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PREFACE

Overview

The goals in this book are: (1) to describe fundamental principles in a manner that
takes into account many new insights and advances that are often ignored in an
introductory course, (2) to summarize basic methods covered in a graduate level,
applied statistics course dealing with ANOVA, regression, and rank-based meth-
ods, (3) to describe how and why conventional methods can be unsatisfactory, and
(4) to describe recently developed methods for dealing with the practical problems
associated with standard techniques. Another goal is to help make contemporary
techniques more accessible by supplying and describing easy-to-use S-PLUS func-
tions. Many of the S-PLUS functions included here have not appeared in any other
book. (Chapter 1 provides a brief introduction to S-PLUS so that readers unfamiliar
with S-PLUS can employ the methods covered in the book.) Problems with stan-
dard statistical methods are well known among quantitative experts but are rarely
explained to students and applied researchers. The many details are simplified and
elaborated upon in a manner that is not available in any other book. No prior training
in statistics is assumed.

Features

The book contains many methods beyond those in any other book and provides
a much more up-to-date look at the strategies used to address nonnormality and
heteroscedasticity. The material on regression includes several estimators that have
recently been found to have practical value. Included is the deepest regression line
estimator recently proposed by Rousseeuw and his colleagues. The last chapter covers
rank-based methods, but unlike any other book, the latest information on handling
tied values is described. (Brunner and Cliff describe different strategies for dealing
with ties and both are considered.) Recent results on two-way designs are covered,
including repeated measures designs.

Chapter 7 provides a simple introduction to bootstrap methods, and chapters 8–14
include the latest information on the relative merits of different bootstrap techniques
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when dealing with ANOVA and regression. The best non-bootstrap methods are
covered as well. Again, methods and advances not available in any other book are
described.

Chapters 13–14 include many new insights about robust regression that are not
available in any other book. For example, many estimators often provide substantial
improvements over ordinary least squares, but recently it has been found that some
of these estimators do not always correct commonly occurring problems. Improved
methods are covered in this book. Smoothers are described and recent results on
checking for linearity are included.
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1
INTRODUCTION

The goals of this book are to describe the basics of applied statistical methods in
a manner that takes into account the many insights from the last half century, to
describe contemporary approaches to commonly encountered statistical problems,
to provide an intuitive sense of why modern methods — developed after the year
1960 — have substantial advantages over conventional techniques, and to make these
new methods practical and accessible. Once basic concepts are covered, the main goal
will be to address two general types of statistical problems that play a prominent role
in applied research. The first is finding methods for comparing groups of individuals
or things, and the second has to do with studying how two or more variables are
related.

To elaborate on the first general problem to be considered, imagine that you
give one group of 20 individuals a drug for lowering their cholesterol level and that
a second group of 20 gets a placebo. Suppose the average decrease for the first
group is 9.5 and for the second group is 7.2. What can we say about the popu-
lation of all individuals who might take this drug? A natural guess is that if all
individuals of interest took the drug, the average drop in cholesterol will be lower
versus using the placebo. But obviously this conclusion might be wrong, because
for each group we are attempting to generalize from a sample of 20 individuals
to the millions of people who might take the drug. A general goal in statistics is
to describe conditions and methods where the precision of generalizations can be
assessed.

The most common approach to the problem just posed is based on a general
strategy developed by Pierre-Simon Laplace about two centuries ago. In the drug
example, 9.5 is the average based on the 20 available participants. But as an estimate
of the average we would get if millions of people took the drug, chances are that 9.5
is inaccurate. That is, it differs from the population average we would get if all potential
individuals took the drug. So a natural question is whether we can find some way of
measuring the precision of the estimate, 9.5. That is, can we rule out certain values
for the population average based on the data at hand, and can we specify a range of
values that is likely to contain it?

Laplace actually developed two general approaches to the problem of assess-
ing precision. His first approach was based on what we now call a Bayesian
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2 Chapter 1 ■ Introduction

method.1 His second approach is now called the frequentist approach to statistical
problems. It is described in Chapter 4, it is covered in almost all introductory statis-
tics books, and currently it forms the backbone of statistical methods routinely used
in applied research. Laplace’s method is based in part on assuming that if all indi-
viduals of interest could be measured and the results were plotted, we would get a
particular bell-shaped curve called a normal distribution. Laplace realized that there was
no particular reason to assume normality, and he dealt with this issue by using his
central limit theorem, which he publicly announced in 1810. Simply put, the central
limit theorem says that if a sufficiently large number of observations is randomly sampled,
then normality can be assumed when using Laplace’s method for making inferences
about a population of people (or things) based on the data available to us. (Details
about the central limit theorem are covered in Chapter 4.)

One obvious concern about the central limit theorem is the phrase sufficiently large.
Just how many observations do we require so that normality can be assumed? Some
books claim that the answer is 40, and others state that even 25 observations suffice.
These statements are not wild speculations; they stem from results discussed in
Chapter 4. But we now know that this view can be highly misleading and inaccurate.
For some of the simplest problems to be covered, practical situations arise where
hundreds of observations are needed. For other routinely used techniques, inaccurate
inferences are possible no matter how many observations happen to be available.
Yet it seems fair to say that despite the insights made during the last 40 years,
conventional wisdom still holds that the most frequently used techniques perform in
a satisfactory manner for the majority of situations that arise in practice. Consequently,
it is important to understand why the methods typically taught in an introductory
statistics course can be highly unsatisfactory and how modern technology can be
used to address this problem.

In our earlier illustration, two groups of individuals are being compared; but in
many situations multiple groups are compared instead. For example, there might be
interest in three experimental drugs for lowering cholesterol and how they compare to
a placebo. So now a total of four experimental groups might take part in an experiment.
Another common view is that the more groups of individuals we compare, the more
certain we can be that conventional methods (methods developed prior to 1960 and
routinely used today) perform in a satisfactorymanner. Unfortunately, this speculation
is incorrect as well, and again it is important to understand why in order to appreciate
the modern techniques described in this book.

The other general problem covered in this book has to do with discovering and
describing associations among variables of interest. Two examples will help clarify
what this means. The first has to do with a classic problem in astronomy: Is the
universe expanding? At one point Albert Einstein assumed that the answer is no —
all stars are fixed in space. This view was based on a collective intuition regarding
the nature of space and time built up through everyday experiences over thousands
of years. But one implication of Einstein’s general theory of relativity is that the

1 The Reverend Thomas Bayes was the first to propose what we now call the Bayesian approach to statistics.
But it appears that Laplace invented this approach independent of Bayes, and it was certainly Laplace who
developed and extended the method so that it could be used for a wide range of problems.
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FIGURE 1.1 A scatterplot of Hubble’s data.

universe cannot be static. In fact, during the early 1920s, the Russian meteorologist
Alexander Friedmann provided the details showing that Einstein’s theory implied an
expanding universe. But during the early years of the twentieth century, the notion of
a never-changing universe was so ingrained that even Einstein could not accept this
implication of his theory. For this reason, he revisited his equations and introduced
what is known as the cosmological constant, a term that avoids the prediction of a
changing universe.

But 12 years later, Edwin Hubble made some astronomical measurements indicating
that galaxies are either approaching or receding from our own Milky Way Galaxy.
Moreover, Hubble concluded that typically, the further away a galaxy happens to be
from our own, the faster it is moving away. A scatterplot of his observations is shown
in Figure 1.1 and shows the rate (in kilometers per second) at which some galaxies
are receding from our own galaxy versus its distance (in megaparsecs) from us. (The
data are given in Table 6.1.) Hubble’s empirical evidence convinced Einstein that the
universe is generally expanding, and there has been considerable confirmation during
the ensuing years (but alternative views cannot be completely ruled out, for reasons
reviewed by Clark, 1999). Based on Hubble’s data, is the conclusion of an expanding
universe reasonable? After all, there are billions of galaxies, and his observations
reflect only a very small proportion of the potential measurements he might make. In
what sense can we use the data available to us to generalize to all the galaxies in our
universe?

Here is another example where we would like to understand how two variables
are related: Is there an association between breast cancer rates (per 100,000 women)
and solar radiation (in calories per square centimeter)? Figure 1.2 shows a scat-
terplot, based on 24 cities in the United States, of the breast cancer rate among
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FIGURE 1.2 Breast cancer rates versus solar radiation.

100,000 women versus the average daily amount of solar radiation in calories per
square centimeter. Can we make reasonable inferences about the association between
these two variables regarding all geographical regions we might measure? What must
be assumed to make such inferences? To what extent can we violate these assump-
tions and still arrive at reasonably accurate conclusions? Again it was Laplace who laid
down the basic tools and assumptions that are used today. The great mathematician
Carl Gauss extended and refined Laplace’s techniques in ways that will be described
in subsequent chapters. More refinements would come about a century later that are
routinely used today — methods that are in some sense dictated by a lack of access
to high-speed computers. But two fundamental assumptions routinely made in the
applied work of both Laplace and Gauss are at the heart of the conventional methods
that play a dominant role in modern research. Now that we are about two centuries
beyond Laplace’s great insight, what can be said about the accuracy of his approach
and the conventional modifications routinely used today? They are, after all, mere
approximations of reality. How does access to high-speed computers help us analyze
data? Do modern methods and computers open the door to new ways of analyzing
data that have practical value?

The answer to the last question is an unequivocal yes. Nearly a half cen-
tury ago it became obvious from a theoretical point of view that conventional
methods have an inherent problem with potentially devastating implications for
applied researchers. And more recently, new insights have raised additional con-
cerns of great practical importance. In simple terms, if groups differ or variables
are related in some manner, conventional methods might be poorly designed to
discover this. Moreover, the precision and accuracy of conventional methods can
be relatively poor unless sample sizes are fairly large. One strategy for dealing
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with these problems is simply to hope they never arise in practice. But all indi-
cations are that such situations are rather common. Interestingly, even Laplace
had derived theoretical results hinting of serious problems associated with tech-
niques routinely used today. But because of both technical and computational
difficulties, finding practical alternatives proved to be extremely difficult until very
recently.

In addition to theoretical concerns regarding standard statistical methods are
empirical studies indicating practical difficulties. The first such study was conducted
by Bessell in 1818 with the goal to determine whether the normal curve provides
a good approximation of what we find in nature. Bessell’s data reflected a property
that is frequently encountered and poorly handled by conventional techniques. But
unfortunately, Bessell did not have the mathematical tools needed to understand and
appreciate the possible importance of what he saw in his data. Indeed, it would be
nearly 150 years before the importance of Bessell’s observation would be appreciated.
Today, a variety of empirical studies support concerns about traditional techniques
used to analyze data, as will be illustrated in subsequent chapters.

1.1 Software

One goal in this book is to provide easy access to many of the modern statistical
methods that have not yet appeared in popular commercial software. This is done
by supplying S-PLUS2 functions that are very easy to use and can be downloaded,
as described in Section 1.2. For most situations, you simply input your data, and a
single call to some function will perform the computations described in subsequent
chapters. S-PLUS is a powerful and vast software package that is described in various
books (e.g., Krause and Olson, 2000) and manuals.3 Included are a wide range of
built-in functions not described in this book.4

An alternative to S-PLUS is R, which is nearly identical to S-PLUS and can be down-
loaded for free from www.R-project.org. Both zipped and unzipped files containing
R are available. (Files ending in .tgz are zipped.) The zipped file can be downloaded
more quickly, but it requires special software to unzip it so that it can be used. Also
available from this Web site is a free manual explaining how to use R that can serve as
a guide to using S-PLUS as well. Unfortunately, S-PLUS has a few built-in functions
that are not standard in R but that are used in subsequent chapters.

The goal in the remainder of this section is to describe the basic features of S-PLUS
that are needed to apply the statistical methods covered in subsequent chapters.
An exhaustive description of the many features and nuances of S-PLUS go well
beyond the scope of this book.

Once you start S-PLUS you will see this prompt:

>

2 S-PLUS is a registered trademark of Insightful Corporation, which can be contacted at
www.insightful.com

3 See, in particular, the S-PLUS User’s Guide as well as S-PLUS 4 Guide to Statistics, Data Analysis Products
Division, Mathsoft, Seattle, WA.

4 For software that links the S-PLUS functions in this book to SPSS, see the Web site zumastat.com
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It means that S-PLUS is waiting for a command. To quit S-PLUS, use the
command

> q()

1.1.1 Entering Data

To begin with the simplest case, imagine you want to store the value 5 in an S-PLUS
variable called dat. This can be done with the command

> dat < -5,

where < − is a "less than" sign followed by a minus sign. Typing dat and hitting Return
will produce the value 5 on the computer screen.

To store the values 2, 4, 6, 8, 12 in the S-PLUS variable dat, use the c command,
which stands for "combine." That is, the command

> dat < -c(2,4,6,8,12)

will store these values in the S-PLUS variable dat.
To read data stored in a file into an S-PLUS variable, use the scan command. The

simplest method assumes that values are separated by one or more spaces. Missing
values are recorded as NA, for "not available." For example, imagine that a file called
ice.dat contains

6 3 12 8 9

Then the command

> dat < -scan(file="ice.dat")

will read these values from the file and store them in the S-PLUS variable dat. When
using the scan command, the file name must be in quotes. If instead you have a file
called dis.data that contains

12 6 4
7 NA 8
1 18 2

then the command

> dat2 < -scan(file="dis.data")

will store the data in the S-PLUS variable dat2. Typing dat2 and hitting Enter
returns

12 6 4 7 NA 8 1 18 2

Values stored in S-PLUS variables stay there until they are removed. (On some
systems, enabling this feature might require the command !SPLUS CHAPTER.) So
in this last example, if you turn off your computer and then turn it back on, typing
dat2 will again return the values just displayed. To remove data, use the rm command.
For example,

> rm(dat)

would remove the data stored in dat.
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S-PLUS variables are case sensitive. So, for example, the command

> Dat2 < -5

would store the value 5 in Dat2, but the S-PLUS variable dat2 would still contain the
nine values listed previously, unless of course they had been removed.

S-PLUS has many built-in functions, and generally it is advisable not to store data
in an S-PLUS variable having the same name as a built-in function. For instance,
S-PLUS has a built-in function called mean that computes the average of the values
stored in some S-PLUS variable. For example, the command

> mean(x)

will compute the average of the values stored in x and print it on the screen. In some
situations S-PLUS will tell you that a certain variable name is reserved for special
purposes and will not allow you to use it for your own data. In other situations it
is allowed even when the variable name also corresponds to a built-in function. For
example, the command

> mean < -2

will store the value 2 in an S-PLUS variable called mean, but mean(x) will still compute
the average values stored in x. However, to avoid problems, particularly when using
the functions written for this book, it is suggested that you do not use a built-in
function name as an S-PLUS variable for storing data. A simple way to find out
whether something is a built-in function is to type the name and hit Return. For
instance, typing

> mean

will return

function(x, trim = 0, na.rm = F)

That is, mean is a built-in function with three arguments. The latter two argu-
ments are optional, with default values if not specified. For example, na.rm indicates
whether missing values are to be removed. By default, na.rm=F (for false), mean-
ing that missing values are not removed. So if there are any missing values stored
in x, mean(x) will result in the value NA. If, for example, you use the command
mean(z,na.rm=T), any missing values will be removed and the average of the remain-
ing values is computed. (Some details about built-in functions are provided by the
help command. For example, help(mean) provides details about the function mean.)

If you type

> blob

and hit Enter, S-PLUS returns

Object "blob" not found

because data were never stored in the S-PLUS variable blob and there is no built-in
function with this name.
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One of the optional arguments associated with the scan command is called skip. It
allows you to skip one or more lines in a file before beginning to read your data. For
example, if a file called dis1.dat contains

This is Phase One
for my Dissertation
12 6 4
7 3 8
1 18 2

the command

> dat1 < -scan(file="dis1.dat",skip=2)

will skip the first two lines in the file dis1.dat before beginning to read the data.

1.1.2 Storing Data in a Matrix

For many purposes it is convenient to store data in a matrix. Imagine, for example,
that for each of five individuals you have measures taken at three different times. For
instance, you might be interested in how blood pressure changes during the day, so
you measure diastolic blood pressure in the morning, in the afternoon, and in the
evening. One convenient way of storing these data is in a matrix having five rows and
three columns. If the data are stored in the file bp.dat in the form

140 120 115
95 100 100

110 120 115
90 85 80
85 90 85

then the command

> m < -matrix(scan(file=“bp.dat”),ncol=3,byrow=T)

will read the data from the file into a matrix called m having three columns. Here the
argument ncol indicates how many columns the matrix is to have. (The number of
rows can be specified as well with the argument nrow.) Typing m and hitting Return
outputs

[,1] [,2] [,3]
[1,] 140 120 115
[2,] 95 100 100
[3,] 110 120 115
[4,] 90 85 80
[5,] 85 90 85

on the computer screen.
The argument byrow=T (where T is for "true") means that data will be read by

rows. That is, the first row of the matrix will contain 140, 120, and 115, the second
row will contain 95, 100, and 100, and so forth. If not specified, byrow defaults to F
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(for "false"), meaning that the data will be read by columns instead. In the example,
the first row of data would now contain 140, 95, 110 (the first three values stored in
column 1), the second row would contain 90, 85, and 120, and so on.

Once stored in a matrix, it is a simple matter to access a subset of the data. For
example, m[1,1] contains the value in the first row and first column, m[1,3] contains
the value in the first row and third column, and m[2,4] contains the value in row 2
and column 4. The symbol [,1] refers to the first column and [2,] is the second row.
So typing m[,2] and hitting Enter returns

[1] 120 100 120 85 90

which is the data in the second column.
As before, when reading data from a file, you can skip lines using the skip command.

For example, if the data in your file were
My data on snakes
21 45
67 81
32 72

then the command

> fdat < -matrix(scan("data.dat",skip=1),ncol=2,byrow=T)

would skip the first line and begin reading data.

1.1.3 Storing Data in List Mode

For certain purposes it is convenient to store data in what is called list mode. As a simple
example, imagine you have three groups of individuals who are treated for anorexia
via different methods. For illustrative purposes, suppose a rating method has been
devised and that the observations are

G1: 36 24 82 12 90 33 14 19
G2: 9 17 8 22 15
G3: 43 56 23 10

In some situations it is convenient to have the data stored under one variable name,
and this can be done using list mode. One way of storing data in list mode is as
follows. First create a variable having list mode. If you want the variable to be called
gdat, use the command

> gdat < -list()

Then the data for group 1 can be stored via the command

> gdat[[1]] < -c(36, 24, 82, 12, 90, 33, 14, 19),

the group 2 data would be stored via the command

> gdat[[2]] < -c(9, 17, 8, 22, 15),

and group 3 data would be stored by using the command

> gdat[[3]] < -c(43, 56, 23, 10)
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Typing the command gdat and hitting Enter returns

[[1]]:
[1] 36 24 82 12 90 33 14 19

[[2]]:
[1] 9 17 8 22 15

[[3]]:
[1] 43 56 23 10

That is, gdat contains three vectors of numbers corresponding to the three groups
under study.

Another way to store data in list mode is with a variation of the scan command.
Suppose the data are stored in a file called mydata.dat and are arranged as
follows:

36 9 43
24 17 56
82 8 23
12 22 10
90 15 NA
33 NA NA
14 NA NA
19 NA NA

Then the command

> gdat < -scan("mydata.dat",list(g1=0,g2=0,g3=0))

will store the data in gdat in list mode. Typing gdat and hitting Enter returns

$g1:
[1] 36 24 82 12 90 33 14 19

$g2:
[1] 9 17 8 22 15 NA NA NA

$g3:
[1] 43 56 23 10 NA NA NA NA

So the data for group 1 are stored in gdat$g1, for group 2 they are in gdat$g2, and
for group 3 they are in gdat$g3. An alternative way of accessing the data in group 1 is
with gdat[[1]]. Note that as used, scan assumes that the data for group 1 are stored
in column 1, group 2 data are stored in column 2, and group 3 data are in column 3.

1.1.4 Arithmetic Operations

In the simplest case, arithmetic operations can be performed on numbers using the
operators +, −, * (multiplication), / (division), and ∧ (exponentiation). For example,
to compute 1 plus 5 squared, use the command

> 1+5ˆ2,
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TABLE 1.1 Some Basic S-PLUS Functions.

Function Description

exp exponential

log natural logarithm

sqrt square root

cor correlation

mean arithmetic mean (with a trimming option)

median median

min smallest value

max largest value

quantile quantiles

range max value minus the min value

sum arithmetic sum

var variance and covariance

which returns

[1] 26.

To store the answer in an S-PLUS variable — say, ans — use the command

> ans < -1+ 5ˆ2.

If a vector of observations is stored in an S-PLUS variable, arithmetic operations
applied to the variable name will be performed on all the values. For example, if
the values 2, 5, 8, 12, and 25 are stored in the S-PLUS variable vdat, then the
command

> vinv < -1/vdat

will compute 1/2, 1/5, 1/8, 1/12, and 1/25 and store the results in the S-PLUS variable
vinv.

Most S-PLUS commands consist of a name of some function followed by one or
more arguments enclosed in parentheses. There are hundreds of functions that come
with S-PLUS, and Section 1.2 describes how to obtain the library of functions written
for this book and described in subsequent chapters. For convenience, some of the
more basic functions are listed in Table 1.1.

EXAMPLE. If the values 2, 7, 9, and 14 are stored in the S-PLUS variable x,
the command

> min(x)

returns 2, the smallest of the four values stored in x. The average of the numbers
is computed with the command mean(x) and is 8. The command range(x)
returns the difference between the largest and smallest values stored in x and is
14 − 2 = 12, and sum(x) returns the value 2 + 7 + 9 + 14 = 32.

Continued
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EXAMPLE. (Continued ) Suppose you want to subtract the average from each
value stored in the S-PLUS variable blob. The command

> blob-mean(blob)

accomplishes this goal. If in addition you want to square each of these differences
and then sum the results, use the command

> sum((blob-mean(blob))ˆ2).

You can apply arithmetic operations to specific rows or columns of a matrix.
For example, to compute the average of all values in column 1 of the matrix m,
use the command

> mean(m[,1]).

The command

> mean(m[2,])

will compute the average of all values in row 2. In contrast, the command
mean(m) will average all of the values in m. In a similar manner, if x has list
mode, then

> mean(x[[2]])

will average the values in x[[2]]. ■

1.1.5 Data Management

There are many ways to manipulate data in S-PLUS. Here attention is focused on
those methods that are particularly useful in subsequent chapters.

For certain purposes it is common to want to split data into two groups. For
example, situations might arise where you want to focus on those values stored in x
that are less than or equal to 6. One way to do this is with the command

> z < -x[x <= 6],

which will take all values stored in x that are less than or equal to 6 and store
them in z. More generally, S-PLUS will evaluate any logical expression inside the
brackets and operate only on those for which the condition is true. The basic con-
ditions are: == (equality), != (not equal to), < (less than), <= (less than or
equal to) > (greater than), >= (greater than or equal to), && (and), || (or). So the
command

> z < -x[x <= 6 || x > 32]
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will take all values in x that are less than or equal to 6 or greater than 32 and store
them in z. The command

> z < -x[x >= 4 && x <= 40]

will store all values between 4 and 40, inclusive, in z.
Now suppose you have two measures for each of 10 individuals that are stored in

the variables x and y. To be concrete, it is assumed the values are:

x y
9 23

14 19
23 36
29 24
36 32
42 45
49 39
50 60
63 71
88 92

Situations arise where there is interest in those y values for which the x values satisfy
some condition. If you want to operate on only those y values for which x is less than
42, say, use y[x<42]. So the command

mean(y[x < 42])

would average all of the y values for which the corresponding x value is less than 42.
In the example, this command would compute

(23 + 19 + 36 + 24 + 32)/5.

To compute the average of the y values for which the corresponding x value is less
than or equal to the average of the x values, use the command

mean(y[x <= mean(x)]).

To compute the average of the y values for which the corresponding x value is less
than or equal to 14 or greater than or equal to 50, use

mean(y[x <= 14 || x >= 50]).

Situations also arise where you might need to change the storage mode used.
For example, Chapter 13 describes methods for detecting outliers (points that are
unusually far from the majority of points) in multivariate data. Some of the functions
for accomplishing this important goal assume data are stored in a matrix. For the data
in the example, the values in x and y can be stored in a 10 × 2 matrix called m via the
command

> m < -cbind(x,y)

That is, cbind combines columns of data. (The command rbind combines rows of
data instead.)
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1.1.6 S-PLUS Function selby

A common situation is where one column of data indicates group membership. For
example, imagine a file called dis.dat with the following values:

G OUTCOME
1 34
1 23
1 56
2 19
2 32
1 41
3 29
3 62

There are three groups of individuals corresponding to the values stored under G.
The first group, for example, has four individuals with the values 34, 23, 56, and
41. The problem is storing the data in a manner that can be used by the functions
described in subsequent chapters. To facilitate matters, the function

selby(m,grpc,coln)

has been supplied for separating the data by groups and storing it in list mode. (This
function is part of the library of functions written for this book.) The first argument, m,
can be any S-PLUS variable containing data stored in a matrix. The second argument
(grpc) indicates which column indicates group membership, and coln indicates which
column contains the measures to be analyzed. In the example, if the data are stored
in the S-PLUS matrix dis, the command

> selby(dis,1,2)

will return

$x:
$x[[1]]:
[1] 34 23 56 41

$x[[2]]:
[1] 19 32

$x[[3]]:
[1] 29 62

$grpn:
[1] 1 2 3

If the command

> ddat < -selby(dis,1,2)
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is used, ddat$x[[1]] contains the data for group 1, ddat$x[[2]] contains the data
for group 2, and so forth. More generally, the data are now stored in list mode in a
variable called ddat$x — not ddat, as might be thought. The command

> tryit < -selby(dis,1,2)

would store the data in a variable called tryit$x instead.

1.2 R and S-PLUS Functions Written for This Book

A rather large library of S-PLUS functions has been written for this book. They can
be obtained via anonymous ftp at ftp.usc.edu. That is, use the login name anonymous
and use your e-mail address as the password. Once connected, change directories to
pub/wilcox; on a UNIX system you can use the command

cd pub/wilcox

The functions are stored in two files called allfunv1 and allfunv2. Alternatively, these
files can be downloaded from www-rcf.usc.edu/˜rwilcox/ using the Save As command.
When using this Web site, on some systems the file allfunv1 will be downloaded into a
file called allfunv1.txt rather than just allfunv1, and of course the same will be true with
allfunv2. On other systems, allfunv1 will be downloaded into the file allfunv1.html.
When using R, download the files Rallfunv1 and Rallfunv2 instead. (They are nearly
identical to the S-PLUS functions, but a few changes were needed to make them run
under R.) When using ftp on a Unix machine, use the get command to download
them to your computer. For example, the command

get allfunv1

will download the first file.
The files allfunv1 and allfunv2 should be stored in the same directory where you

are using S-PLUS. To make these functions part of your version of S-PLUS, use the
command

> source("allfunv1").

When running under a UNIX system, this command assumes that the file allfunv1 is
stored in the directory from which S-PLUS was invoked. When using a PC, the easiest
method is to store allfunv1 in the directory being used by S-PLUS. For example, when
running the Windows 2000 version, the top of the window indicates that S-PLUS is
using the directory

C: Program Files\sp2000\users\default

Storing allfunv1 in the subdirectory default, the source command given earlier will
cause the library of functions stored in allfunv1 to become a part of your version of
S-PLUS, until you remove them. Of course, for the remaining functions in allfunv2,
use the command

source("allfunv2")
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The arguments used by any of these functions can be checked with the args
command. For example, there is a function called yuen, and the command

> args(yuen)

returns

function(x, y, tr = 0.2, alpha = 0.05).

The first two arguments are mandatory and are assumed to contain data. Arguments
with an = are optional and default to the value shown. Here, the argument tr defaults
to .2 and alpha defaults to .05. The command

yuen(x,y,tr=0,alpha=.1)

would use tr=0 and alpha=.1 (the meaning of which is described in Chapter 8).
Each function also contains a brief description of itself that can be read by typing

the function name only (with no parentheses) and hitting Enter. For example, the
first few lines returned by the command

> yuen

are
#
# Perform Yuen’s test for trimmed means on the data in
x and y.

# The default amount of trimming is 20%.
# Missing values (values stored as NA) are
automatically removed.

#
# A confidence interval for the trimmed mean of x
minus the

# the trimmed mean of y is computed and returned in
yuen$ci.

# The significance level is returned in yuen$siglevel.
#
# For an omnibus test with more than two independent
groups,

# use t1way.
#

The remaining lines are the S-PLUS commands used to perform the analysis, which
presumably are not of interest to most readers.

Many of the data sets used in this book can be downloaded as well. You would
proceed as was described when downloading allfunv1 and allfunv2, only download
the files ending in .dat. For example, read.dat contains data from a reading study that
is used in various chapters.



2
PROBABILITY AND
RELATED CONCEPTS

This chapter covers the fundamentals of probability and some related concepts that
will be needed in this book. Some ideas are basic and in all likelihood familiar to most
readers. But some concepts are not always covered or stressed in an introductory
statistics course, whereas other features are rarely if ever discussed, so it is suggested
that even if the reader has had some training in basic statistics and probability, the
information in this chapter should be scrutinized carefully, particularly Section 2.7.

2.1 Basic Probability

The term probability is of course routinely used; all of us have some vague notion of
what it means. Yet there is disagreement about the philosophy and interpretation
of probability. Devising a satisfactory definition of the term is, from a technical
point of view, a nontrivial issue that has received a great deal of scrutiny from stellar
mathematicians. Here, however, consideration of these issues is not directly relevant
to the topics covered. For present purposes it suffices to think about probabilities in
terms of proportions associated with some population of people or things that are of
interest. For example, imagine you are a psychologist interested in mental health and
one of your goals is to assess feelings of loneliness among college students. Further
assume that a measure of loneliness has been developed where an individual can get
one of five scores consisting of the integers 1 through 5. A score of 1 indicates
relatively no feelings of loneliness and a score of 5 indicates extreme feelings of
loneliness. Among the entire population of college students, imagine that 15% would
get a loneliness score of 1. Then we say that the probability of the score 1 is .15.
Again, when dealing with the mathematical foundations of probability, this view is not
completely satisfactory, but attaching a probabilistic interpretation to proportions is
all that is required in this book.

In statistics, an uppercase roman letter is typically used to represent whatever
measure happens to be of interest, the most common letter being X. For the loneliness
study, X represents a measure of loneliness, and the possible values of X are the

17
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integers 1 through 5. But X could just as well represent how tall someone is, how
much she weighs, her IQ, and so on. That is, X represents whatever happens to be of
interest in a given situation. In the illustration, we write X = 1 to indicate the event
that a college student receives a score of 1 for loneliness, X = 2 means a student got
a score of 2, and so on.

In the illustration there are five possible events: X = 1, X = 2, . . . , X = 5, and the
notation

p(x) (2.1)

is used to indicate the probability assigned to the value x. So p(1) is the probability
that a college student will have a loneliness score of 1, p(2) is the probability of a
score of 2, and so forth. Generally, p(x) is called the probability function associated with
the variable X.

Unless stated otherwise, it is assumed that the possible responses we might observe
are mutually exclusive and exhaustive. In the illustration, describing the five possible
ratings of loneliness as being mutually exclusive means that a student can get one and
only one rating. By assumption, it is impossible, for example, to have ratings of both
2 and 3. Exhaustive means that a complete list of the possible values we might observe
has been specified. If we consider only those students who get a rating between
1 and 5, meaning, for example, that we exclude the possibility of no response, then
the ratings 1–5 are exhaustive. If instead we let 0 represent no response, then an
exhaustive list of the possible responses would be 0, 1, 2, 3, 4, and 5.

The set of all possible responses is called a sample space. If in our ratings illustration
the only possible responses are the integers 1–5, then the sample space consists
of the numbers 1, 2, 3, 4, and 5. If instead we let 0 represent no response, then
the sample space is 0, 1, 2, 3, 4, and 5. If our goal is to study birth weight among
humans, the sample space can be viewed as all numbers greater than or equal to
zero. Obviously some birth weights are impossible — there seems to be no record
of someone weighing 100 pounds at birth — but for convenience the sample space
might contain outcomes that have zero probability of occurring.

It is assumed that the reader is familiar with the most basic principles of probability.
But as a brief reminder, and to help establish notation, these basic principles are
illustrated with the ratings example assuming that the outcomes 1, 2, 3, 4, and 5
are mutually exclusive and exhaustive. The basic principle is that in order for p(x) to
qualify as a probability function, it must be the case that

• p(x) ≥ 0 for any x.
• For any two mutually exclusive outcomes — say, x and y — p(x or y) = p(x) +

p(y ).
• ∑

p(x) = 1, where the notation
∑

p(x) means that p(x) is evaluated for all
possible values of x and the results are summed. In the loneliness example
where the sample space is x: 1, 2, 3, 4, 5,

∑
p(x) = p(1) + p(2) + p(3)+

p(4) + p(5) = 1.

In words, the first criterion is that any probability must be greater than or equal to
zero. The second criterion says, for example, that if the responses 1 and 2 are mutually
exclusive, then the probability that a student gets a rating of 1 or 2 is equal to the
probability of a 1 plus the probability of a 2. Notice that this criterion makes perfect
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sense when probabilities are viewed as relative proportions. If, for example, 15% of
students have a rating of 1, and 20% have a rating of 2, then the probability of a rating
of 1 or 2 is just the sum of the proportions: .15+ .20 = .35. The third criterion is that
if we sum the probabilities of all possible events that are mutually exclusive, we get
1. (In more formal terms, the probability that an observation belongs to the sample
space is 1.)

2.2 Expected Values

A fundamental tool in statistics is the notion of expected values. Most of the concepts
and issues in this book can be understood without employing expected values, but
expected values is a fairly simple idea that might provide a deeper understanding of some
important results to be covered. Also, having an intuitive understanding of expected
values facilitates communications with statistical experts, so this topic is covered
here.

To convey the basic principle, it helps to start with a simple but unrealistic situation.
Still using our loneliness illustration, imagine that the entire population of college
students consists of 10 people; that is, we are interested in these 10 individuals only.
So in particular we have no desire to generalize to a larger group of college students.
Further assume that two students have a loneliness rating of 1, three a rating of 2, two
a rating of 3, one a rating of 4, and two a rating of 5. So for this particular population
of individuals, the probability of the rating 1 is 2/10, the proportion of individuals
who have a rating of 1. Written in a more formal manner, p(1) = 2/10. Similarly,
the probability of the rating 2 is p(2) = 3/10. As is evident, the average of these 10
ratings is

1 + 1 + 2 + 2 + 2 + 3 + 3 + 4 + 5 + 5
10

= 2.8.

Notice that the left side of this last equation can be written as

1(2) + 2(3) + 3(2) + 4(1) + 5(2)
10

= 1
2
10

+ 2
3
10

+ 3
2
10

+ 4
1
10

+ 5
2
10

.

But the fractions in this last equation are just the probabilities associated with the
possible outcomes. That is, the average rating for all college students, which is given
by the right side of this last equation, can be written as

1p(1) + 2p(2) + 3p(3) + 4p(4) + 5p(5).

EXAMPLE. If there are a million college students, and the proportion of
students associated with the five possible ratings 1, 2, 3, 4, and 5 are .1, .15,
.25, .3, and .2, respectively, then the average rating for all 1 million students is

1(.1) + 2(.15) + 3(.25) + 4(.3) + 5(.2) = 3.35

■
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EXAMPLE. If there are a billion college students, and the probabilities asso-
ciated with the five possible ratings are .15, .2, .25, .3, and .1, respectively, then
the average rating of all 1 billion students is

1(.15) + 2(.2) + 3(.25) + 4(.3) + 5(.1) = 3.

■

Next we introduce some general notation for computing an average based on the
view just illustrated. Again let a lowercase x represent a particular value you might
observe associated with the variable X. The expected value of X, written E(X), is

E(X) =
∑

xp(x), (2.2)

where the notation
∑

xp(x) means that you compute xp(x) for every possible value
of x and sum the results. So if, for example, the possible values for X are the integers
0, 1, 2, 3, 4, and 5, then

∑
xp(x) = 0p(0) + 1p(1) + 2p(2) + 3p(3) + 4p(4) + 5p(5).

The expected value of X is so fundamental it has been given a special name: the
population mean. Typically the population mean is represented by µ. So

µ = E(X)

is the average value for all individuals in the population of interest.

EXAMPLE. Imagine that an auto manufacturer wants to evaluate how potential
customers will rate handling for a new car being considered for production. So
here, X represents ratings of how well the car handles, and the population of
individuals who are of interest consists of all individuals who might purchase it.
If all potential customers were to rate handling on a four-point scale, 1 being
poor and 4 being excellent, and if the corresponding probabilities associated
with these ratings are p(1) = .2, p(2) = .4, p(3) = .3, and p(4) = .1, then the
population mean is

µ = E(X) = 1(.2) + 2(.4) + 3(.3) + 4(.1) = 2.3.

That is, the average rating is 2.3. ■

2.3 Conditional Probability and Independence

Conditional probability refers to the probability of some event given that some other event
has occurred; it plays a fundamental role in statistics. The notion of conditional prob-
ability is illustrated in two ways. The first is based on what is called a contingency table,
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TABLE 2.1 Hypothetical Probabilities for Sex and
Political Affiliation

Sex Democrat (D) Republican (R)

M 0.25 0.20 0.45

F 0.28 0.27 0.55

0.53 0.47 1.00

an example of which is shown in Table 2.1. In the contingency table are the probabili-
ties associated with four mutually exclusive groups: individuals who are (1) both male
and belong to the Republican party, (2) male and belong to the Democratic party,
(3) female and belong to the Republican party, and (4) female and belong to the
Democratic party. So according to Table 2.1, the proportion of people who are both
female and Republican is 0.27. The last column shows what are called the marginal
probabilities. For example, the probability of being male is 0.20+0.25 = 0.45, which is
just the proportion of males who are a Democrat plus the proportion who are Repub-
lican. The last line of Table 2.1 shows the marginal probabilities associated with party
affiliation. For example, the probability of being a Democrat is 0.25 + 0.28 = 0.53.

Now consider the probability of being a Democrat given that the individual is
male. According to Table 2.1, the proportion of people who are male is 0.45. So
among the people who are male, the proportion who belong to the Democratic party
is 0.25/0.45 = 0.56. Put another way, the probability of being a Democrat, given that
the individual is male, is 0.56.

Notice that a conditional probability is determined by altering the sample space.
In the illustration, the proportion of all people who belong to the Democratic party
is 0.53. But restricting attention to males, meaning that the sample space has been
altered to include males only, the proportion is 0.25/0.45 = 0.56. In a more general
notation, if A and B are any two events, and if we let P(A) represent the probability
of event A and P(A and B) represent the probability that events A and B occur
simultaneously, then the conditional probability of A, given that B has occurred, is

P(A|B) = P(A and B)
P(B)

. (2.3)

In the illustration, A is the event of being a Democrat, B is the event that a person
is male. According to Table 2.1, P(A and B) = 0.25, P(B) = 0.45, so P(A|B) =
0.25/0.45, as previously indicated.

EXAMPLE. From Table 2.1, the probability that someone is a female, given
that she is Republican, is

0.27/0.47 = 0.5745.

■
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Roughly, two events are independent if the probability associated with the first event
is not altered when the second event is known. If the probability is altered, the events
are dependent.

EXAMPLE. According to Table 2.1, the probability that someone is a Demo-
crat is 0.53. The event that someone is a Democrat is independent of the event
someone is male if when we are told that someone is male, the probability of
being a Democrat remains 0.53. We have seen, however, that the probability of
being a Democrat, given that the person is male, is 0.56, so these two events
are dependent. ■

Consider any two variables — say, X and Y — and let x and y be any two possi-
ble values corresponding to these variables. We say that the variables X and Y are
independent if for any x and y we might pick

P(Y = y|X = x) = P(Y = y). (2.4)

Otherwise they are said to be dependent.

EXAMPLE. Imagine that married couples are asked to rate the effectiveness
of the President of the United States. To keep things simple, assume that both
husbands and wives rate effectiveness with the values 1, 2, and 3, where the
values stand for fair, good, and excellent, respectively. Further assume that
the probabilities associated with the possible outcomes are as shown in Table
2.2. We see that the probability a wife (Y) gives a rating of 1 is 0.2. In sym-
bols, P(Y = 1) = 0.2. Furthermore, P(Y = 1|X = 1) = .02/.1 = .2,
where X = 1 indicates that the wife’s husband gave a rating of 1. So the
event Y = 1 is independent of the event X = 1. If the probability had
changed, we could stop and say that X and Y are dependent. But to say
that they are independent requires that we check all possible outcomes. For
example, another possible outcome is Y = 1 and X = 2. We see that
P(Y = 1|X = 2) = .1/.5 = .2, which again is equal to P(Y = 1). Continuing in
this manner, it can be seen that for any possible values for Y and X, the corre-
sponding events are independent, so we say that X and Y are independent.
That is, they are independent regardless of what their respective values
might be. ■

Now, the notion of dependence is described and illustrated in another manner. A com-
mon and fundamental question in applied research is whether information about one
variable influences the probabilities associated with another variable. For example,
in a study dealing with diabetes in children, one issue of interest was the association
between a child’s age and the level of serum C-peptide at diagnosis. For convenience,
let X represent age and Y represent C-peptide concentration. For any child we
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TABLE 2.2 Hypothetical Probabilities for Presidential
Effectiveness

Husband (X)

Wife (Y) 1 2 3

1 .02 .10 .08 0.2

2 .07 .35 .28 0.7

3 .01 .05 .04 0.1

0.1 0.5 0.4

might observe, there is some probability that her C-peptide concentration is less
than 3, or less than 4, or less than c, where c is any constant we might pick. The
issue at hand is whether information about X (a child’s age) alters the probabilities
associated with Y (a child’s C-peptide level). That is, does the conditional probability
of Y, given X, differ from the probabilities associated with Y when X is not known or
ignored. If knowing X does not alter the probabilities associated with Y, we say that
X and Y are independent. Equation (2.4) is one way of providing a formal definition.
An alternative way is to say that X and Y are independent if

P(Y ≤ y|X = x) = P(Y ≤ y) (2.5)

for any x and y values we might pick. Equation (2.5) implies Equation (2.4). Yet
another way of describing independence is that for any x and y values we might pick,

P(Y = y and X = x)
P(X = x)

= P(Y = y), (2.6)

which follows from Equation (2.4). From this last equation it can be seen that if X
and Y are independent, then

P(X = x and Y = y) = P(X = x)P(Y = y). (2.7)

Equation (2.7) is called the product rule and says that if two events are independent, the
probability that they occur simultaneously is equal to the product of their individual
probabilities.

EXAMPLE. If two wives rate presidential effectiveness according to the
probabilities in Table 2.2, and if their responses are independent, then the
probability that both give a response of 2 is .7 × .7 = .49. ■

EXAMPLE. Suppose that for all children we might measure, the probability
of having a C-peptide concentration less than or equal to 3 is P(Y ≤ 3) = .4.

Continued
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EXAMPLE. (Continued ) Now consider only children who are 7 years old and
imagine that for this subpopulation of children, the probability of having a
C-peptide concentration less than 3 is 0.2. In symbols, P(Y ≤ 3|X = 7) = 0.2.
Then C-peptide concentrations and age are said to be dependent, because
knowing that the child’s age is 7 alters the probability that the child’s C-peptide
concentration is less than 3. If instead P(Y ≤ 3|X = 7) = 0.4, the events
Y ≤ 3 and X = 7 are independent. More generally, if, for any x and y we
pick, P(Y ≤ y|X = x) = P(Y = y), then C-peptide concentration and age are
independent. ■

Attaining a graphical intuition of independence will be helpful in subsequent
chapters. To be concrete, imagine a study where the goal is to study the association
between a person’s general feeling of well-being (Y) and the amount of chocolate
they consume (X). Assume that an appropriate measure for these two variables has
been devised and that the two variables are independent. If we were to measure
these two variables for a very large sample of individuals, what would a plot of the
results look like? Figure 2.1 shows a scatterplot of observations where values were
generated on a computer with X and Y independent. As is evident, there is no visible
pattern.

If X and Y are dependent, generally — but not always — there is some discernible
pattern. But it is important to keep in mind that there are many types of patterns that
can and do arise. (Section 6.5 describes situations where patterns are not evident
based on a scatterplot, yet X and Y are dependent.) Figure 2.2 shows four types
of patterns where feelings of well-being and chocolate consumption are dependent.

X

Y

FIGURE 2.1 A scatterplot of two independent variables.
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FIGURE 2.2 Different types of associations that might be encountered.

The two upper scatterplots show some rather obvious types of dependence that
might arise. The upper left scatterplot, for example, shows a linear association where
feelings of well-being increase with chocolate consumption. The upper right scat-
terplot shows a curved, nonlinear association. The type of dependence shown in
the lower two scatterplots are, perhaps, less commonly considered when describ-
ing dependence, but in recent years both have been found to be relevant and very
important in applied work, as we shall see. In the lower left scatterplot we see that
the variation in feelings of well-being differs depending on how much chocolate is
consumed. The points in the left portion of this scatterplot are more tightly clus-
tered together. For the left portion of this scatterplot there is, for example, virtually
no possibility that someone’s feeling of well-being exceeds 1. But for the right por-
tion of this scatterplot, the data were generated so that among individuals with a
chocolate consumption of 3, there is a .2 probability that the corresponding value
of well-being exceeds 1. That is, P(Y ≤ 1|X) decreases as X gets large, so X and
Y are dependent. Generally, any situation where the variation among the Y values
changes with X implies that X and Y are dependent. Finally, the lower right scatter-
plot shows a situation where feelings of well-being tend to increase for consumption
less than 3, but for X > 3 this is no longer the case. Considered as whole, X and
Y are dependent, but in this case, if attention is restricted to X > 3, X and Y are
independent.

The lower left scatterplot of Figure 2.2 illustrates a general principle that is worth
stressing: If knowing the value of X alters the range of possible values for Y, then X
and Y are dependent. In the illustration, the range of possible values for well-being
increases as chocolate consumption increases, so they must be dependent.

2.4 Population Variance

Associated with every probability function is a quantity called the population variance.
The population variance reflects the average squared difference between the population
mean and an observation you might make.
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Consider, for example, the following probability function:

x: 0 1 2 3

p(x): .1 .3 .4 .2

The population mean is µ = 1.7. If, for instance, we observe the value 0, its squared
distance from the population mean is (0−1.7)2 = 2.89 and reflects how far away the
value 0 is from the population mean. Moreover, the probability associated with this
squared difference is .1, the probability of observing the value 0. In a similar manner,
the squared difference between 1 and the population mean is .49, and the probability
associated with this squared difference is .3, the same probability associated with
the value 1. More generally, for any value x, it has some squared difference between
it and the population mean, namely, (x − µ)2, and the probability associated with
this squared difference is p(x). So if we know the probability function, we know
the probabilities associated with all squared differences from the population mean.
For the probability function considered here, we see that the probability function
associated with all possible values of (x − µ)2 is

(x − µ)2: 2.89 0.49 0.09 1.69

p(x): .1 .3 .4 .2

Because we know the probability function associated with all possible squared
differences from the population mean, we can determine the average squared differ-
ence as well. This average squared difference, called the population variance, is typically
labeled σ 2. More succinctly, the population variance is

σ 2 = E[(X − µ)2], (2.8)

the expected value of (X − µ)2. Said another way,

σ 2 =
∑

(x − µ)2p(x).

The population standard deviation is σ , the (positive) square root of the population
variance. (Often it is σ , rather than σ 2, that is of interest in applied work.)

EXAMPLE. Suppose that for a five-point scale of anxiety, the probability
function for all adults living in New York City is

x: 1 2 3 4 5

p(x): .05 .1 .7 .1 .05

Continued



2.4 ■ Population Variance 27

EXAMPLE. (Continued ) The population mean is

µ = 1(.05) + 2(.1) + 3(.7) + 4(.1) + 5(.05) = 3,

so the population variance is

σ 2 = (1−3)2(.05)+(2−3)2(.1)+(3−3)2(.7)+(4−3)2(.1)+(5−3)2(.05) = .6,

and the population standard deviation is σ = √
.6 = .775. ■

Understanding the practical implications associated with the magnitude of the
population variance is a complex task that is addressed at various points in this
book. There are circumstances where knowing σ is very useful, but there are
common situations where it can mislead and give a highly distorted view of what
a variable is like. For the moment, complete details must be postponed. But to
begin to provide some sense of what σ tells us, consider the following probability
function:

x: 1 2 3 4 5

p(x): .2 .2 .2 .2 .2

It can be seen that µ = 3, the same population mean associated with the probability
function in the last example, but the population variance is

σ 2 = (1 − 3)2(.2) + (2 − 3)2(.2) + (3 − 3)2(.2) + (4 − 3)2(.2) + (5 − 3)2(.2) = 2.

Notice that this variance is larger than the variance in the previous example, where
σ 2 = .6. The reason is that in the former example, it is much less likely for a value
to be far from the mean than is the case for the probability function considered
here. Here, for example, there is a .4 probability of getting the value 1 or 5. In the
previous example, this probability is only .1. Here the probability that an observation
differs from the population mean is .8, but in the previous example it was only .3.
This illustrates the crude rule of thumb that larger values for the population variance
reflect situations where observed values are likely to be far from the mean, and small
population variances indicate the opposite.

For discrete data, it is common to represent probabilities graphicallywith theheight
of spikes. Figure 2.3 illustrates this approach with the last two probability functions
used to illustrate the variance. The left panel shows the probability function

x: 1 2 3 4 5

p(x): .05 .1 .7 .1 .05
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FIGURE 2.3 Examples of how probabilities associated with discrete variables are
graphed.

The right panel graphically shows the probability function

x: 1 2 3 4 5

p(x): .2 .2 .2 .2 .2

Look at the graphed probabilities in Figure 2.3 and notice that the graphed proba-
bilities in the left panel indicate that an observed value is more likely to be close to the
mean; in the right panel they are more likely to be further from the mean. That is, the
graphs suggest that the variance is smaller in the left panel because, probabilistically,
observations are more tightly clustered around the mean.

2.5 The Binomial Probability Function

The most important discrete distribution is the binomial. It arises in situations where
only two possible outcomes are possible when making a single observation. The
outcomes might be yes and no, success and failure, agree and disagree. Such random
variables are called binary. Typically the number 1 is used to represent a success, and a
failure is represented by 0. A common convention is to let p represent the probability
of success and to let q = 1 − p be the probability of a failure.

Before continuing, a comment about notation might help. Consistent with
Section 2.1, we follow the common convention of letting X be a variable that
represents the number of successes among n observations. The notation X = 2,
for example, means we observed two successes; more generally, X = x means we
observed x successes, where the possible values for x are 0, 1, . . . , n.

In applied work, often the goal is to estimate p, the probability of success, given
some data. But before taking up this problem, we must first consider how to compute
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probabilities given p. For example, suppose you ask five people whether they approve
of a certain political leader. If these five people are allowed to respond only yes
or no, and if the probability of a yes response is p = .6, what is the probability
that exactly three of five randomly sampled people will say yes? There is a con-
venient formula for solving this problem based on the binomial probability function. It
says that among n observations, the probability of exactly x successes, P(X = x), is
given by

p(x) =
(

n
x

)
pxqn−x. (2.9)

The first term on the right side of this equation, called the binomial coefficient, is defined
to be

(
n
x

)
= n!

x!(n − x)! ,

where n! represents n factorial. That is,

n! = 1 × 2 × 3 × · · · × (n − 1) × n.

For example, 1! = 1, 2! = 2, and 3! = 6. By convention, 0! = 1.
In the illustration, you have n = 5 randomly sampled people and you want to know

the probability that exactly x = 3 people will respond yes when the probability of a
yes is p = .6. To solve this problem, compute

n! = 1 × 2 × 3 × 4 × 5 = 120,

x! = 1 × 2 × 3 = 6,

(n − x)! = 2! = 2,

in which case

p(3) = 120
6 × 2

(
.63) (.42) = .3456.

As another illustration, suppose you randomly sample 10 couples who recently got
married, and your experiment consists of assessing whether they are happily married
at the end of 1 year. If the probability of success is p = .3, the probability that exactly
x = 4 couples will report that they are happily married is

p(4) = 10!
4! × 6!

(
.34) (.76) = .2001.

Often attention is focused on the probability of at least x successes in n trials or at
most x successes, rather than the probability of getting exactly x successes. In the last
illustration, you might want to know the probability that four couples or fewer are
happily married as opposed to exactly four. The former probability consists of five
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mutually exclusive events, namely, x = 0, x = 1, x = 2, x = 3, and x = 4. Thus, the
probability that four couples or fewer are happily married is

P(X ≤ 4) = p(0) + p(1) + p(2) + p(3) + p(4).

In summation notation,

P(X ≤ 4) =
4∑

x=0

p(x).

More generally, the probability of k successes or less in n trials is

P(X ≤ k) =
k∑

x=0

p(x)

=
k∑

x=0

(
n
x

)
pxqn−x.

Table 2 in Appendix B gives the values of P(X ≤ k) for various values of n and p.
Returning to the illustration where p = .3 and n = 10, Table 2 reports that the
probability of four successes or less is .85. Notice that the probability of five successes
or more is just the complement of getting four successes or less, so

P(X ≥ 5) = 1 − P(X ≤ 4) = 1 − .85

= .15.

In general,

P(X ≥ k) = 1 − P(X ≤ k − 1),

so P(X ≥ k) is easily evaluated with Table 2.
Expressions like

P(2 ≤ x ≤ 8),

meaning you want to know the probability that the number of successes is between
2 and 8, inclusive, can also be evaluated with Table 2 by noting that

P(2 ≤ x ≤ 8) = P(x ≤ 8) − P(x ≤ 1).

In words, the event of eight successes or less can be broken down into the sum
of two mutually exclusive events: the event that the number of successes is less
than or equal to 1 and the event that the number of successes is between 2 and 8,
inclusive. Rearranging terms yields the last equation. The point is that P(2 ≤ x ≤ 8)
can be written in terms of two expressions that are easily evaluated with Table 2 in
Appendix B.



2.5 ■ The Binomial Probab il ity Function 31

EXAMPLE. Assume n = 10 and p = .5. From Table 2 in Appendix B,
P(X ≤ 1) = .011 and P(X ≤ 8) = .989, so

P(2 ≤ X ≤ 8) = .989 − .011 = .978.

■

A related problem is determining the probability of one success or less or nine
successes or more. The first part is simply read from Table 2 and can be seen to be
.011. The probability of nine successes or more is the complement of eight successes
or less, so

P(X ≥ 9) = 1 − P(X ≤ 8) = 1 − .989 = .011,

again assuming that n = 10 and p = .5. Thus, the probability of one success or less
or nine successes or more is .011 + .011 = .022. In symbols,

P(X ≤ 1 or X ≥ 9) = .022.

There are times when you will need to compute the mean and variance of a binomial
probability function once you are given n and p. It can be shown that the mean and
variance are given by

µ = E(X)

= np,

and

σ 2 = npq.

For example, if n = 16 and p = .5, the mean of the binomial probability function
is µ = np = 16(.5) = 8. That is, on average, 8 of the 16 observations in a random
sample will be a success, while the other 8 will not. The variance is σ 2 = npq =
16(.5)(.5) = 4, so the standard deviation is σ = √

4 = 2. If, instead, p = .3, then
µ = 16(.3) = 4.8. That is, the average number of successes is 4.8.

In most situations, p, the probability of a success, is not known and must be
estimated based on x, the observed number of successes. The result, E(X) = np,
suggests that x/n be used as an estimator of p; and indeed this is the estimator that is
typically used. Often this estimator is written as

p̂ = x
n
.

Note that p̂ is just the proportion of successes in n trials. It can be shown (using the
rules of expected values covered in Section 2.9) that

E( p̂ ) = p.

That is, if you were to repeat an experiment infinitely many times, each time randomly
sampling n observations, the average of these infinitely many p̂ values is p. It can also
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be shown that the variance of p̂ is

σ 2
p̂ = pq

n
.

EXAMPLE. If you sample 25 people and the probability of success is .4, then
the variance of p̂ is

σ 2
p̂ = .4 × .6

25
= .098.

■

The characteristics and properties of the binomial probability function can be
summarized as follows:

• The experiment consists of exactly n independent trials.• Only two possible outcomes are possible on each trial, usually called success and
failure.• Each trial has the same probability of success, p.• q = 1 − p is the probability of a failure.• There are x successes among the n trials.• p(x) = ( n

x

)
pxqn−x is the probability of x successes in n trials, x = 0, 1, . . . , n.

• ( n
x

) = (n!/x!(n − x)!).
• You estimate p with p̂ = x/n, where x is the total number of successes.• E( p̂ ) = p.• The variance of p̂ is σ 2 = pq/n.• The average or expected number of successes in n trials is µ = E(X) = np.• The variance of X is σ 2 = npq.

2.6 Continuous Variables and the Normal Curve

For various reasons (described in subsequent chapters), continuous variables, meaning
that the variables can have any value over some range of values, play a fundamental
and useful role in statistics. In contrast to discrete variables, probabilities associated
with continuous variables are given by the area under a curve. The equation for this
curve is called a probability density function. If, for instance, we wanted to know the
probability that a variable has a value between 2 and 5, say, this is represented by the
area under the curve and between 2 and 5.

EXAMPLE. Suppose X represents the proportion of time someone spends
on pleasant tasks at their job. So, of course, for any individual we observe,
X has some value between 0 and 1. Assume that for the population of all
working adults, the probability density function is as shown in Figure 2.4.
Further assume that we want to know the probability that the proportion of
time spent working on pleasant tasks is less than or equal to .4. In symbols,

Continued
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FIGURE 2.4 Probabilities associated with continuous variables are represented by the
area under a curve. Here the area under the curve and to the left of 0.4 is .0963. That is,
according to this probability curve, P(X ≤ .4) = .0963.

EXAMPLE. (Continued ) we want to know P(X ≤ .4). In Figure 2.4, the area
under the curve and to the left of .4 is .096. That is, the probability we seek is
.096. In symbols, P(X ≤ .4) = .096. ■

If P(X ≤ 5) = .8 and X is a continuous variable, then the value 5 is called the .8
quantile. If P(X ≤ 3) = .4, then 3 is the .4 quantile. In general, if P(X ≤ c) = q, then
c is called the qth quantile. In Figure 2.4, for example, .4 is the .096 quantile. Percentiles
are just quantiles multiplied by 100. So in Figure 2.4, .4 is the 9.6 percentile. There
are some mathematical difficulties when defining quantiles for discrete data; there is a
standard method for dealing with this issue (e.g., Serfling, 1980, p. 3), but the details
are not important here.

The .5 quantile is called the population median. If P(X ≤ 6) = .5, then 6 is the
population median. The median is centrally located in a probabilistic sense, because
there is a .5 probability that a value is less than the median and there is a .5 probability
that a value is greater than the median instead.

2.6.1 The Normal Curve

The best-known and most important probability density function is the normal curve,
an example of which is shown in Figure 2.5. Normal curves have the following
important properties:

1. The total area under the curve is 1. (This is a requirement of any probability
density function.)
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.68

.954

FIGURE 2.5 For any normal curve, the probability that an observation is
within one standard deviation of the mean is always .68. The probability of
being within two standard deviations is always .954.

2. All normal distributions are bell shaped and symmetric about their mean, µ.
It follows that the population mean and median are identical.

3. Although not indicated in Figure 2.5, all normal curves extend from −∞ to ∞
along the x-axis.

4. If the variable X has a normal distribution, the probability that X has a value
within one standard deviation of the mean is .68, as indicated in Figure 2.5.
In symbols, if X has a normal distribution, then

P(µ − σ < X < µ + σ ) = .68

regardless of what the population mean and variance happen to be. The
probability of being within two standard deviations is approximately .954.
In symbols,

P(µ − 2σ < X < µ + 2σ ) = .954.

The probability of being within three standard deviations is

P(µ − 3σ < X < µ + 3σ ) = .9975.

5. The probability density function of a normal distribution is

f(x) = 1

σ
√

2π
exp

[
− (x − µ)2

2σ 2

]
, (2.10)

where, as usual, µ and σ 2 are the mean and variance. This rather complicated-
looking equation does not play a direct role in applied work, so no illustrations
are given on how it is evaluated. Be sure to notice, however, that the probability
density function is determined by the mean and variance. If, for example, we
want to determine the probability that a variable is less than 25, this probability
is completely determined by the mean and variance if we assume normality.



2.6 ■ Continuous Variables and the Normal Curve 35

−4 −2 0 2 4

FIGURE 2.6 Two of these normal distributions have equal means and two have
equal variances. Note that for normal distributions, increasing the standard deviation
from 1 to 1.5 results in a substantial change in the probability curve. (Compare this
with Figure 2.8.)

Figure 2.6 shows three normal distributions, two of which have equal means of
zero but standard deviations σ = 1 and σ = 1.5, and the third again has standard
deviation σ = 1 but with a mean of µ = 2. There are two things to notice. First, if
two normal distributions have equal variances but unequal means, the two probability
curves are centered around different values but otherwise are identical. Second, for
normal distributions, there is a distinct and rather noticeable difference between the
two curves when the standard deviation increases from 1 to 1.5.

2.6.2 Computing Probabilities Associated with Normal Curves

Assume that human infants have birth weights that are normally distributed with a
mean of 3700 grams and a standard deviation of 200 grams. What is the probability that
a baby’s birth weight will be less than or equal to 3000 grams? As previously explained,
this probability is given by the area under the normal curve, but simple methods for
computing this area are required. Today the answer is easily obtained on a computer.
(For example, the S-PLUS function pnorm can be used.) But for pedagogical reasons
a more traditional method is covered here. We begin by considering the special case
where the mean is zero and the standard deviation is 1 (µ = 0, σ = 1), after which
we illustrate how to compute probabilities for any mean and standard deviation.

Standard Normal

The standard normal distribution is a normal distribution with mean µ = 0 and standard
deviation σ = 1; it plays a central role in many areas of statistics. As is typically done,
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FIGURE 2.7 The standard normal probability curve. The probability that an
observation is less than or equal to −1.55 is .0606, and the probability that an
observation is greater than or equal to 1.55 is .0606.

Z is used to represent a variable that has a standardnormal distribution. Our immediate
goal is to describe how to determine the probability that an observation randomly
sampled from a standard normal distribution is less than any constant c we might
choose.

These probabilities are easily determined using Table 1 in Appendix B, which
reports the probability that a standard normal random variable has probability less
than or equal to c for c = −3.00, −2.99, −2.98, . . . ,−0.01, 0, .01, . . . , 3.00. The first
entry in the first column shows −3. The column next to it gives the corresponding
probability, .0013. That is, the probability that a standard normal random variable
is less than or equal to −3 is P(Z ≤ −3) = .0013. Put another way, −3 is the .0013
quantile of the standard normal distribution. Going down the first column we see
the entry −2.08; the column next to it indicates that the probability that a standard
normal variable is less than or equal to −2.08 is .0188. This says that −2.08 is the
.0188 quantile. Looking at the last entry in the third column, we see −1.55; the entry
just to the right, in the fourth column, is .0606, so P(Z ≤ −1.55) = .0606. This
probability corresponds to the area in the left portion of Figure 2.7. Because the
standard normal curve is symmetric about zero, the probability that X is greater than
1.55 is also .0606, which is shown in the right portion of Figure 2.7. Again looking
at the first column of Table 1 in Appendix B, we see the value z = 1.53; next to it is
the value .9370, meaning that P(Z ≤ 1.53) = .9370.

In applied work, there are three types of probabilities that need to be determined:

1. P(Z ≤ c), the probability that a standard normal random variable is less than
or equal to c

2. P(Z ≥ c), the probability that a standard normal random variable is greater
than or equal to c
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3. P(a ≤ Z ≤ b), the probability that a standard normal random variable is
between the values a and b

The first of these is determined from Table 1 in Appendix B, as already indicated.
Because the area under the curve is 1, the second is given by

P(Z ≥ c) = 1 − P(Z ≤ c).

The third is given by

P(a ≤ Z ≤ b) = P(Z ≤ b) − P(Z ≤ a).

EXAMPLE. Determine P(Z ≥ 1.5), the probability that a standard normal
random variable is greater than 1.5. From Table 1 in Appendix B, P(Z ≤ 1.5) =
.9332. Therefore, P(Z ≥ 1.5) = 1 − .9332 = .0668. ■

EXAMPLE. Next we determine P(− 1.96 ≤ Z ≤ 1.96), the probability that
a standard normal random variable is between −1.96 and 1.96. From Table 1 in
Appendix B, P(Z ≤ 1.96) = .975. Also, P(Z ≤ −1.96) = .025, so

P(− 1.96 ≤ Z ≤ 1.96) = .975 − .025 = .95.

■

In some situations it is necessary to use Table 1 (in Appendix B) backwards. That
is, we are given a probability and the goal is to determine c. For example, if we are
told that P(Z ≤ c) = .99, what is c? We simply find where .99 happens to be in
Table 1 under the columns headed by P(Z ≤ z) and then read the number to the left,
under the column headed by z. The answer is 2.33.

Two related problems also arise. The first is determining c given the value of

P(Z ≥ c).

A solution is obtained by noting that the area under the curve is 1, so P(Z ≥ c) =
1 − P(Z ≤ c), which involves a quantity we can determine from Table 1. That is, you
compute d = 1 − P(Z ≥ c) and then determine c such that

P(Z ≤ c) = d.

EXAMPLE. To determine c if P(Z ≥ c) = .9, first compute d = 1−P(Z ≤ c) =
1−.9 = .1. Then c is given by P(Z ≤ c) = .1. Referring to Table 1 in Appendix B,
c = −1.28. ■

The other type of problem is determining c given

P(− c ≤ Z ≤ c).
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Letting d = P(− c ≤ Z ≤ c), the answer is given by

P(Z ≤ c) = 1 + d
2

.

EXAMPLE. To determine c if P(− c ≤ Z ≤ c) = .9, let d = P(− c ≤ Z ≤
c) = .9 and then compute (1 + d)/2 = (1 + .9)/2 = .95. Then c is given by
P(Z ≤ c) = .95. Referring to Table 1 in Appendix B, c = 1.645. ■

Solution for Any Normal Distribution

Now consider any normal random variable having mean µ and standard deviation σ .
The next goal is to describe how to determine the probability that an observation is
less than c, where, as usual, c is any constant that might be of interest. The solution
is based on standardizing a normal random variable, which means that we subtract
the population mean µ and divide by the standard deviation, σ . In symbols, we
standardize a normal random variable X by transforming it to

Z = X − µ

σ
. (2.11)

It can be shown that if X has a normal distribution, then the distribution of Z is
standard normal. In particular, the probability that a normal random variable X is less
than or equal to c is

P(X ≤ c) = P
(

Z ≤ c − µ

σ

)
. (2.12)

EXAMPLE. Suppose it is claimed that the cholesterol levels in adults have a
normal distribution with mean µ = 230 and standard deviation σ = 20. If this
is true, what is the probability that an adult will have a cholesterol level less
than or equal to c = 200? Referring to Equation (2.12), the answer is

P(X ≤ 200) = P
(

Z ≤ 200 − 230
20

)
= P(Z < −1.5) = .0668,

where .0668 is read from Table 1 in Appendix B. This means that the probability
that an adult has a cholesterol level less than 200 is .0668. ■

In a similar manner, we can determine the probability that an observation is greater
than or equal to 240 or between 210 and 250. More generally, for any constant c that
is of interest, we can determine the probability that an observation is greater than c
with the equation

P(X ≥ c) = 1 − P(X ≤ c),
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the point being that the right side of this equation can be determined with
Equation (2.12). In a similar manner, for any two constants a and b,

P(a ≤ X ≤ b) = P(X ≤ b) − P(X ≤ a).

EXAMPLE. Continuing the last example, determine the probability of observ-
ing an adult with a cholesterol level greater than or equal to 240. We have that

P(X ≥ 240) = 1 − P(X ≤ 240).

Referring to Equation (2.12),

P(X ≤ 240) = P
(

Z ≤ 240 − 230
20

)
= P(Z < .5) = .6915,

so

P(X ≥ 240) = 1 − .6915 = .3085.

In words, the probability that an adult has a cholesterol level greater than or
equal to 240 is .3085. ■

EXAMPLE. Continuing the cholesterol example, we determine

P(210 ≤ X ≤ 250).

We have that

P(210 ≤ X ≤ 250) = P(X ≤ 250) − P(X ≤ 210).

Now,

P(X ≤ 250) = P
(

Z <
250 − 230

20

)
= P(Z ≤ 1) = .8413

and

P(X ≤ 210) = P
(

Z <
210 − 230

20

)
= P(Z ≤ −1) = .1587,

so

P(210 ≤ X ≤ 250) = .8413 − .1587 = .6826,

meaning that the probability of observing a cholesterol level between 210 and
250 is .6826. ■

2.7 Understanding the Effects of Nonnormality

Conventional statistical methods are based on the assumption that observations
follow a normal curve. It was once thought that violating the normality assumption
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rarely had a detrimental impact on these methods, but theoretical and empirical
advances have made it clear that two general types of nonnormality cause serious
practical problems in a wide range of commonly occurring situations. Indeed, even
very slight departures from normality can be a source of concern. To appreciate the
practical utility of modern statistical techniques, it helps to build an intuitive sense of
how nonnormality influences the population mean and variance and how this effect
is related to determining probabilities.

The so-called contaminated, or mixed normal, distribution is a classic way of illus-
trating some of the more important effects of nonnormality. Consider a situation
where we have two subpopulations of individuals or things. Assume each subpop-
ulation has a normal distribution but that they differ in terms of their means or
variances or both. When we mix the two populations together we get what is called a
mixed, or contaminated, normal. Generally, mixed normals fall outside the class of normal
distributions. That is, for a distribution to qualify as normal, the equation for its curve
must have the form given by Equation (2.10), and the mixed normal does not satisfy
this requirement. When the two normals mixed together have a common mean but
unequal variances, the resulting probability curve is again symmetric about the mean,
but even then the mixed normal is not a normal curve.

To provide a more concrete description of the mixed normal, consider the entire
population of adults living around the world and let X represent the amount of weight
they have gained or lost during the last year. Let’s divide the population of adults
into two groups: those who have tried some form of dieting to lose weight and those
that have not. For illustrative purposes, assume that for adults who have not tried to
lose weight, the distribution of their weight loss is standard normal (so µ = 0 and
σ = 1). As for adults who have dieted to lose weight, assume that their weight loss
is normally distributed, again with mean µ = 0 but with standard deviation σ = 10.
Finally, suppose that 10% of all adults went on a diet last year to lose weight. So if
we were to randomly pick an adult, there is a 10% chance of selecting someone who
has dieted. That is, there is a 10% chance of selecting an observation from a normal
distribution having standard deviation 10, so there is a 90% chance of selecting an
observation from a normal curve having a standard deviation of 1.

Now, if we mix these two populations of adults together, the exact distribution
of X (the weight loss for a randomly sampled adult) can be derived and is shown in
Figure 2.8. Also shown is the standard normal distribution, and as is evident there is
little separating the two curves. Let P(X ≤ c) be the probability that an observation is
less than c when sampling from the mixed normal, and let P(Z ≤ c) be the probability
when sampling from the standard normal instead. For any constant c we might pick,
it can be shown that P(X ≤ c) does not differ from P(Z ≤ c) by more than .04.
For example, for a standard normal curve, we see from Table 1 in Appendix B that
P(Z ≤ 1) = .8413. If X has the mixed normal distribution considered here, then the
probability that X has a value less than or equal to 1 will not differ from .8413 by more
than .04; it will be between .8013 and .8813. The exact value happens to be .81.

Here is the point: Very small departures from normality can greatly influence the
value of the population variance. For the standard normal in Figure 2.8 the variance
is 1, but for the mixed normal it is 10.9. The full implications of this result are impos-
sible to appreciate at this point, but they will become clear in subsequent chapters.
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FIGURE 2.8 A standard normal curve having variance σ 2 = 1 and a mixed
normal curve having variance σ 2 = 10.9. Figure 2.6 illustrated that slight
increases in σ result in a substantial change in a normal curve. But the contam-
inated normal illustrates that two distributions can have substantially different
variances even though their probability curves are very similar.

The main goal now is to lay the foundation for understanding some of the problems
associated with conventional methods to be described.

To illustrate one of the many implications associated with the mixed normal,
consider the following problem: Given the population mean and variance, how can
we determine the probability that an observation is less than c. If, for example,
µ = 0 and σ 2 = 10.9, and if we want to know the probability that an observation is
less than 1, we get an answer if we assume normality and use the method described
in Section 2.6.2. The answer is .619. But for the mixed normal having the same mean
and variance, the answer is .81, as previously indicated. So determining probabilities
assuming normality when in fact a distribution is slightly nonnormal can lead to a
fairly inaccurate result. Figure 2.9 graphically illustrates the problem. Both curves
have equal means and variances, yet there is a very distinct difference.

Figure 2.9 illustrates another closely related point. As previously pointed out,
normal curves are completely determined by their mean and variance, and Figure 2.6
illustrated that under normality, increasing the variance from 1 to 1.5 results in a very
noticeable difference in the graphs of the probability curves. If we assume that curves
are normal, or at least approximately normal, this might suggest that in general, if
two distributions have equal variances, surely they will appear very similar in shape.
But this is not necessarily true even when the two curves are symmetric about the
population mean and are bell-shaped. Again, knowing σ is useful in some situations
to be covered, but there are many situations where it can mislead.

Figure 2.10 provides another illustration that two curves can have equal means and
variances yet differ substantially.
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FIGURE 2.9 Two probability curves having equal means and variances.
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FIGURE 2.10 Two probability curves having equal means and variances.

Here is another way σ might mislead. We saw that for a normal distribution,
there is a .68 probability that an observation is within one standard deviation of
the mean. It is incorrect to conclude, however, that for nonnormal distributions,
this rule always applies. The mixed normal is approximately normal in a sense already
described, yet the probability of being within one standard deviation of the mean now
exceeds .999.
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One reason this last point is important in applied work is related to the notion of
outliers. Outliers are values that are unusually large or small. For a variety of reasons
to be described in subsequent chapters, detecting outliers is important. Assuming
normality, a common rule is to declare a value an outlier if it is more than two standard
deviations from the mean. In symbols, declare X an outlier if

|X − µ| > 2σ . (2.13)

So, for example, if µ = 4 and σ = 3, the value X = 5 would not be declared an
outlier because |5 − 4| is less than 2 × 3 = 6. In contrast the value 12 would be
labeled an outlier. The idea is that if a value lies more than two standard deviations
from the mean, then probabilistically it is unusual. For normal curves, the probability
that an observation is more than two standard deviations from the mean is .046.

To illustrate a concern about this rule, consider what happens when the probability
density function is the mixed normal in Figure 2.8. Because the variance is 10.9, we
would declare X an outlier if

|X − µ| > 2
√

10.9 = 6.6.

