 and G1/Jθ−1 � G2/J .

Proof The proof is mainly a matter of checking that group axioms or sub-
group conditions hold, we shall establish parts (i) and (iv) and leave the re-
maining parts for the reader to complete (Problem 4.13).

(i) By Lemma 4.3, Hθ is a non-empty subset of G2. Also, if h1, h2 ∈
H , then (h1θ)−1h2θ = h−1

1 h2θ ∈ Hθ as H is a subgroup of G1 and θ is a
homomorphism. This gives (i).

(iv) Suppose g ∈ G1 and k ∈ Jθ−1, and so gθ ∈ G2 and kθ ∈ J . As J � G2,
these properties show that

(gθ)−1kθgθ ∈ J,
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but (gθ)−1kθgθ = (g−1kg)θ , hence g−1kg ∈ Jθ−1. By (iii), this gives
Jθ−1 � G1. For the second part, define the map ψ : G1 → G2/J by

gψ = (gθ)J for g ∈ G1.

Now ψ is surjective as θ is surjective, and it is a homomorphism because

g1g2ψ = (g1g2θ)J = (g1θ)(g2θ)J = (g1θJ )(g2θJ ) = g1ψg2ψ,

for g1, g2 ∈ G1. The kernel of ψ is {g ∈ G1 : (gθ)J = J }. By Lemma 2.22,

(gθ)J = J if and only if gθ ∈ J if and only if g ∈ Jθ−1.

As this holds for all g ∈ G1, we obtain kerψ = Jθ−1. The result follows by
applying the First Isomorphism Theorem (Theorem 4.11) to ψ . �

Example Suppose G1 = Z (and so all subgroups are normal as this group is
Abelian) and G2 = Z/30Z. Secondly, suppose φ represents congruence reduc-
tion modulo 30, its kernel K equals 30Z. Now if, for example, H = 10Z, then
K � H � G1, Hθ � Z/10Z and both G1/H and G2/Hθ are isomorphic to the
cyclic group of order 3. As an exercise the reader should take J � Z/15Z and apply
parts (iii) and (iv) of Theorem 4.16.

The last isomorphism theorem follows easily from (iv) in the result above. It
provides a further justification for the factor group notation.

Theorem 4.17 (Third Isomorphism Theorem) If K � G and K � H � G, then
G/H � (G/K)/(H/K).

This is sometimes called the Freshman’s Theorem; see Scott (1964).

Proof In (iv) of Theorem 4.16, put G2 = G/K , J = H/K , and let θ be the
natural homomorphism (Definition 4.13) from G to G/K . Note that H/K �
G/K , the reader should check this. We also have

(H/K)θ−1 = H. (4.4)

For if g ∈ (H/K)θ−1, then gθ = hK for some h ∈ H . But by definition
gθ = gK , and so hK = gK , and g ∈ hK ⊆ H by Lemma 2.22. This gives
(H/K)θ−1 ⊆ H and, as the reverse inclusion is given by definition, (4.4)
follows. Finally, as the conditions in Theorem 4.16(iv) now apply, the result
follows. �

Referring to the example above, if Cm denotes the cyclic group of order m, we
have G1/K � C30,G1/H � C3 and H/K � C10, and Theorem 4.17 shows that
C3 � C30/C10 (that is 3 = 30/10 !).
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4.3 Cyclic Groups

In this section, we discuss the cyclic groups first introduced in Definition 2.19. The
elements of a cyclic group are the powers (positive and negative) of a single gener-
ator a. If G is infinite, then all powers are distinct and G is the free group on the
set {a}, but if o(G) = n and a ∈ G, then an = e, see Theorem 4.20 below. The first
theorem provides the basic facts.

Theorem 4.18 (i) For each positive integer n there exists a cyclic group of order n.
(ii) All cyclic groups of order n are isomorphic.
(iii) All infinite cyclic groups are isomorphic to the group Z.
(iv) Every homomorphic image of a cyclic group is cyclic.

Proof (i) We give two examples. The group of integers modulo n, Z/nZ, see
page 74, is cyclic of order n. Also the group of the complex numbers e2kπi/n

for 0 ≤ k < n with complex multiplication is another.
(ii) If G = 〈a〉,H = 〈b〉, o(G) = o(H) = n, and φ : G → H is defined by

atφ = bt for t ∈ Z,

then φ is clearly an isomorphism between G and H .
(iii) This is similar to (ii).
(iv) If G = 〈a〉 and θ : G → H is a surjective homomorphism, then H =

〈aθ〉, that is H is cyclic with generator aθ . �

We write Cn for the abstract cyclic group of order n, that is, Cn � 〈a | an = e〉,
a group with a single generator a, say, and a single relation an = e; see the intro-
duction to Chapter 3. Also we use Z as a notation for an infinite cyclic group, see
(iii) above.

Theorem 4.19 (i) The subgroups of Z are 〈e〉 and nZ, one for each positive inte-
ger n.
(ii) All non-neutral subgroups of an infinite cyclic group are isomorphic to Z.

Proof Suppose H contains a non-zero integer, a, b ∈ H , and H ≤ Z. Then
ma + nb ∈ H for all m,n ∈ Z. We can choose m and n so that the greatest
common divisor c, say, of a and b satisfies c = ma +nb, c | a, c | b and c > 0,
hence c ∈ H ; see Appendix B. (We usually use the notation (a, b) for c.) This
shows that the least positive integer d , say, in H is a divisor of every element
of H , and so H = dZ, an infinite cyclic group. Both parts of the result follow
by Theorem 4.18(iii). �

Theorem 4.20 Suppose G is a cyclic group of order n. It contains a cyclic subgroup
H of order m if and only if m divides n, and when this happens H is unique.
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This and the previous result show that all subgroups of a cyclic group are cyclic.
Also the proof below is not the shortest or most elegant for this result but it is given
as an illustration of the Isomorphism Theorems ‘in action’.

Proof We use the First Isomorphism and Correspondence Theorems. Define
a map ψ : Z → Cn as follows. Let j be a generator of the group Cn, and for
let

aψ = jc where a ≡ c (mod n) and 0 ≤ c < n,

for a ∈ Z. This is a surjective homomorphism with kernel nZ, and so by the
First Isomorphism Theorem we have Z/nZ � Cn.

By Theorem 4.19, if n �= 0 and J satisfies nZ ≤ J ≤ Z, then J � mZ

for some positive integer m. We have m | n. For if not, dividing m into n

would give a positive remainder r satisfying 0 < r < m and r ∈ mZ. This
is impossible because, by Theorem 4.19, m is the smallest positive integer
in mZ. Hence by the Correspondence Theorem (with G1 = Z, G2 = Cn and
θ = ψ ) we see that the subgroups of Cn are exactly the groups Cm where
m | n. Now use Theorem 4.18(ii). �

We shall see later that the properties of cyclic groups given in Theorems 4.19
and 4.20 are special. In general, a group of order n can have many subgroups of
order m, where m | n, or none at all. If m = pr,n = ms and p � s, then the subgroup
Cm is called the (unique) ‘Sylow p-subgroup’ of Cn; see Section 6.2. Also more
generally, if m | n and (m,n/m) = 1, then Cm is called a ‘Hall’ subgroup of Cn.

4.4 Automorphism Groups

Let G be a group and let AutG denote the set of all automorphisms of G, see
Definition 4.2. This set can be given a group structure using composition as the
operation. The composition of two bijections is a bijection (Appendix A) and so the
operation is well-defined and closed by Lemma 4.4(i). Composition is associative
(Appendix A), the identity map ι on G acts as the neutral element, and the inverse
of an isomorphism is also an isomorphism (Lemma 4.4(iv)). Thus AutG forms a
group under composition.

Definition 4.21 For a group G, the set of automorphisms of G with the operation
of composition forms a new group called the automorphism group of G which is
denoted by AutG.

We give an example now and another extended one at the end of the section, we
shall also discuss the automorphism groups of the finite cyclic groups.

Example If G � Z, then AutG � C2 because there are only two automorphisms:
For all g ∈ G, the first maps g �→ g, and the second maps g �→ −g; see Prob-
lem 4.19.
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Some automorphisms are given by conjugation (Definition 2.28). Let h ∈ G be
fixed, then the map τh : G → G given by

gτh = h−1gh, for g ∈ G,

is an automorphism of G, the reader should check this. An automorphism of this
type is called inner, and the set of all inner automorphisms of G is denoted by
InnG. It is a subgroup of AutG as the following lemma shows.

Lemma 4.22 (i) If G is a group, then AutG is also a group.
(ii) InnG � AutG.

Proof (i) This was proved above.
(ii) The identity map is an inner automorphism (put h = e in the definition),

so InnG is not empty. For g,h ∈ G, let τg and τh be the corresponding inner
automorphisms, and let a ∈ G. Then

a(τgh) = (gh)−1a(gh) = h−1(aτg)h = (aτg)τh = a(τg ◦ τh).

As this holds for all a ∈ G, we see that τg ◦ τh = τgh ∈ Inn(G). Also
(τg)

−1 = τg−1 (reader, check). Hence InnG ≤ AutG. Normality. Let a,g ∈
G, θ ∈ AutG, and aθ−1 = b, that is, bθ = a. By Lemma 4.3(ii),

a
(
θ−1τgθ

) = ((
aθ−1)τg

)
θ = (bτg)θ = (

g−1bg
)
θ

= g−1θbθgθ = (gθ)−1a(gθ) = aτgθ .

This holds for all a ∈ G, hence θ−1τgθ = τgθ ∈ InnG, the result follows. �

Using Lemma 4.22, we can form the factor group AutG/ InnG; it is called the
outer automorphism group denoted by OutG. Following normal practice, an auto-
morphism which is not inner is called outer, so an outer automorphism is an el-
ement of one of the cosets of AutG/ InnG except InnG itself. Note that if G is
Abelian then InnG = 〈e〉, and so all automorphisms except the identity automor-
phism are outer. Also Corollary 5.27 gives a formula for InnG. It was conjectured
by O. Schreier (1901–1929) that OutG is soluble (for a definition see Section 11.1)
if G is simple. This has been shown to be true for finite groups but only by us-
ing CFSG (which is discussed in Chapter 12). The conjecture is false for non-
simple groups, for example, Out((C2)

3) � GL3(2), a non-Abelian simple group;
see page 264.

For a particular group, it can be major task to find its automorphism group. Some
examples are given in Chapter 8. For example, consider AutSn. It has been shown
that, if n �= 2 or 6, then AutSn � Sn and all automorphisms are inner (Problem 8.5).
This is not true for S6 which does possess outer automorphisms, and the order of
AutS6 is twice the order of S6; see Problem 4.20. An account of these results is
given in Rotman (1994), pages 156 to 162.
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Next in this section we show how to construct the automorphism group of a cyclic
group. In some cases, it is also cyclic but not always.

Theorem 4.23 AutCn � (Z/nZ)∗.

Proof Let g be a generator of Cn. A homomorphism mapping Cn to itself
will map g to some power of g, so we define, for m ∈ Z,

θm : Cn → Cn by gθm = gm.

Note that as θm is a homomorphism grθm = (gθm)r = grm for all integers r .
As gn = e we only need to consider m in the range 0 ≤ m < n, and we can
also exclude the case m = 0 because θ0 is clearly not an automorphism un-
less n = 1. For 0 < m < n, if θm is surjective, then it is an automorphism—
a surjective map on a finite set to itself is also injective; Problem A.5. Also
(m,n) = 1 if and only if m is congruent modulo n to an element of (Z/nZ)∗.

Now if (m,n) = 1, then using the Euclidean Algorithm (Appendix B), in-
tegers r and s can be found to satisfy rm + sn = 1. Hence, as θm is a homo-
morphism,

grθm = grm = g1−sn = g,

as gn = e. This shows that grt θm = gt for t = 1, . . . , n, hence θm is surjective.
Conversely, if θm is surjective, then g = guθm = gum, for some u ∈ {1, . . . , n}.
This implies that g1−um = e and so 1 − um is a multiple of n. This can
only happen if (m,n) = 1. Therefore, θm is an automorphism if and only
if (m,n) = 1. Hence the map θm �→ m for m ∈ (Z/nZ)∗ gives the required
isomorphism. �

The groups (Z/nZ)∗ are Abelian, in Chapter 7 we shall show that they can be
expressed as ‘direct products’ of cyclic groups. Also using the theory of primitive
roots, a topic from number theory discussed briefly in Appendix B, we have

The group (Z/nZ)∗ is cyclic if and only if n = 2,4,ps , or 2ps where p

is an odd prime and s is a positive integer, and their orders are as follows:
o((Z/2Z)∗) = 1, o((Z/4Z)∗) = 2, and o((Z/ps

Z)∗) = o((Z/2ps
Z)∗) =

ps−1(p − 1).

So in particular, the automorphism group of Cps where p is an odd prime and s is
a positive integer is itself cyclic and has order ps−1(p − 1); a result due to Gauss.
Further automorphism results are given in Problem 4.18, for elementary Abelian
groups, and in Problems 6.18 and 7.10.

Overleaf we end this section with an extended example which illustrates some
of the methods used to construct automorphism groups, it also provides some more
examples of isomorphisms.
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Example Show that AutD4 � D4 (also see Problem 4.19).
Let the dihedral group D4 be given by 〈a, b | a4 = b2 = e, bab = a3〉. Note first

that an automorphism maps an element of order k to an element of order k (this
follows from Problem 4.5(i) and Lemma 4.4(iv)). Also D4 has exactly two elements
of order 4, that is a and a3, and so automorphisms either map a �→ a and a3 �→ a3,
or map a �→ a3 and a3 �→ a. In either case, a2 �→ a2, and so a2 is fixed by all
automorphisms. Secondly, note that b, ab, a2b and a3b all have order two and so
an automorphism could map b to b, or to ab, or to a2b, or to a3b. This suggests
defining φ and ψ by

φ : a �→ a and b �→ ab,

ψ : a �→ a3 and b �→ b.

These give

akφ = ak, akbφ = ak+1b, and akblψ = a3kbl,

where k is to be read modulo 4, and l modulo 2. It is now an easy exercise to check
that both φ and ψ are automorphisms, the reader should do this.

The remaining automorphisms can be generated using φ and ψ . Clearly, ψ2 = ι,
the identity map (automorphism). Also bφ2 = (bφ)φ = abφ = aφbφ = a2b, and
similarly bφ3 = a3b and bφ4 = b, and so φ4 = ψ2 = ι. For the remaining condition,
we have

aψφψ = (a3φ)ψ = a3ψ = (aψ)3 = a9 = a = aφ3,

bψφψ = (bφ)ψ = abψ = aψbψ = a3b = bφ3.

This shows that ψφψ = φ3. No other automorphisms are possible, see the com-
ments in the paragraph above, and so the result follows.

Unlike both S3 and S4 (Problems 4.19(i) and 8.5), D4 has both inner and outer
automorphisms, see Corollary 5.27. As a−1aa = a and a−1ba = a2b, we see that
the automorphism φ2 corresponds to conjugation by a, and as bab = a3 and b3 = b,
the automorphism ψ corresponds to conjugation by b. But φ has no such corre-
spondence, and so forms an outer automorphism. By Lemma 4.22(ii), the set of
inner automorphisms forms a normal subgroup of AutD4 which is isomorphic to
the 4-group T2 (page 19) in this case because (φ2)2 = ψ2 = ι and φ2ψ = ψφ2. The
four outer automorphisms are φ,φ3, φψ and φ3ψ .

4.5 Problems

Problem 4.1 Show that the following maps are homomorphisms.

(i) The maps (a), (b), (c), and (d) given on pages 69 and 70.
(ii) The trivial map (Definition 4.2).
(iii) The sgn map from Sn to C2 (Definition 3.7 on page 47).
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(iv) The determinant map from GL2(F ) to F ∗ where F is a field (page 68).
(v) The projection map from R

2 to R given by (x, y) �→ x.

Problem 4.2 Show that the following pairs of groups are isomorphic.

(i) GL2(2) and S3, see Problem 2.20.
(ii) Let F be a field. The first group is F ∗, the multiplicative group of F , and

the second group has underlying set F1 = F\{1} and the operation ∗ where
a ∗ b = a + b − ab for a, b ∈ F1. First, you will need to show that (F1,∗) is a
group.

(iii) Q
+ and the additive group of all polynomials in the variable x with integer

coefficients. (Hint. Use Unique Factorisation (Theorem B.6).)

Problem 4.3 (i) to (iv) Give proofs of the four parts of Lemma 4.4.
(v) Suppose G is a group and X is a set. Given a bijection θ : G → X, construct

an operation on X so that θ becomes an isomorphism of G to the group formed by
X with this operation. Show also that this operation is unique.

Problem 4.4 An exercise working with cosets. Let G = SL2(3).

(i) Find Z(G) and show that it has order 2.
(ii) Write out a list of representatives of the cosets of Z(G) in G.
(iii) Show that if E is a coset of Z(G) in G and E �= Z(G), then either E2 = Z(G)

or E3 = Z(G), where Ek is defined using the coset product. Count the number
of solutions in each case.

(iv) Use (iii) and Problem 3.10 to show that G/Z(G) � A4, that is, SL2(3) can be
treated as an extension (Definition 9.9) of C2 by A4.

A similar argument can be used to show that the general linear group GL2(3) is an
extension of C2 by S4.

Problem � 4.5 (i) Suppose φ : G → G satisfies gφ = g−1 for all g ∈ G. Show that
φ is a homomorphism if and only if G is Abelian.

(ii) Let G be a finite group and let θ : G → G be an automorphism. Further
suppose (a) if g ∈ G and gθ = g, then g = e, and (b) θ2 is the identity map ι on G.
Use these to show that gθ = g−1 for all g ∈ G, and so deduce that G is Abelian.
(Hint. First show that {a−1 · aθ : a ∈ G} = G.)

Problem � 4.6 (Abelian Factor Groups and the Derived Subgroup) Before tackling
this problem the reader should revisit Problem 2.16 which gives the basic properties
of the derived subgroup.

(i) Show that every factor group of an Abelian group is Abelian.
(ii) Prove that if K � G, then

G/K is Abelian if and only if G′ ≤ K,
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where G′ denotes the derived (or commutator) subgroup of G. This is an im-
portant fact we use many times.

(iii) Use (ii) to show that S′
n = An.

(iv)� Suppose H1,H2 ≤ G, H2 � H1 and J � G. Show that JH2 � JH1, and
JH1/JH2 is Abelian if H1/H2 is Abelian.

Problem 4.7 Suppose K � G and o(G/K) = n < ∞.

(i) Show that if g ∈ G, then gn ∈ K .
(ii) Suppose (m,n) = 1, g ∈ G and gm ∈ K , prove that g ∈ K .

Problem 4.8 (Perfect Groups) A group G is called perfect if it equals its derived
subgroup, that is, if G = G′. Show that

(i) An equivalent definition is: No non-neutral factor group is Abelian.
(ii) If H ≤ G and H is perfect, then H ≤ G′.

Problem � 4.9 Let θ : G → H be a homomorphism. Prove the following:

(i) If a ∈ G, then (an)θ = (aθ)n, for all n ∈ Z.
(ii) If K � G, K ⊆ ker θ and, for a ∈ G, θ ′ : G/K → H is defined by

(aK)θ ′ = aθ,

then θ ′ is a homomorphism. You need to show that θ ′ is well-defined.
(iii) If j1, j2 ∈ G, then [j1, j2]θ = [j1θ, j2θ ].

Problem 4.10 Suppose G is a finite group with the property

(ab)n = anbn,

for all a, b ∈ G where n is some fixed integer larger than 1.

(i) Let

Gn = {
a ∈ G : an = e

}
and Gn = {

cn : c ∈ G
}
.

Using a suitably chosen homomorphism show that both Gn and Gn are normal
subgroups of G, and deduce o(Gn) = [G : Gn].

(ii) Show that (a) if n = 2 then G is Abelian, and (b)� if n = 3 and 3 � o(G), then G

is again Abelian.

More is known, see Alperin (1969).

Problem � 4.11 Let G be a finite group with a normal subgroup K satisfying
(
o(K), [G : K]) = 1.

Using the Isomorphism Theorems show that K is the unique subgroup of G with
order o(K) by considering what happens to another such subgroup K1 in G/K ; see
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Theorem 6.10. If π denotes the set of prime factors of o(K), then K is called the
π -radical of G, see Section 10.2, it is usually denoted by Oπ(G).

Problem 4.12 Suppose K1, . . . ,Kn are normal subgroups of G. Let L =
G/K1 × · · · × G/Kn, the direct product of G/K1, . . . ,G/Kn; see Section 7.1. (We
can treat L as the group of ordered n-tuples {g1K1, . . . , gnKn} for gi ∈ G with
component-wise multiplication.) Define a map θ : G → L by

gθ = (gK1, . . . , gKn) for g ∈ G.

Show that θ is a homomorphism, and deduce G/
⋂n

i=1 Ki is isomorphic to a sub-
group of L.

Problem � 4.13 (i) Give proofs of the second and third parts of the Correspondence
Theorem 4.16.

(ii) Suppose K � G. Prove the following extension of the Correspondence The-
orem: G/K is simple if and only if K is a maximal normal subgroup of G; that is,
K is a proper normal subgroup of G, and no other normal subgroup J of G exists
which satisfies K < J < G.

(iii) Suppose G is finite and not cyclic of prime order, and H is a maximal sub-
group. Show that if H is also normal, then [G : H ] is prime, and give an example to
show that normality is needed.

Problem 4.14 (Coset Enlargement) (i) Suppose J and K are normal subgroups
of G, and J ≤ K . Let ξ : G/J → G/K be defined by (aJ )ξ = aK for a ∈ G. Show
that ξ is a well-defined surjective homomorphism with kernel K/J . The map ξ is
called the enlargement of cosets map.

(ii) Use (i) to reprove the Third Isomorphism Theorem (Theorem 4.17).

Problem 4.15 Let G be a finite Abelian group.

(i) If p | o(G), show how to find an element g ∈ G of order p. (Hint. Write
o(G) = pn and use induction on n.) A second proof of this result is given
in Theorem 6.2.

(ii) If o(G) = mn, (m,n) = 1, H,J ≤ G, o(H) = m, o(J ) = n and both H and J

are cyclic, show that G is also cyclic.
(iii) Give an example to show that the statement in (ii) is false if G is not Abelian.

Problem � 4.16 (Properties of the Centre) Derive the following properties of the
centre Z(G) of a group G. Note that by Problem 2.14(ii) a subgroup of Z(G) is
normal in G. Suppose K � G throughout.

(i) Construct an example to illustrate the following fact: There exists at least
one group G with proper subgroups H and J which have the properties:
〈e〉 < H < J < G, Z(H) = Z(G) = 〈e〉 and Z(J ) �= 〈e〉. One example uses
symmetric groups.

(ii) If G is not Abelian, then G/Z(G) is not cyclic—a useful fact.
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(iii) If o(K) = 2 then K ≤ Z(G).
(iv) If θ : G → J is a surjective homomorphism and H ≤ Z(G), then Hθ ≤ Z(J ).
(v) Show that if H is an Abelian subgroup of G, then HZ(G) is also an Abelian

subgroup of G.
(vi) Z(K) � G; does it follow that Z(K) ≤ Z(G) (see Problem 4.22)?
(vii) If K ≤ J ≤ G, then [J,G] ≤ K if and only if J/K ≤ Z(G/K).
(viii) Finally, show that

Z(G)

Z(G) ∩ K
≤ Z

(
G

K

)
.

Problem 4.17 Suppose F is a field and G is a finite group. Show that G is iso-
morphic to a subgroup of the general linear group GLn(F ), for some n not larger
than o(G), using the following method. Let U denote the collection of all expres-
sions of the form z = ∑

g∈G mgg where mg ∈ F . Apply component-wise addition
and scalar multiplication to show that U forms a vector space over F . Secondly, for
h ∈ G define a map θh : U → U by

zθh =
∑

g∈G
mggh.

Show that θh defines an invertible linear map on U , and the collection of these
maps forms a group isomorphic to GLn(F ) where n is the dimension of the vec-
tor space U . This result can of treated as a ‘matrix version’ of Cayley’s Theorem
(Theorem 4.7), note that there is no restriction on the choice of field F .

Problem � 4.18 (Elementary Abelian Groups) An Abelian group all of whose non-
neutral elements have order p, for some fixed prime p, is called an elementary
Abelian group (or sometimes an elementary Abelian p-group; see Chapter 6).

(i) Let F denote the field Z/pZ (page 18), and let G be an elementary Abelian
p-group. On G define an ‘addition’ ⊕ by x ⊕ y = xy, for x, y ∈ G, and a
‘scalar multiplication’ expressed using concatenation by cx = xc, for c ∈ F

and x ∈ G. Prove that G with these new operations forms a vector space
over F . We denote it by G .

(ii) Show that the subgroups of G correspond to the subspaces of G .
(iii) If G is finite, then G will have a finite basis and finite dimension m, say. (This

can be proved using some basic linear algebra, or it follows from Theorem 6.3.)
Show that the automorphisms of G correspond to the linear maps on G ; and so
deduce that

AutG � GLm(p).

In Problem 7.14, we shall show that G is a direct product of m copies of Z/pZ, this
will provide another proof of the result given in (i).
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Problem 4.19 (i) Find the automorphism groups of the following groups: (a) Z,
(b) the 4-group T2, (c) S3, (d) C4, and (e) Cpn where p is an odd prime and n is a
positive integer.

(ii) Is Aut(D8) � D8?
(iii) Suppose o(G) < ∞. Show that Aut(G) = 〈e〉 if and only if o(G) ≤ 2. (Hint.

Show that the map defined by a �→ a−1 is an automorphism of an Abelian group.)

Problem 4.20 (i) Let the map ψ : S6 → S6 satisfy:

(1,2)ψ = (1,5)(2,3)(4,6),

(1,3)ψ = (1,4)(2,6)(3,5),

(1,4)ψ = (1,3)(2,4)(5,6),

(1,5)ψ = (1,2)(3,6)(4,5),

(1,6)ψ = (1,6)(2,5)(3,4).

Beginning with Problem 3.1(i), this can be extended to an automorphism of S6;
you are not asked to prove this but you could consider what is needed. Using this
fact show that ψ2 equals the identity map on S6, and so provides an example of an
outer automorphism of this group. For more details, see Rotman (1994), pages 156
to 167.

It can be shown that AutSn � Sn provided n �= 2 or 6. When n = 2 use (iii) in
Problem 4.18. But it is a fact that S6 is the only non-Abelian symmetric group which
has an outer automorphism; see page 82.

(ii) Use (i) and Problem 3.21� to show that S6 has 12 subgroups isomorphic to
S5, note that six of them possess no 2-cycles and act transitively on six points. One
member of this second set of six subgroups can be constructed as follows: Let H

be the group generated by (1, i + 1)ψ for i = 1,2,3,4, then choose four (of ten)
products of three 2-cycles in H which satisfy the conditions of Problem 3.21� with
n = 4.

Problem 4.21 The outer automorphism group for the group A5 is isomorphic to C2.
Find an outer automorphism for A5, and consider what would be needed to establish
the previous statement. (Hint. Use Theorem 3.6.)

Problem � 4.22 (Project—Characteristic Subgroups) In this project, you are asked
to develop the notion of characteristic subgroup which is similar to, but stronger
than, normality. A subgroup H of a group G is said to be characteristic in
G if Hφ ≤ H for all φ ∈ AutG; this is denoted H char G. (Note that Hφ =
{hφ : h ∈ H }.) Prove the following statements.

(i) It is sufficient to require Hφ = H .
(ii) Normality is equivalent to: Hν ≤ H for all inner automorphisms ν : G → G.
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(iii) Unlike normality, the characteristic relation is transitive.
(iv) If J char K and K � G, then J � G, but does this proposition also follow if

J � K and K char G?
(v) A subgroup of a cyclic group is characteristic.
(vi) Z(G) char G; we say “the centre of a group is a characteristic subgroup

of G”.
(vii) The derived subgroup G′ of G is a characteristic subgroup of G.
(viii) Give an example of a normal subgroup which is not characteristic.



Chapter 5
Action and the Orbit–Stabiliser Theorem

There is only a small intersection (mainly involving examples) between the material
in this chapter and the next, with that in Chapter 7. Hence Chapter 7, which contains
work on direct products and Abelian groups, can be read first.

In the last chapter, we introduced homomorphisms, they are maps that transfer
properties from one group to another, and they satisfy the homomorphism equa-
tion (4.1). Here, given a set X we introduce new collections of maps that transform
X to itself and which are governed by a group G; that is, for each g ∈ G we de-
fine a map \g : X → X, and map composition ‘corresponds’ to the group operation.
The map \g is a permutation of X and it is called an action of G on X. In many
cases, X is closely related to G, but not always. It is also possible to define an ac-
tion using homomorphisms; see Theorem 5.12. In one sense, this important notion
has been part of the theory since its inception, but only in particular instances. If
you look for the word ‘action’ in Scott’s group theory text published in 1964—the
standard introduction to the theory at that time—you will not find it. But you will
find many entities now associated with actions, for example, ‘centraliser’ and ‘nor-
maliser’. About this time, and due in part to the work of Wielandt (1964), it was
realised that a number of constructions have a similar basis, and emphasising their
similarity would give new insights into the theory. Also at around this time, elegant
proofs of some major theorems based on new and easily defined actions appeared;
for instance, McKay’s proof of Cauchy’s Theorem (Theorem 6.2) or the main proof
of the First Sylow Theorem (Theorem 6.7) both given in the next chapter. Nowadays
actions form an important part to any introduction to group theory.

We begin this chapter by defining actions and two major associated entities: or-
bits and stabilisers. We then prove the Orbit–Stabiliser Theorem which leads to
a number of important applications. Three major examples follow that introduce
centralisers and normalisers, vital entities especially for the finite theory. In Web
Section 5.4, we extend our work on permutations begun in Chapter 3, discuss
transitive and primitive permutations, and prove Iwasawa’s simplicity lemma, this
work has applications in Chapter 12.

H.E. Rose, A Course on Finite Groups,
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DOI 10.1007/978-1-84882-889-6_5, © Springer-Verlag London Limited 2009
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5.1 Actions

We begin by considering an example. Let G be the group (Z/7Z)∗, and let X =
{1,2,3,4,5,6}. In this particular example, the set X and the group G have the same
elements, and so we have underlined these elements when they are being treated
as members of X. Consider the (right) multiplication of an element x of X by an
element g of G, that is, x · g. Later we shall write this as x\g. We have

x · e = x,

that is, the (right) multiplication of elements of X by e does not alter X. Also, by
associativity we have

x · (gh) = (x · g) · h,

where g,h ∈ G, that is, applying gh to x is the same as first applying g to x, and
then applying h to the result. We call this procedure an action of G on X, see
Definition 5.1 below. Further, as 4 ∈ G we have

1 · 4 = 4, 2 · 4 = 1, 3 · 4 = 5, 4 · 4 = 2, 5 · 4 = 6 and 6 · 4 = 3,

that is, the set X has been permuted by this procedure. There is nothing special
about ‘4’, the calculation works for all elements of G; the reader should try one.
This procedure gives a map from the group G to the set SX of all permutations
of X, where X is the underlying set of G; see Theorem 5.2 below. The term G-set
is sometimes used for the set X (that is, when G is acting on X), we will not use
this notation because in some cases X and G are unrelated.

With the example above in mind we begin by stating the basic

Definition 5.1 Given a non-empty set X and a group G, we say G acts on X if, for
each g ∈ G, there exists a map \g : X → X, and these maps satisfy

(i) x\e = x,

(ii) x\(gh) = (x\g)\h,
(5.1)

for all x ∈ X and g,h ∈ G. We call the map \g an instance of the action of the group
G on the set X.

Notes (a) By (5.1), the group operation ‘corresponds’ to composition of actions,
that is, the map \gh is defined to equal \g ◦ \h.

(b) We usually follow the convention that groups and elements of groups are
denoted by letters at the beginning of the alphabet, and sets and elements of sets are
denoted by letters at the end of the alphabet.

(c) More formally, we can rewrite Definition 5.1 as follows: The function \ that
maps the set of pairs X ×G to X, and which satisfies the two parts of (5.1), is called
an action of G on X, see Theorem 5.12.

(d) The action defined above is a ‘right action’; we could also define a left action
but as we write functions on the right, we shall only consider the former.
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(e) Many authors use either xg, or sometimes xg , for x\g. Both concatenation
and the exponential notation are used widely in many contexts, so for the sake of
clarity, it seems preferable to use a new symbol, those readers used to the old con-
catenation notation can simply ignore the backslash. Personally, the author finds the
exponential notation particularly confusing. Also we use the concatenation notation
xg for the particular action called the natural action (Example (a) below), and so we
need a distinct notation for the general case. In a recently published book by Isaacs
(2008), the author uses x • g for our x\g.

We shall give some examples below, but first we prove the following basic result.

Theorem 5.2 Using the notation set out above, the map \g : X → X is a permuta-
tion (bijection) of the set X.

Proof Suppose x, y ∈ X and x\g = y\g. Then by (5.1) we have

x = x\e = x\(gg−1) = (x\g)\g−1 = (y\g)\g−1 = y\(gg−1) = y,

that is, the map \g is injective. Secondly, suppose z ∈ X then, for g ∈ G,

z = z\e = z\(g−1g
) = (

z\g−1)\g,

that is, z\g−1 is a preimage of z under the map \g. Hence this map is also
surjective, and so it is a permutation of X. �

Examples We give four here, three more extended examples will be discussed in the
next section; see also the proofs of Cauchy’s and the First Sylow Theorems given in
Chapter 6.

(a) Let G be a group and let X be the underlying set of G. The group G acts on X

by right multiplication if we define, for g ∈ G and x ∈ X,

x\g = xg,

see the example given at the beginning of this section. This clearly satisfies the
conditions (5.1), and the corresponding action is called the natural action on G.

(b) Let V be a vector space defined over a field F . The multiplicative group F ∗ of
F acts on V by scalar multiplication, for if a, b ∈ F ∗ and v ∈ V , the standard
vector space axioms give

v\1 = v1 = v and v\(ab) = v(ab) = (va)b = (v\a)\b.

(c) Let G = 〈e〉 and X be an arbitrary set, then G acts on X if we define x\e to
equal x for all x ∈ X.

(d) Let G = Sn and let X = {1, . . . , n}, then if we define x\σ = xσ for σ ∈ G and
x ∈ X, we obtain a new action called the permutation action; see Theorem 5.2.
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There are two important entities associated with an action which govern its basic
properties. They are orbits and stabilisers, we introduce orbits first. Let the group
G act on the set X. Define a relation ∼ on X by: If x, y ∈ X, then

x ∼ y if and only if x\g = y for some g ∈ G.

To put this informally, x is related to y if we can ‘get from x to y’ by using an
element of G.

Lemma 5.3 The relation ∼ defined above is an equivalence relation.

Proof We have x ∼ x as x\e = x. Secondly, suppose x ∼ y, that is, x\g = y

for some g ∈ G. Then

y\g−1 = (x\g)\g−1 = x\(gg−1) = x\e = x,

and so y ∼ x. Finally, suppose we also have y ∼ z with y\h = z for some
h ∈ G. Then x\(gh) = (x\g)\h = y\h = z, that is, x ∼ z. �

Definition 5.4 (i) An equivalence class of the equivalence relation ∼ given in
Lemma 5.3 above is called an orbit of the action of G on X. The orbit contain-
ing the element x ∈ X is called the orbit of x, and it is denoted by OG{x}, or O{x}
when it is clear which group G is being used.

(ii) An action of G on X is called transitive if there is only one orbit, that is,
X itself, otherwise it is called intransitive.

By Lemma 5.3, X is a disjoint union of its orbits (Appendix A). The orbit of
x ∈ X, O{x}, is the subset of X of those elements that we can ‘get to’ starting
with x and applying elements of G (that is, by applying the maps associated with
the elements of G), so an action is transitive if we can ‘get from’ every member
of X to every other member of X by applying elements of G. For instance, the
action in Example (d) opposite is transitive because Sn contains all 2-cycles—if
y, z ∈ X, then the 2-cycle (y, z) belongs to Sn and this 2-cycle maps y to z. But
if in this example we change the group to 〈(1,2)〉 	 C2, then the action would not
be transitive if n > 2 because, for instance, no element of this group maps 1 to 3.
Also, if we replace X by X1 = {1, . . . , n, n + 1}, the action of Sn on X1 would
again be intransitive because no permutation in Sn maps 1 to n + 1. An extension
of transitivity is as follows. An action of G on X is called k-transitive if for all
pairs of k-element subsets Y and Z of X, there exists an element g ∈ G such that
\g is a bijection between Y and Z. For example, the action given in Example (d) is
k-transitive if k ≤ n. See Web Section 5.4 and Section 12.4.

We have defined both orbits and cycles (Definition 3.3), the notion of an orbit in
a general group is related to the notion of a cycle in a symmetric group. If n > 1 and
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σ ∈ Sn then, by Theorem 3.4, σ can be expressed as a (disjoint) product of cycles

σ = (a1, . . . , aj )(b1, . . . , bk) · · ·

where j + k +· · · = n. Let H = 〈σ 〉, the cyclic subgroup of Sn generated by σ , then
H acts on X = {1, . . . , n} by setting x\h = xh for h ∈ H and x ∈ X. Here h has the
form σ t for some t ∈ Z, and so the orbit of a1, say, is {a1σ

t : t = 0,1,2, . . .} which
is exactly the cycle (in σ ) containing a1. Hence in this particular example, orbits
and cycles coincide.

Our second new entity is the stabiliser which we introduce by

Definition 5.5 Given a group G acting on a set X (Definition 5.1), and x ∈ X, the
subset of G,

{
g ∈ G : x\g = x

}
,

is called the stabiliser of x in G; it is denoted by stabG(x).

The stabiliser of x is the subset (subgroup, see Lemma 5.6) of G of those elements
whose associated maps ‘do not move’ x. For instance, if we let x = 1 in Example
(d) on page 93, then the stabiliser of 1 is the set of all permutations in Sn which
leave the element 1 fixed. This is clearly a subgroup of Sn isomorphic to Sn−1, and
is an instance of

Lemma 5.6 Using the notation set out in Definition 5.5, for x ∈ X,

stabG(x) ≤ G.

Proof Clearly, e ∈ stabG(x) as x\e = x by (5.1). If g,h ∈ stabG(x), then
x\g = x = x\h and, by (5.1) again, we have

x\(gh−1) = (x\g)\h−1 = (x\h)\h−1 = x.

This shows that gh−1 ∈ stabG(x), now use Theorem 2.13. �

We come now to the Orbit–Stabiliser Theorem, the main result in this chapter. It
has a number of applications and, considering its importance, it is remarkably easy
to prove.

Theorem 5.7 (Orbit–Stabiliser Theorem) If G acts on a set X, x ∈ X, and OG{x}
is the orbit of x, then

o
(

OG{x}) = [
G : stabG(x)

]
.
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Proof Note first stabG(x) ≤ G by Lemma 5.6. We define a map γ from
OG{x} to the set of right cosets of stabG(x) in G, and the theorem follows
by showing that this map is a bijection. The map γ is given by

(x\g)γ = (
stabG(x)

)
g,

where g ∈ G, and so x\g ∈ OG{x}. First, we show that this map is well-
defined. Suppose x\g = x\h, then as in the proof above we have

x\(gh−1) = (x\g)\h−1 = (x\h)\h−1 = x\e = x

by (5.1), that is, gh−1 ∈ stabG(x). By Lemma 2.22, this gives (stabG(x))g =
(stabG(x))h, as required. Second, note that γ is clearly surjective, for if g ∈ G,
then one preimage of (stabG(x))g is x\g. Last, we show that it is injective.
Suppose

(
stabG(x)

)
g = (

stabG(x)
)
h,

then, as above, this shows gh−1 ∈ stabG(x), and so x\(gh−1) = x. Hence

x\h = (
x\gh−1)\h = x\(gh−1h

) = x\g,

that is, γ is injective. The theorem now follows. �

Referring back to Example (d) on page 93, let x = n. The orbit of n is {1, . . . , n}
(as the action is transitive), and so o(O{n}) = n. We noted above that stabSn(n) 	
Sn−1. Hence we have by the Orbit–Stabiliser Theorem, and as o(Sn) = n!,

o
(

O{n}) = n = [Sn : Sn−1] = [
Sn : stabSn(1)

]
.

This is a easy example but it does provide an illustration of the theorem ‘at work’.
As a second application of this theorem we prove the following useful result.

Another proof was given in Problem 2.27. Note that if H and J are both non-normal
subgroups of G, then HJ is not a subgroup of G, see the example below. But if
either H or J is normal, then HJ is a subgroup (Theorem 2.30) and the result
follows using the Second Isomorphism and Lagrange’s Theorems.

Theorem 5.8 If G is a finite group and H,J ≤ G, then

o(HJ)o(H ∩ J ) = o(H)o(J ).

Proof We define an action. Let X = {Hg : g ∈ G}, the set of right cosets of
H in G. The subgroup J acts on X by right multiplication if we set

Hg\j = Hgj for j ∈ J.

This is an action since Hg\e = Hge = Hg and Hg\j1j2 = Hgj1j2 =
(Hgj1)\j2 = (Hg\j1)\j2. The orbit O{H } of H is {H\j : j ∈ J }, and this
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equals HJ , and so o(HJ) = o(H) × o(O{H }). (Note that HJ is a disjoint
(by Lemma 2.23) union of right cosets of H , and the orbit of H under this
action is the union of those cosets of H we can ‘get to’ starting with H it-
self and applying elements j in J .) Further, the stabiliser of H , stabJ (H),
equals {j ∈ J : Hj = H }, and so stabJ (H) = H ∩ J (as Hj = H if and only
if j ∈ H ). Hence, using the equation for o(HJ) above, the Orbit–Stabiliser
Theorem gives

o(HJ)

o(H)
= o

(
O{H }) = [

J : stabJ (H)
] = o(J )

o(H ∩ J )
,

using the equation for stabJ (H) and Lagrange’s Theorem (Theorem 2.27) for
the last identity, the result follows. �

Example Suppose G = D3 	 〈a, b | a3 = b2 = e, a2b = ba〉, H = 〈b〉 ≤ G and
J = 〈ab〉 ≤ G. Then o(H) = o(J ) = 2, H ∩ J = 〈e〉, and so o(HJ) = 4, by Theo-
rem 5.8. Clearly, HJ is not a subgroup of G (as 4 � 6, also neither H nor J is nor-
mal), but it is a union of two cosets. For as ab = ba2, we have Hab = Hba2 = Ha2

and so HJ = H ∪ Ha2. Note that we also have HJ = J ∪ bJ .

We have shown (Theorem 5.2) that an action of a group G on a set X is a col-
lection of permutations of X; that is, the action provides a map from G to SX . We
shall develop this further.

Definition 5.9 Let the group G act on the set X. The map ν : G → SX given by

gν = \g, for all g ∈ G,

is called the permutation representation of G for this action.

Lemma 5.10 The map ν given by Definition 5.9 is a homomorphism.

Proof For all g,h ∈ G and x ∈ X, we have by (5.1),

x\(gh) = (x\g)\h = x(\g ◦ \h)

by the definition of composition (◦) of functions. The lemma follows as this
holds for all x ∈ X. �

This leads to the following useful

Theorem 5.11 Let G act on X with permutation representation ν as defined above,
then

kerν =
⋂

x∈X
stabG(x).
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Proof This is an immediate consequence of the definitions. As ν is a homo-
morphism (Lemma 5.10), its kernel is the set of those g ∈ G for which \g is
the identity permutation in SX , that is, x\g = x for all x ∈ X. But stabG(x) is
the set of those g ∈ G for which x\g = x, hence

⋂
x∈X stabG(x) is the set of

those g ∈ G for which x\g = x for all x ∈ X; that is, the kernel of ν. �

Referring again to Example (d) on page 93, if k ∈ {1, . . . , n}, then stabSn(k) is
the set of all permutations which fix k. Hence the intersection of these stabilisers
for k = 1, . . . , n, is 〈e〉, and so the kernel of the permutation representation in this
case is the neutral subgroup. This reflects the fact that Sn has very few normal sub-
groups.

The converse of the last result is also valid as we show now. It can be used as an
alternative definition of the action of a group G on a set X.

Theorem 5.12 Suppose σ : G → SX is a homomorphism of G to the group of all
permutations on the set X. The map defined by \g = gσ , for all g ∈ G, is an action
of G on X, and the permutation representation of this action is identical to σ .

Proof For x ∈ X, we have x(eσ ) = x (as eσ is the identity permutation
ι on X) and, by composition of maps and as σ is a homomorphism,

(
x(gσ)

)
(hσ ) = x(gσ ◦ hσ) = x

(
(gh)σ

)
.

Hence, if we define

x\g = x(gσ),

for all g ∈ G and x ∈ X, these equations show that \g is an action of G on
X. Let ν be the permutation representation of this action, that is, for g ∈ G

and x ∈ X, x\g = x(gν). Combining these facts gives x(gν) = x(gσ) for all
x ∈ X, hence gν = gσ for all g ∈ G, which shows that ν = σ . �

Restricted Actions

Here we ask: What is the relationship of stabH (x) to stabG(x) when H ≤ G? To
answer this question we first need to consider the subset of those elements which
are fixed by an action.

Definition 5.13 Let G act on the set X. We set

fix(G,X) = {
x ∈ X : x\g = x for all g ∈ G

};

it is called the fixed set of X under the action of G.
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Note that fix(G,X) is a subset of X, and so it is not a group; for example, it is empty
when the action is transitive, also we have the equivalent definitions

fix(G,X) = {
x ∈ X : O{x} = {x}} = {

x ∈ X : stabG(x) = G
}
. (5.2)

If G and X are given by the first example in this chapter (page 92), then
fix(G,X) = ∅, but if we change X to X′ = {1, . . . ,7}, then fix(G,X′) = {7}.

Let G act on a set X and let H ≤ G, we say H acts on X by restriction of the
action of G on X if we ignore those maps \g in the action of G on X where g �∈ H ,
and only consider those maps \h where h ∈ H . This is clearly an action because H

is a (sub)group. For example, if G = Z, H = 2Z, X is the underlying set of G (the
integers) and the action of G on X is the natural one given by x\g = xg, then the
orbit of x under the action of G is the set of all integer multiples of x, whilst the
orbit of x under the restricted action (by H ) is the set of all even integer multiples
of x.

We have, for x ∈ X and H ≤ G,

stabH (x) = stabG(x) ∩ H, (5.3)

by definition of the restricted action. We also have

Lemma 5.14 If H ≤ G, G acts on X, and H acts on X by restriction of the action
of G, then

x ∈ fix(H,X) if and only if H ≤ stabG(x).

Proof We have

x ∈ fix(H,X) if and only if stabH (x) = H by (5.2)
if and only if stabG(x) ∩ H = H by (5.3)
if and only if H ≤ stabG(x),

by Problem 2.5. �

For an example, see Problem 5.3(i). One consequence of this problem is: If G is a
p-group (Section 6.1) and p � o(X), then there exists x ∈ X which is moved by no
g ∈ G, that is, fix(G,X) is not empty.

5.2 Three Important Examples

In this section we discuss three action examples, the first involves cosets, and the
second and third use conjugation of elements and subgroups, respectively. All three
introduce major new concepts and theorems which will be used widely in the fol-
lowing chapters, and as noted above all three have a long history in the theory.
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Coset Action

For the first example, choose H , a subgroup of G, and let X be the set of right cosets
of H in G. Given g ∈ G and Hx ∈ X, we define

(Hx)\g = Hxg. (5.4)

This is an action because (Hx)\e = Hxe = Hx and

(
(Hx)\g)\h = (Hxg)\h = Hxgh = (Hx)\(gh).

Further, it is a transitive action. For if Hx,Hy ∈ X, then

(Hx)\x−1y = (
(Hx)x−1)\y = Hy,

and so there is only one orbit, that is, X itself. Also

stabG(Hx) = x−1Hx

because

stabG(Hx) = {
g ∈ G : (Hx)\g = Hx

} = {
g ∈ G : Hxg = Hx

}

= {
g ∈ G : xgx−1 ∈ H

} = x−1Hx,

by Problem 2.23. Hence, using the Orbit–Stabiliser Theorem (Theorem 5.7), we
obtain

[
G : x−1Hx

] = [
G : stabG(Hx)

] = o(X) = [G : H ] (5.5)

because there is only one orbit which in this case is the set of right cosets of H in G,
this gives another proof of Problem 2.23(ii).

If νH is the permutation representation of this action, then by Theorem 5.11,

kerνH =
⋂

x∈G
x−1Hx,

see the comment below Definition 2.21. The entity on the right-hand side of this
equation is called the core of H in G, core(H) which was defined in Problem 2.24;
it is the largest normal subgroup of G contained in H . If [G : H ] = n < ∞, then
SX 	 Sn, and νH gives a homomorphism from G into Sn. Hence we have

Theorem 5.15 (i) If H < G and [G : H ] = n < ∞, then there exists an injective
homomorphism from G/core(H) = G/(

⋂
x∈G x−1Hx) into Sn.

(ii) If o(G/ core(H)) = m, then n | m and m | n!.

Proof (i) This follows immediately from Theorem 5.11 and Corollary 4.12.
(ii) Both of these properties follow from (i) and Problem 2.15(i) with J =

core(H). �
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This is a useful result, especially when n is small, for it shows that if a group
G has only a few normal subgroups, then its total number of subgroups is also
restricted.

Example Subgroups of A5. If G is simple and H < G, then
⋂

x∈G
x−1Hx = 〈e〉,

as this intersection forms a normal subgroup of G contained in H . Hence by The-
orem 5.15, there is an injective homomorphism from G to Sn, and so o(G) ≤
o(Sn) = n!. Therefore, if o(G) > n!, G does not contain a subgroup (normal or
not) of index n. For instance, consider G = A5 with order 60. Suppose H < A5,
and [A5 : H ] = n. As n! ≥ 60 only if n > 4, the theorem shows that A5 cannot have
a subgroup of index 2, 3 or 4, so it cannot contain a subgroup of order 30, 20 or 15.
In this case, we say that A5 is not reverse Lagrange. It does contain a number of
subgroups of order 12 (with index 5). The group A4 is also not reverse Lagrange,
reader why?

We give an application of Theorem 5.15 here, more will follow later.

Theorem 5.16 If G is an infinite group, H ≤ G, and [G : H ] < ∞, then G contains
a normal subgroup K which satisfies K ≤ H and G/K is finite.

Proof Take K = ⋂
g∈G g−1Hg in Theorem 5.15 and use Problem 2.23. The

factor group G/K is finite because this theorem gives an injective homomor-
phism into a finite symmetric group. �

This shows that if an infinite group has a subgroup of finite index (and so is
infinite), then it also has a normal infinite subgroup of finite index—an important
fact concerning infinite groups. This also shows that an infinite simple group has no
subgroups of finite index.

Centralisers and Class Equations

Our second extended example involves conjugation, and introduces a number of
new concepts and constructions. Let G be a group and let X be the underlying set
of G. If g, x ∈ G, then g−1xg is called the conjugate of x by g (Definition 2.28).
The group G acts on its underlying set G by conjugation if we define

x\g = g−1xg, (5.6)

for all g, x ∈ G. The operation defined by (5.6) is an action; for clearly x\e =
e−1xe = x, and we have

x\(gh) = (gh)−1xgh = h−1(g−1xg
)
h = h−1(x\g)h = (x\g)\h.
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The action (5.6) is called the conjugacy action on G, three important entities are
associated with it as follows.

Definition 5.17 Using the conjugacy action defined above, the orbit of x under this
action is called the conjugacy class of x and it is denoted by C�G{x}, that is,

C�G{x} = {
g−1xg : g ∈ G

}
.

This is, of course, the set of conjugates of x in G. When it is clear which group is
involved, we write C�{x} for C�G{x}.

Definition 5.18 The stabiliser of x in G under the conjugacy action (5.6) is called
the centraliser of x in G, it is denoted by CG(x); that is,

CG(x) = stabG(x) = {
g ∈ G : g−1xg = x

}
.

Note this is equivalent to CG(x) = {g ∈ G : xg = gx}; therefore, the centraliser of x

in G is the subgroup (Lemma 5.6) of those elements g ∈ G which commute with x.

Applying the Orbit–Stabiliser Theorem (Theorem 5.7) we have directly

Theorem 5.19 Using the conjugacy action (5.6) defined above, if x ∈ G, then

o
(

C�G{x}) = [
G : CG(x)

]
.

By Lagrange’s Theorem (Theorem 2.27), this shows that the order of a conjugacy
class of a finite group G divides the order of G. It also shows that the set of elements
that commute with a fixed element a, say, forms a subgroup. Both of these facts have
important ramifications; for the first, see Lemma 5.21 below.

The third entity associated with the conjugacy action is the centre, see Defini-
tion 2.32. If τ denotes the permutation representation of the conjugacy action de-
fined above, then the kernel, ker τ , is just the centre of the group Z(G); that is,

Z(G) = ker τ =
⋂

x∈G
CG(x).

Note also that, using Definitions 2.32 and 5.17, we have

x ∈ Z(G) if and only if C�G{x} = {x}. (5.7)

Example We construct the conjugacy classes, centralisers and centre of the dihedral
group D3. Let D3 be given by (Section 3.4)

〈
a, b | a3 = b2 = e, ba = a2b

〉
.
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We have

C�{a} = {
g−1ag : g ∈ D3

} = {
a, a2}, o

(
C�{a}) = 2,

CD3(a) = {
g ∈ D3 : ga = ag

} = {
e, a, a2} = 〈a〉, o

(
CD3(a)

) = 3,

C�{b} = {
b, ab, a2b

}
, o

(
C�{b}) = 3,

CD3(b) = {e, b} = 〈b〉, o
(
CD3(b)

) = 2.

The reader should check these statements and complete the remaining cases, they
provide applications of the Orbit–Stabiliser Theorem. Note finally that Z(D3) = 〈e〉
as CD3(a) ∩ CD3(b) = 〈e〉.

Putting these ideas together we can introduce the Class Equations by

Theorem 5.20 (Class Equations) Suppose G is a finite group, and C�G{y1}, . . . ,
C�G{yk} is a complete list of the conjugacy classes of G whose orders are larger
than 1.

(i) G = Z(G) ∪̇
⋃̇k

i=1
C�G{yi} (disjoint unions).

(ii) o(G) = o
(
Z(G)

) +
∑k

i=1
o
(

C�G{yi}
) = o

(
Z(G)

) +
∑k

i=1

[
G : CG(yi)

]
.

Proof (i) This follows immediately from Lemma 5.3 and (5.7) using Defini-
tion 5.17—G is a disjoint union of its conjugacy classes.

(ii) The first equation is given by (i) as the unions are disjoint, and the
second follows from Theorem 5.19. �

The equations in (i) and (ii) above are called the Class Equations for G. Also
the positive integer o(Z(G)) + k, that is, the number of conjugacy classes of G

including the singleton classes counted in o(Z(G)), is called the class number of G

and it is denoted by h(G). See Appendix C for some examples.
Next we give some applications of the Class Equations, more will follow later.

Lemma 5.21 If p is prime and o(G) = pn, then Z(G) �= 〈e〉.

This lemma has important implications for p-group theory; see Section 6.1.

Proof If G is Abelian there is nothing to prove, and if not, then at least one yi

exists with o(C�G{yi}) > 1. Referring to the notation given in Theorem 5.20,
we have by Theorems 5.19 and 2.27

p
∣∣ [

G : CG(yi)
]
,

for i = 1, . . . , k, as these indices are larger than 1 by definition of yi . Hence by
the second Class Equation we have p | o(Z(G)) because p | o(G) by hypoth-
esis. Now o(Z(G)) > 0 (as e ∈ Z(G)), and so this shows that o(Z(G)) ≥ p

and therefore o(Z(G)) cannot equal 1; the result follows. �



104 5 Action and the Orbit–Stabiliser Theorem

Theorem 5.22 (i) If o(G) = pn, then G is not simple, provided n > 1.
(ii) If p is prime and o(G) = p2, then G is Abelian.

If o(G) = p, then G is simple and cyclic (and so Abelian) by Theorem 2.34, and
(ii) deals with the case o(G) = p2. But there exist non-Abelian groups with order
pn for n > 2; see Section 6.1 and Problem 6.16.

Proof (i) This follows by Lemmas 2.31 and 5.21 as 〈e〉 < Z(G) � G.
(ii) Suppose G is not Abelian, then Z(G) < G. Hence, by Lagrange’s

Theorem (Theorem 2.27) o(Z(G)) = 1 or p. But, by Lemma 5.21, it cannot
equal 1, hence o(Z(G)) = p. Therefore o(G/Z(G)) = p, and so G/Z(G) is
cyclic by Theorem 2.34. As Z(G) is also cyclic in this case, Problem 4.16(ii)
now shows that G is Abelian. �

In Chapter 7, we show that if o(G) = p2, then G is cyclic or a ‘product’ of two
cyclic groups of order p, that is, elementary Abelian, see Problem 4.18.

Centralisers played a vital role in the solution of CFSG, see Chapter 12. Brauer
and Fowler (1955) showed that for a given finite group G there can only be finitely
many simple groups H which contain an involution (element of order 2) a and have
the property:

CH (a) 	 G.

In many cases, G can be taken to be quite small and only a few simple groups H

are involved, several simple groups can be characterised using this result; see the
discussion on page 265.

We can extend the notion of centraliser of subsets of a group as follows.

Definition 5.23 The centraliser CG(X) of a subset X of a group G is given by

CG(X) = {
g ∈ G : ag = ga for all a ∈ X

}
.

The basic properties are as follows; proofs are left as exercises for the reader, see
Problem 5.8. Note that as the size of X increases, the size of CG(X) decreases.

(i) If X ⊆ G then CG(X) ≤ G.
(ii) CG(G) = Z(G).
(iii) If H ≤ G then CG(H) = ⋂

h∈H CG(h).
(iv) If J ≤ H ≤ G and H ≤ CG(J ), then J ≤ Z(H).

If we refer back to the example on page 102 we see that, using (iii) above,
CD3(〈a〉) = 〈a〉, CD3(〈b〉) = 〈b〉 and CD3({a, b}) = 〈e〉 as the reader can easily
check. See also Problem 5.26.
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Normaliser

Our last extended action example also uses conjugation but now applied to sub-
groups. This will introduce the normaliser—one of the most important entities in
group theory, and one with a long history in the theory.

If H ≤ G and g ∈ G, then

g−1Hg = {
g−1hg : h ∈ H

}
,

is a subgroup of G which is called a conjugate subgroup of H in G (Problem 2.23).
Using this notion we can define an action of G on the set of all subgroups H of G

by

H\g = g−1Hg for g ∈ G. (5.8)

This is an action because H\e = e−1He = H and, for g,h ∈ G, H\gh =
(gh)−1Hgh = h−1(g−1Hg)h = (H\g)\h. The orbit of H under this action is the
set of subgroups of G which are conjugate to H in G (Problem 2.23 again), and the
stabiliser is given by

Definition 5.24 For H ≤ G, the stabiliser of H in G under the action (5.8) defined
above, that is,

stabG(H) = {
g ∈ G : g−1Hg = H

}
,

is called the normaliser of H in G, and it is denoted by NG(H).

The normaliser NG(H) clearly contains H , and it is the largest subgroup of G

in which H is normal; the reader should check this, see Problem 5.13. Note that
NG(〈e〉) = G = NG(G), so in particular it is not true in general that if H < J then
NG(H) < NG(J ). The normaliser has many uses in the theory as we shall see in the
sequel; note the similarities and differences with the centraliser. The basic properties
are given by

Lemma 5.25 Suppose H ≤ G.

(i) H � NG(H) ≤ G.
(ii) NG(H) = G if and only if H � G.
(iii) The number of conjugates of H in G equals [G : NG(H)].

Proof (i) Clearly H ≤ NG(H), as h−1Hh = H if h ∈ H ; also NG(H) ≤ G

by definition and Lemma 5.6. Theorem 2.29 gives normality.
(ii) If NG(H) = G use (i), and if H � G, then g−1Hg = H for all g ∈ G,

that is NG(H) = G.
(iii) This follows immediately from the Orbit–Stabiliser Theorem (Theo-

rem 5.7). �



106 5 Action and the Orbit–Stabiliser Theorem

Example Let G = S4 and H = 〈(1,2,3)〉 	 C3. We have

NG(H) = 〈(1,2,3), (1,2)〉 	 S3,

for (1,2)(1,2,3)(1,2) = (1,3,2), and so (1,2) ∈ NG(H), et cetera. Hence H <

NG(H) < G. Sometimes H equals NG(H) (in this case, we say H is self-
normalising), for example, when H is a maximal non-normal subgroup of G. In
other cases, H < NG(H) = G, this holds when H is a proper normal subgroup
of G.

The final pair of results in this section are easily proved and have a number of
useful applications; see Section 4.4 for the basic properties of automorphisms.

Theorem 5.26 (N/C-Theorem) Suppose H ≤ G.

(i) CG(H) � NG(H).
(ii) NG(H)/CG(H) is isomorphic to a subgroup of AutH .

The factor group NG(H)/CG(H) is called the automiser of H in G.

Proof For g ∈ G, let φg be the (inner) automorphism given by aφg = g−1ag

for a ∈ G, and define θ : NG(H) → AutH by

jθ = φj |H for j ∈ NG(H); (5.9)

that is, jθ is φj with its domain restricted to the subgroup H . Note that jθ ∈
AutH because j ∈ NG(H), as j−1hj ∈ H for h ∈ H , and φ|H is defined by
conjugation. Also θ is a homomorphism (as the reader can check). Now

a ∈ ker θ if and only if φa|H is the identity map on H,

if and only if h−1ah = a for all h ∈ H,

if and only if a ∈ CG(H),

using Definition 5.23. Hence ker θ = CG(H), (i) follows by Lemma 4.6, and
(ii) follows by Corollary 4.12. �

Example For this example, the reader will need to refer to Section 8.2 where the
group SL2(3) is discussed; we show here that this group has a factor group iso-
morphic to A4; see Problem 3.10. Let G = SL2(3) and H = 〈( 2 2

2 1

)
,
( 1 2

2 2

)〉 	 Q2.

We have H � G, and so NG(H) = G, CG(H) = Z(G) 	 C2, and AutH 	 S4

(Problem 6.18). In this case, the N/C-theorem gives G/Z(G) � AutH 	 S4. But
o(G/Z(G)) = 12, and we have G/Z(G) 	 A4 because the only subgroup of S4 of
order 12 is A4 (Problem 3.3(vii)).
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The last result in this chapter provides an essential first step in the construction
of the automorphism group of a group.

Corollary 5.27 G/Z(G) 	 InnG.

Proof Put H = G in Theorem 5.26. We have NG(G) = G (as the normaliser
of a subgroup always contains that subgroup), CG(G) = Z(G) (see (ii) on
page 104), and θ ∈ InnG using (5.9) with H = G. Note also that the map θ

given in (5.9) is surjective in this case. �

For example, this corollary shows that InnS4 	 S4 as this group is centreless. In
fact, we have AutS4 	 S4, but this is harder to prove, see Problem 8.5. Some further
applications are given in Chapter 8, and in the example at the end of Section 4.4.

5.3 Problems

Problem 5.1 (i) Suppose G ≤ S4 and G acts naturally on the set {1,2,3,4},
see (d) on page 94. Construct the orbits and stabilisers of this action when (i)
G = 〈(1,2,3)〉, (ii) G = 〈(1,2,3,4)〉, (iii) G = 〈(1,2)(3,4), (1,3)(2,4)〉, (iv) G =
〈(1,2), (3,4)〉, and (v) G = A4.

(vi) Find the orbits and stabilisers of the action given in Example (b) on page 93
when dimV = n and n > 1.

