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Preface to Second Edition

Like the first edition this book is intended as a guide to data analysis with
the R system for statistical computing. New chapters on graphical displays,
generalised additive models and simultaneous inference have been added to
this second edition and a section on generalised linear mixed models completes
the chapter that discusses the analysis of longitudinal data where the response
variable does not have a normal distribution. In addition, new examples and
additional exercises have been added to several chapters. We have also taken
the opportunity to correct a number of errors that were present in the first
edition. Most of these errors were kindly pointed out to us by a variety of peo-
ple to whom we are very grateful, especially Guido Schwarzer, Mike Cheung,
Tobias Verbeke, Yihui Xie, Lothar Häberle, and Radoslav Harman.

We learnt that many instructors use our book successfully for introductory
courses in applied statistics. We have had the pleasure to give some courses
based on the first edition of the book ourselves and we are happy to share
slides covering many sections of particular chapters with our readers. LATEX
sources and PDF versions of slides covering several chapters are available from
the second author upon request.

A new version of the HSAUR package, now called HSAUR2 for obvious
reasons, is available from CRAN. Basically the package vignettes have been
updated to cover the new and modified material as well. Otherwise, the tech-
nical infrastructure remains as described in the preface to the first edition,
with two small exceptions: names of R add-on packages are now printed in
bold font and we refrain from showing significance stars in model summaries.

Lastly we would like to thank Thomas Kneib and Achim Zeileis for com-
menting on the newly added material and again the CRC Press staff, in par-
ticular Rob Calver, for their support during the preparation of this second
edition.

Brian S. Everitt and Torsten Hothorn

London and München, April 2009
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Preface to First Edition

This book is intended as a guide to data analysis with the R system for sta-
tistical computing. R is an environment incorporating an implementation of
the S programming language, which is powerful and flexible and has excellent
graphical facilities (R Development Core Team, 2009b). In the Handbook we
aim to give relatively brief and straightforward descriptions of how to conduct
a range of statistical analyses using R. Each chapter deals with the analy-
sis appropriate for one or several data sets. A brief account of the relevant
statistical background is included in each chapter along with appropriate ref-
erences, but our prime focus is on how to use R and how to interpret results.
We hope the book will provide students and researchers in many disciplines
with a self-contained means of using R to analyse their data.

R is an open-source project developed by dozens of volunteers for more than
ten years now and is available from the Internet under the General Public Li-
cence. R has become the lingua franca of statistical computing. Increasingly,
implementations of new statistical methodology first appear as R add-on pack-
ages. In some communities, such as in bioinformatics, R already is the primary
workhorse for statistical analyses. Because the sources of the R system are open
and available to everyone without restrictions and because of its powerful lan-
guage and graphical capabilities, R has started to become the main computing
engine for reproducible statistical research (Leisch, 2002a,b, 2003, Leisch and
Rossini, 2003, Gentleman, 2005). For a reproducible piece of research, the orig-
inal observations, all data preprocessing steps, the statistical analysis as well
as the scientific report form a unity and all need to be available for inspection,
reproduction and modification by the readers.

Reproducibility is a natural requirement for textbooks such as the Handbook

of Statistical Analyses Using R and therefore this book is fully reproducible
using an R version greater or equal to 2.2.1. All analyses and results, including
figures and tables, can be reproduced by the reader without having to retype
a single line of R code. The data sets presented in this book are collected
in a dedicated add-on package called HSAUR accompanying this book. The
package can be installed from the Comprehensive R Archive Network (CRAN)
via

R> install.packages("HSAUR")

and its functionality is attached by

R> library("HSAUR")

The relevant parts of each chapter are available as a vignette, basically a

© 2010 by Taylor and Francis Group, LLC



document including both the R sources and the rendered output of every
analysis contained in the book. For example, the first chapter can be inspected
by

R> vignette("Ch_introduction_to_R", package = "HSAUR")

and the R sources are available for reproducing our analyses by

R> edit(vignette("Ch_introduction_to_R", package = "HSAUR"))

An overview on all chapter vignettes included in the package can be obtained
from

R> vignette(package = "HSAUR")

We welcome comments on the R package HSAUR, and where we think these
add to or improve our analysis of a data set we will incorporate them into the
package and, hopefully at a later stage, into a revised or second edition of the
book.

Plots and tables of results obtained from R are all labelled as ‘Figures’ in
the text. For the graphical material, the corresponding figure also contains
the ‘essence’ of the R code used to produce the figure, although this code may
differ a little from that given in the HSAUR package, since the latter may
include some features, for example thicker line widths, designed to make a
basic plot more suitable for publication.

We would like to thank the R Development Core Team for the R system, and
authors of contributed add-on packages, particularly Uwe Ligges and Vince
Carey for helpful advice on scatterplot3d and gee. Kurt Hornik, Ludwig A.
Hothorn, Fritz Leisch and Rafael Weißbach provided good advice with some
statistical and technical problems. We are also very grateful to Achim Zeileis
for reading the entire manuscript, pointing out inconsistencies or even bugs
and for making many suggestions which have led to improvements. Lastly we
would like to thank the CRC Press staff, in particular Rob Calver, for their
support during the preparation of the book. Any errors in the book are, of
course, the joint responsibility of the two authors.

Brian S. Everitt and Torsten Hothorn

London and Erlangen, December 2005
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CHAPTER 1

An Introduction to R

1.1 What is R?

The R system for statistical computing is an environment for data analysis and
graphics. The root of R is the S language, developed by John Chambers and
colleagues (Becker et al., 1988, Chambers and Hastie, 1992, Chambers, 1998)
at Bell Laboratories (formerly AT&T, now owned by Lucent Technologies)
starting in the 1960ies. The S language was designed and developed as a
programming language for data analysis tasks but in fact it is a full-featured
programming language in its current implementations.

The development of the R system for statistical computing is heavily influ-
enced by the open source idea: The base distribution of R and a large number
of user contributed extensions are available under the terms of the Free Soft-
ware Foundation’s GNU General Public License in source code form. This
licence has two major implications for the data analyst working with R. The
complete source code is available and thus the practitioner can investigate the
details of the implementation of a special method, can make changes and can
distribute modifications to colleagues. As a side-effect, the R system for statis-
tical computing is available to everyone. All scientists, including, in particular,
those working in developing countries, now have access to state-of-the-art tools
for statistical data analysis without additional costs. With the help of the R

system for statistical computing, research really becomes reproducible when
both the data and the results of all data analysis steps reported in a paper are
available to the readers through an R transcript file. R is most widely used for
teaching undergraduate and graduate statistics classes at universities all over
the world because students can freely use the statistical computing tools.

The base distribution of R is maintained by a small group of statisticians,
the R Development Core Team. A huge amount of additional functionality is
implemented in add-on packages authored and maintained by a large group of
volunteers. The main source of information about the R system is the world
wide web with the official home page of the R project being

http://www.R-project.org

All resources are available from this page: the R system itself, a collection of
add-on packages, manuals, documentation and more.

The intention of this chapter is to give a rather informal introduction to
basic concepts and data manipulation techniques for the R novice. Instead
of a rigid treatment of the technical background, the most common tasks

1
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INSTALLING R 3

One can change the appearance of the prompt by

> options(prompt = "R> ")

and we will use the prompt R> for the display of the code examples throughout
this book. A + sign at the very beginning of a line indicates a continuing
command after a newline.

Essentially, the R system evaluates commands typed on the R prompt and
returns the results of the computations. The end of a command is indicated
by the return key. Virtually all introductory texts on R start with an example
using R as a pocket calculator, and so do we:

R> x <- sqrt(25) + 2

This simple statement asks the R interpreter to calculate
√

25 and then to add
2. The result of the operation is assigned to an R object with variable name x.
The assignment operator <- binds the value of its right hand side to a variable
name on the left hand side. The value of the object x can be inspected simply
by typing

R> x

[1] 7

which, implicitly, calls the print method:

R> print(x)

[1] 7

1.2.2 Packages

The base distribution already comes with some high-priority add-on packages,
namely

mgcv KernSmooth MASS base

boot class cluster codetools

datasets foreign grDevices graphics

grid lattice methods nlme

nnet rcompgen rpart spatial

splines stats stats4 survival

tcltk tools utils

Some of the packages listed here implement standard statistical functionality,
for example linear models, classical tests, a huge collection of high-level plot-
ting functions or tools for survival analysis; many of these will be described
and used in later chapters. Others provide basic infrastructure, for example
for graphic systems, code analysis tools, graphical user-interfaces or other util-
ities.

Packages not included in the base distribution can be installed directly
from the R prompt. At the time of writing this chapter, 1756 user-contributed
packages covering almost all fields of statistical methodology were available.
Certain so-called ‘task views’ for special topics, such as statistics in the social
sciences, environmetrics, robust statistics etc., describe important and helpful
packages and are available from
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http://CRAN.R-project.org/web/views/

Given that an Internet connection is available, a package is installed by
supplying the name of the package to the function install.packages. If,
for example, add-on functionality for robust estimation of covariance matrices
via sandwich estimators is required (for example in Chapter 13), the sandwich

package (Zeileis, 2004) can be downloaded and installed via

R> install.packages("sandwich")

The package functionality is available after attaching the package by

R> library("sandwich")

A comprehensive list of available packages can be obtained from

http://CRAN.R-project.org/web/packages/

Note that on Windows operating systems, precompiled versions of packages
are downloaded and installed. In contrast, packages are compiled locally before
they are installed on Unix systems.

1.3 Help and Documentation

Roughly, three different forms of documentation for the R system for statis-
tical computing may be distinguished: online help that comes with the base
distribution or packages, electronic manuals and publications work in the form
of books etc.

The help system is a collection of manual pages describing each user-visible
function and data set that comes with R. A manual page is shown in a pager
or web browser when the name of the function we would like to get help for
is supplied to the help function

R> help("mean")

or, for short,

R> ?mean

Each manual page consists of a general description, the argument list of the
documented function with a description of each single argument, information
about the return value of the function and, optionally, references, cross-links
and, in most cases, executable examples. The function help.search is helpful
for searching within manual pages. An overview on documented topics in an
add-on package is given, for example for the sandwich package, by

R> help(package = "sandwich")

Often a package comes along with an additional document describing the pack-
age functionality and giving examples. Such a document is called a vignette
(Leisch, 2003, Gentleman, 2005). For example, the sandwich package vignette
is opened using

R> vignette("sandwich", package = "sandwich")

More extensive documentation is available electronically from the collection
of manuals at
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http://CRAN.R-project.org/manuals.html

For the beginner, at least the first and the second document of the following
four manuals (R Development Core Team, 2009a,c,d,e) are mandatory:

An Introduction to R: A more formal introduction to data analysis with
R than this chapter.

R Data Import/Export: A very useful description of how to read and write
various external data formats.

R Installation and Administration: Hints for installing R on special plat-
forms.

Writing R Extensions: The authoritative source on how to write R pro-
grams and packages.

Both printed and online publications are available, the most important ones
are Modern Applied Statistics with S (Venables and Ripley, 2002), Introductory
Statistics with R (Dalgaard, 2002), R Graphics (Murrell, 2005) and the R

Newsletter, freely available from

http://CRAN.R-project.org/doc/Rnews/

In case the electronically available documentation and the answers to fre-
quently asked questions (FAQ), available from

http://CRAN.R-project.org/faqs.html

have been consulted but a problem or question remains unsolved, the r-help

email list is the right place to get answers to well-thought-out questions. It is
helpful to read the posting guide

http://www.R-project.org/posting-guide.html

before starting to ask.

1.4 Data Objects in R

The data handling and manipulation techniques explained in this chapter will
be illustrated by means of a data set of 2000 world leading companies, the
Forbes 2000 list for the year 2004 collected by Forbes Magazine. This list is
originally available from

http://www.forbes.com

and, as an R data object, it is part of the HSAUR2 package (Source: From
Forbes.com, New York, New York, 2004. With permission.). In a first step, we
make the data available for computations within R. The data function searches
for data objects of the specified name ("Forbes2000") in the package specified
via the package argument and, if the search was successful, attaches the data
object to the global environment:

R> data("Forbes2000", package = "HSAUR2")

R> ls()

[1] "x" "Forbes2000"

© 2010 by Taylor and Francis Group, LLC

http://www.R-project.org
http://www.forbes.com
http://CRAN.R-project.org
http://CRAN.R-project.org
http://CRAN.R-project.org


6 AN INTRODUCTION TO R

The output of the ls function lists the names of all objects currently stored in
the global environment, and, as the result of the previous command, a variable
named Forbes2000 is available for further manipulation. The variable x arises
from the pocket calculator example in Subsection 1.2.1.

As one can imagine, printing a list of 2000 companies via

R> print(Forbes2000)

rank name country category sales

1 1 Citigroup United States Banking 94.71

2 2 General Electric United States Conglomerates 134.19

3 3 American Intl Group United States Insurance 76.66

profits assets marketvalue

1 17.85 1264.03 255.30

2 15.59 626.93 328.54

3 6.46 647.66 194.87

...

will not be particularly helpful in gathering some initial information about
the data; it is more useful to look at a description of their structure found by
using the following command

R> str(Forbes2000)

'data.frame': 2000 obs. of 8 variables:

$ rank : int 1 2 3 4 5 ...

$ name : chr "Citigroup" "General Electric" ...

$ country : Factor w/ 61 levels "Africa","Australia",...

$ category : Factor w/ 27 levels "Aerospace & defense",..

$ sales : num 94.7 134.2 ...

$ profits : num 17.9 15.6 ...

$ assets : num 1264 627 ...

$ marketvalue: num 255 329 ...

The output of the str function tells us that Forbes2000 is an object of class
data.frame, the most important data structure for handling tabular statistical
data in R. As expected, information about 2000 observations, i.e., companies,
are stored in this object. For each observation, the following eight variables
are available:

rank: the ranking of the company,

name: the name of the company,

country: the country the company is situated in,

category: a category describing the products the company produces,

sales: the amount of sales of the company in billion US dollars,

profits: the profit of the company in billion US dollars,

assets: the assets of the company in billion US dollars,

marketvalue: the market value of the company in billion US dollars.

A similar but more detailed description is available from the help page for the
Forbes2000 object:
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R> help("Forbes2000")

or

R> ?Forbes2000

All information provided by str can be obtained by specialised functions as
well and we will now have a closer look at the most important of these.

The R language is an object-oriented programming language, so every object
is an instance of a class. The name of the class of an object can be determined
by

R> class(Forbes2000)

[1] "data.frame"

Objects of class data.frame represent data the traditional table-oriented way.
Each row is associated with one single observation and each column corre-
sponds to one variable. The dimensions of such a table can be extracted using
the dim function

R> dim(Forbes2000)

[1] 2000 8

Alternatively, the numbers of rows and columns can be found using

R> nrow(Forbes2000)

[1] 2000

R> ncol(Forbes2000)

[1] 8

The results of both statements show that Forbes2000 has 2000 rows, i.e.,
observations, the companies in our case, with eight variables describing the
observations. The variable names are accessible from

R> names(Forbes2000)

[1] "rank" "name" "country" "category"

[5] "sales" "profits" "assets" "marketvalue"

The values of single variables can be extracted from the Forbes2000 object
by their names, for example the ranking of the companies

R> class(Forbes2000[,"rank"])

[1] "integer"

is stored as an integer variable. Brackets [] always indicate a subset of a larger
object, in our case a single variable extracted from the whole table. Because
data.frames have two dimensions, observations and variables, the comma is
required in order to specify that we want a subset of the second dimension,
i.e., the variables. The rankings for all 2000 companies are represented in a
vector structure the length of which is given by

R> length(Forbes2000[,"rank"])

[1] 2000

© 2010 by Taylor and Francis Group, LLC



8 AN INTRODUCTION TO R

A vector is the elementary structure for data handling in R and is a set of
simple elements, all being objects of the same class. For example, a simple
vector of the numbers one to three can be constructed by one of the following
commands

R> 1:3

[1] 1 2 3

R> c(1,2,3)

[1] 1 2 3

R> seq(from = 1, to = 3, by = 1)

[1] 1 2 3

The unique names of all 2000 companies are stored in a character vector

R> class(Forbes2000[,"name"])

[1] "character"

R> length(Forbes2000[,"name"])

[1] 2000

and the first element of this vector is

R> Forbes2000[,"name"][1]

[1] "Citigroup"

Because the companies are ranked, Citigroup is the world’s largest company
according to the Forbes 2000 list. Further details on vectors and subsetting
are given in Section 1.6.

Nominal measurements are represented by factor variables in R, such as the
category of the company’s business segment

R> class(Forbes2000[,"category"])

[1] "factor"

Objects of class factor and character basically differ in the way their values
are stored internally. Each element of a vector of class character is stored as a
character variable whereas an integer variable indicating the level of a factor
is saved for factor objects. In our case, there are

R> nlevels(Forbes2000[,"category"])

[1] 27

different levels, i.e., business categories, which can be extracted by

R> levels(Forbes2000[,"category"])

[1] "Aerospace & defense"

[2] "Banking"

[3] "Business services & supplies"

...
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As a simple summary statistic, the frequencies of the levels of such a factor
variable can be found from

R> table(Forbes2000[,"category"])

Aerospace & defense Banking

19 313

Business services & supplies

70

...

The sales, assets, profits and market value variables are of type numeric,
the natural data type for continuous or discrete measurements, for example

R> class(Forbes2000[,"sales"])

[1] "numeric"

and simple summary statistics such as the mean, median and range can be
found from

R> median(Forbes2000[,"sales"])

[1] 4.365

R> mean(Forbes2000[,"sales"])

[1] 9.69701

R> range(Forbes2000[,"sales"])

[1] 0.01 256.33

The summary method can be applied to a numeric vector to give a set of useful
summary statistics, namely the minimum, maximum, mean, median and the
25% and 75% quartiles; for example

R> summary(Forbes2000[,"sales"])

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.010 2.018 4.365 9.697 9.548 256.300

1.5 Data Import and Export

In the previous section, the data from the Forbes 2000 list of the world’s largest
companies were loaded into R from the HSAUR2 package but we will now ex-
plore practically more relevant ways to import data into the R system. The
most frequent data formats the data analyst is confronted with are comma sep-
arated files, Excel spreadsheets, files in SPSS format and a variety of SQL data
base engines. Querying data bases is a nontrivial task and requires additional
knowledge about querying languages, and we therefore refer to the R Data
Import/Export manual – see Section 1.3. We assume that a comma separated
file containing the Forbes 2000 list is available as Forbes2000.csv (such a file
is part of the HSAUR2 source package in directory HSAUR2/inst/rawdata).
When the fields are separated by commas and each row begins with a name
(a text format typically created by Excel), we can read in the data as follows
using the read.table function
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R> csvForbes2000 <- read.table("Forbes2000.csv",

+ header = TRUE, sep = ",", row.names = 1)

The argument header = TRUE indicates that the entries in the first line of the
text file "Forbes2000.csv" should be interpreted as variable names. Columns
are separated by a comma (sep = ","), users of continental versions of Excel

should take care of the character symbol coding for decimal points (by default
dec = "."). Finally, the first column should be interpreted as row names but
not as a variable (row.names = 1). Alternatively, the function read.csv can
be used to read comma separated files. The function read.table by default
guesses the class of each variable from the specified file. In our case, character
variables are stored as factors

R> class(csvForbes2000[,"name"])

[1] "factor"

which is only suboptimal since the names of the companies are unique. How-
ever, we can supply the types for each variable to the colClasses argument

R> csvForbes2000 <- read.table("Forbes2000.csv",

+ header = TRUE, sep = ",", row.names = 1,

+ colClasses = c("character", "integer", "character",

+ "factor", "factor", "numeric", "numeric", "numeric",

+ "numeric"))

R> class(csvForbes2000[,"name"])

[1] "character"

and check if this object is identical with our previous Forbes 2000 list object

R> all.equal(csvForbes2000, Forbes2000)

[1] TRUE

The argument colClasses expects a character vector of length equal to the
number of columns in the file. Such a vector can be supplied by the c function
that combines the objects given in the parameter list into a vector

R> classes <- c("character", "integer", "character", "factor",

+ "factor", "numeric", "numeric", "numeric", "numeric")

R> length(classes)

[1] 9

R> class(classes)

[1] "character"

An R interface to the open data base connectivity standard (ODBC) is
available in package RODBC and its functionality can be used to access Excel

and Access files directly:

R> library("RODBC")

R> cnct <- odbcConnectExcel("Forbes2000.xls")

R> sqlQuery(cnct, "select * from \"Forbes2000\\$\"")
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The function odbcConnectExcel opens a connection to the specified Excel or
Access file which can be used to send SQL queries to the data base engine and
retrieve the results of the query.

Files in SPSS format are read in a way similar to reading comma separated
files, using the function read.spss from package foreign (which comes with
the base distribution).

Exporting data from R is now rather straightforward. A comma separated
file readable by Excel can be constructed from a data.frame object via

R> write.table(Forbes2000, file = "Forbes2000.csv", sep = ",",

+ col.names = NA)

The function write.csv is one alternative and the functionality implemented
in the RODBC package can be used to write data directly into Excel spread-
sheets as well.

Alternatively, when data should be saved for later processing in R only, R

objects of arbitrary kind can be stored into an external binary file via

R> save(Forbes2000, file = "Forbes2000.rda")

where the extension .rda is standard. We can get the file names of all files
with extension .rda from the working directory

R> list.files(pattern = "\\.rda")

[1] "Forbes2000.rda"

and we can load the contents of the file into R by

R> load("Forbes2000.rda")

1.6 Basic Data Manipulation

The examples shown in the previous section have illustrated the importance of
data.frames for storing and handling tabular data in R. Internally, a data.frame
is a list of vectors of a common length n, the number of rows of the table. Each
of those vectors represents the measurements of one variable and we have seen
that we can access such a variable by its name, for example the names of the
companies

R> companies <- Forbes2000[,"name"]

Of course, the companies vector is of class character and of length 2000. A
subset of the elements of the vector companies can be extracted using the []

subset operator. For example, the largest of the 2000 companies listed in the
Forbes 2000 list is

R> companies[1]

[1] "Citigroup"

and the top three companies can be extracted utilising an integer vector of
the numbers one to three:

R> 1:3
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[1] 1 2 3

R> companies[1:3]

[1] "Citigroup" "General Electric"

[3] "American Intl Group"

In contrast to indexing with positive integers, negative indexing returns all
elements that are not part of the index vector given in brackets. For example,
all companies except those with numbers four to two-thousand, i.e., the top
three companies, are again

R> companies[-(4:2000)]

[1] "Citigroup" "General Electric"

[3] "American Intl Group"

The complete information about the top three companies can be printed in
a similar way. Because data.frames have a concept of rows and columns, we
need to separate the subsets corresponding to rows and columns by a comma.
The statement

R> Forbes2000[1:3, c("name", "sales", "profits", "assets")]

name sales profits assets

1 Citigroup 94.71 17.85 1264.03

2 General Electric 134.19 15.59 626.93

3 American Intl Group 76.66 6.46 647.66

extracts the variables name, sales, profits and assets for the three largest
companies. Alternatively, a single variable can be extracted from a data.frame
by

R> companies <- Forbes2000$name

which is equivalent to the previously shown statement

R> companies <- Forbes2000[,"name"]

We might be interested in extracting the largest companies with respect
to an alternative ordering. The three top selling companies can be computed
along the following lines. First, we need to compute the ordering of the com-
panies’ sales

R> order_sales <- order(Forbes2000$sales)

which returns the indices of the ordered elements of the numeric vector sales.
Consequently the three companies with the lowest sales are

R> companies[order_sales[1:3]]

[1] "Custodia Holding" "Central European Media"

[3] "Minara Resources"

The indices of the three top sellers are the elements 1998, 1999 and 2000 of
the integer vector order_sales

R> Forbes2000[order_sales[c(2000, 1999, 1998)],

+ c("name", "sales", "profits", "assets")]

© 2010 by Taylor and Francis Group, LLC



BASIC DATA MANIPULATION 13

name sales profits assets

10 Wal-Mart Stores 256.33 9.05 104.91

5 BP 232.57 10.27 177.57

4 ExxonMobil 222.88 20.96 166.99

Another way of selecting vector elements is the use of a logical vector being
TRUE when the corresponding element is to be selected and FALSE otherwise.
The companies with assets of more than 1000 billion US dollars are

R> Forbes2000[Forbes2000$assets > 1000,

+ c("name", "sales", "profits", "assets")]

name sales profits assets

1 Citigroup 94.71 17.85 1264.03

9 Fannie Mae 53.13 6.48 1019.17

403 Mizuho Financial 24.40 -20.11 1115.90

where the expression Forbes2000$assets > 1000 indicates a logical vector
of length 2000 with

R> table(Forbes2000$assets > 1000)

FALSE TRUE

1997 3

elements being either FALSE or TRUE. In fact, for some of the companies the
measurement of the profits variable are missing. In R, missing values are
treated by a special symbol, NA, indicating that this measurement is not avail-
able. The observations with profit information missing can be obtained via

R> na_profits <- is.na(Forbes2000$profits)

R> table(na_profits)

na_profits

FALSE TRUE

1995 5

R> Forbes2000[na_profits,

+ c("name", "sales", "profits", "assets")]

name sales profits assets

772 AMP 5.40 NA 42.94

1085 HHG 5.68 NA 51.65

1091 NTL 3.50 NA 10.59

1425 US Airways Group 5.50 NA 8.58

1909 Laidlaw International 4.48 NA 3.98

where the function is.na returns a logical vector being TRUE when the corre-
sponding element of the supplied vector is NA. A more comfortable approach
is available when we want to remove all observations with at least one miss-
ing value from a data.frame object. The function complete.cases takes a
data.frame and returns a logical vector being TRUE when the corresponding
observation does not contain any missing value:

R> table(complete.cases(Forbes2000))
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FALSE TRUE

5 1995

Subsetting data.frames driven by logical expressions may induce a lot of
typing which can be avoided. The subset function takes a data.frame as first
argument and a logical expression as second argument. For example, we can
select a subset of the Forbes 2000 list consisting of all companies situated in
the United Kingdom by

R> UKcomp <- subset(Forbes2000, country == "United Kingdom")

R> dim(UKcomp)

[1] 137 8

i.e., 137 of the 2000 companies are from the UK. Note that it is not neces-
sary to extract the variable country from the data.frame Forbes2000 when
formulating the logical expression with subset.

1.7 Computing with Data

1.7.1 Simple Summary Statistics

Two functions are helpful for getting an overview about R objects: str and
summary, where str is more detailed about data types and summary gives a
collection of sensible summary statistics. For example, applying the summary

method to the Forbes2000 data set,

R> summary(Forbes2000)

results in the following output

rank name country

Min. : 1.0 Length:2000 United States :751

1st Qu.: 500.8 Class :character Japan :316

Median :1000.5 Mode :character United Kingdom:137

Mean :1000.5 Germany : 65

3rd Qu.:1500.2 France : 63

Max. :2000.0 Canada : 56

(Other) :612

category sales

Banking : 313 Min. : 0.010

Diversified financials: 158 1st Qu.: 2.018

Insurance : 112 Median : 4.365

Utilities : 110 Mean : 9.697

Materials : 97 3rd Qu.: 9.547

Oil & gas operations : 90 Max. :256.330

(Other) :1120

profits assets marketvalue

Min. :-25.8300 Min. : 0.270 Min. : 0.02

1st Qu.: 0.0800 1st Qu.: 4.025 1st Qu.: 2.72

Median : 0.2000 Median : 9.345 Median : 5.15

Mean : 0.3811 Mean : 34.042 Mean : 11.88

3rd Qu.: 0.4400 3rd Qu.: 22.793 3rd Qu.: 10.60
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Max. : 20.9600 Max. :1264.030 Max. :328.54

NA's : 5.0000

From this output we can immediately see that most of the companies are
situated in the US and that most of the companies are working in the banking
sector as well as that negative profits, or losses, up to 26 billion US dollars
occur.

Internally, summary is a so-called generic function with methods for a multi-
tude of classes, i.e., summary can be applied to objects of different classes and
will report sensible results. Here, we supply a data.frame object to summary

where it is natural to apply summary to each of the variables in this data.frame.
Because a data.frame is a list with each variable being an element of that list,
the same effect can be achieved by

R> lapply(Forbes2000, summary)

The members of the apply family help to solve recurring tasks for each
element of a data.frame, matrix, list or for each level of a factor. It might be
interesting to compare the profits in each of the 27 categories. To do so, we
first compute the median profit for each category from

R> mprofits <- tapply(Forbes2000$profits,

+ Forbes2000$category, median, na.rm = TRUE)

a command that should be read as follows. For each level of the factor cat-

egory, determine the corresponding elements of the numeric vector profits

and supply them to the median function with additional argument na.rm =

TRUE. The latter one is necessary because profits contains missing values
which would lead to a non-sensible result of the median function

R> median(Forbes2000$profits)

[1] NA

The three categories with highest median profit are computed from the vector
of sorted median profits

R> rev(sort(mprofits))[1:3]

Oil & gas operations Drugs & biotechnology

0.35 0.35

Household & personal products

0.31

where rev rearranges the vector of median profits sorted from smallest to
largest. Of course, we can replace the median function with mean or whatever
is appropriate in the call to tapply. In our situation, mean is not a good choice,
because the distributions of profits or sales are naturally skewed. Simple graph-
ical tools for the inspection of the empirical distributions are introduced later
on and in Chapter 2.

1.7.2 Customising Analyses

In the preceding sections we have done quite complex analyses on our data
using functions available from R. However, the real power of the system comes
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16 AN INTRODUCTION TO R

to light when writing our own functions for our own analysis tasks. Although
R is a full-featured programming language, writing small helper functions for
our daily work is not too complicated. We’ll study two example cases.

At first, we want to add a robust measure of variability to the location
measures computed in the previous subsection. In addition to the median
profit, computed via

R> median(Forbes2000$profits, na.rm = TRUE)

[1] 0.2

we want to compute the inter-quartile range, i.e., the difference between
the 3rd and 1st quartile. Although a quick search in the manual pages (via
help("interquartile")) brings function IQR to our attention, we will ap-
proach this task without making use of this tool, but using function quantile

for computing sample quantiles only.
A function in R is nothing but an object, and all objects are created equal.

Thus, we ‘just’ have to assign a function object to a variable. A function
object consists of an argument list, defining arguments and possibly default
values, and a body defining the computations. The body starts and ends with
braces. Of course, the body is assumed to be valid R code. In most cases we
expect a function to return an object, therefore, the body will contain one or
more return statements the arguments of which define the return values.

Returning to our example, we’ll name our function iqr. The iqr function
should operate on numeric vectors, therefore it should have an argument x.
This numeric vector will be passed on to the quantile function for computing
the sample quartiles. The required difference between the 3rd and 1st quartile
can then be computed using diff. The definition of our function reads as
follows

R> iqr <- function(x) {

+ q <- quantile(x, prob = c(0.25, 0.75), names = FALSE)

+ return(diff(q))

+ }

A simple test on simulated data from a standard normal distribution shows
that our first function actually works, a comparison with the IQR function
shows that the result is correct:

R> xdata <- rnorm(100)

R> iqr(xdata)

[1] 1.495980

R> IQR(xdata)

[1] 1.495980

However, when the numeric vector contains missing values, our function fails
as the following example shows:

R> xdata[1] <- NA

R> iqr(xdata)
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Error in quantile.default(x, prob = c(0.25, 0.75)):

missing values and NaN's not allowed if 'na.rm' is FALSE

In order to make our little function more flexible it would be helpful to
add all arguments of quantile to the argument list of iqr. The copy-and-
paste approach that first comes to mind is likely to lead to inconsistencies
and errors, for example when the argument list of quantile changes. Instead,
the dot argument, a wildcard for any argument, is more appropriate and we
redefine our function accordingly:

R> iqr <- function(x, ...) {

+ q <- quantile(x, prob = c(0.25, 0.75), names = FALSE,

+ ...)

+ return(diff(q))

+ }

R> iqr(xdata, na.rm = TRUE)

[1] 1.503438

R> IQR(xdata, na.rm = TRUE)

[1] 1.503438

Now, we can assess the variability of the profits using our new iqr tool:

R> iqr(Forbes2000$profits, na.rm = TRUE)

[1] 0.36

Since there is no difference between functions that have been written by one of
the R developers and user-created functions, we can compute the inter-quartile
range of profits for each of the business categories by using our iqr function
inside a tapply statement;

R> iqr_profits <- tapply(Forbes2000$profits,

+ Forbes2000$category, iqr, na.rm = TRUE)

and extract the categories with the smallest and greatest variability

R> levels(Forbes2000$category)[which.min(iqr_profits)]

[1] "Hotels restaurants & leisure"

R> levels(Forbes2000$category)[which.max(iqr_profits)]

[1] "Drugs & biotechnology"

We observe less variable profits in tourism enterprises compared with profits
in the pharmaceutical industry.

As other members of the apply family, tapply is very helpful when the same
task is to be done more than one time. Moreover, its use is more convenient
compared to the usage of for loops. For the sake of completeness, we will
compute the category-wise inter-quartile range of the profits using a for loop.

Like a function, a for loop consists of a body, i.e., a chain of R commands
to be executed. In addition, we need a set of values and a variable that iterates
over this set. Here, the set we are interested in is the business categories:
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R> bcat <- Forbes2000$category

R> iqr_profits2 <- numeric(nlevels(bcat))

R> names(iqr_profits2) <- levels(bcat)

R> for (cat in levels(bcat)) {

+ catprofit <- subset(Forbes2000, category == cat)$profit

+ this_iqr <- iqr(catprofit, na.rm = TRUE)

+ iqr_profits2[levels(bcat) == cat] <- this_iqr

+ }

Compared to the usage of tapply, the above code is rather complicated. At
first, we have to set up a vector for storing the results and assign the appro-
priate names to it. Next, inside the body of the for loop, the iqr function has
to be called on the appropriate subset of all companies of the current business
category cat. The corresponding inter-quartile range must then be assigned
to the correct vector element in the result vector. Luckily, such complicated
constructs will be used in only one of the remaining chapters of the book and
are almost always avoidable in practical data analyses.

1.7.3 Simple Graphics

The degree of skewness of a distribution can be investigated by constructing
histograms using the hist function. (More sophisticated alternatives such as
smooth density estimates will be considered in Chapter 8.) For example, the
code for producing Figure 1.1 first divides the plot region into two equally
spaced rows (the layout function) and then plots the histograms of the raw
market values in the upper part using the hist function. The lower part of
the figure depicts the histogram for the log transformed market values which
appear to be more symmetric.

Bivariate relationships of two continuous variables are usually depicted as
scatterplots. In R, regression relationships are specified by so-called model
formulae which, in a simple bivariate case, may look like

R> fm <- marketvalue ~ sales

R> class(fm)

[1] "formula"

with the dependent variable on the left hand side and the independent variable
on the right hand side. The tilde separates left and right hand sides. Such a
model formula can be passed to a model function (for example to the linear
model function as explained in Chapter 6). The plot generic function imple-
ments a formula method as well. Because the distributions of both market
value and sales are skewed we choose to depict their logarithms. A raw scat-
terplot of 2000 data points (Figure 1.2) is rather uninformative due to areas
with very high density. This problem can be avoided by choosing a transparent
color for the dots as shown in Figure 1.3.

If the independent variable is a factor, a boxplot representation is a natural
choice. For four selected countries, the distributions of the logarithms of the
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R> layout(matrix(1:2, nrow = 2))

R> hist(Forbes2000$marketvalue)

R> hist(log(Forbes2000$marketvalue))
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Figure 1.1 Histograms of the market value and the logarithm of the market value

for the companies contained in the Forbes 2000 list.

market value may be visually compared in Figure 1.4. Prior to calling the
plot function on our data, we have to remove empty levels from the country

variable, because otherwise the x-axis would show all and not only the selected
countries. This task is most easily performed by subsetting the corresponding
factor with additional argument drop = TRUE. Here, the width of the boxes
are proportional to the square root of the number of companies for each coun-
try and extremely large or small market values are depicted by single points.
More elaborate graphical methods will be discussed in Chapter 2.
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R> plot(log(marketvalue) ~ log(sales), data = Forbes2000,

+ pch = ".")
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Figure 1.2 Raw scatterplot of the logarithms of market value and sales.

1.8 Organising an Analysis

Although it is possible to perform an analysis typing all commands directly
on the R prompt it is much more comfortable to maintain a separate text file
collecting all steps necessary to perform a certain data analysis task. Such an
R transcript file, for example called analysis.R created with your favourite
text editor, can be sourced into R using the source command

R> source("analysis.R", echo = TRUE)

When all steps of a data analysis, i.e., data preprocessing, transformations,
simple summary statistics and plots, model building and inference as well
as reporting, are collected in such an R transcript file, the analysis can be
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22 AN INTRODUCTION TO R

R> tmp <- subset(Forbes2000,

+ country %in% c("United Kingdom", "Germany",

+ "India", "Turkey"))

R> tmp$country <- tmp$country[,drop = TRUE]

R> plot(log(marketvalue) ~ country, data = tmp,

+ ylab = "log(marketvalue)", varwidth = TRUE)
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Figure 1.4 Boxplots of the logarithms of the market value for four selected coun-

tries, the width of the boxes is proportional to the square roots of the

number of companies.
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examples of these functions and those that produce more interesting graphics
in later chapters.

Exercises

Ex. 1.1 Calculate the median profit for the companies in the US and the
median profit for the companies in the UK, France and Germany.

Ex. 1.2 Find all German companies with negative profit.

Ex. 1.3 To which business category do most of the Bermuda island companies
belong?

Ex. 1.4 For the 50 companies in the Forbes data set with the highest profits,
plot sales against assets (or some suitable transformation of each variable),
labelling each point with the appropriate country name which may need
to be abbreviated (using abbreviate) to avoid making the plot look too
‘messy’.

Ex. 1.5 Find the average value of sales for the companies in each country
in the Forbes data set, and find the number of companies in each country
with profits above 5 billion US dollars.
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CHAPTER 2

Data Analysis Using Graphical
Displays: Malignant Melanoma in the

USA and Chinese Health and
Family Life

2.1 Introduction

Fisher and Belle (1993) report mortality rates due to malignant melanoma
of the skin for white males during the period 1950–1969, for each state on
the US mainland. The data are given in Table 2.1 and include the number of
deaths due to malignant melanoma in the corresponding state, the longitude
and latitude of the geographic centre of each state, and a binary variable
indicating contiguity to an ocean, that is, if the state borders one of the
oceans. Questions of interest about these data include: how do the mortality
rates compare for ocean and non-ocean states? and how are mortality rates
affected by latitude and longitude?

Table 2.1: USmelanoma data. USA mortality rates for white
males due to malignant melanoma.

mortality latitude longitude ocean

Alabama 219 33.0 87.0 yes
Arizona 160 34.5 112.0 no
Arkansas 170 35.0 92.5 no
California 182 37.5 119.5 yes
Colorado 149 39.0 105.5 no
Connecticut 159 41.8 72.8 yes
Delaware 200 39.0 75.5 yes
District of Columbia 177 39.0 77.0 no
Florida 197 28.0 82.0 yes
Georgia 214 33.0 83.5 yes
Idaho 116 44.5 114.0 no
Illinois 124 40.0 89.5 no
Indiana 128 40.2 86.2 no
Iowa 128 42.2 93.8 no
Kansas 166 38.5 98.5 no
Kentucky 147 37.8 85.0 no
Louisiana 190 31.2 91.8 yes

25
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Table 2.1: USmelanoma data (continued).

mortality latitude longitude ocean

Maine 117 45.2 69.0 yes
Maryland 162 39.0 76.5 yes
Massachusetts 143 42.2 71.8 yes
Michigan 117 43.5 84.5 no
Minnesota 116 46.0 94.5 no
Mississippi 207 32.8 90.0 yes
Missouri 131 38.5 92.0 no
Montana 109 47.0 110.5 no
Nebraska 122 41.5 99.5 no
Nevada 191 39.0 117.0 no
New Hampshire 129 43.8 71.5 yes
New Jersey 159 40.2 74.5 yes
New Mexico 141 35.0 106.0 no
New York 152 43.0 75.5 yes
North Carolina 199 35.5 79.5 yes
North Dakota 115 47.5 100.5 no
Ohio 131 40.2 82.8 no
Oklahoma 182 35.5 97.2 no
Oregon 136 44.0 120.5 yes
Pennsylvania 132 40.8 77.8 no
Rhode Island 137 41.8 71.5 yes
South Carolina 178 33.8 81.0 yes
South Dakota 86 44.8 100.0 no
Tennessee 186 36.0 86.2 no
Texas 229 31.5 98.0 yes
Utah 142 39.5 111.5 no
Vermont 153 44.0 72.5 yes
Virginia 166 37.5 78.5 yes
Washington 117 47.5 121.0 yes
West Virginia 136 38.8 80.8 no
Wisconsin 110 44.5 90.2 no
Wyoming 134 43.0 107.5 no

Source: From Fisher, L. D., and Belle, G. V., Biostatistics. A Methodology

for the Health Sciences, John Wiley & Sons, Chichester, UK, 1993. With
permission.

Contemporary China is on the leading edge of a sexual revolution, with
tremendous regional and generational differences that provide unparalleled
natural experiments for analysis of the antecedents and outcomes of sexual
behaviour. The Chinese Health and Family Life Study, conducted 1999–2000
as a collaborative research project of the Universities of Chicago, Beijing, and
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North Carolina, provides a baseline from which to anticipate and track future
changes. Specifically, this study produces a baseline set of results on sexual
behaviour and disease patterns, using a nationally representative probability
sample. The Chinese Health and Family Life Survey sampled 60 villages and
urban neighbourhoods chosen in such a way as to represent the full geographi-
cal and socioeconomic range of contemporary China excluding Hong Kong and
Tibet. Eighty-three individuals were chosen at random for each location from
official registers of adults aged between 20 and 64 years to target a sample of
5000 individuals in total. Here, we restrict our attention to women with cur-
rent male partners for whom no information was missing, leading to a sample
of 1534 women with the following variables (see Table 2.2 for example data
sets):

R_edu: level of education of the responding woman,

R_income: monthly income (in yuan) of the responding woman,

R_health: health status of the responding woman in the last year,

R_happy: how happy was the responding woman in the last year,

A_edu: level of education of the woman’s partner,

A_income: monthly income (in yuan) of the woman’s partner.

In the list above the income variables are continuous and the remaining vari-
ables are categorical with ordered categories. The income variables are based
on (partially) imputed measures. All information, including the partner’s in-
come, are derived from a questionnaire answered by the responding woman
only. Here, we focus on graphical displays for inspecting the relationship of
these health and socioeconomic variables of heterosexual women and their
partners.

2.2 Initial Data Analysis

According to Chambers et al. (1983), “there is no statistical tool that is as
powerful as a well chosen graph”. Certainly, the analysis of most (probably
all) data sets should begin with an initial attempt to understand the general
characteristics of the data by graphing them in some hopefully useful and in-
formative manner. The possible advantages of graphical presentation methods
are summarised by Schmid (1954); they include the following

• In comparison with other types of presentation, well-designed charts are
more effective in creating interest and in appealing to the attention of the
reader.

• Visual relationships as portrayed by charts and graphs are more easily
grasped and more easily remembered.

• The use of charts and graphs saves time, since the essential meaning of
large measures of statistical data can be visualised at a glance.

• Charts and graphs provide a comprehensive picture of a problem that makes
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Table 2.2: CHFLS data. Chinese Health and Family Life Survey.

R_edu R_income R_health R_happy A_edu A_income

2 Senior high school 900 Good Somewhat happy Senior high school 500
3 Senior high school 500 Fair Somewhat happy Senior high school 800
10 Senior high school 800 Good Somewhat happy Junior high school 700
11 Junior high school 300 Fair Somewhat happy Elementary school 700
22 Junior high school 300 Fair Somewhat happy Junior high school 400
23 Senior high school 500 Excellent Somewhat happy Junior college 900
24 Junior high school 0 Not good Very happy Junior high school 300
25 Junior high school 100 Good Not too happy Senior high school 800
26 Junior high school 200 Fair Not too happy Junior college 200
32 Senior high school 400 Good Somewhat happy Senior high school 600
33 Junior high school 300 Not good Not too happy Junior high school 200
35 Junior high school 0 Fair Somewhat happy Junior high school 400
36 Junior high school 200 Good Somewhat happy Junior high school 500
37 Senior high school 300 Excellent Somewhat happy Senior high school 200
38 Junior college 3000 Fair Somewhat happy Junior college 800
39 Junior college 0 Fair Somewhat happy University 500
40 Senior high school 500 Excellent Somewhat happy Senior high school 500
41 Junior high school 0 Not good Not too happy Junior high school 600
55 Senior high school 0 Excellent Somewhat happy Junior high school 0
56 Junior high school 500 Not good Very happy Junior high school 200

57
...

...
...

...
...

...
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for a more complete and better balanced understanding than could be de-
rived from tabular or textual forms of presentation.

• Charts and graphs can bring out hidden facts and relationships and can
stimulate, as well as aid, analytical thinking and investigation.

Graphs are very popular; it has been estimated that between 900 billion (9 ×

1011) and 2 trillion (2 × 1012) images of statistical graphics are printed each
year. Perhaps one of the main reasons for such popularity is that graphical
presentation of data often provides the vehicle for discovering the unexpected;
the human visual system is very powerful in detecting patterns, although the
following caveat from the late Carl Sagan (in his book Contact) should be
kept in mind:

Humans are good at discerning subtle patterns that are really there, but equally
so at imagining them when they are altogether absent.

During the last two decades a wide variety of new methods for displaying data
graphically have been developed; these will hunt for special effects in data,
indicate outliers, identify patterns, diagnose models and generally search for
novel and perhaps unexpected phenomena. Large numbers of graphs may be
required and computers are generally needed to supply them for the same
reasons they are used for numerical analyses, namely that they are fast and
they are accurate.

So, because the machine is doing the work the question is no longer“shall we
plot?” but rather “what shall we plot?” There are many exciting possibilities
including dynamic graphics but graphical exploration of data usually begins,
at least, with some simpler, well-known methods, for example, histograms,
barcharts, boxplots and scatterplots. Each of these will be illustrated in this
chapter along with more complex methods such as spinograms and trellis plots.

2.3 Analysis Using R

2.3.1 Malignant Melanoma

We might begin to examine the malignant melanoma data in Table 2.1 by con-
structing a histogram or boxplot for all the mortality rates in Figure 2.1. The
plot, hist and boxplot functions have already been introduced in Chapter 1
and we want to produce a plot where both techniques are applied at once.
The layout function organises two independent plots on one plotting device,
for example on top of each other. Using this relatively simple technique (more
advanced methods will be introduced later) we have to make sure that the
x-axis is the same in both graphs. This can be done by computing a plausible
range of the data, later to be specified in a plot via the xlim argument:

R> xr <- range(USmelanoma$mortality) * c(0.9, 1.1)

R> xr

[1] 77.4 251.9

Now, plotting both the histogram and the boxplot requires setting up the
plotting device with equal space for two independent plots on top of each other.
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R> layout(matrix(1:2, nrow = 2))

R> par(mar = par("mar") * c(0.8, 1, 1, 1))

R> boxplot(USmelanoma$mortality, ylim = xr, horizontal = TRUE,

+ xlab = "Mortality")

R> hist(USmelanoma$mortality, xlim = xr, xlab = "", main = "",

+ axes = FALSE, ylab = "")

R> axis(1)

100 150 200 250

Mortality

100 150 200 250

Figure 2.1 Histogram (top) and boxplot (bottom) of malignant melanoma mor-
tality rates.

Calling the layout function on a matrix with two cells in two rows, containing
the numbers one and two, leads to such a partitioning. The boxplot function
is called first on the mortality data and then the hist function, where the
range of the x-axis in both plots is defined by (77.4, 251.9). One tiny problem
to solve is the size of the margins; their defaults are too large for such a plot.
As with many other graphical parameters, one can adjust their value for a
specific plot using function par. The R code and the resulting display are
given in Figure 2.1.

Both the histogram and the boxplot in Figure 2.1 indicate a certain skew-
ness of the mortality distribution. Looking at the characteristics of all the
mortality rates is a useful beginning but for these data we might be more
interested in comparing mortality rates for ocean and non-ocean states. So we
might construct two histograms or two boxplots. Such a parallel boxplot, vi-
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R> plot(mortality ~ ocean, data = USmelanoma,

+ xlab = "Contiguity to an ocean", ylab = "Mortality")
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Figure 2.2 Parallel boxplots of malignant melanoma mortality rates by contiguity
to an ocean.

sualising the conditional distribution of a numeric variable in groups as given
by a categorical variable, are easily computed using the boxplot function.
The continuous response variable and the categorical independent variable
are specified via a formula as described in Chapter 1. Figure 2.2 shows such
parallel boxplots, as by default produced the plot function for such data, for
the mortality in ocean and non-ocean states and leads to the impression that
the mortality is increased in east or west coast states compared to the rest of
the country.

Histograms are generally used for two purposes: counting and displaying the
distribution of a variable; according to Wilkinson (1992), “they are effective
for neither”. Histograms can often be misleading for displaying distributions
because of their dependence on the number of classes chosen. An alternative
is to formally estimate the density function of a variable and then plot the
resulting estimate; details of density estimation are given in Chapter 8 but for
the ocean and non-ocean states the two density estimates can be produced and
plotted as shown in Figure 2.3 which supports the impression from Figure 2.2.
For more details on such density estimates we refer to Chapter 8.
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R> dyes <- with(USmelanoma, density(mortality[ocean == "yes"]))

R> dno <- with(USmelanoma, density(mortality[ocean == "no"]))

R> plot(dyes, lty = 1, xlim = xr, main = "", ylim = c(0, 0.018))

R> lines(dno, lty = 2)

R> legend("topleft", lty = 1:2, legend = c("Coastal State",

+ "Land State"), bty = "n")
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Figure 2.3 Estimated densities of malignant melanoma mortality rates by conti-
guity to an ocean.

Now we might move on to look at how mortality rates are related to the
geographic location of a state as represented by the latitude and longitude
of the centre of the state. Here the main graphic will be the scatterplot. The
simple xy scatterplot has been in use since at least the eighteenth century and
has many virtues – indeed according to Tufte (1983):

The relational graphic – in its barest form the scatterplot and its variants – is
the greatest of all graphical designs. It links at least two variables, encouraging
and even imploring the viewer to assess the possible causal relationship between
the plotted variables. It confronts causal theories that x causes y with empirical
evidence as to the actual relationship between x and y.

Let’s begin with simple scatterplots of mortality rate against longitude and
mortality rate against latitude which can be produced by the code preceding
Figure 2.4. Again, the layout function is used for partitioning the plotting
device, now resulting in two side by-side-plots. The argument to layout is
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R> layout(matrix(1:2, ncol = 2))

R> plot(mortality ~ longitude, data = USmelanoma)

R> plot(mortality ~ latitude, data = USmelanoma)
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Figure 2.4 Scatterplot of malignant melanoma mortality rates by geographical
location.

now a matrix with only one row but two columns containing the numbers one
and two. In each cell, the plot function is called for producing a scatterplot
of the variables given in the formula.

Since mortality rate is clearly related only to latitude we can now pro-
duce scatterplots of mortality rate against latitude separately for ocean and
non-ocean states. Instead of producing two displays, one can choose different
plotting symbols for either states. This can be achieved by specifying a vector
of integers or characters to the pch, where the ith element of this vector de-
fines the plot symbol of the ith observation in the data to be plotted. For the
sake of simplicity, we convert the ocean factor to an integer vector containing
the numbers one for land states and two for ocean states. As a consequence,
land states can be identified by the dot symbol and ocean states by triangles.
It is useful to add a legend to such a plot, most conveniently by using the
legend function. This function takes three arguments: a string indicating the
position of the legend in the plot, a character vector of labels to be printed
and the corresponding plotting symbols (referred to by integers). In addition,
the display of a bounding box is anticipated (bty = "n"). The scatterplot in
Figure 2.5 highlights that the mortality is lowest in the northern land states.
Coastal states show a higher mortality than land states at roughly the same
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R> plot(mortality ~ latitude, data = USmelanoma,

+ pch = as.integer(USmelanoma$ocean))

R> legend("topright", legend = c("Land state", "Coast state"),

+ pch = 1:2, bty = "n")
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Figure 2.5 Scatterplot of malignant melanoma mortality rates against latitude.

latitude. The highest mortalities can be observed for the south coastal states
with latitude less than 32◦, say, that is

R> subset(USmelanoma, latitude < 32)

mortality latitude longitude ocean

Florida 197 28.0 82.0 yes

Louisiana 190 31.2 91.8 yes

Texas 229 31.5 98.0 yes

Up to now we have primarily focused on the visualisation of continuous
variables. We now extend our focus to the visualisation of categorical variables.
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R> barplot(xtabs(~ R_happy, data = CHFLS))
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Figure 2.6 Bar chart of happiness.

2.3.2 Chinese Health and Family Life

One part of the questionnaire the Chinese Health and Family Life Survey
focuses on is the self-reported health status. Two questions are interesting for
us. The first one is “Generally speaking, do you consider the condition of your
health to be excellent, good, fair, not good, or poor?”. The second question is
“Generally speaking, in the past twelve months, how happy were you?”. The
distribution of such variables is commonly visualised using barcharts where for
each category the total or relative number of observations is displayed. Such
a barchart can conveniently be produced by applying the barplot function
to a tabulation of the data. The empirical density of the variable R_happy

is computed by the xtabs function for producing (contingency) tables; the
resulting barchart is given in Figure 2.6.

The visualisation of two categorical variables could be done by conditional
barcharts, i.e., barcharts of the first variable within the categories of the sec-
ond variable. An attractive alternative for displaying such two-way tables are
spineplots (Friendly, 1994, Hofmann and Theus, 2005, Chen et al., 2008);
the meaning of the name will become clear when looking at such a plot in
Figure 2.7.

Before constructing such a plot, we produce a two-way table of the health
status and self-reported happiness using the xtabs function:
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R> plot(R_happy ~ R_health, data = CHFLS)
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Figure 2.7 Spineplot of health status and happiness.

R> xtabs(~ R_happy + R_health, data = CHFLS)

R_health

R_happy Poor Not good Fair Good Excellent

Very unhappy 2 7 4 1 0

Not too happy 4 46 67 42 26

Somewhat happy 3 77 350 459 166

Very happy 1 9 40 80 150

A spineplot is a group of rectangles, each representing one cell in the two-
way contingency table. The area of the rectangle is proportional with the
number of observations in the cell. Here, we produce a mosaic plot of health
status and happiness in Figure 2.7.

Consider the right upper cell in Figure 2.7, i.e., the 150 very happy women
with excellent health status. The width of the right-most bar corresponds to
the frequency of women with excellent health status. The length of the top-
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right rectangle corresponds to the conditional frequency of very happy women
given their health status is excellent. Multiplying these two quantities gives
the area of this cell which corresponds to the frequency of women who are both
very happy and enjoy an excellent health status. The conditional frequency
of very happy women increases with increasing health status, whereas the
conditional frequency of very unhappy or not too happy women decreases.

When the association of a categorical and a continuous variable is of interest,
say the monthly income and self-reported happiness, one might use parallel
boxplots to visualise the distribution of the income depending on happiness.
If we were studying self-reported happiness as response and income as inde-
pendent variable, however, this would give a representation of the conditional
distribution of income given happiness, but we are interested in the condi-
tional distribution of happiness given income. One possibility to produce a
more appropriate plot is called spinogram. Here, the continuous x-variable is
categorised first. Within each of these categories, the conditional frequencies
of the response variable are given by stacked barcharts, in a way similar to
spineplots. For happiness depending on log-income (since income is naturally
skewed we use a log-transformation of the income) it seems that the propor-
tion of unhappy and not too happy women decreases with increasing income
whereas the proportion of very happy women stays rather constant. In con-
trast to spinograms, where bins, as in a histogram, are given on the x-axis, a
conditional density plot uses the original x-axis for a display of the conditional
density of the categorical response given the independent variable.

For our last example we return to scatterplots for inspecting the associa-
tion between a woman’s monthly income and the income of her partner. Both
income variables have been computed and partially imputed from other self-
reported variables and are only rough assessments of the real income. More-
over, the data itself is numeric but heavily tied, making it difficult to produce
‘correct’ scatterplots because points will overlap. A relatively easy trick is to
jitter the observation by adding a small random noise to each point in or-
der to avoid overlapping plotting symbols. In addition, we want to study the
relationship between both monthly incomes conditional on the woman’s ed-
ucation. Such conditioning plots are called trellis plots and are implemented
in the package lattice (Sarkar, 2009, 2008). We utilise the xyplot function
from package lattice to produce a scatterplot. The formula reads as already
explained with the exception that a third conditioning variable, R_edu in our
case, is present. For each level of education, a separate scatterplot will be pro-
duced. The plots are directly comparable since the axes remain the same for
all plots.

The plot reveals several interesting issues. Some observations are positioned
on a straight line with slope one, most probably an artifact of missing value
imputation by linear models (as described in the data dictionary, see ?CHFLS).
Four constellations can be identified: both partners have zero income, the
partner has no income, the woman has no income or both partners have a
positive income.
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R> layout(matrix(1:2, ncol = 2))

R> plot(R_happy ~ log(R_income + 1), data = CHFLS)

R> cdplot(R_happy ~ log(R_income + 1), data = CHFLS)
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Figure 2.8 Spinogram (left) and conditional density plot (right) of happiness de-
pending on log-income

For couples where the woman has a university degree, the income of both
partners is relatively high (except for two couples where only the woman has
income). A small number of former junior college students live in relation-
ships where only the man has income, the income of both partners seems only
slightly positively correlated for the remaining couples. For lower levels of edu-
cation, all four constellations are present. The frequency of couples where only
the man has some income seems larger than the other way around. Ignoring
the observations on the straight line, there is almost no association between
the income of both partners.

2.4 Summary

Producing publication-quality graphics is one of the major strengths of the
R system and almost anything is possible since graphics are programmable
in R. Naturally, this chapter can be only a very brief introduction to some
commonly used displays and the reader is referred to specialised books, most
important Murrell (2005), Sarkar (2008), and Chen et al. (2008). Interactive
3D-graphics are available from package rgl (Adler and Murdoch, 2009).
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R> xyplot(jitter(log(A_income + 0.5)) ~

+ jitter(log(R_income + 0.5)) | R_edu, data = CHFLS)

jitter(log(R_income + 0.5))
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Exercises

Ex. 2.1 The data in Table 2.3 are part of a data set collected from a survey
of household expenditure and give the expenditure of 20 single men and
20 single women on four commodity groups. The units of expenditure are
Hong Kong dollars, and the four commodity groups are

housing: housing, including fuel and light,

food: foodstuffs, including alcohol and tobacco,

goods: other goods, including clothing, footwear and durable goods,

services: services, including transport and vehicles.

The aim of the survey was to investigate how the division of household
expenditure between the four commodity groups depends on total expen-
diture and to find out whether this relationship differs for men and women.
Use appropriate graphical methods to answer these questions and state
your conclusions.
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Table 2.3: household data. Household expenditure for single
men and women.

housing food goods service gender

820 114 183 154 female
184 74 6 20 female
921 66 1686 455 female
488 80 103 115 female
721 83 176 104 female
614 55 441 193 female
801 56 357 214 female
396 59 61 80 female
864 65 1618 352 female
845 64 1935 414 female
404 97 33 47 female
781 47 1906 452 female
457 103 136 108 female

1029 71 244 189 female
1047 90 653 298 female
552 91 185 158 female
718 104 583 304 female
495 114 65 74 female
382 77 230 147 female

1090 59 313 177 female
497 591 153 291 male
839 942 302 365 male
798 1308 668 584 male
892 842 287 395 male

1585 781 2476 1740 male
755 764 428 438 male
388 655 153 233 male
617 879 757 719 male
248 438 22 65 male

1641 440 6471 2063 male
1180 1243 768 813 male
619 684 99 204 male
253 422 15 48 male
661 739 71 188 male

1981 869 1489 1032 male
1746 746 2662 1594 male
1865 915 5184 1767 male
238 522 29 75 male

1199 1095 261 344 male
1524 964 1739 1410 male
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Ex. 2.2 Mortality rates per 100, 000 from male suicides for a number of age
groups and a number of countries are given in Table 2.4. Construct side-
by-side box plots for the data from different age groups, and comment on
what the graphic tells us about the data.

Table 2.4: suicides2 data. Mortality rates per 100, 000 from
male suicides.

A25.34 A35.44 A45.54 A55.64 A65.74

Canada 22 27 31 34 24
Israel 9 19 10 14 27
Japan 22 19 21 31 49
Austria 29 40 52 53 69
France 16 25 36 47 56
Germany 28 35 41 49 52
Hungary 48 65 84 81 107
Italy 7 8 11 18 27
Netherlands 8 11 18 20 28
Poland 26 29 36 32 28
Spain 4 7 10 16 22
Sweden 28 41 46 51 35
Switzerland 22 34 41 50 51
UK 10 13 15 17 22
USA 20 22 28 33 37

Ex. 2.3 The data set shown in Table 2.5 contains values of seven variables
for ten states in the US. The seven variables are

Population: population size divided by 1000,

Income: average per capita income,

Illiteracy: illiteracy rate (% population),

Life.Expectancy: life expectancy (years),

Homicide: homicide rate (per 1000),

Graduates: percentage of high school graduates,

Freezing: average number of days per below freezing.

With these data

1. Construct a scatterplot matrix of the data labelling the points by state
name (using function text).

2. Construct a plot of life expectancy and homicide rate conditional on
average per capita income.
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Table 2.5: USstates data. Socio-demographic variables for ten
US states.

Population Income Illiteracy Life.Expectancy Homicide Graduates Freezing

3615 3624 2.1 69.05 15.1 41.3 20
21198 5114 1.1 71.71 10.3 62.6 20
2861 4628 0.5 72.56 2.3 59.0 140
2341 3098 2.4 68.09 12.5 41.0 50
812 4281 0.7 71.23 3.3 57.6 174

10735 4561 0.8 70.82 7.4 53.2 124
2284 4660 0.6 72.13 4.2 60.0 44

11860 4449 1.0 70.43 6.1 50.2 126
681 4167 0.5 72.08 1.7 52.3 172
472 3907 0.6 71.64 5.5 57.1 168
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Ex. 2.4 Flury and Riedwyl (1988) report data that give various lengths mea-
surements on 200 Swiss bank notes. The data are available from package
alr3 (Weisberg, 2008); a sample of ten bank notes is given in Table 2.6.

Table 2.6: banknote data (package alr3). Swiss bank note data.

Length Left Right Bottom Top Diagonal

214.8 131.0 131.1 9.0 9.7 141.0
214.6 129.7 129.7 8.1 9.5 141.7
214.8 129.7 129.7 8.7 9.6 142.2
214.8 129.7 129.6 7.5 10.4 142.0
215.0 129.6 129.7 10.4 7.7 141.8
214.4 130.1 130.3 9.7 11.7 139.8
214.9 130.5 130.2 11.0 11.5 139.5
214.9 130.3 130.1 8.7 11.7 140.2
215.0 130.4 130.6 9.9 10.9 140.3
214.7 130.2 130.3 11.8 10.9 139.7

...
...

...
...

...
...

Use whatever graphical techniques you think are appropriate to investigate
whether there is any ‘pattern’ or structure in the data. Do you observe
something suspicious?
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CHAPTER 3

Simple Inference: Guessing Lengths,
Wave Energy, Water Hardness, Piston

Rings, and Rearrests of Juveniles

3.1 Introduction

Shortly after metric units of length were officially introduced in Australia in
the 1970s, each of a group of 44 students was asked to guess, to the nearest
metre, the width of the lecture hall in which they were sitting. Another group
of 69 students in the same room was asked to guess the width in feet, to the
nearest foot. The data were collected by Professor T. Lewis, and are given
here in Table 3.1, which is taken from Hand et al. (1994). The main question
is whether estimation in feet and in metres gives different results.