But µ = 0, so we declare X to be an outlier if |X| > 6.6. It can be seen that now the
probability of declaring a value an outlier is 4 × 10−11 — it is virtually impossible.
(The method used to derive this probability is not important here.) The value 6, for
example, would not be declared an outlier, even though the probability of getting a
value greater than or equal to 6 is 9.87 × 10−10. That is, from a probabilistic point
of view, 6 is unusually large, because the probability of getting this value or larger is
less than 1 in a billion, yet Equation (2.13) does not flag it as being unusual.

Note that in Figure 2.8, the tails of the mixed normal lie above the tails of the
normal. For this reason, the mixed normal is often described as being heavy-tailed.
Because the area under the extreme portions of a heavy-tailed distribution is larger
than the area under a normal curve, extreme values or outliers are more likely when
sampling from the mixed normal. Generally, very slight changes in the tail of any
probability density function can inflate the variance tremendously, which in turn can
make it difficult and even virtually impossible to detect outliers using the rule given by
Equation (2.13), even though outliers are relatively common. There are very effective
methods for dealing with this problem, but the details are postponed until Chapter 3.

2.7.1 Skewness

Heavy-tailed distributions are one source of concern when employing conventional
statistical techniques. Another is skewness, which generally refers to distributions
that are not exactly symmetric. It is too soon to discuss all the practical problems
associated with skewed distributions, but one of the more fundamental issues can be
described here.

Consider how we might choose a single number to represent the typical individual
or thing under study. A seemingly natural approach is to use the population mean. If a
distribution is symmetric about its mean, as is the case when a distribution is normal,
there is general agreement that the population mean is indeed a reasonable reflection
of what is typical. But when distributions are skewed, at some point doubt begins to
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Median = 3.75

Mean = 7.6

FIGURE 2.11 The population mean can be located in the extreme portion of
the tail of a probability curve.

arise as to whether the mean is a good choice. Consider, for example, the distribution
shown in Figure 2.11, which is skewed to the right. In this particular case the popula-
tion mean is located in the extreme right portion of the curve. In fact, the probability
that an observation is less than the population mean is 0.74. So from a probabilistic
point of view, the population mean is rather atypical. In contrast, the median is located
near the more likely outcomes and would seem to better reflect what is typical.

One strategy is to routinely use means and hope that you never encounter a
situation where extreme skewness occurs. We will see empirical evidence, however,
that such situations arise in practice. Another strategy is simply to switch to the
median. If a distribution is symmetric, the population mean and median are identical;
but if a distribution is skewed, the median can be argued to be a better indication
of what is typical. In some applied settings, the median is a good choice, but unfor-
tunately the routine use of the median can be rather unsatisfactory as well. The
reasons are rather involved, but they will be made clear in subsequent chapters. For
the moment it is merely remarked that dealing with skewness is a complex issue
that has received a great deal of attention. In addition to the concern illustrated by
Figure 2.11, there are a variety of other problems, which become evident in Chapter 5.
Yet another strategy is to use some simple transformation of the data in an attempt
to deal with skewness. A common method is to take logarithms, but this can fail as
well, for reasons described in Chapters 3 and 4.

2.8 Pearson’s Correlation

This section introduces Pearson’s correlation and some of its properties. Pearson’s
correlation is covered in detail in Chapter 6, but to address certain technical issues it is
convenient to introduce it here. The goal is to provide a slightly deeper understanding
of why some seemingly natural strategies for analyzing data are theoretically unsound
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and cannot be recommended. Verbal and graphical explanations are provided as
well, and so this section can be skipped by readers who are willing to accept certain
results.

Imagine any situation where we have two measures. For example, for each individual
among a population of individuals, the two measures might be height and weight
or measures of gregariousness and severity of heart disease. Or another situation
might be where we sample married couples and the two measures are the cholesterol
levels of the wife and husband. For convenience we label the two measures X and Y.
Associated with these two variables are two quantities that play a major role in
statistics: their covariance and Pearson’s correlation.

The covariance between X and Y is

σxy = E[(X − µx)(Y − µy)].

In words, if for some population of individuals we subtract the mean of X from every
possible value for X and do the same for Y, then the covariance between X and Y is
defined to be the average of the products of these differences. It might help to note
that the covariance of X with itself is just its variance, and the same is true for Y. That
is, the idea of covariance generalizes the notion of variance to two variables. Pearson’s
correlation is the covariance divided by the product of the standard deviations and
is typically labeled ρ. That is,

ρ = σxy

σxσy
. (2.14)

Here are the properties that will be important in some of the chapters to follow:

• −1 ≤ ρ ≤ 1 (Pearson’s correlation always has a value between −1 and 1.)
• If X and Y are independent, then ρ = σxy = 0.
• If ρ �= 0, then X and Y are dependent.
• For any two variables, the variance of their sum is

VAR(X + Y) = σ 2
x + σ 2

y + 2ρσxσy . (2.15)

This last property is important when explaining why some seemingly reasonable
strategies for analyzing data (covered in Chapter 4) are technically incorrect. Note
that when we add any two measures together, their sum will have some average
value. Using the rules of expected values (covered in Section 2.9), the average of
this sum is simply µx + µy , the sum of the means. Equation (2.15) says that if we
add two measures together, the average squared difference between any sum we
might observe, and the mean of the sum, is completely determined by the individual
variances plus the correlation.

EXAMPLE. There are two variables in Table 2.2: a wife’s rating and a husband’s
rating. The variance associated with the wives can be seen to be σ 2

y = 0.29.
As for the husband’s, σ 2

x = .41. It was already pointed out that the ratings for

Continued
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EXAMPLE. (Continued ) husbands and wives are independent, so ρ = 0. Con-
sequently, the variance of the sum of the ratings is .29 + .41 = .7. That is,
without even determining the probability function associated with this sum, its
variance can be determined. ■

A cautionary note should be added. Although independence implies ρ = 0, it is not
necessarily the case that ρ = 0 implies independence. In the lower left scatterplot of
Figure 2.2, for example, points were generated on a computer with ρ = 0, yet there
is dependence because, as already indicated, the variation in the Y values increases
with X. (This issue is discussed in more detail in Chapter 6.)

2.8.1 Computing the Population Covariance

This subsection is added for readers interested in understanding how the population
covariance is computed when probabilities are known. These details are not cru-
cial in what follows, but they might provide a better sense of how the covariance
is defined, which in turn provides some details about how the population correla-
tion is defined as well. But readers not interested in technical issues can skip this
section.

Consider the probabilities shown in Table 2.3. It can be seen that the expected
value of X is µx = 2.08 and that the expected value of Y is µy = 2.02. Let p(x, y)
be the probability of observing the values X = x and Y = y simultaneously. So,
according to Table 2.3, the probability that Y = 1 and X = 1 is p(1, 1) = .13;
and p(2, 3) = .18. To compute the population covariance, you simply perform the
calculations shown in Table 2.4. That is, for every combination of values for X and Y,
you subtract the corresponding means, yielding the values in columns three and four
of Table 2.4. The probabilities associated with all possible pairs of values are shown
in column five. Column six shows the product of the values in columns three, four,
and five. The population covariance is the sum of the values in column six, which is
.0748. Under independence, X and Y must have a covariance of zero, so we have
established that the variables considered here are dependent, because the covariance
differs from zero.

TABLE 2.3 Hypothetical Probabilities for Pearson’s
Correlation

X

Y 1 2 3

1 .13 .15 .06 0.34

2 .04 .08 .18 0.30

3 .10 .15 .11 0.36

.27 .38 .35
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TABLE 2.4 How to Compute the Covariance for the Probabilities in Table 2.3

x y x − µx y − µy p(x,y) (x − µx)(y − µy)p(x,y)

1 1 −1.08 −1.02 .13 0.143208

1 2 −1.08 −0.02 .04 0.000864

1 3 −1.08 0.98 .10 −0.063504

2 1 −0.08 −1.02 .15 0.003264

2 2 −0.08 −0.02 .08 0.000128

2 3 −0.08 0.98 .15 −0.014112

3 1 0.92 −1.02 .06 −0.093840

3 2 0.92 −0.02 .18 −0.002760

3 3 0.92 0.98 .11 0.099176

0.0748

EXAMPLE. To compute the population correlation for the values and proba-
bilities shown in Table 2.3, first compute the covariance, which we just saw is
σxy = 0.0748. It is left as an exercise to show that the variances are σ 2

x = 0.6136
and σ 2

y = .6996. Consequently,

ρ = .0748√
0.6136 × √

.6996
= .11.

So according to Equation (2.15), the variance of the sum, X + Y, is

0.6136 + .6996 + 2 × 0.0748 = 1.46.
■

2.9 Some Rules About Expected Values

This section summarizes some basic rules about expected values that will be useful in
subsequent chapters. The first rule is that if we multiply a variable by some constant
c, its expected value is multiplied by c as well. In symbols,

E(cX) = cE(X). (2.16)

This is just a fancy way of saying, for example, that if the average height of some pop-
ulation of children is five feet (µ = 5), then the average in inches is 60 (the average in
feet multiplied by 12). More formally, if E(X) = µ = 5, then E(12X) = 12×5 = 60.

The second rule is that if we add c to every possible value, the expected value
increases by c as well. That is,

E(X + c) = E(X) + c. (2.17)

So if µ = 6 and 4 is added to every possible value for X, the average becomes 10.
Or, in terms of Equation (2.17), E(X + 4) = E(X) + 4 = 6 + 4 = 10.
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EXAMPLE. Because µ is a constant, E(X − µ) = E(X) − µ = µ − µ = 0.
That is, if we subtract the population mean from every possible value we might
observe, the average value of this difference is always zero. If, for instance, the
average height of all adult men is 5.9 feet and we subtract 5.9 from everyone’s
height, the average will be zero. ■

To provide some intuition about the next rule, imagine that for the population
of all married women, if they were to rate their marital satisfaction, the probability
function would be

x: 1 2 3 4 5

p(x): .2 .1 .4 .2 .1

Now consider two individuals, Mary and Jane, and suppose they are asked about how
they would rate their level of satisfaction regarding their married life. For convenience,
label Mary’s response X1 and Jane’s response X2. So before Mary rates her marriage,
there is a .2 probability that she will rate her marriage satisfaction as 1, a .1 probability
she will rate it as 2, and so on. The same is assumed to be true for Jane. Now consider
the sum of their two ratings, which we label X = X1 +X2. What is the expected value
of this sum? That is, on average, what is the value of X?

One way of solving this problem is to attempt to derive the probability function of
the sum, X. The possible values for X are 1 + 1 = 2, 1 + 2 = 3, . . ., 6 + 6 = 12, and
if we could derive the probabilities associated with these values, we could determine
the expected value of X. But there is a much simpler method, because it can be shown
that the expected value of a sum is just the sum of the expected values. That is,

E(X1 + X2) = E(X1) + E(X2), (2.18)

so the expected value of the sum can be determined if we know the probability
function associated with each of the observations we make. But given the probability
function, we can do just that. We see that E(X1) = 2.9; in a similar manner E(X2) =
2.9. So the expected value of their sum is 5.8. That is, if two women are asked to rate
their marital satisfaction, the average sum of their ratings, over all pairs of women we
might interview, is 5.8.

This last illustration demonstrates a more general principle that will be helpful.
If X1 and X2 have identical probability functions, so in particular the variables have a
common mean, µ, then the expected value of their sum is 2µ. So using our rule for
constants, we see that the average of these two ratings is µ. That is,

E
[

1
2

(X1 + X2)
]

= 1
2

(µ + µ) = µ.

Here is a summary of the rules for expected values, where c is any constant:

• E(cX) = cE(X) = cµ.
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• E(X + c) = E(X) + c = µ + c.
• E(X1 + X2) = E(X1) + E(X2). For the special case where X1 and X2 have a

common mean µ, which occurs when they have identical probability functions,
E(X1 + X2) = 2µ.

2.10 Chi-Squared Distributions

There is an important family of distributions related to the standard normal distribu-
tion that will play a role in subsequent chapters. It is called the family of chi-squared
distributions and arises as follows. Suppose Z has a standard normal distribution and
let Y = Z2. The distribution of Y is so important, it has been given a special name: a
chi-squared distribution with one degree of freedom. Next, suppose two independent
observations are made, Z1 and Z2, both of which have standard normal distributions.
Then the distribution of

Y = Z2
1 + Z2

2

is called chi-square distribution with two degrees of freedom. More generally, for n
independent standard normal variables, Z1, . . . , Zn,

Y = Z2
1 + · · · + Z2

n

is said to have a chi-square distribution with n degrees of freedom. There are many
statistical methods that utilize the family of chi-squared distributions. The only goal
now is to introduce the distribution and to emphasize that any use of a chi-squared
distribution is intimately connected to normality.

2.11 Exercises

1. For the probability function

x: 0, 1

p(x): .7, .3

verify that the mean and variance are .3 and .21. What is the probability of
getting a value less than the mean?

2. Standardizing the possible values in Exercise 1 means that we transform the
possible values (0 and 1) by subtracting the population mean and dividing by
the population standard deviation. Here this yields (1 − .3)/

√
.21 = .7/

√
.21

and (0 − .3)/
√

.21 = −.3/
√

.21, respectively. The probabilities associated
with these two values are .3 and .7. Verify that the expected value of the
standardized values is zero and the variance is 1.

3. For the probability function

x: 1, 2, 3, 4, 5

p(x): .15, .2, .3, .2, .15

determine the mean, the variance, and P(X ≤ µ).
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4. For the probability function

x: 1, 2, 3, 4, 5

p(x): .1, .25, .3, .25, .1

would you expect the variance to be larger or smaller than the variance
associated with the probability function used in the previous exercise? Verify
your answer by computing the variance for the probability function given here.

5. For the probability function

x: 1, 2, 3, 4, 5

p(x): .2, .2, .2, .2, .2

would you expect the variance to be larger or smaller than the variance associ-
ated with the probability function used in the previous exercise? Verify your
answer by computing the variance.

6. Verify that if we standardize the possible values in Exercise 5, the resulting
mean is zero and the variance is 1.

7. For the following probabilities, determine (a) the probability that someone is
under 30, (b) the probability that someone has a high income given that he
or she is under 30, (c) the probability that someone has a low income given
that he or she is under 30, and (d) the probability that someone has a medium
income given that he or she is over 50.

Income

Age High Medium Low

<30 .030 .180 .090
30–50 .052 .312 .156

>50 .018 .108 .054

8. For Exercise 7, are income and age independent?
9. Coleman (1964) interviewed 3,398 schoolboys and asked them about their

self-perceived membership in the “leading crowd.” Their response was either
yes, they were a member, or no, they were not. The same boys were also asked
about their attitude concerning the leading crowd. In particular, they were
asked whether membership meant that it does not require going against one’s
principles sometimes or whether they think it does. Here, the first response
will be indicated by a 1 and the second will be indicated by a 0. The results
were as follows:

Attitude
Member? 1 0

Yes 757 496
No 1071 1074
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These values, divided by the sample size, 3,398, are called relative frequencies. For
example, the relative frequency of the event (Yes, 1) is 757/3398. Treat the
relative frequencies as probabilities and determine (a) the probability that an
arbitrarily chosen boy responds Yes, (b) P(Yes|1), (c) P(1|Yes), (d) whether
the response Yes is independent of the attitude 0, (e) the probability of a
(Yes and 1) or a (No and 0) response, (f ) the probability of not responding
(Yes and 1), (g) the probability of responding Yes or 1.

10. The probability density function associated with a so-called uniform distribution
is given by f(x) = 1/(b − a), where a and b are given constants and a ≤ x ≤ b.
That is, the possible values you might observe range between the constants
a and b, with every value between a and b equally likely. If, for example,
a = 0 and b = 1, the possible values you might observe lie between 0
and 1. For a uniform distribution over the interval a = 1 and b = 4, draw
the probability density function and determine the median and the .1 and .9
quantiles.

11. For the uniform distribution over the interval −3 to 2, determine (a) P(X ≤ 1),
(b) P(X < −1.5), (c) P(X > 0), (d) P(−1.2 ≤ X ≤ 1), (e) P(X = 1).

12. For the uniform distribution in Exercise 11, determine the median and the .25
and .9 quantiles.

13. For the uniform distribution with a = −1 and b = 1, determine c such that
(a) P(X ≤ c) = .9, (b) P(X ≤ c) = .95, (c) P(X > c) = .99.

14. For the uniform distribution with a = −1 and b = 1, determine c such that (a)
P(−c ≤ X ≤ c) = .9, (b) P(−c ≤ X ≤ c) = .95, (c) P(−c ≤ X ≤ c) = .99.

15. Suppose the waiting time at a traffic light has a uniform distribution from 0
to 20 seconds. Determine the probability of waiting (a) exactly 12 seconds,
(b) less than 5 seconds, (c) more than 10 seconds.

16. When you look at a clock, the number of minutes past the hour — say, X —
is some number between 0 and 60. Assume the number of minutes past the
hour has a uniform distribution. Determine (a) P(X = 30), (b) P(X ≤ 10),
(c) P(X ≥ 20), (d) P(10 ≤ X < 20).

17. For Exercise 16, determine the .8 quantile.
18. Given that Z has a standard normal distribution, use Table 1 in Appendix B to

determine (a) P(Z ≥ 1.5), (b) P(Z ≤ −2.5), (c) P(Z < −2.5), (d) P(−1 ≤
Z ≤ 1).

19. If Z has a standard normal distribution, determine (a) P(Z ≤ .5),
(b) P(Z > −1.25), (c) P(−1.2 < Z < 1.2), (d) P(−1.8 ≤ Z < 1.8).

20. If Z has a standard normal distribution, determine (a) P(Z < −.5),
(b) P(Z < 1.2), (c) P(Z > 2.1), (d) P(−.28 < Z < .28).

21. If Z has a standard normal distribution, find c such that (a) P(Z ≤ c) = .0099,
(b) P(Z < c) = .9732, (c) P(Z > c) = .5691, (d) P(−c ≤ Z ≤ c) = .2358.

22. If Z has a standard normal distribution, find c such that (a) P(Z > c) = .0764,
(b) P(Z > c) = .5040, (c) P(−c ≤ Z < c) = .9108, (d) P(−c ≤ Z ≤ c) = .8.

23. If X has a normal distribution with mean µ = 50 and standard deviation σ = 9,
determine (a) P(X ≤ 40), (b) P(X < 55), (c) P(X > 60), (d) P(40 ≤ X ≤ 60).

24. If X has a normal distribution with mean µ = 20 and standard deviation σ = 9,
determine (a) P(X < 22), (b) P(X > 17), (c) P(X > 15), (d) P(2 < X < 38).
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25. If X has a normal distribution with mean µ = .75 and standard deviation
σ = .5, determine (a) P(X < .25), (b) P(X > .9), (c) P(.5 < X < 1),
(d) P(.25 < X < 1.25).

26. If X has a normal distribution, determine c such that

P(µ − cσ < X < µ + cσ ) = .95.

27. If X has a normal distribution, determine c such that

P(µ − cσ < X < µ + cσ ) = .8.

28. Assuming that the scores on a math achievement test are normally distributed
with mean µ = 68 and standard deviation σ = 10, what is the probability of
getting a score greater than 78?

29. In Exercise 28, how high must someone score to be in the top 5%? That is,
determine c such that P(X > c) = .05.

30. A manufacturer of car batteries claims that the life of their batteries is normally
distributed with mean µ = 58 months and standard deviation σ = 3.
Determine the probability that a randomly selected battery will last at least
62 months.

31. Assume that the income of pediatricians is normally distributed with mean
µ = $100,000 and standard deviation σ = 10,000. Determine the probability
of observing an income between $85,000 and $115,000.

32. Suppose the winnings of gamblers at Las Vegas are normally distributed with
mean µ = −300 (the typical person loses $300) and standard deviation
σ = 100. Determine the probability that a gambler does not lose any money.

33. A large computer company claims that their salaries are normally distributed
with mean $50,000 and standard deviation 10,000. What is the probability of
observing an income between $40,000 and $60,000?

34. Suppose the daily amount of solar radiation in Los Angeles is normally
distributed with mean 450 calories and standard deviation 50. Determine the
probability that for a randomly chosen day, the amount of solar radiation is
between 350 and 550.

35. If the cholesterol levels of adults are normally distributed with mean 230 and
standard deviation 25, what is the probability that a randomly sampled adult
has a cholesterol level greater than 260?

36. If after one year, the annual mileage of privately owned cars is normally
distributed with mean 14,000 miles and standard deviation 3,500, what is
the probability that a car has mileage greater than 20,000 miles?

37. Can small changes in the tails of a distribution result in large changes in the
population mean, µ, relative to changes in the median?

38. Explain in what sense the population variance is sensitive to small changes in
a distribution.

39. For normal random variables, the probability of being within one standard
deviation of the mean is .68. That is, P(µ − σ ≤ X ≤ µ + σ ) = .68 if X has a
normal distribution. For nonnormal distributions, is it safe to assume that this
probability is again .68? Explain your answer.
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40. If a distribution appears to be bell-shaped and symmetric about its mean, can
we assume that the probability of being within one standard deviation of the
mean is .68?

41. Can two distributions differ by a large amount yet have equal means and
variances?

42. If a distribution is skewed, is it possible that the mean exceeds the .85 quantile?
43. Determine P(µ − σ ≤ X ≤ µ + σ ) for the probability function

x: 1, 2, 3, 4

p(x): .2, .4, .3, .1

44. The U.S. Department of Agriculture reports that 75% of people who invest
in the futures market lose money. Based on the binomial probability function
with n = 5, determine:

(a) The probability that all five lose money
(b) The probability that all five make money
(c) The probability that at least two lose money

45. If for a binomial, p = .4 and n = 25, determine (a) P(X < 11), (b) P(X ≤ 11),
(c) P(X > 9), (d) P(X ≥ 9).

46. In Exercise 45, determine E(X), the variance of X, E(p̂), and the variance of p̂.



3
SUMMARIZING DATA

Chapter 2 covered some ways of describing and summarizing a population of indi-
viduals (or things) when we know the probabilities associated with some variable of
interest. For example, the population mean and median can be used to reflect the typ-
ical individual, and σ provides some indication of the variation among the individuals
under study. But of course in most situations we do not know the probabilities, and
often we have little or no information about the probability density function, so the
population mean and median are not known. If we could measure every individual of
interest, then the probabilities would be known, but obviously measuring every indi-
vidual can be difficult or impossible to do. However, suppose we are able to obtain a
sample of individuals, meaning a subset of the population of individuals under study.
One of our main goals is to find ways of making inferences about the entire population
of individuals based on this sample. Simultaneously, we need to describe conditions
under which accurate inferences can be made. But before addressing these important
problems, we first describe some methods for summarizing a sample of observations.
We begin with standard methods typically covered in an introductory course, and then
we introduce some nonstandard techniques that play an important role in this book.

3.1 Basic Summation Notation

To make this book as self-contained as possible, basic summation is briefly described
for the benefit of any readers not familiar with it. Imagine that 15 college students
are asked to rate their feelings of optimism about their future on a six-point scale. If
the first student gives a rating of 6, this result is typically written X1 = 6, where the
subscript 1 indicates that this is the first student interviewed. If you sample a second
student, who gets a score of 4, you write this as X2 = 4, where now the subscript 2
indicates that this is the second student you measure. Here we assume 15 students are
interviewed, and their ratings are represented by X1, . . . , X15. The notation Xi is used
to represent the ith subject. In the example with a total of 15 subjects, the possible
values for i are the integers 1, 2, . . . ,15. Typically, the sample size is represented by
n. In the illustration, there are 15 subjects, and this is written as n = 15. Table 3.1
illustrates the notation, along with the ratings you might get. The first subject (i = 1)
got a score of 3, so X1 = 3. The next subject (i = 2) got a score of 7, so X2 = 7.

55
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TABLE 3.1 Hypothetical Data Illustrating Commonly
Used Notation.

Subject’s name i Xi

Tom 1 3

Alice 2 7

Dick 3 6

Harry 4 4

Quinn 5 8

Bryce 6 9

Bruce 7 10

Nancy 8 4

Linda 9 5

Karen 10 4

George 11 5

Peter 12 6

Adrian 13 5

Marsha 14 7

Jean 15 6

The notation
∑

Xi is a shorthand way of indicating that the observations are to be
summed. That is, ∑

Xi = X1 + X2 + · · · + Xn. (3.1)

For the data in Table 3.1,∑
Xi = 3 + 7 + 6 + · · · + 7 + 6 = 89.

3.2 Measures of Location

One of the most common approaches to summarizing a sample of subjects or a batch
of numbers, is to use a so-called measure of location. Roughly, a measure of location is a
number intended to reflect the typical individual or thing under study. Measures of
location are also called measures of central tendency, the idea being that they are intended to
reflect the middle portion of a set of observations. Examples of population measures
of location are the population mean (µ) and the population median. Here attention
is focused on sample analogs of these measures plus some additional measures of
location that play a prominent role in this book.

3.2.1 The Sample Mean

A natural and very common way of summarizing a batch of numbers is to compute
their average. In symbols, the average of n numbers, X1, . . . , Xn, is

X̄ = 1
n

∑
Xi, (3.2)
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where the notation X̄ is read “X bar.” In statistics, X̄ is called the sample mean. As
is probably evident, the sample mean is intended as an estimate of the population
mean, µ. Of course, a fundamental problem is determining how well the sample mean
estimates the population mean, and we begin to discuss this issue in Chapter 4. For
now, attention is restricted to other important properties of the sample mean.

EXAMPLE. You sample 10 married couples and determine the number of
children they have. The results are 0, 4, 3, 2, 2, 3, 2, 1, 0, 8, and the sample
mean is X̄ = 2.5. Based on this result, it is estimated that if we could measure all
married couples, the average number of children would be 2.5. In more formal
terms, X̄ = 2.5 is an estimate of µ. In all likelihood the population mean is not
2.5, so there is the issue of how close the sample mean is likely to be to the
population mean. Again, we get to this topic in due course. ■

To elaborate on how the population mean and the sample mean are related, it
helps to describe how the sample mean can be computed based on the frequencies
of the observations, particularly when the number of observations is large. Here we
let fx represent the number of times the value x was observed among a sample of n
observations. That is, fx represents the frequency associated with x. In the last example,
the frequencies associated with the number of children are f0 = 2, f1 = 1, f2 = 3,
f3 = 2, f4 = 1, and f8 = 1. So there were two couples with 0 children, one couple
had 1 child, three had 2 children, and so forth.

The summation notation introduced in Section 3.1 is used almost exclusively in
this book. But in this subsection it helps to introduce a variation of this notation:

∑
x

This indicates that a sum is to be computed over all possible values of x. For example,

∑
x

fx.

means that we sum the frequencies for all the x values available. Continuing the
illustration in the last paragraph, the observed values for x are 0, 1, 2, 3, 4, and
8, so

∑
x

fx = f0 + f1 + f2 + f3 + f4 + f8 = 10.

The sum of the observations is just the sum of every possible value multiplied by its
frequency. In the present notation, the sum of the observations is

∑
xfx = 0 f0 + 1 f1 + 2 f2 + 3 f3 + 4 f4 + 8 f8
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= 0(2) + 1(1) + 2(3) + 3(2) + 4(1) + 8(1)

= 25.

Dividing this sum by the sample size, n, gives the sample mean. In symbols, another
way of writing the sample mean is

1
n

∑
x

x fx =
∑

x

x
fx
n

. (3.3)

In words, the sample mean can be computed by multiplying every observed value x
by its frequency, fx, dividing by the sample size, n, and then summing the results.

Note that a natural way of estimating the probability associated with the value x is
with the proportion of times it is observed among a sample of observations. In more
formal terms, fx/n, the relative frequency of the value x, is used to estimate p(x). This
reveals a close connection between the description of the sample mean just given and
the description of the population mean given in Chapter 2. The main difference is
that the population mean, µ = ∑

x p(x), is defined in terms of p(x), the proportion
of all individuals among the entire population of individuals having the response x,
whereas the sample mean uses fx/n in place of p(x).

EXAMPLE. Consider a sample of n = 1000 couples where the proportions of
couples having 0, 1, 2, 3, 4, or 5 children are .12, .18, .29, .24, .14, and .02,
respectively. In symbols, the relative frequencies for the number of children are
f0/n = .12, f1/n = .18, f2/n = .29, f3/n = .24, f4/n = .14, and f5/n = .02. Then
the sample mean is easily determined by substituting the appropriate values
into Equation (3.3). This yields

X̄ = 0(.12) + 1(.18) + 2(.29) + 3(.24) + 4(.14) + 5(.02) = 2.14.

That is, based on these 1000 couples, the estimate of the population mean, the
average number of children among all couples, is 2.14. ■

Chapter 2 demonstrated that the population mean can lie in the extreme tails of
a distribution and can be argued to provide a misleading reflection of what is typical
in some situations. That is, the population mean can in fact be an extreme value that
is relatively atypical. A similar argument can be made about the sample mean, as
demonstrated by the following example, based on data from an actual study.

EXAMPLE. Why is it that so many marriages in the United States end in
divorce? One proposed explanation is that humans, especially men, seek mul-
tiple sexual partners and that this propensity is rooted in our evolutionary past.
In support of this view, some researchers have pointed out that when young

Continued
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TABLE 3.2 Desired Number of Sexual Partners for 105 Males

x: 0 1 2 3 4 5 6 7 8 9

fx : 5 49 4 5 9 4 4 1 1 2

x: 10 11 12 13 15 18 19 30 40 45

fx : 3 2 3 1 2 1 2 2 1 1

x: 150 6000

fx : 2 1

EXAMPLE. (Continued ) males are asked how many sexual partners they desire
over their lifetime, the average number has been found to be substantially higher
than the corresponding responses given by females. Pedersen, Miller, Putcha-
Bhagavatula, and Yang (2002) point out, however, that the data are typically
skewed. In one portion of the study by Pedersen et al., the responses given by
105 males, regarding the desired number of sexual partners over the next 30
years, were as shown in Table 3.2. The sample mean is 64.9. This is, however, a
dubious indication of the desired number of sexual partners, because 97% of the
observations fall below the sample mean. Notice, for example, that 49 of the
males said they wanted one sexual partner, and more than half gave a response
of zero or one. In fact 5 gave a response of zero. ■

A criticism of the sample mean is that a single outlier can greatly influence its
value. In the last example, one individual responded that he wanted 6000 sexual
partners over the next 30 years. This response is unusually large and has an inordinate
influence on the sample mean. If, for example, it is removed, the mean of the remaining
observations is 7.9. But even 7.9 is rather misleading, because over 77% of the
remaining observations fall below 7.9.

One way of quantifying the sensitivity of the sample mean to outliers is with the
so-called finite-sample breakdown point. The finite-sample breakdown point of the sample
mean is the smallest proportion of observations that can make it arbitrarily large or
small. Said another way, the finite-sample breakdown point of the sample mean is
the smallest proportion of n observations that can render it meaningless. A single
observation can make the sample mean arbitrarily large or small, regardless of what
the other values might be, so its finite-sample breakdown point is 1/n.

3.2.2 The Sample Median

Another important measure of location is the sample median, which is intended as an
estimate of the population median. Simply put, if the sample size is odd, the sample
median is the middle value after putting the observations in ascending order. If the
sample size is even, the sample median is the average of the two middle values.
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Chapter 2 noted that for symmetric distributions, the population mean and median
are identical, so for this special case the sample median provides another way of
estimating the population mean. But for skewed distributions the population mean
and median differ, so generally the sample mean and median are attempting to estimate
different quantities.

It helps to describe the sample median in a more formal manner in order to illustrate
a commonly used notation. For the observations X1, . . . , Xn, let X(1) represent the
smallest number, X(2) the next smallest, and X(n) the largest. More generally,

X(1) ≤ X(2) ≤ X(3) ≤ · · · ≤ X(n)

is the notation used to indicate that n values are to be put in ascending order. The
sample median is computed as follows:

1. If the number of observations, n, is odd, compute m = (n + 1)/2. Then the
sample median is

M = X(m),

the mth value after the observations are put in order.
2. If the number of observations, n, is even, compute m = n/2. Then the sample

median is

M = (X(m) + X(m+1))/2,

the average of the mth and (m + 1)th observations after putting the observed
values in ascending order.

EXAMPLE. Consider the values 1.1, 2.3, 1.7, 0.9, and 3.1. The smallest of
the five observations is 0.9, so X(1) = 0.9. The smallest of the remaining four
observations is 1.1, and this is written as X(2) = 1.1. The smallest of the
remaining three observations is 1.7, so X(3) = 1.7; the largest of the five values
is 3.1, and this is written as X(5) = 3.1. ■

EXAMPLE. Seven subjects are given a test that measures depression. The
observed scores are

34, 29, 55, 45, 21, 32, 39.

Because the number of observations is n = 7, which is odd, m = (7 +1)/2 = 4.
Putting the observations in order yields

21, 29, 32, 34, 39, 45, 55.

The fourth observation is X(4) = 34, so the sample median is M = 34. ■
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EXAMPLE. We repeat the last example, only with six subjects having test
scores

29, 55, 45, 21, 32, 39.

Because the number of observations is n = 6, which is even, m = 6/2 = 3.
Putting the observations in order yields

21, 29, 32, 39, 45, 55.

The third and fourth observations are X(3) = 32 and X(4) = 39, so the sample
median is M = (32 + 39)/2 = 35.5. ■

Notice that nearly half of any n values can be made arbitrarily large without making
the value of the sample median arbitrarily large as well. Consequently, the finite-
sample breakdown point is approximately .5, the highest possible value. So the mean
and median lie at two extremes in terms of their sensitivity to outliers. The sample
mean can be affected by a single outlier, but nearly half of the observations can be
outliers without affecting the median. For the data in Table 3.2, the sample median
is M = 1, which gives a decidedly different picture of what is typical as compared to
the mean, which is 64.9.

Based on the single criterion of having a high breakdown point, the median beats
the mean. But it is stressed that this is not a compelling reason to routinely use
the median over the mean. Chapter 4 describes other criteria for judging measures
of location, and situations will be described where both the median and mean are
unsatisfactory.

Although we will see several practical problems with the mean, it is not being argued
that the mean is always inappropriate. Imagine that someone invests $200,000 and
reports that the median amount earned per year, over a 10-year period, is $100,000.
This sounds good, but now imagine that the earnings for each year are:

$100,000, $200,000, $200,000, $200,000, $200,000,
$200,000, $200,000, $300,000, $300,000, $-1,800,000.

So at the end of 10 years this individual has earned nothing and in fact has lost the
initial $200,000 investment. Certainly the long-term total amount earned is relevant,
in which case the sample mean provides a useful summary of the investment strategy
that was followed.

3.2.3 A Weighted Mean

A general goal of this book is to build an understanding of and appreciation for
the practical benefits of contemporary statistical methods. To do this requires some
understanding of the circumstances under which more conventional methods are
optimal. Many introductory books make it clear that the sample mean is optimal
when sampling from a normal distribution, but there are some additional details that
will be important in this book, which we begin to discuss in Chapter 4. With this goal
in mind, this subsection introduces the weighted mean.
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Let w1, . . . , wn be any n constants. A weighted mean is just

∑
wiXi = w1X1 + · · · + wnXn. (3.4)

An important special case of a weighted mean is where the constants w1, . . . , wn sum
to 1. That is,

∑
wi = 1.

In this case, any weighted mean provides a reasonable estimate of the population
mean. So an important issue is determining which weights should be used in applied
work; we begin to examine this problem in Chapter 4. Weighted means where the
weights do not sum to 1 are in common use (as we shall see in connection with least
squares regression). But for now attention is focused on situations where the weights
sum to 1. The sample mean is a special case where

w1 = w2 = · · · = wn = 1
n
.

EXAMPLE. For the weights w1 = .2, w2 = .1, w3 = .4, w4 = .3, the weighted
mean corresponding to X1 = 6, X2 = 12, X3 = 14, and X4 = 10 is

.2(6) + .1(12) + .4(14) + .3(10) = 11.

■

3.2.4 A Trimmed Mean

A trimmed mean refers to a situation where a certain proportion of the largest and
smallest observations are removed and the remaining observations are averaged.
Trimmed means contain as special cases the sample mean, where no observations are
trimmed, and the median, where the maximum possible amount of trimming is used.

EXAMPLE. Consider the values

37, 14, 26, 17, 21, 43, 25, 6, 9, 11.

When computing a trimmed mean it is convenient first to put the observations
in order. Here this yields

6, 9, 11, 14, 17, 21, 25, 26, 37, 43.

A 10% trimmed mean indicates that 10% of the smallest observations are
removed, as are 10% of the largest, and the remaining values are averaged.

Continued
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EXAMPLE. (Continued ) Here there are 10 observations, so the 10% trimmed
mean removes the smallest and largest observations and is given by

X̄t = 9 + 11 + 14 + 17 + 21 + 25 + 26 + 37
8

= 20.

The 20% trimmed mean removes 20% of the largest and smallest values and is

X̄t = 11 + 14 + 17 + 21 + 25 + 26
6

= 19.

■

A more general notation for describing a trimmed mean is useful, to avoid any
ambiguity about how it is computed. Let γ be some constant, 0 ≤ γ < .5, and set
g = [γ n], where the notation [γ n] means that γ n is rounded down to the nearest
integer. For example, if γ = .1 and n = 99, then g = [γ n] = [9.9] = 9. The
γ -trimmed mean is just the average of the values after the g smallest and g largest
observations are removed. In symbols, the γ -trimmed mean is

X̄t = 1
n − 2g

(X( g+1) + X( g+2) + · · · + X(n−g)). (3.5)

Setting γ = .1 yields the 10% trimmed mean, and γ = .2 is the 20% trimmed
mean.

The finite-sample breakdown point of the γ -trimmed mean is γ . So, in particular,
the 10% trimmed mean has a breakdown point of .1, and the 20% trimmed mean
has a breakdown point of .2. This says that when using the 20% trimmed mean, for
example, more than 20% of the values must be altered to make the 20% trimmed
mean arbitrarily large or small.

A fundamental issue is deciding how much to trim. At some level it might seem
that no trimming should be done in most cases; otherwise, information will be
lost somehow. We will see, however, that when addressing a variety of practical
goals, 20% trimming often offers a considerable advantage over no trimming and the
median. Moreover, Huber (1993) has argued that any estimator with a breakdown
point less than or equal to .1 is dangerous and should be avoided. Eventually some
of the reasons for this remark will become clear, but for now the details must be
postponed.

3.2.5 S-PLUS Function for the Trimmed Mean

S-PLUS has a built-in function for computing a trimmed mean that has the general
form

mean(x,tr=0),

where tr indicates the amount of trimming and x is now an S-PLUS variable containing
a batch of numbers. Following the standard conventions used by S-PLUS functions,
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the notation tr=0 indicates that the amount of trimming defaults to 0, meaning
that the S-PLUS function mean will compute the sample mean if a value for tr is
not specified. For example, if the values 2, 6, 8, 12, 23, 45, 56, 65, 72 are stored
in the S-PLUS variable x, then mean(x) will return the value 32.111, which is the
sample mean. The command mean(x,.2) returns the 20% trimmed mean, which is
30.71. [For convenience the S-PLUS function tmean(x,tr = .2) has been supplied,
which by default computes a 20% trimmed mean.]

3.2.6 A Winsorized Mean

In order to deal with some technical issues described in Chapter 4, we will need the
so-called Winsorized mean. The Winsorized mean is similar to the trimmed mean, only
the smallest and largest observations are not removed, but rather transformed by
“pulling them in.” To explain, we first describe what it means to Winsorize a batch of
numbers.

Recall that when computing the 10% trimmed mean, you remove the smallest 10%
of the observations. Winsorizing the observations by 10% simply means that rather
than remove the smallest 10%, their values are set equal to the smallest value not
trimmed when computing the 10% trimmed mean. Simultaneously, the largest 10%
are reset to the largest value not trimmed. In a similar manner, 20% Winsorizing
means that the smallest 20% of the observations are pulled up to the smallest value
not trimmed when computing the 20% trimmed mean, and the largest 20% are pulled
down to the largest value not trimmed. The Winsorized mean is just the average of the
Winsorized values, which is labeled X̄w. The finite-sample breakdown point of the
20% Winsorized mean is .2, the same as the 20% trimmed mean. More generally,
the finite-sample breakdown point of the γ -Winsorized mean is γ .

EXAMPLE. Consider again the 10 values

37, 14, 26, 17, 21, 43, 25, 6, 9, 11.

Because n = 10, with 10% trimming g = [.1(10)] = 1, meaning that the smallest
and largest observations are removed when computing the 10% trimmed mean.
The smallest value is 6, and the smallest value not removed when computing the
10% trimmed mean is 9. So 10% Winsorization of these values means that the
value 6 is reset to the value 9. In a similar manner, the largest observation, 43, is
pulled down to the next largest value, 37. So 10% Winsorization of the values
yields

37, 14, 26, 17, 21, 37, 25, 9, 9, 11.

The 10% Winsorized mean is just the average of the Winsorized values:

X̄w = 37 + 14 + 26 + 17 + 21 + 37 + 25 + 9 + 9 + 11
10

= 20.6.

■
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EXAMPLE. To compute a 20% Winsorized mean using the values in the
previous example, first note that when computing the 20% trimmed mean,
g = [.2(10)] = 2, so the two smallest values, 6 and 9, would be removed and
the smallest value not trimmed is 11. Thus, Winsorizing the values means that
the values 6 and 9 become 11. Similarly, when computing the 20% trimmed
mean, the largest value not trimmed is 26, so Winsorizing means that the two
largest values become 26. Consequently, 20% Winsorization of the data yields

26, 14, 26, 17, 21, 26, 25, 11, 11, 11.

The 20% Winsorized mean is X̄w = 18.8, the average of the Winsorized
values. ■

Here is a general description of the Winsorized mean using a common notation.
To compute a γ -Winsorized mean, first compute g as was done when computing
a γ -trimmed mean. That is, g is γ n rounded down to the nearest integer. The
γ -Winsorized mean is

X̄w = 1
n
{( g + 1)X( g+1) + X( g+2) + · · · + X(n−g−1) + ( g + 1)X(n−g)}. (3.6)

3.2.7 S-PLUS Function winmean

S-PLUS does not have a built-in function for computing the Winsorized mean, so one
has been provided in the library of S-PLUS functions written especially for this book.
(These functions can be obtained as described in the Section 1.2.) The function has
the form

winmean(x,tr=.2),

where tr now indicates the amount of Winsorizing, which defaults to .2. So if the
values 2, 6, 8, 12, 23, 45, 56, 65, 72 are stored in the S-PLUS variable x, the com-
mand winmean(x) returns 31.78, which is the 20% Winsorized mean. The command
winmean(x,0) returns the sample mean, 32.11.

3.2.8 M-Estimators

So-called M-estimators provide yet another class of measures of location that have
practical value. To provide some intuitive sense of M-estimators, imagine a game
where someone has written down five numbers and two contestants are asked to pick
a number that is close to all five without knowing what the five numbers happen
to be. Further, suppose that the first contestant picks the number 22 and that the five
numbers written down are

46, 18, 36, 23, 9.

We can measure how close 22 is to the first value simply by taking the absolute value
of their difference: |46 − 22| = 24. In a similar manner, the accuracy of the first
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contestant’s guess compared to the second number is |18 − 22| = 4. To get an
overall measure of accuracy for the first contestant’s guess, we might use the sum of
the absolute errors associated with each of the five values:

|46 − 22| + |18 − 22| + |36 − 22| + |23 − 22| + |9 − 22| = 56.

If the second contestant guessed 28, we can measure her overall accuracy in a similar
manner:

|46 − 28| + |18 − 28| + |36 − 28| + |23 − 28| + |9 − 28| = 60.

So based on our criterion of the sum of the absolute differences, contestant 1 is
generally more accurate.

Now consider what happens if instead of absolute values, we use squared differ-
ences to measure accuracy. So for the first contestant, the accuracy relative to the
first number written down is (46 − 22)2 = 576, and the overall accuracy is

(46 − 22)2 + (18 − 22)2 + (36 − 22)2 + (23 − 22)2 + (9 − 22)2 = 958.

As for the second contestant, we get

(46 − 28)2 + (18 − 28)2 + (36 − 28)2 + (23 − 28)2 + (9 − 28)2 = 874.

Now the overall accuracy of the second contestant is judged to be better, in contrast
to the situation where absolute differences were used. That is, the choice of a winner
can change depending on whether we use squared error or absolute error.

Generalizing, let c be any number and suppose we measure its closeness to the five
values under consideration with

∑
|Xi − c| = |46 − c| + |18 − c| + |36 − c| + |23 − c| + |9 − c|.

A value for c that is closest based on this criterion is the median, M = 23. In our
contest, if one of the contestants had picked the value 23, they could not be beat by
the other contestant, provided we use the sum of the absolute differences to measure
closeness. But if we use squared differences instead,

∑
(Xi − c)2 = (46 − c)2 + (18 − c)2 + (36 − c)2 + (23 − c)2 + (9 − c)2,

the optimal choice for c is the sample mean, X̄ = 26.4.
Generalizing even further, if for any n values X1, . . . , Xn we want to choose c

so that it minimizes the sum of squared errors,
∑

(Xi − c)2 = (X1 − c)2 + (X2 − c)2 + · · · + (Xn − c)2, (3.7)

it can be shown that it must be the case that

(X1 − c) + (X2 − c) + · · · + (Xn − c) = 0. (3.8)

From this last equation it can be seen that c = X̄. That is, when we choose a measure
of location based on minimizing the sum of the squared errors given by Equation
(3.7), which is an example of what is called the least squares principle, this leads to using



3.2 ■ Measures of Location 67

the sample mean. But if we measure how close c is to the n values using the sum of
the absolute differences, the sample median M minimizes this sum.

We can state this result in a more formal manner as follows. The sign of a number
is −1, 0, or 1, depending on whether the number is less than, equal to, or greater
than zero. So the sign of −6 is −1 and 10 has a sign of 1. A common abbreviation
for the sign of a number is simply sign(X). So for any constant c, sign(X − c) is equal
to −1, 0, or 1, depending on whether the value X is less than c, equal to c, or greater
than c, respectively. If, for instance, c = 10, sign(12 − c) = 1. It can be shown that if
we want to choose c so as to minimize∑

|Xi − c| = |X1 − c| + |X2 − c| + · · · + |Xn − c|, (3.9)

then it must be that

sign(X1 − c) + sign(X2 − c) + · · · + sign(Xn − c) = 0, (3.10)

and the sample median satisfies this last equation.
Here is the point: There are infinitely many ways of measuring closeness that lead

to reasonable measures of location. For example, one might measure closeness using
the absolute difference between an observation and c raised to some power, say, a.
(That is, use |X − c|a.) Setting a = 1 leads to the median, as just explained, and
a = 2 results in the mean. In 1844, the Cambridge mathematician R. L. Ellis pointed
out that an even broader class of functions might be used. (See Hald, 1998, p. 496.)
Ellis noted that for any function � having the property �(−x) = −�(x), we get a
reasonable measure of location, provided the probability curve is symmetric, if we
choose c so that it satisfies

�(X1 − c) + �(X2 − c) + · · · + �(Xn − c) = 0. (3.11)

(For some choices for �, reasonable measures of location require special treatment
when distributions are skewed, as is explained in Section 3.5.) Measures of location
based on this last equation are called M-estimators, a modern treatment of which was
first made by Huber (1964). For example, if we take �(x) = x, in which case
�(X − c) = X − c, we get the mean, and �(x) = sign(x) leads to the median. Said
another way, it is arbitrary how we measure closeness, and because different measures
of closeness lead to different measures of location, there is the obvious dilemma of
deciding which measure of closeness to use. Chapter 4 will begin to address this
problem. For now it is merely remarked that two additional choices for � will be
seen to have practical value. The first is Huber’s �, where �(x) = x, provided
|x| < K, with K some constant to be determined. (For reasons explained in Chapter
4, a good choice for general use is K = 1.28.) If x < −K, then �(x) = −K; if X > K,
then �(x) = K. (A technical detail is being ignored at this point but is addressed
in Section 3.5.) Said another way, Huber’s � is like the � corresponding to least
squares, provided an observation is not too far from zero. The constant K is chosen
so as to deal with certain practical issues, but the details are best postponed for now.

Another well-studied choice for� is the so-called biweight, where�(x) = x(1 − x2)
if |x| ≤ 1, otherwise�(x) = 0. InSection3.5weseethat thebiweighthasaseriousprac-
tical problem when estimating location, but it has practical value for some other goals
thatwill be discussed. Figure 3.1 shows a graphof the four choices for� just discussed.
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Mean

−2 −1 0 1 2

Huber

−2 −1 0 1 2

Median

−2 −1 0 1 2

Biweight

−1.0 −0.5 0.0 0.5 1.0

FIGURE 3.1 Examples of � functions that have been considered in
connection with M-estimators of location.

There remains the problem of how to compute an M-estimator of location once
we have data. But before addressing this issue, we need some results in Section 3.3.

3.2.9 Other Measures of Location

The list of measures of location already covered is far from exhaustive, but it covers
the measures that form the heart of this book. However, for completeness, some
other classes of location estimators are mentioned. One consists of what are called
R-estimators, which includes the so-called Hodges–Lehmann estimator, as a special case. To
compute the Hodges–Lehmann estimator, first average every pair of observations.
The median of all such averages is the Hodges–Lehmann estimator. This measure
of location, as well as R-estimators in general, often have good properties when
sampling from a perfectly symmetric distribution. But for asymmetric distributions,
they can be quite unsatisfactory (e.g., Bickel & Lehmann, 1975; Huber, 1981, p. 65).
Consequently, further details are not given here. (For more details about R-estimators,
see Hettmansperger, 1984; Hettmansperger & McKean, 1998.) For a situation where
the Hodges–Lehmann estimator can be unsatisfactory even when sampling from a
symmetric distribution, see Morgenthaler and Tukey (1991, p. 15.)

L-estimators form yet another class of estimators that include the sample mean and
trimmed means as special cases. L-estimators are like weighted means, only the
weights are applied to the observed values after putting them in order. In formal
terms, an L-estimator is

w1X(1) + w2X(2) + · · · + wnX(n),

where, as in Section 3.2.3, w1, . . . , wn are constants chosen to achieve some desired
goal.

For an extensive list of location estimators, and how they compare, see Andrews
et al. (1972). Morgenthaler and Tukey (1991) describe yet another interesting class
of estimators, but currently they can be difficult to compute.
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3.3 Measures of Variation or Scale

As is evident, not all people are alike — they respond differently to similar conditions.
If we ask 15 people to rate the job the president is doing on a 10-point scale, some
might give a rating of 1 or 2, and others might give a rating of 9 or 10. There is
variation among their ratings. In many ways, it is variation that provides the impetus
for sophisticated statistical techniques.

For example, suppose all adults would give the same rating for the president —
say, 7 — if they were polled. In statistical terms, the population mean is µ = 7
because, as is evident, if all ratings are equal to 7, the average rating will be 7. This
implies that we need sample only one adult in order to determine that the population
mean is 7. That is, with n = 1 adult, the sample mean, X̄, will be exactly equal to the
population mean. Because in reality there is variation, in general the sample mean will
not be equal to the population mean. If the population mean is µ = 7 and we poll
15 adults, we might get a sample mean of X̄ = 6.2. If we poll another 15 adults, we
might get X̄ = 7.3. We get different sample means because of the variation among the
population of adults we want to study. One common goal in statistics is finding ways
of taking into account how variation affects our ability to estimate the population
mean with the sample mean. In a similar manner, there is the issue of how well the
sample trimmed mean estimates the population trimmed mean.

To make progress, we need appropriate measures of variation, which are also called
measures of scale. Like measures of location, many measures of scale have been proposed
and studied.

3.3.1 Sample Variance

Imagine you sample 10 adults (n = 10) and ask each to rate the president; the ratings
are:

3, 9, 10, 4, 7, 8, 9, 5, 7, 8.

The sample mean is X̄ = 7, and this is your estimate of the population mean, µ. The
sample variance is

s2 =
∑

(Xi − X̄)2

n − 1
. (3.12)

In words, the sample variance is computed by subtracting the sample mean from each
observation and squaring. Then you add the results and divide by n − 1, the number
of observations minus 1. For the data at hand, the calculations can be summarized as
follows:

i Xi Xi − X̄ (Xi − X̄)2

1 3 −4 16
2 9 2 4
3 10 3 9

Continued
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i Xi Xi − X̄ (Xi − X̄)2

4 4 −3 9
5 7 0 0
6 8 1 1
7 9 2 4
8 5 −2 4
9 7 0 0

10 8 1 1∑
0 48

The sum of the observations in the last column is
∑

(Xi − X̄)2 = 48. Then, because
there are n = 10 subjects, the sample variance is

s2 = 48
10 − 1

= 5.33.

The sample variance, s2, is used to estimate the population variance σ 2, the variance
we would get if only we could poll all adults. Under random sampling (which is
formally described in Section 4.2), the sample variance gives us an increasingly more
accurate estimate of the population variance as the sample size gets large. The square
root of s2, s, is called the sample standard deviation and estimates the population standard
deviation, σ .

It is important to realize that a single unusual value can dominate the sample vari-
ance. This is one of several facts that wreaks havoc with standard statistical techniques.
To provide a glimpse of problems to come, consider the values

8,8,8,8,8,8,8,8,8,8,8.

The sample variance is s2 = 0, meaning there is no variation. If we increase the
last value to 10, the sample variance is s2 = .36. Increasing the last observation
to 12, s2 = 1.45, and increasing it to 14, s2 = 3.3. The point is, even though
there is no variation among the bulk of the observations, a single value can make the
sample variance arbitrarily large. In modern terminology, the sample variance is not
resistant, meaning roughly that a single unusual value can inflate the sample variance
and give a misleading indication of how much variation there is among the bulk of the
observations. Said more formally, the sample variance has a finite-sample breakdown
point of only 1/n. In some cases, this sensitivity to extreme values is desirable, but
for many applied problems it is not, as will be seen.

3.3.2 The Interquartile Range

Another measure of scale or dispersion that is frequently used in applied work, partic-
ularly when the goal is to detect outliers, is called the interquartile range. For a population
of individuals, let Qu and Q � be the .75 and .25 quartiles, respectively. Qu and Q �

are called the upper and lower quartiles. So the probability that an observation is less
than Q � is .25, the probability that an observation is less than Qu is .75, and the
probability that an observation is between Q � and Qu is .5. The difference between
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the upper and lower quartiles, Qu − Q �, is the population interquartile range and reflects
the variation of the middle portion of a distribution.

How should the quartiles be estimated based on data available to us? Many methods
have been proposed and compared. (See Harrell & Davis, 1982; Dielman, Lowry, &
Pfaffenberger, 1994; Parrish, 1990.) The choice of estimation method can depend
in part on how the quartiles are to be used. In this book their main use is to detect
unusually small or large values among a batch of numbers called outliers, in which case
results in Cleveland (1985), Hoaglin and Iglewicz (1987), Hyndman and Fan (1996),
Frigge, Hoaglin, and Iglewicz (1989) as well as Carling (2000) are relevant.

As usual, let X(1) ≤ · · · ≤ X(n) be the observations written in ascending order.
Then estimates of the lower quartile typically have the form

q1 = (1 − h)X( j) + hX( j+1), (3.13)

and the problem is determining appropriate choices for j and h. Among the eight
choices considered by Frigge, Hoaglin, and Iglewicz (1989) when trying to detect
outliers, the method based on the so-called ideal fourth, also known as the machine fourth,
was found to be best, where j is the integer portion of (n/4) + (5/12), meaning that j
is (n/4) + (5/12) rounded down to the nearest integer, and

h = n
4

+ 5
12

− j.

The estimate of the upper quartile is taken to be

q2 = (1 − h)X(k) + hX(k−1), (3.14)

where k = n − j + 1, in which case the interquartile range is estimated with

IQR = q2 − q1. (3.15)

EXAMPLE. Consider the values

−29.6, −20.9, −19.7, −15.4, −12.3, −8.0, −4.3, 0.8, 2.0, 6.2, 11.2, 25.0.

There are 12 observations (n = 12), so
n
4

+ 5
12

= 3.41667.

Rounding this last quantity down to the nearest integer gives j = 3, so
h = 3.416667 − 3 = .41667. Because X(3) = −19.7, the resulting estimate
of the lower quartile is

q1 = (1 − .41667)(−19.7) + .41667(−15.4) = −17.9.

In a similar manner, an estimate of the upper quartile is

q2 = (1 − .41667)(6.2) + .41667(2) = 4.45,

so the estimate of the interquartile range is

IQR = 4.45 − (−17.9) = 22.35.

■
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3.3.3 Winsorized Variance

When working with the trimmed mean, we will see that the so-called Winsorized
variance plays an important role. To compute the Winsorized variance, simply Win-
sorize the observations as was done when computing the Winsorized mean in Section
3.2.6. The Winsorized variance is just the sample variance of the Winsorized values.
Its finite-sample breakdown point is γ . So, for example, when computing a 20%
Winsorized sample variance, more than 20% of the observations must be changed in
order to make the sample Winsorized variance arbitrarily large.

3.3.4 S-PLUS Function winvar

Among the library of S-PLUS functions written for this book is

winvar(x,tr = .2),

which computes the Winsorized variance, where again tr represents the amount of
Winsorizing and defaults to .2. So if the values

12, 45, 23, 79, 19, 92, 30, 58, 132

are stored in the S-PLUS variable x, winvar(x) returns the value 937.9, which is the
20% Winsorized variance. The command winvar(x,0) returns the sample variance, s2,
which is 1596.8. Typically the Winsorized variance will be smaller than the sample
variance s2 because Winsorizing pulls in extreme values.

3.3.5 Median Absolute Deviation

Another measure of dispersion, which plays an important role when trying to detect
outliers (using a method described in Section 3.4.2) is the median absolute deviation
(MAD) statistic. To compute it, first compute the sample median, M, subtract it
from every observed value, and then take absolute values. In symbols, compute

|X1 − M|, . . . ,|Xn − M|.
The median of the n values just computed is the MAD. Its finite sample breakdown
point is .5.

EXAMPLE. Again using the values

12, 45, 23, 79, 19, 92, 30, 58, 132,

the median is M = 45, so |X1 − M| = |12 − 45| = 33 and |X2 − M| = 0.
Continuing in this manner for all nine values yields

33, 0, 22, 34, 26, 47, 15, 13, 87.

The MAD is the median of the nine values just computed: 26. ■

There is a useful and commonly employed connection between the sample standard
deviation, s, and the MAD. Recall that s is intended as an estimate of the population
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standard deviation, σ . In general, MAD does not estimate σ , but it can be shown
that when sampling from a normal distribution, MAD/.6745 estimates σ as well. In
Section 3.4.2 we will see that this suggests an approach to detecting outliers that
plays an important role in data analysis. For convenience we set

MADN = MAD
.6745

. (3.16)

Statisticians define MAD in the manner just described. S-PLUS has a built-in func-
tion called mad, but it computes MADN, not MAD. So if you wanted to compute
MAD using S-PLUS, you would use the command .6745 * mad(x). In most appli-
cations, MADN is employed, so typically you would use the S-PLUS function mad
without multiplying it by .6745.

3.3.6 Average Absolute Distance from the Median

There is a measure of dispersion closely related to MAD that is frequently employed.
Rather than take the median of the values |X1 − M|, . . . ,|Xn − M|, take the average
of these values instead. That is, use

D = 1
n

∑
|Xi − M|. (3.17)

Despite using the median, D has a finite-sample breakdown point of only 1/n. If,
for example, we increase X(n), the largest of the Xi values, M does not change, but
the difference between the largest value and the median becomes increasingly large,
which in turn can make D arbitrarily large as well.

3.3.7 Biweight Midvariance and Percentage Bend Midvariance

There are many methods for measuring the variation among a batch of numbers,
over 150 of which were compared by Lax (1985). There is little reason to list
all of them here, but some additional methods should be mentioned: the biweight
midvariance and the percentage midvariance. Recall that the Winsorized variance and
MAD measure the variation of the middle portion of your data. In contrast, both
the biweight and percentage bend midvariances make adjustments according to
whether a value is flagged as being unusually large or small. The biweight mid-
variance empirically determines whether a value is unusually large or small using
a slight modification of the outlier detection method described in Section 3.4.2.
These values are discarded and the variation among the remaining values is com-
puted. But the motivation for the remaining computational details is not remotely
obvious without delving deeper into the theory of M-estimators, so further details
regarding the derivation of these scale estimators are omitted. The percentage
bend midvariance uses a different outlier detection rule and treats outliers in a
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different manner. Computational details are described in Box 3.1. Presumably
readers will use S-PLUS to perform the computations, so detailed illustrations are
omitted.

BOX 3.1 How to Compute the Percentage Bend Midvariance

and the Biweight Midvariance

Computing the Percentage Bend Midvariance
As usual, let X1, . . . , Xn represent the observed values. Choose a value for
the finite-sample breakdown point and call it β. A good choice for general
use is .2. Set

m = [(1 − β)n + .5],
the value of (1 − β)n + .5 rounded down to the nearest integer. Let Wi =
|Xi − M|, i = 1, . . . , n, and let W(1) ≤ · · · ≤ W(n) be the Wi values written in
ascending order. Set

ω̂β = W(m),

Yi = Xi − M
ω̂β

,

ai =
{

1, if |Yi| < 1

0, if |Yi| ≥ 1,

in which case the estimated percentage bend midvariance is

ζ̂ 2
pb = nω̂2

β

∑ {�(Yi)}2

(∑
ai
)2 , (3.18)

where

�(x) = max[−1, min(1, x)].

Computing the Biweight Midvariance
Set

Yi = Xi − M
9 × MAD

,

ai =
{

1, if |Yi| < 1

0, if |Yi| ≥ 1,
(3.19)

ζ̂bimid =
√

n
√∑

ai(Xi − M)2 (1 − Y2
i
)4

|∑ ai
(
1 − Y2

i
) (

1 − 5Y2
i
) | .

The biweight midvariance is ζ̂ 2
bimid.
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The percentage bend midvariance plays a role when searching for robust analogs of
Pearson’s correlation. Such measures can be useful when trying to detect an associa-
tion between two variables, as we see in Chapter 13. Also, the most common strategy
for comparing two groups of individuals is in terms of some measure of location, as
indicated in Chapter 1. However, comparing measures of variation can be of inter-
est, in which case both the biweight and percentage midvariances can be useful, for
reasons best postponed until Chapter 8.

The finite-sample breakdown point of the percentage bend midvariance can be
controlled through the choice of a constant labeled β in Box 3.1. Setting β = .1, the
finite-sample breakdown point is approximately .1, and for β = .2 it is approximately
.2. Currently it seems that β = .2 is a good choice for general use, based on criteria
to be described. The finite-sample breakdown point of the biweight midvariance
is .5.

3.3.8 S-PLUS Functions bivar and pbvar

The S-PLUS functions

pbvar(x, beta = .2) and bivar(x)

(written for this book) compute the percentage bend midvariance and the biweight
midvariance, respectively. Storing the values

12, 45, 23, 79, 19, 92, 30, 58, 132

in the S-PLUS variable x, pbvar(x) returns the value 1527.75. If the largest value,
132, is increased to 1000, pbvar still returns the value 1527.75. If the two largest
values (92 and 132) are increased to 1000, again pbvar returns the value 1527.75.
With beta equal to .2, it essentially ignores the two largest and two smallest values
for the observations used here.

A point that cannot be stressed too strongly is that when we discard outliers,
this is not to say that they are uninteresting or uninformative. Outliers can be very
interesting, but for some goals they do more harm than good. Again, this issue is
discussed in detail after some more basic principles are covered.

For the original values used to illustrate pbvar, the S-PLUS function bivar returns
1489.4, a value very close to the percentage bend midvariance. But increasing the
largest value (132) to 1000 means bivar now returns the value 904.7. Its value
decreases because it did not consider the value 132 to be an outlier, but increas-
ing it to 1000 means pbvar considers 1000 to be an outlier and subsequently ignores
it. Increasing the value 92 to 1000 means bivar returns 739. Now bivar ignores the
two largest values because it flags both as outliers.

It is not the magnitude of the biweight midvariance that will interest us in future
chapters. Rather, the biweight midvariance plays a role when comparing groups of
individuals, and it plays a role when studying associations among variables, as we see
in Chapter 13.
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3.4 Detecting Outliers

For reasons that will become clear, detecting outliers — unusually large or small values
among a batch of numbers — can be very important. This section describes several
strategies for accomplishing this goal. The first, which is based on the sample mean
and sample variance, is frequently employed and is a rather natural strategy based on
properties of the normal curve described in Chapter 2. Unfortunately, it can be highly
unsatisfactory, for reasons illustrated in the next subsection. The other methods are
designed to correct the problem associated with the first.

3.4.1 A Natural but Unsatisfactory Method for
Detecting Outliers

Equation (2.13) described a method for detecting outliers assuming normality:
Declare a value an outlier if it is more than two standard deviations from the mean.
Here, however, consistent with a general approach to outlier detection suggested by
Rousseeuw and van Zomeren (1990), a very slight modification of this rule is used:
Declare a value an outlier if it is more than 2.24 standard deviations from the mean.
So the value X is flagged an outlier if

|X − µ|
σ

> 2.24. (3.20)

Under normality, the probability of declaring a value an outlier using Equation (3.20)
is .025.

Section 2.7 described a problem with this outlier detection rule, but another aspect
of this rule should be described and emphasized. Generally we do not know µ and
σ , but they can be estimated from data using the sample mean and sample variance.
This suggests the commonly used strategy of declaring X an outlier if

|X − X̄|
s

> 2.24. (3.21)

EXAMPLE. Consider the values

2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 1000.

The sample mean is X̄ = 65.94, the sample variance is s = 249.1,

|1000 − 65.94|
249.1

= 3.75,

3.75 is greater than 2.24, so the value 1000 is declared an outlier. As is evident,
the value 1000 is certainly unusual, and in this case our outlier detection rule
gives a reasonable result. ■
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EXAMPLE. Consider

2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 1000, 10,000.

These are the same values as in the last example, but with another outlier added.
The value 10,000 is declared an outlier using Equation (3.21). Surely 1000 is
unusual compared to the bulk of the observations, but it is not declared an
outlier. The reason is that the two outliers inflate the sample mean and especially
the sample standard deviation. Moreover, the influence of the outliers on s is
so large, the value 1000 is not declared an outlier. In particular, X̄ = 650.3,
s = 2421.4, so

|1000 − X̄|
s

= .14.

■

EXAMPLE. Now consider the values

2, 2, 3, 3, 3, 4, 4, 4, 100,000, 100,000.

It is left as an exercise to verify that the value 100,000 is not declared an outlier
using Equation (3.21), yet surely it is unusually large. ■

The last two examples illustrate the problem known as masking. Outliers inflate both
the sample mean and the sample variance, which in turn can mask their presence when
using Equation (3.21). What is needed is a rule for detecting outliers that is not itself
affected by outliers. One way of accomplishing this goal is to switch to measures of
location and scale that have a reasonably high breakdown point.

3.4.2 A Better Outlier Detection Rule

Here is a simple outlier detection rule that has received a great deal of attention.
Declare X to be an outlier if

|X − M|
MAD/.6745

> 2.24. (3.22)

When sampling from a normal curve, Equation (3.22) mimics our rule based on
Equation (3.21) because for this special case the sample median M estimates the
population mean µ, and MAD/.6745 estimates the population standard deviation σ .
An important advantage of the method is that it addresses the problem of masking
by employing measures of location and scale both of which have a breakdown point
of .5. That is, the method can handle a large number of outliers without making the
problem of masking an issue.

The use of the value 2.24 in Equation (3.22) stems from Rousseeuw and
van Zomeren (1990). It should be noted that Equation (3.22) is known as the
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Hampel identifier, but Hampel used the value 3.5 rather than 2.24. (For some refinements,
see Davies & Gather, 1993.)

EXAMPLE. Consider again the values

2, 2, 3, 3, 3, 4, 4, 4, 100,000, 100,000.

Using our rule based on the sample mean and sample variance, we saw that
the two values equal to 100,000 are not declared outliers. It can be seen that
M = 3.5, MADN = MAD/.6745 = .7413, and

100,000 − 3.5
.7413

= 134,893.4.

So in contrast to the rule based on the mean and variance, 100,000 would now
be declared an outlier. ■

3.4.3 S-PLUS Function out

An S-PLUS function

out(x)

has been supplied that detects outliers using Equation (3.22). If the values from the
last example are stored in the S-PLUS variable data, then part of the output from the
command out(data) is

$out.val:
[1] 100000 100000

$out.id:
[1] 9 10

That is, there are two values declared outliers, both equal to 100,000, and they are
the ninth and tenth observations stored in the S-PLUS variable data. (That is, the
outliers are stored in data[9] and data[10].)

3.4.4 The Boxplot

Proposed by Tukey (1977), a boxplot is a commonly used graphical summary of data
that provides yet another method for detecting outliers. The example boxplot shown
in Figure 3.2 was created with the built-in S-PLUS command boxplot. As indicated,
the ends of the rectangular box mark the lower and upper quartiles. That is, the box
indicates where the middle half of the data lie. The horizontal line inside the box
indicates the position of the median. The lines extending out from the box are called
whiskers.

The boxplot declares the value X to be an outlier if

X < q1 − 1.5(IQR) (3.23)
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FIGURE 3.2 Example of a boxplot with no outliers.

or

X > q2 + 1.5(IQR), (3.24)

where IQR is the interquartile range defined in Section 3.3.2 and q1 and q2 are
estimates of the lower and upper quartiles. To complicate matters, different software
packages use different estimates of the quartiles. S-PLUS, for example, uses j = n/4
in Equation (3.13). If n/4 is an integer, S-PLUS sets g = .5, otherwise it uses g = 0.
(A numerical summary of which points are declared outliers with the S-PLUS function
boxplot can be determined with the S-PLUS command

print(boxplot(x,plot=F)$out).

The S-PLUS command summary uses yet another method for estimating quartiles.)
Figure 3.3 shows a boxplot with two outliers. The ends of the whiskers are called

adjacent values. They are the smallest and largest values not declared outliers. Because
the interquartile range has a finite sample breakdown point of .25, it takes more than
25% of the data to be outliers before the problem of masking occurs. A breakdown
point of .25 seems to suffice in most situations, but exceptions can occur.

EXAMPLE. For the data in Table 3.2, a boxplot declares all values greater than
13.5 to be outliers. This represents 11.4% of the data. In contrast, the rule in
Section 3.4.2, based on the median and MAD, declares all values greater than or
equal to 6 to be outliers which is 27.6% of the data. This suggests that masking
might be a problem for the boxplot because the proportion of outliers using
the rule in Section 3.4.2 exceeds .25, the breakdown point of the boxplot. If we
use the sample mean and standard deviation to detect outliers, only the value
6,000 is declared an outlier. ■
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FIGURE 3.3 Boxplot with two values flagged as outliers.

3.4.5 A Modified Boxplot Rule for Detecting Outliers

A criticism of the traditional boxplot rule for detecting outliers is that the expected
proportion of numbers that are declared outliers depends on the sample size; it is
higher in situations where the sample size is small. To correct this problem, Carling
(2000) uses the following rule: Declare the value X an outlier if

X > M + k IQR (3.25)

or if

X < M − k IQR , (3.26)

where

k = 17.63n − 23.64
7.74n − 3.71

,

IQR is estimated with the ideal fourths, as described in Section 3.3.2, and, as usual,
M is the sample median. So unlike standard boxplot rules, the median plays a role in
determining whether a value is an outlier.

The choice between the outlier detection rule in Section 3.4.2 over the method
just described is not completely straightforward. The rule used here is designed so
that for normal distributions, the expected proportion of numbers declared outliers
is .04. The choice .04 is arbitrary at some level and is clouded by the problem that
the notion of outliers is vague. The extent to which this rate differs when using the
method in Section 3.4.2 has not been studied. The method used here has a breakdown
point of .25, in contrast to a breakdown point of .5 using the method in Section 3.4.2.
As previously noted, generally a breakdown point of .25 suffices, but exceptions
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can occur. Moreover, for many purposes the method in Section 3.4.2, or some slight
modification of it, has proven to have practical value in situations to be covered.

Finally, it is noted that there is a vast literature on detecting outliers. A few
additional issues will be covered in subsequent chapters. Readers interested in a
book-length treatment of this topic are referred to Barnett and Lewis (1994).

3.4.6 S-PLUS Function outbox

The S-PLUS function

outbox(x,mbox=F,gval=NA)

checks for outliers using one of two methods. With mbox=F, it uses the rule given
by Equations (3.23) and (3.24), but unlike S-PLUS, quartiles are estimated with the
ideal fourths. The argument gval corresponds to the constant 1.5 in Equations (3.23)
and (3.24). Using gval=2, for example, causes this constant to be changed to 2.
Setting mbox=T, outliers are detected using the method in the previous subsection.

EXAMPLE. For the data in Table 3.2, values greater than or equal to 13 are
declared outliers with the S-PLUS function outbox with mbox=T. So in this
particular case, the values declared outliers are the same as those using the
built-in S-PLUS function boxplot. But with mbox=F, 13 is no longer declared
an outlier. Situations also arise where a value is declared an outlier with mbox=F
but not when mbox=T. ■

3.5 Computing an M-Estimator of Location

Section 3.2.8 introduced the notion of an M-estimator based on Huber’s �, but
no details were given on how it is computed. This is because we needed first to
describe some measures of scale plus some outlier detection rules in order to address
an important technical issue.

For any measure of location, it should be the case that if we multiply all observed
values by some constant b, the measure of location should be multiplied by b as well.
Such measures of location are said to be scale equivariant. For example, if the weights
of five children are measured in pounds and found to be 65, 55, 72, 80, and 70, the
sample mean is 68.4. So if we convert to kilograms by dividing each child’s weight
by 2.2, the sample mean becomes 68.4/2.2 = 31.09. That is, the sample mean is
scale equivariant. In a similar manner, the median in pounds is 70, and converting
to kilograms the median becomes 70/2.2 = 31.8. When defining an M-estimator as
described by Equation (3.11), we do not get this property automatically when using
Huber’s � or the biweight. However, there is a simple method for addressing this
problem: Include a measure of scale in Equation (3.11). It can be shown that if we
use Huber’s � plus a measure of scale that has a high finite-sample breakdown point,
the resulting M-estimator will have the same breakdown point as the measure of
scale. So if we use MAD as our measure of scale, which has a breakdown point of .5,
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the resulting M-estimator, still using Huber’s �, will be .5 as well. In this case,
Equation (3.11) becomes

�

(
X1 − c
MAD

)
+ · · · + �

(
Xn − c
MAD

)
= 0, (3.27)

where, as before, c is our measure of location.
An explicit equation for computing c once we have observations cannot be derived,

but there are two simple and effective methods for dealing with this problem. One of
these is to use a particular iterative technique for determining c that is easily applied on
a computer. The second is to use a single step in this iterative method that inherits the
positive features of M-estimators. The latter strategy is called a one-step M-estimator,
and the resulting estimate of the measure of location is computed as follows. Let i1
be the number of observations Xi for which (Xi − M)/MADN < −K, and let i2
be the number of observations such that (Xi − M)/MADN > K, where typically
K = 1.28 is used (for reasons that are difficult to explain until concepts in Chapter 4
are covered). The one-step M-estimator of location (based on Huber’s �) is

µ̂os = K(MADN)(i2 − i1) +∑n−i2
i=i1+1 X(i)

n − i1 − i2
. (3.28)

This one-step M-estimator almost uses the following strategy: Determine which
values are outliers using the method in Section 3.4.2, except that Equation (3.22) is
replaced by

|X − M|
MAD/.6745

> K. (3.29)

Next, remove the values flagged as outliers and average the values that remain. But for
technical reasons, the one-step M-estimator makes an adjustment based on MADN,
a measure of scale plus the number of outliers above and below the median.