(vii) Let Q[x1, . . . , xn] denote the set of all polynomials with rational coefficients
in the variables x1, . . . , xn. For f (x1, . . . , xn) ∈ Q[x1, . . . , xn] and σ ∈ Sn, define

f (x1, . . . , xn)\σ = f (x1σ , . . . , xnσ ).

Show that this defines an action of Sn on the set Q[x1, . . . , xn], and describe the
orbits and stabilisers. Hence prove that the order of the set of n-variable polynomials
of the form f (x1, . . . , xn)\σ , where f is fixed, is a divisor of n!.

Problem 5.2 Let G be a group with subgroups H and J , and suppose we have
the identity ([G : H ], [G : J ]) = 1. Show that (i) G = HJ , and (ii) [G : H ∩ J ] =
[G : H ][G : J ]. (Hint. Use Theorem 5.8.)

Problem � 5.3 Suppose o(G) = pn where p is a prime, and so G is a p-group, see
Section 6.1.

(i) If G acts on a finite set X using Definition 5.13 show that

o
(
fix(G,X)

) ≡ o(X) (mod p).

(ii) Prove that if 〈e〉 �= J and J � G, then J ∩ Z(G) �= 〈e〉—a useful result, note
that it provides a generalisation of Lemma 5.21.



108 5 Action and the Orbit–Stabiliser Theorem

Problem 5.4 Suppose G acts on a set X.

(i) If x, y ∈ X and y = x\g for some g ∈ G, show that stabG(y) = g−1 stabG(x)g,
and so deduce the result: o(stabG(x)) = o(stabG(y)).

(ii) For g ∈ G, let fix(g,X) denote the subset of X of those x which are fixed by g

(so x\g = x). Show that if m is the number of orbits of this action, then

m = (
1/o(G)

)∑

g∈G
o
(
fix(g,X)

)
.

(iii) Using (ii), show that if 1 < o(X) < ∞ and the action is transitive, then there
exists g ∈ G with no fixed points.

Problem 5.5 (i) Use Theorem 5.19 to show that o(G) = 2 when G has just two
conjugacy classes.

(ii) Show that if G is a finite non-Abelian group, 1 < [G : H ] < 5 and H ≤ G,
then G is not simple.

(iii) Let G be a finite group and let h(G) denote its class number, see page 103.
Show that the total number of ordered pairs (a, b) which satisfy ab = ba, where
a, b ∈ G, is h(G) · o(G).

Problem � 5.6 If p0 is the smallest prime dividing o(G), K ≤ G and [G : K] = p0,
prove that K � G. (Hint. Use Theorem 5.15.)

Problem 5.7 (i) If C is a conjugacy class of a group G, show that the set C−1 =
{a−1 : a ∈ C} is another conjugacy class of G, and vice versa.

(ii) Construct the conjugacy classes, and their inverses as given by (i), for the
groups D4,A4 and SL2(3).

Problem 5.8 (Properties of the Centraliser) (i) to (iv) Prove the centraliser proper-
ties listed on page 104.

(v) Let H ≤ G and g ∈ G. Show that CH (g) = CG(g) ∩ H , and

g−1CG(H)g = CG

(
gHg−1).

(vi) Prove CG(H) ≤ NG(H) without using Theorem 5.26.
(vii) Let H ≤ G. Show that CG(H) = 〈e〉 if, and only if, Z(J ) = 〈e〉 for all J

satisfying H ≤ J ≤ G.

Problem 5.9 (i) Find the centralisers of the elements of D6 and S4, and of the
subgroups of S4.

(ii) Find the normalisers of the subgroups of S4; see Section 8.1 and Lemma
5.25(iii).

(iii) Write out the Class Equations (Theorem 5.20) for A5 explicitly; your answer
should include a description of all centralisers involved.

Problem 5.10 Let τ = (1, . . . ,m) be an m-cycle in Sn where n ≥ m > 1. Show that
CSn(τ ) 	 〈τ 〉 × Sn−m, where we assume that S0 = 〈e〉. The direct product notation
× is defined in Section 7.1.
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Problem 5.11 (i) Suppose G is a non-Abelian group. Show that if a ∈ G\Z(G),
then 〈a〉Z(G) is an Abelian subgroup of G which properly contains Z(G).

(ii) Suppose H,J ≤ G where H is Abelian. The subgroup H is called maximal
Abelian if J is not Abelian whenever H < J . Show that H is maximal Abelian if,
and only if, CG(H) = H .

Problem 5.12 Let A and B be subsets of the group G. Show that

(i) if A ⊆ B then CG(B) ≤ CG(A),
(ii) A ⊆ CG(CG(A)),
(iii) CG(CG(CG(A))) = CG(A).

Problem � 5.13 (Properties of the Normaliser) Let H ≤ G. Prove that

(i) NG(H) is the largest subgroup of G in which H is normal.
(ii) NG(g−1Hg) = g−1NG(H)g, for all g ∈ G.
(iii) If H ≤ J ≤ G, then NJ (H) = NG(H) ∩ J .
(iv) If K ≤ G, then [H,K] ≤ H if, and only if, K ≤ NG(H).
(v) Let p be a prime. If J ≤ G, o(J ) = pr for some r > 0 and p | [G : J ], so J is

a non-Sylow p-subgroup of G (Chapter 6). Prove that J < NG(J ), that is, J is
not self-normalising. (Hint. Use Problem 5.3.)

Problem 5.14 Let D denote the subgroup of diagonal matrices in G = GL2(Q).
Find NG(D). Do the same calculation for GL3(Q).

Problem 5.15 (i) Suppose H < G and G is finite. Show that there exists a ∈ G

which does not belong to any conjugate of H in G. (Hint. One method uses
Lemma 5.25.)

(ii) Show that if G is finite and all of the maximal subgroups of G are conjugate,
then G is cyclic; see Problem 2.13.

Problem 5.16 Throughout this problem K � G and we say that K is central if
K ≤ Z(G). Use the N/C-theorem (Theorem 5.26) to prove the following proposi-
tions.

(i) If G is perfect (Problem 4.8) and K is cyclic, then K is central.
(ii) If p0 is the smallest prime dividing o(G) and o(K) = p0, then K is cen-

tral.
(iii) If G is infinite and K is finite, then G/CG(K) is finite. Deduce that if the

only finite factor group of G has order 1, and o(K) < ∞, then again K is
central.

Problem 5.17 (i) Suppose K � H ≤ G and J = CG(K). Show that (a) H ≤
NG(K), and (b) if J is self-normalising (that is, J = NG(J )), then K ≤ Z(H).

(ii) Let H ≤ G. Prove that CG(H) = NG(H) if and only if H ≤ Z(NG(H)).
These properties are used in the statement of Burnside’s Normal Complement The-
orem (Theorem 6.17).
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Problem 5.18 In this problem, you are asked to show that a group G of order 15 is
Abelian using the Class Equations; see also Problem 7.21. The method is as follows:
Assume the contrary and use Problem 4.16(ii) to show that Z(G) = 〈e〉, then use the
Class Equations (Theorem 5.20) to show that G has exactly one conjugacy class of
order 5 consisting of elements of order 3, and then obtain a contradiction.

Problem 5.19 Suppose G = GL2(3) and so o(G) = 48, see Theorem 3.15 and
Problem 6.23.

(i) Find the centre Z(G) and show that o(Z(G)) = 2.
(ii) Let H denote the set of upper triangular matrices in G (that is, H = UT2(3)

which has elements of the form
(

a b
0 c

)
where a �= 0 �= c and we work modulo 3).

Show that Z(G) ≤ H ≤ G, and o(H) = 12.
(iii) Prove that core(H) = Z(G) (Problem 2.24).
(iv) Use Theorem 5.15 to prove that G/Z(G) 	 S4, see Problem 4.4.

Problem 5.20 Suppose CG(a) � G. Use Problem 2.25 to show that a belongs to a
normal Abelian subgroup of G. Is the converse false?

Problem 5.21 Suppose o(G) is finite, and a, b ∈ G.

(i) Show that the number of elements g in G satisfying g−1ag = b equals
o(CG(a)).

(ii) Deduce o(CG(a)) ≥ o(G/G′) where G′ denotes the derived subgroup of G.
(iii) Now suppose K � G, [G : K] = p (p a prime), and c ∈ K with the property:

CK(c) < CG(c). Show that if b is conjugate to c in G, then b is also conjugate
to c in K .

Problem � 5.22 Let r = h(G) be the class number of the finite group G, see
page 103. Show that

(i) If p0 is the smallest prime dividing o(G) and rp0 > o(G), then Z(G) �= 〈e〉.
(Hint. Use the Class Equations.)

(ii) If G is not Abelian, then r > o(Z(G)) + 1. (Hint. Use Problem 4.16(ii).)
(iii) If o(G) = p3 and G is not Abelian, then G′ = Z(G), o(Z(G)) = p and r =

p2 + p − 1. (Hint. Apply Problem 4.6 and Lemma 2.31, and show that no
conjugacy class has order p2 using Problem 5.21.)

Problem 5.23 (i) Show that elements of the same conjugacy class have conjugate
centralisers.

(ii) If n1, . . . , nr is a list of the orders of the centralisers of elements of distinct
conjugacy classes of G, prove that n−1

1 + · · · + n−1
r = 1.

(iii) Deduce there are only finitely many groups with class number r using the
fact that there are only finitely many ways of writing a positive integer as a sum of
reciprocals, see Problem B.4.

(iv) Find all groups with class number 3.
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Problem 5.24 Suppose G is finite and H ≤ G. Show that

o

(⋃

g∈G
g−1Hg

)
≤ 1 + o(G) − [G : H ].

Use this result to show that if H ≤ G and H contains at least one element of each
conjugacy class of G, then H = G.

Problem 5.25 Use the following method ((a) to (d)) to show that if K � An, n > 4,
and K contains a 3-cycle, then K = An. With Theorem 3.14 this provides a new
proof of the simplicity of An when n > 4. Throughout suppose σ is a 3-cycle in K .

(a) Show that CSn(σ ) > CAn(σ ).
(b) Secondly, show that CAn(σ ) = CSn(σ ) ∩ An.
(c) Using Theorem 5.8 and (b), deduce [CSn(σ ) : CAn(σ )] = 2.
(d) Lastly, show that C�Sn{σ } = C�An{σ }, and use Theorem 3.6.

Problem 5.26 (Project—Centralisers and Normalisers of Groups of Order 24) Let
G1 = S4 and G2 = SL2(3), see Chapters 3 and 8. First, calculate the centralisers
of each of the elements of these groups. Second, calculate the centralisers and nor-
malisers of each of the subgroups. Also check that the properties (i) to (iv) given on
page 104 apply. Two major theorems in the theory are connected to the relationship
between subgroup centralisers and normalisers: the N/C-theorem (Theorem 5.26)
and Burnside’s Normal Complement Theorem (Theorem 6.17). Check that these
results apply to the groups G1 and G2, and their centralisers and normalisers.



Chapter 6
p-Groups and Sylow Theory

There are important connections between number theory and finite group theory, re-
sults in one theory have vital applications in the other, and both theories benefit from
this interaction. Lagrange’s Theorem shows that a major invariant of a finite group
is its order and the prime factorisation of the order. We shall develop this aspect of
the theory here; the number-theoretic results we use are discussed in Appendix B.
Elements of order two play a central role, they are called involutions. One reason
is that an involution is its own inverse; but this is not the only special property. For
example, all groups with exponent 2 (a2 = e for all a in the group) are Abelian
(Corollary 2.20), and in Problem 2.28 we showed that a non-Abelian simple group
is generated by its involutions. But perhaps the most remarkable fact concerning the
number two in the theory is the theorem of Feit and Thompson (1963) which states
that no non-cyclic group of odd order can be simple. In fact, more is true—a group
of odd order must be ‘soluble’, see Chapter 11.

First in this chapter, we consider groups whose orders are powers of a particular
prime number p—the p-groups. These groups have a number of useful properties,
for example, they have normal subgroups for all orders dividing the group order.
Also the number of groups of order pn increases exponentially with n, some details
are given on page 118.

We have noted previously that the converse of Lagrange’s Theorem is not true in
general (page 101). But it is true for prime powers, that is, for subgroups which are
p-groups. This is the beginning of the Sylow theory which we develop in the second
section of the chapter; it is central to finite group theory. We shall give a number of
applications. In Section 6.3, we show that if o(G) has up to three not necessarily
distinct prime factors, then G is not simple and it can be determined completely;
we also prove a remarkable result due to Frattini—the Frattini argument—and in-
troduce ‘nilpotent groups’, which have many properties in common with p-groups
including being ‘reverse Lagrange’. We give some more applications in Web Sec-
tion 6.5, these will include a proof of Burnside’s Normal Complement Theorem
(Theorem 6.17) and a description of those groups all of whose Sylow subgroups are
cyclic, see page 130.

Throughout this chapter p denotes a prime number.
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6.1 Finite p-Groups

In this section, we develop the basic properties of finite p-groups, and begin with

Definition 6.1 Let p be a fixed prime. A group G is called a p-group if all of its
elements have orders which are powers of p.

The neutral group 〈e〉 is a p-group for all primes p as p0 = 1. We shall give some
more examples at the end of this section.

In the finite case, Definition 6.1 can be replaced by

G is a finite p-group if and only if o(G) is a power of p.

This follows from Cauchy’s Theorem (Theorem 6.2) for which we give three proofs.
The first is due to J. McKay and uses a simple action argument, the second uses the
Class Equations (Theorem 5.20) but it has the disadvantage that the Abelian case
must be treated separately. The result also follows directly from the First Sylow
Theorem (Theorem 6.7). Cauchy proved this result for permutation groups in 1845
as part of a series of papers on the properties of permutations; see Section 3.1. In all
probability, the first proof for general groups was given by Jordan in the 1870s.

Theorem 6.2 (Cauchy’s Theorem) If G is a finite group, p is a prime, and p | o(G),
then G contains at least one element of order p.

In fact, G contains at least p − 1 elements of order p. In the case p = 2, there
may be a unique element of order 2, for instance, in the quaternion (dicyclic) group
Q2 (page 119) or the special linear group SL2(3) (page 172). Note that Cauchy’s
Theorem applies to all finite groups.

Proof We begin by introducing a new action. Let

X = {
(g1, . . . , gp) : gi ∈ G, for i = 1, . . . , p, and g1 · · ·gp = e

}
,

that is, X is the set of all ordered p-tuples of elements of G whose product is
the neutral element. We prove the theorem by applying an action of the group
Z/pZ to X, and counting orbits. Note first

o(X) = o(G)p−1. (6.1)

For arbitrary g1, . . . , gp−1 in G, if we take gp = g−1
p−1 · · ·g−1

1 , then gp ∈ G,
the p-tuple (g1, . . . , gp) belongs to X, and gp is unique by Theorem 2.5.

We define an action of Z/pZ (the integers with addition modulo p) on X

as follows. If (g1, . . . , gp) ∈ X and a ∈ Z/pZ, then

(g1, . . . , gp)\a = (ga+1, . . . , gp, g1, . . . , ga).
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The action of a on an element of X cyclically permutes its entries by a places
modulo p. The set X is closed under this action because, if (g1, . . . , gp) ∈ X

(and so g1 · · ·gp = e), then by associativity

ga+1 · · ·gpg1 · · ·ga = (g1 · · ·ga)
−1(g1 · · ·ga)(ga+1 · · ·gp)(g1 · · ·ga) = e.

Also it is easily seen that the action axioms (5.1) are satisfied.
By the Orbit–Stabiliser Theorem (Theorem 5.7), an orbit of this action

has order 1 or p (the divisors of o(Z/pZ)). Suppose there are r orbits of
order 1, and s orbits of order p. An element of an orbit of order 1 has the
form (g, . . . , g) for some g ∈ G with gp = e (as all cyclic permutations give
the same p-tuple). Now r > 0 because there is at least one orbit of this type,
namely the orbit of the p-tuple (e, . . . , e). If this was the only orbit of order
1, then r = 1, and by (6.1),

1 + sp = o(X) = o(G)p−1,

as X is the disjoint union of its orbits. But this is impossible because p | o(G)

by hypothesis, and so p divides the right-hand side of the equation above
whilst it clearly does not divide the left-hand side. Therefore, r > 1 (in fact, r

is a positive multiple of p), and so there must exist at least one g ∈ G satisfy-
ing g �= e and o(g) = p. �

We give a second proof of this theorem using the Class Equation. As noted above
the Abelian case must be established first, see Problem 4.15.

Second proof—Non-Abelian case We use induction on o(G). Choose a ∈
G such that a /∈ Z(G), it exists because G is not Abelian. This implies that
o(C�G{a}) > 1, and so by Theorem 5.19 [G : CG(a)] > 1, that is, CG(a) is a
proper subgroup of G. If p | o(CG(a)), then the theorem follows by induction
because o(CG(a)) < o(G) and so by the inductive hypothesis CG(a) has an
element of order p. Hence we may suppose p � o(CG(a)) for all a ∈ G\Z(G).
But as p | o(G) by hypothesis, this implies

p
∣∣ [

G : CG(a)
]
,

for all a ∈ G\Z(G) by Lagrange’s Theorem (Theorem 2.27). Applying this
to the second Class Equation (Theorem 5.20) gives p | o(Z(G)). But Z(G) is
Abelian, and so by Problem 4.15, Z(G) contains an element of order p, and
hence so does G. �

We can now show that our two definitions of a finite p-group are equivalent.

Theorem 6.3 If G is finite and p is prime, then G is a p-group if and only if
o(G) = pr for some non-negative integer r .
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Proof There is nothing to prove if r = 0. Suppose G is a p-group (Defini-
tion 6.1) of order qtn where q is a prime which does not divide n, t > 0,
and q �= p. By Theorem 6.2, G contains an element of order q , which contra-
dicts the hypothesis. Therefore, q = p and n = 1. The converse follows from
Lagrange’s Theorem and Definition 2.19. �

Next we show that the property of being a p-group is preserved by taking both
subgroups and factor groups, and vice versa. Very few properties are preserved in
this way. Abelianness is not one, but it is true for finiteness and, as we shall show
later, it is also true for solubility (Chapter 11).

Theorem 6.4 (i) Subgroups and factor groups of p-groups are p-groups.
(ii) If K � G, and K and G/K are both p-groups, then G is also a p-group.

Proof (i) The first part follows from the definition. For the second part,
suppose g ∈ G and o(g) = pr , then using coset multiplication we have
K = eK = gpr

K = (gK)p
r
. Hence the order of gK is a divisor of pr , and

so the order of every element of G/K is a power of p.
(ii) If g ∈ G, then (gK)p

r = K for some integer r by the second hy-
pothesis, hence gpr ∈ K . But K is a p-group (the first hypothesis), and so
o(gpr

) = ps for some non-negative integer s, so the order of g is a divisor of
pr+s . The result follows as this holds for all g ∈ G. �

The p-groups have many important properties, for example, they are reverse La-
grange. In fact, the following stronger result follows from Lemma 5.21.

Theorem 6.5 If G is a group with order pr , then G is a finite p-group (by Theo-
rem 6.3) and it has subgroups G0, . . . ,Gr satisfying

(a) G0 = 〈e〉, Gr = G;
(b) for i = 1, . . . , r , Gi � G and Gi−1 � Gi ;
(c) for i = 0, . . . , r , o(Gi) = pi .

Proof The proof is by induction on r . If r = 1 there is nothing to prove, and
if r = 2 the result follows from Lemma 5.21 and Theorem 5.22, for then G is
Abelian. Hence we may assume that the result holds for all p-groups of order
less than pr with r > 1. By Lemma 5.21 again, Z(G) �= 〈e〉, and so Z(G)

contains an element y which satisfies o(y) = pt for some positive t , and if we
put z = ypt−1

, then z ∈ Z(G) and o(z) = p. Set

G1 = 〈z〉,
we have G1 � G because G1 ≤ Z(G) � G, see Problem 2.14(ii).

Let H = G/G1, by Lagrange’s Theorem (Theorem 2.27), o(H) = pr−1.
The inductive hypothesis provides a sequence of subgroups H0, . . . ,Hr−1
which satisfies (a), (b) and (c) with r − 1 for r , H for G, and Hi−1 for Gi .
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Let θ be the natural homomorphism G → H 	 G/G1, then the Correspon-
dence Theorem (Theorem 4.16(iii) and (iv)) gives Gi = Hi−1θ

−1 which are
subgroups of G containing G1, for i = 1, . . . , r − 1. Applying this theorem
again for i = 0, . . . , r − 1, we have

Gi+1 � G (as Hi � H) and Gi � Gi+1 (as Hi−1 � Hi).

Parts (a) and (b) follow, and (c) follows by Lagrange’s Theorem. �

The groups Gi in Theorem 6.5 are in many cases not unique. If ri denotes the
number of subgroups of G with order pi , both normal and non-normal, then ri ≡
1 (mod p). We shall prove this fact for ‘Sylow’ subgroups in the next section, and
the general result is given in Rotman (1994).

There is an extension to Theorem 6.5 which applies when K is a maximal sub-
group of G. In this case, K has prime index and is normal in G (cf. Problem 2.19(i)).
We derive these properties now.

Theorem 6.6 Suppose G is a finite p-group, and K is a maximal subgroup.

(i) K � G.
(ii) [G : K] = p.

Proof (i) By induction on r where o(G) = pr , the result clearly holds when
r = 1. By Lemma 4.14(ii), K ≤ KZ(G) ≤ G (the second inequality holds as
Z(G) � G), and so by the maximality of K we have

KZ(G) = G or KZ(G) = K,

both are possible. If KZ(G) = G, there exists g ∈ Z(G)\K , but g ∈ NG(K)

(because g ∈ Z(G)); therefore, K is a proper subgroup of NG(K) which im-
plies, by the maximality of K , that NG(K) = G. In turn, this implies that
K � G by Lemma 5.25(ii).

The second possibility is KZ(G) = K , then Z(G) � K by Problem 2.14
and Lemma 2.31. As K is a maximal subgroup of G, we also have K/Z(G)

is a maximal subgroup of G/Z(G) by Problem 4.13(ii). By Lemma 5.21 and
as G is a p-group, we have o(Z(G)) > 1, so

o
(
G/Z(G)

)
< o(G).

Using the inductive hypothesis this gives K/Z(G) � G/Z(G), and the Corre-
spondence Theorem shows that K � G. Hence in both cases K � G.

(ii) This follows easily from (i) and Theorem 6.5, see Problem 6.1. �

Theorems 10.6 and 10.7 on pages 213 and 214 give a second proof of (i).
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A large number of p-groups exist with order pr if r is large, many of which differ
only slightly from one another. If v(n) denotes the number of (isomorphism classes
of) groups of order n, then the following data has been established for powers of 2
(see Besche et al. 2001):

v(4) = 2, v(8) = 5, v(16) = 14, v(32) = 51,

v(64) = 267, v(128) = 2328, v(256) = 56092,

v(512) = 10494213 and v(1024) = 49487365422;
the second of these equations is established below and in Chapter 7. No exact for-
mula is known for v(n) in general, but the following estimate has been given by
Higman and Sims:

v(pn) = p2n3/27 + O
(
n8/3).

On the other hand, if n has a large number of prime factors and is square-free, then
v(n) can be quite small. For all integers m, there are infinitely many integers n, with
m prime factors, that satisfy v(n) = 1; this is a corollary of Dirichlet’s Theorem on
Primes in Arithmetic Progressions; see, for instance, Rose (1999). As examples we
have v(15) = 1, v(105) = v(3 · 5 · 7) = 1, and v(5865) = v(3 · 5 · 17 · 23) = 1; see
the table in Appendix D.

Non-Abelian Groups of Order 8

The smallest non-Abelian p-groups have order 8 (Problem 2.20), we consider these
now. Groups of order p3, p > 2, can be treated similarly (Problem 6.5), and Abelian
p-groups will be discussed in Chapter 7. Let G be a non-Abelian group of order 8.
If G contains an element of order 8, then G is cyclic, also if every non-neutral
element has order 2, then G is Abelian (Corollary 2.20), hence we may assume that
G contains an element a, say, of order 4 and, by Problem 2.19(i), 〈a〉 � G (this also
follows from Theorem 6.6). Choose b ∈ G\〈a〉, then the elements of G are

e, a, a2, a3, b, ab, a2b, and a3b.

The reader should check that no two of these elements are equal—for example, if
a = ab then by cancellation b = e. Now as b2 ∈ G, it follows that b2 equals one
of the eight elements of G listed above. If b2 = arb, then b = ar but by defini-
tion b /∈ 〈a〉, and if b2 = a or a3, then o(b) = 8, and G is cyclic. Hence as we are
considering the non-Abelian case, b2 = e or a2; both are possible.

Also, as 〈a〉 � G we have

b−1ab = as ∈ 〈a〉,
for s = 0,1,2, or 3. If s = 0 then a = e, if s = 1 then G is Abelian, and if s = 2 then
e = a4 = (b−1ab)2 = b−1a2b, which implies that a2 = e. Hence there is only one
possibility: s = 3, that is, b−1ab = a3. This gives ba3 = ab, and so bat = a4−t b for
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t = 1,2,3. These calculations show that there are at most two (isomorphism classes
of) non-Abelian groups of order 8:

D4 = 〈
a, b | a4 = b2 = e, b−1ab = a3〉,

Q2 = 〈
a, b | a4 = e, b2 = a2, b−1ab = a3〉,

see pages 58 and 59. The first group, which is isomorphic to the dihedral group
of the square, has five elements of order 2. The second is the quaternion group
(sometimes called the first dicyclic group), it contains one element of order 1, one
element of order 2, and six elements of order 4. As these groups have different
numbers of elements of order 2 they are not isomorphic, and so there are exactly two
isomorphism classes of non-Abelian groups of order 8. The group Q2 also has one
property that it shares with very few others: it is not Abelian and all of its subgroups
are normal (groups with this property are called Hamiltonian), see Problem 7.13.

Historical note In the middle of the nineteenth century, the Irish mathematician
W.R. Hamilton (1805–1865) was looking for fields which extend the complex num-
bers, he discovered the quaternions which have some remarkable properties but do
not (quite) form a field. They can be defined in a similar manner to the complex
numbers (that is, as a vector space, now of dimension 4, over R with a vector mul-
tiplication) except that the number i is replaced by three entities i, j and k which
satisfy

i2 = j2 = k2 = −1 and ij = k = −ji,

and a general quaternion is an entity of the form x+ iy+zj + tk where x, y, z, t ∈ R.
All field axioms are satisfied except one, commutativity of multiplication fails as
can be seen above (a system of this type is known as a division algebra). The oc-
tonions which are sometimes called Cayley numbers extend this construction to di-
mension 8, but in this case both commutativity and associativity fail; some brief
details are given in Rose (2002), page 176. The ring of integral quaternions has a
similar definition to that for the quaternions given above except now x, y, z, t ∈ Z.
The quaternion group Q2 forms the group of units (divisors of 1) of this ring when
we map a → i and b → j , for then ab → ij where ij = k.

6.2 Sylow Theory

We have seen earlier that the converse of Lagrange’s Theorem is false—if m | o(G)

it does not follow that G has a subgroup of order m. For instance, A5 has no sub-
group of order 15, see page 101. But there is a partial converse if we restrict m to
be a prime power—if pr | o(G), then G does have a subgroup of order pr , and this
is the starting point for the Sylow theory. As for Cauchy’s Theorem, we shall give a
number of proofs of this important (existence) result. The first uses a new action and
is due to Wielandt, and the second uses the Class Equations but as with the second
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proof of Cauchy’s result, it has the disadvantage that the Abelian case must be dealt
with separately. The third proof uses some matrix theory.

We begin with the main existence theorem first proved by the Norwegian math-
ematician Ludwig Sylow (1832–1918) in 1872.

Theorem 6.7 (Sylow Theorem, Part 1) If G is finite group with order prm, where
p is prime and p � m, then G contains a subgroup of order pr .

Proof There is nothing to prove if r = 0, so we may assume that r > 0. The
following fact concerning binomial coefficients will be used:

The binomial coefficient

(
prm

pr

)
is not divisible by p. (6.2)

(The numerator of
(
prm
pr

)
has the following factors (pr in total):

(
prm

)(
prm − 1

) · · · (p(
pr−1m − 1

))(
prm − (p + 1)

) · · · (p2(pr−2m − 1
))

· · · (p(
pr−1m − (

pr−1 − 1
))) · · · (prm − (

pr − 1
))

and when this expression is divided by the denominator of the binomial coef-
ficient, that is (pr)!, all factors of the form pi are removed by cancellation.)

We define a new action. Let X denote the set of all unordered subsets with
no repetitions of the underlying set of G which contain exactly pr elements.
As there are

(
prm
pr

)
ways of choosing these subsets, we have by (6.2)

p � o(X ). (6.3)

The action of G on X is defined by right multiplication: If X1 ∈ X then

X1\g = {xg : x ∈ X1} for g ∈ G.

Using cancellation we have o(X1\g) = o(X1) = pr , and so X1\g ∈ X , for
all g ∈ G. The action axioms (5.1) follow. Let X1, X2, . . . denote the orbits of
this action, as X is a disjoint union of its orbits, we see by (6.3) that there is
at least one orbit Xj , say, with the property

p � o(Xj ). (6.4)

Let Y ∈ Xj where e ∈ Y (if Y = {y1, . . .} ∈ Xj , then Y\y−1
1 = {e, . . .} is in

the same orbit as Y by definition), note that o(Y ) = pr . Now J is defined by
J = stabG(Y ). By Lemma 5.6, J ≤ G, hence if we can show that o(J ) = pr ,
the result will follow. We do this by proving both pr ≤ o(J ), and pr ≥ o(J ).
First, by the Orbit–Stabiliser Theorem (Theorem 5.7), we have

o(Xj ) = [
G : stabG(Y )

] = [G : J ] = prm/o(J ),
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using Lagrange’s Theorem for the final equation. Now the last entity in this
sequence of equations is an integer not divisible by p (by (6.4)), and so

pr | o(J ), which implies pr ≤ o(J ). (6.5)

For the reverse, note that J ⊆ YJ = Y (as e ∈ Y and J is the stabiliser of Y ).
Hence o(J ) ≤ o(Y ) = pr , which with (6.5) proves the theorem. �

Example We illustrate the above construction with the group D3 	 〈a, b | a3 =
b2 = (ab)2 = e〉 which has order 6, and we look for a subgroup of order 3. Here
pr = 3, m = 2 and so the binomial coefficient

(6
3

) = 20, and 3 � 20. Hence in this
example X has 20 elements—the underlying set of D3 has 20 unordered 3-element
subsets, and using the action defined above these split into the four orbits given by:

{e, a, a2}, {b, ab, a2b};
{e, a, b}, {e, a2, ab}, {e, b, ab}, {a, a2, a2b}, {a, b, a2b}, {a2, ab, a2b};
{e, a, ab}, {e, a2, a2b}, {e, ab, a2b}, {a, a2, b}, {a, b, ab}, {a2, b, a2b};
{e, a, a2b}, {e, a2, b}, {e, b, a2b}, {a, a2, ab}, {a, ab, a2b}, {a2, b, ab}.

The first orbit has an order not divisible by 3, and we can take its triple which
contains e, that is, {e, a, a2} for Y and J . Now this stabiliser provides the subgroup
of order 3 that we were looking for. Reader, find a subgroup of order 2.

Second proof of Theorem 6.7 We use induction on o(G) = prm, there is
nothing to prove if o(G) = 1. We treat the cases of G non-Abelian, and G

Abelian, separately. The first of these has two subcases.

Subcase 1.1 Z(G) < G and p | o(Z(G)).

By Cauchy’s Theorem (Theorem 6.2) and as p divides o(Z(G)), Z(G)

contains an element of order p, and so it contains a subgroup H of order p. By
Problem 2.14(ii), H � G, hence we can form the factor group G/H which has
order pr−1m. By the inductive hypothesis, this factor group has a subgroup
J/H of order pr−1, and the Correspondence Theorem now shows that J < G

and o(J ) = pr as required.

Subcase 1.2 Z(G) < G and p � o(Z(G)).

We use the second Class Equation (Theorem 5.20). As G is not Abelian,
there is at least one yi ∈ G whose conjugacy class has order larger than 1, that
is at least one term of the form [G : CG(yi)] occurs in the Class Equation.
Now p divides o(G) but not o(Z(G)) in this subcase. Hence there must exist
at least one yi with the properties (for the inequality use Theorem 5.19)

p �
[
G : CG(yi)

] = o(G)/o
(
CG(yi)

)
and o

(
CG(yi)

)
< o(G).
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From this it follows that o(CG(yi)) = prn for some n satisfying 1 ≤ n < m.
The inductive hypothesis implies that CG(yi) has a subgroup L of order pr ,
and L < G by Corollary 2.14 as required.

Case 2 G is Abelian.

We can argue as in the first subcase. By Cauchy’s Theorem and as G is
Abelian, G contains a normal subgroup K of order p and o(G/K) = pr−1m.
By the inductive hypothesis, G/K has a subgroup L/K of order pr−1, and
the Correspondence Theorem shows that L < G and o(L) = pr . Note that
this case also follows directly from Lemma 7.13. These three cases complete
the proof. �

The third proof is as follows. By Problem 4.17, G is isomorphic to a subgroup of
GLn(p) for some suitably chosen n. Also, by Problem 3.15(iii), we have ITn(p) is a
Sylow p-subgroup of GLn(p). Reader, check that o(ITn(p)) = pn(n−1)/2 (there are
p choices for each entry above the main diagonal) and use Theorem 3.15. The result
follows by Problem 6.11(iv) if in this problem we put G = GLn(p),H = ITn(p) and
J = G.

For our first application of this result, we reprove Cauchy’s Theorem (Theo-
rem 6.2), note that we did not use Cauchy’s result in the first (or third) proof of
Theorem 6.7. We have if o(G) = prm where p � m and r > 0, then by the First
Sylow Theorem, G has a subgroup P of order pr , and by Lagrange’s Theorem
(Theorem 2.27), all elements of P have order a power of p. If h ∈ P and o(h) = ps ,
then hps−1

has order p, as required by Cauchy’s result.
We shall discuss some more applications and examples below, but first we make

Definition 6.8 Let o(G) = prm where p is prime and p � m. A subgroup of G

with order pr is called a Sylow p-subgroup of G. A Sylow subgroup is a Sylow
p-subgroup for some unspecified prime p.

Note that a Sylow subgroup is only specified by its order. By Theorem 6.7, for
every prime p, G has a Sylow p-subgroup P ; if p � o(G) then P = 〈e〉. Also if
m = 1, that is, G is a p-group, then G has only one Sylow p-subgroup—itself. We
shall use the symbols P or Q for Sylow subgroups. If o(G) = prm with p � m and
r > 0 as above, then by Theorem 6.7, G always has at least one Sylow p-subgroup,
and so by Theorem 6.5, G also has subgroup(s) of orders ps , for all s satisfying
1 ≤ s ≤ r . In the next theorem, we prove the converse, that is, every p-subgroup of
G is contained in a Sylow p-subgroup of G. This theorem and its successor also
provide more information and a number of further properties.

Examples (a) If G = Cn where n = p
r1
1 · · ·prk

k , then G has a unique normal (see
Theorem 6.10(iii) below) Sylow pi -subgroup of order p

ri
i , for each i = 1, . . . , k, as

all subgroups are normal in a cyclic group. This follows from Theorem 4.20.
(b) Consider the group A5 which has order 60 = 22 · 3 · 5. Theorem 6.7 implies

that A5 has Sylow subgroups of orders 3, 4 and 5. In fact, A5 has ten subgroups of
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order 3, five of order 4, and six of order 5 (Problems 3.3 and 6.13). But note that A5
has no subgroups of order 15, 20 or 30, see the example on page 101.

This second example shows that in the general finite case there is no extension
of Sylow’s First Theorem to non-prime power divisors of the group order. There is
an extension if the group is ‘soluble’, see Section 11.2.

We come now to the remaining Sylow results. Let np denote the number of Sylow
p-subgroups of G; by Theorem 6.7, np ≥ 1. The first of these theorems below gives
the main properties including: For a fixed prime p, all Sylow p-subgroups of a
group G are conjugate in G, and so in particular they are isomorphic.

Theorem 6.9 (Sylow Theorem, Part 2) Let G be a finite group.

(i) Each p-subgroup of G is a subgroup of some Sylow p-subgroup of G.
(ii) All Sylow p-subgroups of G are conjugate in G.
(iii) np ≡ 1 (mod p).

Proof We use a similar method for all three parts of this theorem. Let P be
a Sylow p-subgroup of G and let X denote the set of subgroups conjugate to
P in G, that is, X = {g−1Pg : g ∈ G}. Further, let R be some p-subgroup of
G and suppose R acts on X by conjugation:

g−1Pg\x = x−1(g−1Pg
)
x = (gx)−1P(gx) for g ∈ G and x ∈ R. (6.6)

As R is a p-group, the Orbit–Stabiliser Theorem (Theorem 5.7) shows that
the order of an orbit of this action is a power of p, possibly p0 = 1. Now

o(X ) = [
G : NG(P )

]
and p �

[
G : NG(P )

]
.

The equation here is given by Lemma 5.25(iii), and the non-divisibility prop-
erty follows because P is a Sylow p-subgroup of both G and NG(P ) (they
have the same (maximal) p-power order). Hence p � o(X ) and so, as X is a
disjoint union of its orbits (all of order a power of p), there must be at least
one orbit of order 1(=p0).

Suppose {P1} is an orbit of the action (6.6) with order 1. Then x−1P1x =
P1 for all x ∈ R, so P1R = RP1, and RP1 ≤ G (Problem 2.19(v)). But P1 ≤
RP1, hence o(P1) ≤ o(RP1). Applying Theorem 5.8 we have

o(RP1)o(R ∩ P1) = o(R)o(P1) or o(RP1) = o(P1)[R : R ∩ P1],
by Lagrange’s Theorem. As both P1 and R are p-groups (by definition and
Problem 2.23), it follows that o(RP1) is a power of p, and so RP1 is a
p-subgroup of G. As P1 is a Sylow p-subgroup of G, and so its order is
the maximum possible power of p. Hence

o(RP1) = o(P1) so RP1 = P1, which gives R ≤ P1.

This proves (i) because R is an arbitrary p-subgroup of G.
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(ii) If R in the argument above is a Sylow p-subgroup of G, then o(R) =
o(P1), so R = P1 where P1 is conjugate to P in G by the action defined
above. This proves (ii), and it also shows that o(X ) = np .

(iii) Suppose there is a second single-element orbit of the action (6.6), say
{P2}. Then, taking R = P2, the first argument gives P1 = P2, that is there can
only be one single-element orbit. As all other orbits have orders which are
positive powers of p, (iii) follows because (by (ii))

o(X ) = np ≡ 1 (mod p). �

Notes Proposition (ii) in Theorem 6.9 is important for it implies that once we have
found one Sylow p-subgroup P of a group, then all remaining Sylow p-subgroups
will be isomorphic to P . This is not true for p-subgroups of smaller orders. For
example, the group S4 (note o(S4) = 23 · 3) has three Sylow 2-subgroups of order 8
each isomorphic to D4, but it has subgroups of order 4 isomorphic to both C4 and T2;
see Chapter 8. Proposition (iii) implies that np �= 0, and so Sylow p-subgroups exist,
but we cannot use this to reprove the main theorem (Theorem 6.7) because we began
the above proof by assuming the existence of a Sylow p-subgroup P . Proposition
(i) holds for infinite groups, but note that there exist infinite groups (a) with non-
isomorphic Sylow p-subgroups, and (b) with isomorphic Sylow p-subgroups which
are not conjugate; see, for example, Suzuki (1982), page 191.

We collect together the remaining Sylow properties in the next theorem, they all
follow easily from the results above.

Theorem 6.10 (Sylow Theorem, Part 3) Suppose o(G) = prm where p � m, and P

is a Sylow p-subgroup of G.

(i) P is a normal Sylow p-subgroup of NG(P ).
(ii) np = [G : NG(P )].
(iii) P � G if and only if P is the unique Sylow p-subgroup of G, and P � G implies

P char G, see Problem 4.22.
(iv) np | m.

Proof (i) By Lemma 5.25(i), P � NG(P ). But P is also a Sylow p-subgroup
of NG(P ) as the orders of both groups have the same exponent of p in their
prime factorisations, this gives (i).

(ii) This follows directly from Theorem 6.9(ii) and Lemma 5.25(iii), or
from the Orbit–Stabiliser Theorem (Theorem 5.7).

(iii) If P is the unique Sylow p-subgroup of G, then by Theorem 6.9,
all conjugates of P equal P , that is P � G. Conversely, if P � G then
NG(P ) = G, and the result follows from (ii) and Theorem 6.9(ii). The sec-
ond part is left as an exercise.

(iv) We have

m = [G : P ] = [
G : NG(P )

][
NG(P ) : P ]

,

by Lagrange’s Theorem and Problem 2.15, now use (ii). �
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We now restate the five main Sylow results which we shall often refer to as
“Sylow 1”, . . . , and “Sylow 5” (the numbering is not standard).

Five Main Sylow Theorems Suppose o(G) = prm where p is prime, and p � m.

1. G has at least one subgroup of order pr called a Sylow p-subgroup.
2. All Sylow p-subgroups of G are conjugate in G.
3. A Sylow p-subgroup P is unique if and only if P � G.
4. If np denotes the number of Sylow p-subgroups of G, then

np ≥ 1, np | m and np ≡ 1 (mod p).

5. Each p-subgroup of G is contained in a Sylow p-subgroup of G.

Example We calculate the Sylow subgroups of S5; some more examples are given
in Problem 6.12 and Chapter 8.

We note first that o(S5) = 5! = 23 · 3 · 5, and so S5 has Sylow subgroups of order
3, 5 and 8. Further, using Sylow 4 we have

n2 ≡ 1 (mod 2) and n2 | 15,

n3 ≡ 1 (mod 3) and n3 | 40,

n5 ≡ 1 (mod 5) and n5 | 24.

By Problem 3.3 and Theorem 2.29(ii), a non-neutral normal subgroup must have
order at least 12, for by Problem 3.3 the conjugacy classes not containing the neutral
element have orders between 10 and 24; and so n2, n3 and n5 are all larger than one
by Sylow 3. Hence the third congruence above shows that n5 = 6, that is S5 has six
(cyclic) subgroups of order 5. Note that S5 possesses 24 elements of order 5 and each
subgroup isomorphic to C5 has four elements of order 5 and e; see Problem 2.5(iii).
Secondly, the middle congruence above implies that n3 = 4,10 or 40. By counting
the number of elements of order 3 in S5 (there are 20), we see that n3 = 10 and the
group has 10 (cyclic) subgroups of order 3.

For the prime 2 we argue as follows. If we consider the subgroup generated by the
permutations (1,2,3,4) and (1,3), we obtain an isomorphic copy of D4 in S5 (for
a more detailed discussion of this point, see page 166). We have o(D4) = 8, hence
this is a Sylow 2-subgroup and all Sylow 2-subgroups of S5 are isomorphic to D4.
The first congruence above gives n2 = 3,5 or 15. The correct value is 15 as we show
now. The argument above can also be applied if we replace the two generators by
either (1,2,4,3) and (1,4), or (1,3,2,4) and (1,2), this gives three copies of D4

in S5. Further, there are five ways of choosing four elements from five, and so the
above can be repeated another four times giving a total of 15 Sylow 2-subgroups.
The reader should list all these Sylow subgroups and also convince him(her)self that
every subgroup of order 2 or 4 is contained in a Sylow 2-subgroup (Sylow 5). Note
that S5 has 156 subgroups in 19 conjugacy classes, how many can you find?
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6.3 Applications

Here we give a number of applications of the Sylow theory, see the comment at the
end of this section and Web Section 6.5.

Groups whose Orders have at most Three Prime Factors

As a first application of the Sylow theorems, we consider groups whose orders have
a small number of (not necessarily distinct) prime factors. If o(G) is prime, then G

is cyclic and has no non-neutral proper subgroups (Theorems 2.34 and 4.20). We
show that if o(G) has two or three prime factors, then G has at least one proper
non-neutral normal subgroup, and so is not simple. It can be shown that if o(G) has
four prime factors, then G is simple only if o(G) = 60 and G 	 A5 (Section 3.2),
and if it has five prime factors then G is simple in a few well-known cases. (They are
L2(7),L2(11) and L2(13) with orders 168, 660 and 1092, respectively, see Chap-
ter 12 and the ATLAS 1985.) We begin by considering the two-prime case.

Theorem 6.11 If o(G) = pq , p and q are prime, and p ≤ q , then G has a normal
(cyclic) subgroup of order q . If p �= q it is unique.

It is also unique if p = q and G is cyclic, but it is not unique if G is elementary
Abelian.

Proof If p = q this follows by Theorem 6.5, hence we may suppose p < q .
By Sylow 1 and 4, G has a subgroup P of order q which is cyclic by Theo-
rem 2.34, and the number of such subgroups, nq , satisfies

nq ≡ 1 (mod q) and nq | p.

These conditions imply nq = 1, so by Sylow 3, P � G and P is unique. �

Corollary 6.12 If o(G) = 2p and p is an odd prime, then G is isomorphic to either
C2p or Dp .

Proof By Theorem 6.11, G has a normal cyclic subgroup P of order p.
Suppose P = 〈a〉, and so ap = e. By Cauchy’s Theorem (Theorem 6.2), G

also has an element b of order 2. As P � G, we have

b−1ab = bab = as,

for some positive integer s less than p. If r is also a positive integer, then
barb = (bab)(bab) · · · (bab) = ars (as b2 = e) where there are r copies of
bab in the second term. This proposition gives

a = b2ab2 = b(bab)b = basb = as2
,
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and so s2 ≡ 1 (mod p) because a is an element of order p. This congruence
has exactly two solutions: 1 and p − 1 (Appendix B). If s = 1, then G is
Abelian, and so cyclic, see Chapter 7. If s = p − 1, then G is isomorphic to
the pth dihedral group:

G 	 Dp = 〈
a, b | ap = b2 = e, b−1ab = ap−1〉. �

The pq case, where p and q are both odd, is discussed in Problems 3.6, 6.14,
7.21, and 9.14, and in Web Section 14.3. For the three prime case we have

Theorem 6.13 If o(G) has exactly three prime factors, then G is not simple.

Proof There are three cases to consider.

Case 1. o(G) = p3, p prime.

In this case, the result follows by Theorem 6.5.

Case 2. o(G) = p2q , p and q prime, and p �= q .

We give two proofs. In the first, we show that either np or nq equals 1 using
Sylow 3 and 4. Hence suppose both np > 1 and nq > 1. As np | q and q is
prime, we have np = q . But np ≡ 1 (mod p), and so

q > p. (6.7)

We also have nq ≡ 1 (mod q) and nq | p2, so (6.7) and our supposition show
that nq = p2. This implies that G has p2 cyclic subgroups each of order q (as
q is prime), and so G has p2(q − 1) elements of order q , see Problem 2.5(iii).
This further implies that G has exactly

p2q − p2(q − 1) = p2

elements whose orders are not equal to q . But this is impossible because we
are assuming that G also has q subgroups each having order p2, and q ≥ 3 by
(6.7). Hence our supposition is false, either np = 1 or nq = 1 (or both), and
so G contains at least one normal subgroup by Sylow 3.

Second proof—this method has applications elsewhere. If p2 < q use the same
proof as that for Theorem 6.11. So assume that p2 > q and np > 1. This
implies that G has distinct Sylow p-subgroups P and Q. Let R = P ∩ Q. By
Theorem 5.8, we have o(R) = p (as o(PQ) ≤ p2q and P �= Q). Now R is a
p-group and a maximal subgroup of both P and Q. Using Problem 5.13(vi),
this implies that

P,Q ≤ NG(R), which in turn gives 〈P,Q〉 ≤ NG(R).

But P is a maximal subgroup of G because it has prime index in G, this fur-
ther implies that 〈P,Q〉 = NG(R) = G, and hence R � G. This is impossible
if G is simple, and so this case is established.
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All three possibilities occur, for example, with groups of order 12, see Sec-
tion 7.3. The cyclic group C12 has normal subgroups of order 3 and 4 (n2 = n3 = 1),
D6 has a normal subgroup of order 3 (n2 = 3 and n3 = 1), and A4 has a normal sub-
group of order 4 (n2 = 1 and n3 = 4); see Problem 6.13(i).

Case 3. o(G) = pqr , p, q and r are prime, and p < q < r .

As above suppose np,nq and nr are all larger than one. By Sylow 4, nr ≡
1 (mod r) and nr | pq , hence nr = pq as r > q . Secondly, nq ≡ 1 (mod q)

and nq | pr , so nq ≥ r as p < q , and, arguing similarly we have np ≥ q . Now
as in Case 2, the group G has np(p − 1) elements of order p, nq(q − 1)

elements of order q , and nr(r − 1) elements of order r . Hence counting the
neutral element and these only we have

o(G) = pqr ≥ 1 + np(p − 1) + nq(q − 1) + nr(r − 1)

≥ 1 + q(p − 1) + r(q − 1) + pq(r − 1)

= pqr + (q − 1)(r − 1),

which is impossible. Therefore, at least one of np,nq or nr is one, showing
that G has at least one normal (Sylow) subgroup by Sylow 3. �

Using this theorem the structure of all groups whose orders have at most three
prime factors follows: For groups of order p2q , see Burnside’s classic 1897 (2nd
edition, 1911 reprinted in 2004) textbook—the first on group theory to be published
in English. For groups of order pqr , see Theorem 6.18 (their Sylow subgroups are
necessarily cyclic) and Problem 6.20. Groups of order 12 will be discussed at the
end of the next chapter.

Frattini Argument and Nilpotent Groups

To prove our next result on so-called nilpotent groups, we need the Frattini Ar-
gument, a simple procedure which has important applications in the theory; see
Section 10.2. It also has one of the most elegant proofs in all mathematics!

Lemma 6.14 (Frattini Argument) If G is a finite group, K � G, and P is a Sylow
subgroup of K , then

G = NG(P )K.

Proof For g ∈ G we have

g−1Pg ⊆ g−1Kg = K,

as P ≤ K � G. Hence both P and g−1Pg are Sylow subgroups of K (they
have the same order, Problem 2.23), and so by Sylow 2 they are conjugate



6.3 Applications 129

in K . Therefore, we can find k ∈ K to satisfy

k−1(g−1Pg
)
k = (gk)−1P(gk) = P.

By Definition 5.24, this shows that gk ∈ NG(P ), and so

g ∈ NG(P )k−1 ⊆ NG(P )K ⊆ G.

The result follows because this argument applies to all g ∈ G. �

Example Suppose G = S5, K = A5 and P = 〈(1,2,3)〉; see the example on
page 125. Now P is a Sylow 3-subgroup of K and K � G, and so Frattini’s Ar-
gument gives S5 = NG(P )A5 which shows that NG(P ) must contain an odd per-
mutation. In fact, NG(P ) = 〈(1,2,3), (2,3), (4,5)〉 	 D6, a group of order 12 (look
for the permutations in S5 which commute with (1,2,3)); see Section 7.3.

As an illustration of this result we prove the following results, two of many deal-
ing with properties of the normaliser; see Problem 6.10.

Corollary 6.15 If P is a Sylow p-subgroup of a finite group G, and NG(P ) ≤ H ≤
G, then H is self-normalising, that is, H = NG(H).

Note this shows that NG(P ) is itself self-normalising.

Proof We have by hypothesis and Theorem 6.10(i)

P � NG(P ) ≤ H � NG(H) ≤ G,

and P is a Sylow p-subgroup of each group in this sequence. Applying the
Frattini Argument with NG(H) for G, and H for K , we have

NG(H) = NNG(H)(P )H.

But NNG(H)(P ) ≤ NG(P ) ≤ H , as NG(H) ⊆ G, and so NG(H) = H . �

A finite group is called nilpotent if all of its Sylow subgroups are normal. A sec-
ond definition is: Every maximal subgroup of G is normal in G (cf. Theorem 6.6).
Here we use the Frattini Argument to show that this second property implies the
first. In the next chapter (page 144), we prove the reverse implication and introduce
a third equivalent definition involving direct products; a full discussion of nilpotency
is given in Chapter 10.

Theorem 6.16 If every maximal subgroup of a finite group G is normal in G, then
every Sylow subgroup of G is normal in G; that is, G is nilpotent.
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Proof Suppose P is a non-normal Sylow subgroup of G. By Lemma 5.25,

P ≤ NG(P ) < G.

Hence there is a maximal subgroup H of G (possibly NG(P ) itself) which
satisfies

P ≤ NG(P ) ≤ H < G.

Now P is a Sylow subgroup of H , and H � G by hypothesis. By the Frattini
Argument (Lemma 6.14), this gives

G = NG(P )H ≤ H,

which is impossible because maximal subgroups are always proper, and H is
maximal by definition. Therefore, P � G. This applies to all Sylow subgroups
of G and so the result follows. �

Frattini introduced his argument to show that the subgroup of a group formed by
the intersection of all of its maximal subgroups, the so-called Frattini subgroup, is
nilpotent; we prove this result in Chapter 10 where further applications are given.

Web Section 6.5 gives some more applications of Sylow’s theorems. Two are
quite important and are used in a few of the problems, hence we shall state them
here; their proofs (the second is basically a consequence of the first) are given in
the web section. The first—one of Burnside’s most important—concerns normal
complements and is as follows.

Theorem 6.17 (Burnside’s Normal Complement Theorem) Suppose G is a finite
group with Sylow subgroup P . If CG(P ) = NG(P ), then P has a normal comple-
ment K in G, that is, G has a normal subgroup K with the property G = PK .

In Problem 5.17(ii), we showed that the centraliser/normaliser condition in this
theorem is equivalent to the condition P ≤ Z(NG(P )).

The second application, which is due to Hölder, Burnside and Zassenhaus, char-
acterises groups with cyclic Sylow subgroups.

Theorem 6.18 Suppose G is a finite group all of whose Sylow subgroups are cyclic,
then G has a presentation in the form

〈
a, b | am = bn = e, b−1ab = ar

〉

where m is odd, (m,n(r − 1)) = 1, 0 ≤ r < m and rn ≡ 1 (mod m).

Groups satisfying these conditions are called Frobenius or metacyclic, they are
denoted by Fm,n, or Fm,n,r if for fixed m and n there are several values of r (and so
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several non-isomorphic groups). For example, there are six non-isomorphic groups
of order 42, all Frobenius; see Web Section 6.5 and Problem 8.3.

6.4 Problems

Problem � 6.1 (i) Complete the proof of Theorem 6.6 using Cauchy’s (Theo-
rem 6.2) and the Correspondence (Theorem 4.16) Theorems.

(ii) Using Theorem 4.20, show that every non-generator in a cyclic p-group is a
p-th power. (Hint. See Problem 2.13(ii).)

(iii) Use the Class Equations (Theorem 5.20) to show that if G is a finite p-group,
K � G and o(K) = p, then K ≤ Z(G). This result can also be derived using Prob-
lem 5.3.

Problem 6.2 Given a group G, let Gp = {g ∈ G : gp = e}.
(i) Prove that Gp char G if G is an Abelian p-group; see Problem 4.22.
(ii)� Let G be a p-group and, for this problem, let Exp(G) denote the subgroup

generated by the elements of the set Gp . Note that the inverse of an element
of order p is itself an element of order p. Use Problem 4.6 and one of the
commutator properties given in Problem 2.17 to show that (a) Exp(G) = Gp

if p > 2, and (b) G/Exp(G) is Abelian.

Problem 6.3 For each group G of order 8, see Section 6.1, list their subgroups,
find Z(G), and determine the isomorphism type of G/Z(G) using direct calcula-
tion and some results from this chapter and its predecessor. Also list their normal
subgroups and draw subgroup lattice diagrams.

Problem 6.4 (An Example on 2-Groups) Let G1 = 〈a, b | b2 = e, bab = a−3〉 and
G2 = 〈a, b | b2 = e, bab = a3〉.
(i) Show that a8 = e in each case, and so prove that both G1 and G2 have order 16.
(ii) Find the subgroups of G1 and G2, and determine which are normal.
(iii) Verify all parts of Theorems 6.5 and 6.6 for both G1 and G2.
(iv) Find the centres and the derived subgroups.
(v) Show that the subgroup lattice diagrams for G1 and C8 ×C2, see Chapter 7, are

identical except for the ‘top’ group. Hence prove that non-isomorphic groups
of the same order can have identical proper subgroup lattices.

The group G2 is called semi-dihedral, another representation is given in Prob-
lem 6.23. The reader should note the similarities and differences between this group
and the dihedral group with the same order, that is D8, and see Problem 8.12. Also
note that the group G1 can be represented by the semi-direct product C2 �C8 which
is discussed in Chapter 7.
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Problem 6.5 (Extra-Special Groups) For more details on these groups, see
Aschbacher (1994), Chapter 2.

(i) Let G be a non-Abelian group of order p3 where p is an odd prime, see Prob-
lem 5.22(iii). By considering G/Z(G), show that there are at most two isomor-
phism classes for G, and so deduce that G has one of the following presenta-
tions

ES1(p) = 〈
a, b | ap2 = bp = e, ab = ba1+p

〉
,

ES2(p) = 〈
a, b, c | ap = bp = cp = e, c = [a, b], ca = ac, cb = bc

〉
.

Each of these groups is called extra-special, that is, they satisfy the condi-
tions: Z(G) is cyclic and Z(G) = G′ = �(G); see Section 10.2. Note that
for the second group every non-neutral element has order p, but it is not el-
ementary Abelian if p > 2. (If p = 2 the group is elementary Abelian, see
Corollary 2.20.)

(ii) Show that ES2(p) is represented by the matrix group IT3(p); see Problem 3.15.
We shall give a representation of ES1(p) in Problem 7.22.

(iii) Find the subgroups of these groups when p = 3, and indicate which are normal
and which are maximal.

Problem 6.6� Suppose G is a finite p-group with a single subgroup of order p,
and if p = 2 suppose also G is Abelian. Show that G is cyclic using the following
method. Use induction on n where o(G) = pn. For n = 2 use Theorem 5.22, and for
n = 3 use the previous problem and Section 7.2. In the general case, let K ≤ G with
o(K) = p, and suppose G/K has two subgroups H/K and J/K both with order p.
For more details, see Doerk and Hawkes (1992), page 204.

Show finally that the extra condition in the case p = 2 is necessary.

Problem 6.7 (The group Cp∞—An Infinite Group all of whose Proper Subgroups
are Finite) Fix a prime p. The group Cp∞ has the following presentation. The gen-
erators are a0, a1, . . . , and the relations are given by

aiaj = ajai, for all i and j,

a
p

0 = e, a
p

1 = a0, . . . , a
p

n+1 = an, . . .

(i) Prove that Cp∞ is an infinite Abelian p-group.
(ii) Show that if H ≤ Cp∞ and am ∈ H , then an ∈ H for all n < m.
(iii) Using (ii), prove that all proper subgroups of Cp∞ are finite and cyclic.

Ol’shanskii (1983) has given an example, usually called the ‘Tarski monster’ (it
applies some model theory based on the work of Alfred Tarski and involves the
use of large primes—hence the name) of a countably infinite non-Abelian (simple)
group all of whose subgroups are finite.

Problem 6.8 (i) For the given groups and primes determine the isomorphism
classes of the Sylow p-subgroups of (a) S6 with p = 3, (b) A6 with p = 2, and
(c) SL2(5) again with p = 2. (Hint. Use Problem 3.19(i) for (c).)



6.4 Problems 133

(ii) Prove that if n is odd, then all Sylow subgroups of Dn are cyclic. Is this true
if n is even?

(iii) Show that Sylow subgroups can intersect both neutrally and non-neutrally.
To be more precise, there are groups G with distinct Sylow p-subgroups P1,P2 and
P3 (with p fixed) that satisfy:

P1 ∩ P2 = 〈e〉 and P1 ∩ P3 > 〈e〉.

An example can be found in a subgroup H of S6 of permutations in which the
elements of the subsets {1,2,3} and {4,5,6} are permuted amongst themselves but
there is no mixing; that is, H 	 S3 × S3, see Problem 3.9 and Section 7.1.

Problem � 6.9 (Properties of Sylow Subgroups 1) (i) Suppose H ≤ G, P is a
Sylow p-subgroup of H , and Q is a Sylow p-subgroup of G with the property
P ≤ Q, prove that P = Q ∩ H .

This result can be extended to: If H ≤ G and G has a Sylow p-subgroup P ,
then for some g ∈ G we have H ∩ g−1Pg is a Sylow p-subgroup of H , and this
extension can be used as the starting point for another proof of the First Sylow
Theorem (Theorem 6.7). See also Problem 6.10(iv).

(ii) Show that if K is a normal p-subgroup of a finite group G, then K ≤ P for
all Sylow p-subgroups P of G.

(iii) Let H be a non-Sylow p-subgroup of G, so o(H) is a power of p and
p | [G : H ]. Using a coset action and Problem 5.3 show that H < NG(H).

(iv) If G is finite, K � G, (o(K),p) = 1, and P is a Sylow p-subgroup of G with
the property P = CG(P ), prove that o(K) ≡ 1 (mod p). (Hint. Use Problem 5.3 and
see Problem 5.11(ii), or use Theorem 6.4 and Problem 5.13(iii).)

(v) Using Problem 4.22, show that if P is a unique Sylow p-subgroup of G, then
P char G.

(vi) The subgroup Op(G) = ⋂
r Pr , where the intersection is taken over all Sy-

low p-subgroups of G, is called the p-radical of G; see Section 10.2. Using Prob-
lem 4.22 again, show that (a) Op(G)� G, and (b) using (ii), it is the largest subgroup
of G with this property.

Problem � 6.10 (Properties of Sylow Subgroups 2) Suppose G is finite and P is a
Sylow p-subgroup.

(i) Show that if NG(P ) ≤ H ≤ G, then [G : H ] ≡ 1 (mod p).
(ii) Show that if g and h belong to CG(P ) and are conjugate in G, then they are

also conjugate in NG(P )—a useful fact.
(iii) Using Theorem 5.8, prove that if K � G, then K ∩P is a Sylow subgroup of K ,

and PK/K is a Sylow subgroup of G/K .
(iv) Give an example to show that if J is a non-normal subgroup G, then J ∩ P

need not be a Sylow subgroup of J ; see (iii).
(v) Use (iii) to show that if K � G, then np(G/K) ≤ np(G).
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Problem 6.11 (Properties of Sylow Subgroups 3) Let H ≤ G.

(i) Let {p1, . . . , pk} be a list of the prime divisors of o(G) and let Pi be a Sylow
pi -subgroup of G for i = 1, . . . , k. Show that G = 〈P1, . . . ,Pk〉 and G = P1P2,
if k = 2. See also Condition 6 on page 242.

(ii) If K1,K2 � G and P is a Sylow subgroup of G, show that

K1K2 ∩ P = (K1 ∩ P)(K2 ∩ P) and K1P ∩ K2P = (K1 ∩ K2)P .

(iii) Let P and Q be distinct Sylow p-subgroups of H , and let P1 ≥ P and Q1 ≥ Q

where P1 and Q1 are Sylow p-subgroups of G. Prove that P1 and Q1 are also
distinct. Use this to show that np(H) ≤ np(G).

(iv) Let J ≤ G and let H be a Sylow p-subgroup of G. Show how to find an
element a ∈ G with the property: J ∩ a−1Ha is a Sylow p-subgroup of J .
(Hint. Use Problem 2.29.)

Problem 6.12 (i) If P is a Sylow p-subgroup of the symmetric group Sp , show that
o(NSp(P )) = p(p − 1); see Problems 3.11 and 6.19.