Table 3.1: roomwidth data. Room width estimates (width) in
feet and in metres (unit).

unit width unit width unit width unit width

metres 8 metres 16 feet 34 feet 45
metres 9 metres 16 feet 35 feet 45
metres 10 metres 17 feet 35 feet 45
metres 10 metres 17 feet 36 feet 45
metres 10 metres 17 feet 36 feet 45
metres 10 metres 17 feet 36 feet 46
metres 10 metres 18 feet 37 feet 46
metres 10 metres 18 feet 37 feet 47
metres 11 metres 20 feet 40 feet 48
metres 11 metres 22 feet 40 feet 48
metres 11 metres 25 feet 40 feet 50
metres 11 metres 27 feet 40 feet 50
metres 12 metres 35 feet 40 feet 50
metres 12 metres 38 feet 40 feet 51
metres 13 metres 40 feet 40 feet 54
metres 13 feet 24 feet 40 feet 54
metres 13 feet 25 feet 40 feet 54
metres 14 feet 27 feet 41 feet 55
metres 14 feet 30 feet 41 feet 55
metres 14 feet 30 feet 42 feet 60

45
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Table 3.1: roomwidth data (continued).

unit width unit width unit width unit width

metres 15 feet 30 feet 42 feet 60
metres 15 feet 30 feet 42 feet 63
metres 15 feet 30 feet 42 feet 70
metres 15 feet 30 feet 43 feet 75
metres 15 feet 32 feet 43 feet 80
metres 15 feet 32 feet 44 feet 94
metres 15 feet 33 feet 44
metres 15 feet 34 feet 44
metres 16 feet 34 feet 45

In a design study for a device to generate electricity from wave power at sea,
experiments were carried out on scale models in a wave tank to establish
how the choice of mooring method for the system affected the bending stress
produced in part of the device. The wave tank could simulate a wide range
of sea states and the model system was subjected to the same sample of
sea states with each of two mooring methods, one of which was considerably
cheaper than the other. The resulting data (from Hand et al., 1994, giving
root mean square bending moment in Newton metres) are shown in Table 3.2.
The question of interest is whether bending stress differs for the two mooring
methods.

Table 3.2: waves data. Bending stress (root mean squared bend-
ing moment in Newton metres) for two mooring meth-
ods in a wave energy experiment.

method1 method2 method1 method2 method1 method2

2.23 1.82 8.98 8.88 5.91 6.44
2.55 2.42 0.82 0.87 5.79 5.87
7.99 8.26 10.83 11.20 5.50 5.30
4.09 3.46 1.54 1.33 9.96 9.82
9.62 9.77 10.75 10.32 1.92 1.69
1.59 1.40 5.79 5.87 7.38 7.41

The data shown in Table 3.3 were collected in an investigation of environmen-
tal causes of disease and are taken from Hand et al. (1994). They show the
annual mortality per 100,000 for males, averaged over the years 1958–1964,
and the calcium concentration (in parts per million) in the drinking water for
61 large towns in England and Wales. The higher the calcium concentration,
the harder the water. Towns at least as far north as Derby are identified in the
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table. Here there are several questions that might be of interest including: are
mortality and water hardness related, and do either or both variables differ
between northern and southern towns?

Table 3.3: water data. Mortality (per 100,000 males per year,
mortality) and water hardness for 61 cities in Eng-
land and Wales.

location town mortality hardness

South Bath 1247 105
North Birkenhead 1668 17
South Birmingham 1466 5
North Blackburn 1800 14
North Blackpool 1609 18
North Bolton 1558 10
North Bootle 1807 15
South Bournemouth 1299 78
North Bradford 1637 10
South Brighton 1359 84
South Bristol 1392 73
North Burnley 1755 12
South Cardiff 1519 21
South Coventry 1307 78
South Croydon 1254 96
North Darlington 1491 20
North Derby 1555 39
North Doncaster 1428 39
South East Ham 1318 122
South Exeter 1260 21
North Gateshead 1723 44
North Grimsby 1379 94
North Halifax 1742 8
North Huddersfield 1574 9
North Hull 1569 91
South Ipswich 1096 138
North Leeds 1591 16
South Leicester 1402 37
North Liverpool 1772 15
North Manchester 1828 8
North Middlesbrough 1704 26
North Newcastle 1702 44
South Newport 1581 14
South Northampton 1309 59
South Norwich 1259 133
North Nottingham 1427 27
North Oldham 1724 6
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Table 3.3: water data (continued).

location town mortality hardness

South Oxford 1175 107
South Plymouth 1486 5
South Portsmouth 1456 90
North Preston 1696 6
South Reading 1236 101
North Rochdale 1711 13
North Rotherham 1444 14
North St Helens 1591 49
North Salford 1987 8
North Sheffield 1495 14
South Southampton 1369 68
South Southend 1257 50
North Southport 1587 75
North South Shields 1713 71
North Stockport 1557 13
North Stoke 1640 57
North Sunderland 1709 71
South Swansea 1625 13
North Wallasey 1625 20
South Walsall 1527 60
South West Bromwich 1627 53
South West Ham 1486 122
South Wolverhampton 1485 81
North York 1378 71

The two-way contingency table in Table 3.4 shows the number of piston-ring
failures in each of three legs of four steam-driven compressors located in the
same building (Haberman, 1973). The compressors have identical design and
are oriented in the same way. The question of interest is whether the two
categorical variables (compressor and leg) are independent.

The data in Table 3.5 (taken from Agresti, 1996) arise from a sample of
juveniles convicted of felony in Florida in 1987. Matched pairs were formed
using criteria such as age and the number of previous offences. For each pair,
one subject was handled in the juvenile court and the other was transferred to
the adult court. Whether or not the juvenile was rearrested by the end of 1988
was then noted. Here the question of interest is whether the true proportions
rearrested were identical for the adult and juvenile court assignments?
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Table 3.4: pistonrings data. Number of piston ring failures for
three legs of four compressors.

leg

compressor North Centre South
C1 17 17 12
C2 11 9 13
C3 11 8 19
C4 14 7 28

Source: From Haberman, S. J., Biometrics, 29, 205–220, 1973. With permis-
sion.

Table 3.5: rearrests data. Rearrests of juvenile felons by type
of court in which they were tried.

Juvenile court

Adult court Rearrest No rearrest
Rearrest 158 515

No rearrest 290 1134

Source: From Agresti, A., An Introduction to Categorical Data Analysis, John
Wiley & Sons, New York, 1996. With permission.

3.2 Statistical Tests

Inference, the process of drawing conclusions about a population on the basis
of measurements or observations made on a sample of individuals from the
population, is central to statistics. In this chapter we shall use the data sets
described in the introduction to illustrate both the application of the most
common statistical tests, and some simple graphics that may often be used to
aid in understanding the results of the tests. Brief descriptions of each of the
tests to be used follow.

3.2.1 Comparing Normal Populations: Student’s t-Tests

The t-test is used to assess hypotheses about two population means where
the measurements are assumed to be sampled from a normal distribution. We
shall describe two types of t-tests, the independent samples test and the paired
test.

The independent samples t-test is used to test the null hypothesis that
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the means of two populations are the same, H0 : µ1 = µ2, when a sample of
observations from each population is available. The subjects of one population
must not be individually matched with subjects from the other population
and the subjects within each group should not be related to each other. The
variable to be compared is assumed to have a normal distribution with the
same standard deviation in both populations. The test statistic is essentially
a standardised difference of the two sample means,

t =
ȳ1 − ȳ2

s
√

1/n1 + 1/n2

(3.1)

where ȳi and ni are the means and sample sizes in groups i = 1 and 2,
respectively. The pooled standard deviation s is given by

s =

√

(n1 − 1)s2
1

+ (n2 − 1)s2
2

n1 + n2 − 2

where s1 and s2 are the standard deviations in the two groups.
Under the null hypothesis, the t-statistic has a Student’s t-distribution with

n1 + n2 − 2 degrees of freedom. A 100(1 − α)% confidence interval for the
difference between two means is useful in giving a plausible range of values
for the differences in the two means and is constructed as

ȳ1 − ȳ2 ± tα,n1+n2−2s

√

n−1

1
+ n−1

2

where tα,n1+n2−2 is the percentage point of the t-distribution such that the
cumulative distribution function, P(t ≤ tα,n1+n2−2), equals 1 − α/2.

If the two populations are suspected of having different variances, a modified
form of the t statistic, known as the Welch test, may be used, namely

t =
ȳ1 − ȳ2

√

s2
1
/n1 + s2

2
/n2

.

In this case, t has a Student’s t-distribution with ν degrees of freedom, where

ν =

(

c

n1 − 1
+

(1 − c)2

n2 − 1

)

−1

with

c =
s2

1/n1

s2
1
/n1 + s2

2
/n2

.

A paired t-test is used to compare the means of two populations when
samples from the populations are available, in which each individual in one
sample is paired with an individual in the other sample or each individual in
the sample is observed twice. Examples of the former are anorexic girls and
their healthy sisters and of the latter the same patients observed before and
after treatment.

If the values of the variable of interest, y, for the members of the ith pair in
groups 1 and 2 are denoted as y1i and y2i, then the differences di = y1i−y2i are
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assumed to have a normal distribution with mean µ and the null hypothesis
here is that the mean difference is zero, i.e., H0 : µ = 0. The paired t-statistic
is

t =
d̄

s/
√

n

where d̄ is the mean difference between the paired measurements and s is its
standard deviation. Under the null hypothesis, t follows a t-distribution with
n − 1 degrees of freedom. A 100(1 − α)% confidence interval for µ can be
constructed by

d̄ ± tα,n−1s/
√

n

where P(t ≤ tα,n−1) = 1 − α/2.

3.2.2 Non-parametric Analogues of Independent Samples and Paired t-Tests

One of the assumptions of both forms of t-test described above is that the data
have a normal distribution, i.e., are unimodal and symmetric. When depar-
tures from those assumptions are extreme enough to give cause for concern,
then it might be advisable to use the non-parametric analogues of the t-tests,
namely the Wilcoxon Mann-Whitney rank sum test and the Wilcoxon signed

rank test. In essence, both procedures throw away the original measurements
and only retain the rankings of the observations.

For two independent groups, the Wilcoxon Mann-Whitney rank sum test
applies the t-statistic to the joint ranks of all measurements in both groups
instead of the original measurements. The null hypothesis to be tested is that
the two populations being compared have identical distributions. For two nor-
mally distributed populations with common variance, this would be equivalent
to the hypothesis that the means of the two populations are the same. The
alternative hypothesis is that the population distributions differ in location,
i.e., the median.

The test is based on the joint ranking of the observations from the two
samples (as if they were from a single sample). The test statistic is the sum of
the ranks of one sample (the lower of the two rank sums is generally used). A
version of this test applicable in the presence of ties is discussed in Chapter 4.

For small samples, p-values for the test statistic can be assigned relatively
simply. A large sample approximation is available that is suitable when the
two sample sizes are greater and there are no ties. In R, the large sample
approximation is used by default when the sample size in one group exceeds
50 observations.

In the paired situation, we first calculate the differences di = y1i − y2i be-
tween each pair of observations. To compute the Wilcoxon signed-rank statis-
tic, we rank the absolute differences |di|. The statistic is defined as the sum
of the ranks associated with positive difference di > 0. Zero differences are
discarded, and the sample size n is altered accordingly. Again, p-values for
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small sample sizes can be computed relatively simply and a large sample ap-
proximation is available. It should be noted that this test is valid only when
the differences di are symmetrically distributed.

3.2.3 Testing Independence in Contingency Tables

When a sample of n observations in two nominal (categorical) variables are
available, they can be arranged into a cross-classification (see Table 3.6) in
which the number of observations falling in each cell of the table is recorded.
Table 3.6 is an example of such a contingency table, in which the observations
for a sample of individuals or objects are cross-classified with respect to two
categorical variables. Testing for the independence of the two variables x and
y is of most interest in general and details of the appropriate test follow.

Table 3.6: The general r × c table.

y

1 . . . c

1 n11 . . . n1c n1·

2 n21 . . . n2c n2·

x
...

... . . .
...

...
r nr1 . . . nrc nr·

n
·1 . . . n

·c n

Under the null hypothesis of independence of the row variable x and the
column variable y, estimated expected values Ejk for cell (j, k) can be com-
puted from the corresponding margin totals Ejk = nj·n·k/n. The test statistic
for assessing independence is

X2 =
r

∑

j=1

c
∑

k=1

(njk − Ejk)2

Ejk

.

Under the null hypothesis of independence, the test statistic X2 is asymp-
totically distributed according to a χ2-distribution with (r− 1)(c− 1) degrees
of freedom, the corresponding test is usually known as chi-squared test.

3.2.4 McNemar’s Test

The chi-squared test on categorical data described previously assumes that
the observations are independent. Often, however, categorical data arise from
paired observations, for example, cases matched with controls on variables
such as gender, age and so on, or observations made on the same subjects
on two occasions (cf. paired t-test). For this type of paired data, the required
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procedure is McNemar’s test. The general form of such data is shown in Ta-
ble 3.7.

Table 3.7: Frequencies in matched samples data.

Sample 1
present absent

Sample 2 present a b

absent c d

Under the hypothesis that the two populations do not differ in their prob-
ability of having the characteristic present, the test statistic

X2 =
(c − b)2

c + b

has a χ2-distribution with a single degree of freedom.

3.3 Analysis Using R

3.3.1 Estimating the Width of a Room

The data shown in Table 3.1 are available as roomwidth data.frame from the
HSAUR2 package and can be attached by using

R> data("roomwidth", package = "HSAUR2")

If we convert the estimates of the room width in metres into feet by multiplying
each by 3.28 then we would like to test the hypothesis that the mean of the
population of ‘metre’ estimates is equal to the mean of the population of
‘feet’ estimates. We shall do this first by using an independent samples t-test,
but first it is good practise to check, informally at least, the normality and
equal variance assumptions. Here we can use a combination of numerical and
graphical approaches. The first step should be to convert the metre estimates
into feet by a factor

R> convert <- ifelse(roomwidth$unit == "feet", 1, 3.28)

which equals one for all feet measurements and 3.28 for the measurements in
metres. Now, we get the usual summary statistics and standard deviations of
each set of estimates using

R> tapply(roomwidth$width * convert, roomwidth$unit, summary)

$feet

Min. 1st Qu. Median Mean 3rd Qu. Max.

24.0 36.0 42.0 43.7 48.0 94.0

$metres

Min. 1st Qu. Median Mean 3rd Qu. Max.

26.24 36.08 49.20 52.55 55.76 131.20
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R> tapply(roomwidth$width * convert, roomwidth$unit, sd)

feet metres

12.49742 23.43444

where tapply applies summary, or sd, to the converted widths for both groups
of measurements given by roomwidth$unit. A boxplot of each set of estimates
might be useful and is depicted in Figure 3.1. The layout function (line 1 in
Figure 3.1) divides the plotting area in three parts. The boxplot function
produces a boxplot in the upper part and the two qqnorm statements in lines
8 and 11 set up the normal probability plots that can be used to assess the
normality assumption of the t-test.

The boxplots indicate that both sets of estimates contain a number of out-
liers and also that the estimates made in metres are skewed and more variable
than those made in feet, a point underlined by the numerical summary statis-
tics above. Both normal probability plots depart from linearity, suggesting that
the distributions of both sets of estimates are not normal. The presence of out-
liers, the apparently different variances and the evidence of non-normality all
suggest caution in applying the t-test, but for the moment we shall apply the
usual version of the test using the t.test function in R.

The two-sample test problem is specified by a formula, here by

I(width * convert) ~ unit

where the response, width, on the left hand side needs to be converted first
and, because the star has a special meaning in formulae as will be explained
in Chapter 5, the conversion needs to be embedded by I. The factor unit on
the right hand side specifies the two groups to be compared.

From the output shown in Figure 3.2 we see that there is considerable
evidence that the estimates made in feet are lower than those made in metres
by between about 2 and 15 feet. The test statistic t from 3.1 is −2.615 and,
with 111 degrees of freedom, the two-sided p-value is 0.01. In addition, a 95%
confidence interval for the difference of the estimated widths between feet and
metres is reported.

But this form of t-test assumes both normality and equality of popula-
tion variances, both of which are suspect for these data. Departure from the
equality of variance assumption can be accommodated by the modified t-test
described above and this can be applied in R by choosing var.equal = FALSE

(note that var.equal = FALSE is the default in R). The result shown in Fig-
ure 3.3 as well indicates that there is strong evidence for a difference in the
means of the two types of estimate.

But there remains the problem of the outliers and the possible non-normality;
consequently we shall apply the Wilcoxon Mann-Whitney test which, since it
is based on the ranks of the observations, is unlikely to be affected by the
outliers, and which does not assume that the data have a normal distribution.
The test can be applied in R using the wilcox.test function.

Figure 3.4 shows a two-sided p-value of 0.028 confirming the difference in
location of the two types of estimates of room width. Note that, due to ranking
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1 R> layout(matrix(c(1,2,1,3), nrow = 2, ncol = 2, byrow = FALSE))

2 R> boxplot(I(width * convert) ~ unit, data = roomwidth,

3 + ylab = "Estimated width (feet)",

4 + varwidth = TRUE, names = c("Estimates in feet",

5 + "Estimates in metres (converted to feet)"))

6 R> feet <- roomwidth$unit == "feet"

7 R> qqnorm(roomwidth$width[feet],

8 + ylab = "Estimated width (feet)")

9 R> qqline(roomwidth$width[feet])

10 R> qqnorm(roomwidth$width[!feet],

11 + ylab = "Estimated width (metres)")

12 R> qqline(roomwidth$width[!feet])
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Figure 3.1 Boxplots of estimates of room width in feet and metres (after conver-

sion to feet) and normal probability plots of estimates of room width

made in feet and in metres.
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R> t.test(I(width * convert) ~ unit, data = roomwidth,

+ var.equal = TRUE)

Two Sample t-test

data: I(width * convert) by unit

t = -2.6147, df = 111, p-value = 0.01017

95 percent confidence interval:

-15.572734 -2.145052

sample estimates:

mean in group feet mean in group metres

43.69565 52.55455

Figure 3.2 R output of the independent samples t-test for the roomwidth data.

R> t.test(I(width * convert) ~ unit, data = roomwidth,

+ var.equal = FALSE)

Welch Two Sample t-test

data: I(width * convert) by unit

t = -2.3071, df = 58.788, p-value = 0.02459

95 percent confidence interval:

-16.54308 -1.17471

sample estimates:

mean in group feet mean in group metres

43.69565 52.55455

Figure 3.3 R output of the independent samples Welch test for the roomwidth

data.

the observations, the confidence interval for the median difference reported
here is much smaller than the confidence interval for the difference in means
as shown in Figures 3.2 and 3.3. Further possible analyses of the data are
considered in Exercise 3.1 and in Chapter 4.

3.3.2 Wave Energy Device Mooring

The data from Table 3.2 are available as data.frame waves

R> data("waves", package = "HSAUR2")

and requires the use of a matched pairs t-test to answer the question of inter-
est. This test assumes that the differences between the matched observations
have a normal distribution so we can begin by checking this assumption by
constructing a boxplot and a normal probability plot – see Figure 3.5.

The boxplot indicates a possible outlier, and the normal probability plot
gives little cause for concern about departures from normality, although with
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R> wilcox.test(I(width * convert) ~ unit, data = roomwidth,

+ conf.int = TRUE)

Wilcoxon rank sum test with continuity correction

data: I(width * convert) by unit

W = 1145, p-value = 0.02815

95 percent confidence interval:

-9.3599953 -0.8000423

sample estimates:

difference in location

-5.279955

Figure 3.4 R output of the Wilcoxon rank sum test for the roomwidth data.

only 18 observations it is perhaps difficult to draw any convincing conclusion.
We can now apply the paired t-test to the data again using the t.test func-
tion. Figure 3.6 shows that there is no evidence for a difference in the mean
bending stress of the two types of mooring device. Although there is no real
reason for applying the non-parametric analogue of the paired t-test to these
data, we give the R code for interest in Figure 3.7. The associated p-value is
0.316 confirming the result from the t-test.

3.3.3 Mortality and Water Hardness

There is a wide range of analyses we could apply to the data in Table 3.3
available from

R> data("water", package = "HSAUR2")

But to begin we will construct a scatterplot of the data enhanced somewhat by
the addition of information about the marginal distributions of water hardness
(calcium concentration) and mortality, and by adding the estimated linear
regression fit (see Chapter 6) for mortality on hardness. The plot and the
required R code is given along with Figure 3.8. In line 1 of Figure 3.8, we
divide the plotting region into four areas of different size. The scatterplot
(line 3) uses a plotting symbol depending on the location of the city (by the
pch argument); a legend for the location is added in line 6. We add a least
squares fit (see Chapter 6) to the scatterplot and, finally, depict the marginal
distributions by means of a boxplot and a histogram. The scatterplot shows
that as hardness increases mortality decreases, and the histogram for the water
hardness shows it has a rather skewed distribution.

We can both calculate the Pearson’s correlation coefficient between the two
variables and test whether it differs significantly for zero by using the cor.test

function in R. The test statistic for assessing the hypothesis that the popula-
tion correlation coefficient is zero is

r/
√

(1 − r2)/(n − 2)
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R> mooringdiff <- waves$method1 - waves$method2

R> layout(matrix(1:2, ncol = 2))

R> boxplot(mooringdiff, ylab = "Differences (Newton metres)",

+ main = "Boxplot")

R> abline(h = 0, lty = 2)

R> qqnorm(mooringdiff, ylab = "Differences (Newton metres)")

R> qqline(mooringdiff)
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Figure 3.5 Boxplot and normal probability plot for differences between the two

mooring methods.

where r is the sample correlation coefficient and n is the sample size. If the
population correlation is zero and assuming the data have a bivariate normal
distribution, then the test statistic has a Student’s t distribution with n − 2
degrees of freedom.

The estimated correlation shown in Figure 3.9 is -0.655 and is highly signif-
icant. We might also be interested in the correlation between water hardness
and mortality in each of the regions North and South but we leave this as an
exercise for the reader (see Exercise 3.2).

3.3.4 Piston-ring Failures

The first step in the analysis of the pistonrings data is to apply the chi-
squared test for independence. This we can do in R using the chisq.test

function. The output of the chi-squared test, see Figure 3.10, shows a value
of the X2 test statistic of 11.722 with 6 degrees of freedom and an associated
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R> t.test(mooringdiff)

One Sample t-test

data: mooringdiff

t = 0.9019, df = 17, p-value = 0.3797

95 percent confidence interval:

-0.08258476 0.20591810

sample estimates:

mean of x

0.06166667

Figure 3.6 R output of the paired t-test for the waves data.

R> wilcox.test(mooringdiff)

Wilcoxon signed rank test with continuity correction

data: mooringdiff

V = 109, p-value = 0.3165

Figure 3.7 R output of the Wilcoxon signed rank test for the waves data.

p-value of 0.068. The evidence for departure from independence of compressor
and leg is not strong, but it may be worthwhile taking the analysis a little
further by examining the estimated expected values and the differences of
these from the corresponding observed value.

Rather than looking at the simple differences of observed and expected val-
ues for each cell which would be unsatisfactory since a difference of fixed size
is clearly more important for smaller samples, it is preferable to consider a
standardised residual given by dividing the observed minus the expected dif-
ference by the square root of the appropriate expected value. The X2 statistic
for assessing independence is simply the sum, over all the cells in the table, of
the squares of these terms. We can find these values extracting the residuals

element of the object returned by the chisq.test function

R> chisq.test(pistonrings)$residuals

leg

compressor North Centre South

C1 0.6036154 1.6728267 -1.7802243

C2 0.1429031 0.2975200 -0.3471197

C3 -0.3251427 -0.4522620 0.6202463

C4 -0.4157886 -1.4666936 1.4635235

A graphical representation of these residuals is called an association plot

and is available via the assoc function from package vcd (Meyer et al., 2009)
applied to the contingency table of the two categorical variables. Figure 3.11
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1 R> nf <- layout(matrix(c(2, 0, 1, 3), 2, 2, byrow = TRUE),

2 + c(2, 1), c(1, 2), TRUE)

3 R> psymb <- as.numeric(water$location)

4 R> plot(mortality ~ hardness, data = water, pch = psymb)

5 R> abline(lm(mortality ~ hardness, data = water))

6 R> legend("topright", legend = levels(water$location),

7 + pch = c(1,2), bty = "n")

8 R> hist(water$hardness)

9 R> boxplot(water$mortality)
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Figure 3.8 Enhanced scatterplot of water hardness and mortality, showing both

the joint and the marginal distributions and, in addition, the location

of the city by different plotting symbols.
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R> cor.test(~ mortality + hardness, data = water)

Pearson's product-moment correlation

data: mortality and hardness

t = -6.6555, df = 59, p-value = 1.033e-08

95 percent confidence interval:

-0.7783208 -0.4826129

sample estimates:

cor

-0.6548486

Figure 3.9 R output of Pearsons’ correlation coefficient for the water data.

R> data("pistonrings", package = "HSAUR2")

R> chisq.test(pistonrings)

Pearson's Chi-squared test

data: pistonrings

X-squared = 11.7223, df = 6, p-value = 0.06846

Figure 3.10 R output of the chi-squared test for the pistonrings data.

depicts the residuals for the piston ring data. The deviations from indepen-
dence are largest for C1 and C4 compressors in the centre and south leg.

It is tempting to think that the size of these residuals may be judged by
comparison with standard normal percentage points (for example greater than
1.96 or less than 1.96 for significance level α = 0.05). Unfortunately it can be
shown that the variance of a standardised residual is always less than or equal
to one, and in some cases considerably less than one, however, the residuals
are asymptotically normal. A more satisfactory ‘residual’ for contingency table
data is considered in Exercise 3.3.

3.3.5 Rearrests of Juveniles

The data in Table 3.5 are available as table object via

R> data("rearrests", package = "HSAUR2")

R> rearrests

Juvenile court

Adult court Rearrest No rearrest

Rearrest 158 515

No rearrest 290 1134

and in rearrests the counts in the four cells refer to the matched pairs of
subjects; for example, in 158 pairs both members of the pair were rearrested.
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R> library("vcd")

R> assoc(pistonrings)
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Figure 3.11 Association plot of the residuals for the pistonrings data.

Here we need to use McNemar’s test to assess whether rearrest is associated
with the type of court where the juvenile was tried. We can use the R function
mcnemar.test. The test statistic shown in Figure 3.12 is 62.89 with a single
degree of freedom – the associated p-value is extremely small and there is
strong evidence that type of court and the probability of rearrest are related.
It appears that trial at a juvenile court is less likely to result in rearrest (see
Exercise 3.4). An exact version of McNemar’s test can be obtained by testing
whether b and c are equal using a binomial test (see Figure 3.13).
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R> mcnemar.test(rearrests, correct = FALSE)

McNemar's Chi-squared test

data: rearrests

McNemar's chi-squared = 62.8882, df = 1, p-value =

2.188e-15

Figure 3.12 R output of McNemar’s test for the rearrests data.

R> binom.test(rearrests[2], n = sum(rearrests[c(2,3)]))

Exact binomial test

data: rearrests[2] and sum(rearrests[c(2, 3)])

number of successes = 290, number of trials = 805,

p-value = 1.918e-15

95 percent confidence interval:

0.3270278 0.3944969

sample estimates:

probability of success

0.3602484

Figure 3.13 R output of an exact version of McNemar’s test for the rearrests

data computed via a binomial test.

3.4 Summary

Significance tests are widely used and they can easily be applied using the
corresponding functions in R. But they often need to be accompanied by some
graphical material to aid in interpretation and to assess whether assumptions
are met. In addition, p-values are never as useful as confidence intervals.

Exercises

Ex. 3.1 After the students had made the estimates of the width of the lecture
hall the room width was accurately measured and found to be 13.1 metres
(43.0 feet). Use this additional information to determine which of the two
types of estimates was more precise.

Ex. 3.2 For the mortality and water hardness data calculate the correlation
between the two variables in each region, north and south.

Ex. 3.3 The standardised residuals calculated for the piston ring data are not
entirely satisfactory for the reasons given in the text. An alternative residual
suggested by Haberman (1973) is defined as the ratio of the standardised
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residuals and an adjustment:
√

(njk − Ejk)2/Ejk
√

(1 − nj·/n)(1 − n
·k/n)

.

When the variables forming the contingency table are independent, the
adjusted residuals are approximately normally distributed with mean zero
and standard deviation one. Write a general R function to calculate both
standardised and adjusted residuals for any r × c contingency table and
apply it to the piston ring data.

Ex. 3.4 For the data in table rearrests estimate the difference between
the probability of being rearrested after being tried in an adult court and
in a juvenile court, and find a 95% confidence interval for the population
difference.
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CHAPTER 4

Conditional Inference: Guessing
Lengths, Suicides, Gastrointestinal

Damage, and Newborn Infants

4.1 Introduction

There are many experimental designs or studies where the subjects are not
a random sample from some well-defined population. For example, subjects
recruited for a clinical trial are hardly ever a random sample from the set
of all people suffering from a certain disease but are a selection of patients
showing up for examination in a hospital participating in the trial. Usually,
the subjects are randomly assigned to certain groups, for example a control
and a treatment group, and the analysis needs to take this randomisation into
account. In this chapter, we discuss such test procedures usually known as
(re)-randomisation or permutation tests.

In the room width estimation experiment reported in Chapter 3, 40 of the
estimated widths (in feet) of 69 students and 26 of the estimated widths (in
metres) of 44 students are tied. In fact, this violates one assumption of the
unconditional test procedures applied in Chapter 3, namely that the measure-
ments are drawn from a continuous distribution. In this chapter, the data will
be reanalysed using conditional test procedures, i.e., statistical tests where
the distribution of the test statistics under the null hypothesis is determined
conditionally on the data at hand. A number of other data sets will also be
considered in this chapter and these will now be described.

Mann (1981) reports a study carried out to investigate the causes of jeer-
ing or baiting behaviour by a crowd when a person is threatening to commit
suicide by jumping from a high building. A hypothesis is that baiting is more
likely to occur in warm weather. Mann (1981) classified 21 accounts of threat-
ened suicide by two factors, the time of year and whether or not baiting oc-
curred. The data are given in Table 4.1 and the question is whether they give
any evidence to support the hypothesis? The data come from the northern
hemisphere, so June–September are the warm months.

65
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Table 4.1: suicides data. Crowd behaviour at threatened
suicides.

NA

NA Baiting Nonbaiting
June–September 8 4

October–May 2 7

Source: From Mann, L., J. Pers. Soc. Psy., 41, 703–709, 1981. With permis-
sion.

The administration of non-steroidal anti-inflammatory drugs for patients
suffering from arthritis induces gastrointestinal damage. Lanza (1987) and
Lanza et al. (1988a,b, 1989) report the results of placebo-controlled ran-
domised clinical trials investigating the prevention of gastrointestinal damage
by the application of Misoprostol. The degree of the damage is determined by
endoscopic examinations and the response variable is defined as the classifica-
tion described in Table 4.2. Further details of the studies as well as the data
can be found in Whitehead and Jones (1994). The data of the four studies are
given in Tables 4.3, 4.4, 4.5 and 4.6.

Table 4.2: Classification system for the response variable.

Classification Endoscopy Examination
1 No visible lesions
2 One haemorrhage or erosion
3 2-10 haemorrhages or erosions
4 11-25 haemorrhages or erosions
5 More than 25 haemorrhages or erosions

or an invasive ulcer of any size

Source: From Whitehead, A. and Jones, N. M. B., Stat. Med., 13, 2503–2515,
1994. With permission.

Table 4.3: Lanza data. Misoprostol randomised clinical trial
from Lanza (1987).

classification

treatment 1 2 3 4 5
Misoprostol 21 2 4 2 0

Placebo 2 2 4 9 13
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Table 4.4: Lanza data. Misoprostol randomised clinical trial
from Lanza et al. (1988a).

classification

treatment 1 2 3 4 5
Misoprostol 20 4 6 0 0

Placebo 8 4 9 4 5

Table 4.5: Lanza data. Misoprostol randomised clinical trial
from Lanza et al. (1988b).

classification

treatment 1 2 3 4 5
Misoprostol 20 4 3 1 2

Placebo 0 2 5 5 17

Table 4.6: Lanza data. Misoprostol randomised clinical trial
from Lanza et al. (1989).

classification

treatment 1 2 3 4 5
Misoprostol 1 4 5 0 0

Placebo 0 0 0 4 6

Newborn infants exposed to antiepileptic drugs in utero have a higher risk
of major and minor abnormalities of the face and digits. The inter-rater agree-
ment in the assessment of babies with respect to the number of minor physical
features was investigated by Carlin et al. (2000). In their paper, the agreement
on total number of face anomalies for 395 newborn infants examined by a
paediatrician and a research assistant is reported (see Table 4.7). One is in-
terested in investigating whether the paediatrician and the research assistant
agree above a chance level.
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Table 4.7: anomalies data. Abnormalities of the face and digits
of newborn infants exposed to antiepileptic drugs as
assessed by a paediatrician (MD) and a research assis-
tant (RA).

RA

MD 0 1 2 3
0 235 41 20 2
1 23 35 11 1
2 3 8 11 3
3 0 0 1 1

Source: From Carlin, J. B., et al., Teratology, 62, 406-412, 2000. With permis-
sion.

4.2 Conditional Test Procedures

The statistical test procedures applied in Chapter 3 all are defined for sam-
ples randomly drawn from a well-defined population. In many experiments
however, this model is far from being realistic. For example in clinical trials,
it is often impossible to draw a random sample from all patients suffering a
certain disease. Commonly, volunteers and patients are recruited from hos-
pital staff, relatives or people showing up for some examination. The test
procedures applied in this chapter make no assumptions about random sam-
pling or a specific model. Instead, the null distribution of the test statistics is
computed conditionally on all random permutations of the data. Therefore,
the procedures shown in the sequel are known as permutation tests or (re)-

randomisation tests. For a general introduction we refer to the text books of
Edgington (1987) and Pesarin (2001).

4.2.1 Testing Independence of Two Variables

Based on n pairs of measurements (xi, yi) recorded for n observational units
we want to test the null hypothesis of the independence of x and y. We may
distinguish three situations: both variables x and y are continuous, one is
continuous and the other one is a factor or both x and y are factors. The
special case of paired observations is treated in Section 4.2.2.

One class of test procedures for the above three situations are randomisation
and permutation tests whose basic principles have been described by Fisher
(1935) and Pitman (1937) and are best illustrated for the case of continuous
measurements y in two groups, i.e., the x variable is a factor that can take
values x = 1 or x = 2. The difference of the means of the y values in both
groups is an appropriate statistic for the assessment of the association of y
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and x

T =

n
∑

i=1

I(xi = 1)yi

n
∑

i=1

I(xi = 1)
−

n
∑

i=1

I(xi = 2)yi

n
∑

i=1

I(xi = 2)
.

Here I(xi = 1) is the indication function which is equal to one if the condi-
tion xi = 1 is true and zero otherwise. Clearly, under the null hypothesis of
independence of x and y we expect the distribution of T to be centred about
zero.

Suppose that the group labels x = 1 or x = 2 have been assigned to the
observational units by randomisation. When the result of the randomisation
procedure is independent of the y measurements, we are allowed to fix the x
values and shuffle the y values randomly over and over again. Thus, we can
compute, or at least approximate, the distribution of the test statistic T under
the conditions of the null hypothesis directly from the data (xi, yi), i = 1, . . . , n
by the so called randomisation principle. The test statistic T is computed for
a reasonable number of shuffled y values and we can determine how many of
the shuffled differences are at least as large as the test statistic T obtained
from the original data. If this proportion is small, smaller than α = 0.05 say,
we have good evidence that the assumption of independence of x and y is not
realistic and we therefore can reject the null hypothesis. The proportion of
larger differences is usually referred to as p-value.

A special approach is based on ranks assigned to the continuous y values.
When we replace the raw measurements yi by their corresponding ranks in the
computation of T and compare this test statistic with its null distribution we
end up with the Wilcoxon Mann-Whitney rank sum test. The conditional dis-
tribution and the unconditional distribution of the Wilcoxon Mann-Whitney
rank sum test as introduced in Chapter 3 coincide when the y values are not
tied. Without ties in the y values, the ranks are simply the integers 1, 2, . . . , n
and the unconditional (Chapter 3) and the conditional view on the Wilcoxon
Mann-Whitney test coincide.

In the case that both variables are nominal, the test statistic can be com-
puted from the corresponding contingency table in which the observations
(xi, yi) are cross-classified. A general r × c contingency table may be writ-
ten in the form of Table 3.6 where each cell (j, k) is the number nij =
∑n

i=1
I(xi = j)I(yi = k), see Chapter 3 for more details.

Under the null hypothesis of independence of x and y, estimated expected
values Ejk for cell (j, k) can be computed from the corresponding margin
totals Ejk = nj·n·k/n which are fixed for each randomisation of the data. The
test statistic for assessing independence is

X2 =
r

∑

j=1

c
∑

k=1

(njk − Ejk)2

Ejk

.

The exact distribution based on all permutations of the y values for a similar
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test statistic can be computed by means of Fisher’s exact test (Freeman and
Halton, 1951). This test procedure is based on the hyper-geometric probability
of the observed contingency table. All possible tables can be ordered with
respect to this metric and p-values are computed from the fraction of tables
more extreme than the observed one.

When both the x and the y measurements are numeric, the test statistic
can be formulated as the product, i.e., by the sum of all xiyi, i = 1, . . . , n.
Again, we can fix the x values and shuffle the y values in order to approximate
the distribution of the test statistic under the laws of the null hypothesis of
independence of x and y.

4.2.2 Testing Marginal Homogeneity

In contrast to the independence problem treated above the data analyst is
often confronted with situations where two (or more) measurements of one
variable taken from the same observational unit are to be compared. In this
case one assumes that the measurements are independent between observa-
tions and the test statistics are aggregated over all observations. Where two
nominal variables are taken for each observation (for example see the case of
McNemar’s test for binary variables as discussed in Chapter 3), the measure-
ment of each observation can be summarised by a k× k matrix with cell (i, j)
being equal to one if the first measurement is the ith level and the second mea-
surement is the jth level. All other entries are zero. Under the null hypothesis
of independence of the first and second measurement, all k × k matrices with
exactly one non-zero element are equally likely. The test statistic is now based
on the elementwise sum of all n matrices.

4.3 Analysis Using R

4.3.1 Estimating the Width of a Room Revised

The unconditional analysis of the room width estimated by two groups of
students in Chapter 3 led to the conclusion that the estimates in metres are
slightly larger than the estimates in feet. Here, we reanalyse these data in a
conditional framework. First, we convert metres into feet and store the vector
of observations in a variable y:

R> data("roomwidth", package = "HSAUR2")

R> convert <- ifelse(roomwidth$unit == "feet", 1, 3.28)

R> feet <- roomwidth$unit == "feet"

R> metre <- !feet

R> y <- roomwidth$width * convert

The test statistic is simply the difference in means

R> T <- mean(y[feet]) - mean(y[metre])

R> T

[1] -8.858893
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R> hist(meandiffs)

R> abline(v = T, lty = 2)

R> abline(v = -T, lty = 2)

Histogram of meandiffs

meandiffs

F
re

q
u

e
n

c
y

−15 −10 −5 0 5 10

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

Figure 4.1 An approximation for the conditional distribution of the difference of

mean roomwidth estimates in the feet and metres group under the null

hypothesis. The vertical lines show the negative and positive absolute

value of the test statistic T obtained from the original data.

In order to approximate the conditional distribution of the test statistic T
we compute 9999 test statistics for shuffled y values. A permutation of the y
vector can be obtained from the sample function.

R> meandiffs <- double(9999)

R> for (i in 1:length(meandiffs)) {

+ sy <- sample(y)

+ meandiffs[i] <- mean(sy[feet]) - mean(sy[metre])

+ }
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The distribution of the test statistic T under the null hypothesis of indepen-
dence of room width estimates and groups is depicted in Figure 4.1. Now, the
value of the test statistic T for the original unshuffled data can be compared
with the distribution of T under the null hypothesis (the vertical lines in Fig-
ure 4.1). The p-value, i.e., the proportion of test statistics T larger than 8.859
or smaller than -8.859, is

R> greater <- abs(meandiffs) > abs(T)

R> mean(greater)

[1] 0.0080008

with a confidence interval of

R> binom.test(sum(greater), length(greater))$conf.int

[1] 0.006349087 0.009947933

attr(,"conf.level")

[1] 0.95

Note that the approximated conditional p-value is roughly the same as the
p-value reported by the t-test in Chapter 3.

R> library("coin")

R> independence_test(y ~ unit, data = roomwidth,

+ distribution = exact())

Exact General Independence Test

data: y by unit (feet, metres)

Z = -2.5491, p-value = 0.008492

alternative hypothesis: two.sided

Figure 4.2 R output of the exact permutation test applied to the roomwidth data.

For some situations, including the analysis shown here, it is possible to com-
pute the exact p-value, i.e., the p-value based on the distribution evaluated on
all possible randomisations of the y values. The function independence_test

(package coin, Hothorn et al., 2006a, 2008b) can be used to compute the exact
p-value as shown in Figure 4.2. Similarly, the exact conditional distribution of
the Wilcoxon Mann-Whitney rank sum test can be computed by a function
implemented in package coin as shown in Figure 4.3.

One should note that the p-values of the permutation test and the t-test
coincide rather well and that the p-values of the Wilcoxon Mann-Whitney
rank sum tests in their conditional and unconditional version are roughly
three times as large due to the loss of information induced by taking only the
ranking of the measurements into account. However, based on the results of
the permutation test applied to the roomwidth data we can conclude that the
estimates in metres are, on average, larger than the estimates in feet.

© 2010 by Taylor and Francis Group, LLC



ANALYSIS USING R 73

R> wilcox_test(y ~ unit, data = roomwidth,

+ distribution = exact())

Exact Wilcoxon Mann-Whitney Rank Sum Test

data: y by unit (feet, metres)

Z = -2.1981, p-value = 0.02763

alternative hypothesis: true mu is not equal to 0

Figure 4.3 R output of the exact conditional Wilcoxon rank sum test applied to

the roomwidth data.

4.3.2 Crowds and Threatened Suicide

The data in this case are in the form of a 2 × 2 contingency table and it
might be thought that the chi-squared test could again be applied to test
for the independence of crowd behaviour and time of year. However, the χ2-
distribution as an approximation to the independence test statistic is bad when
the expected frequencies are rather small. The problem is discussed in detail
in Everitt (1992) and Agresti (1996). One solution is to use a conditional test
procedure such as Fisher’s exact test as described above. We can apply this
test procedure using the R function fisher.test to the table suicides (see
Figure 4.4).

R> data("suicides", package = "HSAUR2")

R> fisher.test(suicides)

Fisher's Exact Test for Count Data

data: suicides

p-value = 0.0805

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.7306872 91.0288231

sample estimates:

odds ratio

6.302622

Figure 4.4 R output of Fisher’s exact test for the suicides data.

The resulting p-value obtained from the hypergeometric distribution is 0.08
(the asymptotic p-value associated with the X2 statistic for this table is 0.115).
There is no strong evidence of crowd behaviour being associated with time of
year of threatened suicide, but the sample size is low and the test lacks power.
Fisher’s exact test can also be applied to larger than 2 × 2 tables, especially
when there is concern that the cell frequencies are low (see Exercise 4.1).

© 2010 by Taylor and Francis Group, LLC



74 CONDITIONAL INFERENCE

4.3.3 Gastrointestinal Damage

Here we are interested in the comparison of two groups of patients, where one
group received a placebo and the other one Misoprostol. In the trials shown
here, the response variable is measured on an ordered scale – see Table 4.2.
Data from four clinical studies are available and thus the observations are
naturally grouped together. From the data.frame Lanza we can construct a
three-way table as follows:

R> data("Lanza", package = "HSAUR2")

R> xtabs(~ treatment + classification + study, data = Lanza)

, , study = I

classification

treatment 1 2 3 4 5

Misoprostol 21 2 4 2 0

Placebo 2 2 4 9 13

, , study = II

classification

treatment 1 2 3 4 5

Misoprostol 20 4 6 0 0

Placebo 8 4 9 4 5

, , study = III

classification

treatment 1 2 3 4 5

Misoprostol 20 4 3 1 2

Placebo 0 2 5 5 17

, , study = IV

classification

treatment 1 2 3 4 5

Misoprostol 1 4 5 0 0

Placebo 0 0 0 4 6

We will first analyse each study separately and then show how one can
investigate the effect of Misoprostol for all four studies simultaneously. Because
the response is ordered, we take this information into account by assigning a
score to each level of the response. Since the classifications are defined by the
number of haemorrhages or erosions, the midpoint of the interval for each level
is a reasonable choice, i.e., 0, 1, 6, 17 and 30 – compare those scores to the
definitions given in Table 4.2. The corresponding linear-by-linear association
tests extending the general Cochran-Mantel-Haenszel statistics (see Agresti,
2002, for further details) are implemented in package coin.
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For the first study, the null hypothesis of independence of treatment and
gastrointestinal damage, i.e., of no treatment effect of Misoprostol, is tested
by

R> library("coin")

R> cmh_test(classification ~ treatment, data = Lanza,

+ scores = list(classification = c(0, 1, 6, 17, 30)),

+ subset = Lanza$study == "I")

Asymptotic Linear-by-Linear Association Test

data: classification (ordered) by

treatment (Misoprostol, Placebo)

chi-squared = 28.8478, df = 1, p-value = 7.83e-08

and, by default, the conditional distribution is approximated by the corre-
sponding limiting distribution. The p-value indicates a strong treatment effect.
For the second study, the asymptotic p-value is a little bit larger:

R> cmh_test(classification ~ treatment, data = Lanza,

+ scores = list(classification = c(0, 1, 6, 17, 30)),

+ subset = Lanza$study == "II")

Asymptotic Linear-by-Linear Association Test

data: classification (ordered) by

treatment (Misoprostol, Placebo)

chi-squared = 12.0641, df = 1, p-value = 0.000514

and we make sure that the implied decision is correct by calculating a confi-
dence interval for the exact p-value:

R> p <- cmh_test(classification ~ treatment, data = Lanza,

+ scores = list(classification = c(0, 1, 6, 17, 30)),

+ subset = Lanza$study == "II", distribution =

+ approximate(B = 19999))

R> pvalue(p)

[1] 5.00025e-05

99 percent confidence interval:

2.506396e-07 3.714653e-04

The third and fourth study indicate a strong treatment effect as well:

R> cmh_test(classification ~ treatment, data = Lanza,

+ scores = list(classification = c(0, 1, 6, 17, 30)),

+ subset = Lanza$study == "III")

Asymptotic Linear-by-Linear Association Test

data: classification (ordered) by

treatment (Misoprostol, Placebo)

chi-squared = 28.1587, df = 1, p-value = 1.118e-07
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R> cmh_test(classification ~ treatment, data = Lanza,

+ scores = list(classification = c(0, 1, 6, 17, 30)),

+ subset = Lanza$study == "IV")

Asymptotic Linear-by-Linear Association Test

data: classification (ordered) by

treatment (Misoprostol, Placebo)

chi-squared = 15.7414, df = 1, p-value = 7.262e-05

At the end, a separate analysis for each study is unsatisfactory. Because the
design of the four studies is the same, we can use study as a block variable
and perform a global linear-association test investigating the treatment effect
of Misoprostol in all four studies. The block variable can be incorporated into
the formula by the | symbol.

R> cmh_test(classification ~ treatment | study, data = Lanza,

+ scores = list(classification = c(0, 1, 6, 17, 30)))

Asymptotic Linear-by-Linear Association Test

data: classification (ordered) by

treatment (Misoprostol, Placebo)

stratified by study

chi-squared = 83.6188, df = 1, p-value < 2.2e-16

Based on this result, a strong treatment effect can be established.

4.3.4 Teratogenesis

In this example, the medical doctor (MD) and the research assistant (RA)
assessed the number of anomalies (0, 1, 2 or 3) for each of 395 babies:

R> anomalies <- c(235, 23, 3, 0, 41, 35, 8, 0,

+ 20, 11, 11, 1, 2, 1, 3, 1)

R> anomalies <- as.table(matrix(anomalies,

+ ncol = 4, dimnames = list(MD = 0:3, RA = 0:3)))

R> anomalies

RA

MD 0 1 2 3

0 235 41 20 2

1 23 35 11 1

2 3 8 11 3

3 0 0 1 1

We are interested in testing whether the number of anomalies assessed by the
medical doctor differs structurally from the number reported by the research
assistant. Because we compare paired observations, i.e., one pair of measure-
ments for each newborn, a test of marginal homogeneity (a generalisation of
McNemar’s test, Chapter 3) needs to be applied:
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R> mh_test(anomalies)

Asymptotic Marginal-Homogeneity Test

data: response by

groups (MD, RA)

stratified by block

chi-squared = 21.2266, df = 3, p-value = 9.446e-05

The p-value indicates a deviation from the null hypothesis. However, the levels
of the response are not treated as ordered. Similar to the analysis of the
gastrointestinal damage data above, we can take this information into account
by the definition of an appropriate score. Here, the number of anomalies is a
natural choice:

R> mh_test(anomalies, scores = list(c(0, 1, 2, 3)))

Asymptotic Marginal-Homogeneity Test for Ordered Data

data: response (ordered) by

groups (MD, RA)

stratified by block

chi-squared = 21.0199, df = 1, p-value = 4.545e-06

In our case, both versions coincide and one can conclude that the assessment of
the number of anomalies differs between the medical doctor and the research
assistant.

4.4 Summary

The analysis of randomised experiments, for example the analysis of ran-
domised clinical trials such as the Misoprostol trial presented in this chapter,
requires the application of conditional inferences procedures. In such experi-
ments, the observations might not have been sampled from well-defined pop-
ulations but are assigned to treatment groups, say, by a random procedure
which is reiterated when randomisation tests are applied.

Exercises

Ex. 4.1 Although in the past Fisher’s test has been largely applied to sparse
2 × 2 tables, it can also be applied to larger tables, especially when there
is concern about small values in some cells. Using the data displayed in
Table 4.8 (taken from Mehta and Patel, 2003) which gives the distribution
of the oral lesion site found in house-to-house surveys in three geographic
regions of rural India, find the p-value from Fisher’s test and the correspond-
ing p-value from applying the usual chi-square test to the data. What are
your conclusions?
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Table 4.8: orallesions data. Oral lesions found in house-to-
house surveys in three geographic regions of rural In-
dia.

region

site of lesion Kerala Gujarat Andhra
Buccal mucosa 8 1 8

Commissure 0 1 0
Gingiva 0 1 0

Hard palate 0 1 0
Soft palate 0 1 0

Tongue 0 1 0
Floor of mouth 1 0 1
Alveolar ridge 1 0 1

Source: From Mehta, C. and Patel, N., StatXact-6: Statistical Software for

Exact Nonparametric Inference, Cytel Software Corporation, Cambridge,
MA, 2003. With permission.

Ex. 4.2 Use the mosaic and assoc functions from the vcd package (Meyer
et al., 2009) to create a graphical representation of the deviations from
independence in the 2 × 2 contingency table shown in Table 4.1.

Ex. 4.3 Generate two groups with measurements following a normal distri-
bution having different means. For multiple replications of this experiment
(1000, say), compare the p-values of the Wilcoxon Mann-Whitney rank
sum test and a permutation test (using independence_test). Where do
the differences come from?
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CHAPTER 5

Analysis of Variance: Weight Gain,
Foster Feeding in Rats, Water

Hardness and Male Egyptian Skulls

5.1 Introduction

The data in Table 5.1 (from Hand et al., 1994) arise from an experiment to
study the gain in weight of rats fed on four different diets, distinguished by
amount of protein (low and high) and by source of protein (beef and cereal).
Ten rats are randomised to each of the four treatments and the weight gain
in grams recorded. The question of interest is how diet affects weight gain.

Table 5.1: weightgain data. Rat weight gain for diets differing
by the amount of protein (type) and source of protein
(source).

source type weightgain source type weightgain

Beef Low 90 Cereal Low 107
Beef Low 76 Cereal Low 95
Beef Low 90 Cereal Low 97
Beef Low 64 Cereal Low 80
Beef Low 86 Cereal Low 98
Beef Low 51 Cereal Low 74
Beef Low 72 Cereal Low 74
Beef Low 90 Cereal Low 67
Beef Low 95 Cereal Low 89
Beef Low 78 Cereal Low 58
Beef High 73 Cereal High 98
Beef High 102 Cereal High 74
Beef High 118 Cereal High 56
Beef High 104 Cereal High 111
Beef High 81 Cereal High 95
Beef High 107 Cereal High 88
Beef High 100 Cereal High 82
Beef High 87 Cereal High 77
Beef High 117 Cereal High 86
Beef High 111 Cereal High 92

79
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The data in Table 5.2 are from a foster feeding experiment with rat mothers
and litters of four different genotypes: A, B, I and J (Hand et al., 1994). The
measurement is the litter weight (in grams) after a trial feeding period. Here
the investigator’s interest lies in uncovering the effect of genotype of mother
and litter on litter weight.

Table 5.2: foster data. Foster feeding experiment for rats with
different genotypes of the litter (litgen) and mother
(motgen).

litgen motgen weight litgen motgen weight

A A 61.5 B J 40.5
A A 68.2 I A 37.0
A A 64.0 I A 36.3
A A 65.0 I A 68.0
A A 59.7 I B 56.3
A B 55.0 I B 69.8
A B 42.0 I B 67.0
A B 60.2 I I 39.7
A I 52.5 I I 46.0
A I 61.8 I I 61.3
A I 49.5 I I 55.3
A I 52.7 I I 55.7
A J 42.0 I J 50.0
A J 54.0 I J 43.8
A J 61.0 I J 54.5
A J 48.2 J A 59.0
A J 39.6 J A 57.4
B A 60.3 J A 54.0
B A 51.7 J A 47.0
B A 49.3 J B 59.5
B A 48.0 J B 52.8
B B 50.8 J B 56.0
B B 64.7 J I 45.2
B B 61.7 J I 57.0
B B 64.0 J I 61.4
B B 62.0 J J 44.8
B I 56.5 J J 51.5
B I 59.0 J J 53.0
B I 47.2 J J 42.0
B I 53.0 J J 54.0
B J 51.3
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The data in Table 5.3 (from Hand et al., 1994) give four measurements made
on Egyptian skulls from five epochs. The data has been collected with a view
to deciding if there are any differences between the skulls from the five epochs.
The measurements are:

mb: maximum breadths of the skull,

bh: basibregmatic heights of the skull,

bl: basialiveolar length of the skull, and

nh: nasal heights of the skull.

Non-constant measurements of the skulls over time would indicate interbreed-
ing with immigrant populations.

Table 5.3: skulls data. Measurements of four variables taken
from Egyptian skulls of five periods.

epoch mb bh bl nh

c4000BC 131 138 89 49
c4000BC 125 131 92 48
c4000BC 131 132 99 50
c4000BC 119 132 96 44
c4000BC 136 143 100 54
c4000BC 138 137 89 56
c4000BC 139 130 108 48
c4000BC 125 136 93 48
c4000BC 131 134 102 51
c4000BC 134 134 99 51
c4000BC 129 138 95 50
c4000BC 134 121 95 53
c4000BC 126 129 109 51
c4000BC 132 136 100 50
c4000BC 141 140 100 51
c4000BC 131 134 97 54
c4000BC 135 137 103 50
c4000BC 132 133 93 53
c4000BC 139 136 96 50
c4000BC 132 131 101 49
c4000BC 126 133 102 51
c4000BC 135 135 103 47
c4000BC 134 124 93 53

...
...

...
...

...
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5.2 Analysis of Variance

For each of the data sets described in the previous section, the question of
interest involves assessing whether certain populations differ in mean value
for, in Tables 5.1 and 5.2, a single variable, and in Table 5.3, for a set of four
variables. In the first two cases we shall use analysis of variance (ANOVA)
and in the last multivariate analysis of variance (MANOVA) method for the
analysis of this data. Both Tables 5.1 and 5.2 are examples of factorial designs,
with the factors in the first data set being amount of protein with two levels,
and source of protein also with two levels. In the second, the factors are the
genotype of the mother and the genotype of the litter, both with four levels.
The analysis of each data set can be based on the same model (see below) but
the two data sets differ in that the first is balanced, i.e., there are the same
number of observations in each cell, whereas the second is unbalanced having
different numbers of observations in the 16 cells of the design. This distinction
leads to complications in the analysis of the unbalanced design that we will
come to in the next section. But the model used in the analysis of each is

yijk = µ + γi + βj + (γβ)ij + εijk

where yijk represents the kth measurement made in cell (i, j) of the factorial
design, µ is the overall mean, γi is the main effect of the first factor, βj is
the main effect of the second factor, (γβ)ij is the interaction effect of the
two factors and εijk is the residual or error term assumed to have a normal
distribution with mean zero and variance σ2. In R, the model is specified by
a model formula. The two-way layout with interactions specified above reads

y ~ a + b + a:b

where the variable a is the first and the variable b is the second factor. The
interaction term (γβ)ij is denoted by a:b. An equivalent model formula is

y ~ a * b

Note that the mean µ is implicitly defined in the formula shown above. In case
µ = 0, one needs to remove the intercept term from the formula explicitly,
i.e.,

y ~ a + b + a:b - 1

For a more detailed description of model formulae we refer to R Development
Core Team (2009a) and help("lm").

The model as specified above is overparameterised, i.e., there are infinitely
many solutions to the corresponding estimation equations, and so the param-
eters have to be constrained in some way, commonly by requiring them to
sum to zero – see Everitt (2001) for a full discussion. The analysis of the rat
weight gain data below explains some of these points in more detail (see also
Chapter 6).

The model given above leads to a partition of the variation in the observa-
tions into parts due to main effects and interaction plus an error term that
enables a series of F -tests to be calculated that can be used to test hypotheses
about the main effects and the interaction. These calculations are generally
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set out in the familiar analysis of variance table. The assumptions made in
deriving the F -tests are:

• The observations are independent of each other,

• The observations in each cell arise from a population having a normal dis-
tribution, and

• The observations in each cell are from populations having the same vari-
ance.

The multivariate analysis of variance, or MANOVA, is an extension of the
univariate analysis of variance to the situation where a set of variables are
measured on each individual or object observed. For the data in Table 5.3
there is a single factor, epoch, and four measurements taken on each skull; so
we have a one-way MANOVA design. The linear model used in this case is

yijh = µh + γjh + εijh

where µh is the overall mean for variable h, γjh is the effect of the jth level
of the single factor on the hth variable, and εijh is a random error term. The
vector ε⊤ij = (εij1, εij2, . . . , εijq) where q is the number of response variables
(four in the skull example) is assumed to have a multivariate normal distri-
bution with null mean vector and covariance matrix, Σ, assumed to be the
same in each level of the grouping factor. The hypothesis of interest is that
the population mean vectors for the different levels of the grouping factor are
the same.

In the multivariate situation, when there are more than two levels of the
grouping factor, no single test statistic can be derived which is always the most
powerful, for all types of departures from the null hypothesis of the equality
of mean vector. A number of different test statistics are available which may
give different results when applied to the same data set, although the final
conclusion is often the same. The principal test statistics for the multivariate
analysis of variance are Hotelling-Lawley trace, Wilks’ ratio of determinants,
Roy’s greatest root, and the Pillai trace. Details are given in Morrison (2005).

5.3 Analysis Using R

5.3.1 Weight Gain in Rats

Before applying analysis of variance to the data in Table 5.1 we should try to
summarise the main features of the data by calculating means and standard
deviations and by producing some hopefully informative graphs. The data is
available in the data.frame weightgain. The following R code produces the
required summary statistics

R> data("weightgain", package = "HSAUR2")

R> tapply(weightgain$weightgain,

+ list(weightgain$source, weightgain$type), mean)
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R> plot.design(weightgain)
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Figure 5.1 Plot of mean weight gain for each level of the two factors.

High Low

Beef 100.0 79.2

Cereal 85.9 83.9

R> tapply(weightgain$weightgain,

+ list(weightgain$source, weightgain$type), sd)

High Low

Beef 15.13642 13.88684

Cereal 15.02184 15.70881

The cell variances are relatively similar and there is no apparent relationship
between cell mean and cell variance so the homogeneity assumption of the
analysis of variance looks like it is reasonable for these data. The plot of cell
means in Figure 5.1 suggests that there is a considerable difference in weight
gain for the amount of protein factor with the gain for the high-protein diet
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being far more than for the low-protein diet. A smaller difference is seen for
the source factor with beef leading to a higher gain than cereal.

To apply analysis of variance to the data we can use the aov function in R

and then the summary method to give us the usual analysis of variance table.
The model formula specifies a two-way layout with interaction terms, where
the first factor is source, and the second factor is type.

R> wg_aov <- aov(weightgain ~ source * type, data = weightgain)

R> summary(wg_aov)

Df Sum Sq Mean Sq F value Pr(>F)

source 1 220.9 220.9 0.9879 0.32688

type 1 1299.6 1299.6 5.8123 0.02114

source:type 1 883.6 883.6 3.9518 0.05447

Residuals 36 8049.4 223.6

Figure 5.2 R output of the ANOVA fit for the weightgain data.

The resulting analysis of variance table in Figure 5.2 shows that the main
effect of type is highly significant confirming what was seen in Figure 5.1.
The main effect of source is not significant. But interpretation of both these
main effects is complicated by the type × source interaction which approaches
significance at the 5% level. To try to understand this interaction effect it will
be useful to plot the mean weight gain for low- and high-protein diets for each
level of source of protein, beef and cereal. The required R code is given with
Figure 5.3. From the resulting plot we see that for low-protein diets, the use
of cereal as the source of the protein leads to a greater weight gain than using
beef. For high-protein diets the reverse is the case with the beef/high diet
leading to the highest weight gain.

The estimates of the intercept and the main and interaction effects can be
extracted from the model fit by

R> coef(wg_aov)

(Intercept) sourceCereal typeLow

100.0 -14.1 -20.8

sourceCereal:typeLow

18.8

Note that the model was fitted with the restrictions γ1 = 0 (corresponding to
Beef) and β1 = 0 (corresponding to High) because treatment contrasts were
used as default as can be seen from

R> options("contrasts")

$contrasts

unordered ordered

"contr.treatment" "contr.poly"

Thus, the coefficient for source of −14.1 can be interpreted as an estimate of
the difference γ2 − γ1. Alternatively, we can use the restriction

∑

i γi = 0 by
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R> interaction.plot(weightgain$type, weightgain$source,

+ weightgain$weightgain)
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Figure 5.3 Interaction plot of type and source.

R> coef(aov(weightgain ~ source + type + source:type,

+ data = weightgain, contrasts = list(source = contr.sum)))

(Intercept) source1 typeLow

92.95 7.05 -11.40

source1:typeLow

-9.40

5.3.2 Foster Feeding of Rats of Different Genotype

As in the previous subsection we will begin the analysis of the foster feeding
data in Table 5.2 with a plot of the mean litter weight for the different geno-
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R> plot.design(foster)
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Figure 5.4 Plot of mean litter weight for each level of the two factors for the
foster data.

types of mother and litter (see Figure 5.4). The data are in the data.frame
foster

R> data("foster", package = "HSAUR2")

Figure 5.4 indicates that differences in litter weight for the four levels of
mother’s genotype are substantial; the corresponding differences for the geno-
type of the litter are much smaller.

As in the previous example we can now apply analysis of variance using the
aov function, but there is a complication caused by the unbalanced nature
of the data. Here where there are unequal numbers of observations in the 16
cells of the two-way layout, it is no longer possible to partition the variation
in the data into non-overlapping or orthogonal sums of squares representing
main effects and interactions. In an unbalanced two-way layout with factors
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A and B there is a proportion of the variance of the response variable that
can be attributed to either A or B. The consequence is that A and B together
explain less of the variation of the dependent variable than the sum of which
each explains alone. The result is that the sum of squares corresponding to
a factor depends on which other terms are currently in the model for the
observations, so the sums of squares depend on the order in which the factors
are considered and represent a comparison of models. For example, for the
order a, b, a × b, the sums of squares are such that

• SSa: compares the model containing only the a main effect with one con-
taining only the overall mean.