EXAMPLE. Computing a one-step M-estimator (with K = 1.28) is illustrated
with the following (n = 19) observations:

77 87 88 114 151 210 219 246 253 262

296 299 306 376 428 515 666 1310 2611.

It can be seen that M = 262 and that MADN = MAD/.6745 = 169. If for each
observed value we subtract the median and divide by MADN we get

−1.09 − 1.04 −1.035 −0.88 −0.66 −0.31 −0.25 −0.095 −0.05

0.00 0.20 0.22 0.26 0.67 0.98 1.50 2.39 6.2 13.90

Continued
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EXAMPLE. (Continued ) So there are four values larger than the median that are
declared outliers: 515, 666, 1310, 2611. That is, i2 = 4. No values less than
the median are declared outliers, so i1 = 0. The sum of the values not declared
outliers is

77 + 87 + · · · + 428 = 3411.

So the value of the one-step M-estimator is

1.28(169)(4 − 0) + 3411
19 − 0 − 4

= 285.

■

3.5.1 S-PLUS Function onestep

The S-PLUS function

onestep(x,bend=1.28)

computes a one-step M-estimator with Huber’s �. The second argument, bend,
corresponds to the constant K in Equation (3.28) and defaults to 1.28. If, for example,
the data in Table 3.2 are stored in the S-PLUS variable sexm, onestep(sexm) returns
the value 2.52.

3.5.2 A Modified One-Step M-Estimator

The one-step M-estimator has desirable theoretical properties, but when sample sizes
are small, problems can arise when comparing groups using the methods covered in
subsequent chapters. This section describes a simple modification of the one-step
M-estimator given by Equation (3.28). The modification consists of dropping the
term containing MADN. That is, use

µ̂mom =
∑n−i2

i=i1+1 X(i)

n − i1 − i2
(3.30)

as a measure of location, where now K = 2.24 is used to determine i1 and i2. In effect,
use Equation (3.22) to detect outliers, discard any outliers that are found, and then
use the mean of the remaining values. The finite-sample breakdown point is .5. This
modified one-step M-estimator, MOM, is very similar to what are known as skipped
estimators, which were studied by Andrews et al. (1972). (Skipped estimators use a
boxplot rule to detect outliers rather than the median and MAD.) Initially, technical
problems precluded skipped estimators from being used to compare groups of indi-
viduals, but recent advances have made MOM a viable measure of location. Note
that MOM introduces a certain amount of flexibility versus using trimmed means.
For example, MOM might discard zero observations. Moreover, if a distribution is



84 Chapter 3 ■ Summariz ing Data

heavy-tailed and highly skewed to the right, it might be desirable to trim more obser-
vations from the right tail versus the left, and MOM contains the possibility of doing
this. (The relative merits of MOM versus M-estimators are discussed in subsequent
chapters.)

It might help to summarize a fundamental difference among trimmed means,
M-estimators, and MOM (or more generally the class of skipped estimators). Each
represents a different approach to measuring location. Trimmed means discard a fixed
proportion of large and small observations. MOM, and skipped estimators in general,
empirically determine how many observations are to be trimmed and includes the
possibility of different amounts of trimming in the tails as well as no trimming at
all. M-estimators are based on how we measure the overall distance between some
measure of location and the observations. Huber’s measure of distance leads to the
one-step M-estimator given by Equation (3.28), which has certain similarities to
MOM, but unlike MOM, an adjustment is made based on a measure of scale when
the amount of trimming in the left tail differs from the amount in the right.

3.5.3 S-PLUS Function mom

The S-PLUS function

mom(x,bend=2.24)

computes the modified one-step M-estimator just described. As a brief illustration,
consider again the data used in the last example. It can be seen that according
to Equation (3.22), the three largest values (666, 1310, and 2611) are outliers.
Discarding them and averaging the remaining values yields 245.4, which is the value
returned by mom. So in contrast to the 20% trimmed mean, none of the lower values
are discarded.

3.6 Histograms

Two additional graphical tools for summarizing data should be mentioned. One of
these is the histogram; the other is a so-called kernel density estimator, which is described
in the next section.

A histogram is illustrated with data from a heart transplant study conducted at
Stanford University between October 1, 1967, and April 1, 1974. Of primary concern
is whether a transplanted heart will be rejected by the recipient. With the goal of trying
to address this issue, a so-called T5 mismatch score was developed by Dr. C. Bieber.
It measures the degree of dissimilarity between the donor and the recipient tissue
with respect to HL-A antigens. Scores less than 1 represent a good match, and scores
greater than 1 a poor match. Of course, of particular interest is how well a T5 score
predicts rejection, but this must wait for now. The T5 scores, written in ascending
order, are shown in Table 3.3 and are taken from R. G. Miller (1976).

A histogram simply groups the data into categories and plots the corresponding
frequencies. To illustrate the basic idea, we group the T5 values into eight categories:
(1) values between −0.5 and 0.0, (2) values greater than 0.0 but less than or equal
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TABLE 3.3 T5 Mismatch Scores from a Heart Transplant Study

0.00 0.12 0.16 0.19 0.33 0.36 0.38 0.46 0.47 0.60 0.61 0.61 0.66

0.67 0.68 0.69 0.75 0.77 0.81 0.81 0.82 0.87 0.87 0.87 0.91 0.96

0.97 0.98 0.98 1.02 1.06 1.08 1.08 1.11 1.12 1.12 1.13 1.20 1.20

1.32 1.33 1.35 1.38 1.38 1.41 1.44 1.46 1.51 1.58 1.62 1.66 1.68

1.68 1.70 1.78 1.82 1.89 1.93 1.94 2.05 2.09 2.16 2.25 2.76 3.05

TABLE 3.4 Frequencies and Relative Frequencies for Grouped
T5 scores, n = 65

Test Relative

score (x) Frequency frequency

−0.5–0.0 1 1/65 = .015

0.0–0.5 8 8/65 = .123

0.5–1.0 20 20/65 = .308

1.0–1.5 18 18/65 = .277

1.5–2.0 12 12/65 = .138

2.0–2.5 4 4/65 = .062

2.5–3.0 1 1/65 = .015

3.0–3.5 1 1/65 = .015

to 0.5, (3) values greater than 0.5 but less than or equal to 1.0, and so on. The
frequency and relative frequency associated with each of these intervals is shown in
Table 3.4. For example, there are eight T5 mismatch scores in the interval extending
from 0.0 to 0.5, and the proportion of all scores belonging to this interval is .123.

Figure 3.4 shows the histogram for the T5 scores that was created with the built-in
S-PLUS function hist. Notice that the base of the leftmost shaded rectangle extends
from 0 to 0.5 and has a height of 9. This means that there are nine cases where a T5
score has a value between 0 and 0.5. The base of the next shaded rectangle extends
from 0.5 to 1 and has a height of 20. This means that there are 20 T5 scores having
a value between 0.5 and 1. The base of the next rectangle extends from 1 to 1.5 and
has a height of 18, so there are 18 T5 scores between 1 and 1.5.

3.7 Kernel Density Estimators

As indicated in Section 2.6, probabilities associated with continuous variables are
determined by the area under a curve called a probability density function. The equation
for this curve is typically labeled f(x). An example is Equation (2.10), which gives the
equation for the probability density function of the normal distribution. For some
purposes to be covered, it is useful to have an estimate of f(x) (the equation for the
probability density function) based on observations we make. A histogram provides
a crude estimate, but for various reasons it can be unsatisfactory (e.g., Silverman,
1986, pp. 9–11).
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FIGURE 3.4 Example of a histogram.

Another seemingly natural but unsatisfactory approach to estimating the proba-
bility density function is to assume observations are sampled from a normal curve
and replace the population mean and variance (µ and σ 2) in Equation (2.10) with the
sample mean and variance (X̄ and s2). But this approach can be highly unsatisfactory,
even when sampling from a perfectly symmetric distribution. To understand why,
assume we are sampling from a mixed normal and that we happen to get an exact
estimate of the population mean and variance. The dotted curve in Figure 2.9 is the
probability density function being estimated, and the normal curve in Figure 2.9 is
the estimate of the mixed normal following the strategy just indicated. As is evident,
there is a substantial difference between the two curves, indicating that we get a poor
estimate.

For some purposes we get a much more effective estimate using what is called a
kernel density estimator. There are many variations of kernel density estimators (Silverman,
1986), but only one is used here. It is based on what is called Rosenblatt’s shifted histogram
and employs results derived by D. W. Scott (1979) as well as Freedman and Diaconis
(1981). In particular, to estimate f(x) for any x, set

h = 1.2(IQR)

n1/5
,

where IQR is the interquartile range. Let A be the number of observations less than
or equal to x + h. Let B be the number of observations strictly less than x − h. Then
the estimate of f(x) is

f̂(x) = A − B
2nh

.
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A numerical illustration is not given because presumably readers will use the S-PLUS
function described in the next subsection.

3.7.1 S-PLUS Function kdplot

The S-PLUS function kdplot estimates the probability density function f(x) for a
range of x values, using the kernel density estimator just described, and then plots
the results. (The interquartile range is estimated with the S-PLUS built-in function
summary.) It has the form

kdplot(data,rval=15),

where data is any S-PLUS variable containing data. By default, the function begins by
estimating f(x) at 15 values spread over the range of observed values. For example, if
the data consist of values ranging between 2 and 36, kdplot picks 15 values between
2 and 36, estimates f(x) at these points, and then plots the results. For very large
sample sizes (n ≥ 500) it might help to plot f(x) at 20 or 25 values instead. This can be
accomplished with the second argument. For example, rval=25 will plot an estimate
of f(x) at 25 x values evenly spaced between the smallest and largest of the observed
values. For small and even moderate sample sizes, rval=15 or smaller gives a better
(less ragged) estimate of the probability density function in most cases. For small
sample sizes (n < 40), kdplot can be rather unrevealing. Figure 3.5 shows an estimate
of the probability density function associated with the T5 mismatch scores in Table
3.3 based on the S-PLUS function kdplot (with the argument rval set equal to 10).

For another approach to estimating f(x), readers might consider the built-in
S-PLUS function density. The S-PLUS command plot(density(x)) plots an estimate
of f(x) using the data in the S-PLUS variable x.

x
0.5 1.0 1.5 2.0 2.5

0.
1

0.
2

0.
3

0.
4

0.
5

FIGURE 3.5 A kernel density estimate of the distribution of T5 mismatch scores.
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TABLE 3.5 Word Identification Scores

58 58 58 58 58 64 64 68 72 72 72 75 75 77 77 79 80

82 82 82 82 82 84 84 85 85 90 91 91 92 93 93 93 95

95 95 95 95 95 95 95 98 98 99 101 101 101 102 102 102 102

102 103 104 104 104 104 104 105 105 105 105 105 107 108 108 110 111

112 114 119 122 122 125 125 125 127 129 129 132 134

3.8 Stem-and-Leaf Displays

A stem-and-leaf display is another method of gaining some overall sense of what
data are like. The method is illustrated with measures taken from a study aimed at
understanding how children acquire reading skills. A portion of the study was based
on a measure that reflects the ability of children to identify words.1 Table 3.5 lists the
observed scores in ascending order.

The construction of a stem-and-leaf display begins by separating each value into
two components. The first is the leaf, which in this example is the number in the 1s
position (the single digit just to the left of the decimal place). For example, the leaf
corresponding to the value 58 is 8. The leaf for the value 64 is 4, and the leaf for 125
is 5. The digits to the left of the leaf are called the stem. Here the stem of 58 is 5, the
number to the left of 8. Similarly, 64 has a stem of 6 and 125 has a stem of 12. We
can display the results for all 81 children as follows:

Stems Leaves
5 88888
6 448
7 22255779
8 0222224455
9 011233355555555889

10 1112222234444455555788
11 01249
12 22555799
13 24

There are five children who have the score 58, so there are five scores with a leaf of 8,
and this is reflected by the five 8s displayed to the right of the stem 5, in the Leaves
column. Two children got the score 64, and one child got the score 68. That is, for
the stem 6, there are two leaves equal to 4 and one equal to 8, as indicated by the list
of leaves in the display. Now look at the third row of numbers, where the stem is 7.
The leaves listed are 2, 2, 2, 5, 5, 7, 7, and 9. This indicates that the value 72 occurred
three times, the value 75 occurred two times, as did the value 77, and the value 79
occurred once. Notice that the display of the leaves gives us some indication of the

1 These data were supplied by L. Doi.
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values that occur most frequently and which are relatively rare. Like the histogram,
the stem-and-leaf display gives us an overall sense of what the values are like.

The choice of which digit is to be used as the leaf depends in part on which digit
provides a useful graphical summary of the data. But details about how to address this
problem are not covered here. Suffice it to say that algorithms have been proposed
for deciding which digit should be used as the leaf and determining how many lines a
stem-and-leaf display should have (e.g., Emerson & Hoaglin, 1983). Here we merely
note that S-PLUS has a built-in function for computing a stem-and-leaf display that
has the form

stem(x),

where, as usual, x now represents any S-PLUS variable containing data. For the T5
mismatch scores, the stem-and-leaf display created by S-PLUS is

Decimal point is at the colon

0 : z122344
0 : 556667777788889999
1 : 000001111111223334444
1 : 5566777788999
2 : 0122
2 : 8
3 : 0

The z in the first row stands for zero. This function also reports the median and
the quartiles.

3.9 Exercises

1. For the observations

21, 36, 42, 24, 25, 36, 35, 49, 32

verify that the sample mean, trimmed mean, and median are X̄ = 33.33,
X̄t = 32.9, and M = 35.

2. The largest observation in Exercise 1 is 49. If 49 is replaced by the value
200, verify that the sample mean is now X̄ = 50.1 but the trimmed mean and
median are not changed. What does this illustrate about the resistance of the
sample mean?

3. For the data in Exercise 1, what is the minimum number of observations that
must be altered so that the 20% trimmed mean is greater than 1000?

4. Repeat the previous problem but use the median instead. What does this
illustrate about the resistance of the mean, median, and trimmed mean?

5. For the observations

6, 3, 2, 7, 6, 5, 8, 9, 8, 11

verify that the sample mean, trimmed mean, and median are X̄ = 6.5, X̄t = 6.7,
and M = 6.5.
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6. A class of fourth-graders was asked to bring a pumpkin to school. Each of the
29 students counted the number of seeds in his or her pumpkin and the results
were

250, 220, 281, 247, 230, 209, 240, 160, 370, 274,
210, 204, 243, 251, 190, 200, 130, 150, 177, 475,
221, 350, 224, 163, 272, 236, 200, 171, 98.

(These data were supplied by Mrs. Capps at the La Cañada Elementary School,
La Cañada, CA.) Verify that the sample mean, trimmed mean, and median are
X̄ = 229.2, X̄t = 220.8, and M = 221.

7. Suppose health inspectors rate sanitation conditions at restaurants on a five-
point scale, where a 1 indicates poor conditions and a 5 is excellent. Based on
a sample of restaurants in a large city, the frequencies are found to be f1 = 5,
f2 = 8, f3 = 20, f4 = 32, and f5 = 23. What is the sample size, n? Verify that
the sample mean is X̄ = 3.7.

8. For the frequencies f1 = 12, f2 = 18, f3 = 15, f4 = 10, f5 = 8, and f6 = 5,
verify that the sample mean is 3.

9. For the observations

21, 36, 42, 24, 25, 36, 35, 49, 32

verify that the sample variance and the sample Winsorized variance are s2 = 81
and s2w = 51.4, respectively.

10. In Exercise 9, what is your estimate of the standard deviation, σ?
11. In general, will the Winsorized sample variance, s2w, be less than the sample

variance, s2?
12. Among a sample of 25 subjects, what is the minimum number of subjects that

must be altered to make the sample variance arbitrarily large?
13. Repeat Exercise 12 but for s2w instead. Assume 20% Winsorization.
14. For the observations

6, 3, 2, 7, 6, 5, 8, 9, 8, 11

verify that the sample variance and Winsorized variance are 7.4 and 1.8,
respectively.

15. For the data in Exercise 6, verify that the sample variance is 5584.9 and the
Winsorized sample variance is 1375.6.

16. For the data in Exercise 14, determine the ideal fourths and the corresponding
interquartile range.

17. For the data in Exercise 6, which values would be declared outliers using the
rule based on MAD?

18. Referring to the description of the population variance, σ 2, devise a method
of estimating σ 2 based on the frequencies, fx.

19. Referring to Exercise 18, and using the data in Exercise 7, estimate σ , the
population standard deviation.

20. For a sample of n subjects, the relative frequencies are f0/n = .2, f1/n = .4,
f2/n = .2, f3/n = .15, and f4/n = .05. The sample mean is 1.45. Using your
answer to Exercise 18, verify that the sample variance is 1.25.
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21. Snedecor and Cochran (1967) report results from an experiment on weight
gain in rats as a function of source of protein and levels of protein. One of the
groups was fed beef with a low amount of protein. The weight gains were

90, 76, 90, 64, 86, 51, 72, 90, 95, 78.

Verify that there are no outliers among these values when using a boxplot but
that there is an outlier using Equation (3.22).

22. For the values 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 there are no outliers. If you
increase 10 to 20, then 20 would be declared an outlier by a boxplot. If the
value 9 is also increased to 20, would the boxplot find two outliers? If the value
8 is also increased to 20, would the boxplot find all three outliers?

23. Use the results of the last problem to come up with a general rule about how
many outliers a boxplot can detect.

24. For the data in Table 3.3, verify that the value 3.05 is an outlier, based on a
boxplot.

25. Figure 3.6 shows a boxplot of data from a reading study where the general goal
was to find predictors of reading ability in children. What, approximately, are
the lower and upper quartiles and the interquartile range? How large or small
would an observation have to be in order to be declared an outlier?

26. Under normality, it can be shown that (n − 1)s2/σ 2 has a chi-squared distri-
bution with n − 1 degrees of freedom. If n = 11 and σ 2 = 100, use Table 3 in
Appendix B to determine P(s2 > 159.8).

27. A researcher claims that for a certain population of adults, cholesterol levels
have a normal distribution with σ 2 = 10. If you randomly sample 21
individuals, verify that P(s2 ≤ 14.2) = .9.

10
00

15
00

20
00

FIGURE 3.6 Boxplot of reading study data.



4
SAMPLING DISTRIBUTIONS
AND CONFIDENCE
INTERVALS

Understanding and appreciating modern statistical methods requires, among other
things, a close look at the notion of a sampling distribution. We begin with the basics
typically covered in an introductory course and then take up issues that explain why
contemporary statistical techniques have practical value. This chapter also introduces
the notion of a confidence interval, but important practical issues not typically covered
in an introductory course are described.

4.1 Basics

To illustrate the notion of a sampling distribution in a concrete manner, imagine you are
interested in the health risks associated with ozone in the atmosphere and that one
of your concerns is how ozone affects weight gain in infants. Obviously you cannot
experiment on human infants, so suppose you conduct an experiment where 22 rats
are exposed to an ozone environment and their average weight gain is X̄ = 11 grams.
Now imagine that another team of researchers repeats your experiment with a new
sample of 22 rats. Of course their sample mean will probably differ from yours; they
might get X̄ = 16. In a similar manner, a third team of researchers might get X̄ = 9.
If infinitely many teams of researchers could repeat your experiment, then we would
know what is called the sampling distribution of the sample mean. In particular, we would
know the probability that the sample mean is less than 1, less than 10, or less than c
for any constant c we might pick.

Being able to approximate the sampling distribution of the sample mean allows us
to address a problem of fundamental importance. There are millions of rats that could
have been used in your experiment. How well does the sample mean (X̄) estimate
the population mean (µ), the average weight gain you would observe if all living rats
took part in this experiment? Based on your data, can you be reasonably certain that
the population mean has a value close to the sample mean? Can you be reasonably
certain that the population mean is less than 30 or less than 20? Can you be reasonably

93
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certain that it is greater than 1? If we can get a good approximation of the sampling
distribution of the sample mean, we can answer these questions.

Sampling distributions also provide a perspective on how different location estima-
tors compare to one another. That is, they provide both a graphical and a numerical
summary of how the accuracy of the sample mean, for example, compares to the accu-
racy of the sample median, trimmed mean, or MOM estimate of location. Section
4.3 covers this important topic and provides results that begin to reveal the relative
merits of the location estimators described in Section 3.2.

The conventional method for approximating the sampling distribution of the
sample mean was derived by Laplace nearly 200 years ago. Laplace’s strategy, which
forms the foundation of many methods routinely used today, consists of several com-
ponents, each of which must be understood if we want to appreciate the advantages
of modern techniques. The immediate goal is to describe each of these components
and then to indicate how they come together in an attempt to make inferences about
the population mean. Then we will scrutinize these components and consider how
we might get better results with modern technology.

Before proceeding, it might help to outline in a bit more detail where we are going.
Continuing our illustration concerning weight gain in rats, imagine that we repeat an
experiment infinitely many times and that for each experiment we sample 22 rats and
compute the sample mean. Then there will be some average value for these infinitely
many sample means. In formal terms, this average is written as E(X̄), the expected
value of the sample mean. Simultaneously, there will be variation among the sample
means, and we can measure this variation in terms of the expected squared difference
between the sample mean and the population mean. That is, we use a strategy similar
to how the population variance was defined, only rather than use the average squared
distance of a single observation from the mean, we now focus on the average squared
distance between the sample mean and the population mean. In formal terms, we use

E(X̄ − µ)2,

which is called the expected squared error of the sample mean.
Notice that the expected squared error of the sample mean reflects how close

the sample mean tends to be to the population mean. That is, it provides a crude
indication of whether the sample mean tends to be an accurate estimate of µ. If the
sample mean is always identical to the population mean, then the expected squared
error of the sample mean is zero. But if situations arise where the sample mean
provides a poor estimate of the population mean, the expected squared error of the
sample mean will be large.

Now, our immediate goal is to approximate the distribution of the sample
means without actually repeating our experiment infinitely many times. Recall from
Chapter 2 that if we assume normality, probabilities are determined exactly once we
know the mean and variance. So if we assume that a plot of infinitely many sample
means would be a normal curve, then we would know the distribution of the sample
mean if we could determine its mean (E(X̄)) and variance (VAR(X̄)). Laplace realized
that these quantities can be determined if we assume random sampling, which is
formally described in the next section.



4.2 ■ Random Sampling 95

A comment should be made about the normality assumption. We have seen indica-
tions that nonnormality is a practical concern. Under what conditions can normality
be assumed when trying to approximate the plot of infinitely many sample means?
There are two that are important here. The first is that if we (randomly) sample obser-
vations from a normal curve, then the sample mean will have a normal distribution
as well. In the event sampling is not from a normal curve, Laplace appealed to his
central limit theorem, which is formally introduced in Section 4.6. There are indeed
situations where this latter strategy provides reasonably accurate results, but it can
fail miserably, as we shall see.

4.2 Random Sampling

We need to be more formal about the notion of random sampling in order to under-
stand why some strategies for dealing with nonnormality are theoretically unsound.
Random sampling means that the observations available to us satisfy two conditions:
(1) They are identically distributed, and (2) they are independent. (This is sometimes
called simple random sampling to distinguish it from other types of sampling strategies
not covered in this book.) Two measures are identically distributed if they have the
same probability function. For continuous variables this means that for any constant c
we might pick, the probability that an observation is less than c is the same regardless
of which measure we use. So, for example, if X1 is the first rat in our experiment on
the effects of ozone on weight gain, there is a certain probability that this rat will gain
14 grams or less during the course of the experiment. Of course, there is some cor-
responding probability for the second rat, X2. If these two probabilities are the same
and in fact P(X1 < c) = P(X2 < c) for any c we might pick, then X1 and X2 are said to
be identically distributed. More generally, n observations, which we label X1, . . . , Xn,
are said to be identically distributed if any two of them are identically distributed.
Consequently, the expected value of each observation is the same, namely, µ, the
population mean. That is,

E(X1) = E(X2) = · · · = E(Xn) = µ.

So a slight extension of results in Section 2.9 shows that if the observations are
identically distributed, then the average value of their sum is just the sum of their
average values. That is,

E(X1 + · · · + Xn) = µ + · · · + µ = nµ.

Using our rule for expected values when we multiply by a constant, if we multiply
the sum in this last equation by 1/n, we have that

E(X̄) = nµ
n

= µ. (4.1)

In words, on average, the sample mean estimates the population mean when obser-
vations are identically distributed. When Equation (4.1) is satisfied, we say that the
sample mean is an unbiased estimate of the population mean.

The variance of the sample mean refers to the variance of all sample means if we
were to repeat a study infinitely many times. Said another way, it is the variance
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associated with the sampling distribution. The variance of any measure is defined as
the expected squared distance from its mean (or average) value. For example, if we
have a single observation X, its expected value is labeled µ, and the variance of X is
the expected or average value of the squared distance between X and µ. In symbols,
the variance of X is E(X − µ)2, as explained in Chapter 2. In a similar manner, the
variance of the sample mean is the average squared difference between it and its
mean. We just saw that the expected value of the sample mean is µ, so by definition
its variance is E(X̄ −µ)2, which happens to be its expected squared error as well. It is
common to write the variance of the sample mean as VAR(X̄) or σ 2

X̄
. So we have that

VAR(X̄) = E(X̄ − µ)2 = σ 2
X̄
.

To make a clear distinction between the variance of a single observation and the
variance of the sample mean, the variance of the sample mean is often called the
squared standard error of the sample mean.

Now consider the problem of getting an expression for the variance of the sample
mean. The assumption that observations are identically distributed implies that they
have identical variances. That is,

VAR(X1) = VAR(X2) = · · · = VAR(Xn) = σ 2.

As indicated by Equation (2.15), the variance of a sum of observations requires that
we take into account their correlation. But if we assume independence, which is
implied when we assume (simple) random sampling, each pair of observations has
zero correlation, so the variance of the sum is just the sum of the variances. That is,
under random sampling,

VAR(X1 + X2 + · · · + Xn) = nσ 2. (4.2)

Finally, the rules for expected values can be used to show that as a result,

VAR(X̄) = σ 2

n
. (4.3)

Said another way, σ 2/n is the squared standard error of the sample mean, and σ /
√

n
is its standard error.

The results just given are so important, they are illustrated in another manner to
make sure they are clear. To be concrete, imagine you have been asked to determine
the attitude of the typical adult regarding the death penalty. You randomly sample
n = 100 adults, and each gives one of three responses: the death penalty is not
a deterrent, it makes a slight difference in some cases, or it is a strong deterrent.
Suppose the responses are recorded as 1, 2, 3, respectively and that unknown to you,
among the millions of adults you might interview, the probability function is

x: 1 2 3
p(x): .3 .5 .2

It can be seen that the population mean and variance are µ = 1.9 and σ 2 = .49,
respectively. If in your particular study 10 adults respond that it is not a deterrent,
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TABLE 4.1 Illustration of a Sampling Distribution

Sample X1 X2 X3 . . . X100 X̄ s2

1 2 3 2 . . . 2 2.4 .43

2 1 3 2 . . . 1 2.2 .63

3 1 2 1 . . . 3 2.1 .57

4 3 1 3 . . . 1 2.3 .62
...

...
...

...
...

...
...

...

Average of X̄ values is µ = 1.9; i.e., E(X̄) = µ

Average of s2 values is σ 2 = .49; i.e., E(s2) = σ 2

n = 100 for each sample.

25 say it makes a slight difference, and the remaining 65 say it is a strong deterrent,
then the sample mean is

X̄ = 1
10
100

+ 2
25
100

+ 3
65
100

= 2.55.

So there is a discrepancy between the sample mean and the population mean, as we
would expect.

Suppose we repeat the survey of adults millions of times, and each time we interview
n = 100 subjects. Again assume that the possible outcomes we observe are 1, 2, and 3.
Table 4.1 summarizes what might be observed. Each row represents a replication of
the study, and there are 100 columns, corresponding to the 100 subjects observed
each time the study is replicated. The 100 subjects in the first row differ from the 100
subjects in the second row, which differ from the 100 subjects in third row, and so
on. Then for the first column, among the millions of times we repeat the experiment,
there is a certain proportion of times we would observe a 1 or a 2 or a 3, and we can
think of these proportions as the corresponding probabilities. If the probability of a
1 is .3, then the proportion of 1’s in the column headed by X1 will be .3. Similarly, the
column headed by X2 has a certain proportion of 1’s, 2’s, and 3’s, and again they can
be thought of as probabilities. If the probability of a 2 is .5, then 50% of the values
in this column will be 2. When we say that X1 and X2 are identically distributed, we
mean that the proportion of 1’s, 2’s, and 3’s in columns 1 and 2 are exactly the same.
That is, it does not matter whether a subject is first or second when determining the
probability of a 1 or a 2 or a 3. More generally, if all 100 observations are identically
distributed, then any column we pick in Table 4.1 will have the same proportions of
1’s, 2’s, and 3’s over the millions of subjects.

Now, an implication of having identically distributed random variables is that if we
average all the sample means in the next to last column of Table 4.1, we would get µ,
the population mean. That is, the average or expected value of all sample means we
might observe based on n subjects is equal to µ, which in this case is 1.9. In symbols,
E(X̄) = µ, as previously indicated. Moreover, the variance of these sample means is
σ 2/n, which in this particular case is .49/100 = .0049, so the standard error of the
sample mean is

√
.0049 = .07.
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But how do we determine the standard error of the sample mean in the more
realistic situation where the probability function is not known? A natural guess is to
estimate σ 2 with the sample variance, s2, in which case VAR(X̄) is estimated with
s2/n, and this is exactly what is done in practice.

To provide a bit more justification for estimating σ 2 with s2, again consider the
survey of adults regarding the death penalty. Imagine that for a sample of 100 adults
we compute the sample variance, s2. Repeating this process infinitely many times,
each time sampling 100 adults and computing s2, the sample variances we might
get are shown in the last column of Table 4.1. It can be shown that under random
sampling, the average of the resulting sample variances is σ 2, the population variance
from which the observations were sampled. In symbols, E(s2) = σ 2 for any sample
size n we might use, which means that the sample variance is an unbiased estimator of σ 2,
the population variance.1 Because s2 estimates σ 2, we estimate the standard error of
the sample mean with s/

√
n.

EXAMPLE. Imagine you are a health professional interested in the effects of
medication on the diastolic blood pressure of adult women. For a particular drug
being investigated, you find that for n = 9 women, the sample mean is X̄ = 85
and the sample variance is s2 = 160.78. An estimate of the squared standard
error of the sample mean, assuming random sampling, is s2/n = 160.78/9 =
17.9. An estimate of the standard error of the sample mean is

√
17.9 = 4.2, the

square root of s2/n. ■

4.3 Approximating the Sampling Distribution of X̄

Consider again the ozone experiment described at the beginning of this chapter.
Suppose a claim is made that if all rats could be measured, we would find that weight
gain is normally distributed, with µ = 14 grams and a standard deviation of σ = 6.
Under random sampling, this claim implies that the distribution of the sample mean
has a mean of 14 as well; and because there are n = 22 rats, the variance of the sample
mean is 62/22. In symbols, E(X̄) = 14 and VAR(X̄) = σ 2/22 = 62/22 = 36/22. The
sample mean based on the 22 rats in the experiment is X̄ = 11. Is it reasonable to
expect a sample mean this low if the claimed values for the population mean (14) and
standard deviation (6) are correct? In particular, what is the probability of observing
X̄ ≤ 11?

Recall from Chapter 2 that if X has a normal distribution, P(X ≤ c) can be deter-
mined by standardizing X. That is, subtract the mean and divide by the standard devia-
tion, yielding Z = (X−µ)/σ . If X is normal, Z has a standard normal distribution. That
is, we solve the problem of determining P(X ≤ c) by transforming it into a problem
involving the standard normal distribution. Standardizing a random variable is a recurrent
theme in statistics, and it is useful when determining P(X̄ ≤ c) for any constant c.

1 Recall that the sample variance is given by s2 = ∑
(Xi − X̄)2/(n − 1). If we divide by n rather than n − 1, it

is no longer true that E(s2) = σ 2.
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Again consider the ozone experiment, where n = 22. Still assuming that the mean
is µ = 14 and the standard deviation is σ = 6, suppose we want to determine
the probability that the sample mean will be less than 11. In symbols, we want to
determine P(X̄ ≤ 11). When sampling from a normal distribution, X̄ also has a normal
distribution, so essentially the same technique described in Chapter 2 can be used to
determine P(X̄ ≤ 11): We convert the problem into one involving a standard normal.
This means that we standardize the sample mean by subtracting its mean and dividing by
its standard deviation which is σ /

√
n. That is, we compute

Z = X̄ − µ

σ /
√

n
.

When sampling from a normal distribution, it can be mathematically verified that Z
has a standard normal distribution. This means that

P(X̄ ≤ 11) = P
(

Z ≤ 11 − µ

σ /
√

n

)
.

For the problem at hand,

11 − µ

σ /
√

n
= 11 − 14

6/
√

22
= −2.35,

and Table 1 in Appendix B tells us that the probability that a standard normal variable
is less than −2.35 is .0094. More succinctly,

P(Z ≤ −2.35) = .0094,

so the probability of getting a sample mean less than or equal to 11 is .0094. That
is, if simultaneously the assumption of random sampling from a normal distribution
is true, the population mean is µ = 14, and the population standard deviation is
σ = 6, then the probability of getting a sample mean less than or equal to 11 is
.0094.

More generally, given c, some constant of interest, the probability that the sample
mean is less than c is

P(X̄ < c) = P

(
X̄ − µ

σ /
√

n
<

c − µ

σ /
√

n

)

= P
(

Z <
c − µ

σ /
√

n

)
. (4.4)

In other words, P(X̄ < c) is equal to the probability that a standard normal random
variable is less than (c − µ)/(σ /

√
n).
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EXAMPLE. To be sure Equation (4.4) is clear, the ozone example is repeated
in a more concise manner. The claim is that µ = 14 and σ = 6. With n = 22
rats, what is the probability that the sample mean will be less than or equal to
c = 11 if this claim is true and it is assumed that we are randomly sampling from
a normal distribution? To answer this question, compute

c − µ

σ /
√

n
= 11 − 14

6/
√

22
= −2.35.

Then according to Equation (4.4),

P(X̄ ≤ 11) = P(Z ≤ −2.35).

Referring to Table 1 in Appendix B, the probability that a standard normal
random variable is less than or equal to −2.35 is .0094. That is, if the claim is
correct,

P(X̄ ≤ 11) = .0094.

■

For the 22 rats in the ozone experiment, the sample mean is X̄ = 11. As just
indicated, getting a sample mean less than or equal to 11 is unlikely if the claims µ =
14 and σ = 6 are true. That is, the data suggest that perhaps these claims are false.

Analogous to results in Chapter 2, we can determine the probability that the
sample mean is greater than some constant c, and we can determine the probability
that the sample mean is between two numbers, say, a and b. The probability of getting
a sample mean greater than c is

P(X̄ > c) = 1 − P
(

Z <
c − µ

σ /
√

n

)
, (4.5)

and the probability that the sample mean is between the numbers a and b is

P(a < X̄ < b) = P
(

Z <
b − µ

σ /
√

n

)
− P

(
Z <

a − µ

σ /
√

n

)
. (4.6)

EXAMPLE. A researcher claims that for college students taking a particular
test of spatial ability, the scores have a normal distribution with mean 27 and
variance 49. If this claim is correct, and you randomly sample 36 subjects, what
is the probability that the sample mean will be greater than c = 28? Referring
to Equation (4.5), first compute

c − µ

σ /
√

n
= 28 − 27√

49/36
= .857.

Continued
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EXAMPLE. (Continued ) Because P(Z ≤ .857) = .20, Equation (4.5) tells us
that

P(X̄ > 28) = 1 − P(Z ≤ .857) = 1 − .20 = .80.

This means that if we randomly sample n = 25 subjects and the claims of the
researcher are true, the probability of getting a sample mean greater than 28 is .8.

■

EXAMPLE. Suppose observations are randomly sampled from a normal dis-
tribution with µ = 5 and σ = 3. If n = 36, what is the probability that the
sample mean is between a = 4 and b = 6? To find out, compute

b − µ

σ /
√

n
= 6 − 5

3/
√

36
= 2.

Referring to Table 1 in Appendix B, P(X̄ < 4) = P(Z < 2) = .9772. Similarly,

a − µ

σ /
√

n
= 4 − 5

3/
√

36
= −2,

and P(Z < −2) = .0228. So according to Equation (4.6),

P(2 < X̄ < 4) = .9772 − .0228 = .9544.

This means that if n = 36 observations are randomly sampled from a normal
distribution with mean µ = 5 and standard deviation σ = 3, there is a .9544
probability of getting a sample mean between 4 and 6. ■

An important point is that as the number of observations increases, the sample mean
will provide a better estimate of the population mean, µ. The sampling distribution
of X̄, under normality, provides an illustration of the sense in which this is true.
Suppose we randomly sample a single observation (n = 1) from a standard normal
distribution. This single observation provides an estimate of the population mean,
and the standard normal distribution in Figure 4.1 graphically illustrates how close
this observation will be to the mean, µ. Figure 4.1 also shows the distribution of X̄
when n = 16. Notice that this distribution is more tightly centered around the mean.
That is, X̄ is more likely to be close to µ when n = 16 rather than 1. If we increase n
to 25, the distribution of X̄ would be even more tightly centered around the mean.

4.4 The Sample Mean versus MOM, the Median,
Trimmed Mean, and M-Estimator

The notion of a sampling distribution generalizes to any of the location estimators
considered in Chapter 3. For example, if we conduct a study and compute the median
based on 20 observations and repeat the study billions of times, each time computing
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FIGURE 4.1 The distribution of X̄, under normality, when n = 1 and n = 16.

a median based on 20 observations, we would know the sampling distribution of the
median. That is, we would know the probability that the median is less than 4, less than
10, or less than any constant c that might be of interest. Temporarily assume sampling
is from a normal distribution, and, for convenience only, suppose the population mean
is zero and the variance is 1. Because sampling is from a symmetric distribution, the
sample median, M, is a reasonable estimate of the population mean, µ. But of course
the sample median will be in error, as was the case when using the sample mean.

Now, when sampling from a normal distribution, theory tells us that, on average,
the sample mean will be a more accurate estimate of the population mean versus the
sample median. To illustrate the extent to which this is true, 20 observations were
generated on a computer from a standard normal distribution, the sample mean and
median were computed, and this process was repeated 5000 times. Figure 4.2 shows
a plot of the resulting means and medians. That is, Figure 4.2 shows an approximation
of the sampling distributions of both the mean and median. Note that the plot of the
means is more tightly centered around the value zero, the value both the mean and
median are trying to estimate. This indicates that in general, the sample mean is more
accurate.

But what about nonnormal distributions? How does the median compare to the
mean in accuracy? To illustrate an important point, rather than sample from the
standard normal distribution, we repeat the computer experiment used to create
Figure 4.2, only now sampling is from the mixed normal shown in Figure 2.8. Recall
that the mixed normal represents a small departure from normality in the sense
described in Section 2.7.

Figure 4.3 shows the results of our computer experiment, and, in contrast to Figure
4.2, now the sample median is much more accurate, on average, relative to the mean.
That is, the sample median is likely to be substantially closer to the true population
mean than is the sample mean, X̄. This illustrates a general result of considerable
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FIGURE 4.2 A plot of 5000 means and 5000 medians when sampling from a
normal distribution.

−1 0 1 2

Plot of the means

FIGURE 4.3 A plot of 5000 means and 5000 medians when sampling from a
mixed normal distribution.

importance. Even for an extremely small departure from normality, the median can
be a much more accurate estimate of the center of a symmetric distribution than the
mean. But this is not a very compelling reason to routinely use the median, because
Figure 4.2 illustrates that it can be substantially less accurate than the mean as well.

Now we consider the accuracy of the 20% trimmed mean and the M-estimator
(based on Huber’s �) versus the mean. We repeat the process used to create
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FIGURE 4.4 Plots of 5000 means, 20% trimmed means and M-estimators when
sampling from a normal distribution.
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FIGURE 4.5 Plots of 5000 means, 20% trimmed means and M-estimators when
sampling from a mixed normal distribution.

Figures 4.2 and 4.3, only the median is replaced by X̄t and µ̂os, where µ̂os is the
one-step M-estimator given by Equation (3.28). Figure 4.4 shows the resulting plots
when sampling is from a normal distribution. The mean is most accurate, but its
improvement over the 20% trimmed mean and M-estimator is not very striking. If
we use the MOM estimator given by Equation (3.30), the plot of the values reveals
that it is slightly less accurate than the M-estimator used here. Figure 4.5 shows the
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sampling distributions when observations are sampled from a mixed normal instead.
As is evident, the sample mean performs poorly relative to the other two estimators
considered. Here, MOM gives nearly the same results as the 20% trimmed mean and
M-estimator.

The results illustrated in Figures 4.4 and 4.5 are not surprising, in the sense that
MOM, the 20% trimmed mean, and the M-estimator used here were designed to
give nearly the same accuracy as the mean when sampling from a normal distribution.
That is, theoretical results tell us how much we can trim without sacrificing too much
accuracy under normality, and theory also suggests how to design an M-estimator
so that again relatively good accuracy is obtained. Simultaneously, theory tells us
that these estimators will continue to perform relatively well when sampling from a
heavy-tailed distribution, such as the mixed normal.

To broaden our perspective on the relative merits of the mean, we now describe
a general situation where the sample mean is optimal among all weighted means,
described in Section 3.2.3. Without assuming normality, Gauss showed that under
random sampling, among all the weighted means we might consider, the sample mean
will have a smaller variance (or squared standard error) than any other weighted mean
we might consider. (This result is a special case of the Gauss–Markov theorem, which
is discussed in more detail when we take up regression.) So if we were to plot the
sampling distribution of any weighted mean versus the sample mean, the sample mean
would be more tightly centered around the population mean.

The result just described might seem to contradict our finding that the median, 20%
trimmed mean, and one-step M-estimator can be substantially more accurate than
the mean. There is no contradiction, however, because all three of these estimators
do not belong to the class of weighted means. The median and trimmed mean, for
example, involve more than weighting the observations — they require putting the
observations in order.

It is easy to see why Gauss’s result might suggest using the mean rather than the
median or the trimmed mean. The 20% trimmed mean, for example, removes 40%
of the observations. How could this possibly improve accuracy as opposed to giving
some weight to all of the values? It is important to develop some intuition about
this issue because despite graphical and mathematical arguments demonstrating that
a 20% trimmed mean can be much more accurate than the sample mean, often there
is reluctance to use any trimming at all because it seems counterintuitive. One way
of understanding this issue is covered in Section 4.9. Here, an alternate but less
technical explanation is given.

From the perspective about to be described, it is not surprising that a trimmed
mean beats the mean, but it is rather amazing that the sample mean is optimal in
any situation at all. To explain, suppose we sample 20 observations from a standard
normal distribution. So the population mean and population 20% trimmed mean
are zero. Now consider the smallest of the 20 values. It can be shown that, with
probability .983, this value will be less than −0.9, and with probability .25 it will be
less than −1.5. That is, with fairly high certainty, it will not be close to zero, the value
we are trying to estimate. In a similar manner, the largest of the 20 observations has
probability .983 of being greater than 0.9 and probability .25 of being greater than
1.5. Simultaneously, if we put the observations in ascending order, the probability
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that the two middle values do not differ by more than .5 from zero is .95. So a
natural reaction is that extreme values should be given less weight in comparison
to the observations in the middle. A criticism of this simple argument is that the
smallest value will tend to be less than zero, the largest will be greater than zero, and
their average value will be exactly zero, so it might seem that there is no harm in
using them to estimate the population mean. However, the issue is how much these
extreme values contribute to the variance of our estimator. When sampling from a
normal distribution, we are better off on average using the sample mean, despite
the fact that the extreme values are highly likely to be inaccurate. But as we move
away from a normal distribution toward a heavier-tailed distribution, the sample mean
becomes extremely inaccurate relative to the 20% trimmed mean.

There is, however, a practical concern about 20% trimming that should be stressed:
Its standard error might be substantially higher versus the standard error of MOM.
This can happen even when the number of outliers in both tails does not exceed 20%.

EXAMPLE. Consider the data

77 87 87 114 151 210 219 246 253 262
296 299 306 376 428 515 666 1310 2611,

which are from a study on self-awareness conducted by E. Dana (1990). The
estimated standard error of the 20% trimmed mean is 56.1 (using the method
described in Section 4.9.2). But the estimated standard error of MOM (using a
method described in Chapter 7) is 37, which is substantially smaller. The outlier
detection rule based on M and MAD [given by Equation (3.22)] flags the three
largest values as outliers, and these are removed by MOM as well as the 20%
trimmed mean. But the 20% trimmed also removes the three smallest values,
which are not flagged as outliers. ■

4.5 A Confidence Interval for the Population Mean

If you were a psychologist, you might be interested in a new method for treating
depression and how it compares to a standard, commonly used technique. Assume
that based on a widely used measure of effectiveness, the standard method has been
applied thousands of times and found to have a mean effectiveness of µ = 48. That is,
the standard method has been used so many times, for all practical purposes we know
that the population mean is 48. Suppose we estimate the effectiveness of the new
method by trying it on n = 25 subjects and computing the sample mean. A crucial
issue is whether the resulting sample mean is close to the population mean being
estimated, the mean we would obtain if all depressed individuals were treated with
the new method. Assume that for the experimental method we obtain a sample mean
of X̄ = 54. This means that based on our experiment, the average effectiveness of the
new method is estimated to be 54, which is larger than the average effectiveness of the
standard method, suggesting that the new method is better for the typical individual.
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But suppose that unknown to us, the average effectiveness of the new method is
actually 46, meaning that on average the standard technique is better for treating
depression. By chance we might get a sample mean of 54 and incorrectly conclude
that the experimental method is best. What is needed is some way of determining
whether X̄ = 54 makes it unlikely that the mean is 46 or some other value less than
48. If we can be reasonably certain that 54 is close to the actual population mean, and
in particular we can rule out the possibility that the population mean is less than 48,
we have evidence that, on average, the new treatment is more effective.

A major advantage of being able to determine the sampling distribution of X̄ is that
it allows us to address the issue of how well the sample mean X̄ estimates the popula-
tion mean µ. We can address this issue with what is called a confidence interval for µ.
A confidence interval for µ is just a range of numbers that contains µ with some specified
probability. If for the experimental method for treating depression you can be reason-
ably certain that the population mean is between 50 and 55, then there is evidence
that its mean is greater than 48, the average effectiveness of the standard technique.
That is, the new method appears to be more effective than the standard technique.

Suppose we want to use the observations to determine a range of values that
contains µ with probability .95. From the previous section, if sampling is from a
normal distribution, then (X̄ − µ)/(σ /

√
n) has a standard normal distribution. Recall

from Chapter 2 that the probability of a standard normal random variable being
between −1.96 and 1.96 is .95. In symbols,

P

(
−1.96 ≤ X̄ − µ

σ /
√

n
≤ 1.96

)
= .95.

We can rearrange terms in this last equation to show that

P
(

X̄ − 1.96
σ√
n

≤ µ ≤ X̄ + 1.96
σ√
n

)
= .95.

This says that although the population mean, µ, is not known, there is a .95 probability
that its value is between

X̄ − 1.96
σ√
n

and X̄ + 1.96
σ√
n
.

When sampling from a normal distribution,

(
X̄ − 1.96

σ√
n
, X̄ + 1.96

σ√
n

)
(4.7)

is called a .95 confidence interval for µ. This means that if the experiment were
repeated billions of times, and each time a confidence interval is computed using
Equation (4.7), 95% of the resulting confidence intervals will containµ if observations
are randomly sampled from a normal distribution.



108 Chapter 4 ■ Sampling Distr ibutions and Confidence Intervals

EXAMPLE. In the example for treating depression, assume for illustrative
purposes that the standard deviation is σ = 9 and sampling is from a normal
distribution. Because the sample mean is X̄ = 54 and the sample size is n = 25,
the .95 confidence interval for µ is(

54 − 1.96
9√
25

, 54 + 1.96
9√
25

)
= (50.5, 57.5).

That is, based on the 25 subjects available to us, we can be reasonably certain
that µ is somewhere between 50.5 and 57.5. ■

DEFINITION. The probability coverage of a confidence interval is the probability that
the interval contains the parameter being estimated. The previous example described
a confidence interval for the mean that has probability coverage .95.

A standard notation for the probability that a confidence interval does not con-
tain the population mean, µ, is α. When computing a .95 confidence interval,
α = 1 − .95 = .05. For a .99 confidence interval, α = .01. The quantityα is the prob-
ability of making a mistake. That is, if we perform an experiment with the goal of com-
puting a .95 confidence interval, there is a .95 probability that the resulting interval
contains the mean, but there is an α = 1 − .95 = .05 probability that it does not.

The method of computing a confidence interval can be extended to any value of
1 − α you might choose. The first step is to determine c such that the probability
that a standard normal random variable lies between −c and c is 1 − α. In symbols,
determine c such that

P(−c ≤ Z ≤ c) = 1 − α.

From Chapter 2, this means that you determine c such that

P(Z ≤ c) = 1 + (1 − α)
2

= 1 − α

2
.

Put another way, c is the 1 − α/2 quantile of a standard normal distribution. For
example, if you want to compute a 1 − α = .95 confidence interval, then

1 + (1 − α)
2

= 1 + .95
2

= .975,

and from Table 1 in Appendix B we know that

P(Z ≤ 1.96) = .975,

so c = 1.96. For convenience, the values of c for 1 − α = .9, .95, and .99 are listed
in Table 4.2.
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TABLE 4.2 Common Choices for 1 −α and c

1 − α c

.90 1.645

.95 1.96

.99 2.58

Once c is determined, a 1 − α confidence interval for µ is

(
X̄ − c

σ√
n
, X̄ + c

σ√
n

)
. (4.8)

Equation (4.8) is a special case of a general technique developed by Laplace.

EXAMPLE. A college president claims that IQ scores at her institution are
normally distributed with a mean of µ = 123 and a standard deviation of
σ = 14. Suppose you randomly sample n = 20 students and find that X̄ = 110.
Does the 1 − α = .95 confidence interval for the mean support the claim that
the average of all IQ scores at the college is µ = 123? Because 1 − α = .95,
c = 1.96, as just explained, so the .95 confidence interval is(

110 − 1.96
14√
20

, 110 + 1.96
14√
20

)
= (103.9, 116.1).

The interval (103.9,116.1) does not contain the value 123, suggesting that the
president’s claim might be false. Note that there is a .05 probability that the
confidence interval will not contain the true population mean, so there is some
possibility that the president’s claim is correct. ■

EXAMPLE. For 16 observations randomly sampled from a normal distribution,
X̄ = 32 and σ = 4. To compute a .9 confidence interval (meaning that 1−α =
.9), first note from Table 4.2 that c = 1.645. So a .9 confidence interval for µ is(

32 − 1.645
4√
16

, 32 + 1.645
4√
16

)
= (30.355, 33.645).

Although X̄ is not, in general, equal to µ, the confidence interval provides some
sense of how well X̄ estimates the population mean. ■

4.6 An Approach to Nonnormality: The Central Limit Theorem

We have seen how to compute a confidence interval for the mean when the standard
deviation is known and sampling is from a normal distribution. Assuming observations
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Median = 3.75

Mean = 7.6

FIGURE 4.6 Example of a skewed, heavy-tailed distribution.

are randomly sampled from a normal distribution is convenient because the sampling
distribution of X̄ turns out to be a normal distribution as well. But how do we deal
with nonnormal distributions? In the ozone experiment, how do we compute a
confidence interval for µ if, unknown to us, observations are randomly sampled from
the distribution shown in Figure 4.6, which is a reproduction of Figure 2.11.

Laplace’s solution was to appeal to his central limit theorem, which says that
under very general conditions, even if observations are randomly sampled from a
nonnormal distribution, the sampling distribution of the sample mean will approach
a normal distribution as the sample size gets large. In more practical terms, if n is
sufficiently large, we can pretend that X̄ has a normal distribution with mean µ and
variance σ 2/n, in which case the method in the previous section can be employed.
Of course this last statement is rather vague, in an important sense. How large must n
be? Many books claim that n = 25 suffices and others claim that n = 40 is more than
sufficient. These are not wild speculations, but now we know that much larger sample
sizes are needed for many practical problems. The immediate goal is to provide some
sense of why larger sample sizes are needed than once thought.

To begin, there is no theorem telling us when n is sufficiently large. The answer
depends in part on the skewness of the distribution from which observations are
sampled. (Boos & Hughes-Oliver, 2000, provide a recent summary of relevant details.)
Generally, we must rely on empirical investigations, at least to some extent, in our
quest to address this problem.

To illustrate how such empirical studies are done and why it might seem that
n = 40 is sufficiently large for most purposes, suppose n = 20 observations are
randomly sampled from the distribution in Figure 4.7, which is an example of a
uniform distribution, and then we compute the sample mean. As is evident, the
uniform distribution in Figure 4.7 does not remotely resemble a normal curve. If we
generate 5000 sample means in this manner and plot the results, we get the curve
shown in Figure 4.8. Also shown is the normal curve implied by the central limit
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FIGURE 4.7 A uniform distribution.

FIGURE 4.8 A plot of 5000 means based on observations sampled from a
uniform distribution. The solid, symmetric curve is the plot of the means based on
the central limit theorem.

theorem. As we see, the two curves are very similar, indicating that the central limit
theorem is performing rather well in this particular case. That is, if we sample 20
observations from a uniform distribution, for all practical purposes we can assume
the sample mean has a normal distribution.

Now consider the probability curve in Figure 4.9 (which is called an exponential
distribution). Again this curve is nonnormal in an obvious way. If we repeat our computer
experiment used to create Figure 4.8, but sampling from the distribution in Figure
4.9, then the plot of the resulting sample means appears as shown in Figure 4.10.
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FIGURE 4.9 An exponential distribution which is relatively light-tailed.

FIGURE 4.10 A plot of 5000 means when sampling from an exponential
distribution.

Again we get fairly close agreement between the empirical distribution for the sample
means and the theoretical distribution implied by the central limit theorem. These
two illustrations are classic ways of demonstrating the central limit theorem, and
the obvious speculation based on these results is that in general, with n ≥ 25, we
can assume the sample mean has a normal distribution. There are, however, two
fundamental problems that have been overlooked. The first of these is illustrated
here, and the second and even more serious problem is described in Section 4.7.

We repeat our computer experiment one more time, only now we sample 25 obser-
vations from the distribution shown in Figure 4.6. Figure 4.11 shows the resulting
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FIGURE 4.11 A plot of 5000 means when sampling from the distribution in
Figure 4.6. The sample size for each mean is 25.

plot of the sample means. Now there is an obvious discrepancy between the plot of
the sample means and the curve implied by the central limit theorem. Why do we
get a different result from the two previous situations? The reason is that the curves
in Figures 4.7 and 4.9 are distributions with relatively light tails. That is, outliers
are fairly rare when sampling observations. In contrast, Figure 4.11 is obtained by
sampling from a heavy-tailed distribution, where outliers are more common.

To provide some sense of how quickly matters improve as the sample size increases,
we again sample observations from the distribution in Figure 4.6, but with a sample
size of n = 50. Figure 4.12 shows the results. Note that the left tail of the plot of the
means is lighter than what we would expect via the central limit theorem. Increasing
n to 100, the central limit theorem gives a reasonable approximation of the actual
distribution of the sample mean.

The illustrations just given might seem to suggest that as long as a distribution
is not too heavy-tailed or if n = 100, an accurate confidence interval for µ can
be computed using Equation (4.8). So a seemingly reasonable speculation is that
if a boxplot indicates that there are no outliers, the actual probability coverage is
reasonably close to the nominal level. Unfortunately, this strategy can fail, for reasons
covered in Section 4.8. Moreover, even with n = 100, practical problems might
occur. Briefly, when we take up the more realistic situation where σ is unknown and
estimated with s, problems arise even when sampling from light-tailed distributions
and n = 100.

Notice that when sampling from the distribution shown in Figure 4.6, although the
population mean is in the extreme right portion of the distribution under considera-
tion, the sample means become more tightly centered around the population mean,
µ = 7.6, as the sample size increases. So the sample mean is fulfilling its intended
goal: As the sample size increases, it provides a better estimate of the population
mean, which in this case is a quantity that happens to be in the tail of the distribution.
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FIGURE 4.12 A plot of 5000 means when sampling from the distribution in
Figure 4.6, only now the sample size for each mean is 50.

A criticism of the illustrations based on Figure 4.6 is that we are considering a hypo-
thetical distribution. Perhaps in practice the central limit theorem will give satisfactory
results even with n = 25. There are several reasons, however, for concluding that, in
practice, problems can arise even when n = 100. Details are covered in Section 4.8.

One point should be stressed, because it plays an important role in subsequent
chapters. Again consider the ozone experiment, and first assume that weight gain in
rats has a normal distribution with variance σ 2 = 1. Then because the sample mean
is X̄ = 11 and n = 22, the .95 confidence interval for µ is

(
11 − 1.96

1√
22

, 11 + 1.96
1√
22

)
= (10.58, 11.42).

The length of the confidence interval is just the difference between these two num-
bers, namely, 11.42 − 10.58 = .84. When computing a .95 confidence interval, we
want the length of the confidence interval to be as short as possible because a short
confidence interval means we can be reasonably certain about what the value of µ

happens to be. In the ozone experiment, we can be reasonably certain that the pop-
ulation mean is somewhere between 10.58 and 11.42, and this reflects how well X̄
estimates µ.

Now suppose that sampling is from a mixed normal instead, which was discussed in
Chapter 2. Although the mixed normal differs only slightly from the standard normal,
the mixed normal has variance 10.9. Consequently, the .95 confidence interval for µ is

(
11 − 1.96

√
10.9√
22

, 11 + 1.96

√
10.9√
22

)
= (9.62, 12.38).
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The length of this interval is 12.38 − 9.62 = 2.76, more than three times longer
than the situation where we sampled from a standard normal distribution instead.
This illustrates that small shifts away from normality, toward a heavy-tailed distribution, can
drastically increase the length of a confidence interval. Modern methods have been found
for getting much shorter confidence intervals in situations where the length of the
confidence interval based on Equation (4.8) is relatively long, some of which will be
described.

4.7 Confidence Intervals when σ Is Unknown

The previous section described how to compute a confidence interval for µ when the
standard deviation, σ , is known. However, typically σ is not known, so a practical
concern is finding a reasonably satisfactory method for dealing with this issue. This
section describes the classic method for addressing this problem, which was derived
by William Gosset about a century ago. It is used routinely today, but unfortunately
problems with nonnormality are exacerbated relative to the situation in Section 4.6,
where σ is known.

Consider again the study of women’s blood pressure, where the goal is to determine
the average diastolic blood pressure of adult women taking a certain drug. Based on
n = 9 women, we know that X̄ = 85, and s2 = 160.78, but, as is usually the case,
we do not know the population variance, σ 2. Although σ is not known, it can be
estimated with s, the sample standard deviation, which in turn yields an estimate of
the standard error of the sample mean, namely, s/

√
n = 4.2, as previously explained.

If we assume that 4.2 is indeed an accurate estimate of σ /
√

n, then a reasonable
suggestion is to assume that σ /

√
n = 4.2 when computing a confidence interval. In

particular, a .95 confidence interval for the mean would be

(85 − 1.96(4.2), 85 + 1.96(4.2)) = (76.8, 93.2).

Prior to the year 1900, this was the strategy used, and based on a version of the
central limit theorem, it turns out that this approach is reasonable if the sample
size is sufficiently large, assuming random sampling. However, even when sampling
from a normal distribution, a concern is that when the sample size is small, the
population standard deviation, σ , might differ enough from its estimated value, s,
to cause practical problems. Gosset realized that problems can arise and derived a
solution assuming random sampling from a normal distribution. Gosset worked for
a brewery and was not immediately allowed to publish his results, but eventually he
was permitted to publish under the pseudonym Student.

Let

T = X̄ − µ

s/
√

n
. (4.9)

The random variable T in Equation (4.9) is the same as Z used in Section 4.3, except
σ has been replaced by s. Note that like X̄ and Z, T has a distribution. That is, for any
constant c we might pick, there is a certain probability that T < c based on a random



116 Chapter 4 ■ Sampling Distr ibutions and Confidence Intervals
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FIGURE 4.13 Student’s T distribution with 4 degrees of freedom.

sample of n subjects. If the distribution of T can be determined, then a confidence
interval for µ could be computed without knowing σ .

If we assume that observations are randomly sampled from a normal distribution,
then the distribution of T, called Student’s T Distribution, can be determined exactly.
It turns out that the distribution depends on the sample size, n. By convention, the
quantiles of the distribution are reported in terms of degrees of freedom: ν = n−1. Figure
4.13 shows Student’s T distribution with ν = 4 degrees of freedom. Note that the
distribution is similar to a standard normal. In particular, it is symmetric about zero,
so E(T) = 0. With infinite degrees of freedom, Student’s T and the standard normal
are identical.

Table 4 in Appendix B reports some quantiles of Student’s T distribution. The first
column gives the degrees of freedom. The next column, headed by t.9, reports the .9
quantiles. For example, with ν = 1, we see 3.078 under the column t.9. This means that
P(T < 3.078) = .9. That is, if we randomly sample two observations from a normal
distribution, in which case ν = n − 1 = 1, there is a .9 probability that the resulting
value for T is less than 3.078. Similarly, if ν = 24, then P(T < 1.318) = .9. The
column headed by t.99 lists the .99 quantiles. For example, if ν = 3, we see 4.541 under
the column headed t.99, so the probability that T is less than 4.541 is .99. If ν = 40,
Table 2 indicates that P(T < 2.423) = .99. Many modern computer programs, such
as Minitab and S-PLUS, contain functions that compute Student’s T distribution for
any ν ≥ 1. [In S-PLUS you can use the built-in function pt. For example, pt(1,5) will
return the probability that T is less than 1 with ν = 5 degrees of freedom.]

Similar to the situation when working with normal distributions,

P(T ≥ c) = 1 − P(T ≤ c), (4.10)

where c is any constant that might be of interest. For example, with ν = 4, P(T ≤
2.132) = .95, as previously indicated, so P(T ≥ 2.132) = 1 − P(T ≤ 2.132) = .05.
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To assist in learning how to use Table 4 in Appendix B, the following examples are
presented.

EXAMPLE. Suppose you are involved in a study on the effects of alcohol on
reaction times. Assuming normality, you randomly sample n = 13 observations
and compute the sample mean and variance. To determine the probability that
T = (X̄−µ)/(s/

√
n) is less than 2.179, first note that the degrees of freedom are

ν = n−1 = 13−1 = 12. From Table 4 in Appendix B, looking at the row with
ν = 12, we see 2.179 in the column headed by t.975, so P(T < 2.179) = .975.

■

EXAMPLE. If ν = 30 and P(T > c) = .005, what is c? Because Table 4 gives
the probability that T is less than or equal to some constant, we must convert
the present problem into one where Table 4 can be used. Based on Equation
(4.10), if P(T > c) = .005, then

P(T ≤ c) = 1 − P(T > c) = 1 − .005 = .995.

Looking at the column headed by t.995 in Table 4, we see that with ν = 30,
P(T < 2.75) = .995, so c = 2.75. ■

With Student’s T distribution, we can compute a confidence interval for µ when
σ is not known, assuming that observations are randomly sampled from a normal
distribution. Recall that when σ is known, the 1 − α confidence interval for µ is

X̄ ± c
σ√
n

=
(

X̄ − c
σ√
n
, X̄ + c

σ√
n

)
,

where c is the 1−α/2 quantile of a standard normal distribution and read from Table 1
in Appendix B. When σ is not known, this last equation becomes

X̄ ± c
s√
n
, (4.11)

where now c is the 1 − α/2 quantile of Student’s T distribution with n − 1
degrees of freedom and read from Table 4 of Appendix B. If observations are ran-
domly sampled from a normal distribution, then the probability coverage is exactly
1 − α. [The S-PLUS built-in function t.test computes a confidence interval using
Equation (4.11).]

EXAMPLE. Returning to the ozone experiment, we compute a 1 − α = .95
confidence interval for µ. Because there are n = 22 rats, the degrees of freedom

Continued
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EXAMPLE. (Continued ) are n−1 = 22−1 = 21. Because 1−α = .95, α = .05;
so α/2 = .025, and 1 −α/2 = .975. Referring to Table 4 in Appendix B, we see
that the .975 quantile of Student’s T distribution with 22 degrees of freedom is
approximately c = 2.08. Because X̄ = 11 and s = 19, a .95 confidence interval is

11 ± 2.08
19√
22

= (2.6, 19.4).

That is, although both the population mean and variance are not known, we can
be reasonably certain that the population mean, µ, is between 2.6 and 19.4, if
the assumption of sampling from a normal distribution is true. ■

EXAMPLE. Suppose you are interested in the reading abilities of fourth-
graders. A new method for enhancing reading is being considered. You try
the new method on 11 students and then administer a reading test yielding the
scores

12, 20, 34, 45, 34, 36, 37, 50, 11, 32, 29.

For illustrative purposes, imagine that after years of using a standard method
for teaching reading, the average scores on the reading test have been found
to be µ = 25. Someone claims that if the new teaching method is used, the
population mean will remain 25. Assuming normality, we determine whether
this claim is consistent with the .99 confidence interval for µ. That is, does the
.99 confidence interval contain the value 25? It can be seen that the sample
mean is X̄ = 30.9 and s/

√
11 = 3.7. Because n = 11, the degrees of freedom

are ν = 11− 1 = 10. Because 1−α = .99, it can be seen that 1−α/2 = .995,
so, from Table 4 in Appendix B, c = 3.169. Consequently, the .99 confidence
interval is

30.9 ± 3.169(3.7) = (19.2, 42.6).

This interval contains the value 25, so the claim that µ = 25 cannot be refuted
based on the available data. Note, however, that the confidence interval also
contains 35 and even 40. Although we cannot rule out the possibility that the
mean is 25, there is some possibility that the new teaching method enhances
reading by a substantial amount, but with only 11 subjects, the confidence
interval is too long to resolve how effective the new method happens to be. ■

4.8 Student’s T and Nonnormality

In the next to last example dealing with weight gain in an ozone environment, it
was shown that the .95 confidence interval for the mean is (2.6,19.4) if observa-
tions are randomly sampled from a normal distribution. But can we be reasonably
certain that it contains µ if sampling is from a nonnormal distribution instead?
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FIGURE 4.14 Example of what is called a lognormal distribution.

Unfortunately, if observations are randomly sampled from a skewed distribution,
the actual probability coverage can be less than .7 (e.g., Wilcox, 1997a, p. 74). That
is, the confidence interval is too short and there is a 1 − .7 = .3 probability that
it does not contain µ. To get .95 probability coverage, we need a longer interval. If
we increase the sample size, the actual probability coverage will be closer to .95, as
desired, but probability coverage might be unsatisfactory even with n = 160 (e.g.,
Westfall & Young, 1993, p. 40).

To elaborate a little, imagine that, unknown to us, observations have the dis-
tribution shown in Figure 4.14. This is an example of a lognormal distribution,
which is skewed to the right and has relatively light tails, meaning that outliers
can occur but the number of outliers is relatively low on average. (With n = 20,
the expected number of outliers using the method in Section 3.4.5 is about 1.4.
The median number of outliers is approximately 1.) The symmetric smooth curve
in the left plot of Figure 4.15 shows Student’s T distribution when n = 20 and
sampling is from a normal distribution. The other curve shows a close approx-
imation of the actual distribution of T when sampling from the distribution in
Figure 4.14 instead. (The approximation is based on 5000 T-values generated on
a computer.) Note that the actual distribution is skewed, not symmetric. Moreover,
its mean is not zero but −.5, approximately. The right plot of Figure 4.15 shows
the distribution of T when n = 100. There is closer agreement between the two
distributions, but the tails of the distributions differ enough that practical problems
arise.

It was noted that in the left plot of Figure 4.15, T has a mean of −.5. This might
seem to be impossible because the numerator of T is X̄ − µ, which has an expected
value of zero. Under normality, T does indeed have a mean of zero, the proof of
which is based on the result that under normality, X̄ and s are independent. But for
nonnormal distributions, X̄ and s are dependent, and this makes it possible for T to
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FIGURE 4.15 A plot of 5000 T values when sampling from a lognormal
distribution. The left plot is based on n = 20 and the right plot is based on
n = 100.
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FIGURE 4.16 A plot of 5000 T values when sampling from an exponential
distribution. The left plot is with n = 20 and the right plot is with n = 100.

have a mean that differs from zero. (Gosset was aware of this problem but did not
have the tools and technology to study it to the degree he desired.)

It might be thought that the lognormal distribution (shown in Figure 4.14) rep-
resents an extreme case and therefore denigrates Student’s T in an unfair manner.
However, when working with Student’s T distribution, other skewed, light-tailed
distributions — where outliers are rare — also cause serious practical problems.
Consider the (exponential) distribution shown in Figure 4.9. The left panel of Figure
4.16 shows the distribution of Student’s T when n = 20. Again the left tails of the
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actual distribution differ noticeably from the distribution we get under normality.
For example, under normality, the probability that T is less than −2 is P(T ≤ −2) =
.03, but when sampling from the exponential distribution, it is .08. The right panel
shows the distribution when n = 50. Now, P(T ≤ −2) = .026 when sampling from a
normal distribution, but for the exponential distribution it is .053. In some situations
this discrepancy is unsatisfactory. Increasing n to 100 gives good results.

Figure 4.16 illustrates another point worth stressing. We saw that when sampling
observations from the distribution in Figure 4.9, the sampling distribution of the sam-
ple mean is in fairly close agreement with the distribution implied by the central limit
theorem. We have just illustrated, however, that this does not imply that the actual dis-
tribution of T will be in close agreement with the distribution we get under normality.

When sampling from a skewed heavy-tailed distribution, the discrepancy between
the actual distribution of T and the distribution obtained under normality becomes
even more striking. If, for example, we sample n = 20 observations from the distribu-
tion shown in Figure 4.6, the distribution of T is as shown in Figure 4.17 and differs
substantially from the distribution we get under normality, particularly in the left tail.

The illustrations so far are based on hypothetical distributions. Experience with
actual data suggests that the problems just illustrated are real and, in at least some situ-
ations, these theoretical illustrations appear to underestimate problems with Student’s
T. To describe one reason for this remark, we consider data from a study on hangover
symptoms reported by the sons of alcoholics. The 20 observed values were

1 0 3 0 3 0 15 0 6 10 1 1 0 2 24 42 0 0 0 2.

(These data were supplied by M. Earleywine.) Figure 4.18 shows an approxima-
tion of the sampling distribution of T (which was obtained using methods covered

−3 −2 −1 0 1 2 3

FIGURE 4.17 A plot of 5000 T values when sampling from a skewed, heavy-tailed
distribution, n = 20.
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FIGURE 4.18 A plot of 5000 T values when resampling with replacement using
data from a study dealing with sons of alcoholics. The smooth symmetric curve is
the plot we get when sampling from a normal distribution.

in Chapter 7). Also shown is the distribution of T when sampling from a normal
distribution instead. As is evident, there is a considerable discrepancy between the
two distributions, particularly in the left tail. The practical implication is that when
using T, the actual probability coverage, when computing a confidence interval based
on Equation (4.11), might differ substantially from the nominal level.

It might be argued that this last example is somehow unusual or that with a slightly
larger sample size, satisfactory probability coverage will be obtained. First note that if
we were to repeat an experiment 5000 times, each time computing Student’s T based
on observations sampled from a normal distribution, a boxplot of the T values would
be symmetric about the value zero. Now consider again the data in Table 3.2, where
n = 105. We can use these observations to approximate the boxplot of T values we
would get if this particular study were repeated 5,000 times. (The approximation is
based on a method covered in Chapter 7.) Figure 4.19 shows the result. As is evident,
there is extreme skewness, indicating that any confidence interval based on Student’s
T will be highly inaccurate.

An objection to this last illustration is that there is an extreme outlier among the
data. Although the data are from an actual study, it might be argued that having such
an extreme outlier is a highly rare event. So we repeat the last illustration, but with this
extreme outlier removed. Figure 4.20 shows an approximation of the distribution of
T. Again we see that there is a substantial difference as compared to the distribution
implied by the central limit theorem.

Yet another possible objection to illustrations based on data from actual studies is
that although we are trying to determine empirically the correct distribution for T,
nevertheless we are approximating the correct distribution, and perhaps the method
used to approximate the distribution is itself in error. That is, if were to take millions of
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FIGURE 4.19 A boxplot of 5000 T values when resampling with replacement from
the data in Table 3.2.
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FIGURE 4.20 A plot of 5000 T values when resampling with replacement from
the data in Table 3.2, but with the extreme outlier removed.

samples from the population under study, each time computing T, and if we were then
to plot the results, perhaps this plot would better resemble a Student’s T distribution.
There is in fact reason to suspect that the approximation of the distribution of T used
here is in error, but unfortunately all indications are that problems with T are being
underestimated. For example, in Figure 4.20, it is highly likely that the actual distribution
of T is more skewed and that the left tail extends even farther to the left than is
indicated.
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4.9 Confidence Intervals for the Trimmed Mean

There are at least three practical concerns with computing confidence intervals for
the mean with Student’s T. First, the probability coverage can be unsatisfactory,
for reasons explained in the last section. Second, as noted in Chapter 2, there is
the concern that when distributions are skewed, the population mean might pro-
vide a poor reflection of the typical subject under study. Third, slight departures
from normality can greatly inflate the length of the confidence interval, regard-
less of whether sampling is from a skewed or a symmetric distribution. Theoretical
results (e.g., Huber, 1981; Staudte and Sheather, 1990; Wilcox, 1993a) suggest
a strategy that addresses all of these concerns: Switch to the Tukey–McLaughlin
confidence interval for the population trimmed mean, µt (which is described in
Section 4.9.3). But before describing this method, we first consider the more
fundamental problem of how the standard error of the trimmed mean might be
estimated.

4.9.1 Estimating VAR(X̄t): A Natural but Incorrect Method

A seemingly natural method for computing a confidence when using a trimmed mean
is to apply Student’s T method to the values left after trimming. But this strategy
is unsatisfactory, because the remaining observations are no longer identically dis-
tributed and they are not independent. Consequently, we are using an incorrect
estimate of the standard error. We need to use a technique that addresses this prob-
lem, otherwise we run the risk of getting an increasingly inaccurate confidence interval
as the sample size gets large.