(ii)� Let G be a transitive subgroup of Sp (that is for each pair of integers
r and s in {1, . . . , p} there exists a permutation in G which maps r to s; see
page 94), let np equal the number of Sylow p-subgroups in G as usual, and let P ,
a Sylow p-subgroup of G, be one of these subgroups. Show that if np > 1, then
P is not self-normalising (that is, P < NG(P )). One method is as follows. Let
P = 〈(1,2, . . . , p)〉 and t = [NG(P ) : P ]. Show that o(G) = pnpt , and deduce us-
ing (i) the properties: t | p − 1, 0 < t < p and t ≡ o(G)/p (mod p). Now assume
that t = 1, count the number of elements of G with no fixed points to give an esti-
mate of o(stabG(j)) where j ∈ {1, . . . , p}, and so show that np = 1 which gives the
required contradiction.

Problem 6.13 (i) Show that if o(G) = 12, then G has a normal Sylow subgroup of
order 3 or 4.

(ii) Suppose m is a proper divisor of 60 which is itself divisible by 5. Prove that
if o(G) = m, then G has a unique Sylow 5-subgroup.

(iii) List the Sylow subgroups of A5.

Problem 6.14 Let G be a non-Abelian group of order pq where p and q are primes,
and p | q − 1. Using Theorem 6.11, (a) find a presentation for G with two gener-
ators, (b) give a formula in terms of the generators of the product of one element
by another, and (c) show that up to isomorphism there is only one group satisfying
these conditions. See also Problems 3.6, 7.21 and 9.14, and Web Section 15.3.

Problem � 6.15 By applying the results proved in this chapter and its predecessor
including Theorem 5.15, show that the smallest non-Abelian simple group has order
60. Note that the next non-Abelian simple group has order 168, try to prove this;
some parts are covered in Problem 6.17.
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Problem 6.16 (i) Using the method indicated below, or otherwise, show that if G

has order 60 and possesses more than one Sylow 5-subgroup, then it is simple.
Hence show that A5 is simple. Method: suppose K � G and 5 | o(K). Use Prob-
lems 6.13(ii) and 4.22 to show this is impossible. Deduce 5 | o(G/K), and so prove
that o(K) = 12. Obtain the final contradiction using Problem 6.13(i). (Hint. You
need to show that if H is a Sylow 5-subgroup of G, then HK = G.)

(ii)� Prove that a simple group G of order 60 is isomorphic to A5. One method
is as follows. (a) Show that G has a subgroup of index 5 by considering Sylow
2-subgroups and their intersections, supposing the contrary, and counting elements
of order a power of 2. (b) Apply Theorem 5.15 to show that G is isomorphic to
a subgroup of S5, and then use Theorem 5.8. Deduce A5 	 L2(4) 	 L2(5) using
Theorems 3.11 and 12.7. Note that L2(q) = SL2(q)/Z(SL2(q)), see Section 12.2.

Problem 6.17 Using one of the methods suggested, or otherwise, show that there
are no simple groups with the following orders.

(i) 90. Method—by the Sylow theory if the group G is simple, then n3 = 10 and
n5 = 6. Firstly, use a counting argument to show that each pair of the ten Sylow
3-subgroups cannot have neutral intersection. Secondly, if P and Q are distinct Sy-
low 3-subgroups of G with non-neutral intersection, R = P ∩ Q and S = NG(R),
show that o(S) = 18,45 or 90 applying the method used in the second proof of
Theorem 6.13, Part 2. Finally, show that each of these cases is impossible if G is
simple. Using Problem 3.7(ii), this fact can also be established by defining an injec-
tion from the supposed simple group into A6, and arguing that A6 has no subgroups
of index 4.

(ii) 108. Method—use Theorem 5.15. Similar methods apply for groups of order
pr(p + 1) if p is prime and r > 1.

(iii) 112�. The method suggested works for groups G of order pnq . Assum-
ing that G simple, show first that np = q . Prove that if all pairs of distinct Sylow
p-subgroups P and Q have neutral intersection, then using a counting argument,
deduce nq = 1 and so obtain a contradiction. Now suppose R = P ∩ Q where o(R)

is of maximal size which we assume to be larger than 1, and let S = NG(R). By
Problem 5.13(vi), note that R is a proper subgroup of both NP (R) and NQ(S).
Secondly, suppose S has a single Sylow p-subgroup T , say, and let U be the Sy-
low p-subgroup of G containing T . Show that P = U = Q, and so deduce T is
not unique. Use this to show that S has q Sylow p-subgroups, and by applying
Problem 6.10(iii) deduce that all of these subgroups contain R. Now use Prob-
lem 6.10(iii) again, and the supposed simplicity of G, to show that R = 〈e〉. As
in the case of groups of order 90, this non-simplicity result (for a group of order
112) can also be established by considering injections into the alternating group A7.

(iv) 132. Method—use the Sylow theory and a counting argument.
(v) 144. Method—assume that n3 > 1, so n3 = 4 or 16. Apply Theorem 5.15 in

the first case, and in the second case, use a counting argument to show that if each
pair of Sylow 3-subgroups has neutral intersection, then n2 = 1. If not, apply the
first method suggested in (i) treating the normalisers of orders 18, 36, 72, and 144
separately.
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Problem 6.18 Prove that AutQ2 	 S4; one method is as follows. Noting that au-
tomorphisms map maximal subgroups to maximal subgroups (this is part of the
Correspondence Theorem (Theorem 4.16)), use Theorem 5.15 to construct a ho-
momorphism φ : AutQ2 → S3, and show that φ is surjective (these automor-
phisms interchange elements of order 4). Secondly, use Corollary 5.27 to show
that there are four inner automorphisms (each of these permute the elements of the
maximal subgroups but leave the subgroups themselves unaltered); thirdly, deduce
o(AutQ2) = 24, and so prove the result using Section 8.1.

Problem 6.19 Working in S5, let σ = (1,2,3,4,5),P = 〈σ 〉 ≤ S5 and K =
NS5(P ). Show that o(K) = 20 and K 	 〈σ, τ 〉 where τ = (2,3,5,4); see Prob-
lems 3.11 and 6.12.

Problem � 6.20 (i) Using the Frattini Argument (Lemma 6.14), show that if H � G,
P is a Sylow subgroup of G and P � H , then P � G; note that normality is not
transitive in general.

(ii)� Suppose G has square-free order. You are given: G is not simple, this can
be proved using Burnside’s Normal Complement Theorem (Theorem 6.17). Show
that if p∗ is the largest prime factor of o(G), then G has a normal p∗-subgroup
by applying the following method: use induction on the number of factors of o(G),
Theorem 6.11, and Problem 6.10(iii). If H is the given normal subgroup of G, treat
the cases (a) p∗ | o(H), and (b) p∗

� o(H) separately, then use (i). See also Theo-
rem 6.18.

Problem 6.21 (i) Let K1,K2 � G have the property: K1K2 = G, and let H ≤ G.
Show that H = (K1 ∩ H)(K2 ∩ H). (Hint. Use Problem 2.18.)

(ii) Secondly, show by an example that the result in (i) is false if either K1 or K2

is not normal; but see (iv) below. In one example, G = S4.
(iii)� Suppose K � G, P is a p-subgroup of G, and (o(K),p) = 1. Show that

NG/K(P/K) = NG(P )/K.

(Hint. Use the Frattini Argument (Lemma 6.14).)
(iv)� Now assume that H is a complement of K in G, so G = HK where H ≤ G.

Using (i) and the Second Isomorphism Theorem (Theorem 4.15) show that

NG(P ) = (
K ∩ NG(P )

)(
H ∩ NG(P )

)
.

Problem 6.22 Suppose P1, . . . ,Pm is a list of the Sylow p-subgroups of a finite
group G. Note that m ≡ 1 (mod p). Further, let S(P ) denote the group of permu-
tations of the set {P1, . . . ,Pm}, and define a map θ : G → S(P ) so that gθ is the
permutation that maps Pi to g−1Pig, for i = 1, . . . ,m.

(i) Show that θ is a homomorphism and determine its kernel.
(ii) Find the kernel of θ when G = Dn, n is odd, and p = 2. Hence show that Dn

is isomorphic to a subgroup of Sn when n is odd.
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Problem 6.23 (Project—Subgroups of GL2(3)) In this project, you are asked to find
all 55 subgroups of the matrix group GL2(3) some of which are semi-dihedral, see
Problem 6.4. This project is a continuation of the one given in Problem 3.24 where
you were asked to show that the group GL2(3) has the following presentation

〈
a, b, c | a8 = b2 = c3 = e, bab = a3, bcb = c2, c2a2c = ab, c2abc = aba2〉.

You were further asked to find matrix and permutation representations. As noted
there the work can be done by hand, but a computer package which includes matrix
calculations modulo a prime (3 in this case) would be an asset.

Method: To find the subgroups, use some results from Section 3.3 to write out
all elements of the group with their orders. Secondly, using Problem 5.19 show that
the elements of the centre together with those of order 4 form a normal subgroup K

isomorphic to the quaternion group Q2. Thirdly, show that the subset of elements of
the group whose orders are a power of 2 define the Sylow 2-subgroup(s) and, using
Problem 6.9(ii), show that K is a subgroup of each of them. Fourthly, determine
these Sylow 2-subgroups. Now use Problem 5.19 again to find the subgroups of or-
der 12, note there are four of them, and using suitably chosen elements of the Sylow
2-subgroup(s) find the remaining subgroups (seven in all) with order 8. Finally, us-
ing the methods applied in the last part of Section 6.1, find the cyclic and remaining
dihedral subgroups of the group, indicate which subgroups are normal, and find the
centre and the derived subgroup.



Chapter 7
Products and Abelian Groups

This chapter can be read before Chapters 5 and 6, see the note on page 91.
Suppose (Gi,�i ), i = 1,2, . . . , are groups, and H is the (set-theoretic) Cartesian

product of their underlying sets (page 278)

H = G1 × G2 × · · · =
∏

i
Gi.

A number of new groups can be formed using H as the underlying set. The
operations of these new groups are constructed using the operations �i of Gi ,
i = 1,2, . . . . For example, if G1 = C2 and G2 = C3, then H is the set of pairs
(a, b) where a ∈ C2 and b ∈ C3, and we define a new operation � by

(a1, b1) � (a2, b2) = (a1 �1 a2, b1 �2 b2).

It is easily seen that this construction defines a group which we denote by C2 ×C3. It
is called the direct product of C2 and C3; direct because there is no mixing between
the first and second arguments. In the first argument, we have elements ai ∈ G1

and we use the operation �1, and in the second we have bi ∈ G2 and use the op-
eration �2. In other products, some mixing is allowed, the terms in one or both
arguments of the product are constructed using ai , bi,�1 and �2, see Section 7.3.

In this chapter, we discuss direct products, and two types of product where some
mixing is allowed, they are called semi-direct and wreath; the latter, a special case of
the former, is only considered briefly. We have seen some examples in the previous
chapters; there is no circularity here because the prerequisites for most of the work
in this chapter were given in Chapter 2, and Sections 4.1 and 4.2. We shall also
show that all finite Abelian groups can be represented as direct products of cyclic
groups—an important result with applications to other areas of mathematics. Some
examples of groups built up using the semi-direct construction will be given in the
final section. A brief account of the basic facts about infinite Abelian groups can be
found in Web Section 7.5.

H.E. Rose, A Course on Finite Groups,
Universitext,
DOI 10.1007/978-1-84882-889-6_7, © Springer-Verlag London Limited 2009
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7.1 Direct Products

Given sets Gi , i = 1, . . . , n, the underlying sets of the groups Gi , we can form the
(set-theoretic) Cartesian product of ordered n-tuples of elements of G1 to Gn by

G1 × · · · × Gn = {
(a1, . . . , an) : ai ∈ Gi, i = 1, . . . , n

}
,

see Appendix A. This will be used as the starting point for the construction of new
groups. The (finite) direct product is given by

Definition 7.1 For each i = 1, . . . , n, let (Gi,�i ) be a group with neutral ele-
ment ei . On the set G = G1 × · · · × Gn as given above, define the operation �
by

(a1, . . . , an) � (b1, . . . , bn) = (a1 �1 b1, . . . , an �n bn),

where ai, bi ∈ Gi , for i = 1, . . . , n. We denote the set G with the operation � by
G1 × · · · × Gn, it is a group called the direct product of G1, . . . ,Gn; see Theo-
rem 7.2. Each Gi is called a factor of the product group G.

Note that we use the same symbol × for the set-theoretic Cartesian product and the
group-theoretic direct product.

Theorem 7.2 If Gi are groups for i = 1, . . . , n, then the set G1 × · · · × Gn, with
the operation � given in Definition 7.1, also forms a group.

Proof The operation � is clearly closed and associative because the con-
stituent operations �i have these properties. The neutral element is

(e1, . . . , en),

and the inverse operation is given by

(a1, . . . , an)
−1 = (

a−1
1 , . . . , a−1

n

)
,

using the inverse operations in the constituent groups. �

The group constructed in Theorem 7.2 is sometimes called the external direct
product of the groups Gi . We are not restricted to finite products, products with
an infinite number of factors can be defined similarly; see Web Section 7.5. We
shall give some examples later, but first we derive the basic properties. To ease the
notation, we give the results for the product of two groups first, they can easily be
extended to products with a finite number of factors; see Lemma 7.5 and Theo-
rem 7.6.

Lemma 7.3 Suppose H and J are groups.

(i) If o(H), o(J ) < ∞ then, o(H × J ) = o(H) · o(J ).
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(ii) H and J are Abelian if and only if H × J is Abelian.
(iii) H × 〈e〉 � H × J , 〈e〉 × J � H × J , H × 〈e〉 � H , and 〈e〉 × J � J .
(iv) (H × J )/(H × 〈e〉) � J and (H × J )/(〈e〉 × J ) � H .

Proof (i) and (ii) These are immediate consequences of the definitions.
(iii) and (iv) Define a map φ : H × J → J by

(h, j)φ = j for h ∈ H, j ∈ J.

It is easily checked that this defines a surjective homomorphism with kernel
H × 〈e〉. The first parts of both (iii) and (iv) follow by the First Isomorphism
Theorem (Theorem 4.11), and the second parts follow in the same way. Simi-
lar arguments can be applied to establish the third and fourth parts of (iii), the
reader should write them out. �

Secondly, we consider these products from the opposite point of view: Under
what conditions is a group isomorphic to a direct product of two or more of its
subgroups? For example, we constructed the group C2 ×C3 on page 139, but in this
case we obtained nothing new, for this group is isomorphic to C6; that is, C6 can
be treated as a direct product of its two subgroups isomorphic to C2 and C3, see
Theorem 4.20. The next result gives necessary and sufficient conditions in the two-
subgroup case.

Theorem 7.4 Suppose H and J are subgroups of the group G, H � G, J � G,
H ∩ J = 〈e〉, and HJ = G.

(i) If g = hj where g ∈ G, h ∈ H and j ∈ J , then h and j are uniquely determined
by g.

(ii) hj = jh, for all h ∈ H and j ∈ J .
(iii) G � H × J � J × H .

In this case, we say that G is the internal direct product of its subgroups H and J .

Proof Throughout we assume that h,h′, h1, h2 ∈ H and j, j ′, j1, j2 ∈ J .
(i) As G = HJ , for each g ∈ G we can find h ∈ H and j ∈ J to satisfy

g = hj.

Proposition (i) follows for if g = hj = h′j ′, then h′−1h = j ′j−1 where
h′−1h ∈ H and j ′j−1 ∈ J . But H ∩J = 〈e〉, and so h′−1h = j ′j−1 = e which
gives h = h′ and j = j ′.

(ii) As H � G, we have j−1h−1j ∈ H which shows that j−1h−1jh ∈ H ;
also as J � G, we have j−1h−1jh ∈ J . But as above H ∩ J = 〈e〉, hence
j−1h−1jh = e, or hj = jh, which gives (ii).
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(iii) We define a map ψ : G → H × J by

if g = hj then gψ = (h, j).

The uniqueness condition proved in (i) shows that ψ is well-defined, and it
is clearly surjective (as (hj)ψ = (h, j)). To prove injectivity we argue as
follows. Suppose g1ψ = g2ψ , where gi = (hi, ji), for i = 1,2. This gives
(h1, j1) = (h2, j2), and so

(e, e) = (h1, j1)(h2, j2)
−1 = (

h1h
−1
2 , j1j

−1
2

)
,

which is only possible if h1 = h2 and j1 = j2. But then g1 = g2 proving in-
jectivity. For the homomorphism property, we have

g1ψg2ψ = (h1j1ψ)(h2j2ψ) = (h1, j1)(h2, j2)

= (h1h2, j1j2) = h1h2j1j2ψ

= h1j1h2j2ψ = g1g2ψ,

using the definition of ψ and (ii) for the last but one equation (that is, h2j1 =
j1h2). Putting these properties together, we see that ψ is an isomorphism. The
second isomorphism in (iii) is an direct consequence of (ii). �

The converse of Theorem 7.4 is given by Lemma 7.3.
The n-subgroup versions of Lemma 7.3 and Theorem 7.4 follow, their proofs

will be left as exercises for the reader, see Problem 7.1. Note that (iii) and (iv) show
that the direct product is both associative and commutative.

Lemma 7.5 Suppose H1, . . . ,Hn are groups.

(i) If o(Hi) < ∞ for i = 1, . . . , n, then o(H1 × · · · × Hn) = o(H1) · · ·o(Hn).
(ii) H1, . . . ,Hn are all Abelian if and only if H1 × · · · × Hn is Abelian.
(iii) If J,K and L are direct products of groups (with one or more factors), then

J × (K × L) � (J × K) × L.
(iv) If {i1, . . . , in} is a permutation of {1, . . . , n}, Hi1 × · · · × Hin � H1 × · · · × Hn.
(v) For each i, let H ∗

i denote the group 〈e〉 × · · · × 〈e〉 × Hi × 〈e〉 × · · · × 〈e〉 with
n factors and where Hi is in the ith place, then

H ∗
i � H1 × · · · × Hn, and

(H1 × · · · × Hn)/H
∗
i � H1 × · · · × Hi−1 × Hi+1 × · · · × Hn.

Theorem 7.6 If H1, . . . ,Hn are subgroups of a group G, then G � H1 × · · · × Hn

if and only if the following three conditions hold:

(i) Hi � G, for i = 1, . . . , n,
(ii) G = H1 · · ·Hn,
(iii) Hi ∩ H1 · · ·Hi−1Hi+1 · · ·Hn = 〈e〉, for i = 1, . . . , n.



7.1 Direct Products 143

Condition (iii) in this theorem cannot be replaced by

Hi ∩ Hj = 〈e〉, for 1 ≤ i < j ≤ n,

as the following example shows.

Example Let G = 〈atbu : t = 0,1, u = 0,1〉, the 4-group T2. It has three subgroups
of order 2: H1 = 〈a〉,H2 = 〈b〉 and H3 = 〈ab〉; and Hi � G for i = 1,2,3, G =
H1H2H3, and H1 ∩ H2 = H1 ∩ H3 = H2 ∩ H3 = 〈e〉. But G �� H1 × H2 × H3
because G has order 4 whilst H1 × H2 × H3 has order 8.

Uniqueness of Representation

Suppose G is represented as a direct product of (some of) its subgroups H1, . . . ,Hm.
We can ask under what conditions is this representation unique? Clearly, it is not
unique if some of the subgroups Hi are themselves direct products. So we ask: If

G � H1 × · · · × Hm,

and each Hi is indecomposable, that is, it cannot be represented as a direct product
with non-neutral factors then, apart from the order of the terms, is this representation
unique? The answer is yes in the finite and some infinite cases. This result was first
conjectured by J.H.M. Wedderburn (1882–1948), and it was proved by him, Remak,
Krull and Schmidt. For the proof, and details of the infinite case, the reader should
consult Suzuki (1982), page 127ff. We shall consider the Abelian case in the next
section.

For our first application of the results above, we return to the topic of cyclic
groups; see Section 4.3. We have

Theorem 7.7 (i) If n = p
s1
1 . . . p

sk
k is the prime factorisation of n, then

Cn � C
p

s1
1

× · · · × C
p

sk
k

.

(ii) If (m,n) = 1 then Cmn � Cm × Cn.

Proof (i) Let ni = n/p
si
i , for i = 1, . . . , k, and let g be a generator of the

cyclic group Cn. Then gni generates a subgroup Pi = 〈gni 〉 of Cn of order
p

si
i . (Incidentally, Pi is the unique Sylow pi -subgroup of Cn; one proof of

Sylow’s First Theorem reduces the general case to this example; see Alperin
and Bell 1995, page 64.) By unique factorisation of n, we have Cn = P1 · · ·Pk .
Also Pi ∩ P1 · · ·Pi−1Pi+1 · · ·Pk = 〈e〉, for i = 1, . . . , k as Pi only contains
elements of order a power of pi . Now apply Theorem 7.6 as all subgroups are
normal.

(ii) This is an immediate consequence of (i) and Lemma 7.5. �
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For our second application, we consider subgroups of direct product groups. We
have the following useful

Lemma 7.8 If G � H1 × · · · × Hk , (o(Hi), o(Hj )) = 1 when i �= j , and J ≤ G,
then

J � (H1 ∩ J ) × · · · × (Hk ∩ J ).

Proof We treat the case k = 2, the general case follows by induction. The
second hypothesis gives (H1 ∩J )∩ (H2 ∩J ) = 〈e〉. Also, using direct product
properties, and Problems 2.5 and 2.14, we have Hi ∩J � J for i = 1,2. Hence
we can construct the direct product (H1 ∩ J )× (H2 ∩ J ) inside J . By the first
hypothesis, if j ∈ J , then j = h1h2 where hi ∈ Hi for i = 1,2. The result will
follow if we show that h1, h2 ∈ J as j is an arbitrary element of J .

As (o(h1), o(h2)) = 1, and h1 and h2 commute (Theorem 7.4(i)), we have
o(h1h2) = o(h1)o(h2), and by Theorem 7.7(ii), 〈h1h2〉 � 〈h1〉 × 〈h2〉. Hence
〈j〉 = 〈h1h2〉 � 〈h1〉 × 〈h2〉, and so h1, h2 ∈ 〈j〉 ≤ J . The lemma follows. �

Examples (a) Let G = C3 × D4, see Appendix C. The group G has a subgroup J

isomorphic to C12, and so the lemma gives J � J ∩ C3 × J ∩ D4, that is, J ∩ C3 �
C3, J ∩ D4 � C4, and J � C12 � C3 × C4.

(b) Referring back to the example given below Theorem 7.6, suppose G,H1 and
H2 are as defined there, and we set J = H3. Now J ≤ G and H1 ∩J = H2 ∩J = 〈e〉,
and so the conclusion of Lemma 7.8 is false in this case. But o(H1) = o(H2) = 2,
and so this shows that second condition in the lemma above is essential.

We introduced finite nilpotent groups in Section 6.3 and we shall discuss general
groups of this type in Chapter 10. In the finite case, there are a number of equivalent
definitions one of which involves direct products (Theorem 10.9), and so we prove
the following result now.

Theorem 7.9 Suppose G is a finite group. The statements below are equivalent:

(i) G is the direct product of its non-neutral Sylow subgroups.
(ii) All maximal subgroups of G are normal in G.
(iii) All Sylow subgroups of G are normal in G.

Note that if G is a p-group, the result follows from Theorem 6.6. Also, using the
Frattini Argument (Lemma 6.14), we have shown previously that (ii) implies (iii),
see Theorem 6.16. It is also of interest to note the range and number of subsidiary
results that are used in the proof given below.

Proof Let o(G) = p
s1
1 · · ·psk

k and, for i = 1, . . . , k, let Pi be a Sylow
pi -subgroup of G. We need to show that (i) implies (ii), and (iii) implies (i).
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(i) implies (ii) By (i) we have

G � P1 × · · · × Pk.

By Theorem 7.6, this shows that Pi � G, for i = 1, . . . , k, and so Pi is the
unique Sylow pi -subgroup of G by Theorem 6.10. Let H be a maximal sub-
group of G. As (o(Pi), o(Pj )) = 1 if i �= j , we can apply Lemma 7.8 to ob-
tain, for some j satisfying 1 ≤ j ≤ k,

H � (P1 ∩ H) × · · · × (Pj ∩ H) × · · · × (Pk ∩ H)

� P1 × · · · × (Pj ∩ H) × · · · × Pk,

where Pj ∩H < Pj . To see why this second isomorphism follows, we argue as
follows. Clearly, Pi ∩ H ≤ Pi for all i. Suppose, for instance, both P1 ∩ H <

P1 and P2 ∩ H < P2 (that is, the first inequality above holds in at least two
cases). Then we would have

H < (P1 ∩ H) × P2 × · · · × Pk < G,

but this is impossible as it contradicts the maximality of H in G. For the same
reason, Pj ∩ H is a maximal subgroup of Pj ; and so by Theorem 6.6 and as
Pj is a pj -group

Pj ∩ H � Pj .

We can now apply Lemma 4.14(iv). Above we noted that P1 � G, and so this
lemma gives

P1(Pj ∩ H) � P1Pj ;
if j = 1 replace P1 by P2. We also have P2 � G, and so we can repeat this
argument to obtain P1P2(Pj ∩ H) � P1P2Pj . Continuing we have finally

H � P1 · · · (Pj ∩ H) · · ·Pk � P1 · · ·Pj · · ·Pk = G.

This gives (ii).
(iii) implies (i) First we prove

P1 · · ·Pj � G and o(P1 · · ·Pj ) = o(P1) · · ·o(Pj ), (7.1)

for j = 1, . . . , k, by induction on j . For j = 1 this follows by hypothesis, so
suppose it is true for j . As P1 · · ·Pj � G (by the inductive hypothesis) and
Pj+1 � G by (iii), Lemma 4.14(iii) gives P1 · · ·Pj+1 � G. Secondly

o(P1 · · ·Pj+1) = o(P1 · · ·Pj )o(Pj+1)

by Theorem 5.8 as Pj+1 ∩ P1 · · ·Pj = 〈e〉 and Pj+1 is a Sylow pj+1-
subgroup. This shows that (7.1) holds for all j ≤ k, and Condition (ii) of
Theorem 7.6 follows if we put j = k. This last conclusion also justifies Con-
dition (iii) in Theorem 7.6, and so the result follows. �
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Example Referring to Appendix C, we note that the group

Q2 × C3

is an example of a nilpotent group (of order 24) satisfying the conditions of the the-
orem. This group has unique Sylow subgroups isomorphic to Q2 and C3 (of orders
8 and 3, respectively) which are therefore normal, it is a direct product, and all of its
maximal subgroups are normal. These subgroups are three copies of C12 (of index 2,
and so normal; see Problem 2.19), and the unique Sylow 2-subgroup is Q2 (normal
by Theorem 6.10). The group D4 × C3 is another non-Abelian example listed in
Appendix C, as an exercise the reader should describe its maximal subgroups.

7.2 Finite Abelian Groups

We now consider finite Abelian groups in more detail. When studying Abelian
groups, some authors use an additive notation. We use the multiplicative notation
throughout to ‘keep the work in context’.

With cyclic groups as factors, many Abelian groups can be constructed using the
direct product construction described in the previous section, see Lemma 7.5(ii).
Remarkably, the opposite is also true in the finite case, that is, all finite Abelian
groups are isomorphic to direct products of cyclic groups. This is not true for infinite
groups, for example, the rational numbers Q with addition cannot be expressed as a
direct product of cyclic groups; see Web Section 7.5.

Several direct products of cyclic groups can be constructed having order n when
n is composite, but they may not all be distinct (non-isomorphic). Previously we
showed that C6 and C2 × C3 are isomorphic; note that 2 and 3 are coprime. On the
other hand, consider the case n = 8. We have three possibilities

C8, C4 × C2 and C2 × C2 × C2,

and no two are isomorphic—the first contains an element of order 8 whilst the others
do not, and the first two contain elements of order 4 whilst the last is an elementary
Abelian 2-group. These two examples are typical. If G is a group of order n, and n

is a product of distinct primes then the group is completely determined provided it is
Abelian, but if high powers occur in the factorisation of n then many Abelian groups
are possible, see the note at the end of this section. The Fundamental Theorem of
Finite Abelian Groups characterises these groups completely; it is in two parts. The
first part, called the Basis Theorem, describes the essential structure. We give two
proofs, the first is relatively short and describes the basic facts, but it does not es-
tablish the full picture as the prime factorisation of the group order is involved only
indirectly, the second gives more information. The remaining part of the Funda-
mental Theorem determines the isomorphism classes, that is, it provides conditions
under which two finite Abelian groups are isomorphic, its proof will be given in the
problem section (Problem 7.15).



7.2 Finite Abelian Groups 147

A number of proofs of the Basis Theorem use the Euclidean Algorithm (Theo-
rem B.2). Our first proof relies on the following matrix result which is a consequence
of this algorithm.

An n×n matrix A is called unimodular if every entry is an integer, and detA = 1
(and so A is non-singular); in this case, A−1 is also unimodular. We have

Lemma 7.10 If r1, . . . , rn are integers having no positive common factor except 1,
then there exists an n × n unimodular matrix with first column (r1, . . . , rn)

�, where
� denotes the transpose.

For a proof of this result, see Rose (1999), page 165; the 2 × 2 case is given by the
Euclidean Algorithm, and the general case follows by induction.

We give now the first proof of the Basis Theorem, it relies on the following

Lemma 7.11 If {g1, . . . , gn} is a generating set for an Abelian group G, and
r1, . . . , rn are coprime integers (that is, they have no common factor larger than 1),
then G has a second generating set one of whose elements is

h1 = g
r1
1 · · ·grn

n .

Proof Let A = (sij ) be one of the unimodular matrices with first column
(r1, . . . , rn)

� given by Lemma 7.10 where

ri = si1 for i = 1, . . . , n,

and let

hi = g
s1i

1 · · ·gsni
n for i = 1, . . . , n.

Note that hi ∈ G for all i, as each sij ∈ Z. Now let A−1 = (tij ), then tij ∈ Z

for all i and j , and we have si1t1j +· · ·+ sintnj equals 1 if i = j , and it equals
0 if i �= j (as AA−1 = In). Hence

gj = g
s11t1j +···+s1ntnj
1 · · ·gsj1t1j +···+sjntnj

j · · ·gsn1t1j +···+snntnj
n

= (
g

s11
1 . . . g

sj1
j . . . gsn1

n

)t1j · · · (gs1n

1 . . . g
sjn

j . . . gsnn
n

)tnj

= h
t1j

1 · · ·htnj
n ,

as G is Abelian. This shows that the set {h1, . . . , hn} can be used as a gener-
ating set for G, and h1 has the required property. �

Using this lemma, we give the first proof of

Theorem 7.12 (Basis Theorem for Finite Abelian Groups) Every finite Abelian
group G is isomorphic to a direct product of cyclic groups.

In some cases, the product has only one term, for instance, when G = Cp , see also
Theorem 7.7(ii).
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Proof By induction on o(G). The result is clearly true for the neutral group;
and so, using the inductive hypothesis, we may assume that it holds for all
Abelian groups of order less than o(G).

As G is finite, it has a finite generating set. Let n be the least positive
integer such that G has a generating set with n elements; as noted above if
n = 1 there is nothing to prove. So we have

every subset of G with at most n − 1 elements fails to generate G. (∗)

Secondly, amongst elements of all n-element generating sets for G choose g1
of least order t , say (note t > 1), and let the remaining elements of the generat-
ing set containing g1 be g2, . . . , gn. Let H be the subgroup of G generated by
g2, . . . , gn. By (∗) and the inductive hypothesis, H is a proper subgroup of G,
and it is isomorphic to a direct product of cyclic groups using Lemma 7.5(iv).
We prove the theorem by showing

G � 〈g1〉 × H.

By Theorem 7.4, this will follow if we can prove that

〈g1〉 ∩ H = 〈e〉, (7.2)

because G = 〈g1〉H by definition, and all subgroups are normal.
Suppose (7.2) is false, that is, a non-neutral element x ∈ G exists satisfying

x ∈ 〈g1〉 and x ∈ H . It follows that integers r1, . . . , rn exist with

x = g
r1
1 = g

r2
2 · · ·grn

n , (7.3)

and

0 < r1 < t, (7.4)

where t was defined above, r1 �= 0 because x �= e, and r1 < t because 〈g1〉 is a
cyclic group of order t . Also, at least one ri+1 �= 0 (again as x �= e). Suppose
the GCD of r1, . . . , rn is d . As d ≤ r1, we have d < t by (7.4). Let

y = g
−r1/d

1 g
r2/d

2 · · ·grn/d
n . (7.5)

We know that {g1, . . . , gn} is a generating set for G and, by Lemma 7.10
and as the GCD of the set of integers {−r1/d, r2/d, . . . , rn/d} equals 1, the
element of G on the right-hand side of (7.5) is a member of a generating set
for G with n elements. But by (7.3)

yd = e,

that is, o(y) ≤ d < t . This is impossible because, by construction, the mini-
mum order of an element of a generating set for G with n members is t . Hence
our assumption (that x �= e) is false, and the result follows. �
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We come to the second proof of Theorem 7.12, as noted above it is longer but
it provides more information. In the first part (Lemma 7.13), we show that a finite
Abelian group G is isomorphic to a direct product of pi -subgroups where pi | o(G).

Lemma 7.13 Suppose G is a finite Abelian group and o(G) = p
s1
1 · · ·psk

k , where
p1, . . . , pk are distinct primes, and si ≥ 1, i = 1, . . . , k. For i = 1, . . . , k, let Hpi

denote the subset of all those elements of G whose orders are a power of pi .

(i) Hpi
≤ G.

(ii) G � Hp1 × · · · × Hpk
.

Proof (i) If a, b ∈ Hpi
, o(a) = p

j
i , o(b) = pk

i , and if l equals the maximum
of j and k, then, as G is Abelian, o(a−1b) | pl

i . Hence (i) follows.
(ii) The first proof was given in Theorem 7.9—the subgroups Hpi

given
in (i) are the Sylow pi -subgroups of G, and they are normal because the
group is Abelian. For a second more direct proof, we argue as follows using
Theorem 7.6. Let mi = o(G)/p

si
i . The integers m1, . . . ,mk have no common

factor larger than one by definition, so using the Euclidean Algorithm (Theo-
rem B.2), integers r1, . . . , rk exist satisfying

r1m1 + · · · + rkmk = 1.

Now if x ∈ G, then for each i = 1, . . . , k, the integer o(xmi ) is a power
of pi (as o(x) | o(G)), and so xmi ∈ Hpi

. Hence

x = xm1r1+···+mkrk = (xm1)r1 · · · (xmk )rk ∈ Hp1 · · ·Hpk
.

As this holds for all x ∈ G, Condition (ii) in Theorem 7.6 is satisfied.
For the third condition, suppose y ∈ Hpi

∩ Hp1 · · ·Hpi−1Hpi+1 · · ·Hpk
. So

there exist integers si satisfying

o(y) = p
si
i = p

s1
1 · · ·psi−1

i−1 p
si+1
i+1 · · ·psk

k .

But this is only possible if s1 = · · · = sk = 0 (the primes pi are distinct),
in which case y = e and so Condition (iii) of Theorem 7.6 is also satisfied.
Condition (i) is automatically satisfied, so the proof is complete. �

Continuing the second proof of Theorem 7.12, by Lemma 7.13 we now need to
prove the result in the case when G is a p-group, and so we can make use of the
work on these groups given in Section 6.1.

Proof of Theorem 7.12 in the case when G is a finite Abelian p-group, (and
so by Theorem 6.3, when o(G) is a power of p) We use induction on o(G),
there is nothing to prove if o(G) ≤ p.

Let H be a maximal subgroup of G. By Theorem 6.6, o(G/H) = p and,
by the inductive hypothesis, we can express H as a direct product of j , say,
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cyclic p-groups Hi where o(Hi) = pri , i = 1, . . . , j ; that is, by the inductive
hypothesis we have

H � H1 × · · · × Hj and r1 ≥ · · · ≥ rj ≥ 1. (7.6)

This holds by rearranging the Hi ; see Lemma 7.5(iv).
Choose a ∈ G\H and then ap ∈ H , there are p cosets atH , one for each t

in the range 0, . . . , p − 1. Hence we can choose hi ∈ Hi to satisfy

ap = h1 · · ·hj . (7.7)

We may assume that each hi is either a generator of Hi , or equals e. For by
Problem 6.1(ii), a non-generator of Hi is a pth power, and if hi = b

p
i for some

bi ∈ Hi , then using (7.6) and as G is Abelian we have

(
ab−1

i

)p = apb
−p
i = aph−1

i = h1 · · ·hi−1hi+1 · · ·hj .

But ab−1
i �∈ H by definition of a and bi ; and so this contradiction establishes

our assumption. Now if ap = e, then G is isomorphic to a direct product of
〈a〉, H1, . . . ,Hj−1 and Hj , and the theorem follows in this case. Hence we
may assume that hi �= e for some i satisfying 1 ≤ i ≤ j . Let i′ equal the
smallest such i, so hi′ �= e and ap = hi′ · · ·hj by (7.7).

Now by (7.7) again, o(ap) = pri′ (order is LCM of o(hi′), . . . , o(hj )),
hence o(〈a〉) = pri′+1. Let J = H1 × · · · × Hi′−1 × 〈e〉 × Hi′+1 × · · · × Hj .
Clearly, o(J ) = o(H)/pri′ , and the theorem will follow if we can show that

〈a〉 ∩ J = 〈e〉, (7.8)

for then 〈a〉J is a direct product with order equal to o(G).
Suppose (7.8) is false, and so at ∈ J for some t . Now p | t by definition.

So if t = sp for some s satisfying 0 ≤ s < pri′ , then by (7.7)

at = (
ap

)s = hs
i′ · · ·hs

j and hs
i′ �= e (7.9)

by definition of s. This shows that the unique (we have a direct product) rep-
resentation (7.9) of at given in H = H1 × · · · × Hj has a non-neutral element
in its i′th place. But this cannot belong to J because J has e here. This estab-
lishes (7.8), and the main result follows. �

The second proof of Theorem 7.12 is now complete. For, by Lemma 7.13, a finite
Abelian group G is isomorphic to a direct product of pi -subgroups where pi | o(G),
and each of these is itself a direct product of cyclic pi -subgroups.

Both of these proofs rely on an argument involving induction. We apply the in-
ductive hypothesis to G with one of its smallest terms H , say, removed, to obtain a
direct product K , and then show that we can form the direct product of H and K .
Other proofs work by removing the largest factor.
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Example Consider the case n = 72. We have 72 = 23 · 32, and each Abelian group
of order 72 is a direct product of a group H of order 8 and a group J of order 9
(Lemma 7.13). There are three possibilities for H : C8,C4 × C2 and C2 × C2 × C2,
and two for J : C9 and C3 × C3. Hence there are six (isomorphism classes of)
Abelian groups of order 72:

C8 × C9, C8 × C3 × C3, C4 × C2 × C9, C4 × C2 × C3 × C3,

C2 × C2 × C2 × C9, and C2 × C2 × C2 × C3 × C3.

This list is complete; for example, C18 ×C4 is included because C18 � C2 ×C9,
and so C18 × C4 � C4 × C2 × C9. Note also that the groups Tn, for n = 1,2, . . . ,
introduced in Section 2.2 can now be defined by Tn = C2 × · · · × C2 with n copies
of C2.

In general, if n > 1 and part(n) denotes the number of partitions of n (that is,
the number of ways of writing n as a sum of equal or smaller positive integers; for
example, 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1, and so part(4) = 5), then
there are part(n) distinct (non-isomorphic) Abelian groups of order pn. The inte-
ger part(n) increases exponentially with n; for instance, there are 42 (isomorphism
classes of) Abelian groups of order 1024, and 627 of order 220. For further details
on partitions, see Andrews (1976).

7.3 Semi-direct Products

As noted earlier, given two groups H and J , a number of new groups can be con-
structed on the underlying set H × J . One is the direct product, but in many cases
others are possible. The new group is, in a sense to be made precise, either an exten-
sion of H by J , or of J by H ; see Chapter 9. Contrary to our discussion of direct
products given in Section 7.1, we begin our work with the internal semi-direct prod-
uct, this will lead to the ‘right’ definition for the external product. We take the same
underlying set as in the direct case and define a different operation, and we begin
with (cf. Theorem 7.4)

Definition 7.14 Let G be a group with a subgroup A and a normal subgroup K

which satisfy

G = AK and A ∩ K = 〈e〉. (7.10)

In this case, G is called an (internal) semi-direct product of K by A, and we write

G � A � K.

For example, the dihedral group Dn = 〈a, b | an = b2 = e, bab = an−1〉 can be
represented as a semi-direct product if we take 〈b〉 for A and 〈a〉 for K , and then
Dn � 〈b〉 � 〈a〉.
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Notes (a) In symbols we always place the normal subgroup K second next to the
triangular part of the � sign. The subgroup A is called a complement of K in G,
and G is sometimes called a split extension of K by A. Some authors put the normal
subgroup K first and write K � A. The ATLAS (1985) uses K : A for our A � K

(and K.A for a general extension of K by A).
(b) If G is the direct product of A and K , then clearly it is also a semi-direct

product of K by A, and of A by K .
(c) G can only be simple if either A or K is the neutral subgroup, also we shall

see below (Lemma 7.15) that G is not Abelian when the product is not direct even
if both A and K are Abelian.

(d) It is important to note that given A and K , the group G is not uniquely de-
termined; for example, both D3 and C6 are semi-direct products of C3 by C2. Note
also that some groups can be expressed as a semi-direct product in several different
ways; see page 183, for example.

(e) There are non-simple groups that cannot be expressed as semi-direct prod-
ucts, for example, the quaternion group Q2. This group has a number of normal
subgroups Ki with corresponding complements (subgroups) Ai , but (7.10) fails in
each case; see Problem 7.17. Direct and semi-direct products do provide a num-
ber of interesting groups, but many more constructions need to be considered if all
groups are to be described.

(f) A number of authors have considered the question: when can a group G be
expressed as a product of two of its proper subgroups (with no restriction on these
subgroups except that they are both proper), that is, when is G factorisable; see, for
example, Scott (1964), Chapter 13. Clearly Cp is not factorisable, but Scott gives
other instances—one is the simple group L2(13), see Section 12.2. He also gives
some positive results which we shall discuss in Section 11.2.

Note (d) above suggests that something more is needed. The following lemma
provides this missing link.

Lemma 7.15 Suppose G = A � K .

(i) If G is finite, o(G) = o(A)o(K).
(ii) If g ∈ G, then g can be uniquely represented by g = ak where a ∈ A and k ∈ K .
(iii) If gi = aiki where ai ∈ A and ki ∈ K , for i = 1,2, then g1g2 has the unique

representation as g1g2 = ak, where a = a1a2 ∈ A and k = a−1
2 k1a2k2 ∈ K .

(iv) There is a homomorphism γ : A → AutK with the property that the product
g1g2 given in (iii) can be defined by

g1g2 = (a1k1)(a2k2) = (a1a2)(k1(a2γ ))k2.

(v) The homomorphism γ given in (iv) is the trivial map (see page 69) if and only
if the product is direct.

(vi) If the homomorphism γ given in (iv) is not the trivial map, then G is not
Abelian.
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Proof For gi ∈ G we write gi = aiki throughout where ai ∈ A and ki ∈ K ;
see Definition 7.14.

(i) By the Second Isomorphism Theorem (Theorem 4.15) and (7.10) we
have A � A/A∩K � AK/K = G/K , and so the result follows by Lagrange’s
Theorem (Theorem 2.27).

(ii) Suppose g = a1k1 = a2k2, ai ∈ A and ki ∈ K , for i = 1,2. Then
a−1

2 a1 = k2k
−1
1 = e by (7.10), that is a1 = a2 and k1 = k2.

(iii) We have g1g2 = a1k1a2k2 = a1a2a
−1
2 k1a2k2, where a1a2 ∈ A and, as

K � G, a−1
2 k1a2 ∈ K , and so a−1

2 k1a2k2 ∈ K . Uniqueness follows from (ii).
(iv) Define the map γ : A → AutK using conjugation as follows. If a ∈ A

and k ∈ K , let

k(aγ ) = a−1ka.

By definition, aγ is an automorphism of K for each a ∈ A, and so k(aγ ) ∈
K also for each a ∈ A. Now γ is a homomorphism because a1γ ◦ a2γ =
(a1a2)γ , this follows because (a1a2)

−1k(a1a2) = a−1
2 (a−1

1 ka1)a2.
(v) First, γ is the trivial map on A if, and only if, aγ equals the identity

map (automorphism) on K for all a ∈ A, that is k(aγ ) = k for all a ∈ A and
k ∈ K . If the product is direct, then ak = ka for all a ∈ A and k ∈ K , and so
γ is the trivial map. Conversely, if γ is the trivial map, then for all k we have
k(aγ ) = k, but k(aγ ) = a−1ka, and so ak = ka for all a ∈ A and k ∈ K . This
shows that A � G, hence the product is direct by Theorem 7.4.

(vi) By (iv), if γ : A → AutK is not trivial, there is an a ∈ A such that aγ is
not the identity map, hence there exist a ∈ A and k ∈ K such that k(aγ ) �= k.
But by (iv) k(aγ ) = a−1ka, that is, a and k do not commute. �

These results suggest that to define an external semi-direct product of K by A

we need to consider the homomorphism γ ; in many cases different γ will give rise
to different groups even if both A and K are fixed.

Definition 7.16 Given groups A and K , and a homomorphism γ : A → AutK , the
(external) semi-direct product A �γ K of K by A relative to γ is the group with
underlying set A × K , and operation

(a1, k1)(a2, k2) = (
a1a2,

(
k1(a2γ )

)
k2

)
, (7.11)

where ai ∈ A and ki ∈ K , for i = 1,2.

Note that a2γ is an automorphism of K for each a2 ∈ A, and so k1(a2γ ) ∈ K , hence
we also have (k1(a2γ ))k2 ∈ K when k1, k2 ∈ K .

Before stating the next result (Theorem 7.17) we consider the following

Example Let A = 〈a〉 � C2 and K = 〈k〉 � C3, see (d) opposite. By Theorem 4.23,
AutC3 � C2, that is C3 has two automorphisms η1 and η2 as follows:
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(i) η1 is the identity map which satisfies atη1 : ku �→ ku for all k ∈ K and t, u ∈ Z.
(ii) η2 is the map which satisfies, for all integers u, eη2 : ku �→ ku and aη2 :

ku �→ k2u, and so η2
2 is the identity map η1 on K .

Combining the two statements in (ii) we obtain: for t = 0 or 1, and for all u

atη2 : ku �→ k(t+1)u. (7.12)

We can define two groups using (i) or (ii), respectively. In the first case,
ks(atη1)=ks for all s and t , which gives for 0 ≤ r, t ≤ 1,0 ≤ s, u ≤ 2,

(
ar , ks

)(
at , ku

) = (
ar+t ,

(
ks

(
atη1

))
ku

) = (
ar+t , ks+u

)
,

the direct product of A and K isomorphic to C6.
For the second group, we use (7.12). We have, for r, s, t and u in the same ranges

as those listed above,

(
ar , ks

)(
at , ku

) = (
ar+t ,

(
ks

(
atη2

)
ku

)) = (
ar+t , k(t+1)s+u

)
.

The reader should check that this gives a group isomorphic to the dihedral group D3

where the usual generators a and b are replaced by k and a, respectively.

The next result shows that the semi-direct product defines a group.

Theorem 7.17 (i) The set with operation in Definition 7.16 forms a group.
(ii) The map γ given in Definition 7.16 is defined by conjugation.

To make this proof easier to follow we have reintroduced the � symbol to denote
the group operation in K , that is, (7.11) now reads

(a1, k1)(a2, k2) = (
a1a2,

(
k1(a2γ )

) � k2
)
.

Proof (i) The operation is well-defined by definition. The neutral element is
(e, e) for

(a, k)(e, e) = (
ae,

(
k(eγ )

) � e
) = (a, k)

as eγ is the identity map. The inverse of (a, k) is (a−1, k−1(a−1γ )) for

(a, k)
(
a−1, k−1(a−1γ

)) = (
aa−1,

(
k
(
a−1γ

)) � (
k−1(a−1γ

)))

= (
e,

(
k � k−1)(a−1γ

)) = (e, e)

because a−1γ is a homomorphism (automorphism) which maps e to e. For
associativity, we proceed as follows: The square brackets in the expressions
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below are not strictly necessary (they enclose products in K) but are inserted
to aid clarity. We have, where ai ∈ A and ki ∈ K for i = 1,2,3,

(
(a1, k1)(a2, k2)

)
(a3, k3) = (

a1a2,
[(

k1(a2γ )
) � k2

])
(a3, k3)

= (
a1a2a3,

([(
k1(a2γ )

) � k2
]
(a3γ )

) � k3
)
,

and

(a1, k1)
(
(a2, k2)(a3, k3)

) = (a1, k1)
(
a2a3,

[(
k2(a3γ )

) � k3
])

= (
a1a2a3,

(
k1

(
(a2a3)γ

)) � [(
k2(a3γ )

) � k3
])

= (
a1a2a3,

[(
k1

(
(a2a3)γ

)) � (
k2(a3γ )

)] � k3
)
,

by associativity in K . The expressions on the right-hand sides of these equa-
tions are equal because

(
k1

(
(a2a3)γ

)) � (
k2(a3γ )

)

= (
k1(a2γ ◦ a3γ )

) � (
k2(a3γ )

)
as γ is a homomorphism

= [(
k1(a2γ )

)
(a3γ )

] � (
k2(a3γ )

)
by definition of composition

= [(
k1(a2γ )

) � k2
]
(a3γ ) as a3γ is an automorphism.

This proves (i).
(ii) The set {(a, e) : a ∈ A} forms an isomorphic copy of A in G, similarly

the set {(e, k) : k ∈ K} forms an isomorphic copy of K in G. Now using the
equations above we have

(a, e)−1 = (
a−1, e(a−1γ )

) = (
a−1, e

)
,

because a−1γ is a homomorphism, and

(e, k)(a, e) = (
ea,

(
k(aγ )

) � e
) = (

a, k(aγ )
)
.

Hence

(a, e)−1(e, k)(a, e) = (
a−1, e

)(
a,

(
k(aγ )

))

= (
a−1a,

(
e(aγ )

) � (
k(aγ )

)) = (
e, k(aγ )

)

for all a ∈ A and k ∈ K , and as e(aγ ) = e. Therefore, the homomorphism γ

is given by conjugation of an element in K by a element in A. �

As an exercise the reader should show directly (using the same methods as above)
that (e, e)(a, k) = (a, k) and (a−1, k−1(a−1γ ))(a, k) = (e, e); note these equations
also follow from Theorems 7.17 and 2.5.
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Wreath Product

Before providing some examples we give a brief introduction to a particular type
of semi-direct product called a wreath product, a number of groups with special
properties can be defined using it. Suppose G and H are groups, X = {1,2, . . . , n},
H acts on X, and G∗ is the direct product of n copies of G. We define an action of
H on G∗ by

(g1, . . . , gn)\h = (
g1\h−1 , . . . , gn\h−1

)
for h ∈ H.

It is easy to see that the action axioms (5.1) hold, and

(g1, . . . , gn)\h
(
g′

1, . . . , g
′
n

)\h = (
g1g

′
1, . . . , gng

′
n

)\h,

gives a homomorphism. The wreath product of G by H is defined as the semi-
direct product H �φ G∗ where φ is the homomorphism given above. The product
is denoted by either G wr H or G � H . We have (a) the product is associative, and
(b) o(G wr H) = o(H) · o(G)n. An example is: C2 wr C2 � D4. We mention two
applications.

(a) If G is soluble with derived length n (page 234), then G wr C2 has derived
length n + 1, hence there exist soluble groups with arbitrarily high derived
length; for a proof, see the first reference given below.

(b) The Sylow subgroups of the symmetric groups Spm are isomorphic to iterated
(m− 1 times) wreath products of the cyclic group Cp , and the Sylow subgroups
of general symmetric groups can be constructed using direct products of these
iterated wreath products; this is proved in the last reference below.

For more details and proofs, the reader should see Rose (1978), page 219 ff. Rotman
(1994), page 173 ff, Suzuki (1982), page 268 ff, and Cameron (1999) should also be
consulted for (b).

Groups of Order 12

As an application of the theorems above, we consider the five (isomorphism classes
of) groups of order 12; in fact, all of these groups can be treated as semi-direct
products. By Theorem 7.12, there are two (isomorphism classes of) Abelian groups
of order 12:

C12 � C4 × C3 and C6 × C2 � C3 × C2 × C2;

these are direct products (and so are special cases of semi-direct products). For non-
Abelian groups, we have the following preliminary
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Lemma 7.18 If G is a non-Abelian group of order 12, then G is either (i) isomor-
phic to A4, or (ii) it contains a normal cyclic subgroup of order 6.

Proof Let P be a Sylow 3-subgroup of G. As o(P ) = 3, P is cyclic, and so
we can assume that it has the form 〈a〉 where a3 = e. We also have [G : P ] =
4, and so by Theorem 5.15, there is an injective homomorphism

θ : G
/ ⋂

h∈G
h−1Ph → S4.

Now
⋂

h∈G h−1Ph equals 〈e〉 or P (as o(P ) is prime). If the first case applies
then θ is an injective homomorphism of G into S4, and so G is isomorphic
to a normal (as the index is 2) subgroup of S4. Problem 3.3 now shows that
G � A4. Note that A4 has no elements of order 6.

For the second case, we have
⋂

h∈G h−1Ph = P , and so P � G. This im-
plies that G has only one (Sylow) subgroup of order 3 (Sylow 3), and so
G has only two elements of order 3: a and a2. This further implies that
a can only have one or two conjugates in G as the order of a conjugate
of a equals the order of a. Theorem 5.19 now gives [G : CG(a)] = 1 or 2,
where CG(a) denotes the centraliser of a in G. Hence o(CG(a)) = 12 or 6.
By Cauchy’s Theorem (Theorem 6.2), in either case CG(a) contains an ele-
ment b, say, of order 2, and this element commutes with a. Therefore, ab ∈ G,
o(ab) = 6, and so 〈ab〉 is a normal (as its index in G is 2) subgroup of G of
order 6. �

Continuing the argument given in the second part of the above proof, let ab = c,
then o(〈c〉) = 6 and 〈c〉 � G. Suppose d ∈ G\〈c〉, then

d−1cd = ct for some t = 0, . . . ,5.

If t = 0 then c = e, if t = 1 then G is Abelian, if t = 2 then e = (d−1cd)3 = d−1c3d

which implies c3 = e, and if t = 3 or 4 a similar argument shows that c2 = e or
c3 = e. All of these contradict the properties of c given above, and so t = 5 is the
only possibility. Secondly, as the elements cr and crd , for r = 0, . . . ,5, are all dis-
tinct in G (the reader should check this), and o(G) = 12, we have d2 ∈ 〈c〉. If d2 = c

or c5 then o(d) = 12 and G is cyclic, hence we may exclude these possibilities. If
d2 = e then

G � D6 = 〈
a, b | a6 = b2 = e, bab = a5〉.

Secondly, if d2 = c2 then, if we replace d by d1 = c2d , we have d2
1 = (c2d)2 = e

and d−1
1 cd1 = d−1c7d = c5, and so again G � D6 now with generators c and d1.

Thirdly, if d2 = c4, arguing similarly we again have G � D6. The final possibility,
that is, d2 = c3, gives the dicyclic group Q3 of order 12 (Section 3.4) where

Q3 = 〈
c, d | c6 = e, d2 = c3 and d−1cd = c5〉.
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To recap, we have shown that there are at most three (isomorphism classes of)
non-Abelian subgroups of order 12: A4,D6 and Q3. As an exercise the reader
should write down the Sylow subgroups of these groups (Problem 7.23). We show
now that each of these groups can be defined using the semi-direct product construc-
tion, that is,

A4 � C3 � T2, D6 � C2 � C6, and Q3 � C4 � C3.

Case 1: A4.

The group A4 (treated as a permutation group on {1,2,3,4}) has a normal sub-
group K1 of order 4 containing the three products of two 2-cycles and e, and so it is
isomorphic to the 4-group T2. Taking B1 = 〈(1,2,3)〉, we have

B1 ≤ A4, K1 � A4, B1 ∩ K1 = 〈e〉, and A4 = B1K1.

Reader, why does B1K1 have twelve elements?
Hence A4 � B1 � K1, and we need to construct the homomorphism γ1 : B1 →

AutK1. We have AutK1 � S3 (see Section 4.4, note that K1 is an elementary
Abelian 2-group), and so the only non-trivial homomorphism from B1 (of order 3) to
AutK1 (of order 6) is an injection of B1 onto the (unique) subgroup of S3 generated
by its 3-cycles and isomorphic to C3. For example, using (7.11) on page 153 with
a1 = (1,2,3), k1 = (1,2)(3,4), k2 = (1,3)(2,4) and a2 ranging over the elements
e, (1,2,3) and (1,3,2) of B1 (they are underlined below) we have

(1,2,3)(1,2)(3,4) · e(1,3)(2,4) = (1,2,3) · (1,2)(3,4)(1,3)(2,4),

(1,2,3)(1,2)(3,4) · (1,2,3)(1,3)(2,4) = (1,2,3)2 · (1,4)(2,3)(1,3)(2,4),

(1,2,3)(1,2)(3,4) · (1,2,3)2(1,3)(2,4) = e · (1,3)(2,4)(1,3)(2,4).

This illustrates the fact that we can define the image of (1,2)(3,4) under γ1 using
(7.11) by:

eγ1 : (1,2)(3,4) �→ (1,2)(3,4),

(1,2,3)γ1 : (1,2)(3,4) �→ (1,4)(2,3), and

(1,3,2)γ1 : (1,2)(3,4) �→ (1,3)(2,4),

with similar expressions for the images of e, (1,3)(2,4) and (1,4)(2,3) which the
reader should write out. See Problem 3.10 for further properties on A4.

Case 2: D6.

By Lemma 7.18 and the discussion given below its proof, the group D6 contains
a normal cyclic subgroup (of order 6) K2 � 〈c〉, and an element d of order 2. If we
let B2 = 〈d〉, we have D6 = B2K2 and B2 ∩ K2 = 〈e〉, as required for a semi-direct
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product. As above we need to construct the homomorphism γ2 : B2 → AutK2. By
Theorem 4.23, and Problems 4.19 and 7.10, AutK2 � C2, and the only non-identity
automorphism of K2 maps c to c5; that is, eγ2 is the identity automorphism on K2,
and dγ2 is the automorphism that maps cs to c5s . Hence we have for r = 0 or 1, and
s, u ∈ {0, . . . ,5},

drcs · d0cu = dr+0(cs(eγ2)
)
cu = drcs+u,

drcs · dcu = dr+1(cs(dγ2)
)
cu = dr+1c5s+u,

which gives a representation of D6. Note that D6 can also be represented by semi-
direct product T2 � C3, this is a consequence of the fact that D6 is isomorphic to
C2 × D3.

Case 3: Q3.

The group Q3 contains a normal cyclic subgroup K3 = 〈c2〉 of order 3, and
a second non-normal cyclic subgroup B3 = 〈d〉 of order 4. Clearly, we have
B3 ∩ K3 = 〈e〉 and B3K3 = Q3, and so Q3 is a semi-direct product of K3 by B3.
By Theorem 4.23, AutK3 � C2, and the only non-trivial homomorphism γ3 of
B3 = 〈d〉 to AutK3 associates the even powers of d with the identity automorphism,
and the odd powers of d with the automorphism that maps cs to c2s . This is mirrored
in Q3 for we have in this group

drcs · d2t cu = dr+2t
(
cs

(
d2t γ3

))
cu = dr+2t cs+u,

drcs · d2t+1cu = dr+2t+1(cs
(
d2t+1γ3

))
cu = dr+2t+1c2s+u

for 0 ≤ r < 4, 0 ≤ t < 2 and 0 ≤ s, u < 3. The reader should check that this con-
struction gives a group isomorphic to the dicyclic group Q3 defined on page 59. It
can also be represented as a metacyclic group, see Theorem 6.18.

7.4 Problems

Problem 7.1 (i) Give proofs of Lemma 7.5 and Theorem 7.6.
(ii) Show that if G is a product of its subgroups H1, . . . ,Hn, where each Hi � G

and (o(Hi), o(Hj )) = 1 if i �= j , then G � H1 × · · · × Hn.

Problem � 7.2 (i) If G,H,J and K are groups, show that [G × H,J × K] �
[G,J ] × [H,K], Problem 2.17.

(ii) If H � G and J � K , show that H × J � G × K , and

(G × K)/(H × J ) � G/H × K/J.

(iii) Prove that if J,K � G and G = JK , then J/(J ∩ K) × K/(J ∩ K) �
G/(J ∩ K).
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Problem 7.3 Suppose G = H × J .

(i) Show that H � J if and only if a subgroup D of G can be found which satisfies
G = HD = JD and H ∩ D = J ∩ D = 〈e〉.

(ii) If H ≤ L ≤ G show that L � H × (J ∩ L), see Lemma 7.8.

Problem 7.4 Suppose G = H1 × · · · × Hn. Prove the following results.

(i) Z(G) � Z(H1) × · · · × Z(Hn).
(ii) G′ � H ′

1 × · · · × H ′
n.

(iii) If K is a perfect normal subgroup of G (Problem 4.8), then K � (H1 ∩ K)

× · · · × (Hn ∩ K) (cf. Lemma 7.8).

Problem 7.5 Let G be a finite Abelian group, and let ex(G) denote its exponent.

(i) Show that there exists g ∈ G with the property ex(G) | o(g).
(ii) Using (i) show that if ex(G) = o(G), then G is cyclic.
(iii) Use (ii) and the fact that in a field a polynomial of degree r has at most r roots

(Theorem B.13) to show that the multiplicative group of a finite field is cyclic.

Problem 7.6 (i) Suppose J ≤ G × H , show that J is Abelian, or J intersects one
of the factors G or H non-neutrally.

(ii) By considering an Abelian group G with order p5 and three of its subgroups
H1,H2 and H3, each with order p2, show that the following properties can all hold
for a suitably chosen group G.

(a) G = H1H2H3,
(b) H1H2, H2H3 and H3H1 are all proper subgroups of G,
(c) H1 ∩ H2 = H2 ∩ H3 = H3 ∩ H1 = 〈e〉, and
(d) G is isomorphic to a proper subgroup of H1 × H2 × H3.

Problem � 7.7 If G is Abelian, o(G) = n, and m | n, show that G has a subgroup
of order m. First, reduce to the case when n is a prime power.

Problem 7.8 (i) How many Abelian groups (up to isomorphism) are there of order
385 or 432?

(ii) You are given: there are 14 (isomorphism classes of) groups of order 81.
Using the Sylow and direct product theories count the number of (isomorphism
classes of) groups of order (a) 891, and (b)� 405.

Problem 7.9 Suppose G is a finite group, and all of its maximal subgroups are both
simple and normal. Show that G is Abelian, and o(G) = 1,p,p2 or pq where p

and q are prime.

Problem 7.10 Show that if G and H are finite groups and (o(G), o(H)) = 1, then
Aut(G × H) � AutG × AutH .
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Problem 7.11 Suppose G is a finite Abelian group with proper subgroup H ; see
also Problem 7.5.

(i) Choose g ∈ G with the largest possible order n. Prove that hn = e for all h ∈ G.
(ii) Show that the result given in (i) is false in general for non-Abelian groups, that

is, the exponent (Definition 2.19) can be larger than n.
(iii) Suppose J is maximal subject to the conditions J ≤ G and H ∩ J = 〈e〉. If

there exists g ∈ G such that gp ∈ J for some prime p, show that G = HJ .
(Hint. Consider the equation h = jgr where h ∈ H , j ∈ J and r ∈ Z.)

(iv) With J as in (iii), show that G � H × J if and only if for all primes p, and
for all g ∈ G, h ∈ H and j ∈ J with gp = hj , there exists h1 ∈ H satisfying
h = h

p

1 .
(v) Finally, with g as in (i), show that 〈g〉 is a direct factor of G, that is, a sub-

group J ≤ G exists with the property G � 〈g〉 × J . (Hint. Use (i) and (iii) and
consider the cases p | n and p � n separately.)