• SSb|a: compares the model including both main effects, but no interaction,
with one including only the main effect of a.

• SSab|a, b: compares the model including an interaction and main effects
with one including only main effects.

The use of these sums of squares (sometimes known as Type I sums of
squares) in a series of tables in which the effects are considered in different
orders provides the most appropriate approach to the analysis of unbalanced
designs.

We can derive the two analyses of variance tables for the foster feeding
example by applying the R code

R> summary(aov(weight ~ litgen * motgen, data = foster))

to give

Df Sum Sq Mean Sq F value Pr(>F)

litgen 3 60.16 20.05 0.3697 0.775221

motgen 3 775.08 258.36 4.7632 0.005736

litgen:motgen 9 824.07 91.56 1.6881 0.120053

Residuals 45 2440.82 54.24

and then the code

R> summary(aov(weight ~ motgen * litgen, data = foster))

to give

Df Sum Sq Mean Sq F value Pr(>F)

motgen 3 771.61 257.20 4.7419 0.005869

litgen 3 63.63 21.21 0.3911 0.760004

motgen:litgen 9 824.07 91.56 1.6881 0.120053

Residuals 45 2440.82 54.24

There are (small) differences in the sum of squares for the two main effects
and, consequently, in the associated F -tests and p-values. This would not be
true if in the previous example in Subsection 5.3.1 we had used the code

R> summary(aov(weightgain ~ type * source, data = weightgain))

instead of the code which produced Figure 5.2 (readers should confirm that
this is the case).

Although for the foster feeding data the differences in the two analyses of
variance with different orders of main effects are very small, this may not
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always be the case and care is needed in dealing with unbalanced designs. For
a more complete discussion see Nelder (1977) and Aitkin (1978).

Both ANOVA tables indicate that the main effect of mother’s genotype is
highly significant and that genotype B leads to the greatest litter weight and
genotype J to the smallest litter weight.

We can investigate the effect of genotype B on litter weight in more detail by
the use of multiple comparison procedures (see Everitt, 1996, and Chapter 14).
Such procedures allow a comparison of all pairs of levels of a factor whilst
maintaining the nominal significance level at its specified value and producing
adjusted confidence intervals for mean differences. One such procedure is called
Tukey honest significant differences suggested by Tukey (1953); see Hochberg
and Tamhane (1987) also. Here, we are interested in simultaneous confidence
intervals for the weight differences between all four genotypes of the mother.
First, an ANOVA model is fitted

R> foster_aov <- aov(weight ~ litgen * motgen, data = foster)

which serves as the basis of the multiple comparisons, here with all pair-wise
differences by

R> foster_hsd <- TukeyHSD(foster_aov, "motgen")

R> foster_hsd

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = weight ~ litgen * motgen, data = foster)

$motgen

diff lwr upr p adj

B-A 3.330369 -3.859729 10.5204672 0.6078581

I-A -1.895574 -8.841869 5.0507207 0.8853702

J-A -6.566168 -13.627285 0.4949498 0.0767540

I-B -5.225943 -12.416041 1.9641552 0.2266493

J-B -9.896537 -17.197624 -2.5954489 0.0040509

J-I -4.670593 -11.731711 2.3905240 0.3035490

A convenient plot method exists for this object and we can get a graphical
representation of the multiple confidence intervals as shown in Figure 5.5. It
appears that there is only evidence for a difference in the B and J genotypes.
Note that the particular method implemented in TukeyHSD is applicable only
to balanced and mildly unbalanced designs (which is the case here). Alterna-
tive approaches, applicable to unbalanced designs and more general research
questions, will be introduced and discussed in Chapter 14.

5.3.3 Water Hardness and Mortality

The water hardness and mortality data for 61 large towns in England and
Wales (see Table 3.3) was analysed in Chapter 3 and here we will extend the
analysis by an assessment of the differences of both hardness and mortality
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R> plot(foster_hsd)
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Figure 5.5 Graphical presentation of multiple comparison results for the foster

feeding data.

in the North or South. The hypothesis that the two-dimensional mean-vector
of water hardness and mortality is the same for cities in the North and the
South can be tested by Hotelling-Lawley test in a multivariate analysis of
variance framework. The R function manova can be used to fit such a model
and the corresponding summary method performs the test specified by the
test argument

R> data("water", package = "HSAUR2")

R> summary(manova(cbind(hardness, mortality) ~ location,

+ data = water), test = "Hotelling-Lawley")

Df Hotelling approx F num Df den Df Pr(>F)

location 1 0.9002 26.1062 2 58 8.217e-09

Residuals 59
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The cbind statement in the left hand side of the formula indicates that a
multivariate response variable is to be modelled. The p-value associated with
the Hotelling-Lawley statistic is very small and there is strong evidence that
the mean vectors of the two variables are not the same in the two regions.
Looking at the sample means

R> tapply(water$hardness, water$location, mean)

North South

30.40000 69.76923

R> tapply(water$mortality, water$location, mean)

North South

1633.600 1376.808

we see large differences in the two regions both in water hardness and mortal-
ity, where low mortality is associated with hard water in the South and high
mortality with soft water in the North (see Figure 3.8 also).

5.3.4 Male Egyptian Skulls

We can begin by looking at a table of mean values for the four measure-
ments within each of the five epochs. The measurements are available in the
data.frame skulls and we can compute the means over all epochs by

R> data("skulls", package = "HSAUR2")

R> means <- aggregate(skulls[,c("mb", "bh", "bl", "nh")],

+ list(epoch = skulls$epoch), mean)

R> means

epoch mb bh bl nh

1 c4000BC 131.3667 133.6000 99.16667 50.53333

2 c3300BC 132.3667 132.7000 99.06667 50.23333

3 c1850BC 134.4667 133.8000 96.03333 50.56667

4 c200BC 135.5000 132.3000 94.53333 51.96667

5 cAD150 136.1667 130.3333 93.50000 51.36667

It may also be useful to look at these means graphically and this could be
done in a variety of ways. Here we construct a scatterplot matrix of the means
using the code attached to Figure 5.6.

There appear to be quite large differences between the epoch means, at
least on some of the four measurements. We can now test for a difference
more formally by using MANOVA with the following R code to apply each of
the four possible test criteria mentioned earlier;

R> skulls_manova <- manova(cbind(mb, bh, bl, nh) ~ epoch,

+ data = skulls)

R> summary(skulls_manova, test = "Pillai")

Df Pillai approx F num Df den Df Pr(>F)

epoch 4 0.3533 3.5120 16 580 4.675e-06

Residuals 145
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R> pairs(means[,-1],

+ panel = function(x, y) {

+ text(x, y, abbreviate(levels(skulls$epoch)))

+ })
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Figure 5.6 Scatterplot matrix of epoch means for Egyptian skulls data.

R> summary(skulls_manova, test = "Wilks")

Df Wilks approx F num Df den Df Pr(>F)

epoch 4.00 0.6636 3.9009 16.00 434.45 7.01e-07

Residuals 145.00

R> summary(skulls_manova, test = "Hotelling-Lawley")

Df Hotelling approx F num Df den Df Pr(>F)

epoch 4 0.4818 4.2310 16 562 8.278e-08

Residuals 145

R> summary(skulls_manova, test = "Roy")
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Df Roy approx F num Df den Df Pr(>F)

epoch 4 0.4251 15.4097 4 145 1.588e-10

Residuals 145

The p-value associated with each four test criteria is very small and there is
strong evidence that the skull measurements differ between the five epochs. We
might now move on to investigate which epochs differ and on which variables.
We can look at the univariate F -tests for each of the four variables by using
the code

R> summary.aov(skulls_manova)

Response mb :

Df Sum Sq Mean Sq F value Pr(>F)

epoch 4 502.83 125.71 5.9546 0.0001826

Residuals 145 3061.07 21.11

Response bh :

Df Sum Sq Mean Sq F value Pr(>F)

epoch 4 229.9 57.5 2.4474 0.04897

Residuals 145 3405.3 23.5

Response bl :

Df Sum Sq Mean Sq F value Pr(>F)

epoch 4 803.3 200.8 8.3057 4.636e-06

Residuals 145 3506.0 24.2

Response nh :

Df Sum Sq Mean Sq F value Pr(>F)

epoch 4 61.20 15.30 1.507 0.2032

Residuals 145 1472.13 10.15

We see that the results for the maximum breadths (mb) and basialiveolar length
(bl) are highly significant, with those for the other two variables, in particular
for nasal heights (nh), suggesting little evidence of a difference. To look at the
pairwise multivariate tests (any of the four test criteria are equivalent in the
case of a one-way layout with two levels only) we can use the summary method
and manova function as follows:

R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,

+ subset = epoch %in% c("c4000BC", "c3300BC")))

Df Pillai approx F num Df den Df Pr(>F)

epoch 1 0.02767 0.39135 4 55 0.814

Residuals 58

R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,

+ subset = epoch %in% c("c4000BC", "c1850BC")))

Df Pillai approx F num Df den Df Pr(>F)

epoch 1 0.1876 3.1744 4 55 0.02035

Residuals 58
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R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,

+ subset = epoch %in% c("c4000BC", "c200BC")))

Df Pillai approx F num Df den Df Pr(>F)

epoch 1 0.3030 5.9766 4 55 0.0004564

Residuals 58

R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,

+ subset = epoch %in% c("c4000BC", "cAD150")))

Df Pillai approx F num Df den Df Pr(>F)

epoch 1 0.3618 7.7956 4 55 4.736e-05

Residuals 58

To keep the overall significance level for the set of all pairwise multivariate
tests under some control (and still maintain a reasonable power), Stevens
(2001) recommends setting the nominal level α = 0.15 and carrying out each
test at the α/m level where m s the number of tests performed. The results
of the four pairwise tests suggest that as the epochs become further separated
in time the four skull measurements become increasingly distinct.

For more details of applying multiple comparisons in the multivariate situ-
ation see Stevens (2001).

5.4 Summary

Analysis of variance is one of the most widely used of statistical techniques
and is easily applied using R as is the extension to multivariate data. An
analysis of variance needs to be supplemented by graphical material prior to
formal analysis and often to more detailed investigation of group differences
using multiple comparison techniques.

Exercises

Ex. 5.1 Examine the residuals (observed value − fitted value) from fitting a
main effects only model to the data in Table 5.1. What conclusions do you
draw?

Ex. 5.2 The data in Table 5.4 below arise from a sociological study of Aus-
tralian Aboriginal and white children reported by Quine (1975). In this
study, children of both sexes from four age groups (final grade in primary
schools and first, second and third form in secondary school) and from two
cultural groups were used. The children in each age group were classified
as slow or average learners. The response variable was the number of days
absent from school during the school year. (Children who had suffered a
serious illness during the years were excluded.) Carry out what you con-
sider to be an appropriate analysis of variance of the data noting that (i)
there are unequal numbers of observations in each cell and (ii) the response
variable here is a count. Interpret your results with the aid of some suitable
tables of means and some informative graphs.
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Table 5.4: schooldays data. Days absent from school.

race gender school learner absent

aboriginal male F0 slow 2
aboriginal male F0 slow 11
aboriginal male F0 slow 14
aboriginal male F0 average 5
aboriginal male F0 average 5
aboriginal male F0 average 13
aboriginal male F0 average 20
aboriginal male F0 average 22
aboriginal male F1 slow 6
aboriginal male F1 slow 6
aboriginal male F1 slow 15
aboriginal male F1 average 7
aboriginal male F1 average 14
aboriginal male F2 slow 6
aboriginal male F2 slow 32

...
...

...
...

...

Ex. 5.3 The data in Table 5.5 arise from a large study of risk taking (see
Timm, 2002). Students were randomly assigned to three different treat-
ments labelled AA, C and NC. Students were administered two parallel
forms of a test called ‘low’ and ‘high’. Carry out a test of the equality of
the bivariate means of each treatment population.
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Table 5.5: students data. Treatment and results of two tests in
three groups of students.

treatment low high treatment low high

AA 8 28 C 34 4
AA 18 28 C 34 4
AA 8 23 C 44 7
AA 12 20 C 39 5
AA 15 30 C 20 0
AA 12 32 C 43 11
AA 18 31 NC 50 5
AA 29 25 NC 57 51
AA 6 28 NC 62 52
AA 7 28 NC 56 52
AA 6 24 NC 59 40
AA 14 30 NC 61 68
AA 11 23 NC 66 49
AA 12 20 NC 57 49

C 46 13 NC 62 58
C 26 10 NC 47 58
C 47 22 NC 53 40
C 44 14

Source: From Timm, N. H., Applied Multivariate Analysis, Springer, New
York, 2002. With kind permission of Springer Science and Business Media.
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CHAPTER 6

Simple and Multiple Linear Regression:
How Old is the Universe and Cloud

Seeding

6.1 Introduction

Freedman et al. (2001) give the relative velocity and the distance of 24 galaxies,
according to measurements made using the Hubble Space Telescope – the data
are contained in the gamair package accompanying Wood (2006), see Table 6.1.
Velocities are assessed by measuring the Doppler red shift in the spectrum of
light observed from the galaxies concerned, although some correction for ‘local’
velocity components is required. Distances are measured using the known
relationship between the period of Cepheid variable stars and their luminosity.
How can these data be used to estimate the age of the universe? Here we shall
show how this can be done using simple linear regression.

Table 6.1: hubble data. Distance and velocity for 24 galaxies.

galaxy velocity distance galaxy velocity distance

NGC0300 133 2.00 NGC3621 609 6.64
NGC0925 664 9.16 NGC4321 1433 15.21

NGC1326A 1794 16.14 NGC4414 619 17.70
NGC1365 1594 17.95 NGC4496A 1424 14.86
NGC1425 1473 21.88 NGC4548 1384 16.22
NGC2403 278 3.22 NGC4535 1444 15.78
NGC2541 714 11.22 NGC4536 1423 14.93
NGC2090 882 11.75 NGC4639 1403 21.98
NGC3031 80 3.63 NGC4725 1103 12.36
NGC3198 772 13.80 IC4182 318 4.49
NGC3351 642 10.00 NGC5253 232 3.15
NGC3368 768 10.52 NGC7331 999 14.72

Source: From Freedman W. L., et al., The Astrophysical Journal, 553, 47–72,
2001. With permission.

97
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Table 6.2: clouds data. Cloud seeding experiments in Florida –
see above for explanations of the variables.

seeding time sne cloudcover prewetness echomotion rainfall

no 0 1.75 13.4 0.274 stationary 12.85
yes 1 2.70 37.9 1.267 moving 5.52
yes 3 4.10 3.9 0.198 stationary 6.29
no 4 2.35 5.3 0.526 moving 6.11

yes 6 4.25 7.1 0.250 moving 2.45
no 9 1.60 6.9 0.018 stationary 3.61
no 18 1.30 4.6 0.307 moving 0.47
no 25 3.35 4.9 0.194 moving 4.56
no 27 2.85 12.1 0.751 moving 6.35

yes 28 2.20 5.2 0.084 moving 5.06
yes 29 4.40 4.1 0.236 moving 2.76
yes 32 3.10 2.8 0.214 moving 4.05
no 33 3.95 6.8 0.796 moving 5.74

yes 35 2.90 3.0 0.124 moving 4.84
yes 38 2.05 7.0 0.144 moving 11.86
no 39 4.00 11.3 0.398 moving 4.45
no 53 3.35 4.2 0.237 stationary 3.66

yes 55 3.70 3.3 0.960 moving 4.22
no 56 3.80 2.2 0.230 moving 1.16

yes 59 3.40 6.5 0.142 stationary 5.45
yes 65 3.15 3.1 0.073 moving 2.02
no 68 3.15 2.6 0.136 moving 0.82

yes 82 4.01 8.3 0.123 moving 1.09
no 83 4.65 7.4 0.168 moving 0.28

Weather modification, or cloud seeding, is the treatment of individual clouds
or storm systems with various inorganic and organic materials in the hope of
achieving an increase in rainfall. Introduction of such material into a cloud
that contains supercooled water, that is, liquid water colder than zero degrees
of Celsius, has the aim of inducing freezing, with the consequent ice particles
growing at the expense of liquid droplets and becoming heavy enough to fall
as rain from clouds that otherwise would produce none.

The data shown in Table 6.2 were collected in the summer of 1975 from an
experiment to investigate the use of massive amounts of silver iodide (100 to
1000 grams per cloud) in cloud seeding to increase rainfall (Woodley et al.,
1977). In the experiment, which was conducted in an area of Florida, 24 days
were judged suitable for seeding on the basis that a measured suitability cri-
terion, denoted S-Ne, was not less than 1.5. Here S is the ‘seedability’, the
difference between the maximum height of a cloud if seeded and the same cloud
if not seeded predicted by a suitable cloud model, and Ne is the number of
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hours between 1300 and 1600 G.M.T. with 10 centimetre echoes in the target;
this quantity biases the decision for experimentation against naturally rainy
days. Consequently, optimal days for seeding are those on which seedability is
large and the natural rainfall early in the day is small.

On suitable days, a decision was taken at random as to whether to seed or
not. For each day the following variables were measured:

seeding: a factor indicating whether seeding action occurred (yes or no),

time: number of days after the first day of the experiment,

cloudcover: the percentage cloud cover in the experimental area, measured
using radar,

prewetness: the total rainfall in the target area one hour before seeding (in
cubic metres ×107),

echomotion: a factor showing whether the radar echo was moving or station-
ary,

rainfall: the amount of rain in cubic metres ×107,

sne: suitability criterion, see above.

The objective in analysing these data is to see how rainfall is related to
the explanatory variables and, in particular, to determine the effectiveness of
seeding. The method to be used is multiple linear regression.

6.2 Simple Linear Regression

Assume yi represents the value of what is generally known as the response

variable on the ith individual and that xi represents the individual’s values on
what is most often called an explanatory variable. The simple linear regression
model is

yi = β0 + β1xi + εi

where β0 is the intercept and β1 is the slope of the linear relationship assumed
between the response and explanatory variables and εi is an error term. (The
‘simple’ here means that the model contains only a single explanatory vari-
able; we shall deal with the situation where there are several explanatory
variables in the next section.) The error terms are assumed to be independent
random variables having a normal distribution with mean zero and constant
variance σ2.

The regression coefficients, β0 and β1, may be estimated as β̂0 and β̂1 using
least squares estimation, in which the sum of squared differences between the
observed values of the response variable yi and the values ‘predicted’ by the
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regression equation ŷi = β̂0 + β̂1xi is minimised, leading to the estimates;

β̂1 =

n
∑

i=1

(yi − ȳ)(xi − x̄)

n
∑

i=1

(xi − x̄)2

β̂0 = ȳ − β̂1x̄

where ȳ and x̄ are the means of the response and explanatory variable, re-
spectively.

The predicted values of the response variable y from the model are ŷi =
β̂0 + β̂1xi. The variance σ2 of the error terms is estimated as

σ̂2 =
1

n − 2

n
∑

i=1

(yi − ŷi)
2.

The estimated variance of the estimate of the slope parameter is

Var(β̂1) =
σ̂2

n
∑

i=1

(xi − x̄)2

,

whereas the estimated variance of a predicted value ypred at a given value of
x, say x0 is

Var(ypred) = σ̂2

√

√

√

√

√

1

n
+ 1 +

(x0 − x̄)2

n
∑

i=1

(xi − x̄)2

.

In some applications of simple linear regression a model without an intercept
is required (when the data is such that the line must go through the origin),
i.e., a model of the form

yi = β1xi + εi.

In this case application of least squares gives the following estimator for β1

β̂1 =

n
∑

i=1

xiyi

n
∑

i=1

x2
i

. (6.1)

6.3 Multiple Linear Regression

Assume yi represents the value of the response variable on the ith individual,
and that xi1, xi2, . . . , xiq represents the individual’s values on q explanatory
variables, with i = 1, . . . , n. The multiple linear regression model is given by

yi = β0 + β1xi1 + · · · + βqxiq + εi.
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The error terms εi, i = 1, . . . , n, are assumed to be independent random
variables having a normal distribution with mean zero and constant variance
σ2. Consequently, the distribution of the random response variable, y, is also
normal with expected value given by the linear combination of the explanatory
variables

E(y|x1, . . . , xq) = β0 + β1x1 + · · · + βqxq

and with variance σ2.
The parameters of the model βk, k = 1, . . . , q, are known as regression

coefficients with β0 corresponding to the overall mean. The regression coeffi-
cients represent the expected change in the response variable associated with
a unit change in the corresponding explanatory variable, when the remaining
explanatory variables are held constant. The linear in multiple linear regres-
sion applies to the regression parameters, not to the response or explanatory
variables. Consequently, models in which, for example, the logarithm of a re-
sponse variable is modelled in terms of quadratic functions of some of the
explanatory variables would be included in this class of models.

The multiple linear regression model can be written most conveniently for
all n individuals by using matrices and vectors as y = Xβ + ε where y⊤ =
(y1, . . . , yn) is the vector of response variables, β⊤ = (β0, β1, . . . , βq) is the
vector of regression coefficients, and ε⊤ = (ε1, . . . , εn) are the error terms. The
design or model matrix X consists of the q continuously measured explanatory
variables and a column of ones corresponding to the intercept term

X =











1 x11 x12 . . . x1q

1 x21 x22 . . . x2q

...
...

...
. . .

...
1 xn1 xn2 . . . xnq











.

In case one or more of the explanatory variables are nominal or ordinal vari-
ables, they are represented by a zero-one dummy coding. Assume that x1 is a
factor at m levels, the submatrix of X corresponding to x1 is a n×m matrix
of zeros and ones, where the jth element in the ith row is one when xi1 is at
the jth level.

Assuming that the cross-product X⊤X is non-singular, i.e., can be inverted,
then the least squares estimator of the parameter vector β is unique and can
be calculated by β̂ = (X⊤X)−1X⊤y. The expectation and covariance of this

estimator β̂ are given by E(β̂) = β and Var(β̂) = σ2(X⊤X)−1. The diagonal

elements of the covariance matrix Var(β̂) give the variances of β̂j , j = 0, . . . , q,

whereas the off diagonal elements give the covariances between pairs of β̂j

and β̂k. The square roots of the diagonal elements of the covariance matrix
are thus the standard errors of the estimates β̂j .

If the cross-product X⊤X is singular we need to reformulate the model to
y = XCβ⋆ + ε such that X⋆ = XC has full rank. The matrix C is called the
contrast matrix in S and R and the result of the model fit is an estimate β̂⋆.
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By default, a contrast matrix derived from treatment contrasts is used. For the
theoretical details we refer to Searle (1971), the implementation of contrasts
in S and R is discussed by Chambers and Hastie (1992) and Venables and
Ripley (2002).

The regression analysis can be assessed using the following analysis of vari-
ance table (Table 6.3):

Table 6.3: Analysis of variance table for the multiple linear re-
gression model.

Source of variation Sum of squares Degrees of freedom

Regression
n
∑

i=1

(ŷi − ȳ)2 q

Residual
n
∑

i=1

(ŷi − yi)
2 n − q − 1

Total
n
∑

i=1

(yi − ȳ)2 n − 1

where ŷi is the predicted value of the response variable for the ith individual
ŷi = β̂0 + β̂1xi1 + · · · + β̂qxq1 and ȳ =

∑n

i=1 yi/n is the mean of the response
variable.

The mean square ratio

F =

n
∑

i=1

(ŷi − ȳ)2/q

n
∑

i=1

(ŷi − yi)2/(n − q − 1)

provides an F -test of the general hypothesis

H0 : β1 = · · · = βq = 0.

Under H0, the test statistic F has an F -distribution with q and n − q − 1
degrees of freedom. An estimate of the variance σ2 is

σ̂2 =
1

n − q − 1

n
∑

i=1

(yi − ŷi)
2.

The correlation between the observed values yi and the fitted values ŷi is
known as the multiple correlation coefficient. Individual regression coefficients

can be assessed by using the ratio t-statistics tj = β̂j/

√

Var(β̂)jj , although

these ratios should be used only as rough guides to the ‘significance’ of the
coefficients. The problem of selecting the ‘best’ subset of variables to be in-
cluded in a model is one of the most delicate ones in statistics and we refer
to Miller (2002) for the theoretical details and practical limitations (and see
Exercise 6.4).
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6.3.1 Regression Diagnostics

The possible influence of outliers and the checking of assumptions made in
fitting the multiple regression model, i.e., constant variance and normality of
error terms, can both be undertaken using a variety of diagnostic tools, of
which the simplest and most well known are the estimated residuals, i.e., the
differences between the observed values of the response and the fitted values of
the response. In essence these residuals estimate the error terms in the simple
and multiple linear regression model. So, after estimation, the next stage in
the analysis should be an examination of such residuals from fitting the chosen
model to check on the normality and constant variance assumptions and to
identify outliers. The most useful plots of these residuals are:

• A plot of residuals against each explanatory variable in the model. The pres-
ence of a non-linear relationship, for example, may suggest that a higher-
order term, in the explanatory variable should be considered.

• A plot of residuals against fitted values. If the variance of the residuals
appears to increase with predicted value, a transformation of the response
variable may be in order.

• A normal probability plot of the residuals. After all the systematic variation
has been removed from the data, the residuals should look like a sample
from a standard normal distribution. A plot of the ordered residuals against
the expected order statistics from a normal distribution provides a graphical
check of this assumption.

6.4 Analysis Using R

6.4.1 Estimating the Age of the Universe

Prior to applying a simple regression to the data it will be useful to look at a
plot to assess their major features. The R code given in Figure 6.1 produces a
scatterplot of velocity and distance. The diagram shows a clear, strong rela-
tionship between velocity and distance. The next step is to fit a simple linear
regression model to the data, but in this case the nature of the data requires
a model without intercept because if distance is zero so is relative speed. So
the model to be fitted to these data is

velocity = β1distance + ε.

This is essentially what astronomers call Hubble’s Law and β1 is known as
Hubble’s constant; β−1

1 gives an approximate age of the universe.
To fit this model we are estimating β1 using formula (6.1). Although this

operation is rather easy

R> sum(hubble$distance * hubble$velocity) /

+ sum(hubble$distance^2)

[1] 76.58117

it is more convenient to apply R’s linear modelling function
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R> plot(velocity ~ distance, data = hubble)

5 10 15 20

5
0

0
1

0
0

0
1

5
0

0

distance

ve
lo

c
it
y

Figure 6.1 Scatterplot of velocity and distance.

R> hmod <- lm(velocity ~ distance - 1, data = hubble)

Note that the model formula specifies a model without intercept. We can now
extract the estimated model coefficients via

R> coef(hmod)

distance

76.58117

and add this estimated regression line to the scatterplot; the result is shown
in Figure 6.2. In addition, we produce a scatterplot of the residuals yi −

ŷi against fitted values ŷi to assess the quality of the model fit. It seems
that for higher distance values the variance of velocity increases; however, we
are interested in only the estimated parameter β̂1 which remains valid under
variance heterogeneity (in contrast to t-tests and associated p-values).

Now we can use the estimated value of β1 to find an approximate value
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R> layout(matrix(1:2, ncol = 2))

R> plot(velocity ~ distance, data = hubble)

R> abline(hmod)

R> plot(hmod, which = 1)
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Figure 6.2 Scatterplot of velocity and distance with estimated regression line
(left) and plot of residuals against fitted values (right).

for the age of the universe. The Hubble constant itself has units of km ×

sec−1
× Mpc−1. A mega-parsec (Mpc) is 3.09 × 1019km, so we need to divide

the estimated value of β1 by this amount in order to obtain Hubble’s constant
with units of sec−1. The approximate age of the universe in seconds will then
be the inverse of this calculation. Carrying out the necessary computations

R> Mpc <- 3.09 * 10^19

R> ysec <- 60^2 * 24 * 365.25

R> Mpcyear <- Mpc / ysec

R> 1 / (coef(hmod) / Mpcyear)

distance

12785935335

gives an estimated age of roughly 12.8 billion years.

6.4.2 Cloud Seeding

Again, a graphical display highlighting the most important aspects of the data
will be helpful. Here we will construct boxplots of the rainfall in each category
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of the dichotomous explanatory variables and scatterplots of rainfall against
each of the continuous explanatory variables.

Both the boxplots (Figure 6.3) and the scatterplots (Figure 6.4) show some
evidence of outliers. The row names of the extreme observations in the clouds

data.frame can be identified via

R> rownames(clouds)[clouds$rainfall %in% c(bxpseeding$out,

+ bxpecho$out)]

[1] "1" "15"

where bxpseeding and bxpecho are variables created by boxplot in Fig-
ure 6.3. Now we shall not remove these observations but bear in mind during
the modelling process that they may cause problems.

In this example it is sensible to assume that the effect that some of the
other explanatory variables is modified by seeding and therefore consider a
model that includes seeding as covariate and, furthermore, allows interaction
terms for seeding with each of the covariates except time. This model can
be described by the formula

R> clouds_formula <- rainfall ~ seeding +

+ seeding:(sne + cloudcover + prewetness + echomotion) +

+ time

and the design matrix X⋆ can be computed via

R> Xstar <- model.matrix(clouds_formula, data = clouds)

By default, treatment contrasts have been applied to the dummy codings of
the factors seeding and echomotion as can be seen from the inspection of
the contrasts attribute of the model matrix

R> attr(Xstar, "contrasts")

$seeding

[1] "contr.treatment"

$echomotion

[1] "contr.treatment"

The default contrasts can be changed via the contrasts.arg argument to
model.matrix or the contrasts argument to the fitting function, for example
lm or aov as shown in Chapter 5.

However, such internals are hidden and performed by high-level model-
fitting functions such as lm which will be used to fit the linear model defined
by the formula clouds_formula:

R> clouds_lm <- lm(clouds_formula, data = clouds)

R> class(clouds_lm)

[1] "lm"

The results of the model fitting is an object of class lm for which a summary

method showing the conventional regression analysis output is available. The
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R> data("clouds", package = "HSAUR2")

R> layout(matrix(1:2, nrow = 2))

R> bxpseeding <- boxplot(rainfall ~ seeding, data = clouds,

+ ylab = "Rainfall", xlab = "Seeding")

R> bxpecho <- boxplot(rainfall ~ echomotion, data = clouds,

+ ylab = "Rainfall", xlab = "Echo Motion")
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Figure 6.3 Boxplots of rainfall.
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R> layout(matrix(1:4, nrow = 2))

R> plot(rainfall ~ time, data = clouds)

R> plot(rainfall ~ cloudcover, data = clouds)

R> plot(rainfall ~ sne, data = clouds, xlab="S-Ne criterion")

R> plot(rainfall ~ prewetness, data = clouds)
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Figure 6.4 Scatterplots of rainfall against the continuous covariates.

output in Figure 6.5 shows the estimates β̂⋆ with corresponding standard
errors and t-statistics as well as the F -statistic with associated p-value.

Many methods are available for extracting components of the fitted model.
The estimates β̂⋆ can be assessed via

R> betastar <- coef(clouds_lm)

R> betastar

(Intercept)

-0.34624093

seedingyes
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R> summary(clouds_lm)

Call:

lm(formula = clouds_formula, data = clouds)

Residuals:

Min 1Q Median 3Q Max

-2.5259 -1.1486 -0.2704 1.0401 4.3913

Coefficients:

Estimate Std. Error t value

(Intercept) -0.34624 2.78773 -0.124

seedingyes 15.68293 4.44627 3.527

time -0.04497 0.02505 -1.795

seedingno:sne 0.41981 0.84453 0.497

seedingyes:sne -2.77738 0.92837 -2.992

seedingno:cloudcover 0.38786 0.21786 1.780

seedingyes:cloudcover -0.09839 0.11029 -0.892

seedingno:prewetness 4.10834 3.60101 1.141

seedingyes:prewetness 1.55127 2.69287 0.576

seedingno:echomotionstationary 3.15281 1.93253 1.631

seedingyes:echomotionstationary 2.59060 1.81726 1.426

Pr(>|t|)

(Intercept) 0.90306

seedingyes 0.00372

time 0.09590

seedingno:sne 0.62742

seedingyes:sne 0.01040

seedingno:cloudcover 0.09839

seedingyes:cloudcover 0.38854

seedingno:prewetness 0.27450

seedingyes:prewetness 0.57441

seedingno:echomotionstationary 0.12677

seedingyes:echomotionstationary 0.17757

Residual standard error: 2.205 on 13 degrees of freedom

Multiple R-squared: 0.7158, Adjusted R-squared: 0.4972

F-statistic: 3.274 on 10 and 13 DF, p-value: 0.02431

Figure 6.5 R output of the linear model fit for the clouds data.

15.68293481

time

-0.04497427

seedingno:sne

0.41981393

seedingyes:sne

-2.77737613
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seedingno:cloudcover

0.38786207

seedingyes:cloudcover

-0.09839285

seedingno:prewetness

4.10834188

seedingyes:prewetness

1.55127493

seedingno:echomotionstationary

3.15281358

seedingyes:echomotionstationary

2.59059513

and the corresponding covariance matrix Cov(β̂⋆) is available from the vcov

method

R> Vbetastar <- vcov(clouds_lm)

where the square roots of the diagonal elements are the standard errors as
shown in Figure 6.5

R> sqrt(diag(Vbetastar))

(Intercept)

2.78773403

seedingyes

4.44626606

time

0.02505286

seedingno:sne

0.84452994

seedingyes:sne

0.92837010

seedingno:cloudcover

0.21785501

seedingyes:cloudcover

0.11028981

seedingno:prewetness

3.60100694

seedingyes:prewetness

2.69287308

seedingno:echomotionstationary

1.93252592

seedingyes:echomotionstationary

1.81725973

The results of the linear model fit, as shown in Figure 6.5, suggests that
rainfall can be increased by cloud seeding. Moreover, the model indicates that
higher values of the S-Ne criterion lead to less rainfall, but only on days when
cloud seeding happened, i.e., the interaction of seeding with S-Ne significantly
affects rainfall. A suitable graph will help in the interpretation of this result.
We can plot the relationship between rainfall and S-Ne for seeding and non-
seeding days using the R code shown with Figure 6.6.
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R> psymb <- as.numeric(clouds$seeding)

R> plot(rainfall ~ sne, data = clouds, pch = psymb,

+ xlab = "S-Ne criterion")

R> abline(lm(rainfall ~ sne, data = clouds,

+ subset = seeding == "no"))

R> abline(lm(rainfall ~ sne, data = clouds,

+ subset = seeding == "yes"), lty = 2)

R> legend("topright", legend = c("No seeding", "Seeding"),

+ pch = 1:2, lty = 1:2, bty = "n")
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Figure 6.6 Regression relationship between S-Ne criterion and rainfall with and
without seeding.

© 2010 by Taylor and Francis Group, LLC



112 SIMPLE AND MULTIPLE LINEAR REGRESSION

The plot suggests that for smaller S-Ne values, seeding produces greater
rainfall than no seeding, whereas for larger values of S-Ne it tends to pro-
duce less. The cross-over occurs at an S-Ne value of approximately four which
suggests that seeding is best carried out when S-Ne is less than four. But
the number of observations is small and we should perhaps now consider the
influence of any outlying observations on these results.

In order to investigate the quality of the model fit, we need access to the
residuals and the fitted values. The residuals can be found by the residuals

method and the fitted values of the response from the fitted (or predict)
method

R> clouds_resid <- residuals(clouds_lm)

R> clouds_fitted <- fitted(clouds_lm)

Now the residuals and the fitted values can be used to construct diagnostic
plots; for example the residual plot in Figure 6.7 where each observation is
labelled by its number. Observations 1 and 15 give rather large residual values
and the data should perhaps be reanalysed after these two observations are
removed. The normal probability plot of the residuals shown in Figure 6.8
shows a reasonable agreement between theoretical and sample quantiles, how-
ever, observations 1 and 15 are extreme again.

A further diagnostic that is often very useful is an index plot of the Cook’s
distances for each observation. This statistic is defined as

Dk =
1

(q + 1)σ̂2

n
∑

i=1

(ŷi(k) − yi)
2

where ŷi(k) is the fitted value of the ith observation when the kth observation
is omitted from the model. The values of Dk assess the impact of the kth
observation on the estimated regression coefficients. Values of Dk greater than
one are suggestive that the corresponding observation has undue influence on
the estimated regression coefficients (see Cook and Weisberg, 1982).

An index plot of the Cook’s distances for each observation (and many other
plots including those constructed above from using the basic functions) can
be found from applying the plot method to the object that results from the
application of the lm function. Figure 6.9 suggests that observations 2 and
18 have undue influence on the estimated regression coefficients, but the two
outliers identified previously do not. Again it may be useful to look at the
results after these two observations have been removed (see Exercise 6.2).

6.5 Summary

Multiple regression is used to assess the relationship between a set of explana-
tory variables and a response variable (with simple linear regression, there is a
single exploratory variable). The response variable is assumed to be normally
distributed with a mean that is a linear function of the explanatory variables
and a variance that is independent of the explanatory variables. An important
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R> plot(clouds_fitted, clouds_resid, xlab = "Fitted values",

+ ylab = "Residuals", type = "n",

+ ylim = max(abs(clouds_resid)) * c(-1, 1))

R> abline(h = 0, lty = 2)

R> text(clouds_fitted, clouds_resid, labels = rownames(clouds))

0 2 4 6 8 10

−
4

−
2

0
2

4

Fitted values

R
e

s
id

u
a

ls

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16
17

1819

20

21

2223

24

Figure 6.7 Plot of residuals against fitted values for clouds seeding data.

part of any regression analysis involves the graphical examination of residuals
and other diagnostic statistics to help identify departures from assumptions.

Exercises

Ex. 6.1 The simple residuals calculated as the difference between an observed
and predicted value have a distribution that is scale dependent since the
variance of each is a function of both σ2 and the diagonal elements of the
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R> qqnorm(clouds_resid, ylab = "Residuals")

R> qqline(clouds_resid)
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Figure 6.8 Normal probability plot of residuals from cloud seeding model
clouds_lm.

hat matrix H given by

H = X(X⊤X)−1X⊤.

Consequently it is often more useful to work with the standardised version
of the residuals that does not depend on either of these quantities. These
standardised residuals are calculated as

ri =
yi − ŷi

σ̂
√

1 − hii

where σ̂2 is the estimator of σ2 and hii is the ith diagonal element of H.
Write an R function to calculate these residuals and use it to obtain some
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R> plot(clouds_lm)
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Figure 6.9 Index plot of Cook’s distances for cloud seeding data.

diagnostic plots similar to those mentioned in the text. (The elements of
the hat matrix can be obtained from the lm.influence function.)

Ex. 6.2 Investigate refitting the cloud seeding data after removing any ob-
servations which may give cause for concern.

Ex. 6.3 Show how the analysis of variance table for the data in Table 5.1
of the previous chapter can be constructed from the results of applying an
appropriate multiple linear regression to the data.

Ex. 6.4 Investigate the use of the leaps function from package leaps (Lumley
and Miller, 2009) for selecting the ‘best’ set of variables predicting rainfall
in the cloud seeding data.
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Ex. 6.5 Remove the observations for galaxies having leverage greater than
0.08 and refit the zero intercept model. What is the estimated age of the
universe from this model?

Ex. 6.6 Fit a quadratic regression model, i.e, a model of the form

velocity = β1 × distance + β2 × distance2 + ε,

to the hubble data and plot the fitted curve and the simple linear regression
fit on a scatterplot of the data. Which model do you consider most sensible
considering the nature of the data? (The ‘quadratic model’ here is still
regarded as a linear regression model since the term linear relates to the
parameters of the model not to the powers of the explanatory variable.)
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CHAPTER 7

Logistic Regression and Generalised
Linear Models: Blood Screening,
Women’s Role in Society, Colonic

Polyps, and Driving and Back Pain

7.1 Introduction

The erythrocyte sedimentation rate (ESR) is the rate at which red blood cells
(erythrocytes) settle out of suspension in blood plasma, when measured under
standard conditions. If the ESR increases when the level of certain proteins
in the blood plasma rise in association with conditions such as rheumatic
diseases, chronic infections and malignant diseases, its determination might be
useful in screening blood samples taken from people suspected of suffering from
one of the conditions mentioned. The absolute value of the ESR is not of great
importance; rather, less than 20mm/hr indicates a ‘healthy’ individual. To
assess whether the ESR is a useful diagnostic tool, Collett and Jemain (1985)
collected the data shown in Table 7.1. The question of interest is whether
there is any association between the probability of an ESR reading greater
than 20mm/hr and the levels of the two plasma proteins. If there is not then
the determination of ESR would not be useful for diagnostic purposes.

Table 7.1: plasma data. Blood plasma data.

fibrinogen globulin ESR fibrinogen globulin ESR

2.52 38 ESR < 20 2.88 30 ESR < 20
2.56 31 ESR < 20 2.65 46 ESR < 20
2.19 33 ESR < 20 2.28 36 ESR < 20
2.18 31 ESR < 20 2.67 39 ESR < 20
3.41 37 ESR < 20 2.29 31 ESR < 20
2.46 36 ESR < 20 2.15 31 ESR < 20
3.22 38 ESR < 20 2.54 28 ESR < 20
2.21 37 ESR < 20 3.34 30 ESR < 20
3.15 39 ESR < 20 2.99 36 ESR < 20
2.60 41 ESR < 20 3.32 35 ESR < 20
2.29 36 ESR < 20 5.06 37 ESR > 20
2.35 29 ESR < 20 3.34 32 ESR > 20
3.15 36 ESR < 20 2.38 37 ESR > 20
2.68 34 ESR < 20 3.53 46 ESR > 20

117
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Table 7.1: plasma data (continued).

fibrinogen globulin ESR fibrinogen globulin ESR

2.60 38 ESR < 20 2.09 44 ESR > 20
2.23 37 ESR < 20 3.93 32 ESR > 20

Source: From Collett, D., Jemain, A., Sains Malay., 4, 493–511, 1985. With
permission.

In a survey carried out in 1974/1975 each respondent was asked if he or she
agreed or disagreed with the statement “Women should take care of running
their homes and leave running the country up to men”. The responses are
summarised in Table 7.2 (from Haberman, 1973) and also given in Collett
(2003). The questions of interest here are whether the responses of men and
women differ and how years of education affect the response.

Table 7.2: womensrole data. Women’s role in society data.

education gender agree disagree

0 Male 4 2
1 Male 2 0
2 Male 4 0
3 Male 6 3
4 Male 5 5
5 Male 13 7
6 Male 25 9
7 Male 27 15
8 Male 75 49
9 Male 29 29

10 Male 32 45
11 Male 36 59
12 Male 115 245
13 Male 31 70
14 Male 28 79
15 Male 9 23
16 Male 15 110
17 Male 3 29
18 Male 1 28
19 Male 2 13
20 Male 3 20
0 Female 4 2
1 Female 1 0
2 Female 0 0
3 Female 6 1
4 Female 10 0
5 Female 14 7
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Table 7.2: womensrole data (continued).

education gender agree disagree

6 Female 17 5
7 Female 26 16
8 Female 91 36
9 Female 30 35

10 Female 55 67
11 Female 50 62
12 Female 190 403
13 Female 17 92
14 Female 18 81
15 Female 7 34
16 Female 13 115
17 Female 3 28
18 Female 0 21
19 Female 1 2
20 Female 2 4

Source: From Haberman, S. J., Biometrics, 29, 205–220, 1973. With permis-
sion.

Giardiello et al. (1993) and Piantadosi (1997) describe the results of a
placebo-controlled trial of a non-steroidal anti-inflammatory drug in the treat-
ment of familial andenomatous polyposis (FAP). The trial was halted after a
planned interim analysis had suggested compelling evidence in favour of the
treatment. The data shown in Table 7.3 give the number of colonic polyps
after a 12-month treatment period. The question of interest is whether the
number of polyps is related to treatment and/or age of patients.

Table 7.3: polyps data. Number of polyps for two treatment
arms.

number treat age number treat age

63 placebo 20 3 drug 23
2 drug 16 28 placebo 22

28 placebo 18 10 placebo 30
17 drug 22 40 placebo 27
61 placebo 13 33 drug 23
1 drug 23 46 placebo 22
7 placebo 34 50 placebo 34

15 placebo 50 3 drug 23
44 placebo 19 1 drug 22
25 drug 17 4 drug 42
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Table 7.4 backpain data. Number of drivers (D) and non-drivers (D̄), suburban

(S) and city inhabitants (S̄) either suffering from a herniated disc (cases)

or not (controls).

Controls
D̄ D

S̄ S S̄ S Total

D̄ S̄ 9 0 10 7 26
Cases S 2 2 1 1 6

D S̄ 14 1 20 29 64
S 22 4 32 63 121

Total 47 7 63 100 217

The last of the data sets to be considered in this chapter is shown in Ta-
ble 7.4. These data arise from a study reported in Kelsey and Hardy (1975)
which was designed to investigate whether driving a car is a risk factor for low
back pain resulting from acute herniated lumbar intervertebral discs (AHLID).
A case-control study was used with cases selected from people who had recently
had X-rays taken of the lower back and had been diagnosed as having AHLID.
The controls were taken from patients admitted to the same hospital as a case
with a condition unrelated to the spine. Further matching was made on age
and gender and a total of 217 matched pairs were recruited, consisting of 89
female pairs and 128 male pairs. As a further potential risk factor, the variable
suburban indicates whether each member of the pair lives in the suburbs or
in the city.

7.2 Logistic Regression and Generalised Linear Models

7.2.1 Logistic Regression

One way of writing the multiple regression model described in the previous
chapter is as y ∼ N (µ, σ2) where µ = β0 + β1x1 + · · · + βqxq. This makes
it clear that this model is suitable for continuous response variables with,
conditional on the values of the explanatory variables, a normal distribution
with constant variance. So clearly the model would not be suitable for applying
to the erythrocyte sedimentation rate in Table 7.1, since the response variable
is binary. If we were to model the expected value of this type of response, i.e.,
the probability of it taking the value one, say π, directly as a linear function of
explanatory variables, it could lead to fitted values of the response probability
outside the range [0, 1], which would clearly not be sensible. And if we write
the value of the binary response as y = π(x1, x2, . . . , xq) + ε it soon becomes
clear that the assumption of normality for ε is also wrong. In fact here ε may
assume only one of two possible values. If y = 1, then ε = 1−π(x1, x2, . . . , xq)
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with probability π(x1, x2, . . . , xq) and if y = 0 then ε = π(x1, x2, . . . , xq) with
probability 1 − π(x1, x2, . . . , xq). So ε has a distribution with mean zero and
variance equal to π(x1, x2, . . . , xq)(1 − π(x1, x2, . . . , xq)), i.e., the conditional
distribution of our binary response variable follows a binomial distribution
with probability given by the conditional mean, π(x1, x2, . . . , xq).

So instead of modelling the expected value of the response directly as a
linear function of explanatory variables, a suitable transformation is modelled.
In this case the most suitable transformation is the logistic or logit function
of π leading to the model

logit(π) = log

(

π

1 − π

)

= β0 + β1x1 + · · · + βqxq. (7.1)

The logit of a probability is simply the log of the odds of the response taking
the value one. Equation (7.1) can be rewritten as

π(x1, x2, . . . , xq) =
exp(β0 + β1x1 + · · · + βqxq)

1 + exp(β0 + β1x1 + · · · + βqxq)
. (7.2)

The logit function can take any real value, but the associated probability
always lies in the required [0, 1] interval. In a logistic regression model, the
parameter βj associated with explanatory variable xj is such that exp(βj) is
the odds that the response variable takes the value one when xj increases by
one, conditional on the other explanatory variables remaining constant. The
parameters of the logistic regression model (the vector of regression coefficients
β) are estimated by maximum likelihood; details are given in Collett (2003).

7.2.2 The Generalised Linear Model

The analysis of variance models considered in Chapter 5 and the multiple
regression model described in Chapter 6 are, essentially, completely equivalent.
Both involve a linear combination of a set of explanatory variables (dummy
variables in the case of analysis of variance) as a model for the observed
response variable. And both include residual terms assumed to have a normal
distribution. The equivalence of analysis of variance and multiple regression
is spelt out in more detail in Everitt (2001).

The logistic regression model described in this chapter also has similari-
ties to the analysis of variance and multiple regression models. Again a linear
combination of explanatory variables is involved, although here the expected
value of the binary response is not modelled directly but via a logistic trans-
formation. In fact all three techniques can be unified in the generalised linear

model (GLM), first introduced in a landmark paper by Nelder and Wedder-
burn (1972). The GLM enables a wide range of seemingly disparate problems
of statistical modelling and inference to be set in an elegant unifying frame-
work of great power and flexibility. A comprehensive technical account of the
model is given in McCullagh and Nelder (1989). Here we describe GLMs only
briefly. Essentially GLMs consist of three main features:

© 2010 by Taylor and Francis Group, LLC



122 LOGISTIC REGRESSION AND GENERALISED LINEAR MODELS

1. An error distribution giving the distribution of the response around its
mean. For analysis of variance and multiple regression this will be the nor-
mal; for logistic regression it is the binomial. Each of these (and others
used in other situations to be described later) come from the same, expo-

nential family of probability distributions, and it is this family that is used
in generalised linear modelling (see Everitt and Pickles, 2000).

2. A link function, g, that shows how the linear function of the explanatory
variables is related to the expected value of the response:

g(µ) = β0 + β1x1 + · · · + βqxq.

For analysis of variance and multiple regression the link function is simply
the identity function; in logistic regression it is the logit function.

3. The variance function that captures how the variance of the response vari-
able depends on the mean. We will return to this aspect of GLMs later in
the chapter.

Estimation of the parameters in a GLM is usually achieved through a max-
imum likelihood approach – see McCullagh and Nelder (1989) for details.
Having estimated a GLM for a data set, the question of the quality of its fit
arises. Clearly the investigator needs to be satisfied that the chosen model de-
scribes the data adequately, before drawing conclusions about the parameter
estimates themselves. In practise, most interest will lie in comparing the fit of
competing models, particularly in the context of selecting subsets of explana-
tory variables that describe the data in a parsimonious manner. In GLMs a
measure of fit is provided by a quantity known as the deviance which measures
how closely the model-based fitted values of the response approximate the ob-
served value. Comparing the deviance values for two models gives a likelihood
ratio test of the two models that can be compared by using a statistic having a
χ2-distribution with degrees of freedom equal to the difference in the number
of parameters estimated under each model. More details are given in Cook
(1998).

7.3 Analysis Using R

7.3.1 ESR and Plasma Proteins

We begin by looking at the ESR data from Table 7.1. As always it is good prac-
tise to begin with some simple graphical examination of the data before under-
taking any formal modelling. Here we will look at conditional density plots of
the response variable given the two explanatory variables; such plots describe
how the conditional distribution of the categorical variable ESR changes as
the numerical variables fibrinogen and gamma globulin change. The required
R code to construct these plots is shown with Figure 7.1. It appears that higher
levels of each protein are associated with ESR values above 20 mm/hr.

We can now fit a logistic regression model to the data using the glm func-
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R> data("plasma", package = "HSAUR2")

R> layout(matrix(1:2, ncol = 2))

R> cdplot(ESR ~ fibrinogen, data = plasma)

R> cdplot(ESR ~ globulin, data = plasma)
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Figure 7.1 Conditional density plots of the erythrocyte sedimentation rate (ESR)

given fibrinogen and globulin.

tion. We start with a model that includes only a single explanatory variable,
fibrinogen. The code to fit the model is

R> plasma_glm_1 <- glm(ESR ~ fibrinogen, data = plasma,

+ family = binomial())

The formula implicitly defines a parameter for the global mean (the inter-
cept term) as discussed in Chapter 5 and Chapter 6. The distribution of the
response is defined by the family argument, a binomial distribution in our
case. (The default link function when the binomial family is requested is the
logistic function.)

A description of the fitted model can be obtained from the summary method
applied to the fitted model. The output is shown in Figure 7.2.

From the results in Figure 7.2 we see that the regression coefficient for
fibrinogen is significant at the 5% level. An increase of one unit in this vari-
able increases the log-odds in favour of an ESR value greater than 20 by an
estimated 1.83 with 95% confidence interval

R> confint(plasma_glm_1, parm = "fibrinogen")

2.5 % 97.5 %

0.3387619 3.9984921
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R> summary(plasma_glm_1)

Call:

glm(formula = ESR ~ fibrinogen, family = binomial(),

data = plasma)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.9298 -0.5399 -0.4382 -0.3356 2.4794

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.8451 2.7703 -2.471 0.0135

fibrinogen 1.8271 0.9009 2.028 0.0425

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 30.885 on 31 degrees of freedom

Residual deviance: 24.840 on 30 degrees of freedom

AIC: 28.840

Number of Fisher Scoring iterations: 5

Figure 7.2 R output of the summary method for the logistic regression model fitted

to ESR and fibrigonen.

These values are more helpful if converted to the corresponding values for the
odds themselves by exponentiating the estimate

R> exp(coef(plasma_glm_1)["fibrinogen"])

fibrinogen

6.215715

and the confidence interval

R> exp(confint(plasma_glm_1, parm = "fibrinogen"))

2.5 % 97.5 %

1.403209 54.515884

The confidence interval is very wide because there are few observations overall
and very few where the ESR value is greater than 20. Nevertheless it seems
likely that increased values of fibrinogen lead to a greater probability of an
ESR value greater than 20.

We can now fit a logistic regression model that includes both explanatory
variables using the code

R> plasma_glm_2 <- glm(ESR ~ fibrinogen + globulin,

+ data = plasma, family = binomial())

and the output of the summary method is shown in Figure 7.3.
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R> summary(plasma_glm_2)

Call:

glm(formula = ESR ~ fibrinogen + globulin,

family = binomial(), data = plasma)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.9683 -0.6122 -0.3458 -0.2116 2.2636

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -12.7921 5.7963 -2.207 0.0273

fibrinogen 1.9104 0.9710 1.967 0.0491

globulin 0.1558 0.1195 1.303 0.1925

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 30.885 on 31 degrees of freedom

Residual deviance: 22.971 on 29 degrees of freedom

AIC: 28.971

Number of Fisher Scoring iterations: 5

Figure 7.3 R output of the summary method for the logistic regression model fitted

to ESR and both globulin and fibrinogen.

The coefficient for gamma globulin is not significantly different from zero.
Subtracting the residual deviance of the second model from the corresponding
value for the first model we get a value of 1.87. Tested using a χ2-distribution
with a single degree of freedom this is not significant at the 5% level and so
we conclude that gamma globulin is not associated with ESR level. In R, the
task of comparing the two nested models can be performed using the anova

function

R> anova(plasma_glm_1, plasma_glm_2, test = "Chisq")

Analysis of Deviance Table

Model 1: ESR ~ fibrinogen

Model 2: ESR ~ fibrinogen + globulin

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 30 24.8404

2 29 22.9711 1 1.8692 0.1716

Nevertheless we shall use the predicted values from the second model and plot
them against the values of both explanatory variables using a bubbleplot to
illustrate the use of the symbols function. The estimated conditional proba-
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R> plot(globulin ~ fibrinogen, data = plasma, xlim = c(2, 6),

+ ylim = c(25, 55), pch = ".")

R> symbols(plasma$fibrinogen, plasma$globulin, circles = prob,

+ add = TRUE)
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Figure 7.4 Bubbleplot of fitted values for a logistic regression model fitted to the

plasma data.

bility of a ESR value larger 20 for all observations can be computed, following
formula (7.2), by

R> prob <- predict(plasma_glm_2, type = "response")

and now we can assign a larger circle to observations with larger probability
as shown in Figure 7.4. The plot clearly shows the increasing probability of
an ESR value above 20 (larger circles) as the values of fibrinogen, and to a
lesser extent, gamma globulin, increase.
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7.3.2 Women’s Role in Society

Originally the data in Table 7.2 would have been in a completely equivalent
form to the data in Table 7.1 data, but here the individual observations have
been grouped into counts of numbers of agreements and disagreements for the
two explanatory variables, gender and education. To fit a logistic regression
model to such grouped data using the glm function we need to specify the
number of agreements and disagreements as a two-column matrix on the left
hand side of the model formula. We first fit a model that includes the two
explanatory variables using the code

R> data("womensrole", package = "HSAUR2")

R> fm1 <- cbind(agree, disagree) ~ gender + education

R> womensrole_glm_1 <- glm(fm1, data = womensrole,

+ family = binomial())

R> summary(womensrole_glm_1)

Call:

glm(formula = fm1, family = binomial(), data = womensrole)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.72544 -0.86302 -0.06525 0.84340 3.13315

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.50937 0.18389 13.646 <2e-16

genderFemale -0.01145 0.08415 -0.136 0.892

education -0.27062 0.01541 -17.560 <2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 451.722 on 40 degrees of freedom

Residual deviance: 64.007 on 38 degrees of freedom

AIC: 208.07

Number of Fisher Scoring iterations: 4

Figure 7.5 R output of the summary method for the logistic regression model fitted

to the womensrole data.

From the summary output in Figure 7.5 it appears that education has a
highly significant part to play in predicting whether a respondent will agree
with the statement read to them, but the respondent’s gender is apparently
unimportant. As years of education increase the probability of agreeing with
the statement declines. We now are going to construct a plot comparing the
observed proportions of agreeing with those fitted by our fitted model. Because
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we will reuse this plot for another fitted object later on, we define a function
which plots years of education against some fitted probabilities, e.g.,

R> role.fitted1 <- predict(womensrole_glm_1, type = "response")

and labels each observation with the person’s gender:

1 R> myplot <- function(role.fitted) {

2 + f <- womensrole$gender == "Female"

3 + plot(womensrole$education, role.fitted, type = "n",

4 + ylab = "Probability of agreeing",

5 + xlab = "Education", ylim = c(0,1))

6 + lines(womensrole$education[!f], role.fitted[!f], lty = 1)

7 + lines(womensrole$education[f], role.fitted[f], lty = 2)

8 + lgtxt <- c("Fitted (Males)", "Fitted (Females)")

9 + legend("topright", lgtxt, lty = 1:2, bty = "n")

10 + y <- womensrole$agree / (womensrole$agree +

11 + womensrole$disagree)

12 + text(womensrole$education, y, ifelse(f, "\\VE", "\\MA"),

13 + family = "HersheySerif", cex = 1.25)

14 + }

In lines 3–5 of function myplot, an empty scatterplot of education and fitted
probabilities (type = "n") is set up, basically to set the scene for the following
plotting actions. Then, two lines are drawn (using function lines in lines 6
and 7), one for males (with line type 1) and one for females (with line type 2,
i.e., a dashed line), where the logical vector f describes both genders. In line
9 a legend is added. Finally, in lines 12 and 13 we plot ‘observed’ values, i.e.,
the frequencies of agreeing in each of the groups (y as computed in lines 10
and 11) and use the Venus and Mars symbols to indicate gender.

The two curves for males and females in Figure 7.6 are almost the same
reflecting the non-significant value of the regression coefficient for gender in
womensrole_glm_1. But the observed values plotted on Figure 7.6 suggest
that there might be an interaction of education and gender, a possibility that
can be investigated by applying a further logistic regression model using

R> fm2 <- cbind(agree,disagree) ~ gender * education

R> womensrole_glm_2 <- glm(fm2, data = womensrole,

+ family = binomial())

The gender and education interaction term is seen to be highly significant,
as can be seen from the summary output in Figure 7.7.

Interpreting this interaction effect is made simpler if we again plot fitted
and observed values using the same code as previously after getting fitted
values from womensrole_glm_2. The plot is shown in Figure 7.8. We see that
for fewer years of education women have a higher probability of agreeing with
the statement than men, but when the years of education exceed about ten
then this situation reverses.

A range of residuals and other diagnostics is available for use in association
with logistic regression to check whether particular components of the model
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R> myplot(role.fitted1)
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Figure 7.6 Fitted (from womensrole_glm_1) and observed probabilities of agree-

ing for the womensrole data.

are adequate. A comprehensive account of these is given in Collett (2003); here
we shall demonstrate only the use of what is known as the deviance residual.
This is the signed square root of the contribution of the ith observation to the
overall deviance. Explicitly it is given by

di = sign(yi − ŷi)

(

2yi log

(

yi

ŷi

)

+ 2(ni − yi) log

(

ni − yi

ni − ŷi

))1/2

(7.3)

where sign is the function that makes di positive when yi ≥ ŷi and nega-
tive else. In (7.3) yi is the observed number of ones for the ith observation
(the number of people who agree for each combination of covariates in our
example), and ŷi is its fitted value from the model. The residual provides
information about how well the model fits each particular observation.
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R> summary(womensrole_glm_2)

Call:

glm(formula = fm2, family = binomial(), data = womensrole)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.39097 -0.88062 0.01532 0.72783 2.45262

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.09820 0.23550 8.910 < 2e-16

genderFemale 0.90474 0.36007 2.513 0.01198

education -0.23403 0.02019 -11.592 < 2e-16

genderFemale:education -0.08138 0.03109 -2.617 0.00886

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 451.722 on 40 degrees of freedom

Residual deviance: 57.103 on 37 degrees of freedom

AIC: 203.16

Number of Fisher Scoring iterations: 4

Figure 7.7 R output of the summary method for the logistic regression model fitted

to the womensrole data.

We can obtain a plot of deviance residuals plotted against fitted values using
the following code above Figure 7.9. The residuals fall into a horizontal band
between −2 and 2. This pattern does not suggest a poor fit for any particular
observation or subset of observations.

7.3.3 Colonic Polyps

The data on colonic polyps in Table 7.3 involves count data. We could try to
model this using multiple regression but there are two problems. The first is
that a response that is a count can take only positive values, and secondly
such a variable is unlikely to have a normal distribution. Instead we will apply
a GLM with a log link function, ensuring that fitted values are positive, and
a Poisson error distribution, i.e.,

P(y) =
e−λλy

y!
.

This type of GLM is often known as Poisson regression. We can apply the
model using

© 2010 by Taylor and Francis Group, LLC



ANALYSIS USING R 131

R> role.fitted2 <- predict(womensrole_glm_2, type = "response")

R> myplot(role.fitted2)
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Figure 7.8 Fitted (from womensrole_glm_2) and observed probabilities of agree-

ing for the womensrole data.

R> data("polyps", package = "HSAUR2")

R> polyps_glm_1 <- glm(number ~ treat + age, data = polyps,

+ family = poisson())

(The default link function when the Poisson family is requested is the log
function.)

From Figure 7.10 we see that the regression coefficients for both age and
treatment are highly significant. But there is a problem with the model, but
before we can deal with it we need a short digression to describe in more detail
the third component of GLMs mentioned in the previous section, namely their
variance functions, V (µ).
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R> res <- residuals(womensrole_glm_2, type = "deviance")

R> plot(predict(womensrole_glm_2), res,

+ xlab="Fitted values", ylab = "Residuals",

+ ylim = max(abs(res)) * c(-1,1))

R> abline(h = 0, lty = 2)
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Figure 7.9 Plot of deviance residuals from logistic regression model fitted to the

womensrole data.

The variance function of a GLM captures how the variance of a response
variable depends upon its mean. The general form of the relationship is

Var(response) = φV (µ)

where φ is constant and V (µ) specifies how the variance depends on the mean.
For the error distributions considered previously this general form becomes:

Normal: V (µ) = 1, φ = σ2; here the variance does not depend on the mean.

Binomial: V (µ) = µ(1 − µ), φ = 1.
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R> summary(polyps_glm_1)

Call:

glm(formula = number ~ treat + age, family = poisson(),

data = polyps)

Deviance Residuals:

Min 1Q Median 3Q Max

-4.2212 -3.0536 -0.1802 1.4459 5.8301

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.529024 0.146872 30.84 < 2e-16

treatdrug -1.359083 0.117643 -11.55 < 2e-16

age -0.038830 0.005955 -6.52 7.02e-11

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 378.66 on 19 degrees of freedom

Residual deviance: 179.54 on 17 degrees of freedom

AIC: 273.88

Number of Fisher Scoring iterations: 5

Figure 7.10 R output of the summary method for the Poisson regression model

fitted to the polyps data.