When first encountered, the statement just made might seem counterintuitive. To
be sure the problem just described is appreciated, we now elaborate. First we illustrate
that if we trim observations, the remaining observations are dependent. Suppose
n = 5 observations are randomly sampled from a standard normal distribution. We
might get the values X1 = 1.5, X2 = −1.2, X = 3.89, X4 = .4, and X5 = −.6.
Random sampling means that the observations are independent, as explained in
Section 4.2. Now suppose we repeat this process 500 times, each time generating
five observations but only recording the fourth and fifth values we observe. Figure
4.21 shows a scatterplot of the 500 pairs of points; this is the type of scatterplot we
should observe if the observations are independent.

Next, suppose we generate five values from a normal distribution as was done
before, but now we put the values in ascending order. As was done in Chapter 3,
we label the ordered values X(1) ≤ X(2) ≤ X(3) ≤ X(4) ≤ X(5). If we observe
X1 = 1.5, X2 = −1.2, X3 = .89, X4 = .4, and X5 = −.6, then X(1) = −1.2 is the
smallest of the five values, X(2) = −.6 is the second smallest, and so on. Now we
repeat this process 500 times, each time randomly sampling five observations, but
this time we record the two largest values. Figure 4.22 shows the resulting scatterplot
for X(4) (the x-axis) versus X(5). There is a discernible pattern because they are
dependent.

An important point is that we get dependence when sampling from any distribution,
including normal distributions as a special case. If, for example, you are told that
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X

Y

FIGURE 4.21 Five values were randomly sampled from a normal distribution and the
fourth and fifth observations were recorded. Repeating this process 500 times yielded
the pairs of points shown, which are independent.
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FIGURE 4.22 Five values were randomly sampled from a normal distribution, but now
the two largest observations were recorded. Repeating this process 500 times yielded
the pairs of points shown, illustrating that the two largest observations are dependent.

X(4) is .89, it follows that the largest value (X(5), still assuming n = 5) cannot be .8, .2,
0, or −1; it must be as large or larger than .89. Put another way, if we focus attention
on the largest value, there is some probability — greater than zero — that its value is
less than .89. In symbols, P(X(5) < .89) > 0. But this probability is altered if you are
told that X(4) = .89; now it is exactly equal to zero. That is, it is impossible for the
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largest value to be less than .89 if the second-largest value is equal to .89. Said another
way, if knowing the value of X(4) alters the range of possible values for X(5), then X(4)
and X(5) are dependent. (See the end of Section 2.3.) This argument generalizes:
Any two ordered values, say, X(i) and X( j), i �= j, are dependent. Moreover, if we
discard even one unusually large or small observation, the remaining observations are
dependent.

The point of all this is that the method for determining the variance of the sample
mean cannot be used to determine the variance of the trimmed mean. Recall that the
derivation of the variance of the sample mean made use of the fact that under random
sampling, all pairs of observations have zero correlation. But when we discard extreme
observations, the remaining observations are dependent and have nonzero correla-
tions, and this needs to be taken into account when trying to derive an expression
for the variance of the trimmed mean. In symbols, we could determine the variance
of the trimmed mean if we could determine

VAR(X( g+1) + · · · + X(n−g)),

where X( g+1) +· · ·+X(n−g) is the numerator of the sample trimmed mean as given by
Equation (3.5). The difficulty is that the variables in this last equation have nonzero
correlations, so this variance is not equal to VAR(X( g+1)) + · · · + VAR(X(n−g)), the
sum of the individual variances. That is, after trimming, it is no longer true that the
variance of the sum of the remaining observations is equal to the sum of the variances
of the individual observations. (There is also the problem that the observations left
after trimming do not have the same variance as the distribution from which they
were sampled.)

We conclude this subsection with the following remark. Various studies suggest
that outliers and heavy-tailed distributions are common in applied research. A tempt-
ing method for dealing with outliers is simply to discard any that are found and then
to compute a confidence interval with Student’s T using only the data that remain.
This strategy is theoretically unsound, however, because, as just indicated, the obser-
vations not discarded are dependent, in which case the mathematical derivation of
Student’s T is no longer valid.

4.9.2 A Theoretically Correct Approach

During the 1960s, some mathematical techniques were developed that provide a
convenient and useful method for estimating the variance of a trimmed mean. The
theoretical details are described in Huber (1981), but here we merely describe
the resulting method. In particular, the variance of the 20% trimmed mean can be
estimated with

s2w
.62n

, (4.12)

where s2w is the Winsorized sample variance introduced in Chapter 3. The .6 in the
denominator is related to the amount of trimming, which is assumed to be 20%.
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More generally, for a γ -trimmed mean, the squared standard error is estimated
with

s2w
(1 − 2γ )2n

, (4.13)

where now s2w is the γ -Winsorized variance. For example, if 10% trimming is used
instead, the .6 in Equation (4.12) is replaced by .8. The standard error of the trimmed
mean is estimated with the square root of this last equation.

EXAMPLE. Again consider the weight-gain data for rats and assume 20%
trimming is to be used. The sample Winsorized standard deviation can be
computed as described in Chapter 3 and is sw = 3.927. The trimmed mean is
X̄t = 23.27. Because there are n = 23 rats, the estimated standard error of the
sample trimmed is

3.927

.6
√

23
= 1.4.

In contrast, the estimated standard error of the sample mean is s/
√

n = 2.25.
Note that the ratio of these two values is 1.4/2.25 = .62, and this is substantially
less than 1 when viewed in light of techniques to be covered. Put another way, it
might seem that the trimmed mean would have a larger standard error because
only six of the ten observations are used to compute the trimmed mean. In fact
the exact opposite is true, and this turns out to be important. ■

EXAMPLE. The data in Table 4.3, from a study on self-awareness, reflect
how long an individual could keep a portion of an apparatus in contact
with a specified target. The trimmed mean is X̄t = 283 and its estimated
standard error is 56.1. In contrast, the standard error of the sample mean
is s/

√
n = 136, a value approximately 2.4 times larger than the sample

standard error of the trimmed mean. This difference will be seen to be
substantial. ■

A practical issue is whether using a correct estimate of the standard error of the
trimmed mean can make a difference in applied work versus the strategy of applying
methods for means to the data left after trimming. That is, if we trim and ignore the

TABLE 4.3 Self-Awareness Data

77 87 88 114 151 210 219 246 253 262

296 299 306 376 428 515 666 1310 2611
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dependence among the remaining values, can this have any practical consequences?
The answer is an unequivocal yes, as illustrated in the next example.

EXAMPLE. For the data in Table 3.2, the estimated standard error of the
20% trimmed mean is .532 using Equation (4.12). If we trim 20% and simply
use the method for the sample mean on the remaining 63 values (meaning
that we compute s using these 63 values only and then compute s/

√
63), we

get 0.28, which is less than half of the value based on Equation (4.12). So
we see that using a theoretically motivated estimate of the standard error of
the trimmed mean, rather than using methods for the sample mean based on
data not trimmed, is not an academic matter. The incorrect estimate can differ
substantially from the estimate based on theory. ■

4.9.3 A Confidence Interval for the Population Trimmed Mean

As was the case when working with the population mean, we want to know how well
the sample trimmed mean, X̄t, estimates the population trimmed mean, µt. What is
needed is a method for computing a 1 − α confidence interval for µt. A solution
was derived by Tukey and McLaughlin (1963) and is computed as follows. Let h be
the number of observations left after trimming, as described in Chapter 3. Let c be
the 1 − α/2 quantile of the Student’s T distribution with h − 1 degrees of freedom
and let sw be the Winsorized sample standard deviation, which is also described in
Chapter 3. A confidence interval for the γ -trimmed mean is

(
X̄t − c

sw
(1 − 2γ )

√
n
, X̄t + c

sw
(1 − 2γ )

√
n

)
. (4.14)

So for the special case of 20% trimming, a 1 − α confidence interval is given by

(
X̄t − c

sw
.6

√
n
, X̄t + c

sw
.6

√
n

)
. (4.15)

In terms of probability coverage, we get reasonably accurate confidence intervals for
a much broader range of nonnormal distributions versus confidence intervals for µ

based on Student’s T.
Section 4.4 provided one reason why a trimmed mean can be a more accurate

estimate of the population mean when sampling from a symmetric distribution. The
method for computing a confidence interval just described provides another perspec-
tive and explanation. We saw in Chapter 3 that generally the Winsorized standard
deviation, sw, can be substantially smaller than the standard deviation s. Consequently,
a confidence interval based on a trimmed mean can be substantially shorter. However,
when computing a confidence interval based on 20% trimming, for example, the esti-
mate of the standard error of the trimmed mean is sw/(.6

√
n). Because sw/.6 can be
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greater than s, such as when sampling from a normal distribution, it is possible to
get a shorter confidence interval using means. Generally, however, any improvement
achieved with the mean is small, but substantial improvements based on a trimmed
mean are often possible.

EXAMPLE. Suppose a test of open-mindedness is administered to n = 10
subjects, yielding the observations

5, 60, 43, 56, 32, 43, 47, 79, 39, 41.

We compute a .95 confidence interval for the 20% trimmed mean and compare
the results to the confidence interval for the mean. With n = 10, the number
of trimmed observations is four, as explained in Chapter 3. That is, the two
largest and two smallest observations are removed, leaving h = 6 observations,
and the average of the remaining observations is the trimmed mean, X̄t = 44.8.
The mean using all 10 observations is X̄ = 44.5. This suggests that there
might be little difference between the population mean, µ, and the population
trimmed mean, µt. With ν = 6 − 1 = 5 degrees of freedom, Table 4 in
Appendix B indicates that the .975 quantile of Student’s T distribution is c =
2.57. It can be seen that the Winsorized sample variance is s2w = 54.54, so
sw = √

54.54 = 7.385, and the resulting confidence interval for the trimmed
mean is

44.8 ± 2.57
7.385

.6
√

10
= (34.8, 54.8).

In contrast, the .95 confidence interval for the mean is (30.7, 58.3). The ratio
of the lengths of the confidence intervals is

54.8 − 34.8
58.3 − 30.7

= .72.

That is, the length of the confidence interval based on the trimmed mean is
substantially shorter. ■

In the previous example, a boxplot of the data reveals that there is an outlier.
This explains why the confidence interval for the mean is longer than the confidence
interval for the trimmed mean: The outlier inflates the sample variance, s2, but has
no effect on the Winsorized sample variance, s2w. Yet another method for trying to
salvage means is to check for outliers, and if none are found, compute a confidence
interval for the mean. Recall, however, that even when sampling from a skewed light-
tailed distribution, the distribution of T can differ substantially from the case where
observations are normal. This means that even though no outliers are detected, when
computing a .95 confidence interval for µ, the actual probability coverage could be
substantially smaller than intended unless the sample size is reasonably large. When
attention is turned to comparing multiple groups of subjects, this problem becomes
exacerbated, as will be seen. Modern theoretical results tell us that trimmed means
reduce this problem substantially.
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TABLE 4.4 Average LSAT Scores for 15 Law Schools

545 555 558 572 575 576 578 580

594 605 635 651 653 661 666

EXAMPLE. Table 4.4 shows the average LSAT scores for the 1973 entering
classes of 15 American law schools. (LSAT is a national test for prospective
lawyers.) The sample mean is X̄ = 600.3 with an estimated standard error of
10.8. The 20% trimmed mean is X̄t = 596.2 with an estimated standard error
of 14.92. The .95 confidence interval for µt is (561.8, 630.6). In contrast, the
.95 confidence interval for µ is (577.1, 623.4), assuming T does indeed have
a Student’s T distribution. Note that the length of the confidence interval for
µ is smaller and, in fact, is a subset of the confidence interval for µt. This
might suggest that the sample mean is preferable to the trimmed mean for this
particular set of data, but closer examination suggests that this might not be
true. The concern here is the claim that the confidence interval for the mean
has probability coverage .95. If sampling is from a light-tailed, skewed distribu-
tion, the actual probability coverage for the sample mean can be substantially
smaller than the nominal level. Figure 4.23 shows a boxplot of the data, indi-
cating that the central portion of the data is skewed to the right. Moreover,
there are no outliers, suggesting the possibility that sampling is from a relatively
light-tailed distribution. Thus, the actual probability coverage of the confidence
interval for the mean might be too low — a longer confidence interval might
be needed to achieve .95 probability coverage. That is, an unfair comparison
of the two confidence intervals has probably been made because they do not
have the same probability coverage. If we were able to compute a .95 confi-
dence interval for the mean, there is some possibility that it would be longer
than the confidence interval for the trimmed mean. When sampling from a
skewed, heavy-tailed distribution, problems with the mean can be exacerbated
(as illustrated in Chapter 7). ■

The confidence interval for the 20% trimmed mean given by Equation (4.15)
assumes that

Tt = .6(X̄t − µt)
sw/

√
n

has a Student’s T distribution with h − 1 = n − 2g − 1 degrees of freedom, where
g = [.2n] and [.2n] is .2n rounded down to the nearest integer. To graphically illustrate
how nonnormality affects this assumption, we repeat the method used to create the
left panel of Figure 4.15. That is, we sample n = 20 observations from the (lognormal)
distribution in Figure 4.14, compute Tt, and repeat this 5000 times, yielding 5000 Tt
values. The left panel of Figure 4.24 shows a plot of these Tt values versus Student’s
T with 11 degrees of freedom. To facilitate comparisons, the right panel shows a plot
of 5000 T values (based on the mean and variance) versus Student’s T distribution
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FIGURE 4.23 A boxplot of the data in Table 4.4.

−4 −2 0 2 −4 −2 0 2

FIGURE 4.24 The left plot is based on 5000 Tt values (with 20% trimming)
when sampling from a lognormal distribution. The right plot is based on 5000
T values (no trimming).

with 19 degrees of freedom. Student’s T distribution gives a better approximation of
the actual distribution of Tt versus T. Of particular importance is that the tails of the
distribution are better approximated when using a trimmed mean. This indicates that
more accurate probability coverage will be achieved using a 20% trimmed mean versus
using the mean with no trimming. Generally, as the sample size increases, problems
with nonnormality diminish more rapidly when using a trimmed mean versus using
a mean. But switching to a trimmed mean does not eliminate all practical problems
when sample sizes are small. Fortunately there are methods for getting even more
accurate results, as we shall see.
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4.9.4 S-PLUS Functions trimse and trimci

The S-PLUS function

trimse(x,tr=.2,alpha=.05)

has been supplied that computes an estimate of the standard error of the trimmed
mean for the data stored in any S-PLUS variable x. The default amount of trimming
(tr) is .2. The function

trimci(x,tr=.2,alpha=.05)

computes a 1 − α confidence interval for µt. If the argument alpha is unspecified,
α = .05 is used.

EXAMPLE. If the data in Table 4.4 are stored in the S-PLUS variable blob, the
command trimci(blob) returns a .95 confidence interval for the 20% trimmed
mean: (561.8, 630.6). The command trimci(blob,tr=0,alpha=.01) returns a .99
confidence interval for the population mean using Student’s T method described
in Section 4.7. ■

4.10 Transforming Data

For completeness, it should be remarked that simple transformations of data are
often recommended for dealing with problems due to nonnormality. For example,
a common recommendation is to replace all the values in a study with their loga-
rithm and then to use methods based on means. Another common strategy when all
observations are positive is to replace each value by its square root. These simple
transformations can be useful for certain purposes, but for the situations covered in
this book they are not always satisfactory. One problem is that they do not eliminate
the deleterious effect of outliers (e.g., Rasmussen, 1989). Transformations can make
a distribution appear to be reasonably normal, at least in some cases, but when using
simple transformations it has been found that trimming is still beneficial (Doksum &
Wong, 1983). For this reason, simple transformations of data are not discussed.

4.11 Confidence Interval for the Population Median

Although the median is a member of the class of trimmed means, the method for com-
puting a confidence interval for the trimmed mean gives absurd results for the extreme
case of the median. One way of dealing with this problem is to use a result derived by
Laplace, which gives an expression for the variance of the median that depends in part
on f(x), the equation for the probability density function from which observations
are randomly sampled. Details of this approach are covered in Wilcox (1997a) but
not here. Instead we rely on the method outlined in Box 4.1, which was suggested
by Hettmansperger and Sheather (1986). Results supporting the use of this method
are reported by Sheather and McKean (1987) as well as Hall and Sheather (1988).
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BOX 4.1 How to Compute a Confidence Interval for the Median

As indicated by Equation (2.9), for some p, 0 ≤ p ≤ 1, the binomial
probability function is

f(x) =
(

n
x

)
px(1 − p)n−x, x = 0, . . . , n.

For any integer k between 0 and n/2, let

γk = f(k) + f(k + 1) + · · · + f(n − k)

when p = .5.
Then

(X(k), X(n−k+1)) (4.16)

is a confidence interval for the median that has probability coverage exactly
equal to γk.

Because the binomial distribution is discrete, it is not possible, in general,
to choose k so that the probability coverage is exactly equal to 1 − α. To get
a 1 − α confidence interval, first determine k such that γk+1 < 1 − α < γk.
Next, compute

I = γk − 1 − α

γk − γk+1
and λ = (n − k)I

k + (n − 2k)I
.

Then an approximate 1 − α confidence interval is

(λX(k+1) + (1 − λ)X(k), λX(n−k) + (1 − λ)X(n−k+1)). (4.17)

4.11.1 S-PLUS Function sint

The S-PLUS function

sint(x,alpha=.05)

has been supplied for applying the method in Box 4.1. As usual, x is any S-PLUS
variable containing data.

EXAMPLE. Staudte and Sheather (1990) illustrate the use of Equation (4.17)
with data from a study on the lifetimes of EMT6 cells. The values are 10.4, 10.9,
8.8, 7.8, 9.5, 10.4, 8.4, 9.0, 22.2, 8.5, 9.1, 8.9, 10.5, 8.7, 10.4, 9.8, 7.7, 8.2, 10.3,
9.1. Storing these values in the S-PLUS variable blob, the command sint(blob)
returns a .95 confidence interval of (8.72, 10.38). The command sint(blob,.01)
returns a .99 confidence interval of (8.5, 10.4). ■
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4.11.2 Estimating the Standard Error of the Sample Median

The method just described for computing a confidence interval for the median does
not require an estimate of the standard error of M, the sample median. However,
for situations to be covered, an explicit estimate will be needed. Many strategies
have been proposed, comparisons of which can be found in Price and Bonett (2001).
Here, the method derived by McKean and Schrader (1984) is described because it
is very simple and currently appears to have practical value for problems addressed
in subsequent chapters.

Compute

k = n + 1
2

− z.995

√
n
4

,

where k is rounded to the nearest integer and z.995 is the .995 quantile of a standard
normal distribution. Put the observed values in ascending order, yielding X(1) ≤ · · · ≤
X(n). Then the McKean–Schrader estimate of the squared standard error of M is

(
X(n−k+1) − X(k)

2z.995

)2

.

4.11.3 S-PLUS Function msmedse

The S-PLUS function

msmedse(x)

computes the estimated standard error of M given by the square root of the last
equation.

4.12 A Remark About MOM and M-Estimators

How do we compute a confidence interval based on an M-estimator of location or
the MOM estimator in Section 3.5.2? An expression for the standard error of an
M-estimator has been derived and can be used to derive a confidence interval using
methods similar to those described in this chapter. But for n < 100 it yields a rea-
sonably accurate confidence interval only when sampling from a perfectly symmetric
distribution. With n sufficiently large, an accurate confidence interval can be com-
puted when sampling from a skewed distribution, but it remains unclear just how
large n must be. As for MOM, no expression for the standard error has been derived.
However, Chapter 7 describes an effective method for estimating its standard and
computing accurate confidence intervals.

4.13 Confidence Intervals for the Probability of Success

Section 2.5 introduced the binomial probability function, where p represents the
probability of success and x represents the number of successes among n randomly
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sampled observations. As was noted, the usual estimate of p is simply

p̂ = x
n
,

the proportion of successes among the n observations.
Results in Chapter 2 plus the central limit theorem suggest a simple method for

computing a 1 − α confidence interval for p:

p̂ ± c

√
p(1 − p)

n
,

where c is the 1 − α/2 quantile of a standard normal distribution. We do not know
the value of the quantity under the radical, but it can be estimated with p̂, in which
case a simple 1 − α confidence interval for p is

p̂ ± c

√
p̂(1 − p̂)

n
. (4.18)

The resulting probability coverage will be reasonably close to 1 − α if n is not too
small and p is not too close to zero or 1. Just how large n must be depends on how
close p is to zero or 1. An obvious concern is that we do not know p, so there is some
difficulty in deciding whether n is sufficiently large. Numerous methods have been
proposed for dealing with this issue. For the special cases x = 0, 1, n−1, and n, Blyth
(1986) suggests proceeding as follows:

• If x = 0, use

(0, 1 − α1/n).

• If x = 1, use

(
1 −

(
1 − α

2

)1/n
, 1 −

(α

2

)1/n
)

.

• If x = n − 1, use

((α

2

)1/n
,
(
1 − α

2

)1/n
)

.

• If x = n, use

(α1/n, 1).

For all other situations, Blyth’s comparisons of various methods suggest using Pratt’s
(1968) approximate confidence interval, which is computed as shown in Box 4.2.
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BOX 4.2 Computing a 1 − α Confidence Interval for p Based on x

Successes Among n Trials

Let c be the 1 − α/2 quantile of a standard normal distribution read from
Table 1 in Appendix B. That is, if Z is a standard normal random variable,
then P(Z ≤ c) = 1 − α/2. To determine cU , the upper end of the confidence
interval, compute

A =
(

x + 1
n − x

)2

B = 81(x + 1)(n − x) − 9n − 8

C = −3c
√

9(x + 1)(n − x)(9n + 5 − c2) + n + 1

D = 81(x + 1)2 − 9(x + 1)(2 + c2) + 1

E = 1 + A
(

B + C
D

)3

cU = 1
E

.

To get the lower end of the confidence interval, cL, compute

A =
(

x
n − x − 1

)2

B = 81(x)(n − x − 1) − 9n − 8

C = 3c
√

9x(n − x − 1)(9n + 5 − c2) + n + 1

D = 81x2 − 9x(2 + c2) + 1

E = 1 + A
(

B + C
D

)3

cL = 1
E

.

An approximate 1 − α confidence interval for p is

(cL, cU).

4.13.1 S-PLUS Function binomci

The S-PLUS function

binomci(x=sum(y), nn=length(y), y=NA, n=NA, alpha=0.05)
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has been supplied to compute Pratt’s approximate confidence interval for p. In the
event x = 0, 1, n − 1, or n, Blyth’s method is used instead. The first argument, x,
is the number of successes and the second argument, nn, indicates the value of n,
the number of observations. If the data are stored as a vector of 1’s and 0’s in some
S-PLUS variable, where a 1 indicates a success and 0 a failure, use the third argument,
y. (Generally, the fourth argument can be ignored.)

EXAMPLE. The command

binomci(5,25)

returns (0.07, 0.41) as a .95 confidence interval for p based on five successes
among 25 observations. If the values 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1 are stored in
the S-PLUS variable obs, the command

binomci(y=obs)

returns (0.25, 0.79) as a .95 confidence interval for p. ■

4.14 Exercises

1. Explain the meaning of a .95 confidence interval.
2. If you want to compute a .80, .92, or .98 confidence interval for µ when σ is

known, and sampling is from a normal distribution, what values for c should
you use in Equation (4.8)?

3. Assuming random sampling is from a normal distribution with standard devi-
ation σ = 5, if you get a sample mean of X̄ = 45 based on n = 25 subjects,
what is the .95 confidence interval for µ?

4. Repeat the previous example, but compute a .99 confidence interval instead.
5. A manufacturer claims that their light bulbs have an average life span of µ =

1200 hours with a standard deviation of σ = 25. If you randomly test 36 light
bulbs and find that their average lifespan is X̄ = 1150, does a .95 confidence
interval for µ suggest that the claim µ = 1200 is unreasonable?

6. Compute a .95 confidence interval for the mean in the following situations:
(a) n = 12, σ = 22, X̄ = 65, (b) n = 22, σ = 10, X̄ = 185, (c) n = 50,
σ = 30, X̄ = 19.

7. Describe the two components of a random sample.
8. If n = 10 observations are randomly sampled from a distribution with mean

µ = 9 and variance σ 2 = 8, what is the mean and variance of the sample
mean?

9. Determine E(X̄) and σ 2
X̄

for a random sample of n = 12 observations from a
discrete distribution with the following probability function:

x: 1 2 3 4
p(x): .2 .1 .5 .2
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10. In Exercise 9, again suppose you sample n = 12 subjects and compute the
sample mean. If you repeat this process 1000 times, each time using n = 12
subjects, and if you averaged the resulting 1000 sample means, approximately
what would be the result? That is, approximate the average of the 1000 sample
means.

11. Answer the same question posed in Exercise 10, except replace means with
sample variances.

12. Estimate the variance and standard error of the sample mean for a random
sample of n = 8 subjects from whom you get

2, 6, 10, 1, 15, 22, 11, 29.

13. If you randomly sample a single observation and get 32, what is the estimate
of the population mean, µ? Can you get an estimate of the squared standard
error? Explain, in terms of the squared standard error, why only a single
observation is likely to be a less accurate estimate of µ versus a sample mean
based on n = 15 subjects.

14. As part of a health study, a researcher wants to know the average daily intake
of vitamin E for the typical adult. Suppose that for n = 12 adults, the intake is
found to be

450, 12, 52, 80, 600, 93, 43, 59, 1000, 102, 98, 43.

Estimate the squared standard error of the sample mean.
15. In Exercise 14, verify that there are outliers. Based on results in Chapter 2,

what are the effects of these outliers on the estimated squared standard error?
16. Estimate the variance and standard error of the sample mean when you

randomly sample n = 8 subjects and get

2, 6, 10, 1, 15, 22, 11, 29.

17. In Exercise 16, if the observations are dependent, can you still estimate the
standard error of the sample mean?

18. Section 2.7 described a mixed normal distribution that differs only slightly from
a standard normal. Suppose we randomly sample n = 25 observations from a
standard normal distribution. Then the squared standard error of the sample
mean is 1/25. Referring back to Section 2.7, what is the squared standard error
if sampling is from the mixed normal instead? What does this indicate about
what might happen under slight departures from normality?

19. Explain why knowing the mean and squared standard error is not enough to
determine the distribution of the sample mean. Relate your answer to results
on nonnormality described in Section 2.7.

20. Suppose n = 16, σ = 2, and µ = 30. Assume normality and determine
(a) P(X̄ < 29), (b) P(X̄ > 30.5), (c) P(29 < X̄ < 31).

21. Suppose n = 25, σ = 5, and µ = 5. Assume normality and determine
(a) P(X̄ < 4), (b) P(X̄ > 7), (c) P(3 < X̄ < 7).

22. Someone claims that within a certain neighborhood, the average cost of a
house is µ = $100,000 with a standard deviation of σ = $10,000. Suppose
that based on n = 16 homes, you find that the average cost of a house is
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X̄ = $95,000. Assuming normality, what is the probability of getting a sample
mean this low or lower if the claims about the mean and standard deviation are
true?

23. In Exercise 22, what is the probability of getting a sample mean between
$97,500 and $102,500?

24. A company claims that the premiums paid by its clients for auto insurance have
a normal distribution with mean µ = $750 and standard deviation σ = $100.
Assuming normality, what is the probability that for n = 9 randomly sampled
clients, the sample mean will have a value between $700 and $800?

25. You sample 16 observations from a discrete distribution with mean µ = 36 and
variance σ 2 = 25. Use the central limit theorem to determine (a) P(X̄ < 34),
(b) P(X̄ < 37), (c) P(X̄ > 33), (d) P(34 < X̄ < 37).

26. You sample 25 observations from a nonnormal distribution with mean µ = 25
and variance σ 2 = 9. Use the central limit theorem to determine (a) P(X̄ <
24), (b) P(X̄ < 26), (c) P(X̄ > 24), (d) P(24 < X̄ < 26).

27. Describe a situation where Equation (4.11), used in conjunction with the
central limit theorem, might yield a relatively long confidence interval.

28. Describe a type of continuous distribution where the central limit theorem
gives good results with small sample sizes.

29. Compute a .95 confidence interval if (a) n = 10, X̄ = 26, s = 9, (b) n = 18,
X̄ = 132, s = 20, (c) n = 25, X̄ = 52, s = 12.

30. Repeat Exercise 29, but compute a .99 confidence interval instead.
31. Table 4.3 reports data from a study on self-awareness. Compute a .95

confidence interval for the mean.
32. Rats are subjected to a drug that might affect aggression. Suppose that for a

random sample of rats, measures of aggression are found to be

5, 12, 23, 24, 18, 9, 18, 11, 36, 15.

Compute a .95 confidence for the mean assuming the scores are from a normal
distribution.

33. Describe in general terms how nonnormality can affect Student’s T
distribution.

34. When sampling from a light-tailed, skewed distribution, where outliers are
rare, a small sample size is needed to get good probability coverage, via the
central limit theorem, when the variance is known. How does this contrast
with the situation where the variance is not known and confidence intervals
are computed using Student’s T distribution?

35. Compute a .95 confidence for the trimmed mean if (a) n = 24, s2w = 12,
X̄t = 52, (b) n = 36, s2w = 30, X̄t = 10, (c) n = 12, s2w = 9, X̄t = 16.

36. Repeat Exercise 35, but compute a .99 confidence interval instead.
37. Compute a .95 confidence interval for the 20% trimmed mean using the data

in Table 4.3.
38. Compare the length of the confidence interval in Exercise 37 to the length of

the confidence interval for the mean you got in Exercise 31. Comment on why
they differ.
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39. In a portion of a study of self-awareness, Dana observed the values

59, 106, 174, 207, 219, 237, 313, 365, 458, 497, 515,

529, 557, 615, 625, 645, 973, 1065, 3215.

Compare the lengths of the confidence intervals based on the mean and 20%
trimmed mean. Why is the latter confidence interval shorter?

40. The ideal estimator of location would have a smaller standard error than any
other estimator we might use. Explain why such an estimator does not exist.

41. Under normality, the sample mean has a smaller standard error than the
trimmed mean or median. If observations are sampled from a distribution
that appears to be normal, does this suggest that the mean should be preferred
over the trimmed mean and median?

42. Chapter 3 reported data on the number of seeds in 29 pumpkins. The results
were

250, 220, 281, 247, 230, 209, 240, 160, 370, 274, 210, 204, 243, 251, 190,
200, 130, 150, 177, 475, 221, 350, 224, 163, 272, 236, 200, 171, 98.

The 20% trimmed mean is X̄t = 220.8 and the mean is X̄ = 229.2. Verify that
the .95 confidence interval for µ is (200.7, 257.6) and that for the trimmed
mean, µt, it is (196.7, 244.9).

43. In Exercise 42, the length of the confidence interval for µ is 257.6 − 200.7 =
56.9 and the length based on the trimmed mean is 244.9 − 196.7 = 48.2.
Comment on why the length of the confidence interval for the trimmed mean
is shorter.

44. If the mean and trimmed mean are nearly identical, it might be thought that
it makes little difference which measure of location is used. Based on your
answer to Exercise 43, why might it make a difference?

45. For the past 16 presidential elections in the United States, the incumbent
party won or lost the election depending on whether the Washington Redskins,
American football team, won their last game just prior to the election. That
is, there has been perfect agreement between the two events during the last
16 elections. Verify that according to Blyth’s method, a .99 confidence for the
probability of agreement is (.75, 1).

46. An ABC news program reported that a standard method for rendering patients
unconscious led patients to wake up during surgery. These individuals were
not only aware of their plight, they suffered from nightmares later on. Some
physicians tried monitoring brain function during surgery to avoid this prob-
lem, the strategy being to give patients more medication if they showed signs
of regaining consciousness, and they found that among 200,000 trials, no
patients woke during surgery. However, administrators concerned about cost
argued that with only 200,000 trials, the probability of waking up using the
new method could not be accurately estimated. Verify that a .95 confidence
interval for p, the probability of waking up, is (0, .000015).



5
HYPOTHESIS TESTING

In applied research, it is common to make some speculation about the population
mean and then to try to assess whether this speculation is reasonable based on the data
that are available. Roughly, if the likelihood of an observed value for the sample mean
is small based on an assumed value for the population mean, then perhaps the assumed
value of the population mean is incorrect. Another possibility is that the sample mean
does not accurately reflect the population mean. That is, the speculation about the
population mean is correct, but by chance the sample mean differs substantially from
the population mean.

As an example, imagine a researcher who claims that on a test of open-mindedness,
the population mean (µ) for adult men is 50. Suppose you randomly sample n = 10
adult males, give them the test for open-mindedness, and get the scores

25, 60, 43, 56, 32, 43, 47, 59, 39, 41.

The sample mean is X̄ = 44.5. Does this make the claim µ = 50 unreasonable? Do
the data support the claim? If in reality µ = 50, what is the probability that you will
get a sample mean less than 45?

Chapter 4 touched on how you might decide whether the claim µ = 50 is reason-
ably consistent with the 10 open-mindedness scores just given. If the .95 confidence
interval for µ happens to be (40, 48), then this interval does not contain 50, suggest-
ing that the claim µ = 50 is not reasonable. If the .95 confidence interval is (46, 52),
this interval contains 50, which suggests that the claim µ = 50 should not be ruled
out. The purpose of this chapter is to expand on the topic of making decisions
about whether some claim about the population mean or some other parameter of
interest is consistent with data. As usual, we begin by describing basic concepts and
techniques typically covered in an introductory statistics course. Then we describe
modern insights into when and why the standard method based on the mean might
be highly unsatisfactory and how these practical problems might be addressed.

5.1 The Basics of Hypothesis Testing

We continue the illustration described in the introduction to this chapter, but for
convenience we first consider a situation where it is claimed that the population mean

141
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is greater than or equal to 50. A typical way of writing this claim more succinctly is

H0 : µ ≥ 50,

where the notation H0 is read “H naught.” This last expression is an example of what
is called a null hypothesis. A null hypothesis is just a statement — some speculation —
about some characteristic of a distribution. In the example, the null hypothesis is a
speculation about the population mean, but it could just as easily be some speculation
about the population median or trimmed mean. If someone claims that the mean is
greater than or equal to 60, then our null hypothesis would be written as H0 : µ ≥ 60.
If there is some reason to speculate that µ ≤ 20, and the goal is to see whether
this speculation is consistent with observations we make, then the null hypothesis is
H0 : µ ≤ 20.

The goal of statistical hypothesis testing is to find a decision rule about whether
the null hypothesis is true, or should be ruled out, based on observations we make.
When the null hypothesis is rejected, this means you decide that the corresponding
alternative hypothesis is accepted. For example, if the null hypothesis is H0 : µ ≥ 50,
the alternative hypothesis is typically written as

H1 : µ < 50,

and if you reject H0, you in effect accept H1. That is, you conclude that the mean is
less than 50 based on the data available in your study.

Suppose we sample some adult men, measure their open-mindedness, and find
that the resulting sample mean is X̄ = 61. Thus, our estimate of the popula-
tion mean µ is 61, which is consistent with the null hypothesis H0 : µ ≥ 50,
so there is no empirical evidence to doubt the claim that the population mean is
greater than or equal to 50. For the data given at the beginning of this chapter,
X̄ = 44.5. That is, µ is estimated to be less than 50, which suggests that the
null hypothesis is false and should be rejected. But if it were true that µ = 50,
then there is some possibility of observing a sample mean less than or equal to
44.5. That is, if we reject the null hypothesis and conclude that µ is less than 50
based on this observed sample mean, there is some possibility that our decision is
in error.

DEFINITION. A Type I error refers to a particular type of mistake, namely, rejecting
the null hypothesis when in fact it is correct. A common notation for the probability
of a Type I error is α, which is often referred to as the level of significance.

We can avoid a Type I error by never rejecting the null hypothesis. In this case,
α = 0, meaning that the probability of erroneously rejecting the null hypothesis
is zero. But a problem with this rule is that it is impossible to discover situations
where indeed the null hypothesis is false. If in our illustration µ = 46, then the null
hypothesis is false and we want a method that will detect this. That is, we need a
rule that allows the possibility of rejecting, but simultaneously we want to control the
probability of a Type I error.

A natural strategy is to try to determine how small the sample mean must be before
we reject the hypothesis that µ is greater than or equal to 50. But rather than work
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with X̄, it is more convenient to work with

Z = X̄ − 50
σ /

√
n

,

where for the moment we assume the population standard deviation (σ ) is known.
Using Z is convenient because when sampling from a normal distribution, it provides
a simple method for controlling the probability of a Type I error.

For illustrative purposes, temporarily assume σ = 12 and n = 10. So if X̄ = 50,
then Z = 0. If X̄ = 49, then Z = −0.26; and if X̄ = 48, then Z = −0.53. That
is, as the sample mean decreases and moves further away from the null hypothesis,
Z decreases as well. But if the null hypothesis is true and in fact µ = 50, then the
assumption that observations are sampled from a normal distribution implies that Z
has a standard normal distribution. This in turn provides a simple way of controlling
the probability of making a Type I error. For example, if the null hypothesis is true
and µ = 50, then from Table 1 in Appendix B we see that P(Z ≤ −1.645) = .05. So
if we reject when Z ≤ −1.645, the probability of a Type I error is α = .05.

EXAMPLE. For the hypothesis H0 : µ ≥ 50, imagine that, based on n = 10
subjects, with σ = 12, you find that the sample mean is X̄ = 48. Then, as
previously indicated, Z = −0.53. If you want the probability of a Type I error
to be .05, then you should reject the null hypothesis only if Z is less than or
equal to −1.645. Because −0.53 is greater than −1.645, you fail to reject. That
is, the sample mean is less than 50, but you do not have convincing evidence for
ruling out the possibility that the population mean is greater than or equal to
50. This does not mean, however, that it is reasonable to accept H0 and conclude
that µ ≥ 50. (This issue is elaborated upon in Section 5.2.) ■

Figure 5.1 illustrates the decision rule just described. If the null hypothesis is true,
and in particular µ = 50, then Z has a standard normal distribution as shown in
Figure 5.1, in which case the probability that Z is less than −1.645 is the area of the
shaded region, which is .05. In summary, if you assume the null hypothesis is true, are
willing to have a Type I error probability of .05, and Z ≤ −1.645, then this suggests
that the assumption µ ≥ 50 is not reasonably consistent with empirical evidence and
should be rejected.

Recall from Chapter 2 that P(Z ≤ −1.96) = .025. This means that if we reject
H0 : µ ≥ 50 when Z ≤ −1.96, then the probability of a Type I error is .025 if it
happens to be the case that µ = 50. In a similar manner, P(Z ≤ −2.58) = .005, and
if we reject when Z ≤ −2.58, then the probability of a Type I error is .005. A critical
value is the value used to determine whether the null hypothesis should be rejected.
If it is desired to have a Type I error probability of .05 when testing H0 : µ ≥ 50, the
critical value is −1.645, meaning that you reject if Z ≤ −1.645 (assuming normality
and that σ is known). The set of all Z values such that Z ≤ −1.645 is called the critical
region; it corresponds to the shaded region in Figure 5.1. If you want the probability of
a Type I error to be α = .025, then the critical value is −1.96 and the critical region
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FIGURE 5.1 Graphical depiction of a decision rule. Here you reject when
Z ≤ −1.645 and fail to reject otherwise. The shaded region corresponds to the
probability of a Type I error, which is .05.

consists of all Z values less than or equal to −1.96. If α = .005, then the critical value
is −2.58 and the critical region is the set of all Z values less than −2.58.

EXAMPLE. Continuing the illustration regarding open-mindedness, where
the goal is to test H0 : µ ≥ 50, suppose we want the probability of a Type I
error to be .025, in which case the critical value is −1.96, the .025 quantile of a
standard normal distribution. By assumption, σ = 12, there are n = 10 subjects,
and, for the data reported at the beginning of this chapter, X̄ = 44.5. Therefore,

Z = 44.5 − 50

12/
√

10
= −1.45.

Because −1.45 is greater than the critical value, −1.96, you fail to reject the
null hypothesis. If instead you are willing to have a Type I error probability of
.1, the critical value is −1.28, and because Z = −1.45 is less than −1.28, you
reject. That is, you conclude that the mean is less than 50, and the probability
of making a mistake, rejecting when you should not have rejected, is .1. ■

EXAMPLE. Rather than test H0 : µ ≥ 50, imagine that the goal is to test
H0 : µ ≥ 60. The calculations are exactly the same as before, except that 50 is

Continued
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EXAMPLE. (Continued ) replaced by 60 when computing Z. So now

Z = 44.5 − 60

12/
√

10
= −4.08.

If you test at the .005 level, the critical value is −2.58, −4.08 is less than −2.58,
so you reject. That is, you conclude that the sample mean is not consistent
with the assumption that µ ≥ 60 and that µ is less than 60. Again, there is the
possibility of incorrectly rejecting when in fact µ ≥ 60 is true, and by design
the probability of making this mistake is α = .005 when µ = 60. ■

There are two variations of the hypothesis-testing method just described. To illus-
trate the first, imagine that you work in the research and development department
of a company that helps students train for the SAT examination. After years of
experience, it is found that the typical student attending the training course gets
an SAT mathematics score of µ = 580 and the standard deviation is σ = 50.
You suspect that the training course could be improved and you want to empiri-
cally determine whether this is true. You try the new method on n = 20 students
and get a sample mean of X̄ = 610. For illustrative purposes, assume that the stan-
dard deviation is again 50. We need to consider carefully how the null hypothesis
should be stated. You have evidence that the new training method is better for
the typical student because the estimate of the population mean is 610, which is
greater than 580. But you need to convince management, so you assume that the
new method is actually worse, with the goal of determining whether this assumption
can be ruled out based on X̄ = 610. That is, you decide to test the hypothe-
sis H0 : µ ≤ 580, so if you reject, there is empirical evidence suggesting that it
is unreasonable to believe that the new method is not beneficial for the typical
student.

Testing H0 : µ ≤ 580 is like the mirror image of testing H0 : µ ≥ 580. If you get
a sample mean of X̄ = 550, your estimate of µ is 550, and this is consistent with
the hypothesis that µ is less than or equal to 580. That is, you would not reject. In
the illustration, X̄ = 610, which suggests that the null hypothesis might be false.
But if µ = 580, getting a mean of 610 or larger could happen by chance. The issue
is whether 610 is large enough to rule out the possibility that, beyond a reasonable
doubt, µ ≤ 580. To find out, you compute Z as before, only now you reject if Z is
sufficiently large. If you reject when Z ≥ 1.645, the probability of a Type I error is
α = P(Z ≥ 1.645) = .05. In the illustration,

Z = X̄ − µ

σ /
√

n
= 610 − 580

50/
√

20
= 2.68.

Because 2.68 is greater than 1.645, you reject and conclude that the mean is greater
than 580. That is, you have empirical evidence to present to management that the
new training method offers an advantage over the conventional approach, and there
is a .05 probability that you made a mistake.
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EXAMPLE. We repeat the illustration just given, only now imagine you want
the probability of a Type I error to be .005 instead. From Table 1 in Appendix
B, we see that P(Z ≥ 2.58) = .005. This means that if you reject H0 : µ ≤ 580
when Z is greater than or equal to 2.58, the probability of a Type I error is
α = .005. As already indicated, Z = 2.68, and because this exceeds 2.58, you
again reject and conclude that the mean is greater than 580. ■

5.1.1 p-Value (Significance Level)

There is an alternative way of describing hypothesis testing that is frequently
employed and therefore important to understand. It is based on what is called
the significance level, or p-value, an idea that appears to have been proposed first by
Deming (1943), which is just the probability of a Type I error if the observed value
of Z is used as a critical value.1 If you reject when the p-value is less than or equal
to .05, then the probability of a Type I error is .05, assuming normality. If you
reject when the p-value is less than or equal to .01, then the probability of a Type I
error is .01.

EXAMPLE. Again consider the open-mindedness example where we want to
test H0 : µ ≥ 50 andσ = 12. Imagine that you randomly sample n = 10 subjects
and compute the sample mean, X̄. If, for example, you get X̄ = 48, then

Z = 48 − 50

12/
√

10
= −0.53.

The p-value is just the probability of a Type I error if you reject when Z is less
than or equal to −0.53. This probability is

P(Z ≤ −0.53) = .298.

If you want the probability of a Type I error to be no greater than .05, then you
would not reject, because .298 is greater than .05. Put another way, if you reject
when your test statistic, Z, is less than or equal to −0.53, the probability of a
Type I error is .298. ■

The idea behind the p-value (or significance level) is that it gives you more informa-
tion about the α level at which the null hypothesis would be rejected. If you are told
that you reject with α = .05, and nothing else, this leaves open the issue of whether
you would also reject with α = .01. If you are told that the p-value is .024, say, then
you know that you would reject with α = .05 but not α = .01. If the p-value is .003,
then in particular you would reject with α = .05, α = .01, and even α = .005.

1 Level of significance refers to α, the Type I error probability specified by the investigator. Consequently,
some authorities prefer the term p-value over the expression significance level as it is used here.
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In case it helps, the p-value can be described in a slightly different fashion. Again
consider the null hypothesis H0 : µ ≥ 50 with n = 10 and σ = 10. Given X̄, let

p = P
(

Z ≤ X̄ − 50
σ /

√
n

)
. (5.1)

The quantity p is called the significance level, or p-value, associated with the null hypothesis
H0 : µ ≥ 50. In the example, X̄ = 48,

p = P
(

Z ≤ 48 − 50

12/
√

10

)

= P(Z ≤ −0.53)

= .298,

so, as in the preceding example, the p-value is .298.
Next, consider a situation where the null hypothesis is that the mean is less than

or equal to some specified value. To be concrete, consider H0 : µ ≤ 580. Then given
X̄, the significance level is now

p = P
(

Z ≥ X̄ − 580
σ /

√
n

)
.

If X̄ = 590, σ = 60, and n = 20, then the significance level is

p = P
(

Z ≥ 590 − 580

60/
√

20

)

= P(Z ≥ 0.745)

= .228

This means that when X̄ = 590, Z = 0.745 and that if you reject when Z ≥ 0.745,
the probability of a Type I error is .228.

5.1.2 A Two-Sided Test: Testing for Exact Equality

One other variation of hypothesis testing needs to be described: testing the hypoth-
esis that the mean is exactly equal to some specified value. Returning to the example
regarding open-mindedness, suppose it is claimed that the average score of all adult
men is exactly 50, as opposed to being greater than or equal to 50. Then the null
hypothesis is

H0 : µ = 50.

If the sample mean is exactly equal to 50, you would not reject, because this is consis-
tent with H0. If X̄ > 50, then the larger the sample mean happens to be, the more
doubt there is that µ = 50. Similarly, if X̄ < 50, then the smaller the sample mean,
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FIGURE 5.2 Critical region for a two-sided test such that P(Type I error) = .05.

the more doubt there is that µ = 50. That is, now it is reasonable to reject H0 if X̄ is
either too large or too small. An equivalent way of saying this is that you should reject if

Z = X̄ − 50
σ /

√
n

is too large or too small.
Suppose you reject H0 if either Z ≤ −1.96 or Z ≥ 1.96. A more succinct way of

describing this decision rule is that you reject if the absolute value of Z is greater than
or equal to 1.96. In symbols, reject if |Z| ≥ 1.96. If the null hypothesis is true and
sampling is from a normal distribution, then Z has a standard normal distribution, so
the probability of rejecting is

P(Z ≤ −1.96) + P(Z ≥ 1.96) = .025 + .025 = .05,

which is the total area of the two shaded regions in Figure 5.2.

EXAMPLE. Imagine a list of 55 minor malformations babies might have at
birth. For illustrative purposes, it is assumed that the average number of mal-
formations is 15 and the population standard deviation is σ = 6. For babies
born to diabetic women, is the average number different from 15? That is, can
you reject the hypothesis H0 : µ = 15? To find out, you sample n = 16 babies
having diabetic mothers, count the number of malformations for each, and find

Continued
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EXAMPLE. (Continued ) that the average number of malformations is X̄ = 19.
Then

Z = 19 − 15

6/
√

16
= 2.67.

If the goal is to have the probability of a Type I error equal to .05, then the
critical values are −1.96 and 1.96, for the reasons just given. Because 2.67 is
greater than 1.96, you reject the null hypothesis and conclude that the average
number of malformations is greater than 15. ■

The significance level, or p-value, can be determined when testing for exact equality,
but you must take into account that the critical region consists of both tails of the
standard normal distribution.

EXAMPLE. Continuing the last example, where Z = 2.67, if you had decided
to reject the null hypothesis if Z ≤ −2.67 or if Z ≥ 2.67, then the probability
of a Type I error is

P(Z ≤ −2.67) + P(Z ≥ 2.67) = .0038 + .0038 = .0076.

This means that the significance level is 0.0076. ■

5.1.3 Criticisms of Two-Sided Hypothesis Testing and p-Values

Testing for exact equality has met with some criticism, on the grounds that exact
equality is impossible. If, for example, one tests H0 : µ = 50, the argument is that
surely µ differs from 50 at some decimal place, meaning that the null hypothesis is
false and will be rejected with a sufficiently large sample size. A related criticism is
that because H0 is surely false, the p-value (or significance level) is meaningless.

Assuming that these criticisms have merit, there are at least two ways one might
address them. One is to reformulate the goal (cf. Shaffer, 1974). Rather than test
H0 : µ = 50, for example, suppose the goal is to determine whether µ is less than
or greater than 50. Further assume that when addressing this goal we make one of
three decisions: (1) if Z ≤ −1.96, then decide µ < 50, (2) if Z ≥ 1.96, then
decide µ > 50, and (3) if −1.96 < Z < 1.96, then make no decision about
whether µ is less than or greater than 50. Then there is some probability of mak-
ing an incorrect decision, and, still assuming normality, the maximum probability
of deciding µ < 50 when in fact µ ≥ 50 is .025. Similarly, the maximum proba-
bility of deciding µ > 50 when in fact µ ≤ 50 is .025. So in this context, α, or
the p-value, tells us something about how certain we can be that µ is less than or
greater than 50. However, the p-value tells us nothing about the degree to which µ

differs from the hypothesized value. (This last issue is discussed in more detail in
Chapter 8.)
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A second approach is to rely exclusively on a confidence interval for µ.
A confidence interval not only tells us whether we should reject H0 and conclude that
µ is less than or greater than some hypothesized value, it also provides information
about the degree to which the population mean differs from the hypothesized value.
For example, if the .95 confidence interval is (12,19), we would reject H0 : µ = 10
because this interval does not contain 10. In general, if we compute a 1 − α confidence
interval for µ, and if we reject whenever this confidence interval does not contain the
hypothesized value for µ, the probability of a Type I error is α. In the example, the
confidence interval tells us more. In addition to rejecting H0, we can be reasonably
certain that the population mean exceeds 10 (the hypothesized value) by at least 2.

5.1.4 Summary and Generalization

The basics of hypothesis testing, assuming normality and that σ is known, can be
summarized in the following manner. Let µ0 (read “mu naught”) be some specified
constant. The goal is to make some inference about how the population mean, µ,
compares toµ0. For the hypothesis H0 : µ ≤ 50, µ0 = 50. For H0 : µ = 15, µ0 = 15;
and for H0 : µ ≥ 580, µ0 = 580. Furthermore, you want the probability of a Type I
error to be α. Once the sample mean has been determined, compute

Z = X̄ − µ0

σ /
√

n
.

Case 1. H0 : µ ≥ µ0. Reject H0 if Z ≤ c, the α quantile of a standard normal
distribution.

Case 2. H0 : µ ≤ µ0. Reject H0 if Z ≥ c, the 1 −α quantile of a standard normal
distribution.

Case 3. H0 : µ = µ0. Reject H0 if Z ≥ c or if Z ≤ −c, where now c is the 1−α/2
quantile of a standard normal distribution. Equivalently, reject if |Z| ≥ c.

The hypotheses H0 : µ ≥ µ0 and H0 : µ ≤ µ0 are called one-sided hypotheses.
In contrast, H0 : µ = µ0 is called a two-sided hypothesis.

5.1.5 A Property of p-Values

p-Values have a property that is rarely discussed in applied statistics books, but it might
provide some sense of why certain modern techniques (described in subsequent chap-
ters) are reasonable. Imagine that a the null hypothesis is true and that an experiment
is repeated infinitely many times. Here it is assumed that the probability of a Type I
error can be controlled exactly for any α we might pick. This will be true, for example,
when using Z as described in Section 5.1.4 and sampling is from a normal distribution.
Further imagine that each time the experiment is performed, the p-value (or signifi-
cance level) is computed. If the infinitely many p-values were plotted, we would get
the uniform distribution (described in Exercise 10 of Chapter 2). That is, all p-values
are equally likely and are centered around .5 (e.g., Sackrowitz & Samuel-Cahn, 1999).
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In particular, the probability of getting a p-value less than or equal to .025 or greater
than or equal to .975 is exactly .05. More generally, when sampling from a nonnormal
distribution, if a method for testing some hypothesis controls the probability of a
Type I error for a sufficiently large sample size (meaning that the central limit theorem
applies), then the distribution of p converges to a uniform distribution as the sample
size increases.

5.2 Power and Type II Errors

After years of production, a manufacturer of batteries for automobiles finds that
on average, their batteries last 42.3 months with a standard deviation of σ = 4.
A new manufacturing process is being contemplated and one goal is to determine
whether the batteries have a longer life on average. Ten batteries are produced by
the new method and their average life is found to be 43.4 months. For illustrative
purposes, assume that the standard deviation is again σ = 4. Based on these n = 10
test batteries, it is estimated that the average life of all the batteries produced using
the new manufacturing method is greater than 42.3 (the average associated with
the standard manufacturing method), in which case the new manufacturing pro-
cess has practical value. To add support to this speculation, it is decided to test
H0 : µ ≤ 42.3 versus H1 : µ > 42.3, where µ is the population mean using the
new method.

The idea is to determine whether X̄ is sufficiently larger than 42.3 to rule out the
possibility that µ ≤ 42.3. That is, the goal is to determine whether the new method
is no better and possibly worse on average. If H0 is rejected, there is empirical
evidence that the new method should be adopted. As explained in the previous
section, you test this hypothesis by computing Z = (43.4 − 42.3)/(4/

√
10) = .87.

If you want the probability of a Type I error to be α = .01, the critical value is 2.33,
because P(Z ≤ 2.33) = .99. In the present context, a Type I error is concluding
that the new method is better on average when in reality it is not. Because .87
is less than 2.33, you fail to reject. Does this imply that you should accept the
alternative hypothesis that µ is less than 42.3? In other words, should you conclude
that the average battery lasts less than 42.3 months under the new manufacturing
method?

Suppose that if the null hypothesis is not rejected, you conclude that the null
hypothesis is true and that the population mean is less than 42.3. Then there are four
possible outcomes, which are summarized in Table 5.1. The first possible outcome is

TABLE 5.1 Four Possible Outcomes When Testing Hypotheses

Reality

Decision H0 true H0 false

H0 true Correct decision Type II error (probability β)

H0 false Type I error (probability α) Correct decision (power)
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that the null hypothesis is true and you correctly decide not to reject. The second
possible outcome is that the null hypothesis is false but you fail to reject and therefore
make a mistake. That is, your decision that µ ≤ 42.3 is incorrect — in reality the
mean is greater than 42.3. The third possible outcome is that the null hypothesis
is true but you make a mistake and reject. This is a Type I error, already discussed
in Section 5.1. The fourth possible outcome is that in reality µ > 42.3 and you
correctly detect this by rejecting H0.

This section is concerned with the error depicted by the upper right portion of
Table 5.1. That is, the null hypothesis is false but you failed to reject. If, for example,
the actual average life of a battery under the new manufacturing method is µ = 44,
the correct conclusion is that µ > 42.3. The practical problem is that even if in
reality µ = 44, by chance you might get X̄ = 41, suggesting that the hypothesis
H0 : µ ≤ 42.3 should be accepted. And even if X̄ > 42.3, it might be that the sample
mean is not large enough to reject even though in reality H0 is false. Failing to reject
when you should reject is called a Type II error.

DEFINITION. A Type II error is failing to reject a null hypothesis when it should be
rejected. The probability of a Type II error is often labeled β.

DEFINITION. Power is the probability of rejecting H0 when in fact it is false. In
symbols, power is 1 − β, which is 1 minus the probability of a Type II error. In
the illustration, if the new manufacturing method is actually better, meaning that
µ is greater than 42.3, and the probability of rejecting H0 : µ ≤ 42.3 is .8, say,
this means that power is 1 − β = .8, and the probability of a Type II error is
β = .2.

Power and the probability of making a Type II error are of great practical concern.
In the illustration, if µ = 44, the manufacturer has found a better manufactu-
ring method, and clearly it is in their interest to discover this. What is needed
is a method for ascertaining power, meaning the probability of correctly determi-
ning that the new method is better when in fact µ > 42.3. If power is high
but the company fails to detect an improvement over the standard method of
production, the new method can be discarded. That is, there is empirical evidence
that H0 is true and the new method has no practical value. However, if power is
low, meaning that there is a low probability of discovering that the new method
produces longer-lasting batteries even when the new method is in fact better, then
simply failing to reject does not provide convincing empirical evidence that H0
is true.

In the present context, power depends on four quantities: σ , α, n, and the
value of µ − µ0, where µ is the unknown mean of the new manufacturing method.
Although µ is not known, you can address power by considering values of µ that
are judged to be interesting and important in a given situation. In the illustration,
suppose you want to adopt the new manufacturing method if µ = 44. That is, the
average life of a battery using the standard method is 42.3 and you want to be rea-
sonably certain of adopting the new method if the average life is now 44. In the
more formal terminology of hypothesis testing, you want to test H0 : µ ≤ 42.3,
and if µ = 44, you want power to be reasonably close to 1. What is needed is a
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convenient way of assessing power given α, σ , µ, µ0, and the sample size, n, you plan
to use.

BOX 5.1 How to Compute Power, σ Known

Goal
Assuming normality, compute power when testing H0 : µ < µ0 or H0 : µ >
µ0 or H0 : µ = µ0 given:

1. n, the sample size
2. σ , the standard deviation
3. α, the probability of a Type I error
4. some specified value for µ

5. µ0, the hypothesized value.

Case 1
H0 : µ < µ0. Determine the critical value c as described in Section 5.1. (The
critical value is the 1 − α quantile of a standard normal distribution.) Then
power, the probability of rejecting the null hypothesis, is

1 − β = P
(

Z ≥ c −
√

n(µ − µ0)
σ

)
.

In words, power is equal to the probability that a standard normal random
variable is greater than or equal to

c −
√

n(µ − µ0)
σ

.

Case 2
H0 : µ > µ0. Determine the critical value c, which is now the α quantile of a
standard normal distribution. Then power is

1 − β = P
(

Z ≤ c −
√

n(µ − µ0)
σ

)
.

Case 3
H0 : µ = µ0. Now c is the 1 −α/2 quantile of a standard normal distribution.
Power is

1 − β = P
(

Z ≤ −c −
√

n(µ − µ0)
σ

)
+ P

(
Z ≥ c −

√
n(µ − µ0)

σ

)
.

Box 5.1 summarizes how to compute power given n, σ , µ, µ0, and α. Continuing
the illustration where H0 : µ ≤ 42.3, suppose α = .05, n = 10, and you want to
determine how much power there is when µ = 44. Because α = .05, the critical
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value is c = 1.645. Referring to Box 5.1, power is

1 − β = P
(

Z ≥ c −
√

n(µ − µ0)
σ

)

= P

(
Z ≥ 1.645 −

√
10(44 − 42.3)

4

)

= P(Z ≥ .30)

= .38.

This says that if battery life has a normal distribution and, unknown to us, the actual
average life of a battery under the new manufacturing method is µ = 44, then the
probability of rejecting the hypothesis that the mean is less than 42.3 is .38. That is,
for this situation where we should reject and conclude that the new manufacturing
method is better on average, there is a .38 probability of making the correct decision
that the null hypothesis is false. Consequently, the probability of committing a Type
II error and failing to reject even though the null hypothesis is false is 1 − .38 = .62.

Figure 5.3 graphically illustrates power when testing H0 : µ ≤ 42.3 with α = .05
and µ = 46. It can be seen that power is 1 − β = .9, so the probability of a Type
II error is β = .1. The left normal distribution is the distribution of Z when the
null hypothesis is true; it is standard normal and you reject if Z ≥ 1.645, as already
discussed. When the null hypothesis is false and in fact µ = 46, Z still has a normal
distribution, but its mean is no longer zero — it is larger, as indicated by Figure 5.3.
That is, the right distribution reflects the actual distribution of Z when µ = 46.
Power is the area under the right (nonnull) curve and to the right of the critical value
(c = 1.645). The area of the shaded region represents the probability of a Type II
error, which is .1.

Notice that we do not know the actual value of µ, the average life of batteries
manufactured with the new method. To deal with this issue, we must ask ourselves a
series of questions: What if µ = 44 or 45 or 46, and so on? By computing power for
each of these situations, we get some idea about the probability of rejecting when
in fact the null hypothesis is false. Figure 5.4 graphs power as µ increases. Notice
that the more the mean µ exceeds the hypothesized value of 42.3, the higher the
power. This is, of course, a property we want. The larger the difference between the
hypothesized value and the actual value of µ, the more likely we are to reject and
correctly conclude that µ is greater than 42.3.

5.2.1 Understanding How n, ααα, and σσσ Are Related to Power

Power is a function of three fundamental components of any study: the sample size,
n, the Type I error probability you pick, α, and the population standard deviation, σ .
As already explained, power plays a crucial role in applied work, so it is important to
understand how each of these quantities is related to power.

First consider how the sample size, n, affects power. If the null hypothesis is false,
we want the probability of rejecting to go up as the sample size increases. That is,
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value for µ, power increases.
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as the sample size, n, gets large, we should have an increasingly higher probability of
making a correct decision about H0 when it is false. Examining the expressions for
power in Box 5.1 reveals that is exactly what happens.

EXAMPLE. Consider the battery example once again, where we want to test
H0 : µ ≤ 42.3, and suppose we want to know how much the power is when
µ = 44, but this time we consider three sample sizes: 10, 20, and 30. For
n = 10 we have already seen that power is .38. If n = 20, then power is

1 − β = P
(

Z ≥ c −
√

n(µ − µ0)
σ

)

= P

(
Z ≥ 1.645 −

√
20(44 − 42.3)

4

)

= P(Z ≥ −0.256)
= .60

Increasing n to 30, it can be seen that power is now 1 − β = .75, meaning that
your probability of making a correct decision and rejecting H0 when it is false
is now .75. ■

This example illustrates how the sample size might be determined in applied work.
First determine the difference between µ and µ0 that is important in a given situation.
In the battery illustration, it might be decided that if µ − µ0 = 44 − 42.3 = 1.7,
we want to be reasonably certain of rejecting the null hypothesis and deciding that
the new manufacturing method is better on average. Next, compute power for some
value of n. If the power is judged to be sufficiently large, use this sample size in your
study. If not, increase the sample size.

Your choice for α, the probability of a Type I error you are willing to allow, also
affects power.

EXAMPLE. For the battery example with n = 30, consider three choices for
α: .05, .025, and .01. For α = .05 we have already seen that power is .75 when
testing H0 : µ < 42.3 and µ = 44. For α = .025, the critical value is now
c = 1.96, so power is

1 − β = P
(

Z ≥ c −
√

n(µ − µ0)
σ

)

= P

(
Z ≥ 1.96 −

√
20(44 − 42.3)

4

)

= P(Z ≥ .059)
= .47.

Continued
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EXAMPLE. (Continued ) If instead you use α = .01, the critical value is now
c = 2.33 and power can be seen to be .33. This illustrates that if we adjust
the critical value so that the probability of a Type I error goes down, power
goes down as well. Put another way, the more careful you are not to commit a
Type I error by choosing α close to zero, the more likely you are to commit a
Type II error if the null hypothesis happens to be false. ■

Finally, the population standard deviation, σ , is also related to power. The larger
σ happens to be, the lower the power will be given α, n, and a value for µ − µ0.

EXAMPLE. For the battery example, consider α = .05, µ − µ0 = 1.7, and
n = 30, with σ = 4. Then power is .75, as previously explained. But if σ = 8,
power is now .31. If σ = 12, power is only .19. ■

The results just described on how n, α, and σ are related to power can be
summarized as follows:

• As the sample size, n, gets large, power goes up, so the probability of a Type II
error goes down.

• As α goes down, in which case the probability of a Type I error goes down,
power goes down and the probability of a Type II error goes up.

• As the standard deviation, σ , goes up, with n, α, and µ − µ0 fixed, power goes
down.

Notice that once you have chosen an outcome variable of interest (X) and the
population of individuals you want to study, there are two types of factors that affect
power. The first type consists of factors that are under your control: n, the sample size,
and α, the probability of a Type I error you are willing to allow. By increasing n or α,
you increase power. The population standard deviation also affects power, but it is not
under your control, it merely reflects a state of nature. (In some situations the variance
of X can be influenced based on how an outcome variable is designed or constructed.)
However, understanding how σ affects power is important in applied work, because
it plays a role in choosing an accurate hypothesis-testing method, as will be seen.

5.3 Testing Hypotheses About the Mean When σσσ Is Not Known

Next we describe the classic method for testing hypotheses about the population
mean when the population standard deviation is not known. Then we describe recent
insights into why this technique has several practical problems.

When σ is known, we can test hypotheses about the population mean if we can
determine the distribution of

Z = X̄ − µ0

σ /
√

n
.
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When σ is not known, we estimate σ with s, the sample standard deviation, and we
can test hypotheses if the distribution of

T = X̄ − µ0

s/
√

n
(5.2)

can be determined. As indicated in Chapter 4, the distribution of T can be determined
when sampling from a normal distribution. For this special case, hypotheses can be
tested as described in Section 5.1.4, except that critical values are read from Table 4
in Appendix B with the degrees of freedom set to ν = n − 1. The details can be
summarized as follows.

GOAL: Test hypotheses regarding how the population mean, µ, compares to a
specified constant, µ0. The probability of a Type I error is to be α.

ASSUMPTIONS: Random sampling and normality.

DECISION RULES:

• For H0 : µ ≥ µ0, reject if T ≤ c, where c is the α quantile of Student’s T
distribution with ν = n − 1 degrees of freedom and T is given by Equation
(5.2).

• For H0 : µ ≤ µ0, reject if T ≥ c, where c is now the 1 − α quantile of Student’s
T distribution with ν = n − 1 degrees of freedom.

• For H0 : µ = µ0, reject if T ≥ c or T ≤ −c, where c is now the 1 −α/2 quantile
of Student’s T distribution with ν = n − 1 degrees of freedom. Equivalently,
reject if |T| ≥ c.

EXAMPLE. For the measures of open-mindedness given at the beginning of
this chapter, test the hypothesis H0 : µ ≥ 50 with α = .05. The sample standard
deviation is s = 11.4 and the sample mean is X̄ = 44.5. Because n = 10, the
degrees of freedom are ν = n − 1 = 9 and

T = X̄ − µ0

s/
√

n
= 44.5 − 50

11.4/
√

10
= −1.5.

Referring to Table 4 in Appendix B, P(T ≤ −1.83) = .05, so the crit-
ical value is −1.83. This means that if we reject when T is less than or
equal to −1.83, the probability of a Type I error will be .05, assuming nor-
mality. Because the observed value of T is −1.5, which is greater than the
critical value, you fail to reject. In other words, the sample mean is not suffi-
ciently smaller than 50 to be reasonably certain that the speculation µ ≥ 50
is false. ■

As you can see, the steps you follow when σ is not known mirror the steps you use
to test hypotheses when σ is known.
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EXAMPLE. Suppose you observe the values

12, 20, 34, 45, 34, 36, 37, 50, 11, 32, 29

and the goal is to test H0 : µ = 25 such that the probability of a Type I error
is α = .05. Here, n = 11, µ0 = 25, and it can be seen that X̄ = 33.24,
s/
√

11 = 3.7, so

T = X̄ − µ

s/
√

n
= 33.24 − 25

3.7
= 2.23.

The null hypothesis is that the population mean is exactly equal to 25. So the
critical value is the 1 − α/2 = .975 quantile of Student’s T distribution with
degrees of freedom ν = 11 − 1 = 10. Table 4 in Appendix B indicates that

P(T ≤ 2.28) = .975,

so our decision rule is to reject H0 if the value of T is greater than or equal to
2.28 or less than or equal to −2.28. Because the absolute value of T is less than
2.28, you fail to reject. ■

5.4 Controlling Power and Determining n

Problems of fundamental importance are determining what sample size to use and
finding methods that ensure power will be reasonably close to 1. Two approaches
are described in this section, both of which assume random sampling from a normal
distribution. The first is based on choosing n prior to collecting any data. The second
is used after data are available and is aimed at determining whether n was sufficiently
large to ensure that power is reasonably high. One fundamental difference between
the two methods is how they measure the extent to which the null hypothesis is false.

5.4.1 Choosing n Prior to Collecting Data

First consider how one might choose n prior to collecting data so that power is
reasonably close to 1. To begin, we need a measure of the difference between the
hypothesized value for the mean (µ0) and its true value (µ). One possibility is

δ = µ − µ0, (5.3)

which is consistent with how we discussed power in Section 5.2 when σ is known.
However, when using T, it is impossible to control power given some value for δ

without first obtaining data, because when using T, power depends on the unknown
variance (Dantzig, 1940). The standard method for dealing with this problem is to
replace δ with

� = µ − µ0

σ
. (5.4)
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So if � = 1, for example, the difference between the means is one standard deviation.
That is, µ − µ0 = σ . If � = .5, the difference between the mean is half a standard
deviation. (That is, µ − µ0 = .5σ .) We saw in Chapter 2 that for normal distri-
butions, σ has a convenient probabilistic interpretation, but Section 2.7 illustrated
that for even a small departure from normality, this interpretation breaks down. This
causes practical problems when using �, but we temporarily ignore this issue. (These
practical problems are discussed in detail in Chapter 8.) Here it is merely remarked
that under normality, power can be determined for any choice of n, �, and α. Rather
than describe the details, we merely provide an S-PLUS function that performs the
computations.

5.4.2 S-PLUS Function pow1

The S-PLUS function

pow1(n,Del,alpha)

(written for this book) computes power when performing a one-sided test, where
the argument Del is � and alpha is α. For example, if you want to determine
how much power you have when testing H0 : µ ≥ 15 with n = 10, � = −.3,
and α = .05, the S-PLUS command pow1(10, −.3, .05) returns the value .219.
Increasing n to 30, power is now .479. With n = 100, power is .9. So in this
particular case, n = 10 is inadequate if � = −.3 is judged to be a difference
that is important to detect. To ensure high power requires a sample size of around
100. In a similar manner, if the goal is to test H0 : µ ≤ 15 and now � = .3, then
pow1(10, .3, .05) again returns the value .219. (The function assumes that if � is
positive, you are testing H0 : µ ≤ µ0, and that if � is negative, you are testing
H0 : µ ≥ µ0.)

This S-PLUS function can handle two-sided tests in a simple manner. You simply
divide α by 2. In the previous illustration, if instead you want to test H0 : µ = 15 at
the .05 level, the command pow1(30, .3, .025) returns the value .35, indicating that
power is .35. (The same result is returned if the argument Del is −.3.) If this amount
of power is judged to be too small, simply increase n until a more satisfactory power
level is obtained.

5.4.3 Stein’s Method

Assuming normality, Stein (1945) derived a method that indicates whether the sample
size n is sufficiently large to achieve some specified amount of power. In contrast to the
method in Section 5.4.1, it is used after data are collected and it is based on δ = µ−µ0
rather than �. Said another way, if you fail to reject some null hypothesis, Stein’s
method helps you decide whether this is because power is low due to too small an n.
Stein’s method does even more; it indicates how many additional observations are
needed to achieve some specified amount of power.

For convenience, assume that a one-sided test is to be performed. Also assume that
n observations have been randomly sampled from some normal distribution, yielding
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a sample variance s2. If the goal is to ensure that power is at least 1−β, then compute

d =
(

δ

t1−β − tα

)2

,

where t1−β and tα are, respectively, the 1 − β and α quantiles of Student’s T distri-
bution with ν = n − 1 degrees of freedom. For example, if n = 10 and you want
power to be 1 − β = .9, then t1−β = t.9 = 1.383, which can be read from Table 4 in
Appendix B. Then the number of required observations is

N = max
(

n,
[

s2

d

]
+ 1

)
, (5.5)

where the notation [s2/d] means you compute s2/d and round down to the nearest
integer and max refers to the larger of the two numbers inside the parentheses.
Continuing the example where n = 10 and 1 − β = .9, if s = 21.4, δ = 20, and
α = .01, then ν = 9,

d =
(

20
1.383 − ( − 2.82)

)2

= 22.6,

so

N = max
(

10,
[

(21.4)2

22.6

]
+ 1

)
= max (10, 21) = 21.

If N = n, the sample size is adequate, but in the illustration N − n = 21 − 10 = 11.
That is, 11 additional observations are needed to achieve the desired amount of power.

A two-sided test (H0 : µ = µ0) is handled in a similar manner. The only difference
is that α is replaced by α/2. So if in the last example we wanted the Type I error
probability to be .02 when testing a two-sided test, then again N = 21. If we want
the Type I error probability to be .05, then tα/2 = t.025 = −2.26, so if again we want
power to be .9 when δ = µ − µ0 = 20,

d =
(

20
1.383 − ( − 2.26)

)2

= 30.14,

so we need a total of

N = max
(

10,
[

(21.4)2

30.14

]
+ 1

)
= 16

observations.
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Stein also indicated how to test the null hypothesis if the additional (N − n)
observations can be obtained. But rather than simply perform Student’s T on all N
values, Stein used instead

Ts =
√

n(µ̂ − µ0)
s

, (5.6)

where µ̂ is the mean of all N observations. You test hypotheses by treating Ts as
having a Student’s T distribution with ν = n − 1 degrees of freedom. That is, you
test hypotheses as described in Section 5.3 but with T replaced by Ts. For example,
you reject H0 : µ ≤ µ0 if Ts ≥ c, where c is the 1 − α quantile of Student’s T
distribution with ν = n − 1 degrees of freedom. A two-sided confidence interval for
the population mean is given by

µ̂ ± c
s√
n
, (5.7)

where c is now the 1 − α/2 quantile of Student’s T distribution with n − 1 degrees
of freedom. For the special case where N = n (meaning that the original sam-
ple size was sufficient for your power needs), Ts = T and you are simply using
Student’s T test, but with the added knowledge that the sample size meets your
power requirements. What is unusual about Stein’s method is that if N > n, it
uses the sample variance of the original n observations — not the sample variance
of all N observations. Also, the degrees of freedom remain n − 1 rather than the
seemingly more natural N − 1. By proceeding in this manner, Stein showed that
power will be at least 1−β for whatever value of 1−β you pick. (Simply performing
Student’s T on all N values, when N > n, results in certain technical problems that are
described by Stein, 1945, but not here. For a survey of related methods, see Hewett &
Spurrier, 1983.)