Problem 7.12 A group G is called characteristically simple CS if its only char-
acteristic subgroups are 〈e〉 and G itself. For the definition of characteristic, see
Problem 4.22. Let G be a finite Abelian group. Show that G is CS if and only if it
is elementary. A definition of ‘elementary’ is given in Problem 4.18, the note at the
bottom of page 235 is also relevant. One method is as follows. First, suppose G is
CS and p | o(G). Let H = {g ∈ G : gp = e}. Show that H is CS, and so deduce that
H = G. For the converse, use the definition of an automorphism, and Problem 4.18.

Problem 7.13 (Hamiltonian Groups) A finite non-Abelian group is called Hamilto-
nian if all of its proper subgroups are normal; such groups are named after Hamilton,
the discoverer of the quaternion groups, see page 119. R. Dedekind (1831–1916)
proved that G is Hamiltonian if and only if it can be expressed as a direct product:

G � Q2 × T × O,

where Q2 is the quaternion group (of order 8), T is an elementary Abelian 2-group
(so T � Tn for some n, see Problems 4.18), and O is an arbitrary finite Abelian
group of odd order. You are asked to show that if G has this form, then it is Hamil-
tonian. For the converse, see Robinson (1982), page 138. (Hint. Apply Lemma 7.8,
consider the cases when the subgroup does, or does not, intersect Q2, and use Prob-
lem 2.16(iii).)

Problem � 7.14 Let G be a finite Abelian group, and let mi ∈ Z for i = 1, . . . , k.
Elements a1, . . . , ak ∈ G are said to be independent if a

m1
1 · · ·amk

k = e implies
a

mi

i = e, for all i satisfying 1 ≤ i ≤ k.

(i) Show that the elements a1, . . . , ak are independent if and only if 〈a1, . . . , ak〉 �
〈a1〉 × · · · × 〈ak〉.

(ii) Deduce G � Z/pZ×· · ·×Z/pZ, if G has exponent p. Groups of this type are
called elementary Abelian, see Problem 4.18.
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Problem 7.15 (Isomorphism Theorem for Finite Abelian Groups) In this problem,
assume that all groups are finite Abelian p-groups unless stated otherwise. For a
finite Abelian group G, let d(G) denote the minimum number of generators of G.

(i) Show that if G and H are elementary, then d(G × H) = d(G) + d(H).
(ii) Suppose G has the decomposition G � C1 × · · · × Ck where each Ci is cyclic.

Show that the number of factors Ci with order larger than pn is d(Gpn
/Gpn+1

)

where as usual Gm = {gm : g ∈ G}.
(iii) For n ≥ 0, let

up(n,G) = d
(
Gpn

/Gpn+1) − d
(
Gpn+1

/Gpn+2)
.

Show that up(n,G) depends on G but is independent of the particular decom-
position, this gives the number of cyclic factor groups of order pn+1 in all
decompositions of G.

(iv) Deduce G and H are isomorphic if and only if up(n,G) = up(n,H) for all
n ≥ 0.

(v) Give a condition to determine whether two general finite Abelian groups are
isomorphic.

Problem � 7.16 Suppose G = A�K and K ≤ J ≤ G. Show that J = (A∩J )�K .

Problem 7.17 Which of the following groups can be represented as semi-direct
products: (i) C15, (ii) S4, (iii) Q2? Give reasons.

(iv) Show that GL2(Q) can be represented as a semi-direct product of SL2(Q)

by Q
∗.

(v) Give an example of a group which can be represented in two distinct ways as a
semi-direct product.

Problem 7.18� Let H and J be groups where H is cyclic, and let φ and ψ be
injective homomorphisms from H to AutJ subject to the condition Hφ = Hψ .
Show that H �φ J � H �ψ J . Applications of this result are given in Problems 7.21
and 7.22.

Problem 7.19� (i) Suppose G is a group and SG is the full permutation group de-
fined on the elements of G. Further, for a ∈ G, let ξa : G → G be the map given
by gξa = ga (Cayley’s Theorem (Theorem 4.7)), and let G∗ = {ξa : a ∈ G}. Note
that G∗ ≤ SG. The holomorph of G, denoted by Hol(G), is defined as the group
generated by G∗ and AutG. Show that Hol(G) = AutG � G∗. (Hint. If φ ∈ AutG,
then φ−1ξaφ = ξaφ .)

(ii) Find the holomorphs of the cyclic groups Cn when n = 1, . . . ,6; for C5 use
Problem 6.19.

Problem 7.20 Investigate the semi-direct products of the cyclic group C4 with it-
self. You should determine how many (isomorphism classes) there are, describe
them, and list their elements, subgroups and normal subgroups.
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Problem 7.21 Let G be a group of order pq where p and q are primes and p < q .
Show that there is exactly one (isomorphism class) group of this type if G is Abelian
(and so cyclic) or if p � q − 1, and two if p | q − 1 one of which is not Abelian; see
Problems 3.6, 6.14 and 9.14, and Web Section 14.3. (Hint. Consider semi-direct
products, and use the Sylow theory and Problem 7.18�. In the non-Abelian case,
only one ‘semi-direct’ homomorphism is possible.)

Problem 7.22 List the subgroups of the groups of order 12 discussed at the end of
this chapter.

Problem 7.23 Suppose G is a non-Abelian group of order p3 which contains an
element of order p2; see Problem 6.5. Using the method suggested below show that
G � Cp � Cp2 , and that all such semi-direct products are isomorphic. The method
is as follows.

(a) Choose a, b ∈ G with o(b) = p2 and a �∈ 〈b〉. If ap = e we have the desired
semi-direct product, why?

(b) Suppose ap �= e. Show that o(Z(G)) = p, and so Z(G) < 〈b〉. Further show
that G/Z(G) � Cp × Cp (use Problem 4.16(ii)), and so deduce that ap = btp

for some t with 1 ≤ t < p.
(c) Replace b by b−t , and prove (ab)p = e using Problems 6.5 and 2.17(ii).
(d) Replace a by ab to obtain the required semi-direct product.
(e) Noting that AutCp2 has order p(p−1), use the Sylow theory and Problem 7.18�

to obtain uniqueness.

Problem 7.24 (Project—A Group of Order 84) Suppose G is a group with o(G) =
84 having the maximum possible number (28) of Sylow 3-subgroups. You are
asked to determine G; there is only one isomorphism class; see also Scott (1964),
page 218.

(i) Using the Burnside’s Normal Complement Theorem (Theorem 6.17) show that
G contains a normal subgroup J of order 28.

(ii) Show that G has a normal Sylow 7-subgroup K , and that CG(K) = J using
the N/C-theorem (Theorem 5.26) and (i).

(iii) Show that G has a unique Sylow 2-subgroup H which is isomorphic to
C2 × C2. (Hint. Use (i).)

(iv) Using (i), (ii) and (iii) deduce J � C2 × C2 × C7.
(v) Next show that G can be treated as a semi-direct product involving J . Ideas

related to holomorphs will be useful here, see Problem 7.19�.
(vi) Finally show that G has a presentation in the form

G � 〈
a, b, c, d | a2 = b2 = c7 = d3 = e, ab = ba, bc = cb, ca = ac,

d2ad = b, d2bd = ab, d2cd = c2〉.



Chapter 8
Groups of Order 24
Three Examples

In Chapter 1, we commented that both theorems and examples are important when
studying groups, and so as an interlude before we introduce our next major theo-
retical topics we shall consider three groups of order 24 in detail to illustrate the
material from the previous six chapters and motivate the work on series, simple
groups, and (on the web) representation and character theory to come. ‘Getting to
know’ the structure of these groups ‘in full’ will, we are sure, help the reader in his
(her) general understanding of the theory as a whole. Because our work on character
theory is being given in the Web Sections, we shall give the character tables for
the three groups discussed in this chapter in Web Section 14.1. Some facts about
the (isomorphism classes of the) remaining twelve groups of order 24 are tabulated
in the Appendix C, these include details about their subgroups (including special
subgroups), factor groups, automorphisms, and some more specialised properties.
The reader should use this chapter to experiment with various hypotheses. For ex-
ample, what is the relation between the centre and the derived subgroup of a group?
Whilst reading this book similar questions will arise, many of which can be an-
swered by considering the properties of the groups discussed here. In this chapter a
number of facts are not fully justified, the reader is asked to fill in the details.

8.1 Symmetric Group S4

For our first example, we consider the symmetric group S4, and use the results con-
cerning these groups proved in Chapter 3. Our main approach will be via permu-
tations of the set X = {1,2,3,4} although, as we shall show later, the group has
several distinct representations; see page 170. We have o(S4) = 24 because there
are 4! ways of ordering the set X. Also in a symmetric group, elements are conju-
gate if and only if they have the same cyclic structure (Theorem 3.6). In the table
overleaf which lists the elements of S4, the conjugacy classes are given by the rows
or extended rows.
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DOI 10.1007/978-1-84882-889-6_8, © Springer-Verlag London Limited 2009

165

http://dx.doi.org/10.1007/978-1-84882-889-6_8


166 8 Groups of Order 24—Three Examples

Number Cyclic List of elements

of elements type

1 1-cycle e

6 2-cycle (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

8 3-cycle (1,2,3), (1,3,2), (1,2,4), (1,4,2), (1,3,4),

(1,4,3), (2,3,4), (2,4,3)

6 4-cycle (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,3,4,2),

(1,4,2,3), (1,4,3,2)

3 2-cycle × 2-cycle (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)

Subgroups of S4

The group S4 has thirty subgroups in eleven conjugacy classes. First, we list the
cyclic subgroups. Each element of order 2 generates a cyclic subgroup of order 2,
hence

S4 has nine subgroups isomorphic to C2 in two conjugacy classes:
〈(1,2)〉, 〈(1,3)〉, 〈(1,4)〉, 〈(2,3)〉, 〈(2,4)〉, and 〈(3,4)〉; and
〈(1,2)(3,4)〉, 〈(1,3)(2,4)〉 and 〈(1,4)(2,3)〉.

There are also eight elements of order 3, and so (Problem 2.5(iii))

S4 has four subgroups isomorphic to C3 in one conjugacy class:
〈(1,2,3)〉, 〈(1,2,4)〉, 〈(1,3,4)〉 and 〈(2,3,4)〉;

see the Sylow entry below. The six elements of order 4 give

S4 has three subgroups isomorphic to C4 in one conjugacy class:
〈(1,2,3,4)〉, 〈(1,2,4,3)〉 and 〈(1,3,2,4)〉.

There are no other cyclic subgroups because S4 has no elements of order larger
than 4.

Sylow Subgroups

As with all groups of order 24, S4 has Sylow subgroup(s) of order 3 and 8. The
second item above lists the four Sylow 3-subgroups. (Note that in this case the Sylow
theory states: n3 ≡ 1 (mod 3) and n3 | 8, and so n3 = 1 or 4.) As S4 has more than
one Sylow 3-subgroup, none is normal, but they form a single conjugacy class by
Sylow 2.

For the second case, we have n2 ≡ 1 (mod 2) and n2 | 3. Therefore, n2 = 1 or 3,
and S4 has one or three Sylow 2-subgroup(s) of order 8. First, we need to determine
the type, see Theorem 6.10 (Sylow 4) and the example on page 125. This subgroup
cannot be C8 because S4 has no elements of order 8. Also it cannot be C2 ×C2 ×C2
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because such a subgroup would contain seven of the nine elements of order 2 in S4,
and these would generate S4; see Problem 3.1. Further, it cannot be Q2 because
such a subgroup would contain the six elements of order 4, and a single element
of order 2; but this is impossible because the conjugate of a 2-cycle by a 4-cycle is
another 2-cycle. Hence the Sylow 2-subgroup(s) are isomorphic to either C4 × C2
or D4. Suppose the former, then this subgroup would contain four 4-cycles and
three 2-cycles by 2-cycles (the square of a 4-cycle is of this second type). But this is
impossible because C4 × C2 is Abelian whilst 4-cycles and 2-cycles by 2-cycles do
not commute. Therefore, the Sylow 2-subgroup(s) are isomorphic to D4 (see also
(b) on page 156), and it is easily seen that

S4 has three Sylow 2-subgroups isomorphic to D4 in one conjugacy class:
〈(1,2,3,4), (1,3)〉, 〈(1,2,4,3), (1,4)〉 and 〈(1,3,2,4), (1,2)〉.

These subgroups are not normal (there is more than one, see Theorem 6.10).

Remaining Subgroups

Next we look for possible subgroups of order 12. If one exists, it would be normal
by Problem 2.19. By Theorem 3.11, we have

the set of even permutations in S4 forms a (normal) subgroup of order 12
which is isomorphic to A4.

This is the only subgroup of order 12. A normal subgroup must include the neutral
element, and be a union of conjugacy classes (Theorem 2.29), and in this case there
are no other possibilities. This can be checked using the table opposite.

By Lagrange’s Theorem (Theorem 2.27) possible subgroup orders for S4 are
1, 2, 3, 4, 6, 8, 12, and 24. We have treated the cases 2, 3, 8, and 12; and, as with all
groups,

S4 has (normal) subgroups 〈e〉 and S4.

Hence we need to consider possible non-cyclic subgroups of orders 4 and 6. Clearly,
the permutations in S4 which fix the symbol 1 (or 2, or 3, or 4) form a subgroup
isomorphic to S3(� D3) (Problem 2.20), hence

S4 has four subgroups isomorphic to S3: 〈(1,2,3), (1,2)〉, 〈(1,2,4), (1,2)〉,
〈(1,3,4), (1,3)〉, and 〈(2,3,4), (2,3)〉.

A non-cyclic group of order 6 is isomorphic to S3 (Problem 2.20), and so this is
the only possibility. Finally, we note that S4 has nine elements of order 2, and so,
potentially, it has a number of subgroups of the type C2 × C2 � T2. First, we note
that e and the three elements in the second conjugacy class form a normal subgroup
which we denote by V , see page 19, so

S4 has a normal subgroup isomorphic to:

C2 × C2 : 〈(1,3)(2,4), (1,4)(2,3)
〉 = V. (8.1)
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No other full symmetric group (apart from S4) has a proper non-neutral normal
subgroup which is not an alternating group. After some further checking, we have,
noting that (i, j)(i, k) = (i, j, k) if i, j and k are distinct,

S4 has three non-normal subgroups isomorphic to C2 × C2 which form a sin-
gle conjugacy class: 〈(1,2), (3,4)〉, 〈(1,3), (2,4)〉 and 〈(1,4), (2,3)〉.
As we have considered all possibilities our list of subgroups of S4 is complete.

Centre As Z(S4) is a normal Abelian subgroup of S4 (Lemma 2.31), it follows that
the centre can only be V or 〈e〉, see (8.1) and the diagram opposite. But

(1,2)(3,4) · (1,3) = (1,2,3,4) �= (1,4,3,2) = (1,3) · (1,2)(3,4),

for instance, and so at least one element of V does not belong to the centre. There-
fore, Z(S4) = 〈e〉, and because of this the group S4 is called centreless.

Derived Subgroups The conjugate of a j -cycle is another j -cycle (Theorem 3.6),
and so the commutator of two elements in S4 is an even permutation and belongs
to A4. Also we have, for distinct i, j, k ∈ {1,2,3,4},

[
(i, j), (i, k)

] = (i, j)(i, k)(i, j)(i, k) = (i, j, k)2 = (i, k, j);
that is, every 3-cycle belongs to the derived subgroup, hence S′

4 � A4. For the sec-
ond derived subgroup, we have

[
(i, j, k), (i, k, l)

] = (i, l)(j, k).

By Theorem 3.12, this shows that (S4)
′′ = V , see (8.1). The third derived subgroup

is 〈e〉 because V is Abelian.

* * * * * *

The diagram given on the opposite page illustrates the structure of the lattice of
subgroups for S4. The left-hand column gives the subgroup type, the second col-
umn gives the order, and the right-hand column gives the number of subgroups.
The symbol ‘N’ indicates that the corresponding subgroup is normal in S4. The sub-
groups are circled and the lines between the circles correspond to the subgroup rela-
tion working upwards; so, for example, 〈(1,2,3)〉 is a (maximal) subgroup of both
〈(1,2,3), (1,2)〉 and A4. Also the rows in the diagram correspond to subgroup con-
jugacy classes. To simplify the diagram slightly, the linkages with the six subgroups
generated by single 2-cycles are indicated by arrows and the letters A,B, . . . ,F .
For instance, the far left-hand downward arrow with A,D,E below it indicates
that the subgroup generated by (1,2,3) and (1,2) has itself three subgroups of
order 2 (they are 〈(1,2)〉 labelled E, 〈(1,3)〉 labelled A and 〈(2,3)〉 labelled D).
The far right-hand upward arrow labelled F indicates that 〈(3,4)〉 is a subgroup of
two of the subgroups isomorphic to S3 on the left-hand page (〈(1,3,4), (1,3)〉 and
〈(2,3,4), (3,4)〉 again with the label F ). Note that 〈(3,4)〉 is also a subgroup of
〈(1,2), (3,4)〉 with the label E,F below it.
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Central Series The lower Di (G) and upper Zi (G) central series of a group G are
defined in Section 10.1. For S4 the lower series has two terms: D1 = S4 and D2 �
S′

4 = A4, and the upper series only has one term Z0 = 〈e〉 because S4 is centreless.
S4 is the only group of order 24 whose lower and upper series have different lengths,
and this shows that the group is not nilpotent.

Frattini Subgroup This subgroup is defined as the intersection of all maximal sub-
groups of the group in question, see Section 10.2. The maximal subgroups of S4
include 〈(2,3,4), (2,3)〉, 〈(1,2,3,4), (1,3)〉 and 〈(1,3,2,4), (1,2)〉; as these have
no common element except e we deduce that the Frattini subgroup �(S4) = 〈e〉.

Fitting Subgroup and Radicals The group S4 has only four normal subgroups and
the Fitting subgroup (Section 10.2) must be one of these. It is also nilpotent, and so
it cannot be isomorphic to either A4 or S4, see Theorem 7.9. Hence by maximality,
the Fitting subgroup F(S4) = V � C2 × C2. The p-radical Op(S4) is defined as
the intersection of the Sylow p-subgroups, see Problem 6.9(vi). In S4, we have
O2(S4) = V and O3(S4) = 〈e〉.

Automorphisms The basic properties were given in Section 4.4 and by Corol-
lary 5.27. As S4 is centreless the subgroup of inner automorphisms InnS4 is iso-
morphic to S4 (Corollary 5.27). The group has no outer automorphisms, see Prob-
lem 8.5, and so the full automorphism group of S4, that is, AutS4, is isomorphic to
S4 itself, and all automorphisms are given by conjugation.

Representations It was first shown by von Dyck in 1882 that S4 has the presenta-
tion

G1 = 〈
a, b | a2 = b3 = (ab)4 = e

〉 � S4, (8.2)

see Problem 3.18. To prove this we set a 	→ (3,4) and b 	→ (1,2,3), then ab 	→
(1,2,3,4), and a, b and ab satisfy the relations in (8.2). Hence G1 is a homomor-
phic image of S4, and it is a straightforward exercise to show that it contains 24
distinct elements, therefore it is isomorphic to S4. The group has several other easily
defined presentations, one using involutions was given in Problem 3.21�. Another is

S4 � 〈
a1, b1, c1 | a3

1 = b3
1 = c4

1 = (a1b1)
2 = (b1c1)

2 = (c1a1)
2 = (a1b1c1)

2 = e
〉

see Problem 8.5(ii). This presentation is sometimes denoted by G3,3,4 where the
general group Gr,s,t is defined as above except that the powers 3, 3 and 4 are re-
placed by r, s and t , respectively. It arose during the study of the projective gen-
eral linear group PGLn(q), that is, the general linear group GLn(q) factored by
its centre; see Coxeter and Moser (1984), page 96. We also have A5 � G3,5,5 and
PGL2(7) � G3,7,8 which has order 336.

The group S4 can also be treated as the rotational symmetry group of a (regular)
octahedron as follows. An octahedron has eight identical equilateral triangular faces,
and so it has three types of symmetry: (i) rotation by π about a line through the
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centre points of opposite edges, (ii) rotation by 2π/3 about a line through the centres
of opposite faces and (iii) rotation by π/2 about a line through opposite vertices. To
show that this group is isomorphic to S4, use the presentation given in (8.2), and
associate a rotation of type (i) with a, a rotation of type (ii) with b, and a rotation of
type (iii) with ab. The reader should check that a rotation of type (i), followed by a
rotation of type (ii), has the same effect on an octahedron as a rotation of type (iii).
For this reason some authors call S4 the octahedral group. Note also that a cube can
be inscribed in an octahedron (with its vertices corresponding to the centres of the
faces), and vice versa; and so S4 can equally be treated as the rotational symmetry
group of a cube. But the full symmetry group (that is, if reflections are also counted)
of an octahedron or a cube is S4 × C2. This can also be represented by a wreath
product of the form C2 wr S3 (page 156).

There are a number of representations of S4 as a matrix group. In Problem 3.12,
we showed how a permutation group can be represented as a group of ‘permutation’
matrices, and in Problem 12.6 we prove that S4 < L2(7) � GL3(2).

We give two more here. First, working over F2, the two element field, let

A =
⎛

⎝
0 0 1
1 1 1
1 0 0

⎞

⎠ , B =
⎛

⎝
0 0 1
0 1 0
1 0 1

⎞

⎠ , C =
⎛

⎝
1 0 1
1 1 0
0 0 1

⎞

⎠ .

Remember that 1 + 1 = 0 in F2. It is easily checked that C = AB,A2 = B3 =
C4 = I3, the 3 × 3 identity matrix; and so A and B generate an isomorphic copy of
S4 in GL3(2). Second, if we take the group GL2(3) and factor out its centre (which
has order 2 and is generated by the matrix

( 2 0
0 2

)
), we obtain another group of order

24 usually denoted by PGL2(3) which is isomorphic to S4; see page 170.
S4 is not decomposable (it cannot be written as a direct product with non-neutral

factors), but it has two representations as semi-direct products as follows:

S4 � C2 � A4 if we take C2 = 〈(1,2)〉 and A4 to be the set of even permu-
tations in S4; we could replace 〈(1,2)〉 by a subgroup generated by another
single 2-cycle in S4; reader, why?

S4 � S3 � T2 if, for example, we take S3 to be the subgroup of permutations
on 1, 2 and 3 only, and T2 = V , see (8.1).

Finally, note that, for groups of order 24, each of the following statements charac-
terise S4 (these are not the only characterisations, for instance, see the paragraph on
central series above): The group S4 is the only group of order 24 (Appendix C) such
that

(a) it has no normal subgroups of orders 2 or 3,
(b) it is the only group with no normal Sylow subgroups, that is, with both n2 > 1

and n3 > 1,
(c) it is centreless—its centre is the neutral subgroup,
(d) it has the largest derived subgroup,
(e) it occurs as a subgroup of A6, see Problem 3.7 and Cayley’s Theorem (Theo-

rem 4.7).
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The group S4 is also the largest soluble symmetric group, and it occurs as a
maximal subgroup of several simple groups; see the ATLAS (1985).

8.2 Special Linear Group SL2(3)

For our second example, we consider SL2(3), the group whose initial definition is as
the set of all 2 × 2 matrices with determinant 1 defined over F3, the 3-element field.
By Theorem 3.15, it has 24 elements. We shall see below that this group can be de-
fined in several ways (that is, like most groups it has several distinct representations),
but we introduce the group using direct matrix calculations via a suitable computer
algebra package such as GAP. The elements with their orders are tabulated below.
A further series of straight-forward calculations shows that the conjugacy classes of
SL2(3) are given by the rows in this table. An important point to note is that this
group has only one involution. Cauchy’s Theorem (Theorem 6.2), or Problem 2.8,
implies that at least one involution must occur as the group has even order, in this
case there are no more.

Number Element List of elements

of elements order

1 1
(

1 0
0 1

)

1 2
(

2 0
0 2

)

4 3
(

1 1
0 1

)
,
(

1 0
2 1

)
,
(

2 1
2 0

)
,
(

0 1
2 2

)

4 3
(

1 0
1 1

)
,
(

1 2
0 1

)
,
(

2 2
1 0

)
,
(

0 2
1 2

)

6 4
(

2 2
2 1

)
,
(

1 2
2 2

)
,
(

2 1
1 1

)
,
(

1 1
1 2

)
,
(

0 2
1 0

)
,
(

0 1
2 0

)

4 6
(

2 1
0 2

)
,
(

2 0
2 2

)
,
(

0 1
2 1

)
,
(

1 1
2 0

)

4 6
(

2 0
1 2

)
,
(

2 2
0 2

)
,
(

0 2
1 1

)
,
(

1 2
1 0

)

Next we look for a presentation of the group, one is as follows. If we let

a 	→
(

2 1
0 2

)
and b 	→

(
2 0
1 2

)
, (8.3)

then ab 	→ ( 2 2
2 1

)
, ba 	→ ( 1 2

2 2

)
and

a3 = b3 = (ab)2 	→
(

2 0
0 2

)
,

the unique element of order 2.
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Lemma 8.1 If

G2 = 〈
a, b | a3 = b3 = (ab)2〉,

then G2 � SL2(3).

Proof We begin by showing that

a6 = b6 = e. (8.4)

By cancellation, the relations in G2 give

a2 = bab and b2 = aba, (8.5)

and using (8.5) several times we obtain

a6 = (
a2)3 = bab2ab2ab = ba2ba3ba2b = ba2b5a2b = ba2b6ab2

= ba9b2 = b12 = a12,

and so (8.4) follows by cancellation. The maps in (8.3) and the table above
show that G2 is isomorphic to a factor group of SL2(3), hence to prove the
lemma we need to show that o(G2) = 24. This can be done directly using
(8.4) and (8.5), we leave this as an exercise, see below. For instance, (ab)3 =
ababab = a4b = b3ab = b2a2. �

This result shows that the elements of G2 are

e; a3; a2, b4, b2a, ab2; b2, a4, ba2, a2b; ab, ba, a2b2, b2a2, ab2a, ba2b;
a, b5, a5b, ba5; b, a5, ab5, b5a;
where the orders of the elements in this list correspond to those given in the table
opposite starting with e in row 1.

Subgroups of SL2(3)

The group SL2(3) has fifteen subgroups in seven conjugacy classes. As in the pre-
vious example, we begin by listing the cyclic subgroups. The group has a single
element of order 2, so

SL2(3) has a single cyclic subgroup of order 2:
〈( 2 0

0 2

)〉 � 〈a3〉.
The group has eight elements of order 3 (use table opposite), and so

SL2(3) has four cyclic subgroups of order 3:
〈( 1 1

0 1

)〉 � 〈a2〉, 〈( 1 0
1 1

)〉 � 〈b2〉,
〈( 2 1

2 0

)〉 � 〈b2a〉, and
〈( 2 2

1 0

)〉 � 〈ba2〉,
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see the Sylow entry below. Similarly, as there are six elements of order 4, the group
contains three cyclic subgroups of order 4; the intersection of any two of which
equals the unique 2-element cyclic group:

SL2(3) has three subgroups isomorphic to C4:
〈( 2 2

2 1

)〉 � 〈ab〉,
〈( 2 1

1 1

)〉 � 〈a2b2〉, and
〈( 0 2

1 0

)〉 � 〈ab2a〉.
Finally, as there are eight elements of order 6, we have

SL2(3) has four cyclic subgroups of order 6:
〈( 2 1

0 2

)〉 � 〈a〉, 〈( 2 0
1 2

)〉 � 〈b〉,
〈( 0 1

2 1

)〉 � 〈a5b〉, and
〈( 0 2

1 1

)〉 � 〈ab5〉,
and again each contain the matrix

( 2 0
0 2

)
.

Sylow and Remaining Subgroups

The four Sylow 3-subgroups are listed above. As in the S4 case, the group has four
non-normal cyclic Sylow 3-subgroups. Now SL2(3) has a single element of order 2.
The group C8 cannot be a Sylow 2-subgroup (because SL2(3) contains no elements
of order 8), and of the remaining groups of order 8, Q2 is the only one with a single
involution, hence

SL2(3) has a single subgroup isomorphic to Q2 which is generated by
( 2 2

2 1

)

and
( 1 2

2 2

)
, that is, by ab and ba; it is normal (by Sylow 4).

No other subgroups exist apart from those listed above, 〈e〉 and SL3(2) itself.
By Lagrange’s Theorem (Theorem 2.27) and the Sylow theory we only need to
consider non-cyclic subgroups of orders 4, 6 and 12. But each of these groups, that
is, C2 × C2, D3, and the five groups of order 12, have more than one element of
order 2, hence they cannot be isomorphic to a subgroup of SL2(3).

Centre As a3(= b3) commutes with both a and b, we have 〈a3〉 ≤ Z(SL2(3)). In
fact, we have equality because the centre is both normal and Abelian, and SL2(3)

has no other normal Abelian subgroup.

Derived Subgroups Using the presentation given in Lemma 8.1, and (8.4)
and (8.5), we have

[a, b] = a5b5ab = a2b2ab = a2ba2 = ab2a,

and similarly [b, a] = ba2b. Hence (SL2(3))′ equals either 〈ab, ba〉 � Q2 or the
group itself. But as SL2(3)/Q2 is Abelian (it has order 3), we have (SL2(3))′ ≤
Q2 (Problem 4.6(ii)) and so these groups are equal. In Problem 6.3, we showed
that (SL2(3))′′ = 〈a3〉, and so the third derived subgroup is 〈e〉. Also note that
Z(SL2(3)) = (SL2(3))′′.
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The diagram above illustrates the subgroup structure of SL2(3)—note there is no
subgroup of order 12. The first left-hand column gives the subgroup type, and the
second column gives the corresponding order. As before the symbol N indicates that
the subgroup in question is normal in the group, and the rows list the members of
the subgroup conjugacy classes.

* * * * * *

Central Series Both the lower and upper central series of SL2(3) have two terms
and the group is not nilpotent, see Section 10.1:

Lower series: D1
(
SL2(3)

) = SL2(3) and D2
(
SL2(3)

) = SL2(3)′ � Q2,

Upper series: Z0
(
SL2(3)

) = 〈e〉 and Z1
(
SL2(3)

) = Z
(
SL2(3)

) � C2.

Frattini Subgroup This normal subgroup is the intersection of the maximal sub-
groups of SL2(3). From the diagram above we can see immediately that the Frattini
subgroup �(SL2(3)) equals

〈( 2 0
0 2

)〉
(=Z(SL2(3))).
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Fitting Subgroup and Radicals The Fitting subgroup is the largest normal nilpo-
tent subgroup of SL2(3). This is clearly

〈( 2 1
1 1

)
,
( 1 1

1 2

)〉
(isomorphic to Q2) because it

is a 2-group and so nilpotent, see page 213. Note that in this case the Fitting sub-
group equals the Sylow 2-subgroup. The 2-radical O2(SL2(3)) � Q2, and so equals
the Fitting subgroup, and O3(SL2(3)) = 〈e〉.

Automorphisms As o(Z(SL2(3)) = 2, the subgroup of inner automorphisms
Inn SL2(3), has order 12 (Corollary 5.27), and is isomorphic to A4. The reader
should check this by considering the factor group given by SL2(3)/Z(SL2(3)), see
Problem 4.4(iv). The group also has an outer automorphism φ which can be de-
fined by interchanging the generators a and b; that is aφ = b and bφ = a; note that
by Lemma 8.1 the relations of this group are symmetric in a and b. After some
further checking (using Theorem 3.6) we see that the full automorphism group is
isomorphic to S4 generated by the inner automorphisms and φ.

Representations We introduced SL2(3) as a matrix group, we also gave a presen-
tation in Lemma 8.1. It has a second presentation given by

SL2(3) � 〈
a1, b1 | a3

1 = e, a1b1a1 = b1a1b1
〉
,

see Problem 8.6(i).
The group is a subgroup of S8 (and not of S7—this can be checked theoretically,

see Problem 8.6(ii), or by using a computer search), and so it can be represented as
a permutation group as follows:

SL2(3) � 〈
(1,2)(3,5,7,4,6,8), (1,3,6,2,4,5)(7,8)

〉 ≤ S8.

Note that if the elements in the permutation representation above are denoted by
a and b we have a3 = b3 = (1,2)(3,4)(5,6)(7,8) = c, an element of order 2, and
(ab)2 = ((1,4,2,3)(5,8,6,7))2 = c, see Lemma 8.1. Further, SL2(3) is sometimes
called the binary tetrahedral group because if we factor it by its centre (of order 2)
we obtain a group isomorphic to A4 which as we have seen can be represented as
the symmetry group of the tetrahedron, see Problem 3.10. The group also has a
representation as a semi-direct product:

SL2(3) � C3 � Q2 if we take C3 to be one of the Sylow 3-subgroups, and Q2

to be the unique Sylow 2-subgroup.

Finally, note SL2(3) can be described as the only group of order 24 which

(a) has no subgroup of order 12;
(b) has the property that its derived and Sylow 2-subgroups are equal;
(c) has the smallest sockel (product of minimal normal subgroups), see (17) on

page 293.
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8.3 Exceptional Group E

For our final example, we consider what we call the exceptional group E of order 24.
It is not a member of some easily recognisable class, but it can be defined as a semi-
direct product in several different ways and it has an important connection with the
alternating group A7; see the representation subsection below. It does also appear
once a list of all groups of order 24 is sought (Problems 8.10� and 8.11�), and it has
a kind of ‘symmetry representation’. We define the group E by the presentation

E = 〈
a, b, c | a4 = b2 = c3 = e, bab = a3, bcb = c, aca3 = c2〉. (8.6)

As a and b generate a copy of D4 and c generates a copy of C3, the group E can be
treated as a semi-direct product C3 by D4 as 〈c〉 � C3 is normal in E. We shall see
later that it has at least four distinct and easily defined representations as semi-direct
products.

We show first that o(E) = 24 using the following

Lemma 8.2 The element a2 ∈ E commutes with both b and c, and so belongs to
the centre of E.

Proof The last relation for E in (8.6) can be rewritten as ac = c2a, and so

a2c = aac = acca = c2aca = c4a2 = ca2.

Two applications of the first relation in (8.6) give ba2 = a2b, and the result
follows from these two equations. �

Using this lemma, we can easily derive the following equations which we use
when working with the group E.

cb = bc,

ba = a3b, ba2 = a2b, ba3 = ab,

ca = ac2, ca2 = a2c, ca3 = a3c2,

c2a = ac, c2a2 = a2c2, c2a3 = a3c.

(8.7)

Theorem 8.3 o(E) = 24.

Proof Using (8.7), we note that every element of E can be put in the form
arbsct . This shows that o(E) ≤ 24, and to prove equality use the fact that E

is defined as a semi-direct product and in this product we have arbsct = e

implies that r = s = t = 0. �

A list of elements and conjugacy classes of E is tabulated overleaf where, as in
the previous examples, the rows give the conjugacy classes, nine in all.
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Number of Element List of elements

elements order

1 1 e

1 2 a2

2 2 b, a2b

6 2 ab, a3b, abc, a3bc, abc2, a3bc2

2 3 c, c2

6 4 a, a3, ac, a3c, ac2, a3c2

2 6 a2c, a2c2

2 6 bc, a2bc2

2 6 bc2, a2bc

Subgroups of E

The group E has thirty subgroups in sixteen conjugacy classes. As in the previous
examples (S4 and SL2(3)), we begin by listing the cyclic subgroups using the table
above. We have

E has nine cyclic subgroups of order 2 in three conjugacy classes (of sizes 1,
2 and 6): 〈a2〉; 〈b〉, 〈a2b〉; 〈ab〉, 〈a3b〉, 〈abc〉, 〈a3bc〉, 〈abc2〉, and 〈a3bc2〉.

As only two elements of order three occur in E, that is, c and c2, we have

E has a unique cyclic subgroup of order 3: 〈c〉.
This subgroup is the unique Sylow 3-subgroup, and so by Theorem 6.10, it is nor-
mal. There are six elements of order 4, and so

E has three cyclic subgroups of order 4: 〈a〉, 〈ac〉, 〈ac2〉 which form a single
conjugacy class.

Note that the intersection of any two of these subgroups is 〈a2〉.
Lastly, there are six elements of order 6, hence

E has three cyclic subgroups of order 6: 〈a2c〉, 〈bc〉, 〈a2bc〉; the first is nor-
mal and the remaining two form a conjugacy class, use a3〈bc〉a = 〈a2bc〉,
et cetera.

Sylow and Non-cyclic Subgroups

The unique Sylow 3-subgroup was given above. For Sylow 2-subgroup(s), we can
see directly from the definition of E that the subgroup generated by a and b is
isomorphic to D4, and so by the Sylow theory all Sylow 2-subgroups (and so all
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subgroups of order 8) are isomorphic to D4. There are three in all, and they form a
single conjugacy class by Sylow 2; hence

E has three Sylow 2-subgroups isomorphic to D4: 〈a, b〉, 〈ac, b〉, 〈ac2, b〉.
By Lagrange’s Theorem and the Sylow theory, E could also have non-cyclic

subgroups of orders 12, 6 or 4; in fact, this is true in all three cases as we show now.

Order 12 There are five (isomorphism types of) groups of order 12 (Section 7.3).
Perhaps surprisingly three occur as subgroups of E; cf. the Sylow theory. The group
C12 cannot be a subgroup because E contains no elements of order 12. Also A4

cannot be a subgroup because it contains eight elements of order 3, whilst E has
only two.

On the positive side, we note first that there are eleven elements in E which can
be expressed in terms of the generators a and c only, see table opposite; hence,
together with e they form a subgroup. Referring to the dicyclic group discussed on
pages 59, 130 (for metacyclic representation) and 159, we see that

E has one subgroup isomorphic to Q3: 〈a2c, a〉 � 〈a, c〉.
Secondly, a2 commutes with both b and c (Lemma 8.2), and so also with bc,
o(a2) = 2 and o(bc) = 6. Hence

E has a subgroup isomorphic to C6 × C2: 〈bc, a2〉.
No other element of order 2 commutes with an element of order 6, and so E has
no further subgroups of this type. The final possibility is D6. Here again we look
for an element x of order 2 and an element y of order 6 which in this case satisfy
xyx = y5. We have, noting that o(a2c) = 6 and o(ab) = 2,

E has one subgroup isomorphic to D6: 〈a2c, ab〉.

Order 6 The element c and an element of order 2 could form part of a subgroup
isomorphic to D3. After some checking we find that

E has two subgroups isomorphic to D3: 〈c, ab〉 and 〈c, a3b〉 which form a
single conjugacy class.

The cyclic groups of order 6 were listed above.

Order 4 The cyclic case was treated on page 178. As a2 belongs to the centre by
Lemma 8.2 (in fact, Z(E) = 〈a2〉, see below), and there are a further eight elements
of order 2, we have after some checking

E has four subgroups isomorphic to the 4-group T2 � C2 × C2: 〈a2, b〉,
〈a2, ab〉, 〈a2, abc〉, and 〈a2, abc2〉; the first is normal (note that bab = a2),
and the remaining three form another conjugacy class.

Having tried all possibilities, the list of subgroups of E is now complete.
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The diagram above illustrates the subgroup structure of the group E. The left-hand
column gives the subgroup types; generators, but not relations, are given in the main
diagram. For the sake of clarity and simplicity, only one representative of each sub-
group conjugacy class is illustrated, the number on the right-hand side of each entry
gives the size of the corresponding conjugacy class. If this number is ‘1’, then there
is a single subgroup in the class, and it is normal in E (Theorem 2.29).
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Finally, we ask which of these thirty subgroups are normal? In fact, nine have this
property. A subgroup of index 2 is normal, hence the three subgroups of order 12
just listed are normal, and E and 〈e〉 are normal by definition. The remaining normal
subgroups are obtained by checking the element table on page 178 and noting that a
normal subgroup is always a union of conjugacy classes including the neutral class
(Theorem 2.29). Hence the remaining normal subgroups are given as follows:

〈a2〉 containing classes 1 and 2 (order 2),

〈c〉 containing classes 1 and 3 (order 3),

〈a2, b〉 containing classes 1, 2 and 3 (order 4), and

〈a2c〉 containing classes 1, 2, 4, and 6 (order 6).

The reader should check that the other normal subgroups are also unions of conju-
gacy classes, and no other subgroup has this property.

Centre Previously we noted that 〈a2〉 ≤ Z(E) (Lemma 8.2). In fact, equality occurs
as we can show now. The centre Z(E) is a normal Abelian subgroup of E that
contains 〈a2〉. Referring to the calculations above and the diagram opposite, we see
that if Z(E) �= 〈a2〉 then it can only be 〈a2, b〉 or 〈a2c〉. Both of these are impossible
because neither b nor c belongs to Z(E) as they do not commute with a2. Hence
Z(E) = 〈a2〉.

Derived Subgroups Using (8.7), we have [a, b] = a3bab = a2 and [a, c]2 =
(a3c2ac)2 = c, hence a2, c ∈ E′ and so 〈a2c〉 ≤ E′. On the other hand, Q3 �
〈a, c〉 � E and E/Q3 is Abelian, which shows by Problem 4.6 that E′ ≤ Q3. But
this also applies to both C6 × C2 and D6, and so E′ is contained in the intersection
of these subgroups, and this is 〈a2c〉. Hence we have equality, that is, E′ = 〈a2c〉.
As this subgroup is Abelian E′′ = 〈e〉.

Central Series The lower and upper central series both have length 3, they are

Lower series: D1 = E, D2 = E′ � 〈a2c〉 � C6 and D3 = 〈c〉 � C3,

Upper series: Z0 = 〈e〉, Z1 = Z(E) = 〈a2〉 � C2, and Z2 = 〈a2, b〉 � C2 × C2.

Note that D3 = [D2,E] by definition, and so the first line above is easily checked.
Also Z2 is defined as the preimage of Z(E/Z1) = Z(E/〈a2〉) under the natural
homomorphism from E to E/Z1, see page 210. We have Z(E/〈a2〉) � 〈a3〉 � C2;
the reader should now check that the preimage is as stated above. As Dn �= 〈e〉
(all n), E is not nilpotent.

Frattini Subgroup This subgroup is the intersection of the six maximal subgroups
of E. It cannot contain a because a �∈ 〈a2, bc〉, it cannot contain b because b �∈ 〈a, c〉,
and it cannot contain c because c �∈ 〈ac, b〉. But each of the six maximal subgroups
does contain a2, and so in this case �(E) = 〈a2〉(= Z(E)).
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Fitting Subgroup and Radicals This subgroup is the largest normal nilpotent sub-
group of E. Neither Q3 nor D6 is nilpotent (they cannot be expressed as direct prod-
ucts of their Sylow subgroups), but C6 ×C2 is nilpotent—it is Abelian so automati-
cally has this property. Hence the subgroup 〈a2, bc〉 is the (unique) Fitting subgroup
F(E). Referring to Problem 6.9(vi), we see that the 2-radical O2(E) = 〈a2, b〉,
the intersection of the three Sylow 2-subgroups, and the 3-radical O3(E) = 〈c〉
as the Sylow 3-subgroup is normal. Note that the product of these radicals equals
F(E) = 〈a2, bc〉; see Theorem 10.24.

Automorphisms As in the previous example (SL2(3)), the order of the centre of
the group of E is two, and so o(InnE) = 12. In this case, InnE � D6 (use Corol-
lary 5.27). Also as in the previous example, there are outer automorphisms and
o(AutE) = 24. One outer automorphism φ is defined by

aφ = a, bφ = b and cφ = c2.

Automorphisms map elements of order 3 to elements of order 3, and as E has ex-
actly 2 elements of order 3, the map defined above is an automorphism. After some
further checking we see that the full automorphism group AutE is isomorphic to
D6 × C2 generated by the inner automorphisms and φ.

Representations As noted at the beginning of this section, the group E has few
‘natural’ representations. It was defined by a three generator presentation, and it is
easily seen that it has the two generator presentation:

E � 〈
a, d | a4 = d6 = (ad)2 = (a3d)2 = e

〉
(8.8)

by setting bc = d in the original presentation.
The group E forms a notable subgroup A7. The alternating group A7 has 105

involutions each of which consists of pairs of disjoint 2-cycles, and they form a
single conjugacy class. (Note S7 also has 105 involutions each consisting of pairs
of disjoint 2-cycles, so use Problem 5.21(iii).) Hence using Theorem 5.19 we see
that the centraliser of an A7 involution has order 24, and for each such involution
the corresponding centraliser is isomorphic to E. This can be proved as follows.
Consider, for example, the involution g = (1,2)(3,4). Clearly, a permutation of the
set {5,6,7} commutes with g, as do the four cycle (1,3,2,4) (note (1,3,2,4)2 = g)
and the 2-cycle × 2-cycle (1,3)(2,4). Hence as we know the order of the centraliser,
it is straightforward to check that it can be taken in the form

〈
(1,3,2,4)(6,7), (1,3)(2,4), (5,6,7)

〉 ≤ A7, (8.9)

and if we set

a 	→ (1,3,2,4)(6,7), b 	→ (1,3)(2,4) and c 	→ (5,6,7)

it is also easily checked that the relations in our original definition of E are satisfied
by the permutations a, b and c listed above. Therefore, (8.9) provides a permutation
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representation for the group E. The vital connection between involution centralisers
and simple groups is discussed in Chapter 12.

Coxeter and Moser (1984, page 110) give a representation of E as the symmetry
group of a polygonal figure, but it cannot be realised in three dimensions. The group
is also isomorphic to a subgroup of SL2(C) generated by the matrices

(
0 1

−1 0

)
,

(
ω 0
0 −ω2

)
,

where ω3 = 1 and ω �= 1; see the presentation (8.8). A second matrix representation
is given by the following 7 × 7 matrices A and D defined over the 2-element field
F2 where the dots stand for zeros, see (8.8),

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜⎜
⎝

. . . 1 . . .

. . 1 . . . .

. 1 . . . . .

1 . . . . . .

. . . . 1 . .

. . . . . . 1

. . . . . 1 .

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟⎟
⎠

and D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜⎜
⎝

. 1 . . . . .

1 . . . . . .

. . . 1 . . .

. . 1 . . . .

. . . . . . 1

. . . . . 1 .

. . . . 1 . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟⎟
⎠

.

A representation distinct from the above, and also using 4 × 4 matrices defined over
F2 is given by Problem 8.7, it also uses (8.8).

The group E was defined by a semi-direct product. In fact, it has at least four
representations as a semi-direct product as follows:

E � D4 � C3 by definition;
E � C2 � Q3 if we take 〈b〉 for C2 and 〈a, c〉 for Q3;
E � C2 � D6 if we take 〈b〉 for C2 as above, and

〈
a2c, ab

〉
for D6;

E � D3 � T2 if we take 〈c, ab〉 for D3 and
〈
a2, b

〉
for T2.

Finally, note that E shares many properties with D12 and to a lesser extent with
D4 × C3 and D6 × C2, but it is the only group of order 24 which

(a) is indecomposable (it cannot be written as a direct product of smaller but non-
neutral subgroups) and has three non-isomorphic subgroups of order 12,

(b) contains six elements of order 4 and six elements of order 6.

8.4 Problems

Problem 8.1 For each of the groups discussed in this chapter, find (a) their largest
factor groups, (b) the centralisers of each of their elements, (c) the normalisers of
each of their subgroups.
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Problem � 8.2 Prove that a group of order 24 possesses a normal subgroup of
order 4 or 8. (Hint. Consider Sylow 2-subgroups and their normalisers, and then
apply Theorem 5.8.)

Problem 8.3 The group F3,8 is defined by

F3,8 = 〈
a, b | a3 = b8 = e, b−1ab = a2〉.

Establish the following facts/properties concerning this group.

(i) o(F3,8) = 24.
(ii) All proper subgroups are cyclic, in this case the group is called Frobenius or

metacyclic; see Theorem 6.18 and Web Section 6.5.
(iii) All of its subgroups except the Sylow 2-subgroups are normal.
(iv) F3,8 � C8 � C3, describe the implied homomorphism (Section 7.3), and find

the centre and the derived subgroup.
(v) Determine the Frattini and Fitting subgroups.

Problem 8.4 Let G be given by

G = 〈
c, d | c2 = d2 = (cd)3〉.

(i) Show that c8 = e.
(ii) List the elements of G.
(iii) Using the previous problem, prove that G � F3,8.

Problem 8.5 (i) Show that AutS4 � S4. Begin by showing that an automorphism
preserves 2-cycles if and only if it is inner.

(ii) Using the substitutions a1 = b2, b1 = abab2, c1 = ab and a = c1a1, b = a2
1

show that the second presentation of the symmetry group S4 given on page 170 is
valid.

Problem 8.6 (i) Using the permutation representation for SL2(3) given on page 176
show that the second presentation for this group also given on page 176 is valid.
(Hint. Begin with the substitution a1 = a2, b1 = b4.)

(ii) Show that SL2(3) is not isomorphic to a subgroup of Sn if n < 8. One method
is as follows. Consider the Sylow 2-subgroups of the groups involved, and note that
a Sylow 2-subgroup of S6 is isomorphic to D4 × C2.

Problem 8.7 We have seen that E can be treated as a subgroup of SL7(2), but it is
also isomorphic to a subgroup of SL4(2), why? Note that GL4(2) � SL4(2) � L4(2).

Problem 8.8 (i) Investigate the dicyclic group Q6 = 〈a, b | a6 = b2 = (ab)2〉, see
Appendix C. You should determine its subgroups, indicate which are normal and
which are maximal, draw a subgroup lattice diagram, find the centre, et cetera, and
look for possible representations, this is not easy!! See also Problem 3.22.
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(ii)� In Appendix C, we state that Q6 has a ‘maximum Cayley count’, that is (via
Cayley’s Theorem (Theorem 4.7)) Q6 having order 24 is isomorphic to a subgroup
of S24, but it is not isomorphic to a subgroup of Sn if n < 24. Complete the following
sketch proof of this fact. For Qn to act transitively on m points, m must be a divisor
of 4n. Secondly, note that S6 contains no dicyclic subgroups. If m = 8, the point
stabiliser would have an order divisible by 3 but the only subgroup of Q6 of order
3 is normal, and thus lies in the kernel of the action. Finally, note that a similar
argument applies when m = 12, hence the only possibility is m = 24. (This proof
was suggested to B. Fairbairn.)

Problem 8.9 Investigate the group A4 × C2, see Appendix C. As in the previous
problem, you are asked to find its subgroup structure, and look for representations.
Note that it is an example of a group which can be represented as both a direct
product and a semi-direct product which is not direct.

Problem 8.10� In this and the next problem, you are asked to show that there are
exactly 15 (isomorphism classes of) groups of order 24. By the Sylow theory, each
group with this order has one or four Sylow 3-subgroups. In this problem, consider
groups G with a unique Sylow 3-subgroup. Using the direct and semi-direct product
theory, show that there are 12 types. (Hint. Aut(C3) � C2. In Section 6.1, we listed
the groups of order 8, so you will need to consider homomorphisms mapping these
groups to C2, that is, you will need to consider their subgroups of order 4.)

Problem 8.11� Continuing the work in the previous problem, now suppose G has
four Sylow 3-subgroups. Using the Orbit–Stabiliser Theorem (Theorem 5.7) show
that the normaliser of each Sylow 3-subgroup of a group of this type has order 6,
and the intersection of all of these normalisers is a subgroup H of order at most 2.
Now use Theorem 5.15. Show that if o(H) = 1 then G � S4, and if o(H) = 2 then
G is isomorphic to a semi-direct product C3 � K where K � C2 × C2 × C2 or Q2
as these last two groups are the only ones of order 8 whose automorphism groups
have elements of order 3, a fact that you may take for granted; see Section 4.4. You
could also consider what is needed to prove this last statement.

Problem 8.12 (Project—Groups of Order 16) Investigate the class of groups of
order 16. You should find nine of ‘standard’ type, that is direct products, dihedral,
et cetera, and five of ‘exceptional’ or semi-direct type; see Problems 3.20, 3.23,
6.4, 6.23, and 7.20. In each case, list the elements and their orders, the subgroups
and their orders, find the centres and the derived, Frattini and Fitting subgroups,
and describe any unusual features. They can be characterised by considering their
‘Abelianisation’. For each group G, this means consider G/G′; see Problem 4.6,
Moody (1994) pages 80 to 84, and Appendix C.



Chapter 9
Series, Jordan–Hölder Theorem
and the Extension Problem

Continuing our study of group properties, we take a new approach and consider
their normal subgroup structure. This will introduce two major classes of groups—
nilpotent and soluble—they play a central role in the theory; nilpotent groups will
be discussed in Chapter 10 and soluble groups in Chapter 11. But first, in this chap-
ter we prove the Jordan–Hölder Theorem which provides details about a particular
series called the composition series. Roughly speaking, this theorem says that we
can ‘build’ all finite (and some infinite) groups from simple groups using exten-
sions, and so it demonstrates the importance of simplicity in our quest to discover
as complete picture as possible of all groups. We give a brief introduction to ex-
tension theory in the second section of this chapter, it extends the work on semi-
direct products discussed in Chapter 7. As we shall see, although this theory has
developed over many years it does not yet provide a complete account, and further
progress here would greatly benefit the whole of group theory. One major result in
this area is the Schur–Zassenhaus Theorem, first proved in full generality in 1937.
It states:

If K is a normal subgroup of a finite group G and (o(K), o(G/K)) = 1, then
G is isomorphic to a semi-direct product of K by a group A isomorphic to
G/K ; that is, G can be treated as a particularly simple kind of extension
(a ‘split’ extension) of K by A.

More complex extensions arise when o(K) and o(A) = o(G/K) have common fac-
tors which, as noted above, will be discussed in Section 9.2. We shall give a proof
of this important result in Web Section 9.4, it introduces some elementary as-
pects of cohomology theory which are needed in the case when the subgroup A is
Abelian.

Each of these topics uses the notion of a series, that is, a finite sequence of sub-
groups of the group in question. Properties of their factors will provide information
about these groups. The nilpotent and soluble groups mentioned above have series
whose factors have special properties.

H.E. Rose, A Course on Finite Groups,
Universitext,
DOI 10.1007/978-1-84882-889-6_9, © Springer-Verlag London Limited 2009
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9.1 Composition Series and the Jordan–Hölder Theorem

We begin with the basic definitions of a series. Given a group G and a subgroup J

of G, a series from J to G is a finite sequence

J = H0 ≤ H1 ≤ · · · ≤ Hn = G (9.1)

of subgroups of G where each Hi is a subgroup of its successor. If as is often the
case J = 〈e〉, we say that (9.1) is a series for G.

The subgroups Hi in this series are called terms.
The length of the series is the number of terms excluding G itself, that is, the

number of steps in the series, n for (9.1).
A series is called proper if no two of the terms are equal, that is, Hi < Hi+1 for

i = 0, . . . , n − 1.
If Hi � Hi+1, the factor group Hi+1/Hi is called a factor of the series.
A second series J = K0 ≤ · · · ≤ Km = G is called a refinement of the first series

if each term Hi in (9.1) also occurs in the second series.
The refinement K0, . . . ,Km given above is called proper if there is at least one

new term, that is, for all n there exists n′ such that Hn = Kn′ , and for some r ,
Kr �= Hi , for i = 0, . . . , n.

We study three special kinds of series given by

Definition 9.1 (i) A series is called subnormal if each term Hi in the series is a
normal subgroup of its successor; in (9.1) Hi−1 � Hi , for i = 1, . . . , n.

(ii) A subnormal series is called normal if each term in the series is also normal
in G; in (9.1) Hi � G, for i = 0, . . . , n.

(iii) A proper subnormal series for G is called a composition series for G if it
has no proper subnormal refinement. The factors of a composition series are called
composition factors.

Notes (a) Normality is not transitive, and so the property given in (ii) is stronger
than that given in (i). (b) A refinement of a normal series need not be normal; see
Example (a) below. (c) There is no consistent terminology in the literature, some
authors call our subnormal series ‘normal’, and our normal series ‘invariant’; and
some older books are different again.

Examples (a) Let G = SL2(3) (Section 8.2). The diagram on page 175 shows that

〈e〉 � 〈
a3〉 � C2 � 〈ab, ba〉 � Q2 � SL2(3)

is a normal series for SL2(3). (Reader, what do you notice about the factors of this
series?) It has the refinement

〈e〉 � 〈
a3〉 � 〈ab〉 � C4 � 〈ab, ba〉 � SL2(3).

This new series is subnormal and has no further refinements, and so it is a compo-
sition series for SL2(3). It is not a normal series because the subgroup 〈ab〉 is not
normal in SL2(3).
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(b) The group S5 has the series

〈e〉 � A5 � S5.

This is a normal series having no proper refinement because A5 is simple, and so it
is a composition series for S5. The factors are isomorphic to A5 and C2(� S5/A5),
that is, the factors are simple groups.

(c) One normal series for the group C105 = 〈a〉 (it is Abelian, so all subgroups
are normal) is as follows:

〈e〉 � C5 � 〈
a21〉 � C105

where the factors are isomorphic to C5 and C21, one of which is not simple. But the
series has the proper refinement (which cannot be further refined):

〈e〉 � C5 � C15 � 〈
a7〉 � C105.

This is a composition series with simple factors isomorphic to C5,C3 and C7. Fur-
ther examples can be found in the (subgroup lattice) diagrams given in Chapter 8.

We begin our development of these ideas by proving some elementary facts about
composition series. We say that “K is a maximal normal subgroup of a group G” if
K is a proper normal subgroup of G and there is no proper normal subgroup of G

which properly contains K , that is, K � G, and if K ≤ J � G then J = K or J = G.
Note that by Definition 2.12(iii) a maximal subgroup is always proper. We have

Lemma 9.2 (i) Suppose K � G. The factor group G/K is simple if and only if K is
a maximal normal subgroup of G.
(ii) If K1 and K2 are maximal normal subgroups of G and K1 �= K2, then K1 ∩ K2
is a maximal normal subgroup of both K1 and K2.

Proof (i) This follows directly from the Correspondence Theorem (Theo-
rem 4.16)—if G/K has no proper non-neutral normal subgroup, then G has
no proper normal subgroup lying strictly above K , and vice versa.

(ii) We use Theorem 4.15, and write H = K1 and J = K2. We have
H � HJ � G by Lemma 4.14, and so as H is maximal, either HJ = H or
HJ = G. If HJ = H then J < H , as H and J are distinct and J ≤ HJ . This
contradicts the maximality of J , and so HJ = G. Hence

G/J = HJ/J � H/H ∩ J,

by Theorem 4.15. By (i), G/J is simple, so by (i) again, H ∩ J is a maximal
normal subgroup of H . We argue similarly for J . �

Theorem 9.3 (i) Every finite group G has a composition series.
(ii) All composition factors are simple.
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Proof By induction on the order of G. If G is simple, then 〈e〉 � G is a
composition series with a single simple factor; and so both (i) and (ii) follow.
Otherwise G has at least one proper non-neutral normal subgroup. Let K be a
maximal normal subgroup of G; and so, by Lemma 9.2(i), G/K is simple. By
the inductive hypothesis, K has a composition series all of whose factors are
simple. If we add G to the top end of this series for K we obtain a composition
series for G which again has all of its composition factors simple. Both parts
of the theorem follow. �

Result (i) above is not true in general for infinite groups. For example, the group
Z does not have a composition series, for by Theorem 4.19 a non-neutral subgroup
of Z has the form kZ, for some k ∈ Z, and this subgroup always has proper non-
neutral subgroups, for example, 2kZ, and all subgroups are normal as Z is Abelian.

Jordan–Hölder Theorem

We come now to the Jordan–Hölder Theorem, one of the most important in the
finite theory. In Example (c) on page 189, we gave a composition series for the
group C105, it is not unique. For instance,

〈e〉 � C3 � 〈
a35〉 � C21 � 〈

a5〉 � C105,

is another composition series for C105. In fact, this group has six composition series,
but they all have one property in common:

the set of factors, that is, {C3,C5,C7}, is the same in each case,

only the order in which they occur changes. It is a remarkable fact that this property
holds for all groups with composition series, and so in particular for all finite groups.
This example relies on the prime factorisation 105 = 3 · 5 · 7, that is, it relies on the
Unique Factorisation Theorem for Z but this latter result can be treated as a corollary
of the Jordan–Hölder Theorem.

To each group G with a composition series we associate a unique set of sim-
ple groups, its composition factors, which can be treated as the ‘building blocks’
for G. This is the Jordan–Hölder Theorem, and explains the emphasis given to sim-
ple groups in the theory as a whole although it should be noted that non-isomorphic
groups can have the same set of composition factors (Problem 9.2). We shall discuss
the Extension Problem—ways in which groups can be built up from their simple
composition factors—in the next section. Historically, the French mathematician
Jordan showed first that the orders of the factors are fixed, and later the German
mathematician O. Hölder (1859–1937) showed that the factors themselves are fixed.
In the example above, the factors C3, C5 and C7 are fixed.

The example above suggests that we make the following

Definition 9.4 Two subnormal series for a group G,

〈e〉 = H0 � H1 � · · · � Hn = G and 〈e〉 = J0 � J1 � · · · � Jm = G,
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are called equivalent if n = m, and the set of factors of the first series is the same as
the set of factors of the second series ignoring the order but counting multiplicities
in each series.

See note on isomorphism classes on page 17. It is easily checked (Problem 9.1)
that this defines an equivalence relation on the collection of subnormal series for the
group G.

The Jordan–Hölder Theorem states that two composition series for a group are
equivalent. We shall give two proofs, the first is fairly short but applies only to finite
groups although it can be adapted to apply to all groups with composition series.
This is not a major problem because many of the applications are in the finite case.
Our second proof, valid for both finite and infinite groups, requires two preliminary
results (Lemma 9.7 and Theorem 9.8) which are of interest in their own right.

Theorem 9.5 (Jordan–Hölder Theorem, Finite Case) All composition series for a
fixed finite group are equivalent.

Proof We use induction on the order of the group G. By hypothesis, we may
assume that the result holds for all groups G1 where o(G1) < o(G) as the
result clearly holds for the neutral group. Let

〈e〉 = H0 � · · · � Hn−1 � Hn = G and 〈e〉 = J0 � · · · � Jm−1 � Jm = G

be composition series for G. If Hn−1 � Jm−1, then the result holds by the
inductive hypothesis because o(Hn−1) < o(G). Hence we may assume that
Hn−1 �� Jm−1. By Lemma 9.2(ii), we have

Hn−1 ∩ Jm−1 � Hn−1 � G and Hn−1 ∩ Jm−1 � Jm−1 � G,

and both of these are composition series from Hn−1 ∩ Jm−1 to G. Also
Hn−1Jm−1 = G; this follows using the same method as in the proof of
Lemma 9.2(ii) above. Hence by assumption and the Second Isomorphism
Theorem (Theorem 4.15), we have

G/Hn−1 � Jm−1/Hn−1 ∩ Jm−1 and G/Jm−1 � Hn−1/Hn−1 ∩ Jm−1.

(9.2)
Now if 〈e〉 = K0 � · · · � Kr−1 � Kr = Hn−1 ∩ Jm−1 is a composition series
for Hn−1 ∩Jm−1 (Theorem 9.3), then we have the following four composition
series for G, see diagram overleaf:

S1 : 〈e〉 � H1 � · · · � Hn−1 � G,

S2 : 〈e〉 � K1 � · · · � Kr−1 � Hn−1 ∩ Jm−1 � Hn−1 � G,

S3 : 〈e〉 � K1 � · · · � Kr−1 � Hn−1 ∩ Jm−1 � Jm−1 � G,

S4 : 〈e〉 � J1 � · · · � Jm−1 � G.
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The diagram illustrates the four series S1, . . . , S4 used in the first proof of the
Jordan–Hölder Theorem.