Poisson: V (µ) = µ, φ = 1.

In the case of a Poisson variable we see that the mean and variance are equal,
and in the case of a binomial variable where the mean is the probability of
the variable taking the value one, π, the variance is π(1 − π).

Both the Poisson and binomial distributions have variance functions that
are completely determined by the mean. There is no free parameter for the
variance since, in applications of the generalised linear model with binomial
or Poisson error distributions the dispersion parameter, φ, is defined to be one
(see previous results for logistic and Poisson regression). But in some applica-
tions this becomes too restrictive to fully account for the empirical variance in
the data; in such cases it is common to describe the phenomenon as overdisper-

sion. For example, if the response variable is the proportion of family members
who have been ill in the past year, observed in a large number of families, then
the individual binary observations that make up the observed proportions are
likely to be correlated rather than independent. The non-independence can
lead to a variance that is greater (less) than on the assumption of binomial
variability. And observed counts often exhibit larger variance than would be
expected from the Poisson assumption, a fact noted over 80 years ago by
Greenwood and Yule (1920).

© 2010 by Taylor and Francis Group, LLC



134 LOGISTIC REGRESSION AND GENERALISED LINEAR MODELS

When fitting generalised models with binomial or Poisson error distribu-
tions, overdispersion can often be spotted by comparing the residual deviance
with its degrees of freedom. For a well-fitting model the two quantities should
be approximately equal. If the deviance is far greater than the degrees of
freedom overdispersion may be indicated. This is the case for the results in
Figure 7.10. So what can we do?

We can deal with overdispersion by using a procedure known as quasi-

likelihood, which allows the estimation of model parameters without fully
knowing the error distribution of the response variable. McCullagh and Nelder
(1989) give full details of the quasi-likelihood approach. In many respects it
simply allows for the estimation of φ from the data rather than defining it
to be unity for the binomial and Poisson distributions. We can apply quasi-
likelihood estimation to the colonic polyps data using the following R code

R> polyps_glm_2 <- glm(number ~ treat + age, data = polyps,

+ family = quasipoisson())

R> summary(polyps_glm_2)

Call:

glm(formula = number ~ treat + age,

family = quasipoisson(), data = polyps)

Deviance Residuals:

Min 1Q Median 3Q Max

-4.2212 -3.0536 -0.1802 1.4459 5.8301

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.52902 0.48106 9.415 3.72e-08

treatdrug -1.35908 0.38533 -3.527 0.00259

age -0.03883 0.01951 -1.991 0.06284

(Dispersion parameter for quasipoisson family taken to be 10.73)

Null deviance: 378.66 on 19 degrees of freedom

Residual deviance: 179.54 on 17 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 5

The regression coefficients for both explanatory variables remain significant
but their estimated standard errors are now much greater than the values
given in Figure 7.10. A possible reason for overdispersion in these data is that
polyps do not occur independently of one another, but instead may ‘cluster’
together.
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7.3.4 Driving and Back Pain

A frequently used design in medicine is the matched case-control study in
which each patient suffering from a particular condition of interest included
in the study is matched to one or more people without the condition. The most
commonly used matching variables are age, ethnic group, mental status etc. A
design with m controls per case is known as a 1 : m matched study. In many
cases m will be one, and it is the 1 : 1 matched study that we shall concentrate
on here where we analyse the data on low back pain given in Table 7.4. To
begin we shall describe the form of the logistic model appropriate for case-
control studies in the simplest case where there is only one binary explanatory
variable.

With matched pairs data the form of the logistic model involves the proba-
bility, ϕ, that in matched pair number i, for a given value of the explanatory
variable the member of the pair is a case. Specifically the model is

logit(ϕi) = αi + βx.

The odds that a subject with x = 1 is a case equals exp(β) times the odds
that a subject with x = 0 is a case.

The model generalises to the situation where there are q explanatory vari-
ables as

logit(ϕi) = αi + β1x1 + β2x2 + . . . βqxq.

Typically one x is an explanatory variable of real interest, such as past
exposure to a risk factor, with the others being used as a form of statistical
control in addition to the variables already controlled by virtue of using them
to form matched pairs. This is the case in our back pain example where it is
the effect of car driving on lower back pain that is of most interest.

The problem with the model above is that the number of parameters in-
creases at the same rate as the sample size with the consequence that maxi-
mum likelihood estimation is no longer viable. We can overcome this problem
if we regard the parameters αi as of little interest and so are willing to forgo
their estimation. If we do, we can then create a conditional likelihood function

that will yield maximum likelihood estimators of the coefficients, β1, . . . , βq,
that are consistent and asymptotically normally distributed. The mathematics
behind this are described in Collett (2003).

The model can be fitted using the clogit function from package survival;
the results are shown in Figure 7.11.

R> library("survival")

R> backpain_glm <- clogit(I(status == "case") ~

+ driver + suburban + strata(ID), data = backpain)

The response has to be a logical (TRUE for cases) and the strata command
specifies the matched pairs.

The estimate of the odds ratio of a herniated disc occurring in a driver
relative to a nondriver is 1.93 with a 95% confidence interval of (1.09, 3.44).
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R> print(backpain_glm)

Call:

clogit(I(status == "case") ~ driver + suburban + strata(ID),

data = backpain)

coef exp(coef) se(coef) z p

driveryes 0.658 1.93 0.294 2.24 0.025

suburbanyes 0.255 1.29 0.226 1.13 0.260

Likelihood ratio test=9.55 on 2 df, p=0.00846 n= 434

Figure 7.11 R output of the print method for the conditional logistic regression

model fitted to the backpain data.

Conditional on residence we can say that the risk of a herniated disc occurring
in a driver is about twice that of a nondriver. There is no evidence that where
a person lives affects the risk of lower back pain.

7.4 Summary

Generalised linear models provide a very powerful and flexible framework for
the application of regression models to a variety of non-normal response vari-
ables, for example, logistic regression to binary responses and Poisson regres-
sion to count data.

Exercises

Ex. 7.1 Construct a perspective plot of the fitted values from a logistic regres-
sion model fitted to the plasma data in which both fibrinogen and gamma
globulin are included as explanatory variables.

Ex. 7.2 Collett (2003) argues that two outliers need to be removed from the
plasma data. Try to identify those two unusual observations by means of a
scatterplot.

Ex. 7.3 The data shown in Table 7.5 arise from 31 male patients who have
been treated for superficial bladder cancer (see Seeber, 1998), and give the
number of recurrent tumours during a particular time after the removal of
the primary tumour, along with the size of the original tumour (whether
smaller or larger than 3 cm). Use Poisson regression to estimate the effect
of size of tumour on the number of recurrent tumours.
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Table 7.5: bladdercancer data. Number of recurrent tumours
for bladder cancer patients.

time tumorsize number time tumorsize number

2 <=3cm 1 13 <=3cm 2
3 <=3cm 1 15 <=3cm 2
6 <=3cm 1 18 <=3cm 2
8 <=3cm 1 23 <=3cm 2
9 <=3cm 1 20 <=3cm 3

10 <=3cm 1 24 <=3cm 4
11 <=3cm 1 1 >3cm 1
13 <=3cm 1 5 >3cm 1
14 <=3cm 1 17 >3cm 1
16 <=3cm 1 18 >3cm 1
21 <=3cm 1 25 >3cm 1
22 <=3cm 1 18 >3cm 2
24 <=3cm 1 25 >3cm 2
26 <=3cm 1 4 >3cm 3
27 <=3cm 1 19 >3cm 4
7 <=3cm 2

Source: From Seeber, G. U. H., in Encyclopedia of Biostatistics, John Wiley
& Sons, Chichester, UK, 1998. With permission.

Ex. 7.4 The data in Table 7.6 show the survival times from diagnosis of pa-
tients suffering from leukemia and the values of two explanatory variables,
the white blood cell count (wbc) and the presence or absence of a morpho-
logical characteristic of the white blood cells (ag) (the data are available
in package MASS, Venables and Ripley, 2002). Define a binary outcome
variable according to whether or not patients lived for at least 24 weeks af-
ter diagnosis and then fit a logistic regression model to the data. It may be
advisable to transform the very large white blood counts to avoid regression
coefficients very close to 0 (and odds ratios very close to 1). And a model
that contains only the two explanatory variables may not be adequate for
these data. Construct some graphics useful in the interpretation of the final
model you fit.
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Table 7.6: leuk data (package MASS). Survival times of patients
suffering from leukemia.

wbc ag time wbc ag time

2300 present 65 4400 absent 56
750 present 156 3000 absent 65

4300 present 100 4000 absent 17
2600 present 134 1500 absent 7
6000 present 16 9000 absent 16

10500 present 108 5300 absent 22
10000 present 121 10000 absent 3
17000 present 4 19000 absent 4
5400 present 39 27000 absent 2
7000 present 143 28000 absent 3
9400 present 56 31000 absent 8

32000 present 26 26000 absent 4
35000 present 22 21000 absent 3

100000 present 1 79000 absent 30
100000 present 1 100000 absent 4
52000 present 5 100000 absent 43

100000 present 65
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CHAPTER 8

Density Estimation: Erupting Geysers
and Star Clusters

8.1 Introduction

Geysers are natural fountains that shoot up into the air, at more or less regular
intervals, a column of heated water and steam. Old Faithful is one such geyser
and is the most popular attraction of Yellowstone National Park, although it is
not the largest or grandest geyser in the park. Old Faithful can vary in height
from 100–180 feet with an average near 130–140 feet. Eruptions normally last
between 1.5 to 5 minutes.

From August 1 to August 15, 1985, Old Faithful was observed and the
waiting times between successive eruptions noted. There were 300 eruptions
observed, so 299 waiting times were (in minutes) recorded and those shown in
Table 8.1.

Table 8.1: faithful data (package datasets). Old Faithful
geyser waiting times between two eruptions.

waiting waiting waiting waiting waiting

79 83 75 76 50
54 71 59 63 82
74 64 89 88 54
62 77 79 52 75
85 81 59 93 78
55 59 81 49 79
88 84 50 57 78
85 48 85 77 78
51 82 59 68 70
85 60 87 81 79
54 92 53 81 70
84 78 69 73 54
78 78 77 50 86
47 65 56 85 50
83 73 88 74 90
52 82 81 55 54
62 56 45 77 54
84 79 82 83 77
52 71 55 83 79

139
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Table 8.1: faithful data (continued).

waiting waiting waiting waiting waiting

79 62 90 51 64
51 76 45 78 75
47 60 83 84 47
78 78 56 46 86
69 76 89 83 63
74 83 46 55 85
83 75 82 81 82
55 82 51 57 57
76 70 86 76 82
78 65 53 84 67
79 73 79 77 74
73 88 81 81 54
77 76 60 87 83
66 80 82 77 73
80 48 77 51 73
74 86 76 78 88
52 60 59 60 80
48 90 80 82 71
80 50 49 91 83
59 78 96 53 56
90 63 53 78 79
80 72 77 46 78
58 84 77 77 84
84 75 65 84 58
58 51 81 49 83
73 82 71 83 43
83 62 70 71 60
64 88 81 80 75
53 49 93 49 81
82 83 53 75 46
59 81 89 64 90
75 47 45 76 46
90 84 86 53 74
54 52 58 94
80 86 78 55
54 81 66 76
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The Hertzsprung-Russell (H-R) diagram forms the basis of the theory of
stellar evolution. The diagram is essentially a plot of the energy output of
stars plotted against their surface temperature. Data from the H-R diagram
of Star Cluster CYG OB1, calibrated according to Vanisma and De Greve
(1972) are shown in Table 8.2 (from Hand et al., 1994).

Table 8.2: CYGOB1 data. Energy output and surface temperature
of Star Cluster CYG OB1.

logst logli logst logli logst logli

4.37 5.23 4.23 3.94 4.45 5.22
4.56 5.74 4.42 4.18 3.49 6.29
4.26 4.93 4.23 4.18 4.23 4.34
4.56 5.74 3.49 5.89 4.62 5.62
4.30 5.19 4.29 4.38 4.53 5.10
4.46 5.46 4.29 4.22 4.45 5.22
3.84 4.65 4.42 4.42 4.53 5.18
4.57 5.27 4.49 4.85 4.43 5.57
4.26 5.57 4.38 5.02 4.38 4.62
4.37 5.12 4.42 4.66 4.45 5.06
3.49 5.73 4.29 4.66 4.50 5.34
4.43 5.45 4.38 4.90 4.45 5.34
4.48 5.42 4.22 4.39 4.55 5.54
4.01 4.05 3.48 6.05 4.45 4.98
4.29 4.26 4.38 4.42 4.42 4.50
4.42 4.58 4.56 5.10

8.2 Density Estimation

The goal of density estimation is to approximate the probability density func-
tion of a random variable (univariate or multivariate) given a sample of ob-
servations of the variable. Univariate histograms are a simple example of a
density estimate; they are often used for two purposes, counting and display-
ing the distribution of a variable, but according to Wilkinson (1992), they are
effective for neither. For bivariate data, two-dimensional histograms can be
constructed, but for small and moderate sized data sets that is not of any real
use for estimating the bivariate density function, simply because most of the
‘boxes’ in the histogram will contain too few observations, or if the number of
boxes is reduced the resulting histogram will be too coarse a representation
of the density function.

The density estimates provided by one- and two-dimensional histograms can
be improved on in a number of ways. If, of course, we are willing to assume a
particular form for the variable’s distribution, for example, Gaussian, density
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estimation would be reduced to estimating the parameters of the assumed
distribution. More commonly, however, we wish to allow the data to speak for
themselves and so one of a variety of non-parametric estimation procedures
that are now available might be used. Density estimation is covered in detail
in several books, including Silverman (1986), Scott (1992), Wand and Jones
(1995) and Simonoff (1996). One of the most popular classes of procedures
is the kernel density estimators, which we now briefly describe for univariate
and bivariate data.

8.2.1 Kernel Density Estimators

From the definition of a probability density, if the random X has a density f ,

f(x) = lim
h→0

1

2h
P(x − h < X < x + h). (8.1)

For any given h a näıve estimator of P(x − h < X < x + h) is the proportion
of the observations x1, x2, . . . , xn falling in the interval (x − h, x + h), that is

f̂(x) =
1

2hn

n
∑

i=1

I(xi ∈ (x − h, x + h)), (8.2)

i.e., the number of x1, . . . , xn falling in the interval (x − h, x + h) divided by
2hn. If we introduce a weight function W given by

W (x) =







1

2
|x| < 1

0 else

then the näıve estimator can be rewritten as

f̂(x) =
1

n

n
∑

i=1

1

h
W

(

x − xi

h

)

. (8.3)

Unfortunately this estimator is not a continuous function and is not par-
ticularly satisfactory for practical density estimation. It does however lead
naturally to the kernel estimator defined by

f̂(x) =
1

hn

n
∑

i=1

K

(

x − xi

h

)

(8.4)

where K is known as the kernel function and h as the bandwidth or smoothing

parameter. The kernel function must satisfy the condition
∫

∞

−∞

K(x)dx = 1.

Usually, but not always, the kernel function will be a symmetric density func-
tion, for example, the normal. Three commonly used kernel functions are
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rectangular:

K(x) =







1

2
|x| < 1

0 else

triangular:

K(x) =







1 − |x| |x| < 1

0 else

Gaussian:

K(x) =
1

√

2π
e−

1

2
x2

The three kernel functions are implemented in R as shown in lines 1–3
of Figure 8.1. For some grid x, the kernel functions are plotted using the R

statements in lines 5–11 (Figure 8.1).

The kernel estimator f̂ is a sum of ‘bumps’ placed at the observations.
The kernel function determines the shape of the bumps while the window
width h determines their width. Figure 8.2 (redrawn from a similar plot in
Silverman, 1986) shows the individual bumps n−1h−1K((x−xi)/h), as well as

the estimate f̂ obtained by adding them up for an artificial set of data points

R> x <- c(0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5)

R> n <- length(x)

For a grid

R> xgrid <- seq(from = min(x) - 1, to = max(x) + 1, by = 0.01)

on the real line, we can compute the contribution of each measurement in x,
with h = 0.4, by the Gaussian kernel (defined in Figure 8.1, line 3) as follows;

R> h <- 0.4

R> bumps <- sapply(x, function(a) gauss((xgrid - a)/h)/(n * h))

A plot of the individual bumps and their sum, the kernel density estimate f̂ ,
is shown in Figure 8.2.

The kernel density estimator considered as a sum of ‘bumps’ centred at the
observations has a simple extension to two dimensions (and similarly for more
than two dimensions). The bivariate estimator for data (x1, y1), (x2, y2), . . . ,
(xn, yn) is defined as

f̂(x, y) =
1

nhxhy

n
∑

i=1

K

(

x − xi

hx

,
y − yi

hy

)

. (8.5)

In this estimator each coordinate direction has its own smoothing parameter
hx and hy. An alternative is to scale the data equally for both dimensions and
use a single smoothing parameter.
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1 R> rec <- function(x) (abs(x) < 1) * 0.5

2 R> tri <- function(x) (abs(x) < 1) * (1 - abs(x))

3 R> gauss <- function(x) 1/sqrt(2*pi) * exp(-(x^2)/2)

4 R> x <- seq(from = -3, to = 3, by = 0.001)

5 R> plot(x, rec(x), type = "l", ylim = c(0,1), lty = 1,

6 + ylab = expression(K(x)))

7 R> lines(x, tri(x), lty = 2)

8 R> lines(x, gauss(x), lty = 3)

9 R> legend(-3, 0.8, legend = c("Rectangular", "Triangular",

10 + "Gaussian"), lty = 1:3, title = "kernel functions",

11 + bty = "n")
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Figure 8.1 Three commonly used kernel functions.
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1 R> plot(xgrid, rowSums(bumps), ylab = expression(hat(f)(x)),

2 + type = "l", xlab = "x", lwd = 2)

3 R> rug(x, lwd = 2)

4 R> out <- apply(bumps, 2, function(b) lines(xgrid, b))
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Figure 8.2 Kernel estimate showing the contributions of Gaussian kernels evalu-

ated for the individual observations with bandwidth h = 0.4.

For bivariate density estimation a commonly used kernel function is the
standard bivariate normal density

K(x, y) =
1

2π
e−

1

2
(x2

+y2
).

Another possibility is the bivariate Epanechnikov kernel given by

K(x, y) =







2

π
(1 − x2

− y2) x2 + y2 < 1

0 else

© 2010 by Taylor and Francis Group, LLC



146 DENSITY ESTIMATION

R> epa <- function(x, y)

+ ((x^2 + y^2) < 1) * 2/pi * (1 - x^2 - y^2)

R> x <- seq(from = -1.1, to = 1.1, by = 0.05)

R> epavals <- sapply(x, function(a) epa(a, x))

R> persp(x = x, y = x, z = epavals, xlab = "x", ylab = "y",

+ zlab = expression(K(x, y)), theta = -35, axes = TRUE,

+ box = TRUE)

x

y

K
(x

, y
)

Figure 8.3 Epanechnikov kernel for a grid between (−1.1,−1.1) and (1.1, 1.1).

which is implemented and depicted in Figure 8.3, here by using the persp

function for plotting in three dimensions.

According to Venables and Ripley (2002) the bandwidth should be chosen
to be proportional to n−1/5; unfortunately the constant of proportionality
depends on the unknown density. The tricky problem of bandwidth estimation
is considered in detail in Silverman (1986).
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8.3 Analysis Using R

The R function density can be used to calculate kernel density estimators
with a variety of kernels (window argument). We can illustrate the function’s
use by applying it to the geyser data to calculate three density estimates of
the data and plot each on a histogram of the data, using the code displayed
with Figure 8.4. The hist function places an ordinary histogram of the geyser
data in each of the three plotting regions (lines 4, 10, 17). Then, the density

function with three different kernels (lines 8, 14, 21, with a Gaussian kernel
being the default in line 8) is plotted in addition. The rug statement sim-
ply places the observations in vertical bars onto the x-axis. All three density
estimates show that the waiting times between eruptions have a distinctly
bimodal form, which we will investigate further in Subsection 8.3.1.

For the bivariate star data in Table 8.2 we can estimate the bivariate den-
sity using the bkde2D function from package KernSmooth (Wand and Ripley,
2009). The resulting estimate can then be displayed as a contour plot (using
contour) or as a perspective plot (using persp). The resulting contour plot
is shown in Figure 8.5, and the perspective plot in 8.6. Both clearly show the
presence of two separated classes of stars.

8.3.1 A Parametric Density Estimate for the Old Faithful Data

In the previous section we considered the non-parametric kernel density esti-
mators for the Old Faithful data. The estimators showed the clear bimodality
of the data and in this section this will be investigated further by fitting a
parametric model based on a two-component normal mixture model. Such
models are members of the class of finite mixture distributions described in
great detail in McLachlan and Peel (2000). The two-component normal mix-
ture distribution was first considered by Karl Pearson over 100 years ago
(Pearson, 1894) and is given explicitly by

f(x) = pφ(x, µ1, σ
2

1
) + (1 − p)φ(x, µ2, σ

2

2
)

where φ(x, µ, σ2) denotes a normal density with mean µ and variance σ2.
This distribution has five parameters to estimate, the mixing proportion, p,

and the mean and variance of each component normal distribution. Pearson
heroically attempted this by the method of moments, which required solving
a polynomial equation of the 9th degree. Nowadays the preferred estimation
approach is maximum likelihood. The following R code contains a function to
calculate the relevant log-likelihood and then uses the optimiser optim to find
values of the five parameters that minimise the negative log-likelihood.

R> logL <- function(param, x) {

+ d1 <- dnorm(x, mean = param[2], sd = param[3])

+ d2 <- dnorm(x, mean = param[4], sd = param[5])

+ -sum(log(param[1] * d1 + (1 - param[1]) * d2))

+ }
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1 R> data("faithful", package = "datasets")

2 R> x <- faithful$waiting

3 R> layout(matrix(1:3, ncol = 3))

4 R> hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency",

5 + probability = TRUE, main = "Gaussian kernel",

6 + border = "gray")

7 R> lines(density(x, width = 12), lwd = 2)

8 R> rug(x)

9 R> hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency",

10 + probability = TRUE, main = "Rectangular kernel",

11 + border = "gray")

12 R> lines(density(x, width = 12, window = "rectangular"), lwd = 2)

13 R> rug(x)

14 R> hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency",

15 + probability = TRUE, main = "Triangular kernel",

16 + border = "gray")

17 R> lines(density(x, width = 12, window = "triangular"), lwd = 2)

18 R> rug(x)
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Figure 8.4 Density estimates of the geyser eruption data imposed on a histogram

of the data.
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R> library("KernSmooth")

R> data("CYGOB1", package = "HSAUR2")

R> CYGOB1d <- bkde2D(CYGOB1, bandwidth = sapply(CYGOB1, dpik))

R> contour(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat,

+ xlab = "log surface temperature",

+ ylab = "log light intensity")
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Figure 8.5 A contour plot of the bivariate density estimate of the CYGOB1 data,

i.e., a two-dimensional graphical display for a three-dimensional prob-

lem.
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R> persp(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat,

+ xlab = "log surface temperature",

+ ylab = "log light intensity",

+ zlab = "estimated density",

+ theta = -35, axes = TRUE, box = TRUE)
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Figure 8.6 The bivariate density estimate of the CYGOB1 data, here shown in a

three-dimensional fashion using the persp function.

R> startparam <- c(p = 0.5, mu1 = 50, sd1 = 3, mu2 = 80, sd2 = 3)

R> opp <- optim(startparam, logL, x = faithful$waiting,

+ method = "L-BFGS-B",

+ lower = c(0.01, rep(1, 4)),

+ upper = c(0.99, rep(200, 4)))

R> opp

$par

p mu1 sd1 mu2 sd2

© 2010 by Taylor and Francis Group, LLC



ANALYSIS USING R 151

0.360891 54.612125 5.872379 80.093414 5.867288

$value

[1] 1034.002

$counts

function gradient

55 55

$convergence

[1] 0

Of course, optimising the appropriate likelihood ‘by hand’ is not very con-
venient. In fact, (at least) two packages offer high-level functionality for esti-
mating mixture models. The first one is package mclust (Fraley et al., 2009)
implementing the methodology described in Fraley and Raftery (2002). Here,
a Bayesian information criterion (BIC) is applied to choose the form of the
mixture model:

R> library("mclust")

R> mc <- Mclust(faithful$waiting)

R> mc

best model: equal variance with 2 components

and the estimated means are

R> mc$parameters$mean

1 2

54.61911 80.09384

with estimated standard deviation (found to be equal within both groups)

R> sqrt(mc$parameters$variance$sigmasq)

[1] 5.86848

The proportion is p̂ = 0.36. The second package is called flexmix whose func-
tionality is described by Leisch (2004). A mixture of two normals can be fitted
using

R> library("flexmix")

R> fl <- flexmix(waiting ~ 1, data = faithful, k = 2)

with p̂ = 0.36 and estimated parameters

R> parameters(fl, component = 1)

Comp.1

coef.(Intercept) 54.628701

sigma 5.895234

R> parameters(fl, component = 2)

Comp.2

coef.(Intercept) 80.098582

sigma 5.871749
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R> opar <- as.list(opp$par)

R> rx <- seq(from = 40, to = 110, by = 0.1)

R> d1 <- dnorm(rx, mean = opar$mu1, sd = opar$sd1)

R> d2 <- dnorm(rx, mean = opar$mu2, sd = opar$sd2)

R> f <- opar$p * d1 + (1 - opar$p) * d2

R> hist(x, probability = TRUE, xlab = "Waiting times (in min.)",

+ border = "gray", xlim = range(rx), ylim = c(0, 0.06),

+ main = "")

R> lines(rx, f, lwd = 2)

R> lines(rx, dnorm(rx, mean = mean(x), sd = sd(x)), lty = 2,

+ lwd = 2)

R> legend(50, 0.06, lty = 1:2, bty = "n",

+ legend = c("Fitted two-component mixture density",

+ "Fitted single normal density"))

Waiting times (in min.)

D
e

n
s
it
y

40 50 60 70 80 90 100 110

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

0
.0

6

Fitted two−component mixture density
Fitted single normal density

Figure 8.7 Fitted normal density and two-component normal mixture for geyser

eruption data.
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The results are identical for all practical purposes and we can plot the fitted
mixture and a single fitted normal into a histogram of the data using the R

code which produces Figure 8.7. The dnorm function can be used to evaluate
the normal density with given mean and standard deviation, here as estimated
for the two-components of our mixture model, which are then collapsed into
our density estimate f. Clearly the two-component mixture is a far better fit
than a single normal distribution for these data.

We can get standard errors for the five parameter estimates by using a
bootstrap approach (see Efron and Tibshirani, 1993). The original data are
slightly perturbed by drawing n out of n observations with replacement and
those artificial replications of the original data are called bootstrap samples.
Now, we can fit the mixture for each bootstrap sample and assess the vari-
ability of the estimates, for example using confidence intervals. Some suitable
R code based on the Mclust function follows. First, we define a function that,
for a bootstrap sample indx, fits a two-component mixture model and returns
p̂ and the estimated means (note that we need to make sure that we always
get an estimate of p, not 1 − p):

R> library("boot")

R> fit <- function(x, indx) {

+ a <- Mclust(x[indx], minG = 2, maxG = 2)$parameters

+ if (a$pro[1] < 0.5)

+ return(c(p = a$pro[1], mu1 = a$mean[1],

+ mu2 = a$mean[2]))

+ return(c(p = 1 - a$pro[1], mu1 = a$mean[2],

+ mu2 = a$mean[1]))

+ }

The function fit can now be fed into the boot function (Canty and Ripley,
2009) for bootstrapping (here 1000 bootstrap samples are drawn)

R> bootpara <- boot(faithful$waiting, fit, R = 1000)

We assess the variability of our estimates p̂ by means of adjusted bootstrap
percentile (BCa) confidence intervals, which for p̂ can be obtained from

R> boot.ci(bootpara, type = "bca", index = 1)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1000 bootstrap replicates

CALL :

boot.ci(boot.out = bootpara, type = "bca", index = 1)

Intervals :

Level BCa

95% ( 0.3041, 0.4233 )

Calculations and Intervals on Original Scale

We see that there is a reasonable variability in the mixture model; however,
the means in the two components are rather stable, as can be seen from

© 2010 by Taylor and Francis Group, LLC



154 DENSITY ESTIMATION

R> boot.ci(bootpara, type = "bca", index = 2)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1000 bootstrap replicates

CALL :

boot.ci(boot.out = bootpara, type = "bca", index = 2)

Intervals :

Level BCa

95% (53.42, 56.07 )

Calculations and Intervals on Original Scale

for µ̂1 and for µ̂2 from

R> boot.ci(bootpara, type = "bca", index = 3)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1000 bootstrap replicates

CALL :

boot.ci(boot.out = bootpara, type = "bca", index = 3)

Intervals :

Level BCa

95% (79.05, 81.01 )

Calculations and Intervals on Original Scale

Finally, we show a graphical representation of both the bootstrap distribu-
tion of the mean estimates and the corresponding confidence intervals. For
convenience, we define a function for plotting, namely

R> bootplot <- function(b, index, main = "") {

+ dens <- density(b$t[,index])

+ ci <- boot.ci(b, type = "bca", index = index)$bca[4:5]

+ est <- b$t0[index]

+ plot(dens, main = main)

+ y <- max(dens$y) / 10

+ segments(ci[1], y, ci[2], y, lty = 2)

+ points(ci[1], y, pch = "(")

+ points(ci[2], y, pch = ")")

+ points(est, y, pch = 19)

+ }

The element t of an object created by boot contains the bootstrap replica-
tions of our estimates, i.e., the values computed by fit for each of the 1000
bootstrap samples of the geyser data. First, we plot a simple density esti-
mate and then construct a line representing the confidence interval. We apply
this function to the bootstrap distributions of our estimates µ̂1 and µ̂2 in
Figure 8.8.
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R> layout(matrix(1:2, ncol = 2))

R> bootplot(bootpara, 2, main = expression(mu[1]))

R> bootplot(bootpara, 3, main = expression(mu[2]))
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Figure 8.8 Bootstrap distribution and confidence intervals for the mean estimates

of a two-component mixture for the geyser data.

8.4 Summary

Histograms and scatterplots are frequently used to give graphical representa-
tions of univariate and bivariate data. But both can often be improved and
made more helpful by adding some form of density estimate. For scatterplots
in particular, adding a contour plot of the estimated bivariate density can be
particularly useful in aiding in the identification of clusters, gaps and outliers.

Exercises

Ex. 8.1 The data shown in Table 8.3 are the velocities of 82 galaxies from
six well-separated conic sections of space (Postman et al., 1986, Roeder,
1990). The data are intended to shed light on whether or not the observable
universe contains superclusters of galaxies surrounded by large voids. The
evidence for the existence of superclusters would be the multimodality of
the distribution of velocities. Construct a histogram of the data and add a
variety of kernel estimates of the density function. What do you conclude
about the possible existence of superclusters of galaxies?
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Table 8.3: galaxies data (package MASS). Velocities of 82
galaxies.

galaxies galaxies galaxies galaxies galaxies

9172 19349 20196 22209 23706
9350 19440 20215 22242 23711
9483 19473 20221 22249 24129
9558 19529 20415 22314 24285
9775 19541 20629 22374 24289

10227 19547 20795 22495 24366
10406 19663 20821 22746 24717
16084 19846 20846 22747 24990
16170 19856 20875 22888 25633
18419 19863 20986 22914 26690
18552 19914 21137 23206 26995
18600 19918 21492 23241 32065
18927 19973 21701 23263 32789
19052 19989 21814 23484 34279
19070 20166 21921 23538
19330 20175 21960 23542
19343 20179 22185 23666

Source: From Roeder, K., J. Am. Stat. Assoc., 85, 617–624, 1990. Reprinted
with permission from The Journal of the American Statistical Association.
Copyright 1990 by the American Statistical Association. All rights reserved.

Ex. 8.2 The data in Table 8.4 give the birth and death rates for 69 countries
(from Hartigan, 1975). Produce a scatterplot of the data that shows a
contour plot of the estimated bivariate density. Does the plot give you any
interesting insights into the possible structure of the data?
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Table 8.4: birthdeathrates data. Birth and death rates for 69
countries.

birth death birth death birth death

36.4 14.6 26.2 4.3 18.2 12.2
37.3 8.0 34.8 7.9 16.4 8.2
42.1 15.3 23.4 5.1 16.9 9.5
55.8 25.6 24.8 7.8 17.6 19.8
56.1 33.1 49.9 8.5 18.1 9.2
41.8 15.8 33.0 8.4 18.2 11.7
46.1 18.7 47.7 17.3 18.0 12.5
41.7 10.1 46.6 9.7 17.4 7.8
41.4 19.7 45.1 10.5 13.1 9.9
35.8 8.5 42.9 7.1 22.3 11.9
34.0 11.0 40.1 8.0 19.0 10.2
36.3 6.1 21.7 9.6 20.9 8.0
32.1 5.5 21.8 8.1 17.5 10.0
20.9 8.8 17.4 5.8 19.0 7.5
27.7 10.2 45.0 13.5 23.5 10.8
20.5 3.9 33.6 11.8 15.7 8.3
25.0 6.2 44.0 11.7 21.5 9.1
17.3 7.0 44.2 13.5 14.8 10.1
46.3 6.4 27.7 8.2 18.9 9.6
14.8 5.7 22.5 7.8 21.2 7.2
33.5 6.4 42.8 6.7 21.4 8.9
39.2 11.2 18.8 12.8 21.6 8.7
28.4 7.1 17.1 12.7 25.5 8.8

Source: From Hartigan, J. A., Clustering Algorithms, Wiley, New York,
1975. With permission.

Ex. 8.3 A sex difference in the age of onset of schizophrenia was noted by
Kraepelin (1919). Subsequent epidemiological studies of the disorder have
consistently shown an earlier onset in men than in women. One model that
has been suggested to explain this observed difference is known as the sub-

type model which postulates two types of schizophrenia, one characterised
by early onset, typical symptoms and poor premorbid competence, and the
other by late onset, atypical symptoms and good premorbid competence.
The early onset type is assumed to be largely a disorder of men and the
late onset largely a disorder of women. By fitting finite mixtures of normal
densities separately to the onset data for men and women given in Table 8.5
see if you can produce some evidence for or against the subtype model.

© 2010 by Taylor and Francis Group, LLC



158 DENSITY ESTIMATION

Table 8.5: schizophrenia data. Age on onset of schizophrenia
for both sexes.

age gender age gender age gender age gender

20 female 20 female 22 male 27 male
30 female 43 female 19 male 18 male
21 female 39 female 16 male 43 male
23 female 40 female 16 male 20 male
30 female 26 female 18 male 17 male
25 female 50 female 16 male 21 male
13 female 17 female 33 male 5 male
19 female 17 female 22 male 27 male
16 female 23 female 23 male 25 male
25 female 44 female 10 male 18 male
20 female 30 female 14 male 24 male
25 female 35 female 15 male 33 male
27 female 20 female 20 male 32 male
43 female 41 female 11 male 29 male
6 female 18 female 25 male 34 male

21 female 39 female 9 male 20 male
15 female 27 female 22 male 21 male
26 female 28 female 25 male 31 male
23 female 30 female 20 male 22 male
21 female 34 female 19 male 15 male
23 female 33 female 22 male 27 male
23 female 30 female 23 male 26 male
34 female 29 female 24 male 23 male
14 female 46 female 29 male 47 male
17 female 36 female 24 male 17 male
18 female 58 female 22 male 21 male
21 female 28 female 26 male 16 male
16 female 30 female 20 male 21 male
35 female 28 female 25 male 19 male
32 female 37 female 17 male 31 male
48 female 31 female 25 male 34 male
53 female 29 female 28 male 23 male
51 female 32 female 22 male 23 male
48 female 48 female 22 male 20 male
29 female 49 female 23 male 21 male
25 female 30 female 35 male 18 male
44 female 21 male 16 male 26 male
23 female 18 male 29 male 30 male
36 female 23 male 33 male 17 male
58 female 21 male 15 male 21 male
28 female 27 male 29 male 19 male
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Table 8.5: schizophrenia data (continued).

age gender age gender age gender age gender

51 female 24 male 20 male 22 male
40 female 20 male 29 male 52 male
43 female 12 male 24 male 19 male
21 female 15 male 39 male 24 male
48 female 19 male 10 male 19 male
17 female 21 male 20 male 19 male
23 female 22 male 23 male 33 male
28 female 19 male 15 male 32 male
44 female 24 male 18 male 29 male
28 female 9 male 20 male 58 male
21 female 19 male 21 male 39 male
31 female 18 male 30 male 42 male
22 female 17 male 21 male 32 male
56 female 23 male 18 male 32 male
60 female 17 male 19 male 46 male
15 female 23 male 15 male 38 male
21 female 19 male 19 male 44 male
30 female 37 male 18 male 35 male
26 female 26 male 25 male 45 male
28 female 22 male 17 male 41 male
23 female 24 male 15 male 31 male
21 female 19 male 42 male
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CHAPTER 9

Recursive Partitioning: Predicting
Body Fat and Glaucoma Diagnosis

9.1 Introduction

Worldwide, overweight and obesity are considered to be major health prob-
lems because of their strong association with a higher risk of diseases of the
metabolic syndrome, including diabetes mellitus and cardiovascular disease, as
well as with certain forms of cancer. Obesity is frequently evaluated by using
simple indicators such as body mass index, waist circumference, or waist-to-
hip ratio. Specificity and adequacy of these indicators are still controversial,
mainly because they do not allow a precise assessment of body composition.
Body fat, especially visceral fat, is suggested to be a better predictor of dis-
eases of the metabolic syndrome. Garcia et al. (2005) report on the devel-
opment of a multiple linear regression model for body fat content by means
of p = 9 common anthropometric measurements which were obtained for
n = 71 healthy German women. In addition, the women’s body composition
was measured by Dual Energy X-Ray Absorptiometry (DXA). This reference
method is very accurate in measuring body fat but finds little applicability in
practical environments, mainly because of high costs and the methodological
efforts needed. Therefore, a simple regression model for predicting DXA mea-
surements of body fat is of special interest for the practitioner. The following
variables are available (the measurements are given in Table 9.1):

DEXfat: body fat measured by DXA, the response variable,

age: age of the subject in years,

waistcirc: waist circumference,

hipcirc: hip circumference,

elbowbreadth: breadth of the elbow, and

kneebreadth: breadth of the knee.

Table 9.1: bodyfat data (package mboost). Body fat predic-
tion by skinfold thickness, circumferences, and bone
breadths.

DEXfat age waistcirc hipcirc elbowbreadth kneebreadth

41.68 57 100.0 112.0 7.1 9.4
43.29 65 99.5 116.5 6.5 8.9

161
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Table 9.1: bodyfat data (continued).

DEXfat age waistcirc hipcirc elbowbreadth kneebreadth

35.41 59 96.0 108.5 6.2 8.9
22.79 58 72.0 96.5 6.1 9.2
36.42 60 89.5 100.5 7.1 10.0
24.13 61 83.5 97.0 6.5 8.8
29.83 56 81.0 103.0 6.9 8.9
35.96 60 89.0 105.0 6.2 8.5
23.69 58 80.0 97.0 6.4 8.8
22.71 62 79.0 93.0 7.0 8.8
23.42 63 79.0 99.0 6.2 8.6
23.24 62 72.0 94.0 6.7 8.7
26.25 64 81.5 95.0 6.2 8.2
21.94 60 65.0 90.0 5.7 8.2
30.13 61 79.0 107.5 5.8 8.6
36.31 66 98.5 109.0 6.9 9.6
27.72 63 79.5 101.5 7.0 9.4
46.99 57 117.0 116.0 7.1 10.7
42.01 49 100.5 112.0 6.9 9.4
18.63 65 82.0 91.0 6.6 8.8
38.65 58 101.0 107.5 6.4 8.6
21.20 63 80.0 96.0 6.9 8.6
35.40 60 89.0 101.0 6.2 9.2
29.63 59 89.5 99.5 6.0 8.1
25.16 32 73.0 99.0 7.2 8.6
31.75 42 87.0 102.0 6.9 10.8
40.58 49 90.2 110.3 7.1 9.5
21.69 63 80.5 97.0 5.8 8.8
46.60 57 102.0 124.0 6.6 11.2
27.62 44 86.0 102.0 6.3 8.3
41.30 61 102.0 122.5 6.3 10.8
42.76 62 103.0 125.0 7.3 11.1
28.84 24 81.0 100.0 6.6 9.7
36.88 54 85.5 113.0 6.2 9.6
25.09 65 75.3 101.2 5.2 9.3
29.73 67 81.0 104.3 5.7 8.1
28.92 45 85.0 106.0 6.7 10.0
43.80 51 102.2 118.5 6.8 10.6
26.74 49 78.0 99.0 6.2 9.8
33.79 52 93.3 109.0 6.8 9.8
62.02 66 106.5 126.0 6.4 11.4
40.01 63 102.0 117.0 6.6 10.6
42.72 42 111.0 109.0 6.7 9.9
32.49 50 102.0 108.0 6.2 9.8
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Table 9.1: bodyfat data (continued).

DEXfat age waistcirc hipcirc elbowbreadth kneebreadth

45.92 63 116.8 132.0 6.1 9.8
42.23 62 112.0 127.0 7.2 11.0
47.48 42 115.0 128.5 6.6 10.0
60.72 41 115.0 125.0 7.3 11.8
32.74 67 89.8 109.0 6.3 9.6
27.04 67 82.2 103.6 7.2 9.2
21.07 43 75.0 99.3 6.0 8.4
37.49 54 98.0 109.5 7.0 10.0
38.08 49 105.0 116.3 7.0 9.5
40.83 25 89.5 122.0 6.5 10.0
18.51 26 87.8 94.0 6.6 9.0
26.36 33 79.2 107.7 6.5 9.0
20.08 36 80.0 95.0 6.4 9.0
43.71 38 105.5 122.5 6.6 10.0
31.61 26 95.0 109.0 6.7 9.5
28.98 52 81.5 102.3 6.4 9.2
18.62 29 71.0 92.0 6.4 8.5
18.64 31 68.0 93.0 5.7 7.2
13.70 19 68.0 88.0 6.5 8.2
14.88 35 68.5 94.5 6.5 8.8
16.46 27 75.0 95.0 6.4 9.1
11.21 40 66.6 92.2 6.1 8.5
11.21 53 66.6 92.2 6.1 8.5
14.18 31 69.7 93.2 6.2 8.1
20.84 27 66.5 100.0 6.5 8.5
19.00 52 76.5 103.0 7.4 8.5
18.07 59 71.0 88.3 5.7 8.9

A second set of data that will also be used in this chapter involves the inves-
tigation reported in Mardin et al. (2003) of whether laser scanner images of
the eye background can be used to classify a patient’s eye as suffering from
glaucoma or not. Glaucoma is a neuro-degenerative disease of the optic nerve
and is one of the major reasons for blindness in elderly people. For 196 people,
98 patients suffering glaucoma and 98 controls which have been matched by
age and gender, 62 numeric variables derived from the laser scanning images
are available. The data are available as GlaucomaM from package ipred (Peters
et al., 2002). The variables describe the morphology of the optic nerve head,
i.e., measures of volumes and areas in certain regions of the eye background.
Those regions have been manually outlined by a physician. Our aim is to con-
struct a prediction model which is able to decide whether an eye is affected
by glaucomateous changes based on the laser image data.
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Both sets of data described above could be analysed using the regression
models described in Chapter 6 and Chapter 7, i.e., regression models for nu-
meric and binary response variables based on a linear combination of the
covariates. But here we shall employ an alternative approach known as recur-

sive partitioning, where the resulting models are usually called regression or

classification trees. This method was originally invented to deal with possible
non-linear relationships between covariates and response. The basic idea is to
partition the covariate space and to compute simple statistics of the dependent
variable, like the mean or median, inside each cell.

9.2 Recursive Partitioning

There exist many algorithms for the construction of classification or regres-
sion trees but the majority of algorithms follow a simple general rule: First
partition the observations by univariate splits in a recursive way and second
fit a constant model in each cell of the resulting partition. An overview of this
field of regression models is given by Murthy (1998).

In more details, for the first step, one selects a covariate xj from the q

available covariates x1, . . . , xq and estimates a split point which separates the
response values yi into two groups. For an ordered covariate xj a split point is
a number ξ dividing the observations into two groups. The first group consists
of all observations with xj ≤ ξ and the second group contains the observations
satisfying xj > ξ. For a nominal covariate xj , the two groups are defined by a
set of levels A where either xj ∈ A or xj 6∈ A.

Once the splits ξ or A for some selected covariate xj have been estimated,
one applies the procedure sketched above for all observations in the first group
and, recursively, splits this set of observations further. The same happens for
all observations in the second group. The recursion is stopped when some
stopping criterion is fulfilled.

The available algorithms mostly differ with respect to three points: how the
covariate is selected in each step, how the split point is estimated and which
stopping criterion is applied. One of the most popular algorithms is described
in the Classification and Regression Trees book by Breiman et al. (1984) and is
available in R by the functions in package rpart (Therneau and Atkinson, 1997,
Therneau et al., 2009). This algorithm first examines all possible splits for all
covariates and chooses the split which leads to two groups that are ‘purer’ than
the current group with respect to the values of the response variable y. There
are many possible measures of impurity available, for regression problems with
nominal response the Gini criterion is the default in rpart, alternatives and
a more detailed description of tree based methods can be found in Ripley
(1996).

The question when the recursion needs to stop is all but trivial. In fact,
trees with too many leaves will suffer from overfitting and small trees will
miss important aspects of the problem. Commonly, this problem is addressed
by so-called pruning methods. As the name suggests, one first grows a very

© 2010 by Taylor and Francis Group, LLC



ANALYSIS USING R 165

large tree using a trivial stopping criterion as the number of observations in
a leaf, say, and then prunes branches that are not necessary.

Once that a tree has been grown, a simple summary statistic is computed
for each leaf. The mean or median can be used for continuous responses and
for nominal responses the proportions of the classes is commonly used. The
prediction of a new observation is simply the corresponding summary statistic
of the leaf to which this observation belongs.

However, even the right-sized tree consists of binary splits which are, of
course, hard decisions. When the underlying relationship between covariate
and response is smooth, such a split point estimate will be affected by high
variability. This problem is addressed by so called ensemble methods. Here,
multiple trees are grown on perturbed instances of the data set and their
predictions are averaged. The simplest representative of such a procedure is
called bagging (Breiman, 1996) and works as follows. We draw B bootstrap
samples from the original data set, i.e., we draw n out of n observations with
replacement from our n original observations. For each of those bootstrap
samples we grow a very large tree. When we are interested in the prediction
for a new observation, we pass this observation through all B trees and average
their predictions. It has been shown that the goodness of the predictions for
future cases can be improved dramatically by this or similar simple procedures.
More details can be found in Bühlmann (2004).

9.3 Analysis Using R

9.3.1 Predicting Body Fat Content

The rpart function from rpart can be used to grow a regression tree. The
response variable and the covariates are defined by a model formula in the
same way as for lm, say. By default, a large initial tree is grown, we restrict
the number of observations required to establish a potential binary split to at
least ten:

R> library("rpart")

R> data("bodyfat", package = "mboost")

R> bodyfat_rpart <- rpart(DEXfat ~ age + waistcirc + hipcirc +

+ elbowbreadth + kneebreadth, data = bodyfat,

+ control = rpart.control(minsplit = 10))

A print method for rpart objects is available; however, a graphical repre-
sentation (here utilising functionality offered from package partykit, Hothorn
and Zeileis, 2009) shown in Figure 9.1 is more convenient. Observations that
satisfy the condition shown for each node go to the left and observations that
don’t are element of the right branch in each node. As expected, higher values
for waist- and hip circumferences and wider knees correspond to higher values
of body fat content. The rightmost terminal node consists of only three rather
extreme observations.
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R> library("partykit")

R> plot(as.party(bodyfat_rpart), tp_args = list(id = FALSE))
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Figure 9.1 Initial tree for the body fat data with the distribution of body fat in
terminal nodes visualised via boxplots.

To determine if the tree is appropriate or if some of the branches need to
be subjected to pruning we can use the cptable element of the rpart object:

R> print(bodyfat_rpart$cptable)

CP nsplit rel error xerror xstd

1 0.66289544 0 1.00000000 1.0270918 0.16840424

2 0.09376252 1 0.33710456 0.4273989 0.09430024

3 0.07703606 2 0.24334204 0.4449342 0.08686150

4 0.04507506 3 0.16630598 0.3535449 0.06957080

5 0.01844561 4 0.12123092 0.2642626 0.05974575

6 0.01818982 5 0.10278532 0.2855892 0.06221393

7 0.01000000 6 0.08459549 0.2785367 0.06242559

R> opt <- which.min(bodyfat_rpart$cptable[,"xerror"])

The xerror column contains of estimates of cross-validated prediction error
for different numbers of splits (nsplit). The best tree has four splits. Now we
can prune back the large initial tree using

R> cp <- bodyfat_rpart$cptable[opt, "CP"]

R> bodyfat_prune <- prune(bodyfat_rpart, cp = cp)

The result is shown in Figure 9.2. Note that the inner nodes three and six
have been removed from the tree. Still, the rightmost terminal node might
give very unreliable extreme predictions.
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R> plot(as.party(bodyfat_prune), tp_args = list(id = FALSE))
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Figure 9.2 Pruned regression tree for body fat data.

Given this model, one can predict the (unknown, in real circumstances)
body fat content based on the covariate measurements. Here, using the known
values of the response variable, we compare the model predictions with the
actually measured body fat as shown in Figure 9.3. The three observations
with large body fat measurements in the rightmost terminal node can be
identified easily.

9.3.2 Glaucoma Diagnosis

We start with a large initial tree and prune back branches according to
the cross-validation criterion. The default is to use 10 runs of 10-fold cross-
validation and we choose 100 runs of 10-fold cross-validation for reasons to be
explained later.

R> data("GlaucomaM", package = "ipred")

R> glaucoma_rpart <- rpart(Class ~ ., data = GlaucomaM,

+ control = rpart.control(xval = 100))

R> glaucoma_rpart$cptable

CP nsplit rel error xerror xstd

1 0.65306122 0 1.0000000 1.5306122 0.06054391

2 0.07142857 1 0.3469388 0.3877551 0.05647630

3 0.01360544 2 0.2755102 0.3775510 0.05590431

4 0.01000000 5 0.2346939 0.4489796 0.05960655
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R> DEXfat_pred <- predict(bodyfat_prune, newdata = bodyfat)

R> xlim <- range(bodyfat$DEXfat)

R> plot(DEXfat_pred ~ DEXfat, data = bodyfat, xlab = "Observed",

+ ylab = "Predicted", ylim = xlim, xlim = xlim)

R> abline(a = 0, b = 1)
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Figure 9.3 Observed and predicted DXA measurements.

R> opt <- which.min(glaucoma_rpart$cptable[,"xerror"])

R> cp <- glaucoma_rpart$cptable[opt, "CP"]

R> glaucoma_prune <- prune(glaucoma_rpart, cp = cp)

The pruned tree consists of three leaves only (Figure 9.4); the class distribu-
tion in each leaf is depicted using a barplot. For most eyes, the decision about
the disease is based on the variable varg, a measurement of the volume of
the optic nerve above some reference plane. A volume larger than 0.209 mm3

indicates that the eye is healthy, and damage of the optic nerve head asso-
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R> plot(as.party(glaucoma_prune), tp_args = list(id = FALSE))
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Figure 9.4 Pruned classification tree of the glaucoma data with class distribution
in the leaves.

ciated with loss of optic nerves (varg smaller than 0.209 mm3) indicates a
glaucomateous change.

As we discussed earlier, the choice of the appropriatly sized tree is not a
trivial problem. For the glaucoma data, the above choice of three leaves is
very unstable across multiple runs of cross-validation. As an illustration of
this problem we repeat the very same analysis as shown above and record the
optimal number of splits as suggested by the cross-validation runs.

R> nsplitopt <- vector(mode = "integer", length = 25)

R> for (i in 1:length(nsplitopt)) {

+ cp <- rpart(Class ~ ., data = GlaucomaM)$cptable

+ nsplitopt[i] <- cp[which.min(cp[,"xerror"]), "nsplit"]

+ }

R> table(nsplitopt)

nsplitopt

1 2 5

14 7 4

Although for 14 runs of cross-validation a simple tree with one split only is
suggested, larger trees would have been favoured in 11 of the cases. This short
analysis shows that we should not trust the tree in Figure 9.4 too much.
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One way out of this dilemma is the aggregation of multiple trees via bagging.
In R, the bagging idea can be implemented by three or four lines of code. Case
count or weight vectors representing the bootstrap samples can be drawn from
the multinominal distribution with parameters n and p1 = 1/n, . . . , pn =
1/n via the rmultinom function. For each weight vector, one large tree is
constructed without pruning and the rpart objects are stored in a list, here
called trees:

R> trees <- vector(mode = "list", length = 25)

R> n <- nrow(GlaucomaM)

R> bootsamples <- rmultinom(length(trees), n, rep(1, n)/n)

R> mod <- rpart(Class ~ ., data = GlaucomaM,

+ control = rpart.control(xval = 0))

R> for (i in 1:length(trees))

+ trees[[i]] <- update(mod, weights = bootsamples[,i])

The update function re-evaluates the call of mod, however, with the weights
being altered, i.e., fits a tree to a bootstrap sample specified by the weights.
It is interesting to have a look at the structures of the multiple trees. For
example, the variable selected for splitting in the root of the tree is not unique
as can be seen by

R> table(sapply(trees, function(x) as.character(x$frame$var[1])))

phcg varg vari vars

1 14 9 1

Although varg is selected most of the time, other variables such as vari occur
as well – a further indication that the tree in Figure 9.4 is questionable and
that hard decisions are not appropriate for the glaucoma data.

In order to make use of the ensemble of trees in the list trees we estimate
the conditional probability of suffering from glaucoma given the covariates for
each observation in the original data set by

R> classprob <- matrix(0, nrow = n, ncol = length(trees))

R> for (i in 1:length(trees)) {

+ classprob[,i] <- predict(trees[[i]],

+ newdata = GlaucomaM)[,1]

+ classprob[bootsamples[,i] > 0,i] <- NA

+ }

Thus, for each observation we get 25 estimates. However, each observation has
been used for growing one of the trees with probability 0.632 and thus was
not used with probability 0.368. Consequently, the estimate from a tree where
an observation was not used for growing is better for judging the quality of
the predictions and we label the other estimates with NA.

Now, we can average the estimates and we vote for glaucoma when the
average of the estimates of the conditional glaucoma probability exceeds 0.5.
The comparison between the observed and the predicted classes does not suffer
from overfitting since the predictions are computed from those trees for which
each single observation was not used for growing.
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R> avg <- rowMeans(classprob, na.rm = TRUE)

R> predictions <- factor(ifelse(avg > 0.5, "glaucoma",

+ "normal"))

R> predtab <- table(predictions, GlaucomaM$Class)

R> predtab

predictions glaucoma normal

glaucoma 77 16

normal 21 82

Thus, an honest estimate of the probability of a glaucoma prediction when
the patient is actually suffering from glaucoma is

R> round(predtab[1,1] / colSums(predtab)[1] * 100)

glaucoma

79

per cent. For

R> round(predtab[2,2] / colSums(predtab)[2] * 100)

normal

84

per cent of normal eyes, the ensemble does not predict a glaucomateous dam-
age.

Although we are mainly interested in a predictor, i.e., a black box machine
for predicting glaucoma is our main focus, the nature of the black box might
be interesting as well. From the classification tree analysis shown above we
expect to see a relationship between the volume above the reference plane
(varg) and the estimated conditional probability of suffering from glaucoma.
A graphical approach is sufficient here and we simply plot the observed values
of varg against the averages of the estimated glaucoma probability (such plots
have been used by Breiman, 2001b, Garczarek and Weihs, 2003, for example).
In addition, we construct such a plot for another covariate as well, namely
vari, the volume above the reference plane measured in the inferior part of
the optic nerve head only. Figure 9.5 shows that the initial split of 0.209mm

3

for varg (see Figure 9.4) corresponds to the ensemble predictions rather well.
The bagging procedure is a special case of a more general approach called

random forest (Breiman, 2001a). The package randomForest (Breiman et al.,
2009) can be used to compute such ensembles via

R> library("randomForest")

R> rf <- randomForest(Class ~ ., data = GlaucomaM)

and we obtain out-of-bag estimates for the prediction error via

R> table(predict(rf), GlaucomaM$Class)

glaucoma normal

glaucoma 80 12

normal 18 86
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R> library("lattice")

R> gdata <- data.frame(avg = rep(avg, 2),

+ class = rep(as.numeric(GlaucomaM$Class), 2),

+ obs = c(GlaucomaM[["varg"]], GlaucomaM[["vari"]]),

+ var = factor(c(rep("varg", nrow(GlaucomaM)),

+ rep("vari", nrow(GlaucomaM)))))

R> panelf <- function(x, y) {

+ panel.xyplot(x, y, pch = gdata$class)

+ panel.abline(h = 0.5, lty = 2)

+ }

R> print(xyplot(avg ~ obs | var, data = gdata,

+ panel = panelf,

+ scales = "free", xlab = "",

+ ylab = "Estimated Class Probability Glaucoma"))
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Figure 9.5 Estimated class probabilities depending on two important variables.
The 0.5 cut-off for the estimated glaucoma probability is depicted as a
horizontal line. Glaucomateous eyes are plotted as circles and normal
eyes are triangles.
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R> plot(bodyfat_ctree)
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Figure 9.6 Conditional inference tree with the distribution of body fat content
shown for each terminal leaf.

9.3.3 Trees Revisited

Another approach to recursive partitioning, making a connection to classical
statistical test problems such as those discussed in Chapter 4, is implemented
in the party package (Hothorn et al., 2006b, 2009c). In each node of those
trees, a significance test on independence between any of the covariates and
the response is performed and a split is established when the p-value, possibly
adjusted for multiple comparisons, is smaller than a pre-specified nominal level
α. This approach has the advantage that one does not need to prune back
large initial trees since we have a statistically motivated stopping criterion –
the p-value – at hand.

For the body fat data, such a conditional inference tree can be computed
using the ctree function

R> library("party")

R> bodyfat_ctree <- ctree(DEXfat ~ age + waistcirc + hipcirc +

+ elbowbreadth + kneebreadth, data = bodyfat)

This tree doesn’t require a pruning procedure because an internal stop crite-
rion based on formal statistical tests prevents the procedure from overfitting
the data. The tree structure is shown in Figure 9.6. Although the structure
of this tree and the tree depicted in Figure 9.2 are rather different, the corre-
sponding predictions don’t vary too much.

Very much the same code is needed to grow a tree on the glaucoma data:

R> glaucoma_ctree <- ctree(Class ~ ., data = GlaucomaM)
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R> plot(glaucoma_ctree)
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Figure 9.7 Conditional inference tree with the distribution of glaucomateous eyes
shown for each terminal leaf.

and a graphical representation is depicted in Figure 9.7 showing both the
cutpoints and the p-values of the associated independence tests for each node.
The first split is performed using a cutpoint defined with respect to the volume
of the optic nerve above some reference plane, but in the inferior part of the
eye only (vari).

9.4 Summary

Recursive partitioning procedures are rather simple non-parametric tools for
regression modelling. The main structures of regression relationship can be
visualised in a straightforward way. However, one should bear in mind that
the nature of those models is very simple and can serve only as a rough
approximation to reality. When multiple simple models are averaged, powerful
predictors can be constructed.

Exercises

Ex. 9.1 Construct a regression tree for the Boston Housing data reported by
Harrison and Rubinfeld (1978) which are available as data.frame Boston-

Housing from package mlbench (Leisch and Dimitriadou, 2009). Compare
the predictions of the tree with the predictions obtained from randomFor-

est. Which method is more accurate?
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Ex. 9.2 For each possible cutpoint in varg of the glaucoma data, compute
the test statistic of the chi-square test of independence (see Chapter 3) and
plot them against the values of varg. Is a simple cutpoint for this variable
appropriate for discriminating between healthy and glaucomateous eyes?

Ex. 9.3 Compare the tree models fitted to the glaucoma data with a logistic
regression model (see Chapter 7).
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CHAPTER 10

Scatterplot Smoothers and Generalised
Additive Models: The Men’s Olympic
1500m, Air Pollution in the USA, and

Risk Factors for Kyphosis

10.1 Introduction

The modern Olympics began in 1896 in Greece and have been held every four
years since, apart from interruptions due to the two world wars. On the track
the blue ribbon event has always been the 1500m for men since competitors
that want to win must have a unique combination of speed, strength and
stamina combined with an acute tactical awareness. For the spectator the
event lasts long enough to be interesting (unlike say the 100m dash) but not
too long so as to become boring (as do most 10,000m races). The event has
been witness to some of the most dramatic scenes in Olympic history; who
can forget Herb Elliott winning by a street in 1960, breaking the world record
and continuing his sequence of never being beaten in a 1500m or mile race in
his career? And remembering the joy and relief etched on the face of Seb Coe
when winning and beating his arch rival Steve Ovett still brings a tear to the
eye of many of us.

The complete record of winners of the men’s 1500m from 1896 to 2004 is
given in Table 10.1. Can we use these winning times as the basis of a suitable
statistical model that will enable us to predict the winning times for future
Olympics?

Table 10.1: men1500m data. Olympic Games 1896 to 2004 win-
ners of the men’s 1500m.

year venue winner country time

1896 Athens E. Flack Australia 273.20
1900 Paris C. Bennett Great Britain 246.20
1904 St. Louis J. Lightbody USA 245.40
1908 London M. Sheppard USA 243.40
1912 Stockholm A. Jackson Great Britain 236.80
1920 Antwerp A. Hill Great Britain 241.80
1924 Paris P. Nurmi Finland 233.60
1928 Amsterdam H. Larva Finland 233.20
1932 Los Angeles L. Beccali Italy 231.20

177
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Table 10.1: men1500m data (continued).

year venue winner country time

1936 Berlin J. Lovelock New Zealand 227.80
1948 London H. Eriksson Sweden 229.80
1952 Helsinki J. Barthel Luxemborg 225.10
1956 Melbourne R. Delaney Ireland 221.20
1960 Rome H. Elliott Australia 215.60
1964 Tokyo P. Snell New Zealand 218.10
1968 Mexico City K. Keino Kenya 214.90
1972 Munich P. Vasala Finland 216.30
1976 Montreal J. Walker New Zealand 219.17
1980 Moscow S. Coe Great Britain 218.40
1984 Los Angeles S. Coe Great Britain 212.53
1988 Seoul P. Rono Kenya 215.95
1992 Barcelona F. Cacho Spain 220.12
1996 Atlanta N. Morceli Algeria 215.78
2000 Sydney K. Ngenyi Kenya 212.07
2004 Athens H. El Guerrouj Morocco 214.18

The data in Table 10.2 relate to air pollution in 41 US cities as reported by
Sokal and Rohlf (1981). The annual mean concentration of sulphur dioxide,
in micrograms per cubic metre, is a measure of the air pollution of the city.
The question of interest here is what aspects of climate and human ecology
as measured by the other six variables in the table determine pollution. Thus,
we are interested in a regression model from which we can infer the relation-
ship between each of the exploratory variables to the response (SO2 content).
Details of the seven measurements are;

SO2: SO2 content of air in micrograms per cubic metre,

temp: average annual temperature in Fahrenheit,

manu: number of manufacturing enterprises employing 20 or more workers,

popul: population size (1970 census); in thousands,

wind: average annual wind speed in miles per hour,

precip: average annual precipitation in inches,

predays: average number of days with precipitation per year.

Table 10.2: USairpollution data. Air pollution in 41 US cities.

SO2 temp manu popul wind precip predays

Albany 46 47.6 44 116 8.8 33.36 135
Albuquerque 11 56.8 46 244 8.9 7.77 58
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Table 10.2: USairpollution data (continued).