A popular alternative to Stein’s method when trying to assess power when
a nonsignificant result is obtained is based on what it called observed power. The
approach assumes that the observed difference between the sample mean and
its hypothesized value is indeed equal to the true difference (µ − µ0); it
also assumes that s2 = σ 2, and then based on these assumptions one com-
putes power. Hoenig and Heisey (2001) illustrate that this approach is generally
unsatisfactory.

5.4.4 S-PLUS Functions stein1 and stein2

The S-PLUS function

stein1(x,del,alpha=.05,pow=.8,oneside=F)

returns N, the sample size needed to achieve power given by the argument pow
(which defaults to .8), given some value for δ (which is the argument del) and α. The
function assumes that a two-sided test is to be performed. For a one-sided test, set
the argument oneside to T for true.
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The S-PLUS function

stein2(x1,x2,mu0=0,alpha= .05)

tests the hypothesis H0 : µ = µ0 using Stein’s method, assuming that the initial n
observations are stored in x1 and that the additional N − n1 observations are stored
in x2. The argument mu0 is the hypothesized value, µ0, which defaults to 0.

EXAMPLE. The last example in Section 5.3 used Student’s T to test
H0 : µ = 25 with α = .05, based on the data

12, 20, 34, 45, 34, 36, 37, 50, 11, 32, 29.

A nonsignificant result was obtained. If we want power to be .9 when µ = 28,
in which case δ = 28 − 25 = 3, was the sample size sufficiently large? Storing
these data in the S-PLUS variable y, the command

stein1(y,3,pow= .9)

returns the value 220. That is, we need N = 220 observations to achieve this
much power. Since we have only 11 observations, 220 − 11 = 209 additional
observations are needed. For a one-sided test, N = 94. ■

5.5 Practical Problems with Student’s T

Student’s T deals with the common situation where σ is not known, but it assumes
observations are randomly sampled from a normal distribution. Because distributions
are never exactly normal, it is important to understand how nonnormality affects
conclusions based on T. A version of the central limit theorem tells us that as n gets
large, the distribution of T becomes more like Student’s T distribution, and in fact its
distribution approaches a standard normal. That is, if the sample size is large enough
and observations are randomly sampled, then violating the normality assumption is
not a serious concern. Conventional wisdom is that assuming T has a Student’s T
distribution with ν = n − 1 degrees of freedom provides reasonably accurate results
with n fairly small, and surely accurate results are obtained with n = 100. However, in
recent years, much more sophisticated methods have been derived for understanding
how nonnormality affects T, and serious concerns have been discovered, two of which
are described here.

The first is that very small departures from normality can drastically reduce power.
The main reason is that even small departures from normality can inflate the population
variance; this in turn inflates the standard error of the sample mean, so power can be
relatively low. As indicated in Section 5.2.1, as σ gets large, power goes down when
using Z to test hypotheses, and the same is true when using T. (One of the earliest
results indicating theoretical concerns about this problem can be found in Bahadur &
Savage, 1956.)
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FIGURE 5.5 Small departures from normality can greatly reduce power when using
Student’s T. If we sample 20 observations from the normal distribution shown here,
which has mean .8, and we test H0 : µ = 0 at the .05 level, power is .93. But if we sample
from the mixed normal instead, power is only .39.

EXAMPLE. As an illustration, first consider using Student’s T to test
H0 : µ = 0 with α = .05 when sampling from the normal distribution shown in
Figure 5.5, which has mean .8 and standard deviation σ = 1. It can be shown
that with n = 20, power is .93. That is, there is a 93% chance of correctly reject-
ing the null hypothesis that the mean is µ = 0. Now suppose that sampling
is from the other distribution shown in Figure 5.5. This is the mixed normal
distribution described in Chapter 2, but with mean .8. This distribution is very
similar to the normal distribution, in the sense described in Chapter 2, yet
power is now .39. This demonstrates that if you test hypotheses with Student’s
T or any method based on the sample mean, small departures from normality
can result in a substantial decrease in your ability to detect situations where the
null hypothesis is false. ■

The second problem is that nonnormality can affect your ability to control the
probability of a Type I error or control the probability coverage when computing
a confidence interval. First consider situations where sampling is from a perfectly
symmetric distribution and imagine you want the probability of a Type I error to be .05.
When sampling is from a normal distribution, you can accomplish your goal with
Student’s T test, as already demonstrated. However, if you happen to be sampling
observations from a mixed normal instead, the actual probability of a Type I error
is only .022 with n = 20. This might seem desirable because the probability of
incorrectly rejecting when the null hypothesis is true is less than the nominal level
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of .05. However, recall that the smaller α happens to be, the lower your power. This
means that the probability of correctly rejecting the null hypothesis when it is false
might be low, contrary to what you want, because you are inadvertently testing at the
.022 level. Increasing the sample size to 100, now the actual probability of a Type I
error is .042, but low power remains a possible concern because sampling is from a
heavy-tailed distribution.

If observations are sampled from a skewed distribution, the actual probability of
a Type I error can be substantially higher or lower than .05. With n = 12, there are
situations where the actual probability of a Type I error is .42 when testing at the .05
level, and it can be as low as .001 when testing a one-sided test at the .025 level (e.g.,
Wilcox, 1997a, p. 74). As another illustration, imagine you are interested in how
response times are affected by alcohol and that, unknown to you, response times have
the skewed (lognormal) distribution shown in Figure 4.14, which has mean µ = 1.65.
Further imagine that you want to test the hypothesis H0 : µ ≥ 1.65 with α = .05.
That is, unknown to you, the null hypothesis happens to be true, so you should not
reject. With n = 20 observations, the actual probability of a Type I error is .14. That
is, your intention was to have a 5% chance of rejecting in the event the null hypoth-
esis is true, but in reality there is a 14% chance of rejecting by mistake. Increasing
the sample size to n = 160, the actual probability of Type I error is now .11. That
is, control over the probability of a Type I error improves as the sample size gets
large, in accordance with the central limit theorem, but at a rather slow rate. Even
with n = 160, the actual probability of rejecting might be more than twice as large as
intended. The seriousness of a Type I error will depend on the situation, but at least in
some circumstances the discrepancy just described would be deemed unsatisfactory.

The lognormal distribution used in the previous paragraph is relatively light-tailed.
When sampling from a skewed, heavy-tailed distribution, Student’s T can deteriorate
even more. Consider the distribution in Figure 5.6, which has a mean of .0833. With
n = 20 and α = .05, the actual probability of a Type I error is .20. Increasing n to
100, the actual probability of a Type I error drops to only .19. It is getting closer to
the nominal level, in accordance with the central limit theorem, but at a very slow
rate. (For theoretical results indicating drastic sensitivity to nonnormality, see Basu
& DasGupta, 1995.)

When you use Student’s T test under the assumption that sampling is from a normal
distribution, you are assuming that T has a symmetric distribution about zero. But as
pointed out in Section 4.8, the actual distribution of T can be asymmetric with a mean
that differs from zero. For example, when sampling from the (lognormal) distribution
in Figure 4.14, with n = 20, the distribution of T is skewed, with a mean of −0.5,
the result being that the probability of a Type I error is not equal to the value you
want. In fact, Student’s T test is biased, meaning that the probability of rejecting is
not minimized when the null hypothesis is true. That is, situations arise where there
is a higher probability of rejecting when the null hypothesis is true than in a situation
where the null hypothesis is false. (Generally, any hypothesis-testing method is said
to be unbiased if the probability of rejecting is minimized when the null hypothesis
is true. Otherwise it is biased.)

To illustrate the possible effect of skewness on the power curve of Student’s T,
suppose we sample 20 observations from the (lognormal) distribution shown in
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FIGURE 5.6 Example of a skewed, heavy-tailed distribution used to illustrate the
effects of nonnormality on Student’s T. This distribution has a mean of .8033.

Figure 4.14, which has a population mean approximately equal to 1.649. So if we
test H0 : µ = 1.649 with α = .05, the intention is to have the probability of a Type
I error equal to .05, but in reality it is approximately .14. Now suppose we add δ

to every observation. In effect, we shift the distribution in Figure 4.14 so that its
mean is now 1.649 + δ. If, for example, we use δ = .3, we have in effect increased
the population mean from 1.649 to 1.949. So now we should reject H0 : µ = 1.649,
but the actual probability of rejecting is .049. That is, we have described a situation
where the null hypothesis is false, yet we are less likely to reject than in the situation
where the null hypothesis is true. If we set δ = .6 so that now µ = 2.249 and we
again test H0 : µ = 1.649, the probability of rejecting is .131, approximately the same
probability of rejecting when the null hypothesis is true. As we increase δ even more,
power continues to increase as well. Figure 5.7 shows the power curve of Student’s
T for δ ranging between 0 and 1.

Section 5.2.1 summarized factors that are related to power when using Z. Now
we summarize factors that influence power for the more common situation where
T is used to make inferences about the population mean. These features include
the same features listed in Section 5.2.1 plus some additional features related to
nonnormality.

• As the sample size, n, gets large, power goes up, so the probability of a Type II
error goes down.

• As α goes down, in which case the probability of a Type I error goes down,
power goes down and the probability of a Type II error goes up.

• As the standard deviation, σ , goes up, with n, α, and µ − µ0 fixed, power goes
down.
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FIGURE 5.7 Power curve of Student’s T when sampling from a lognormal distribution,
n = 20, α = .05. The null hypothesis corresponds to δ = 0. Ideally the power curve should
be strictly increasing as δ gets large.

• Small departures from normality can inflate the standard error of the sample
mean (σ /

√
n), which in turn can substantially reduce power.

• Student’s T can be biased due to skewness. That is, power might be low (relative
to other inferential methods you might use) because as µ moves away from the
hypothesized value, the probability of rejecting can actually decrease. Practical
problems arise even when sampling from a distribution where outliers are rare.

5.6 Hypothesis Testing Based on a Trimmed Mean

An argument for testing hypotheses based on the mean is that under normality, the
sample mean has a smaller standard error than any other measure of location we might
use. This means that no other hypothesis-testing method will have more power than
the method based on Student’s T. However, this argument is not very compelling,
because arbitrarily small departures from normality can result in extremely low power
relative to other methods you might use, and of course there is the concern about
getting accurate confidence intervals and good control over the probability of a Type
I error. Currently, there seem to be two general strategies for dealing with these
problems that are relatively effective. The first is to switch to a robust measure of
location, and the trimmed mean is particularly appealing based on recently published
studies. The second is to switch to a rank-based method, some of which are described
in Chapter 15.

Here, attention is focused on the 20% trimmed mean. The method for computing
a confidence interval for the trimmed mean described in Chapter 4 is easily extended
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to the problem of testing some hypothesis about µt, the population trimmed mean.
The process is the same as Student’s T test, only you adjust the degrees of freedom,
you replace the sample mean with the trimmed mean, you replace the sample variance
with the Winsorized variance, and for technical reasons you multiply by .6. In symbols,
your test statistic is now

Tt = .6(X̄t − µ0)
sw/

√
n

, (5.8)

where again µ0 is some specified value of interest and sw is the 20% Winsorized
standard deviation. Then reject H0 : µt = µ0 if Tt ≤ −c or Tt ≥ c, where c is now the
1−α/2 quantile of Student’s T distribution with n−2g−1 degrees of freedom and g
is the number of observations trimmed from each tail, as described and illustrated in
Chapter 3. (The total number of trimmed observations is 2g, so n − 2g is the number
of observations left after trimming.)

More generally, when using a γ -trimmed mean,

Tt = (1 − 2γ )(X̄t − µ0)
sw/

√
n

, (5.9)

where sw is now the γ -Winsorized standard deviation. (In the previous paragraph,
γ = .2.) The degrees of freedom are ν = n − 2g − 1, where g = [γ n] and [γ n] is γ n
rounded down to the nearest integer.

As for the one-sided hypothesis H0 : µ ≥ µ0, reject if Tt ≤ c, where c is now
the α quantile of Student’s T distribution with n − 2g − 1 degrees of freedom. The
hypothesis H0 : µ ≤ µ0 is rejected if Tt ≥ c, where c is now the 1 − α quantile of
Student’s T distribution with n − 2g − 1 degrees of freedom.

5.6.1 S-PLUS Function trimci

The S-PLUS function

trimci(x,tr = .2,alpha = .05,nv = 0),

introduced in Chapter 4, also tests hypotheses about the population trimmed mean.
By default it tests H0 : µt = 0. To test H0 : µt = 2, set the argument nv equal to 2. In
addition to a confidence interval, the function returns the p-value.

EXAMPLE. Doksum and Sievers (1976) report data on weight gain among
rats. One group was the control and the other was exposed to an ozone envi-
ronment. (The data are given in Table 8.6.) For illustrative purposes, attention is
focused on the control group, and we consider the claim that the typical weight

Continued
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EXAMPLE. (Continued ) gain is 26.4. If we test the hypothesis H0 : µ = 26.4
with Student’s T, we get

T = X̄ − µ0

s/
√

n
= 22.4 − 26.4

10.77/
√

23
= −1.8.

With ν = 23 − 1 = 22 degrees of freedom, and α = .05, the critical value is
c = 2.07. Because |T| = 1.8 is less than 2.07, we fail to reject. In contrast, the
20% trimmed mean is X̄t = 23.3, sw = 3.9, and for H0 : µt = 26.4 we see that

Tt = .6(X̄t − µ0)
sw/

√
n

= .6(23.3 − 26.4)

3.9/
√

23
= −2.3.

Because there are 23 rats, g = 4, so the number of trimmed observations is
2g = 8, the degrees of freedom are ν = 23 − 8 − 1 = 14, and the critical value
is c = 2.14. Because |T| = |− 2.3| = 2.3 is greater than the critical value, we
reject the hypothesis that the trimmed mean is 26.4. Thus, although you cannot
rule out the possibility that the population mean for all rats is 26.4 if our Type
I error probability is to be .05, it is unlikely that the population trimmed mean
has this value. ■

In the last example, the sample mean exceeds the hypothesized value by more than
the sample trimmed mean. The difference between the hypothesized value of 26.4
and the mean is 22.4 − 26.4 = −4. The difference between the hypothesized value
and the trimmed mean is 23.3 − 26.4 = −3.1, yet you reject with the trimmed mean
but not with the mean. The reason is that the standard error of the trimmed mean
is smaller than the standard error of the mean. This illustrates one of the practical
advantages of using a trimmed mean. Situations often arise where the trimmed mean
has a substantially smaller standard error, and this can translate into a substantial gain
in power.

Once again it is stressed that for skewed distributions, population means and
trimmed means are generally not equal. So, for example, the null hypothesis H0 : µ =
26.4 is not necessarily the same as H0 : µt = 26.4. In the context of hypothesis
testing, an argument for the trimmed mean is that good control over the probability
of a Type I error can be achieved in situations where Student’s T gives poor results.
Trimmed means often have a smaller standard error than the mean which can result
in substantially higher power. If there is some reason for preferring the mean to the
trimmed mean in a particular study, Student’s T might be unsatisfactory unless the
sample size is very large. Just how large n must be depends on the unknown distribution
from which observations were sampled. In some cases even a sample size of 300 is
unsatisfactory. A small sample size will suffice in some instances, but an effective
method for establishing whether this is the case, simply by examining your data, has
not been found.

In this book, only two-sided trimming is considered. If a distribution is skewed
to the right, for example, a natural reaction is to trim large observations but not
small ones. An explanation can now be given as to why one-sided trimming is
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not recommended. In terms of Type I errors and probability coverage, you get
more accurate results if two-sided trimming is used. There is nothing obvious or
intuitive about this result, but all of the studies cited by Wilcox (1997a) support
this view.

Thanks to the central limit theorem, we know that when working with means,
problems with Student’s T diminish as the sample size increases. Theory and simula-
tions indicate that when using a 20% trimmed mean instead, problems diminish much
more rapidly. That is, smaller sample sizes are required to get good control over the
probability of a Type I error; but with very small sample sizes, practical problems
persist. (Methods covered in Chapter 7 provide a basis for dealing with very small
sample sizes in an effective manner.)

Finally, no mention has been made about how to determine whether power is
adequate based on the sample size used when making inferences about a trimmed
mean. Theoretical results suggest how an analog of Stein’s method might be derived;
a reasonable speculation is that the method should perform well when sample sizes
are small. But this issue has not yet been investigated. An alternative solution has
been found, but we will need some tools covered in Chapter 7 before describing it.

5.7 Exercises

1. Given that X̄ = 78, σ 2 = 25, n = 10, and α = .05, test H0 : µ > 80, assuming
observations are randomly sampled from a normal distribution. Also, draw the
standard normal distribution indicating where Z and the critical value are
located.

2. Repeat Exercise 1, but test H0 : µ = 80.
3. For Exercise 2, compute a .95 confidence interval and verify that this interval

is consistent with your decision about whether to reject the null hypothesis.
4. For Exercise 1, determine the p-value.
5. For Exercise 2, determine the p-value.
6. Given that X̄ = 120, σ = 5, n = 49, and α = .05, test H0 : µ > 130,

assuming observations are randomly sampled from a normal distribution.
7. Repeat Exercise 6, but test H0 : µ = 130.
8. For Exercise 7, compute a .95 confidence interval and compare the result with

your decision about whether to reject H0.
9. If X̄ = 23 and α = .025, can you make a decision about whether to reject

H0 : µ < 25 without knowing σ?
10. An electronics firm mass-produces a component for which there is a standard

measure of quality. Based on testing vast numbers of these components, the
company has found that the average quality is µ = 232 with σ = 4. However,
in recent years the quality has not been checked, so management asks you
to check their claim with the goal of being reasonably certain that an average
quality of less than 232 can be ruled out. That is, assume the quality is poor and
in fact less than 232, with the goal of empirically establishing that this assump-
tion is unlikely. You get X̄ = 240 based on a sample n = 25 components, and
you want the probability of a Type I error to be .01. State the null hypothesis,
and perform the appropriate test assuming normality and σ = 4.
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11. An antipollution device for cars is claimed to have an average effectiveness
of exactly 546. Based on a test of 20 such devices you find that X̄ = 565.
Assuming normality and that σ = 40, would you rule out the claim with a
Type I error probability of .05?

12. Comment on the relative merits of using a .95 confidence interval for
addressing the effectiveness of the antipollution device in Exercise 11.

13. For n = 25, α = .01, σ = 5, and H0 : µ ≥ 60, verify that power is .95 when
µ = 56.

14. For n = 36, α = .025, σ = 8, and H0 : µ ≤ 100, verify that power is .61 when
µ = 103.

15. For n = 49, α = .05, σ = 10, and H0 : µ = 50, verify that power is
approximately .56 when µ = 47.

16. A manufacturer of medication for migraine headaches knows that their product
can cause liver damage if taken too often. Imagine that by a standard measuring
process, the average liver damage is µ = 48. A modification of their product
is being contemplated, and, based on n = 10 trials, it is found that X̄ = 46.
Assuming σ = 5, they test H0 : µ ≥ 48, the idea being that if they reject,
there is convincing evidence that the average amount of liver damage is less
than 48. Then

Z = 46 − 48

5/
√

10
= −1.3.

With α = .05, the critical value is −1.645, so they do not reject, because Z is
not less than the critical value. What might be wrong with accepting H0 and
concluding that the modification results in an average amount of liver damage
greater than or equal to 48?

17. For Exercise 16, verify that power is .35 if µ = 46.
18. Exercise 17 indicates that power is relatively low with only n = 10 observa-

tions. Imagine that you want power to be at least .8. One way of getting more
power is to increase the sample size, n. Verify that for sample sizes of 20, 30,
and 40, power is .56, .71, and .81, respectively.

19. For Exercise 18, rather than increase the sample size, what else might you do
to increase power? What is a negative consequence of using this strategy?

20. Test the hypothesis H0 : µ = 42 with α = .05 and n = 25 given the following
values for X̄ and s: (a) X̄ = 44, s = 10, (b) X̄ = 43, s = 10, (c) X̄ = 43, s = 2.

21. For part b of Exercise 20, you fail to reject, but you reject for the situation in
part c. What does this illustrate about power?

22. Test the hypothesis H0 : µ < 42 with α = .05 and n = 16 given the following
values for X̄ and s: (a) X̄ = 44, s = 10, (b) X̄ = 43, s = 10, (c) X̄ = 43, s = 2.

23. Repeat Exercise 22, except test H0 : µ > 42.
24. A company claims that on average, when exposed to their toothpaste, 45% of

all bacteria related to gingivitis are killed. You run ten tests and find that the
percentages of bacteria killed among these tests are 38, 44, 62, 72, 43, 40,
43, 42, 39, 41. The mean and standard deviation of these values are X̄ = 46.4
and s = 11.27. Assuming normality, test the hypothesis that the average
percentage is 45 with α = .05.
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25. A portion of a study by Wechsler (1958) reports that for 100 males taking the
Wechsler Adult Intelligence Scale (WAIS), the sample mean and variance on
picture completion are X̄ = 9.79 and s = 2.72. Test the hypothesis H0 : µ ≥
10.5 with α = .025.

26. Assuming 20% trimming, test the hypothesis H0 : µt = 42 with α = .05
and n = 20 given the following values for X̄t and sw: (a) X̄t = 44, sw = 9,
(b) X̄t = 43, sw = 9, (c) X̄t = 43, sw = 3.

27. Repeat Exercise 26, except test the hypothesis H0 : µt < 42 with α = .05 and
n = 16.

28. For the data in Exercise 24, the trimmed mean is X̄t = 42.17 with a Winsorized
standard deviation of sw = 1.73. Test the hypothesis that the population
trimmed mean is 45 with α = .05.

29. A standard measure of aggression in 7-year-old children has been found to
have a 20% trimmed mean of 4.8 based on years of experience. A psychologist
wants to know whether the trimmed mean for children with divorced parents
differs from 4.8. Suppose X̄t = 5.1 with sw = 7 based on n = 25. Test the
hypothesis that the population trimmed mean is exactly 4.8 with α = .01.



6
LEAST SQUARES
REGRESSION AND
PEARSON’S CORRELATION

Two common goals are determining whether and how two variables are related. This
chapter describes the basics of the two most frequently used approaches to these
problems. The first is based on what is called least squares regression. The second employs
an estimate of Pearson’s correlation (ρ). It will be seen that these methods are satis-
factory for some purposes, but they are completely inadequate for others. In terms
of hypothesis testing, the techniques in this chapter inherit the problems associated
with means, and new problems are introduced. There are methods for dealing with
these difficulties, but the details are given in subsequent chapters. The main goal
here is to summarize some basic principles and to motivate the use of more modern
techniques.

6.1 Fitting a Straight Line to Data: The Least Squares Principle

When describing the association between two variables, certainly the most common
strategy is to assume that the association is linear. There are practical situations where
the assumption of a linear association is unreasonable, but this issue is ignored for the
moment.

We illustrate the basic strategy for fitting a straight line to a scatterplot of points
using data from a classic study in astronomy. Is there some pattern to how the
galaxies in the universe are moving relative to one another? Edwin Hubble collected
data on two measures relevant to this issue in the hope of gaining some insight into
how the universe was formed. He measured the distance of 24 galaxies from earth
plus their recession velocity. His measurements, published in 1929, are shown in
Table 6.1, where X is a galaxy’s distance from earth in megaparsecs and Y is its
speed in kilometers per second. (One parsec is 3.26 light-years.) For example, the
first galaxy is .032 megaparsecs from earth and moving away from earth at the rate
of 170 kilometers per second. The third galaxy is .214 megaparsecs from earth and
approaching earth at the rate of 130 kilometers per second.

173
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TABLE 6.1 Hubble’s Data on the Distance and Recession Velocity of 24 Galaxies

Distance (X): 0.032 0.034 0.214 0.263 0.275 0.275 0.450 0.500 0.500 0.630 0.800 0.900

0.900 0.900 0.900 1.000 1.100 1.100 1.400 1.700 2.000 2.000 2.000 2.000

Velocity (Y): 170 290 −130 −70 −185 −220 200 290 270 200 300 −30

650 150 500 920 450 500 500 960 500 850 800 1090
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FIGURE 6.1 Scatterplot of Hubble’s data on the recession velocity of galaxies. The
straight line has slope 454 and intercept −40.8.

A common notation for representing n pairs of points is

(X1, Y1), . . . , (Xn,Yn).

So in Table 6.1, (X1, Y1) = (.032, 170), where the subscript 1 indicates the first pair
of observations. Here n = 24 and (X24, Y24) = (2, 1090).

To fit a straight line to Hubble’s data, we need a criterion for judging how well any
line fits a scatterplot of the points. Given a criterion, we can then search for the line
that is optimal. More precisely, consider lines having the form

Ŷ = b0 + b1X, (6.1)

where b1 and b0 are, respectively, the unknown slope and intercept that are to be
determined from the data and the notation Ŷ is used to make a distinction between the
predicted value of Y based on X, which is Ŷ, and the Y we observe. Figure 6.1 shows a
scatterplot of Hubble’s data together with the line Ŷ = 454X−40.8 (so b1 = 454 and
b0 = −40.8). For the first galaxy in Table 6.1, which is X1 = .032 megaparsecs from
earth, its predicted recession velocity is Ŷ1 = 454(.032) − 40.8 = −26.3 kilometers
per second. But from Table 6.1 we see that its actual recession velocity is Y1 = 170,
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TABLE 6.2 Fitted Values and Residuals for the Data in Table 6.1

Observation
number Yi Ŷi ri

1 170 −26.3 196.3

2 290 −25.3 315.3

3 −130 56.4 −186.4

4 −70 78.7 −148.7

5 −185 84.1 −269.1

6 −220 84.1 −304.1

7 200 163.6 36.4

8 290 186.3 103.7

9 270 186.3 83.7

10 200 245.3 −45.3

11 300 322.5 −22.5

12 −30 368.0 −398.0

13 650 282 367.0

14 150 368.0 −217.0

15 500 368.0 132.0

16 920 413.4 506.6

17 450 458.8 −8.8

18 500 458.8 41.2

19 500 595.0 −95.0

20 960 731.3 228.7

21 500 867.5 −367.5

22 850 867.5 −17.5

23 800 867.5 −67.5

24 1090 867.5 222.5

so for the first galaxy having (X1, Y1) = (.032, 170), there is a discrepancy between
the actual and predicted velocity of r1 = Y1 − Ŷ1 = 170 + 26.3 = 196.3. More
generally, for the ith pair of observations, there is a discrepancy between the observed
and predicted Y values, given by

ri = Yi − Ŷ i, (6.2)

where ri (i = 1, . . . , n) is called the ith residual. Table 6.2 shows the Ŷ values and
residuals for the data in Table 6.1.

For any slope (b1) and intercept (b0) we might choose, one way of judging the
overall fit of the resulting line to a scatterplot of points is to use the sum of the
squared residuals: ∑

r2i =
∑

(Yi − b1Xi − b0)2. (6.3)

If we choose the slope and intercept so as to minimize the sum of squared residuals,
we are using what is called the least squares principle. Without making any assumptions
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about the distribution of X or Y, least squares leads to taking the slope to be

b1 =
∑

(Xi − X̄)(Yi − Ȳ)∑
(Xi − X̄)2 (6.4)

and the intercept is

b0 = Ȳ − b1X̄. (6.5)

That is, if we use the regression equation

Ŷ = b1X + b0,

with b1 and b0 given by Equations (6.4) and (6.5), we minimize the sum of squared
residuals. The straight line in Figure 6.1 is the least squares regression line for Hubble’s
data.

Chapter 3 noted that when summarizing a single measure, the least squares prin-
ciple leads to the sample mean, which has a finite-sample breakdown point of only 1/n.
That is, only one unusual point can render the sample mean meaningless. And even
when sampling from a perfectly symmetric distribution, in which case the population
mean provides a reasonable measure of location, the sample mean can be a relatively
inaccurate estimate of µ. These problems extend to the situation at hand, and there
are new ways practical problems can arise.

To begin to explain the practical problems associated with least squares regression,
we first note that the estimate of the slope can be written as a weighted mean of the
Y values, with the weights depending on the X values. In particular, the least squares
estimate of the slope can be written as

b1 =
∑

wiYi,

where

wi = Xi − X̄
(n − 1)s2x

and s2x is the sample variance of the X values. But we saw in Chapter 3 that a weighted
mean has a finite-sample breakdown point of only 1/n, so the finite-sample breakdown
point of the least squares estimate of the slope is 1/n as well. In particular, a single
unusual X value can have an inordinate influence on the estimate of the slope, as
can a single unusual Y value. This suggests checking whether any of the X values are
outliers, doing the same for the Y values; if no outliers are found, assume that there are
no influential points that result in a poor fit to the bulk of the points. Unfortunately,
this relatively simple strategy can be inadequate, for at least two reasons. First, there
are situations where an outlying X value is beneficial. (Details are covered in Section
6.3.1.) Second, a small number of unusual points can greatly influence the least
squares estimate, giving a distorted view of how the bulk of the points are associated,
even though none of the corresponding X or Y values is declared outliers using the
methods of Section 3.4. When addressing this latter problem, what is needed is some
method that takes into account the overall structure of the points, but for now we
merely illustrate the problem.
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FIGURE 6.2 The two points marked by the square in the lower right corner have a
substantial impact of the least squares regression line. Ignoring these two points, the least
squares regression is given by the solid line. Including them, the least squares regression line
is given by the dashed line. Moreover, none of the X or Y values are declared outliers using
the methods in Chapter 3.

EXAMPLE. To illustrate the last problem, Figure 6.2 shows 20 points that
were generated on a computer, where both X and Y are normal and the points
are centered around the line Y = X. So the true slope is 1. The solid straight
line passing through the bulk of the points in Figure 6.2 is this least squares
estimate of the regression line and has slope b1 = 1.01. Then two additional
points were added at X = 2.1 and Y = −2.4 and are marked by the square in
the lower right corner of Figure 6.2. Among all 22 X values, none is declared
an outlier by any of the methods in Section 3.4, and the same is true for the Y
values. Yet these two additional points are clearly unusual relative to the other
20, and they have a substantial influence on the least squares estimate of the
slope. Now the estimated slope is .37, and the resulting least squares regression
line is represented by the dashed line in Figure 6.2. Note that the estimated
intercept changes substantially as well. ■

EXAMPLE. Figure 6.3 shows the surface temperature (X) of 47 stars versus
their light intensity. The solid line is the least squares regression line. As is
evident, the regression line does a poor job of summarizing the association

Continued
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FIGURE 6.3 The solid line is the least squares regression line using all of the star data.
When ignoring outliers among the X values, the least squares regression line is given by the
dashed line.

EXAMPLE. (Continued ) between the two variables under study. In this particular
case it is clear that the four points in the upper left portion of Figure 6.3 are
unusual. Moreover, the S-PLUS function outbox (described in Section 3.4.6)
indicates that X values less than or equal to 3.84 are outliers. If we simply exclude
all points with X values declared outliers and apply least squares regression to
the points that remain, we get the dashed line shown in Figure 6.3. This provides
a better summary for the bulk of the points, but even then the least squares
regression line does not seem quite satisfactory. ■

One point should be stressed. In the last example we simply restricted the range
of X values to get a better fit to the bulk of the points under study. A similar strategy
might be used when dealing with unusual Y values. But when restricting the range of
Y values, caution must be used. The reason is that when testing hypotheses about
the slope and intercept, simply eliminating points with unusual Y values leads to
technical problems that are described in Section 6.3.3. Special techniques for dealing
with unusual Y values are required, and they are described in Chapter 13.

6.2 The Standard Least Squares Model

This section describes the standard least squares model, which is important to under-
stand for at least two general reasons. First, it describes conditions under which the
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least squares estimate of the slope and intercept [given by Equations (6.4) and (6.5)]
have the smallest standard error among a large class of estimators. Said another way,
understanding this model is important when trying to understand when and why the
least squares estimate of the slope and intercept can be unsatisfactory. Second, a
special case of this model is used when computing confidence intervals and testing
hypotheses, and understanding the standard model helps explain some of the reasons
conventional hypothesis-testing methods can be highly inaccurate.

To be concrete, we describe the model using a study conducted by G. Margolin and
A. Medina, where the goal was to examine how children’s information processing is
related to a history of exposure to marital aggression. Results for two of their measures
are shown in Table 6.3. The first, labeled X, is a measure of marital aggression that
reflects physical, verbal, and emotional aggression during the last year; Y is a child’s
score on a recall test. If aggression in the home (X) has a relatively low value, what
would we expect a child to score on the recall-test (Y)? If the measure of aggression
is high, now what would we expect the recall-test score to be?

TABLE 6.3 Measures of Marital Aggression and Recall-Test Scores

Family Aggression Test score Family Aggression Test score

i Xi Yi i Xi Yi

1 3 0 25 34 2

2 104 5 26 14 0

3 50 0 27 9 4

4 9 0 28 28 0

5 68 0 29 7 4

6 29 6 30 11 6

7 74 0 31 21 4

8 11 1 32 30 4

9 18 1 33 26 1

10 39 2 34 2 6

11 0 17 35 11 6

12 56 0 36 12 13

13 54 3 37 6 3

14 77 6 38 3 1

15 14 4 39 3 0

16 32 2 40 47 3

17 34 4 41 19 1

18 13 2 42 2 6

19 96 0 43 25 1

20 84 0 44 37 0

21 5 13 57 11 2

22 4 9 46 14 11

23 18 1 47 0 3

24 76 4
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Among the millions of homes in the world, temporarily consider all homes that
have an aggression measure of 50 (X = 50). Among these homes there will be
some average value on the recall test (Y). In more formal terms, this average is
E(Y|X = 50), the mean of Y given that X = 50. The standard regression model
assumes that the population mean of Y, given X, is β0 + β1X, where β1 and β0
are unknown parameters that we want to estimate based on observations available
to us. [Least squares regression estimates β1 and β0 with b1 and b0, respectively,
given by Equations (6.4) and (6.5).] One problem is that in general, still restricting
attention to those homes with X = 50, the Y values will differ from one another.
In particular, they will not always be equal to the population mean of the Y values.
Of course typically this will be true for any value of X we might pick. That is, for a
randomly sampled pair of observations, (X, Y), ordinarily there will be a discrepancy
between Y and its (conditional) mean given X. In formal terms, this discrepancy is
e = Y − β1X − β0. Rearranging the terms of this last equation we get the standard
regression model:

Y = β0 + β1X + e, (6.6)

where e is the so-called error term, which is assumed to have a mean of zero. That is,
E(e) = 0 is assumed, which implies that given X, E(Y) = β0 + β1X.

This regression model is said to be homoscedastic if the variance of the error term does
not depend on X. In our example, this means, for example, that the variance of recall-
test scores (Y), given that aggression in the home (X) is 50, is equal to the variance of
the recall-test scores given that aggression in the home is 75. More generally, for any
value of X we might pick, homoscedasticity means that the conditional variance of Y,
given X, does not changewith X—it is someconstant value, as illustrated inFigure 6.4.

X

Y

Observed values of Y when X = 25

Observed values of Y when X = 50

Observed values of Y when X = 75

FIGURE 6.4 Example of homoscedasticity. The conditional variance of Y, given X,
does not change with X.
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X

Y

Observed values of Y when X = 25

Observed values of Y when X = 50

Observed values of Y when X = 75

FIGURE 6.5 Example of heteroscedasticity. The conditional variance of Y, given X,
changes with X.

A heteroscedastic regression model refers to a situation where this conditional variance
changes with X, such as illustrated in Figure 6.5, where the variance of Y is smaller
when X = 50 versus the other two X values shown.

Notice that b1 has a sampling distribution. That is, if we were to repeat a study
infinitely many times with each replication based on n randomly sampled pair of
observations, we would get a collection of estimated slopes that generally differ from
one another, and of course the same is true for the intercept. For the regression model
given by Equation (6.6), it can be shown that

E(b1) = β1 and E(b0) = β0.

That is, b1 and b0 are unbiased estimates of the slope and intercept, respectively,
roughly meaning that on average, they give a correct estimate of the true slope and
intercept. The squared standard error of b1 refers to the variance of the b1 values
obtained when repeating an experiment infinitely many times. If we can find an
unbiased estimator with a smaller standard error, then generally it will be a more
accurate estimate of the true slope, β1. Our immediate goal is to describe conditions
under which the least squares estimates of the slope and intercept have the smallest
possible standard error.

For the homoscedastic regression model just described, among all the weighted
means of the Y values we might consider for estimating the slope and intercept, the
least squares estimate given by Equations (6.4) and (6.5) has the smallest standard
error. This result is a special case of what is known as the Gauss–Markov theorem.
This theorem also yields the weighted mean with the smallest standard error in the
heteroscedastic case. In particular, Gauss showed that if the conditional variance of
the Y values, given that X = Xi, is σ 2

i , say, the optimal estimates of the slope and



182 Chapter 6 ■ Regress ion and Correlation

intercept are the values b1 and b0 that minimize∑
wi(Yi − b1Xi − b0)2, (6.7)

where wi = 1/σ 2
i . In our illustration, for example, we see from Table 6.3 that the

first aggression score is X1 = 3, the second is X2 = 104, and so on. If we knew σ 2
1 ,

the variance of recall-test scores (Y) given that the aggression measure is X1 = 3,
and more generally if we knew σ 2

i , the conditional variance of Y given that X = Xi,
we could compute the optimal weighted mean estimate of the slope and intercept,
which are the values b1 and b0 that minimize Equation (6.7). In the homoscedastic
case, all of the wi values in Equation (6.7) have a common value and the b1 and b0
values that minimize this equation are the same values that minimize Equation (6.3).
Determining the slope and intercept with Equation (6.7) is an example of what is
called weighted least squares, and using Equation (6.3) is called ordinary least squares.

A problem is that typically the σ 2
i are not known, so a common strategy is to

assume homoscedasticity and simply estimate the slope and intercept with ordinary
least squares [using Equations (6.4) and (6.5)], the optimal least squares estimates in
the homoscedastic case. A practical issue is whether knowing the σ 2

i would result in
a substantially more accurate estimate of the slope and intercept. If the answer is no,
heteroscedasticity is not a concern; but if such situations arise, methods for dealing
with heteroscedasticity become important.

EXAMPLE. Consider a situation where both X and the error term (e) are
standard normal and the slope is β1 = 1. Further assume that the standard
deviation of Y, given X, is 1 if |X| < 1, otherwise it is |X|+1. So, for example, if
X = .5, Y has variance 1; but if X = 1.5, Y has standard deviation 2.5. Figure 6.6
shows a scatterplot of points generated in this fashion. Figure 6.7 shows the
sampling distribution of the weighted and ordinary least squares estimates of
the slope. The standard error of the ordinary least squares estimator is .52,
versus .37 using the weighted least squares estimator instead. As is evident, the
weighted least squares estimate tends to be much closer to the correct value
for the slope. ■

EXAMPLE. Consider the same situation as in the last example, except that
the conditional standard deviation of Y, given X, is X2. Now the standard
error of the ordinary least squares estimator is more than 10 times larger than
the standard error of the optimal weighted least squares estimator. So we see
that even under normality, the ordinary least squares estimate of the slope
and intercept can be highly inaccurate relative to the optimal weighted least
squares approach. Nonnormality can make the least squares estimator perform
even more poorly. ■

One way of trying to improve upon ordinary least squares is to attempt to estimate
the variance of Y given X. If we could do this in a reasonably accurate manner for
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FIGURE 6.6 Example of what points look like when both X and the error term are
standard normal and the variance of Y is 1 if |X| < 1 and |X| + 1 if not.
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Ordinary least squares

FIGURE 6.7 Comparison of the sampling distributions of ordinary least squares esti-
mator versus the optimal weighted least squares estimator. There is heteroscedasticity,
which is why the weighted least squares estimator tends to be closer to the correct
value of 1.



184 Chapter 6 ■ Regress ion and Correlation

every X value we observe, weighted least squares could be employed. In the aggression
study, for example, the first home had an aggression score of 3, so we need to estimate
the variance of the recall-test scores for all homes having an aggression score of 3.
In a similar manner, the second home had an aggression score of 104, so we need
to estimate the variance of the recall-test scores for all homes having an aggression
score of 104. In more formal terms, X2 = 104, and to apply weighted least squares
we need to know σ 2

2 , the variance of Y given that X = X2. The third home has an
aggression score of X3 = 50, so we need to know σ 2

3 as well, which is the variance
of the recall-test scores when the aggression measure is 50. If we had a reasonably
large number of homes with an aggression score of 50, we could simply compute the
sample variance of the corresponding recall-test scores to get an estimate of σ 2

3 . The
practical problem is that we have only one home with an aggression score of 50, so
this method cannot be used.

There are at least two general strategies for dealing with heteroscedasticity when
the goal is to find an estimator of the slope and intercept that has a relatively small
standard error. The first uses what are called smoothers to estimate the σ 2

i values
(e.g., Müller, 1988, p. 153; M. Cohen, Dalal, & Tukey, 1993; Wilcox, 1996a). We do
not describe these methods here because either they ignore certain problems caused
by outliers, or there is no known method that performs reasonably well when testing
hypotheses or computing confidence intervals and the sample sizes are small or even
moderately large. Instead we rely on the second general strategy, which uses one
of the robust regression methods covered in Chapter 13. So the main point here
is that heteroscedasticity matters in terms of getting an estimator of the slope and
intercept that has a relatively small standard error, but we postpone how to deal with
this problem for now.

6.2.1 Comments About Linearity and Homoscedasticity

Caution must be exercised when assuming that a regression line is straight. Consider,
for example, the aggression data in Table 6.3, where Y is a recall-test score. If we
fit a straight line using the least squares principle, we find that b1 = −0.0405 and
b0 = 4.581. Figure 6.8 shows a scatterplot of the 47 pairs of observations along
with the least squares regression line used to predict test scores. If, for instance, the
measure of marital aggression is X = 20, the fitted value for the score on the recall test
is Ŷ = −0.0405(20)+4.581 = 3.77. Similarly, if X = 40, the estimate is Ŷ = 2.961.
The estimated recall-test score corresponding to X = 40 is less than it is when X = 20
because the slope is negative. Generally, the regression equation Y = −0.0405X +
4.581 suggests that the higher the measure of aggression, the lower the score on the
recall test. Is there some possibility that this is a misleading representation of the data?

Now consider the right portion of Figure 6.8, consisting of the 21 aggression
scores greater than or equal to 25. For these 21 values, if we estimate the regression
line, ignoring the other 26 values, we find that

Ŷ = 0.002285X + 1.93.

Note that the slope is slightly larger than zero. Now the fitted value for X = 25 is
Ŷ = 1.98, and for X = 40 it is Ŷ = 2.02. In contrast, for the aggression scores
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FIGURE 6.8 Scatterplot and least squares regression line for the aggression data in
Table 6.3.

less than 25, ignoring the scores greater than 25, the regression equation is

Ŷ = −0.194X + 6.33.

The left panel of Figure 6.9 shows a scatterplot of the aggression data, with squares
around the points having aggression scores greater than 25. Also shown is the least
squares regression line based on these rightmost points, ignoring the points not
marked with a square. The right panel shows the least squares regression line based
on the remaining 26 pairs of observations, which are now marked with squares. As
is evident, these two plots suggest something quite different from the regression
line based on all of the data. In particular, one possibility is that there is a negative
association for low aggression scores, but as the aggression scores increase, there
seems to be little or no association at all. This means that, for the range of aggression
scores available, perhaps there is a nonlinear association between aggression and test
scores. Another possibility is that with more data, a straight regression line would
prove to be adequate.

In recent years, better and more sophisticated methods have been developed
for studying, describing, and detecting nonlinear associations. The only goal here
is to illustrate a situation where nonlinearity might be an issue. Some very useful
exploratory methods for studying nonlinearity can be found in Hastie and Tibshirani
(1990). (A portion of these methods will be covered in Chapter 13.) There are also
methods that can be used to test the hypothesis that an association between two
random variables is linear.

A natural strategy when dealing with curvature is to add a quadratic term. That
is, use a prediction rule having the form Ŷ = β0 + β1X + β2X2, or, more generally,
include a term with X raised to some power. This might suffice in some situations,
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FIGURE 6.9 The left panel shows the least squares regression line for the data in Figure 6.8
using only the points marked with a square. The right panel shows the least squares regression
line using only the data ignored in the right panel. As is evident, the left portion of the
data gives a substantially different impression of how aggression and recall test scores are
associated.

but experience with modern methods suggests that another type of nonlinearity is
common: A straight line with a nonzero slope gives a reasonable prediction rule
over some range of X values, but for X values outside this range there is little or no
association at all. That is, the slope is zero. The aggression data in Table 6.3 are one
example where this might be true.

Yet another interesting feature of the aggression data is the possibility is that there
is heteroscedasticity. Perhaps for fairly low X values, the variance of Y is large relative
to higher X values. It might even be the case that X and Y are dependent but that
this dependence is due primarily to how the variance of Y, as opposed to the mean,
is related to X. In any event, the three largest Y values, which appear in the upper left
portion of Figure 6.8, have a substantial impact on the least squares regression line.
If we ignore these three points, the least squares slope goes from −.041 to −.017.

6.3 Hypothesis Testing and Confidence Intervals

So far, attention has been focused on fitting a straight line to data without making
any inferences about what the slope and intercept might be if you could sample
all subjects of interest. That is, β1 and β0 represent the slope and intercept if all
subjects could be sampled, and there is interest in determining which values for these
parameters can be ruled out based on the data at hand. One of the most common
goals is to test H0 : β1 = 0. If β1 = 0, knowing X provides no help in our attempts
to estimate Y using a straight regression line. In the aggression study, for example,
the regression equation becomes Ŷ = 3.4, the sample mean of all the Y values.



6.3 ■ Hypothes is Test ing and Confidence Intervals 187

TABLE 6.4 Selling Price of Homes (divided by 1000) versus
Size (in square feet)

Home Size Price Home Size Price

i (Xi) (Yi) i (Xi) (Yi)

1 2359 510 15 3883 859

2 3397 690 16 1937 435

3 1232 365 17 2565 555

4 2608 592 18 2722 525

5 4870 1125 19 4231 805

6 4225 850 20 1488 369

7 1390 363 21 4261 930

8 2028 559 22 1613 375

9 3700 860 23 2746 670

10 2949 695 24 1550 290

11 688 182 25 3000 715

12 3147 860 26 1743 365

13 4000 1050 27 2388 610

14 4180 675 28 4522 1290

This says that regardless of what the aggression score X might be, you estimate the
score on the recall test to be 3.4. In general, if a regression equation is assumed to
have the form given by Equation (6.1) and if β1 = 0, then Ŷ = Ȳ. Thus, rejecting
H0 : β1 = 0 says that knowing X provides some help in estimating Y, assuming a
linear equation having the form Ŷ = β0 + β1X is to be used.

To begin to understand the standard method for testing hypotheses, consider the
data in Table 6.4, which shows the selling price (divided by 1000) of homes in a
particular suburb of Los Angeles during the month of May 1998. Also shown is the
size of the home, in square feet. Given that you are interested in buying a home with
2000 square feet, what would you expect to pay? What would you expect to pay for
a house having 1500 square feet?

If we assume that the mean selling price of a home (Y), given its square feet (X), is

E(Y) = β0 + β1X,

then the least squares estimates of the slope and intercept are, respectively,

b1 = .215 and b0 = 38.192.

So, for example, the estimated cost of a house with 2000 square feet (in thousands
of dollars) is

.00215(2000) + .38192 = 468.7921,

or $468,792. But the data in Table 6.4 do not represent all homes sold in this area. If
all homes were included, we would know β1 and β0. How can we compute confidence
intervals or test hypotheses about these two parameters?



188 Chapter 6 ■ Regress ion and Correlation

The standard solution is to assume random sampling, homoscedasticity, and that
the distribution of the error term (e) in the regression model [given by Equation (6.6)]
has a normal distribution. This last assumption means that the selling price of homes,
given that they have 1400 square feet, for example, is normally distributed. Simi-
larly, the selling price of homes, among all homes having 2000 square feet, is
normally distributed. More generally, the distribution of Y, given X, is assumed
to be normal.

As previously explained, homoscedasticity means that the conditional variance
of Y, given X, does not change with X. Let σ 2 represent this common variance.
In formal terms, σ 2 = VAR(Y|X) = VAR(e), which does not depend on X. The
standard estimate of σ 2 is

σ̂ 2 = 1
n − 2

∑
r2i ,

the sum of the squared residuals divided by n − 2.

EXAMPLE. For the housing data in Table 6.4, the sum of squared residuals is∑
r2i = 26.99. There are n = 14 homes, so, assuming homoscedasticity, the

estimate of σ 2 is

σ̂ 2 = 26.99
14 − 2

= 2.25.

■

6.3.1 Conventional Hypothesis Testing and Confidence Intervals

Under the assumptions that the regression model is true and that there is random
sampling, homoscedasticity, and normality, confidence intervals for the slope and
intercept can be computed and hypotheses can be tested. In particular, a 1 − α

confidence interval for the slope, β1, is

b1 ± t

√
σ̂ 2∑

(Xi − X̄)2 , (6.8)

where t is the 1 − α/2 quantile of Student’s T distribution with ν = n − 2 degrees of
freedom. (The value of t is read from Table 4 in Appendix B.) The quantity

√
σ̂ 2∑

(Xi − X̄)2
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is the estimated standard error of b1. As for the intercept, β0, a 1 − α confidence interval
is given by

b0 ± t

√
σ̂ 2
∑

X2
i

n
∑

(Xi − X̄)2 . (6.9)

The quantity

√
σ̂ 2
∑

X2
i

n
∑

(Xi − X̄)2

is the estimated standard error of b0. For the common goal of testing H0 : β1 = 0, the
hypothesis that the slope is zero, you reject if the confidence interval does not contain
zero. Alternatively, you reject if

|T| ≥ t,

where again t is the 1 − α/2 quantile of Student’s T distribution with ν = n − 2
degrees of freedom and

T = b1

√∑
(Xi − X̄)2

σ̂ 2 . (6.10)

For convenience, it is noted that the hypothesis-testing methods just described can
be applied in S-PLUS with the command

summary(lm(y˜x))

where x is any S-PLUS variable containing the predictor values and y is any S-PLUS
variable containing the outcome values.

EXAMPLE. Using the aggression data in Table 6.3, we test the hypothesis
H0 : β1 = 0 with the goal that the probability of a Type I error be .05, assuming
normality and that the error term is homoscedastic. Because α = .05, 1−α/2 =
.975. There are n = 47 pairs of observations, so the degrees of freedom are
ν = 47 − 2 = 45, and the critical value is c = 2.01. The least squares estimate
of the slope is b1 = −0.0405, and it can be seen that

∑
(X1 − X̄)2 = 34659.74

and σ̂ 2 = 14.15, so the test statistic [given by Equation (6.10)] is

T = −0.0405

√
34659.74

14.5
= −1.98.

Because |T| = 1.98 < 2.01, fail to reject. ■

In regression, any outlier among the X values is called a leverage point. Notice that
a single leverage point can inflate

∑
(Xi − X̄)2, which is just the numerator of the
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sample variance for the X values. But
∑

(Xi − X̄)2 appears in the denominator of
the expression for the standard error of b1, so a single leverage point can cause the
standard error of b1 to be smaller compared to a situation where no leverage points
occurred. In practical terms, we can get shorter confidence intervals and more power
when there are leverage points, but caution must be exercised because leverage points
can result in a poor fit to the bulk of the data.

6.3.2 Violating Assumptions

Currently, the hypothesis-testing method described in the previous subsection is
routinely employed. Unfortunately, violating the assumptions of the method can
cause serious problems.

Consider a situation where the normality assumption is valid but there is het-
eroscedasticity. For the housing data, for example, imagine that the variation among
the selling prices differs depending on how many square feet a house happens to
have. For instance, the variation among houses having 1500 square feet might differ
from the variation among homes having 2000 square feet. Then the standard method
for testing hypotheses about the slope, given by Equation (6.10), might provide poor
control over the probability of a Type I error and poor probability coverage (e.g.,
Long & Ervin, 2000; Wilcox, 1996b). If the distributions are not normal, the situation
gets worse. In some cases, the actual probability of a Type I error can exceed .5 when
testing at the α = .05 level! Perhaps an even more serious concern is that violating
the homoscedasticity assumption might result in a substantial loss in power.

The homoscedasticity assumption is valid when X and Y are independent.
(Independence implies homoscedasticity, but β1 = 0, for example, does not neces-
sarily mean that there is homoscedasticity.) Practical problems arise when X and Y
are dependent because now there is no particular reason to assume homoscedasticity;
and if there is heteroscedasticity; the wrong standard error is being used to com-
pute confidence intervals and test hypotheses. If we could determine how VAR(Y|X)
changes with X, a correct estimate of the standard error could be employed, but cur-
rently it seems that alternate strategies for dealing with heteroscedasticity (covered
in subsequent chapters) are more effective.

There are methods for testing the assumption that there is homoscedasticity (see,
for example, Lyon & Tsai, 1996). But given some data, it is unknown how to tell
whether any of these tests have enough power to detect situations where there
is enough heteroscedasticity to cause practical problems with standard inferential
methods. Even if there is homoscedasticity, nonnormality remains a serious concern.
Currently, a more effective approach appears to be to switch to some method that
allows heteroscedasticity.

Long and Ervin (2000) compare three simple methods for computing confi-
dence intervals when there is heteroscedasticity. One of these they recommend
for general use. However, in situations where leverage points are likely and
simultaneously the error term has a normal or light-tailed distribution, their recom-
mended method can be unsatisfactory. A more effective method is described in
Chapter 7, so no details are given here about the method recommended by Long
and Ervin.
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6.3.3 Restricting the Range of Y

The derivation of the inferential methods in Section 6.3.1 treats the X values as
constants and the Y values as random variables. That is, the methods are derived
by conditioning on the X values, which makes it a fairly simple matter to derive an
estimate of the standard error of the least squares estimate of the slope and intercept.
For example, we saw that

b1 =
∑

wiYi,

where

wi = Xi − X̄
(n − 1)s2x

.

Treating the X values as constants, and using the rules of expected values in Chapter 2,
it can be shown that the squared standard error of b1 is given by

σ 2∑
(Xi − X̄)2 , (6.11)

as noted in Section 6.3.1. A practical implication is that if we restrict the range of
X values, no technical problems arise when trying to estimate the standard error of
b1; we simply use Equation (6.11) on the points that remain (with n reduced to the
number of points remaining). But if we restrict the range of Y values by eliminating
outliers, the methods in Section 6.3.1 are no longer valid, even under normality
and homoscedasticity. We saw in Section 4.9.1 that if we eliminate extreme values
and compute the mean using the data that remain, the standard error of this mean
should not be estimated with the sample variance based on the data that remain.
A similar problem arises here. If we eliminate extreme Y values, the remaining Y
values are no longer independent. So if we use least squares to estimate the slope
based on the pairs of points not eliminated, estimating the standard error of the slope
becomes a nontrivial problem — the dependence among the Y values must be taken
into account.

6.3.4 Standardized Regression

Popular statistical software reports what is called a standardized regression coefficient. This
simply means that rather than compute the least squares estimator using the raw data,
the observations are first converted to Z scores. For the aggression data in Table 6.3,
for example, it can be seen that the test scores (Y) have mean Ȳ = 3.4 and standard
deviation sy = 3.88. The first test score is Y1 = 0, and its Z-score equivalent is

Z = 0 − 3.4
3.88

= −0.88.
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Of course, the remaining Y values can be converted to a Z score in a similar manner.
In symbols, for the ith observation, you compute

Zyi = Yi − Ȳ
sy

.

Next, convert all of the aggression values to Z scores. That is, for the ith pair of
observations, compute

Zxi = Xi − X̄
sx

.

For the aggression data, X̄ = 28.5 and sx = 27.45. For example, the first entry in
Table 6.3 has X1 = 3, so Zx1 = −0.93. Next, you determine the least squares estimate
of the slope using the transformed X and Y values just computed. The resulting
estimate of the slope will be labeled bz. The resulting estimate of the intercept is
always zero, so the regression equation takes the form

Ẑy = bzZx.

For the aggression data, it can be seen that bz = −0.29, so Ẑy = −0.29(Zx).
The standardized regression coefficient, bz, can be computed in another manner.

First compute the least squares estimate of the slope using the original data yielding
b1. Then

bz = b1
sx
sy

.

EXAMPLE. For the aggression data in Table 6.3, the sample standard devi-
ations of the X and Y values are sy = 3.88 and sx = 27.45. As previously
indicated, the least squares estimate of the slope is b1 = −0.0405. The stan-
dardized slope is just

bz = −0.0405
27.45
3.88

= −0.29. ■

One reason standardized regression has some appeal is that it attempts to provide
perspective on the magnitude of a predicted value for Y. Recall from Chapter 2 that
for normal distributions, the value of Z = (X − µ)/σ has a convenient probabilis-
tic interpretation under normality. For example, half the observations fall below a
Z score of zero. A Z score of 1 indicates we are 1 standard deviation above the
mean, and about 84% of all observations are to below this point when observa-
tions have a normal distribution. (From Table 1 in Appendix B, Z = 1 is the .84
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quantile.) Similarly, Z = 2 refers to a point 2 standard deviations above the mean,
and approximately 98% of all observations are below this value. Thus, for normal
distributions, Z scores give you some sense of how large or small a value happens
to be. Standardized regression attempts to tell us, for example, how a change of
1 standard deviation in X is related to changes in Y, again measured in standard
deviations.

EXAMPLE. For the aggression data, assume normality and suppose we want
to interpret the standardized regression estimate of the recall test when the
measure of aggression is 1 standard deviation above or below the mean. One
standard deviation above the mean of the aggression scores, X, corresponds to
Zx = 1, so, as previously indicated,

Ẑy = (−0.29)1 = −0.29.

For a standard normal distribution, the probability of being less than −0.29
is approximately .39, and this provides a perspective on how the recall test is
related to the measure of aggression. In a similar manner, 1 standard devi-
ation below the mean of the aggression scores corresponds to Zx = −1,
so now

Ẑy = (−0.29)(−1) = 0.29,

and there is approximately a .61 probability that a standard normal random
variable is less than .29. ■

For nonnormal distributions, situations arise where Z scores can be interpreted
in much the same way as when distributions are normal. But based on results in
Chapters 2 and 3, there are two points to keep in mind when using Z scores. The first
is that they can give a misleading representation of the sample of observations being
studied. The second is that interpretation problems can arise even with an arbitrarily
large sample size and a very small departure from normality.

EXAMPLE. The last example illustrated how to interpret Ẑy assuming normal-
ity, but now we take a closer look at the data to see whether this interpretation
might be misleading. Table 6.5 shows all 47 Zy scores for the recall-test values
written in ascending order. We see that 24 of the 47 values are below −.29, so
the proportion below −0.29 is 24/47 = .51. This means that based on the avail-
able data, your estimate is that there is .51 probability of having a Zy score less
than −0.29. Put another way, a Z score of −0.29 corresponds, approximately,
to the median. In contrast, for normal distributions, Zy = 0 is the median
and the probability of getting a Zy score less than −0.29 is approximately .39.

Continued
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TABLE 6.5 Z Scores for the Recall-Test Scores in Table 6.3 (in ascending order)

−0.88 −0.88 −0.88 −0.88 −0.88 −0.88 −0.88 −0.88 −0.88 −0.88 −0.88 −0.88

−0.62 −0.62 −0.62 −0.62 −0.62 −0.62 −0.62 −0.36 −0.36 −0.36 −0.36 −0.36

−0.10 −0.10 −0.10 −0.10 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.41

0.67 0.67 0.67 0.67 0.67 0.67 1.44 1.96 2.47 2.47 3.51

EXAMPLE. (Continued ) Thus, there is some discrepancy between the empirical
estimate of the probability of getting a Zy score less than −0.29 versus the
probability you get assuming normality. The main point here is that switching
to standardized regression does not necessarily provide a perspective that is
readily interpretable. ■

A criticism of this last example is that the estimated probability of getting a Z score
less than −0.29 is based on only 47 observations. Perhaps with a larger sample size,
the estimated probability would be reasonably close to 0.39, the value associated
with a normal distribution. However, results in Chapter 2 indicate that even with a
large sample size, there can be a considerable difference, so caution is recommended
when interpreting standardized regression equations.

6.4 Pearson’s Correlation

Chapter 2 introduced Pearson’s correlation, ρ. This section takes up the problem of
estimating ρ based on data available to us, plus the issue of interpreting what this
estimate tells us about the association between the two measures under study.

Recall from Chapter 2 that

ρ = σxy

σxσy
,

where σxy is the (population) covariance between X and Y (as defined in Section 2.8).
Given n pairs of observations

(X1, Y1), . . . ,(Xn,Yn),

the covariance is typically estimated with

sxy = 1
n − 1

∑
(Xi − X̄)(Yi − Ȳ).

The usual estimate of ρ is

r = sxy

sxsy
, (6.12)

where sx and sy are the standard deviations of the X and Y values, respectively.
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It can be shown that −1 ≤ r ≤ 1. That is, the estimate of Pearson’s correlation,
based on r, always lies between −1 and 1, as does ρ. If all of the points lie on a
straight line with a positive slope, r = 1. If all of the points lie on a straight line with
a negative slope, r = −1.

The estimate of the slope of the least squares regression line (b1) is related to the
estimate of Pearson’s correlation in the following manner:

b1 = r
sy
sx

. (6.13)

So if r > 0, the least squares regression line has a positive slope; if r < 0, the slope
is negative. In standardized regression (as discussed in Section 6.3.4), the slope is
equal to the correlation between X and Y. That is, the least squares regression line
between

Zx = X − X̄
sx

and Zy = Y − Ȳ
sy

is

Ẑy = rZx.

6.4.1 Five Features of Data That Affect the Magnitude of r

Interpreting r is complicated by the fact that various features of the data under study
affect its magnitude. Five such features are described here, and a sixth is briefly
indicated at the end of this section.

Assuming that there is a linear association between X and Y, the first feature is
the distance of the points from the line around that they are centered. That is, the
magnitude of the residuals is associated with the magnitude of r. The left panel of
Figure 6.10 shows a scatterplot of points with r = .92. The right panel shows another
scatterplot of points that are centered around the same line as in the left panel, only
they are farther from the line around which they are centered. Now r = .42.

A second feature that affects the magnitude of r is the magnitude of the slope
around which the points are centered (e.g., Barrett, 1974; Loh, 1987). Figure 6.11
shows the same points as in the left panel of Figure 6.10, only rotated so that the
slope around which they are centered has been decreased from 1 to .5. This causes
the correlation to drop from .92 to .83. If we continue to rotate the points until they
are centered around the x-axis, r = 0.

A third feature of data that affects r is outliers. This is not surprising, because we
already know that the least squares regression line has a breakdown point of only 1/n,
and we have seen how r is related to the least squares estimate of the slope [as indicated
by Equation (6.13)]. For the star data in Figure 6.3, r = −.21, which is consistent
with the negative slope associated with the least squares regression line. But we have
already seen that for the bulk of the points, there is a positive association. Generally,
a single unusual value can cause r to be close to zero even when the remaining points
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FIGURE 6.10 Illustration showing that the magnitude of the residuals affects
Pearson’s correlation.
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FIGURE 6.11 Illustration showing that Pearson’s correlation is related to the
magnitude of the slope of the line around which points are clustered.

are centered around a line having a nonzero slope, and one outlier can cause |r| to be
fairly large even when there is no association among the remaining points.

Moreover, when sampling points in situations where outliers are likely to occur,
even small departures from normality can greatly affect the population correlation ρ,
and r can be affected as well no matter how large the sample size might be. To provide
some indication of why, the left panel of Figure 6.12 shows the distribution between
X and Y when both X and Y are normal and ρ = .8. In the right panel, again X and
Y are normal, but now ρ = .2. So under normality, decreasing ρ from .8 to .2 has a
very noticeable effect on the joint distribution of X and Y. Now look at Figure 6.13.
It looks similar to the left panel of Figure 6.12, where ρ = .8, but now ρ = .2. In
Figure 6.13 X is again normal, but Y has the mixed normal distribution (described



6.4 ■ Pearson’s Correlation 197

10 20 30 40 50 60

X

10

20
30

40
50

60
Y

Correlation = .8

10 20 30 40 50 60

X

10

20
30

40
50

60

Y

Correlation = .2

FIGURE 6.12 When both X and Y are normal, increasing ρ from .2 to .8 has a
noticeable effect on the bivariate distribution of X and Y.
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FIGURE 6.13 Two bivariate distributions can appear to be very similar yet have
substantially different correlations. Shown is a bivariate distribution with ρ = .2, but
the graph is very similar to the left panel of Figure 6.12, where ρ = .8.

in Section 2.7). This demonstrates that a very small change in any distribution can
have a very large impact on ρ. Also, no matter how large the sample size might be, a
slight departure from normality can drastically affect r.

A fourth feature that affects the magnitude of r is any restriction in range among
the X (or Y) values. To complicate matters, restricting the range of X can increase or
decrease r. For example, the left panel of Figure 6.14 shows a scatterplot of points
for which r = .98. When we eliminate the points with |X| > 1, leaving the points
shown in the right panel of Figure 6.14, r = .79.
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FIGURE 6.14 Restricting the range of X can reduce Pearson’s correlation.
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FIGURE 6.15 Curvature occurs in applied work, as illustrated here with data from a
study of how concentrations of nitric oxides in engine exhaust are related to its equivalence
ratio. Here, Pearson’s correlation is only −.1 despite a rather strong association.

The star data in Figure 6.3 illustrate that restricting the range of X (or Y)
can increase r as well. If we eliminate all points having X ≤ 4.1, r increases from
−.21 to .65.

A fifth feature that affects r is curvature. Figure 6.15 shows a scatterplot of points
relating the concentration of nitric oxides in engine exhaust versus its equivalence
ratio, a measure of the richness of the air–ethanol mix. There is a rather obvious
association, but the correlation is r = −.1, a value relatively close to zero. As another
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example, if X is standard normal and Y = X2, there is an exact association between
X and Y, but ρ = 0.

In summary, the following features of data influence the magnitude of Pearson’s
correlation:

• The slope of the line around which points are clustered• The magnitude of the residuals• Outliers• Restricting the range of the X values, which can cause r to go up or down• Curvature

A point worth stressing is that although independence implies that ρ = 0, ρ = 0
does not necessarily imply independence. In fact there are various ways in which X
and Y can be dependent, yet ρ is exactly zero. For example, if X and e are independent
and Y = |X|e, then X and Y are dependent because there is heteroscedasticity, yet
ρ = 0. More generally, if there is heteroscedasticity and the least squares slope is
zero, then ρ = 0 as well. As another example, suppose U, V , and W are independent
standard normal random variables. Then it can be shown that X = U/W2 and Y =
V/W2 are dependent (roughly because both X and Y have the same denominator),
yet they have correlation ρ = 0.

We conclude this section by noting that the foregoing list of factors that affect the
magnitude of r is not exhaustive. Yet another feature of data that affects the magnitude
of r is the reliability of the measures under study (e.g., Lord & Novick, 1968), but
the details go beyond the scope of this book.

6.5 Testing H 0 : ρ = 0

Next we describe the classic test of

H0 : ρ = 0. (6.14)

If we can reject this hypothesis, then by implication X and Y are dependent.
If we assume that X and Y are independent and if at least one of these two variables

is normal, then

T = r

√
n − 2
1 − r2

(6.15)

has a Student’s T distribution with ν = n − 2 degrees of freedom (Muirhead, 1982,
p. 146; also see Hogg & Craig, 1970, pp. 339–341). So the decision rule is to reject
H0 if |T| ≥ t, where t is the 1 − α/2 quantile of Student’s T distribution with n − 2
degrees of freedom.

EXAMPLE. For the data in Table 6.3, n = 47, r = −0.286, so ν = 45 and

T = −0.286

√
45

1 − (−0.286)2 = −2.

Continued
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EXAMPLE. (Continued ) With α = .05, the critical value is t = 2.01; because
|− 2| < 2.01, we fail to reject. That is, we are unable to conclude that the
aggression scores and recall-test scores are dependent with α = .05. ■

Caution must be exercised when interpreting the implications associated with
rejecting the hypothesis of a zero correlation with T. Although it is clear that T
given by Equation (6.15) is designed to be sensitive to r, homoscedasticity plays a
crucial role in the derivation of this test. When in fact there is heteroscedasticity,
the derivation of T is no longer valid and can result in some unexpected properties.
For instance, it is possible to have ρ = 0, yet the probability of rejecting H0 : ρ = 0
increases as the sample size gets large.

EXAMPLE. Figure 6.16 shows a scatterplot of 40 points generated on a com-
puter, where both X and Y have normal distributions and µx = 0. In this
particular case, Y has variance 1 unless |X| > .5, in which case Y has standard
deviation |X|. So X and Y are dependent, but ρ = 0. For this situation, when
testing at the α = .05 level, the actual probability of rejecting H0 with T is .098
with n = 20. For n = 40 it is .125, and for n = 200 it is .159. The probability
of rejecting is increasing with n even though ρ = 0. When we reject, a correct
conclusion is that X and Y are dependent, but it would be incorrect to conclude
that ρ �= 0. ■

Some experts might criticize this last example on the grounds that it would be
highly unusual to encounter a situation where ρ = 0 and there is heteroscedastic-
ity. That is, perhaps we are describing a problem that is theoretically possible but
unlikely ever to be encountered. Even if we agree with this argument, the more
salient issue is that employing the wrong standard error can lead to highly erroneous
results. Generally, conventional methods use correct estimates of standard errors
when variables are independent but incorrect estimates when they are dependent,
and in the latter case this can lead to poor power and highly inaccurate confidence
intervals.

A common alternative to T when making inferences about ρ is to employ what
is known as Fisher’s r-to-z transformation, but we provide no details here because of
results in Duncan and Layard (1973). Briefly, Fisher’s method requires normality.
For nonnormal distributions there are general conditions where the method does not
converge to the correct answer as the sample size increases. That is, the method
violates the basic principle that the accuracy of our results should increase as n gets
large.

6.5.1 The Coefficient of Determination

A positive feature of r is that it provides a useful characterization of how well the least
squares regression line summarizes the association between two variables. To explain,
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FIGURE 6.16 Example of 40 points that were generated from distributions where ρ = 0
and there is heteroscedasticity. Student’s T test of H0 : ρ = 0 is unsatisfactory in terms of
making inferences about ρ, but it does detect the dependence between X and Y.

imagine that we ignore X in our attempts to predict Y and simply use Ŷ = Ȳ. Then
we can measure the accuracy of our prediction rule with

∑
(Yi − Ȳ)2,

the sum of the squared discrepancies between the Y values we observe and the
predicted values, Ȳ. (This is the method for measuring accuracy already dis-
cussed in Section 3.2.8.) Notice that this sum is the numerator of the sample
variance of the Y values. If instead we use the least squares regression line Ŷ =
β0 + β1Xi to predict Y, then an overall measure of the accuracy of our prediction
rule is

∑
(Yi − Ŷ i)2,

as already explained. The difference between these two sums measures the extent to
which using Ŷ improves upon using Ŷ. In symbols, this difference is

∑
(Yi − Ȳ)2 −

∑
(Yi − Ŷ i)2.

Finally, if we divide this difference by
∑

(Yi − Ȳ)2, we get a measure of how much
Ŷ improves upon Ȳ relative to Ȳ. It can be seen that this measure is just r2, which is
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called the coefficient of determination. In symbols, the coefficient of determination is,

r2 =
∑

(Yi − Ȳ)2 −∑
(Yi − Ŷ i)2∑

(Yi − Ȳ)2 . (6.16)

We have already seen that even a single outlier can have a substantial impact on
both r and the least squares regression line. So when the coefficient of determination
(r2) is fairly large, this does not necessarily mean that the least squares regression
line accurately reflects the association among the bulk of the points under study. It
simply reflects the extent to which the least squares regression line improves upon
the prediction rule Ŷ = Ȳ, the point being that both rules might be very ineffective.

6.5.2 Establishing Independence

Establishing that two measures are independent is a much more difficult goal than
showing that they are dependent. If we reject the hypothesis that Pearson’s correlation
is zero, we can be reasonably certain that the two measures are dependent even
though this tells us virtually nothing about what the dependence is like. But if we
fail to reject, this is not remotely convincing evidence that we have independence.
The basic problem is that the test of H0 : ρ = 0 given by Equation (6.15) may not
be sensitive to the type of association that exists between the variables under study.
There is a rather lengthy list of alternative methods for detecting dependence that
attempt to address this problem. (See, for example, Kallenberg & Ledwina, 1999, plus
the references they cite.) A few alternative techniques are described in subsequent
chapters.

6.6 Concluding Remarks

The purpose of this chapter was to introduce basic concepts and to describe standard
hypothesis-testing methods associated with least squares regression and Pearson’s
correlation. Another goal was to provide some indication of what might go wrong
with these standard methods. Some contemporary techniques for addressing these
problems are covered in subsequent chapters. It is stressed, however, that regression
is a vast topic and that not all methods and issues are discussed in this book. For
more about regression, see Li (1985), Montgomery and Peck (1992), Staudte and
Sheather (1990), Hampel, Ronchetti, Rousseeuw, and Stahel (1986), Huber (1981),
Rousseeuw and Leroy (1987), Belsley, Kuh, and Welsch (1980), Cook and Weisberg
(1992), Carroll and Ruppert (1988), Hettmansperger (1984), Hettmansperger and
McKean (1998), and Wilcox (1997a).

6.7 Exercises

1. For the following pairs of points, verify that the least squares regression line
is Ŷ = 1.8X − 8.5.
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X: 5, 8, 9, 7, 14

Y: 3, 1, 6, 7, 19

2. Compute the residuals using the results from Exercise 1. Verify that if you
square and sum the residuals, you get 47, rounding to the nearest integer.

3. Verify that for the data in Exercise 1, if you use Ŷ = 2X − 9, the sum of
the squared residuals is larger than 47. Why would you expect a value greater
than 47?

4. Suppose that based on n = 25 values, s2x = 12, s2y = 25, and r = .6. What is
the slope of least squares regression?

5. Verify that for the data in Table 6.3, the least squares regression line is
Ŷ = −0.0405X + 4.581.

6. The following table reports breast cancer rates plus levels of solar radiation
(in calories per day) for various cities in the United States. Fit a least squares
regression to the data with the goal of predicting cancer rates and comment
on what this line suggests.

Daily Daily
City Rate calories City Rate calories

New York 32.75 300 Chicago 30.75 275
Pittsburgh 28.00 280 Seattle 27.25 270
Boston 30.75 305 Cleveland 31.00 335
Columbus 29.00 340 Indianapolis 26.50 342
New Orleans 27.00 348 Nashville 23.50 354
Washington, DC 31.20 357 Salt Lake City 22.70 394
Omaha 27.00 380 San Diego 25.80 383
Atlanta 27.00 397 Los Angeles 27.80 450
Miami 23.50 453 Fort Worth 21.50 446
Tampa 21.00 456 Albuquerque 22.50 513
Las Vegas 21.50 510 Honolulu 20.60 520
El Paso 22.80 535 Phoenix 21.00 520

7. For the following data, compute the least squares regression line for predicting
gpa given SAT.

SAT: 500 530 590 660 610 700 570 640
gpa: 2.3 3.1 2.6 3.0 2.4 3.3 2.6 3.5

8. For the data in the Exercise 7, verify that the coefficient of determination is
.36 and interpret what this tells you.