The series S1 and S2 with their last terms (G) removed are composition
series for Hn−1, a group with order smaller than o(G). Hence by the inductive
hypothesis they are equivalent, and so the series S1 and S2 themselves are
equivalent as the final factor is the same in each case. A similar argument
shows that S3 and S4 are equivalent. Further, the series S2 and S3 are identical
except for their penultimate terms, and they have the same length. Also, by
(9.2) they have the same set of factors, the only difference being that the last
two factors of S2 are interchanged in S3. Therefore, S2 and S3 are equivalent,
which shows finally that S1 and S4 are equivalent by Problem 9.1. �

We give two applications here, but note that the theorem’s main significance is
the central role it imparts to simple groups via the extension problem. First, let us
return to Example (b) on page 189 where we showed that

〈e〉 � A5 � S5

is a composition series for S5 with factors C2 and A5. The Jordan–Hölder Theorem
implies that this series is unique because C2 is not isomorphic to a normal subgroup
of S5. Also, S5 cannot have another normal subgroup (other than A5). For if H � S5,
then 〈e〉 � H � S5 would be a subnormal series for S5 which could be refined to a
composition series for S5. But the factors of this new series must be C2 and A5 by
Theorem 9.5, which is impossible unless H is one of these factors.
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For our second application, we characterise completely the Abelian simple
groups. In Theorem 2.34, we showed that if the order of a group is prime then it
is simple and cyclic. Using the Jordan–Hölder Theorem we have the converse; sim-
pler proofs exist but this one is given to illustrate our main theorem ‘in action’.

Theorem 9.6 A finite simple Abelian group G �= 〈e〉 is cyclic with prime order.

Proof As G is simple and G �= 〈e〉, the series

〈e〉 � G (9.3)

is a subnormal series for G with no refinements, and so is a composition series
for G. If o(G) = mn, m > 1, n > 1 and (m,n) = 1, then G has a subgroup
H of order m (Problem 4.15) and H � G because G is Abelian. Hence 〈e〉 �
H � G is a normal series for G which can be refined to a composition series
for G one of whose factors is H , or a non-neutral subgroup of H . But this
is impossible for by the Jordan–Hölder Theorem all composition series for
G are equivalent to the series (9.3). Also, if o(G) = pr and r > 0 then, by
Theorem 6.5, G has a (proper non-neutral) normal subgroup. Hence o(G) is
prime and so, by Theorem 2.34, G is cyclic of prime order. �

We end this section by giving a second proof of our main result, one that does
not require the group to be finite. It uses the Schreier Refinement Theorem (Theo-
rem 9.8) which is proved using an extension of the Second Isomorphism Theorem
known as Zassenhaus’s Lemma (or sometimes the Fourth Isomorphism Theorem).
It is also sometimes called the ‘Butterfly Lemma’ due to the shape of the diagram on
the following page giving the subgroup structure. Zassenhaus introduced his lemma
to provide a clearer and more straight-forward proof of Schreier’s Theorem.

Lemma 9.7 (Zassenhaus’s Lemma) Suppose A′,A,B ′ and B are subgroups of a
group G where A′ � A and B ′ � B .

(i) A′(A ∩ B ′) � A′(A ∩ B).

(ii) B ′(A′ ∩ B) � B ′(A ∩ B).

(iii)
A′(A ∩ B)

A′(A ∩ B ′)
� B ′(A ∩ B)

B ′(A′ ∩ B)
.

Proof (i) As B ′ � B we have, by Problem 2.14(iv), A ∩ B ′ � A ∩ B , and as
A′ � A this gives

A′(A ∩ B ′) � A′(A ∩ B)

by Lemma 4.14(iv). This proves (i), and (ii) follows by interchanging A′ and
A with B ′ and B; see diagram overleaf.
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The diagram illustrates the subgroup structure used in the proof of Zassenhaus’s
result, the double lines indicate normality.

Proof of (iii) We use the Second Isomorphism Theorem. We have A∩B≤A′(A∩B)

and A′(A ∩ B ′) � A′(A ∩ B) by (i). Also

A′(A ∩ B) = A′(A ∩ B ′)(A ∩ B)

because A ∩ B ′ ≤ A ∩ B , and

(A ∩ B) ∩ A′(A ∩ B ′) = (
A′ ∩ B

)(
A ∩ B ′)

by Problem 2.18(i). Using these equations and applying the Second Isomor-
phism Theorem 4.15 (with G = A′(A∩B), H = A∩B and K = A′(A∩B ′)),
we obtain

A′(A ∩ B)

A′(A ∩ B ′)
= A′(A ∩ B ′)(A ∩ B)

A′(A ∩ B ′)

� A ∩ B

(A ∩ B) ∩ A′(A ∩ B ′)
= A ∩ B

(A ∩ B ′)(A′ ∩ B)
,

see the left-hand side of the diagram above. Applying the same argument we
can, using (ii), prove an exactly similar equation with the pair A′,A replaced
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by B ′,B , and vice versa throughout, see the right-hand side of the diagram.
The last terms of these equations are identical, and so (iii) follows. �

Using this lemma we can now prove

Theorem 9.8 (Schreier Refinement Theorem) Suppose

S1 : 〈e〉 = H0 � · · · � Hn = G, and

S2 : 〈e〉 = J0 � · · · � Jm = G

are subnormal series for G. They have equivalent refinements.

Proof We construct a new subnormal series S1,2 by ‘inserting a copy’ of S2
between each term in S1, and a second new series S2,1 by ‘inserting a copy’
of S1 between each term in S2; we then show that S1,2 is equivalent to S2,1;
note that repetitions are allowed.

For 0 ≤ r ≤ n and 0 ≤ s ≤ m, let the subgroups Kr,s be given by

Kr,s = Hr

(
Hr+1 ∩ Js

)
,

where we assume that Hn+1 = Hn and Jm+1 = Jm. We have

Kr,0 = Hr

(
Hr+1 ∩ 〈e〉) = Hr and

Kr,m = Hr(Hr+1 ∩ G) = HrHr+1 = Hr+1,

as Hr ≤ Hr+1. Further, for 0 < s < m,

Kr,s = Hr(Hr+1 ∩ Js) � Hr(Hr+1 ∩ Js+1) = Kr,s+1,

using part (i) of Zassenhaus’s Lemma (Lemma 9.7) with Hr = A′, Hr+1 = A,
Js = B ′ and Js+1 = B . The subnormal series S1,2 can now be defined by

S1,2 : 〈e〉 = K0,0 � K0,1 � · · · � K0,m � K1,0

� · · · � K1,m � K2,0 � · · · � Kn,m = G.

Interchanging H and J , we define

Ls,r = Js

(
Js+1 ∩ Hr

)
,

and the subnormal series S2,1 is given by (using (ii) in Lemma 9.7)

S2,1 : 〈e〉 = L0,0 � · · · � L0,n � L1,0 � · · · � Lm,n = G.

The series S1,2 and S2,1 have the same length (that is, mn+m+n), and using
the third part of Zassenhaus’s Lemma (Lemma 9.7), we obtain

Kr,s+1

Kr,s

= Hr(Hr+1 ∩ Js+1)

Hr(Hr+1 ∩ Js)
� Js(Js+1 ∩ Hs+1)

Js(Js+1 ∩ Hr)
= Ls+1,r

Ls,r

.

This shows that the sets of factors of S1,2 and S2,1 are identical, and so the
result follows. �
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We can now reprove the Jordan–Hölder Theorem, the new proof being valid for
all groups with composition series.

Second proof of Theorem 9.5 Suppose S1 and S2 are composition series
for G, they are subnormal and so, by Schreier’s Refinement Theorem, they
have equivalent refinements, say S ∗

1 and S ∗
2 . But S1 and S2 are composi-

tion series and so have maximum length, hence S ∗
1 (S ∗

2 ) is S1 (S2, respec-
tively) with several repeated terms whose corresponding factors are isomor-
phic to 〈e〉. Therefore, S1 and S2 are equivalent composition series. �

9.2 Extension Problem

The Jordan–Hölder Theorem states: For groups with composition series, if we can

(a) list all simple groups, and
(b) solve the extension problem: Given groups K and A � G/K , construct all pos-

sible non-isomorphic groups G,

then we can describe all groups, which is one of the main aims of the theory. Part (a)
has been achieved in the finite case, see Chapter 12; hence we need to consider part
(b). An answer to (b) has been given by Hölder and Schreier but it has some con-
siderable disadvantages. Given K and A, there may be many solutions G satisfying
K � G and A � G/K , and the Hölder–Schreier theory provides a characterisation of
all possible solutions G. But in general it is not possible to determine whether these
solution groups G are isomorphic to one another or not. For example, the theory
provides p extension groups G of Cp by Cp , but by Theorem 5.22 we know that
there are only two non-isomorphic groups of order p2. Nevertheless, the theory has
a number of applications and so we shall introduce the basic ideas and consider one
case: Cyclic extensions. In principle, this case is sufficient for all soluble groups, see
Chapter 11.

(An alternative approach has been suggested by Kurosh 1955, Volume 2, pages
202 to 210, which can be sketched as follows. A finite group G has a unique max-
imal normal soluble subgroup J (Chapter 11), which is characteristic and has the
property: G/J has no Abelian normal subgroups. Groups of this type are called
semi-simple, their unique maximal normal subgroups are direct products of non-
Abelian simple groups. The factor group G/J can be constructed using permu-
tations and automorphisms of simple groups, and the subgroup J has to be con-
structed using soluble group methods. One advantage of this procedure is that J is
unique.)

We begin by repeating the definition of an extension.

Definition 9.9 A group G is an extension of K by A if (i) K � G, and (ii) A � G/K .
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For example, if G = A � K is a semidirect product of K by A, then K � G and,
using the Second Isomorphism Theorem (Theorem 4.15), we have

G/K = AK/K � A/A ∩ K � A,

that is, G is an extension of K by A. Note that for an extension in general there is no
condition exactly replacing the property K ∩ A = 〈e〉 as in the semi-direct product
case; but see Problem 9.9. The Schur–Zassenhaus Theorem, see the introduction to
this chapter, treats the case when the orders of K and A are co-prime. It can be
shown that the collection of all extensions of K by A can be treated as a group (the
Second Cohomology Group), and the neutral element of this new group corresponds
to the (collection of) semidirect products. For further details, see one or more of the
references quoted at the end of this section and Web Section 9.4.

Examples (a) S4 is an extension of A4 by C2, and SL2(3) is an extension of C2 by
A4; for both see Chapter 8.

(b) The group C4 = 〈a〉 has a unique normal subgroup J = 〈a2〉, and G/J � C2.
Hence C4 can be treated as an extension of C2 by C2 which is not a semi-direct
product because the subgroup J is the unique proper non-neutral subgroup of C4.

(c) The matrix group GL2(5) is an extension of SL2(5) by C4, we shall use
this example throughout the section, and so for this chapter we call it the Stan-
dard Example, that is, we let G = GL2(5), K = SL2(5) and A � C4 where we take
(Z/5Z)∗ = {1,2,3,4} with multiplication modulo 5 to be the representation of C4

in this example.

Factor Pairs

Our work on the extension problem begins with the following collection of defini-
tions and lemmas.

Definition 9.10 Given an extension G of K by A and an isomorphism φ : A →
G/K , a section of G through A is a set {sa : a ∈ A, sa ∈ G} with the properties

(i) se = e,
(ii) sa is a representative of the left coset saK where aφ = saK .

In the Standard Example, there are several choices for the elements of a section.
One is: s1 = I2, s2 = ( 2 1

0 1

)
, s3 = ( 3 1

0 1

)
, and s4 = ( 4 1

0 1

)
; note that det(sn) = n where

n = 1,2,3 or 4 in this example, that is, n runs through the elements of A.
Much of the theory depends on the next two definitions. As φ is an isomorphism,

if a, a′ ∈ A, then sasa′ lies in the same coset as saa′ , and so they differ by an element
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of K ((a, a′)ξ in the definition below). Note also that to start with we are working
with an existing extension investigating its construction and properties.

Definition 9.11 (Part 1) Given G, an extension of K by A, and a section {sa : a ∈ A}
of G through A, the function ξ : A × A → K is defined by

(
a, a′)ξ = s−1

aa′sasa′ for a, a′ ∈ A.

We have

sasa′ = saa′
(
a, a′)ξ, (9.4)

(a, e)ξ = e = (e, a)ξ. (9.5)

Equation (9.4) was given above, and (9.5) follows directly from (i) in Defini-
tion 9.10.

Definition 9.11 (Part 2) (i) Given the function ξ of the extension G with section
{sa : a ∈ A} as in Part 1, for a ∈ A the function ϑa : K → K is defined by

kϑa = s−1
a ksa for k ∈ K,

that is, kϑa is the conjugate of k by the section element sa .
(ii) The pair ξ, {ϑa : a ∈ A} is called the factor pair of the extension G of K by

A with section {sa : a ∈ A}.

Note that as ϑa is defined by conjugation, it is an automorphism of K .
In the Standard Example, we have (m,n)ξ = I2, if m or n equals 1 (as s1 = I2),

and (m,n)ξ = ( 1 1/n

0 1

)
, if m �= 1 �= n. Similarly, ϑ1 is the identity map on SL2(5)

and

ϑn :
(

r s

t u

)
→ s−1

a

(
r s

t u

)
sa =

(
r − t (r + s − t − u)/n

nt t + u

)
(∗)

if n �= 1; the reader should check these facts.
The following two lemmas are basic. To aid clarity in long expressions we have

reintroduced the ‘dot’ notation � for the group operation in K . This is not strictly
necessary and so can be ignored, but it should help in the understanding of the
following proofs.

Lemma 9.12 Using the notation set out above, where ξ, {ϑa : a ∈ A} is a factor
pair, and a, b, c ∈ A, we have

(a, bc)ξ � (b, c)ξ = (ab, c)ξ � ((a, b)ξ)ϑc.

This equation is called the cocycle identity.



9.2 Extension Problem 199

Proof We use associativity. We have, applying (9.4) twice,

sa(sbsc) = sa
(
sbc(b, c)ξ

) = sabc

(
(a, bc)ξ � (b, c)ξ

)
,

and, introducing the neutral term scs
−1
c and using (9.4) again,

(sasb)sc = (
sab(a, b)ξ

)
sc = sabsc

(
s−1
c (a, b)ξsc

)

= sabsc
(
(a, b)ξ

)
ϑc = sabc

(
(ab, c)ξ � (

(a, b)ξ
)
ϑc

)

using Definition 9.11, part 2 for the penultimate equation. The lemma follows
by associativity and cancellation. �

Referring to the Standard Example, suppose, for instance, a = 2, b = 3 and c = 4.
(Remember that in this example A � (Z/5Z)∗ = {1,2,3,4} with multiplication
modulo 5, the neutral element is 1, and 1/2 = 3, et cetera.) We have ab = 1, bc = 2,
(a, bc)ξ = (2,2)ξ = ( 1 3

0 1

)
, (b, c)ξ = (3,4)ξ = ( 1 4

0 1

)
, (ab, c)ξ = (1,4)ξ = I2,

(a, b)ξ = (2,3)ξ = ( 1 2
0 1

)
, and using the identity (∗) on page 198

(
(a, b)ξ

)
ϑ4 =

(
1 2
0 1

)
ϑ4 =

(
1 3/4
0 1

)
=

(
1 2
0 1

)
.

In this example, the left-hand side of the cocycle identity equals (a, bc)ξ(b, c)ξ =
(2,2)ξ(3,4)ξ = ( 1 3

0 1

)( 1 4
0 1

) = ( 1 2
0 1

)
, and this equals the right-hand side using the

displayed equations above because (ab, c)ξ = (1,4)ξ = I2.

The second basic result is

Lemma 9.13 If a, a′ ∈ A and k ∈ K , then

kϑaϑa′ = ((
a, a′)ξ

)−1 � kϑaa′ � (
a, a′)ξ.

Note this result says that the composition of ϑa and ϑa′ is defined by conjugation
using the first term of the factor pair.

Proof Applying Definition 9.11 twice and (9.4), we have, for all k ∈ K ,

(kϑa)ϑa′ = s−1
a′ � kϑa � sa′ = (sasa′)−1 � k � sasa′

= (
saa′

(
a, a′)ξ

)−1 � k � saa′
(
a, a′)ξ

= ((
a, a′)ξ

)−1 � s−1
aa′ksaa′ � (

a, a′)ξ

= ((
a, a′)ξ

)−1 � kϑaa′ � (
a, a′)ξ. �

Returning to the Standard Example, the expression in the last line of the equation
above (call it T ) is a product of three 2 × 2 matrices.
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For instance, suppose a = 2 and a′ = 4, then aa′ = 3 and, using the calculation

below Definition 9.11, (a, a′)ξ = (2,4)ξ = ( 1 4
0 1

)
and ((a, a′)ξ)−1 = ( 1 1

0 1

)
. If k =( r s

t u

)
, then kϑaa′ is given by the right-hand matrix in (∗) on page 198 with n = 3.

Multiplying these three matrices together gives

T =
(

r + 2t (3r + s + t + 2u)/3
3t 3t + u

)
.

The reader should check that this equals k(ϑ2ϑ4) = (kϑ2)ϑ4 by applying (∗) on
page 198 again, first with n = 2, and then on the result with n = 4. You should also
repeat the whole calculation with different a and a′.

Construction of a Group Extension

We come now to the converse of the work described above, that is, given groups K

and A, construct G. In this case, we do not have a section to build upon, so we make
the following definition as suggested by the lemmas given above. Then using this
definition we shall be able to construct G and the corresponding section. As in the
semi-direct product case given in Section 7.3, we form a group using the underlying
set A × K , and we introduce a new operation by

(a1, k1)(a2, k2) = (
a1a2, (a1, a2)ξ � k1ϑa2 � k2

)
, (9.6)

where the components of the factor pair ξ and {ϑa : a ∈ A} are given in Defini-
tion 9.14 below. This is similar to the semi-direct operation, see page 153, except
that we now have the new term (a1, a2)ξ . Or to put this another way, our extension
will be semi-direct if (a1, a2)ξ = e for all a1, a2 ∈ A.

Definition 9.14 Given groups A and K , the maps ϑa : K → K and ξ : A × A → K

satisfy the following three properties.

(i) The map ϑe is the identity map on K , and the map ϑa is an automorphism of
K for all a ∈ A.

(ii) The map ξ satisfies (a) (e, a)ξ = e = (a, e)ξ for a ∈ A, and (b) the cocycle
equality, that is, for a1, a2, a3 ∈ A,

(a1, a2a3)ξ � (a2, a3)ξ = (a1a2, a3)ξ � (
(a1, a2)ξ

)
ϑa3 .

(iii) For all k ∈ K and a1, a2 ∈ A, we have

kϑa1ϑa2 = (
(a1, a2)ξ

)−1 � kϑa1a2 � (a1, a2)ξ.

Using this definition we can construct the required extension, it depends on the
particular automorphisms ϑa chosen.
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Theorem 9.15 Suppose A and K are groups, and ϑa , for a ∈ A, and ξ satisfy
the properties given in Definition 9.14 above. The set A × K with the operation
(9.6) forms a group G which is an extension of a group K ′ isomorphic to K by a
group A′ isomorphic to A, and for which the set {(a, e) : a ∈ A} is a section of G

through A′.

The following proof is straight-forward but somewhat ‘involved’, the reader
should write out a version for him(her)self.

Proof The operation is closed by definition. Next we consider associativity.
First, we have using (9.6) twice

(
(a1, k1)(a2, k2)

)
(a3, k3)

= (
a1a2, (a1, a2)ξ � k1ϑa2 � k2

)
(a3, k3)

= (
a1a2a3, (a1a2, a3)ξ � (

(a1, a2)ξ � k1ϑa2 � k2
)
ϑa3 � k3

)
. (9.7)

We shall refer below to the argument of the function ϑa3 in this expression, it
is a product of three elements of K . We also have

(a1, k1)
(
(a2, k2)(a3, k3)

)

= (a1, k1)
(
a2a3, (a2, a3)ξ � k2ϑa3 � k3

)

= (
a1a2a3, (a1, a2a3)ξ � k1ϑa2a3 � (a2, a3)ξ � k2ϑa3 � k3

)
. (9.8)

Rewriting the second argument of the pair given in the last expression in (9.8)
by introducing the neutral term (a2, a3)ξ � ((a2, a3)ξ)−1 gives the expression

(
(a1, a2a3)ξ � (a2, a3)ξ

)
�

(
((a2, a3)ξ)−1 � k1ϑa2a3 � (a2, a3)ξ

)

� k2ϑa3 � k3. (9.9)

Using the cocycle identity (Definition 9.14(ii)) the subexpression between the
first set of large round brackets in (9.9) satisfies

(a1, a2a3)ξ � (a2, a3)ξ = (a1a2, a3)ξ � (
(a1, a2)ξ

)
ϑa3 . (9.10)

Also applying (iii) in Definition 9.14 to the subexpression between the second
set of large round brackets in (9.9) we obtain

(
(a2, a3)ξ

)−1 � k1ϑa2a3 � (a2, a3)ξ = k1ϑa2ϑa3 . (9.11)

Hence, applying (9.10) and (9.11), and using the fact that ϑa3 is an isomor-
phism, Expression (9.9) satisfies

(a1a2, a3)ξ � (
(a1, a2)ξ

)
ϑa3 � (k1ϑa2)ϑa3 � k2ϑa3 � k3

= (a1a2, a3)ξ � (
(a1, a2)ξ � k1ϑa2 � k2

)
ϑa3 � k3
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as ϑa3 is an isomorphism—note its argument, see the comment below (9.7).
This expression equals the second argument in the last expression in (9.7);
that is, we have established associativity.

The neutral element is (e, e), for by (9.6) and as ϑe is the identity map
on K

(a, k)(e, e) = (
a, (a, e)ξ � kϑe � e

) = (a, k).

Further, the inverse operation is given by

(a, k)−1 = (
a−1,

(((
a−1, a

)
ξ
)−1 � k−1)ϑ−1

a

)

as the following calculation shows; note that as ϑa is an isomorphism, so
is ϑ−1

a . We have using (9.6) and the equation above

(a, k)−1(a, k) = (
a−1,

(((
a−1, a

)
ξ
)−1 � k−1)ϑ−1

a

)
(a, k)

= (
e,

(
a−1, a

)
ξ � ((((

a−1, a
)
ξ
)−1 � k−1)ϑ−1

a

)
ϑa � k

)

= (
e,

(
a−1, a

)
ξ � ((

a−1, a
)
ξ
)−1 � k−1 � k

)

= (e, e).

These equations show that the set A×K with operation given in (9.6) forms a
group G. The reader should show directly (that is, without using Theorem 2.5
and similar facts) that (e, e)(a, k) = (a, k) and (a, k)(a, k)−1 = (e, e), see
Problem 9.13 (for the second equation apply ϑ ).

Next we prove that G contains a normal subgroup K ′ which is isomorphic
to K . Let K ′ = {(e, k) : k ∈ K}. Using (9.6) we obtain for k, k′ ∈ K (note that
ϑe is the identity map on K)

(e, k)
(
e, k′) = (

e, (e, e)ξ � kϑe � k′) = (
e, kk′) ∈ K ′,

and (e, k)−1 = (e, (((e, e)ξ)−1 � k−1)ϑ−1
e ) = (e, k−1) ∈ K ′. For normality

(a, k)−1(e, k′)(a, k)

= (
a−1,

(((
a−1, a

)
ξ
)−1 � k−1)ϑ−1

a

)(
a, (e, a)ξ � k′ϑe � k

)

= (
e,

(
a−1, a

)
ξ � ((((

a−1, a
)
ξ
)−1 � k−1)ϑ−1

a

)
ϑa � k′ϑa � k

)

= (
e, k−1 � k′ϑa � k

) ∈ K ′.

An easy exercise shows that K � K ′. Similarly, we define A′ = {(a, e)K ′ :
a ∈ A} and as in the K ′ case it is clear that A′ � G/K ′. Lastly, we define a
map ψ : A → G/K ′ by

aψ = (a, e)K ′ for a ∈ A.
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This map is a homomorphism, for if a, a′ ∈ A

aψa′ψ = (a, e)K ′(a′, e
)
K ′ = (a, e)

(
a′, e

)
K ′ = (

aa′,
(
a, a′)ξ

)
K ′

= (
aa′, e

)(
e,

(
a, a′)ξ

)
K ′ = (

aa′, e
)
K ′ = aa′ψ.

We leave as an exercise for the reader to show that ψ is an isomorphism and
that {(a, e) : a ∈ A} is a section of G through A′. �

Using this theorem we can now obtain a representation for our standard example
GL2(5) as an extension of SL2(5) by C4 using the operation described on page 197;
the reader should check this.

Cyclic Extensions

As an application of the theorem proved above we consider in more detail exten-
sions of a group by a cyclic group, we noted at the beginning of this section that in
principle all soluble groups (Chapter 11) can be generated in this way.

Definition 9.16 An extension of a group K by a group A is called cyclic if A is
cyclic.

Note that the Standard Example is, in fact, a cyclic extension.
These extensions are characterised by

Theorem 9.17 (i) Suppose G is an extension of K by a cyclic group A � G/K

where A = 〈a〉 and o(a) = m. Choose sa ∈ G so that saK is a generator of G/K ,
and suppose sm

a = k0 ∈ K . There exists an automorphism ψ of K with the properties

(a) k0ψ = k0 and
(b) kψm = k−1

0 kk0 for k ∈ K .

(ii) Conversely, given k0 ∈ K and an automorphism ψ of K satisfying (a) and (b)
above, the set {(ar , k) : 0 ≤ r < m and k ∈ K} with the operation

(
ar , k1

)(
as, k2

) = (
ar+s ,

(
ar , as

)
ξ � k1ψ

s � k2
)

where 0 ≤ r, s < m, k1, k2 ∈ K , and ξ is defined by

(
ar, as

)
ξ =

{
e if 0 ≤ r + s < m,

k0 if m ≤ r + s < 2m,
(9.12)

forms a group which is a cyclic extension of a group isomorphic to K by a group
isomorphic to A.
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Proof (i) Define ψ by

kψ = s−1
a ksa for k ∈ K.

Then k0ψ = s−1
a sm

a sa = sm
a = k0, and kψm = s−m

a ksm
a = k−1

0 kk0.
(ii) For the converse, note first that in this case ξ only takes the values e

and k0, and so ξ r only depends on values of r . Hence we can put ϑar = ψr ,
and we need to show that ξ,ϑar (= ξ,ψr,0 ≤ r < m) is a factor pair.

We have (e, ar )ξ = (ar , e)ξ = e as 0 ≤ r < m as A is a cyclic group of
order m. We also have

(
ar+s , at

)
ξ · (ar, as

)
ξ = (

ar, as+t
)
ξ · (as, at

)
ξ, (9.13)

by the discussion above this is the cocycle identity in this case. Equation (9.13)
is derived as follows. First, we show that

(
ar+s, at

)
ξ · (ar , as

)
ξ =

⎧
⎨

⎩

e if 0 ≤ r + s + t < m,

k0 if m ≤ r + s + t < 2m,

k2
0 if 2m ≤ r + s + t < 3m.

(9.14)

In the first line of (9.14), we have 0 ≤ r, s, t, r + s, r + s + t < m, and so both
terms in the product on the left-hand side equal e.

There are two cases to consider for the second line; the first is 0 ≤ r + s <

m. Here (ar , as)ξ = e and so (ar+s , at )ξ = k0 as r + s + t ≥ m. The sec-
ond case is r + s ≥ m, and so (ar , as)ξ = k0 by (9.12). We also have
ar+s = ar+s−m and 0 ≤ r + s − m < m (as o(a) = m), hence (ar+s , at )ξ =
(ar+s−m,at )ξ = e. Therefore, in both of these cases, we obtain the same
value, that is, k0, for the expression on the left-hand side of (9.14).

In the last line, we have 2m > r + s ≥ m (as t < m) and so (ar , as)ξ = k0.
Also m ≤ r + s − m + t < 2m and r + s − m ≥ 0, and so (ar+s , at )ξ = k0;
the third line follows.

The conditions in (9.14) are symmetrical in r, s and t , and so these proper-
ties also apply to the right-hand side of (9.13). Hence the whole identity (9.13)
follows.

Having established (9.13), we need to show that

kψrψs = ((
ar , as

)
ξ
)−1 � kψr+s � (

ar , as
)
ξ, (9.15)

where we have defined ϑas to equal ψs , k ∈ K and 0 ≤ r, s < m. If r + s < m,
then (ar , as)ξ = e, and so ψrψs = ψr+s , and if r + s ≥ m, we have r + s =
m + t for some t where t ≥ 0, (ar , as)ξ = k0, and aras = at . Hence using
these properties we have, for k ∈ K ,

kϑar ϑas = kψrψs = kψm+t

= k−1
0 � kψt � k0 = ((

ar , as
)
ξ
)−1 � kϑar+s � (

ar , as
)
ξ.

Therefore, ξ,ϑas ,0 ≤ s < m, form a factor pair, and we can apply Theo-
rem 9.15.
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Finally, note that using the hypotheses of the theorem we have (a, e)m =
(a, e)(a, e)m−1 = (a, e)(am−1, e) = (am, (a, am−1)ξ � eϑam−1 � e) = (e, k0)

(because 1 + (m − 1) ≥ m) as required. �

An immediate consequence of this result is

Corollary 9.18 If K is a group, g ∈ Z(K) and n is a positive integer, then a group
G exists satisfying

G = 〈K,c〉, K � G, G/K � Cn, c ∈ CG(K) and cn = g.

Proof In Theorem 9.17, let A = Cn and ψ be the identity automorphism
on K . �

For example, suppose K = C3 and n = 8, then this corollary shows that the
group F3,8 with the presentation given in Problem 8.3 does, in fact, exist. Secondly,
suppose K is Abelian, g ∈ K , o(g) = 2 and ψ is the automorphism given by aψ =
a−1 for a ∈ K , then the corollary asserts the existence of the group G with the
properties:

G = 〈K,c〉, [G : K] = 2, c2 = a, c−1gc = g−1 for g ∈ K.

This group is called generalised dicyclic, and dicyclic if K is cyclic. If in this lat-
ter case o(K) = 4, then G � Q2 the quaternion group. Reader, referring to Prob-
lem 8.12, what group do you obtain if o(K) = 8?

We have only been able to give a very brief account of the topics in this sec-
tion, in particular due to space considerations we have not been able to discuss the
basic cohomology theory needed to develop the work. The elementary ideas and
results of cohomology theory follow fairly directly from the work of Chapter 2, and
Sections 4.1 and 4.2. The reader requiring more details should consult one or more
of the following texts: Scott (1964), Chapter 9; Rotman (1994), Chapter 7; Suzuki
(1982), Chapter 2; or for a slightly more advanced approach Robinson (1982), Chap-
ter 11, or Benson (1991).

9.3 Problems

Problem 9.1 Show that the relation given in Definition 9.4 is an equivalence rela-
tion.

Problem 9.2 (i) Give composition series for the groups: (a) S4, (b) A4, (c) A4 ×C2,
(d) SL2(3), and (e) E (Section 8.3). Which groups have unique series?

(ii) Give an example of a pair of non-isomorphic groups whose composition se-
ries have the same factors.

Problem 9.3 Show that if G has a composition series and K � G, then G has a
composition series one of whose terms is K .
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Problem 9.4 (i) Discuss the proposition: An Abelian group has a composition se-
ries if, and only if, it is finite.

(ii) Show that the cyclic group Cpn has exactly one composition series.
(iii) Show that GLn(F ) has a composition series if and only if the field F is finite.
(iv) If G has a composition series and H ≤ G, is it necessary for H to have a

composition series? (Hint. Refer to Web Sections 3.6 and 7.5.)

Problem � 9.5 Prove the following statements.

(i) All composition factors of a finite Abelian group have prime order.
(ii) All composition factors of a finite p-group have order p.

Problem 9.6 (i) Suppose G has a composition series with exactly three terms
(length 2). Show that G has a unique composition series or it is isomorphic to a
direct product of two simple groups.

(ii) Show that groups exist with arbitrarily long composition series.

Problem 9.7 Consider the following two series for Z for primes p and q:

〈e〉 � pZ � Z and 〈e〉 � qZ � Z, where p �= q.

Show that these series have equivalent refinements. Schreier’s Theorem (Theo-
rem 9.8) asserts the existence of these refinements, but note that it does not require
the group in question to have a composition series.

Problem � 9.8 A subgroup H of a group G is called subnormal in G if and only
if there exists a subnormal series from H to G, and in this case we write H �� G.
Note that unlike normality the subnormal relation is transitive, that is, if J �� H

and H �� G, then J �� G. Prove the following three properties.

(i) If H �� G and J ≤ G, then H ∩ J �� J .
(ii) If H �� G and J �� G, then H ∩ J �� G.
(iii) If θ : G → G1 is a surjective homomorphism, then H �� G if and only if

Hθ �� G1.

Problem 9.9 (i) Show that if G is an extension of K by A and both K and A are
finite, then o(G) = o(K)o(A).

(ii) Using (i) show that if G is finite and has the subnormal series 〈e〉 = H0 � · · ·�
Hm = G, where o(Hi+1/Hi) = ri for i = 0, . . . ,m − 1, then o(G) = ∏m−1

i=0 ri .

Problem 9.10 (i) Construct all possible extensions of C3 by C2 × C2.
(ii) Using Problem 6.5 show that every non-Abelian group with order p3 is an

extension of Cp by Cp × Cp .

Problem 9.11 (i) Show that if G and H are Abelian and (o(G), o(H)) = 1, then up
to isomorphism there is only one Abelian extension of G by H .

(ii) Construct all extensions of the infinite group Z by C2.
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Problem 9.12 Show that the quaternion group Q2 can be written in three different
ways as an extension of C4 by C2, and one way as an extension of C2 by C2 × C2.
Do any of these extensions reduce to a semi-direct product?

Problem 9.13 In the proof of Theorem 9.15, using only Definition 9.14 prove that

(a) (e, e)(a, k) = (a, k) and
(b) (a, k)(a, k)−1 = (e, e).

Problem 9.14 Use extensions to construct all groups of order pq where p and q

are prime and p < q , see Problems 3.6, 6.14 and 7.21, and Web Section 14.3.

Problem 9.15 (Project—Chief Series) Before attempting this project, the reader
should read the subsection on minimal normal subgroups given at the end of Sec-
tion 11.1. A chief series for a group G is a proper normal series

〈e〉 � H1 � · · · � Hm = G,

with the additional property that if K � G and, for some i, we have Hi ≤ K ≤ Hi+1,
then either K = Hi or K = Hi+1. This series is proper, so Hi < Hi+1 for all i and,
whereas a composition series is subnormal with no proper subnormal refinement,
a chief series is normal with no proper normal refinement. Also, we define a chief
factor for G to be a factor of some chief series for G. Now let G be a finite group.

(i) State and prove the Jordan–Hölder Theorem for chief series of G.
(ii) Prove that finite groups have chief series.
(iii) Show that if G has a chief series, then every chief factor is a minimal normal

subgroup of a factor group of G.
(iv) Prove that a minimal normal subgroup of G is a direct product of simple groups

Hi where Hi � Hj for all i and j . Use induction on o(G), and begin with a
minimal normal subgroup H and its set of conjugates in G. Deduce that a chief
factor of G is a direct product, with one or more terms, of mutually isomorphic
simple groups.

(v) Finally, calculate the chief series for the groups in Problem 9.2(i).



Chapter 10
Nilpotency

The material in this chapter is largely disjoint from that given in Chapter 11. Hence
with a few minor exceptions these chapters can be read independently.

Nilpotent groups lie between the classes of Abelian and soluble groups, this
latter class will be discussed in Chapter 11. Finite nilpotent groups also have a
number of similarities with p-groups—for example, both have a plentiful supply of
normal subgroups; in fact, some authors describe nilpotent groups as ‘generalised
p-groups’. In the finite case (which we introduced first in Chapter 6), these groups
have many independent definitions showing that they possess many useful proper-
ties in common; see Theorem 10.9. Some of these new definitions are ‘series based’
and apply in both the finite and infinite cases. They also provide a ‘measure’—the
nilpotency class—of how far away from Abelian a particular nilpotent group is, and
this measure can itself be used to establish new results. An Abelian group G has
nilpotent class 1, and we have

[a, b] = e for all a, b ∈ G.

For nilpotent groups H of ‘class n’ we have

[
. . .

[[a0, a1], a2
]
. . . , an

] = e for all a0, . . . , an ∈ H,

see Definition 10.5 and Problem 10.2. One origin of the word ‘nilpotent’ is given in
the footnote on page 213.

We begin this chapter by stating the series-based definitions of nilpotency men-
tioned above, in most cases several series are involved and all need to be considered.
This builds on the work given at the beginning of Section 9.1. We shall also establish
the equivalence of many of the definitions, some of which at first seem unrelated. For
instance, one concerns properties of maximal subgroups whilst another states that
elements of coprime order commute. In Section 10.2, we discuss the Frattini and
Fitting subgroups of a group, in the finite case they are both normal and nilpotent
and have some remarkable properties and applications. The first introduces a con-
nection between maximal subgroups and the so-called non-generators of a group,
whilst generalisations of the second have proved useful in the CFSG.

H.E. Rose, A Course on Finite Groups,
Universitext,
DOI 10.1007/978-1-84882-889-6_10, © Springer-Verlag London Limited 2009
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10.1 Nilpotent Groups

We begin by introducing a new type of series which can be used to define nilpotency
in both the finite and infinite cases. The basic series definitions were given at the
beginning of Section 9.1.

Central Series

We use the notation [G,H ] for the group generated by all commutators of the form
[g,h] where g ∈ G and h ∈ H ; see Problem 2.16. A normal series for G

〈e〉 = H0 � H1 � · · · � Hn = G,

see Definition 9.1(ii), is called a central series for G if, for each i in the range
0 ≤ i ≤ n − 1, we have

Hi+1/Hi ≤ Z(G/Hi),

or equivalently, see Problem 4.16(vii),

[Hi+1,G] ≤ Hi.

Also G is nilpotent if it has a central series; see Definition 10.5 below. Clearly all
Abelian groups are nilpotent, and so nilpotency can be treated as a generalisation of
Abelianness. A group can have several different central series, see the example on
page 213, and so we begin by studying these series.

Previously we have defined the derived (commutator) subgroup G′ (Prob-
lem 2.16) and the centre Z(G) (Definition 2.32) of a group G. Here we extend
these notions to define the higher commutator subgroups Di (G) and the higher
centres Zi (G), and using these, the lower and upper central series for G. Note the
distinction between the higher commutator subgroups given here and the derived
subgroups defined on page 234.

Definition 10.1 The ith higher commutator subgroup Di (G) of G is defined induc-
tively by

D1(G) = G, Di+1(G) = [
Di (G),G

]
.

Note that D2(G) = G′, the derived subgroup of G, and Di (G) = G for all i if
G = G′, that is, if G is perfect; see Problem 4.8.

Definition 10.2 The ith higher centre Zi (G) of G is defined inductively as follows.
Set Z0(G) = 〈e〉. If Zi (G) (a normal subgroup of G) has been defined, let ηi be the
natural homomorphism (Definition 4.13) mapping G to G/Zi (G), then Zi+1(G) is
the preimage of Z(G/Zi (G)) under the homomorphism ηi .
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Note that Z1(G) = Z(G) because η0 is the identity map on G and, for i = 0,1, . . .,
the term Zi (G) is the unique subgroup of G which satisfies

Z0(G) = 〈e〉, Zi+1(G)/Zi (G) = Z
(
G/Zi (G)

)
. (10.1)

Also Zi (G) = 〈e〉 for all i when G is centreless. If there exists a finite integer k such
that Zj (G) < Zk(G) for all j < k, and Zk(G) = Zl (G) for all l ≥ k, then the term
Zk(G) is called the hypercentre of G; see Problem 10.2.

The lower and upper central series are now given by

Definition 10.3 The lower central series for a group G is the series (written in
reverse order) from some subgroup of G to G:

G = D1(G) 	 D2(G) 	 · · · ,
and the upper central series for G is the series from 〈e〉 to some subgroup of G:

〈e〉 = Z0(G) � Z1(G) � · · · .

As observed above, for the lower central series note the similarity of its definition
with that for the derived series given on page 234. Problem 10.1 provides a slightly
different but equivalent definition of the upper series.

When it is clear which group G is involved, we write Dr for Dr (G) and Zs for
Zs(G). Both of these series are normal (Definition 9.1); this follows from Prob-
lem 4.16 and the Correspondence Theorem (Theorem 4.16). Also neither of these is
necessarily a series for G; in the ‘worst’ case Dn(G) = G and Zn(G) = 〈e〉 for all
n ≥ 1, for example, when G = S3.

The next result shows that there is a close relationship between the lower and
upper central series, and in Problem 10.6 we prove that all other central series lie
somewhere ‘between’ these two.

Theorem 10.4 If Zs(G) = Zs = G, for some integer s, then Ds+1 = 〈e〉 and

Dr+1 ≤ Zs−r for r = 0, . . . , s. (10.2)

Conversely, if Ds+1(G) = Ds+1 = 〈e〉 for some integer s, then Zs = G and (10.2)
again holds.

Proof For the first part, we use induction on r to prove (10.2). If Zs = G, then
by definition of D1, D1 = G = Zs and (10.2) holds when r = 0. If Dr+1 ≤
Zs−r then, using Definition 10.1, we have

Dr+2 = [Dr+1,G] ≤ [Zs−r ,G] ≤ Zs−(r+1),

where the last inequality follows by Problem 4.16(vii) (with G for G, Zs−r

for J and Zs−(r+1) for K). Proposition (10.2) now follows and, if we put
r = s, we obtain Ds+1 ≤ Z0 = 〈e〉.
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For the converse, suppose Ds+1 = 〈e〉. As above we apply induction, this
time on t = s − r to prove D(s+1)−t ≤ Zt . By assumption, we have Ds+1 =
〈e〉 = Z0. Suppose D(s+1)−t ≤ Zt . We use the enlargement of cosets map ξ

given in Problem 4.14 with J = D(s+1)−t , K = Zt and ξ = ξt . This provides
the surjective homomorphism

ξt : G/D(s+1)−t → G/Zt , (10.3)

and shows that, as D(s+1)−t � Ds−t � G,
(

Ds−t /D(s+1)−t

)
ξt = Ds−t Zt /Zt . (10.4)

For if a ∈ G, then a(D(s+1)−t )ξt = aZt by definition, see (10.3) and Prob-
lem 4.14, hence if a ∈ Ds−t , the cosets on the right-hand side of (10.4)
have the form bZt where b ∈ Ds−t Zt . Also D(s+1)−t = [G, Ds−t ] by Defi-
nition 10.1, and so by Problem 4.16(vii) again

Ds−t /D(s+1)−t ≤ Z
(
G/D(s+1)−t

)
,

which in turn, by (10.3) and Problem 4.16(vi) (with θ = ξt , G = G/D(s+1)−t ,
H = Ds−t /D(s+1)−t and J = G/Zt ), gives

(
Ds−t /D(s+1)−t

)
ξt ≤ Z(G/Zt ).

Combining this with (10.4), we obtain

Ds−t Zt /Zt = (
Ds−t /D(s+1)−t

)
ξt ≤ Z(G/Zt ) = Zt+1/Zt ,

using (10.1) for the last equation. From this we have by the Correspondence
Theorem (Theorem 4.16)

Ds−t ≤ Ds−t Zt ≤ Zt+1,

and the inductive argument is complete. As in the first part, if we put t = s,
we obtain D1 ≤ Zs and so Zs = G. �

Nilpotent Groups

Previously we have discussed finite nilpotent groups, see Sections 6.3 and 7.3. Here
we begin by giving a new definition which is valid in both the finite and infinite
cases. Using Theorem 10.4, we have

Definition 10.5 A group G is called nilpotent with class r if r is the least positive
integer satisfying Dr+1(G) = 〈e〉, and G is called nilpotent if it is nilpotent with
class r for some positive integer r .

By Theorem 10.4, we can replace the equation Dr+1(G) = 〈e〉 in the above defi-
nition by Zr (G) = G. This theorem also shows that, if G is nilpotent, then the lower
and upper central series for G have the same length, see Problem 10.6.



10.1 Nilpotent Groups 213

Example 1 Abelian groups are nilpotent with class 1. Nilpotent groups with class 2
satisfy D2 = G′ ≤ Z(G) = Z1 (as D2 ⊆ Z(G), we have D3 = 〈e〉). As an example
consider the group

G1 = 〈
a, b | a8 = b2 = e, bab = a5〉

discussed in Problem 6.4. It has order 16, so it is a 2-group and hence nilpotent by
Theorem 10.6 (or by Theorem 7.9). We also have, using Problem 6.4,

D1 = G1, D2 = G′
1 = 〈

a4〉 and D3 = 〈e〉,

as 〈a4〉 is Abelian and a4 ∈ Z(G), and

Z0 = 〈e〉, Z1 = Z(G1) = 〈
a2〉 and Z2 = G1.

This last equation follows because G1/Z1 is Abelian, and so equals Z(G1/Z1)

which in turn equals Z2/Z1 by definition. Therefore, o(Z2) = 4 · o(Z1), that is, 16;
see Problem 6.4 again. These show that G1 is nilpotent with class 2. This also pro-
vides an example of a group with distinct lower and upper central series.

Example 2 Consider the groups ITn(Q) and IZTn,r (Q); see Problem 3.15. If A ∈
ITn(Q) then A is an n × n upper triangular matrix with 1 at each main diagonal
entry, and if B ∈ IZTn,r (Q) then B has the same form as A except that the first r

superdiagonals consist entirely of zeros.1 Using the quoted problem, we have

〈e〉 � IZTn,n−1(Q) � · · · � IZTn,1(Q) � ITn(Q)

is a central series for ITn(Q). Therefore, ITn(Q) is nilpotent with class at most
n− 1. In fact, the class is exactly n− 1, see Problem 10.2. This example also shows
that there exist finite nilpotent groups with arbitrarily high nilpotency class.

The following results give the basic nilpotency properties, they are derived us-
ing straightforward group theoretical techniques and so only outline proofs will be
given; the reader should fill in the details.

Theorem 10.6 (i) All Abelian groups are nilpotent (with class 1).
(ii) All finite p-groups are nilpotent (with various classes).
(iii) A subgroup of a nilpotent group is nilpotent.
(iv) A factor group of a nilpotent group is nilpotent.
(v) If G and H are nilpotent, then so is G × H .

1In ring theory, an element a is called ‘nilpotent’ if it is non-zero and some positive power an of
it is zero. In the ring of all n × n matrices defined over a field F , if B ∈ IZTn,r (F ) then B − In is
nilpotent in the ring theory sense provided r < n. This is one of the reasons for the use of the word
‘nilpotent’ in group theory. There is also an association with ‘nilpotent Lie algebras’.
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The finiteness condition is necessary in (ii) because there exist infinite non-nilpotent
p-groups, see the note at the end of this section and Problem 10.3.

Proof (i) If G is Abelian we have Z1 = G.
(ii) By induction. Let H be a p-group, if o(H) = p use (i). By Lemma 5.21,

Z(H) �= 〈e〉, so by the inductive hypothesis H/Z(H) has the series

H/Z(H) 	 H1/Z(H) 	 · · · 	 Hs/Z(H) = 〈e〉,
and then H 	 H1 	 · · · 	 Hs = Z(H) 	 〈e〉 is a lower series for H .

(iii) By induction, we have H ≤ G implies Di (H) ≤ Di (G) for all i. Hence
Dr+1(G) = 〈e〉 implies Dr+1(H) = 〈e〉.

(iv) Let θ : G → G/H be the natural homomorphism. By Problem 4.16(vi),
Di (G/H)≤Di (G)θ , and so if Dr+1(G)=〈e〉 then we also have Dr+1(G/H)=
〈e〉.

(v) Again use induction. D1(G × H) = G × H = D1(G) × D1(H),
and Di+1(G × H) = [Di (G × H),G × H ] ≤ [D1(G) × Di (H),G × H ] ≤
[Di (G),G] × [Di (H),H ] by Problem 7.2(i). �

An example of a non-nilpotent group is S3 (as Z(S3) = 〈e〉). This example also
shows that the converse of (iii) and (iv) in Theorem 10.6 fails; that is, if H � G, and
H and G/H are nilpotent, it does not follow that G is nilpotent. In this example,
both H = C3 and G/H = C2 are Abelian and so nilpotent. See Theorem 10.16 and
Problem 10.7 for partial converses.

We have mentioned previously that there are several equivalent definitions for
nilpotency in the finite case, we give some more now. The first concerns normalisers
and is as follows.

Theorem 10.7 Let G is a finite group. The following conditions are equivalent:

(i) G is nilpotent;
(ii) if H < G then H < NG(H); and
(iii) all maximal subgroups of G are normal in G.

See also Problem 5.13(iv).

Proof We show that (i) implies (ii) implies (iii) implies (i). Suppose (i) holds,
we use the equivalent definition given in Problem 10.1. Let n be the largest
integer such that Zn ≤ H . As H < G there exists j ∈ Zn+1\H , and if h ∈ H ,
then j−1hj = hh−1j−1hj = h[h, j ] ∈ H Zn by Problem 10.1. This in turn
shows that j ∈ NG(H), and (ii) follows as j /∈ H .

If (ii) holds and H is a maximal subgroup of G, then NG(H) = G which
gives H � G by Lemma 5.25(ii), and (iii) follows.

Lastly, if (iii) holds, then by Theorem 7.9, G is isomorphic to a direct prod-
uct of its Sylow subgroups, that is, isomorphic to a direct product of p-groups
where p ranges over the prime divisors of o(G). (i) now follows by Theo-
rem 10.6(ii) and (v). �
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Example 3 Let G1 = Q2 ×C3. Both Q2 and C3 are normal Sylow subgroups of G1

by Lemma 7.3, hence by Theorem 7.9 this group is nilpotent. It has the presentation

G1 = 〈
a, b, c | a2 = b2 = (ab)2, c3 = e, ac = ca, bc = cb

〉
.

Consider H = 〈a2, c〉, a subgroup of order 6. By Theorem 10.7, we have
NG1(H) > H . This is not surprising for G1 is Hamiltonian, that is, all of its proper
subgroups are normal even though it is not Abelian; see Problem 7.13. Hence in this
case NG1(H) = G1. This problem also shows that all maximal subgroups of G1 are
normal, which confirms (iii) in Theorem 10.7 for this group.

Our next equivalent nilpotency condition concerns commuting elements whose
orders have no common factors.

Theorem 10.8 A finite group G is nilpotent if and only if whenever a, b ∈ G and
(o(a), o(b)) = 1, then a and b commute.

Proof There is nothing to prove if G is a p-group. Hence suppose the primes
dividing o(G) are p1, . . . , ps where s > 1. If G is nilpotent, then by The-
orem 7.9, it is a direct product of its Sylow pi -subgroups Pi , 1 ≤ i ≤ s,
say. Re-ordering these factors if necessary, let the prime factors of o(a) be
p1, . . . , pt , and so by hypothesis the prime factors of o(b) are included in the
set {pt+1, . . . , ps}. Now if R1 = P1 ×· · ·×Pt and R2 = Pt+1 ×· · ·×Ps , then
G  R1 × R2, a ∈ R1 and b ∈ R2, and so a and b commute by Theorem 7.4.
For the converse, we can reverse this argument. If for all a ∈ R1 and b ∈ R2,
a and b commute, then as in the proof of Theorem 7.4, R1 and R2 are nor-
mal subgroups of G, R1 ∩ R2 = 〈e〉 and R1R2 = G (by Theorem 5.8), that is
G  R1 × R2; the theorem follows. �

Example 4 Let G2, a subgroup of S7, be generated by the permutations (1,2,3,4),
(1,3) and (5,6,7). The orders of the elements of G2 are 1,2,3,4,6 and 12, and
an easy calculation shows that all of the elements of order 2 or 4 commute with the
elements of order 3, hence by Theorem 10.8 it is nilpotent. In fact, it is isomorphic to
D4 ×C3, see Appendix C. Now J = 〈(1,3), (5,6,7)〉 ≤ G2 with order 6. Therefore,
Theorem 10.7 gives NG2(J ) > J , as the reader can check directly by showing that
NG2(J ) = 〈(1,3), (2,4), (5,6,7)〉, a subgroup of G2 of order 12, thus showing that
J is a non-normal subgroup of G2.

The statement on the next page collects together the ten main properties of finite
nilpotent groups, it is important to note that many of these properties fail in the
infinite case, see comments on the next page.
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Theorem 10.9 For a finite group G, propositions (i) to (x) are equivalent.

(i) G is nilpotent.
(ii) For some positive integer r , Dr (G) = 〈e〉.
(iii) For some positive integer s, Zs(G) = G.
(iv) If H < G then H < NG(H).
(v) All subgroups of G are ‘subnormal’ in G.
(vi) All maximal subgroups of G are normal in G.
(vii) All Sylow subgroups of G are normal in G.
(viii) G is isomorphic to a direct product of its Sylow subgroups.
(ix) If a, b ∈ G and (o(a), o(b)) = 1, then a and b commute in G.
(x) The derived subgroup G′ of G is a subgroup of the ‘Frattini’ subgroup �(G)

of G, see Section 10.2.

Proof Property (v) is discussed in Problem 10.4 and property (x) will be
considered in the next section where the Frattini subgroup is defined. For the
remaining equivalences, use Theorems 7.9, 10.4, and 10.6 to 10.8. �

Properties (iv) to (x) do not apply in the infinite case, they are all too weak; for a
discussion of this point see Robinson (1982), page 126. Also there exist infinite non-
nilpotent p-groups, an example is given in Problem 10.3. The list of equivalences
given in Theorem 10.9 is not complete, four more of slightly less importance are as
follows.

(xi) Every factor of a chief series {Hi} for G is central, that is, if the factor is H1/H2

then H2 � G and H1/H2 ≤ Z(G/H2).

Chief series were discussed in Problem 9.15, and a proof of this equivalence is given
in Rose (1978), page 144. This is an example of an equivalence which is valid in
both the finite and infinite cases. The remaining three properties are:

(xii) The factor group G/J is nilpotent when J ≤ Z(G); see Problem 4.16.
(xiii) For all proper normal subgroups K of G, Z(G/K) > 〈e〉.
(xiv) For all non-neutral subgroups K of G, [K,G] < K .

Their equivalence to nilpotency is established in Problem 10.9.
Lastly, we ask: Is there a condition on n such that all groups of order n are

nilpotent? One is as follows. Suppose the prime factorisation of n is given by n =
p

r1
1 · · ·prk

k , then the condition is:

pi � p
sj
j − 1 for all i, j, sj satisfying 1 ≤ i, j ≤ k and 1 ≤ sj ≤ rj .

For example, all groups of order 891 are nilpotent; see Problem 7.12. For a proof of
this result, see Scott (1964), page 217.
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10.2 Frattini and Fitting Subgroups

Most groups have a number of subgroups with special properties; the centre is of-
ten the most important. Here we introduce two further examples: The Frattini and
Fitting subgroups. All finite groups possess these subgroups, but they may be de-
generate in the sense that they may equal either the whole group or the neutral
subgroup. For instance, if G is Abelian then Z(G) equals G as does the Fitting
subgroup of G. Both the Frattini and the Fitting subgroups have a number of use-
ful properties mainly related to the topics discussed earlier in this chapter, we shall
introduce them now.

First, we consider the Frattini subgroup.

Definition 10.10 Given a group G, the intersection of all maximal subgroups of G

is called the Frattini subgroup of G, it is denoted by �(G). If G has no maximal
subgroups we set �(G) = G.

Clearly, �(G) ≤ G (Theorem 2.15), in fact, it is both normal and (for finite
groups) nilpotent as we shall see below (Lemma 10.13 and Theorem 10.15). This
subgroup was first defined by G. Frattini (1852–1925) in 1885.

Examples We have (i) �(A5) = 〈e〉, (ii) �(C4 � C4)  C2 × C2, (iii) �(C32) =
C16, and (iv) �(Q) = Q; see Problems 7.20 and 10.13.

There is a second independent definition which involves ‘non-generators’, the
reader should revisit Problem 2.13(ii).

Definition 10.11 An element a of a group G is called a non-generator of G if
whenever the set X generates G, then the set X\{a} also generates G.

For example, the neutral element is a non-generator of all groups whose orders
are larger than 1.

The first result shows that the Frattini subgroup equals the set of non-generators.
As with many of the results in this section its proof relies mainly on simple logical
arguments involving maximality.

Theorem 10.12 For all finite groups G, the set of non-generators of G equals the
Frattini subgroup of G.

Proof Suppose a is a non-generator of G and H is a maximal subgroup. If
a /∈ H , then 〈H,a〉 > H , and so by maximality 〈H,a〉 = G. But a is a non-
generator, and hence H = G which contradicts the maximality of H (note
maximal subgroups are always proper). Therefore, a ∈ H , and as this holds
for all maximal subgroups H , we also have a ∈ �(G).
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Conversely, suppose a ∈ �(G), so a belongs to all maximal subgroups
of G; we show that a is a non-generator. Assume that, for some set X, a /∈ X

and {a} ∪ X generates G. If 〈X〉 �= G, then there exists a maximal subgroup
J of G which contains 〈X〉, possibly 〈X〉 itself, that is,

〈X〉 ≤ J < G.

By supposition, a ∈ J , and so 〈a,X〉 ≤ J . But 〈a,X〉 = G, hence G ≤ J

which is impossible. Hence 〈x〉 = G and a is a non-generator. �

As noted above, Frattini subgroups have many novel properties, we shall derive
some of the main ones now. Four of these apply to all finite groups whilst the re-
maining three provide some more information about p-groups. First, we have

Lemma 10.13 �(G) � G.

Proof If G has no maximal subgroups, then �(G) = G and the result holds
trivially. An automorphism maps a maximal subgroup to a maximal subgroup,
this is a consequence of the Correspondence Theorem. Hence this holds for
all inner automorphisms, and normality follows. �

The stronger property: �(G) char G also holds, see Problem 4.22.
The next lemma is needed in the proof of Theorem 10.15, it was first proved by

Frattini in 1885; cf. Theorem 10.12.

Lemma 10.14 If G is finite, H ≤ G and G = H�(G), then H = G.

Proof If H �= G, then there exists a maximal subgroup J of G which con-
tains H possibly H itself. Now �(G) ≤ J by definition, therefore G =
H�(G) ≤ J , which is impossible. The result follows. �

Theorem 10.15 If G is finite then �(G) is nilpotent.

Proof We show that all Sylow subgroups of �(G) are normal in �(G); there
is nothing to prove if �(G) = 〈e〉. Suppose �(G) > 〈e〉 and let P be a non-
neutral Sylow subgroup of �(G). Using the Frattini Argument (Lemma 6.14),
we have G = NG(P )�(G), as �(G) � G by Lemma 10.13. Now applying
Lemma 10.14 with H = NG(P ), we obtain NG(P ) = G, which gives P �
�(G). The result follows as this holds for all Sylow subgroups P of �(G). �

The next two results provide further conditions for nilpotency; note that in gen-
eral if H � G, and H and G/H are nilpotent, it does not follow that G is nilpotent;
S3 is an example as we noted above.
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Theorem 10.16 If G is finite, then G is nilpotent if and only if G/�(G) is nilpotent.

Proof If G is nilpotent, then all of its factor groups are also nilpotent by
Theorem 10.6(iv). For the converse, we prove that all Sylow subgroups P of G

are normal in G as in the proof above. By Problem 6.10(iii) and Lemma 10.13,
P�(G)/�(G) is a Sylow subgroup of G/�(G), and as G/�(G) is nilpotent
by hypothesis, this shows that

P�(G)/�(G) � G/�(G)

because all Sylow subgroups are normal in nilpotent groups. The Correspon-
dence Theorem now gives P�(G) � G. As P is a Sylow p-subgroup of
P�(G), applying Frattini argument (Lemma 6.14) we obtain

G = NG(P )P�(G) = NG(P )�(G),

as P ≤ NG(P ). Hence we have G = NG(P ) by Lemma 10.14, that is, P � G.
As this holds for all Sylow subgroups P of G, the result follows. �

We also have: G is soluble if and only if G/�(G) is soluble, see Section 11.2.
The second new nilpotency criterion completes the proof of Theorem 10.9.

Theorem 10.17 If G is a finite group, then G is nilpotent if and only if G′ ≤ �(G).

Proof By Theorem 7.9, G is nilpotent if and only if all of its maximal sub-
groups are normal. If H is maximal, then by hypothesis, H � G and H �= G,
so by Problem 4.13 we see that G/H is cyclic (Abelian). Hence, G′ ≤ H by
Problem 4.6. This holds for all maximal H and so G′ ≤ �(G).

Conversely, if G′ ≤ �(G) and H is maximal, then G′ ≤ H by definition
of �(G), and so G′ � H by Problem 2.14(i). It follows that H/G′ ≤ G/G′,
but as G/G′ is Abelian (Problem 2.16), we also have H/G′ � G/G′ and so,
by the Correspondence Theorem, H � G. This holds for all maximal H , so G

is nilpotent by Theorem 7.9 again. �

A weaker result involving the centre holds for all finite groups as the following
theorem due to W. Gaschütz shows.

Theorem 10.18 If G is finite, then G′ ∩ Z(G) ≤ �(G).

Proof Suppose G′ ∩ Z(G) �≤ �(G). Then there exists a maximal subgroup
H of G which satisfies G′ ∩ �(G) �≤ H . Therefore,

G = (
G′ ∩ Z(G)

)
H, (10.5)

as H is maximal, and so the set
(
G′ ∩ Z(G)

)\H is not empty. (10.6)
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Now if g ∈ G, then g = ah where a ∈ G′ ∩ Z(G) and h ∈ H (by (10.5)). As
a belongs to Z(G) it commutes with all elements in H , and so

g−1Hg = h−1a−1Hah = h−1Hh = H,

which shows that H � G. Hence by Problem 4.13, G/H is cyclic and so
Abelian, therefore G′ ≤ H by Problem 2.16. But G′ ∩Z(G) ≤ G′ ≤ H , which
contradicts (10.6). Hence G′ ∩ Z(G) ≤ H for all maximal H , and so finally
G′ ∩ Z(G) ≤ �(G). �

Example 5 We illustrate these last two results using the groups discussed in Chap-
ter 8. Firstly for S4, both the centre and the Frattini subgroup have order 1 and the
derived subgroup is A4, S4 is not nilpotent, and we have equality in Gaschütz’s
result. Secondly for Q2 × C3, the derived and Frattini subgroups are equal, and
isomorphic to C2, whilst the centre is isomorphic to C6 and contains the first two
subgroups, Q2 × C3 is nilpotent, and again we have equality in Gaschütz’s result.
Finally for F3,8, see Problem 8.3, the centre and the Frattini subgroup are both iso-
morphic to C4, whilst the derived subgroup is isomorphic to C3, F3,8 is not nilpo-
tent, and we have a strict inequality in Gaschütz’s result.

For p-groups the Frattini subgroup has some useful properties as we show now.
See Problem 4.18 for the definition of elementary Abelian.

Lemma 10.19 If G is an elementary Abelian group, then �(G) = 〈e〉.

Proof In an elementary Abelian group, every non-neutral element can act as
a generator, and so the result follows from Theorem 10.12. �

Lemma 10.20 If G is a p-group, then G/�(G) is an elementary Abelian p-group.

Proof Suppose K is a maximal subgroup of G, then K � G and [G : K] = p

(Theorem 6.6), hence G/K is elementary Abelian. We use Problem 4.12 to
complete the proof. In this problem, let K1, . . . ,Kn be the maximal subgroups
of G (and so G/Ki is elementary Abelian for i = 1, . . . , n). It follows that

G
/ ⋂n

i=1
Ki

is also elementary Abelian (a subgroup of an elementary Abelian group is
elementary Abelian). The result follows using the definition of �(G). �

The last result, which is one of many due to Burnside, has a number of appli-
cations, for example, it provides information about the automorphism groups of
p-groups; see, for instance, Scott (1964), pages 161 and 162.
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Theorem 10.21 If G is a finite p-group and o(G/�(G)) = pn, then we can find
a1, . . . , an ∈ G to generate G.