SO2 temp manu popul wind precip predays

Atlanta 24 61.5 368 497 9.1 48.34 115
Baltimore 47 55.0 625 905 9.6 41.31 111
Buffalo 11 47.1 391 463 12.4 36.11 166
Charleston 31 55.2 35 71 6.5 40.75 148
Chicago 110 50.6 3344 3369 10.4 34.44 122
Cincinnati 23 54.0 462 453 7.1 39.04 132
Cleveland 65 49.7 1007 751 10.9 34.99 155
Columbus 26 51.5 266 540 8.6 37.01 134
Dallas 9 66.2 641 844 10.9 35.94 78
Denver 17 51.9 454 515 9.0 12.95 86
Des Moines 17 49.0 104 201 11.2 30.85 103
Detroit 35 49.9 1064 1513 10.1 30.96 129
Hartford 56 49.1 412 158 9.0 43.37 127
Houston 10 68.9 721 1233 10.8 48.19 103
Indianapolis 28 52.3 361 746 9.7 38.74 121
Jacksonville 14 68.4 136 529 8.8 54.47 116
Kansas City 14 54.5 381 507 10.0 37.00 99
Little Rock 13 61.0 91 132 8.2 48.52 100
Louisville 30 55.6 291 593 8.3 43.11 123
Memphis 10 61.6 337 624 9.2 49.10 105
Miami 10 75.5 207 335 9.0 59.80 128
Milwaukee 16 45.7 569 717 11.8 29.07 123
Minneapolis 29 43.5 699 744 10.6 25.94 137
Nashville 18 59.4 275 448 7.9 46.00 119
New Orleans 9 68.3 204 361 8.4 56.77 113
Norfolk 31 59.3 96 308 10.6 44.68 116
Omaha 14 51.5 181 347 10.9 30.18 98
Philadelphia 69 54.6 1692 1950 9.6 39.93 115
Phoenix 10 70.3 213 582 6.0 7.05 36
Pittsburgh 61 50.4 347 520 9.4 36.22 147
Providence 94 50.0 343 179 10.6 42.75 125
Richmond 26 57.8 197 299 7.6 42.59 115
Salt Lake City 28 51.0 137 176 8.7 15.17 89
San Francisco 12 56.7 453 716 8.7 20.66 67
Seattle 29 51.1 379 531 9.4 38.79 164
St. Louis 56 55.9 775 622 9.5 35.89 105
Washington 29 57.3 434 757 9.3 38.89 111
Wichita 8 56.6 125 277 12.7 30.58 82
Wilmington 36 54.0 80 80 9.0 40.25 114

Source: From Sokal, R. R., Rohlf, F. J., Biometry, W. H. Freeman, San Fran-
cisco, USA, 1981. With permission.
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The final data set to be considered in this chapter is taken from Hastie and
Tibshirani (1990). The data are shown in Table 10.3 and involve observations
on 81 children undergoing corrective surgery of the spine. There are a number
of risk factors for kyphosis, or outward curvature of the spine in excess of 40
degrees from the vertical following surgery; these are age in months (Age), the
starting vertebral level of the surgery (Start) and the number of vertebrae
involved (Number). Here we would like to model the data to determine which
risk factors are of most importance for the occurrence of kyphosis.

Table 10.3: kyphosis data (package rpart). Children who have
had corrective spinal surgery.

Kyphosis Age Number Start Kyphosis Age Number Start

absent 71 3 5 absent 35 3 13
absent 158 3 14 absent 143 9 3

present 128 4 5 absent 61 4 1
absent 2 5 1 absent 97 3 16
absent 1 4 15 present 139 3 10
absent 1 2 16 absent 136 4 15
absent 61 2 17 absent 131 5 13
absent 37 3 16 present 121 3 3
absent 113 2 16 absent 177 2 14

present 59 6 12 absent 68 5 10
present 82 5 14 absent 9 2 17
absent 148 3 16 present 139 10 6
absent 18 5 2 absent 2 2 17
absent 1 4 12 absent 140 4 15
absent 168 3 18 absent 72 5 15
absent 1 3 16 absent 2 3 13
absent 78 6 15 present 120 5 8
absent 175 5 13 absent 51 7 9
absent 80 5 16 absent 102 3 13
absent 27 4 9 present 130 4 1
absent 22 2 16 present 114 7 8

present 105 6 5 absent 81 4 1
present 96 3 12 absent 118 3 16
absent 131 2 3 absent 118 4 16

present 15 7 2 absent 17 4 10
absent 9 5 13 absent 195 2 17
absent 8 3 6 absent 159 4 13
absent 100 3 14 absent 18 4 11
absent 4 3 16 absent 15 5 16
absent 151 2 16 absent 158 5 14
absent 31 3 16 absent 127 4 12
absent 125 2 11 absent 87 4 16
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Table 10.3: kyphosis data (continued).

Kyphosis Age Number Start Kyphosis Age Number Start

absent 130 5 13 absent 206 4 10
absent 112 3 16 absent 11 3 15
absent 140 5 11 absent 178 4 15
absent 93 3 16 present 157 3 13
absent 1 3 9 absent 26 7 13

present 52 5 6 absent 120 2 13
absent 20 6 9 present 42 7 6

present 91 5 12 absent 36 4 13
present 73 5 1

10.2 Scatterplot Smoothers and Generalised Additive Models

Each of the three data sets described in the Introduction appear to be perfect
candidates to be analysed by one of the methods described in earlier chapters.
Simple linear regression could, for example, be applied to the 1500m times
and multiple linear regression to the pollution data; the kyphosis data could
be analysed using logistic regression. But instead of assuming we know the
linear functional form for a regression model we might consider an alterna-
tive approach in which the appropriate functional form is estimated from the
data. How is this achieved? The secret is to replace the global estimates from
the regression models considered in earlier chapters with local estimates, in
which the statistical dependency between two variables is described, not with
a single parameter such as a regression coefficient, but with a series of lo-
cal estimates. For example, a regression might be estimated between the two
variables for some restricted range of values for each variable and the pro-
cess repeated across the range of each variable. The series of local estimates
is then aggregated by drawing a line to summarise the relationship between
the two variables. In this way no particular functional form is imposed on the
relationship. Such an approach is particularly useful when

• the relationship between the variables is expected to be of a complex form,
not easily fitted by standard linear or nonlinear models;

• there is no a priori reason for using a particular model;

• we would like the data themselves to suggest the appropriate functional
form.

The starting point for a local estimation approach to fitting relationships
between variables is scatterplot smoothers, which are described in the next
subsection.
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10.2.1 Scatterplot Smoothers

The scatterplot is an excellent first exploratory graph to study the dependence
of two variables and all readers will be familiar with plotting the outcome of
a simple linear regression fit onto the graph to help in a better understand-
ing of the pattern of dependence. But many readers will probably be less
familiar with some non-parametric alternatives to linear regression fits that
may be more useful than the latter in many situations. These alternatives
are labelled non-parametric since unlike parametric techniques such as lin-
ear regression they do not summarise the relationship between two variables
with a parameter such as a regression or correlation coefficient. Instead non-
parametric ‘smoothers’ summarise the relationship between two variables with
a line drawing. The simplest of this collection of non-parametric smoothers is a
locally weighted regression or lowess fit, first suggested by Cleveland (1979). In
essence this approach assumes that the independent variable xi and a response
yi are related by

yi = g(xi) + εi, i = 1, . . . , n

where g is a locally defined p-degree polynomial function in the predictor
variable, xi, and εi are random variables with mean zero and constant scale.
Values ŷi = g(xi) are used to estimate the yi at each xi and are found by
fitting the polynomials using weighted least squares with large weights for
points near to xi and small otherwise. Two parameters control the shape of a
lowess curve; the first is a smoothing parameter, α, (often know as the span,
the width of the local neighbourhood) with larger values leading to smoother
curves – typical values are 0.25 to 1. In essence the span decides the amount
of the tradeoff between reduction in bias and increase in variance. If the span
is too large, the non-parametric regression estimate will be biased, but if the
span is too small, the estimate will be overfitted with inflated variance. Keele
(2008) gives an extended discussion of the influence of the choice of span on
the non-parametric regression. The second parameter, λ , is the degree of the
polynomials that are fitted by the method; λ can be 0, 1, or 2. In any specific
application, the change of the two parameters must be based on a combination
of judgement and of trial and error. Residual plots may be helpful in judging
a particular combination of values.

An alternative smoother that can often be usefully applied to bivariate data
is some form of spline function. (A spline is a term for a flexible strip of metal or
rubber used by a draftsman to draw curves.) Spline functions are polynomials
within intervals of the x-variable that are smoothly connected across different
values of x. Figure 10.1 for example shows a linear spline function, i.e., a
piecewise linear function, of the form

f(x) = β0 + β1x + β2(x − a)+ + β3(x − b)+ + β4(x − c)+

where (u)+ = u for u > 0 and zero otherwise. The interval endpoints, a, b, and
c, are called knots. The number of knots can vary according to the amount of
data available for fitting the function.

© 2010 by Taylor and Francis Group, LLC



SMOOTHERS AND GENERALISED ADDITIVE MODELS 183

0 1 2 3 4 5 6

0
1

2
3

4
5

6

x

f((
x
))

Figure 10.1 A linear spline function with knots at a = 1, b = 3 and c = 5.

The linear spline is simple and can approximate some relationships, but it
is not smooth and so will not fit highly curved functions well. The problem is
overcome by using smoothly connected piecewise polynomials – in particular,
cubics, which have been found to have nice properties with good ability to
fit a variety of complex relationships. The result is a cubic spline. Again we
wish to fit a smooth curve, g(x), that summarises the dependence of y on x.
A natural first attempt might be to try to determine g by least squares as the
curve that minimises

n
∑

i=1

(yi − g(xi))
2. (10.1)

But this would simply result in very wiggly curve interpolating the observa-
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tions. Instead of (10.1) the criterion used to determine g is

n
∑

i=1

(yi − g(xi))
2 + λ

∫

g′′(x)2 dx (10.2)

where g′′(x) represents the second derivation of g(x) with respect to x. Al-
though written formally this criterion looks a little formidable, it is really
nothing more than an effort to govern the trade-off between the goodness-
of-fit of the data (as measured by

∑

(yi − g(xi))
2 ) and the ‘wiggliness’ or

departure of linearity of g measured by
∫

g′′(x)2 dx; for a linear function, this
part of (10.2) would be zero. The parameter λ governs the smoothness of g,
with larger values resulting in a smoother curve.

The cubic spline which minimises (10.2) is a series of cubic polynomials
joined at the unique observed values of the explanatory variables, xi, (for
more details, see Keele, 2008).

The ‘effective number of parameters’ (analogous to the number of param-
eters in a parametric fit) or degrees of freedom of a cubic spline smoother is
generally used to specify its smoothness rather than λ directly. A numerical
search is then used to determine the value of λ corresponding to the required
degrees of freedom. Roughly, the complexity of a cubic spline is about the same
as a polynomial of degree one less than the degrees of freedom (see Keele, 2008,
for details). But the cubic spline smoother ‘spreads out’ its parameters in a
more even way and hence is much more flexible than is polynomial regression.

The spline smoother does have a number of technical advantages over the
lowess smoother such as providing the best mean square error and avoiding
overfitting that can cause smoothers to display unimportant variation between
x and y that is of no real interest. But in practise the lowess smoother and
the cubic spline smoother will give very similar results on many examples.

10.2.2 Generalised Additive Models

The scatterplot smoothers described above are the basis of a more general,
semi-parametric approach to modelling situations where there is more than a
single explanatory variable, such as the air pollution data in Table 10.2 and
the kyphosis data in Table 10.3. These models are usually called generalised
additive models (GAMs) and allow the investigator to model the relationship
between the response variable and some of the explanatory variables using the
non-parametric lowess or cubic splines smoothers, with this relationship for
other explanatory variables being estimated in the usual parametric fashion.
So returning for a moment to the multiple linear regression model described in
Chapter 6 in which there is a dependent variable, y, and a set of explanatory
variables, x1, . . . , xq, and the model assumed is

y = β0 +

q
∑

j=1

βjxj + ε.
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Additive models replace the linear function, βjxj , by a smooth non-parametric
function, g, to give the model

y = β0 +

q
∑

j=1

gj(xj) + ε. (10.3)

where gj can be one of the scatterplot smoothers described in the previous
sub-section, or, if the investigator chooses, it can also be a linear function for
particular explanatory variables.

A generalised additive model arises from (10.3) in the same way as a gen-
eralised linear model arises from a multiple regression model (see Chapter 7),
namely that some function of the expectation of the response variable is now
modelled by a sum of non-parametric and parametric functions. So, for exam-
ple, the logistic additive model with binary response variable y is

logit(π) = β0 +

q
∑

j=1

gj(xj)

where π is the probability that the response variable takes the value one.
Fitting a generalised additive model involves either iteratively weighted least

squares, an optimisation algorithm similar to the algorithm used to fit gener-
alised linear models, or what is known as a backfitting algorithm. The smooth
functions gj are fitted one at a time by taking the residuals

y −

∑

k 6=j

gk(xk)

and fitting them against xj using one of the scatterplot smoothers described
previously. The process is repeated until it converges. Linear terms in the
model are fitted by least squares. The mgcv package fits generalised additive
models using the iteratively weighted least squares algorithm, which in this
case has the advantage that inference procedures, such as confidence intervals,
can be derived more easily. Full details are given in Hastie and Tibshirani
(1990), Wood (2006), and Keele (2008).

Various tests are available to assess the non-linear contributions of the fitted
smoothers, and generalised additive models can be compared with, say linear
models fitted to the same data, by means of an F -test on the residual sum
of squares of the competing models. In this process the fitted smooth curve
is assigned an estimated equivalent number of degrees of freedom. However,
such a procedure has to be used with care. For full details, again, see Wood
(2006) and Keele (2008).

Two alternative approaches to the variable selection and model choice prob-
lem are helpful. As always, a graphical inspection of the model properties,
ideally guided by subject-matter knowledge, helps to identify the most impor-
tant aspects of the fitted regression function. A more formal approach is to
fit the model using algorithms that, implicitly or explicitly, have nice variable
selection properties, one of which is mentioned in the following section.
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10.2.3 Variable Selection and Model Choice

Quantifying the influence of covariates on the response variable in generalised
additive models does not merely relate to the problem of estimating regression
coefficients but more generally calls for careful implementation of variable se-
lection (determination of the relevant subset of covariates to enter the model)
and model choice (specifying the particular form of the influence of a variable).
The latter task requires choosing between linear and nonlinear modelling of
covariate effects. While variable selection and model choice issues are already
complicated in linear models (see Chapter 6) and generalised linear models
(see Chapter 7) and still receive considerable attention in the statistical litera-
ture, they become even more challenging in generalised additive models. Here,
variable selection and model choice needs to provide and answer on the com-
plicated question: Should a continuous covariate be included into the model at
all and, if so, as a linear effect or as a flexible, smooth effect? Methods to deal
with this problem are currently actively researched. Two general approaches
can be distinguished: One can fit models using a target function incorporating
a penalty term which will increase for increasingly complex models (similar to
10.2) or one can iteratively fit simple, univariate models which sum to a more
complex generalised additive model. The latter approach is called boosting and
requires a careful determination of the stop criterion for the iterative model
fitting algorithms. The technical details are far too complex to be sketched
here, and we refer the interested reader to the review paper by Bühlmann and
Hothorn (2007).

10.3 Analysis Using R

10.3.1 Olympic 1500m Times

To begin we will construct a scatterplot of winning time against year the games
were held. The R code and the resulting plot are shown in Figure 10.2. There is
very clear downward trend in the times over the years, and, in addition there
is a very clear outlier namely the winning time for 1896. We shall remove this
time from the data set and now concentrate on the remaining times. First
we will fit a simple linear regression to the data and plot the fit onto the
scatterplot. The code and the resulting plot are shown in Figure 10.3. Clearly
the linear regression model captures in general terms the downward trend in
the times. Now we can add the fits given by the lowess smoother and by a
cubic spline smoother; the resulting graph and the extra R code needed are
shown in Figure 10.4.

Both non-parametric fits suggest some distinct departure from linearity,
and clearly point to a quadratic model being more sensible than a linear
model here. And fitting a parametric model that includes both a linear and
a quadratic effect for year gives a prediction curve very similar to the non-
parametric curves; see Figure 10.5.

Here use of the non-parametric smoothers has effectively diagnosed our
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R> plot(time ~ year, data = men1500m)
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Figure 10.2 Scatterplot of year and winning time.

linear model and pointed the way to using a more suitable parametric model;
this is often how such non-parametric models can be used most effectively.
For these data, of course, it is clear that the simple linear model cannot be
suitable if the investigator is interested in predicting future times since even
the most basic knowledge of human physiology will tell us that times cannot
continue to go down. There must be some lower limit to the time man can
run 1500m. But in other situations use of the non-parametric smoothers may
point to a parametric model that could not have been identified a priori.

It is of some interest to look at the predictions of winning times in future
Olympics from both the linear and quadratic models. For example, for 2008
and 2012 the predicted times and their 95% confidence intervals can be found
using the following code

R> predict(men1500m_lm,

+ newdata = data.frame(year = c(2008, 2012)),

+ interval = "confidence")

fit lwr upr

1 208.1293 204.8961 211.3624

2 206.8451 203.4325 210.2577
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R> men1500m1900 <- subset(men1500m, year >= 1900)

R> men1500m_lm <- lm(time ~ year, data = men1500m1900)

R> plot(time ~ year, data = men1500m1900)

R> abline(men1500m_lm)
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Figure 10.3 Scatterplot of year and winning time with fitted values from a simple

linear model.

R> predict(men1500m_lm2,

+ newdata = data.frame(year = c(2008, 2012)),

+ interval = "confidence")

fit lwr upr

1 214.2709 210.3930 218.1488

2 214.3314 209.8441 218.8187

For predictions far into the future both the quadratic and the linear model fail;
we leave readers to get some more predictions to see what happens. We can
compare the first prediction with the time actually recorded by the winner
of the men’s 1500m in Beijing 2008, Rashid Ramzi from Brunei, who won
the event in 212.94 seconds. The confidence interval obtained from the simple
linear model does not include this value but the confidence interval for the
prediction derived from the quadratic model does.
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R> x <- men1500m1900$year

R> y <- men1500m1900$time

R> men1500m_lowess <- lowess(x, y)

R> plot(time ~ year, data = men1500m1900)

R> lines(men1500m_lowess, lty = 2)

R> men1500m_cubic <- gam(y ~ s(x, bs = "cr"))

R> lines(x, predict(men1500m_cubic), lty = 3)
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Figure 10.4 Scatterplot of year and winning time with fitted values from a smooth

non-parametric model.

10.3.2 Air Pollution in US Cities

Unfortunately, we cannot fit an additive model for describing the SO2 con-
centration based on all six covariates because this leads to more parameters
than cities, i.e., more parameters than observations when using the default
parameterisation of mgcv. Thus, before we can apply the gam function from
package mgcv, we have to decide which covariates should enter the model and
which subset of these covariates should be allowed to deviate from a linear
regression relationship.

As briefly discussed in Section 10.2.3, we can fit an additive model using the
iterative boosting algorithm as described by Bühlmann and Hothorn (2007).
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R> men1500m_lm2 <- lm(time ~ year + I(year^2),

+ data = men1500m1900)

R> plot(time ~ year, data = men1500m1900)

R> lines(men1500m1900$year, predict(men1500m_lm2))
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Figure 10.5 Scatterplot of year and winning time with fitted values from a

quadratic model.

The complexity of the model is determined by an AIC criterion, which can
also be used to determine an appropriate number of boosting iterations to
choose. The methodology is available from package mboost (Hothorn et al.,
2009b). We start with a small number of boosting iterations (100 by default)
and compute the AIC of the corresponding 100 models:

R> library("mboost")

R> USair_boost <- gamboost(SO2 ~ ., data = USairpollution)

R> USair_aic <- AIC(USair_boost)

R> USair_aic

[1] 6.809066

Optimal number of boosting iterations: 40

Degrees of freedom (for mstop = 40): 9.048771

The AIC suggests that the boosting algorithm should be stopped after 40
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R> USair_gam <- USair_boost[mstop(USair_aic)]

R> layout(matrix(1:6, ncol = 3))

R> plot(USair_gam, ask = FALSE)
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Figure 10.6 Partial contributions of six exploratory covariates to the predicted

SO2 concentration.

iterations. The partial contributions of each covariate to the predicted SO2

concentration are given in Figure 10.6. The plot indicates that all six covariates
enter the model and the selection of a subset of covariates for modelling isn’t
appropriate in this case. However, the number of manufacturing enterprises
seems to add linearly to the SO2 concentration, which simplifies the model.
Moreover, the average annual precipitation contribution seems to deviate from
zero only for some extreme observations and one might refrain from using the
covariate at all.

As always, an inspection of the model fit via a residual plot is worth the
effort. Here, we plot the fitted values against the residuals and label the points
with the name of the corresponding city. Figure 10.7 shows at least two ex-
treme observations. Chicago has a very large observed and fitted SO2 concen-
tration, which is due to the huge number of inhabitants and manufacturing
plants (see Figure 10.6 also). One smaller city, Providence, is associated with
a rather large positive residual indicating that the actual SO2 concentration is
underestimated by the model. In fact, this small town has a rather high SO2

concentration which is hardly explained by our model. Overall, the model
doesn’t fit the data very well, so we should avoid overinterpreting the model
structure too much. In addition, since each of the six covariates contributes
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R> SO2hat <- predict(USair_gam)

R> SO2 <- USairpollution$SO2

R> plot(SO2hat, SO2 - SO2hat, type = "n", xlim = c(0, 110))

R> text(SO2hat, SO2 - SO2hat, labels = rownames(USairpollution),

+ adj = 0)

R> abline(h = 0, lty = 2, col = "grey")
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Figure 10.7 Residual plot of SO2 concentration.

to the model, we aren’t able to select a smaller subset of the covariates for
modelling and thus fitting a model using gam is still complicated (and will not
add much knowledge anyway).

10.3.3 Risk Factors for Kyphosis

Before modelling the relationship between kyphosis and the three exploratory
variables age, starting vertebral level of the surgery and number of vertebrae
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R> layout(matrix(1:3, nrow = 1))

R> spineplot(Kyphosis ~ Age, data = kyphosis,

+ ylevels = c("present", "absent"))

R> spineplot(Kyphosis ~ Number, data = kyphosis,

+ ylevels = c("present", "absent"))

R> spineplot(Kyphosis ~ Start, data = kyphosis,

+ ylevels = c("present", "absent"))
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Figure 10.8 Spinograms of the three exploratory variables and response variable

kyphosis.

involved, we investigate the partial associations by so-called spinograms, as
introduced in Chapter 2. The numeric exploratory covariates are discretised
and their empirical relative frequencies are plotted against the conditional
frequency of kyphosis in the corresponding group. Figure 10.8 shows that
kyphosis is absent in very young or very old children, children with a small
starting vertebral level and high number of vertebrae involved.

The logistic additive model needed to describe the conditional probability
of kyphosis given the exploratory variables can be fitted using function gam.
Here, the dimension of the basis (k) has to be modified for Number and Start

since these variables are heavily tied. As for generalised linear models, the
family argument determines the type of model to be fitted, a logistic model
in our case:

R> kyphosis_gam <- gam(Kyphosis ~ s(Age, bs = "cr") +

+ s(Number, bs = "cr", k = 3) + s(Start, bs = "cr", k = 3),

+ family = binomial, data = kyphosis)

R> kyphosis_gam

Family: binomial

Link function: logit
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R> trans <- function(x)

+ binomial()$linkinv(x)

R> layout(matrix(1:3, nrow = 1))

R> plot(kyphosis_gam, select = 1, shade = TRUE, trans = trans)

R> plot(kyphosis_gam, select = 2, shade = TRUE, trans = trans)

R> plot(kyphosis_gam, select = 3, shade = TRUE, trans = trans)
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Figure 10.9 Partial contributions of three exploratory variables with confidence

bands.

Formula:

Kyphosis ~ s(Age, bs = "cr") + s(Number, bs = "cr", k = 3) +

s(Start, bs = "cr", k = 3)

Estimated degrees of freedom:

2.2267 1.2190 1.8420 total = 6.287681

UBRE score: -0.2335850

The partial contributions of each covariate to the conditional probability of
kyphosis with confidence bands are shown in Figure 10.9. In essence, the same
conclusions as drawn from Figure 10.8 can be stated here. The risk of kyphosis
being present increases with higher starting vertebral level and lower number
of vertebrae involved.

Summary

Additive models offer flexible modelling tools for regression problems. They
stand between generalised linear models, where the regression relationship is
assumed to be linear, and more complex models like random forests (see Chap-
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ter 9) where the regression relationship remains unspecified. Smooth functions
describing the influence of covariates on the response can be easily interpreted.
Variable selection is a technically difficult problem in this class of models;
boosting methods are one possibility to deal with this problem.

Exercises

Ex. 10.1 Consider the body fat data introduced in Chapter 9, Table 9.1.
First fit a generalised additive model assuming normal errors using function
gam. Are all potential covariates informative? Check the results against a
generalised additive model that underwent AIC-based variable selection
(fitted using function gamboost).

Ex. 10.2 Try to fit a logistic additive model to the glaucoma data discussed
in Chapter 9. Which covariates should enter the model and how is their
influence on the probability of suffering from glaucoma?
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CHAPTER 11

Survival Analysis:
Glioma Treatment and
Breast Cancer Survival

11.1 Introduction

Grana et al. (2002) report results of a non-randomised clinical trial investi-
gating a novel radioimmunotherapy in malignant glioma patients. The overall
survival, i.e., the time from the beginning of the therapy to the disease-caused
death of the patient, is compared for two groups of patients. A control group
underwent the standard therapy and another group of patients was treated
with radioimmunotherapy in addition. The data, extracted from Tables 1 and
2 in Grana et al. (2002), are given in Table 11.1. The main interest is to inves-
tigate whether the patients treated with the novel radioimmunotherapy have,
on average, longer survival times than patients in the control group.

Table 11.1: glioma data. Patients suffering from two types of
glioma treated with the standard therapy or a novel
radioimmunotherapy (RIT).

age sex histology group event time

41 Female Grade3 RIT TRUE 53
45 Female Grade3 RIT FALSE 28
48 Male Grade3 RIT FALSE 69
54 Male Grade3 RIT FALSE 58
40 Female Grade3 RIT FALSE 54
31 Male Grade3 RIT TRUE 25
53 Male Grade3 RIT FALSE 51
49 Male Grade3 RIT FALSE 61
36 Male Grade3 RIT FALSE 57
52 Male Grade3 RIT FALSE 57
57 Male Grade3 RIT FALSE 50
55 Female GBM RIT FALSE 43
70 Male GBM RIT TRUE 20
39 Female GBM RIT TRUE 14
40 Female GBM RIT FALSE 36
47 Female GBM RIT FALSE 59
58 Male GBM RIT TRUE 31

197
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Table 11.1: glioma data (continued).

age sex histology group event time

40 Female GBM RIT TRUE 14
36 Male GBM RIT TRUE 36
27 Male Grade3 Control TRUE 34
32 Male Grade3 Control TRUE 32
53 Female Grade3 Control TRUE 9
46 Male Grade3 Control TRUE 19
33 Female Grade3 Control FALSE 50
19 Female Grade3 Control FALSE 48
32 Female GBM Control TRUE 8
70 Male GBM Control TRUE 8
72 Male GBM Control TRUE 11
46 Male GBM Control TRUE 12
44 Male GBM Control TRUE 15
83 Female GBM Control TRUE 5
57 Female GBM Control TRUE 8
71 Female GBM Control TRUE 8
61 Male GBM Control TRUE 6
65 Male GBM Control TRUE 14
50 Male GBM Control TRUE 13
42 Female GBM Control TRUE 25

Source: From Grana, C., et. al., Br. J. Cancer, 86, 207–212, 2002. With per-
mission.

The effects of hormonal treatment with Tamoxifen in women suffering from
node-positive breast cancer were investigated in a randomised clinical trial as
reported by Schumacher et al. (1994). Data from randomised patients from this
trial and additional non-randomised patients (from the German Breast Can-
cer Study Group 2, GBSG2) are analysed by Sauerbrei and Royston (1999).
Complete data of seven prognostic factors of 686 women are used in Sauerbrei
and Royston (1999) for prognostic modelling. Observed hypothetical prognos-
tic factors are age, menopausal status, tumour size, tumour grade, number of
positive lymph nodes, progesterone receptor, estrogen receptor and the infor-
mation of whether or not a hormonal therapy was applied. We are interested
in an assessment of the impact of the covariates on the survival time of the
patients. A subset of the patient data are shown in Table 11.2.

11.2 Survival Analysis

In many medical studies, the main outcome variable is the time to the oc-
currence of a particular event. In a randomised controlled trial of cancer, for
example, surgery, radiation and chemotherapy might be compared with re-
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Table 11.2: GBSG2 data (package ipred). Randomised clinical
trial data from patients suffering from node-positive
breast cancer. Only the data of the first 20 patients
are shown here.

horTh age menostat tsize tgrade pnodes progrec estrec time cens

no 70 Post 21 II 3 48 66 1814 1
yes 56 Post 12 II 7 61 77 2018 1
yes 58 Post 35 II 9 52 271 712 1
yes 59 Post 17 II 4 60 29 1807 1
no 73 Post 35 II 1 26 65 772 1
no 32 Pre 57 III 24 0 13 448 1

yes 59 Post 8 II 2 181 0 2172 0
no 65 Post 16 II 1 192 25 2161 0
no 80 Post 39 II 30 0 59 471 1
no 66 Post 18 II 7 0 3 2014 0

yes 68 Post 40 II 9 16 20 577 1
yes 71 Post 21 II 9 0 0 184 1
yes 59 Post 58 II 1 154 101 1840 0
no 50 Post 27 III 1 16 12 1842 0

yes 70 Post 22 II 3 113 139 1821 0
no 54 Post 30 II 1 135 6 1371 1
no 39 Pre 35 I 4 79 28 707 1

yes 66 Post 23 II 1 112 225 1743 0
yes 69 Post 25 I 1 131 196 1781 0
no 55 Post 65 I 4 312 76 865 1

...
...

...
...

...
...

...
...

...
...

Source: From Sauerbrei, W. and Royston, P., J. Roy. Stat. Soc. A, 162, 71–94, 1999. With permission.
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spect to time from randomisation and the start of therapy until death. In this
case, the event of interest is the death of a patient, but in other situations,
it might be remission from a disease, relief from symptoms or the recurrence
of a particular condition. Other censored response variables are the time to
credit failure in financial applications or the time a roboter needs to success-
fully perform a certain task in engineering. Such observations are generally
referred to by the generic term survival data even when the endpoint or event
being considered is not death but something else. Such data generally require
special techniques for analysis for two main reasons:

1. Survival data are generally not symmetrically distributed – they will often
appear positively skewed, with a few people surviving a very long time
compared with the majority; so assuming a normal distribution will not be
reasonable.

2. At the completion of the study, some patients may not have reached the
endpoint of interest (death, relapse, etc.). Consequently, the exact survival
times are not known. All that is known is that the survival times are greater
than the amount of time the individual has been in the study. The survival
times of these individuals are said to be censored (precisely, they are right-
censored).

Of central importance in the analysis of survival time data are two functions
used to describe their distribution, namely the survival (or survivor) function

and the hazard function.

11.2.1 The Survivor Function

The survivor function, S(t), is defined as the probability that the survival
time, T , is greater than or equal to some time t, i.e.,

S(t) = P(T ≥ t).

A plot of an estimate Ŝ(t) of S(t) against the time t is often a useful way of
describing the survival experience of a group of individuals. When there are
no censored observations in the sample of survival times, a non-parametric
survivor function can be estimated simply as

Ŝ(t) =
number of individuals with survival times ≥ t

n

where n is the total number of observations. Because this is simply a propor-
tion, confidence intervals can be obtained for each time t by using the variance
estimate

Ŝ(t)(1 − Ŝ(t))/n.

The simple method used to estimate the survivor function when there are
no censored observations cannot now be used for survival times when censored
observations are present. In the presence of censoring, the survivor function
is typically estimated using the Kaplan-Meier estimator (Kaplan and Meier,
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1958). This involves first ordering the survival times from the smallest to the
largest such that t(1) ≤ t(2) ≤ · · · ≤ t(n), where t(j) is the jth largest unique
survival time. The Kaplan-Meier estimate of the survival function is obtained
as

Ŝ(t) =
∏

j:t(j)≤t

(

1 −

dj

rj

)

where rj is the number of individuals at risk just before t(j) (including those
censored at t(j)), and dj is the number of individuals who experience the event
of interest (death, etc.) at time t(j). So, for example, the survivor function at
the second death time, t(2), is equal to the estimated probability of not dying
at time t(2), conditional on the individual being still at risk at time t(2). The
estimated variance of the Kaplan-Meier estimate of the survivor function is
found from

Var(Ŝ(t)) =
(

Ŝ(t)
)2 ∑

j:t(j)≤t

dj

rj(rj − dj)
.

A formal test of the equality of the survival curves for the two groups can be
made using the log-rank test. First, the expected number of deaths is computed
for each unique death time, or failure time in the data set, assuming that
the chances of dying, given that subjects are at risk, are the same for both
groups. The total number of expected deaths is then computed for each group
by adding the expected number of deaths for each failure time. The test then
compares the observed number of deaths in each group with the expected
number of deaths using a chi-squared test. Full details and formulae are given
in Therneau and Grambsch (2000) or Everitt and Rabe-Hesketh (2001), for
example.

11.2.2 The Hazard Function

In the analysis of survival data it is often of interest to assess which periods
have high or low chances of death (or whatever the event of interest may be),
among those still active at the time. A suitable approach to characterise such
risks is the hazard function, h(t), defined as the probability that an individual
experiences the event in a small time interval, s, given that the individual has
survived up to the beginning of the interval, when the size of the time interval
approaches zero; mathematically this is written as

h(t) = lim
s→0

P(t ≤ T ≤ t + s|T ≥ t)

s

where T is the individual’s survival time. The conditioning feature of this
definition is very important. For example, the probability of dying at age
100 is very small because most people die before that age; in contrast, the
probability of a person dying at age 100 who has reached that age is much
greater.
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Figure 11.1 ‘Bath tub’ shape of a hazard function.

The hazard function and survivor function are related by the formula

S(t) = exp(−H(t))

where H(t) is known as the integrated hazard or cumulative hazard, and is
defined as follows:

H(t) =

∫ t

0

h(u)du;

details of how this relationship arises are given in Everitt and Pickles (2000).
In practise the hazard function may increase, decrease, remain constant or

have a more complex shape. The hazard function for death in human beings,
for example, has the ‘bath tub’ shape shown in Figure 11.1. It is relatively high
immediately after birth, declines rapidly in the early years and then remains
approximately constant before beginning to rise again during late middle age.

The hazard function can be estimated as the proportion of individuals ex-
periencing the event of interest in an interval per unit time, given that they
have survived to the beginning of the interval, that is

ĥ(t) =
dj

nj(t(j+1) − t(j))
.

The sampling variation in the estimate of the hazard function within each
interval is usually considerable and so it is rarely plotted directly. Instead the
integrated hazard is used. Everitt and Rabe-Hesketh (2001) show that this

© 2010 by Taylor and Francis Group, LLC



SURVIVAL ANALYSIS 203

can be estimated as follows:

Ĥ(t) =
∑

j

dj

nj

.

11.2.3 Cox’s Regression

When the response variable of interest is a possibly censored survival time,
we need special regression techniques for modelling the relationship of the
response to explanatory variables of interest. A number of procedures are
available but the most widely used by some margin is that known as Cox’s

proportional hazards model, or Cox’s regression for short. Introduced by Sir
David Cox in 1972 (see Cox, 1972), the method has become one of the most
commonly used in medical statistics and the original paper one of the most
heavily cited.

The main vehicle for modelling in this case is the hazard function rather
than the survivor function, since it does not involve the cumulative history
of events. But modelling the hazard function directly as a linear function
of explanatory variables is not appropriate since h(t) is restricted to being
positive. A more suitable model might be

log(h(t)) = β0 + β1x1 + · · · + βqxq. (11.1)

But this would only be suitable for a hazard function that is constant over
time; this is very restrictive since hazards that increase or decrease with time,
or have some more complex form are far more likely to occur in practise. In
general it may be difficult to find the appropriate explicit function of time to
include in (11.1). The problem is overcome in the proportional hazards model
proposed by Cox (1972) by allowing the form of dependence of h(t) on t to
remain unspecified, so that

log(h(t)) = log(h0(t)) + β1x1 + · · · + βqxq

where h0(t) is known as the baseline hazard function, being the hazard function
for individuals with all explanatory variables equal to zero. The model can be
rewritten as

h(t) = h0(t) exp(β1x1 + · · · + βqxq).

Written in this way we see that the model forces the hazard ratio between two
individuals to be constant over time since

h(t|x1)

h(t|x2)
=

exp(β⊤x1)

exp(β⊤x2)

where x1 and x2 are vectors of covariate values for two individuals. In other
words, if an individual has a risk of death at some initial time point that is
twice as high as another individual, then at all later times, the risk of death
remains twice as high. Hence the term proportional hazards.
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In the Cox model, the baseline hazard describes the common shape of the
survival time distribution for all individuals, while the relative risk function,
exp(β⊤x), gives the level of each individual’s hazard. The interpretation of the
parameter βj is that exp(βj) gives the relative risk change associated with an
increase of one unit in covariate xj , all other explanatory variables remaining
constant.

The parameters in a Cox model can be estimated by maximising what
is known as a partial likelihood. Details are given in Kalbfleisch and Pren-
tice (1980). The partial likelihood is derived by assuming continuous survival
times. In reality, however, survival times are measured in discrete units and
there are often ties. There are three common methods for dealing with ties
which are described briefly in Everitt and Rabe-Hesketh (2001).

11.3 Analysis Using R

11.3.1 Glioma Radioimmunotherapy

The survival times for patients from the control group and the group treated
with the novel therapy can be compared graphically by plotting the Kaplan-
Meier estimates of the survival times. Here, we plot the Kaplan-Meier esti-
mates stratified for patients suffering from grade III glioma and glioblastoma
(GBM, grade IV) separately; the results are given in Figure 11.2. The Kaplan-
Meier estimates are computed by the survfit function from package survival

(Therneau and Lumley, 2009) which takes a model formula of the form

Surv(time, event) ~ group

where time are the survival times, event is a logical variable being TRUE when
the event of interest, death for example, has been observed and FALSE when
in case of censoring. The right hand side variable group is a grouping factor.

Figure 11.2 leads to the impression that patients treated with the novel
radioimmunotherapy survive longer, regardless of the tumour type. In order
to assess if this informal finding is reliable, we may perform a log-rank test
via

R> survdiff(Surv(time, event) ~ group, data = g3)

Call:

survdiff(formula = Surv(time, event) ~ group, data = g3)

N Observed Expected (O-E)^2/E (O-E)^2/V

group=Control 6 4 1.49 4.23 6.06

group=RIT 11 2 4.51 1.40 6.06

Chisq= 6.1 on 1 degrees of freedom, p= 0.0138

which indicates that the survival times are indeed different in both groups.
However, the number of patients is rather limited and so it might be danger-
ous to rely on asymptotic tests. As shown in Chapter 4, conditioning on the
data and computing the distribution of the test statistics without additional
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R> data("glioma", package = "coin")

R> library("survival")

R> layout(matrix(1:2, ncol = 2))

R> g3 <- subset(glioma, histology == "Grade3")

R> plot(survfit(Surv(time, event) ~ group, data = g3),

+ main = "Grade III Glioma", lty = c(2, 1),

+ ylab = "Probability", xlab = "Survival Time in Month",

+ legend.text = c("Control", "Treated"),

+ legend.bty = "n")

R> g4 <- subset(glioma, histology == "GBM")

R> plot(survfit(Surv(time, event) ~ group, data = g4),

+ main = "Grade IV Glioma", ylab = "Probability",

+ lty = c(2, 1), xlab = "Survival Time in Month",

+ xlim = c(0, max(glioma$time) * 1.05))
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Figure 11.2 Survival times comparing treated and control patients.

assumptions are one alternative. The function surv_test from package coin

(Hothorn et al., 2006a, 2008b) can be used to compute an exact conditional
test answering the question whether the survival times differ for grade III pa-
tients. For all possible permutations of the groups on the censored response
variable, the test statistic is computed and the fraction of whose being greater
than the observed statistic defines the exact p-value:

R> library("coin")

R> surv_test(Surv(time, event) ~ group, data = g3,

+ distribution = "exact")
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Exact Logrank Test

data: Surv(time, event) by group (Control, RIT)

Z = 2.1711, p-value = 0.02877

alternative hypothesis: two.sided

which, in this case, confirms the above results. The same exercise can be
performed for patients with grade IV glioma

R> surv_test(Surv(time, event) ~ group, data = g4,

+ distribution = "exact")

Exact Logrank Test

data: Surv(time, event) by group (Control, RIT)

Z = 3.2215, p-value = 0.0001588

alternative hypothesis: two.sided

which shows a difference as well. However, it might be more appropriate to
answer the question whether the novel therapy is superior for both groups of
tumours simultaneously. This can be implemented by stratifying, or blocking,
with respect to tumour grading:

R> surv_test(Surv(time, event) ~ group | histology,

+ data = glioma, distribution = approximate(B = 10000))

Approximative Logrank Test

data: Surv(time, event) by

group (Control, RIT)

stratified by histology

Z = 3.6704, p-value = 1e-04

alternative hypothesis: two.sided

Here, we need to approximate the exact conditional distribution since the exact
distribution is hard to compute. The result supports the initial impression
implied by Figure 11.2.

11.3.2 Breast Cancer Survival

Before fitting a Cox model to the GBSG2 data, we again derive a Kaplan-Meier
estimate of the survival function of the data, here stratified with respect to
whether a patient received a hormonal therapy or not (see Figure 11.3).

Fitting a Cox model follows roughly the same rules as shown for linear
models in Chapter 6 with the exception that the response variable is again
coded as a Surv object. For the GBSG2 data, the model is fitted via

R> GBSG2_coxph <- coxph(Surv(time, cens) ~ ., data = GBSG2)

and the results as given by the summary method are given in Figure 11.4. Since
we are especially interested in the relative risk for patients who underwent a
hormonal therapy, we can compute an estimate of the relative risk and a
corresponding confidence interval via
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R> data("GBSG2", package = "ipred")

R> plot(survfit(Surv(time, cens) ~ horTh, data = GBSG2),

+ lty = 1:2, mark.time = FALSE, ylab = "Probability",

+ xlab = "Survival Time in Days")

R> legend(250, 0.2, legend = c("yes", "no"), lty = c(2, 1),

+ title = "Hormonal Therapy", bty = "n")
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Figure 11.3 Kaplan-Meier estimates for breast cancer patients who either re-

ceived a hormonal therapy or not.

R> ci <- confint(GBSG2_coxph)

R> exp(cbind(coef(GBSG2_coxph), ci))["horThyes",]

2.5 % 97.5 %

0.7073155 0.5492178 0.9109233

This result implies that patients treated with a hormonal therapy had a lower
risk and thus survived longer compared to women who were not treated this
way.

Model checking and model selection for proportional hazards models are
complicated by the fact that easy-to-use residuals, such as those discussed in
Chapter 6 for linear regression models, are not available, but several possibil-
ities do exist. A check of the proportional hazards assumption can be done by
looking at the parameter estimates β1, . . . , βq over time. We can safely assume
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R> summary(GBSG2_coxph)

Call:

coxph(formula = Surv(time, cens) ~ ., data = GBSG2)

n= 686

coef exp(coef) se(coef) z Pr(>|z|)

horThyes -0.3462784 0.7073155 0.1290747 -2.683 0.007301

age -0.0094592 0.9905854 0.0093006 -1.017 0.309126

menostatPost 0.2584448 1.2949147 0.1834765 1.409 0.158954

tsize 0.0077961 1.0078266 0.0039390 1.979 0.047794

tgrade.L 0.5512988 1.7355056 0.1898441 2.904 0.003685

tgrade.Q -0.2010905 0.8178384 0.1219654 -1.649 0.099199

pnodes 0.0487886 1.0499984 0.0074471 6.551 5.7e-11

progrec -0.0022172 0.9977852 0.0005735 -3.866 0.000111

estrec 0.0001973 1.0001973 0.0004504 0.438 0.661307

exp(coef) exp(-coef) lower .95 upper .95

horThyes 0.7073 1.4138 0.5492 0.911

age 0.9906 1.0095 0.9727 1.009

menostatPost 1.2949 0.7723 0.9038 1.855

tsize 1.0078 0.9922 1.0001 1.016

tgrade.L 1.7355 0.5762 1.1963 2.518

tgrade.Q 0.8178 1.2227 0.6439 1.039

pnodes 1.0500 0.9524 1.0348 1.065

progrec 0.9978 1.0022 0.9967 0.999

estrec 1.0002 0.9998 0.9993 1.001

Rsquare= 0.142 (max possible= 0.995 )

Likelihood ratio test= 104.8 on 9 df, p=0

Wald test = 114.8 on 9 df, p=0

Score (logrank) test = 120.7 on 9 df, p=0

Figure 11.4 R output of the summary method for GBSG2_coxph.

proportional hazards when the estimates don’t vary much over time. The null
hypothesis of constant regression coefficients can be tested, both globally as
well as for each covariate, by using the cox.zph function

R> GBSG2_zph <- cox.zph(GBSG2_coxph)

R> GBSG2_zph

rho chisq p

horThyes -2.54e-02 1.96e-01 0.65778

age 9.40e-02 2.96e+00 0.08552

menostatPost -1.19e-05 3.75e-08 0.99985

tsize -2.50e-02 1.88e-01 0.66436

tgrade.L -1.30e-01 4.85e+00 0.02772
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R> plot(GBSG2_zph, var = "age")
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Figure 11.5 Estimated regression coefficient for age depending on time for the

GBSG2 data.

tgrade.Q 3.22e-03 3.14e-03 0.95530

pnodes 5.84e-02 5.98e-01 0.43941

progrec 5.65e-02 1.20e+00 0.27351

estrec 5.46e-02 1.03e+00 0.30967

GLOBAL NA 2.27e+01 0.00695

There seems to be some evidence of time-varying effects, especially for age and
tumour grading. A graphical representation of the estimated regression coeffi-
cient over time is shown in Figure 11.5. We refer to Therneau and Grambsch
(2000) for a detailed theoretical description of these topics.

Martingale residuals as computed by the residuals method applied to
coxph objects can be used to check the model fit. When evaluated at the
true regression coefficient the expectation of the martingale residuals is zero.
Thus, one way to check for systematic deviations is an inspection of scatter-

© 2010 by Taylor and Francis Group, LLC



210 SURVIVAL ANALYSIS

R> layout(matrix(1:3, ncol = 3))

R> res <- residuals(GBSG2_coxph)

R> plot(res ~ age, data = GBSG2, ylim = c(-2.5, 1.5),

+ pch = ".", ylab = "Martingale Residuals")

R> abline(h = 0, lty = 3)

R> plot(res ~ pnodes, data = GBSG2, ylim = c(-2.5, 1.5),

+ pch = ".", ylab = "")

R> abline(h = 0, lty = 3)

R> plot(res ~ log(progrec), data = GBSG2, ylim = c(-2.5, 1.5),

+ pch = ".", ylab = "")

R> abline(h = 0, lty = 3)
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Figure 11.6 Martingale residuals for the GBSG2 data.

plots plotting covariates against the martingale residuals. For the GBSG2 data,
Figure 11.6 does not indicate severe and systematic deviations from zero.

The tree-structured regression models applied to continuous and binary
responses in Chapter 9 are applicable to censored responses in survival analysis
as well. Such a simple prognostic model with only a few terminal nodes might
be helpful for relating the risk to certain subgroups of patients. Both rpart

and the ctree function from package party can be applied to the GBSG2
data, where the conditional trees of the latter select cutpoints based on log-
rank statistics

R> GBSG2_ctree <- ctree(Surv(time, cens) ~ ., data = GBSG2)

and the plot method applied to this tree produces the graphical representation
in Figure 11.7. The number of positive lymph nodes (pnodes) is the most
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R> plot(GBSG2_ctree)
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Figure 11.7 Conditional inference tree for the GBSG2 data with the survival func-

tion, estimated by Kaplan-Meier, shown for every subgroup of pa-

tients identified by the tree.

important variable in the tree, corresponding to the p-value associated with
this variable in Cox’s regression; see Figure 11.4. Women with not more than
three positive lymph nodes who have undergone a hormonal therapy seem to
have the best prognosis whereas a large number of positive lymph nodes and
a small value of the progesterone receptor indicates a bad prognosis.

11.4 Summary

The analysis of life-time data is complicated by the fact that the time to
some event is not observable for all observations due to censoring. Survival
times are analysed by some estimates of the survival function, for example by
a non-parametric Kaplan-Meier estimate or by semi-parametric proportional
hazards regression models.

Exercises

Ex. 11.1 Sauerbrei and Royston (1999) analyse the GBSG2 data using multi-
variable fractional polynomials, a flexibilisation for many linear regression
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models including Cox’s model. In R, this methodology is available by the
mfp package (Ambler and Benner, 2009). Try to reproduce the analysis pre-
sented by Sauerbrei and Royston (1999), i.e., fit a multivariable fractional
polynomial to the GBSG2 data!

Ex. 11.2 The data in Table 11.3 (Everitt and Rabe-Hesketh, 2001) are the
survival times (in months) after mastectomy of women with breast can-
cer. The cancers are classified as having metastasised or not based on a
histochemical marker. Censoring is indicated by the event variable being
TRUE in case of death. Plot the survivor functions of each group, estimated
using the Kaplan-Meier estimate, on the same graph and comment on the
differences. Use a log-rank test to compare the survival experience of each
group more formally.

Table 11.3: mastectomy data. Survival times in months after
mastectomy of women with breast cancer.

time event metastasised time event metastasised

23 TRUE no 40 TRUE yes
47 TRUE no 41 TRUE yes
69 TRUE no 48 TRUE yes
70 FALSE no 50 TRUE yes

100 FALSE no 59 TRUE yes
101 FALSE no 61 TRUE yes
148 TRUE no 68 TRUE yes
181 TRUE no 71 TRUE yes
198 FALSE no 76 FALSE yes
208 FALSE no 105 FALSE yes
212 FALSE no 107 FALSE yes
224 FALSE no 109 FALSE yes

5 TRUE yes 113 TRUE yes
8 TRUE yes 116 FALSE yes

10 TRUE yes 118 TRUE yes
13 TRUE yes 143 TRUE yes
18 TRUE yes 145 FALSE yes
24 TRUE yes 162 FALSE yes
26 TRUE yes 188 FALSE yes
26 TRUE yes 212 FALSE yes
31 TRUE yes 217 FALSE yes
35 TRUE yes 225 FALSE yes
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CHAPTER 12

Analysing Longitudinal Data I:
Computerised Delivery of Cognitive

Behavioural Therapy – Beat the Blues

12.1 Introduction

Depression is a major public health problem across the world. Antidepressants
are the front line treatment, but many patients either do not respond to them,
or do not like taking them. The main alternative is psychotherapy, and the
modern ‘talking treatments’ such as cognitive behavioural therapy (CBT) have
been shown to be as effective as drugs, and probably more so when it comes
to relapse. But there is a problem, namely availability–there are simply not
enough skilled therapists to meet the demand, and little prospect at all of this
situation changing.

A number of alternative modes of delivery of CBT have been explored, in-
cluding interactive systems making use of the new computer technologies. The
principles of CBT lend themselves reasonably well to computerisation, and,
perhaps surprisingly, patients adapt well to this procedure, and do not seem
to miss the physical presence of the therapist as much as one might expect.
The data to be used in this chapter arise from a clinical trial of an interactive,
multimedia program known as ‘Beat the Blues’ designed to deliver cognitive
behavioural therapy to depressed patients via a computer terminal. Full details
are given in Proudfoot et al. (2003), but in essence Beat the Blues is an in-
teractive program using multimedia techniques, in particular video vignettes.
The computer-based intervention consists of nine sessions, followed by eight
therapy sessions, each lasting about 50 minutes. Nurses are used to explain
how the program works, but are instructed to spend no more than 5 minutes
with each patient at the start of each session, and are there simply to assist
with the technology. In a randomised controlled trial of the program, patients
with depression recruited in primary care were randomised to either the Beat
the Blues program or to ‘Treatment as Usual’ (TAU). Patients randomised
to Beat the Blues also received pharmacology and/or general practise (GP)
support and practical/social help, offered as part of treatment as usual, with
the exception of any face-to-face counselling or psychological intervention.
Patients allocated to TAU received whatever treatment their GP prescribed.
The latter included, besides any medication, discussion of problems with GP,
provision of practical/social help, referral to a counsellor, referral to a prac-
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tise nurse, referral to mental health professionals (psychologist, psychiatrist,
community psychiatric nurse, counsellor), or further physical examination.

A number of outcome measures were used in the trial, but here we concen-
trate on the Beck Depression Inventory II (BDI, Beck et al., 1996). Measure-
ments on this variable were made on the following five occasions:

• Prior to treatment,

• Two months after treatment began and

• At one, three and six months follow-up, i.e., at three, five and eight months
after treatment.

Table 12.1: BtheB data. Data of a randomised trial evaluating
the effects of Beat the Blues.

drug length treatment bdi.pre bdi.2m bdi.3m bdi.5m bdi.8m

No >6m TAU 29 2 2 NA NA
Yes >6m BtheB 32 16 24 17 20
Yes <6m TAU 25 20 NA NA NA
No >6m BtheB 21 17 16 10 9
Yes >6m BtheB 26 23 NA NA NA
Yes <6m BtheB 7 0 0 0 0
Yes <6m TAU 17 7 7 3 7
No >6m TAU 20 20 21 19 13
Yes <6m BtheB 18 13 14 20 11
Yes >6m BtheB 20 5 5 8 12
No >6m TAU 30 32 24 12 2
Yes <6m BtheB 49 35 NA NA NA
No >6m TAU 26 27 23 NA NA
Yes >6m TAU 30 26 36 27 22
Yes >6m BtheB 23 13 13 12 23
No <6m TAU 16 13 3 2 0
No >6m BtheB 30 30 29 NA NA
No <6m BtheB 13 8 8 7 6
No >6m TAU 37 30 33 31 22
Yes <6m BtheB 35 12 10 8 10
No >6m BtheB 21 6 NA NA NA
No <6m TAU 26 17 17 20 12
No >6m TAU 29 22 10 NA NA
No >6m TAU 20 21 NA NA NA
No >6m TAU 33 23 NA NA NA
No >6m BtheB 19 12 13 NA NA
Yes <6m TAU 12 15 NA NA NA
Yes >6m TAU 47 36 49 34 NA
Yes >6m BtheB 36 6 0 0 2
No <6m BtheB 10 8 6 3 3
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Table 12.1: BtheB data (continued).

drug length treatment bdi.pre bdi.2m bdi.3m bdi.5m bdi.8m

No <6m TAU 27 7 15 16 0
No <6m BtheB 18 10 10 6 8
Yes <6m BtheB 11 8 3 2 15
Yes <6m BtheB 6 7 NA NA NA
Yes >6m BtheB 44 24 20 29 14
No <6m TAU 38 38 NA NA NA
No <6m TAU 21 14 20 1 8
Yes >6m TAU 34 17 8 9 13
Yes <6m BtheB 9 7 1 NA NA
Yes >6m TAU 38 27 19 20 30
Yes <6m BtheB 46 40 NA NA NA
No <6m TAU 20 19 18 19 18
Yes >6m TAU 17 29 2 0 0
No >6m BtheB 18 20 NA NA NA
Yes >6m BtheB 42 1 8 10 6
No <6m BtheB 30 30 NA NA NA
Yes <6m BtheB 33 27 16 30 15
No <6m BtheB 12 1 0 0 NA
Yes <6m BtheB 2 5 NA NA NA
No >6m TAU 36 42 49 47 40
No <6m TAU 35 30 NA NA NA
No <6m BtheB 23 20 NA NA NA
No >6m TAU 31 48 38 38 37
Yes <6m BtheB 8 5 7 NA NA
Yes <6m TAU 23 21 26 NA NA
Yes <6m BtheB 7 7 5 4 0
No <6m TAU 14 13 14 NA NA
No <6m TAU 40 36 33 NA NA
Yes <6m BtheB 23 30 NA NA NA
No >6m BtheB 14 3 NA NA NA
No >6m TAU 22 20 16 24 16
No >6m TAU 23 23 15 25 17
No <6m TAU 15 7 13 13 NA
No >6m TAU 8 12 11 26 NA
No >6m BtheB 12 18 NA NA NA
No >6m TAU 7 6 2 1 NA
Yes <6m TAU 17 9 3 1 0
Yes <6m BtheB 33 18 16 NA NA
No <6m TAU 27 20 NA NA NA
No <6m BtheB 27 30 NA NA NA
No <6m BtheB 9 6 10 1 0
No >6m BtheB 40 30 12 NA NA
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Table 12.1: BtheB data (continued).

drug length treatment bdi.pre bdi.2m bdi.3m bdi.5m bdi.8m

No >6m TAU 11 8 7 NA NA
No <6m TAU 9 8 NA NA NA
No >6m TAU 14 22 21 24 19
Yes >6m BtheB 28 9 20 18 13
No >6m BtheB 15 9 13 14 10
Yes >6m BtheB 22 10 5 5 12
No <6m TAU 23 9 NA NA NA
No >6m TAU 21 22 24 23 22
No >6m TAU 27 31 28 22 14
Yes >6m BtheB 14 15 NA NA NA
No >6m TAU 10 13 12 8 20
Yes <6m TAU 21 9 6 7 1
Yes >6m BtheB 46 36 53 NA NA
No >6m BtheB 36 14 7 15 15
Yes >6m BtheB 23 17 NA NA NA
Yes >6m TAU 35 0 6 0 1
Yes <6m BtheB 33 13 13 10 8
No <6m BtheB 19 4 27 1 2
No <6m TAU 16 NA NA NA NA
Yes <6m BtheB 30 26 28 NA NA
Yes <6m BtheB 17 8 7 12 NA
No >6m BtheB 19 4 3 3 3
No >6m BtheB 16 11 4 2 3
Yes >6m BtheB 16 16 10 10 8
Yes <6m TAU 28 NA NA NA NA
No >6m BtheB 11 22 9 11 11
No <6m TAU 13 5 5 0 6
Yes <6m TAU 43 NA NA NA NA

The resulting data from a subset of 100 patients are shown in Table 12.1.
(The data are used with the kind permission of Dr. Judy Proudfoot.) In ad-
dition to assessing the effects of treatment, there is interest here in assessing
the effect of taking antidepressant drugs (drug, yes or no) and length of the
current episode of depression (length, less or more than six months).

12.2 Analysing Longitudinal Data

The distinguishing feature of a longitudinal study is that the response vari-
able of interest and a set of explanatory variables are measured several times
on each individual in the study. The main objective in such a study is to
characterise change in the repeated values of the response variable and to de-
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termine the explanatory variables most associated with any change. Because
several observations of the response variable are made on the same individual,
it is likely that the measurements will be correlated rather than independent,
even after conditioning on the explanatory variables. Consequently repeated
measures data require special methods of analysis and models for such data
need to include parameters linking the explanatory variables to the repeated
measurements, parameters analogous to those in the usual multiple regression
model (see Chapter 6), and, in addition parameters that account for the cor-
relational structure of the repeated measurements. It is the former parameters
that are generally of most interest with the latter often being regarded as nui-
sance parameters. But providing an adequate description for the correlational
structure of the repeated measures is necessary to avoid misleading inferences
about the parameters that are of real interest to the researcher.

Over the last decade methodology for the analysis of repeated measures
data has been the subject of much research and development, and there are
now a variety of powerful techniques available. A comprehensive account of
these methods is given in Diggle et al. (2003) and Davis (2002). In this chapter
we will concentrate on a single class of methods, linear mixed effects models
suitable when, conditional on the explanatory variables, the response has a
normal distribution. In Chapter 13 two other classes of models which can deal
with non-normal responses will be described.

12.3 Linear Mixed Effects Models for Repeated Measures Data

Linear mixed effects models for repeated measures data formalise the sensible
idea that an individual’s pattern of responses is likely to depend on many
characteristics of that individual, including some that are unobserved. These
unobserved variables are then included in the model as random variables,
i.e., random effects. The essential feature of such models is that correlation
amongst the repeated measurements on the same unit arises from shared,
unobserved variables. Conditional on the values of the random effects, the
repeated measurements are assumed to be independent, the so-called local
independence assumption.

Two commonly used linear mixed effect models, the random intercept and
the random intercept and slope models, will now be described in more detail.

Let yij represent the observation made at time tj on individual i. A possible
model for the observation yij might be

yij = β0 + β1tj + ui + εij . (12.1)

Here the total residual that would be present in the usual linear regression
model has been partitioned into a subject-specific random component ui which
is constant over time plus a residual εij which varies randomly over time.
The ui are assumed to be normally distributed with zero mean and variance
σ2

u. Similarly the residuals εij are assumed normally distributed with zero
mean and variance σ2. The ui and εij are assumed to be independent of each
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other and of the time tj . The model in (12.1) is known as a random intercept
model, the ui being the random intercepts. The repeated measurements for an
individual vary about that individual’s own regression line which can differ in
intercept but not in slope from the regression lines of other individuals. The
random effects model possible heterogeneity in the intercepts of the individuals
whereas time has a fixed effect, β1.

The random intercept model implies that the total variance of each repeated
measurement is Var(yij) = Var(ui + εij) = σ2

u +σ2. Due to this decomposition
of the total residual variance into a between-subject component, σ2

u, and a
within-subject component, σ2, the model is sometimes referred to as a variance
component model.

The covariance between the total residuals at two time points j and k in the
same individual is Cov(ui +εij , ui +εik) = σ2

u. Note that these covariances are
induced by the shared random intercept; for individuals with ui > 0, the total
residuals will tend to be greater than the mean, for individuals with ui < 0
they will tend to be less than the mean. It follows from the two relations above
that the residual correlations are given by

Cor(ui + εij , ui + εik) =
σ2

u

σ2
u + σ2

.

This is an intra-class correlation interpreted as the proportion of the total
residual variance that is due to residual variability between subjects. A random
intercept model constrains the variance of each repeated measure to be the
same and the covariance between any pair of measurements to be equal. This is
usually called the compound symmetry structure. These constraints are often
not realistic for repeated measures data. For example, for longitudinal data it is
more common for measures taken closer to each other in time to be more highly
correlated than those taken further apart. In addition the variances of the later
repeated measures are often greater than those taken earlier. Consequently
for many such data sets the random intercept model will not do justice to
the observed pattern of covariances between the repeated measures. A model
that allows a more realistic structure for the covariances is one that allows
heterogeneity in both slopes and intercepts, the random slope and intercept
model.

In this model there are two types of random effects, the first modelling
heterogeneity in intercepts, ui, and the second modelling heterogeneity in
slopes, vi. Explicitly the model is

yij = β0 + β1tj + ui + vitj + εij (12.2)

where the parameters are not, of course, the same as in (12.1). The two random
effects are assumed to have a bivariate normal distribution with zero means
for both variables and variances σ2

u and σ2
v with covariance σuv. With this

model the total residual is ui + uitj + εij with variance

Var(ui + vitj + εij) = σ2

u + 2σuvtj + σ2

vt2

j + σ2
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which is no longer constant for different values of tj . Similarly the covariance
between two total residuals of the same individual

Cov(ui + vitj + εij , ui + vitk + εik) = σ2

u + σuv(tj − tk) + σ2

vtjtk

is not constrained to be the same for all pairs tj and tk.
(It should also be noted that re-estimating the model after adding or sub-

tracting a constant from tj , e.g., its mean, will lead to different variance and
covariance estimates, but will not affect fixed effects.)