9. For the following data, compute the least squares regression line for predicting
Y from X.
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X: 40 41 42 43 44 45 46
Y: 1.62 1.63 1.90 2.64 2.05 2.13 1.94

10. In Exercise 6, what would be the least squares estimate of the cancer rate given
a solar radiation of 600? Indicate why this estimate might be unreasonable.

11. Maximal oxygen uptake (mou) is a measure of an individual’s physical fitness.
You want to know how mou is related to how fast someone can run a mile.
Suppose you randomly sample six athletes and get

mou (milliliters/kilogram): 63.3 60.1 53.6 58.8 67.5 62.5

time (seconds): 241.5 249.8 246.1 232.4 237.2 238.4

Compute the correlation. Can you be reasonably certain about whether it is
positive or negative with α = .05?

12. Verify that for the following pairs of points, the least squares regression line
has a slope of zero. Plot the points and comment on the assumption that the
regression line is straight.

X: 1 2 3 4 5 6

Y: 1 4 7 7 4 1

13. Repeat Exercise 12; but for the points

X: 1 2 3 4 5 6

Y: 4 5 6 7 8 2

14. Vitamin A is required for good health. You conduct a study and find that
as vitamin A intake decreases, there is a linear association with bad health.
However, one bite of polar bear liver results in death because it contains
a high concentration of vitamin A. Comment on what this illustrates in the
context of regression.

15. Sockett et al. (1987) report data related to patterns of residual insulin secretion
in children. A portion of the study was concerned with whether age can be
used to predict the logarithm of C-peptide concentrations at diagnosis. The
observed values are

Age (X): 5.2 8.8 10.5 10.6 10.4 1.8 12.7 15.6 5.8 1.9
2.2 4.8 7.9 5.2 0.9 11.8 7.9 1.5 10.6 8.5

11.1 12.8 11.3 1.0 14.5 11.9 8.1 13.8 15.5 9.8
11.0 12.4 11.1 5.1 4.8 4.2 6.9 13.2 9.9 12.5
13.2 8.9 10.8

Continued
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C-peptide (Y): 4.8 4.1 5.2 5.5 5.0 3.4 3.4 4.9 5.6
3.7 3.9 4.5 4.8 4.9 3.0 4.6 4.8 5.5
4.5 5.3 4.7 6.6 5.1 3.9 5.7 5.1 5.2
3.7 4.9 4.8 4.4 5.2 5.1 4.6 3.9 5.1
5.1 6.0 4.9 4.1 4.6 4.9 5.1

Replace the C-peptide values with their (natural) logarithms. For example,
the value 4.8 would be replaced by log(4.8) = 1.5686. Create a scatterplot
for these data and consider whether a linear rule for predicting Y with X is
reasonable. Also verify that r = .4 and that you reject H0 : ρ = 0 with α = .05.

16. For the data in Exercise 15, verify that a least squares regression line using
only X values (age) less than 7 yields b1 = 0.247 and b0 = 3.51. Verify that
when using only the X values greater than 7 you get b1 = .009 and b0 = 4.8.
What does this suggest about using a linear rule for all of the data?

17. The housing data in Table 6.4 are from a suburb of Los Angeles where even a
small empty lot would cost at least $200,000 (and probably much more) at the
time the data were collected. Verify that based on the least squares regression
line for these data, if we estimate the cost of an empty lot by setting the
square feet of a house to X = 0, we get 38,192. What does this suggest about
estimating Y using an X value outside the range of observed X values?

18. For the data in Table 6.4, the sizes of the corresponding lots are:

18,200 12,900 10,060 14,500 76,670 22,800 10,880
10,880 23,090 10,875 3,498 42,689 17,790 38,330
18,460 17,000 15,710 14,180 19,840 9,150 40,511
9,060 15,038 5,807 16,000 3,173 24,000 16,600.

Verify that the least squares regression line for estimating the selling price,
based on the size of the lot, is Ŷ = 11X + 436,834.

19. Imagine two scatterplots where in each scatterplot the points are clustered
around a line having slope .3. If for the first scatterplot r = .8, does this
mean that points are more tightly clustered around the line versus the other
scatterplot, where r = .6?

20. You measure stress (X) and performance (Y) on some task and get

X: 18 20 35 16 12

Y: 36 29 48 64 18

Verify that you do not reject H0 : β1 = 0 using α = .05. Is this result consistent
with what you get when testing H0 : ρ = 0? Why would it be incorrect to
conclude that X and Y are independent?

21. Suppose you observe

X: 12.2, 41, 5.4, 13, 22.6, 35.9, 7.2, 5.2, 55, 2.4, 6.8, 29.6, 58.7,

Y: 1.8, 7.8, 0.9, 2.6, 4.1, 6.4, 1.3, 0.9, 9.1, 0.7, 1.5, 4.7, 8.2
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TABLE 6.6 Reading Data

X : 34 49 49 44 66 48 49 39 54 57 39 65 43 43 44 42

71 40 41 38 42 77 40 38 43 42 36 55 57 57 41 66

69 38 49 51 45 141 133 76 44 40 56 50 75 44 181 45

61 15 23 42 61 146 144 89 71 83 49 43 68 57 60 56

63 136 49 57 64 43 71 38 74 84 75 64 48

Y : 129 107 91 110 104 101 105 125 82 92 104 134 105 95 101 104

105 122 98 104 95 93 105 132 98 112 95 102 72 103 102 102

80 125 93 105 79 125 102 91 58 104 58 129 58 90 108 95

85 84 77 85 82 82 111 58 99 77 102 82 95 95 82 72

93 114 108 95 72 95 68 119 84 75 75 122 127

Verify that the .95 confidence interval for the slope is (0.14, 0.17). Would
you reject H0 : β1 = 0? Based on this confidence interval only, can you be
reasonably certain that, generally, as X increases, Y increases as well?

22. The data in Table 6.6 are from a study, conducted by L. Doi, where the goal
is to understand how well certain measures predict reading ability in children.
Verify that the .95 confidence interval for the slope is (−0.16, .12) based on
Equation (6.8).



7
BASIC BOOTSTRAP
METHODS

This chapter covers the basics of a modern statistical tool called the bootstrap. There
is a rather large collection of bootstrap methods, most of which will not be described
here. For book-length descriptions of these techniques, the reader is referred to
Efron and Tibshirani (1993), Chernick (1999), Davison and Hinkley (1997), Hall
and Hall (1995), Lunneborg (2000), Mooney and Duval (1993), and Shao and Tu
(1995). The goal here is to introduce and illustrate some of the more basic versions
that have considerable practical value in applied work when computing confidence
intervals or testing hypotheses.

7.1 The Percentile Method

We begin with what is called the percentile bootstrap method. It is stressed that this tech-
nique does not perform well when the goal is to make inferences about the population
mean based on the sample mean, unless the sample size is very large. However, it has
considerable practical value for a wide range of other problems, even with very small
sample sizes, and modifications of the method have practical value as well. Although
the percentile bootstrap is not recommended when working with the sample mean, it
is perhaps easiest to explain in terms of the sample mean, so we start with this special
case.

Imagine we want to compute a .95 confidence interval for the population mean, µ.
The strategy behind the percentile bootstrap method is to estimate the .025 and .975
quantiles of the sampling distribution of the sample mean and then to use this estimate
as a .95 confidence interval for µ. For example, if we estimated that P(X̄ ≤ 5) = .025
and P(X̄ ≤ 26) = .975, then 5 and 26 are the .025 and .975 quantiles, respectively,
and (5, 26) would be a .95 confidence interval for µ. Of course, the practical problem
is that we do not know the sampling distribution of X̄, let alone what the .025 and .975
quantiles might be. If we assume that X̄ has a normal distribution, which is reasonable
with a sufficiently large sample size, the .025 and .975 quantiles are easily estimated:
You simply estimate µ and σ 2 with the sample mean and sample variance, and,
assuming these estimates are fairly accurate, the method in Section 4.3 can be used.

207
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0 1 2 3

FIGURE 7.1 Example of a skewed, light-tailed distribution. This particular curve
belongs to the family of lognormal distributions.

The percentile bootstrap method uses another estimate of the sampling distribution
of the sample mean that makes no assumptions about what this distribution might be.
In particular, it does not assume the distribution is normal. To understand the basic
strategy, first we review a description of the sampling distribution given in Chapter 4.
If we were to repeat an experiment infinitely many times, each time computing X̄
based on n observations, we would know P(X̄ ≤ c), the probability that the sample
mean is less than or equal to c, for any constant c we might choose. Said another way,
if we knew the distribution from which observations were sampled, we could use a
computer to get a very accurate estimate of the sampling distribution of X̄.

For example, imagine we want to determine the sampling distribution of X̄ when
n observations are randomly sampled from the distribution shown in Figure 7.1. This
is an example of a lognormal distribution, and observations can be generated from it
using standard software. (In S-PLUS, the function rlnorm accomplishes this goal.) So
if we want to know the sampling distribution of X̄ when n = 20, say, simply generate 20
observations from the lognormal distribution and compute X̄. If we repeat this process
many times we will have an excellent approximation of what the sampling distribution
happens to be. Figure 7.2 shows a plot of 2000 sample means generated in this manner.

Of course, the practical problem is that we do not know the distribution from which
observations are sampled. However, we can use the data available to us to estimate
this distribution, and this is the basic idea behind all bootstrap techniques. In the
simplest case, the strategy is to use the observed relative frequencies as estimates
of the probabilities associated with possible values we might observe, and then we
simply use a computer to generate observations based on these probabilities. By
repeatedly generating many samples of size n, the resulting sample means provide an
estimate of the sampling distribution of X̄, and the middle 95% of these generated
sample means provide an approximate .95 confidence interval for µ.
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FIGURE 7.2 Plot of 2000 sample means, each mean based on n = 20 observations
generated from the distribution in Figure 7.1.

To illustrate the idea, imagine we observe the following 10 values:

1, 4, 2, 19, 4, 12, 29, 4, 9, 16.

The value 1 occurred only once, so we estimate that the value 1 has probability 1/10.
Similarly, the value 4 occurred three times, so we estimate its probability to be 3/10.
The value 3 occurred zero times, so we estimate its probability to be 0. In the notation
of Chapter 3, if the number of times we observe the value x is fx, p(x) is estimated
with fx/n.

A bootstrap sample is obtained by randomly sampling, with replacement, observations
from the observed values. In our illustration, if we randomly sample a single observa-
tion from the values listed in the previous paragraph, we might get the value 12. The
probability of getting 12 is 1/10. Or we might get the value 4, and the probability of
getting a 4 is 3/10. If we randomly sample a second value from among all 10 values,
we might again get 12, or we might get 9 or any of the 10 values from our original
sample. If we randomly sample n observations in this manner, we get what is called a
bootstrap sample of size n. In our example we might get

2, 9, 16, 2, 4, 12, 4, 29, 16, 19.

The mean of this bootstrap sample is X̄∗ = 11.3. This is in contrast to the sample
mean of our original observations, which is X̄ = 10. If we were to obtain a second
bootstrap sample, the mean of these bootstrap values will typically differ from the
first bootstrap sample mean; it might be X̄∗ = 9.6.

Now imagine that we repeat this process B times, yielding B bootstrap sample
means. If B is reasonably large, we get a collection of bootstrap sample means that
yields an approximation of the sampling distribution of the sample mean. As an
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FIGURE 7.3 The solid line is a bootstrap approximation of the sampling distribution
of X̄ based on 25 values generated from a normal curve. The dashed line shows the exact
sampling distribution of X̄ under random sampling.

illustration, 25 observations were randomly sampled from a standard normal distribu-
tion and then 1000 bootstrap samples were generated in the manner just described.
For each of these 1000 bootstrap samples, the sample mean was computed; a plot
of these bootstrap means is shown in Figure 7.3. Also shown is the exact sampling
distribution of X̄. In this particular case, the middle 95% of the 1000 bootstrap
means extend from −.32 to .41, and this interval contains 0. That is, (−.32, .41) is an
approximate .95 confidence interval for µ and it happens to contain the population
mean. This is an example of what is called a percentile bootstrap confidence interval, because
the strategy is to estimate percentiles of the sampling distribution. However, for the
situation at hand, the actual probability that the bootstrap confidence interval will
contain µ is less than .95. And for nonnormal distributions this method for computing
a confidence interval for µ can be quite unsatisfactory. On the positive side, there
are some nonnormal distributions for which the resulting confidence interval is more
accurate than Student’s T method given in Chapters 4 and 5. So progress has been
made, but more needs to be done.

A more general and more formal description of the percentile bootstrap method will
be helpful. Let X1, . . . ,Xn represent a random sample of observations, and let X∗

1 , . . . ,X∗
n

represent a bootstrap sample of size n that is obtained by randomly sampling, with
replacement, n values from X1, . . . ,Xn. The sample mean of this bootstrap sample
is just

X̄∗ = 1
n

∑
X∗

i .

Now suppose we repeat the process of generating a bootstrap sample mean B times,
and we label these sample means X̄∗

1 , . . . ,X̄∗
B. Then an approximate 1 − α confidence
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interval for µ is (
X̄∗

(�+1), X̄
∗
(u)

)
, (7.1)

where X̄∗
(1) ≤ · · · ≤ X̄∗

(B) are the B bootstrap means written in ascending order,
� = αB/2, rounded to the nearest integer, and u = B − �. So if B = 20 and
1 − α = .8, � is 2 and u is 18. For the special case α = .05, � = .025B (still rounding
to the nearest integer), and X̄∗

(�+1) and X̄∗
(u) estimate the .025 and .975 quantiles of the

distribution of X̄, respectively. In general, X̄∗
(�+1) and X̄∗

(u) contain the middle (1 −α)
percent of the B bootstrap sample means.

One final point might help before ending this section. An attempt has been made
to provide some intuitive sense of how the percentile bootstrap is applied. But from
a theoretical point of view, more needs to be done to justify this technique. Here
it is merely noted that a formal justification has been derived (e.g., Hall, 1988a,
1988b; Liu and Singh, 1997). Although complete theoretical details cannot be given
here, a crude description of the theoretical underpinnings might help. To this end,
imagine you want to test the hypothesis H0 : µ = 12 and that the null hypothesis is
true. When you generate a bootstrap sample, there will be some probability that the
bootstrap sample mean will be less than 12. For convenience, label this probability p∗.
That is, p∗ = P(X̄∗ < 12). Of course, p∗ is not known, but it can be estimated with
p̂∗, the proportion of the B bootstrap sample means that is less than 12. Note that
associated with every random sample is some p∗ value. That is, repeating a study
infinitely many times will produce infinitely many p∗ values. With a sufficiently large
sample size, p∗ will have a uniform distribution when the null hypothesis is true
and in fact is like a significance level or p-value. (Under random sampling, if the
null hypothesis is true, the significance level of Student’s T test also converges to
a uniform distribution as the sample size increases.) Moreover, with B sufficiently
large, p̂∗ will provide a reasonably accurate estimate of p∗, and 2p̂∗ is the estimated
significance level (or p-value) when testing a two-sided hypothesis. This also leads to
the confidence interval given by Equation (7.1).

7.1.1 A Bootstrap Estimate of Standard Errors

Situations arise where expressions for the standard error of some estimator is not
known or it takes on a rather complicated form. Examples are M-estimators and
MOM. So if it is desired to estimate their standard errors, it would be convenient to
have a relatively simple method for accomplishing this goal. The percentile bootstrap
method, just described, is one way of tackling this problem.

Let µ̂ be any measure of location and let µ̂∗ be its value based on a bootstrap
sample. Let µ̂∗

b (b = 1, . . . ,B) be B bootstrap estimates of the measure of location.
Then an estimate of the squared standard error of µ̂ is

S2 = 1
B − 1

B∑
b=1

(µ̂∗
b − µ̄∗)2,

where µ̄∗ = ∑B
b=1 µ̂∗

b /B.
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7.1.2 S-PLUS Function bootse

The S-PLUS function

bootse(x,nboot=1000,est=median)

computes S, the bootstrap estimate of the standard error of the measure of location
specified by the argument est. By default, the median is used, and the argument nboot
corresponds to B, which defaults to 1000.

7.2 The Bootstrap-t Interval

This section describes what is called the bootstrap-t (or the percentile-t) method.
The basic idea is that if we knew the distribution of

T = X̄ − µ

s/
√

n
, (7.2)

a confidence interval for the population mean could be computed. As explained in
Chapter 4, the conventional strategy is to assume normality or to assume that the
sample size is sufficiently large, in which case T has a Student’s T distribution. But
we have already seen that confidence intervals and control over the probability of
a Type I error can be unsatisfactory with n = 160 when sampling from a skewed,
light-tailed distribution. And sample sizes greater than 300 can be required when
sampling from a skewed, heavy-tailed distribution instead. A better approximation of
the distribution of T is needed.

The bootstrap strategy for estimating the distribution of T begins in the same
manner used in the percentile method: Obtain a bootstrap sample of size n. As
in the previous section, we let X1, . . . ,Xn represent the original observations and
X∗

1 , . . . ,X∗
n represent a bootstrap sample of size n that is obtained by randomly sam-

pling, with replacement, n values from X1, . . . ,Xn. Let X̄∗ and s∗ be the mean and
standard deviation based on this bootstrap sample. That is,

X̄∗ = 1
n

∑
X∗

i

and

s∗ =
√

1
n − 1

∑
(X∗

i − X̄∗)2.

Also let

T∗ = X̄∗ − X̄
s∗/

√
n

. (7.3)

Notice that when obtaining a bootstrap sample, we know the mean of the distri-
bution from which the bootstrap sample was obtained. It is X̄. So in the bootstrap
world, X̄ plays the role of µ, and X̄∗ plays the role of X̄.

If we repeat the foregoing process B times, yielding B T∗ values, we obtain an
approximation of the sampling distribution of T, and in particular we have an estimate
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of its .025 and .975 quantiles. The estimate of these quantiles is based on the middle
95% of the T∗ values. In more formal terms, if we let T∗

(1) ≤ T∗
(2) ≤ · · · ≤ T∗

(B) be
the B bootstrap T∗ values written in ascending order, and we let � = .025B, rounded
to the nearest integer, and u = B − �, an estimate of the .025 and .975 quantiles of
the distribution of T is T∗

(�+1) and T∗
(u). The resulting .95 confidence interval for µ is

(
X̄ − T∗

(u)
s√
n
, X̄ − T∗

(�+1)
s√
n

)
. (7.4)

(In this last equation, T∗
(�+1) is negative, which is why it is subtracted, not added,

from X̄. Also, it might seem that T∗
(u) should be used to compute the upper end of

the confidence interval, not the lower end, but it can be shown that this is not the
case.)

HYPOTHES IS TESTING. To test H0 : µ = µ0, compute

T = X̄ − µ0

s/
√

n

and reject if

T ≤ T∗
(�+1),

or if

T ≥ T∗
(u).

EXAMPLE. Forty observations were generated from a standard normal
distribution, and then the bootstrap-t method was used to approximate the
distribution of T with B = 1000. A plot of the 1000 bootstrap T∗ values is
shown in Figure 7.4. The smooth symmetric curve is the correct distribution
(a Student’s T distribution with ν = 39). In this particular case, the bootstrap
estimate of the distribution of T is fairly accurate. The bootstrap estimates of
the .025 and .975 quantiles are −T∗

(u) = −2.059 and −T∗
(�) = 2.116. The

correct answers are −2.022 and 2.022, respectively. ■

Both theoretical and simulation studies indicate that generally, the bootstrap-t
performs better than the percentile bootstrap or Student’s T when computing a
confidence interval or testing some hypothesis about µ. There are exceptions, such
as when sampling from a normal distribution, but to avoid poor probability coverage,
the bootstrap-t method is preferable to Student’s T or the percentile bootstrap.
(However, when working with robust measures of location, we will see that typically
the percentile bootstrap is preferable to the bootstrap-t.)

From a theoretical point of view, the improvements achieved by the bootstrap-t
method over Student’s T are not surprising. To roughly explain why, note that when
computing a 1 − α confidence interval with Student’s T, there will be some dis-
crepancy between the actual probability coverage and the value for 1 − α that you
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FIGURE 7.4 A plot of 1000 bootstrap T∗ values. These T∗ values are attempting
to approximate the smooth, symmetric curve.

have picked. When the sample size is large, mathematicians are able to characterize the
rate at which this discrepancy goes to zero; it is 1/

√
n. When using the bootstrap-t

interval instead, the rate this discrepancy goes to zero is now 1/n. The discrepancy
goes to zero faster using the bootstrap-t, suggesting that it will have better probability
coverage and better control over the probability of a Type I error. This mathematical
result is encouraging, but the theoretical tools being used tell us only what happens
when sample sizes are large. There are known situations where these tools are highly
misleading when sample sizes are small — say, less than 150 — but simulation studies
aimed at assessing performance when sample sizes are small again indicate that the
bootstrap-t is preferable to the percentile bootstrap or Student’s T (e.g., Westfall &
Young, 1993).

But despite the theoretical appeal of the bootstrap-t method when trying to find
an accurate confidence interval for the mean, and even though it improves upon
Student’s T in certain situations, the method can be unsatisfactory. For example,
if we sample 20 observations from the mixed normal shown in Figure 2.8, and we
compute a .95 bootstrap-t confidence interval with B = 1000, the actual probability
coverage is only .9. Put another way, if we reject H0 : µ = µ0 if the .95 bootstrap-t
confidence interval does not contain µ0, the actual probability of a Type I error
will not be .05 as intended, but close to .1. Theory tells us that as both n and B
get large, if we compute a 1 − α confidence interval with the bootstrap-t method,
the actual probability coverage will converge to 1 − α. For the situation at hand,
simply increasing B, with n fixed, does not improve matters very much. Increasing
n to 100, the actual probability of a Type I error (still testing at the .05 level) is .09.
The seriousness of a Type I error will vary from one situation to the next, but some
authorities would argue that when testing some hypothesis with α = .05, usually
the actual probability of a Type I error should not exceed .075 and should not drop
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below .025 (e.g., Bradley, 1978). One argument for being dissatisfied with an actual
Type I error probability of .075 is that if a researcher believes that a Type I error
probability of .075 is acceptable, she would have set α = .075 in the first place to
achieve higher power.

If we sample observations from a skewed heavy-tailed distribution, such as the
one shown in Figure 5.6, and then we apply the bootstrap-t method at the α = .05
level with n = 20, the actual probability of a Type I error is .198. This is not much
better than using Student’s T, where the actual Type I error probability is .202.
Increasing n to 100 it drops to .168 using the bootstrap-t method. Student’s T is
even less satisfactory: The actual Type I error probability drops to only .190. So both
methods are improving as the sample size gets large, but at a rather slow rate. Even
with n = 300 the actual Type I error probability remains above .15 when using the
bootstrap-t, and it is worse using Student’s T.

We saw in Chapter 5 that Student’s T is biased: When testing H0 : µ = µ0,
the probability of rejecting is not minimized when µ = µ0. (In practical terms, the
probability of rejecting might be higher when H0 is true versus certain situations where
it is false.) The bootstrap-t method reduces this problem but does not eliminate it.

Chapter 5 pointed out that arbitrarily small departures from normality can destroy
power when using Student’s T to make inferences about the population mean.
Switching to the bootstrap-t method, or any other bootstrap method, does not
address this problem.

7.2.1 Symmetric Confidence Intervals

A variation of the bootstrap-t method should be mentioned that can be used when
testing a two-sided hypothesis only. Rather than use T∗ as defined by Equation (7.3),
use

T∗ = |X̄∗ − X̄|
s∗/

√
n

, (7.5)

and reject H0 : µ = µ0 if |T| ≥ T∗
(c), where c = (1 − α)B rounded to the nearest

integer and again T∗
(1) ≤ · · · ≤ T∗

(B) are the B bootstrap T∗ values written in ascen-
ding order. An approximate 1 − α confidence interval for µ is now given by

X̄ ± T∗
(c)

s√
n
. (7.6)

This is called a symmetric two-sided confidence interval, meaning that the same quantity
(T∗

(c)s/
√

n) is added and subtracted from the mean when computing a confidence
interval. In contrast is the confidence interval given by Equation (7.4), which is
called an equal-tailed confidence interval. With large sample sizes, the symmetric two-
sided confidence interval enjoys some theoretical advantages over the equal-tailed
confidence interval (Hall, 1988a, 1988b). The main point here is that when sample
sizes are small, probability coverage and control over the probability of a Type I error
can again be unsatisfactory. In some cases the actual probability coverage of these
two methods differs very little, but exceptions arise. For example, when sampling
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from the mixed normal (n = 20) and testing at the .05 level, the actual Type I error
probability using the symmetric confidence interval [given by Equation (7.6)] has
probability coverage .014, compared to .10 when using the equal-tailed method [given
by equation (7.4)]. So in this particular case, the symmetric confidence interval does a
better job of avoiding a Type I error that is substantially higher than the nominal level.
But there are situations where the symmetric confidence interval is less satisfactory
than the equal-tailed method. Moreover, even when the equal-tailed method has a
Type I error probability substantially higher than the nominal α level, switching to
the symmetric confidence interval can make matters worse. In practical terms, given
some data, it is difficult knowing which of these two methods should be preferred.
With a large sample size, currently it seems that it makes little practical difference.

7.3 A Modified Percentile Method for Least Squares
Regression and Pearson’s Correlation

Both the percentile and bootstrap-t methods have been considered when computing
a .95 confidence interval for the slope of a least squares regression line — and both
have been found to be unsatisfactory when sample sizes are small or even moderately
large. For example, there are known situations where the percentile method requires
n = 250 to get reasonably accurate probability coverage. However, in a comparison
of several methods, Wilcox (1996b) found a slight modification of the percentile
method that performs reasonably well over a relatively broad class of nonnormal
distributions, even when n = 20. Moreover, unlike the conventional method for
computing a confidence interval for the slope, the method performs well when there
is heteroscedasticity.

To begin, we first note that in regression, two general methods have been con-
sidered for generating a bootstrap sample. The first is based on resampling values
from the residuals, but no details are given because the method deals poorly with
heteroscedasticity (e.g., Wu, 1986). The second method is much more flexible (for
general reasons detailed by Efron and Tibshirani, 1993, pp. 113–115). It allows het-
eroscedasticity, so we focus on this method here. In particular, we obtain a bootstrap
sample simply by resampling, with replacement, n pairs of values from the original n pairs
of values used to compute the least squares estimate of the slope and intercept. In
symbols, if we observe (X1,Y1), . . . ,(Xn,Yn), a bootstrap sample is obtained by resam-
pling n pairs of these points, with each pair of points having probability 1/n of being
resampled. If, for example, we observe

(6, 2), (12, 22), (10, 18), (18, 24), (16, 29),

a bootstrap sample might be

(10, 18), (16, 29), (10, 18), (6, 2), (6, 2).

That is, there are n = 5 pairs of points, so with each resample there is a 1/5 probability
that the first pair of points selected will be (6, 2), and this is true for the other four pairs
of values as well. A common notation for a bootstrap sample obtained in this manner is
(X∗

1 , Y∗
1 ), . . . ,(X∗

n , Y∗
n ). In our illustration, (X∗

1 ,Y∗
1 ) = (10, 18) and (X∗

2 , Y∗
2 ) = (16, 29).
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The least squares estimate of the slope and intercept based on this bootstrap sample
is represented by b∗1 and b∗0, respectively.

The basic percentile bootstrap method described in Section 7.1 extends to the
situation at hand in a simple manner. To compute a .95 confidence interval for the
slope, first repeat the process of generating a bootstrap sample of size n B times,
yielding B bootstrap estimates of the slope, which we label b∗11, . . . , b∗1B. Then an
approximate .95 confidence interval for the slope is given by the middle 95% of
these bootstrap estimates. In symbols, we write these B bootstrap estimates of the
slope in ascending order as b∗1(1) ≤ b∗1(2) ≤ . . . ≤ b∗1(B). Letting � = .025B and
setting u = B − � then rounding � and u to the nearest integer, an approximate .95
confidence interval for the slope is(

b∗1(�+1), b
∗
1(u)

)
.

Although the probability coverage of the confidence interval just given can differ
substantially from .95 when n is less than 250, it has a property of considerable prac-
tical value: Given n, the actual probability coverage is fairly stable over a relatively
wide range of distributions, even when there is a fairly large degree of heteroscedas-
ticity and the sample size is small. This suggests a method for getting a reasonably
accurate confidence interval: Adjust the confidence interval so that the actual prob-
ability coverage is close to .95 when sampling from a normal distribution and there
is homoscedasticity. Then use this adjusted confidence interval for nonnormal dis-
tributions or when there is heteroscedasticity. So we adjust the percentile bootstrap
method when computing a .95 confidence interval, based on the least squares regres-
sion estimator, in the following manner. Take B = 599, and for each bootstrap
sample compute the least squares estimate of the slope. Next, put these 599 values
in ascending order yielding b∗1(1) ≤ · · · ≤ b∗1(599). The .95 confidence interval is

(
b∗1(a), b∗1(c)

)
, (7.7)

where for n < 40, a = 7 and c = 593; for 40 ≤ n < 80, a = 8 and c = 592; for
80 ≤ n < 180, a = 11 and c = 588; for 180 ≤ n < 250, a = 14 and c = 585;
while for n ≥ 250, a = 15 and c = 584. Said another way, these choices for a and
c stem from Gosset’s strategy for dealing with small sample sizes: Assume normality
for a given sample size determine the (critical) value so that the probability of a Type
I error is α, and then hope that these values continue to give good results under
nonnormality. This strategy performs relatively well here (Wilcox, 1996b), but it
does not perform very well for other problems, such as when computing a confidence
interval for the mean. Confidence intervals based on Equation (7.7) will be called the
modified percentile bootstrap method.

HYPOTHES IS TESTING. Reject H0 : β1 = 0 if the confidence interval for the slope,
given by Equation (7.7), does not contain zero.

A confidence interval for the intercept can be computed in a similar manner. You
simply replace b1, the least squares estimate of the slope, with b0, the estimate
of the intercept in the description of the modified bootstrap method just given.
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Although situations arise where we get more accurate probability coverage than the
conventional method covered in Chapter 6, practical problems still occur. That is, we
get accurate probability coverage when computing a confidence interval for the slope
under a relatively broad range of situations, but the modified percentile bootstrap
method is less successful when dealing with the intercept. How to improve upon the
modified bootstrap method when dealing with the intercept remains unknown.

There are two practical points to keep in mind when comparing the bootstrap confi-
dence interval for the slope just described to the conventional method in Chapter 6.
First, often the bootstrap method yields a longer confidence interval because its
probability coverage is generally much closer to the nominal .95 level — the actual
probability coverage of the conventional method is often much smaller than .95. In
some cases the actual probability coverage drops below .5! That is, the conventional
method often gives a shorter confidence interval because it is not nearly as accurate as
the modified percentile bootstrap method. Second, despite having longer confidence
intervals, situations arise where the bootstrap method rejects H0 : β1 = 0 and the
conventional method does not.

EXAMPLE. Using the aggression data in Table 6.3, it was already illustrated
that the hypothesis H0 : β1 = 0 is not rejected with α = .05 using the conven-
tional Student’s T test given by Equation (6.10). Using the modified percentile
bootstrap method, the .95 confidence interval for the slope is (−0.105, −0.002),
this interval does not contain zero, so you reject. The .95 confidence interval
based on Student’s T [using Equation (6.8)] is (−0.08, 0.0002). ■

EXAMPLE. For the selling price of homes in Table 6.4, the .95 confidence
interval using the bootstrap method is (.166, .265) versus (.180, .250) using
Student’s T. Student’s T gives a shorter confidence interval, but it might be
substantially less accurate because it is sensitive to violations of the assumptions
of normality and homoscedasticity. ■

7.3.1 S-PLUS Function lsfitci

The S-PLUS function

lsfitci(x,y)

computes a modified .95 percentile bootstrap confidence interval for the slope and
intercept of a least squares regression line. Here x is a vector of predictor values and
y is a corresponding vector of outcome values.

7.3.2 Testing for Zero Correlation

The modified percentile bootstrap method just described performs relatively well
when the goal is to test the hypothesis of a zero correlation (Wilcox & Muska, 2001).
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You proceed exactly as already described in this section, except for every bootstrap
sample you compute Pearson’s correlation r rather than the least squares estimate of
the slope. So now we have B bootstrap values for r, which, when written in ascending
order, we label r∗(1) ≤ · · · ≤ r∗(B). Then a .95 confidence interval for ρ is(

r(a)∗, r(c)∗
)

,

where again for n < 40, a = 7 and c = 593; for 40 ≤ n < 80, a = 8 and c = 592;
for 80 ≤ n < 180, a = 11 and c = 588; for 180 ≤ n < 250, a = 14 and c = 585;
while for n ≥ 250, a = 15 and c = 584. As usual, if this interval does not contain
zero, reject H0 : ρ = 0.

We saw in Chapter 6 that heteroscedasticity causes Student’s T test of H0 : ρ = 0 to
have undesirable properties. All indications are that the modified percentile bootstrap
eliminates these problems. When ρ �= 0, the actual probability coverage remains
fairly close to the .95 level provided ρ is not too large. But if, for example, ρ = .8,
the actual probability coverage of the modified percentile bootstrap method can be
unsatisfactory in some situations (Wilcox & Muska, 2001). There is no known method
for correcting this problem.

7.3.3 S-PLUS Function corb

The S-PLUS function

corb(x,y)

computes a .95 confidence interval for ρ using the modified percentile bootstrap
method. Again, x and y are S-PLUS variables containing vectors of observations.

EXAMPLE. For the aggression data in Table 6.3, Student’s T test fails to
reject the hypothesis that the correlation is zero. Using the modified percentile
bootstrap method instead, the S-PLUS function corb returns a .95 confidence
interval of (−0.54, −0.01). So now we reject H0 : ρ = 0 (because the confidence
interval does not contain zero), and we conclude that these two variables are
dependent. ■

7.4 More About the Population Mean

For many situations encountered in statistics, it is now possible to compute reasonably
accurate confidence intervals even under fairly extreme departures from standard
assumptions. But making accurate inferences about the population mean remains one
of the more difficult problems. In terms of avoiding Type I errors greater than the
nominal level, Student’s T is satisfactory when sampling from a perfectly symmetric
distribution. But for skewed distributions, it can be quite unsatisfactory, even with
a sample size of 300. Yet another strategy is to use the modified bootstrap method
introduced in Section 7.3. To provide some sense of how the modified bootstrap



220 Chapter 7 ■ Bas ic Bootstrap Methods

TABLE 7.1 Actual Type I Error Probabilities for Four Methods
Based on the Mean, α = .05

Method

Dist. BT SB MP T

n = 20 N .054 .051 .041 .050

LN .078 .093 .096 .140

MN .100 .014 .050 .022

SH .198 .171 .190 .202

n = 100 N .048 .038 .049 .050

LN .058 .058 .063 .072

MN .092 .018 .054 .041

SH .168 .173 .177 .190

N = normal; LN = lognormal; MN = mixed normal; SH = skewed,
heavy-tailed; BT = equal-tailed, bootstrap-t; SB = symmetric bootstrap-t;
MP = modified percentile bootstrap; T = Student’s T.

performs, Table 7.1 shows the actual probability of a Type I error when testing
H0 : µ = µ0 with α = .05 and n = 20 and 100. In Table 7.1, BT indicates the equal-
tailed bootstrap-t method [given by Equation (7.4)], SB is the symmetric bootstrap-t
method [given by Equation (7.6)], MP is the modified bootstrap method described in
Section 7.3 in conjunction with least squares regression, and T indicates Student’s T.
The distributions considered here are normal (N), lognormal (LN), which is shown in
Figure 7.1 and represents a distribution that is skewed with relatively light tails, mixed
normal (MN), and a skewed, heavy-tailed distribution (SH), which is shown in Figure
5.6. So, for example, when sampling from a lognormal distribution and testing at the
.05 level with n = 20, the actual probability of a Type I error with Student’s T is .14.

Notice that for distribution LN, the equal-tailed bootstrap-t method is substantially
better than Student’s T; this has been one of the reasons the equal-tailed bootstrap-t
method has been recommended. In this particular case, the equal-tailed bootstrap-t
also beats the symmetric bootstrap-t as well as the modified percentile method, which
is more accurate than the percentile method described in Section 7.1. However, for
the mixed normal, the equal-tailed bootstrap-t method is the least satisfactory. In this
particular case, if we switch to the symmetric bootstrap-t method, the Type I error
probability is .014 with n = 20 and .018 with n = 100. But when sampling from a
lognormal distribution, the actual Type I error probability is .093, and with n = 100
there is little difference between the two bootstrap-t methods for this special case.
For the mixed normal, the symmetric bootstrap-t has an actual Type I error probability
well below the nominal .05 level, suggesting that in this particular case its power might
be low relative to the modified percentile bootstrap method. Unfortunately, all of
these methods are highly unsatisfactory when sampling from a skewed, heavy-tailed
distribution, and the situation improves very slowly as the sample size increases. So
we see that in situations where Student’s T is unsatisfactory in terms of Type I errors,
we can get improved results with some type of bootstrap method. But the choice
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of which bootstrap method to use depends on the situation, and all four methods
considered here can be unsatisfactory, even with n = 100, if sampling happens to
be from a skewed, heavy-tailed distribution. One could check whether a distribution
appears to be skewed and heavy-tailed, but an effective diagnostic tool that detects
situations where these four methods fail to control the probability of a Type I error
has not been established.

The lognormal distribution is a relatively light-tailed distribution. We have just seen
that as we move toward a skewed distribution, where outliers are more common, all
four methods in Table 7.1 begin to break down. Sutton (1993) proposed a bootstrap
method that improves upon a method for handling skewed distributions proposed
by Johnson (1978), but Sutton’s method deals with skewed distributions for a certain
special case only. In particular, if it is known that a distribution is skewed to the right
and the goal is to test H0 : µ ≤ µ0, the method can be employed, but the method
is not designed to handle H0 : µ ≥ µ0. If the distribution is skewed to the left, now
you can test H0 : µ ≥ µ0 but not the other. More recently, Chen (1995) proposed a
modification that avoids the bootstrap, but it too is based on the same restrictions.
That is, if a distribution is skewed to the right, you can test H0 : µ ≤ µ0, but not
H0 : µ ≥ µ0. Chen’s method appears to perform well, provided the distribution is not
too heavy-tailed. If the distribution is heavy-tailed, its control over the probability
of a Type I error becomes unsatisfactory. Currently, no method has been found that
provides accurate inferences about µ when sampling from a skewed, heavy-tailed
distribution unless the sample size is very large. The only certainty is that in some
situations, even n = 300 is not large enough.

7.5 Inferences About a Trimmed Mean

The Tukey–McLaughlin method for making inferences about the trimmed mean
(covered in Sections 4.9 and 5.6) reduces the problems associated with Student’s T.
Generally, as we increase the amount of trimming, the problem of low power under
very small departures from normality is reduced, and we get improved control over
the probability of a Type I error. But problems with controlling the Type I error
probability, or probability coverage when computing a confidence interval, persist.
Combining trimmed means with an appropriate bootstrap method reduces these
problems considerably. In fact, with 20% trimming, good control over the probability
of a Type I error can be achieved under fairly extreme departures from normality, even
with n = 11.

7.5.1 Using the Percentile Method

The percentile bootstrap is applied using a simple modification of the method
described in Section 7.1: Simply replace the sample mean by the trimmed mean.
So if we generate a bootstrap sample of size n and compute the trimmed mean,
X̄∗

t , and if we repeat this B times, yielding X̄∗
t1, . . . ,X̄∗

tB, then an approximate 1 − α

confidence interval for the population trimmed mean is(
X̄∗

t(�+1), X̄
∗
t(u)

)
, (7.8)
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where X̄∗
t(1) ≤ · · · ≤ X̄∗

t(B) are the B bootstrap trimmed means written in ascending
order, � = αB/2, rounded to the nearest integer, and u = B − �. As usual, reject
H0 : µt = µ0 if the confidence interval for the trimmed mean [Equation (7.8) in this
particular case] does not contain the hypothesized value, µ0.

The performance of the percentile bootstrap improves in terms of Type I errors
and probability coverage as we increase the amount of trimming and becomes fairly
accurate with at least 20% trimming. Moreover, with 20% trimming, the modified
percentile bootstrap considered in Section 7.3 is no longer needed and performs in
an unsatisfactory manner. But the minimum amount of trimming needed to jus-
tify the percentile bootstrap is not known. The only rule currently available is
that with a minimum of 20% trimming, accurate results can be obtained even with
very small sample sizes. So in particular, the percentile bootstrap method performs
well when working with the median. Perhaps the percentile bootstrap continues to
perform well with 15% trimming, or even 10% trimming, but this has not been
established.

7.5.2 Singh’s Modification

Imagine 10 observations with two extreme outliers. For example, suppose we observe

2, 3, 6, 3, 9, 12, 15, 7, 200, 300.

With 20% trimming, the two outliers have no influence on X̄t. Notice, however,
that when we generate a bootstrap sample, by chance we might get three outliers.
That is, the number of outliers in a bootstrap sample might exceed the finite-sample
breakdown point of the trimmed mean even though this is not the case for the
original observations. The result is that the bootstrap trimmed mean becomes inflated,
and this can lead to a relatively long confidence interval when using the percentile
bootstrap method.

Singh (1998) showed that from a theoretical point of view, we can address this
problem by first Winsorizing the data before we take bootstrap samples. The only
restriction imposed by theory is that the amount of Winsorizing must be less than or
equal to the amount of trimming. So in our example, if we plan to use a 20% trimmed
mean, we are allowed to Winsorize our values by 20%, in which case the 10 values in
our example become

6, 6, 6, 3, 9, 12, 15, 7, 15, 15.

Now we generate bootstrap samples as before, but we resample with replacement from
the Winsorized values rather than from the original observations. After generating
B bootstrap trimmed means, we apply the percentile bootstrap method in the usual
manner. For example, the middle 95% of the bootstrap trimmed means provide a .95
confidence interval.

Unfortunately, if we Winsorize as much as we trim, it seems that probability cov-
erage based on a percentile bootstrap method can be unsatisfactory, at least when
the sample size is small (Wilcox, 2001d). However, if when we use 20% trimming we
Winsorize by 10%, good probability coverage is obtained.
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7.5.3 Using the Bootstrap-t Method

The bootstrap-t method can be applied with a trimmed mean in the following manner.
Generate a bootstrap sample of size n and compute the trimmed mean and Winsorized
standard deviation, which we label X̄∗

t and s∗w, respectively. Next, compute

T∗
t = (1 − 2γ )(X̄∗

t − X̄t)
s∗w/

√
n

, (7.9)

where, as usual, γ is the amount of trimming, which we usually take to be .2. Repeating
this process B times yields B T∗

t values. Writing these B values in ascending order we
get T∗

t(1) ≤ T∗
t(2) ≤ · · · ≤ T∗

t(B). Letting � = .025B, rounded to the nearest integer,
and u = B − �, an estimate of the .025 and .975 quantiles of the distribution of Tt is
T∗

(�+1) and T∗
(u). The resulting .95 confidence interval for µt (the population trimmed

mean) is
(

X̄t − T∗
t(u)

sw
(1 − 2γ )

√
n
, X̄t − T∗

t(�+1)
sw

(1 − 2γ )
√

n

)
. (7.10)

HYPOTHES IS TESTING. As for testing H0 : µt = µ0, compute

Tt = (1 − 2γ )(X̄t − µ0)
sw/

√
n

and reject if

Tt ≤ T∗
t(�+1),

or if

Tt ≥ T∗
t(u).

That is, we use the same method employed when making inferences about the mean,
except we replace the sample mean with the trimmed mean and we replace the sample
standard deviation s with sw/(1 − 2γ ).

The symmetric bootstrap-t method can be used as well when testing a two-sided
hypothesis. Now we use

T∗
t = |(1 − 2γ )(X̄∗

t − X̄t)|
s∗w/

√
n

. (7.11)

and reject H0 if |Tt| > T∗
t(c), where c = (1 − α)B rounded to the nearest integer. An

approximate 1 − α confidence interval for µt is

X̄t ± T∗
t(c)

sw
(1 − 2γ )

√
n
. (7.12)

Table 7.1 reported the actual probability of a Type I error when using means with
one of four methods. None of the methods was satisfactory for all four distributions
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TABLE 7.2 Actual Type I Error Probabilities Using 20%
Trimmed Means, α = .05

Method

Dist. BT SB P TM

n = 20 N .067 .052 .063 .042

LN .049 .050 .066 .068

MN .022 .019 .053 .015

SH .014 .018 .066 .020

N = normal; LN = lognormal; MN = mixed normal; SH = skewed,
heavy-tailed; BT = equal-tailed, bootstrap-t; SB = symmetric bootstrap-t;
P = percentile bootstrap; TM = Tukey–McLaughlin.

considered, even after increasing the sample size to 300. Table 7.2 shows the actual
probability of a Type I error when using 20% trimmed means instead. Notice that
the percentile bootstrap method is the most stable; the actual probability of a Type I
error ranges between .053 and .066. The other three methods do a reasonable job
of avoiding Type I error probabilities above the nominal .05 level. But they can have
actual Type I error probabilities well below the nominal level, which is an indication
that their power might be less than when using the percentile method instead. With
the caveat that no method is best in all situations, the percentile bootstrap with a
20% trimmed mean is a good candidate for general use.

In the previous subsection we noted that we can Winsorize our data before we
take bootstrap samples. Theory allows us to do the same when working with the
bootstrap-t method. But when sample sizes are small, probability coverage can be
poor. Apparently with a sufficiently large sample size this problem becomes negligible,
but just how large the sample size must be remains unknown.

7.5.4 S-PLUS Functions trimpb and trimcibt

The S-PLUS function

trimpb(x,tr=.2,alpha=.05,nboot=2000,WIN=F,win=.1)

(written for this book) computes a confidence interval for a trimmed mean using the
percentile bootstrap method. The argument tr indicates the amount of trimming and
defaults to .2 if not specified. As usual, alpha isα and defaults to .05. It appears that B =
500 suffices, in terms of achieving accurate probability coverage with 20% trimming.
But to be safe, B (nboot) defaults to 2000. (An argument for using B = 2000 can be
made along the lines used by Booth & Sarker, 1998.) The argument WIN indicates
whether the values should be Winsorized before bootstrap samples are taken. By
default WIN=F, for false, meaning that Winsorizing will not be done. If WIN=T,
the amount of Winsorizing is given by the argument win, which defaults to .1.

The S-PLUS function

trimcibt(x, tr = 0.2, alpha = 0.05, nboot = 599, side = F)
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computes a bootstrap-t confidence interval. The argument side indicates whether an
equal-tailed or a symmetric confidence interval is to be computed. As indicated, side
defaults to F, meaning that an equal-tailed confidence interval [given by Equation
(7.10)] will be computed. Using side=T results in a symmetric confidence interval
[given by Equation (7.12)].

EXAMPLE. Table 3.2 reported data on the desired number of sexual partners
among 105 college males. As previously indicated, these data are highly skewed,
with a relatively large number of outliers, and this can have a deleterious effect
on many methods for computing a confidence interval and testing hypotheses.
If we compute the Tukey–McLaughlin .95 confidence interval for the 20%
trimmed mean [using Equation (4.41)], we get (1.62, 3.75). Using the S-PLUS
function trimcibt with side=F yields an equal-tailed .95 confidence interval
of (1.28, 3.61). With side=T it is (1.51, 3.61). Using the percentile bootstrap
method, the S-PLUS function trimpb returns (1.86, 3.95). So in this particular
case, the lengths of the confidence intervals do not vary that much among the
methods used, but the intervals are centered around different values, which in
some cases might affect any conclusions made. ■

In summary, all indications are that the percentile bootstrap is more stable (with
at least 20% trimming) than the bootstrap-t method. That is, the actual Type I error
probability tends to be closer to the nominal level. And it has the added advantage
of more power, at least in some situations, compared to any other method we might
choose. However, subsequent chapters will describe situations where the bootstrap-t
method outperforms the percentile method. And there are additional situations where
the percentile bootstrap is best. So both methods are important to know.

7.6 Estimating Power When Testing Hypotheses About a
Trimmed Mean

As when working with means, if we test some hypothesis about a trimmed mean and
fail to reject, this might be because the null hypothesis is true, or perhaps power is
too low to detect a meaningful difference. If we can estimate how much power we
have based on the same data used to test some hypothesis, we are better able to
discern which reason accounts for a nonsignificant result. We saw in Section 5.4.3
how, given some data, power can be controlled using Stein’s method. A natural
strategy is to use some analog of this method when working with trimmed means, but
this approach has not been investigated as yet. There are several alternative methods
one might employ, but most have proven to be unsatisfactory when sample sizes are
small or even moderately large (Wilcox & Keselman, 2002). This section outlines
the method that currently performs best when estimating power. It is a special case
of another method covered in Chapter 8. So for brevity, we merely describe what the
method attempts to do and then provide some software for implementing it. Readers
interested in computational details can refer to Chapter 8.
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The method in this section is designed specifically for the case where the percentile
bootstrap method is used to test some hypothesis about a 20% trimmed mean with
α = .05. There are two goals: (1) Compute an (unbiased) estimate of power for
some given value of δ = µt − µ0, and (2) provide a conservative estimate of power
meaning a (one-sided) confidence interval for how much power we have. Roughly,
the method estimates the standard error of the trimmed mean and then, given δ,
provides an estimate of how much power we have. A possible concern, however,
is that this estimate might underestimate power. Based on data, we might estimate
power to be .7, but in reality it might be .5 or it might be as low as .4. So the method
also computes a (lower) .95 confidence interval for the actual amount of power using a
percentile bootstrap technique. Briefly, for every bootstrap sample, the standard error
of the trimmed mean is estimated, which yields an estimate of power corresponding
to whatever δ value is of interest. Repeating this process B times yields B estimates
of power, which, when put into ascending order, we label ξ̂(1) ≤ · · · ≤ ξ̂(B). Then
a conservative estimate of power is ξ̂(a), where a = .05B rounded to the nearest
integer. So if ξ̂(a) = .4, say, we estimate that with probability .95, power is at least .4.
If ξ̂(a) = .6, we estimate that with probability .95, power is at least .6.

7.6.1 S-PLUS Functions powt1est and powt1an

The S-PLUS function

powt1est(x, delta=0, ci=F, nboot=800)

returns an estimate of how much power there is for some value of δ. As usual, x now
represents any S-PLUS variable containing data. The argument ci defaults to F (for
false), meaning that no confidence interval for power is computed. If ci=T is used, a
percentile bootstrap is used to get a conservative estimate of power. As usual, nboot
indicates how many bootstrap samples are used. (That is, nboot corresponds to B.)

EXAMPLE. Consider the values

12, 20, 34, 45, 34, 36, 37, 50, 11, 32, 29.

Using the S-PLUS function trimpb, we get a .95 confidence interval for the
20% trimmed mean of (22.86, 38.71). So we would not reject H0 : µt = 32.
To gain perspective on why, we estimate how much power we have when δ =
µt − µ0 = 2. The S-PLUS command powt1est(x,2,T) returns

$est.power:
[1] 0.09033971

$ci:
[1] 0.06400682

meaning that the estimated power is only .09 and that with probability .95
power is at least .06. So power is estimated to be inadequate, suggesting that
H0 should not be accepted. (Using Stein’s method for means, we see that 368
observations are needed to get power equal to .8 with δ = 2.) ■
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The S-PLUS function

powt1an(x, ci = F, plotit = T, nboot = 800)

provides a power analysis without having to specify a value for δ. Rather, the function
chooses a range of δ values so that power will be between .05 and .9, approximately.
Then it estimates how much power there is for each δ value that it selects and plots the
results. That is, the function estimates the power curve associated with the percentile
bootstrap method of testing hypotheses with a 20% trimmed mean. If the argument
plotit is set to F (for false), no plot is generated; the function merely reports the δ

values it generates and the corresponding power. The function also reports a lower
estimate of power if ci=T is used. That is, with probability .95, power is at least as
high as this lower estimate.

EXAMPLE. Figure 7.5 shows the plot created by powt1an(x) using the data
from the last example. This plot indicates that power is reasonably high with
δ = 12, but for δ = 6 power is only about .3.

Figure 7.6 shows the plot generated by the command powt1an(x,ci=T). The
upper, solid line is the same as in Figure 7.5 and represents the estimated power.
The lower, dashed line indicates a conservative estimate of power. So we see that
for δ = 12, it is estimated that power exceeds .8, and we can be approximately
95% certain that power exceeds .4. That is, it appears that power is adequate for
δ = 12, but there is some possibility that it is not — perhaps power is adequate
only for δ values much greater than 12. ■
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FIGURE 7.5 Estimate of the power curve returned by the S-PLUS function powt1an
based on the data in Section 7.6.1.
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FIGURE 7.6 Same as Figure 7.5 but with lower confidence interval for power, indicated
by the dashed lines.

7.7 Inferences Based on MOM and M-Estimators

Currently it appears that the best method for making inferences about an M-estimator
of location is the percentile bootstrap technique. For very small sample sizes, prob-
ability coverage and control over the probability of a Type I error are a bit more
stable using a 20% trimmed mean, but with a sample size of at least 20 the per-
centile bootstrap appears to perform reasonably well with an M-estimator. So to
compute a confidence interval for µos, the measure of location being estimated by µ̂os
[the one-step M-estimator given by Equation (3.28)], generate bootstrap samples
as before until you have B values for µ̂os. As usual, put these B values in ascend-
ing order, yielding µ̂∗

os(1) ≤ · · · ≤ µ̂∗
os(B). Then a 1 − α confidence interval for

µos is (
µ̂∗

os(�+1), µ̂
∗
os(u)

)
(7.13)

where � = αB/2, rounded to the nearest integer, and u = B − �. For α = .05, all
indications are that in terms of probability coverage, B = 399 suffices and that using
B = 599 offers no practical advantage.

As for the MOM estimator, simply replace µ̂os with µ̂mom, which is given by
Equation (3.30). All indications are that confidence intervals based on MOM (with
B = 500) provide accurate probability coverage and good control over the prob-
ability of a Type I error, even in situations where control over the probability of a
Type I error using an M-estimator is unsatisfactory. In particular, currently it seems
that good results are obtained even with n = 11.
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HYPOTHES IS TESTING. Reject H0 : µos = µ0 if the bootstrap confidence interval
given by Equation (7.13) does not contain µ0. A similar strategy is used when the
one-step M-estimator is replaced by MOM.

7.7.1 S-PLUS Function mestci

The S-PLUS function

mestci(x,alpha=.05,nboot=399)

computes a confidence interval based on an M-estimator, where x is an S-PLUS
variable containing data, alpha is α, which defaults to .05, and nboot is B, the number
of bootstrap samples to be used, which defaults to 399. (This function contains two
additional arguments, the details of which can be found in Wilcox, 1997a, p. 85.)

7.7.2 S-PLUS Functions momci and onesampb

The S-PLUS function

momci(x,alpha=.05,nboot=500)

computes a confidence interval based on the measure of location MOM described in
Section 3.5.2. Unlike the S-PLUS function mestci, the default number of bootstrap
samples (nboot) is 500. The S-PLUS function

onesampb(x,est=mom,alpha=.05,nboot=500,. . .)

can also be used to make inferences based on MOM; but unlike momci, any other
measure of location or scale can be used through the argument est. For example, using
est=pbvar would compute a confidence interval for the percentage bend midvariance.

EXAMPLE. For 15 law schools, the undergraduate GPA of entering students,
in 1973, was

3.39 3.30 2.81 3.03 3.44 3.07 3.00 3.43 3.36 3.13 3.12 2.74 2.76 2.88 2.96.

The .95 confidence interval returned by mestci is (2.95, 3.28). So among all law
schools, it is estimated that the typical GPA of entering students is between 2.95
and 3.28. Using the MOM estimator instead (the S-PLUS function momci),
the .95 confidence interval is (2.88, 3.35). ■

7.8 Detecting Nonlinear Associations

A possible concern about any method for testing the hypothesis that Pearson’s cor-
relation (ρ) is zero is that it might routinely miss an association that is not linear.
The method described in this section, which allows heteroscedasticity, is one possible
way of dealing with this problem. The theoretical justification for the method stems
from Stute, Manteiga, and Quindimil (1998). Here, a very slight modification of their
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method is used that performs better in terms of Type I errors (in simulations) when
the sample size is small.

The basic idea is to test the hypothesis that the regression line between two
variables is both flat and straight. So the method is designed to be sensitive to any
curved association between two variables; in the event the regression line is straight,
the method is designed to detect situations where the slope differs from zero. Said
another way, in the context of the regression model in Section 6.2, the method can
be used to detect situations where the expected value of Y, given X, is not a constant.
That is, the mean of Y, given X, changes with X in some unspecified manner that may
be nonlinear. This is in contrast to standard regression methods, where it is assumed
that the mean of Y, given X, is given by some straight line: β1X + β0. Because the
method in this section is designed to be sensitive to a broader range of associations
than any test of H0 : ρ = 0, a natural speculation is that it is more likely to detect an
association, and experience suggests that this is indeed the case.

As in Section 7.3, let (X1, Y1), . . . ,(Xn, Yn) be a random sample of n pairs of points.
The test statistic is computed as follows. Consider the jth pair of points: (Xj, Yj). For
any j we might pick (1 ≤ j ≤ n), some of the X values will be less than or equal to Xj.
For these X values, compute the sum of the difference between the corresponding Y
values and Ȳ. We represent this sum, divided by the square root of the sample size,
by Rj. Said more formally, if we fix j and set Ii = 1 if Xi ≤ Xj, otherwise Ii = 0, then

Rj = 1√
n

∑
Ii(Yi − Ȳ)

= 1√
n

∑
Iiri,

(7.14)

where now

ri = Yi − Ȳ.

The test statistic is the maximum absolute value of all the Rj values. That is, the test
statistic is

D = max |Rj|, (7.15)

where max means that D is equal to the largest of the |Rj| values.
It is noted that the method just described is heteroscedastic. That is, unlike

Student’s T test of H0 : ρ = 0, this wild bootstrap method is not sensitive to changes
in the variation of Y (the conditional variance of Y given X) as X increases.

EXAMPLE. We illustrate the computation of D with the data in Table 7.3.
These data are from a study conducted about 200 years ago with the goal of
determining whether the earth bulges at the equator, as predicted by Newton, or
whether it bulges at the poles. The issue was addressed by measuring latitude at

Continued
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TABLE 7.3 Data on Meridian Arcs

Transformed Arc

Place latitude (X) length (Y) ri = Yi − Ȳ R

Quito 0.0000 56,751 −301.6 −134.88

Cape of Good Hope 0.2987 57,037 −15.6 −141.86

Rome 0.4648 56,979 −73.6 −174.77

Paris 0.5762 57,074 21.4 −165.20

Lapland 0.8386 57,422 369.4 0.00

EXAMPLE. (Continued ) various points on the earth and trying to determine
how latitude is related to a measure of arc length. To compute R1, we note that
X1 = 0.0 and there are no other X values less than or equal to 0.0, so

R1 = r1√
5

= −301.6√
5

= −134.88.

As for R2, X2 = 0.2987, there are two X values less than or equal to 0.2987
(namely, X1 and X2); the corresponding ri values are −301.6 and −15.6. So

R2 = 1√
5

( − 301.6 − 15.6) = −141.86.

The remaining R values are computed in a similar manner and are shown in the
last column of Table 7.3. The largest absolute value in this column is 174.77, so
D = 174.77. ■

To determine how large D must be to reject the null hypothesis, a so-called wild
bootstrap is used. (The other types of bootstrap methods already covered are known
to be theoretically unsound for the problem at hand.) Let

ri = Yi − Ȳ

be the ith residual corresponding to the regression line Ŷ = Ȳ. Generate n observa-
tions from a uniform distribution (which is shown in Figure 4.7) and label the results
U1, . . . ,Un. (This can be done in S-PLUS with the built-in function runif.) So each U
has a value between 0 and 1, and all values between 0 and 1 are equally likely. Next,
for every value of i (i = 1, . . . ,n) set

Vi = √
12(Ui − .5),

r∗i = riVi,

Y∗
i = Ȳ + r∗i .

Then based on the n pairs of points (X1, Y∗
1 ), . . . ,(Xn,Y∗

n ), compute the test statistic as
described in the previous paragraph and label it D∗. Repeat this process B times, and
label the resulting (bootstrap) test statistics D∗

1 , . . . ,D∗
B. Finally, put these B values in
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ascending order, which we label D∗
(1) ≤ · · · ≤ D∗

(B). Then the critical value is D∗
(u),

where u = (1 − α)B rounded to the nearest integer. That is, reject if

D ≥ D∗
(u).

There is a variation of the method that should be mentioned where the test statistic
D is replaced by

W = 1
n

(
R2

1 + · · · + R2
n
)

. (7.16)

The critical value is determined in a similar manner as before. First, generate a wild
bootstrap sample and compute W, yielding W∗. Repeating this B times, you reject if

W ≥ W∗
(u),

where again u = (1 − α)B rounded to the nearest integer, and W∗
(1) ≤ · · · ≤ W∗

(B)
are the B W∗ values written in ascending order. The test statistic D is called the
Kolmogorov–Smirnov test statistic, and W is called the Cramér–von Mises test statistic.
The choice between these two test statistics is not clear-cut. For the situation at
hand, currently it seems that there is little separating them in terms of controlling
Type I errors. But for situations where there are multiple predictors, as described in
Chapter 14, the Cramér–von Mises test statistic seems to have an advantage (Wilcox
& Muska, 2001).

The method just described can be used with Ȳ replaced by a trimmed mean, Ȳt. So
now ri = Yi − Ȳt and Y∗

i = Ȳt + r∗i . Otherwise the computations are exactly the same
as before. We have already seen that replacing the sample mean with a 20% trimmed
mean can make a substantial difference in power and control over the probability of a
Type I error. Here, however, all indications are that the improvement in Type I error
control is negligible. As for power, often it makes little difference whether a mean or
trimmed mean is used, but situations do arise where you reject with a mean but not
a trimmed mean, and the reverse happens as well.

By design, the method in this section is not sensitive to heteroscedasticity. That is,
if the regression line is horizontal and straight, the probability of a Type I error will be
approximately α, even when there is heteroscedasticity. In contrast, Student’s T test
of H0 : ρ = 0, covered in Section 6.5, is sensitive to heteroscedasticity. This would
seem to suggest that in some instances, Student’s T test might have more power,
but experience suggests that in practice the method in this section is more likely to
detect an association.

7.8.1 S-PLUS Function indt

The S-PLUS function

indt(x, y, tr = 0.2, nboot = 500, alpha = 0.05, flag = 1)

(written for this book) performs the test of independence just described. As usual,
x and y are S-PLUS variables containing data, tr indicates the amount of trimming,
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and nboot is B. The argument flag indicates which test statistic will be used:

• flag=1 means the Kolmogorov–Smirnov test statistic, D, is used.
• flag=2 means the Cramér–von Mises test statistic, W, is used.
• flag=3 both test statistics are computed.

EXAMPLE. For the aggression data in Table 6.3, Pearson’s correlation is
r = −0.286 and we fail to reject H0 : ρ = 0 at the α = .05 level. So we fail to
conclude that there is an association between marital aggression and recall-test
scores among children. (The significance level is .051, so we nearly reject.) The
output from indt(x,y,flag=3) is

$dstat:
[1] 8.002455

$wstat:
[1] 37.31641

$critd:
[1] 6.639198

$critw:
[1] 24.36772

So D = 8.002455, the critical value is 6.639198, and because D exceeds the
critical value, reject and conclude that marital aggression and recall-test scores
are dependent. Similarly, the Cramér–von Mises test statistic is W = 37.31641;
it exceeds the critical value 24.36772, so again we reject. So we have empirical
evidence that aggression in the home is associated with recall-test scores among
children living in the home, but the function indt tells us nothing about what
this association might be like. ■

7.9 Exercises

1. For the following 10 bootstrap sample means, what would be an appropriate
.8 confidence interval for the population mean?

7.6, 8.1, 9.6, 10.2, 10.7, 12.3, 13.4, 13.9, 14.6, 15.2.

2. Rats are subjected to a drug that might affect aggression. Suppose that for a
random sample of rats, measures of aggression are found to be

5, 12, 23, 24, 18, 9, 18, 11, 36, 15.

Verify that the equal-tailed .95 confidence interval for the mean returned by
the S-PLUS function trimcibt is (11.8, 25.9). Compare this confidence interval
to the confidence interval you got for Exercise 32 in Chapter 4.
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3. For the data in Exercise 2, verify that the .95 confidence interval for the mean
returned by the S-PLUS function trimpb is (12.3, 22.4).

4. Referring to the previous two Exercises, which confidence interval is more
likely to have probability coverage at least .95?

5. For the data in Exercise 2, verify that the equal-tailed .95 confidence interval
for the population 20% trimmed mean using trimcibt is (9.1, 25.7).

6. For the data in Exercise 2, verify that the .95 confidence interval for the
population 20% trimmed mean using trimpb is (11.2, 22.0).

7. Which of the two confidence intervals given in the last two exercises is likely
to have probability coverage closer to .95?

8. For the following observations, verify that the .95 confidence interval based on
a one-step M-estimator returned by the S-PLUS function mestci is (7, 21.8).

2, 4, 6, 7, 8, 9, 7, 10, 12, 15, 8, 9, 13, 19, 5, 2, 100, 200, 300, 400

9. For the data in the previous exercise, verify that the .95 confidence interval
for the 20% trimmed mean returned by trimpb is (7.25, 64). Why would you
expect this confidence interval to be substantially longer than the confidence
interval based on a one-step M-estimator?

10. Use trimpb on the data used in the previous two exercises, but this time
Winsorize the data first by setting the argument WIN to T. Verify that the .95
confidence interval for the trimmed mean is now (7.33, 57.7). Why do you
think this confidence interval is shorter than the confidence interval in the last
exercise?

11. Repeat the last exercise, only now Winsorize 20% by setting the argument win
to .2. Verify that the .95 confidence interval is now (7.67, 14). Why is this
confidence interval so much shorter than the confidence interval in the last
exercise?

12. For the confidence interval obtained in the last exercise, what practical problem
might have occurred regarding probability coverage?

13. For the data in Exercise 8, compute a .95 confidence interval for the median
using the S-PLUS function sint, described in Section 4.11.1. What does this
suggest about using a median versus a one-step M-estimator?

14. Exercise 22 in Chapter 6 reports that the .95 confidence interval for the slope of
the least squares regression line, based on the data in Table 6.6, is (−0.16, .12).
Using the S-PLUS function lsfitci, described in Section 7.3.1, verify that the .95
confidence interval based on the modified bootstrap method is (−0.27, 0.11).

15. Again using the data in Table 6.6, verify that you do not reject H0 : ρ = 0 using
the S-PLUS function corb.

16. Using the data in Table 6.6, verify that when using the method in Section 7.8
based on a mean (meaning that you set tr=0 when using the S-PLUS function
indt), both the Kolmogorov–Smirnov Cramér–von Mises test statistics reject
the hypothesis that these two variables are independent.

17. The previous exercise indicates that the variables in Table 6.6 are dependent,
but the results in Exercises 14 and 15 failed to detect any association. Describe
a possible reason for the discrepant results.

18. Create a scatterplot of the data in Table 6.6, and note that six points having X
values greater than 125 are visibly separated from the bulk of the observations.
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Now compute a .95 confidence interval for the slope of the least squares regres-
sion line with the six points having X values greater than 125 eliminated. The
resulting confidence interval is (−0.84, −0.17), so you reject the hypothesis
of a zero slope and conclude that the two variables are dependent. Comment
on this result in the context of factors that affect the magnitude of Pearson’s
correlation, which are described in Section 6.4.

19. Restricting the range as was done in the previous exercise, verify that the
S-PLUS function corb returns a .95 confidence interval of (−0.63, −0.19).
Compare this to the result in Exercise 15.

20. Using the data in Exercise 6 of Chapter 6, verify that the S-PLUS function lsfitci
returns a .95 confidence interval for the slope (when predicting cancer rates
given solar radiation) of (−0.049, −0.25). The conventional .95 confidence
interval based on Equation (6.8) is (−0.047, −0.24). What does this suggest
about the conventional method?

21. For Hubble’s data on the recession velocity of galaxies, shown in Table 6.1,
verify that the modified bootstrap method yields a .95 confidence interval of
(310.1, 630.1) for the slope.



8
COMPARING TWO
INDEPENDENT GROUPS

One of the most common goals in applied research is comparing two independent
variables or groups. For example if one group of individuals receives an experimental
drug for treating migraine headaches and a different, independent group of individuals
receives a placebo, and we measure the effectiveness of a drug using some standard
technique, how might we compare the outcomes corresponding to the two groups?
How does the reading ability of children who watch 30 hours or more of television
per week compare to children who watch 10 hours or less? How does the birth
weight of newborns among mothers who smoke compare to the birth weight among
mothers who do not smoke? In general terms, if we have two independent variables,
how might we compare these two measures?

In this book, attention is focused on four interrelated and overlapping methods
one might use to compare two independent groups or variables:

• Compare the groups using some measure of location, such as the mean, trimmed
mean, or median. In particular, we might test the hypothesis that the measures
of location are identical, or we might compute a confidence interval to get some
sense of how much they differ.

• Test the hypothesis that the two groups have identical distributions. Identical
distributions means that for any constant c we might pick, the probability that
a randomly sampled observation is less than c is the same for both groups.

• Determine the probability that a randomly sampled observation from the first
group will be less than a randomly sampled observation from the second. If the
groups do not differ, this probability will be .5.

• Compare variances or some other measure of scale.

Each approach has its advantages and disadvantages. Each provides a different and
useful perspective, and no single approach is optimal in all situations. A general goal
is to explain the relative merits of each of the four strategies just listed, plus the
practical advantages associated with the methods based on a specific strategy, so that
applied researchers can make an informed decision as to which approach and which
method might be used in a given situation.

237
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The emphasis in this chapter is on the first strategy, but some methods covered
here, including the best-known method for comparing means, are related to the
second strategy as well. The fourth strategy is taken up in Section 8.10 (and the third
strategy is discussed in Chapter 15). Section 8.12 describes how Pearson’s correlation
and regression slopes can be compared.

8.1 Student’s T

We begin with the classic and most commonly used method for comparing two
independent groups: Student’s T test. The goal is to test

H0 : µ1 = µ2, (8.1)

the hypothesis that the two groups have identical means. That is, the goal is to
determine whether the typical individual in the first group differs from the typical
individual in the second. If we can find a method for computing a confidence interval
for µ1−µ2, we can get some sense of the degree to which the typical individual in the
first group differs from the typical individual in the second. This assumes, of course,
that the population mean provides a reasonable measure of what is typical. We have
already seen that this assumption is dubious in some situations, but we ignore this
issue for the moment.

Exact control over the probability of a Type I error can be had under the following
assumptions:

• Sampling is random.
• Sampling is from normal distributions.
• The two groups have equal variances; that is, σ 2

1 = σ 2
2 , where σ 2

1 and σ 2
2 are the

variances corresponding to the groups having means µ1 and µ2, respectively.

The last assumption is called homoscedasticity. If the variances differ (σ 2
1 �= σ 2

2 ), we say
that there is heteroscedasticity.

Before describing how to test the hypothesis of equal means, first consider how
we might estimate the assumed common variance. For convenience, let σ 2

p represent
the common variance and let s21 and s22 be the sample variances corresponding to the
two groups. Also let n1 and n2 represent the corresponding sample sizes. The typical
estimate of the assumed common variance is

s2p = (n1 − 1)s21 + (n2 − 1)s22
n1 + n2 − 2

, (8.2)

where the subscript p is used to indicate that the sample variances are being pooled.
Because s21 and s22 are assumed to estimate the same quantity, σ 2

p , a natural strategy
for combining them into a single estimate is to average them, and this is exactly what
is done when the sample sizes are equal. But with unequal sample sizes a slightly
different strategy is used, as indicated by Equation (8.2). (A weighted average is used
instead.)

Now consider the problem of testing the null hypothesis of equal means.
Simultaneously, we want a confidence interval for the difference between the



8.1 ■ Student’s T 239

population means, µ1 − µ2. Under the assumptions already stated, the probability
of a Type I error will be exactly α if we reject H0 when

|T| ≥ t, (8.3)

where

T = X̄1 − X̄2√
s2p
(

1
n1

+ 1
n2

) , (8.4)

and t is the 1 − α/2 quantile of Student’s T distribution with ν = n1 + n2 − 2
degrees of freedom. An exact 1 − α confidence interval for the difference between
the population means is

(
X̄1 − X̄2

)± t

√
s2p

(
1
n1

+ 1
n2

)
. (8.5)

EXAMPLE. Salk (1973) conducted a study where the general goal was to
examine the soothing effects of a mother’s heartbeat on her newborn infant.
Infants were placed in a nursery immediately after birth, and they remained
there for four days except when being fed by their mothers. The infants were
divided into two groups. One group was continuously exposed to the sound
of an adult’s heartbeat; the other group was not. Salk measured, among other
things, the weight change of the babies from birth to the fourth day. Table 8.1
reports the weight change for the babies weighing at least 3,510 grams at birth.
The estimate of the assumed common variance is

s2p = (20 − 1)(60.12) + (36 − 1)(88.42)
20 + 36 − 2

= 6335.9.

So

T = 18 − ( − 52.1)√
6335.9

( 1
20 + 1

36

) = 70.1
22.2

= 3.2.

The degrees of freedom are ν = 20 + 36 − 2 = 54. If we want the Type I error
probability to be α = .05, then, from Table 4 in Appendix B, t = 2.01. Because
|T| ≥ 2.01, reject H0 and conclude that the means differ. That is, we conclude
that among all newborns we might measure, the average weight gain would be
higher among babies exposed to the sound of a heartbeat compared to those
who are not exposed. By design, the probability that our conclusion is in error
is .05, assuming normality and homoscedasticity. The .95 confidence interval

Continued
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TABLE 8.1 Weight Gain (in grams) for Large Babies

Group 1 (heartbeat)∗ Group 2 (no heartbeat)†

Subject Gain Subject Gain Subject Gain Subject Gain Subject Gain Subject Gain

1 190 11 10 1 140 11 −25 21 −50 31 −130

2 80 12 10 2 100 12 −25 22 −50 32 −155

3 80 13 0 3 100 13 −25 23 −60 33 −155

4 75 14 0 4 70 14 −30 24 −75 34 −180

5 50 15 −10 5 25 15 −30 25 −75 35 −240

6 40 16 −25 6 20 16 −30 26 −85 36 −290

7 30 17 −30 7 10 17 −45 27 −85

8 20 18 −45 8 0 18 −45 28 −100

9 20 19 −60 9 −10 19 −45 29 −110

10 10 20 −85 10 −10 20 −50 30 −130

∗n1 = 20, X̄1 = 18.0, s1 = 60.1, s1/
√

n1 = 13.
†n2 = 36, X̄2 = −52.1, s2 = 88.4, s2/

√
n2 = 15.