Proof By Lemma 10.20 and Problem 4.18, G/�(G) is isomorphic to a direct
product of n copies of the cyclic group Cp . Let the generators of these cyclic
groups be a1�(G), . . . , an�(G), where ai ∈ G for i = 1, . . . , n. Then

G  〈a1, . . . , an〉�(G) = 〈a1, . . . , an〉
using Lemma 10.14 for the last equality. �

Example 6 In Problem 6.4, we gave an example of a 2-group G1 with order 16. It
has three maximal subgroups: 〈a〉, 〈ab〉 and 〈a2, b〉, and so �(G1) = 〈a2〉 with or-
der 4. Hence Burnside’s result confirms the fact that G1 has a 2-element generating
set. But if we take the elementary Abelian 2-group of order 16, its Frattini subgroup
has order 1 and so the integer n in Burnside’s result is 4, and this elementary group
has a 4-element generating set; see Problem 4.18 for details.

Fitting Subgroup

We come now to the Fitting subgroup, it has fewer elementary properties, but gen-
eralisations have proved useful in recent work on CFSG. The following result was
proved by H. Fitting (1906–1938) in 1938.

Theorem 10.22 (Fitting’s Theorem) If J and K are nilpotent normal subgroups of
a group G, with classes r and s, respectively, then JK is also a nilpotent normal
subgroup of G with class at most r + s.

Proof The normality of JK follows immediately from Lemma 4.14. For
nilpotency we argue as follows. First, note that if Li � G for i = 1,2,3, then

[L1L2,L3] = [L1,L3][L2,L3] and [L1,L2L3] = [L1,L2][L1,L3].
These identities follow from Problem 2.17 using normality (the reader should
verify them). Hence by Definition 10.1, we have, using the second identity
above with L1 = Di (JK), L2 = J and L3 = K ,

Di+1(JK) = [
Di (JK), JK

] = [
Di (JK), J

][
Di (JK),K

]
. (10.7)

This suggests the following: For subgroups Hi, i = 1,2, . . . of G, let [H1] =
H1 and [H1, . . . ,Hi,Hi+1] = [[H1, . . . ,Hi],Hi+1] where [G,H ] is as usual
the subgroup generated by the commutators of the elements of G and H . Then
we have by induction, and using (10.7),

Di (JK) equals the product of all terms of the form [H1, . . . ,Hi], where

Hj = J or Hj = K for j = 1, . . . , i.
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Now set i = r + s +1. In the term L = [H1, . . . ,Hr+s+1], J will occur at least
r + 1 times, or K will occur at least s + 1 times. Therefore, L is contained
in either Dr+1(J ) or Ds+1(K) (Problems 2.16(v) and 10.2(iv)) both of which
equal 〈e〉 by hypothesis. This shows that Dr+s+1(JK) = 〈e〉, and the result
follows. �

This result leads us to make the following

Definition 10.23 For a finite group G, the product of all nilpotent normal subgroups
of G is called the Fitting subgroup of G, and it is denoted by F(G).

There is no concensus amongst authors on the notation for the Fitting subgroup,
some use F(G), Fit(G) or Fitt(G). By Theorem 10.22, F(G) is the unique largest
nilpotent normal subgroup of G; see Appendix C for some examples. Note that by
Lemma 10.13 and Theorem 10.15,

�(G) ≤ F(G).

Suppose G is a finite group, p is prime and P1, . . . ,Pk is a list of its Sylow
p-subgroups. Then we define

Op(G) =
⋂k

i=1
Pi.

The (normal) subgroup Op(G) is called the p-radical of G. If G has only one Sylow
p-subgroup P1, then Op(G) = P1 � G by Sylow 3. Also, if G has several Sylow
p-subgroups (and so not normal), we still have Op(G)� G by Problem 6.9(vi). This
leads to (for an example, see page 182)

Theorem 10.24 If p1, . . . , pr are the (distinct) primes dividing o(G), then

F(G) = Op1(G) · · ·Opr (G).

Proof The Sylow p-subgroups of G form a class of conjugate subgroups in G

(Theorem 6.9), and so Op(G) is the core (Problem 2.24) of each member of
this class, and hence is normal in G. Therefore, as p-groups are nilpotent,
Op(G) ≤ F(G) for each p dividing o(G). Now by Theorem 10.22, this shows
that

∏r

i=1
Opi

(G) ⊆ F(G).

Conversely, if Q is a Sylow p-subgroup of F(G), then it is contained in
some Sylow p-subgroup P of G (Theorem 6.9). By Problem 6.20(i), we have
Q � G, hence Q ⊆ core(P ) = Op(G), and so F(G) ⊆ ∏r

i=1 Op(G). The re-
sult follows. �
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It is not difficult to show that

CG

(
F(G)

) ≤ F(G),

provided G is finite and soluble; see Chapter 11 and Kurzweil and Stellmacher
(2004), page 123. The solubility condition can be removed if we replace F(G) by
the Generalised Fitting Subgroup F∗(G) which is defined as the product of F(G)

and the subgroup of G generated by the components of G. A component H of G is
a subgroup of G which is perfect and subnormal in G (Problem 10.4), and also sat-
isfies the condition H/Z(H) is simple. For example, A5 is a component of G = A5
wr C2; see page 156. The subgroup A5 is perfect, and in G no copy of A5 is nor-
mal but A5 � A5 × A5 � G. Generalised Fitting subgroups play a important role in
CFSG. For example, in a series of papers published in the Pacific Journal of Math-
ematics during the 1970s John Thompson showed that if G is a non-soluble group
and the normalisers of all of its non-neutral p-subgroups are soluble, then F∗(G)

is isomorphic to one of the following groups most of which will be considered in
Chapter 12:

L2(q), Sz
(
22n−1), A7, M11, L3(3), U3(3), 2F4(2)′,

where q > 3 and n > 1. This means that in most cases (that is, except those listed
above whose properties are well known) a non-soluble group will have a non-soluble
normaliser attached to at least one of its p-subgroups. For further details, the reader
should consult the references quoted above; the Suzuki groups Sz(22n−1) are dis-
cussed in Web Section 14.3, and the last group listed is known as the Tits group,
it has order 17971200 and some authors (ATLAS 1985, for example) treat it as
‘nearly’ sporadic.

10.3 Problems

Problem � 10.1 Show that the following statement gives an equivalent definition
for the upper central series of a group G, see page 211: Z0(G) = 〈e〉 and

Zn+1(G) = {
g : g ∈ G and [a,g] ∈ Zn(G) for all a ∈ G

}
.

Problem 10.2 (i) Find the hypercentres of the three groups discussed in Chapter 8.
(ii) Show that the dihedral group Dn is nilpotent if and only if n is a power of 2.
(iii) Using Problem 3.15, show that the nilpotency class of the group ITn(Q) is

exactly n − 1.
(iv) Establish the nilpotency condition given in the introduction to this chapter

(page 209).

Problem 10.3 For n = 1,2, . . . , let Hn be a finite p-group with nilpotency class n.
Further, let G be the direct product of the Hi , i = 1,2, . . . . Show that G is an infinite
p-group which is not nilpotent. The definition of infinite direct products is given in
Web Section 7.5.
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Problem � 10.4 (i) Show that if H is a subgroup of a nilpotent group G and
HG′ = G, then H = G. (Hint. Use induction on the nilpotency class number and
Problem 2.17.)

(ii) A subgroup J of G is called subnormal in G if there exists a sequence of
subgroups {Ji} with the property

J = J0 � J1 � · · · � Jm = G.

This is expressed by J � � G. Note that this relation is transitive: if H � � J and
J � � G, then H � � G; see Problem 9.8. Prove that G is nilpotent if and only if
all subgroups of G are subnormal in G. This establishes the fifth equivalence in
Theorem 10.9.

Problem � 10.5 (i) Show that if G is nilpotent with class 2 and g ∈ G, then the
function θ : G → G defined by aθ = [g, a], for a ∈ G, is a homomorphism, and use
it to show that CG(g) � G.

(ii) Prove that if G is nilpotent with class r , then G/Z(G) is nilpotent with class
r − 1.

(iii) What is the nilpotency class of the dihedral group D2n ; see Problem 10.2(ii).

Problem 10.6 Suppose G is nilpotent, and 〈e〉 = H0, . . . ,Hn = G is a central series
for G; see page 210. Show that Dr+1(G) ≤ Hn−r ≤ Zn−r (G) for 0 ≤ r ≤ n.

Problem � 10.7 Suppose G is a group and J ≤ Z(G). Show that G is nilpotent if
and only if G/J is nilpotent. (Hint. Use Theorem 10.9(v).)

Hall has shown that if K � G, and both K and G/K ′ are nilpotent where K ′
denotes the derived subgroup of K , then G is also nilpotent. See Problem 10.11�,
or for a different proof Robinson (1982), page 129.

Problem � 10.8 Suppose G is nilpotent, o(G) = n, and m | n. Show that G has a
subgroup of order m; it is reverse Lagrange. (Compare with Problem 7.7).

Problem 10.9 Prove that the statements (xii), (xiii) and (xiv)� given on page 216
are, in fact, equivalent to nilpotency. (Hints. For (xii) use Lemma 5.21, and for (xiv)
use induction on o(G) and Problem 10.7.)

Problem 10.10 This problem uses the Hall–Witt Identity, see Problem 2.17(iv).
Let Hi ≤ G for i = 1,2,3, and let [H1,H2,H3] = 〈[[h1, h2], h3] : hi ∈ Hi ,

i = 1,2,3〉.
(i) Show that if K � G, [H2,H3,H1] ≤ K and [H3,H1,H2] ≤ K , then

[H1,H2,H3] ≤ K.

(ii) Prove that if [H2,H3,H1]=〈e〉 and [H3,H1,H2]=〈e〉, then [H1,H2,H3]=〈e〉.
This result is known as the Three Subgroup Lemma.
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(iii) Using (i) show that if Hi � G for i = 1,2,3, then

[H1,H2,H3] ≤ [H2,H3,H1][H3,H1,H2].
(iv) Prove that if G is perfect (Problem 4.8), then G/Z(G) is centreless by applying

the Three Subgroup Lemma to two copies of G and one of Z2(G).
(v) Lastly, prove that [Di (G), Zj (G)] ≤ Zj−i (G) if i ≤ j .

Problem 10.11� (i) Show that if G has nilpotency class j , then D[j/2]+1(G) is
Abelian. (Hint. Use Problem 10.10(v).)

(ii) Suppose K � G. Define Ki and Ln by

K0 = K, Ki+1 = [Ki,G], and Ln =
∏n

i=0
[Kn−i ,Ki].

Prove that [G,Ln] ≤ Ln+1.
(iii) Using the notation set up in (ii) suppose K has nilpotency class k and G/K ′

has nilpotency class l, show that the nilpotency class of G is at most 2k−1(2l − 1).

Problem 10.12 Suppose G is a nilpotent group.

(i) Show that K ∩ Z(G) �= 〈e〉 if K is a non-neutral normal subgroup of the
group G.

(ii) Deduce H ≤ Z(G), if H is a minimal normal subgroup of G; for the definition
of minimal normal see page 235.

(iii) Prove that J = CG(J ), if J is a maximal Abelian normal subgroup of G. See
also Problem 5.11.

Problem 10.13 Calculate the Frattini and Fitting subgroups of A5, C32, D12 and Sn.

Problem � 10.14 Let K � G. Show that K ≤ �(G) if and only if G has no proper
subgroup H which satisfies HK = G.

Problem 10.15 (i) If θ is a homomorphism of a group G to itself (that is an endo-
morphism) show that �(G)θ ≤ �(Gθ).

(ii) Show by an example that the inequality given in (i) can be strict.

Problem � 10.16 Prove that if J and K are normal subgroups of G, K ≤ �(G)

and J/K is nilpotent, then J is nilpotent. (Hint. One method begins by consid-
ering Sylow subgroups of J , and using the Frattini Argument (Lemma 6.14) and
Lemma 10.14.)

Problem 10.17 Suppose H1, . . . ,Hm are groups. Using Problem 7.3(ii) show that

�(H1 × · · · × Hm) ≤ �(H1) × · · · × �(Hm).

For a discussion of the reverse inequality, see Scott (1964), page 163.
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Problem 10.18 Suppose G is a finite group and K � G. Prove the following state-
ments.

(i) If H ≤ G, it does not follow that �(H) ≤ �(G). (Hint. Try G = S4.)
(ii) If H ≤ G and K ≤ �(H), then K ≤ �(G). (Hint. Assume the contrary and

use Problem 2.18 and Theorem 10.12.)
(iii) �(K) ≤ �(G).

Problem 10.19 (i)� Let G be a finite group with an Abelian normal subgroup K

which satisfies the property: K ∩ �(G) = 〈e〉. Show how to find a subgroup J of
G such that G = JK and J ∩ K = 〈e〉. (Hint. Begin by considering a subgroup J

which is minimal subject to the first of these conditions, then use Problem 10.18(ii).)
(ii) Give an example from Chapter 8 to illustrate (i).

Problem 10.20 (i) Suppose K � G and K ≤ �(G). Using Problems 10.15
and 10.18, show that Inn(K) ≤ �(Aut(K)).

(ii) Prove that if G is finite, then Inn(�(G)) ≤ �(Aut(�(G))).
(iii) Now applying this result to the dihedral group D4, prove that o(�(D4)) = 2

and o(Inn(D4)) = 4, and so deduce D4 cannot be the Frattini subgroup of a finite
group. This shows it is not true that every group is isomorphic to a Frattini subgroup
of some other group.

Problem 10.21 Suppose G is a finite p-group.

(i) Prove that �(G) = G′Gp where as usual Gp denotes the subgroup of G gener-
ated by its pth powers. (Hint. Use Theorem 6.6 and Problem 4.18.)

(ii) Use (i) (but not Lemma 10.20) to show that the factor group G/�(G) can be
treated as a vector space over the field Fp .

Problem 10.22 A finite p-group G is called extra-special if Z(G) is cyclic, and
Z(G) = G′ = �(G).

(i) Prove that if G is extra-special, then G/Z(G) is elementary Abelian.
(ii) Show that if o(G) = p3, then G is extra-special; see Problem 6.5.

Further facts concerning these groups can be found in Aschbacher (1994), Chap-
ter 1.

Problem 10.23 (i) If G is a 2-group, show that �(G) = 〈a2 | a ∈ G〉.
(ii) Show that the proposition given in (i) can be false if 2 is replaced by a larger

prime. (Hint. See Problem 6.5.)

Problem 10.24 (i) For a finite group G show that F(G/�(G)) = F(G)/�(G).
(Hint. Use Problem 10.16.)

(ii) Verify directly the result given in (i) for the three groups discussed in Chap-
ter 8.
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Problem 10.25 Suppose G is a non-neutral finite soluble group, see Chapter 11.

(i) Show that if 〈e〉 < K � G, then (a) K contains a non-neutral normal Abelian
subgroup of G, and (b) K ∩ F(G) > 〈e〉. (Hint. One proof uses the derived
series of G as defined on page 234.)

(ii)� Deduce CG(F(G)) = Z(F(G)). (Hint. Use terms in the lower central series for
a suitably chosen subgroup of G.)

(iii) Show that F(G) > 〈e〉.
(iv) Deduce �(G) < F(G).

Note (ii) shows that the Fitting subgroup of a soluble group plays a similar role to
the centre in a nilpotent group, see Problem 10.11�.

Problem 10.26 (Project—Supersoluble Groups) A group is called supersoluble if
and only if it has a normal series with cyclic factors; for further details, see Scott
(1964), Chapter 7.

(i) Give an example of a supersoluble group, and another of a group that is not
supersoluble.

(ii) Using Theorem 10.6 show that we may suppose all cyclic factors of a normal
series of a supersoluble group have prime order.

(iii) Prove that subgroups and factor groups of a supersoluble group are them-
selves supersoluble, but the converse can be false. One example is given us-
ing S4.

(iv) Show that a direct product of supersoluble groups is supersoluble.
(v) A finite nilpotent group is supersoluble, and a supersoluble group is soluble;

see Chapter 11. Prove these statements and give examples to show that the
reverse inclusions are false.

(vi) Prove that if G is supersoluble, then G′ is nilpotent. (Hint. Use the fact that
the automorphism group of a cyclic group is Abelian.)

(vii) If K is a cyclic normal subgroup of a finite group G and G/K is supersoluble,
prove that G is also supersoluble.

(viii) The set of odd-order elements of a finite supersoluble group forms a char-
acteristic subgroup. Investigate what is needed to prove this. See Robinson
(1982), page 146.

(ix)� Show that every subgroup of a finite group G is reverse Lagrange if and only
if G is supersoluble; see Rose (1978), page 292.

(x) Is it true that all Abelian groups are supersoluble? (Hint. Consider what hap-
pens in the uncountable case.)



Chapter 11
Solubility

See note at the head of Chapter 10.
Évariste Galois, who died following a duel at the age of 20 in 1832 (he was in-

volved in French anti-monarchist politics), was one of the main early group theory
pioneers. He introduced normal subgroups, soluble groups and some of the results
concerning symmetric groups in order to solve a long-standing problem: Can a gen-
eral polynomial equation be solved by radicals (that is using square-roots, cube-
roots, et cetera). He did rely on the work of some earlier mathematicians. Ruffini
was the first to claim that some quintic equations are unsoluble, and Abel proved
this in the 1820s without making the connection with the permutation group of the
roots. Nevertheless, Galois’s contributions, which also included much of the theory
of finite fields (Section 12.2), were of the highest originality and importance, and
they have had a profound influence on the development of group theory and algebra
in general ever since. A brief account of his life and work can be found in van der
Waerden (1985) or Stewart (1989).

It had been known since the sixteenth century that quadratic, cubic and quartic
polynomial equations are soluble by radicals, see the references quoted above and
Problem 11.1, so why not quintics, sextics, et cetera? The answer depends on the
fact to be proved in this chapter that certain groups related to the polynomials in
question, S5 amongst them, are not ‘soluble’, whereas others are soluble including
Sn for n ≤ 4. Briefly, these groups can be defined as follows; for a more detailed ex-
planation, see any of the standard texts on Galois theory, for example, Artin (1948)
or Stewart (1989). Let f (x) be an irreducible polynomial defined over a field F ,
and let F � be an extension field formed by adding one or more of the roots of the
polynomial equation f (x) = 0 to F . Now consider the set F of automorphisms θ of
F � which fix F . (If θ ∈ F , then it is a bijection of F � to itself, zθ = z for all z ∈ F ,
and (x + y)θ = xθ + yθ and (xy)θ = xθyθ for all x, y ∈ F �.) It is a simple matter
to show that F forms a group under composition of maps, and this group is called
the Galois group GalF �/F (f ) of f for the extension F � over F . When the extension
field F � includes all of the roots of the polynomial equation f (x) = 0, the so-called
splitting field for f , the Galois group is denoted by Gal(f ). For example, working
over the rational field Q we have, see Cohen (1993), page 327 (where several more
examples are given),

H.E. Rose, A Course on Finite Groups,
Universitext,
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(a) if f (x) = x5 − x + 1, then Gal(f ) � S5,
(b) if g(x) = x5 − 5x + 12, then Gal(g) � D5, and
(c) if h(x) = x2 + x + 1, then Gal(h) � C2.

In 1829, Abel showed that a quintic polynomial with a commutative (Abelian) ‘Ga-
lois group’ is soluble using radicals (that is, using terms some positive power of
which belong to the base field F ; see van der Waerden 1985). Galois greatly gener-
alised Abel’s result by showing that in a sequence of extensions with Galois groups
G1,G2, . . . , if each factor group Gi+1/Gi is Abelian, then the corresponding poly-
nomial is soluble by radicals—in Example (c) above, the roots of the polynomial
equation x2 + x + 1 = 0 are defined using square roots and the corresponding Ga-
lois group is cyclic (Abelian). Repeated applications of these ideas leads naturally
to the definition of solubility, see Definition 11.1 below; in fact, the use of the word
‘soluble’ in group theory arises from this result.

We begin this chapter by giving the basic facts about solubility. The second sec-
tion discusses some of the many equivalent definitions including an important one
due to Philip Hall, this generalises the Sylow theory but it only applies to soluble
groups. In Chapter 10, we studied nilpotent groups, they form an important subclass
of the class of soluble groups. For finite groups, we have the (strict) inclusions

Abelian ⊂ Nilpotent ⊂ Soluble ⊂ Generic group.

The class of ‘supersoluble groups’ lies strictly between nilpotent and soluble, see
Problem 10.26. Some of these inclusions do not hold for infinite groups. The mod-
ern development of solubility theory is covered extensively in Doerk and Hawkes
(1992).

11.1 Soluble Groups

We begin with the basic definition, the reader should refer to the first part of Chap-
ter 9 for the elementary facts about series.

Definition 11.1 A group is called soluble1 if it has a subnormal series all of whose
factors are Abelian, when this holds the series is called a soluble series.

In Galois’s work on the solution of polynomial equations over fields, the sev-
eral extensions needed to form the splitting field are mirrored by the steps in the
corresponding soluble series.

Clearly, all finite Abelian groups are soluble and all non-Abelian simple groups
are not soluble. The group S5 is an example which is neither simple nor soluble, see
Example (b) on page 189. A wide range of finite groups are soluble including

1Some, mainly American, authors use the word ‘solvable’ for soluble.
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• all Abelian, nilpotent and p-groups (Theorem 11.6);
• all groups whose orders have at most three prime factors (Theorem 11.7), and if

we exclude A5 then ‘three’ can be replaced by ‘four’. This count can be further
increased to ‘five’ if a handful of well-known cases are excluded;

• all groups which have square-free order, these groups are metacyclic, see Theo-
rem 6.18, Problem 6.20 and Web Section 6.5;

• all groups of order prqs where p and q are prime—this is Burnside’s prqs -
theorem which we shall prove in Web Section 14.2;

• all groups of odd order—this famous result, which appeared in 1963 and was
first conjectured by Burnside in the early 1900s, is due to Walter Feit and John
Thompson. It is remarkable for its fundamental importance to the theory espe-
cially to CFSG, and for its very long proof (about 270 pages)!

We begin our development by showing that subgroups and factor groups of sol-
uble groups are soluble, and vice versa. This is an indication of the importance of
solubility in the theory, see also page 116. Note that the constructions and proofs
presented in this section rely entirely on material given in Chapters 2 and 4.

Theorem 11.2 A subgroup J of a soluble group G is soluble.

Proof Suppose {H0, . . . ,Hn} is a soluble series for G. We prove the result
by showing that

{H0 ∩ J, . . . ,Hn ∩ J } (11.1)

is a soluble series for J . It may have some repetitions but this does not affect
the result. Note first that

H0 ∩ J = 〈e〉, Hn ∩ J = J, and Hi ∩ J 
 Hi+1 ∩ J

(Problem 2.14(iv)). Also, for each i we have (by definition) Hi 
 Hi+1 and
Hi+1 ∩ J ≤ Hi+1, and using the Second Isomorphism and Correspondence
Theorems we obtain

Hi+1 ∩ J

Hi ∩ J
� Hi+1 ∩ J

Hi ∩ (Hi+1 ∩ J )
as Hi ≤ Hi+1

� Hi(Hi+1 ∩ J )

Hi

by Theorem 4.15

≤ Hi+1

Hi

by Theorem 4.16.

This shows that the factors of the series (11.1) for J are subgroups of the
factors of the original series for G, and are therefore Abelian. �
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Theorem 11.3 If G is soluble and K 
 G, then G/K is also soluble.

Proof Let {H0, . . . ,Hn} be a soluble series for G. By Lemma 4.14, Prob-
lem 4.6, and as K 
 G, the series from K to G

K = KH0 
 KH1 
 · · · 
 KHn = G

is subnormal. Arguing as in the proof above we have, for i = 0, . . . , n − 1,

KHi+1

KHi

= (KHi)Hi+1

KHi

as Hi ≤ Hi+1

� Hi+1

(KHi) ∩ Hi+1
by Theorem 4.15

� Hi+1

Hi

/ (KHi) ∩ Hi+1

Hi

by Theorem 4.17 as Hi,Hi+1 ∩ J ≤ Hi+1.

This shows that KHi+1/KHi is isomorphic to a factor group of the Abelian
group Hi+1/Hi , and so is itself Abelian (Problem 4.6). Hence, as KH0 = K ,

〈e〉 = KH0

KH0

 KH1

KH0

 · · · 
 KHn

KH0
= G

K

is a subnormal series for G/K with Abelian factors (by Theorem 4.17), that
is, G/K is soluble. �

The converse of these two results is

Theorem 11.4 If K 
 G, and both K and G/K are soluble, then G is also soluble.

This implies that the extension of one soluble group by another is itself soluble.

Proof Let {H0, . . . ,Hn} be a soluble series for K , and let {J0, . . . , Jm} be a
soluble series for G/K . Further, let θ be the natural homomorphism from G

to G/K (Definition 4.13). By the Correspondence Theorem,
{
J0θ

−1, J1θ
−1, . . . , Jmθ−1}

is a subnormal series from K = J0θ
−1 to G = Jmθ−1 with Abelian factors.

Hence
{
H0, . . . ,Hn−1, J0θ

−1, . . . , Jmθ−1}

is a soluble series for G because Hn = K = J0θ
−1, the result follows. �

In the finite case, the next result provides a second definition of solubility.

Theorem 11.5 If G is a finite group, then G is soluble if and only if it has a com-
position series all of whose factors are cyclic of prime order.
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Proof Clearly, if G has a composition series with cyclic factors, then it is
soluble as all cyclic groups are Abelian.

Conversely, suppose G finite and soluble. If G is Abelian, the result follows
from Lemmas 7.5 and 7.13. For the non-Abelian case, we use induction on the
order of G. If the order of G is 1 or a prime, there is nothing to prove. Hence
we may assume that (a) o(G) is composite, and (b) the result holds for groups
whose orders are less than o(G). Using our supposition, the series

〈e〉 
 G

cannot be the only subnormal series for G as this series has a non-Abelian fac-
tor. Hence there exists a subgroup K satisfying 〈e〉 
 K 
 G with 1 < o(K) <

o(G). By the inductive hypothesis, both K and G/K have composition series
with factors which are cyclic of prime order. As in the proof of Theorem 11.4,
we can combine these series to form a series for G with cyclic factors of prime
order. This proves the result. �

We shall now consider some examples. Clearly, all Abelian groups are soluble, as
are the dihedral and dicyclic groups; see Problem 11.2. The next two results provide
a further wide range of examples.

Theorem 11.6 All finite nilpotent groups G are soluble.

By Theorem 10.6, this shows that all finite p-groups are also soluble.

Proof If G is a p-group, this follows directly from Theorem 6.5. Otherwise,
by Theorem 7.9, a finite nilpotent group can be expressed as a direct product
of p-groups for various primes p, and the result follows by Problem 11.2. �

Theorem 11.7 If G is a finite group whose order has at most three (not necessarily
distinct) prime factors, then G is soluble.

Proof Let p, q and r be distinct primes. There are a number of cases. If
o(G) = p,p2 or p3, the result follows from Theorem 11.6. If o(G) = pq

and p < q , then G has a normal subgroup K of order q (Theorem 6.11) and
〈e〉 
 K 
 G is a soluble series for G. If o(G) = p2q then, by Theorem 6.13,
G has a normal subgroup of order p2 or q . In both cases, these subgroups
are soluble, and so the solubility of G follows by Theorem 11.4. Finally, if
o(G) = pqr , then by Theorem 6.13 again, G has a normal subgroup whose
order has one or two prime factors, and the solubility of G again follows from
Theorem 11.4 by applying the pq case above. �

Using Problem 6.15, this shows that the smallest non-soluble group is isomor-
phic to A5 with order 60; see Problem 11.3. We noted above that no non-Abelian
simple groups is soluble. But groups can be both non-simple and non-soluble as the
following result shows.
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Theorem 11.8 If n > 4, then Sn is not soluble.

Proof The series 〈e〉 
 An 
 Sn is a composition series for G one of whose
factors is not Abelian (Theorem 3.14). Hence by the Jordan–Hölder Theorem
(Theorem 9.5), Sn cannot have a subnormal series with Abelian factors, and
so Sn for n > 4 is not soluble. �

Derived Series

The derived subgroup G′ of a group G is generated by the set of commutators
[a, b] = a−1b−1ab where a, b ∈ G. We have, if H 
 G,

G′ 
 G and G/H is Abelian if and only if G′ ≤ H,

see Problems 2.16 and 4.6. (It is not sufficient just to take the set of commutators in
the definition of the derived subgroup. Scott (1964), page 455, gives an example of a
group containing two commutators whose product is not a commutator.) Therefore,
the series G′ 
 G can be used as the final step of a soluble series for G, and an
extension of this procedure provides an efficient method for constructing this series.
We begin with

Definition 11.9 (i) The nth derived subgroup G(n) of G is defined inductively by:

G(0) = G, G(n+1) = (
G(n)

)′
.

(ii) The derived series for G is the normal series from some subgroup of G to G

given by

· · ·G(k) 
 G(k−1) 
 · · · 
 G.

The derived length of a soluble group G is the least n such that G(n) = 〈e〉,
see below. Groups with arbitrarily long derived lengths have been constructed; see
page 156. Also compare this with Definition 10.3 for lower central series.

Theorem 11.10 (i) G(n) 
 G.
(ii) G is soluble if and only if G(n) = 〈e〉 for some positive integer n.

The proof of this result uses ‘characteristic subgroups’ which were discussed
in Problem 4.22. We use this notion because, unlike normality, the characteristic
property is transitive, see the quoted problem. Note also G′ char G.

Proof (i) We use induction on n. By Problem 2.16, G′ 
 G. Problem 4.22
and the definition of G(k) give G(k+1) char G(k). Combining this with the in-
ductive hypothesis (that is, G(k) 
 G), we obtain G(k+1) 
 G. Now use Prob-
lem 4.22 again. (We also have G(n) char G.)
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(ii) Suppose first G has the soluble series 〈e〉 = Hm 
 · · · 
 H0 = G where
for this proof we write the suffixes in reverse order. First, we show

G(i) ≤ Hi for i = 0, . . . ,m, (11.2)

by induction on i. We have H0 = G = G(0), and by Definition 11.9 and the
inductive hypothesis

G(i+1) = (
G(i)

)′ ≤ (Hi)
′.

As Hi/Hi+1 is Abelian by definition, we also have (Hi)
′ ≤ Hi+1 by Prob-

lem 4.6. Combining these we obtain G(i+1) ≤ Hi+1, and (11.2) follows. Now
as {Hm, . . . ,H0} is a soluble series for G, this shows that G(m) ≤ Hm = 〈e〉.
Conversely, if G(n) = 〈e〉 for some n ≤ m, then by Problem 4.6 again

〈e〉 = G(n) 
 G(n−1) 
 · · · 
 G(0) = G

is a soluble series for G. �

Minimal Normal Subgroup

Finally, in this section we consider the smallest (minimal) normal subgroups of a
soluble group, these subgroups will be used in the proof of Hall’s theorems given in
the next section. A subgroup K of a group G is called minimal normal if it is a non-
neutral normal subgroup of G, and if J 
 G and 〈e〉 ≤ J ≤ K , then either J = 〈e〉
or J = K . If G is simple, then G itself is the only minimal normal subgroup of G.
For example, referring to Section 8.1, the subgroup V generated by a product of
two 2-cycles in S4 is an example of a minimal normal subgroup (of S4). In this case,
the group S4 is soluble, and the subgroup V (isomorphic to C2 × C2) is elementary
Abelian. We show in the next theorem that this is always true for soluble groups.
It does not hold in general for non-soluble groups, for instance, consider S5. On
page 189, we showed that the only non-neutral proper normal subgroup of S5 is A5,
so A5 is the only minimal normal subgroup of S5 and it is clearly not elementary
Abelian! See also (17) on page 293 for the sockel, the product of the minimal normal
subgrups of the group in question.

Theorem 11.11 If G is a finite soluble group and H is a minimal normal subgroup
of G, then H is an elementary Abelian p-group for some prime p.

Proof Let K be a minimal normal subgroup of G. By Problem 4.22, K ′ char
K (where K ′ denotes the derived subgroup of K), and so K ′ 
 G. As K is min-
imal, this implies that either K ′ = K or K ′ = 〈e〉. The first possibility is ruled
out by Theorem 11.10 as G is soluble; hence K ′ = 〈e〉, that is, K is Abelian.
By Theorems 7.9 and 10.6, K is a direct product of its Sylow subgroups, and
each of these subgroups is normal in K . Hence by minimality, K can only
have one such subgroup, and so K is an Abelian p-group for some prime p.
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Further, note that if K1 = {k ∈ K : kp = e}, then K1 is a characteristic sub-
group of the Abelian p-group K (Problem 7.12); and so by minimality again
we have K1 = K ; that is, K is an elementary Abelian p-group. �

It can be shown that if H is a minimal normal subgroup of general finite group G,
then H is either simple or a direct product of isomorphic simple groups; see, for
example, Rotman (1994), page 106. This result follows from the fact that if G has no
characteristic subgroups (except 〈e〉 and itself), then it is simple or a direct product
of isomorphic simple groups. Therefore, Theorem 11.11 shows that in the soluble
case these simple groups (factors of the direct product) are always cyclic with prime
order.

11.2 Hall’s Theorems and Solubility Conditions

There are a number of equivalent definitions for solubility (for nilpotency, see Theo-
rem 10.9). Perhaps the most remarkable relates to the extension of the Sylow theory
to subgroups with coprime orders. In 1928, Philip Hall (1904–1982) showed that if
G is soluble and o(G) = mn where (m,n) = 1, then G contains subgroups of orders
m and n; and in 1937 he proved the converse, so providing a new characterisation
of solubility, one apparently far removed from Galois’s original definition. We shall
prove these results in this section, discuss some related results and applications, and
give some further characterisations. We begin with

Theorem 11.12 (Hall’s First Theorem) If G is a soluble group with order mn where
(m,n) = 1, then G contains at least one subgroup of order m.

We give two proofs of this result. The first uses the Schur–Zassenhaus Theorem,
see page 187, in fact, the proof essentially points out that Hall’s Theorem can be
treated as a corollary of the result of Schur and Zassenhaus which appeared in its
final form in 1937 nine years after Hall’s first paper. The second proof is a version
(based on one given in Rose 1978) of Hall’s original proof; it is quite long and needs
careful study, but it does not use any methods not already discussed.

First Proof We use induction on o(G), hence we may assume that the result
holds for all groups G1 where o(G1) < o(G). Let K be a minimal normal
subgroup of G (Theorem 11.11). For some prime p, K is an (elementary
Abelian) p-group of order s(= pt), say. There are two cases.

Case 1: p | m.

In this case, the inductive hypothesis gives a factor group J/K of G/K

which has order m/s. The Correspondence Theorem (Theorem 4.16) now pro-
vides a subgroup J of G with order m completing this case.
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Case 2: p � m.

As above the inductive hypothesis gives H/K ≤ G/K for some H (a sub-
group of G) with o(H/K) = m. This implies that o(H) = ms and K 
 H .
Now (o(K), [H : K]) = 1, and so the Schur–Zassenhaus Theorem states that
H is isomorphic to a semi-direct product of the form H � J � K where J

is a complement of K in H . This result also implies that o(J ) = m which
completes the proof. �

Before giving the second proof we make the following, see also Definition B.5(ii)
on page 285.

Definition 11.13 Given a set of primes π , a subgroup H of G is called a Hall
π -subgroup of G if all the prime factors of o(H) belong to π , and no prime factor
of [G : H ] is contained in π .

If π = {p} for some prime p, then a Hall π -subgroup is simply a Sylow
p-subgroup. Using Definition 11.13, we can restate the Hall’s Theorem as:

For all sets of primes π , G contains a Hall π -subgroup.

The main case is when π equals the set of prime factors of m.

Second Proof As in the first proof, we use induction on o(G), there is nothing
to prove if o(G) is 1 or a prime. Let

Q = Oπ(G).

For the elementary properties of the radical Oπ(G), see Problem 6.9(vi)
and Theorem 10.24; the fact it is a normal subgroup can be proved using
Lemma 4.14, and Problems 4.11 and 6.9. There are two cases.

Case 1: Q > 〈e〉.
As Q 
 G, the factor group G/Q has a subgroup H/Q for some H ≤

G where o(H) is a π -number (by the induction hypothesis). Now o(H) =
o(H/Q)o(Q) and so o(H/Q) is a π -number (Definition B.5). Hence as [G :
H ] = [G/Q : H/Q], this shows that [G : H ] is a π ′-number (it only involves
primes outside π ), so H is a Hall π -subgroup as required.

Case 2: Q = 〈e〉.
Let K = Oπ ′(G). If K = G, then G is a π ′ group, there is only one

π -subgroup—that is, 〈e〉, and the theorem follows in this case. Hence we may
suppose

K < G.
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The diagram illustrates the subgroup structure used in the last part of the second
proof of Hall’s First Theorem.

* * * * * *

We apply Problem 9.15. (Note that using Theorem 11.11 most properties of
chief series given in this problem are derived in an exactly similar manner to
those for composition series given in Section 9.1.) Using this problem we see
that G has a chief factor H/K which is an elementary Abelian p-group for
some prime p. We have

p ∈ π.

Suppose not, that is, suppose p ∈ π ′. As o(H) = o(H/K)o(K), this would
imply that H is a normal (the terms in a chief series are normal in G)
π ′-subgroup of G with K < H . But this is not possible by the definition of K

and our Case 2 assumption. Therefore, p ∈ π .
Let P be a Sylow p-subgroup of H . We have

H = PK, (11.3)

for both P and K are subgroups of H , P is Sylow, and K is normal. Fur-
ther, as P �= 〈e〉 and Q = 〈e〉, we have NG(P ) < G. (If we had equality, then
P 
 G, but this would contradict our assumption.) The inductive hypothesis
implies that NG(P ) has a Hall π -subgroup J , see diagram above. We com-
plete the proof by showing that J is a Hall π -subgroup of G, that is, we need
to show that [G : J ] is a π ′-number.

By Problem 2.15, we have

[G : J ] = [
G : NG(P )

][
NG(P ) : J ]

. (11.4)

Also by the Frattini Argument (Lemma 6.14), (11.3) and the fact that a nor-
maliser of a group always contains that group, we have
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G = NG(P )H = NG(P )PK = NG(P )K.

Using this and the Second Isomorphism Theorem (Theorem 4.15), we have
[
G : NG(P )

] = [
NG(P )K : NG(P )

] = [
K : NG(P ) ∩ K

]
,

which is a π ′-number. Also [NG(P ) : J ] is a π ′-number by the definition of J .
Combining these facts with (11.4) shows that [G : J ] is a π ′-number, and the
theorem follows. �

As in the Sylow theory, it can be shown that two Hall π -subgroups of a finite
group G are conjugate in G, we shall not prove this fact (it is also due to Philip
Hall); a proof can be found in Rose (1978), page 285.

Hall’s First Theorem cannot be extended to all finite groups, for example, con-
sider A5 which is not soluble. We have o(A5) = 4 ·3 ·5, and A5 does have a subgroup
of order 12 (isomorphic to A4) and (12,5) = 1. But by the example on page 101,
A5 does not have subgroups of order 15 or 20 even though (15,4) = (20,3) = 1.

If the prime factorisation of o(G) is p
r1
1 · · ·prn

n and G is soluble, then both Hall’s
and Sylow’s First Theorems state that G has a subgroup of order p

ri
i for each i. In

the soluble case, Hall’s Theorem extends this to assert the existence of Hall sub-
groups with order p

ri1
i1

· · ·prik
ik

where I = {i1, . . . , ik} ⊆ {1, . . . , n}. Perhaps the most
important case is when I = {1, . . . , j −1, j +1, . . . , n} for some j between 1 and n;
in this case, the corresponding subgroup is called a pj -complement of G, it has order
o(G)/p

rj
j .

For example, a group of order 30 (soluble by Theorem 11.7) will have a
2-complement, that is, a subgroup of order 15; a 3-complement, a subgroup of or-
der 10; and a 5-complement, a subgroup of order 6. One consequence of Hall’s First
Theorem is: For all soluble groups G and for all primes p dividing o(G), G has a
p-complement. Hall’s Second Theorem gives the converse.

Theorem 11.14 (Hall’s Second Theorem) Suppose G is a finite group. If G has a
p-complement for each prime p dividing o(G), then it is soluble.

The proof of this result relies on Burnside’s prqs -theorem which we shall prove
in Web Section 14.2. It states that if o(G) = prqs , and p and q are prime, then
G is soluble; via the Sylow theory, this is Hall’s Second Theorem in the case when
o(G) has exactly two distinct prime factors. As with the second derivation of Hall’s
First Theorem above, the proof given below is quite long, but it only uses meth-
ods applied previously; the main one being consideration of the ‘smallest counter-
example’.

Proof Again we use induction on o(G). Suppose the result is false and G1

is a counter-example of smallest order. So G1 has p-complements for all p

dividing o(G1), G1 is not soluble, and the result holds for all groups whose
orders are less than o(G1).
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We show first that G1 is simple. Suppose not, then G1 has a proper
non-neutral normal subgroup K . If p | o(G1), then by hypothesis G1 has
a p-complement J of order o(G1)/p

r where pr is the largest power of
p dividing o(G1). Now J ∩ K is a p-complement of K , and JK/K is a
p-complement of G1/K (by Theorem 5.8, o(JK/K) = o(J/J ∩ K) | o(J )).
This holds for all p-complements J , that is for all primes p dividing o(G).
Now by the inductive hypothesis both K and G1/K are soluble, and so G is
soluble by Theorem 11.4.

We complete the proof by constructing a proper normal subgroup of G1

which, of course, is impossible because we have just shown that we may
assume G1 is simple. This then shows that our main assumption—that the
counter-example G1 exists—is false and the theorem follows.

Suppose

o(G1) = p
r1
1 · · ·prn

n where n > 2 and ri > 0, i = 1, . . . , n.

We may assume that n > 2 by Theorem 11.6 and Burnside’s prqs -theorem.
For i = 1, . . . , n, let Hi be a pi -complement of G1 as given by the hypothesis,
then

[G1 : Hi] = p
ri
i and o(Hi) = o(G1)/p

ri
i .

Let L = H3 ∩ · · · ∩ Hn, by Theorem 5.8 this gives

[G1 : L] = p
r3
3 · · ·prn

n hence o(L) = p
r1
1 p

r2
2 .

Now Burnside’s prqs -theorem asserts that L is soluble, and by Theo-
rem 11.11 it has a minimal normal subgroup K which is an (elementary
Abelian) p-group for some p dividing o(L). Relabelling if necessary, we
may assume that p = p1, and so K is a p1-group. Applying Theorem 5.8
again,

[G : L ∩ H2] = p
r2
2 · · ·prn

n and so o(L ∩ H2) = p
r1
1 ,

that is, L ∩ H2 is a Sylow p1-subgroup of L. Hence, by Problem 6.10(iii),

K ≤ L ∩ H2, and so K ≤ H2. (11.5)

Also using the same argument, we have o(L ∩ H1) = p
r2
2 , and so

G = (L ∩ H1)H2.

(Note o(H2) = p
r1
1 p

r3
3 · · ·prn

n .) Therefore, if g ∈ G1, then g = lh where l ∈
L ∩ H1 and h ∈ H2. Further, if k ∈ K , we have

g−1kg = h−1l−1klh = h−1yh where y = l−1kl ∈ K as K 
 L.
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This gives by (11.5)

g−1kg = h−1yh ∈ H2 (11.6)

for g ∈ G1 and k ∈ K . Finally, let M be the normal closure of K in G; see
Problem 2.25. We have K ≤ M 
 G1 and M ≤ H2 < G1 by (11.6), that is,
M is a non-neutral proper normal subgroup of G1. Hence G1 is not simple,
contrary to our assumption, and the theorem follows. �

Example Let H be the group given by

H = 〈
a, b | a5 = b6 = e, b−1ab = a4〉,

a Frobenius group, see Theorem 6.18. The order of this group is 30, and it contains
subgroups (p-complements for p = 2,3 and 5): 〈b〉 of order 6, 〈a, b3〉 of order
10 (�D5), and 〈ab2〉 of order 15 (�C15). Hence the conditions of Hall’s Second
Theorem are satisfied and so H is soluble. This fact, of course, also follows from
Theorem 11.7.

Solubility Conditions

We end this section by listing some solubility conditions. By definition, G is soluble
if it has a subnormal series with Abelian factors. By Theorems 11.2 and 11.3, it is
sufficient for the factors themselves to be soluble. For a finite group, each of the
Conditions 1 to 10 below is equivalent to solubility.

Condition 1 For some positive integer k, the kth derived subgroup G(k) satisfies
G(k) = 〈e〉; see Theorem 11.10.

Condition 2 All factors of all composition series are cyclic of prime order; see The-
orem 9.3. This is an easy consequence of the definitions.

Condition 3 There exists a normal series all of whose factors are p-groups for vari-
ous primes p. This is also an easy consequence of the definitions; see Problem 11.5
for this and the previous condition.

Condition 4 Hall subgroups exist for orders m where (m,o(G)/m) = 1 and
m | o(G); see Theorems 11.12 and 11.14 above.

Condition 5 All ‘chief factors’ are elementary Abelian (Problem 9.15).
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Condition 6 (Sylow systems) Given a group G, let p1, . . . , pk be a list of the
distinct prime factors of o(G). Suppose for 1 ≤ i ≤ k we choose a single Sylow
pi -subgroup Pi , and this set P , say, has the property

PiPj = PjPi for 1 ≤ i < j ≤ k.

Then P is called a Sylow system for G. Using his two major theorems, Hall showed
that a group G has a Sylow system if and only if it is soluble. Note that some authors
give a slightly different, but equivalent, definition using Hall subgroups rather than
Sylow subgroups.

Two examples First, consider the group H given in the example on page 241. It has
order 30, and is soluble by Theorem 11.7, or see the quoted example. One Sylow
system for H is defined by {P1 = 〈b3〉, P2 = 〈b2〉, P3 = 〈a〉}, for it is easy to see
that PiPj = PjPi for 1 ≤ i, j ≤ 3 as P2 and P3 are both normal subgroups of H .

Second, consider A5 which of course is not soluble. Its Sylow 3-subgroups
are cyclic generated by 3-cycles, an example is B = 〈(1,2,3)〉, and its Sylow
5-subgroups are also cyclic generated by 5-cycles, C = 〈(1,2,3,4,5)〉 is an exam-
ple. We have BC �= CB with a similar result for other choices of the Sylow 3- and
5-subgroups, so confirming Hall’s result in this case.

Condition 7 If G is finite, it is not possible to find a, b, c ∈ G satisfying

ab = c and
(
o(a), o(b)

) = (
o(b), o(c)

) = (
o(c), o(a)

) = 1, (11.7)

when a, b and c are all non-neutral.

This number-theoretic condition was first studied by Hall (1937), the equiva-
lence was proved by Thompson (1968). There is a connection with the Burnside’s
prqs -theorem which was used in the proof of Theorem 11.14, for if the condition
applies then the order of the group must involve at least three primes. For example,
consider S5. If a = (1,2)(3,4), b = (2,3,5) and c = (1,3,4,5,2), it is easy to see
that a, b, c ∈ S5, ab = c, o(a) = 2, o(b) = 3 and o(c) = 5, hence a, b and c satisfy
(11.7), and by Theorem 11.8 the group S5 is not soluble.

Condition 8 If G is finite and every pair of elements of G generate a soluble group.

This equivalence was also established by Thompson in his 1968 paper. For example,
we can use this condition to reprove the insolubility of S5 by noting that its insoluble
subgroup A5 is generated by two of its cycles, for instance, by (1,2,3) and (3,4,5).

Condition 9 This equivalence is partly due to Galois and is not quite exact. Galois
showed that if G is soluble and H is a maximal subgroup, then [G : H ] = pn for
some prime p and positive integer n.
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Using Hall’s theorems, it is easy to show that if G is soluble and p | o(G), then
there exists a maximal subgroup J which satisfies: [G : J ] = pm for some positive
integer m. For a ‘converse’ we have:

If for all non-neutral subgroups J of G, there exists a subgroup L of J with
the property: [J : L] = pk for some positive integer k, and this applies for all
primes p dividing o(J ), then G is soluble.

For a further discussion of this condition see Rose (1978), page 279. In Prob-
lem 11.9, we show that there exists a non-soluble group G1 with a subgroup with
index a power of p for every prime p dividing o(G1); so in the condition above we
need to consider all subgroups J of G and not just G itself.

Condition 10 The factor group G/�(G) is soluble where �(G) denotes the Frattini
subgroup of G; see also Theorem 10.17.

At the beginning of Section 11.1, we listed some number-theoretic conditions on
the group order which imply solubility, none is equivalent to solubility. There are
also several conditions of a more group-theoretic nature that imply solubility, some
of the simpler ones are as follows:

Condition 11 If all maximal subgroups of a finite group G have an index which is
a prime or the square of a prime, then G is soluble.

In Problem 12.9, we show that L2(7) is simple, hence not soluble, and it has a
maximal subgroup index 8. This shows that Condition 11 is best possible.

Condition 12 If all proper subgroups of a finite group G are nilpotent, then G is
soluble. A similar condition applies with ‘nilpotent’ replaced by ‘supersoluble’; see
Problem 10.26. Also Thompson has shown that if G has a single nilpotent subgroup
which is maximal and has odd order, then G is soluble. The simple group L2(17)

has a maximal subgroup of order 16, and so the oddness condition above is essential;
see Passman (1968), page 141, for further details.

For example, if o(G) = p2q2 and p � q − 1, then all subgroups of G are nilpotent
(in fact, Abelian), and it is an example of a soluble group; see Problem 11.4�.

Condition 13 There are a number of conditions of the following type. Suppose G

is finite, H,J ≤ G and G = HJ , then G is soluble if certain conditions apply to H

and J . We give three of the simpler ones here; see Scott (1964), Chapter 13.

(a) H and J are nilpotent and (o(H), o(J )) = 1;
(b) H is nilpotent and J has a cyclic subgroup K with [J : K] = 2;
(c) H and J are both dihedral or dicyclic.

Some more conditions which imply solubility, but are not equivalent to solubil-
ity, are given in the problem section below; see Problems 11.6(i) and (iii), 11.8,
11.10(ii), 11.11, 11.14�, and 11.15�.
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11.3 Problems

Problem 11.1 (i) Complete the following sketch of the proof that the three zeros
of a cubic polynomial equation with rational coefficients can be defined using rad-
icals, that is, by using square and cube roots. This was first proved by three early
sixteenth century Italian mathematicians—S. del Ferro, N. Fontana (Tartaglia) and
G. Cardano. The proof was an important step in the development of algebra (and so
of science in general) because it forced mathematicians to take complex numbers
seriously (R. Feynmann).

(a) Using a suitable substitution show that a general cubic polynomial equation with
coefficients in Q can be written in the form

f (x) = x3 + ax + b where a, b ∈ Q.

(b) Suppose z is a root of f (x) = 0. Write z = u + v, and so show that

u3 + v3 + (3uv + a)z + b = 0.

(c) Set 3uv + a = 0 to obtain u3 − a3/(3u)3 + b = 0. Solve this for u3, and hence
obtain radical expressions for the zeros of the equation f (x) = 0.

(ii) In 1545, L. Ferrari showed that quartic polynomial equations also have radical
solutions. You are asked to complete the following sketch proof which was given by
R. Descartes in 1637.

(a) As above show that a general quartic polynomial equation with coefficients in
Q can be written as

g(x) = x4 + ax2 + bx + c,

where we may assume that b �= 0 (for otherwise we have a quadratic in x2).
(b) Factorising g(x) as a product of two quadratics

x4 + ax2 + bx + c = (
x2 + rx + s

)(
x2 − rx + t

)
,

show that 2s = r2 + a − b/r and 2t = r2 + a + b/r . Deduce

r6 + 2ar4 + (
a2 − 4c

)
r2 − b2 = 0,

and so complete the proof using part (i).

Problem 11.2 (i) Show that the following groups are soluble (a) Dn, (b) Qn, (c) S4.
(ii) Give two proofs of the result: If both G and H are soluble, then so is G×H .

Problem 11.3 (i) Using Problem 3.19, or otherwise, show that SL2(5) is not solu-
ble.

(ii) Show that if G is not soluble and o(G) ≤ 200, then o(G) = 60, 120, 168, or
180, and give examples in each case. (Hint. The only simple groups satisfying the
inequality above have orders 60 or 168, this will be proved in the problem section
of Chapter 12.)
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Problem 11.4� Apply the Sylow theory to show that each group G of order pnq or
p2q2 where p and q are primes, is soluble using the following method. In the second
case, suppose p < q . In both cases, assume that G is simple using the minimum
counter-example principle, and P1 and P2 are distinct Sylow p-subgroups. Again
in both cases, if P1 ∩ P2 = 〈e〉, use a counting argument to find a unique Sylow
q-subgroup, and if this condition is false use the normal closure in the first case, and
Theorem 5.15 in the second.

Problem � 11.5 (i) Show that a refinement of a soluble series is also soluble series.
(ii) Must a soluble group with a composition series be finite?
(iii) Prove that a finite group is soluble if and only if all factors of all of its

composition series are cyclic of prime order.
(iv) Finally, prove that a finite group is soluble if and only if it has a normal series

all of whose factors are p-groups for various primes p.

Problem 11.6 (i) Using character theory (Web Chapter 13), Burnside proved
that if a group G has a conjugacy class of order pr (p prime and r > 0), then G is
not simple. Use this to prove that if o(G) = prqs where p and q are prime, and r

and s are non-negative integers, then G is soluble. (Hint. Use Theorem 5.19.)
(ii) Feit and Thompson (1963) proved that every group of odd order is soluble,

show that this statement is equivalent to: ‘every non-Abelian finite simple group has
even order’.

(iii) A group is called ‘metacyclic’ (Theorem 6.18) if all of its Sylow subgroups
are cyclic. Show that all metacyclic groups are soluble.

Problem � 11.7 Suppose o(G) > 1. Show that

(i) if G is soluble it has a non-neutral normal Abelian subgroup, and
(ii) if G is not soluble it has a non-neutral normal perfect subgroup.

Problem 11.8 (i) Give an example of a soluble group G which is not ‘reverse La-
grange’. By reverse Lagrange we mean that G has at least one subgroup of order m

for all positive divisors m of o(G), see page 101.
(ii) Discuss the proposition: ‘if G is not soluble then it is also not reverse La-

grange’.

Problem � 11.9 (i) Suppose G is soluble, J 
 G and K is minimal subject to the
conditions

J < K and K 
 G.

Show that K/J is elementary Abelian. (Hint. Use Problem 9.15.)
(ii) Prove that the index of a maximal subgroup H of a soluble group G has

prime power order—a result due (essentially) to Galois. (Hint. Begin by considering
J = core(H) and K as defined in (i) for this J . Use (i) to show that KH = G and
K ∩ H = J , then use Theorem 4.15.)
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Problem � 11.10 (i) Suppose H and J are soluble normal subgroups of a group G.
Show that HJ is also a soluble normal subgroup of G, and so deduce that if
HJ = G then G is soluble.

(ii) Let S(G) be the product of all soluble normal subgroups of G where
o(G) < ∞. Show that S(G) is the maximal soluble normal subgroup of G.

(iii) Can a maximal normal subgroup of G be larger than S(G)?

Problem 11.11 Find a non-soluble group H which has a subgroup of index p for all
p dividing o(H). One example is a direct product of a simple group and a suitably
chosen cyclic group.

Problem 11.12� Suppose G is a soluble group, and G(n)/G(n+1) is cyclic
for n = 1,2, . . . . Using the following method, show that G(2) = G(3) = 〈e〉. First,
use Theorem 11.10 to show that G(3) = 〈e〉 and so G(2) is cyclic, then use the
N/C-theorem (Theorem 5.26) to show G(2) ≤ Z(G′), and apply Problem 4.16(ii).

Problem 11.13 Using the previous problem and Burnside’s Normal Complement
Theorem (Theorem 6.17) show that if G is finite and all of its Sylow subgroups are
cyclic, then both G′ and G/G′ are also cyclic. This is the starting point for the proof
of Theorem 6.18.

Problem 11.14� (i) A theorem of O. Schmidt states: If every maximal subgroup of
a finite group G is nilpotent, then it is soluble. Give a proof of this result using the
following method.

(a) Let G1 be a counter-example of smallest order. Show that G1 is simple.
(b) Prove that there exist maximal subgroups H1 and H2 of G1 with the property

H1 ∩ H2 > 〈e〉. If not, take conjugates and count elements.
(c) Choose H1 and H2 as in (b) so that J = H1 ∩ H2 has the largest possible order,

then show that J cannot exist, and so deduce Schmidt’s result.

(ii) Use (i) to show that if all proper subgroups of a finite group G are Abelian,
then (a) at least one is normal, and (b) G′′ = 〈e〉.

Problem 11.15� If G has Abelian subgroups H and J with the property G = HJ ,
prove that G is soluble. One method uses Problem 2.17 several times to show that
G′ is Abelian.

Problem 11.16 For the groups A5, A6 and GL3(2), see Chapter 12, determine for
which prime divisors p of their orders they do not possess p-complements.

Problem 11.17 Given a integer n and primes p and q which satisfy p < q ≤ n,
show that the symmetric group Sn has a Hall {p,q}-subgroup if n = 3, 4, 5, 7,
or 8, p = 2 and q = 3. Thompson has shown that if H is a proper non-soluble Hall
subgroup of Sn, then n > 5, n it is prime, and H � Sn−1.
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Problem 11.18 (Properties of Hall Subgroups) Derive the following properties of
Hall subgroups, see Definition 11.13.

(i) Suppose G is a finite soluble group and π is a set of prime numbers. If H

is a maximal π -subgroup of G (so there is no π -subgroup of G lying strictly
between H and G), then H is a Hall π -subgroup of G.

(ii) Let π1 = {3,5} and consider the group S5. Show that both C3 and C5 are iso-
morphic to maximal π1-subgroups of S5. Hence maximal π -subgroups of a
non-soluble group need not be isomorphic.

(iii) The symmetric group S5 has maximal {2,5}-subgroups which are not Hall
{2,5}-subgroups.

(iv) Consider the group GL3(2); see Sections 3.3 and 12.2. This group has Hall
{2,3}-subgroups which are not conjugate.

(v) Finally, show that L2(11) (Problem 12.9) has non-isomorphic Hall {2,3}-
subgroups. (Hint. These subgroups have order 12.) Gross (1987) has shown
that if 2 /∈ π , then all Hall π -subgroups are conjugate.

Problem � 11.19 Let H be a Hall π -subgroup of G. Derive the following proper-
ties.

(i) If J ≤ G and o(J ) = o(H), then J is a Hall π -subgroup of G.
(ii) For g ∈ G, the conjugate subgroup g−1Hg is a Hall π -subgroup of G.
(iii) If H ≤ J ≤ G, then H is a Hall π -subgroup of J .
(iv) LK/K is a π -subgroup of G/K , if K 
 G and L is a π -subgroup of G.

Problem 11.20 (i) Give Sylow systems for the groups discussed in Chapter 8.
(ii) Why does the group S5 not have a Sylow system?
(iii) Show that the solubility of S4 can be deduced from Condition 6 or Condi-

tion 7 both of which are given on page 242.

Problem 11.21 (Project—Maximal Subgroups of Soluble Groups) Suppose G is
soluble with maximal subgroup H , see also Suzuki (1986), Section 5. Firstly, revisit
Problem 11.9(ii) which is due to Galois.

Secondly, suppose K = core(H) = 〈e〉 and let J be a minimal normal subgroup
of G. Prove that

(a) JH = G and J ∩ H = 〈e〉. (Hint. Use first part.)
(b) If H1 maximal, then J ≤ H1 or H1 is conjugate to H in G.
(c) J = CG(J ), and it is the unique minimal normal subgroup of G.

Lastly, suppose H ′ is another maximal subgroup of G. Show that the following four
conditions are equivalent.

(d) H and H ′ are conjugate.
(e) If G = H ′L for L ≤ G, then G = HL.
(f) G �= H ′H .
(g) core(H) = core(H ′).



Chapter 12
Simple Groups of Order Less than 10000

The Jordan–Hölder Theorem states that every finite group can be ‘constructed’
from simple groups using extensions. The nature of these extensions is not fully
understood (Section 9.2), but a complete list of all finite simple groups is now
known—indeed its discovery and development was one of the greatest achievements
of twentieth-century mathematics; see the ATLAS (1985), Gorenstein (1982), and
Gorenstein et al. (1994). To add to our collections of group examples we shall give
an account of the groups in this list whose orders are less than 10000. This may
seem a large bound (Appendix D) but, if we exclude Abelian groups, it contains
only 16 non-isomorphic groups of three main types (b), (c) and (d) below, and gives
a brief ‘snapshot’ of the total picture.

The collection of all finite simple groups can be put into four broad categories:

(a) Cyclic groups Cp of prime order p, measured by the size of their order ‘most’
simple groups are of this type, there are 1229 with order less than 10000;

(b) Alternating groups An, for n > 4, three have order less than 10000;
(c) A number of collections of matrix groups defined over finite fields including the

linear groups, and a number of other types with similar constructions called the
Classical Groups and the Chevalley Groups; there are 16 with order less than
10000 but some isomorphisms between individual groups occur, see below;

(d) Twenty-six sporadic groups having a variety of constructions, only one of which
has order less than 10000.

As noted above, there is some overlap between these classes; see Problems 6.16,
12.4 and 12.13, Web Section 12.6, and Conway and Sloane (1993).

Categories (a) and (b) above have been discussed previously in Chapters 3 and 4
where their simplicity properties were established. Each alternating group An has a
presentation of the form

An � 〈
a1, . . . , an−2 | a3

i = (aiaj )
2 = e

〉
,

H.E. Rose, A Course on Finite Groups,
Universitext,
DOI 10.1007/978-1-84882-889-6_12, © Springer-Verlag London Limited 2009
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provided n ≥ 4, 1 ≤ i, j ≤ n and i �= j . This can be shown to be correct using a
similar method to that given in Problem 3.21� for a presentation of Sn. Also A5,A6

and A8 have easily defined matrix representations, these are given on pages 260
and 295.

In the first section of this chapter, we introduce a new method for constructing
groups using so-called Steiner systems. This method is not more important than
several others, but we give it because it can be defined with a minimum amount
of preliminary material, and it illustrates some of the more complex methods used.
The second section introduces the linear groups, see Category (c) above, provides
a proof of their simplicity (in all but two cases), and discusses some of their other
representations. The third section introduces one class of classical groups—unitary
groups, and discusses an example in this class, U3(3), in some detail.

The existence of the sporadic groups (Category (d) above) is perhaps the most
remarkable single feature of group theory. The first five, the Mathieu groups, were
discovered between 1861 and 1873 although their simplicity was established by oth-
ers two decades later. The remaining 21 were discovered between 1965 and 1980,
the first J1 by Z. Janko in 1965. Reasons for this timing include the introduction of
electronic computation at this time, and the work of Brauer, Suzuki and others be-
ginning in the 1950s that stimulated mathematicians to take up afresh the challenges
of finite group theory. For details on the discovery and early history of the sporadic
groups, see Aschbacher (1994) and Solomon (2001). A wide range of methods are
used in the construction of simple groups including permutation and matrix the-
ory, certain lattice types (where the groups arise as automorphism groups of these
lattices) and game theory, et cetera;1 Steiner systems are one of these.

This chapter is more ‘descriptive’ than the others in this book, and many proofs
are either sketched or omitted altogether. In some cases, the lack of proof is partly
offset by the provision of numerical examples. A whole book would be needed to
give all the background and proofs. The properties of the outer automorphism (see
pages 81 to 84) and the Schur multiplier groups, and their connections with exten-
sions of the simple groups under discussion, will be treated in Web Section 12.6.
The reader is strongly urged to refer to the ATLAS (1985) and the other references
for further details.