Linear mixed-effects models can be estimated by maximum likelihood. How-
ever, this method tends to underestimate the variance components. A modi-
fied version of maximum likelihood, known as restricted maximum likelihood
is therefore often recommended; this provides consistent estimates of the vari-
ance components. Details are given in Diggle et al. (2003) and Longford (1993).
Competing linear mixed-effects models can be compared using a likelihood ra-
tio test. If however the models have been estimated by restricted maximum
likelihood this test can be used only if both models have the same set of fixed
effects, see Longford (1993). (It should be noted that there are some tech-
nical problems with the likelihood ratio test which are discussed in detail in
Rabe-Hesketh and Skrondal, 2008).

12.4 Analysis Using R

Almost all statistical analyses should begin with some graphical representation
of the data and here we shall construct the boxplots of each of the five repeated
measures separately for each treatment group. The data are available as the
data frame BtheB and the necessary R code is given along with Figure 12.1.
The boxplots show that there is decline in BDI values in both groups with
perhaps the values in the group of patients treated in the Beat the Blues arm
being lower at each post-randomisation visit.

We shall fit both random intercept and random intercept and slope models
to the data including the baseline BDI values (pre.bdi), treatment group,
drug and length as fixed effect covariates. Linear mixed effects models are
fitted in R by using the lmer function contained in the lme4 package (Bates
and Sarkar, 2008, Pinheiro and Bates, 2000, Bates, 2005), but an essential
first step is to rearrange the data from the ‘wide form’ in which they appear
in the BtheB data frame into the ‘long form’ in which each separate repeated
measurement and associated covariate values appear as a separate row in a
data.frame. This rearrangement can be made using the following code:

R> data("BtheB", package = "HSAUR2")

R> BtheB$subject <- factor(rownames(BtheB))

R> nobs <- nrow(BtheB)

R> BtheB_long <- reshape(BtheB, idvar = "subject",

+ varying = c("bdi.2m", "bdi.3m", "bdi.5m", "bdi.8m"),

+ direction = "long")

R> BtheB_long$time <- rep(c(2, 3, 5, 8), rep(nobs, 4))

© 2010 by Taylor and Francis Group, LLC



220 ANALYSING LONGITUDINAL DATA I

R> data("BtheB", package = "HSAUR2")

R> layout(matrix(1:2, nrow = 1))

R> ylim <- range(BtheB[,grep("bdi", names(BtheB))],

+ na.rm = TRUE)

R> tau <- subset(BtheB, treatment == "TAU")[,

+ grep("bdi", names(BtheB))]

R> boxplot(tau, main = "Treated as Usual", ylab = "BDI",

+ xlab = "Time (in months)", names = c(0, 2, 3, 5, 8),

+ ylim = ylim)

R> btheb <- subset(BtheB, treatment == "BtheB")[,

+ grep("bdi", names(BtheB))]

R> boxplot(btheb, main = "Beat the Blues", ylab = "BDI",

+ xlab = "Time (in months)", names = c(0, 2, 3, 5, 8),

+ ylim = ylim)
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Figure 12.1 Boxplots for the repeated measures by treatment group for the BtheB

data.

such that the data are now in the form (here shown for the first three subjects)

R> subset(BtheB_long, subject %in% c("1", "2", "3"))

drug length treatment bdi.pre subject time bdi

1.2m No >6m TAU 29 1 2 2

2.2m Yes >6m BtheB 32 2 2 16

3.2m Yes <6m TAU 25 3 2 20

1.3m No >6m TAU 29 1 3 2

2.3m Yes >6m BtheB 32 2 3 24

3.3m Yes <6m TAU 25 3 3 NA
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1.5m No >6m TAU 29 1 5 NA

2.5m Yes >6m BtheB 32 2 5 17

3.5m Yes <6m TAU 25 3 5 NA

1.8m No >6m TAU 29 1 8 NA

2.8m Yes >6m BtheB 32 2 8 20

3.8m Yes <6m TAU 25 3 8 NA

The resulting data.frame BtheB_long contains a number of missing values
and in applying the lmer function these will be dropped. But notice it is only
the missing values that are removed, not participants that have at least one
missing value. All the available data is used in the model fitting process. The
lmer function is used in a similar way to the lm function met in Chapter 6
with the addition of a random term to identify the source of the repeated
measurements, here subject. We can fit the two models (12.1) and (12.2)
and test which is most appropriate using

R> library("lme4")

R> BtheB_lmer1 <- lmer(bdi ~ bdi.pre + time + treatment + drug +

+ length + (1 | subject), data = BtheB_long,

+ REML = FALSE, na.action = na.omit)

R> BtheB_lmer2 <- lmer(bdi ~ bdi.pre + time + treatment + drug +

+ length + (time | subject), data = BtheB_long,

+ REML = FALSE, na.action = na.omit)

R> anova(BtheB_lmer1, BtheB_lmer2)

Data: BtheB_long

Models:

BtheB_lmer1: bdi ~ bdi.pre + time + treatment + drug + length +

BtheB_lmer1: (1 | subject)

BtheB_lmer2: bdi ~ bdi.pre + time + treatment + drug + length +

BtheB_lmer2: (time | subject)

Df AIC BIC logLik Chisq Chi Df

BtheB_lmer1 8 1887.49 1916.57 -935.75

BtheB_lmer2 10 1891.04 1927.39 -935.52 0.4542 2

Pr(>Chisq)

BtheB_lmer1

BtheB_lmer2 0.7969

The log-likelihood test indicates that the simpler random intercept model
is adequate for these data. More information about the fitted random inter-
cept model can be extracted from object BtheB_lmer1 using summary by the
R code in Figure 12.2. We see that the regression coefficients for time and
the Beck Depression Inventory II values measured at baseline (bdi.pre) are
highly significant, but there is no evidence that the coefficients for the other
three covariates differ from zero. In particular, there is no clear evidence of a
treatment effect.

The summary method for lmer objects doesn’t print p-values for Gaussian
mixed models because the degrees of freedom of the t reference distribution are
not obvious. However, one can rely on the asymptotic normal distribution for
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R> summary(BtheB_lmer1)

Linear mixed model fit by maximum likelihood

Formula: bdi ~ bdi.pre + time + treatment + drug + length +

(1 | subject)

Data: BtheB_long

AIC BIC logLik deviance REMLdev

1887 1917 -935.7 1871 1867

Random effects:

Groups Name Variance Std.Dev.

subject (Intercept) 48.777 6.9841

Residual 25.140 5.0140

Number of obs: 280, groups: subject, 97

Fixed effects:

Estimate Std. Error t value

(Intercept) 5.59244 2.24232 2.494

bdi.pre 0.63967 0.07789 8.213

time -0.70477 0.14639 -4.814

treatmentBtheB -2.32912 1.67026 -1.394

drugYes -2.82497 1.72674 -1.636

length>6m 0.19712 1.63823 0.120

Correlation of Fixed Effects:

(Intr) bdi.pr time trtmBB drugYs

bdi.pre -0.682

time -0.238 0.020

tretmntBthB -0.390 0.121 0.018

drugYes -0.073 -0.237 -0.022 -0.323

length>6m -0.243 -0.242 -0.036 0.002 0.157

Figure 12.2 R output of the linear mixed-effects model fit for the BtheB data.

computing univariate p-values for the fixed effects using the cftest function
from package multcomp. The asymptotic p-values are given in Figure 12.3.

We can check the assumptions of the final model fitted to the BtheB data,
i.e., the normality of the random effect terms and the residuals, by first using
the ranef method to predict the former and the residuals method to cal-
culate the differences between the observed data values and the fitted values,
and then using normal probability plots on each. How the random effects are
predicted is explained briefly in Section 12.5. The necessary R code to obtain
the effects, residuals and plots is shown with Figure 12.4. There appear to be
no large departures from linearity in either plot.
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R> cftest(BtheB_lmer1)

Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = bdi ~ bdi.pre + time + treatment + drug +

length + (1 | subject), data = BtheB_long, REML = FALSE,

na.action = na.omit)

Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

(Intercept) == 0 5.59244 2.24232 2.494 0.0126

bdi.pre == 0 0.63967 0.07789 8.213 2.22e-16

time == 0 -0.70477 0.14639 -4.814 1.48e-06

treatmentBtheB == 0 -2.32912 1.67026 -1.394 0.1632

drugYes == 0 -2.82497 1.72674 -1.636 0.1018

length>6m == 0 0.19712 1.63823 0.120 0.9042

(Univariate p values reported)

Figure 12.3 R output of the asymptotic p-values for linear mixed-effects model
fit for the BtheB data.

12.5 Prediction of Random Effects

The random effects are not estimated as part of the model. However, having
estimated the model, we can predict the values of the random effects. Accord-
ing to Bayes’ Theorem, the posterior probability of the random effects is given
by

P(u|y, x) = f(y|u, x)g(u)

where f(y|u, x) is the conditional density of the responses given the random
effects and covariates (a product of normal densities) and g(u) is the prior den-
sity of the random effects (multivariate normal). The means of this posterior
distribution can be used as estimates of the random effects and are known as
empirical Bayes estimates. The empirical Bayes estimator is also known as a
shrinkage estimator because the predicted random effects are smaller in abso-
lute value than their fixed effect counterparts. Best linear unbiased predictions
(BLUP) are linear combinations of the responses that are unbiased estimators
of the random effects and minimise the mean square error.

12.6 The Problem of Dropouts

We now need to consider briefly how the dropouts may affect the analyses
reported above. To understand the problems that patients dropping out can
cause for the analysis of data from a longitudinal trial we need to consider
a classification of dropout mechanisms first introduced by Rubin (1976). The
type of mechanism involved has implications for which approaches to analysis
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R> layout(matrix(1:2, ncol = 2))

R> qint <- ranef(BtheB_lmer1)$subject[["(Intercept)"]]

R> qres <- residuals(BtheB_lmer1)

R> qqnorm(qint, ylab = "Estimated random intercepts",

+ xlim = c(-3, 3), ylim = c(-20, 20),

+ main = "Random intercepts")

R> qqline(qint)

R> qqnorm(qres, xlim = c(-3, 3), ylim = c(-20, 20),

+ ylab = "Estimated residuals",

+ main = "Residuals")

R> qqline(qres)
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Figure 12.4 Quantile-quantile plots of predicted random intercepts and residuals
for the random intercept model BtheB_lmer1 fitted to the BtheB

data.

are suitable and which are not. Rubin’s suggested classification involves three
types of dropout mechanism:

Dropout completely at random (DCAR): here the probability that a patient
drops out does not depend on either the observed or missing values of
the response. Consequently the observed (non-missing) values effectively
constitute a simple random sample of the values for all subjects. Possible
examples include missing laboratory measurements because of a dropped
test-tube (if it was not dropped because of the knowledge of any measure-
ment), the accidental death of a participant in a study, or a participant
moving to another area. Intermittent missing values in a longitudinal data
set, whereby a patient misses a clinic visit for transitory reasons (‘went
shopping instead’ or the like) can reasonably be assumed to be DCAR.
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Completely random dropout causes least problem for data analysis, but it
is a strong assumption.

Dropout at random (DAR): The dropout at random mechanism occurs when
the probability of dropping out depends on the outcome measures that
have been observed in the past, but given this information is conditionally
independent of all the future (unrecorded) values of the outcome variable
following dropout. Here ‘missingness’ depends only on the observed data
with the distribution of future values for a subject who drops out at a
particular time being the same as the distribution of the future values of
a subject who remains in at that time, if they have the same covariates
and the same past history of outcome up to and including the specific time
point. Murray and Findlay (1988) provide an example of this type of missing
value from a study of hypertensive drugs in which the outcome measure
was diastolic blood pressure. The protocol of the study specified that the
participant was to be removed from the study when his/her blood pressure
got too large. Here blood pressure at the time of dropout was observed
before the participant dropped out, so although the dropout mechanism is
not DCAR since it depends on the values of blood pressure, it is DAR,
because dropout depends only on the observed part of the data. A further
example of a DAR mechanism is provided by Heitjan (1997), and involves
a study in which the response measure is body mass index (BMI). Suppose
that the measure is missing because subjects who had high body mass
index values at earlier visits avoided being measured at later visits out of
embarrassment, regardless of whether they had gained or lost weight in
the intervening period. The missing values here are DAR but not DCAR;
consequently methods applied to the data that assumed the latter might
give misleading results (see later discussion).

Non-ignorable (sometimes referred to as informative): The final type of drop-
out mechanism is one where the probability of dropping out depends on the
unrecorded missing values – observations are likely to be missing when the
outcome values that would have been observed had the patient not dropped
out, are systematically higher or lower than usual (corresponding perhaps
to their condition becoming worse or improving). A non-medical example
is when individuals with lower income levels or very high incomes are less
likely to provide their personal income in an interview. In a medical setting
possible examples are a participant dropping out of a longitudinal study
when his/her blood pressure became too high and this value was not ob-
served, or when their pain become intolerable and we did not record the
associated pain value. For the BDI example introduced above, if subjects
were more likely to avoid being measured if they had put on extra weight
since the last visit, then the data are non-ignorably missing. Dealing with
data containing missing values that result from this type of dropout mech-
anism is difficult. The correct analyses for such data must estimate the
dependence of the missingness probability on the missing values. Models
and software that attempt this are available (see, for example, Diggle and
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Kenward, 1994) but their use is not routine and, in addition, it must be
remembered that the associated parameter estimates can be unreliable.

Under what type of dropout mechanism are the mixed effects models con-
sidered in this chapter valid? The good news is that such models can be shown
to give valid results under the relatively weak assumption that the dropout
mechanism is DAR (see Carpenter et al., 2002). When the missing values
are thought to be informative, any analysis is potentially problematical. But
Diggle and Kenward (1994) have developed a modelling framework for longitu-
dinal data with informative dropouts, in which random or completely random
dropout mechanisms are also included as explicit models. The essential feature
of the procedure is a logistic regression model for the probability of dropping
out, in which the explanatory variables can include previous values of the re-
sponse variable, and, in addition, the unobserved value at dropout as a latent
variable (i.e., an unobserved variable). In other words, the dropout probability
is allowed to depend on both the observed measurement history and the un-
observed value at dropout. This allows both a formal assessment of the type
of dropout mechanism in the data, and the estimation of effects of interest,
for example, treatment effects under different assumptions about the dropout
mechanism. A full technical account of the model is given in Diggle and Ken-
ward (1994) and a detailed example that uses the approach is described in
Carpenter et al. (2002).

One of the problems for an investigator struggling to identify the dropout
mechanism in a data set is that there are no routine methods to help, although
a number of largely ad hoc graphical procedures can be used as described in
Diggle (1998), Everitt (2002b) and Carpenter et al. (2002). One very simple
procedure for assessing the dropout mechanism suggested in Carpenter et al.
(2002) involves plotting the observations for each treatment group, at each
time point, differentiating between two categories of patients; those who do
and those who do not attend their next scheduled visit. Any clear difference
between the distributions of values for these two categories indicates that
dropout is not completely at random. For the Beat the Blues data, such a
plot is shown in Figure 12.5. When comparing the distribution of BDI values
for patients that do (circles) and do not (bullets) attend the next scheduled
visit, there is no apparent difference and so it is reasonable to assume dropout
completely at random.

12.7 Summary

Linear mixed effects models are extremely useful for modelling longitudinal
data. The models allow the correlations between the repeated measurements
to be accounted for so that correct inferences can be drawn about the ef-
fects of covariates of interest on the repeated response values. In this chapter
we have concentrated on responses that are continuous and conditional on the
explanatory variables and random effects have a normal distribution. But ran-
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R> bdi <- BtheB[, grep("bdi", names(BtheB))]

R> plot(1:4, rep(-0.5, 4), type = "n", axes = FALSE,

+ ylim = c(0, 50), xlab = "Months", ylab = "BDI")

R> axis(1, at = 1:4, labels = c(0, 2, 3, 5))

R> axis(2)

R> for (i in 1:4) {

+ dropout <- is.na(bdi[,i + 1])

+ points(rep(i, nrow(bdi)) + ifelse(dropout, 0.05, -0.05),

+ jitter(bdi[,i]), pch = ifelse(dropout, 20, 1))

+ }
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Figure 12.5 Distribution of BDI values for patients that do (circles) and do not
(bullets) attend the next scheduled visit.
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dom effects models can also be applied to non-normal responses, for example
binary variables – see, for example, Everitt (2002b).

The lack of independence of repeated measures data is what makes the
modelling of such data a challenge. But even when only a single measurement
of a response is involved, correlation can, in some circumstances, occur be-
tween the response values of different individuals and cause similar problems.
As an example consider a randomised clinical trial in which subjects are re-
cruited at multiple study centres. The multicentre design can help to provide
adequate sample sizes and enhance the generalisability of the results. However
factors that vary by centre, including patient characteristics and medical prac-
tise patterns, may exert a sufficiently powerful effect to make inferences that
ignore the ‘clustering’ seriously misleading. Consequently it may be necessary
to incorporate random effects for centres into the analysis.

Exercises

Ex. 12.1 Use the lm function to fit a model to the Beat the Blues data that
assumes that the repeated measurements are independent. Compare the
results to those from fitting the random intercept model BtheB_lmer1.

Ex. 12.2 Investigate whether there is any evidence of an interaction between
treatment and time for the Beat the Blues data.

Ex. 12.3 Construct a plot of the mean profiles of both groups in the Beat the
Blues data, showing also standard deviation bars at each time point.

Ex. 12.4 The phosphate data given in Table 12.2 show the plasma inorganic
phosphate levels for 33 subjects, 20 of whom are controls and 13 of whom
have been classified as obese (Davis, 2002). Produce separate plots of the
profiles of the individuals in each group, and guided by these plots fit what
you think might be sensible linear mixed effects models.

Table 12.2: phosphate data. Plasma inorganic phosphate levels
for various time points after glucose challenge.

group t0 t0.5 t1 t1.5 t2 t3 t4 t5

control 4.3 3.3 3.0 2.6 2.2 2.5 3.4 4.4
control 3.7 2.6 2.6 1.9 2.9 3.2 3.1 3.9
control 4.0 4.1 3.1 2.3 2.9 3.1 3.9 4.0
control 3.6 3.0 2.2 2.8 2.9 3.9 3.8 4.0
control 4.1 3.8 2.1 3.0 3.6 3.4 3.6 3.7
control 3.8 2.2 2.0 2.6 3.8 3.6 3.0 3.5
control 3.8 3.0 2.4 2.5 3.1 3.4 3.5 3.7
control 4.4 3.9 2.8 2.1 3.6 3.8 4.0 3.9
control 5.0 4.0 3.4 3.4 3.3 3.6 4.0 4.3
control 3.7 3.1 2.9 2.2 1.5 2.3 2.7 2.8
control 3.7 2.6 2.6 2.3 2.9 2.2 3.1 3.9
control 4.4 3.7 3.1 3.2 3.7 4.3 3.9 4.8
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Table 12.2: phosphate data (continued).

group t0 t0.5 t1 t1.5 t2 t3 t4 t5

control 4.7 3.1 3.2 3.3 3.2 4.2 3.7 4.3
control 4.3 3.3 3.0 2.6 2.2 2.5 2.4 3.4
control 5.0 4.9 4.1 3.7 3.7 4.1 4.7 4.9
control 4.6 4.4 3.9 3.9 3.7 4.2 4.8 5.0
control 4.3 3.9 3.1 3.1 3.1 3.1 3.6 4.0
control 3.1 3.1 3.3 2.6 2.6 1.9 2.3 2.7
control 4.8 5.0 2.9 2.8 2.2 3.1 3.5 3.6
control 3.7 3.1 3.3 2.8 2.9 3.6 4.3 4.4

obese 5.4 4.7 3.9 4.1 2.8 3.7 3.5 3.7
obese 3.0 2.5 2.3 2.2 2.1 2.6 3.2 3.5
obese 4.9 5.0 4.1 3.7 3.7 4.1 4.7 4.9
obese 4.8 4.3 4.7 4.6 4.7 3.7 3.6 3.9
obese 4.4 4.2 4.2 3.4 3.5 3.4 3.8 4.0
obese 4.9 4.3 4.0 4.0 3.3 4.1 4.2 4.3
obese 5.1 4.1 4.6 4.1 3.4 4.2 4.4 4.9
obese 4.8 4.6 4.6 4.4 4.1 4.0 3.8 3.8
obese 4.2 3.5 3.8 3.6 3.3 3.1 3.5 3.9
obese 6.6 6.1 5.2 4.1 4.3 3.8 4.2 4.8
obese 3.6 3.4 3.1 2.8 2.1 2.4 2.5 3.5
obese 4.5 4.0 3.7 3.3 2.4 2.3 3.1 3.3
obese 4.6 4.4 3.8 3.8 3.8 3.6 3.8 3.8

Source: From Davis, C. S., Statistical Methods for the Analysis of Repeated
Measurements, Springer, New York, 2002. With kind permission of Springer
Science and Business Media.
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CHAPTER 13

Analysing Longitudinal Data II –
Generalised Estimation Equations and
Linear Mixed Effect Models: Treating

Respiratory Illness and Epileptic
Seizures

13.1 Introduction

The data in Table 13.1 were collected in a clinical trial comparing two treat-
ments for a respiratory illness (Davis, 1991).

Table 13.1: respiratory data. Randomised clinical trial data
from patients suffering from respiratory illness. Only
the data of the first seven patients are shown here.

centre treatment gender age status month subject

1 placebo female 46 poor 0 1
1 placebo female 46 poor 1 1
1 placebo female 46 poor 2 1
1 placebo female 46 poor 3 1
1 placebo female 46 poor 4 1
1 placebo female 28 poor 0 2
1 placebo female 28 poor 1 2
1 placebo female 28 poor 2 2
1 placebo female 28 poor 3 2
1 placebo female 28 poor 4 2
1 treatment female 23 good 0 3
1 treatment female 23 good 1 3
1 treatment female 23 good 2 3
1 treatment female 23 good 3 3
1 treatment female 23 good 4 3
1 placebo female 44 good 0 4
1 placebo female 44 good 1 4
1 placebo female 44 good 2 4
1 placebo female 44 good 3 4
1 placebo female 44 poor 4 4
1 placebo male 13 good 0 5

231
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Table 13.1: respiratory data (continued).

centre treatment gender age status month subject

1 placebo male 13 good 1 5
1 placebo male 13 good 2 5
1 placebo male 13 good 3 5
1 placebo male 13 good 4 5
1 treatment female 34 poor 0 6
1 treatment female 34 poor 1 6
1 treatment female 34 poor 2 6
1 treatment female 34 poor 3 6
1 treatment female 34 poor 4 6
1 placebo female 43 poor 0 7
1 placebo female 43 good 1 7
1 placebo female 43 poor 2 7
1 placebo female 43 good 3 7
1 placebo female 43 good 4 7
...

...
...

...
...

...
...

In each of two centres, eligible patients were randomly assigned to active treat-
ment or placebo. During the treatment, the respiratory status (categorised
poor or good) was determined at each of four, monthly visits. The trial re-
cruited 111 participants (54 in the active group, 57 in the placebo group) and
there were no missing data for either the responses or the covariates. The ques-
tion of interest is to assess whether the treatment is effective and to estimate
its effect.

Table 13.2: epilepsy data. Randomised clinical trial data from
patients suffering from epilepsy. Only the data of the
first seven patients are shown here.

treatment base age seizure.rate period subject

placebo 11 31 5 1 1
placebo 11 31 3 2 1
placebo 11 31 3 3 1
placebo 11 31 3 4 1
placebo 11 30 3 1 2
placebo 11 30 5 2 2
placebo 11 30 3 3 2
placebo 11 30 3 4 2
placebo 6 25 2 1 3
placebo 6 25 4 2 3
placebo 6 25 0 3 3
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Table 13.2: epilepsy data (continued).

treatment base age seizure.rate period subject

placebo 6 25 5 4 3
placebo 8 36 4 1 4
placebo 8 36 4 2 4
placebo 8 36 1 3 4
placebo 8 36 4 4 4
placebo 66 22 7 1 5
placebo 66 22 18 2 5
placebo 66 22 9 3 5
placebo 66 22 21 4 5
placebo 27 29 5 1 6
placebo 27 29 2 2 6
placebo 27 29 8 3 6
placebo 27 29 7 4 6
placebo 12 31 6 1 7
placebo 12 31 4 2 7
placebo 12 31 0 3 7
placebo 12 31 2 4 7

...
...

...
...

...
...

In a clinical trial reported by Thall and Vail (1990), 59 patients with epilepsy
were randomised to groups receiving either the antiepileptic drug Progabide
or a placebo in addition to standard chemotherapy. The numbers of seizures
suffered in each of four, two-week periods were recorded for each patient along
with a baseline seizure count for the 8 weeks prior to being randomised to
treatment and age. The main question of interest is whether taking Progabide
reduced the number of epileptic seizures compared with placebo. A subset of
the data is given in Table 13.2.

Note that the two data sets are shown in their ‘long form’ i.e., one measure-
ment per row in the corresponding data.frames.

13.2 Methods for Non-normal Distributions

The data sets respiratory and epilepsy arise from longitudinal clinical tri-
als, the same type of study that was the subject of consideration in Chapter 12.
But in each case the repeatedly measured response variable is clearly not nor-
mally distributed making the models considered in the previous chapter un-
suitable. In Table 13.1 we have a binary response observed on four occasions,
and in Table 13.2 a count response also observed on four occasions. If we
choose to ignore the repeated measurements aspects of the two data sets we
could use the methods of Chapter 7 applied to the data arranged in the ‘long’
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form introduced in Chapter 12. For the respiratory data in Table 13.1 we
could then apply logistic regression and for epilepsy in Table 13.2, Poisson
regression. It can be shown that this approach will give consistent estimates of
the regression coefficients, i.e., with large samples these point estimates should
be close to the true population values. But the assumption of the independence
of the repeated measurements will lead to estimated standard errors that are
too small for the between-subjects covariates (at least when the correlation
between the repeated measurements are positive) as a result of assuming that
there are more independent data points than are justified.

We might begin by asking if there is something relatively simple that can
be done to ‘fix-up’ these standard errors so that we can still apply the R

glm function to get reasonably satisfactory results on longitudinal data with
a non-normal response? Two approaches which can often help to get more
suitable estimates of the required standard errors are bootstrapping and use
of the robust/sandwich, Huber-White variance estimator.

The idea underlying the bootstrap (see Chapter 8 and Chapter 9), a tech-
nique described in detail in Efron and Tibshirani (1993), is to resample from
the observed data with replacement to achieve a sample of the same size each
time, and to use the variation in the estimated parameters across the set of
bootstrap samples in order to get a value for the sampling variability of the
estimate (see Chapter 8 also). With correlated data, the bootstrap sample
needs to be drawn with replacement from the set of independent subjects, so
that intra-subject correlation is preserved in the bootstrap samples. We shall
not consider this approach any further here.

The sandwich or robust estimate of variance (see Everitt and Pickles, 2000,
for complete details including an explicit definition), involves, unlike the boot-
strap which is computationally intensive, a closed-form calculation, based on
an asymptotic (large-sample) approximation; it is known to provide good re-
sults in many situations. We shall illustrate its use in later examples.

But perhaps more satisfactory would be an approach that fully utilises in-
formation on the data’s structure, including dependencies over time. In the
linear mixed models for Gaussian responses described in Chapter 12, estima-
tion of the regression parameters linking explanatory variables to the response
variable and their standard errors needed to take account of the correlational
structure of the data, but their interpretation could be undertaken indepen-
dent of this structure. When modelling non-normal responses this indepen-
dence of estimation and interpretation no longer holds. Different assumptions
about how the correlations are generated can lead to regression coefficients
with different interpretations. The essential difference is between marginal
models and conditional models.

13.2.1 Marginal Models

Longitudinal data can be considered as a series of cross-sections, and marginal
models for such data use the generalised linear model (see Chapter 7) to fit
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each cross-section. In this approach the relationship of the marginal mean
and the explanatory variables is modelled separately from the within-subject
correlation. The marginal regression coefficients have the same interpretation
as coefficients from a cross-sectional analysis, and marginal models are natural
analogues for correlated data of generalised linear models for independent
data. Fitting marginal models to non-normal longitudinal data involves the use
of a procedure known as generalised estimating equations (GEE), introduced
by Liang and Zeger (1986). This approach may be viewed as a multivariate
extension of the generalised linear model and the quasi-likelihood method (see
Chapter 7). But the problem with applying a direct analogue of the generalised
linear model to longitudinal data with non-normal responses is that there
is usually no suitable likelihood function with the required combination of
the appropriate link function, error distribution and correlation structure. To
overcome this problem Liang and Zeger (1986) introduced a general method
for incorporating within-subject correlation in GLMs, which is essentially an
extension of the quasi-likelihood approach mentioned briefly in Chapter 7. As
in conventional generalised linear models, the variances of the responses given
the covariates are assumed to be of the form Var(response) = φV(µ) where
the variance function V (µ) is determined by the choice of distribution family
(see Chapter 7). Since overdispersion is common in longitudinal data, the
dispersion parameter φ is typically estimated even if the distribution requires
φ = 1. The feature of these generalised estimation equations that differs from
the usual generalised linear model is that different responses on the same
individual are allowed to be correlated given the covariates. These correlations
are assumed to have a relatively simple structure defined by a small number
of parameters. The following correlation structures are commonly used (Yij

represents the value of the jth repeated measurement of the response variable
on subject i).

An identity matrix leading to the independence working model in which
the generalised estimating equation reduces to the univariate estimating
equation given in Chapter 7, obtained by assuming that the repeated mea-
surements are independent.

An exchangeable correlation matrix with a single parameter similar to
that described in Chapter 12. Here the correlation between each pair of
repeated measurements is assumed to be the same, i.e., corr(Yij , Yik) = ρ.

An AR-1 autoregressive correlation matrix, also with a single param-
eter, but in which corr(Yij , Yik) = ρ|k−j|, j 6= k. This can allow the cor-
relations of measurements taken farther apart to be less than those taken
closer to one another.

An unstructured correlation matrix with K(K−1)/2 parameters where
K is the number of repeated measurements andcorr(Yij , Yjk) = ρjk

For given values of the regression parameters β1, . . . βq, the ρ-parameters
of the working correlation matrix can be estimated along with the dispersion
parameter φ (see Zeger and Liang, 1986, for details). These estimates can then
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be used in the so-called generalised estimating equations to obtain estimates
of the regression parameters. The GEE algorithm proceeds by iterating be-
tween (1) estimation of the regression parameters using the correlation and
dispersion parameters from the previous iteration and (2) estimation of the
correlation and dispersion parameters using the regression parameters from
the previous iteration.

The estimated regression coefficients are ‘robust’ in the sense that they are
consistent from misspecified correlation structures assuming that the mean
structure is correctly specified. Note however that the GEE estimates of mar-
ginal effects are not robust against misspecified regression structures, such as
omitted covariates.

The use of GEE estimation on a longitudinal data set in which some subjects
drop out assumes that they drop out completely at random (see Chapter 12).

13.2.2 Conditional Models

The random effects approach described in the previous chapter can be ex-
tended to non-normal responses although the resulting models can be difficult
to estimate because the likelihood involves integrals over the random effects
distribution that generally do not have closed forms. A consequence is that it
is often possible to fit only relatively simple models. In these models estimated
regression coefficients have to be interpreted, conditional on the random ef-
fects. The regression parameters in the model are said to be subject-specific
and such effects will differ from the marginal or population averaged effects es-
timated using GEE, except when using an identity link function and a normal
error distribution.

Consider a set of longitudinal data in which Yij is the value of a binary
response for individual i at say time tj . The logistic regression model (see
Chapter 7) for the response is now written as

logit (P(yij = 1|ui)) = β0 + β1tj + ui (13.1)

where ui is a random effect assumed to be normally distributed with zero
mean and variance σ2

u. This is a simple example of a generalised linear mixed
model because it is a generalised linear model with both a fixed effect, β1, and
a random effect, ui.

Here the regression parameter β1 again represents the change in the log odds
per unit change in time, but this is now conditional on the random effect. We
can illustrate this difference graphically by simulating the model (13.1); the
result is shown in Figure 13.1. Here the thin grey curves represent subject-
specific relationships between the probability that the response equals one and
a covariate t for model (13.1). The horizontal shifts are due to different values
of the random intercept. The thick black curve represents the population av-
eraged relationship, formed by averaging the thin curves for each value of t. It
is, in effect, the thick curve that would be estimated in a marginal model (see
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Figure 13.1 Simulation of a positive response in a random intercept logistic re-

gression model for 20 subjects. The thick line is the average over all

20 subjects.

previous sub-section). The population averaged regression parameters tend to
be attenuated (closest to zero) relative to the subject-specific regression pa-
rameters. A marginal regression model does not address questions concerning
heterogeneity between individuals.

Estimating the parameters in a logistic random effects model is under-
taken by maximum likelihood. Details are given in Skrondal and Rabe-Hesketh
(2004). If the model is correctly specified, maximum likelihood estimates are
consistent when subjects in the study drop out at random (see Chapter 12).
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13.3 Analysis Using R: GEE

13.3.1 Beat the Blues Revisited

Although we have introduced GEE as a method for analysing longitudinal
data where the response variable is non-normal, it can also be applied to data
where the response can be assumed to follow a conditional normal distribution
(conditioning being on the explanatory variables). Consequently we first apply
the method to the data used in the previous chapter so we can compare the
results we get with those obtained from using the mixed-effects models used
there.

To use the gee function, package gee (Carey et al., 2008) has to be installed
and attached:

R> library("gee")

The gee function is used in a similar way to the lme function met in Chapter 12
with the addition of the features of the glm function that specify the appro-
priate error distribution for the response and the implied link function, and
an argument to specify the structure of the working correlation matrix. Here
we will fit an independence structure and then an exchangeable structure.
The R code for fitting generalised estimation equations to the BtheB_long

data (as constructed in Chapter 12) with identity working correlation matrix
is as follows (note that the gee function assumes the rows of the data.frame
BtheB_long to be ordered with respect to subjects):

R> osub <- order(as.integer(BtheB_long$subject))

R> BtheB_long <- BtheB_long[osub,]

R> btb_gee <- gee(bdi ~ bdi.pre + trt + length + drug,

+ data = BtheB_long, id = subject, family = gaussian,

+ corstr = "independence")

and with exchangeable correlation matrix:

R> btb_gee1 <- gee(bdi ~ bdi.pre + trt + length + drug,

+ data = BtheB_long, id = subject, family = gaussian,

+ corstr = "exchangeable")

The summary method can be used to inspect the fitted models; the results are
shown in Figures 13.2 and 13.3.

Note how the näıve and the sandwich or robust estimates of the standard
errors are considerably different for the independence structure (Figure 13.2),
but quite similar for the exchangeable structure (Figure 13.3). This simply
reflects that using an exchangeable working correlation matrix is more realistic
for these data and that the standard errors resulting from this assumption are
already quite reasonable without applying the ‘sandwich’ procedure to them.
And if we compare the results under this assumed structure with those for
the random intercept model given in Chapter 12 (Figure 12.2) we see that
they are almost identical, since the random intercept model also implies an
exchangeable structure for the correlations of the repeated measurements.

The single estimated parameter for the working correlation matrix from the
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R> summary(btb_gee)

...

Model:

Link: Identity

Variance to Mean Relation: Gaussian

Correlation Structure: Independent

...

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) 3.569 1.4833 2.41 2.2695 1.572

bdi.pre 0.582 0.0564 10.32 0.0916 6.355

trtBtheB -3.237 1.1296 -2.87 1.7746 -1.824

length>6m 1.458 1.1380 1.28 1.4826 0.983

drugYes -3.741 1.1766 -3.18 1.7827 -2.099

Estimated Scale Parameter: 79.3

...

Figure 13.2 R output of the summary method for the btb_gee model (slightly

abbreviated).

GEE procedure is 0.676, very similar to the estimated intra-class correlation
coefficient from the random intercept model. i.e., 7.032/(5.072 + 7.032) = 0.66
– see Figure 12.2.

13.3.2 Respiratory Illness

We will now apply the GEE procedure to the respiratory data shown in
Table 13.1. Given the binary nature of the response variable we will choose
a binomial error distribution and by default a logistic link function. We shall
also fix the scale parameter φ described in Chapter 7 at one. (The default
in the gee function is to estimate this parameter.) Again we will apply the
procedure twice, firstly with an independence structure and then with an
exchangeable structure for the working correlation matrix. We will also fit a
logistic regression model to the data using glm so we can compare results.

The baseline status, i.e., the status for month == 0, will enter the mod-
els as an explanatory variable and thus we have to rearrange the data.frame
respiratory in order to create a new variable baseline:

R> data("respiratory", package = "HSAUR2")

R> resp <- subset(respiratory, month > "0")

R> resp$baseline <- rep(subset(respiratory, month == "0")$status,

+ rep(4, 111))
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R> summary(btb_gee1)

...

Model:

Link: Identity

Variance to Mean Relation: Gaussian

Correlation Structure: Exchangeable

...

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) 3.023 2.3039 1.3122 2.2320 1.3544

bdi.pre 0.648 0.0823 7.8741 0.0835 7.7583

trtBtheB -2.169 1.7664 -1.2281 1.7361 -1.2495

length>6m -0.111 1.7309 -0.0643 1.5509 -0.0718

drugYes -3.000 1.8257 -1.6430 1.7316 -1.7323

Estimated Scale Parameter: 81.7

...

Figure 13.3 R output of the summary method for the btb_gee1 model (slightly

abbreviated).

R> resp$nstat <- as.numeric(resp$status == "good")

R> resp$month <- resp$month[, drop = TRUE]

The new variable nstat is simply a dummy coding for a poor respiratory
status. Now we can use the data resp to fit a logistic regression model and
GEE models with an independent and an exchangeable correlation structure
as follows.

R> resp_glm <- glm(status ~ centre + trt + gender + baseline

+ + age, data = resp, family = "binomial")

R> resp_gee1 <- gee(nstat ~ centre + trt + gender + baseline

+ + age, data = resp, family = "binomial", id = subject,

+ corstr = "independence", scale.fix = TRUE,

+ scale.value = 1)

R> resp_gee2 <- gee(nstat ~ centre + trt + gender + baseline

+ + age, data = resp, family = "binomial", id = subject,

+ corstr = "exchangeable", scale.fix = TRUE,

+ scale.value = 1)

Again, summary methods can be used for an inspection of the details of the
fitted models; the results are given in Figures 13.4, 13.5 and 13.6. We see that
the results from applying logistic regression to the data with the glm func-
tion gives identical results to those obtained from gee with an independence
correlation structure (comparing the glm standard errors with the näıve stan-
dard errors from gee). The robust standard errors for the between subject
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R> summary(resp_glm)

Call:

glm(formula = status ~ centre + trt + gender + baseline

+ age, family = "binomial", data = resp)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.315 -0.855 0.434 0.895 1.925

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.90017 0.33765 -2.67 0.0077

centre2 0.67160 0.23957 2.80 0.0051

trttrt 1.29922 0.23684 5.49 4.1e-08

gendermale 0.11924 0.29467 0.40 0.6857

baselinegood 1.88203 0.24129 7.80 6.2e-15

age -0.01817 0.00886 -2.05 0.0404

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 608.93 on 443 degrees of freedom

Residual deviance: 483.22 on 438 degrees of freedom

AIC: 495.2

Number of Fisher Scoring iterations: 4

Figure 13.4 R output of the summary method for the resp_glm model.

covariates are considerably larger than those estimated assuming indepen-
dence, implying that the independence assumption is not realistic for these
data. Applying the GEE procedure with an exchangeable correlation struc-
ture results in näıve and robust standard errors that are identical, and similar
to the robust estimates from the independence structure. It is clear that the
exchangeable structure more adequately reflects the correlational structure of
the observed repeated measurements than does independence.

The estimated treatment effect taken from the exchangeable structure GEE
model is 1.299 which, using the robust standard errors, has an associated 95%
confidence interval

R> se <- summary(resp_gee2)$coefficients["trttrt",

+ "Robust S.E."]

R> coef(resp_gee2)["trttrt"] +

+ c(-1, 1) * se * qnorm(0.975)

[1] 0.612 1.987

These values reflect effects on the log-odds scale. Interpretation becomes sim-
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R> summary(resp_gee1)

...

Model:

Link: Logit

Variance to Mean Relation: Binomial

Correlation Structure: Independent

...

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -0.9002 0.33765 -2.666 0.460 -1.956

centre2 0.6716 0.23957 2.803 0.357 1.882

trttrt 1.2992 0.23684 5.486 0.351 3.704

gendermale 0.1192 0.29467 0.405 0.443 0.269

baselinegood 1.8820 0.24129 7.800 0.350 5.376

age -0.0182 0.00886 -2.049 0.013 -1.397

Estimated Scale Parameter: 1

...

Figure 13.5 R output of the summary method for the resp_gee1 model (slightly

abbreviated).

pler if we exponentiate the values to get the effects in terms of odds. This
gives a treatment effect of 3.666 and a 95% confidence interval of

R> exp(coef(resp_gee2)["trttrt"] +

+ c(-1, 1) * se * qnorm(0.975))

[1] 1.84 7.29

The odds of achieving a ‘good’ respiratory status with the active treatment is
between about twice and seven times the corresponding odds for the placebo.

13.3.3 Epilepsy

Moving on to the count data in epilepsy from Table 13.2, we begin by calcu-
lating the means and variances of the number of seizures for all interactions
between treatment and period:

R> data("epilepsy", package = "HSAUR2")

R> itp <- interaction(epilepsy$treatment, epilepsy$period)

R> tapply(epilepsy$seizure.rate, itp, mean)

placebo.1 Progabide.1 placebo.2 Progabide.2 placebo.3

9.36 8.58 8.29 8.42 8.79

Progabide.3 placebo.4 Progabide.4

8.13 7.96 6.71
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R> summary(resp_gee2)

...

Model:

Link: Logit

Variance to Mean Relation: Binomial

Correlation Structure: Exchangeable

...

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -0.9002 0.4785 -1.881 0.460 -1.956

centre2 0.6716 0.3395 1.978 0.357 1.882

trttrt 1.2992 0.3356 3.871 0.351 3.704

gendermale 0.1192 0.4176 0.286 0.443 0.269

baselinegood 1.8820 0.3419 5.504 0.350 5.376

age -0.0182 0.0126 -1.446 0.013 -1.397

Estimated Scale Parameter: 1

...

Figure 13.6 R output of the summary method for the resp_gee2 model (slightly

abbreviated).

R> tapply(epilepsy$seizure.rate, itp, var)

placebo.1 Progabide.1 placebo.2 Progabide.2 placebo.3

102.8 332.7 66.7 140.7 215.3

Progabide.3 placebo.4 Progabide.4

193.0 58.2 126.9

Some of the variances are considerably larger than the corresponding means,
which for a Poisson variable may suggest that overdispersion may be a prob-
lem, see Chapter 7.

We will now construct some boxplots first for the numbers of seizures ob-
served in each two-week period post randomisation. The resulting diagram
is shown in Figure 13.7. Some quite extreme ‘outliers’ are indicated, particu-
larly the observation in period one in the Progabide group. But given these
are count data which we will model using a Poisson error distribution and a
log link function, it may be more appropriate to look at the boxplots after
taking a log transformation. (Since some observed counts are zero we will add
1 to all observations before taking logs.) To get the plots we can use the R

code displayed with Figure 13.8. In Figure 13.8 the outlier problem seems less
troublesome and we shall not attempt to remove any of the observations for
subsequent analysis.

Before proceeding with the formal analysis of these data we have to deal with
a small problem produced by the fact that the baseline counts were observed
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R> layout(matrix(1:2, nrow = 1))

R> ylim <- range(epilepsy$seizure.rate)

R> placebo <- subset(epilepsy, treatment == "placebo")

R> progabide <- subset(epilepsy, treatment == "Progabide")

R> boxplot(seizure.rate ~ period, data = placebo,

+ ylab = "Number of seizures",

+ xlab = "Period", ylim = ylim, main = "Placebo")

R> boxplot(seizure.rate ~ period, data = progabide,

+ main = "Progabide", ylab = "Number of seizures",

+ xlab = "Period", ylim = ylim)
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Figure 13.7 Boxplots of numbers of seizures in each two-week period post ran-

domisation for placebo and active treatments.

over an eight-week period whereas all subsequent counts are over two-week
periods. For the baseline count we shall simply divide by eight to get an aver-
age weekly rate, but we cannot do the same for the post-randomisation counts
if we are going to assume a Poisson distribution (since we will no longer have
integer values for the response). But we can model the mean count for each
two-week period by introducing the log of the observation period as an offset
(a covariate with regression coefficient set to one). The model then becomes
log(expected count in observation period) = linear function of explanatory
variables+log(observation period), leading to the model for the rate in counts
per week (assuming the observation periods are measured in weeks) as ex-
pected count in observation period/observation period = exp(linear function
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R> layout(matrix(1:2, nrow = 1))

R> ylim <- range(log(epilepsy$seizure.rate + 1))

R> boxplot(log(seizure.rate + 1) ~ period, data = placebo,

+ main = "Placebo", ylab = "Log number of seizures",

+ xlab = "Period", ylim = ylim)

R> boxplot(log(seizure.rate + 1) ~ period, data = progabide,

+ main = "Progabide", ylab = "Log number of seizures",

+ xlab = "Period", ylim = ylim)
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Figure 13.8 Boxplots of log of numbers of seizures in each two-week period post

randomisation for placebo and active treatments.

of explanatory variables). In our example the observation period is two weeks,
so we simply need to set log(2) for each observation as the offset.

We can now fit a Poisson regression model to the data assuming indepen-
dence using the glm function. We also use the GEE approach to fit an inde-
pendence structure, followed by an exchangeable structure using the following
R code:

R> per <- rep(log(2),nrow(epilepsy))

R> epilepsy$period <- as.numeric(epilepsy$period)

R> names(epilepsy)[names(epilepsy) == "treatment"] <- "trt"

R> fm <- seizure.rate ~ base + age + trt + offset(per)

R> epilepsy_glm <- glm(fm, data = epilepsy, family = "poisson")

R> epilepsy_gee1 <- gee(fm, data = epilepsy, family = "poisson",

+ id = subject, corstr = "independence", scale.fix = TRUE,

+ scale.value = 1)
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R> epilepsy_gee2 <- gee(fm, data = epilepsy, family = "poisson",

+ id = subject, corstr = "exchangeable", scale.fix = TRUE,

+ scale.value = 1)

R> epilepsy_gee3 <- gee(fm, data = epilepsy, family = "poisson",

+ id = subject, corstr = "exchangeable", scale.fix = FALSE,

+ scale.value = 1)

As usual we inspect the fitted models using the summary method, the results
are given in Figures 13.9, 13.10, 13.11, and 13.12.

R> summary(epilepsy_glm)

Call:

glm(formula = fm, family = "poisson", data = epilepsy)

Deviance Residuals:

Min 1Q Median 3Q Max

-4.436 -1.403 -0.503 0.484 12.322

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.130616 0.135619 -0.96 0.3355

base 0.022652 0.000509 44.48 < 2e-16

age 0.022740 0.004024 5.65 1.6e-08

trtProgabide -0.152701 0.047805 -3.19 0.0014

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2521.75 on 235 degrees of freedom

Residual deviance: 958.46 on 232 degrees of freedom

AIC: 1732

Number of Fisher Scoring iterations: 5

Figure 13.9 R output of the summary method for the epilepsy_glm model.

For this example, the estimates of standard errors under independence are
about half of the corresponding robust estimates, and the situation improves
only a little when an exchangeable structure is fitted. Using the näıve stan-
dard errors leads, in particular, to a highly significant treatment effect which
disappears when the robust estimates are used. The problem with the GEE ap-
proach here, using either the independence or exchangeable correlation struc-
ture lies in constraining the scale parameter to be one. For these data there is
overdispersion which has to be accommodated by allowing this parameter to
be freely estimated. When this is done, it gives the last set of results shown
above. The estimate of φ is 5.09 and the näıve and robust estimates of the
standard errors are now very similar. It is clear that there is no evidence of a
treatment effect.
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R> summary(epilepsy_gee1)

...

Model:

Link: Logarithm

Variance to Mean Relation: Poisson

Correlation Structure: Independent

...

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -0.1306 0.135619 -0.963 0.36515 -0.358

base 0.0227 0.000509 44.476 0.00124 18.332

age 0.0227 0.004024 5.651 0.01158 1.964

trtProgabide -0.1527 0.047805 -3.194 0.17111 -0.892

Estimated Scale Parameter: 1

...

Figure 13.10 R output of the summary method for the epilepsy_gee1 model

(slightly abbreviated).

13.4 Analysis Using R: Random Effects

As an example of using generalised mixed models for the analysis of longitu-
dinal data with a non-normal response, the following logistic model will be
fitted to the respiratory illness data

logit(P(status = good)) = β0 + β1treatment + β2time + β3gender

+β4age + β5centre + β6baseline + u

where u is a subject specific random effect.
The necessary R code for fitting the model using the lmer function from

package lme4 (Bates and Sarkar, 2008, Bates, 2005) is:

R> library("lme4")

R> resp_lmer <- lmer(status ~ baseline + month +

+ trt + gender + age + centre + (1 | subject),

+ family = binomial(), data = resp)

R> exp(fixef(resp_lmer))

(Intercept) baselinegood month.L month.Q

0.189 22.361 0.796 0.962

month.C trttrt gendermale age

0.691 8.881 1.227 0.975

centre2

2.875

The significance of the effects as estimated by this random effects model
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R> summary(epilepsy_gee2)

...

Model:

Link: Logarithm

Variance to Mean Relation: Poisson

Correlation Structure: Exchangeable

...

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -0.1306 0.200442 -0.652 0.36515 -0.358

base 0.0227 0.000753 30.093 0.00124 18.332

age 0.0227 0.005947 3.824 0.01158 1.964

trtProgabide -0.1527 0.070655 -2.161 0.17111 -0.892

Estimated Scale Parameter: 1

...

Figure 13.11 R output of the summary method for the epilepsy_gee2 model

(slightly abbreviated).

and by the GEE model described in Section 13.3.2 is generally similar. But as
expected from our previous discussion the estimated coefficients are substan-
tially larger. While the estimated effect of treatment on a randomly sampled
individual, given the set of observed covariates, is estimated by the marginal
model using GEE to increase the log-odds of being disease free by 1.299, the
corresponding estimate from the random effects model is 2.184. These are not
inconsistent results but reflect the fact that the models are estimating differ-
ent parameters. The random effects estimate is conditional upon the patient’s
random effect, a quantity that is rarely known in practise. Were we to examine
the log-odds of the average predicted probabilities with and without treatment
(averaged over the random effects) this would give an estimate comparable to
that estimated within the marginal model.
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R> summary(epilepsy_gee3)

...

Model:

Link: Logarithm

Variance to Mean Relation: Poisson

Correlation Structure: Exchangeable

...

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -0.1306 0.45220 -0.289 0.36515 -0.358

base 0.0227 0.00170 13.339 0.00124 18.332

age 0.0227 0.01342 1.695 0.01158 1.964

trtProgabide -0.1527 0.15940 -0.958 0.17111 -0.892

Estimated Scale Parameter: 5.09

...

Figure 13.12 R output of the summary method for the epilepsy_gee3 model

(slightly abbreviated).

R> summary(resp_lmer)

...

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.6666 0.7671 -2.17 0.03

baselinegood 3.1073 0.5325 5.84 5.4e-09

month.L -0.2279 0.2719 -0.84 0.40

month.Q -0.0389 0.2716 -0.14 0.89

month.C -0.3689 0.2727 -1.35 0.18

trttrt 2.1839 0.5237 4.17 3.0e-05

gendermale 0.2045 0.6688 0.31 0.76

age -0.0257 0.0202 -1.27 0.20

centre2 1.0561 0.5381 1.96 0.05

...

Figure 13.13 R output of the summary method for the resp_lmer model (abbre-

viated).
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13.5 Summary

This chapter has outlined and illustrated two approaches to the analysis of
non-normal longitudinal data: the marginal approach and the random effect
(mixed modelling) approach. Though less unified than the methods available
for normally distributed responses, these methods provide powerful and flex-
ible tools to analyse, what until relatively recently, have been seen as almost
intractable data.

Exercises

Ex. 13.1 For the epilepsy data investigate what Poisson models are most
suitable when subject 49 is excluded from the analysis.

Ex. 13.2 Investigate the use of other correlational structures than the in-
dependence and exchangeable structures used in the text, for both the
respiratory and the epilepsy data.

Ex. 13.3 The data shown in Table 13.3 were collected in a follow-up study
of women patients with schizophrenia (Davis, 2002). The binary response
recorded at 0, 2, 6, 8 and 10 months after hospitalisation was thought
disorder (absent or present). The single covariate is the factor indicating
whether a patient had suffered early or late onset of her condition (age of
onset less than 20 years or age of onset 20 years or above). The question
of interest is whether the course of the illness differs between patients with
early and late onset? Investigate this question using the GEE approach.
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Table 13.3: schizophrenia2 data. Clinical trial data from pa-
tients suffering from schizophrenia. Only the data of
the first four patients are shown here.

subject onset disorder month

1 < 20 yrs present 0
1 < 20 yrs present 2
1 < 20 yrs absent 6
1 < 20 yrs absent 8
1 < 20 yrs absent 10
2 > 20 yrs absent 0
2 > 20 yrs absent 2
2 > 20 yrs absent 6
2 > 20 yrs absent 8
2 > 20 yrs absent 10
3 < 20 yrs present 0
3 < 20 yrs present 2
3 < 20 yrs absent 6
3 < 20 yrs absent 8
3 < 20 yrs absent 10
4 < 20 yrs absent 0
4 < 20 yrs absent 2
4 < 20 yrs absent 6
4 < 20 yrs absent 8
4 < 20 yrs absent 10
...

...
...

...

Source: From Davis, C. S., Statistical Methods for the Analysis of Repeated
Measurements, Springer, New York, 2002. With kind permission of Springer
Science and Business Media.
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CHAPTER 14

Simultaneous Inference and Multiple
Comparisons: Genetic Components of
Alcoholism, Deer Browsing Intensities,

and Cloud Seeding

14.1 Introduction

Various studies have linked alcohol dependence phenotypes to chromosome 4.
One candidate gene is NACP (non-amyloid component of plaques), coding for
alpha synuclein. Bönsch et al. (2005) found longer alleles of NACP -REP1 in
alcohol-dependent patients and report that the allele lengths show some asso-
ciation with levels of expressed alpha synuclein mRNA in alcohol-dependent
subjects. The data are given in Table 14.1. Allele length is measured as a sum
score built from additive dinucleotide repeat length and categorised into three
groups: short (0− 4, n = 24), intermediate (5− 9, n = 58), and long (10− 12,
n = 15). Here, we are interested in comparing the distribution of the expres-
sion level of alpha synuclein mRNA in three groups of subjects defined by the
allele length. A global F -test in an ANOVA model answers the question if
there is any difference in the distribution of the expression levels among allele
length groups but additional effort is needed to identify the nature of these
differences. Multiple comparison procedures, i.e., tests and confidence inter-
vals for pairwise comparisons of allele length groups, may lead to additional
insight into the dependence of expression levels and allele length.

Table 14.1: alpha data (package coin). Allele length and lev-
els of expressed alpha synuclein mRNA in alcohol-
dependent patients.

alength elevel alength elevel alength elevel

short 1.43 intermediate 1.63 intermediate 3.07
short -2.83 intermediate 2.53 intermediate 4.43
short 1.23 intermediate 0.10 intermediate 1.33
short -1.47 intermediate 2.53 intermediate 1.03
short 2.57 intermediate 2.27 intermediate 3.13
short 3.00 intermediate 0.70 intermediate 4.17
short 5.63 intermediate 3.80 intermediate 2.70
short 2.80 intermediate -2.37 intermediate 3.93
short 3.17 intermediate 0.67 intermediate 3.90

253
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Table 14.1: alpha data (continued).

alength elevel alength elevel alength elevel

short 2.00 intermediate -0.37 intermediate 2.17
short 2.93 intermediate 3.20 intermediate 3.13
short 2.87 intermediate 3.05 intermediate -2.40
short 1.83 intermediate 1.97 intermediate 1.90
short 1.05 intermediate 3.33 intermediate 1.60
short 1.00 intermediate 2.90 intermediate 0.67
short 2.77 intermediate 2.77 intermediate 0.73
short 1.43 intermediate 4.05 long 1.60
short 5.80 intermediate 2.13 long 3.60
short 2.80 intermediate 3.53 long 1.45
short 1.17 intermediate 3.67 long 4.10
short 0.47 intermediate 2.13 long 3.37
short 2.33 intermediate 1.40 long 3.20
short 1.47 intermediate 3.50 long 3.20
short 0.10 intermediate 3.53 long 4.23

intermediate -1.90 intermediate 2.20 long 3.43
intermediate 1.55 intermediate 4.23 long 4.40
intermediate 3.27 intermediate 2.87 long 3.27
intermediate 0.30 intermediate 3.20 long 1.75
intermediate 1.90 intermediate 3.40 long 1.77
intermediate 2.53 intermediate 4.17 long 3.43
intermediate 2.83 intermediate 4.30 long 3.50
intermediate 3.10 intermediate 3.07
intermediate 2.07 intermediate 4.03

In most parts of Germany, the natural or artificial regeneration of forests is
difficult due to a high browsing intensity. Young trees suffer from browsing
damage, mostly by roe and red deer. An enormous amount of money is spent
for protecting these plants by fences trying to exclude game from regenera-
tion areas. The problem is most difficult in mountain areas, where intact and
regenerating forest systems play an important role to prevent damages from
floods and landslides. In order to estimate the browsing intensity for several
tree species, the Bavarian State Ministry of Agriculture and Forestry conducts
a survey every three years. Based on the estimated percentage of damaged
trees, suggestions for the implementation or modification of deer management
plans are made. The survey takes place in all 756 game management dis-
tricts (‘Hegegemeinschaften’) in Bavaria. Here, we focus on the 2006 data of
the game management district number 513 ‘Unterer Aischgrund’ (located in
Frankonia between Erlangen and Höchstadt). The data of 2700 trees include
the species and a binary variable indicating whether or not the tree suffered
from damage caused by deer browsing; a small fraction of the data is shown in
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Table 14.2 (see Hothorn et al., 2008a, also). For each of 36 points on a prede-
fined lattice laid out over the observation area, 15 small trees are investigated
on each of 5 plots located on a 100m transect line. Thus, the observations
aren’t independent of each other and this spatial structure has to be taken
into account for our analysis. Our main target is to estimate the probability
of suffering from roe deer browsing for all tree species simultaneously.

Table 14.2: trees513 data (package multcomp).

damage species lattice plot

1 yes oak 1 1 1
2 no pine 1 1 1
3 no oak 1 1 1
4 no pine 1 1 1
5 no pine 1 1 1
6 no pine 1 1 1
7 yes oak 1 1 1
8 no hardwood (other) 1 1 1
9 no oak 1 1 1
10 no hardwood (other) 1 1 1
11 no oak 1 1 1
12 no pine 1 1 1
13 no pine 1 1 1
14 yes oak 1 1 1
15 no oak 1 1 1
16 no pine 1 1 2
17 yes hardwood (other) 1 1 2
18 no oak 1 1 2
19 no pine 1 1 2
20 no oak 1 1 2

21
...

...
...

...

For the cloud seeding data presented in Table 6.2 of Chapter 6, we investigated
the dependency of rainfall on the suitability criterion when clouds were seeded
or not (see Figure 6.6). In addition to the regression lines presented there,
confidence bands for the regression lines would add further information on
the variability of the predicted rainfall depending on the suitability criterion;
simultaneous confidence intervals are a simple method for constructing such
bands as we will see in the following section.
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14.2 Simultaneous Inference and Multiple Comparisons

Multiplicity is an intrinsic problem of any simultaneous inference. If each of
k, say, null hypotheses is tested at nominal level α on the same data set,
the overall type I error rate can be substantially larger than α. That is, the
probability of at least one erroneous rejection is larger than α for k ≥ 2.
Simultaneous inference procedures adjust for multiplicity and thus ensure that
the overall type I error remains below the pre-specified significance level α.

The term multiple comparison procedure refers to simultaneous inference,
i.e., simultaneous tests or confidence intervals, where the main interest is in
comparing characteristics of different groups represented by a nominal factor.
In fact, we have already seen such a procedure in Chapter 5 where multi-
ple differences of mean rat weights were compared for all combinations of
the mother rat’s genotype (Figure 5.5). Further examples of such multiple
comparison procedures include Dunnett’s many-to-one comparisons, sequen-
tial pairwise contrasts, comparisons with the average, change-point analyses,
dose-response contrasts, etc. These procedures are all well established for clas-
sical regression and ANOVA models allowing for covariates and/or factorial
treatment structures with i.i.d. normal errors and constant variance. For a
general reading on multiple comparison procedures we refer to Hochberg and
Tamhane (1987) and Hsu (1996).

Here, we follow a slightly more general approach allowing for null hypotheses
on arbitrary model parameters, not only mean differences. Each individual null
hypothesis is specified through a linear combination of elemental model param-
eters and we allow for k of such null hypotheses to be tested simultaneously,
regardless of the number of elemental model parameters p. More precisely, we
assume that our model contains fixed but unknown p-dimensional elemental
parameters θ. We are primarily interested in linear functions ϑ := Kθ of the
parameter vector θ as specified through the constant k × p matrix K. For
example, in a linear model

yi = β0 + β1xi1 + · · · + βqxiq + εi

as introduced in Chapter 6, we might be interested in inference about the
parameter β1, βq and β2 − β1. Chapter 6 offers methods for answering each
of these questions separately but does not provide an answer for all three
questions together. We can formulate the three inference problems as a linear
combination of the elemental parameter vector θ = (β0, β1, . . . , βq) as (here
for q = 3)

Kθ =





0 1 0 0
0 0 0 1
0 −1 1 0



 θ = (β1, βq, β2 − β1)⊤ =: ϑ.

The global null hypothesis now reads

H0 : ϑ := Kθ = m,

where θ are the elemental model parameters that are estimated by some esti-
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mate θ̂, K is the matrix defining linear functions of the elemental parameters
resulting in our parameters of interest ϑ and m is a k-vector of constants. The
null hypothesis states that ϑj = mj for all j = 1, . . . , k, where mj is some
predefined scalar being zero in most applications. The global hypothesis H0 is
classically tested using an F -test in linear and ANOVA models (see Chapter 5
and Chapter 6). Such a test procedure gives only the answer ϑj 6= mj for at
least one j but doesn’t tell us which subset of our null hypotheses actually
can be rejected. Here, we are mainly interested in which of the k partial hy-
potheses H

j
0 : ϑj = mj for j = 1, . . . , k are actually false. A simultaneous

inference procedure gives us information about which of these k hypotheses
can be rejected in light of the data.

The estimated elemental parameters θ̂ are normally distributed in classical
linear models and consequently, the estimated parameters of interest ϑ̂ = Kθ̂

share this property. It can be shown that the t-statistics
(

ϑ̂1 − m1

se(ϑ̂1)
, . . . ,

ϑ̂k − mk

se(ϑ̂k)

)

follow a joint multivariate k-dimensional t-distribution with correlation matrix
Cor. This correlation matrix and the standard deviations of our estimated pa-
rameters of interest ϑ̂j can be estimated from the data. In most other models,

the parameter estimates θ̂ are only asymptotically normal distributed. In this
situation, the joint limiting distribution of all t-statistics on the parameters
of interest is a k-variate normal distribution with zero mean and correlation
matrix Cor which can be estimated as well.

The key aspect of simultaneous inference procedures is to take these joint
distributions and thus the correlation among the estimated parameters of
interest into account when constructing p-values and confidence intervals. The
detailed technical aspects are computationally demanding since one has to
carefully evaluate multivariate distribution functions by means of numerical
integration procedures. However, these difficulties are rather unimportant to
the data analyst. For a detailed treatment of the statistical methodology we
refer to Hothorn et al. (2008a).