EXAMPLE. (Continued ) for µ1 − µ2, the difference between the means, is

[18 − ( − 52.1)] ± 2.01

√
6335.9

(
1
20

+ 1
36

)
= (25.5,114.7).

This interval does not contain zero, and it indicates that the difference between
the means is likely to be at least 25.5, so again you would reject the hypothesis
of equal means. ■

8.2 Relative Merits of Student’s T

We begin by describing some positive features of Student’s T. If distributions are
nonnormal, but otherwise identical, Student’s T performs reasonably well in terms of
controlling Type I errors. This result is somewhat expected based on features of the
one-sample Student’s T covered in Chapters 4 and 5. To get a rough idea of why, we
first note that for any two independent variables having identical distributions, their
difference will have a perfectly symmetric distribution about zero, even when the
distributions are skewed. For example, suppose that in Salk’s study, the first group
of infants has weight gains that follow the (lognormal) distribution shown in Figure
4.14, and the second group has the same distribution. If we randomly sample an
observation from the first group and do the same for the second group, then the
distribution of the difference will be symmetric about zero. (That is, repeating this
process billions of times, a plot of the resulting differences will be symmetric about
zero.) More generally, if we sample n observations from each of two identical distri-
butions, the difference between the sample means will have a symmetric distribution.
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Note that when two distributions are identical, then not only are their means equal,
but their variances are also equal.

Chapters 4 and 5 noted that in the one-sample case, problems with controlling
Type I errors — ensuring that the actual Type I error probability does not exceed
the nominal level — arise when sampling from a skewed distribution. For symmetric
distributions, this problem is of little concern. So for the two-sample problem con-
sidered here, the expectation is that if there is absolutely no difference between the
two groups, implying that they have not only equal means but equal variances and
the same skewness, then the actual Type I error probability will not exceed by very
much the α value you specify. All indications are that this argument is correct, but
some simple extensions of this argument lead to erroneous conclusions. In particular,
it might seem that generally, if we sample from perfectly symmetric distributions,
probability coverage and control of Type I error probabilities will be satisfactory, but
we will see that this is not always the case — even under normality. In particular, per-
fectly symmetric distributions with unequal variances can create practical problems.
Nevertheless, all indications are that generally, when comparing identical distribu-
tions (so that in particular the hypothesis of equal means is true and the variances are
equal), Type I error probabilities will not exceed the nominal level by very much, and
for this special case power is not an issue.

Student’s T begins having practical problems when distributions differ in some
manner. If sampling is from normal distributions with equal sample sizes but unequal
variances, Student’s T continues to perform reasonably well in terms of Type I errors
(Ramsey, 1980). But when sampling from nonnormal distributions, this is no longer
the case. And even under normality there are problems when sample sizes are unequal.
Basically, Type I error control, power and probability coverage can be very poor. In
fact, when sample sizes are unequal, Cressie and Whitford (1986) describe general
conditions under which Student’s T does not even converge to the correct answer as
the sample sizes get large.

A reasonable suggestion for salvaging the assumption that the variances are equal
is to test it. That is, test H0 : σ 2

1 = σ 2
2 ; if a nonsignificant result is obtained, proceed

with Student’s T. But this strategy has been found to be unsatisfactory, even under
normality (Markowski & Markowski, 1990; Moser, Stevens & Watts, 1989; Wilcox,
Charlin & Thompson, 1986). Nonnormality makes this strategy even less satisfactory.
A basic problem is that tests of the hypothesis of equal variances do not always have
enough power to detect situations where the assumption should be discarded.

Another general problem is that Student’s T is designed to be sensitive to the
differences between the means, but in reality it is sensitive to the myriad ways the
distributions might differ, such as unequal skewnesses. Said in a more formal manner,
if F1(x) is the probability that an observation from the first group is less than or equal
to x, and F2(x) is the probability that an observation from the second group is less
than or equal to x, then Student’s T provides a reasonably satisfactory test of

H0 : F1(x) = F2(x), for any x (8.6)

in terms of controlling the probability of a Type I error. That is, the hypothesis is
that for any constant x we pick, the probability of getting an observation less than or
equal to x is the same for both groups being compared.
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As a method for testing the hypothesis of equal population means, one might
defend Student’s T in the following manner. If we reject, we can be reasonably cer-
tain that the distributions differ. And if the distributions differ, some authorities would
argue that by implication, the means are not equal. That is, they would argue that in
practice we never encounter situations where distributions differ in shape but have
equal means. But as soon as we agree that the distributions differ, there is the possi-
bility that the actual probability coverage of the confidence interval for the difference
between the means, given by Equation (8.5), differs substantially from the 1−α value
you have specified. A crude rule is that the more the distributions differ, particularly
in terms of skewness, the more inaccurate the confidence interval [given by Equation
(8.5)] might be. Outliers and heteroscedasticity can contribute to this problem. Said
another way, Student’s T can be used to establish that the means differ by implication,
but it can be very inaccurate in terms of indicating the magnitude of this difference.

One more problem with Student’s T is that situations arise where it is biased. That
is, there is a higher probability of rejecting when the means are equal compared to
some situations where the means differ. If the goal is to find a method that is sensitive
to differences between the means, surely this property is undesirable.

Yet another concern about Student’s T is that for a variety of reasons, its power can
be very low relative to many other methods one might use. One reason is that very
slight departures from normality can inflate the variances. Consider, for example, the
two normal distributions shown in the left panel of Figure 8.1. Both have a variance
of 1, and the means differ by 1. Using Student’s T with α = .05, power is .96 with
n1 = n2 = 25. But if we sample from the two distributions shown in the right panel of
Figure 8.1, power is only .28. One reason power is low is that when sampling from a
heavy-tailed distribution, the actual probability of a Type I error can be substantially
lower than the specified α value. For example, if you use Student’s T with α = .05,
the actual probability of a Type I error can drop below .01. If an adjustment could be
made so that the actual probability of a Type I error is indeed .05, power would be
better, but it would still be low relative to alternative methods that are less sensitive
to outliers. And even when outliers are not a concern, having unequal variances or
even different degrees of skewness can result in relatively poor power as well.

Finally, we note that when using Student’s T, even a single outlier in only one
group can result in a rather undesirable property. The following example illustrates
the problem.

EXAMPLE. Consider the following values:

Group 1: 4 5 6 7 8 9 10 11 12 13

Group 2: 1 2 3 4 5 6 7 8 9 10

The corresponding sample means are X̄1 = 8.5 and X̄2 = 5.5 and T = 2.22.
With α = .05, the critical value is T = 2.1, so Student’s T would reject
the hypothesis of equal means and conclude that the first group has a larger

Continued
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FIGURE 8.1 When sampling from the distributions on the left, power is .96
when using Student’s T with α = .05 and n1 = n2 = 25. But for the distributions
on the right, power is only .28. This illustrates that very small departures from
normality can destroy power when using means.

EXAMPLE. (Continued ) population mean than the second (because the first
group has the larger sample mean). Now, if we increase the largest observation
in the first group from 13 to 23, the sample mean increases to X̄1 = 9.5. So the
difference between X̄1 and X̄2 has increased from 3 to 4, and this would seem
to suggest that we have stronger evidence that the population means differ
and in fact the first group has the larger population mean. However, increasing
the largest observation in the first group also inflates the corresponding sample
variance, s21. In particular, s21 increases from 9.17 to 29.17. The result is that T
decreases to T = 2.04 and we no longer reject. That is, increasing the largest
observation has more of an effect on the sample variance than on the sample
mean, in the sense that now we are no longer able to conclude that the population
means differ. Increasing the largest observation in the first group to 33, the
sample mean increases to 10.5, the difference between the two sample means
increases to 5, and now T = 1.79. So again we do not reject and in fact our
test statistic is getting smaller! This illustration provides another perspective
on how outliers can mask differences between population means. ■

8.3 Welch’s Heteroscedastic Method for Means

A step toward addressing the negative features of Student’s T, still assuming that the
goal is to compare means, is to switch to a method that allows unequal variances.
Many techniques have been proposed, none of which is completely satisfactory. We
describe only one such method here. One reason it was chosen is because it is a special
case of a more general technique that gives more satisfactory results. That is, our goal
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is to build our way up to a method that performs relatively well over a broad range
of situations.

Proposed by Welch (1938), we test the hypothesis of equal means (H0 : µ1 = µ2)
as follows. For the jth group ( j = 1, 2) let

qj = s2j
nj

, (8.7)

where, as usual, s21 and s22 are the sample variances corresponding to the two groups
being compared. That is, q1 and q2 are the usual estimates of the squared stan-
dard errors of the sample means, X̄1 and X̄2, respectively. We can get a confidence
interval having probability coverage exactly equal to 1 − α if we can determine the
distribution of

W =
(
X̄1 − X̄2

)− (µ1 − µ2)√
s21
n1

+ s22
n2

. (8.8)

Welch’s strategy was to approximate the distribution of W using a Student’s T dis-
tribution with degrees of freedom determined by the sample variances and sample
sizes. In particular, the degrees of freedom are estimated with

ν̂ = (q1 + q2)2

q2
1

n1−1 + q2
2

n2−1

. (8.9)

The 1 − α confidence interval for µ1 − µ2 is

(
X̄1 − X̄2

)± t

√
s21
n1

+ s22
n2

, (8.10)

where t is the 1 − α/2 quantile of Student’s T distribution and is again read from
Table 4 in Appendix B.

HYPOTHES IS TESTING. When the hypothesis of equal means is true (so µ1−µ2 =
0), Equation (8.8) reduces to

W = X̄1 − X̄2√
s21
n1

+ s22
n2

(8.11)

and you reject H0 : µ1 = µ2 if

|W| ≥ t, (8.12)

where again t is the 1 − α/2 quantile of Student’s T distribution with ν̂ degrees of
freedom.
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One-sided tests are performed in a similar manner. To test H0 : µ1 ≤ µ2, reject if
W ≥ t, where now t is the 1−α quantile of Student’s T distribution with ν̂ degrees of
freedom. As for H0 : µ1 ≥ µ2, reject if W ≤ t, where t is the α quantile of Student’s T.

EXAMPLE. For Salk’s data in Table 8.1, the value of the test statistic given by
Equation (8.11) is

W = 18 − (−52.1)√
60.12

20 + 88.42

36

= 70.1
19.9

= 3.52.

To compute the estimated degrees of freedom, first compute

q1 = 60.12

20
= 180.6,

q2 = 88.42

36
= 217,

in which case

ν̂ = (180.6 + 217)2

180.62

19 + 2172

35

≈ 52.

So if the Type I error probability is to be .05, then for a two-sided test (H0 : µ1 =
µ2), t = 2.01, approximately, and we reject because |W| = 3.52 > 2.01. That
is, the empirical evidence indicates that infants exposed to the sounds of a
mother’s heart beat gain more weight, on average. The .95 confidence interval
for the difference between the means can be seen to be (30, 110). In contrast,
Student’s T method yields a .95 confidence interval of (25.5, 114.7). So Welch’s
procedure indicates that the difference between the means of the two groups is
at least 30, but Student’s T leads to the conclusion that the difference between
the means is at least 25.5. Generally, Welch’s method provides more accurate
confidence intervals than Student’s T, so for the problem at hand, results based
on Welch’s method should be used. Also, Welch’s method can provide a shorter
confidence interval. There are situations where Student’s T is more accurate
than Welch’s method, but in general the improvement is modest at best, while
the improvement of Welch’s method over Student’s T can be substantial. ■

8.3.1 Nonnormality and Welch’s Method

One reason Welch’s method improves upon Student’s T is that under random sam-
pling, Welch’s method satisfies the basic requirement of converging to the correct
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answer as the sample sizes get large when randomly sampling from nonnormal distri-
butions, even when the sample sizes are unequal. That is, as the sample sizes increase,
the actual probability coverage for the difference between the means will converge to
1 −α when using Equation (8.10). For Student’s T, this is true only when the sample
sizes are equal. When sampling from normal distributions, Welch’s method does a
better job of handling unequal variances. This can translate into more power as well as
shorter and more accurate confidence intervals. But unfortunately, nonnormality can
be devastating in terms of probability coverage (e.g., Algina, Oshima & Lin, 1994)
and especially power. Moreover, Welch’s method can be biased: The probability of
rejecting can be higher when the means are equal compared to situations where they
are not. When the two groups being compared have identical distributions, Welch’s
method performs well in terms of controlling the probability of a Type I error, and
because for this special case the population means are equal, power is not an issue.
But when distributions differ in some manner, such as having different skewnesses or
even unequal variances, Welch’s method can have poor properties under nonnormal-
ity. So although Welch’s method is an improvement over Student’s T, more needs to
be done.

8.4 Comparing Groups with Individual Confidence Intervals:
An Example of What Not to Do

It might seem that one could compare population means simply by computing a
confidence interval for µ1 using Equation (4.8), computing a confidence interval for
µ2, and then checking whether these two confidence intervals overlap. If they do not
overlap, it might seem reasonable to reject the hypothesis of equal population means.
So, for example, if we compute a .95 confidence interval for the first mean, yielding
(5, 8), and for the second mean we get a .95 confidence interval of (9, 13), it might
appear reasonable to reject H0 : µ1 = µ2. However, this strategy violates a basic
principle. Because there seems to be increasing interest in this approach, particularly
when using error bars (defined shortly) to summarize data, some comments seem in
order. (Also see Schenker & Gentleman, 2001; cf. Tryon, 2001.)

First we note that a general way of standardizing any variable, call it Y, is to subtract
its mean and then divide this difference by the standard error of Y. In symbols, we
standardize Y by transforming it to

Y − E(Y)
SE(Y)

, (8.13)

where SE(Y) indicates the standard error of Y. That is, SE(Y) is the square root of
the variance of Y. For example, when working with a single sample mean, in which
case Y = X̄, we know that the standard error of the sample mean is σ /

√
n, E(X̄) = µ,

so we standardize the sample mean by transforming it to

X̄ − µ

σ /
√

n
.
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In practice we do not know σ , so we estimate it with s, the standard deviation. Then
this last equation becomes

T = X̄ − µ

s/
√

n
,

and a version of the central limit theorem tells us that with n sufficiently large, T is
approximately standard normal. That is, inferences about the population mean can be
made assuming T has a normal distribution, and this satisfies the basic requirement
of converging to the correct answer as the sample size gets large.

When working with two independent groups, the standard error of the difference
between the sample means is

√
σ 2

1

n1
+ σ 2

2

n2
. (8.14)

This expression for the standard error is being estimated by Welch’s method, which
is part of the reason why Welch’s method converges to the correct answer as the
sample sizes get large. That is, a correct expression for the standard error is being
used to derive Welch’s method, and this is a fundamental component of any method
when standardizing is being done. In contrast, under general conditions, Student’s T
does not converge to the correct answer when the sample sizes differ, and the reason
is roughly because it does not use an estimate of the correct standard error.

To keep the discussion simple, we focus on what are called error bars. Error bars,
often used in graphical summaries of data, are simply vertical lines plotted above and
below the sample means. In symbols, error bars for the first means correspond to
the values

X̄1 − s1√
n1

and X̄1 + s1√
n1

,

so they are simply a type of confidence interval. As for the second group, error bars
correspond to the values

X̄2 − s2√
n2

and X̄2 + s2√
n2

.

Now consider the strategy of deciding that the population means differ if the intervals
based on these error bars do not overlap. In symbols, reject the null hypothesis of
equal means if

X̄1 + s1√
n1

< X̄2 − s2√
n2

or if

X̄1 − s1√
n1

> X̄2 + s2√
n2

.
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Here is a fundamental problem with this strategy. Rearranging terms, we are
rejecting if

∣∣X̄1 − X̄2
∣∣

s1√
n1

+ s2√
n2

≥ 1. (8.15)

The denominator,

s1√
n1

+ s2√
n2

,

violates a basic principle — it does not estimate a correct expression for the standard
error of the difference between the sample means, which is given by Equation (8.14).
Consequently, the left side of Equation (8.15) does not converge to a standard normal
distribution and statements about Type I error probabilities are at best difficult to
make. A correct estimate of the standard error is

√
s21
n1

+ s22
n2

,

which is used by Welch’s method and which can differ substantially from the incorrect
estimate used in Equation (8.15). So regardless of how large the sample sizes might
be, using error bars to make decisions about whether groups differ can be highly
inaccurate, even under normality. More generally, if we reject the hypothesis of equal
means when confidence intervals for the individual means do not overlap, the wrong
standard error is being used, so any statements about the probability of a Type I error
are difficult to make. Yet another problem, for reasons explained in Chapter 4, is that
under nonnormality the probability coverage for the individual population means can
differ substantially from the nominal level, depending on the type of distributions
from which we sample. (There is a variation of the method just described where error
bars are computed assuming homoscedasticity, but again basic principles are being
violated.)

8.5 A Bootstrap Method for Comparing Means

This section describes how we might improve upon Welch’s method for comparing
means. Similar to Chapter 7, we can compute accurate confidence intervals for the
difference between means or test hypotheses about the equality of means if we can
determine the distribution of W given by Equation (8.8). A bootstrap approximation
of this distribution is obtained as follows. Generate a bootstrap sample of size n1 from
the first group and label the resulting sample mean and standard deviation X̄∗

1 and s∗1,
respectively. Do the same for the second group and label the bootstrap sample mean
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TABLE 8.2 Data Generated from a Mixed Normal (Group 1) and a Standard Normal (Group 2)

Group 1: 3.73624506 2.10039320 −3.56878819 −0.26418493 −0.27892175

0.87825842 −0.70582571 −1.26678127 −0.30248530 0.02255344

14.76303893 −0.78143390 −0.60139147 −4.46978177 1.56778991

−1.14150660 −0.20423655 −1.87554928 −1.62752834 0.26619836

Group 2: −1.1404168 −0.2123789 −1.7810069 −1.2613917 −0.3241972 1.4550603

−0.5686717 −1.7919242 −0.6138459 −0.1386593 −1.5451134 −0.8853377

0.3590016 0.4739528 −0.2557869

and standard deviation X̄∗
2 and s∗2. Let

W∗ =
(
X̄∗

1 − X̄∗
2
)− (

X̄1 − X̄2
)

√
(s∗1)2

n1
+ (s∗2)2

n2

. (8.16)

Repeating this process B times, yields W∗
1 , . . . ,W∗

B . Next, put these B values in ascend-
ing order, which we label W∗

(1) ≤ · · · ≤ W∗
(B) in our usual way. Let � = αB/2, rounded

to the nearest integer, and u = B−�. Then an approximate 1−α confidence interval
for the difference between the means (µ1 − µ2) is


(X̄1 − X̄2

)− W∗
(u)

√
(s∗1)2

n1
+ (s∗2)2

n2
,
(
X̄1 − X̄2

)− W∗
(�+1)

√
(s∗1)2

n1
+ (s∗2)2

n2


 .

(8.17)

EXAMPLE. We illustrate that the confidence interval based on Welch’s
method can differ substantially from the confidence interval based on the
bootstrap-t method just described. The data for group 1 in Table 8.2 were
generated from a mixed normal distribution (using S-PLUS) and the data for
group 2 were generated from a standard normal distribution. So both groups
have population means equal to 0. Applying Welch’s method, the .95 confi-
dence interval for the difference between the means is (− 0.988, 2.710). Using
the bootstrap-t method instead, it is (− 2.21, 2.24). ■

8.6 A Permutation Test Based on Means

The so-called permutation test, introduced by R. A. Fisher in the 1930s, is sometimes
recommended for comparing means. The method is somewhat similar in spirit to
the bootstrap, but a fundamental difference between it and the bootstrap is that the
bootstrap resamples with replacement and the permutation test does not. We first
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outline the method in formal terms, then we illustrate the steps, and finally we indicate
what this test tells us.

The permutation test based on means is applied as follows:

1. Compute the sample means for each group and label the difference d =
X̄1 − X̄2.

2. Pool the data.
3. Randomly permute the pooled data. That is, rearrange the order of the pooled

data in a random fashion.
4. Compute the sample mean for the first n1 observations resulting from step 3,

compute the sample mean of the remaining n2 observations, and note the
difference.

5. Repeat steps 3–4 B times and label the differences between the resulting sample
means d1, . . . ,dB.

EXAMPLE. Imagine we have two groups with the following observations:

Group 1: 6, 19, 34, 15

Group 2: 9, 21, 8, 53, 25

Pooling the observations yields

6, 19, 34, 15, 9, 21, 8, 53, 25.

The sample mean for group 1 is X̄1 = 18.5; for group 2 it is X̄2 = 23.2; and the
difference between these means is

d = 18.5 − 23.2 = −4.7.

Next we permute the pooled data in a random fashion and for illustrative
purposes we assume this yields

34, 21, 8, 25, 6, 19, 15, 9, 53.

The sample mean for the first n1 = 4 observations is 22, the remaining obser-
vations have a sample mean of 20.4, and the difference between these means
is d1 = 22 − 20.4 = 1.6. Repeating this process of randomly permuting the
pooled data B times yields B differences between the resulting sample means,
which we label d1, . . . , dB. If we want the Type I error probability to be .05, we
conclude that the groups differ if the middle 95% of the values d1, . . . , dB do not
contain d. ■

Although the method just described is sometimes recommended for making infer-
ences about the population means, in reality it is testing the hypothesis that the
two groups being compared have identical distributions. Even under normality but
unequal variances, the method fails to control the probability of a Type I error when
testing the hypothesis of equal means (e.g., Boik, 1987). On the positive side, when
testing the hypothesis of identical distributions, the probability of a Type I error



8.7 ■ Yuen’s Method for Comparing Trimmed Means 251

is controlled exactly if all possible permutations of the data are used rather than
just B randomly sampled permutations as is done here. An argument in favor of
using the permutation test to compare means is that if distributions differ, surely the
population means differ. But even if we accept this argument, the permutation test
gives us little or no information about how the groups differ, let alone the magni-
tude of the difference between the population means, and it tells us nothing about
the precision of the estimated difference between the population means based on
the sample means. That is, it does not provide a confidence interval for µ1 − µ2.
(For yet another argument in favor of the permutation test, see Ludbrook & Dudley,
1998.)

It is noted that the permutation test can be applied with any measure of location
or scale, but again the method is testing the hypothesis of equal distributions. If,
for example, we use variances, examples can be constructed where we are likely
to reject because the distributions differ, even though the population variances are
equal.

8.6.1 S-PLUS Function permg

The S-PLUS function

permg(x, y, alpha = 0.05, est = mean, nboot = 1000)

performs the permutation test just described. By default it uses means, but any
measure of location or scale can be used by setting the argument est to an appropriate
expression. For example, est=var would use variances rather than means.

8.7 Yuen’s Method for Comparing Trimmed Means

Yuen (1974) derived a method for comparing the population γ -trimmed means of
two independent groups that reduces to Welch’s method for means when there is no
trimming. As usual, 20% trimming (γ = .2) is a good choice for general use, but
situations arise where more than 20% trimming might be beneficial (such as when the
proportion of outliers in either tail of an empirical distribution exceeds 20%).

Generalizing slightly the notation in Chapter 3, let gj = [γ nj], where again nj is
the sample size associated with the jth group ( j = 1, 2) and let hj = nj − 2gj. That is,
hj is the number of observations left in the jth group after trimming. Let

dj = (nj − 1)s2wj

hj(hj − 1)
, (8.18)

where s2wj is the γ -Winsorized variance for the jth group. Yuen’s test statistic is

Ty = X̄t1 − X̄t2√
d1 + d2

. (8.19)
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The degrees of freedom are

ν̂y = (d1 + d2)2

d2
1

h1−1 + d2
2

h2−1

.

CONFIDENCE INTERVAL. The1−α confidence interval forµt1−µt2, thedifference
between the population trimmed means, is

(X̄t1 − X̄t2) ± t
√

d1 + d2, (8.20)

where t is the 1−α/2 quantile of Student’s T distribution with ν̂y degrees of freedom.

HYPOTHES IS TESTING. The hypothesis of equal trimmed means (H0 : µt1 = µt2)
is rejected if

|Ty| ≥ t.

As before, t is the 1 − α/2 quantile of Student’s T distribution with ν̂y degrees of
freedom.

The improvement in power, probability coverage, and control over Type I errors
can be substantial when using Yuen’s method with 20% trimming rather than Welch.
For example, Wilcox (1997a, p. 111) describes a situation where when testing at the
.025 level, the actual probability of rejecting with Welch’s test is .092, nearly four
times as large as the nominal level. Switching to Yuen’s test, the actual probability of
a Type I error is .042. So control over the Type I error probability is much better, but
more needs to be done.

8.7.1 Comparing Medians

Although the median can be viewed as belonging to the class of trimmed means,
special methods are required for comparing groups based on medians. An approach
that currently seems to have practical value is as follows. Let Mj be the sample median
corresponding to the jth group ( j = 1, 2) and let S2

j be the McKean–Schrader estimate
of the squared standard error of Mj, which is described in Section 4.11.2. Then an
approximate 1 − α confidence interval for the difference between the population
medians is

(M1 − M2) ± z1−α/2

√
S2

1 + S2
2,

where z1−α/2 is the 1 − α/2 quantile of a standard normal distribution. Alternatively,
reject the hypothesis of equal population medians if

|M1 − M2|√
S2

1 + S2
2

≥ z1− α
2
.
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8.7.2 S-PLUS Function msmed

The S-PLUS function

msmed(x,y,alpha=.05)

has been supplied for comparing medians using the McKean–Schrader estimate of the
standard error. (This function contains some additional parameters that are explained
in Chapter 12.)

EXAMPLE. For the data in Table 8.1, the .95 confidence interval for the
difference between the medians is (18.5, 91.5). ■

8.8 Bootstrap Methods for Comparing Trimmed Means

The bootstrap methods for trimmed means, described in Chapter 7, can be extended
to the two-sample case. Again there are three versions of the bootstrap method that
should be described and discussed.

8.8.1 The Percentile Method

Generalizing the notation in Section 8.6, generate a bootstrap sample of size n1
from the first group, generate a bootstrap sample of size n2 from the second group,
let X̄∗

t1 and X̄∗
t2 be the bootstrap trimmed means corresponding to groups 1 and 2,

respectively, and let

D∗ = X̄∗
t1 − X̄∗

t2

be the difference between the bootstrap trimmed means. Now suppose we repeat
this process B times, yielding D∗

1 , . . . ,D∗
B. Then an approximate 1 − α confidence

interval for the difference between the population trimmed means, µt1 − µt2, is(
D∗

(�+1), D
∗
(u)

)
, (8.21)

where, as usual, � = αB/2, rounded to the nearest integer, and u = B − �. So for a
.95 confidence interval, � = .025B.

HYPOTHES IS TESTING. Reject the hypothesis of equal population trimmed means
if the confidence interval given by Equation (8.21) does not contain zero.

If the amount of trimming is at least .2, the percentile bootstrap method just
described is one of the most effective methods for obtaining accurate probability
coverage, minimizing bias, and achieving relatively high power. But with no trimming
the method performs poorly. (As noted in Chapter 7, a modification of the percentile
bootstrap method performs well when working with the least squares regression
estimator, even though this estimator has a finite-sample breakdown point of only
1/n. But this modification does not perform particularly well when comparing the
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means of two independent groups.) The minimum amount of trimming needed to
justify using a percentile bootstrap method, rather than some competing technique,
has not been determined.

In subsequent chapters we will take up the problem of comparing multiple groups.
To lay the foundation for one of the more effective methods, we describe the
percentile bootstrap method for comparing trimmed means in another manner. Let

p∗ = P
(
X̄∗

t1 > X̄∗
t2
)

. (8.22)

That is, p∗ is the probability that a bootstrap trimmed mean from the first group is
greater than a bootstrap trimmed mean from the second. The value of p∗ reflects
the degree of separation between the two groups being compared, in the following
sense. If the trimmed means based on the observed data are identical, meaning that
X̄t1 = X̄t2, then p∗ will have a value approximately equal to .5. In fact, as the sample
sizes increase, the value of p∗ will converge to .5 for this special case. Moreover, if
the population trimmed means are equal, then p∗ will have, approximately, a uniform
distribution, provided the sample sizes are not too small. That is, if H0 : µt1 = µt2 is
true, p∗ will have a value between 0 and 1, with all possible values between 0 and 1
equally likely if the sample sizes are not too small. (Hall, 1988a, provides relevant
theoretical details and results in Hall, 1988b, are readily extended to trimmed means.)
This suggests the following decision rule: Reject the hypothesis of equal trimmed
means if p∗ is less than or equal to α/2 or greater than or equal to 1 − α/2. Said
another way, if we let p∗m be equal to p∗ or 1 − p∗, whichever is smaller, then reject if

p∗m ≤ α

2
. (8.23)

We do not know p∗, but it can be estimated with the proportion of times a bootstrap
trimmed mean from the first group is greater than a bootstrap trimmed mean from
the second. That is, if A represents the number of values among D∗

1 , . . . ,D∗
B that are

greater than zero, then we estimate p∗ with

p̂∗ = A
B

. (8.24)

Finally, we reject the hypothesis of equal population trimmed means if p̂∗ is less than
or equal to α/2 or greater than or equal to 1 − α/2. Or setting p̂∗m to p̂∗ or 1 − p̂∗,
whichever is smaller, reject if

p̂∗m ≤ α

2
. (8.25)

The quantity 2p̂∗m is the estimated p-value.

8.8.2 Bootstrap-t Methods

Bootstrap-t methods for comparing trimmed means are preferable to the percentile
bootstrap when the amount of trimming is close to zero. An educated guess is that
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the bootstrap-t is preferable if the amount of trimming is less than or equal to 10%,
but it is stressed that this issue is in need of more research. The only certainty is that
with no trimming, all indications are that the bootstrap-t outperforms the percentile
bootstrap.

Bootstrap-t methods for comparing trimmed means are performed as follows:

1. Compute the sample trimmed means, X̄t1 and X̄t2, and Yuen’s estimate of the
squared standard errors, d1 and d2, given by Equation (8.18).

2. For each group, generate a bootstrap sample and compute the trimmed means,
which we label X̄∗

t1 and X̄∗
t2. Also, compute Yuen’s estimate of the squared

standard error, again using Equation (8.18), which we label d∗
1 and d∗

2.
3. Compute

T∗
y =

(
X̄∗

t1 − X̄∗
t2
)− (

X̄t1 − X̄t2
)

√
d∗
1 + d∗

2

.

4. Repeat steps 2 and 3 B times, yielding T∗
y1, . . . ,T∗

yB. In terms of probability
coverage, B = 599 appears to suffice in most situations when α = .05.

5. Put the T∗
y1, . . . ,T∗

yB values in ascending order, yielding T∗
y(1) ≤ · · · ≤ T∗

y(B).
The T∗

yb values (b = 1, . . . ,B) provide an estimate of the distribution of

(
X̄t1 − X̄t2

)− (µt1 − µt2)√
d1 + d2

.

6. Set � = αB/2 and u = B − �, where � is rounded to the nearest integer.

The equal-tailed 1 − α confidence interval for the difference between the
population trimmed means (µt1 − µt2) is

(
X̄t1 − X̄t2 − T∗

y(u)

√
d1 + d2, X̄t1 − X̄t2 − T∗

y(�+1)

√
d1 + d2

)
. (8.26)

To get a symmetric two-sided confidence interval, replace step 3 with

T∗
y = | (X̄∗

t1 − X̄∗
t2
)− (

X̄t1 − X̄t2
) |√

d∗
1 + d∗

2

,

set a = (1 − α)B, rounding to the nearest integer, in which case a 1 − α confidence
interval for µt1 − µt2 is

(
X̄t1 − X̄t2

)± T∗
y(a)

√
d1 + d2. (8.27)

HYPOTHES IS TESTING. As usual, reject the hypothesis of equal population
trimmed means (H0 : µt1 = µt2) if the 1 − α confidence interval for the difference
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between the trimmed means does not contain zero. Alternatively, compute Yuen’s
test statistic

Ty = X̄t1 − X̄t2√
d1 + d2

,

and reject if

Ty ≤ T∗
y(�+1)

or if

Ty ≥ T∗
y(u).

When using the symmetric, two-sided confidence interval method, reject if

|Ty| ≥ T∗
y(a).

8.8.3 Winsorizing

Section 7.5.2 indicated that theory allows us to Winsorize the observations before
taking bootstrap samples provided the amount of Winsorizing does not exceed the
amount of trimming. A possible advantage of Winsorizing is shorter confidence
intervals. However, we saw in Chapter 7 that if we Winsorize as much as we trim,
probability coverage can be poor, at least with small to moderate sample sizes. This
continues to be the case when comparing groups. But when using the percentile boot-
strap method, if, for example, we trim 20% and Winsorize 10% and if the smallest
sample size is at least 15, it seems that probability coverage is reasonably close to the
nominal level, at least when α = .05. Winsorizing is not recommended when using
a bootstrap-t method when sample sizes are small. Perhaps this strategy provides
good probability coverage with moderately large sample sizes, but this has not been
determined as yet.

If a situation arises where Winsorizing makes a practical difference in terms of
power and length of confidence intervals, a competing strategy is not to Winsorize
but instead simply to increase the amount of trimming. The relative merits of these
two strategies have not been determined.

8.8.4 S-PLUS Functions trimpb2 and yuenbt

The S-PLUS functions trimpb2 and yuenbt are supplied for applying the bootstrap
methods just described. The function

trimpb2(x, y, tr = 0.2, alpha = 0.05, nboot = 2000, WIN = F, win = 0.1)

performs the percentile bootstrap method, where x is any S-PLUS variable containing
the data for group 1 and y contains the data for group 2. The amount of trimming,
tr, defaults to 20%, α defaults to .05, and nboot (B) defaults to 2000. The argu-
ment WIN defaults to F, for false, meaning that Winsorizing will not be done prior
to generating bootstrap samples. Setting WIN equal to T, for true, Winsorizing
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will be done with the amount of Winsorizing determined by the argument win,
which defaults to .1 (10%). This function returns the estimated significance level (or
p-value), labeled sig.level, plus a 1−α confidence interval for the difference between
the trimmed means.

The function

yuenbt(x, y, tr = 0.2, alpha = 0.05, nboot = 599, side = F)

performs the bootstrap-t method, which is based on Yuen’s procedure for comparing
trimmed means. The arguments are the same as before, except for the argument
labeled side, which indicates whether a symmetric or equal-tailed confidence interval
will be used. Side defaults to F, for false, meaning that the equal-tailed confidence
interval [given by Equation (8.26)] will be computed. Setting side equal to T yields
the symmetric confidence interval given by Equation (8.27).

EXAMPLE. Table 8.3 shows data from a study dealing with the effects of
consuming alcohol. (The data were generously supplied by M. Earleywine.)
Group 1, a control group, reflects hangover symptoms after consuming a specific
amount of alcohol in a laboratory setting. Group 2 consisted of sons of alcoholic
fathers. Storing the group 1 data in the S-PLUS variable A1, and the group 2 data
in A2, the command trimpb2(A1,A2) returns the following output:

$sig.level:
[1] 0.038

$ci:
[1] 0.1666667 8.3333333

This says that a .95 confidence interval for the difference between the population
trimmed means is (.17, 8.3). The significance level is .038, so in particular you
would reject H0 : µt1 = µt2 at the .05 level. If we set the argument WIN to T, so
that Winsorizing is done, then the .95 confidence interval is (0.58, 7.17), which
is shorter than the confidence interval without Winsorizing. In contrast, if we
use Welch’s method for means, the .95 confidence interval is (−1.6, 10.7). This
interval contains zero, so we no longer reject, the only point being that it can
make a difference which method is used. Notice that the Winsorized confidence
interval using trimpb2 is substantially shorter than Welch’s confidence interval,
the ratio of the lengths being

10.7 + 1.6
7.17 − .58

= 1.87.

Yet all indications are that the percentile bootstrap confidence interval generally
has more accurate probability coverage. ■

Notice that the default value for nboot (B) when using yuenbt is only 599, com-
pared to 2000 when using trimpb2. Despite this, trimpb2 tends to have faster
execution time, because it is merely computing trimmed means; yuenbt requires esti-
mating the standard error for each bootstrap sample, which increases the execution
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TABLE 8.3 Effect of Alcohol

Group 1: 0 32 9 0 2 0 41 0 0 0

6 18 3 3 0 11 11 2 0 11

Group 2: 0 0 0 0 0 0 0 0 1 8

0 3 0 0 32 12 2 0 0 0

TABLE 8.4 Self-Awareness Data

Group 1: 77 87 88 114 151 210 219 246 253

262 296 299 306 376 428 515 666 1310 2611

Group 2: 59 106 174 207 219 237 313 365 458 497 515

529 557 615 625 645 973 1065 3215

time considerably. When using the bootstrap-t method (the S-PLUS function
yuenbt), published papers indicate that increasing B from 599 to 999, say, does
not improve probability coverage by very much, if at all, when α = .05. This means
that if we were to repeat the experiment billions of times, each time computing a .95
confidence interval, the proportion of times the resulting confidence interval contains
the true difference between the population trimmed means will not be appreciably
closer to .95 if we increase B from 599 to 999.

There is, however, a practical matter that should be mentioned. Consider the data
in Table 8.4 and focus on group 1. Notice that the values are in ascending order. The
S-PLUS function yuenbt begins by generating a bootstrap sample. The first value
that it chooses might be the third value listed, which is 88. But suppose you store the
data in S-PLUS in descending order instead. Then if yuenbt chooses the third value
to be in the bootstrap sample, it is no longer 88 but rather 666. This means that the
bootstrap sample will be altered, resulting in a different bootstrap sample trimmed
mean. With B large enough, this will not change the resulting confidence interval and
significance level by much. But with B = 599 the results might be altered enough
to change your conclusion about whether to reject the null hypothesis. That is, a
nearly significant result might become significant if the order of the observations is
altered before invoking the bootstrap method or if we simply increase B. To reduce
the likelihood of this possibility, consider using B = 1999 instead.

EXAMPLE. In an unpublished study by Dana (1990), the general goal was to
investigate issues related to self-awareness and self-evaluation. In one portion of
the study, he recorded the times individuals could keep an apparatus in contact
with a specified target. The results, in hundredths of seconds, are shown in
Table 8.4. Storing the data for group 1 in the S-PLUS variable G1 and storing

Continued
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EXAMPLE. (Continued ) the data for group 2 in G2, the command

yuenbt(G1,G2)

returns a .95 confidence interval of (−312.5, 16.46). This interval contains
zero, so we would not reject. If we increase the number of bootstrap sam-
ples (B) by setting the argument nboot to 999, now the confidence interval is
(−305.7, 10.7). We still do not reject, but increasing B alters the confidence
interval slightly. In contrast, comparing medians via the method in Section
8.7.1, the .95 confidence interval is (−441.4, −28.6), so we reject, the only
point being that even among robust estimators, the choice of method can alter
the conclusions reached. ■

8.8.5 Estimating Power and Judging the Sample Sizes

Imagine we compare two groups using the percentile bootstrap method with 20%
trimming, as described in Section 8.8.1. If we fail to reject, this might be because
there is little or no difference between the groups. Another possibility is that the
population trimmed means differ by a substantively important amount but power is
low. To help differentiate between these two possibilities, you can estimate how much
power there was based on the data available to you.

The basic strategy is to estimate the standard errors associated with the 20%
trimmed means and then to use these estimates to estimate power for a given value of
the difference between the population trimmed means (µt1−µt2). The computational
details, which stem from Wilcox and Keselman (in press), are shown in Box 8.1 and
apply to 20% trimmed means only. Adjustments of the method when the amount of
trimming is altered have not been studied. Another strategy for estimating power
is to use a nested bootstrap similar to the one studied by Boos and Zhang (2000).
A concern, however, is that the precision of the estimate cannot be easily assessed.
That is, there is no known way of computing a reasonably accurate confidence for
the actual amount of power if a nested bootstrap is used. In contrast, a confidence
interval can be computed using the method in Box 8.1.

BOX 8.1 Power When Comparing 20% Trimmed Means with

a Percentile Bootstrap Method

Goal:

Given data, estimate power associated with some specified value of
δ = µt1 − µt2. Alternatively, estimate the power curve based on the data at
hand.

Continued
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BOX 8.1 (Continued )

Computations:

For i = 1, 2, . . . , 35, let hi be given by

500, 540, 607, 706, 804, 981, 1176, 1402, 1681, 2008, 2353, 2769,

3191, 3646, 4124, 4617, 5101, 5630, 6117, 6602, 7058, 7459,

7812, 8150, 8479, 8743, 8984, 9168, 9332, 9490, 9607,

9700, 9782, 9839, 9868.

For example, h1 = 500 and h4 = 706. For any two distributions, given
δ = µt1 − µt2 and an estimate of the standard error of X̄t1 − X̄t2, namely,
S = √

d1 + d2, where d1 and d2 are given by Equation (8.18), power is
estimated as follows. Let v = [8δ/S] + 1, where [8δ/S] indicates that 8δ/S is
rounded down to the nearest integer, and let

a = 8
(

δ

S
− v − 1

8

)
.

Then power is estimated to be

γ̂ = hv

10,000
+ a

(
hv+1

10,000
− hv

10,000

)
.

In the event v = 36, hv+1 is taken to be 10,000 in the previous equation. If
v > 36, power is estimated to be 1.

8.8.6 S-PLUS Functions powest and pow2an

The S-PLUS function

powest(x,y,delta)

estimates how much power there is when the difference between the population 20%
trimmed means is delta. This is done by computing the standard errors of the sample
trimmed means using the data in the S-PLUS variable x (Group 1) and the S-PLUS
variable y (Group 2) and then performing the calculations in Box 8.1.

The S-PLUS function

pow2an(x,y,ci=F,plotit=T,nboot=800)

computes a power curve using the data in the S-PLUS variables x and y. That is, the
function chooses a range of values for the difference between the population means,
and for each difference it computes power using the S-PLUS function powest. By
default, the power curve is plotted. To avoid the plot and get the numerical results
only, set the argument plotit to F, for false. Setting the argument ci to T will result in
a lower .95 confidence interval for the power curve to be computed using a bootstrap
method based on nboot (B) bootstrap samples.
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FIGURE 8.2 Estimate of the power returned by the S-PLUS function pow2an.

EXAMPLE. The S-PLUS functions powest and pow2an are illustrated with
data from a reading study. (These data were generously supplied by Frank
Manis.) Theoretical arguments suggest that groups should differ, but a non-
significant result was obtained when comparing 20% trimmed means (or when
comparing means with any of the previously described techniques). One pos-
sible explanation is that there is little or no difference between the groups, but
another possibility is that power is low due to relatively large standard errors,
meaning that detecting a substantively interesting difference is unlikely based
on the sample sizes used. For a difference of 600 between the population 20%
trimmed means, powest estimates that power is .8. Figure 8.2 shows the esti-
mated power curve returned by pow2an. The lower, dashed line is a lower
.95 confidence interval for the actual amount of power. That is, the solid line
provides an approximately unbiased estimate of power, but a possibility is that
power is as low as indicated by the dashed line. Based on this analysis it was
concluded that power is low and that accepting the hypothesis of equal trimmed
means is not warranted. ■

8.9 Comparing MOM-Estimators, M-Estimators, and
Other Measures of Location

As is probably evident, when comparing two groups, any measure of location, and
indeed virtually any parameter that characterizes a distribution (such as measures
of scale), can be used with a percentile bootstrap method. Basically, generate B
bootstrap samples from the first group; do the same for the second, in which case
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the middle 95% of the differences provides an approximate .95 confidence interval.
That is, proceed as was described in Section 8.8.1 when comparing trimmed means,
except that the sample trimmed mean is replaced with whatever estimator you care to
use. Currently, all indications are that as a general rule, if the finite-sample breakdown
point of the estimator is at least .2, relatively accurate probability coverage will be
obtained. So, for example, if the goal is to compare the medians of two groups, or
the quartiles, the percentile bootstrap is a relatively effective method.

It is possible to use a bootstrap-t method with M-estimators. (The method requires
estimating the standard error of the M-estimator, which can be done as described in
Wilcox, 1997a.) However, all indications are that the resulting confidence interval is
not as accurate as the confidence interval associated with the percentile bootstrap
method, particularly when sampling from skewed distributions. Consequently, the
rather involved computations are not described.

A negative feature of using M-estimators is that for very small sample sizes — say,
less than 20 — the probability coverage may not be as accurate as the probability cov-
erage obtained with 20% trimmed means. Also, using a bootstrap with an M-estimator
is not always possible, for reasons described in Section 7.7. (Bootstrap samples can
have MAD = 0.) On the positive side, the M-estimator described in Section 3.5
has a high finite-sample breakdown point, which could translate into more power,
compared to using a 20% trimmed mean, when sampling is from distributions where
the proportion of outliers exceeds 20%. Of course one could increase the amount of
trimming to deal with this problem. And when many outliers are common, the median
might be an excellent choice. An advantage of an M-estimator is that it empirically
adjusts to the number of outliers, a consequence being that, compared to the median,
it performs better in terms of power when sampling is from a normal distribution.

8.9.1 S-PLUS Function pb2gen

The S-PLUS function

pb2gen(x, y, alpha = 0.05, nboot = 2000, est = mom, …)

computes a percentile bootstrap confidence interval for the difference between any
two measures of location. As usual, x and y are any S-PLUS variables containing data
and nboot is B, the number of bootstrap samples to be used. By default, B = 2000
is used. The argument est indicates which measure of location is to be employed.
It can be any S-PLUS function that computes a measure of location and defaults to
the S-PLUS function mom (written for this book), which is the MOM-estimator
described in Chapter 3. The argument . . . can be used to reset certain default settings
associated with the argument est. For example, if est=mean is used, means are
compared. In contrast, the command

pb2gen(x, y, alpha = 0.05, nboot = 2000, est = mean, tr = .2)

would compare 20% trimmed means instead. (In this case, pb2gen and trimpb2,
described in Section 8.8.4, give the same results.) The command

pb2gen(x, y, alpha = 0.05, nboot = 2000, est = median)

would compare medians.
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EXAMPLE. A study was conducted comparing the EEG (electroen-
cephalogram) readings of convicted murderers to the EEG readings of a control
group with measures taken at various sites in the brain. For one of these sites
the results were

Control −0.15 −0.22 0.07 −0.07 0.02 0.24 −0.60

group: −0.17 −0.33 0.23 −0.69 0.70 1.13 0.38

Murderers: −0.26 0.25 0.61 0.38 0.87 −0.12 0.15

0.93 0.26 0.83 0.35 1.33 0.89 0.58

(These data were generously supplied by A. Raine.) The sample medians are
−0.025 and 0.48, respectively. Storing the data in the S-PLUS variables x1 and
x2, the command

pb2gen(x1, x2, est = median)

returns a .95 confidence interval for the difference between the population
medians of (−0.97, −0.085). So the hypothesis of equal population medians is
rejected because this interval does not contain 0, and the data indicate that the
typical measure for the control group is less than the typical measure among
convicted murderers. Using the nonbootstrap method in Section 8.7.1 instead,
the .95 confidence interval is (−0.89, −0.119). ■

EXAMPLE. Table 3.2 contains data on the desired number of sexual partners
over the next 30 years reported by male undergraduates. The responses by
156 females are shown in Table 8.5. Does the typical response among males
differ from the typical response among females? If we simply apply Student’s
T, we fail to reject, which is not surprising because there is an extreme outlier
among the responses for males. (See the last example in Section 8.2.) But
if we trim only 1% of the data, Yuen’s method rejects, suggesting that the
two distributions differ. However, with so little trimming, accurate confidence
intervals might be difficult to obtain. Moreover, the median response among
both males and females is 1, suggesting that in some sense the typical male and
typical female are similar. To add perspective, we compare the .75 quantiles of
the distributions, which can be estimated with the built-in S-PLUS function
quantile. For example, if the responses for the males are stored in the S-PLUS
variable sexm, the S-PLUS command quantile(sexm,probs=.75) estimates the
.75 quantile to be 6; for females the estimate is 3. The command

pb2gen(sexm, sexf, est = quantile, probs = .75)

compares the .75 quantiles of the two groups and returns a .95 confidence
interval of (1, 8). So we reject the hypothesis of equal .75 quantiles, indicating

Continued
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TABLE 8.5 Desired Number of Sexual Partners for 156
Females

x: 0 1 2 3 4 5 6 7 8 10

fx : 2 101 11 10 5 11 1 1 3 4

x: 11 12 15 20 30

fx : 1 1 2 1 2

EXAMPLE. (Continued ) that the groups differ among the higher responses. That
is, in some sense the groups appear to be similar because they have identical
medians. But if we take the .75 quantiles to be the typical response among the
higher responses we might observe, the typical male appears to respond higher
than the typical female. ■

8.10 Comparing Variances or Other Measures of Scale

Although the most common approach to comparing two independent groups is to
use some measure of location, situations arise where there is interest in comparing
variances or some other measure of scale. For example, in agriculture, one goal when
comparing two crop varieties might be to assess their relative stability. One approach
is to declare the variety with the smaller variance as being more stable (e.g., Piepho,
1997). As another example, consider two methods for training raters of some human
characteristic. For example, raters might judge athletic ability or they might be asked
to rate aggression among children in a classroom. Then one issue is whether the
variances of the ratings differ depending on how the raters were trained. Also, in some
situations, two groups might differ primarily in terms of the variances rather than their
means or some other measure of location. To take a simple example, consider two
normal distributions both having means zero with the first having variance one and
the second having variance three. Then a plot of these distributions would show that
they differ substantially, yet the hypotheses of equal means, equal trimmed means,
equal M-estimators, and equal medians are all true. That is, to say the first group is
comparable to the second is inaccurate, and it is of interest to characterize how they
differ.

There is a vast literature on comparing variances and as usual not all methods
are covered here. For studies comparing various methods, the reader is referred
to Conover, Johnson, and Johnson (1981), Brown and Forsythe (1974b), Wilcox
(1992), plus the references they cite.

8.10.1 Comparing Variances

We begin with testing

H0 : σ 2
1 = σ 2

2 , (8.28)
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the hypothesis that the two groups have equal variances. Many methods have been
proposed. The classic technique assumes normality and is based on the ratio of the
largest sample variance to the smallest. So if s21 > s22, the test statistic is F = s21/s22;
otherwise you use F = s22/s21. When the null hypothesis is true, F has a so-called F
distribution, which is described in Chapter 9. But this approach has long been known
to be highly unsatisfactory when distributions are nonnormal (e.g., Box, 1953), so
additional details are omitted.

Currently, the most successful method in terms of maintaining control over the
probability of a Type I error and achieving relatively high power is to use a slight
modification of the percentile bootstrap method. In particular, set nm = min(n1,n2),
and, for the jth group ( j = 1, 2), take a bootstrap sample of size nm. Ordinarily
we take a bootstrap sample of size nj from the jth group, but when sampling from
heavy-tailed distributions, and when the sample sizes are unequal, control over the
probability of a Type I error can be extremely poor for the situation at hand. Next, for
each group, compute the sample variance based on the bootstrap sample and set D∗
equal to the difference between these two values. Repeat this B = 599 times, yielding
599 bootstrap values for D, which we label D∗

1 , . . . ,D∗
599. As usual, when writing these

values in ascending order, we denote this by D∗
(1) ≤ · · · ≤ D∗

(B). Then an approximate
.95 confidence interval for the difference between the population variances is(

D∗
(�), D

∗
(u)

)
, (8.29)

where for nm < 40, � = 7 and u = 593; for 40 ≤ nm < 80, � = 8 and u = 592; for
80 ≤ nm < 180, � = 11 and u = 588; for 180 ≤ nm < 250, � = 14 and u = 585; and
for nm ≥ 250, � = 15 and u = 584. (For results on the small-sample properties of this
method, see Wilcox, in press.) Notice that these choices for � and u are the same as
those used in Section 7.3 when making inferences about the least squares regression
slope and Pearson’s correlation. The hypothesis of equal variances is rejected if the
confidence interval given by Equation (8.29) does not contain zero.

Using the confidence interval given by Equation (8.29) has two practical advan-
tages over the many alternative methods one might use to compare variances. First,
compared to many methods, it provides higher power. Second, among situations
where distributions differ in shape, extant simulations indicate that probability cov-
erage remains relatively accurate, in contrast to many other methods one might use.
If the standard percentile bootstrap method is used instead, then with sample sizes
of 20 for both groups, the Type I error probability can exceed .1 when testing at the
.05 level, and with unequal sample sizes it can exceed .15.

8.10.2 S-PLUS Function comvar2

The S-PLUS function

comvar2(x,y)

compares variances using the bootstrap method described in the previous subsection.
The method can only be applied with α = .05; modifications that allow other α values
have not been derived. The arguments x and y are S-PLUS variables containing data
for group 1 and group 2, respectively. The function returns a .95 confidence interval
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for σ 2
1 − σ 2

2 plus an estimate of σ 2
1 − σ 2

2 based on the difference between the sample
variances, s21 − s22, which is labeled difsig.

8.10.3 Brown–Forsythe Method

Section 3.3.6 described a measure of scale based on the average absolute distance of
observations from the median. In the notation used here, if M1 is the median of the
first group, the measure of scale for the first group is

τ̂1 = 1
n1

∑
|Xi1 − M1|, (8.30)

where again X11, . . . ,Xn11 are the observations randomly sampled from the first group.
For the second group this measure of scale is

τ̂2 = 1
n2

∑
|Xi2 − M2|, (8.31)

where M2 is the median for the second group. Notice that these measures of scale do
not estimate the population variance (σ 2) or the population standard deviation (σ ).
There is a commonly recommended method for comparing groups based on these
measures of scale, so it is important to comment on its relative merits.

For convenience, let

Yij = |Xij − Mj|,
i = 1, . . . ,nj; j = 1, 2. That is, the ith observation in the jth group (Xij) is transformed
to |Xij − Mj|, its absolute distance from the median of the jth group. So the sample
mean of the Y values for the jth group is

Ȳj = 1
nj

∑
Yij,

which is just the measure of scale described in the previous paragraph. Now let τj be
the population value corresponding to Ȳj. That is, τj is the value of Ȳj we would get
if all individuals in the jth group could be measured. The goal is to test

H0 : τ1 = τ2. (8.32)

If we reject, we conclude that the groups differ based on this measure of dispersion.
The Brown and Forsythe (1974b) test of the hypothesis given by Equation

(8.32) consists of applying Student’s T to the Yij values. We have already seen,
however, that when distributions differ in shape, Student’s T performs rather poorly,
and there are general conditions under which it does not converge to the correct
answer as the sample sizes get large. We can correct this latter problem by switch-
ing to Welch’s test, but problems remain when distributions differ in shape. For
example, suppose we sample n1 = 20 observations from a normal distribution and
n2 = 15 observations from the observations shown in Figure 5.6. Then when testing
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at the α = .05 level, the actual probability of a Type I error is approximately .21.
Like Student’s T or Welch’s method, the Brown–Forsythe test provides a test of the
hypothesis that distributions are identical. Although it is designed to be sensitive
to a reasonable measure of scale, it can be sensitive to other ways the distributions
might differ. So if the goal is to compute a confidence interval for τ1 −τ2, the Brown–
Forsythe method can be unsatisfactory if τ1 �= τ2. Presumably some type of bootstrap
method could improve matters, but this has not been investigated and indirect evi-
dence suggests that practical problems will remain. Moreover, if there is explicit inter-
est in comparing variances (σ 2

1 and σ 2
2 ), the Brown–Forsythe test is unsatisfactory,

because τ̂1 and τ̂2 do not estimate the population variances, σ 2
1 and σ 2

2 , respectively.

8.10.4 Comparing Robust Measures of Scale

There are at least 150 measures of scale that have been proposed. One criterion
for choosing from among them is that an estimator have a relatively small standard
error when sampling from any of a range of distributions. Lax (1985) compared many
measures of scale in this manner where the distributions ranged between a normal and
symmetric distributions with very heavy tails. In the context of hypothesis testing,
having a relatively small standard error can help increase power. Two scale estimators
that performed well were the percentage bend midvariance and biweight midvariance
described in Section 3.3.7. These measures of scale can be compared with the S-PLUS
function pb2gen, described in Section 8.9.1. (As noted in Section 3.3.8, the S-PLUS
functions pbvar and bivar have been supplied for computing these two measures of
scale, respectively.)

EXAMPLE. Twenty-five observations were generated from the mixed normal
distribution shown in Figure 2.8, and another 25 observations were sampled
from a standard normal. As explained in Section 2.7, the corresponding popu-
lation variances differ considerably even though the corresponding probability
curves are very similar. Storing the data in the S-PLUS variables x and y,
comvar2(x, y) returned a .95 confidence interval of (0.57, 32.2), so we correctly
reject the hypothesis of equal population variances. The sample variances were
s2x = 14.08 and s2y = 1.23. In contrast, the S-PLUS command

pb2gen(x,y,est=pbvar)

returns a .95 confidence interval of (− 1.59, 11.6) for the difference between the
percentage bend midvariances. The values of the percentage bend midvariances
were 2.3 and 1.7. In reality, the population values of the percentage bend
midvariances differ slightly, and we failed to detect this due to low power. ■

EXAMPLE. We repeat the last example, only now we sample from the two
distributions shown in Figure 8.3. (These two distributions are the normal and

Continued
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x
−10 −5 0 5 10

FIGURE 8.3 Two distributions that have equal variances. Testing the hypothesis
of equal variances, we should not reject, even though there is a striking difference
between the two distributions.

EXAMPLE. (Continued ) mixed normal shown in Figure 2.9.) Although there is a
clear and rather striking difference between these two distributions, the popu-
lation means and variances are equal. So we should not reject the hypothesis of
equal population variances, and with data generated by the author (with both
sample sizes equal to 25) we indeed fail to reject; the .95 confidence interval
returned by comvar2 is (−13.3, 20.8). In contrast, comparing the percentage
bend midvariances, the .95 confidence interval is (−28.7, −1.8); this interval
does not contain zero, so we reject. If we compare the biweight midvariances
with the command

pb2gen(x,y,est=bivar),

the resulting .95 confidence interval is (− 18.8, − 5.6) and again we reject. ■

These two examples merely illustrate that different methods can lead to different
conclusions. In the first example, it is certainly true that the two distributions being
compared are very similar, in the sense described in Section 2.7. But the tails of the
mixed normal differ from the tails of the normal, and in the context of measuring
stability or reliability, there is a difference that might have practical importance. This
difference happens to be detected in the first example of this subsection by comparing
variances but not when comparing the percentage bend midvariances or the biweight
midvariances. In fairness, however, for this particular situation the power associated
with comparing variances is not very high. However, in the second example, clearly
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the distributions differ considerably in terms of scale, as indicated in Figure 8.3.
Comparing the percentage bend midvariances or biweight midvariances happens to
detect this, but comparing the variances does not.

8.11 Measuring Effect Size

It has long been recognized that merely rejecting the hypothesis of equal means (or
any other measure of location) tells us virtually nothing about the magnitude of the
difference between the two groups (e.g., Cohen, 1994). If we reject at the .001 level
and the first group has a larger sample mean than the second, then we conclude that
the first group has the larger population mean. But this tells us nothing about the
magnitude of the difference. An article in Nutrition Today (19, 1984, 22–29) illustrates
the importance of this issue. A study was conducted on whether a particular drug
lowers the risk of heart attacks. Those in favor of using the drug pointed out that
the number of heart attacks in the group receiving the drug was significantly lower
than in the group receiving a placebo when testing at the α = .001 level. However,
critics of the drug argued that the difference between the number of heart attacks
was trivially small. They concluded that because of the expense and side effects of
using the drug, there is no compelling evidence that patients with high cholesterol
levels should be put on this medication. A closer examination of the data revealed
that the standard errors corresponding to the two groups were very small, so it was
possible to get a statistically significant result that was clinically unimportant.

Generally, how might we measure the difference between two groups? Three
approaches are considered in this section:

• Compute a confidence interval for the difference between some measure of
location.

• Use a so-called standardized difference.
• Use a global comparison of the distributions.

The first approach has already been discussed, so no additional comments are
given here. The second approach, which is commonly used, is typically implemented
by assuming the two groups have a common variance, which we label σ 2. That is,
σ 2

1 = σ 2
2 = σ 2 is assumed. Then the so-called standardized difference between the

groups is

� = µ1 − µ2

σ
. (8.33)

Assuming normality, � can be interpreted using results in Chapter 2. For example, if
� = 2, then the difference between the means is 2 standard deviations, and for normal
distributions we have some probabilistic sense of what this means. We estimate � with

�̂ = X̄1 − X̄2

sp
,

where sp is the pooled standard deviation given by Equation (8.2).
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Unfortunately, � suffers from some fundamental problems. First, if groups differ,
there is no reason to assume that the variances are equal. Indeed, some authorities
would argue that surely they must be unequal. We could test the hypothesis of equal
variances, but how much power is needed to justify the conclusion that variances
are equal if we fail to reject? Another possibility is to replace σ with the standard
deviation from one of the groups. That is, we might use

�1 = µ1 − µ2

σ1
or �2 = µ1 − µ2

σ2
,

which we would estimate, respectively, with

�̂1 = X̄1 − X̄2

s1
and �̂2 = X̄1 − X̄2

s2
.

But an even more serious problem is nonnormality.
The left panel of Figure 8.1 shows two normal distributions, where the difference

between the means is 1 (µ1 − µ2 = 1) and both standard deviations are 1. So

� = 1.

Cohen (1977) defines a large effect size as one that is visible to the naked eye,
and he concludes (p. 40) that for normal distributions, � = .8 is large, � = .5 is a
medium effect size, and� = .2 is small. Now look at the right panel of Figure 8.1. As is
evident, the difference between the two distributions appears to be very similar to the
difference shown in the left panel, so according to Cohen we again have a large effect
size. However, in the right panel, � = .3 because these two distributions are mixed
normals with variances 10.9. This illustrates the general principle that arbitrarily small
departures from normality can render the magnitude of � meaningless. In practical
terms, if we rely exclusively on � to judge whether there is a substantial difference
between two groups, situations will arise where we will grossly underestimate the
degree to which groups differ.

Here is another concern about � when trying to characterize how groups differ.
Look at Figure 8.3. These two distributions have equal means and equal variances,
but they differ in an obvious way that might have practical importance. Although the
difference between measures of location provides a useful measure of effect size, we
need additional ways of gaining perspective on the extent to which groups differ.

To describe one way of measuring the degree of separation between two groups,
imagine that we randomly sample an observation from one of the two distributions
in Figure 8.3 and that we get the value −5. Then Figure 8.3 indicates that this
observation probably came from the first group (the one with the probability density
function given by the solid line) because the probability of getting a value as low as
−5 from the second group is virtually zero. If we had gotten the value 0, it is more
likely that the observation came from the second group because the probability of
getting a value near zero is higher for the second group. More formally let f1(x) be
the equation for the solid line in Figure 8.3 (which is its probability density function)
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and let f2(x) be the equation for the dashed line. The likelihood that the value x came
from the first group is f1(x), and the likelihood that the value x came from the second
group is f2(x). So if f1(x) > f2(x), a natural rule is to decide that x came from group
1, and if f1(x) < f2(x) to decide that x came from group 2. We do not know f1(x) and
f2(x), but they can be estimated, as indicated in Section 3.7. The result is a relatively
effective method for deciding whether the value x came from group 1 or 2. (e.g.,
Silverman, 1986). There are many other strategies one might use to decide from
which group the observation came, but the method just described has been found to
be relatively effective for the problem at hand.

Let Q be the probability of correctly deciding whether a randomly sampled obser-
vation came from group 1 using the strategy just outlined. Then Q provides a measure
of the separation between the two groups. If the distributions are identical, then
Q = .5. If they are completely distinct, then Q = 1. To add perspective, if for
two normal distributions � = .8, which is typically labeled a large effect size, then
Q = .66. If � = .2, then Q = .55. But unlike �, Q does not change drastically with
small shifts away from a normal distribution. For example, for the left panel of Figure
8.1, Q = .66 and for the right panel Q = .69, so in both cases a large effect size is
indicated. This is in contrast to �, which drops from 1 to .3.

It is not being suggested that Q be used as a measure of effect size to the exclu-
sion of all other measures. Measuring the difference between two distributions is a
complex issue that often requires several perspectives. Also, rigid adherence to the
idea that Q = .66 is large and that Q = .55 is small is not being recommended.
What constitutes a large difference can vary from one situation to the next. We are
comparing Q to � merely to add perspective.

Currently, the most accurate estimate of Q is based on a rather complex bootstrap
method (called the .632 estimator). A description of this estimator in a much more
general context is given in Efron and Tibshirani (1993). The use of this bootstrap
method when estimating Q has been investigated by Wilcox and Muska (1999). Here
the computational details are relegated to Box 8.2. It is noted that the estimate of Q,
Q̂.632, can be less than .5 even though we know Q ≥ .5. So Q̂.632 < .5 suggests that
there is little or no difference between the groups.

BOX 8.2 A Bootstrap Estimate of Q

For each group, compute the kernel density estimator as described in
Section 3.7, and label the results f̂1(x) and f̂2(x), respectively. Set η̂(Xi1) = 1
if f̂1(Xi1) > f̂2(Xi1), otherwise η̂(Xi1) = 0. (That is, decide Xi1 came from
group 1 if f̂1(Xi1) > f̂2(Xi1).) In contrast, set η̂(Xi2) = 1 if f̂1(Xi2) < f̂2(Xi2),
otherwise η̂(Xi2) = 0. Generate a bootstrap sample from each group and let
η̂∗ be the resulting estimate of η. Repeat this process B times, yielding η̂∗

b ,

Continued
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BOX 8.2 (Continued ) b = 1, . . . , B. Let

ε̂1 = 1
n1

n1∑
i=1

1
B1i

∑
b∈C1i

η̂∗
b (X1i),

ε̂2 = 1
n2

n2∑
i=1

1
B2i

∑
b∈C2i

η̂∗
b (X2i).

For the bootstrap samples obtained from the first group, C1i is the set of
indices of the bth bootstrap sample not containing X1i, and B1i is the number
of such bootstrap samples. The notation b ∈ C1i means that b is an element of
C1i. That is, the second sum in the definition of ε̂1 is over all bootstrap samples
not containing X1i. Similarly, for the bootstrap samples from the second
group, C2i is the set of indices of the bth bootstrap sample not containing X2i,
and B2i is the number of such bootstrap samples. Let

Q̂.632,1 = .368Q̂ap1 + .632ε̂1,

where

Q̂ap1 = 1
n1

∑
η̂(X1i),

and define Q̂.632,2 in an analogous fashion. The .632 estimator, which is
computed by the S-PLUS function qhat in Section 8.11.1, is taken to be

Q̂.632 = 1
n1 + n2

(
n1Q̂.632,1 + n2Q̂.632,2

)
.

EXAMPLE. To illustrate a portion of the computations in Box 8.2, consider five
bootstrap samples from the first group with the following observation numbers:

Bootstrap sample

1 2 3 4 5

1 16 25 1 14
5 5 4 7 10

23 16 12 12 2
11 24 16 7 8
11 11 14 14 13
17 15 24 1 1
8 21 3 21 17

Continued
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EXAMPLE. (Continued ) So the first bootstrap sample (column 1) contains obser-
vation numbers 1, 5, 23, 11, 11, 17, and 8. That is, it contains the first
observation followed by the fifth observation, followed by the twenty-third
observation, and so on. Note that observation 1 appears in bootstrap samples
1, 4, and 5, but not in samples 2 and 3. That is, C11 = (2, 3), and B11 = 2,
the number of elements in C11 = (2, 3). So when i = 1, the second sum when
computing ε̂ is over the bootstrap samples b = 2 and 3. That is, when i = 1,
η̂∗

b (X1i) is being computed using Xi1 values that do not appear in the bootstrap
sample used to determine η̂∗

b . Similarly, the second observation appears in only
one bootstrap sample, the fifth. So C12 = (1, 2, 3, 4). That is, when i = 2, the
second sum is over b = 1, 2, 3, and 4. ■

8.11.1 S-PLUS Function qhat

The S-PLUS function

qhat(x,y)

estimates Q using the data stored in the S-PLUS variables x and y. (Execution time
can be quite high.)

EXAMPLE. For the alcohol data in Table 8.3 we rejected the hypothesis of
equal 20% trimmed means. If we use a standardized difference between the two
groups based on the means and the standard deviation of the first group, we get
�̂1 = .4. Using the standard deviation of the second group yields �̂2 = .6. So
taken together, and assuming normality, these results suggest a medium effect
size. The S-PLUS function qhat returns

qhat.632 = .61,

supporting the view that there is a medium difference between the two groups.
■

8.11.2 The Shift Function

Again, it currently seems that no single method for characterizing how groups differ
is satisfactory in all situations. A criticism of the methods covered so far is that they
do not capture some of the global details of how groups differ. For example, imagine
that two methods for treating depression are being compared and that the higher X
happens to be the more effective the method. Further assume that the distribution
associated with the first method is given by the solid line in Figure 8.3 and that the
distribution for the second group is given by the dashed line. Then in terms of the pop-
ulation means or any other measure of location, it makes no difference which method is
used. However, for the first method, there is a good chance that an individual will have
a level of effectiveness less than −3; but under the second method, the probability of
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an effectiveness level less than −3 is virtually zero. That is, we can avoid a poor effec-
tiveness rating by using method 2. Similarly, there is a good chance of an effectiveness
rating greater than or equal to 3 using method 1, but not with method 2. That is, the
relative merits of the methods change depending on where we look.

In this last example we could simply compare some measure of scale. But consider
the distributions in Figure 2.10, which have equal means and variances. How might we
summarize the extent to which these distributions differ? Doksum and Sievers (1976)
suggest the following strategy. Rather than just compare a single measure of location,
notice that we could, for example, compare the lower quartiles corresponding to these
two groups. That is, we compare low values in the first group to the corresponding
low values in the second. Of course, we can compare the upper quartiles as well. So,
for example, if the upper quartile of the first group is 12 and the upper quartile of the
second group is 8, we can say that the typical individual in the high end of the first
group is better off than the comparable person in the second group. Of course, there
is nothing sacred about the quartiles; we can use any quantile and get a more detailed
sense about how the groups differ in contrast to using a single measure of location. If
we compare the .25, .5, and .75 quantiles, we are comparing the quartiles in addition
to the median. But we might also compare the .1, .2, .3, .4, .6, .7, .8, and .9 quantiles
or any other set of quantiles we choose. To help convey the differences between all of
the quantiles, Doksum and Sievers (1976) suggest plotting the differences between
all quantiles versus the quantiles in the first group. So if xq is the qth quantile of the
first group, meaning that P(X ≤ xq) = q, the suggestion is to estimate all possible
quantiles for each group and plot xq versus yq − xq, where yq is the qth quantile of the
second group. If we do this for the two distributions shown in Figure 2.10, we get
Figure 8.4. This says that low-scoring individuals in the second group score higher
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FIGURE 8.4 Plot of the quantiles of the first group versus the difference between the
quantiles.
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than the comparable low-scoring individuals in the first group, up to about the value
1.9. For the middle range of values in the first group, namely, between 2 and 7,
the reverse is true; but for values greater than 7, again individuals in the second group
score higher than comparable individuals in the first.

Doksum and Sievers also indicate how to compute a confidence band for the
difference between all quantiles. That is, for each possible quantile, a confidence
interval for the difference between the quantiles is computed with the property that
with probability 1−α, it will be simultaneously true that all such confidence intervals
contain the true difference (yq − xq). Said another way, their method computes a
confidence interval for yq − xq for all values of q between 0 and 1, and if we reject
the hypothesis of equal quantiles when this interval does not contain zero, then the
probability of at least one Type I error is α. The computational details of their method
are not given here, but an S-PLUS function for applying the method is supplied.

8.11.3 S-PLUS Function sband

The S-PLUS function

sband(x,y)

computes an estimate of the difference between the quantiles using the data stored
in the S-PLUS variables x and y and plots these differences as a function of the
estimated quantiles associated with the first group, the first group being the data
stored in the S-PLUS variable x. (For more details about this function plus variations
of the method, see Wilcox, 1997a.)

EXAMPLE. Table 8.6 contains data from a study designed to assess the effects
of ozone on weight gain in rats. (These data were taken from Doksum & Sievers,
1976.) The experimental group consisted of 22 70-day-old rats kept in an ozone
environment for 7 days. A control group of 23 rats of the same age was kept in an
ozone-free environment. Storing the data for the control group in the S-PLUS
variable x, and storing the data for the ozone group in y, sband produces the
graph shown in Figure 8.5. The + indicates the location of the median for the
control group (the data stored in the first argument, x), and the lower and
upper quartiles are marked with an o to the left and right of the +. For example,
the median of the control group is M = 22.7, as indicated by the +, and
the difference between the median of the ozone group (which is 11.1) and the
control group is given by the solid line and is equal to −11.6. So based on the
medians it is estimated that the typical rat in the ozone group gains less weight
than the typical rat in the control group. However, the difference between the
upper quartiles is 26.95 − 17.35 = 9.6. Now there is more weight gain among
rats in the ozone group. Looking at the graph as a whole suggests that the effect
of ozone becomes more pronounced as we move along the x-axis, up to about
19, but then the trend reverses, and in fact in the upper end we see more weight

Continued
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TABLE 8.6 Weight Gain (in grams) of Rats in Ozone Experiment

Control: 41.0 38.4 24.4 25.9 21.9 18.3 13.1 27.3 28.5 −16.9

Ozone: 10.1 6.1 20.4 7.3 14.3 15.5 −9.9 6.8 28.2 17.9

Control: 26.0 17.4 21.8 15.4 27.4 19.2 22.4 17.7 26.0 29.4

Ozone: −9.0 −12.9 14.0 6.6 12.1 15.7 39.9 −15.9 54.6 −14.7

Control: 21.4 26.6 22.7

Ozone: 44.1 −9.0

x (first group)
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FIGURE 8.5 Example of a shift function. The dashed lines are confidence bands. The +
along the x-axis indicates the location of the median of the first group; and the o’s indicate
the lower and upper quartiles.

EXAMPLE. (Continued ) gain in the ozone group. If there are no differences
between the quantiles, the shift function should be a straight horizontal line
at 0. The dashed lines in Figure 8.5 mark the confidence band for the difference
between the quantiles. The hypothesis of equal quantiles is rejected if the lower
(upper) dashed line is above (below) zero. ■

Notice that the left end of the lower dashed line in Figure 8.5 begins at approx-
imately x = 22. This is because for x < 22, the lower confidence band extends
down to −∞. That is, the precision of the estimated differences between the quan-
tiles might be poor in this region based on the sample sizes used. Similarly, the
upper dashed line terminates around x = 27. This is because for x > 27, the upper
confidence band extends up to ∞.
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The methods listed in this section are not exhaustive. Another approach is to
examine a so-called quantile–quantile plot. If the groups have identical quantiles,
a plot of the quantiles should be close to a line having slope 1 and intercept zero.
Another approach to measuring effect size is the so-called overlapping coefficient. You
estimate the distributions associated with both groups and then compute the area
under the intersection of these two curves; see Clemons and Bradley (2000) for
recent results on how this might be done. An area of zero corresponds to no overlap,
and an area of 1 occurs when the distributions are identical and the groups do not
differ in any manner whatsoever. Another useful approach is to create a boxplot for
both groups on the same scale. This is easily done in S-PLUS. For example, the
command boxplot(x,y) will create a boxplot for the data in both x and y. Yet another
strategy is to estimate the probability that a randomly sampled observation from the
first group is less than a randomly sampled observation from the second. Details
about this approach will be covered in Chapter 15.