We wish to thank Robert Curtis for advice and helpful suggestions made during
the writing of this chapter.

12.1 Steiner Systems

In Chapter 3, we introduced three methods for constructing groups. Although these
are the main ones in the theory, a number of other constructions have been inves-
tigated, and these need to be considered if all simple groups are to be constructed.

1For more details, see Conway and Sloane (1993).
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Some occur as ‘automorphisms’ of lattices or ‘games’, and this holds for the con-
structions to be studied in this section. Further methods are given in the ATLAS

(1985), and Conway and Sloane (1993). As noted above the Steiner system method
is not more important than several others, but it only requires a minimal amount of
preliminary material. Some authors consider that these systems should be named
after Kirkman rather than Steiner. T.P. Kirkman was an English mathematician who
lived from 1806 to 1895, and J. Steiner was Swiss and lived from 1796 to 1863.

We begin with the basic

Definition 12.1 Let r, s and t be integers satisfying 1 < r < s < t , let X be a
t -element set, and let Y denote the collection of all (unordered) r-element subsets
Y of X. A Steiner system S(r, s, t) for X is a collection Z of (unordered) subsets Z

of X with the properties:

(a) o(Z) = s for each Z ∈ Z , and
(b) each Y ∈ Y is a subset of exactly one Z ∈ Z .

A set Z in Z is called a block, so each block has s members. Usually X is taken
to be a subset of the positive integers because they form an easily recognised set of
labels for the elements of X.

It is not known precisely for which r, s and t Steiner systems exist (but see Prob-
lem 12.3). There is no system S(2,3,4), for instance, but versions of S(2,3,7) do
exist as the following example shows.

Example 1 Let X1 = {1,2,3,4,5,6,7} (so t = 7), r = 2, s = 3, and let

Z1 = {{1,2,4}, {1,3,7}, {1,5,6}, {2,3,5}, {2,6,7}, {3,4,6}, {4,5,7}}. (12.1)

It is a straightforward exercise to check that every 2-element subset of X1 occurs in
exactly one member of Z1, for instance, the pair {1,5} occurs in the third member
of Z1 and no other. This system can be generated as follows:

Working modulo 7, start with the triple {1,2,4}, that is, the non-zero quadratic
residues modulo 7, and apply the map x �→ x + 1 six times.

As an exercise the reader should construct a version of the Steiner system
S(2,3,9); it has 12 members, see Problem 12.2.

A relatively simple counting argument gives the order of S(r, s, t), provided this
system actually exists, as follows.

Theorem 12.2 Using the notation set up in Definition 12.1, if the Steiner system
S(r, s, t) exists, then

o(Z) = t (t − 1) · · · (t − (r − 1))

s(s − 1) · · · (s − (r − 1))
.
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Proof Let V denote the collection of all pairs (Y,Z) where Y ∈ Y , that is,
Y is an r-element subset of X, and Z is a block in Z . Further, let W denote
the subset of V of those pairs (Y,Z) where Y ⊂ Z. We count W in two ways.
First, by hypothesis, each Y ∈ Y occurs in exactly one Z ∈ Z , so

o(W ) = o(Y ) =
(

t

r

)
= t (t − 1) · · · (t − (r − 1)

)/
r!,

the number of ways of choosing r elements from a t-element set. Second,
o(W ) is the product of o(Z), the number of blocks, and

(
s
r

)
, the number of

ways of choosing an r-element subset from an s-element block. Hence

o(W ) = o(Z) ·
(

s

r

)
= o(Z) · s(s − 1) · · · (s − (r − 1)

)/
r!.

The result follows from these two equations by cancelling the term r!. �

An extension of this result is given in Problem 12.3.
A Steiner system for r, s and t is never unique, for instance, in Example 1 above,

the set
{{3,2,4}, {3,5,1}, {3,6,7}, {2,5,6}, {2,7,1}, {5,4,7}, {4,6,1}} (12.2)

is another version of the Steiner system for the parameters r = 2, s = 3 and t = 7.
Compared with (12.1), the elements of the set X = {1, . . . ,7} have been permuted
by the 5-cycle (1,3,5,6,7). But, for example, if we permute the elements of X in
(12.1) by the permutation ξ1 = (1,6,2)(4,5,7) we obtain the Steiner system

{{6,1,5}, {6,3,4}, {6,7,2}, {1,3,7}, {1,2,4}, {3,5,2}, {5,7,4}},
that is, we obtain the original system (12.1) again, the only difference being that the
order of the sets and the order of the elements in these sets have been changed by ξ1,
which is immaterial. We shall see below that the transformation ξ1 is a member of
the automorphism group of the Steiner system S(2,3,7). These examples suggest
that we should make the following

Definition 12.3 For i = 1,2, suppose Zi is a Steiner system for Xi . These systems
are said to be isomorphic if

(a) there exists a bijection ξ : X1 → X2, and
(b) Z ∈ Z1 if and only if Zξ ∈ Z2.

The isomorphism ξ is called an automorphism if X1 = X2 and Z1 = Z2.

In the examples given above, the system (12.1) is isomorphic to (12.2), and the
permutation ξ1 is an automorphism of the system Z1. In some cases, if a Steiner
system exists for r, s, t , then there is effectively only one such system, that is, they
are all isomorphic as in the example above. But in many cases, this is not so, for
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instance, there are two non-isomorphic systems for the parameters 2, 3, 13 (Prob-
lem 12.2) and 80 non-isomorphic systems for the parameters 2, 3, 15.

The automorphisms of a Steiner system form a group as we can easily show now.

Theorem 12.4 The collection of automorphisms of the Steiner system S(r, s, t)

forms a group under composition which is isomorphic to a subgroup of symmet-
ric group St .

Proof Composition of bijections is closed and associative, and the inverse of
a bijection is a bijection (Appendix A). In fact, as all sets are finite, this also
follows from Theorem 2.7(iii). The identity map ι acts as the neutral element.
Note that Condition (b) in Definition 12.1 applies as Z1 = Z2 in all cases.
Finally, as ξ is a bijection on X its images are permutations of X, and hence
they are elements of St . �

The group given by Theorem 12.4 is denoted by Aut(S(r, s, t)).
We shall illustrate this result by returning to Example 1. In this case,

Aut(S(2,3,7)) � GL3(2), see Section 12.2, so S(2,3,7) has 168 automorphisms.
The system S(2,3,7), and some other Steiner systems, can be treated as a kind

of ‘finite geometry’, that is, as a geometry defined over a finite field. Working over
the 2-element field F2 and in ‘dimension 2’, the ‘plane’ of this geometry consists
of seven ‘points’ labelled A,B, . . . ,G and seven ‘lines’ where each line consists
of exactly three points. This is illustrated in the diagram below which is called the
Fano Plane.

In this diagram the strokes, A to B to D, for example, are not part of the geometry,
but are included to indicate which sets of three points form lines, so {A,B,D} is one
of the seven lines. If we refer now to Example 1 and (12.1), we see that the seven
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members of S(2,3,7) correspond to the seven lines in the diagram above if we set
A �→ 1,B �→ 2,C �→ 3,D �→ 4,E �→ 5,F �→ 6 and G �→ 7. In this geometry, as in
most others, two distinct points determine a line; so in S(2,3,7) there is a unique
line (triple of points) passing through each pair of points as given by the properties
of this Steiner system. To be more precise, the geometry given in this diagram is a
kind of 2-dimensional ‘projective geometry’ defined over F2. Note also that there is
no notion of ‘end-point’, so it might be better to treat each of the seven strokes as
closed loops. We claimed above that

Aut
(
S(2,3,7)

) � GL3(2) � L2(7).

We will not prove this fact as it would take too long to set up the basic geometric
properties needed, the following sketch will suffice; further details can be found
in Rotman (1994), Chapter 9, for example. The ‘affine’ part of our geometries can
be treated as the geometry of the underlying space of a vector space V , and the
linear maps (automorphisms) correspond to the elements of the general linear group
GL(V ) represented by the collection of m × m non-singular matrices where m =
dimV , they map points to points, and lines to lines.

This work can easily be extended to ‘projective’ geometry. Effectively this can
be done by adding one extra coordinate, and then the seven points in the diagram
on page 253 have the projective coordinates: A = (0 : 0 : 1), B = (0 : 1 : 1), C =
(1 : 1 : 1), D = (0 : 1 : 0), E = (1 : 0 : 0), F = (1 : 0 : 1), and G = (1 : 1 : 0) working
modulo 2; note that this choice of coordinates is not unique. Hence in our example
there is a correspondence between the automorphisms of S(2,3,7) and the non-
singular 3-dimensional linear maps defined over the 2-element field, that is, GL3(2).
By Problem 12.7�, this group is isomorphic to L2(7), in the next section we prove
that both are simple and they have the same order.

A number of methods are used to construct Steiner systems. Due to space consid-
erations, we shall not be able to give the basic theory or many proofs, but practical
procedures will be given for some individual systems. For more details, the reader
should consult Cameron and van Lint (1991) or Hughes and Piper (1985).

12.2 Linear Groups

This section introduces the linear groups sometimes called the projective special
linear groups. We begin with a brief discussion of finite fields, they underlie all the
matrices and groups discussed.

Finite Fields

The finite field Fq has q elements where q = pm. These fields were discovered
by Galois and as a consequence are sometimes called Galois fields. Their basic
properties are as follows:
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(i) Fq is a field, that is, the standard operations of addition, subtraction, multipli-
cation and division apply without restriction, except that division by zero is
not allowed. Divisors are constructed using the Euclidean Algorithm (Theo-
rem B.2).

(ii) o(Fq) = q = pm where p is a prime and m is a positive integer. In fact, Fq can
be treated as a vector space of dimension m over the p-element field Fp with a
vector multiplication. So in particular Fq has characteristic p, that is, we work
‘modulo p’.

(iii) For each prime p and positive integer m, there is a unique (up to isomorphism)
field with pm = q elements.

(iv) The multiplicative group of the field Fq is cyclic; see Problem 7.5(iii).
(v) In all fields, and so in particular in Fq , a one-variable polynomial equation of

degree n cannot have more than n roots, see Theorem B.13 in Appendix B.

For example, consider the field F4. Its elements can be written in the form 0, 1,
c and c + 1, where c2 = c + 1 and c3 = 1. We have c−1 = c + 1, (c + 1)−1 = c,
and c can be taken as the generator of the multiplicative group of the field; see (iv)
above. For further details, see Problem 12.1 and a standard text on modern algebra,
for example, Herstein (1964).

2-Dimensional Linear Groups

In this subsection and the next, we discuss some simple matrix groups. The first
class is defined by

Definition 12.5 Given the underlying field Fq and the dimension n ≥ 1, the lin-
ear group (or sometimes the projective special linear group) Ln(q) is formed by
factoring the special linear group SLn(q) (page 53) by its centre.

Some authors write PSLn(q) for Ln(q). We shall show that these groups are
simple, except when n = 2, and q = 2 or 3. The proofs follow similar lines to those
used to show the simplicity of An for n > 4, and given in Chapter 3. In particular,
the role played by the 3-cycles in those proofs is played here by a set of matrices
called transvections. These are given by

Definition 12.6 The n×n transvection Ei,j (r) is the matrix formed from the n×n

identity matrix In by replacing 0 with r at the (i, j)th place where r �= 0 and i �= j .

Notes (a) The identity matrix is not a transvection, that is, the inequalities in the
above definition are essential.

(b) The determinant of a transvection equals 1.
(c) The inverse of a transvection is another transvection.

The reader should check these facts.
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We begin by determining the centre of SLn(F ) for an arbitrary field F , this will
lead to a formula for the order of Ln(q).

Theorem 12.7 (i) The centre Z of SLn(F ) is the set of matrices aIn where In is the
n × n identity matrix, a ∈ F , and an = 1.
(ii) The order of Ln(q) equals qn(n−1)/2(qn −1) · · · (q2 −1)/d where d = (n, q −1),
the GCD of n and q − 1.

Proof (i) Note first that each matrix of the form aIn, where an = 1, belongs
to Z.

For the converse, let A = (aij ) ∈ SLn(F ), and consider E1,2(r). As r �= 0
we have

E1,2(r)A =

⎛

⎜
⎜
⎜
⎝

a11 + ra21 a12 + ra22 · · · a1n + ra2n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎞

⎟
⎟
⎟
⎠

,

and

AE1,2(r) =

⎛

⎜⎜⎜
⎝

a11 ra11 + a12 a13 · · · a1n

a21 ra21 + a22 a23 · · · a2n

...
...

...
. . .

...

an1 ran1 + an2 an3 · · · ann

⎞

⎟⎟⎟
⎠

.

If these two matrices are equal then, as r �= 0, a21 = a23 = · · · = a2n = 0,
a21 = a31 = · · · = an1 = 0, and a12 + ra22 = ra11 + a12, which gives a11 =
a22. Applying exactly similar arguments using E1,j (r) for 2 ≤ j ≤ n, it fol-
lows that if A commutes with all transvections, then all off-diagonal entries in
A are zero, and each main diagonal entry equals a11 = a, say. This proves (i).

(ii) Use (i), Theorems 3.15 and 4.11, and Problem 7.5(iii) as d = (n, q −1)

is the number of solutions of the equation an = 1 in Fq . �

The matrices aIn in the proof above are called scalar matrices. For n = 2, the
equation given in the first part of the theorem above, that is, a2 = 1, has solutions
1 and −1 and none other if the characteristic of F is larger than 2, and the single
solution a = 1 if the characteristic is 2, as 1 = −1 in a field of this type. For n = 3,
the equation a3 = 1 has the single solution a = 1 if the field characteristic is 3 or is
congruent to 2 modulo 3, and it has 3 solutions if the characteristic is congruent to
1 modulo 3; see Problem 12.1.

We prove the main simplicity result for Ln(q) in two stages: n = 2, and n > 2.
The proofs given below have a similar structure, the first uses a minimum amount of
linear algebra whilst the second relies on the theory of echelon and rational canon-
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ical forms.2 For the first stage, there are two preliminary lemmas which determine
the crucial role played by the transvections. The first is

Lemma 12.8 The group SL2(q) is generated by its transvections.

This group also has a 2-generator matrix representation, see Problem 12.5.

Proof Let A = (
a b
c d

) ∈ SL2(q) and c �= 0. We have for r, s, t ∈ Fq\{0},
(

1 r

0 1

)(
a b

c d

)(
1 s

0 1

)(
1 0
t 1

)

=
(

a + cr + (as + b)t + (cs + d)rt as + b + (cs + d)r

c + (cs + d)t cs + d

)
.

As c �= 0 we can choose s to satisfy cs + d = 1, then this matrix equals

(
a + (as + b)t + (c + t)r as + b + r

c + t 1

)
.

If we choose r and t to satisfy as +b + r = 0 and c + t = 0, respectively, then
this matrix equals the 2 × 2 identity matrix as the determinant is 1. Therefore,
with these choices of r, s and t , and as

( 1 x
0 1

)−1 = ( 1 −x
0 1

)
, we have

A =
(

1 −r

0 1

)(
1 0
−t 1

)(
1 −s

0 1

)
,

a product of transvections, s and t are non-zero as c is non-zero. The entry r

may be zero in which case A is a product of two transvections. Secondly, if
c = 0 then d �= 0 as the matrix A is non-singular, and we can argue as follows.
Using the argument above, we have

( 0 1
−1 0

) = D is a product of transvections
(the lower left-hand entry is non-zero), then post-multiplying the given matrix
by D will provide a matrix whose lower left-hand entry is non-zero and we
can return to the first case. �

The second preliminary lemma shows the connection between transvections and
normal subgroups; note the similarity to Lemma 3.13.

Lemma 12.9 Suppose q > 3. If K 
 SL2(q) and K contains a transvection, then
K = SL2(q).

2An extension of these results known as ‘Iwasawa’s Lemma’ (see, for example, Cameron’s notes
at www.maths.qmul.ac.uk/~pjc/class_gps/ or Web Section 5.4) can be used to establish the
simplicity of a wide range of matrix groups including Ln(q).

http://www.maths.qmul.ac.uk/~pjc/class_gps/
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Proof By Lemma 12.8, it suffices to show that K contains all transvections.
As K is normal, conjugates of elements of K belong to K . Using this fact,
suppose

( 1 r
0 1

)
is the given transvection, and

(
a b
c d

) ∈ SL2(q), then

(
d −b

−c a

)(
1 r

0 1

)(
a b

c d

)
=

(
1 + cdr d2r

−c2r 1 − cdr

)
∈ K.

Hence by setting c = 0, and then d = 0, we see that

(
1 t2r

0 1

)
,

(
1 0

−t2r 1

)
∈ K,

for all t ∈ Fq . This gives, as K is also closed under inverses and products,

(
1 (t2 − u2)r

0 1

)
,

(
1 0

(u2 − t2)r 1

)
∈ K,

for all t, u ∈ Fq . There are now two cases to consider: The characteristic of
the underlying field is (a) not equal to 2, or (b) exactly 2.

Case (a): Characteristic larger than 2.

We have a = ((a + 1)/2)2 − ((a − 1)/2)2 for all a in Fq . This provides
suitable values for t and u above, and so all transvections belong to H .

Case (b): Characteristic equals 2.

Suppose A = ( 1 r
0 1

) ∈ K , then as above
( 1 0

−r 1

)
,
(

1 ra2

0 1

)
and

( 1 0
−ra2 1

)
also

belong to K for all a ∈ Fq . Now for a, c ∈ Fq , we have

(
1 0

−r 1

)(
1 rc2

0 1

)(
1 0

−ra2 1

)
=

(
1 − r2a2c2 rc2

−r(1 + a2 − r2a2c2) 1 − r2c2

)

is in K . If we choose r to satisfy a−1 = 1 + rc (note the map r �→ 1 + rc is
a bijection), then 1 + a2 = r2a2c2 (remember the field characteristic is 2) and
the lower left-hand entry in the matrix above is 0. Hence with this value of c,
if we construct the commutator of this matrix with

( 1 b
0 1

)
we obtain (the square

brackets denote the commutator)

[(
1 − r2a2c2 rc2

0 1 − r2c2

)
,

(
1 b

0 1

)]
=

(
1 d

0 1

)
∈ K,

this is valid as K is normal. Also

d = (
1 − r2c2)r2c2(1 − a2)b = (

a−4 − 1
)
b
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using the value of r chosen above; reader, check. Now as the order of the field
is a power of 2, we can choose a to satisfy a−4 �= 1 as q > 3. Hence, as the
above calculation is valid for all b ∈ Fq , d can take all values in Fq , that is K

contains all transvections. �

To be precise, the condition q > 3 in the lemma above is not necessary because
none of the normal subgroups of either SL2(2) or SL2(3) contain a transvection; the
reader should check this using Section 8.2. We can now derive the main result in the
2-dimensional case.

Theorem 12.10 If q > 3, the group L2(q) is simple.

Proof We prove this result by showing that if K 
 SL2(q) and K properly
contains the centre Z, then K contains a transvection. Lemma 12.9 then shows
that K = SL2(q), that is, SL2(q) contains no proper normal subgroup larger
than Z if q > 3. The simplicity of L2(q), for q > 3, follows by the Correspon-
dence Theorem (Theorem 4.16). Hence it remains to show that the supposed
normal subgroup K contains a transvection if q > 3.

Case 1. Suppose first B = (
a b
0 d

) ∈ K and B /∈ Z.

If a = 1, then d = 1 as detB = 1, and B is a transvection. If a = −1 then
d = −1, and as

( −1 0
0 −1

) ∈ Z ≤ K , we have

(
a b

0 d

)(−1 0
0 −1

)
=

(
1 −b

0 1

)
∈ K,

and again K contains a transvection. In both subcases, b �= 0 because B /∈ Z.
This case does not apply if the field characteristic is 2. Lastly, suppose a �= ±1,
and so d �= ±1. We have, as K 
 SL2(q),

(
0 1

−1 0

)−1 (
a b

0 d

)−1 (
0 1

−1 0

)
=

(
a 0
b d

)
∈ K,

and

(
1 −1
1 0

)−1 (
a b

0 d

)(
1 −1
1 0

)
=

(
d 0

d − a − b a

)
∈ K,

hence
(

a 0
b d

)(
d 0

d − a − b a

)
=

(
ad 0

d2 − ad ad

)
=

(
1 0

d2 − 1 1

)
∈ K,

because ad = detB = 1. Therefore, as d �= ±1, K contains a transvection.
Note that this last case does not require b to be non-zero.
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Case 2. Secondly, suppose B = (
a b
c d

) ∈ K and c �= 0.

We reduce this to Case 1. As K is a normal subgroup we have

(
1 −t

0 1

)(
a b

c d

)(
1 t

0 1

)
=

(
a − ct (a − ct)t + b − dt

c ct + d

)
∈ K,

for all t ∈ Fq . So, if t satisfies a = ct (note c �= 0), we obtain

(
0 b − dt

c a + d

)
∈ K, (12.3)

and c(dt − b) = 1 as this matrix has determinant 1. Further, if r, s ∈ Fq and
rs = 1, then

(
r 0
0 s

)−1 (
0 b − dt

c a + d

)−1 (
r 0
0 s

)(
0 b − dt

c a + d

)

=
(

s2 (a + d)(b − dt)(1 − s2)

0 r2

)
, (12.4)

and this matrix belongs to K . Therefore, we can return to Case 1 provided
r, s ∈ Fq\0 satisfy r2 �= ±1 �= s2, and this is possible for all q except q = 5.
We can also return to Case 1 if q = 5 and

(a + d)(b − dt)
(
1 − s2) �= 0.

We have b − dt �= 0 by the note above, and we can choose s to satisfy s2 �= 1.
Hence finally we need to consider the case q = 5 and a + d = 0. By (12.3),( 0 u

c 0

) ∈ K where u = b − dt �= 0 (as −uc = 1), and

(
1 v

0 1

)(
0 u

c 0

)(
1 −v

0 1

)(
0 −u

−c 0

)
=

(
c2v2 + 1 v

c2v 1

)
∈ K,

for all v ∈ F5. Choose v to satisfy cv = 1, then this matrix equals
( 2 v

c 1

)
with

c �= 0 �= v. Hence we can return to the first subcase of Case 2. We have con-
structed a transvection in all cases, so the theorem follows. �

The cases q = 2 and 3 are genuine exceptions for L2(2) � GL2(2) � S3 (Prob-
lem 4.2) and L2(3) � A4 (Problem 4.4(iv)). In both cases, the groups contain proper
non-neutral normal subgroups. We also have

L2(4) � L2(5) � A5, L2(7) � L3(2) and L2(9) � A6.
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The first of these statements follows from Problem 6.16(ii), the second from Prob-
lem 12.7�, and for the third see Problem 12.4. At the end of the last section, we
showed that GL3(2) is isomorphic to the automorphism group of the Steiner sys-
tem S(2,3,7), thus providing another representation of this group. Further, some
presentations have been constructed for these groups. We have

L2(p) � 〈
a, b | ap = (

a4ba(p+1)/2b
)2 = e, (ab)3 = b2〉, (12.5)

provided p is prime and greater than 3; see Problem 12.6. It can also be shown that
o(b) = 2 in this presentation. Another presentation is given in Conway and Sloane
(1993), page 268; in some ways, it is more natural being related to work presented
in Problem 12.8, but it only applies in the case p ≡ 1 (mod 4).

Permutation representations for many of these groups have been constructed.
Each of the groups L2(q) is isomorphic to a subgroup of Sq+1 (and in some cases
Su for suitably chosen u ≤ q)—a result due to Galois; see Problem 12.8 and Ap-
pendix E. We consider some subgroups of one of these groups in Problem 12.9.

Groups Ln(q) with n > 2

The general case for Ln(q) where n > 2 will be treated now. In the main proof
below, we make use of some standard results from linear algebra, in particular the
reduced echelon and rational canonical forms of a matrix; see, for example, Halmos
(1974a) or Rose (2002). The structure of the proof is similar to that for the case
n = 2, and so we begin with

Lemma 12.11 The group SLn(q) is generated by its transvections.

Proof Use elementary row operations, the details are left as an exercise for
the reader; see Problem 12.4. �

Next we consider conjugation.

Lemma 12.12 Two transvections belonging to SLn(q) are conjugate in SLn(q),
provided n > 2.

Proof Case 1: The transvections are Ei,j (r) and Ei,j (s) for r �= s, that is, the
‘new entries’ r and s are in the same position in each transvection.

Let t = r−1s and let D1 be the n × n diagonal matrix with t at the (j, j)th
place, t−1 at the (k, k)th place, and 1 at all other diagonal places where k is
least such that i �= k �= j . Clearly, D1 ∈ SLn(q) and

D−1
1 Ei,j (r)D1 = Ei,j (s).
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Case 2: The transvections are Ei,k(r) and Ej,k(r) where i �= j , that is, the
‘new entries’ have the same value and horizontal position but are in different
vertical positions.

Let D2 be In with the following four changes: (i, i)th place has entry 0,
(i, j)th place has entry 1, (j, i)th place has entry −1, and (j, j)th place has
entry 0. Clearly, D2 ∈ SLn(q) and

D−1
2 Ei,k(r)D2 = Ej,k(r).

The remaining cases can be dealt with similarly, we leave them as exercises
for the reader. �

Every non-singular square matrix defined over a field F is similar3 to a matrix in
rational canonical form C as follows: C is a diagonal block matrix and each block
has the form

⎛

⎜⎜⎜⎜⎜
⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1
c1 c2 c3 · · · ct−1 ct

⎞

⎟⎟⎟⎟⎟
⎠

,

where ci ∈ F and c1 �= 0. The blocks are called companion matrices. If t = 1 then
C is the 1 × 1 matrix (c1).

We can now prove our main result in the n-dimensional case; Theorem 12.10
treated the case n = 2.

Theorem 12.13 If n > 2, then Ln(q) is a simple group.

Proof By Lemmas 12.9, 12.11 and 12.12, we need to show that if K 
 SLn(q)

and K �≤ Z(SLn(q)) = Z, then K contains a transvection.
Let A ∈ K . As noted above, we may assume that A is in rational canonical

form (as K is normal); there are three cases to consider:

Case 1. A is diagonal (all companion matrices are 1 × 1), and the diagonal
entries are non-zero and not all equal (for otherwise A ∈ Z).

Case 2. All companion matrices of A are 2 × 2 or 1 × 1, and at least one of
the first type is present.

Case 3. At least one companion matrix of A is r × r where r > 2.

We shall construct a transvection in each case.
Case 1. Suppose the diagonal of A has the form

(a1, . . . , a1, a2, . . . , a2, . . .),

3The term ‘similar’ means ‘conjugate in GLn(q)’, but using Lemmas 12.11 and 12.12 it can easily
be shown that this is equivalent to ‘conjugate in SLn(q)’ in the cases under discussion.
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with r1 copies of a1, r2 copies of a2, . . . , and ai �= aj if i �= j . We have
[
A,E1,r1+r2(1)

] = E1,r1+r2(1 − a2/a1) ∈ K,

that is K contains a transvection.
Case 2. A has the block form

(
B O
O C

)
where B is a 2 × 2 companion matrix.

We may assume that B has the form
( 0 1

−1 c

)
and C = In−2, the n − 2 × n − 2

identity matrix. To see this, we argue as follows. Firstly, by pre-multiplying
by a suitable diagonal matrix we may assume that detB = detC = 1, and so

B = ( 0 1
−1 a

)
for some a ∈ Fq . Secondly, by constructing the commutator of

A with a matrix of the form
( D O

O In−2

)
, we may assume that C = In−2. We let

D = ( 1 −1/a

0 1

)
, this replaces B by the matrix

( 0 a
−1/a d

)
where d = 2 + 1/a2.

Finally, pre-multiplying this by the diagonal block matrix, with
( 1/a 0

0 a

)
in the

top left-hand corner and In−2 in the bottom right, gives A in the required form
with c = 2a + 1/a. Now with A in this form we have

[
A,E1,3(−1)

] = E1,3(c − 1) + E2,3(1) − In,

and the required transvection is given by
[
E1,3(c − 1) + E2,3(1) − In,E1,2(1)

] = E1,3(−1) ∈ K.

Case 3. Suppose the first companion matrix is r × r where r > 2, and
its (r,1)th entry is a1 where a1 �= 0 (by definition of companion matrix). As
above we have

[
A,Er,1(−1)

] = E1,2(1/a1) + Er,1(−1) − In ∈ K,

and
[
E1,2(1/a1) + Er,1(−1) − In,Er,1(−1)

] = Er,2(1/a1) ∈ K,

another transvection in K . This proves the result. �

For n > 2, only two of these groups occur in our chosen range: L3(2) with order
168 and L3(3) with order 5616 = 24 · 33 · 13. The first is isomorphic to L2(7),
see Problem 12.7� (both are simple and have order 168). The second has a number
of distinct representations which we discuss now. First, using a suitable computer
package it is a straightforward matter to check that

L3(3) is generated by

⎛

⎝
0 2 0
1 1 0
0 0 1

⎞

⎠ and

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ , (12.6)

over F3 where the first matrix has order 6 and the second has order 3; there are, of
course, many other choices. Further, this group has the presentation
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L3(3) � 〈
a, b | a6 = b3 = (ab)4 = (

a2b
)4 = (

a3b
)3 = [

a2,
(
ba2b

)2] = e
〉
. (12.7)

If we map a in this presentation to the first matrix in (12.6) and b to the second, then
the equations in the presentation follow, and so it is not difficult to show that (12.7)
is a correct presentation for L3(3). Thirdly, we have

L3(3) � Aut
(
S(2,4,13)

)
.

A Steiner system of the form S(2,4,13) can be constructed as follows. Noting that
{0,1,3,9} is the set of fourth powers modulo 13, apply the map x �→ x +1 (mod 13)

to this set twelve times to obtain the collection of thirteen 4-tuples:

{{0,1,3,9}, {1,2,4,10}, {2,3,5,11}, {3,4,6,12},
{0,4,5,7}, {1,5,6,8}, {2,6,7,9}, {3,7,8,10}, {4,8,9,11}, {5,9,10,12},
{0,6,10,11}, {1,7,11,12}, {0,2,8,12}}.

It is easily checked that every pair of integers, each of which lie between 0 and 12,
occur in exactly one of the 4-tuples above. This can be done by showing that the
set of differences of elements of the set {0,1,3,9} modulo 13 gives all twelve non-
zero integers modulo 13. Hence we have the Steiner system S(2,4,13); note that by
Theorem 12.4 this system has 13 members. We can associate the plane projective
geometry defined over the 3-element field with this system, the geometry has 13
points and 13 lines, and each line contains 4 points, see the discussion given on
page 253. Hence the set of linear maps for this geometry is precisely L3(3). This
Steiner association also shows that the group can be treated as a subgroup of S13

(or to be more precise a (maximal) subgroup of A13), and, for example, L3(3) is
isomorphic to the group generated by the permutations:

(1,4,6)(2,3,7,10,11,8)(9,13), (1,2,3)(4,5,6)(7,8,9)(10,11,12).

(12.8)
This pair of generators was constructed by the computer package GAP; in the pre-
sentation (12.7), if we map the first permutation in (12.8) to a and the second to b,
then the relations in (12.7) hold. The maximal subgroups of this group are isomor-
phic to either S4C2 � (C3 × C3) (26 copies in two conjugacy classes), C3 � C13

(144 copies in one conjugacy class), or S4 (234 copies also in one conjugacy class).
The first of these subgroups is called the Hessian group, it has connections with
a particular cubic curve; see Coxeter and Moser (1984), page 98. Two further
points. First, Brauer and Wong (see Huppert and Blackburn 1982b, page 343) have
shown that if G is a finite non-Abelian simple group, a is an involution in G, and
CG(a) � GL2(3), then G is isomorphic to L3(3) or M11 (Section 12.4); note the
comments on page 104 and Problem 12.10. Second, Thompson (1968) has shown
that, apart from some 2-dimensional linear groups and some Suzuki groups (see Web
Section 12.6), L3(3) is the only non-Abelian simple group which is minimal, that
is, all of its proper subgroups are soluble.



12.3 Unitary Groups 265

12.3 Unitary Groups

A number of simple groups, sometimes known as the classical groups, can be de-
fined over the finite fields Fq2 using constructions from linear algebra similar to
those given in the previous section. They involving various ‘inner’ or ‘Hermitian’
products, or more general bilinear forms. We work over Fq2 (where as usual q is a
prime power) so that we can use an analogue of complex conjugation over C. Note
that if x ∈ Fq2 , then xq2 = x (Problem 7.5), and so every element of Fq2 can be

treated as a q2th power. Hence it is easily checked that the map

ξ : a → aq for a ∈ Fq2\{0}
has the usual conjugation properties: It is an automorphism of Fq2 , and ξ2 is the
identity map on Fq2 . Because of this we usually write a for aξ(= aq), also we let

0 = 0.
Suppose V is a vector space of finite dimension n defined over Fq2 . If u =

(a1, . . . , an) ∈ V where ai ∈ Fq2 , for i = 1, . . . , n, the expression

f (u) = a1a1 + · · · + anan (12.9)

is called a non-singular Hermitian form over V . An n×n matrix A is called unitary
if A ∈ GLn(q

2), for some q (= pm), and

f (uA) = f (u) for all u ∈ V. (12.10)

Note that forms are non-singular. A more general definition for f can be given, but a
basis always exists for the underlying vector space V so that f is in the form (12.9).

The collection of all n × n unitary matrices over Fq2 is denoted by GUn(q), and
is called the n-dimensional general unitary group over Fq2 . It can be shown that
the determinant of a general unitary matrix is a (q + 1)th root of unity, and the
subset of GUn(q) of those matrices A with detA = 1 forms a normal subgroup of
order o(GUn(q))/(q + 1) which is called the n-dimensional special unitary group
over Fq2 ; it is denoted by SUn(q). As in the linear case described in Section 12.2, we
factor out the scalar matrices (that is, the centre) to obtain simple groups. SUn(q) has
d = (q+1, n) scalar matrices. Hence finally we define Un(q) to be the group formed
from SUn(q) by factoring out its scalar matrices, it is called the n-dimensional pro-
jective special unitary group, or more usually the n-dimensional unitary group,
over Fq2 . These groups are simple except in the following cases: (a) n = q = 2,
see example below; (b) n = 2 and q = 3, in this case U2(3) � A4; and (c) n = 3 and
q = 2, in this case U3(2) is isomorphic to the semidirect product Q2 � (C3 × C3).

Example We consider the case q = n = 2. Let the field F4 have elements
{0,1, c, c + 1} where c3 = 1, c2 = c + 1, and we work modulo 2. By direct cal-
culation we see that GU2(2) is generated by the matrices

(
1 0
0 c

)
,

(
c 0
0 c2

)
, and

(
0 c

c2 0

)
,
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and it has order 18, it is isomorphic to C3 × S3. For instance, if A = ( 1 0
0 c

)
and

u = (a1, a2) (and so uA = (a1, ca2)), then f (uA) = a1a1 + ca2ca2 = f (u) as
cc = c3 = 1, therefore (12.10) applies. Further, the second and third matrices above
generate SU2(2) which has order 6, and so is isomorphic to S3 as it is not cyclic.
Now we note that d = (3,2) = 1 in this case, and so U2(2) � SU2(2) � S3.

The 2-dimensional unitary groups do not give ‘new’ simple groups for we have

U2(q) � L2(q),

although this does provide a further representation of the simple group L2(q). It is
not difficult to show that

o
(
U3(q)

) = q3(q3 + 1
)(

q2 − 1
)
/(q + 1,3). (12.11)

The only 3-dimensional unitary groups in our chosen range are U3(2) and U3(3).
The first of these was discussed above (it is not simple), and so we need to consider
the second which is isomorphic to SU3(3), and has order 6048 = 25 · 33 · 7, see
(12.11). In this case, we work over the field F9 generated by 1 and c where c2 = c+1
modulo 3, see Problem 12.1. First, it can be shown that the group U3(3) is generated
by the matrices

⎛

⎝
c + 2 1 1

1 2 0
1 0 0

⎞

⎠ and

⎛

⎝
2c + 1 2c + 1 1

c 2 0
1 0 0

⎞

⎠ ,

where the first matrix has order 8 and the second has order 7. Many other pairs of
3 × 3 matrices generate the group, see Problem 12.12. The group can also be repre-
sented as a permutation group and as the automorphism group of the Steiner System
S(2,4,28); no short presentations have been given but one has been constructed for
C2 � U3(3) as a Coxeter group, viz.:

〈
a1, . . . , a5 : a2

i = (aiaj )
3 = (a3a4)

8 = (a2a3a4a5)
8 = e, a1 = (a3a4)

4〉

for 1 ≤ i < j ≤ 5 except when i = 3 and j = 4 in the second equation. After a fair
amount of calculation, it has been shown that the subgroup of A28 generated by the
two permutations

(1,5,7,3,12,24,11)(2,23,4,27,13,14,26)(6,20,18,8,25,21,28)(9,10,17,15,22,16,19),

(3,4)(5,17,7,16,8,20,6,13)(9,19,11,14,12,18,10,15)(21,23,26,28,24,22,27,25)

is, in fact, isomorphic to U3(3); see Hall and Wales (1968). (The group U3(3) is
isomorphic to a maximal subgroup (of largest size) of the Hall–Janko simple group
J2 with order 604800; see the quoted paper for details.)

Using this second representation, it is not difficult to show that the group contains
63 involutions in a single conjugacy class C . In this permutation representation, each
element in C is a product of twelve disjoint 2-cycles, and so it fixes four of the 28
elements in the set X = {1,2, . . . ,28}. Now by Theorem 12.4, the Steiner system
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S(2,4,28) also has 63 members, and a version of this system can be constructed
using C as follows. For each element σ ∈ C , we form a block with four elements
of X fixed by σ . After some computations, we obtained the following version of
S(2,4,28).

Table 12.1 Steiner System S(2,4,28)

1,2,3,4

1,5,18,28 1,6,14,23 1,7,15,22 1,8,19,25 1,9,16,27 1,10,17,24 1,11,20,21 1,12,13,26

2,5,14,24 2,6,19,26 2,7,18,27 2,8,15,21 2,9,20,23 2,10,16,25 2,11,13,28 2,12,17,22

3,5,16,22 3,6,17,28 3,7,20,25 3,8,13,23 3,9,19,24 3,10,15,26 3,11,14,27 3,12,18,21

4,5,20,26 4,6,16,21 4,7,13,24 4,8,17,27 4,9,15,28 4,10,18,23 4,11,19,22 4,12,14,25

5,6,7,8

5,9,21,25 5,10,13,19 5,11,15,17 5,12,23,27 6,9,13,18 6,10,22,27 6,11,24,25 6,12,15,20

7,9,14,17 7,10,21,28 7,11,23,26 7,12,16,19 8,9,22,26 8,10,14,20 8,11,16,18 8,12,24,28

9,10,11,12

13,14,21,22 13,15,25,27 13,16,17,20 14,15,18,19 14,16,26,28 15,16,23,24

17,18,25,26 17,19,21,23 18,20,22,24 19,20,27,28 21,24,26,27 22,23,25,28

The reader should check that each pair of elements in X occurs in exactly one
member of the above Steiner system. Incidentally, this shows that the group U3(3)

is doubly transitive, see Web Section 5.4. This fact can be used to show that
the Steiner system given above is a valid one, and that the automorphism group of
S(2,4,28) is isomorphic to U3(3). Lastly, we note that the maximal subgroups of
U3(3) are isomorphic to either C8 � ES2(3) (Problem 6.5, 28 copies), L2(7) (36
copies), an extension of S4 by C4 (63 copies), or S3 � C2

4 (also 63 copies). Details
on this and the related groups can be found in Huppert (1967), pages 233 to 252,
where a simplicity proof is given; see also Problem 12.12 and the ATLAS (1985).

12.4 Mathieu Groups

The smallest ‘sporadic’ group is the first Mathieu group M11, it has order 7920.
(The others with order less than 106 are M12 and M22, the second and third Mathieu
groups with orders 95040 and 443520, respectively, and J1 and J2 = HJ , the first
and second Janko groups with orders 175560 and 604800, respectively; see Web
Section 12.6.) As with all descriptions in this chapter, we give informally a num-
ber of definitions of M11, but only sketch proofs; a good general account is given in
Huppert and Blackburn (1982b). In fact, one of the best ways to work with M11 is
as the stabiliser of a point in M12, but as we are limiting our discussion to groups of
order less than 10000 we cannot take this approach; see Web Section 12.6

In the 1860s and 1870s, É.L. Mathieu (1835–1890) and others were study-
ing k-transitive groups for k > 2. A permutation group G defined on a set
X = {1, . . . , n} is k-transitive if given two k-element subsets Y = {y1, . . . , yk},
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Z = {z1, . . . , zk} of X there is an element α ∈ G with the property yiα = zi for
i = 1, . . . , k. For all n, Sn,Sn+1 and An+2 are n-transitive, so one might expect
that other groups with high transitivity would exist, but this is not so. Apart from
the symmetric and alternating groups, there are only two that are 4-transitive—M11
and M23; two that are 5-transitive—M12 and M24; and none that are n-transitive
if n > 5. (The only known proof of these facts requires CFSG, but in the future it
should be possible to give a proof without using the classification.) Mathieu discov-
ered M11 and M12 in 1861, and the remaining three in 1873, their simplicity was
established in 1896 by Cole and completed by Miller in 1900. This work was not
widely accepted until the 1930s when Witt provided simpler and clearer characteri-
sations, the ‘M’ notation is also due to him.

Our first definition of M11 is as a subgroup of A11 as follows. Scott (1964),
page 286, Robinson (1982), page 202, and Curtis (2007), page 267, give slight vari-
ants on this definition; see also Coxeter and Moser (1984), page 99.

Definition 12.14 Let

α1 = (1,2,3)(4,5,6)(7,8,9), β2 = (1,2,4,6)(3,9,5,8),

α2 = (1,4,7)(2,5,8)(3,6,9), γ1 = (2,8)(3,5)(6,9)(7,11),

β1 = (1,8,4,9)(2,5,6,3), γ2 = (2,3)(5,6)(8,9)(10,11),

then M11 is the subgroup of A11 generated by the permutations α1, . . . , γ2 whose
cyclic structures are listed above; it is called the First Mathieu Group. (The second
Mathieu group M12 can be defined in a similar way, but as a subgroup of A12 and
with the extra generator γ3 = (1,4)(3,11)(6,10)(9,12).)

The permutations α1 and α2 generate an elementary Abelian group A of order 9.
Also β1 and β2 generate a copy B of the quaternion group Q2 of order 8. (Note that
β2

1 = β2
2 = (β1β2)

2 all with order 2.) Further, we have

β−1
1 α1β1 = α−1

2 , β−1
2 α1β2 = α2α1,

β−1
1 α2β1 = α1, β−1

2 α2β2 = α2α
−1
1

by direct calculation. Hence C = AB is a group of order 72 with A as a normal
subgroup.

It is clear that B is the subgroup of C of those permutations which fix 7, and
B acts transitively on the set T = {1,2,3,4,5,6,8,9}. Hence C is transitive on
T ∪ {7}, and so C is 2-transitive on a 9-element set. Now applying methods given
in Web Section 5.4 or in Robinson (1982), page 203, it can be shown that if
we add the permutation γ1 to C we obtain a 3-transitive group D of order 720,
and then if we add the permutation γ2 to D we obtain a 4-transitive group of order
7920 = 11 · 10 · 9 · 8 isomorphic to M11. It is isomorphic because it has also been
shown that all (sharply—see Web Section 5.4) 4-transitive groups defined on
9-element sets are isomorphic to M11. In fact, only two sharply 4-transitive simple
groups exist (up to isomorphism), they are A6 and M11.
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The Mathieu group M11 has some notable maximal subgroups. The subgroup
D (with order 720) defined above is maximal, it is isomorphic to an extension of
the cyclic group C2 by A6. It can be shown that M11 contains eleven copies of
this group in a single conjugacy class. Twelve copies (again in a single conjugacy
class) of the linear group L2(11) also occur as maximal subgroups of M11. The
remaining maximal subgroups are isomorphic to C2 � C (55 copies, see paragraph
below Definition 12.14), S5 (66 copies), and an extension of S4 by C2 (165 copies).
We can construct one of the copies of L2(11) as follows. Let

φ = (1,9,4,6,2,10,7,3,11,8,5), ψ = (1,8,4,9)(2,5,6,3),

θ = (1,8,9,4,7)(2,6,5,10,3), ν = (1,2)(3,5)(4,6)(7,10),

then φ and ψ generate M11 as given above (Problem 12.14), φ and θ generate a
subgroup of order 55, and φ, θ and ν generate a maximal subgroup H of order
660 isomorphic to L2(11). There is nothing special about the permutations φ,ψ, θ

and ν, other choices give the same result but note that θ = ψ2φ5ψ2φ4ψ2φ5 and
ν = (θφ)−1ψ2(θφ). Further, H is doubly transitive on {1,2, . . . ,11}. (This can be
checked by hand or by using a suitable computer program.) The index of H in M11
is 12, and this fact can be used to provide a 3-transitive representation of M11 on a
12-element set, see Huppert and Blackburn (1982b).

On the other hand, M11 is isomorphic to the automorphism group of the Steiner
system S(4,5,11), and we can use this fact to show that it is 4-transitive on an 11-
element set. In Web Section 12.6, we give several methods for constructing the
system S(4,5,11). This is done by first constructing a version of S(5,6,12) (the
automorphism group for this system being isomorphic to M12), and then several
versions of S(4,5,11) can be ‘read-off’.

The ATLAS (1985) gives at least ten methods for constructing M12, and most of
these can be specialised to provide definitions of M11; the reader should consult this
work for further details. The group M11 can also be characterised as the unique (up
to isomorphism) simple group of order 7920; for further details, see Huppert and
Blackburn (1982b), pages 341 to 365. As a final pair of representations of M11 we
give two of its (many) known presentations:

M11 � 〈
a, b, c | a11 = b5 = c4 = (ac)3 = e, b4ab = a4, c3bc = b2〉

� 〈
a, b, c, d | a2 = b2 = c2 = d2 = (ab)5 = (bc)3 = (bd)4

= (cd)3 = (abdbd)3 = e
〉;

The first of these is related to the second permutation representation given above
with a �→ φ, b �→ θ , and c �→ ψ . In Problem 2.28, we showed that a simple group
can be generated by its involutions, the second presentation is an example of this
fact—in this case only four involutions are needed. As a computer challenge you
could try to find four involutions in A11 which satisfy the relations given above and
so generate another copy of M11 in A11, see Problem 12.14. Further M11 properties
can be found in this problem and at Web Section 12.6.
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12.5 Problems

Problem 12.1 The field F9 of order 9 is used in a number of examples in this
chapter. Here you are asked to determine its basic properties. It can be defined as
a vector space of dimension 2 (with basis elements 1 and c) over the three element
field F3 = {0,1,2}, with a vector multiplication which is defined using linearity by

c2 = c + 1,

working modulo 3. For 1 ≤ n ≤ 8 and x ∈ F9 determine

cn, x = x3, x + x and x−1,

that is, write each of these entities as linear combinations of 1 and c.

Problem 12.2 (i) Construct Steiner systems S(r, s, t) in the cases where the param-
eters r, s, t equal (a) 2,3,9, (b) 2,4,13, (c) 3,4,8, and (d)� 4,5,11. For (d) try to
construct the system without using Web Section 12.6.

(ii) Find two non-isomorphic Steiner systems for the parameters 2,3,13, note
this system has 26 members. One method is to find 13 members as discussed on
page 251, then find two further 13-member sets each of which include consecutive
pairs.

(iii) (The Dining Club) A dining club has the following rules:

(a) The Chairman, Secretary and Treasurer attend the first dinner.
(b) More people are invited to join.
(c) Only Club members may attend dinners.
(d) At least three members attend dinners.
(e) Each member meets all other members at the dinners.
(f) No member shall meet another member more than once.
(g) For every pair of members d1 and d2, there is at least one dinner that both d1

and d2 attend.

Using these rules answer the following questions.

1. What is the size of the club?
2. How many dinners are held?
3. How many members attend each dinner?
4. How many dinners does each member attend?

For further details, see O’Hara and Ward (1937), page 17—per J.F. Bowers.

Problem � 12.3 You are given a Steiner system S(r, s, t) for the parameters r, s, t .
Extend Theorem 12.2 as follows. Suppose a1, . . . , au ∈ X where o(X) = t and
u < r . Show that the number of blocks in S(r, s, t) containing a1, . . . , au is

v = (t − u) · · · (t − (r − 1))

(s − u) · · · (s − (r − 1))
.
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Hence show that v is independent of the particular elements ai . Note that as v must
be an integer for all u with 1 < u < r , this result places constraints on the parameters
r, s, t for which the system S(r, s, t) can exist.

Problem 12.4 (i) Give a proof of Lemma 12.11.
(ii) Show that A6 � L2(9). This can be done using a method similar to that given

in Problem 12.7�, or it can be done using a suitable computer algebra package, one
method is as follows. First, show that A6 can be given by the presentation

〈
a, b | a5 = b5 = (ab)2 = (a4b)4 = e

〉
.

Begin by choosing two 5-cycles in A6 which satisfy these conditions. Then, working
in SL2(9) and its cosets modulo the centre, find two matrices in this group which
also satisfy these conditions. See also Edge (1955).

Problem � 12.5 Let p be a prime larger than 3, and let a be a primitive root mod-
ulo p (Appendix B). Show that the matrices

A =
(

a 0
0 ap−2

)
and B =

(
p − 1 1
p − 1 0

)

generate the group SL2(p). What are the orders of the matrices A and B in this
group? See also Problem 3.19.

Problem 12.6 (Properties of L3(2)) (i) Over the field F2 let

R =
⎛

⎝
0 1 0
1 0 1
0 1 1

⎞

⎠ and S =
⎛

⎝
1 0 0
1 1 0
1 0 1

⎞

⎠ .

By direct calculation, show that

R7 = (
R4S

)4 = I3 and (RS)3 = S2,

and so prove that 〈R,S〉 � L3(2) using the presentation of this group given on
page 261. Use the fact that L3(2) � L2(7), see Problem 12.7�.

(ii) Consider the 7-point ‘geometry’ described in the Fano Plane on page 253
related to the Steiner system S(2,3,7). Using the coordinates given on page 254,
show that if we apply the matrices R and S to this ‘geometry’ we ‘transform the
set of points to itself’, and so using the correspondences given above they define
permutations (in A7) of the set {1,2, . . . ,7}. Show that the matrix R corresponds
to a 7-cycle a and the matrix S corresponds to a 2-cycle × 2-cycle b, see (12.5)
on page 261 with p = 7. Hence show that a and b generate an isomorphic copy of
L3(2) in A7.

(iii) Now using the permutation representation constructed in (ii) show that L3(2)

contains subgroups isomorphic to (a) F7,3, and (b) S4.
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Problem 12.7� (Simple Groups of Order 168) In this question, you are asked to
prove that all simple groups of order 168 are isomorphic. These include the groups
L3(2) and L2(7) discussed in this chapter and the problem above. One method is
as follows. Suppose G is a simple group with o(G) = 168, and P = 〈a〉 is a Sylow
7-subgroup (so o(a) = 7).

(i) Let H = NG(P ). Show that H � 〈a, b | a7 = b3 = e, bab2 = a4〉 for some
b ∈ G, that is, H is a non-Abelian group of order 21. Also show that ba = a4b.

(ii) Show that J = NG(〈b〉) � 〈b, c | b3 = c2 = e, cbc = b2〉 for some c ∈ G, that
is J � S3 and cb = b2c.

(iii) Prove that the set of left cosets of H in G can be written in the form

C = {
H,cH,acH, . . . , a6cH

}
.

Using this fact, deduce G is generated by a, b and c.
(iv) Define a map θ from G to S8 as follows. Number the elements of C from 1 to 8,

respectively. The left coset action of g ∈ G permutes the elements of C and so
defines an element of S8, that is, {gH,gcH, . . . , ga6cH } is a permutation of C
which we denote by gθ . Show that (a) this defines an injective homomorphism
from G to S8, (b) aθ = (2,3,4,5,6,7,8), and (c) bθ = (3,6,4)(5,7,8).

(v) Show that cθ can be expressed in three different ways as a product of four
2-cycles σi = (1,2)(3,∗)(∗,∗)(∗,∗) for i = 1,2,3, and if Li = 〈aθ, bθ, σi〉
then Li ≤ A8 again for i = 1,2,3.

(vi) Conclude that L1 = L2 = L3, and so finally prove that all simple groups of
order 168 are isomorphic.

We also have: If o(G) = 168 and G has no normal Sylow subgroup, then G �
L3(2); see Suzuki (1982), page 107.

Problem 12.8 Consider the group L2(11) (of order 660, Definition 12.5). Give a
permutation representation of this group using the following method. Work on the
projective line

P = {∞,0,1,2, . . . ,10} defined over F11,

and treat the symbol ∞ in the usual naive way. Given a matrix A = (
a b
c d

) ∈ SL2(11),
define a map θA : P → P by

zθA = az + b

cz + d
for z ∈ P \{∞}, and ∞θA = a

c
.

Show that the map θA permutes the elements of P and so defines an element in S12.
Deduce that L2(11) is isomorphic to a subgroup J of S12.

Secondly, let maps α and β on P be given by

zα = z + 1 and zβ = −1/z for z ∈ P .

Prove that these two maps generate J , and so give a permutation representation of
L2(11). Finally, show that the presentation given for this group on page 261, with
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p = 11, is a valid one. As an extension to this problem, consider what is needed
to establish the general case where 11 is replaced by a general prime p and P has
p + 1 elements.

Problem 12.9 Using the permutation representation for L2(11) constructed in
Problem 12.8, find examples of the maximal subgroups of L2(11). (Hint. Using
some results from this and the previous chapters, show first that L2(11) has no
proper subgroups of order greater than 66, then use a suitable computer algebra
package, or try by hand.) Note that this group has an index 11 subgroup isomorphic
to A5, and this fact allows us to construct a degree 11 permutation representation
for it.

Problem 12.10 The group L3(3) was discussed in Section 12.2 where we proved
that it is simple. Show that L3(3) has 117 involutions, and using these involutions
construct elements of the group of all possible orders, that is, of orders 1, 2, 3, 4, 6, 8,
and 13. Show also that the group can be generated by two elements of order 3, and
by three elements of order 2 (cf. Problems 2.28 and 3.20). One way to do this is to
begin with the permutation representation (12.8) given on page 264.

Problem 12.11 (i) Continuing the previous problem show that

A =
⎛

⎝
0 0 1
0 2 0
1 0 0

⎞

⎠

is an involution in L3(3).
(ii) Let H denote the centraliser of A in L3(3). Show that o(H) = 48 using the

basic properties of the centraliser, and so by Problem 12.10 show that the collection
of involutions in L3(3) forms a single conjugacy class in L3(3).

(iii) Using Problem 12.6 deduce H � GL2(3). Only two simple groups have this
property; they are L3(3) and M11, see Huppert and Blackburn (1982b).

Problem 12.12 (i) The group U3(3) contains elements of order 1, 2, 3, 4, 6, 7, 8,
and 12. Using the matrices A and B given on page 266 find elements of this group
having each of these orders.

(ii) Prove that U3(3) contains 63 elements of order 2. You may assume that each
matrix of order two in the matrix representation of U3(3) given on page 266 has the
form

C =
⎛

⎝
a2 a1 c1
a3 c2 a1
c3 a3 a2

⎞

⎠ ,

where the overline denotes conjugation (x = x3), ai ∈ F9 and ci ∈ {0,1,2}, for i =
1,2,3. (Hint. Use the standard formulas for detC and C−1.) You could also try to
prove the assumption.
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(iii) If b is an involution in U3(3), show that J = CU3(3)(b) � C4S4, where
C4 
 J , using the following method. Apply the permutation representation of U3(3)

given on page 267, choose an involution b which is represented by a product of
twelve disjoint 2-cycles in S28, see the comments on the construction of the Steiner
system for this group on page 267. Secondly, find an element of order 4 in U3(3)

defined on the same symbols as b which commutes with b (note that its square will
equal b). Now using (ii) and the fact that the permutation group on the symbols not
used in b is isomorphic to S4, construct the remaining elements of J .

This problem is not hard but it will take time to complete and the use of a suitable
computer algebra package will help.

Problem 12.13 (Simple Groups of Order 20160) By Theorems 2.15 and 11.7, the
simple groups A8, L4(2) and L3(4) all have order 20160, A8 � L4(2) (Conway
and Sloane 1993), but L3(4) is not isomorphic to either of the other two groups,
and in this problem you are asked to prove this fact. There exist infinitely many
pairs of non-isomorphic simple groups with the same order, but no triples; this is
a consequence of CFSG, see the ATLAS (1985) for details. There are a number of
ways to establish the required non-isomorphism property. It can be done by showing
that A8 contains elements of order 15 whilst L3(4) does not, or by showing that
o(Aut(A8)) = 8! whilst o(Aut(L3(4)) ≥ 3 ·8!/2 (Scott 1964, page 314). We suggest
two further methods (i) and (ii) that you can try.

(i) Show first that A8 has non-conjugate involutions; then, using the following
method, prove that the involutions of L3(4) form a single conjugacy class. We have

(a) a non-scalar matrix A in SL3(4) is an involution in L3(4) if and only if A2 is
scalar (that is, diagonal with identical diagonal entries);

(b) A2 is scalar if and only if (C−1AC)2 is scalar for all non-singular matrices
C ∈ SL3(4);

(c) by (b), A can be replaced by a similar matrix in one of the following three
rational canonical forms:

B1 =
⎛

⎝
a1 0 0
0 a2 0
0 0 a3

⎞

⎠ , B2 =
⎛

⎝
b1 0 0
0 0 1
0 b2 b3

⎞

⎠ , B3 =
⎛

⎝
0 1 0
0 0 1
1 c1 c2

⎞

⎠ ,

where the entries belong to the field F4, and a1, a2, a3, b1, and b2 are non-zero.

Show that the matrix A, see (a), can only be of type B2 in (c), b2 = b−1
1 and

b3 = 0, hence the entries b1, b2, b3 of B2 equal either 1,1,0; c, c2,0 or c2, c,0
where c is a multiplicative generator of the field F4. Now consider the squares of
these matrices and use Problem 5.21(iii).

(ii) The second method is as follows. Firstly, show that both L4(2) and L3(4)

have Sylow 2-subgroups consisting entirely of upper triangular matrices (Prob-
lem 3.15). (Note that L4(2) � SL4(2), and by Theorem 12.7 L3(4) � SL3(4)/C3, so
in the second case work by identifying the three matrices in each coset.) Secondly,
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show that the centres of both groups also consist of upper triangular matrices, and
all matrices in each centre have non-zero entries in their upper right-hand corners.
Finally, by considering the orders of these centres, show that the Sylow 2-subgroups
of the two groups in question are not isomorphic.

Problem 12.14 (i) Show that the two permutation definitions of M11 given on
pages 268 and 269 define the same group. This can be done by a computer search,
or by showing that α1, . . . , γ2 can be defined in terms of φ and ψ , and vice versa.
To start with note that α1 equals the conjugate of φψ by θ−1φ−1.

(ii) Find examples of the Sylow subgroups of M11 for each of the primes dividing
its order. (Hint. Using the notation of Section 12.4, we have δ = β1β2γ2 has order 8.)

(iii) In M11, choose an involution a and show that its centraliser in M11 is iso-
morphic to an extension of C2 by S4, see Problems 4.4 and 12.9.

(iv) Find four involutions in A11 which generate M11 and satisfy the relations
given in the second presentation of M11 on page 269. (Hint. One method starts with
γ1 and γ2 in Definition 12.14.)

Problem 12.15 (Simplicity of M11) (i) Suppose G is a transitive subgroup of Sp ,
o(G) = pnt where

n > 1, n ≡ 1 (mod p), t < p and t is prime.

Apply Problem 6.12(ii) to show that G is simple. Method. Using the quoted problem
we can take n = np and t = [NG(P ) : P ] where P is a Sylow p-subgroup of G.
Suppose K 
 G and K > 〈e〉. Show that there exists a Sylow p-subgroup Q of G

which is a subgroup of K . Now use Theorem 6.9(ii) and the quoted problem again to
show that o(K) = pnps where s | t and s > 1, and so deduce K = G; see Chapman
(1995).

(ii) Use (i) to show that M11 is simple.
The same method works for the simplicity of M23 with p = 23 and t = 11. The

Mathieu group M23 can be defined using the Steiner system S(4,7,23) or as a
subgroup of S24, see either Scott (1964), pages 287–289, or the ATLAS (1985),
page 71.

A number of the problems above are ‘project-like’, and so no specific final project
will be given.
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Appendix A: Set Theory

The elementary ideas and notation of set theory underlie all the work in this book.
Here we give a outline of the basic theory and terminology which is sufficient to
cover the material presented in the previous chapters. The reader requiring a more
thorough treatment should consult Halmos (1974b).

A.1 Sets and Maps

Set theory is based on the following notions:

(a) element (or member)—we use lower case letters x, y, . . . for elements,
(b) membership (or belonging)—denoted by ∈,
(c) set (or collection)—we use upper case letters X,Y, . . . for sets.

Using logical constructions, all statements can be built up from the basic proposition

x ∈ X, (A.1)

that is, the element x is a member of the set X. In an axiomatic development of
set theory, these notions are taken as primitives which obey certain axioms and
rules. For our purposes, we take an informal approach, assuming that the reader has
an intuitive idea of the notion of an element (or member) belonging to a set (or
collection), and this is expressed formally in (A.1).

We also use the following notation, terminology and constructions.

(i) X = Y , X equals Y —every element in the set X also belongs to the set Y ,
and vice versa. The negation is written X �= Y .

(ii) ∅, the empty set, is the (unique) set with no elements.
(iii) Y ⊆ X, Y is a subset of X—every element in the set Y also belongs to the set

X (this is equivalent to X ⊇ Y , the set X contains the set Y ). For all X, the
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empty set ∅ and X are subsets of X. We write Z ⊂ X for Z ⊆ X and Z �= X,
and say that Z is a proper subset of X.

(iv) X ∩ Y , the intersection of X and Y , is the largest set that contains all those
elements which belong both to X and to Y (note X ∩ (Y ∩ Z) = (X ∩ Y) ∩ Z

and X ∩ Y = Y ∩ X).
(v) X ∪ Y , the union of X and Y , is the smallest set that contains every element

of X and every element of Y (note X ∪ (Y ∪ Z) = (X ∪ Y) ∪ Z and X ∪ Y =
Y ∪ X), see Problem A.1. A union X ∪ Y is called disjoint if X ∩ Y = ∅; this
is written as X ∪̇ Y .

(vi) Y\X, the complement of X in Y , is the subset of Y of those elements that do
not belong to X (note Y\Y = ∅ and X\(X\Y) = X ∩ Y ).

(vii) If x1, . . . , xn are elements in some set X, then the (unordered) set containing
these elements is denoted by {x1, . . . , xn}, and so {x} denotes the set with the
single element x. We use the notation (x1, . . . , xn) for the ordered set whose
first element is x1, second element is x2, . . . , and last element is xn. Infinite
versions of these constructions are also used.

(viii) If P is a property which is either true or false for elements of a set X, then we
define the new set Y by

Y = {
x ∈ X : P(x)

}
.

The set Y is the subset of X containing those elements x belonging to X for
which P(x) is true.

There is another construction which is important in group theory—Cartesian
product named after the seventeenth century French mathematician and philosopher
René Descartes. Suppose X1, . . . ,Xn is a finite (or infinite) collection of sets. We
form the new set of ordered n-tuples

{
(x1, . . . , xn) : x1 ∈ X1, . . . , xn ∈ Xn

}
.

This is denoted by X1 × · · · × Xn and called the Cartesian product of Xi , for i =
1, . . . , n. Note that the n-tuples are ordered so, for instance, X1 × X2 �= X2 × X1,
unless X1 = X2. We write Xn for X × · · · × X with n copies of the set X.