14.3 Analysis Using R

14.3.1 Genetic Components of Alcoholism

We start with a graphical display of the data. Three parallel boxplots shown
in Figure 14.1 indicate increasing expression levels of alpha synuclein mRNA
for longer NACP -REP1 alleles.

In order to model this relationship, we start fitting a simple one-way ANOVA
model of the form yij = µ + γi + εij to the data with independent normal
errors εij ∼ N (0, σ2), j ∈ {short, intermediate, long}, and i = 1, . . . , nj . The
parameters µ + γshort, µ + γintermediate and µ + γlong can be interpreted as
the mean expression levels in the corresponding groups. As already discussed

© 2010 by Taylor and Francis Group, LLC



258 SIMULTANEOUS INFERENCE AND MULTIPLE COMPARISONS

R> n <- table(alpha$alength)

R> levels(alpha$alength) <- abbreviate(levels(alpha$alength), 4)

R> plot(elevel ~ alength, data = alpha, varwidth = TRUE,

+ ylab = "Expression Level",

+ xlab = "NACP-REP1 Allele Length")

R> axis(3, at = 1:3, labels = paste("n = ", n))
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Figure 14.1 Distribution of levels of expressed alpha synuclein mRNA in three

groups defined by the NACP-REP1 allele lengths.

in Chapter 5, this model description is overparameterised. A standard ap-
proach is to consider a suitable re-parameterization. The so-called “treatment
contrast” vector θ = (µ, γintermediate − γshort, γlong − γshort) (the default re-
parameterization used as elemental parameters in R) is one possibility and is
equivalent to imposing the restriction γshort = 0.

In addition, we define all comparisons among our three groups by choos-
ing K such that Kθ contains all three group differences (Tukey’s all-pairwise
comparisons):

KTukey =





0 1 0
0 0 1
0 −1 1





with parameters of interest

ϑTukey = KTukeyθ = (γintermediate − γshort, γlong − γshort, γlong − γintermediate).
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The function glht (for generalised linear hypothesis) from package mult-

comp (Hothorn et al., 2009a, 2008a) takes the fitted aov object and a descrip-
tion of the matrix K. Here, we use the mcp function to set up the matrix of all
pairwise differences for the model parameters associated with factor alength:

R> library("multcomp")

R> amod <- aov(elevel ~ alength, data = alpha)

R> amod_glht <- glht(amod, linfct = mcp(alength = "Tukey"))

The matrix K reads

R> amod_glht$linfct

(Intercept) alengthintr alengthlong

intr - shrt 0 1 0

long - shrt 0 0 1

long - intr 0 -1 1

attr(,"type")

[1] "Tukey"

The amod_glht object now contains information about the estimated linear
function ϑ̂ and their covariance matrix which can be inspected via the coef

and vcov methods:

R> coef(amod_glht)

intr - shrt long - shrt long - intr

0.4341523 1.1887500 0.7545977

R> vcov(amod_glht)

intr - shrt long - shrt long - intr

intr - shrt 0.14717604 0.1041001 -0.04307591

long - shrt 0.10410012 0.2706603 0.16656020

long - intr -0.04307591 0.1665602 0.20963611

The summary and confint methods can be used to compute a summary statis-
tic including adjusted p-values and simultaneous confidence intervals, respec-
tively:

R> confint(amod_glht)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = elevel ~ alength, data = alpha)

Estimated Quantile = 2.3718

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

intr - shrt == 0 0.43415 -0.47574 1.34405
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long - shrt == 0 1.18875 -0.04516 2.42266

long - intr == 0 0.75460 -0.33134 1.84054

R> summary(amod_glht)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = elevel ~ alength, data = alpha)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

intr - shrt == 0 0.4342 0.3836 1.132 0.4924

long - shrt == 0 1.1888 0.5203 2.285 0.0615

long - intr == 0 0.7546 0.4579 1.648 0.2270

(Adjusted p values reported -- single-step method)

Because of the variance heterogeneity that can be observed in Figure 14.1,
one might be concerned with the validity of the above results stating that
there is no difference between any combination of the three allele lengths.
A sandwich estimator might be more appropriate in this situation, and the
vcov argument can be used to specify a function to compute some alternative
covariance estimator as follows:

R> amod_glht_sw <- glht(amod, linfct = mcp(alength = "Tukey"),

+ vcov = sandwich)

R> summary(amod_glht_sw)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = elevel ~ alength, data = alpha)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

intr - shrt == 0 0.4342 0.4239 1.024 0.5594

long - shrt == 0 1.1888 0.4432 2.682 0.0227

long - intr == 0 0.7546 0.3184 2.370 0.0501

(Adjusted p values reported -- single-step method)

We use the sandwich function from package sandwich (Zeileis, 2004, 2006)
which provides us with a heteroscedasticity-consistent estimator of the covari-
ance matrix. This result is more in line with previously published findings for
this study obtained from non-parametric test procedures such as the Kruskal-
Wallis test. A comparison of the simultaneous confidence intervals calculated
based on the ordinary and sandwich estimator is given in Figure 14.2.

It should be noted that this data set is heavily unbalanced; see Figure 14.1,
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R> par(mai = par("mai") * c(1, 2.1, 1, 0.5))

R> layout(matrix(1:2, ncol = 2))

R> ci1 <- confint(glht(amod, linfct = mcp(alength = "Tukey")))

R> ci2 <- confint(glht(amod, linfct = mcp(alength = "Tukey"),

+ vcov = sandwich))

R> ox <- expression(paste("Tukey (ordinary ", bold(S)[n], ")"))

R> sx <- expression(paste("Tukey (sandwich ", bold(S)[n], ")"))

R> plot(ci1, xlim = c(-0.6, 2.6), main = ox,

+ xlab = "Difference", ylim = c(0.5, 3.5))

R> plot(ci2, xlim = c(-0.6, 2.6), main = sx,

+ xlab = "Difference", ylim = c(0.5, 3.5))
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Figure 14.2 Simultaneous confidence intervals for the alpha data based on the

ordinary covariance matrix (left) and a sandwich estimator (right).

and therefore the results obtained from function TukeyHSD might be less ac-
curate.

14.3.2 Deer Browsing

Since we have to take the spatial structure of the deer browsing data into
account, we cannot simply use a logistic regression model as introduced in
Chapter 7. One possibility is to apply a mixed logistic regression model (using
package lme4, Bates and Sarkar, 2008) with random intercept accounting for
the spatial variation of the trees. These models have already been discussed in
Chapter 13. For each plot nested within a set of five plots oriented on a 100m
transect (the location of the transect is determined by a predefined equally
spaced lattice of the area under test), a random intercept is included in the
model. Essentially, trees that are close to each other are handled like repeated
measurements in a longitudinal analysis. We are interested in probability es-
timates and confidence intervals for each tree species. Each of the six fixed
parameters of the model corresponds to one species (in absence of a global
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intercept term); therefore, K = diag(6) is the linear function we are interested
in:

R> mmod <- lmer(damage ~ species - 1 + (1 | lattice / plot),

+ data = trees513, family = binomial())

R> K <- diag(length(fixef(mmod)))

R> K

[,1] [,2] [,3] [,4] [,5]

[1,] 1 0 0 0 0

[2,] 0 1 0 0 0

[3,] 0 0 1 0 0

[4,] 0 0 0 1 0

[5,] 0 0 0 0 1

In order to help interpretation, the names of the tree species and the corre-
sponding sample sizes (computed via table) are added to K as row names;
this information will carry through all subsequent steps of our analysis:

R> colnames(K) <- rownames(K) <-

+ paste(gsub("species", "", names(fixef(mmod))),

+ " (", table(trees513$species), ")", sep = "")

R> K

spruce (119) pine (823) beech (266) oak (1258)

spruce (119) 1 0 0 0

pine (823) 0 1 0 0

beech (266) 0 0 1 0

oak (1258) 0 0 0 1

hardwood (191) 0 0 0 0

hardwood (191)

spruce (119) 0

pine (823) 0

beech (266) 0

oak (1258) 0

hardwood (191) 1

Based on K, we first compute simultaneous confidence intervals for Kθ and

transform these into probabilities. Note that
(

1 + exp(−ϑ̂)
)

−1

(cf. Equa-

tion 7.2) is the vector of estimated probabilities; simultaneous confidence in-
tervals can be transformed to the probability scale in the same way:

R> ci <- confint(glht(mmod, linfct = K))

R> ci$confint <- 1 - binomial()$linkinv(ci$confint)

R> ci$confint[,2:3] <- ci$confint[,3:2]

The result is shown in Figure 14.3. Browsing is less frequent in hardwood
but especially small oak trees are severely at risk. Consequently, the local
authorities increased the number of roe deers to be harvested in the following
years. The large confidence interval for ash, maple, elm and lime trees is caused
by the small sample size.
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R> plot(ci, xlab = "Probability of Damage Caused by Browsing",

+ xlim = c(0, 0.5), main = "", ylim = c(0.5, 5.5))
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oak (1258)
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pine (823)

spruce (119) (
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)
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l

Probability of Damage Caused by Browsing

Figure 14.3 Probability of damage caused by roe deer browsing for six tree

species. Sample sizes are given in brackets.

14.3.3 Cloud Seeding

In Chapter 6 we studied the dependency of rainfall on S-Ne values by means
of linear models. Because the number of observations is small, an additional
assessment of the variability of the fitted regression lines is interesting. Here,
we are interested in a confidence band around some estimated regression line,
i.e., a confidence region which covers the true but unknown regression line with
probability greater or equal 1 − α. It is straightforward to compute pointwise

confidence intervals but we have to make sure that the type I error is controlled
for all x values simultaneously. Consider the simple linear regression model

rainfalli = β0 + β1snei + εi

where we are interested in a confidence band for the predicted rainfall, i.e.,
the values β̂0 + β̂1snei for some observations snei. (Note that the estimates β̂0

and β̂1 are random variables.)

We can formulate the problem as a linear combination of the regression
coefficients by multiplying a matrix K to a grid of S-Ne values (ranging from
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1.5 to 4.5, say) from the left to the elemental parameters θ = (β0, β1):

Kθ =















1 1.50
1 1.75
...

...
1 4.25
1 4.50















θ = (β0 + β11.50, β0 + β11.75, . . . , β0 + β14.50) = ϑ.

Simultaneous confidence intervals for all the parameters of interest ϑ form a
confidence band for the estimated regression line. We implement this idea for
the clouds data writing a small reusable function as follows:

R> confband <- function(subset, main) {

+ mod <- lm(rainfall ~ sne, data = clouds, subset = subset)

+ sne_grid <- seq(from = 1.5, to = 4.5, by = 0.25)

+ K <- cbind(1, sne_grid)

+ sne_ci <- confint(glht(mod, linfct = K))

+ plot(rainfall ~ sne, data = clouds, subset = subset,

+ xlab = "S-Ne criterion", main = main,

+ xlim = range(clouds$sne),

+ ylim = range(clouds$rainfall))

+ abline(mod)

+ lines(sne_grid, sne_ci$confint[,2], lty = 2)

+ lines(sne_grid, sne_ci$confint[,3], lty = 2)

+ }

The function confband basically fits a linear model using lm to a subset of
the data, sets up the matrix K as shown above and nicely plots both the
regression line and the confidence band. Now, this function can be reused
to produce plots similar to Figure 6.6 separately for days with and without
cloud seeding in Figure 14.4. For the days without seeding, there is more
uncertainty about the true regression line compared to the days with cloud
seeding. Clearly, this is caused by the larger variability of the observations in
the left part of the figure.

14.4 Summary

Multiple comparisons in linear models have been in use for a long time. The
multcomp package extends much of the theory to a broad class of parametric
and semi-parametric statistical models, which allows for a unified treatment
of multiple comparisons and other simultaneous inference procedures in gener-
alised linear models, mixed models, models for censored data, robust models,
etc. Honest decisions based on simultaneous inference procedures maintaining
a pre-specified familywise error rate (at least asymptotically) can be derived
from almost all classical and modern statistical models. The technical details
and more examples can be found in Hothorn et al. (2008a) and the package
vignettes of package multcomp (Hothorn et al., 2009a).
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R> layout(matrix(1:2, ncol = 2))

R> confband(clouds$seeding == "no", main = "No seeding")

R> confband(clouds$seeding == "yes", main = "Seeding")
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Figure 14.4 Regression relationship between S-Ne criterion and rainfall with and

without seeding. The confidence bands cover the area within the

dashed curves.

Exercises

Ex. 14.1 Compare the results of glht and TukeyHSD on the alpha data.

Ex. 14.2 Consider the linear model fitted to the clouds data as summarised
in Figure 6.5. Set up a matrix K corresponding to the global null hypoth-
esis that all interaction terms present in the model are zero. Test both the
global hypothesis and all hypotheses corresponding to each of the inter-
action terms. Which interaction remains significant after adjustment for
multiple testing?

Ex. 14.3 For the logistic regression model presented in Figure 7.7 perform
a multiplicity adjusted test on all regression coefficients (except for the
intercept) being zero. Do the conclusions drawn in Chapter 7 remain valid?
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CHAPTER 15

Meta-Analysis: Nicotine Gum and
Smoking Cessation and the Efficacy of

BCG Vaccine in the Treatment of
Tuberculosis

15.1 Introduction

Cigarette smoking is the leading cause of preventable death in the United
States and kills more Americans than AIDS, alcohol, illegal drug use, car
accidents, fires, murders and suicides combined. It has been estimated that
430,000 Americans die from smoking every year. Fighting tobacco use is, con-
sequently, one of the major public health goals of our time and there are now
many programs available designed to help smokers quit. One of the major aids
used in these programs is nicotine chewing gum, which acts as a substitute
oral activity and provides a source of nicotine that reduces the withdrawal
symptoms experienced when smoking is stopped. But separate randomised
clinical trials of nicotine gum have been largely inconclusive, leading Silagy
(2003) to consider combining the results from 26 such studies found from an
extensive literature search. The results of these trials in terms of numbers of
people in the treatment arm and the control arm who stopped smoking for at
least 6 months after treatment are given in Table 15.1.

Bacille Calmette Guerin (BCG) is the most widely used vaccination in the
world. Developed in the 1930s and made of a live, weakened strain of Mycobac-
terium bovis, the BCG is the only vaccination available against tuberculosis
(TBC) today. Colditz et al. (1994) report data from 13 clinical trials of BCG
vaccine each investigating its efficacy in the prevention of tuberculosis. The
number of subjects suffering from TB with or without BCG vaccination are
given in Table 15.2. In addition, the table contains the values of two other
variables for each study, namely, the geographic latitude of the place where
the study was undertaken and the year of publication. These two variables
will be used to investigate and perhaps explain any heterogeneity among the
studies.

267
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Table 15.1: smoking data. Meta-analysis on nicotine gum show-
ing the number of quitters who have been treated
(qt), the total number of treated (tt) as well as the
number of quitters in the control group (qc) with
total number of smokers in the control group (tc).

qt tt qc tc

Blondal89 37 92 24 90
Campbell91 21 107 21 105
Fagerstrom82 30 50 23 50
Fee82 23 180 15 172
Garcia89 21 68 5 38
Garvey00 75 405 17 203
Gross95 37 131 6 46
Hall85 18 41 10 36
Hall87 30 71 14 68
Hall96 24 98 28 103
Hjalmarson84 31 106 16 100
Huber88 31 54 11 60
Jarvis82 22 58 9 58
Jensen91 90 211 28 82
Killen84 16 44 6 20
Killen90 129 600 112 617
Malcolm80 6 73 3 121
McGovern92 51 146 40 127
Nakamura90 13 30 5 30
Niaura94 5 84 4 89
Pirie92 75 206 50 211
Puska79 29 116 21 113
Schneider85 9 30 6 30
Tonnesen88 23 60 12 53
Villa99 11 21 10 26
Zelman92 23 58 18 58
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Table 15.2: BCG data. Meta-analysis on BCG vaccine with the
following data: the number of TBC cases after a
vaccination with BCG (BCGTB), the total number of
people who received BCG (BCG) as well as the num-
ber of TBC cases without vaccination (NoVaccTB)
and the total number of people in the study with-
out vaccination (NoVacc).

Study BCGTB BCGVacc NoVaccTB NoVacc Latitude Year

1 4 123 11 139 44 1948
2 6 306 29 303 55 1949
3 3 231 11 220 42 1960
4 62 13598 248 12867 52 1977
5 33 5069 47 5808 13 1973
6 180 1541 372 1451 44 1953
7 8 2545 10 629 19 1973
8 505 88391 499 88391 13 1980
9 29 7499 45 7277 27 1968

10 17 1716 65 1665 42 1961
11 186 50634 141 27338 18 1974
12 5 2498 3 2341 33 1969
13 27 16913 29 17854 33 1976

15.2 Systematic Reviews and Meta-Analysis

Many individual clinical trials are not large enough to answer the questions
we want to answer as reliably as we would want to answer them. Often trials
are too small for adequate conclusions to be drawn about potentially small
advantages of particular therapies. Advocacy of large trials is a natural re-
sponse to this situation, but it is not always possible to launch very large
trials before therapies become widely accepted or rejected prematurely. One
possible answer to this problem lies in the classical narrative review of a set
of clinical trials with an accompanying informal synthesis of evidence from
the different studies. It is now generally recognised, however, that such review
articles can, unfortunately, be very misleading as a result of both the possible
biased selection of evidence and the emphasis placed upon it by the reviewer
to support his or her personal opinion.

An alternative approach that has become increasingly popular in the last
decade or so is the systematic review which has, essentially, two components:

Qualitative: the description of the available trials, in terms of their relevance
and methodological strengths and weaknesses.

Quantitative: a means of mathematically combining results from different
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studies, even when these studies have used different measures to assess the
dependent variable.

The quantitative component of a systematic review is usually known as a
meta-analysis, defined in the Cambridge Dictionary of Statistics in the Medical

Sciences (Everitt, 2002a), as follows:

A collection of techniques whereby the results of two or more independent stud-
ies are statistically combined to yield an overall answer to a question of interest.
The rationale behind this approach is to provide a test with more power than is
provided by the separate studies themselves. The procedure has become increas-
ingly popular in the last decade or so, but is not without its critics, particularly
because of the difficulties of knowing which studies should be included and to
which population final results actually apply.

It is now generally accepted that meta-analysis gives the systematic review
an objectivity that is inevitably lacking in literature reviews and can also
help the process to achieve greater precision and generalisability of findings
than any single study. Chalmers and Lau (1993) make the point that both the
classical review article and a meta-analysis can be biased, but that at least
the writer of a meta-analytic paper is required by the rudimentary standards
of the discipline to give the data on which any conclusions are based, and
to defend the development of these conclusions by giving evidence that all
available data are included, or to give the reasons for not including the data.
Chalmers and Lau (1993) conclude

It seems obvious that a discipline that requires all available data be revealed
and included in an analysis has an advantage over one that has traditionally not
presented analyses of all the data in which conclusions are based.

The demand for systematic reviews of health care interventions has devel-
oped rapidly during the last decade, initiated by the widespread adoption of
the principles of evidence-based medicine amongst both health care practition-
ers and policy makers. Such reviews are now increasingly used as a basis for
both individual treatment decisions and the funding of health care and health
care research worldwide. Systematic reviews have a number of aims:

• To review systematically the available evidence from a particular research
area,

• To provide quantitative summaries of the results from each study,

• To combine the results across studies if appropriate; such combination of
results typically leads to greater statistical power in estimating treatment
effects,

• To assess the amount of variability between studies,

• To estimate the degree of benefit associated with a particular study treat-
ment,

• To identify study characteristics associated with particularly effective treat-
ments.

Perhaps the most important aspect of a meta-analysis is study selection.
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Selection is a matter of inclusion and exclusion and the judgements required
are, at times, problematic. But we shall say nothing about this fundamental
component of a meta-analysis here since it has been comprehensively dealt
with by a number of authors, including Chalmers and Lau (1993) and Petitti
(2000). Instead we shall concentrate on the statistics of meta-analysis.

15.3 Statistics of Meta-Analysis

Two models that are frequently used in the meta-analysis of medical studies
are the fixed effects and random effects models. Whilst the former assumes
that each observed individual study result is estimating a common unknown
overall pooled effect, the latter assumes that each individual observed result
is estimating its own unknown underlying effect, which in turn is estimating a
common population mean. Thus the random effects model specifically allows
for the existence of between-study heterogeneity as well as within-study vari-

ability. DeMets (1987) and Bailey (1987) discuss the strengths and weaknesses
of the two competing models. Bailey suggests that when the research question
involves extrapolation to the future – will the treatment have an effect, on
the average – then the random effects model for the studies is the appropriate
one. The research question implicitly assumes that there is a population of
studies from which those analysed in the meta-analysis were sampled, and an-
ticipate future studies being conducted or previously unknown studies being
uncovered.

When the research question concerns whether treatment has produced an
effect, on the average, in the set of studies being analysed, then the fixed effects
model for the studies may be the appropriate one; here there is no interest in
generalising the results to other studies.

Many statisticians believe that random effects models are more appropriate
than fixed effects models for meta-analysis because between-study variation
is an important source of uncertainty that should not be ignored.

15.3.1 Fixed Effects Model – Mantel-Haenszel

This model uses as its estimate of the common pooled effect, Ȳ , a weighted
average of the individual study effects, the weights being inversely proportional
to the within-study variances. Specifically

Ȳ =

k
∑

i=1

WiYi

k
∑

i=1

Wi

(15.1)

where k is the number of the studies in the meta-analysis, Yi is the effect size
estimated in the ith study (this might be a odds-ratio, log-odds ratio, relative
risk or difference in means, for example), and Wi = 1/Vi where Vi is the within
study estimate of variance for the ith study. The estimated variance of Ȳ is
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given by

Var(Ȳ ) = 1/

(

k
∑

i=1

Wi

)

. (15.2)

From (15.1) and (15.2) a confidence interval for the pooled effect can be con-
structed in the usual way. For the Mantel-Haenszel analysis, consider a two-
by-two table below.

response
success failure

group control a b

treatment c d

Then, the odds ratio for the ith study reads Yi = ad/bc and the weight is
Wi = bc/(a + b + c + d).

15.3.2 Random Effects Model – DerSimonian-Laird

The random effects model has the form;

Yi = µi + σiεi; εi ∼ N (0, 1) (15.3)

µi ∼ N (µ, τ
2); i = 1, . . . , k.

Unlike the fixed effects model, the individual studies are not assumed to be
estimating a true single effect size; rather the true effects in each study, the
µi’s, are assumed to have been sampled from a distribution of effects, assumed
to be normal with mean µ and variance τ

2. The estimate of µ is that given in
(15.1) but in this case the weights are given by Wi = 1/

(

Vi + τ̂
2
)

where τ̂
2

is an estimate of the between study variance. DerSimonian and Laird (1986)
derive a suitable estimator for τ̂

2, which is as follows;

τ̂
2 =

{

0 if Q ≤ k − 1
(Q − k + 1)/U if Q > k − 1

where Q =
∑k

i=1
Wi(Yi − Ȳ )2 and U = (k − 1)

(

W̄ − s
2

W /kW

)

with W̄ and
s

2

W being the mean and variance of the weights, Wi.
A test for homogeneity of studies is provided by the statistic Q. The hy-

pothesis of a common effect size is rejected if Q exceeds the quantile of a
χ

2-distribution with k − 1 degrees of freedom at the chosen significance level.
Allowing for this extra between-study variation has the effect of reducing

the relative weighting given to the more precise studies. Hence the random
effects model produces a more conservative confidence interval for the pooled
effect size.

A Bayesian dimension can be added to the random effects model by allowing
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the parameters of the model to have prior distributions. Some examples are
given in Sutton and Abrams (2001).

15.4 Analysis Using R

The methodology described above is implemented in package rmeta (Lumley,
2009) and we will utilise the functionality from this package to analyse the
smoking and BCG studies introduced earlier.

The aim in collecting the results from the randomised trials of using nicotine
gum to help smokers quit was to estimate the overall odds ratio, the odds of
quitting smoking for those given the gum, divided by the odds of quitting for
those not receiving the gum. Following formula (15.1), we can compute the
pooled odds ratio as follows:

R> data("smoking", package = "HSAUR2")

R> odds <- function(x) (x[1] * (x[4] - x[3])) /

+ ((x[2] - x[1]) * x[3])

R> weight <- function(x) ((x[2] - x[1]) * x[3]) / sum(x)

R> W <- apply(smoking, 1, weight)

R> Y <- apply(smoking, 1, odds)

R> sum(W * Y) / sum(W)

[1] 1.664159

Of course, the computations are more conveniently done using the functional-
ity provided in package rmeta. The odds ratios and corresponding confidence
intervals are computed by means of the meta.MH function for fixed effects
meta-analysis as shown here

R> library("rmeta")

R> smokingOR <- meta.MH(smoking[["tt"]], smoking[["tc"]],

+ smoking[["qt"]], smoking[["qc"]],

+ names = rownames(smoking))

and the results can be inspected via a summary method – see Figure 15.1.
Before proceeding to the calculation of a combined effect size it will be

helpful to graph the data by plotting confidence intervals for the odds ratios
from each study (this is often known as a forest plot – see Sutton et al., 2000).
The plot function applied to smokingOR produces such a plot; see Figure 15.2.
It appears that the tendency in the trials considered was to favour nicotine
gum but we need now to quantify this evidence in the form of an overall
estimate of the odds ratio.

We shall use both the fixed effects and random effects approaches here so
that we can compare results. For the fixed effects model (see Figure 15.1)
the estimated overall log-odds ratio is 0.513 with a standard error of 0.066.
This leads to an estimate of the overall odds ratio of 1.67, with a 95% con-
fidence interval as given above. For the random effects model, which is fitted
by applying function meta.DSL to the smoking data as follows
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R> summary(smokingOR)

Fixed effects ( Mantel-Haenszel ) meta-analysis

Call: meta.MH(ntrt = smoking[["tt"]], nctrl = smoking[["tc"]],

ptrt = smoking[["qt"]], pctrl = smoking[["qc"]],

names = rownames(smoking))

------------------------------------

OR (lower 95% upper)

Blondal89 1.85 0.99 3.46

Campbell91 0.98 0.50 1.92

Fagerstrom82 1.76 0.80 3.89

Fee82 1.53 0.77 3.05

Garcia89 2.95 1.01 8.62

Garvey00 2.49 1.43 4.34

Gross95 2.62 1.03 6.71

Hall85 2.03 0.78 5.29

Hall87 2.82 1.33 5.99

Hall96 0.87 0.46 1.64

Hjalmarson84 2.17 1.10 4.28

Huber88 6.00 2.57 14.01

Jarvis82 3.33 1.37 8.08

Jensen91 1.43 0.84 2.44

Killen84 1.33 0.43 4.15

Killen90 1.23 0.93 1.64

Malcolm80 3.52 0.85 14.54

McGovern92 1.17 0.70 1.94

Nakamura90 3.82 1.15 12.71

Niaura94 1.34 0.35 5.19

Pirie92 1.84 1.20 2.82

Puska79 1.46 0.78 2.75

Schneider85 1.71 0.52 5.62

Tonnesen88 2.12 0.93 4.86

Villa99 1.76 0.55 5.64

Zelman92 1.46 0.68 3.14

------------------------------------

Mantel-Haenszel OR =1.67 95% CI ( 1.47,1.9 )

Test for heterogeneity: X^2( 25 ) = 34.9 ( p-value 0.09 )

Figure 15.1 R output of the summary method for smokingOR.

R> smokingDSL <- meta.DSL(smoking[["tt"]], smoking[["tc"]],

+ smoking[["qt"]], smoking[["qc"]],

+ names = rownames(smoking))

R> print(smokingDSL)

Random effects ( DerSimonian-Laird ) meta-analysis

Call: meta.DSL(ntrt = smoking[["tt"]], nctrl = smoking[["tc"]],

ptrt = smoking[["qt"]], pctrl = smoking[["qc"]],
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R> plot(smokingOR, ylab = "")

Odds Ratio

0.40 1.00 2.51 6.31 15.85

Blondal89
Campbell91
Fagerstrom82
Fee82
Garcia89
Garvey00
Gross95
Hall85
Hall87
Hall96
Hjalmarson84
Huber88
Jarvis82
Jensen91
Killen84
Killen90
Malcolm80
McGovern92
Nakamura90
Niaura94
Pirie92
Puska79
Schneider85
Tonnesen88
Villa99
Zelman92

Summary

Figure 15.2 Forest plot of observed effect sizes and 95% confidence intervals for
the nicotine gum studies.
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names = rownames(smoking))

Summary OR= 1.75 95% CI ( 1.48, 2.07 )

Estimated random effects variance: 0.05

the corresponding estimate is 1.751. Both models suggest that there is clear
evidence that nicotine gum increases the odds of quitting. The random effects
confidence interval is considerably wider than that from the fixed effects model;
here the test of homogeneity of the studies is not significant implying that we
might use the fixed effects results. But the test is not particularly powerful
and it is more sensible to assume a priori that heterogeneity is present and so
we use the results from the random effects model.

15.5 Meta-Regression

The examination of heterogeneity of the effect sizes from the studies in a
meta-analysis begins with the formal test for its presence, although in most
meta-analyses such heterogeneity can almost be assumed to be present. There
will be many possible sources of such heterogeneity and estimating how these
various factors affect the observed effect sizes in the studies chosen is often
of considerable interest and importance, indeed usually more important than
the relatively simplistic use of meta-analysis to determine a single summary
estimate of overall effect size. We can illustrate the process using the BCG
vaccine data. We first find the estimate of the overall effect size from applying
the fixed effects and the random effects models described previously:

R> data("BCG", package = "HSAUR2")

R> BCG_OR <- meta.MH(BCG[["BCGVacc"]], BCG[["NoVacc"]],

+ BCG[["BCGTB"]], BCG[["NoVaccTB"]],

+ names = BCG$Study)

R> BCG_DSL <- meta.DSL(BCG[["BCGVacc"]], BCG[["NoVacc"]],

+ BCG[["BCGTB"]], BCG[["NoVaccTB"]],

+ names = BCG$Study)

The results are inspected using the summary method as shown in Figures 15.3
and 15.4.

For these data the test statistics for heterogeneity takes the value 163.16
which, with 12 degrees of freedom, is highly significant; there is strong evi-
dence of heterogeneity in the 13 studies. Applying the random effects model
to the data gives (see Figure 15.4) an estimated odds ratio 0.474, with a 95%
confidence interval of (0.325, 0.69) and an estimated between-study variance
of 0.366.

To assess how the two covariates, latitude and year, relate to the observed
effect sizes we shall use multiple linear regression but will weight each ob-
servation by Wi = (σ̂2 + V

2
i )−1

, i = 1, . . . , 13, where σ̂
2 is the estimated

between-study variance and V
2
i is the estimated variance from the ith study.

The required R code to fit the linear model via weighted least squares is:

R> studyweights <- 1 / (BCG_DSL$tau2 + BCG_DSL$selogs^2)

R> y <- BCG_DSL$logs
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R> summary(BCG_OR)

Fixed effects ( Mantel-Haenszel ) meta-analysis

Call: meta.MH(ntrt = BCG[["BCGVacc"]], nctrl = BCG[["NoVacc"]],

ptrt = BCG[["BCGTB"]], pctrl = BCG[["NoVaccTB"]],

names = BCG$Study)

------------------------------------

OR (lower 95% upper)

1 0.39 0.12 1.26

2 0.19 0.08 0.46

3 0.25 0.07 0.91

4 0.23 0.18 0.31

5 0.80 0.51 1.26

6 0.38 0.32 0.47

7 0.20 0.08 0.50

8 1.01 0.89 1.15

9 0.62 0.39 1.00

10 0.25 0.14 0.42

11 0.71 0.57 0.89

12 1.56 0.37 6.55

13 0.98 0.58 1.66

------------------------------------

Mantel-Haenszel OR =0.62 95% CI ( 0.57,0.68 )

Test for heterogeneity: X^2( 12 ) = 163.94 ( p-value 0 )

Figure 15.3 R output of the summary method for BCG_OR.

R> BCG_mod <- lm(y ~ Latitude + Year, data = BCG,

+ weights = studyweights)

and the results of the summary method are shown in Figure 15.5. There is
some evidence that latitude is associated with observed effect size, the log-
odds ratio becoming increasingly negative as latitude increases, as we can see
from a scatterplot of the two variables with the added weighted regression fit
seen in Figure 15.6.

15.6 Publication Bias

The selection of studies to be integrated by a meta-analysis will clearly have
a bearing on the conclusions reached. Selection is a matter of inclusion and
exclusion and the judgements required are often difficult; Chalmers and Lau
(1993) discuss the general issues involved, but here we shall concentrate on the
particular potential problem of publication bias, which is a major problem,
perhaps the major problem in meta-analysis.

Ensuring that a meta-analysis is truly representative can be problematic.
It has long been known that journal articles are not a representative sample
of work addressed to any particular area of research (see Sterlin, 1959, Green-
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R> summary(BCG_DSL)

Random effects ( DerSimonian-Laird ) meta-analysis

Call: meta.DSL(ntrt = BCG[["BCGVacc"]], nctrl = BCG[["NoVacc"]],

ptrt = BCG[["BCGTB"]], pctrl = BCG[["NoVaccTB"]],

names = BCG$Study)

------------------------------------

OR (lower 95% upper)

1 0.39 0.12 1.26

2 0.19 0.08 0.46

3 0.25 0.07 0.91

4 0.23 0.18 0.31

5 0.80 0.51 1.26

6 0.38 0.32 0.47

7 0.20 0.08 0.50

8 1.01 0.89 1.15

9 0.62 0.39 1.00

10 0.25 0.14 0.42

11 0.71 0.57 0.89

12 1.56 0.37 6.55

13 0.98 0.58 1.66

------------------------------------

SummaryOR= 0.47 95% CI ( 0.32,0.69 )

Test for heterogeneity: X^2( 12 ) = 163.16 ( p-value 0 )

Estimated random effects variance: 0.37

Figure 15.4 R output of the summary method for BCG_DSL.

wald, 1975, Smith, 1980, for example). Research with statistically significant
results is potentially more likely to be submitted and published than work
with null or non-significant results (Easterbrook et al., 1991). The problem
is made worse by the fact that many medical studies look at multiple out-
comes, and there is a tendency for only those suggesting a significant effect to
be mentioned when the study is written up. Outcomes which show no clear
treatment effect are often ignored, and so will not be included in any later re-
view of studies looking at those particular outcomes. Publication bias is likely
to lead to an over-representation of positive results.

Clearly then it becomes of some importance to assess the likelihood of publi-
cation bias in any meta-analysis. A well-known, informal method of assessing
publication bias is the so-called funnel plot. This assumes that the results
from smaller studies will be more widely spread around the mean effect be-
cause of larger random error; a plot of a measure of the precision (such as
inverse standard error or sample size) of the studies versus treatment effect
from individual studies in a meta-analysis, should therefore be shaped like a
funnel if there is no publication bias. If the chance of publication is greater
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R> summary(BCG_mod)

Call:

lm(formula = y ~ Latitude + Year, data = BCG,

weights = studyweights)

Residuals:

Min 1Q Median 3Q Max

-1.66012 -0.36910 -0.02937 0.31565 1.26040

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -16.199115 37.605403 -0.431 0.6758

Latitude -0.025808 0.013680 -1.887 0.0886

Year 0.008279 0.018972 0.436 0.6718

Residual standard error: 0.7992 on 10 degrees of freedom

Multiple R-squared: 0.4387, Adjusted R-squared: 0.3265

F-statistic: 3.909 on 2 and 10 DF, p-value: 0.05569

Figure 15.5 R output of the summary method for BCG_mod.

for studies with statistically significant results, the shape of the funnel may
become skewed.

Example funnel plots, inspired by those shown in Duval and Tweedie (2000),
are displayed in Figure 15.7. In the first of these plots, there is little evidence
of publication bias, while in the second, there is definite asymmetry with a
clear lack of studies in the bottom left hand corner of the plot.

We can construct a funnel plot for the nicotine gum data using the R code
depicted with Figure 15.8. There does not appear to be any strong evidence
of publication bias here.

15.7 Summary

It is probably fair to say that the majority of statisticians and clinicians are
largely enthusiastic about the advantages of meta-analysis over the classical
review, although there remain sceptics who feel that the conclusions from
meta-analyses often go beyond what the techniques and the data justify. Some
of their concerns are echoed in the following quotation from Oakes (1993):

The term meta-analysis refers to the quantitative combination of data from inde-
pendent trials. Where the result of such combination is a descriptive summary of
the weight of the available evidence, the exercise is of undoubted value. Attempts
to apply inferential methods, however, are subject to considerable methodologi-
cal and logical difficulties. The selection and quality of trials included, population
bias and the specification of the population to which inference may properly be
made are problems to which no satisfactory solutions have been proposed.
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R> plot(y ~ Latitude, data = BCG, ylab = "Estimated log-OR")

R> abline(lm(y ~ Latitude, data = BCG, weights = studyweights))
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Figure 15.6 Plot of observed effect size for the BCG vaccine data against latitude,
with a weighted least squares regression fit shown in addition.

But despite such concerns the systematic review, in particular its quanti-
tative component, meta-analysis, has had a major impact on medical science
in the past ten years, and has been largely responsible for the development
of evidence-based medical practise. One of the principal reasons that meta-
analysis has been so successful is the large number of clinical trials that are
now conducted. For example, the number of randomised clinical trials is now
of the order of 10,000 per year. Synthesising results from many studies can be
difficult, confusing and ultimately misleading. Meta-analysis has the poten-
tial to demonstrate treatment effects with a high degree of precision, possibly
revealing small, but clinically important effects. But as with an individual
clinical trial, careful planning, comprehensive data collection and a formal ap-
proach to statistical methods are necessary in order to achieve an acceptable
and convincing meta-analysis.

A more comprehensive treatment of this subject will be available soon from
the book Meta-analysis with R (Schwarzer et al., 2009), the associated R pack-
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Figure 15.7 Example funnel plots from simulated data. The asymmetry in the
lower plot is a hint that a publication bias might be a problem.
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R> funnelplot(smokingDSL$logs, smokingDSL$selogs,

+ summ = smokingDSL$logDSL, xlim = c(-1.7, 1.7))

R> abline(v = 0, lty = 2)
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Figure 15.8 Funnel plot for nicotine gum data.

age meta (Schwarzer, 2009), which for example offers functionality for testing
on funnel plot asymmetry, has already been published on CRAN.

Exercises

Ex. 15.1 The data in Table 15.4 were collected for a meta-analysis of the effec-
tiveness of aspirin (versus placebo) in preventing death after a myocardial
infarction (Fleiss, 1993). Calculate the log-odds ratio for each study and
its variance, and then fit both a fixed effects and random effects model.
Investigate the effect of possible publication bias.
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Table 15.4: aspirin data. Meta-analysis on aspirin and myocar-
dial infarct, the table shows the number of deaths
after placebo (dp), the total number subjects treated
with placebo (tp) as well as the number of deaths
after aspirin (da) and the total number of subjects
treated with aspirin (ta).

dp tp da ta

Elwood et al. (1974) 67 624 49 615
Coronary Drug Project Group (1976) 64 77 44 757
Elwood and Sweetman (1979) 126 850 102 832
Breddin et al. (1979) 38 309 32 317
Persantine-Aspirin Reinfarction Study Research Group (1980) 52 406 85 810
Aspirin Myocardial Infarction Study Research Group (1980) 219 2257 346 2267
ISIS-2 (Second International Study of Infarct Survival) Collaborative Group (1988) 1720 8600 1570 8587
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Ex. 15.2 The data in Table 15.5 show the results of nine randomised trials
comparing two different toothpastes for the prevention of caries develop-
ment (see Everitt and Pickles, 2000). The outcomes in each trial was the
change from baseline, in the decayed, missing (due to caries) and filled
surface dental index (DMFS). Calculate an appropriate measure of effect
size for each study and then carry out a meta-analysis of the results. What
conclusions do you draw from the results?

Table 15.5: toothpaste data. Meta-analysis on trials comparing
two toothpastes, the number of individuals in the
study, the mean and the standard deviation for each
study A and B are shown.

Study nA meanA sdA nB meanB sdB

1 134 5.96 4.24 113 4.72 4.72
2 175 4.74 4.64 151 5.07 5.38
3 137 2.04 2.59 140 2.51 3.22
4 184 2.70 2.32 179 3.20 2.46
5 174 6.09 4.86 169 5.81 5.14
6 754 4.72 5.33 736 4.76 5.29
7 209 10.10 8.10 209 10.90 7.90
8 1151 2.82 3.05 1122 3.01 3.32
9 679 3.88 4.85 673 4.37 5.37

Ex. 15.3 As an exercise in writing R code write your own meta-analysis
function that allows the plotting of observed effect sizes and their associated
confidence intervals (forest plot), estimates the overall effect size and its
standard error by both the fixed effects and random effect models, and
shows both on the constructed forest plot.
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CHAPTER 16

Principal Component Analysis: The
Olympic Heptathlon

16.1 Introduction

The pentathlon for women was first held in Germany in 1928. Initially this
consisted of the shot put, long jump, 100m, high jump and javelin events held
over two days. In the 1964 Olympic Games the pentathlon became the first
combined Olympic event for women, consisting now of the 80m hurdles, shot,
high jump, long jump and 200m. In 1977 the 200m was replaced by the 800m
and from 1981 the IAAF brought in the seven-event heptathlon in place of
the pentathlon, with day one containing the events 100m hurdles, shot, high
jump, 200m and day two, the long jump, javelin and 800m. A scoring system
is used to assign points to the results from each event and the winner is the
woman who accumulates the most points over the two days. The event made
its first Olympic appearance in 1984.

In the 1988 Olympics held in Seoul, the heptathlon was won by one of the
stars of women’s athletics in the USA, Jackie Joyner-Kersee. The results for
all 25 competitors in all seven disciplines are given in Table 16.1 (from Hand
et al., 1994). We shall analyse these data using principal component analysis

with a view to exploring the structure of the data and assessing how the
derived principal component scores (see later) relate to the scores assigned by
the official scoring system.

16.2 Principal Component Analysis

The basic aim of principal component analysis is to describe variation in a
set of correlated variables, x1, x2, . . . , xq, in terms of a new set of uncorrelated
variables, y1, y2, . . . , yq, each of which is a linear combination of the x variables.
The new variables are derived in decreasing order of ‘importance’ in the sense
that y1 accounts for as much of the variation in the original data amongst all
linear combinations of x1, x2, . . . , xq. Then y2 is chosen to account for as much
as possible of the remaining variation, subject to being uncorrelated with y1

– and so on, i.e., forming an orthogonal coordinate system. The new variables
defined by this process, y1, y2, . . . , yq, are the principal components.

The general hope of principal component analysis is that the first few com-
ponents will account for a substantial proportion of the variation in the original
variables, x1, x2, . . . , xq, and can, consequently, be used to provide a conve-
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Table 16.1: heptathlon data. Results Olympic heptathlon, Seoul, 1988.

hurdles highjump shot run200m longjump javelin run800m score

Joyner-Kersee (USA) 12.69 1.86 15.80 22.56 7.27 45.66 128.51 7291

John (GDR) 12.85 1.80 16.23 23.65 6.71 42.56 126.12 6897

Behmer (GDR) 13.20 1.83 14.20 23.10 6.68 44.54 124.20 6858

Sablovskaite (URS) 13.61 1.80 15.23 23.92 6.25 42.78 132.24 6540

Choubenkova (URS) 13.51 1.74 14.76 23.93 6.32 47.46 127.90 6540

Schulz (GDR) 13.75 1.83 13.50 24.65 6.33 42.82 125.79 6411

Fleming (AUS) 13.38 1.80 12.88 23.59 6.37 40.28 132.54 6351

Greiner (USA) 13.55 1.80 14.13 24.48 6.47 38.00 133.65 6297

Lajbnerova (CZE) 13.63 1.83 14.28 24.86 6.11 42.20 136.05 6252

Bouraga (URS) 13.25 1.77 12.62 23.59 6.28 39.06 134.74 6252

Wijnsma (HOL) 13.75 1.86 13.01 25.03 6.34 37.86 131.49 6205

Dimitrova (BUL) 13.24 1.80 12.88 23.59 6.37 40.28 132.54 6171

Scheider (SWI) 13.85 1.86 11.58 24.87 6.05 47.50 134.93 6137

Braun (FRG) 13.71 1.83 13.16 24.78 6.12 44.58 142.82 6109

Ruotsalainen (FIN) 13.79 1.80 12.32 24.61 6.08 45.44 137.06 6101

Yuping (CHN) 13.93 1.86 14.21 25.00 6.40 38.60 146.67 6087

Hagger (GB) 13.47 1.80 12.75 25.47 6.34 35.76 138.48 5975

Brown (USA) 14.07 1.83 12.69 24.83 6.13 44.34 146.43 5972

Mulliner (GB) 14.39 1.71 12.68 24.92 6.10 37.76 138.02 5746

Hautenauve (BEL) 14.04 1.77 11.81 25.61 5.99 35.68 133.90 5734

Kytola (FIN) 14.31 1.77 11.66 25.69 5.75 39.48 133.35 5686

Geremias (BRA) 14.23 1.71 12.95 25.50 5.50 39.64 144.02 5508

Hui-Ing (TAI) 14.85 1.68 10.00 25.23 5.47 39.14 137.30 5290

Jeong-Mi (KOR) 14.53 1.71 10.83 26.61 5.50 39.26 139.17 5289

Launa (PNG) 16.42 1.50 11.78 26.16 4.88 46.38 163.43 4566
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nient lower-dimensional summary of these variables that might prove useful
for a variety of reasons.

In some applications, the principal components may be an end in themselves
and might be amenable to interpretation in a similar fashion as the factors in
an exploratory factor analysis (see Everitt and Dunn, 2001). More often they
are obtained for use as a means of constructing a low-dimensional informative
graphical representation of the data, or as input to some other analysis.

The low-dimensional representation produced by principal component anal-
ysis is such that

n
∑

r=1

n
∑

s=1

(

d2

rs − d̂2

rs

)

is minimised with respect to d̂2
rs. In this expression, drs is the Euclidean dis-

tance (see Chapter 17) between observations r and s in the original q dimen-

sional space, and d̂rs is the corresponding distance in the space of the first m

components.
As stated previously, the first principal component of the observations is

that linear combination of the original variables whose sample variance is
greatest amongst all possible such linear combinations. The second principal
component is defined as that linear combination of the original variables that
accounts for a maximal proportion of the remaining variance subject to being
uncorrelated with the first principal component. Subsequent components are
defined similarly. The question now arises as to how the coefficients specifying
the linear combinations of the original variables defining each component are
found? The algebra of sample principal components is summarised briefly.

The first principal component of the observations, y1, is the linear combi-
nation

y1 = a11x1 + a12x2 + . . . , a1qxq

whose sample variance is greatest among all such linear combinations. Since
the variance of y1 could be increased without limit simply by increasing the
coefficients a⊤

1 = (a11, a12, . . . , a1q) (here written in form of a vector for conve-
nience), a restriction must be placed on these coefficients. As we shall see later,
a sensible constraint is to require that the sum of squares of the coefficients,
a⊤

1 a1, should take the value one, although other constraints are possible.
The second principal component y2 = a⊤

2 x with x = (x1, . . . , xq) is the lin-
ear combination with greatest variance subject to the two conditions a⊤

2 a2 = 1
and a⊤

2 a1 = 0. The second condition ensures that y1 and y2 are uncorrelated.
Similarly, the jth principal component is that linear combination yj = a⊤

j x

which has the greatest variance subject to the conditions a⊤

j aj = 1 and

a⊤

j ai = 0 for (i < j).
To find the coefficients defining the first principal component we need to

choose the elements of the vector a1 so as to maximise the variance of y1

subject to the constraint a⊤

1 a1 = 1.
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To maximise a function of several variables subject to one or more con-
straints, the method of Lagrange multipliers is used. In this case this leads
to the solution that a1 is the eigenvector of the sample covariance matrix,
S, corresponding to its largest eigenvalue – full details are given in Morrison
(2005).

The other components are derived in similar fashion, with aj being the
eigenvector of S associated with its jth largest eigenvalue. If the eigenvalues
of S are λ1, λ2, . . . , λq, then since a⊤

j aj = 1, the variance of the jth component
is given by λj .

The total variance of the q principal components will equal the total variance
of the original variables so that

q
∑

j=1

λj = s2

1 + s2

2 + · · · + s2

q

where s2
j is the sample variance of xj . We can write this more concisely as

q
∑

j=1

λj = trace(S).

Consequently, the jth principal component accounts for a proportion Pj of
the total variation of the original data, where

Pj =
λj

trace(S)
.

The first m principal components, where m < q, account for a proportion

P (m) =

m
∑

j=1

λj

trace(S)
.

When the variables are on very different scales principal component analysis is
usally carried out on the correlation matrix rather than the covariance matrix.

16.3 Analysis Using R

To begin it will help to score all seven events in the same direction, so that
‘large’ values are ‘good’. We will recode the running events to achieve this;

R> data("heptathlon", package = "HSAUR2")

R> heptathlon$hurdles <- max(heptathlon$hurdles) -

+ heptathlon$hurdles

R> heptathlon$run200m <- max(heptathlon$run200m) -

+ heptathlon$run200m

R> heptathlon$run800m <- max(heptathlon$run800m) -

+ heptathlon$run800m

Figure 16.1 shows a scatterplot matrix of the results from all 25 competitors
for the seven events. Most of the scatterplots in the diagram suggest that there
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R> score <- which(colnames(heptathlon) == "score")

R> plot(heptathlon[,-score])
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run800m

Figure 16.1 Scatterplot matrix for the heptathlon data (all countries).

is a positive relationship between the results for each pairs of events. The
exception are the plots involving the javelin event which give little evidence
of any relationship between the result for this event and the results from the
other six events; we will suggest possible reasons for this below, but first we
will examine the numerical values of the between pairs events correlations by
applying the cor function

R> round(cor(heptathlon[,-score]), 2)

hurdles highjump shot run200m longjump javelin run800m

hurdles 1.00 0.81 0.65 0.77 0.91 0.01 0.78

highjump 0.81 1.00 0.44 0.49 0.78 0.00 0.59

shot 0.65 0.44 1.00 0.68 0.74 0.27 0.42

run200m 0.77 0.49 0.68 1.00 0.82 0.33 0.62
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longjump 0.91 0.78 0.74 0.82 1.00 0.07 0.70

javelin 0.01 0.00 0.27 0.33 0.07 1.00 -0.02

run800m 0.78 0.59 0.42 0.62 0.70 -0.02 1.00

Examination of these numerical values confirms that most pairs of events are
positively correlated, some moderately (for example, high jump and shot) and
others relatively highly (for example, high jump and hurdles). And we see that
the correlations involving the javelin event are all close to zero. One possible
explanation for the latter finding is perhaps that training for the other six
events does not help much in the javelin because it is essentially a ‘technical’
event. An alternative explanation is found if we examine the scatterplot matrix
in Figure 16.1 a little more closely. It is very clear in this diagram that for
all events except the javelin there is an outlier, the competitor from Papua
New Guinea (PNG), who is much poorer than the other athletes at these six
events and who finished last in the competition in terms of points scored. But
surprisingly in the scatterplots involving the javelin it is this competitor who
again stands out but because she has the third highest value for the event.
It might be sensible to look again at both the correlation matrix and the
scatterplot matrix after removing the competitor from PNG; the relevant R

code is

R> heptathlon <- heptathlon[-grep("PNG", rownames(heptathlon)),]

Now, we again look at the scatterplot and correlation matrix;

R> round(cor(heptathlon[,-score]), 2)

hurdles highjump shot run200m longjump javelin run800m

hurdles 1.00 0.58 0.77 0.83 0.89 0.33 0.56

highjump 0.58 1.00 0.46 0.39 0.66 0.35 0.15

shot 0.77 0.46 1.00 0.67 0.78 0.34 0.41

run200m 0.83 0.39 0.67 1.00 0.81 0.47 0.57

longjump 0.89 0.66 0.78 0.81 1.00 0.29 0.52

javelin 0.33 0.35 0.34 0.47 0.29 1.00 0.26

run800m 0.56 0.15 0.41 0.57 0.52 0.26 1.00

The correlations change quite substantially and the new scatterplot matrix in
Figure 16.2 does not point us to any further extreme observations. In the re-
mainder of this chapter we analyse the heptathlon data with the observations
of the competitor from Papua New Guinea removed.

Because the results for the seven heptathlon events are on different scales we
shall extract the principal components from the correlation matrix. A principal
component analysis of the data can be applied using the prcomp function
with the scale argument set to TRUE to ensure the analysis is carried out on
the correlation matrix. The result is a list containing the coefficients defining
each component (sometimes referred to as loadings), the principal component
scores, etc. The required code is (omitting the score variable)

R> heptathlon_pca <- prcomp(heptathlon[, -score], scale = TRUE)

R> print(heptathlon_pca)
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R> score <- which(colnames(heptathlon) == "score")

R> plot(heptathlon[,-score])
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Figure 16.2 Scatterplot matrix for the heptathlon data after removing observa-

tions of the PNG competitor.

Standard deviations:

[1] 2.0793 0.9482 0.9109 0.6832 0.5462 0.3375 0.2620

Rotation:

PC1 PC2 PC3 PC4 PC5 PC6

hurdles -0.4504 0.05772 -0.1739 0.04841 -0.19889 0.84665

highjump -0.3145 -0.65133 -0.2088 -0.55695 0.07076 -0.09008

shot -0.4025 -0.02202 -0.1535 0.54827 0.67166 -0.09886

run200m -0.4271 0.18503 0.1301 0.23096 -0.61782 -0.33279

longjump -0.4510 -0.02492 -0.2698 -0.01468 -0.12152 -0.38294

javelin -0.2423 -0.32572 0.8807 0.06025 0.07874 0.07193

run800m -0.3029 0.65651 0.1930 -0.57418 0.31880 -0.05218
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PC7

hurdles -0.06962

highjump 0.33156

shot 0.22904

run200m 0.46972

longjump -0.74941

javelin -0.21108

run800m 0.07719

The summary method can be used for further inspection of the details:

R> summary(heptathlon_pca)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Standard deviation 2.1 0.9 0.9 0.68 0.55 0.34 0.26

Proportion of Variance 0.6 0.1 0.1 0.07 0.04 0.02 0.01

Cumulative Proportion 0.6 0.7 0.9 0.93 0.97 0.99 1.00

The linear combination for the first principal component is

R> a1 <- heptathlon_pca$rotation[,1]

R> a1

hurdles highjump shot run200m longjump

-0.4503876 -0.3145115 -0.4024884 -0.4270860 -0.4509639

javelin run800m

-0.2423079 -0.3029068

We see that the 200m and long jump competitions receive the highest weight
but the javelin result is less important. For computing the first principal com-
ponent, the data need to be rescaled appropriately. The center and the scaling
used by prcomp internally can be extracted from the heptathlon_pca via

R> center <- heptathlon_pca$center

R> scale <- heptathlon_pca$scale

Now, we can apply the scale function to the data and multiply with the
loadings matrix in order to compute the first principal component score for
each competitor

R> hm <- as.matrix(heptathlon[,-score])

R> drop(scale(hm, center = center, scale = scale) %*%

+ heptathlon_pca$rotation[,1])

Joyner-Kersee (USA) John (GDR) Behmer (GDR)

-4.757530189 -3.147943402 -2.926184760

Sablovskaite (URS) Choubenkova (URS) Schulz (GDR)

-1.288135516 -1.503450994 -0.958467101

Fleming (AUS) Greiner (USA) Lajbnerova (CZE)

-0.953445060 -0.633239267 -0.381571974

Bouraga (URS) Wijnsma (HOL) Dimitrova (BUL)

-0.522322004 -0.217701500 -1.075984276

Scheider (SWI) Braun (FRG) Ruotsalainen (FIN)

0.003014986 0.109183759 0.208868056
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Yuping (CHN) Hagger (GB) Brown (USA)

0.232507119 0.659520046 0.756854602

Mulliner (GB) Hautenauve (BEL) Kytola (FIN)

1.880932819 1.828170404 2.118203163

Geremias (BRA) Hui-Ing (TAI) Jeong-Mi (KOR)

2.770706272 3.901166920 3.896847898

or, more conveniently, by extracting the first from all precomputed principal
components

R> predict(heptathlon_pca)[,1]

Joyner-Kersee (USA) John (GDR) Behmer (GDR)

-4.757530189 -3.147943402 -2.926184760

Sablovskaite (URS) Choubenkova (URS) Schulz (GDR)

-1.288135516 -1.503450994 -0.958467101

Fleming (AUS) Greiner (USA) Lajbnerova (CZE)

-0.953445060 -0.633239267 -0.381571974

Bouraga (URS) Wijnsma (HOL) Dimitrova (BUL)

-0.522322004 -0.217701500 -1.075984276

Scheider (SWI) Braun (FRG) Ruotsalainen (FIN)

0.003014986 0.109183759 0.208868056

Yuping (CHN) Hagger (GB) Brown (USA)

0.232507119 0.659520046 0.756854602

Mulliner (GB) Hautenauve (BEL) Kytola (FIN)

1.880932819 1.828170404 2.118203163

Geremias (BRA) Hui-Ing (TAI) Jeong-Mi (KOR)

2.770706272 3.901166920 3.896847898

The first two components account for 75% of the variance. A barplot of each
component’s variance (see Figure 16.3) shows how the first two components
dominate. A plot of the data in the space of the first two principal compo-
nents, with the points labelled by the name of the corresponding competitor,
can be produced as shown with Figure 16.4. In addition, the first two loadings
for the events are given in a second coordinate system, also illustrating the
special role of the javelin event. This graphical representation is known as bi-

plot (Gabriel, 1971). A biplot is a graphical representation of the information
in an n × p data matrix. The “bi” is a reflection that the technique produces
a diagram that gives variance and covariance information about the variables
and information about generalised distances between individuals. The coordi-
nates used to produce the biplot can all be obtained directly from the principal
components analysis of the covariance matrix of the data and so the plots can
be viewed as an alternative representation of the results of such an analysis.
Full details of the technical details of the biplot are given in Gabriel (1981)
and in Gower and Hand (1996). Here we simply construct the biplot for the
heptathlon data (without PNG); the result is shown in Figure 16.4. The plot
clearly shows that the winner of the gold medal, Jackie Joyner-Kersee, accu-
mulates the majority of her points from the three events long jump, hurdles,
and 200m.
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R> plot(heptathlon_pca)
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Figure 16.3 Barplot of the variances explained by the principal components.

(with observations for PNG removed).

The correlation between the score given to each athlete by the standard
scoring system used for the heptathlon and the first principal component score
can be found from

R> cor(heptathlon$score, heptathlon_pca$x[,1])

[1] -0.9931168

This implies that the first principal component is in good agreement with the
score assigned to the athletes by official Olympic rules; a scatterplot of the
official score and the first principal component is given in Figure 16.5.
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R> biplot(heptathlon_pca, col = c("gray", "black"))
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Figure 16.4 Biplot of the (scaled) first two principal components (with observa-

tions for PNG removed).

16.4 Summary

Principal components look for a few linear combinations of the original vari-
ables that can be used to summarise a data set, losing in the process as little
information as possible. The derived variables might be used in a variety of
ways, in particular for simplifying later analyses and providing informative
plots of the data. The method consists of transforming a set of correlated vari-
ables to a new set of variables that are uncorrelated. Consequently it should be
noted that if the original variables are themselves almost uncorrelated there
is little point in carrying out a principal components analysis, since it will
merely find components that are close to the original variables but arranged
in decreasing order of variance.
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R> plot(heptathlon$score, heptathlon_pca$x[,1])
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Figure 16.5 Scatterplot of the score assigned to each athlete in 1988 and the first

principal component.

Exercises

Ex. 16.1 Apply principal components analysis to the covariance matrix of the
heptathlon data (excluding the score variable) and compare your results
with those given in the text, derived from the correlation matrix of the
data. Which results do you think are more appropriate for these data?

Ex. 16.2 The data in Table 16.2 give measurements on five meteorological
variables over an 11-year period (taken from Everitt and Dunn, 2001). The
variables are

year: the corresponding year,

rainNovDec: rainfall in November and December (mm),

temp: average July temperature,
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rainJuly: rainfall in July (mm),

radiation: radiation in July (curies), and

yield: average harvest yield (quintals per hectare).

Carry out a principal components analysis of both the covariance matrix
and the correlation matrix of the data and compare the results. Which set
of components leads to the most meaningful interpretation?

Table 16.2: meteo data. Meteorological measurements in an 11-
year period.

year rainNovDec temp rainJuly radiation yield

1920-21 87.9 19.6 1.0 1661 28.37
1921-22 89.9 15.2 90.1 968 23.77
1922-23 153.0 19.7 56.6 1353 26.04
1923-24 132.1 17.0 91.0 1293 25.74
1924-25 88.8 18.3 93.7 1153 26.68
1925-26 220.9 17.8 106.9 1286 24.29
1926-27 117.7 17.8 65.5 1104 28.00
1927-28 109.0 18.3 41.8 1574 28.37
1928-29 156.1 17.8 57.4 1222 24.96
1929-30 181.5 16.8 140.6 902 21.66
1930-31 181.4 17.0 74.3 1150 24.37

Source: From Everitt, B. S. and Dunn, G., Applied Multivariate Data Anal-

ysis, 2nd Edition, Arnold, London, 2001. With permission.

Ex. 16.3 The correlations below are for the calculus measurements for the six
anterior mandibular teeth. Find all six principal components of the data and
use a screeplot to suggest how many components are needed to adequately
account for the observed correlations. Can you interpret the components?

Table 16.3: Correlations for calculus measurements for the six
anterior mandibular teeth.

1.00
0.54 1.00
0.34 0.65 1.00
0.37 0.65 0.84 1.00
0.36 0.59 0.67 0.80 1.00
0.62 0.49 0.43 0.42 0.55 1.00
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CHAPTER 17

Multidimensional Scaling: British
Water Voles and Voting in US

Congress

17.1 Introduction

Corbet et al. (1970) report a study of water voles (genus Arvicola) in which
the aim was to compare British populations of these animals with those in
Europe, to investigate whether more than one species might be present in
Britain. The original data consisted of observations of the presence or absence
of 13 characteristics in about 300 water vole skulls arising from six British
populations and eight populations from the rest of Europe. Table 17.1 gives a
distance matrix derived from the data as described in Corbet et al. (1970).

Romesburg (1984) gives a set of data that shows the number of times 15 con-
gressmen from New Jersey voted differently in the House of Representatives
on 19 environmental bills. Abstentions are not recorded, but two congressmen
abstained more frequently than the others, these being Sandman (nine absten-
tions) and Thompson (six abstentions). The data are available in Table 17.2
and of interest is if party affiliations can be detected.

17.2 Multidimensional Scaling

The data in Tables 17.1 and 17.2 are both examples of proximity matrices.
The elements of such matrices attempt to quantify how similar are stimuli,
objects, individuals, etc. In Table 17.1 the values measure the ‘distance’ be-
tween populations of water voles; in Table 17.2 it is the similarity of the voting
behaviour of the congressmen that is measured. Models are fitted to proximi-
ties in order to clarify, display and possibly explain any structure or pattern
not readily apparent in the collection of numerical values. In some areas, par-
ticularly psychology, the ultimate goal in the analysis of a set of proximities
is more specifically theories for explaining similarity judgements, or in other
words, finding an answer to the question “what makes things seem alike or
seem different?”. Here though we will concentrate on how proximity data can
be best displayed to aid in uncovering any interesting structure.

The class of techniques we shall consider here, generally collected under the
label multidimensional scaling (MDS), has the unifying feature that they seek
to represent an observed proximity matrix by a simple geometrical model or
map. Such a model consists of a series of say q-dimensional coordinate values,

299
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Table 17.1: watervoles data. Water voles data – dissimilarity matrix.