Example Let X,Y and Z be subsets of the set of real numbers R given by

X = {x ∈ R : 0 ≤ x ≤ 1}, Y = {y ∈ R : 1 ≤ y ≤ 2},
Z = {z ∈ R : 0 ≤ z ≤ 2}.

The following statements are valid; the reader should check them.

(i) X ⊆ Z, X ∪ Y = Z, and X ∩ Y = {1},
(ii) Z\X = {x ∈ R : 1 < x ≤ 2},
(iii) {z ∈ Z : z is a positive rational number} denotes the set of rational numbers z

satisfying 0 < z ≤ 2,
(iv) X × Z = {(x, y) : 0 ≤ x ≤ 1,0 ≤ y ≤ 2} denotes a closed rectangle in R

2.
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Relations, Functions and Maps

An n-ary, or n variable, relation R on a set X is by definition a subset of the Carte-
sian product Xn; relations are called binary if n = 2, ternary if n = 3, . . . . So for
example, if X = R, the binary relation x ≤ y, where x, y ∈ R, is defined as the sub-
set of the set of all ordered pairs (x, y) ∈ R×R for which there exists a non-negative
z with the property y = x + z.

There are a number of important classes of relations. One is the class of equiva-
lence relations; they are defined as follows.

Definition A.1 Let X be a set and let ∼ be a binary relation on X.

(i) The relation ∼ is called an equivalence relation if the following three axioms
hold for all x, y, z ∈ X:
(a) it is reflexive—x ∼ x,
(b) it is symmetric—if x ∼ y then y ∼ x, and
(c) it is transitive—if x ∼ y and y ∼ z, then x ∼ z.

(ii) For z ∈ X, let

Ez = {x ∈ X : x ∼ z}.

The subset Ez ⊆ X is called the equivalence class of z for the relation ∼.
We have

(i) x ∈ Ez if and only if x ∼ z, and
(ii) X is a disjoint union of its equivalence classes under ∼.

This union is disjoint because if x ∈ Ez1 and x ∈ Ez2 , then x ∼ z1 and x ∼ z2, and so
z1 ∼ z2 and Ez1 = Ez2 by (b) and (c) above. The simplest example of an equivalence
relation is equality; in this case, the equivalence class of x is the singleton set {x}. In
fact, equivalence relations are generalisations of equality. See also the congruence
subsection on page 285.

The second important class of relations contains the maps. We use the words
map, mapping, transformation and function interchangeably, see also (vi) below. As
noted earlier, see page 68, we write maps ‘on the right’, that is, in algebraic contexts,
we write aθ , rather than θ(a), because we read from left to right. Formally, we define
a map as follows:

Definition A.2 Given sets X and Y , a map φ : X → Y is a relation on the set X ×Y

with the extra property.

For each x ∈ X, there exists a unique y ∈ Y such that (x, y) belongs to the rela-
tion φ.

Note that a map or function must be single-valued. An equivalent, and more intu-
itive, definition is to say that:

There is some rule, or procedure, denoted by φ which, given x ∈ X, generates a
unique element xφ ∈ Y , and this holds for all x ∈ X.
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For example, suppose X = Y = R and xφ = √
x for x ∈ X. As this stands φ is

not a function, but it is if we always take the positive square-root, that is, if we define
xφ = +√x.

If X = X1 × · · ·× Xn, the map φ : X → Y is called an n-argument or n-variable
function from X to Y , and if (x1, . . . , xn) ∈ X, the elements x1, . . . , xn are called its
arguments or variables.

The basic definitions and facts about maps are as follows.

(i) If X and Y are sets and φ : X → Y is a map, then X is called the domain of φ,
and Y is called the codomain of φ. The set {xφ : x ∈ X} is a subset of Y which
is called the image, or range, of φ, and it is denoted by imφ. With a slight
‘abuse of notation’ we write Zφ for the image of Z under the map φ where
Z ⊆ X; that is, Zφ = {y ∈ Y : zφ = y for some z ∈ Z}. Also, xφ is called the
image of x; and if zφ = y, then z is called a preimage of y. If Z ⊆ imφ, then
the set of all preimages of elements of Z under the map φ is denoted by Zφ−1.

(ii) If φ : X1 → Y1 and ψ : X2 → Y2 are maps, then we say that they are equal,
written φ = ψ , if X1 = X2 and xφ = xψ for all x ∈ X1. Note that we do not
require the codomains to be equal, only that the domains and images agree.

(iii) A map φ : X → Y is called injective (or sometimes one-to-one) if xφ = yφ

implies x = y, for all x, y ∈ X; that is for each z in the image of φ there exists
exactly one preimage w in the domain X with wφ = z.

For example, if X = Y = R and xφ1 = x3 for all x ∈ X, then φ1 is injective because
every real number has a unique real cube root, but if xφ2 = x2 for all x ∈ X, then
φ2 is not injective because, for instance, both 2 and −2 are mapped to 4 by φ2.

(iv) A map φ : X → Y is called surjective (or sometimes onto) if for all y ∈ Y ,
there is at least one x ∈ X satisfying xφ = y, or equivalently, Y equals the
image of φ.

In the examples given below (iii), φ1 is surjective whilst φ2 is not (for instance,
−1 has no preimage).

(v) A map is called bijective (or sometimes a one-to-one correspondence) if it is
both injective and surjective. If a bijection exists between two sets (that is, there
is a bijective map between them), then they have the same cardinality, or to put
this another way, they have the ‘same number’ of elements. This applies in both
the finite and infinite cases. We use o(X) to denote the cardinality (order) of X

throughout, that is both for sets and for groups. Some authors use the word size
for the cardinality of a set and reserve the word ‘order’ for groups.

The map φ1 given below (iii) is an example of a bijection. As most of the groups
discussed in this book are finite, cardinality problems do not arise—the cardinality
of a finite set is just the (finite) number of its elements. Problems can arise if the
group in question is neither finite nor countably infinite, the interested reader should
consult the text by Halmos referred to at the beginning of this Appendix.

(vi) Given a non-empty set X, the map ι : X → X defined by xι = x for all x ∈ X

is called the identity map—each x ∈ X is ‘identified by itself’. It is, of course,
a bijection on X.
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(vii) If Y is a set and X = Y 2, then the map μ : X → Y is called a (binary) operation
on Y (but note that it is a ternary relation). For every pair (y1, y2) in Y 2, there
is always a unique y3 in Y with (y1, y2)μ = y3. For instance, if Y = R, we can
take μ to be the usual addition operation +.

We come now to the important notion of composition of functions which is
widely used throughout the book.

Definition A.3 Given two maps φ : X → Y and ψ : Y → Z, a third map, denoted
by φ ◦ ψ : X → Z and called the composition of φ and ψ , is given by

x(φ ◦ ψ) = (xφ)ψ.

Note that (a) as φ maps X → Y and ψ maps Y → Z, the composite φ ◦ ψ maps
X → Z, and (b) we read all algebraic formulas and propositions from left to right
both here and throughout this book. In our opinion, this is especially helpful when
discussing composition.

Theorem A.4 (i) Composition is associative.
(ii) If φ : X → Y and ψ : Y → Z are injective (surjective) maps, then φ ◦ ψ :

X → Z is also injective (surjective, respectively).

Proof (i) If θ : Z → W , then both (φ ◦ ψ) ◦ θ and φ ◦ (ψ ◦ θ) map X to W

and we have using Definition A.3

x
(
(φ ◦ ψ) ◦ θ

) = (
x(φ ◦ ψ)

)
θ = (

(xφ)ψ
)
θ, and

x
(
φ ◦ (ψ ◦ θ)

) = (xφ)(ψ ◦ θ) = (
(xφ)ψ

)
θ.

This holds for all x ∈ X, and so the result follows.
(ii) First part. We have, if x(φ ◦ ψ) = y(φ ◦ ψ), then (xφ)ψ = (yφ)ψ

which implies, as ψ is injective, that xφ = yφ. This now gives x = y because
φ is also injective; the second part is similar. �

We usually drop the symbol ‘◦’ and write φψ for φ ◦ ψ . Some examples are
given in Problem A.4.

If φ : X → Y is a bijection, see above, then we can define the inverse map φ−1

as follows:

if y ∈ Y, then let yφ−1 = x where x is given by xφ = y.

Note that φ−1 is a map from Y to X because φ is both injective and surjective.
Also if X = Y , then

φ ◦ φ−1 = φ−1 ◦ φ = the identity map ι on X. (A.2)
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The first of these equations follows by definition; for the second, we note that if
xφ−1 = z and z ∈ X, then zφ = x, and so

x
(
φ−1 ◦ φ

) = (
xφ−1)φ = zφ = x,

and this holds for all x ∈ X. Referring to the example below (iii) on page 280 where
φ1 is defined, we see that φ−1

1 is the (unique) real cube root function.
Ordered sets play some role in group theory, so we will give a brief outline here.

Definition A.5 (i) A partial order � on a set X is a binary relation on X which
satisfies the following three axioms. For x, y, z ∈ X, the relation � is

(a) reflexive—x � x,
(b) transitive—if x � y and y � z, then x � z, and
(c) antisymmetric—if x � y and y � x, then x = y.

(ii) If � satisfies (a), (b), (c), and it is

(d) symmetric—x � y or y � x, for x, y ∈ X, then the order � is called linear or
total.

(iii) A total order on X is called a well-order on X if every non-empty subset of
X has a least element in X. Induction can be applied to well-ordered sets.

Example 1 If X is a set and P (X) is the set of all subsets of X, and we define an
order on P (X) by: for Y1, Y2 ∈ P (X), let Y1 � Y2 if and only if Y1 ⊆ Y2, then � is
a partial order on X.

Example 2 If X is the set of integers Z, then the usual inequality relation ≤ is a
linear order on Z, and it is a well-order on the set of non-negative elements of Z.

A.2 Problems

Problem A.1 Let X,Y and Z be sets. Prove

(i) X ∪ (Y ∩ Z) = (X ∪ Y) ∩ (X ∪ Z),
(ii) X ∩ (Y ∪ Z) = (X ∩ Y) ∪ (X ∩ Z),
(iii) (X\Y) ∪ (Y\X) = (X ∪ Y)\(X ∩ Y).

Propositions (i) and (ii) are instances of De Morgan’s Laws (named after the nine-
teenth century English mathematician Augustus De Morgan), they can both be ex-
tended finitely and infinitely, so for example, we have

X ∪ (Y1 ∩ · · · ∩ Yn) = (X ∪ Y1) ∩ · · · ∩ (X ∪ Yn).

The expression on either side of the equation in (iii) is called the symmetric differ-
ence of X and Y , it is sometimes denoted by X�Y .
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Problem A.2 For each of the following sets X with relations ∼ determine which
define systems with equivalence relations, and describe the equivalence classes.

(i) X denotes the collection of all human beings alive at noon today, and (a) x ∼1 y

stands for ‘x and y have the same ancestor’ (assume that a person can be his, or
her, own ancestor), and (b) x ∼2 y stands for ‘x and y have the same mother’;

(ii) X = R, and (a) a ∼1 b stands for ‘x < y and y < x’, and (b) a ∼2 b stands for
‘x < y or y < x’;

(iii) X is the set of all triangles in the real plane, and x ∼ y stands for x is similar
(that is, has the same angles) to y.

Problem A.3 Let X and Y be arbitrary sets.

(i) Is X × ∅ non-empty if X is non-empty?
(ii) Show that (X × Y) ∩ (Y × X) �= ∅ if and only if X ∩ Y �= ∅. If X and Y have

n elements in common, how many elements do X × Y and Y × X have in
common?

Problem A.4 For the following maps φ : X → Y determine whether they are injec-
tive, surjective or bijective.

(i) X = Z × (Z\{0}), Y = Q, and (a, b)φ = a/b;
(ii) X = Z × Z, Y = Q, and (a, b)φ = a + b;
(iii) X = W ×Z, Y = Z and (x, y)φ = y—maps of this type are called projections;
(iv) X = R, Y = R

+, the set of positive real numbers, and aφ = 2a ;
(v) X = Z, Y = Q and xφ = x/2;
(vi) X = R, Y = Z, and aφ = [a]—where the square brackets denote integer part.

Problem A.5 Let Y be a finite set and let ψ : Y → Y . Show that if ψ is injective,
then it is also surjective, and vice versa. Is this still true if Y is infinite?

Problem A.6 Let M be a set with m elements and N be a set with n elements. How
many functions are there that map M to N , and how many of these are (i) bijections,
or (ii) injections, or (iii)� surjections.

Problem A.7 Show that the following sets are bijective, that is, they have the same
cardinality.

(i) X × (Y × Z) and (X × Y) × Z where X, Y and Z are sets;
(ii) Z

+ and GL2(Z); and (iii)� Z and Q.

Problem A.8 Prove that φ : X → Y is a bijection if and only if there is another map
ψ : Y → X with the properties (a) φ ◦ ψ is the identity map on X, and (b) ψ ◦ φ is
the identity map on Y .

Problem A.9 Give examples of operations on a set X which are associative but not
commutative, and vice versa. (Hint. Try X as a 2-element set.)
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Appendix B: Number Theory

Some aspects of elementary number theory play a vital role in group theory, espe-
cially in the finite case. In particular, the prime numbers, Euclid’s algorithm, con-
gruences and primitive roots are widely used. Here we give a brief introduction to
those aspects of number theory that appear in this book including the four topics
listed above; for further details the reader should consult, for example, Rose (1999)
where full proofs can be found.

B.1 Divisibility and the Euclidean Algorithm

Number theory begins with the study of the integers Z. This system is a group under
addition +. It also has both a linear order ≤ and a multiplication operation, but the
non-zero integers do not form a group under this second operation because it has no
inverses. This leads to the first result

Theorem B.1 (Division Algorithm) Suppose a, b ∈ Z and b �= 0. There exist unique
integers c and d satisfying

a = bc + d and 0 ≤ d < |b|,
where the vertical bars denote the absolute value.

This is a consequence of the fact that the positive integers are well-ordered. Some
notation: we say b divides a if d = 0 in the division algorithm, and we write b | a in
this case, its negation is written b � a. The basic properties are

(i) for all a ∈ Z, a | a, a | 0, 1 | a and −1 | a;
(ii) 0 | a if and only if a = 0;
(iii) if c > 0 and a | c, then c ≥ a;
(iv) if a | b and a | c, then a | bx + cy for all x and y in Z.

As immediate consequence of this result is

Theorem B.2 (Euclidean Algorithm) Suppose a, b ∈ Z, and at least one of a or b

is non-zero. There exists a unique integer c which satisfies

c > 0, c | a, c | b, and if d | a and d | b, then d | c.

This follows from the Division Algorithm (Theorem B.1) and (iv) above. The
unique integer c given by this algorithm is called the greatest common divisor or
GCD of a and b, and it is denoted by (a, b); also we set (0,0) = 0. Some authors
use HCF (highest common factor) for GCD. The basic properties are given in Prob-
lem B.1. We define the least common multiple or LCM of a and b to equal ab/(a, b)

provided both a and b are non-zero. This algorithm is named after the Greek geome-
ter Euclid of Alexandria who was working in the third century BC.
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There are two important corollaries of this algorithm, the first is

Theorem B.3 The equation

ax + by = n

has integer solutions x and y if and only if (a, b) | n.

In Theorem B.2, c = (a, b) is the smallest positive integer of the form ax + by.
The second corollary is

Theorem B.4 If a | bc and (a, b) = 1, then a | c.

This is proved by applying Theorem B.3 to the given equation.
Using Theorem B.4, we define the primes and unique factorisation in Z.

Definition B.5 (i) An integer p > 1 is called prime or a prime number if its only
positive divisors are 1 and p, otherwise it is called composite. Two integers are
called coprime if they have no common positive divisor except 1.

(ii) We use the symbol π to denote a collection of primes, that is, a subset of the
set of all prime numbers. So a π -number is a positive integer whose prime factors
are included in π . Also we write π ′ for the complement of π in the set of all prime
numbers.

There are infinitely many primes, this was first proved by Euclid. (If p1, . . . , pk

is a list of all primes, consider the expression p1 · · ·pk + 1.) Unique factorisation in
Z now follows directly from Theorem B.4, we have

Theorem B.6 (Unique Factorisation) Every positive integer has a unique (except
for the order) representation as a product of primes.

Congruences

We begin with

Definition B.7 Given integers a, b and m where m > 0, the expression

a ≡ b (mod m) (B.1)

is called a congruence, and stands for m | a−b. The number m is called the modulus,
and b is called a residue of a modulo m.

This is equivalent to: a and b have the same remainder after division by m. Some-
times we write a ≡ b(m) for (B.1). This was introduced by Gauss in 1801, and is
one of the origins for the notions of coset and factor group.
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Note that the congruence (B.1) is an equivalence relation on Z, see Defini-
tion A.1; some elementary properties are given in the problem section. Also Theo-
rem B.3 can be rewritten as

Theorem B.8 Suppose a, b,m ∈ Z and m > 0. The congruence

ax ≡ b (mod m)

has (a,m) solutions x with 0 ≤ x < m if (a,m) | b, and none otherwise.

The inverse operation of the group (Z/pZ)∗ is given by this result. If m = p and
0 ≤ a < p, then (a,p) = 1, that is the condition in Theorem B.8 is always satisfied
in this case, and the solution is unique.

Some congruence results used in this book are listed below. The first, which
follows from Theorem B.8 (Problem B.6), is

Theorem B.9 (Chinese Remainder Theorem) Given m1, . . . ,mk ∈ Z, coprime in
pairs, and c1, . . . , ck ∈ Z, the congruences

x ≡ ci (mod mi), i = 1, . . . , k,

have a common solution x which is unique modulo the product m1 · · ·mk .

The second result, which had a formative influence on the early development of
group theory and was first discovered in the seventeenth century by Fermat (and
probably first proved by Euler in the eighteenth century), is

Theorem B.10 (Fermat’s Theorem) If p is prime and a ∈ Z, then ap ≡ a (mod p).

The first proofs of this result used the multinomial theorem, but nowadays a more
group-theoretic proof is used; see the next result and Problem B.5.

Euler extended this result to all positive moduli, to state it we need first to define
a useful number-theoretic function which is named after him.

Definition B.11 If n > 1, φ(n) denotes the number of integers a satisfying the
conditions: 1 ≤ a < n and (a,n) = 1; and we set φ(1) = 1.

The function φ(n) is called the Euler function, it is the order of the group (Z/nZ)∗.
Using Unique Factorisation in Z (Theorem B.6) it can be shown that if n has the
prime factorisation n = p

s1
1 · · ·psk

k , then

φ(n) =
∏k

i=1
p

si−1
i (pi − 1).

For example, if p is prime, then φ(p) = p − 1 as every positive integer less than p

is coprime to p. Note also that φ is multiplicative, that is, φ(n)φ(m) = φ(mn) when
(m,n) = 1. Using this function Euler extended Fermat’s Theorem to
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Theorem B.12 (Euler’s Theorem) If (a,m) = 1, then aφ(m) ≡ 1 (mod m).

Problem 2.8 when it is applied to the group Z/mZ provides a proof of this result,
another is given in Problem B.5. The last congruence result is

Theorem B.13 Suppose f is a polynomial defined over the field Z/pZ, and has de-
gree n. The polynomial congruence f (x) ≡ 0 (mod p) has at most n roots in Z/pZ.

This is proved by induction on n; use Theorem B.8 when n = 1, and consider
possible linear factors of f in the inductive step. This result can also be proved
purely algebraically, see Problem 7.5(iii).

Primitive Roots

The basic question here is: In which cases, if any, is the group (Z/mZ)∗ cyclic? The
answer is useful in the theories of cyclic groups and automorphisms (Section 4.4).

Definition B.14 (i) Given integers c and m with (c,m) = 1 and m > 1, the order of
c modulo m, ordm(c), is the least positive integer t satisfying the congruence

ct ≡ 1 (mod m).

(ii) The integer c is called a primitive root modulo m if ordm(c) = φ(m).

By Theorem B.12, ordm(c) always exists and is not greater than φ(m); in fact, it
is a divisor of φ(m). Also ordm(c) is the order of the cyclic group generated by c in
(Z/mZ)∗. The following result was first proved by Gauss.

Theorem B.15 Primitive roots exist for each prime modulus p.

This is derived by establishing a stronger result: p has φ(p − 1) primitive roots
modulo p, and one proof of this (which is very elegant) uses the Möbius function μ;
see Chapter 5 in Rose (1999). There are a number of unsolved problems concerning
primitive roots, for example, for large primes p only weak estimates are known for
the least positive primitive root of p.

Not all integers have primitive roots, for example, 8 does not have one because
φ(8) = 4 and all odd integers have order 2 modulo 8. Using these results we have

Theorem B.16 Suppose p is an odd prime and let r > 0. The only integers larger
than 1 which have primitive roots are 2, 4, pr and 2pr .

This result follows from Theorem B.15 (Problem B.8), and it implies that the
group (Z/mZ)∗ is cyclic when m = 2, 4, pr or 2pr . In the remaining cases, it can
be shown that (Z/mZ)∗ is a direct product of cyclic groups. For m = 2r with r > 2,
we have (Z/mZ)∗ � C2 × C2r−2 , and the remaining cases use the Fundamental
Theorem of Abelian Groups (Theorem 7.12).
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B.2 Problems

Problem B.1 Prove the following properties of the GCD.

(i) (a, b) = (b, a),
(ii) (a,0) = |a|, the absolute value of a,
(iii) if a | b and b | c, then ab | c(a, b),
(iv) (a, a + b) | b,
(v) if (a,m) = (b,m) = 1, then (ab,m) = 1,
(vi) if (a, b) = d , then a/d, b/d ∈ Z and (a/d, b/d) = 1.

Problem B.2 If m = p
r1
1 · · ·prk

k and n = p
s1
1 · · ·psk

k where some of the ri or sj may
be zero, then

(m,n) =
∏k

i=1
p

min(ri ,si )
i and LCM(m,n) =

∏k

i=1
p

max(ri ,si )
i .

Problem B.3 If a and b are positive with (a, b) = 1, show that the equation ax +
by = n is soluble in non-negative integers x and y if n ≥ (a − 1)(b − 1).

Problem B.4 Show that for fixed r the following equation only has a finite number
of positive integer solutions {n1, . . . , nr}

1 = 1

n1
+ · · · + 1

nr

.

This is used in Problem 5.23.

Problem B.5 Prove Theorem B.12 using the same method as for Theorem 2.8.

Problem B.6 Prove the following congruence properties.

(i) If a ≡ b (mod m) and c ≡ d (mod m), then a + c ≡ b + d (mod m),ac ≡ bd

(mod m), and a ≡ b (mod m′) if m′ | m.
(ii) If a ≡ b (mod m), then (a,m) = (b,m), ar ≡ br (mod mr), and at ≡ bt

(mod m) when t ≥ 0.
(iii) Prove Theorem B.9 as follows: let m = m1 · · ·mk , m′

i = m/mi and m∗
i satisfy

m′
im

∗
i ≡ 1 (mod mi) for i = 1, . . . , k, and set x = c1m

′
1m

∗
1 + · · · + ckm

′
km

∗
k .

Problem B.7 Let the number-theoretic function χ be given by: χ(1) = χ(2) = 1,
χ(4) = 2, χ(2n+3) = φ(2n+3)/2, χ(pn) = φ(pn), p an odd prime, and if m =
p

r1
1 · · ·prk

k then χ(m) = LCM(χ(p
r1
1 ), . . . , χ(p

rk
k )). Show that

aχ(m) ≡ 1 (mod m) if (a,m) = 1.
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Problem B.8 (i) Using the Binomial Theorem, show that if r > 1 and p is an odd
prime, then

(1 + ap)p
r−2 ≡ 1 + apr−1 (mod pr).

(ii) Prove that if p � a, then 1 + ap has order pr−1 modulo pr .
(iii) Use (ii) to show that if p is an odd prime and r > 0, then pr has a primitive

root. (Hint. Use Theorem B.15 and show that if c is a primitive root then cp−1 �≡ 1
(mod p2), if this fails for c try c + p.)

(iv) Using Problem B.7 and (iii) prove Theorem B.16.

* * * * * *

Appendix C: Data on Groups of Order 24

Data on groups of order 24 are presented in the four tables below, some notes con-
cerning this data are given on pages 292 and 293.

Table C.1 Data on groups of order 24

GROUP No. of
elts of
order 2

No. of
conj. cls
of elts

No. of
subgps

No. of
subgp
conj. cls

No. of
max.
subgps

No. of
normal
subgps

Sylow
2-subgps

C24 1 24 8 8 2 8 C8

C12 × C2 3 24 16 16 4 16 C4 × C2

C6 × C2
2 7 24 32 32 8 32 C3

2

D3 × C4 7 12 26 16 6 11 C4 × C2 by 3

D4 × C3 5 15 20 16 4 12 D4

Q2 × C3 1 15 12 12 4 12 Q2

D6 × C2 15 12 54 32 10 21 C3
2 by 3

Q3 × C2 3 12 22 16 6 13 C4 × C2 by 3

A4 × C2 7 8 26 12 6 6 (C3
2 )∗

D12 13 9 34 16 6 9 D4 by 3

Q6 1 9 18 12 6 9 Q2 by 3

S4 9 5 30 11 8 4 D4 by 3

F3,8 1 12 10 8 4 7 C8 by 3

SL2(3) 1 7 15 7 5 4 (Q2)
∗

E 9 9 30 16 6 9 D4 by 3
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Table C.2 Data on groups of order 24

GROUP No. of
Sylow
3-subgps

Subgroups
of order
12

Maximal
subgps
of order 6

Centre Class
No.

Derived
subgp
(first)

C24 1 C12 – C24 24 〈e〉
C12 × C2 1 C12 by 2, C6 × C2 – C12 × C2 24 〈e〉
C6 × C2

2 1 C3 × C2
2 by 7 – C6 × C2

2 24 〈e〉
D3 × C4 1 C12,D6,Q3 – C4 12 C3

D4 × C3 1 C12,C6 × C2 by 2 – C6 15 (C2)
∗

Q2 × C3 1 C12 by 3 – C6 15 (C2)
∗

D6 × C2 1 C × C2,D6 by 6 – C2
2 12 C3

Q3 × C2 1 Q3 by 2, C6 × C2 – C2
2 12 C3

A4 × C2 4 A4 C6 by 4 C2 8 C2
2

D12 1 C12,D6 by 2 – (C2)
∗ 9 C6

Q6 1 C12,Q3 by 2 – (C2)
∗ 9 C6

S4 4 A4 D3 by 4 〈e〉 5 A4

F3,8 1 C12 – (C4)
∗ 12 C3

SL2(3) 4 – C6 by 4 (C2)
∗ 7 (Q2)

∗

E 1 C6 × C2,D6,Q3 – (C2)
∗ 9 C6

Table C.3 Data on groups of order 24

GROUP Frattini
subgp.

Fitting
subgp.

Sockel
See (17)

Largest
factor
group(s)

Smallest
symmetric
supergp.

Is
nil-
potent

C24 C4 ‘G’ C6 C12 S11 Yes

C12 × C2 C2 ‘G’ C6 × C2 C12 by 2,C6 × C2 S9 Yes

C6 × C2
2 〈e〉 ‘G’ ‘G’ C6 × C2 by 7 S9 Yes

D3 × C4 C2 C12 C6 D6 S7 No

D4 × C3 (C2)
∗ ‘G’ C6 C6 × C2 S7 Yes

Q2 × C3 (C2)
∗ ‘G’ C6 C6 × C2 S11 Yes

D6 × C2 〈e〉 C6 × C2 C6 × C2 D6 by 3 S7 No

Q3 × C2 C2 C6 × C2 C6 × C2 Q3 by 2, D6 S9 No

A4 × C2 〈e〉 (C3
2 )∗ (C3

2 )∗ A4 S6 No

D12 (C2)
∗ C12 C6 D6 S7 No

Q6 (C2)
∗ C12 C6 D6 S24 No

S4 〈e〉 (C2
2 )∗ (C2

2 )∗ D3 (order 6) S4 No

F3,8 (C4)
∗ C12 C6 Q3 S11 No

SL2(3) (C2)
∗ (Q2)

∗ C2 A4 S8 No

E (C2)
∗ C6 × C2 C6 D6 S7 No
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Table C.4 Data on groups of order 24

GROUP Degree
pattern
See (18)

Autom.
group
order

Outer
autom.
group

Expo-
nent

Abelian
invar-
iants

2-Euler
count
See (19)

C24 1, 24. . . ,1 8 C3
2 24 3, 8 6144

C12 × C2 1, 24. . . ,1 16 D4 × C2 12 2, 3, 4 768

C6 × C2
2 1, 24. . . ,1 336 GL3(2) × C2 6 2, 2, 2, 3 0

D3 × C4 1, 8. . . ,1,2,2,2,2 24 C2 × C2 12 2, 4 576

D4 × C3 1, 12. . . ,1,2,2,2 16 C2 × C2 12 2, 2, 3 768

Q2 × C3 1, 12. . . ,1,2,2,2 48 A4 12 2, 2, 3 768

D6 × C2 1, 8. . . ,1,2,2,2,2 144 S4 6 2, 2, 3 0

Q3 × C2 1,1,1,1,2, 5. . . ,2 48 C4 × C2 12 2, 4 576

A4 × C2 1, 6. . . ,1,3,3 24 C2 6 2, 3 288

D12 1,1,1,1,2, 5. . . ,2 48 C2 × C2 12 2, 2 576

Q6 1,1,1,1,2, 5. . . ,2 48 C2 × C2 12 2, 2 576

S4 1,1,2,3,3 24 〈e〉 12 2 216

F3,8 1, 8. . . ,1,2,2,2,2 24 C2 × C2 24 8 4608

SL2(3) 1,1,1,2,2,2,3 24 C2 12 3 384

E 1,1,1,1,2, 5. . . ,2 24 C2 12 2, 2 576

Notes on Tables C.1 to C.4

(1) We write Hk as a short-hand for H × H × · · · × H with k factors.

(2) ‘H by k’ stands for ‘k isomorphic copies of the subgroup H ’.

(3) If ‘(H)∗’ occurs twice or more in a row(s), this means that the corresponding
subgroups are identical. For example, the derived and Frattini subgroups of
D4 × C3 are identical.

(4) The group Q2 ×C3 is the only group in the tables that is Hamiltonian: It is not
Abelian and all of its subgroups are normal; see Problem 7.13 and Note (20).

(5) The tabulated maximal subgroups have order 12 (except for SL2(3)), or order
8 (all Sylow 2-subgroups are maximal), or in three cases (A4 × C2, S4 and
SL2(3)) they have order 6.
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(6) All largest factor groups have order 12 except for S4 where the order is 6. This
reflects the fact that all groups of order 24 except S4 have at least one normal
subgroup of order 2.

(7) The centre is defined on page 32, and the derived subgroup on page 37, only S4

and SL2(3) have non-neutral second derived subgroups, they are isomorphic to
C2 × C2 for S4 and C2 for SL2(3).

(8) Nilpotency and supersolubility are defined on page 212 and page 227, re-
spectively. The two non-Abelian nilpotent groups listed above (D4 × C3 and
Q2 ×C3) both have nilpotency class 2. All groups in the table are soluble, and
all but A4 × C2, S4 and SL2(3) are supersoluble; see Problem 10.26.

(9) The exponent (Table C.4) of a group G is the smallest positive integer n such
that gn = e for all g ∈ G (Definition 2.19(iv)).

(10) The Abelian invariants (Table 4) of G are defined as the orders of the elements
of a minimal set of generators of ‘G made Abelian’, that is, of G factored by
its derived subgroup G′.

(11) The Frattini subgroup 
(G) of G is the intersection of the maximal subgroups
of G, it is a normal subgroup of G, see page 217.

(12) The Fitting subgroup F(G) of G is the (unique) maximal, nilpotent, normal
subgroup of G; see page 221. If G is nilpotent then F(G) = G.

(13) The groups in the tables with the maximum number of elements of the speci-
fied order are as follows: D6 ×C2 has 15 elements of order 2, A4 ×C2, S4 and
SL2(3) have 8 elements of order 3, Q6 has 14 elements of order 4, C6 × C2

2
has 14 elements of order 6, F3,8 has 12 elements of order 8, Q2 × C3 has 12
elements of order 12, and C24 is the only group with elements (8 in all) of
order 24.

(14) Cauchy’s Theorem states that all the groups in the tables possess elements of
order 2 and 3. For all other divisors n of 24, there is at least one group in the
table which does not have an element of order n. The groups C6 ×C2

2 ,D6 ×C2

and A4 × C2 do not have elements of order 4, S4 does not have an element of
order 6, all groups in the table except C24 and F3,8 do not have elements of
order 8, C6 × C2

2 ,D6 × C2,Q3 × C2,A4 × C2, S4,SL2(3) and E do not have
elements of order 12, and no group except C24 has elements of order 24.

(15) By Corollary 5.27, the order of the inner automorphism group times the order
of the centre equals 24, so o(InnG) ranges from 1 (for Abelian groups) to 24
(when G = S4).
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(16) With one exception all groups in these tables are reverse Lagrange, that is, they
possess subgroups of all orders dividing 24. The exception is SL2(3) which has
no subgroup of order 12.

(17) The Sockel of a group G is the product of all minimal normal subgroups of
the group G, see Theorem 11.6. It is normal in G. The Abelian, (non-Abelian,
Sockel) is the product of all Abelian, (non-Abelian, respectively), minimal nor-
mal subgroups of G, see Theorem 11.11. The sockel is the product of the
Abelian and non-Abelian sockels. A number of properties have been estab-
lished, for example, if G is a finite group and 
(G) = 〈e〉, then F(G) equals
the Abelian Sockel. For further details, see Scott (1964), pages 168 to 170.

(18) The degree pattern of a group G is a set of positive integers (r1, . . . , rm) where
ri is the degree of the ith linear representation of G (that is, the dimension of
its underlying vector space). Note that

∑m
i=1 r2

i = o(G). This aspect of G is
mainly concerned with the character theory of G; see Huppert (1998), and
Web Section 14.3.

(19) The 2-Euler count is the number of pairs of (possibly not distinct) elements of
a group G that generate G.

(20) All groups except C24 in the tables can be represented as direct or semi-direct
products with two factors; see Problem 8.3. Apart from those listed in this
chapter we have D12 � C2 � C12, Q6 � Q2 � C3, and F3,8 � C8 � C3. Note
also that Q2 × C3 can also be treated as a semi-dihedral group, see page 131.

(21) Most of the data in these tables was computed using the computer package
GAP. The numbers (labels) given to the groups by the GAP program ‘Small-
Groups’ are: 2, 9, 15, 5, 10, 11, 14, 7, 13, 6, 4, 12, 1, 3, and 8, using the
same order of the groups as in the tables above—so for example, the GAP
SmallGroup(24,1) is the thirteenth group in our tables, that is, F3,8.

* * * * * *

Appendix D: Numbers of Groups with Order up to 520

The table apposite gives the number of (isomorphism classes of) groups of each
order between 1 and 520 except 512 which is a staggering 10494213; see Besche et
al. (2001). The entries 1∗ indicate that the number of groups of this order is 1 even
though the order is not prime, there are 73 in Table D.1, see page 117. The data in
this table were given by the programs GAP and Magma.
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Table D.1 Number of Groups with Order up to 520

+ 0 40 80 120 160 200 240 280 320 360 400 440 480

1 1 1 15 2 1∗ 2 1 1 1∗ 2 1 13 1∗

2 1 6 2 2 55 2 5 4 4 2 6 4 2

3 1 1 1 1∗ 1 2 67 1 1 3 1∗ 1 2

4 2 4 15 4 5 12 5 4 176 11 5 18 12

5 1 2 1∗ 5 2 2 2 2 2 1∗ 16 1∗ 1∗

6 2 2 2 16 2 2 4 4 2 6 6 2 261

7 1 1 1∗ 1 1 2 1∗ 1∗ 2 1 1∗ 1∗ 1

8 5 52 12 2328 57 51 12 1045 15 42 46 1396 14

9 2 2 1 2 2 1∗ 1∗ 2 1∗ 2 1 1 2

10 2 5 10 4 4 12 15 4 12 4 6 34 10

11 1 1∗ 1∗ 1 5 1 1 2 1 1∗ 1∗ 1∗ 1

12 5 5 4 10 4 5 46 5 4 15 4 5 12

13 1 1 2 1∗ 1 1∗ 2 1 5 1 1∗ 2 1∗

14 2 15 2 2 4 2 2 23 2 4 10 2 4

15 1∗ 2 1∗ 5 2 1∗ 1∗ 1∗ 1∗ 7 1∗ 1∗ 4

16 14 13 231 15 42 177 56092 14 228 12 235 54 42

17 1 2 1 1 1∗ 1∗ 1 5 1 1∗ 2 1 2

18 5 2 5 4 2 2 6 2 5 60 4 2 4

19 1 1 2 1 1 2 1∗ 1∗ 1∗ 1 1 5 1

20 5 13 16 11 37 15 15 49 15 11 41 11 56

21 2 1 1 1∗ 1 1∗ 2 2 1∗ 2 1 1 1∗

22 2 2 4 2 4 6 2 2 18 2 2 12 2

23 1 4 1 1∗ 2 1 1 1∗ 5 1 2 1 1

24 15 267 14 197 12 197 39 42 12 20169 14 51 202

25 2 1∗ 2 1∗ 1∗ 6 1∗ 2 1∗ 2 2 4 2

26 2 4 2 2 6 2 4 10 2 2 4 2 6

27 5 1 1 6 1∗ 1 1∗ 1 1 4 1∗ 1 6

28 4 5 45 5 4 15 4 9 12 5 4 55 4

29 1 1∗ 1 1 13 1 1 2 1 1 2 1∗ 1

30 4 4 6 13 4 4 30 6 10 12 4 4 8

31 1 1 2 1 1 2 1 1 14 1∗ 1 2 1∗

32 51 50 43 12 1543 14 54 61 195 44 775 12 ∗ ∗ ∗
33 1∗ 1 1 2 1 1 5 1 1 1∗ 1 1∗ 15

34 2 2 6 4 2 16 2 2 4 2 4 6 2

35 1∗ 3 1∗ 2 2 1∗ 4 4 2 1∗ 1∗ 2 1∗

36 14 4 5 18 12 4 10 4 5 30 5 11 15

37 1 1∗ 4 1 1 2 1 1 2 1 1∗ 2 1∗

38 2 6 2 2 10 4 2 4 2 2 6 2 4

39 2 1 1∗ 1∗ 1 1 4 1∗ 1 5 1 1 1∗

40 14 52 47 238 52 208 40 1640 162 221 51 1213 49
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Appendix E: Representations of L2(q) with Order < 10000

In this appendix, we list some representations for the linear groups L2(q), see Sec-
tion 12.2. All representations are illustrative examples and are in no way unique.
A presentation for L2(p), p a prime, was given in Chapter 12. In the first list, we
give some presentations for the remaining cases using small order generators. They
were taken from the ATLAS (1985) where further details can be found.

L2(8) � 〈
a, b | a7 = (a2b)3 = (a3b)2 = (ab5)2 = e

〉
,

L2(9) � 〈
a, b | a5 = b5 = (ab)2 = (a4b)4 = e

〉 � A6,

L2(16) � 〈
a, b | a15 = (a2b)3 = (a3b)2 = (ab9)2 = (a8b2)2 = e

〉
,

L2(25) � 〈
a, b, c | a5 = b12 = c2 = (bc)2 = (ac)3 = (b4abac)3 = e, b10ab2 = b11a2ba = ab11a2b

〉
,

L2(27) � 〈
a, b, c | a3 = b13 = c2 = (bc)2 = (ac)3 = e, b10ab3 = ab12ab = b12aba

〉
.

Secondly, each linear group in our chosen range can be given a permutation repre-
sentation, that is, L2(q) is isomorphic to a subgroup of At for some suitable cho-
sen t depending on q . In the list below which was constructed using the computer
program GAP, t = q + 1, but in some cases smaller values of t are possible (for
q = 5,7,9). The case q = 11 is discussed in Problem 12.8. These facts were first
noted by Galois in his famous letter to a colleague written the night before he was
mortally wounded in a duel; see Huppert (1967), page 214.

L2(4) � 〈
(3,4,5), (1,2,3)

〉 � A5,

L2(5) � 〈
(1,2,3,4,5), (3,4,5)

〉 � A5,

L2(7) � 〈
(1,2)(3,4), (1,3,5)(2,7,6)

〉 � A7,

L2(8) � 〈
(3,9,7,4,8,5,6), (1,2,3)(4,5,6)(7,8,9)

〉
,

L2(9) � 〈
(1,2,3,4,5), (4,5,6)

〉 � A6,

L2(11) � 〈
(1,3)(2,5)(7,10)(9,11), (2,6,8)(3,9,5)(4,11,10)

〉 � M11,

L2(13) � 〈
(3,13,11,9,7,5)(4,14,12,10,8,6), (1,2,9)(3,8,10)(4,5,12)(6,13,14)

〉
,

L2(16) � 〈
(3,16,14,13,11,4,8,6,17,15,5,12,10,9,7),

(1,2,3)(6,14,8)(7,11,10)(9,17,15)(12,16,13)
〉
,

L2(17) � 〈
(3,17,15,13,11,9,7,5)(4,18,16,14,12,10,8,6),

(1,2,11)(3,13,9)(4,15,6)(5,8,12)(7,18,16)(10,14,17)
〉
,

L2(19) � 〈
(3,19,17,15,13,11,9,7,5)(4,20,18,16,14,12,10,8,6),

(1,2,12)(3,11,13)(4,17,6)(5,14,18)(7,20,18)(10,19,16)
〉
,

L2(23) � 〈
(3,23,21,19,17,15,13,11,9,7,5)(4,24,22,20,18,16,14,12,10,8,6),

(1,2,14)(3,12,16)(4,18,9)(5,20,6)(7,13,11)(8,23,22)(10,24,19)(15,21,17)
〉
,

L2(25) � 〈
(3,25,23,6,20,18,5,15,13,4,10,8)(7,26,24,22,21,19,17,16,14,12,11,9),

(1,2,5)(3,4,6)(7,18,14)(8,22,9)(10,17,12)(11,25,24)(15,26,19)(16,23,21)
〉
,

L2(27) � 〈
(3,27,25,23,21,19,17,16,14,12,10,8,6)(4,15,13,11,9,7,5,28,26,24,22,20,18),

(1,2,4)(5,8,24)(6,21,10)(7,16,15)(9,25,28)(11,13,14)(12,27,23)(17,26,28)
〉
.
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Notation Index

Three notation indexes are given below: 1—Symbol index; 2—Index of names of
classes of groups; and 3—Index of names of individual groups.

1—Symbol Index

�, 11

T1, 12

(G,�),G,H,J,K , 13

〈X〉, 13, 25

〈e〉, 13, 24

a, b, c, d, g,h, j, k, 13

ab, e, g−1, 15

o(G), o(X), 16

Z, 18, 21

�, 17, 69

Q,R,C,Q
∗,R

∗,C
∗, 18

Q
+,R

+, 18

F ∗ (non-zero elements of F ), 18

a ≡ b (mod m), a ≡ b(m), 18, 285

Z/mZ, 18, 74

(Z/pZ)∗, 18

T2, Tn, 18

GLn(F ), 19, 53

SLn(F ), 19, 53

UTn(F ), 19, 54

Dn, 20, 58

SX,Sn, 20, 49

An, 20, 50

Cn, 22, 80

H ≤ G, H < G, 24

〈g〉, 26

o(g), 26

XY,gH,Hg, 27

[G : H ], 29

	, 30

K , 30

H ∨ J , 31

〈H,J 〉, 31

Z(G), 32, 102

[g,h], [G,H ], 37, 210

G′, 37

core(H), 39, 101

H ∗, 39(
1 2 . . . n

a1 a2 . . . an

)
, 42

(a1, . . . , an) (cycle), 44

k-cycle, 44

sgn(σ ), 47

GLn(q), SLn(q), 53

Ln(q), 54, 255

〈A | R〉, 〈g1, . . . | x1 = e, . . .〉, 58

Z, 58

Qn, 59

ITn(F ), IZTn,r (F ), 63
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φ|H , 70

imφ, 70, 280

kerφ, 71

G/K , 73

� (isomorphic to subgroup), 75

AutG, Aut(G), 81

InnG, Inn(G), 81

OutG, Out(G), 82

char, 89

\g, 91ff

\ (action), 92

O{x}, OG{x}, 94

stabG(x), 95

fix(G,X), 98

C�{x}, C�G{x}, 102

CG(x), 102

h(G), 103

CG(X), 104

NG(H), 105

v(n), 117

Fm,n, Fn,m,r , 130

ES1(p), ES2(p), 132

×, 139

G1 × · · · × Gn, 140

part(n), 151

�, 151

K : A, 152

wr, , 156

Hol(G), 162

PGLn(q), 170

Gr,s,t , 170

E, 177

		, 206, 224

Di (G), Di , 210

Zi (G), Zi , 210

�(G), 217

F(G), 221

Op(G), Oπ(G), 221, 237

F∗(G), 222

Sz(2n), 222
2F4(2)′, 222

Gal(F ), 229, 230

G(n), 234

π,π ′, 236, 285

S(r, s, t), 251

Aut(S(r, s, t)), 253

Fq , 254

PSLn(q), 255

Eij (r), 255

GUn(q), SUn(q), Un(Q), 265

M11,M12, . . . , 267, 268

J1, J2, 267

∈, 277

=, 277

∅, 277

⊆,⊂, 277

∩, 278

∪, 278

\ (complement), 278

{x ∈ X : P (x)}, 278

{x1, . . . , xn}, 278

(x1, . . . , xn), 278

×, 278

Xn, 278

φ : X → Y , 279

Zφ, 280, 281

Zφ−1, 280, 281

ι, 281

◦, 281

� (partial order), 282

�, 282

a | b, 284

a � b, 284

(a, b), 284

GCD, LCM, 284

≡, mod, 285

φ(n), 286

ordm(c), 287
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2—Notation for Classes of Groups

In the first table below, we list the primary definitions and notations for the infinite
classes of groups discussed in this book. Note that in all cases the subscript n is used
to indicate the nth group in the class, and so is only indirectly related to the order
of the group. The column called ‘Primary definition’ gives the group’s ‘main’ rep-
resentation. The symbol F denotes an arbitrary field, if F is finite then the symbol
F is replaced by q the order of the field.

Group English Primary Page

symbol name definition

An Alternating Even permutations on n symbols 50

Cn � Z/nZ Cyclic Integers with addition modulo n 58, 79

Dn Dihedral Symmetries of regular n-gon 58

Fr,s or
Fr,s,t

Frobenius or
metacyclic

〈a, b | ar = bs = e, b−1ab = at 〉
where t s ≡ 1 (mod r)

131

GLn(F ) General linear Non-singular n × n matrices
over F

53

ITn(F ) Uni-upper
triangular

Subgroup of UTn(F ) with each
diagonal element 1

63

IZTn,r (F ) – Subgroup of ITn(F ) with r

superdiagonals zero
63

Ln(F ) or
PSLn(F )

Linear or
Projective
special linear

SLn(F ) factored by its centre 255

Qn Dicyclic or
generalised
quaternion

〈a, b | an = b2 = (ab)2〉 59

Sn Symmetric All permutations on n symbols 49

SLn(F ) Special linear Subgroup of GLn(F ) of matrices A

with detA = 1
53

Sz(2n) Suzuki See Web Section 14.3 –

Tn � Cn
2 n copies of ‘2’ – 18 and

151

Un(F ) Unitary See page 265 265

UTn(F ) Upper
triangular

Subgroup of GLn(F ) of matrices
with zeros below main diagonal

54

(Z/nZ)∗ – {a ∈ Z : 0 < a < n and (a,n) = 1}
with multiplication mod n

18
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3—Notation for Individual Groups

In the second table below, we list some notation for individual groups, that is, groups
that do not form a part of an infinite family.

Group English name Operation Page

C Complex numbers Addition 18

C
∗ Non-zero complex

numbers
Multiplication 18

Cp∞ Infinite group with
only finite subgroups

[Abelian] 132

E Exceptional See Section 7.3 177

ESi for
i = 1,2

Extra special See Problems 3.18 and 5.5 132

J1, J2 Janko – 267

M11,M12 Mathieu See Section 11.4 268

Q2 Quaternion 〈a, b | a4 = e, a2 = b2, b−1ab = a3〉 118

Q Rational numbers Addition 18

Q
∗ Non-zero rational

numbers
Multiplication 18

Q
+ Positive rational

numbers
Multiplication 18

R Real numbers Addition 18

R
∗ Non-zero real

numbers
Multiplication 18

R
+ Positive real Multiplication 18

Z Integers, or infinite
cyclic group

Addition 18, 58



Index

2-Euler count, 293
4-group, 19

A
Abel, N, 12
Abelian, 2, 12

group, finite, 146ff
elementary, 88

invariant, 292
maximal, 109

Action, 91ff
conjugate element, 101

subgroup, 105
coset, 100
intransitive, 94
natural, 93
permutation, 94
restricted, 98
right multiplication, 93
transitive, 94

Algorithm, division, 284
Euclidean, 284

Alphabet, 21, 56
Alternating (group), 20, 50, 61 (A4), 158
Antisymmetric, 282
Argument, 280

Frattini, 128
Arithmetic, modular, 18
Associative, 2, 11
Automiser, 106
Automorphism, 69

group, 81ff
inner, 82
outer, 82
of a Steiner system, 252

B
Basis Theorem, 147
Belong (∈), 277
Bertrand’s Postulate, 52
Bijection, 280
Binary (relation), 279

tetrahedral (group), 176
Block (of a Steiner system), 251
Bruhat Decomposition Theorem, 55
Burnside, W. 27, 74, 130, 220

Normal Complement Theorem, 130
prqs -theorem, 231, 239

C
Cancellation, 15
Canonical (rational form), 262
Carbon60, 23
Cardano, G. 243
Cardinality, 16, 280
Cartesian (product), 278
Cauchy, A. 42, 114

Theorem, 114
Cayley, A. 1, 42, 48, 72

number, 119
Theorem, 42, 72

Central, 109
series, 210

Centraliser, 101ff, 104, 108
Centre, 32, 87, 102

higher, 210
Centreless, 32
CFSG, 1
Characteristic (of a field), 254

subgroup, 30, 89
Characteristically simple, 161
Chief series, 207
Chord–tangent process, 22

H.E. Rose, A Course on Finite Groups,
Universitext,
DOI 10.1007/978-1-84882-889-6, © Springer-Verlag London Limited 2009

305

http://dx.doi.org/10.1007/978-1-84882-889-6


306 Index

Class Equations, 103
equivalence, 279
number 103

Closure, 2, 11
Cocycle Identity, 198
Codomain, 280
Cohomology theory, 187

second group, 197
Collection, 277
Combinatorial group theory, 55
Commutative, 12
Commutator, 37

identities, 37
subgroup, 37

Companion matrix, 262
Complement (set), 278

Frobenius, i
subgroup, 151

p-, 239
Composite, 285
Composition factor, 188

(of maps), 281
series, 188, 190

Concatenation, 21, 56
reduced, 56

Congruence, 18, 285
Conjugacy class, 30, 102

action, 102, 105
Conjugate element, 30

subgroup, 38, 105
Coprime, 285
Core, 39, 100
Correspondence Theorem, 78
Coset (left and right), 27

action, 100
double, 40
enlargement, 87
enumeration, 58
multiplication, product, 73

Coxeter group, 64, 269
Cycle (permutation), 44

of length k, 44
Cyclic, 26

extension, 196, 203ff
group, 58, 80

D
Degree pattern, 293
Dekekind, R. 161

Modular Law, 38
De Morgan’s Law, 282
Derived length, 234

series, 234
subgroup, 37, 85

Descartes, R. 243, 278
Dicyclic (group), 59

generalised, 205
Dihedral (group), 4, 58, 64
Dining Club, 270
Direct product, 139, 140

external, 140
internal, 140, 141

Disjoint (sets), 278
Divide, 284
Division algebra, 119

algorithm, 284
Domain, 280
Double cosets, 40
Dyck, W. von, 55

E
Element, 277

neutral, 2, 4, 12
Elementary Abelian group, 27, 88, 162
Empty set, 277

word, 21, 56
Endomorphism, 69
Equation, Class, 103
Equality (function), 280

(group), 16
(set), 277

Equivalence class, 279
relation, 279

Equivalent (series), 191
Euclid, 284, 285
Euclidean Algorithm, 284
Euler’s function, 288

Theorem, 288
Even (permutation), 47ff
Exceptional group, 177ff
Exponent (of a group), 26, 291

(rules), 16
Extension, 151, 196,

cyclic, 196, 203ff
problem, 196ff
split, 151

External (direct product), 140
(semi-direct product), 151

Extra-special (group), 132

F
Factor (of a direct product), 140

group, 72ff
pair, 197, 198
(of a series), 188

Factorisable (group), 152
Factorisation, unique, 285
Fano plane, 253
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Feit, W. 231
Fermat, P. 286

theorem, 286
Ferrari, L. 243
del Ferro, S. 243
Field, finite, 254

Galois, 53
splitting, 230

Finite field, 254
geometry, 253

Fitting, H. 221
subgroup, 222

Fixed set, 98
Fontana (Tartaglia), N. 243
Frattini, G. 217

Argument, 128
subgroup, 217ff

Free (group), 21, 57
Friendly giant, 20
Frobenius complement, i

group, 62, 131, 184, 241
Fully invariant subgroup, 30
Function, 279

n-variable, 280
Fundamental theorem of Abelian groups, 146ff

G
Galois, È. 1, 29, 30, 229, 242, 246, 261, 295

field, 53, 254
Gauss, C.F. 18, 28, 83, 285, 287
General linear group, 13, 19, 53
Generalised associativity law, 34

dicyclic group, 205
Fitting subgroup, 223

Generate (a group), 13, 25
Generating set, 13, 25
Generator, 21, 26, 58
Greatest common divisor (GCD), 284
Group, 12
Group attributes

automorphism, 81ff
cyclic Sylow subgroups, 131
factor, 72ff
free, 57
fundamental (of a topological space), 23
Hamiltonian, 161
maximal normal, 189
nilpotent, 129, 144, 210, 212
of odd order, 231
order 8, 118
order 12, 156
outer automorphism, 82, 250
quotient, 72
perfect, 86

presentation, 41, 55ff
product, 18, 140ff
simple, 33
soluble, 5, 230ff
supersoluble, 227

Group examples
alternating, 20, 50, 158
Chevalley, 249
classical, 249
Coxeter, 64
cyclic, 58, 80
dicyclic, 59
dihedral, 4, 20, 58, 159
elementary Abelian, 27, 88
Exceptional, 177ff
extra-special, 132
Frobenius, 62, 130, 184, 241
Galois, 213
general linear, 13, 19, 52

unitary, 265
generalised dicyclic, 205
Hessian, 265
infinite cyclic, 21, 58
Janko, 267
Klein, 19
linear, 52, 249, 254ff
Mathieu, 250, 264ff
metacyclic, 62, 130, 184, 241
neutral, 13
octahedral, 171
projective general linear, 170

special linear, 255
quaternion, 59, 119, 159
second cohomology, 197
semi-dihedral, 131
special linear, 19, 52, 172

unitary, 265
sporadic, 249, 267
Suzuki, i, 223
symmetric, 13, 49, 165
tetrahedral (A4), 61

binary, 176
Tits, 223
unitary, 265

G-set, 92

H
Hall, P. 1, 236

π -subgroups, 76, 236, 246, 247
–Witt Identity, 37

Hamilton, W. 119
Hamiltonion (group), 119, 161, 292
Higher centre, 210

commutator subgroup, 210
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Hölder, O. 131, 190, 196
Holomorph, 162
Homomorphism, 67ff

equation, 67
natural, 76

Hypercentre, 211

I
Idempotent, 14
Identity (of a group), 12

Cocycle, 198
Hall–Witt, 37
map, 281

Image, 280
Indecomposable, 143
Index (of subgroup), 29
Infinite (cyclic group), 58
Injective, 280
Internal (direct product), 141

(semi-direct product), 151
Intersection, 278
Intransitive (action), 94
Invariant series, 188

Abelian, 292
Inverse, 2

of a bijection, 281
Involution, 4, 27, 39, 113
Isometry, 34
Isomorphism, isomorphic, 17, 67ff

class, 17
of a Steiner system, 252
Theorems, 75ff

Iwasawa’s Lemma, 7, 92, 257

J
Janko, Z. 267
Join (of subgroups), 31
Jordan, C. 29, 69, 190

–Hölder Theorem, 190ff

K
k-cycle, 43
Kernel, 30, 71ff
Kirkman, T.P. 251
Klein (group), 19
k-transitive, 94, 268

L
Lagrange, J.-L. 1, 29

reverse, 101
Theorem, 30

Least common multiple (LCM), 284

Left coset, 27
inverse, 13
neutral element, 13

Length, of a cycle, 43, 44
of a series, 188
derived, 234

Letter, 56
Linear group, 52, 254

order, 282
List, 56
Lower central series, 211

M
Map, mapping, 279

identity, 281
natural, 67
structure-preserving, 67

Mathieu, É.L. 268
group, 20, 250, 268

Matrix, non-singular, 52
permutation, 62
scalar, 256
upper triangular, 54

Maximal, Abelian, 109
normal subgroup, 189
subgroup, 24

McKay, J. 114
Member, membership, 277
Metacyclic (group), 62, 131, 184
Minimal, normal subgroup, 235

simple group, 264
Modulus, modulo, 18, 285

arithmetic, 18
Monster, 20
Morphism, 67
Multiplication, 13

coset, 73
scalar, 93
table, 36

Multiplicative, 286

N
n-argument, 280
Natural action, 93

homomorphism, 76
map, 67

N/C-theorem, 106
Neutral element, 2, 4, 12

group, 13
subgroup, 24

Nilpotency class, 210, 212
Nilpotent, 129, 144, 210ff

with class r , 212
Noether, E. 74
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Non-generator, 217
Normal (subgroup), 30

closure, 39
conditions, 30, 71
minimal, 235
properties, 36
series, 188

Normaliser, 105, 109
Number, Cayley, 119

class, 103
n-variable, 280

O
Octahedral (group), 170
Octonion, 119
Odd (permutation), 47ff
One-to-one, 280

correspondence, 280
Onto, 280
Operation, 11, 13, 281
Orbit, 94ff

compared with a cycle, 94
of an element, 94

Order of an element, 26
of a group, 16
function, 35
modulo an integer, 287
partial, 282

Ordered set, 278
Outer, automorphism, 82

group, 82, 250

P
Partial order, 282

system, 12
Partition, 151
p-complement, 239
Perfect (group), 86
Permutation, 12, 42ff

action, 94
even and odd, 44, 47ff, 62
group, 48ff
matrix, 62
product, 42
representation, 97

p-group, 114ff
Poincaré, H. 23

Theorem, 38
Preimage, 280
Presentation, 58

of Sn, 64
p-radical, π -radical, 86, 133, 222
Primitive root, 287
Prime, prime number, 285

Product, 13
cartesian, 278
coset, 73
direct, 139ff
group, 19
of permutations, 42
semi-direct, 151ff
wreath, 156

Projection, 283
Projective, General Linear Group, 170

Special Linear Group, 255
Unitary Group, 265

Proper, refinement, 188
series, 188
subgroup, 24
subset, 277

Q
Quaternion, 119

group, 59, 119, 159
Quotient (group), 73

R
Radical, p-, 86, 222, 237

(type of root), 229
Range, 280
Reduced word, 21, 56

concatenation, 56
Refinement (of a series), 188
Reflexive (order), 282

(relation), 279
Regular, 60
Relation, 21, 57, 58, 279

equivalence, 279
Relator, 58
Representation, 4, 9, 41ff

permutation, 97
Residue, 285
Restricted, action, 98
Restriction (of a function), 70
Reverse Lagrange, 101
Right coset, 27

multiplication (action), 93
Root, primitive, 287
Russell, B. 41

S
Scalar matrix, 256

multiplication, 93
Schmidt, O. 246
Schreier, O. 82, 193

Conjecture, 82
Refinement Theorem, 195
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Schur, I. 187
multiplication, 250

Section, 197
Self-normalising, 106
Semi-dihedral (group), 131
Semidirect (product), 151ff

internal, 151
external, 153

Semigroup, 11
Semi-regular, 60
Semi-simple, 196
Series, 188ff

central, 210
chief, 207
composition, 188ff
derived, 234
equivalent, 191
invariant, 188
lower central, 211
normal, 188
soluble, 230
subnormal, 188
upper central, 211

Set, 277
fixed, 98
generating 13, 25
ordered, 278
underlying, 13

Sign (of a permutation), 49
Simple (group), 33

characteristically, 161
Single-valued, 279
Size, 16, 280
Sockel, 177, 293
Solubility conditions, 241ff
Soluble (group), 5, 116, 230

series, 230
Solvable, 230
Special Linear Group, 53, 172
Sphere packing, 20
Split (extension), 152, 229
Splitting field, 230
Sporadic (group) 249
Stabiliser, 95ff
Steiner, J. 251

system 250ff
automorphism, 252
isomorphism, 252

Structure-preserving map, 67
Subgroup, 24

characteristic, 31, 89
condition, 24, 25
conjugate, 38, 105

derived (commutator), 37
higher, 210

Frattini, 217
Fitting, 222

generalised, 223
fully invariant, 31
identity, 24
Hall, 236, 247
lattice, 32, 169, 175, 180
maximal, 24
minimal normal, 235
n-derived, 234
neutral, 24
normal, 30
proper, 24
subnormal, 206
Sylow, 122
trivial, 24
unit, 24

Subnormal (series), 188
subgroup 206, 224

Subset, 277
Supersoluble (group), 227
Surjective, 280
Suzuki, M, i, 52

group i, 223
Sylow, L. 120

p-subgroup, 81, 122
subgroup, 1, 120ff

properties, 133, 134
system, 241
theorems, 120ff

Sylow 1, . . ., Sylow 5, 125
Symbol, 56
Symmetric, 279

(group), 13, 48, 165
difference, 282

Symmetry, 3
of a tetrahedron, 61
science of, 42

T
Tarski Monster, 132
Term (of a series), 188
Ternary (relation), 279
Tetrahedron, 61
Theorem, Basis (of Abelian Groups), 147

Brahut Decomposition, 54
Burnside’s Normal Complement, i, 130

prqs -, i, 231, 242, 245
Cauchy, 114
Cayley, 72
Correspondence, 77ff
Euler, 286
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Fermat, 35, 286
Fitting, 221
Freshman’s, 79
Fundamental, of Abelian Groups, 146ff, 162
Isomorphism, First, 75

Second, 77
Third, 79

Jordan–Hölder, i, 190ff
Lagrange, 27, 29, 30
N/C, 106
Orbit-stabiliser, 95
Poincaré, 38
Schreier Refinement, 195
Schur–Zassenhaus, i, 187
Sylow, i, 120ff
Zassenhaus, 193

Thompson, J. 231, 242, 246
Three Subgroup Lemma, 225
Tits group, 223
Total (order), 282
Transfer, 68
Transformation, 279
Transitive, 279

action, 94
order, 282

Transposition (2-cycle), 44
Transvection, 55, 255
Trivial (homomorphism), 69

U
Underlying set, 13
Unimodular (matrix), 147
Union (of sets), 278
Unipotent (matrix), 63
Unique factorisation, 285
Unitary group, 265

matrix, 265
Unordered (set), 278
Upper central series, 211

triangular matrix, 19, 54

V
Variable, 280
Viergruppe (4-group), 19

W
Wedderburn, J.H.M. 143
Well-defined, 2, 11, (coset) 73
Well-order, 282
Wielandt, H. 119
Word, 21, 56
Wreath (product), 156

Z
Zassenhaus, H. 130, 187, 193

Lemma, 193
Schur (theorem), 187

Zero, 12
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