Srry Shrp Yrks Prth Abrd ElnG Alps Ygsl Grmn Nrwy PyrI PyII NrtS SthS

Surrey 0.000
Shropshire 0.099 0.000
Yorkshire 0.033 0.022 0.000
Perthshire 0.183 0.114 0.042 0.000
Aberdeen 0.148 0.224 0.059 0.068 0.000
Elean Gamhna 0.198 0.039 0.053 0.085 0.051 0.000
Alps 0.462 0.266 0.322 0.435 0.268 0.025 0.000
Yugoslavia 0.628 0.442 0.444 0.406 0.240 0.129 0.014 0.000
Germany 0.113 0.070 0.046 0.047 0.034 0.002 0.106 0.129 0.000
Norway 0.173 0.119 0.162 0.331 0.177 0.039 0.089 0.237 0.071 0.000
Pyrenees I 0.434 0.419 0.339 0.505 0.469 0.390 0.315 0.349 0.151 0.430 0.000
Pyrenees II 0.762 0.633 0.781 0.700 0.758 0.625 0.469 0.618 0.440 0.538 0.607 0.000
North Spain 0.530 0.389 0.482 0.579 0.597 0.498 0.374 0.562 0.247 0.383 0.387 0.084 0.000
South Spain 0.586 0.435 0.550 0.530 0.552 0.509 0.369 0.471 0.234 0.346 0.456 0.090 0.038 0.000
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Table 17.2: voting data. House of Representatives voting data.

Hnt Snd Hwr Thm Fry Frs Wdn Roe Hlt Rdn Mns Rnl Mrz Dnl Ptt

Hunt(R) 0
Sandman(R) 8 0
Howard(D) 15 17 0
Thompson(D) 15 12 9 0
Freylinghuysen(R) 10 13 16 14 0
Forsythe(R) 9 13 12 12 8 0
Widnall(R) 7 12 15 13 9 7 0
Roe(D) 15 16 5 10 13 12 17 0
Heltoski(D) 16 17 5 8 14 11 16 4 0
Rodino(D) 14 15 6 8 12 10 15 5 3 0
Minish(D) 15 16 5 8 12 9 14 5 2 1 0
Rinaldo(R) 16 17 4 6 12 10 15 3 1 2 1 0
Maraziti(R) 7 13 11 15 10 6 10 12 13 11 12 12 0
Daniels(D) 11 12 10 10 11 6 11 7 7 4 5 6 9 0
Patten(D) 13 16 7 7 11 10 13 6 5 6 5 4 13 9 0
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n in number, where n is the number of rows (and columns) of the proximity
matrix, and an associated measure of distance between pairs of points. Each
point is used to represent one of the stimuli in the resulting spatial model for
the proximities and the objective of a multidimensional approach is to deter-
mine both the dimensionality of the model (i.e., the value of q) that provides
an adequate ‘fit’, and the positions of the points in the resulting q-dimensional
space. Fit is judged by some numerical index of the correspondence between
the observed proximities and the inter-point distances. In simple terms this
means that the larger the perceived distance or dissimilarity between two
stimuli (or the smaller their similarity), the further apart should be the points
representing them in the final geometrical model.

A number of inter-point distance measures might be used, but by far the
most common is Euclidean distance. For two points, i and j, with q-dimensional
coordinate values, xi = (xi1, xi2, . . . , xiq) and xj = (xj1, xj2, . . . , xjq) the Eu-
clidean distance is defined as

dij =

√

√

√

√

q
∑

k=1

(xik − xjk)
2
.

Having decided on a suitable distance measure the problem now becomes
one of estimating the coordinate values to represent the stimuli, and this is
achieved by optimising the chosen goodness of fit index measuring how well
the fitted distances match the observed proximities. A variety of optimisation
schemes combined with a variety of goodness of fit indices leads to a variety of
MDS methods. For details see, for example, Everitt and Rabe-Hesketh (1997).
Here we give a brief account of two methods, classical scaling and non-metric

scaling, which will then be used to analyse the two data sets described earlier.

17.2.1 Classical Multidimensional Scaling

Classical scaling provides one answer to how we estimate q, and the n, q-
dimensional, coordinate values x1, x2, . . . , xn, from the observed proximity
matrix, based on the work of Young and Householder (1938). To begin we
must note that there is no unique set of coordinate values since the Euclidean
distances involved are unchanged by shifting the whole configuration of points
from one place to another, or by rotation or reflection of the configuration. In
other words, we cannot uniquely determine either the location or the orienta-
tion of the configuration. The location problem is usually overcome by placing
the mean vector of the configuration at the origin. The orientation problem
means that any configuration derived can be subjected to an arbitrary orthog-

onal transformation. Such transformations can often be used to facilitate the
interpretation of solutions as will be seen later.

To begin our account of the method we shall assume that the proximity
matrix we are dealing with is a matrix of Euclidean distances D derived from
a raw data matrix, X. Previously we saw how to calculate Euclidean distances
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from X; multidimensional scaling is essentially concerned with the reverse
problem, given the distances how do we find X?

An n × n inner products matrix B is first calculated as B = XX⊤, the
elements of B are given by

bij =

q
∑

k=1

xikxjk. (17.1)

It is easy to see that the squared Euclidean distances between the rows of X

can be written in terms of the elements of B as

d2

ij = bii + bjj − 2bij . (17.2)

If the bs could be found in terms of the ds as in the equation above, then the
required coordinate value could be derived by factoring B = XX⊤.

No unique solution exists unless a location constraint is introduced; usually
the centre of the points x̄ is set at the origin, so that

∑n

i=1
xik = 0 for all k.

These constraints and the relationship given in (17.1) imply that the sum
of the terms in any row of B must be zero.

Consequently, summing the relationship given in (17.2) over i, over j and
finally over both i and j, leads to the following series of equations:

n
∑

i=1

d2

ij = trace(B) + nbjj

n
∑

j=1

d2

ij = trace(B) + nbii

n
∑

i=1

n
∑

j=1

d2

ij = 2n × trace(B)

where trace(B) is the trace of the matrix B. The elements of B can now be
found in terms of squared Euclidean distances as

bij = −

1

2



d2

ij − n−1

n
∑

j=1

d2

ij − n−1

n
∑

i=1

d2

ij + n−2

n
∑

i=1

n
∑

j=1

d2

ij



 .

Having now derived the elements of B in terms of Euclidean distances, it
remains to factor it to give the coordinate values. In terms of its singular value
decomposition B can be written as

B = VΛV⊤

where Λ = diag(λ1, . . . , λn) is the diagonal matrix of eigenvalues of B and
V the corresponding matrix of eigenvectors, normalised so that the sum of
squares of their elements is unity, that is, V⊤V = In. The eigenvalues are
assumed labeled such that λ1 ≥ λ2 ≥ · · · ≥ λn.

When the matrix of Euclidian distances D arises from an n×k matrix of full
column rank, then the rank of B is k, so that the last n− k of its eigenvalues
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will be zero. So B can be written as B = V1Λ1V⊤

1 , where V1 contains the
first k eigenvectors and Λ1 the q non-zero eigenvalues. The required coordinate

values are thus X = V1Λ
1/2

1
, where Λ

1/2

1
= diag(

√

λ1, . . . ,
√

λk).
The best fitting k-dimensional representation is given by the k eigenvec-

tors of B corresponding to the k largest eigenvalues. The adequacy of the
k-dimensional representation can be judged by the size of the criterion

Pk =

k
∑

i=1

λi

n−1
∑

i=1

λi

.

Values of Pk of the order of 0.8 suggest a reasonable fit.
When the observed dissimilarity matrix is not Euclidean, the matrix B is not

positive-definite. In such cases some of the eigenvalues of B will be negative;
corresponding, some coordinate values will be complex numbers. If, however,
B has only a small number of small negative eigenvalues, a useful represen-
tation of the proximity matrix may still be possible using the eigenvectors
associated with the k largest positive eigenvalues.

The adequacy of the resulting solution might be assessed using one of the
following two criteria suggested by Mardia et al. (1979); namely

k
∑

i=1

|λi|

n
∑

i=1

|λi|

or

k
∑

i=1

λ2
i

n
∑

i=1

λ2
i

.

Alternatively, Sibson (1979) recommends the following:

1. Trace criterion: Choose the number of coordinates so that the sum of their
positive eigenvalues is approximately equal to the sum of all the eigenvalues.

2. Magnitude criterion: Accept as genuinely positive only those eigenvalues
whose magnitude substantially exceeds that of the largest negative eigen-
value.

17.2.2 Non-metric Multidimensional Scaling

In classical scaling the goodness-of-fit measure is based on a direct numerical
comparison of observed proximities and fitted distances. In many situations
however, it might be believed that the observed proximities contain little re-
liable information beyond that implied by their rank order. In psychological
experiments, for example, proximity matrices frequently arise from asking sub-
jects to make judgements about the similarity or dissimilarity of the stimuli
of interest; in many such experiments the investigator may feel that, realisti-
cally, subjects can give only ‘ordinal’ judgements. For example, in comparing
a range of colours they might be able to specify that one was say ‘brighter’
than another without being able to attach any realistic value to the extent
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that they differed. For such situations, what is needed is a method of multidi-
mensional scaling, the solutions from which depend only on the rank order of
the proximities, rather than their actual numerical values. In other words the
solution should be invariant under monotonic transformations of the prox-
imities. Such a method was originally suggested by Shepard (1962a,b) and
Kruskal (1964a). The quintessential component of the method is the use of
monotonic regression (see Barlow et al., 1972). In essence the aim is to rep-

resent the fitted distances, dij , as dij = d̂ij + εij where the disparities d̂ij are
monotonic with the observed proximities and, subject to this constraint, re-
semble the dij as closely as possible. Algorithms to achieve this are described
in Kruskal (1964b). For a given set of disparities the required coordinates can
be found by minimising some function of the squared differences between the
observed proximities and the derived disparities (generally known as stress in
this context). The procedure then iterates until some convergence criterion is
satisfied. Again for details see Kruskal (1964b).

17.3 Analysis Using R

We can apply classical scaling to the distance matrix for populations of water
voles using the R function cmdscale. The following code finds the classical
scaling solution and computes the two criteria for assessing the required num-
ber of dimensions as described above.

R> data("watervoles", package = "HSAUR2")

R> voles_mds <- cmdscale(watervoles, k = 13, eig = TRUE)

R> voles_mds$eig

[1] 7.359910e-01 2.626003e-01 1.492622e-01 6.990457e-02

[5] 2.956972e-02 1.931184e-02 8.326673e-17 -1.139451e-02

[9] -1.279569e-02 -2.849924e-02 -4.251502e-02 -5.255450e-02

[13] -7.406143e-02

Note that some of the eigenvalues are negative. The criterion P2 can be com-
puted by

R> sum(abs(voles_mds$eig[1:2]))/sum(abs(voles_mds$eig))

[1] 0.6708889

and the criterion suggested by Mardia et al. (1979) is

R> sum((voles_mds$eig[1:2])^2)/sum((voles_mds$eig)^2)

[1] 0.9391378

The two criteria for judging number of dimensions differ considerably, but both
values are reasonably large, suggesting that the original distances between the
water vole populations can be represented adequately in two dimensions. The
two-dimensional solution can be plotted by extracting the coordinates from
the points element of the voles_mds object; the plot is shown in Figure 17.1.

It appears that the six British populations are close to populations living
in the Alps, Yugoslavia, Germany, Norway and Pyrenees I (consisting of the
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R> x <- voles_mds$points[,1]

R> y <- voles_mds$points[,2]

R> plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2",

+ xlim = range(x)*1.2, type = "n")

R> text(x, y, labels = colnames(watervoles))
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Figure 17.1 Two-dimensional solution from classical multidimensional scaling of
distance matrix for water vole populations.

species Arvicola terrestris) but rather distant from the populations in Pyrenees
II, North Spain and South Spain (species Arvicola sapidus). This result would
seem to imply that Arvicola terrestris might be present in Britain but it is
less likely that this is so for Arvicola sapidus.

A useful graphic for highlighting possible distortions in a multidimensional
scaling solution is the minimum spanning tree, which is defined as follows.
Suppose n points are given (possibly in many dimensions), then a tree span-
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ning these points, i.e., a spanning tree, is any set of straight line segments
joining pairs of points such that

• No closed loops occur,

• Every point is visited at least one time,

• The tree is connected, i.e., it has paths between any pairs of points.

The length of the tree is defined to be the sum of the length of its segments,
and when a set of n points and the length of all

(

n

2

)

segments are given, then
the minimum spanning tree is defined as the spanning tree with minimum
length. Algorithms to find the minimum spanning tree of a set of n points
given the distances between them are given in Prim (1957) and Gower and
Ross (1969).

The links of the minimum spanning tree (of the spanning tree) of the prox-
imity matrix of interest may be plotted onto the two-dimensional scaling rep-
resentation in order to identify possible distortions produced by the scaling
solutions. Such distortions are indicated when nearby points on the plot are
not linked by an edge of the tree.

To find the minimum spanning tree of the water vole proximity matrix, the
function mst from package ape (Paradis et al., 2009) can be used and we can
plot the minimum spanning tree on the two-dimensional scaling solution as
shown in Figure 17.2.

The plot indicates, for example, that the apparent closeness of the popula-
tions in Germany and Norway, suggested by the points representing them in
the MDS solution, does not reflect accurately their calculated dissimilarity;
the links of the minimum spanning tree show that the Aberdeen and Elean
Gamhna populations are actually more similar to the German water voles
than those from Norway.

We shall now apply non-metric scaling to the voting behaviour shown in
Table 17.2. Non-metric scaling is available with function isoMDS from package
MASS (Venables and Ripley, 2002):

R> library("MASS")

R> data("voting", package = "HSAUR2")

R> voting_mds <- isoMDS(voting)

and we again depict the two-dimensional solution (Figure 17.3). The Figure
suggests that voting behaviour is essentially along party lines, although there
is more variation among Republicans. The voting behaviour of one of the
Republicans (Rinaldo) seems to be closer to his democratic colleagues rather
than to the voting behaviour of other Republicans.

The quality of a multidimensional scaling can be assessed informally by
plotting the original dissimilarities and the distances obtained from a mul-
tidimensional scaling in a scatterplot, a so-called Shepard diagram. For the
voting data, such a plot is shown in Figure 17.4. In an ideal situation, the
points fall on the bisecting line; in our case, some deviations are observable.
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R> library("ape")

R> st <- mst(watervoles)

R> plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2",

+ xlim = range(x)*1.2, type = "n")

R> for (i in 1:nrow(watervoles)) {

+ w1 <- which(st[i, ] == 1)

+ segments(x[i], y[i], x[w1], y[w1])

+ }

R> text(x, y, labels = colnames(watervoles))
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Figure 17.2 Minimum spanning tree for the watervoles data.
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R> x <- voting_mds$points[,1]

R> y <- voting_mds$points[,2]

R> plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2",

+ xlim = range(voting_mds$points[,1])*1.2, type = "n")

R> text(x, y, labels = colnames(voting))

R> voting_sh <- Shepard(voting[lower.tri(voting)],

+ voting_mds$points)
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Figure 17.3 Two-dimensional solution from non-metric multidimensional scaling
of distance matrix for voting matrix.
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R> plot(voting_sh, pch = ".", xlab = "Dissimilarity",

+ ylab = "Distance", xlim = range(voting_sh$x),

+ ylim = range(voting_sh$x))

R> lines(voting_sh$x, voting_sh$yf, type = "S")
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Figure 17.4 The Shepard diagram for the voting data shows some discrepancies
between the original dissimilarities and the multidimensional scaling
solution.

17.4 Summary

Multidimensional scaling provides a powerful approach to extracting the struc-
ture in observed proximity matrices. Uncovering the pattern in this type of
data may be important for a number of reasons, in particular for discovering
the dimensions on which similarity judgements have been made.
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Exercises

Ex. 17.1 The data in Table 17.3 shows road distances between 21 European
cities. Apply classical scaling to the matrix and compare the plotted two-
dimensional solution with a map of Europe.

Ex. 17.2 In Table 17.4 (from Kaufman and Rousseeuw, 1990), the dissim-
ilarity matrix of 18 species of garden flowers is shown. Use some form of
multidimensional scaling to investigate which species share common prop-
erties.

Ex. 17.3 Consider 51 objects O1, . . . , O51 assumed to be arranged along a
straight line with the jth object being located at a point with coordinate
j. Define the similarity sij between object i and object j as

sij =































9 if i = j

8 if 1 ≤ |i − j| ≤ 3
7 if 4 ≤ |i − j| ≤ 6

· · ·

1 if 22 ≤ |i − j| ≤ 24
0 if |i − j| ≥ 25

Convert these similarities into dissimilarities (δij) by using

δij =
√

sii + sjj − 2sij

and then apply classical multidimensional scaling to the resulting dissimi-
laritiy matrix. Explain the shape of the derived two-dimensional solution.
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Table 17.3: eurodist data (package datasets). Distances between European cities, in km.

Athn Brcl Brss Cals Chrb Clgn Cpnh Genv Gbrl Hmbr HkoH Lsbn Lyns Mdrd Mrsl Miln Mnch Pars Rome Stck Vinn

Athens 0

Barcelona 3313 0

Brussels 2963 1318 0

Calais 3175 1326 204 0

Cherbourg 3339 1294 583 460 0

Cologne 2762 1498 206 409 785 0

Copenhagen 3276 2218 966 1136 1545 760 0

Geneva 2610 803 677 747 853 1662 1418 0

Gibraltar 4485 1172 2256 2224 2047 2436 3196 1975 0

Hamburg 2977 2018 597 714 1115 460 460 1118 2897 0

Hook of Holland 3030 1490 172 330 731 269 269 895 2428 550 0

Lisbon 4532 1305 2084 2052 1827 2290 2971 1936 676 2671 2280 0

Lyons 2753 645 690 739 789 714 1458 158 1817 1159 863 1178 0

Madrid 3949 636 1558 1550 1347 1764 2498 1439 698 2198 1730 668 1281 0

Marseilles 2865 521 1011 1059 1101 1035 1778 425 1693 1479 1183 1762 320 1157 0

Milan 2282 1014 925 1077 1209 911 1537 328 2185 1238 1098 2250 328 1724 618 0

Munich 2179 1365 747 977 1160 583 1104 591 2565 805 851 2507 724 2010 1109 331 0

Paris 3000 1033 285 280 340 465 1176 513 1971 877 457 1799 471 1273 792 856 821 0

Rome 817 1460 1511 1662 1794 1497 2050 995 2631 1751 1683 2700 1048 2097 1011 586 946 1476 0

Stockholm 3927 2868 1616 1786 2196 1403 650 2068 3886 949 1500 3231 2108 3188 2428 2187 1754 1827 2707 0

Vienna 1991 1802 1175 1381 1588 937 1455 1019 2974 1155 1205 2937 1157 2409 1363 898 428 1249 1209 2105 0
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Table 17.4: gardenflowers data. Dissimilarity matrix of 18 species of gardenflowers.

Bgn Brm Cml Dhl F- Fch Grn Gld Hth Hyd Irs Lly L- Pny Pnc Rdr Scr Tlp

Begonia 0.00

Broom 0.91 0.00

Camellia 0.49 0.67 0.00

Dahlia 0.47 0.59 0.59 0.00

Forget-me-not 0.43 0.90 0.57 0.61 0.00

Fuchsia 0.23 0.79 0.29 0.52 0.44 0.00

Geranium 0.31 0.70 0.54 0.44 0.54 0.24 0.00

Gladiolus 0.49 0.57 0.71 0.26 0.49 0.68 0.49 0.00

Heather 0.57 0.57 0.57 0.89 0.50 0.61 0.70 0.77 0.00

Hydrangae 0.76 0.58 0.58 0.62 0.39 0.61 0.86 0.70 0.55 0.00

Iris 0.32 0.77 0.63 0.75 0.46 0.52 0.60 0.63 0.46 0.47 0.00

Lily 0.51 0.69 0.69 0.53 0.51 0.65 0.77 0.47 0.51 0.39 0.36 0.00

Lily-of-the-valley 0.59 0.75 0.75 0.77 0.35 0.63 0.72 0.65 0.35 0.41 0.45 0.24 0.00

Peony 0.37 0.68 0.68 0.38 0.52 0.48 0.63 0.49 0.52 0.39 0.37 0.17 0.39 0.00

Pink carnation 0.74 0.54 0.70 0.58 0.54 0.74 0.50 0.49 0.36 0.52 0.60 0.48 0.39 0.49 0.00

Red rose 0.84 0.41 0.75 0.37 0.82 0.71 0.61 0.64 0.81 0.43 0.84 0.62 0.67 0.47 0.45 0.00

Scotch rose 0.94 0.20 0.70 0.48 0.77 0.83 0.74 0.45 0.77 0.38 0.80 0.58 0.62 0.57 0.40 0.21 0.00

Tulip 0.44 0.50 0.79 0.48 0.59 0.68 0.47 0.22 0.59 0.92 0.59 0.67 0.72 0.67 0.61 0.85 0.67 0.00

© 2010 by Taylor and Francis Group, LLC



CHAPTER 18

Cluster Analysis: Classifying
Romano-British Pottery and

Exoplanets

18.1 Introduction

The data shown in Table 18.1 give the chemical composition of 48 specimens of
Romano-British pottery, determined by atomic absorption spectrophotometry,
for nine oxides (Tubb et al., 1980). In addition to the chemical composition of
the pots, the kiln site at which the pottery was found is known for these data.
For these data, interest centres on whether, on the basis of their chemical
compositions, the pots can be divided into distinct groups, and how these
groups relate to the kiln site.

Table 18.1: pottery data. Romano-British pottery data.

Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 MnO BaO kiln

18.8 9.52 2.00 0.79 0.40 3.20 1.01 0.077 0.015 1
16.9 7.33 1.65 0.84 0.40 3.05 0.99 0.067 0.018 1
18.2 7.64 1.82 0.77 0.40 3.07 0.98 0.087 0.014 1
16.9 7.29 1.56 0.76 0.40 3.05 1.00 0.063 0.019 1
17.8 7.24 1.83 0.92 0.43 3.12 0.93 0.061 0.019 1
18.8 7.45 2.06 0.87 0.25 3.26 0.98 0.072 0.017 1
16.5 7.05 1.81 1.73 0.33 3.20 0.95 0.066 0.019 1
18.0 7.42 2.06 1.00 0.28 3.37 0.96 0.072 0.017 1
15.8 7.15 1.62 0.71 0.38 3.25 0.93 0.062 0.017 1
14.6 6.87 1.67 0.76 0.33 3.06 0.91 0.055 0.012 1
13.7 5.83 1.50 0.66 0.13 2.25 0.75 0.034 0.012 1
14.6 6.76 1.63 1.48 0.20 3.02 0.87 0.055 0.016 1
14.8 7.07 1.62 1.44 0.24 3.03 0.86 0.080 0.016 1
17.1 7.79 1.99 0.83 0.46 3.13 0.93 0.090 0.020 1
16.8 7.86 1.86 0.84 0.46 2.93 0.94 0.094 0.020 1
15.8 7.65 1.94 0.81 0.83 3.33 0.96 0.112 0.019 1
18.6 7.85 2.33 0.87 0.38 3.17 0.98 0.081 0.018 1
16.9 7.87 1.83 1.31 0.53 3.09 0.95 0.092 0.023 1
18.9 7.58 2.05 0.83 0.13 3.29 0.98 0.072 0.015 1
18.0 7.50 1.94 0.69 0.12 3.14 0.93 0.035 0.017 1
17.8 7.28 1.92 0.81 0.18 3.15 0.90 0.067 0.017 1

315
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Table 18.1: pottery data (continued).

Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 MnO BaO kiln

14.4 7.00 4.30 0.15 0.51 4.25 0.79 0.160 0.019 2
13.8 7.08 3.43 0.12 0.17 4.14 0.77 0.144 0.020 2
14.6 7.09 3.88 0.13 0.20 4.36 0.81 0.124 0.019 2
11.5 6.37 5.64 0.16 0.14 3.89 0.69 0.087 0.009 2
13.8 7.06 5.34 0.20 0.20 4.31 0.71 0.101 0.021 2
10.9 6.26 3.47 0.17 0.22 3.40 0.66 0.109 0.010 2
10.1 4.26 4.26 0.20 0.18 3.32 0.59 0.149 0.017 2
11.6 5.78 5.91 0.18 0.16 3.70 0.65 0.082 0.015 2
11.1 5.49 4.52 0.29 0.30 4.03 0.63 0.080 0.016 2
13.4 6.92 7.23 0.28 0.20 4.54 0.69 0.163 0.017 2
12.4 6.13 5.69 0.22 0.54 4.65 0.70 0.159 0.015 2
13.1 6.64 5.51 0.31 0.24 4.89 0.72 0.094 0.017 2
11.6 5.39 3.77 0.29 0.06 4.51 0.56 0.110 0.015 3
11.8 5.44 3.94 0.30 0.04 4.64 0.59 0.085 0.013 3
18.3 1.28 0.67 0.03 0.03 1.96 0.65 0.001 0.014 4
15.8 2.39 0.63 0.01 0.04 1.94 1.29 0.001 0.014 4
18.0 1.50 0.67 0.01 0.06 2.11 0.92 0.001 0.016 4
18.0 1.88 0.68 0.01 0.04 2.00 1.11 0.006 0.022 4
20.8 1.51 0.72 0.07 0.10 2.37 1.26 0.002 0.016 4
17.7 1.12 0.56 0.06 0.06 2.06 0.79 0.001 0.013 5
18.3 1.14 0.67 0.06 0.05 2.11 0.89 0.006 0.019 5
16.7 0.92 0.53 0.01 0.05 1.76 0.91 0.004 0.013 5
14.8 2.74 0.67 0.03 0.05 2.15 1.34 0.003 0.015 5
19.1 1.64 0.60 0.10 0.03 1.75 1.04 0.007 0.018 5

Source: Tubb, A., et al., Archaeometry, 22, 153–171, 1980. With permission.

Exoplanets are planets outside the Solar System. The first such planet was
discovered in 1995 by Mayor and Queloz (1995). The planet, similar in mass
to Jupiter, was found orbiting a relatively ordinary star, 51 Pegasus. In the
intervening period over a hundred exoplanets have been discovered, nearly all
detected indirectly, using the gravitational influence they exert on their asso-
ciated central stars. A fascinating account of exoplanets and their discovery
is given in Mayor and Frei (2003).

From the properties of the exoplanets found up to now it appears that
the theory of planetary development constructed for the planets of the Solar
System may need to be reformulated. The exoplanets are not at all like the nine
local planets that we know so well. A first step in the process of understanding
the exoplanets might be to try to classify them with respect to their known
properties and this will be the aim in this chapter. The data in Table 18.2
(taken with permission from Mayor and Frei, 2003) give the mass (in Jupiter
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mass, mass), the period (in earth days, period) and the eccentricity (eccent)
of the exoplanets discovered up until October 2002.

We shall investigate the structure of both the pottery data and the exo-
planets data using a number of methods of cluster analysis.

Table 18.2: planets data. Jupiter mass, period and eccentricity
of exoplanets.

mass period eccen mass period eccen

0.120 4.950000 0.0000 1.890 61.020000 0.1000
0.197 3.971000 0.0000 1.900 6.276000 0.1500
0.210 44.280000 0.3400 1.990 743.000000 0.6200
0.220 75.800000 0.2800 2.050 241.300000 0.2400
0.230 6.403000 0.0800 0.050 1119.000000 0.1700
0.250 3.024000 0.0200 2.080 228.520000 0.3040
0.340 2.985000 0.0800 2.240 311.300000 0.2200
0.400 10.901000 0.4980 2.540 1089.000000 0.0600
0.420 3.509700 0.0000 2.540 627.340000 0.0600
0.470 4.229000 0.0000 2.550 2185.000000 0.1800
0.480 3.487000 0.0500 2.630 414.000000 0.2100
0.480 22.090000 0.3000 2.840 250.500000 0.1900
0.540 3.097000 0.0100 2.940 229.900000 0.3500
0.560 30.120000 0.2700 3.030 186.900000 0.4100
0.680 4.617000 0.0200 3.320 267.200000 0.2300
0.685 3.524330 0.0000 3.360 1098.000000 0.2200
0.760 2594.000000 0.1000 3.370 133.710000 0.5110
0.770 14.310000 0.2700 3.440 1112.000000 0.5200
0.810 828.950000 0.0400 3.550 18.200000 0.0100
0.880 221.600000 0.5400 3.810 340.000000 0.3600
0.880 2518.000000 0.6000 3.900 111.810000 0.9270
0.890 64.620000 0.1300 4.000 15.780000 0.0460
0.900 1136.000000 0.3300 4.000 5360.000000 0.1600
0.930 3.092000 0.0000 4.120 1209.900000 0.6500
0.930 14.660000 0.0300 4.140 3.313000 0.0200
0.990 39.810000 0.0700 4.270 1764.000000 0.3530
0.990 500.730000 0.1000 4.290 1308.500000 0.3100
0.990 872.300000 0.2800 4.500 951.000000 0.4500
1.000 337.110000 0.3800 4.800 1237.000000 0.5150
1.000 264.900000 0.3800 5.180 576.000000 0.7100
1.010 540.400000 0.5200 5.700 383.000000 0.0700
1.010 1942.000000 0.4000 6.080 1074.000000 0.0110
1.020 10.720000 0.0440 6.292 71.487000 0.1243
1.050 119.600000 0.3500 7.170 256.000000 0.7000
1.120 500.000000 0.2300 7.390 1582.000000 0.4780
1.130 154.800000 0.3100 7.420 116.700000 0.4000
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Table 18.2: planets data (continued).

mass period eccen mass period eccen

1.150 2614.000000 0.0000 7.500 2300.000000 0.3950
1.230 1326.000000 0.1400 7.700 58.116000 0.5290
1.240 391.000000 0.4000 7.950 1620.000000 0.2200
1.240 435.600000 0.4500 8.000 1558.000000 0.3140
1.282 7.126200 0.1340 8.640 550.650000 0.7100
1.420 426.000000 0.0200 9.700 653.220000 0.4100
1.550 51.610000 0.6490 10.000 3030.000000 0.5600
1.560 1444.500000 0.2000 10.370 2115.200000 0.6200
1.580 260.000000 0.2400 10.960 84.030000 0.3300
1.630 444.600000 0.4100 11.300 2189.000000 0.3400
1.640 406.000000 0.5300 11.980 1209.000000 0.3700
1.650 401.100000 0.3600 14.400 8.428198 0.2770
1.680 796.700000 0.6800 16.900 1739.500000 0.2280
1.760 903.000000 0.2000 17.500 256.030000 0.4290
1.830 454.000000 0.2000

Source: From Mayor, M., Frei, P.-Y., and Roukema, B., New Worlds in the
Cosmos, Cambridge University Press, Cambridge, England, 2003. With per-
mission.

18.2 Cluster Analysis

Cluster analysis is a generic term for a wide range of numerical methods for
examining multivariate data with a view to uncovering or discovering groups
or clusters of observations that are homogeneous and separated from other
groups. In medicine, for example, discovering that a sample of patients with
measurements on a variety of characteristics and symptoms actually consists
of a small number of groups within which these characteristics are relatively
similar, and between which they are different, might have important impli-
cations both in terms of future treatment and for investigating the aetiology
of a condition. More recently cluster analysis techniques have been applied
to microarray data (Alon et al., 1999, among many others), image analysis
(Everitt and Bullmore, 1999) or in marketing science (Dolnicar and Leisch,
2003).

Clustering techniques essentially try to formalise what human observers do
so well in two or three dimensions. Consider, for example, the scatterplot
shown in Figure 18.1. The conclusion that there are three natural groups or
clusters of dots is reached with no conscious effort or thought. Clusters are
identified by the assessment of the relative distances between points and in
this example, the relative homogeneity of each cluster and the degree of their
separation makes the task relatively simple.

Detailed accounts of clustering techniques are available in Everitt et al.
(2001) and Gordon (1999). Here we concentrate on three types of cluster-
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Figure 18.1 Bivariate data showing the presence of three clusters.

ing procedures: agglomerative hierarchical clustering, k-means clustering and
classification maximum likelihood methods for clustering.

18.2.1 Agglomerative Hierarchical Clustering

In a hierarchical classification the data are not partitioned into a particular
number of classes or clusters at a single step. Instead the classification consists
of a series of partitions that may run from a single ‘cluster’ containing all
individuals, to n clusters each containing a single individual. Agglomerative
hierarchical clustering techniques produce partitions by a series of successive
fusions of the n individuals into groups. With such methods, fusions, once
made, are irreversible, so that when an agglomerative algorithm has placed
two individuals in the same group they cannot subsequently appear in different
groups. Since all agglomerative hierarchical techniques ultimately reduce the
data to a single cluster containing all the individuals, the investigator seeking
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the solution with the ‘best’ fitting number of clusters will need to decide which
division to choose. The problem of deciding on the ‘correct’ number of clusters
will be taken up later.

An agglomerative hierarchical clustering procedure produces a series of par-
titions of the data, Pn, Pn−1, . . . , P1. The first, Pn, consists of n single-member
clusters, and the last, P1, consists of a single group containing all n individuals.
The basic operation of all methods is similar:

Start Clusters C1, C2, . . . , Cn each containing a single individual.

Step 1 Find the nearest pair of distinct clusters, say Ci and Cj , merge Ci

and Cj , delete Cj and decrease the number of clusters by one.

Step 2 If number of clusters equals one then stop; else return to Step 1.

At each stage in the process the methods fuse individuals or groups of
individuals that are closest (or most similar). The methods begin with an
inter-individual distance matrix (for example, one containing Euclidean dis-
tances), but as groups are formed, distance between an individual and a group
containing several individuals or between two groups of individuals will need
to be calculated. How such distances are defined leads to a variety of different
techniques; see the next sub-section.

Hierarchic classifications may be represented by a two-dimensional diagram
known as a dendrogram, which illustrates the fusions made at each stage of the
analysis. An example of such a diagram is given in Figure 18.2. The structure
of Figure 18.2 resembles an evolutionary tree, a concept introduced by Darwin
under the term “Tree of Life” in his book On the Origin of Species by Natural
Selection in 1859 (see Figure 18.3), and it is in biological applications that
hierarchical classifications are most relevant and most justified (although this
type of clustering has also been used in many other areas). According to Rohlf
(1970), a biologist, all things being equal, aims for a system of nested clusters.
Hawkins et al. (1982), however, issue the following caveat: “users should be
very wary of using hierarchic methods if they are not clearly necessary”.

18.2.2 Measuring Inter-cluster Dissimilarity

Agglomerative hierarchical clustering techniques differ primarily in how they
measure the distance between or similarity of two clusters (where a cluster
may, at times, consist of only a single individual). Two simple inter-group
measures are

dmin(A, B) = min
i∈A,j∈B

dij

dmax(A, B) = max
i∈A,j∈B

dij

where d(A, B) is the distance between two clusters A and B, and dij is the
distance between individuals i and j. This could be Euclidean distance or one
of a variety of other distance measures (see Everitt et al., 2001, for details).

The inter-group dissimilarity measure dmin(A, B) is the basis of single link-
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Figure 18.2 Example of a dendrogram.

age clustering, dmax(A, B) that of complete linkage clustering. Both these tech-
niques have the desirable property that they are invariant under monotone
transformations of the original inter-individual dissimilarities or distances. A
further possibility for measuring inter-cluster distance or dissimilarity is

dmean(A, B) =
1

|A| · |B|

∑

i∈A,j∈B

dij

where |A| and |B| are the number of individuals in clusters A and B. This
measure is the basis of a commonly used procedure known as average linkage
clustering.
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1. Find some initial partition of the individuals into the required number of
groups. Such an initial partition could be provided by a solution from one
of the hierarchical clustering techniques described in the previous section.

2. Calculate the change in the clustering criterion produced by ‘moving’ each
individual from its own to another cluster.

3. Make the change that leads to the greatest improvement in the value of the
clustering criterion.

4. Repeat steps 2 and 3 until no move of an individual causes the clustering
criterion to improve.

When variables are on very different scales (as they are for the exoplanets
data) some form of standardisation will be needed before applying k-means
clustering (for a detailed discussion of this problem see Everitt et al., 2001).

18.2.4 Model-based Clustering

The k-means clustering method described in the previous section is based
largely in heuristic but intuitively reasonable procedures. But it is not based on
formal models thus making problems such as deciding on a particular method,
estimating the number of clusters, etc., particularly difficult. And, of course,
without a reasonable model, formal inference is precluded. In practise these
may not be insurmountable objections to the use of the technique since cluster
analysis is essentially an ‘exploratory’ tool. But model-based cluster methods
do have some advantages, and a variety of possibilities have been proposed.
The most successful approach has been that proposed by Scott and Symons
(1971) and extended by Banfield and Raftery (1993) and Fraley and Raftery
(1999, 2002), in which it is assumed that the population from which the ob-
servations arise consists of c subpopulations each corresponding to a cluster,
and that the density of a q-dimensional observation x⊤ = (x1, . . . , xq) from
the jth subpopulation is fj(x, ϑj), j = 1, . . . , c, for some unknown vector of
parameters, ϑj . They also introduce a vector γ = (γ1, . . . , γn), where γi = j
of xi is from the j subpopulation. The γi label the subpopulation for each
observation i = 1, . . . , n. The clustering problem now becomes that of choos-
ing ϑ = (ϑ1, . . . , ϑc) and γ to maximise the likelihood function associated
with such assumptions. This classification maximum likelihood procedure is
described briefly in the sequel.

18.2.5 Classification Maximum Likelihood

Assume the population consists of c subpopulations, each corresponding to
a cluster of observations, and that the density function of a q-dimensional
observation from the jth subpopulation is fj(x, ϑj) for some unknown vector
of parameters, ϑj . Also, assume that γ = (γ1, . . . , γn) gives the labels of the
subpopulation to which the observation belongs: so γi = j if xi is from the
jth population.
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The clustering problem becomes that of choosing ϑ = (ϑ1, . . . , ϑc) and γ to
maximise the likelihood

L(ϑ, γ) =
n

∏

i=1

fγi
(xi, ϑγi

). (18.1)

If fj(x, ϑj) is taken as the multivariate normal density with mean vector µj

and covariance matrix Σj , this likelihood has the form

L(ϑ, γ) =
c

∏

j=1

∏

i:γi=j

|Σj |
−1/2 exp

(

−

1

2
(xi − µj)⊤Σ−1

j (xi − µj)

)

. (18.2)

The maximum likelihood estimator of µj is µ̂j = n−1

j

∑

i:γi=j xi where the

number of observations in each subpopulation is nj =
∑n

i=1
I(γi = j). Re-

placing µj in (18.2) yields the following log-likelihood

l(ϑ, γ) = −

1

2

c
∑

j=1

trace(WjΣ−1

j ) + nj log |Σj |

where Wj is the q × q matrix of sums of squares and cross-products of the
variables for subpopulation j.

Banfield and Raftery (1993) demonstrate the following: If the covariance
matrix Σj is σ2 times the identity matrix for all populations j = 1, . . . , c,
then the likelihood is maximised by choosing γ to minimise trace(W), where
W =

∑c
j=1

Wj , i.e., minimisation of the written group sum of squares. Use
of this criterion in a cluster analysis will tend to produce spherical clusters of
largely equal sizes which may or may not match the ‘real’ clusters in the data.

If Σj = Σ for j = 1, . . . , c, then the likelihood is maximised by choosing
γ to minimise |W|, a clustering criterion discussed by Friedman and Rubin
(1967) and Marriott (1982). Use of this criterion in a cluster analysis will
tend to produce clusters with the same elliptical shape, which again may not
necessarily match the actual clusters in the data.

If Σj is not constrained, the likelihood is maximised by choosing γ to min-
imise

∑c
j=1

nj log |Wj/nj |, a criterion that allows for different shaped clusters
in the data.

Banfield and Raftery (1993) also consider criteria that allow the shape of
clusters to be less constrained than with the minimisation of trace(W) and
|W| criteria, but to remain more parsimonious than the completely uncon-
strained model. For example, constraining clusters to be spherical but not to
have the same volume, or constraining clusters to have diagonal covariance
matrices but allowing their shapes, sizes and orientations to vary.

The EM algorithm (see Dempster et al., 1977) is used for maximum like-
lihood estimation – details are given in Fraley and Raftery (1999). Model
selection is a combination of choosing the appropriate clustering model and
the optimal number of clusters. A Bayesian approach is used (see Fraley and
Raftery, 1999), using what is known as the Bayesian Information Criterion
(BIC).
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18.3 Analysis Using R

18.3.1 Classifying Romano-British Pottery

We start our analysis with computing the dissimilarity matrix containing the
Euclidean distance of the chemical measurements on all 45 pots. The resulting
45 × 45 matrix can be inspected by an image plot, here obtained from func-
tion levelplot available in package lattice (Sarkar, 2009, 2008). Such a plot
associates each cell of the dissimilarity matrix with a color or a grey value. We
choose a very dark grey for cells with distance zero (i.e., the diagonal elements
of the dissimilarity matrix) and pale values for cells with greater Euclidean
distance. Figure 18.4 leads to the impression that there are at least three dis-
tinct groups with small inter-cluster differences (the dark rectangles) whereas
much larger distances can be observed for all other cells.

We now construct three series of partitions using single, complete, and av-
erage linkage hierarchical clustering as introduced in subsections 18.2.1 and
18.2.2. The function hclust performs all three procedures based on the dis-
similarity matrix of the data; its method argument is used to specify how the
distance between two clusters is assessed. The corresponding plot method
draws a dendrogram; the code and results are given in Figure 18.5. Again, all
three dendrograms lead to the impression that three clusters fit the data best
(although this judgement is very informal).

From the pottery_average object representing the average linkage hierar-
chical clustering, we derive the three-cluster solution by cutting the dendro-
gram at a height of four (which, based on the right display in Figure 18.5 leads
to a partition of the data into three groups). Our interest is now a comparison
with the kiln sites at which the pottery was found.

R> pottery_cluster <- cutree(pottery_average, h = 4)

R> xtabs(~ pottery_cluster + kiln, data = pottery)

kiln

pottery_cluster 1 2 3 4 5

1 21 0 0 0 0

2 0 12 2 0 0

3 0 0 0 5 5

The contingency table shows that cluster 1 contains all pots found at kiln
site number one, cluster 2 contains all pots from kiln sites number two and
three, and cluster three collects the ten pots from kiln sites four and five. In
fact, the five kiln sites are from three different regions defined by one, two and
three, and four and five, so the clusters actually correspond to pots from three
different regions.

18.3.2 Classifying Exoplanets

Prior to a cluster analysis we present a graphical representation of the three-
dimensional planets data by means of the scatterplot3d package (Ligges and
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R> pottery_dist <- dist(pottery[, colnames(pottery) != "kiln"])

R> library("lattice")

R> levelplot(as.matrix(pottery_dist), xlab = "Pot Number",

+ ylab = "Pot Number")
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Figure 18.4 Image plot of the dissimilarity matrix of the pottery data.

Mächler, 2003). The logarithms of the mass, period and eccentricity measure-
ments are shown in a scatterplot in Figure 18.6. The diagram gives no clear
indication of distinct clusters in the data but nevertheless we shall continue
to investigate this possibility by applying k-means clustering with the kmeans

function in R. In essence this method finds a partition of the observations
for a particular number of clusters by minimising the total within-group sum
of squares over all variables. Deciding on the ‘optimal’ number of groups is
often difficult and there is no method that can be recommended in all cir-
cumstances (see Everitt et al., 2001). An informal approach to the number
of groups problem is to plot the within-group sum of squares for each par-
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R> pottery_single <- hclust(pottery_dist, method = "single")

R> pottery_complete <- hclust(pottery_dist, method = "complete")

R> pottery_average <- hclust(pottery_dist, method = "average")

R> layout(matrix(1:3, ncol = 3))

R> plot(pottery_single, main = "Single Linkage",

+ sub = "", xlab = "")

R> plot(pottery_complete, main = "Complete Linkage",

+ sub = "", xlab = "")

R> plot(pottery_average, main = "Average Linkage",

+ sub = "", xlab = "")
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Figure 18.5 Hierarchical clustering of pottery data and resulting dendrograms.

tition given by applying the kmeans procedure and looking for an ‘elbow’ in
the resulting curve (cf. scree plots in factor analysis). Such a plot can be con-
structed in R for the planets data using the code displayed with Figure 18.7
(note that since the three variables are on very different scales they first need
to be standardised in some way – here we use the range of each).

Sadly Figure 18.7 gives no completely convincing verdict on the number of
groups we should consider, but using a little imagination ‘little elbows’ can
be spotted at the three and five group solutions. We can find the number of
planets in each group using

R> planet_kmeans3 <- kmeans(planet.dat, centers = 3)

R> table(planet_kmeans3$cluster)

1 2 3

34 53 14

The centres of the clusters for the untransformed data can be computed using
a small convenience function
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R> data("planets", package = "HSAUR2")

R> library("scatterplot3d")

R> scatterplot3d(log(planets$mass), log(planets$period),

+ log(planets$eccen), type = "h", angle = 55,

+ pch = 16, y.ticklabs = seq(0, 10, by = 2),

+ y.margin.add = 0.1, scale.y = 0.7)
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Figure 18.6 3D scatterplot of the logarithms of the three variables available for
each of the exoplanets.

R> ccent <- function(cl) {

+ f <- function(i) colMeans(planets[cl == i,])

+ x <- sapply(sort(unique(cl)), f)

+ colnames(x) <- sort(unique(cl))

+ return(x)

+ }

which, applied to the three-cluster solution obtained by k-means gets
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R> rge <- apply(planets, 2, max) - apply(planets, 2, min)

R> planet.dat <- sweep(planets, 2, rge, FUN = "/")

R> n <- nrow(planet.dat)

R> wss <- rep(0, 10)

R> wss[1] <- (n - 1) * sum(apply(planet.dat, 2, var))

R> for (i in 2:10)

+ wss[i] <- sum(kmeans(planet.dat,

+ centers = i)$withinss)

R> plot(1:10, wss, type = "b", xlab = "Number of groups",

+ ylab = "Within groups sum of squares")
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Figure 18.7 Within-cluster sum of squares for different numbers of clusters for
the exoplanet data.
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R> ccent(planet_kmeans3$cluster)

1 2 3

mass 2.9276471 1.6710566 10.56786

period 616.0760882 427.7105892 1693.17201

eccen 0.4953529 0.1219491 0.36650

for the three-cluster solution and, for the five cluster solution using

R> planet_kmeans5 <- kmeans(planet.dat, centers = 5)

R> table(planet_kmeans5$cluster)

1 2 3 4 5

18 35 14 30 4

R> ccent(planet_kmeans5$cluster)

1 2 3 4

mass 3.4916667 1.7448571 10.8121429 1.743533

period 638.0220556 552.3494286 1318.6505856 176.297374

eccen 0.6032778 0.2939143 0.3836429 0.049310

5

mass 2.115

period 3188.250

eccen 0.110

Interpretation of both the three- and five-cluster solutions clearly requires
a detailed knowledge of astronomy. But the mean vectors of the three-group
solution, for example, imply a relatively large class of Jupiter-sized planets
with small periods and small eccentricities, a smaller class of massive planets
with moderate periods and large eccentricities, and a very small class of large
planets with extreme periods and moderate eccentricities.

18.3.3 Model-based Clustering in R

We now proceed to apply model-based clustering to the planets data. R

functions for model-based clustering are available in package mclust (Fraley
et al., 2009, Fraley and Raftery, 2002). Here we use the Mclust function since
this selects both the most appropriate model for the data and the optimal
number of groups based on the values of the BIC computed over several models
and a range of values for number of groups. The necessary code is:

R> library("mclust")

R> planet_mclust <- Mclust(planet.dat)

and we first examine a plot of BIC values using the R code that is displayed
on top of Figure 18.8. In this diagram the different plotting symbols refer to
different model assumptions about the shape of clusters:

EII: spherical, equal volume,

VII: spherical, unequal volume,

EEI: diagonal, equal volume and shape,

VEI: diagonal, varying volume, equal shape,
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R> plot(planet_mclust, planet.dat, what = "BIC", col = "black",

+ ylab = "-BIC", ylim = c(0, 350))
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Figure 18.8 Plot of BIC values for a variety of models and a range of number of
clusters.

EVI: diagonal, equal volume, varying shape,

VVI: diagonal, varying volume and shape,

EEE: ellipsoidal, equal volume, shape, and orientation,

EEV: ellipsoidal, equal volume and equal shape,

VEV: ellipsoidal, equal shape,

VVV: ellipsoidal, varying volume, shape, and orientation

The BIC selects model VVI (diagonal varying volume and varying shape)
with three clusters as the best solution as can be seen from the print output:

R> print(planet_mclust)

best model: diagonal, varying volume and shape with 3 components
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R> clPairs(planet.dat,

+ classification = planet_mclust$classification,

+ symbols = 1:3, col = "black")
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Figure 18.9 Scatterplot matrix of planets data showing a three-cluster solution
from Mclust.

This solution can be shown graphically as a scatterplot matrix. The plot is
shown in Figure 18.9. Figure 18.10 depicts the clustering solution in the three-
dimensional space.

The number of planets in each cluster and the mean vectors of the three
clusters for the untransformed data can now be inspected by using

R> table(planet_mclust$classification)

1 2 3

19 41 41

R> ccent(planet_mclust$classification)
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R> scatterplot3d(log(planets$mass), log(planets$period),

+ log(planets$eccen), type = "h", angle = 55,

+ scale.y = 0.7, pch = planet_mclust$classification,

+ y.ticklabs = seq(0, 10, by = 2), y.margin.add = 0.1)
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Figure 18.10 3D scatterplot of planets data showing a three-cluster solution from
Mclust.

1 2 3

mass 1.16652632 1.5797561 6.0761463

period 6.47180158 313.4127073 1325.5310048

eccen 0.03652632 0.3061463 0.3704951

Cluster 1 consists of planets about the same size as Jupiter with very short
periods and eccentricities (similar to the first cluster of the k-means solution).
Cluster 2 consists of slightly larger planets with moderate periods and large
eccentricities, and cluster 3 contains the very large planets with very large pe-
riods. These two clusters do not match those found by the k-means approach.
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18.4 Summary

Cluster analysis techniques provide a rich source of possible strategies for ex-
ploring complex multivariate data. But the use of cluster analysis in practise
does not involve simply the application of one particular technique to the data
under investigation, but rather necessitates a series of steps, each of which may
be dependent on the results of the preceding one. It is generally impossible
a priori to anticipate what combination of variables, similarity measures and
clustering technique is likely to lead to interesting and informative classifi-
cations. Consequently, the analysis proceeds through several stages, with the
researcher intervening if necessary to alter variables, choose a different similar-
ity measure, concentrate on a particular subset of individuals, and so on. The
final, extremely important, stage concerns the evaluation of the clustering so-
lutions obtained. Are the clusters ‘real’ or merely artefacts of the algorithms?
Do other solutions exist that are better in some sense? Can the clusters be
given a convincing interpretation? A long list of such questions might be posed,
and readers intending to apply clustering to their data are recommended to
read the detailed accounts of cluster evaluation given in Dubes and Jain (1979)
and in Everitt et al. (2001).

Exercises

Ex. 18.1 Construct a three-dimensional drop-line scatterplot of the planets
data in which the points are labelled with a suitable cluster label.

Ex. 18.2 Write an R function to fit a mixture of k normal densities to a data
set using maximum likelihood.

Ex. 18.3 Apply complete linkage and average linkage hierarchical clustering
to the planets data. Compare the results with those given in the text.

Ex. 18.4 Write a general R function that will display a particular partition
from the k-means cluster method on both a scatterplot matrix of the orig-
inal data and a scatterplot or scatterplot matrix of a selected number of
principal components of the data.
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Chen, C., Härdle, W., and Unwin, A., eds. (2008), Handbook of Data Visual-

ization, Berlin, Heidelberg: Springer-Verlag.

Cleveland, W. S. (1979), “Robust locally weighted regression and smoothing
scatterplots,” Journal of the American Statistical Association, 74, 829–836.

Colditz, G. A., Brewer, T. F., Berkey, C. S., Wilson, M. E., Burdick, E.,
Fineberg, H. V., and Mosteller, F. (1994), “Efficacy of BCG vaccine in the
prevention of tuberculosis. Meta-analysis of the published literature,” Jour-

nal of the American Medical Association, 271, 698–702.

Collett, D. (2003), Modelling Binary Data, London, UK: Chapman &
Hall/CRC, 2nd edition.

Collett, D. and Jemain, A. A. (1985), “Residuals, outliers and influential ob-
servations in regression analysis,” Sains Malaysiana, 4, 493–511.

Cook, R. D. and Weisberg, S. (1982), Residuals and Influence in Regression,
London, UK: Chapman & Hall/CRC.

Cook, R. J. (1998), “Generalized linear model,” in Encyclopedia of Biostatis-

tics, eds. P. Armitage and T. Colton, Chichester, UK: John Wiley & Sons.

Corbet, G. B., Cummins, J., Hedges, S. R., and Krzanowski, W. J. (1970),
“The taxonomic structure of British water voles, genus Arvicola,” Journal

of Zoology , 61, 301–316.

Coronary Drug Project Group (1976), “Asprin in coronary heart disease,”
Journal of Chronic Diseases, 29, 625–642.

Cox, D. R. (1972), “Regression models and life-tables,” Journal of the Royal

Statistical Society, Series B , 34, 187–202, with discussion.

Dalgaard, P. (2002), Introductory Statistics with R, New York, USA: Springer-
Verlag.

Davis, C. S. (1991), “Semi-parametric and non-parametric methods for the
analysis of repeated measurements with applications to clinical trials,”
Statistics in Medicine, 10, 1959–1980.

Davis, C. S. (2002), Statistical Methods for the Analysis of Repeated Measure-

ments, New York, USA: Springer-Verlag.

DeMets, D. L. (1987), “Methods for combining randomized clinical trials:
strengths and limitations,” Statistics in Medicine, 6, 341–350.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), “Maximum likelihood
from incomplete data via the EM algorithm (C/R: p22-37),” Journal of the

Royal Statistical Society, Series B , 39, 1–22.

DerSimonian, R. and Laird, N. (1986), “Meta-analysis in clinical trials,” Con-

trolled Clinical Trials, 7, 177–188.

Diggle, P. J. (1998), “Dealing with missing values in longitudinal studies,”
in Statistical Analysis of Medical Data, eds. B. S. Everitt and G. Dunn,
London, UK: Arnold.

© 2010 by Taylor and Francis Group, LLC



338 BIBLIOGRAPHY

Diggle, P. J., Heagerty, P. J., Liang, K. Y., and Zeger, S. L. (2003), Analysis

of Longitudinal Data, Oxford, UK: Oxford University Press.

Diggle, P. J. and Kenward, M. G. (1994), “Informative dropout in longitudinal
data analysis,” Journal of the Royal Statistical Society, Series C , 43, 49–93.

Dolnicar, S. and Leisch, F. (2003), “Winter tourist segments in Austria: Iden-
tifying stable vacation styles using bagged clustering techniques,” Journal

of Travel Research, 41, 281–292.

Dubes, R. and Jain, A. K. (1979), “Validity studies in clustering methodolo-
gies,” Pattern Recognition, 8, 247–260.

Duval, S. and Tweedie, R. L. (2000), “A nonparametric ‘trim and fill’ method
of accounting for publication bias in meta-analysis,” Journal of the Ameri-

can Statistical Association, 95, 89–98.

Easterbrook, P. J., Berlin, J. A., Gopalan, R., and Matthews, D. R. (1991),
“Publication bias in research,” Lancet , 337, 867–872.

Edgington, E. S. (1987), Randomization Tests, New York, USA: Marcel
Dekker.

Efron, B. and Tibshirani, R. J. (1993), An Introduction to the Bootstrap,
London, UK: Chapman & Hall/CRC.

Elwood, P. C., Cochrane, A. L., Burr, M. L., Sweetman, P. M., Williams, G.,
Welsby, E., Hughes, S. J., and Renton, R. (1974), “A randomized controlled
trial of acetyl salicilic acid in the secondary prevention of mortality from
myocardial infarction,” British Medical Journal , 1, 436–440.

Elwood, P. C. and Sweetman, P. M. (1979), “Asprin and secondary mortality
after myocardial infarction,” Lancet , 2, 1313–1315.

Everitt, B. S. (1992), The Analysis of Contingency Tables, London, UK: Chap-
man & Hall/CRC, 2nd edition.

Everitt, B. S. (1996), Making Sense of Statistics in Psychology: A Second-Level

Course, Oxford, UK: Oxford University Press.

Everitt, B. S. (2001), Statistics for Psychologists, Mahwah, New Jersey, USA:
Lawrence Erlbaum.

Everitt, B. S. (2002a), Cambridge Dictionary of Statistics in the Medical Sci-

ences, Cambridge, UK: Cambridge University Press.

Everitt, B. S. (2002b), Modern Medical Statistics, London, UK: Arnold.

Everitt, B. S. and Bullmore, E. T. (1999), “Mixture model mapping of brain
activation in functional magnetic resonance images,” Human Brain Map-

ping , 7, 1–14.

Everitt, B. S. and Dunn, G. (2001), Applied Multivariate Data Analysis, Lon-
don, UK: Arnold, 2nd edition.

Everitt, B. S., Landau, S., and Leese, M. (2001), Cluster Analysis, London,
UK: Arnold, 4th edition.

© 2010 by Taylor and Francis Group, LLC



BIBLIOGRAPHY 339

Everitt, B. S. and Pickles, A. (2000), Statistical Aspects of the Design and

Analysis of Clinical Trials, London, UK: Imperial College Press.

Everitt, B. S. and Rabe-Hesketh, S. (1997), The Analysis of Proximity Data,
London, UK: Arnold.

Everitt, B. S. and Rabe-Hesketh, S. (2001), Analysing Medical Data Using

S-Plus, New York, USA: Springer-Verlag.

Fisher, L. D. and Belle, G. V. (1993), Biostatistics. A Methodology for the

Health Sciences, New York, USA: John Wiley & Sons.

Fisher, R. A. (1935), The Design of Experiments, Edinburgh, UK: Oliver and
Boyd.

Fleiss, J. L. (1993),“The statistical basis of meta-analysis,”Statistical Methods

in Medical Research, 2, 121–145.

Flury, B. and Riedwyl, H. (1988), Multivariate Statistics: A Practical Ap-

proach, London, UK: Chapman & Hall.

Fraley, C. and Raftery, A. E. (2002), “Model-based clustering, discriminant
analysis, and density estimation,” Journal of the American Statistical As-

sociation, 97, 611–631.

Fraley, C., Raftery, A. E., and Wehrens, R. (2009), mclust: Model-based Clus-

ter Analysis, URL http://www.stat.washington.edu/mclust, R package
version 3.1-10.3.

Fraley, G. and Raftery, A. E. (1999), “MCLUST: Software for model-based
cluster analysis,” Journal of Classification, 16, 297–306.

Freedman, W. L., Madore, B. F., Gibson, B. K., Ferrarese, L., Kelson, D. D.,
Sakai, S., Mould, J. R., Kennicutt, R. C., Ford, H. C., Graham, J. A.,
Huchra, J. P., Hughes, S. M. G., Illingworth, G. D., Macri, L. M., and
Stetson, P. B. (2001), “Final results from the Hubble Space Telescope key
project to measure the Hubble constant,” The Astrophysical Journal , 553,
47–72.

Freeman, G. H. and Halton, J. H. (1951), “Note on an exact treatment of
contingency, goodness of fit and other problems of significance,” Biometrika,
38, 141–149.

Friedman, H. P. and Rubin, J. (1967), “On some invariant criteria for grouping
data,” Journal of the American Statistical Association, 62, 1159–1178.

Friendly, M. (1994), “Mosaic displays for multi-way contingency tables,” Jour-

nal of the American Statistical Association, 89, 190–200.

Gabriel, K. R. (1971), “The biplot graphical display of matrices with applica-
tion to principal component analysis,” Biometrika, 58, 453–467.

Gabriel, K. R. (1981), “Biplot display of multivariate matrices for inspection
of data and diagnosis,” in Interpreting Multivariate Data, ed. V. Barnett,
Chichester, UK: John Wiley & Sons.

© 2010 by Taylor and Francis Group, LLC



340 BIBLIOGRAPHY

Garcia, A. L., Wagner, K., Hothorn, T., Koebnick, C., Zunft, H. J., and Trippo,
U. (2005),“Improved prediction of body fat by measuring skinfold thickness,
circumferences, and bone breadths,” Obesity Research, 13, 626–634.

Garczarek, U. M. and Weihs, C. (2003), “Standardizing the comparison of
partitions,” Computational Statistics, 18, 143–162.

Gentleman, R. (2005), “Reproducible research: A bioinformatics case study,”
Statistical Applications in Genetics and Molecular Biology , 4, URL http:

//www.bepress.com/sagmb/vol4/iss1/art2, Article 2.

Giardiello, F. M., Hamilton, S. R., Krush, A. J., Piantadosi, S., Hylind, L. M.,
Celano, P., Booker, S. V., Robinson, C. R., and Offerhaus, G. J. A. (1993),
“Treatment of colonic and rectal adenomas with sulindac in familial adeno-
matous polyposis,” New England Journal of Medicine, 328, 1313–1316.

Gordon, A. (1999), Classification, Boca Raton, Florida, USA: Chapman &
Hall/CRC, 2nd edition.

Gower, J. C. and Hand, D. J. (1996), Biplots, London, UK: Chapman &
Hall/CRC.

Gower, J. C. and Ross, G. J. S. (1969), “Minimum spanning trees and single
linkage cluster analysis,” Applied Statistics, 18, 54–64.

Grana, C., Chinol, M., Robertson, C., Mazzetta, C., Bartolomei, M., Cicco,
C. D., Fiorenza, M., Gatti, M., Caliceti, P., and Paganelli1, G. (2002), “Pre-
targeted adjuvant radioimmunotherapy with Yttrium-90-biotin in malig-
nant glioma patients: A pilot study,” British Journal of Cancer , 86, 207–
212.

Greenwald, A. G. (1975), “Consequences of prejudice against the null hypoth-
esis,” Psychological Bulletin, 82, 1–20.

Greenwood, M. and Yule, G. U. (1920), “An inquiry into the nature of fre-
quency distribution of multiple happenings with particular reference of mul-
tiple attacks of disease or of repeated accidents,” Journal of the Royal Sta-

tistical Society , 83, 255–279.

Haberman, S. J. (1973), “The analysis of residuals in cross-classified tables,”
Biometrics, 29, 205–220.

Hand, D. J., Daly, F., Lunn, A. D., McConway, K. J., and Ostrowski, E. (1994),
A Handbook of Small Datasets, London, UK: Chapman & Hall/CRC.

Harrison, D. and Rubinfeld, D. L. (1978), “Hedonic prices and the demand for
clean air,” Journal of Environmental Economics & Management , 5, 81–102.

Hartigan, J. A. (1975), Clustering Algorithms, New York, USA: John Wiley
& Sons.

Hastie, T. and Tibshirani, R. (1990), Generalized Additive Models, Boca Ra-
ton, Florida: Chapman & Hall.

Hawkins, D. M., Muller, M. W., and ten Krooden, J. A. (1982), “Cluster
analysis,” in Topics in Applied Multivariate Analysis, ed. D. M. Hawkins,
Cambridge, UK: Cambridge University Press.

© 2010 by Taylor and Francis Group, LLC



BIBLIOGRAPHY 341

Heitjan, D. F. (1997), “Annotation: What can be done about missing data?
Approaches to imputation,” American Journal of Public Health, 87, 548–
550.

Hochberg, Y. and Tamhane, A. C. (1987), Multiple Comparison Procedures,
New York, USA: John Wiley & Sons.

Hofmann, H. and Theus, M. (2005), “Interactive graphics for visualizing con-
ditional distributions,” Unpublished Manuscript.

Hothorn, T., Bretz, F., and Westfall, P. (2008a), “Simultaneous inference in
general parametric models,” Biometrical Journal , 50, 346–363.

Hothorn, T., Bretz, F., and Westfall, P. (2009a), multcomp: Simultaneous

Inference for General Linear Hypotheses, URL http://CRAN.R-project.

org/package=multcomp, R package version 1.0-7.
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