8.12 Comparing Correlations and Regression Slopes

Rather than compare measures of location or scale, situations arise where the goal is to
compare correlations or regression parameters instead. That is, for every individual
we have two measures and the goal is to determine whether the association for
the first group differs from the association for the second. For example, in a study
of schizophrenia, Dawson, Schell, Hazlett, Nuechterlein, and Filion (2000) were
interested in, among other things, the association between prepulse inhibition and
measures of schizophrenic symptoms. A portion of their study dealt with comparing
correlations of individuals with positive symptoms to the correlation of those with
negative symptoms. Also, comparing correlations or regression slopes is one strategy
for determining whether a third variable modifies the association between two other
variables. (See the example given at the end of this section.)

Methods for comparing correlations have been studied by Yu and Dunn (1982)
and Duncan and Layard (1973), but all of these methods are known to be rather
unsatisfactory, and using Fisher’s r-to-z transformation is unsatisfactory, for reasons
indicated in Section 6.5. Currently, the most effective procedure is to use the modified
percentile bootstrap method, but adjusted to take into account the total number
of observations. If we have n1 pairs of observations for the first group, yielding
a correlation of r1, and n2 pairs of observations for the second group, yielding a
correlation of r2, the goal is to test

H0 : ρ1 = ρ2,
the hypothesis that the two groups have equal population correlation coefficients. If
we reject, this indicates that the association differs for each group, but for reasons
outlined in Chapter 6, how the associations differ is vague and unclear.

To apply the modified percentile bootstrap method to the present problem, let
N = n1 + n2 be the total number of pairs of observations available. For the jth group,
generate a bootstrap sample of nj pairs of observations as described in Section 7.3.
Let r∗1 and r∗2 represent the resulting correlation coefficients and set

D∗ = r∗1 − r∗2 .
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Repeat this process 599 times, yielding D∗
1 , . . . ,D∗

599. Then a .95 confidence interval
for the difference between the population correlation coefficients (ρ1 − ρ2) is(

D∗
(�), D

∗
(u)

)
,

where � = 7 and u = 593 if N < 40; � = 8 and u = 592 if 40 ≤ N < 80; � = 11
and u = 588 if 80 ≤ N < 180; � = 14 and u = 585 if 180 ≤ N < 250; � = 15 and
u = 584 if N ≥ 250. If the resulting confidence interval does not contain zero, reject
the hypothesis of equal correlations. Note that this is just a simple modification of
the method used to compute a confidence interval for the slope of a regression line
that was described in Chapter 7.

When using least squares regression, the slopes can be compared in a similar
manner. To test

H0 : β1 = β2,

where β1 and β2 are the slopes corresponding to the two groups, simply proceed as
was done when working with Pearson’s correlation, except replace r with the least
squares estimate of the slope.

8.12.1 S-PLUS Functions twopcor and twolsreg

The S-PLUS function

twopcor(x1,y1,x2,y2)

computes a confidence interval for the difference between two Pearson correlations
corresponding to two independent groups using the modified bootstrap method just
described. The data for group 1 are stored in the S-PLUS variables x1 and y1, and
the data for group 2 are stored in x2 and y2. The S-PLUS function

twolsreg(x1,y1,x2,y2)

computes a confidence interval for the difference between the slopes based on the
least squares estimator described in Chapter 6.

EXAMPLE. In an unpublished study by L. Doi, there was interest in whether
a measure of orthographic ability (Y) is associated with a measure of sound
blending (X). Here we consider whether an auditory analysis variable (Z ) modifies
the association between X and Y. This was done by partitioning the pairs of
points (X, Y) according to whether Z ≤ 14 or Z > 14, and then entering the
resulting pairs of points into the S-PLUS function twopcor. The .95 confidence
interval for ρ1 − ρ2, the difference between the correlations, is (−0.64, 0.14).
This interval contains zero, so we would not reject the hypothesis of equal
correlations. If we compare regression slopes instead, the .95 confidence interval
is (−0.55, 0.18) and again we fail to reject. It is stressed, however, that this
analysis does not establish that the association does not differ for the two
groups under study. A concern is that power might be low when attention is

Continued
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EXAMPLE. (Continued ) restricted to Pearson’s correlation or least squares
regression. (Methods covered in subsequent chapters indicate that the measure
of auditory analysis does modify the association between orthographic ability
and sound blending.) ■

8.13 Comparing Two Binomials

This section considers the problem of comparing the probability of success associated
with two independent binomials. For example, if the probability of surviving an
operation using method 1 is p1, and if the probability of surviving using method 2 is
p2, do p1 and p2 differ, and if they do differ, by how much? As another example, to
what degree do men and women differ in whether they believe the President of the
United States is an effective leader?

Many methods have been proposed for comparing binomials, two of which are
described here. These two methods were chosen based on results in Storer and Kim
(1990) and Beal (1987), where comparisons of several methods were made. It is
noted, however, that competing methods have been proposed that apparently have
not been compared directly to the methods covered here (e.g., Berger, 1996; Coe &
Tamhane, 1993). The Storer–Kim method tests H0 : p1 = p2 using the calculations
shown in Box 8.3, and Beal’s method computes a 1−α confidence interval for p1 − p2
using the calculations in Box 8.4. The choice between these two methods is not
completely clear. An appeal of Beal’s method is that it provides a confidence interval
and the Storer–Kim method does not. Situations arise in subsequent chapters where
the Storer–Kim method has less power than Beal’s method when comparing multiple
groups of individuals, but when comparing two groups only, we find situations where
the Storer–Kim method rejects and Beal’s method does not.

BOX 8.3 Storer–Kim Methods for Comparing Two Independent Binomials

You observe r1 successes among n1 trials in the first group and r2 successes
among n2 trials in the second. The goal is to test H0 : p1 = p2. Note that
the possible number of successes in the first group is any integer, x, between
0 and n1, and for the second group it is any integer, y, between 0 and n2.
For any x between 0 and n1 and any y between 0 and n2, set

axy = 1

if ∣∣∣∣ x
n1

− y
n2

∣∣∣∣ ≥
∣∣∣∣ r1n1

− r2
n2

∣∣∣∣ ;
Continued
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BOX 8.3 (Continued )
otherwise

axy = 0.

Let

p̂ = r1 + r2
n1 + n2

.

The test statistic is

T =
n1∑

x=0

n2∑
y=0

axyb(x, n1, p̂)b( y, n2, p̂),

where

b(x, n1, p̂) =
(

n1
x

)
p̂x(1 − p̂)n1−x

and b( y, n2, p̂) is defined in an analogous fashion. You reject if

T ≤ α.

That is, T is the significance level.

BOX 8.4 Beal’s Method for Computing a Confidence Interval for p1 − p2

Following the notation in Box 8.3, let p̂1 = r1/n1 and p̂2 = r2/n2 and let c =
z2
1−α/2, where z1−α/2 is the 1 − α quantile of a standard normal distribution.

(So c is the 1 − α quantile of a chi-squared distribution with one degree of
freedom.) Compute

a = p̂1 + p̂2

b = p̂1 − p̂2

u = 1
4

(
1
n1

+ 1
n2

)

v = 1
4

(
1
n1

− 1
n2

)

V = u{(2 − a)a − b2} + 2v(1 − a)b

Continued
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BOX 8.4 (Continued )

A =
√

c{V + cu2(2 − a)a + cv2(1 − a)2}

B = b + cv(1 − a)
1 + cu

.

The 1 − α confidence interval for p1 − p2 is

B ± A
1 + cu

.

8.13.1 S-PLUS Functions twobinom and twobici

The S-PLUS function

twobinom(r1 = sum(x), n1 = length(x), r2 = sum(y), n2 = length(y),

x = NA, y = NA)

has been supplied to test H0 : p1 = p2 using the Storer–Kim method in Box 8.3. The
function can be used by specifying the number of successes in each group (arguments
r1 and r2) and the sample sizes (arguments n1 and n2), or the data can be in the form
of two vectors containing 1’s and 0’s, in which case you use the arguments x and y.
Beal’s method can be applied with the S-PLUS function

twobici(r1 = sum(x), n1 = length(x), r2 = sum(y), n2 = length(y), x = NA,

y = NA, alpha = 0.05)

EXAMPLE. If for the first group we have 7 successes among 12 observations,
for the second group we have 22 successes among 25 observations, the
command

twobinom(7,12,22,25)

returns a significance level of .044; this is less than .05, so we would reject with
α = .05. The .95 confidence interval for p1 − p2 returned by the command

twobici(7,12,22,25)

is (−0.61, 0.048); this interval contains zero, so in contrast to the Storer–Kim
method we do not reject the hypothesis H0 : p1 = p2, the only point being
that different conclusions might be reached depending on which method is
used. ■
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EXAMPLE. In Table 8.5 we see that 101 of the 156 females responded that
they want one sexual partner during the next 30 years. As for the 105 males
in this study, 49 gave the response 1. Does the probability of a 1 among males
differ from the probability among females? The S-PLUS function twobinom
returns a significance level of .0037, indicating that the probabilities differ even
with α = .0037. The command

twobici(49,105,101,156)

returns a .95 confidence interval of (−0.33, −0.04), so again we reject, but
there is some possibility that the difference between the two probabilities is
fairly small. ■

8.14 Exercises
1. Suppose that the sample means and variances are X̄1 = 15, X̄2 = 12, s21 = 8,

s22 = 24 with sample sizes n1 = 20 and n2 = 10. Verify that s2p = 13.14 and
T = 2.14 and that Student’s T test rejects the hypothesis of equal means with
α = .05.

2. For two independent groups of subjects, you get X̄1 = 45, X̄2 = 36, s21 = 4,
s22 = 16 with sample sizes n1 = 20 and n2 = 30. Assume the population
variances of the two groups are equal and verify that the estimate of this
common variance is 11.25.

3. Still assuming equal variances, test the hypothesis of equal means using the
data in Exercise 2 assuming random sampling from normal distributions. Use
α = .05.

4. Repeat the previous exercise, but use Welch’s test for comparing means.
5. Comparing the test statistics for the preceding two exercises, what do they

suggest regarding the power of Welch’s test versus Student’s T test for the
data being examined?

6. For two independent groups of subjects, you get X̄1 = 86, X̄2 = 80, s21 =
s22 = 25, with sample sizes n1 = n2 = 20. Assume the population variances of
the two groups are equal and verify that Student’s T rejects with α = .01.

7. Repeat Exercise 6 using Welch’s method.
8. Comparing the results of Exercises 6 and 7, what do they suggest about

using Student’s T versus Welch’s method when the sample variances are
approximately equal?

9. If for two independent groups, you get X̄t1 = 42, X̄t2 = 36, s2w1 = 25,
s2w2 = 36, n1 = 24, and n2 = 16, test the hypothesis of equal trimmed means
with α = .05.

10. Referring to Exercise 9, compute a .99 confidence interval for the difference
between the trimmed means.

11. For X̄1 = 10, X̄2 = 5, s21 = 21, s22 = 29, and n1 = n2 = 16, compute a
.95 confidence interval for the difference between the means using Welch’s
method, and state whether you would reject the hypothesis of equal means.
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12. Repeat Exercise 11, but use Student’s T instead.
13. Two methods for training accountants are to be compared. Students are

randomly assigned to one of the two methods. At the end of the course,
each student is asked to prepare a tax return for the same individual. The
returns reported by the students are

Returns

Method 1: 132 204 603 50 125 90 185 134

Method 2: 92 −42 121 63 182 101 294 36

Using Welch’s test, would you conclude that the methods differ in terms of
the average return? Use α = .05.

14. Repeat Exercise 13, but compare 20% trimmed means instead.
15. You compare lawyers to professors in terms of job satisfaction and fail to reject

the hypothesis of equal means or equal trimmed means. Does this mean it
is safe to conclude that the typical lawyer has about the same amount of job
satisfaction as the typical professor?

16. Responses to stress are governed by the hypothalamus. Imagine you have two
groups of subjects. The first shows signs of heart disease and the other does
not. You want to determine whether the groups differ in terms of the weight
of the hypothalamus. For the first group of subjects, with no heart disease, the
weights are

11.1, 12.2, 15.5, 17.6, 13.0, 7.5, 9.1, 6.6, 9.5, 18.0, 12.6.

For the other group, with heart disease, the weights are

18.2, 14.1, 13.8, 12.1, 34.1, 12.0, 14.1, 14.5, 12.6, 12.5, 19.8,

13.4, 16.8, 14.1, 12.9.

Determine whether the groups differ based on Welch’s test. Use α = .05.
17. Repeat Exercise 16, but use Yuen’s test with 20% trimmed means.
18. Use� and Q to measure effect size using the data in the previous two exercises.
19. Published studies indicate that generalized brain dysfunction may predispose

someone to violent behavior. Of interest is determining which brain areas may
be dysfunctional in violent offenders. In a portion of such a study conducted
by Raine, Buchsbaum, and LaCasse (1997), glucose metabolism rates of 41
murderers were compared to the rates for 41 control subjects. Results for the
left hemisphere, lateral prefrontal region of the brain yielded a sample mean of
1.12 for the controls and 1.09 for the murderers. The corresponding standard
deviations were 0.05 and 0.06. Verify that Student’s T = 2.45 and that you
reject with α = .05.

20. In the previous exercise, you rejected the hypothesis of equal means. What
does this imply about the accuracy of the confidence interval for the difference
between the population means based on Student’s T?

21. For the data in Table 8.6, if we assume that the groups have a common variance,
verify that the estimate of this common variance is s2p = 236.
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22. The sample means for the data in Table 8.6 are 22.4 and 11. If we test the
hypothesis of equal means using Student’s T, verify that T = 2.5 and that you
would reject with α = .05.

23. Verify that the .95 confidence interval for the difference between the means,
based on the data in Table 8.6 and Student’s T, is (2.2, 20.5). What are the
practical problems with this confidence interval?

24. Student’s T rejects the hypothesis of equal means based on the data in Table
8.6. Interpret what this means.

25. For the data in Table 8.6, the sample variances are 116.04 and 361.65, respec-
tively. Verify that the .95 confidence interval for the difference between the
means based on Welch’s method is (1.96, 20.83). Check this result with the
S-PLUS function yuen.

26. In the previous exercise you do not reject the hypothesis of equal variances.
Why is this not convincing evidence that the assumption of equal variances,
when using Student’s T, is justified?

27. The 20% Winsorized standard deviation (sw) for the first group in Table 8.6
is 1.365 and for the second group it is 4.118. Verify that the .95 confidence
interval for the difference between the 20% trimmed means, using Yuen’s
method, is (5.3, 22.85).

28. Create a boxplot of the data in Table 8.6, and comment on why the probability
coverage, based on Student’s T or Welch’s method, might differ from the
nominal α level.

29. For the self-awareness data in Table 8.4, verify that the S-PLUS function
yuenbt, with the argument tr set to 0, returns (−571.4, 302.5) as a .95
confidence interval for the difference between the means.

30. For the data in Table 8.4, use the S-PLUS function comvar2 to verify
that the .95 confidence interval for the difference between the variances is
(−1165766.8, 759099.7).

31. Describe a general situation where comparing medians will have more power
than comparing means or 20% trimmed means.

32. For the data in Table 8.4, verify that the .95 confidence interval for the
difference between the biweight midvariances is (−159234, 60733).

33. The last example in Section 8.9 dealt with comparing males to females regard-
ing the desired number of sexual partners over the next 30 years. Using
Student’s T, we fail to reject, which is not surprising because there is an
extreme outlier among the responses given by males. If we simply discard this
one outlier and compare groups using Student’s T or Welch’s method, what
criticism might be made even if we could ignore problems with nonnormality?
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ONE-WAY ANOVA

This chapter (and the three chapters that follow) addresses the common situation
where more than two groups are to be compared based on some measure of location.
We begin with a classic and commonly used method for comparing the means of
independent groups under the assumption of normality and homoscedasticity. We
have already seen serious practical problems with this approach when comparing
two groups only. For various reasons, problems are exacerbated when comparing
more than two groups, and indeed new problems are introduced. However, these
problems are not completely obvious and should be described in order to motivate
more modern methods. As usual, it is not assumed that the reader has any prior
knowledge about the classic approach to comparing groups based on means.

To help fix ideas, we begin with a concrete example. Clinical psychologists
have long tried to understand schizophrenia. One issue of interest to some
researchers is whether various groups of individuals differ in terms of measures of
skin resistance. In such a study, four groups of individuals were identified: (1) no
schizophrenic spectrum disorder, (2) schizotypal or paranoid personality disorder,
(3) schizophrenia, predominantly negative symptoms, (4) schizophrenia, predomi-
nantly positive symptoms. Table 9.1 presents the first 10 observations for each group,
where the entries are measures of skin resistance (in ohms) following presentation
of a generalization stimulus. (These data were supplied by S. Mednick, Dept. of
Psychology, University of Southern California.) Note that the actual sample sizes
in the study were larger; only the first 10 observations for each group are listed
here.

You could, of course, compare all pairs of groups in terms of some measure of
location. If, for example, you decide to use means, then you might simply compare
the mean of the first group to the mean of the second, then compare the mean of first
group to the mean of third, and so on. In symbols, you could test

H0 : µ1 = µ2,

H0 : µ1 = µ3,

H0 : µ1 = µ4,

285
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TABLE 9.1 Measures of Skin Resistance for Four Groups

No schiz. Schizotypal Schiz. neg. Schiz. pos.

0.49959 0.24792 0.25089 0.37667

0.23457 0.00000 0.00000 0.43561

0.26505 0.00000 0.00000 0.72968

0.27910 0.39062 0.00000 0.26285

0.00000 0.34841 0.11459 0.22526

0.00000 0.00000 0.79480 0.34903

0.00000 0.20690 0.17655 0.24482

0.14109 0.44428 0.00000 0.41096

0.00000 0.00000 0.15860 0.08679

1.34099 0.31802 0.00000 0.87532

X̄1 = 0.276039 X̄2 = 0.195615 X̄3 = 0.149543 X̄4 = 0.399699

s21 = 0.1676608 s22 = 0.032679 s23 = 0.0600529 s24 = 0.0567414

n1 = n2 = n3 = n4 = 10

H0 : µ2 = µ3,

H0 : µ2 = µ4,

H0 : µ3 = µ4,

using the methods in Chapter 8, or you might compare trimmed means or MOMs
or M-estimators instead. There is, however, a technical issue that arises if you do
this. Suppose there are no differences among the groups, in which case none of
the six null hypotheses just listed should be rejected. To keep things simple for the
moment, assume all four groups have normal distributions with equal variances, in
which case Student’s T test in Chapter 8 provides exact control over the probability
of a Type I error when testing any single hypothesis. Further assume that each of
the six hypotheses just listed are tested with α = .05. So for each hypothesis, the
probability of a Type I error is .05. But what is the probability of at least one Type I
error when you perform all six tests? That is, what is the probability of making one
or more mistakes and rejecting when in fact all pairs of groups being compared have
equal means?

If you perform each of the tests with α = .05, the probability of at least one
Type I error will be larger than .05. The more tests you perform, the more likely you
are to reject the hypothesis of equal means when in fact the groups do not differ.
A common goal, then, is to test all pairs of means so that the probability of one or
more Type I errors is α, where, as usual, α is some value you pick. Put another way,
when comparing all pairs of groups, the goal is to have the probability of making no
Type I errors equal to 1 − α.

There are two general approaches to the problem of controlling the probability
of committing one or more Type I errors. The first and most popular begins by
testing the hypothesis that all the groups being compared have equal means. In the
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illustration, the null hypothesis is written as

H0 : µ1 = µ2 = µ3 = µ4.

More generally, when comparing J groups, the null hypothesis is

H0 : µ1 = µ2 = · · · = µJ . (9.1)

If this hypothesis of equal means is rejected, you then make decisions about which
pairs of groups differ (using a method described in Chapter 12.) The second general
approach is to skip the methods in this chapter and use one of the appropriate
techniques in Chapter 12. There are circumstances under which this latter strategy
has practical advantages, but the details must be postponed for now.

9.1 Analysis of Variance (ANOVA) for Independent Groups

Assuming normality, Student’s T test of the hypothesis that two independent groups
have equal means can be extended to the problem of testing Equation (9.1), the
hypothesis that J independent groups have equal means. Even though the goal is
to test the hypothesis of equal means, the method is called analysis of variance, or
ANOVA; it was derived by Sir Ronald Fisher. Like Student’s T test, homoscedas-
ticity is assumed, meaning that all groups have a common variance. That is, if
σ 2

1 , . . . , σ 2
J are the population variances of the J groups, homoscedasticity means

that

σ 2
1 = σ 2

2 = · · · = σ 2
J . (9.2)

As was done with Student’s T test, this common variance will be labeled σ 2
p . As in

previous chapters, heteroscedasticity refers to a situation where not all the variances
are equal.

To help convey the strategy of the traditional ANOVA method, we temporarily
restrict attention to the situation where all of the sample sizes are equal. Box 9.1
summarizes the computations for this special case. (Box 9.2 covers the more general
case where samples sizes might be unequal.) Here the common sample size is labeled
n. In symbols, it is temporarily assumed that n1 = n2 = · · · = nJ = n. For the
schizophrenia data in Table 9.1, n = 10. You begin by computing the sample mean
and sample variance for each group. The average of the J sample means, called the
grand mean, is then computed and labeled X̄G. As indicated in Box 9.1,

X̄G = 1
J

(X̄1 + · · · + X̄J).

Next, you compute four quantities called the sum of squares between groups, the mean
squares between groups, the sum of squares within groups, and the mean squares within groups,
as described in Box 9.1. For convenience, these four quantities are labeled SSBG,
MSBG, SSWG, and MSWG, respectively. Finally you compute the test statistic, F,
which is just MSBG divided by MSWG. If F is sufficiently large, reject the hypothesis
of equal means.
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BOX 9.1 Summary of How to Compute the ANOVA F-Test with

Equal Sample Sizes

Goal
Test H0 : µ1 = · · · = µJ , the hypothesis of equal means among J independent
groups

Assumptions

• Random sampling
• Normality
• Equal variances

Computations
Compute the sample means, X̄1, . . . , X̄J , and sample variances, s21, . . . , s2J . Then
compute

X̄G = 1
J

∑
X̄j

(the grand mean),

N = nJ

(the total number of observations), and

SSBG = n
J∑

j=1

(X̄j − X̄G)2,

MSBG = SSBG
J − 1

,

SSWG = (n − 1)
J∑

j=1

s2j ,

MSWG = SSWG
N − J

= 1
J

J∑
j=1

s2j .

Test Statistic

F = MSBG
MSWG

Decision Rule
Reject H0 if F ≥ f , the 1 − α quantile of an F-distribution with ν1 = J − 1
and ν2 = N − J degrees of freedom.

When the null hypothesis is true, the exact distribution of F has been derived under
the assumptions of normality and equal variances. This means that you are able to
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f

0 1 2 3 4

.05

c = 2.87

FIGURE 9.1 An F-distribution with 3 and 36 degrees of freedom. The probability
that F is greater than 2.87 is .05, it is depicted by the area of the shaded region.

determine how large F must be in order to reject H0. The distribution of F, when the
null hypothesis is true, is called an F-distribution with degrees of freedom

ν1 = J − 1 and ν2 = N − J.

That is, the distribution depends on two quantities: the number of groups being
compared, J, and the total number of observations in all of the groups, N.

For the schizophrenia illustration, there are J = 4 groups with a total of N = 40
observations, so the degrees of freedom are ν1 = 4 − 1 = 3 and ν2 = 40 − 4 = 36.
Figure 9.1 shows the distribution of F with these degrees of freedom. The shaded
region indicates the critical region when α = .05; it extends from 2.87 to infinity.
That is, if you want the probability of a Type I error to be .05, then reject the null
hypothesis of equal means if F ≥ 2.87, which is the .95 quantile of the F-distribution.

More generally, reject if F ≥ f , where f is the 1 − α quantile of an F-distribution
with ν1 = J − 1 and ν2 = N − J degrees of freedom. Tables 5–8 in Appendix B
report critical values, f , for α = .1, .05, .025, and .01 and various degrees of freedom.
For example, with α = .05, ν1 = 6, ν2 = 8, Table 6 indicates that the .95 quantile
is f = 3.58. That is, there is a .05 probability of getting a value for F that exceeds
3.58 when in fact the population means are equal. For α = .01, Table 8 says that the
.99 quantile is 4.38. This means that if you reject when F ≥ 4.38, the probability of a
Type I error will be .01, assuming normality and that the groups have equal variances.

Now we illustrate the computations by computing F for the data in Table 9.1 and
determining whether the hypothesis of equal means should be rejected with α = .05.
From Table 9.1, the sample means are 0.276039, 0.195615, 0.149543, 0.399699.
The grand mean is just the average of these four sample means and is given by

X̄G = 1
4

(0.276039 + 0.195615 + 0.149543 + 0.399699) = 0.255224.
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There are n = 10 subjects for each group, so the sum of squares between groups is

SSBG = n
J∑

j=1

(X̄j − X̄G)2

= 10{(0.276039 − 0.255224)2 + (0.195615 − 0.255224)2

+ (0.149543 − 0.255224)2 + (0.399699 − 0.255224)2}
= 10(0.036)

= 0.36.

Therefore, the mean squares between groups is

MSBG = SSBG
J − 1

= 0.36
4 − 1

= 0.12.

With equal sample sizes, the mean squares within groups is just the average of the
sample variances:

MSWG = 1
J

(
s21 + · · · + s2J

)

= 1
4

(0.1676608 + 0.032679 + 0.0600529 + 0.0567414)

= .0793.

Therefore,

F = MSBG
MSWG

= 0.12
0.0793

= 1.51.

As already indicated, the degrees of freedom are ν1 = 3 and ν2 = 36 with a critical
value f = 2.87. Because 1.51 is less than 2.87, you do not reject the hypothesis
of equal means. This means that you do not have convincing empirical evidence
that the hypothesis of equal means is unreasonable. As was the case in previous
chapters, failing to reject the null hypothesis can be due to one of two reasons: The
null hypothesis is true, or the null hypothesis is false but you failed to detect this
because your sample size is too small to achieve reasonably high power. Methods for
assessing power prior to collecting data, assuming normality, are nicely summarized
by Cohen (1977). Section 9.3 describes a method for addressing power once data
are available.
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TABLE 9.2 ANOVA Summary Table

Source of Degrees of Sum of Mean

variation freedom squares square F

Between groups J − 1 SSBG MSBG F = MSBG
MSWG

Within groups N − J SSWG MSWG

Totals N − 1 SSBG + SSWG

TABLE 9.3 ANOVA Summary Table for the Data in Table 9.1

Source of Degrees of Sum of Mean

variation freedom squares square F

Between groups 3 0.36 0.12 1.51

Within groups 36 2.8542 0.0793

Totals 39 3.2142

Table 9.2 outlines what is called an analysis of variance summary table, a common way
of summarizing the computations associated with ANOVA. Table 9.3 illustrates the
summary table using the data in Table 9.1.

The computations outlined in Box 9.1 are convenient for describing certain concep-
tual details covered in Section 9.1.1. However, an alternative method for computing
F is a bit faster and easier and allows unequal sample sizes. The details are summarized
in Box 9.2.

EXAMPLE. The computations in Box 9.2 are illustrated with the following
data.

Group 1: 7, 9, 8, 12, 8, 7, 4, 10, 9, 6

Group 2: 10, 13, 9, 11, 5, 9, 8, 10, 8, 7

Group 3: 12, 11, 15, 7, 14, 10, 12, 12, 13, 14

We see that

A = 72 + 92 + · · · + 142 = 3026,

B = 7 + 9 + · · · + 14 = 290,

C = (7 + 9 + · · · + 6)2

10
+ (10 + 13 + · · · + 7)2

10

+ (13 + 11 + · · · + 14)2

10
= 2890,

Continued
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EXAMPLE. (Continued )

N = 10 + 10 + 10 = 30,

SST = 3026 − 2902

30
= 222.67,

SSBG = 2890 − 2902

30
= 86.67,

SSWG = 3026 − 2890 = 136,

MSBG = 86.67
3 − 1

= 43.335,

MSWG = 136
30 − 3

= 5.03.

So

F = 43.335
5.03

= 8.615.

■

BOX 9.2 Summary of the ANOVA F-Test With or Without

Equal Sample Sizes

Notation
Xij refers to the ith observation from the jth group, i = 1, . . . , nj; j =

1, . . . , J. (There are nj observations randomly sampled from the jth group.)

Computations

A =
∑∑

X2
ij

(In words, square each value, add the results, and call it A.)

B =
∑∑

Xij

(In words, sum all the observations and call it B.)

C =
J∑

j=1

1
nj

( nj∑
i=1

Xij

)2

Continued
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BOX 9.2 (Continued ) (Sum the observations for each group, square the result,
divide by the sample size, and add the results corresponding to each group.)

N =
∑

nj

SST = A − B2

N

SSBG = C − B2

N
SSWG = SST − SSBG = A − C

ν1 = J − 1

ν2 = N − J

MSBG = SSBG
ν1

MSWG = SSWG
ν2

Test Statistic

F = MSBG
MSWG

.

Decision Rule
Reject H0 if F ≥ f , the 1 − α quantile of an F-distribution with ν1 = J − 1
and ν2 = N − J degrees of freedom.

The degrees of freedom are ν1 = 3 − 1 = 2 and ν2 = 30 − 3 = 27. With α = .01
we see, from Table 8 in Appendix B, that the critical value is f = 4.6. Because
22.13 > 4.6, reject the hypothesis of equal means.

9.1.1 Some Conceptual Details

Some of the technical and conceptual details of the ANOVA F-test are important
because they play a role in commonly used or recommended methods for summarizing
how groups compare. It is also important to gain some sense of the strategy behind
the ANOVA F-test so that its performance, relative to other methods you might
use, is understood. Again, primarily for convenience, equal sample sizes are assumed.
That is, n1 = n2 = · · · nJ = n.

First look at the expression for SSBG in Box 9.1 and notice that the sum

J∑
j=1

(X̄j − X̄G)2,
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is similar to the expression for the sample variance s2 given in Chapter 3. Also recall
that the variance of the jth sample mean is σ 2

j /n; and because we assume all J groups
have equal variances, each sample mean has variance σ 2

p /n. Moreover, if the null
hypothesis of equal means is true, then

1
J − 1

J∑
j=1

(X̄j − X̄G)2,

is an unbiased estimate of the variance of the sample means. That is, by assumption,
X̄1, . . . , X̄J each have variance σ 2

p /n and so the sample variance of these sample means
estimates σ 2

p /n. In symbols,

E


 1

J − 1

J∑
j=1

(X̄j − X̄G)2


 = σ 2

p

n
.

Using our rules of expected values covered in Chapter 2, it follows that

E(MSBG) = σ 2
p .

That is, if the null hypothesis of equal means is true, MSBG is an unbiased estimate
of the assumed common variance.

Now consider the average of the sample variances:

1
J

J∑
j=1

s2j .

Assuming homoscedasticity, each of these sample variances is an unbiased estimate
of σ 2

p , so in particular the average of these sample variances is an unbiased estimate
of the assumed common variance. That is,

E(MSWG) = σ 2
p ,

regardless of whether the null hypothesis of equal means is true or false. So when the
null hypothesis is true, MSBG and MSWG should have similar values. In terms of the
test statistic, F = MSBG/MSWG, if the null hypothesis is true, then F will tend to be
close to 1. However, when the null hypothesis is false, MSBG will tend to be larger
than MSWG. In fact, the more unequal the population means, the larger MSBG will
be on average. In particular, it can be shown that

E(MSBG) = σ 2
p + n

∑
(µj − µ̄)2

J − 1
,

where µ̄ is the average of the population means being compared. That is,

µ̄ = 1
J

(µ1 + µ2 + · · · + µJ),
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6 8 10

FIGURE 9.2 If three groups have normal distributions with a common variance
and a common mean of 8, then the distributions will be identical, as shown. In this
case, the sample means (X̄1, X̄2, and X̄3) will tend to be close to 8.

which is called the population grand mean. Consequently, if F is larger than what we
would expect when the null hypothesis is true, the hypothesis of equal means should
be rejected.

Now we can understand why the method in this section is called analysis of variance
even though the goal is to test the hypothesis that the means have a common
value. In essence, the ANOVA F-test compares the variation among the sample
means to the variation within the groups. The variation among the sample means
is measured by MSBG, and the variance for each of the groups is estimated with
MSWG.

A graphical description of the strategy behind the ANOVA F-test might help.
First consider the situation where the null hypothesis is true. Because normality
and equal variances are assumed, all three groups will have identical distributions,
as shown in Figure 9.2. In contrast, Figure 9.3 shows what the distributions might
look like when the null hypothesis is false. The population means are 2, 4, and 8.
The distributions are spread out, versus the situation in Figure 9.2, meaning that the
sample means associated with the three groups are likely to be more spread out. In
Figure 9.2, all of the sample means will tend to be close to 8, but in Figure 9.3 the
sample mean for the first group will tend to be close to 2, the sample mean of the
second group will tend to be close to 8, and the sample mean of the third group
will tend to be close to 4. This means that if MSBG is large enough, which reflects
the variation among the sample means, the hypothesis of equal means should be
rejected.

Box 9.3 summarizes some properties of the ANOVA F-test that are sometimes
used in applied work, particularly when measuring effect size (the extent to which
the groups differ).
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Group 2

FIGURE 9.3 If the null hypothesis of equal means is false, the distributions of the
three groups, still assuming normality and a common variance, might appear as shown.
Compared to Figure 9.2, the sample means will tend to be more spread out.

BOX 9.3 Properties of the ANOVA Method When There Are

Equal Sample Sizes

Let µ̄ be the average of the population means being compared. That is,

µ̄ = 1
J

(µ1 + µ2 + · · · + µJ).

Then

E(MSBG) = σ 2
p + n

∑
(µj − µ̄)2

J − 1
.

When the null hypothesis of equal means is true,∑
(µj − µ̄)2 = 0,

so

E(MSBG) = σ 2
p .

In words, if the null hypothesis is true, MSBG estimates the common variance,
σ 2

p ; but if the null hypothesis is false, MSBG estimates a quantity that is larger
than σ 2

p .

Continued
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BOX 9.3 (Continued )
Regardless of whether the null hypothesis is true,

E(MSWG) = σ 2
p .

This means that if the null hypothesis is true, MSBG and MSWG estimate
the same quantity and therefore will tend to have similar values. If, however,
the null hypothesis is false, MSBG estimates a larger quantity than MSWG,
so if F = MSBG/MSWG is sufficiently large, reject the hypothesis of equal
means.

EXAMPLE. If the null hypothesis is true, there are two ways of estimating the
assumed common variance based on the results in Table 9.3. The first is with
MSBG. So for the data in Table 9.1, the estimate is MSBG = 0.12. That is,
if the hypothesis of equal means is true and all J groups have variances equal
to σ 2

p , then an estimate of σ 2
p is 0.12. MSWG provides a second estimate; it

estimates the assumed common variance regardless of whether the means are
equal, as indicated in Box 9.3. In the illustration, MSWG = 0.0793. ■

EXAMPLE. For the data in Table 9.1, is it reasonable to estimate the common
variance with MSBG, assuming that the groups do indeed have equal variances?
MSBG is a reasonable estimate of the assumed common variance if the null
hypothesis of equal means is true. As indicated in Table 9.3, F is not large enough
to reject the hypothesis of equal means, but this does not necessarily imply that
it is reasonable to assume the means are equal. It might be that the means are
not equal but that power was not high enough to detect this. Consequently,
there is not convincing evidence that MSBG provides a reasonable estimate of
the common variance. ■

We conclude this section by describing the conventional ANOVA model. Many
books use the notation

αj = µj − µ̄

to represent the difference between the mean of the jth group and the grand mean,

µ̄ = 1
J

∑
µj.

Another common notation is

εij = Xij − µ̄ − αj

= Xij − µj.
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In words, εij is the difference between the ith observation in the jth group and the
corresponding mean, µj. That is, εij is an error term: It measures the extent to which
Xij differs from the population mean of the jth group. Rearranging terms, this last
equation becomes

Xij = µ̄ + αj + εij. (9.3)

The ANOVA F-test is obtained by assuming that εij has a normal distribution with
mean 0 and variance σ 2

p .

9.2 Dealing with Unequal Variances

Improvements on the ANOVA F-test have been phenomenal, particularly in recent
years. These improvements deal with problems associated with sampling from non-
normal distributions and problems due to having unequal variances. Violating the
equal variance assumption associated with the F-test can result in poor power and
undesirable power properties, even when sampling from a normal distribution. We
saw in Chapter 8 that even if the population variances are unequal but the sample
sizes are equal, Student’s T controls Type I errors fairly well when sampling from
normal distributions except when sample sizes are very small. In contrast, problems
arise when using the ANOVA F-statistic even when the sample sizes are equal. That
is, in a very real sense, as the number of groups increases, practical problems with
unequal variances increase, even under normality.

Another serious problem is that even if distributions are normal but have unequal
variances, the power of the F-test can be low relative to more modern methods.
Moreover, it can be biased, meaning that the probability of rejecting can actually
drop as the population means become unequal, and there are concerns about its
ability to control the probability of a Type I error. For example, imagine you want
to compare four groups, the null hypothesis of equal means is true, and you want
the probability of a Type I error to be α = .05. Situations arise where the actual
probability of rejecting exceeds .27, due to comparing normal distributions that have
unequal variances. When comparing six groups, the probability of a Type I error can
exceed .3. That is, the actual probability of Type I error is substantially higher than
the stated level of .05.

A reasonable suggestion for trying to salvage the F-test is first to test the hypothesis
of equal variances and, if not significant, to assume equal variances and use F. This
strategy is known to fail (Markowski & Markowski, 1990; Moser, Stevens, & Watts,
1989; Wilcox, Charlin, & Thompson, 1986). As in Chapter 8, the basic problem is
that tests for equal variances do not have enough power to detect situations where
violating the assumption of equal variances causes practical problems. All indications
are that the F-test should be abandoned in favor of some more modern technique.
The two main reasons for including the F-test here are: (1) it is commonly used
because its practical problems are relatively unknown, and (2) it provides a relatively
simple first step toward describing effective methods for comparing groups.

As in Chapter 8, some authorities would argue that it is virtually impossible for
the null hypothesis of equal means to be true and simultaneously to have unequal
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variances. If we accept this argument, the probability of a Type I error is no longer
an issue. But this does not salvage the F-test, because problems controlling the
probability of a Type I error when variances differ reflects problems with bias.

9.2.1 Welch’s Test

Many methods have been proposed for testing the equality of J means without
assuming equal variances (e.g., S. Chen & Chen, 1998; Mehrotra, 1997; James, 1951;
Krutchkoff, 1988; Alexander & McGovern, 1994; Fisher, 1935, 1941; Cochran &
Cox, 1950; Wald, 1955; Asiribo & Gurland, 1989; Scariano & Davenport, 1986;
Matuszewski & Sotres, 1986; Pagurova, 1986; Weerahandi, 1995). Unfortunately,
all of these methods, plus many others, have been found to have serious practical
problems (e.g., Keselman, Wilcox, Taylor, & Kowalchuk, 2000; Keselman & Wilcox,
1999). One of these problems is poor control over the probability of a Type I error and
another is low power under nonnormality, a problem that cannot be escaped when
using sample means. The method described here performs reasonably well under
normality and heteroscedasticity and it forms the basis of a technique that deals with
nonnormality. The method is due to Welch (1951) and it generally outperforms the
F-test. The computational details are described in Box 9.4. (The S-PLUS function
t1way, described in Section 9.4.1, contains Welch’s test as a special case.)

BOX 9.4 Computations for Welch’s Method

Goal
Without assuming equal variances, test H0 : µ1 = µ2 = · · · = µJ , the
hypothesis that J independent groups have equal means.

Computations
Let

w1 = n1

s21
, w2 = n2

s22
, . . . , wJ = nJ

s2J
.

Next, compute

U =
∑

wj

X̃ = 1
U

∑
wjX̄j

A = 1
J − 1

∑
wj(X̄j − X̃)2

B = 2(J − 2)
J2 − 1

∑ (1 − wj
U )2

nj − 1

Continued
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BOX 9.4 (Continued )

Fw = A
1 + B

.

When the null hypothesis is true, Fw has, approximately, an F-distribution
with

ν1 = J − 1

and

ν2 =
[

3
J2 − 1

∑ (1 − wj/U)2

nj − 1

]−1

degrees of freedom.

Decision Rule
Reject H0 if Fw ≥ f , where f is the 1 − α quantile of the F-distribution with
ν1 and ν2 degrees of freedom.

EXAMPLE. Welch’s test is illustrated with the schizophrenia data in Table 9.1,
which lists the sample means and variances. Referring to Table 9.1 and Box 9.4,
we see that

w1 = 10
0.1676608

= 59.6, w2 = 10
0.032679

= 306.0,

w3 = 10
0.0600529

= 166.5, w4 = 10
0.0567414

= 176.2.

Therefore,

U = 59.6 + 306.0 + 166.5 + 176.2 = 708.3,

X̃ = 1
708.3

{59.6(0.276039) + 306(0.195615) + 166.5(0.149543)

+ 176.2(0.399699}
= .242,

A = 1
4 − 1

{59.6(0.276039 − 0.242)2 + 306(0.195615 − 0.242)2

+ 166.5(0.149543 − 0.242)2 + 176.2(0.399699 − 0.242)2}
= 2.18,

Continued
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EXAMPLE. (Continued )

B = 2(4 − 2)
42 − 1

{
(1 − 59.6/708.3)2

9
+ (1 − 306.0/708.3)2

9

+ (1 − 166.5/708.3)2

9
+ (1 − 176.2/708.3)2

9

}

= 0.0685,

Fw = 2.18
1 + 0.0685

= 2.04.

The degrees of freedom are

ν1 = 4 − 1 = 3

and

ν2 =
[

3
42 − 1

(0.256)
]−1

= 1
.0512

= 19.5

If you want the probability of a Type I error to be α = .05, then, referring to
Table 6 in Appendix B, the critical value is approximately 3.1. Because Fw = 2.04,
which is less than 3.1, you fail to reject the hypothesis of equal means. ■

For the data in Table 9.1, both Welch’s test and the ANOVA F-test fail to reject
the hypothesis of equal means. It is stressed, however, that in applied work, situa-
tions arise where Welch’s test rejects and the F-test does not. That is, in applied
work, it can matter which test you use. The following example illustrates this
point.

EXAMPLE. Consider the following data.

Group 1: 53 2 34 6 7 89 9 12
Group 2: 7 34 5 12 32 36 21 22
Group 3: 5 3 7 6 5 8 4 3

The ANOVA F-test yields F = 2.7, with a critical value of 3.24, so you
do not reject. (The significance level is .09.) In contrast, Welch’s test yields
W = 8, with a critical value of 4.2, so now you reject. (The significance level
is .009.) ■
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9.3 Judging Sample Sizes and Controlling Power When
Comparing Means

When you fail to reject the hypothesis of equal means, this might be because there are
small or no differences among the groups being compared. Another possibility is that
there is an important difference but that you failed to detect this due to low power.
Power might be low because the sample sizes are small relative to the variances.
Section 5.4.3 describes Stein’s method, which might be used to help distinguish
between these two possibilities. That is, given some data, you can determine how large
the sample sizes must be to achieve a desired amount of power. If the sample sizes you
used are small compared to what is needed to achieve high power, you have empirical
evidence that the null hypothesis should not be accepted. This section describes an
extension of Stein’s method, called the Bishop–Dudewicz ANOVA, for judging the
sample sizes when testing the hypothesis of equal means. Normality is assumed,
but unlike the ANOVA F-test, homoscedasticity is not required. In fact, under
normality, the method provides exact control over both Type I error probabilities
and power.

Imagine that you want power to be 1 − β for some given value of

δ =
∑

(µj − µ̄)2.

In case it helps, it is noted that if

µ1 = · · · = µJ−1 but µJ − µJ−1 = a,

then

δ = a2(J − 1)
J

.

That is, if J − 1 of the population means are equal but the other population mean
exceeds all of the other means by a, then we have a simple method for determining
δ that might help when trying to specify what δ should be. For example, if for three
groups you want power to be high when µ1 = µ2 = 5 but µ3 = 6, then a = 1
and δ = 2/3. Given δ, α, 1 − β, and nj observations randomly sampled from the jth
group, Box 9.5 shows how to determine Nj, the number of observations needed to
achieve the desired amount of power.

BOX 9.5 Judging Sample Sizes

Given α, δ, and nj observations randomly sampled from the jth group, deter-
mine Nj, the number of observations for the jth group needed to achieve
power 1 − β.

Continued
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BOX 9.5 (Continued )
Let z be the 1 − β quantile of the standard normal random distribution.

For the jth group, let νj = nj − 1. Compute

ν = J∑ 1
νj − 2

+ 2,

A = (J − 1)ν
ν − 2

, B = ν2

J
× J − 1

ν − 2
,

C = 3(J − 1)
ν − 4

, D = J2 − 2J + 3
ν − 2

,

E = B(C + D),

M = 4E − 2A2

E − A2 − 2A
,

L = A(M − 2)
M

,

c = Lf,

where f is the 1 − α quantile of an F-distribution with L and M degrees of
freedom,

b = (ν − 2)c
ν

,

A1 = 1
2

{√
2z +

√
2z2 + 4(2b − J + 2)

}
,

B1 = A2
1 − b,

d = ν − 2
ν

× δ

B1
.

Then

Nj = max

{
nj + 1,

[
s2j
d

]
+ 1

}
. (9.4)

For technical reasons, the number of observations needed for the jth group,
Nj, cannot be smaller than nj + 1. (The notation [s2j /d] means you compute
s2j /d and then round down to the nearest integer.)

EXAMPLE. Suppose you have three groups and you want power to be
1 − β = .8 if one of the three groups has a population mean 2.74 larger than

Continued
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EXAMPLE. (Continued ) the other two. That is, a = 2.74, so δ = 5. For
illustrative purposes, assume α = .05 and that the sample sizes are n1 = n2 =
n3 = 10, so ν1 = ν2 = ν3 = 9, and

ν = 3
1
7 + 1

7 + 1
7

+ 2 = 9.

The tedious calculations eventually yield a critical value of c = 8.15 and d =
.382. If the sample variance for the first group is s21 = 5.43, then N1 is equal to
either n1 + 1 = 11 or [s21/d] + 1 = [5.43/.382] + 1 = 15, whichever is larger.
In this particular case N1 = 15, suggesting that the original sample size of 10
is not quite satisfactory. If N1 = n1 + 1, this suggests that the available sample
sizes are reasonably adequate. If the second group has a sample variance of
s22 = 10, then N2 = 27, and if s23 = 20, N3 = 53. So for group 3, you have only
10 observations and about five times as many observations are required for the
specified amount of power. ■

The method just described indicates that an additional Nj − nj observations are
needed for the jth group to achieve the desired amount of power. It is noted that if
these additional observations can be obtained, the hypothesis of equal means can be
tested without assuming homoscedasticity. More precisely, assuming normality, the
probability of a Type I error will be exactly α, and power will be at least 1 − β using
the Bishop–Dudewicz ANOVA method outlined in Box 9.6.

BOX 9.6 Bishop–Dudewicz ANOVA

Goal
Test H0 : µ1 = · · · = µJ such that power is 1 − β and the probability of a
Type I error is α.

Assumptions
Normality and random sampling are assumed. It is further assumed that
initially you have nj observations randomly sampled from the jth group,
labeled Xij, i = 1, . . . , nj, you have computed Nj as described in Box 9.5, and
that you have then randomly sampled Nj−nj additional observations from the
jth group, which are labeled Xij, i = nj +1, . . . , Nj. For the jth group, compute

Tj =
nj∑

i=1

Xij,

Uj =
Nj∑

i=nj+1

Xij

Continued
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BOX 9.6 (Continued )

bj = 1
Nj


1 +

√√√√nj(Njd − s2j )

(Nj − nj)s2j


 ,

X̃j = Tj{1 − (Nj − nj)bj}
nj

+ bjUj.

The test statistic is

F̃ = 1
d

∑
(X̃j − X̃)2,

where

X̃ = 1
J

∑
X̃j.

Decision Rule
Reject H0 if F̃ ≥ c, where c is the critical value given in Box 9.5.

9.3.1 S-PLUS Functions bdanova1 and bdanova2

The S-PLUS function

bdanova1(x, alpha = 0.05, power = 0.9, delta = NA)

performs the calculations in Box 9.5 and returns the number of observations required
to achieve the specified amount of power. The argument power indicates how much
power you want and defaults to .9. The argument delta corresponds to δ, and the
data are stored in the S-PLUS variable x, which can be an n-by-J matrix or it can have
list mode. (In the latter case it is assumed that x[[1]] contains the data for group 1,
x[[2]] contains the data for group 2, and so on.)

The S-PLUS function

bdanova2(x1, x2, alpha = 0.05, power = 0.9, delta = NA)

performs the second-stage analysis once the additional observations are obtained, as
described in Box 9.6. Here x1 and x2 contain the first-stage and second-stage data,
respectively.

9.4 Trimmed Means

Welch’s heteroscedastic method for comparing means can be extended to trimmed
means. That is, the goal is to test

H0 : µt1 = µt2 = · · · = µtJ ,
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the hypothesis that J independent groups have a common population trimmed mean.
As in Chapter 8, trimming can greatly reduce practical problems (low power, poor
control over the probability of a Type I error, and bias) associated with methods for
comparing means.

Compute

dj = (nj − 1)s2wj

hj × (hj − 1)
,

wj = 1
dj

,

U =
∑

wj,

X̃ = 1
U

∑
wjX̄tj,

A = 1
J − 1

∑
wj(X̄tj − X̃)2,

B = 2(J − 2)
J2 − 1

∑ (1 − wj/U)2

hj − 1
,

Ft = A
1 + B

. (9.5)

When the null hypothesis is true, Ft has, approximately, an F-distribution with

ν1 = J − 1

ν2 =
[

3
J2 − 1

∑ (1 − wj/U)2

hj − 1

]−1

degrees of freedom. (For J > 2, the expression for ν2 reduces to 2(J − 2)/3B.)

DECIS ION RULE: Reject the hypothesis of equal population trimmed means if
Ft ≥ f , the 1 − α quantile of an F-distribution with ν1 and ν2 degrees of freedom.

9.4.1 S-PLUS Function t1way

The S-PLUS function

t1way(x,tr=.2,grp=NA)

tests the hypothesis of equal trimmed means using the method just described. The
argument x can have list mode or it can be a matrix. In the former case, the data
for group 1 are stored in the S-PLUS variable x[[1]], group 2 is stored in x[[2]],
and so on. In the latter case, x is an n-by-J matrix, where column 1 contains the
data for group 1, column 2 contains the data for group 2, and so forth. The argu-
ment tr indicates the amount of trimming; and when tr=0, this function performs
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Welch’s method for means described in Section 9.2.1. The argument grp allows you
to compare a selected subset of the groups. By default all groups are used. If you
set grp=c(1,3,4), then the trimmed means for groups 1, 3, and 4 will be com-
pared, with the remaining data ignored. The function returns the value of the test
statistic and the corresponding significance level (so specifying a value for α is not
necessary).

If you used the S-PLUS function selby (described in Section 1.1.6) to store your
data in list mode in the S-PLUS variable dat, note that you would use the S-PLUS
variable data$x to analyze your data. For example, to compare the groups based on
20% trimming, use the command t1way(dat$x).

EXAMPLE. For the data in Table 9.1 and using the default amount of trimming,
a portion of the output from t1way is

$TEST:
[1] 5.059361

$nu1:
[1] 3

$nu2:
[1] 10.82531

$siglevel:
[1] 0.01963949

This says that the test statistic Ft has a value of 5.06 and the significance level
is .0194. So in particular you would reject the hypothesis of equal trimmed
means with α = .05 or even .02. In contrast, as previously indicated, if we
compare means with Welch’s method or the ANOVA F-test, we fail to reject
with α = .05, illustrating that the choice of method can alter the conclusions
reached. Setting the argument tr to zero, t1way reports the results of Welch’s
test to be

$TEST:
[1] 2.038348

$nu1:
[1] 3

$nu2:
[1] 19.47356

$siglevel:
[1] 0.1417441

So switching from means to 20% trimmed means, the significance level drops
from .14 to about .02. ■
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EXAMPLE. It is common to find situations where we get a lower significance
level using trimmed means than using means. However, the reverse situation
can and does occur. This point is illustrated with data taken from Le (1994),
where the goal is to compare the testosterone levels of four groups of male
smokers: heavy smokers (group 1), light smokers (group 2), former smokers
(group 3), and nonsmokers (group 4). The data are:

G1 G2 G3 G4
.29 .82 .36 .32
.53 .37 .93 .43
.33 .77 .40 .99
.34 .42 .86 .95
.52 .74 .85 .92
.50 .44 .51 .56
.49 .48 .76 .87
.47 .51 .58 .64
.40 .61 .73 .78
.45 .60 .65 .72

The significance level using Welch’s method is .0017. Using 20% trimmed means
instead, the significance level is .029. One reason this is not surprising is that a
boxplot for each group reveals no outliers, and it can be seen that the estimated
standard errors for the means are smaller than the corresponding estimated
standard errors when 20% trimming is used instead. However, a boxplot for
the first group suggests that the data are skewed, which might be having an
effect on the significance level of Welch’s test beyond any differences among
the means. ■

9.4.2 Comparing Groups Based on Medians

The median has a relatively large standard error under normality and more generally
when sampling from a light-tailed distribution, but with a sufficiently heavy-tailed
distribution its standard error can be relatively small. If there is a specific interest in
comparing medians, the general method for trimmed means described in this section
is not recommended. That is, it is not recommended that you set tr=.5 when using
the S-PLUS function t1way in Section 9.4.1 because this results in using a relatively
poor estimate of the standard error of the median. A better approach is to estimate
the standard error of each median with the McKean–Schrader method in Chapter 4
and then to use a slight modification of the method for trimmed means. In particular,
let S2

j be the McKean–Schrader estimate of the squared standard error of Mj, the
sample median corresponding to the jth group ( j = 1, . . . , J). Let

wj = 1

S2
j
,
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U =
∑

wj,

M̃ = 1
U

∑
wjMj,

A = 1
J − 1

∑
wj(Mj − M̃)2,

B = 2(J − 2)
J2 − 1

∑ (1 − wj/U)2

nj − 1
,

Fm = A
1 + B

. (9.6)

DECIS ION RULE: Reject the hypothesis of equal population medians if Fm ≥ f , the
1 − α quantile of an F distribution with ν1 = J − 1 and ν2 = ∞ degrees of freedom.

9.4.3 S-PLUS Function med1way

The hypothesis of equal population medians can be tested with the S-PLUS function

med1way(x,grp),

where the argument grp can be used to analyze a subset of the groups if desired.
(See Section 9.4.1.) The function returns the value of the test statistic, Fm, and the
significance level.

9.5 Bootstrap Methods

This section describes how the percentile and bootstrap-t methods described in
Chapter 8 can be extended to testing hypotheses based on some robust measure of
location, such as MOM or trimmed means. With small sample sizes, all indications
are that some type of bootstrap method has a practical advantage over the method
for trimmed means in Section 9.4, assuming that we want a method that is sensitive
to differences among the trimmed means only. This is particularly true for the special
case where means are to be compared. With sufficiently large sample sizes, the method
in Section 9.4 can be used in place of the bootstrap when comparing trimmed means,
but it remains unclear how large the sample sizes must be. An argument for the
method in Section 9.4 over any bootstrap techniques we might use is that if the
former method rejects, we can be reasonably certain that the groups have different
distributions. A possible concern, however, is that nonbootstrap methods are more
sensitive to bias problems.

9.5.1 A Bootstrap-t Method

The bootstrap-t method in Chapter 8 can be extended to the problem of testing
H0 : µt1 = µt2 = · · · = µtJ , the hypothesis of equal trimmed means. The strategy is
to use the available data to estimate an appropriate critical value for the test statistic,
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Ft, described in Section 9.4. First, for the jth group, set

Yij = Xij − X̄tj.

That is, for the jth group, subtract the sample trimmed from each of the observed
values. Next, for the jth group, generate a bootstrap sample of size nj from the Yij
values, which we denote by Y∗

ij , i = 1, . . . , nj; j = 1, . . . , J. So, in effect, the Y∗
ij values

represent a random sample from distributions all of which have zero trimmed means.
That is, in the bootstrap world, when working with the Yij values, the null hypothesis
of equal trimmed means is true. Said another way, the observations are shifted so
that each has a trimmed mean of zero, with the goal of empirically determining an
appropriate critical value. The value of the test statistic Ft given by Equation (9.5)
and based on the Y∗

ij is labeled F∗
t . The strategy is to use a collection of F∗

t values to
estimate the distribution of Ft, the test statistic based on the original observations,
when the null hypothesis is true. If we can do this reasonably well, then in particular
we can determine an appropriate critical value.

To estimate the critical value we repeatedly generate bootstrap samples in the
manner just described, each time computing the test statistic F∗

t based on the Y∗
ij

values. Doing this B times yields F∗
t1, . . . , F∗

tB. Next, put these B values in ascending
order, yielding F∗

t(1) ≤ · · · ≤ F∗
t(B), and let u be the value of (1 − α)B rounded to the

nearest integer. Then the hypothesis of equal trimmed means is rejected if

Ft ≥ F∗
t(u). (9.7)

9.5.2 S-PLUS Function t1waybt

The S-PLUS function

(x, tr = 0.2, alpha = 0.05, grp = NA, nboot = 599)

performs the percentile-t bootstrap method for trimmed means that was just
described. The argument x is any S-PLUS variable containing data that are stored in
list mode or in a matrix. In the first case x[[1]] contains the data for group 1, x[[2]]
contains the data for group 2, and so on. If x is a matrix, column 1 contains the data
for group 1, column 2 the data for group 2, and so forth. The argument grp can be
used to analyze a subset of the groups. For example, grp=c(2,4,5) would compare
groups 2, 4, and 5 only. As usual, alpha is α and nboot is B, the number of bootstrap
samples to be used.

EXAMPLE. If the data in Table 9.1 are stored in the S-PLUS variable skin, the
command

t1waybt(skin,tr=0)

tests the hypothesis of equal means and returns

$test:
[1] 2.04

Continued
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EXAMPLE. (Continued )

$crit:
[1] 4.65336

Because the test statistic Ft = 2.04 is less than the bootstrap estimate of the
critical value, 4.65, you fail to reject. Note that in Section 9.2.1, the estimated
critical value, assuming normality, was 3.1. ■

9.5.3 Two Percentile Bootstrap Methods

There are many variations of the percentile bootstrap method that can be used to
test the hypothesis that J groups have a common measure of location, but only two
are described here. The first is related to a test statistic mentioned by Schrader and
Hettmansperger (1980) and studied by He, Simpson, and Portnoy (1990). Let θ be
any population measure of location, such as the 20% trimmed mean (µt) or a median,
and let θ̂j be the estimate of θ based on data from the jth group ( j = 1, . . . , J). The
test statistic is

H = 1
N

∑
nj(θ̂j − θ̄)2,

where N = ∑
nj and

θ̄ = 1
J

∑
θ̂j.

To determine a critical value, shift the empirical distributions of each group so that
the measure of location being used has a value of zero. That is, set Yij = Xij − θ̂j, as
was done in Section 9.5.1. Then generate bootstrap samples from each group in the
usual way from the Yij values and compute the test statistic based on the bootstrap
samples, yielding H∗. Repeat this B times, resulting in H∗

1 , . . . , H∗
B , and put these

B values in order, yielding H∗
(1) ≤ · · · ≤ H∗

(B). Then an estimate of an appropriate
critical value is H∗

(u), where u = (1 − α)B, rounded to the nearest integer, and H0
is rejected if H ≥ H∗

(u). (For simulation results on how this method performs when
comparing M-estimators, see Wilcox, 1993b.)

The second method stems from general results derived by Liu and Singh (1997).
Let

δjk = θj − θk,

where for convenience it is assumed that j < k. That is, the δjk values represent all
pairwise differences among the J groups. When working with means, for example, δ12
is the difference between the means of groups 1 and 2, and δ35 is the difference for
groups 3 and 5. If all J groups have a common measure of location (i.e., θ1 = · · · = θJ),
then in particular

H0 : δ12 = δ13 = · · · = δJ−1,J = 0 (9.8)
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is true. It can be seen that the total number of δ’s in Equation (9.8) is L = (J2 − J)/2.
For example, if J = 3, there are L = 3 values: δ12, δ13, and δ23.

For each group, generate bootstrap samples from the original values and compute
the measure of location of interest for each group. That is, the observations are not
centered as was done in the previous method. Said another way, bootstrap samples
are not generated from the Yij values but rather from the Xij values. Repeat this B
times. The resulting estimates of location are represented by

θ̂∗
jb( j = 1, . . . , J; b = 1, . . . , B)

and the corresponding estimates of δ are denoted by δ̂∗
jkb. (That is, δ̂∗

jkb = θ̂∗
jb − θ̂∗

kb.)
The general strategy is to determine how deeply 0 = (0, . . . , 0) is nested within
the bootstrap values δ̂∗

jkb (where 0 is a vector having length L). For the special case
where only two groups are being compared, this is tantamount to determining the
proportion of times θ̂∗

1b > θ̂∗
2b, among all B bootstrap samples, which is how we

proceeded in Section 8.8.1. But here we need special techniques for comparing more
than two groups.

There remains the problem of measuring how deeply 0 is nested within the boot-
strap values. Several strategies have been proposed for dealing with this problem
(e.g., Liu & Singh, 1997). But in terms of Type I error probabilities and power, it
remains unclear whether the choice among these methods is relevant for the problem
at hand. Accordingly, only one method is described, based on a very slight modifi-
cation of what is called the Mahalanobis distance. The details are relegated to Box 9.7,
assuming familiarity with basic matrix algebra. (Appendix C summarizes the matrix
algebra used in this book.)

BOX 9.7 Details About How to Test H0 Given by Equation (9.8)

Let δ̂jk = θ̂j − θ̂k be the estimate of δjk based on the original data and let δ̂∗
jkb =

θ̂∗
jb − θ̂∗

kb based on the bth bootstrap sample (b = 1, . . . , B). (It is assumed that
j < k.) For notational convenience, we rewrite the L = (J2 − J)/2 differences
δ̂jk as �̂1, . . . ,�̂L and the corresponding bootstrap values are denoted by �̂∗

	b
(	 = 1, . . . , L). Let

�̄∗
	 = 1

B

B∑
b=1

�̂∗
	b,

Y	b = �̂∗
	b − �̄∗

	 + �̂	,

(so the Y	b values are the bootstrap values shifted to have mean �̂	), and let

S	m = 1
B − 1

B∑
b=1

(Y	b − Ȳ	)(Ymb − Ȳm),

Continued
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BOX 9.7 (Continued )
where

Ȳ	 = 1
B

B∑
b=1

Y	b.

(Note that in the bootstrap world, the bootstrap population mean of �̄∗
	 is

known and is equal to �̂	.) Next, compute

Db =
(
∆̂

∗
b − ∆̂

)
S−1

(
∆̂

∗
b − ∆̂

)′
,

where ∆̂
∗
b = (�̂∗

1b, . . . ,�̂
∗
Lb) and ∆̂ = (�̂1, . . . ,�̂L). Db measures how

closely ∆̂b is located to ∆̂. If 0 (the null vector) is relatively far from ∆̂, reject.
In particular, put the Db values in ascending order, yielding D(1) ≤ · · · ≤ D(B),
and let u = (1 − α)B, rounded to the nearest integer.

Decision Rule
Reject H0 if

T ≥ D(u),

where

T = (0 − ∆̂)S−1(0 − ∆̂)′.

Notice that with three groups (J = 3), θ1 = θ2 = θ3 can be true if and only if
θ1 = θ2 and θ2 = θ3. So in terms of Type I errors, it suffices to test

H0 : θ1 − θ2 = θ2 − θ3 = 0

as opposed to testing

H0 : θ1 − θ2 = θ2 − θ3 = θ1 − θ3 = 0,

the hypothesis that all pairwise differences are zero. However, if groups differ,
then rearranging the groups could alter the conclusions reached if the first of these
hypotheses is tested. For example, if the groups have means 6, 4, and 2, then the
difference between groups 1 and 2, as well as between 2 and 3, is 2. But the difference
between groups 1 and 3 is 4, so comparing groups 1 and 3 could mean more power.
That is, we might not reject when comparing group 1 to group 2 and group 2 to
group 3, but we might reject if instead we compare group 1 to group 3 and group
2 to group 3. To help avoid different conclusions depending on how the groups are
arranged, all pairwise differences among the groups were used in Box 9.7.

Between the two methods described in this section, it currently seems that the
method in Box 9.7 is better in terms of Type I error probabilities when compar-
ing groups based on MOM. How these two methods compare when comparing
M-estimators has not been investigated as yet. The method in Box 9.7 can be used
to compare trimmed means; but with a relatively small amount of trimming, it seems
that the bootstrap-t method is preferable.
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For the special case where the goal is to compare medians, again the method in
Box 9.7 can be used. Whether it offers any practical advantages versus the method
for medians in Section 9.4.2 has not been investigated.

One last comment might be helpful. Before using the percentile bootstrap methods
described in this section, it is strongly recommended that the reader take into account
results described in Chapter 12. There is a common convention dictating how the
methods in this chapter are to be used in conjunction with those in Chapter 12, but
modern insights reveal that this convention can be detrimental in some situations.

9.5.4 S-PLUS Functions b1way and pbadepth

The S-PLUS function

b1way(x,est=onestep,alpha=.05,nboot=599)

performs the first percentile bootstrap method described in the previous subsection.
By default it uses an M-estimator (with Huber’s 
). The function

pbadepth(x,est=mom,con=0,alpha=.05,nboot=500,op=F,allp=T, . . .)

performs the other percentile bootstrap method and uses the MOM estimator by
default. As usual, the argument . . . can be used to reset default settings associated
with the estimator being used. The argument op determines how depth is measured.
By default, a Mahalanobis-type depth, outlined in Box 9.7, is used. (Setting op=T
results in the minimum covariance determinant method for measuring depth, which
is described in Chapter 13.) The argument allp indicates how the null hypothe-
sis is defined. Setting allp=T, all pairwise differences are used. Setting allp=F, the
function tests

H0 : θ1 − θ2 = θ2 − θ3 = · · · = θJ−1 − θJ = 0.

A negative consequence of using allp=T is that in some situations, S−1 in Box 9.7
cannot be computed. This problem appears to be rare with J ≤ 4, but it can occur
otherwise. This problem might be avoided by setting allp=F, but perhaps a better
way of dealing with this problem is to use the method described in Section 12.7.3.

9.6 Random Effects Model

The ANOVA methods covered so far deal with what is called a fixed effect design,
roughly meaning that we are interested in comparing J specific (fixed) groups. In con-
trast is a random effects design, where the goal is to generalize to a larger population of
groups. For example, consider a study where it is suspected that the personality of the
experimenter has an effect on the results. Among all the experimenters we might use,
do the results vary depending on who conducts the experiment? Here, the notion of
J groups corresponds to a sample of J experimenters, and for the jth experimenter
we have results on nj participants. The goal is not only to compare results among
the J experimenters but to generalize to the entire population of experimenters we
might use.
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TABLE 9.4 Estrone Assay Measurements of a Single
Blood Sample from Each of Five Postmenopausal Women

Individuals

Vial P1 P2 P3 P4 P5

1 23 25 38 14 46

2 23 33 38 16 36

3 22 27 41 15 30

4 20 27 38 19 29

5 25 30 38 20 36

6 22 28 32 22 31

7 27 24 38 16 30

8 25 22 42 19 32

9 22 26 35 17 32

10 22 30 40 18 31

11 23 30 41 20 30

12 23 29 37 18 32

13 27 29 28 12 25

14 19 37 36 17 29

15 23 24 30 15 31

16 18 28 37 13 32

A study reported by Fears, Benichou, and Gail (1996) provides another illustration
where 16 estrone measures (in pg/mL) from each of five postmenopausal women were
taken and found to be as shown in Table 9.4. Of interest was whether the estrone levels
vary among women. That is, we envision the possibility of taking many measures from
each woman, but the goal is not to simply compare the five women in the study but
rather to generalize to all women who might have taken part in the study.

A study by Cronbach, Gleser, Nanda, and Rajaratnam (1972, Chap. 6) provides
yet another example. The Porch index of communicative ability (PICA) is a test
designed for use by speech pathologists. It is intended for initial diagnosis of patients
with aphasic symptoms and for measuring the change during treatment. The oral
portion of the test consists of several subtests; but to keep the illustration simple,
only one subtest is considered here. This is the subtest where a patient is shown
an object (such as a comb) and asked how the object is used. The response by the
patient is scored by a rater on a 16-point scale. A score of 6, for example, signifies
a response that is “intelligible but incorrect,” and a score of 11 indicates a response
that is “accurate but delayed and incomplete.” A concern is that one set of objects
might lead to a different rating, compared to another set of objects one might use.
Indeed, we can imagine a large number of potential sets of objects that might be used.
To what extent do ratings differ among all of the potential sets of objects we might
employ?

Let µG = E(µj), where the expected value of µj is taken with respect to the process
of randomly sampling a group. If all groups have a common mean, then of course
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no matter which J groups you happen to pick, it will be the case that

µ1 = µ2 = · · · = µJ .

A more convenient way of describing the situation is to say that there is no variation
among all the population means. A way of saying this in symbols is that σ 2

µ = 0,
where

σ 2
µ = E(µj − µG)2,

and again the expectation is taken with respect to the process of randomly selecting
µj. That is, among all groups of interest, σ 2

µ is the variance of the population means.
Testing the hypothesis that all groups have the same mean is equivalent to testing

H0 : σ 2
µ = 0.

To test H0, the following assumptions are typically made:

1. Regardless of which group you choose, the observations within that group have
a normal distribution with a common variance, σ 2

p . That is, a homogeneity of
variance assumption is imposed.

2. The difference µj −µG has a normal distribution with mean 0 and variance σ 2
µ.

3. The difference Xij − µj is independent of the difference µj − µG.

Let MSBG and MSWG be as defined in Section 9.1, and, primarily for notational
convenience, temporarily assume equal sample sizes. That is,

n = n1 = · · · = nJ.

Based on the assumptions just described, it can be shown that

E(MSBG) = nσ 2
µ + σ 2

p

and that

E(MSWG) = σ 2
p .

When the null hypothesis is true, σ 2
µ = 0 and

E(MSBG) = σ 2
p .

That is, when the null hypothesis is true, MSBG and MSWG estimate the same
quantity, so the ratio

F = MSBG
MSWG

should have a value reasonably close to 1. If the null hypothesis is false, MSBG will
tend to be larger than MSWG; so if F is sufficiently large, reject. It can be shown
that F has an F-distribution with J − 1 and N − J degrees of freedom when the null
hypothesis is true, so reject if F ≥ f1−α , where f1−α is the 1 − α quantile of an
F-distribution with ν1 = J − 1 and ν2 = N − J degrees of freedom. Put more simply,
the computations are exactly the same as they are for the fixed effects ANOVA F-test



9.6 ■ Random Effects Model 317

TABLE 9.5 Hypothetical Data Used to
Illustrate a Random Effects Model

Dosage 1 Dosage 2 Dosage 3

7 3 9

0 0 2

4 7 2

4 5 7

4 5 1

7 4 8

6 5 4

2 2 4

3 1 6

7 2 1

in Section 9.1. The only difference is how the experiment is performed. Here the
levels are chosen at random, whereas in Section 9.1 they are fixed.

As mentioned in Section 9.1, the fixed effects ANOVA model is often written as

Xij = µ̄ + αj + εij,

where εij has a normal distribution with mean zero and variance σ 2
p . In contrast, the

random effects model is

Xij = µG + aj + εij,

where aj = µj − µG. The main difference between these two models is that in the
fixed effects model, αj is an unknown parameter, but in the random effects model, aj is
a random variable that is assumed to have a normal distribution.

EXAMPLE. Suppose that for three randomly sampled dosage levels of a drug,
you get the results shown in Table 9.5. To test the null hypothesis of equal
means among all dosage levels you might use, compute the degrees of freedom
and the F-statistic as described in Section 9.1. This yields ν1 = 2, ν2 = 27,
and F = .53, which is not significant at the α = .05 level. That is, among all
dosage levels you might have used, you fail to detect a difference among the
corresponding means. ■

9.6.1 A Measure of Effect Size

As pointed out in Chapter 8, if you test and reject the hypothesis of equal means, there
remains the issue of measuring the extent to which two groups differ. As already illus-
trated, the significance level can be unsatisfactory. From Chapter 8, it is evident that
finding an appropriate measure of effect size is a complex issue. When dealing with
more than two groups, the situation is even more difficult. Measures have been pro-
posed under the assumption of equal variances; they are far from satisfactory, but few
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alternative measures are available. However, measures derived under the assumption
of equal variances are in common use, so it is important to discuss them here.

Suppose you randomly sample a group from among all the groups you are interested
in, and then you randomly sample an individual and observe the outcome X. Let σ 2

X
be the variance of X. It can be shown that

σ 2
X = σ 2

µ + σ 2
p

when the assumptions of the random effects model are true and where σ 2
p is the

assumed common variance among all groups we might compare. A common measure
of effect size is

ρI = σ 2
µ

σ 2
µ + σ 2

p
,

which is called the intraclass correlation coefficient. The value of ρI is between 0 and 1
and measures the variation among the means relative to the variation among the
observations. If there is no variation among the means, in which case they have
identical values, ρI = 0.

To estimate ρI , compute

n0 = 1
J − 1

(
N −

∑ n2
j

N

)
,

where N = ∑
nj is the total sample size. The usual estimate of σ 2

µ is

s2u = MSBG − MSWG
n0

,

in which case the estimate of ρI is

rI = s2u
s2u + MSWG

= MSBG − MSWG
MSBG + (n0 − 1)MSWG

= F − 1
F + n0 − 1

For the data in Table 9.1 it was found that F = 6.05, n0 = 8, so

rI = 6.05 − 1
6.05 + 8 − 1

= .387.

That is, about 39% of the variation among the observations is due to the variation
among the means.

Donner and Wells (1986) compared several methods for computing an approxi-
mate confidence interval for ρI , and their results suggest using a method derived by
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Smith (1956). Smith’s confidence interval is given by

rI ± z1−α/2V,

where z1−α/2 is the 1 − α/2 quantile of the standard normal distribution, read from
Table 1 in Appendix B, and

V = √
A(B + C + D),

where

A = 2(1 − rI)2

n2
0

B = [1 + rI(n0 − 1)]2
N − J

C = (1 − rI)[1 + rI(2n0 − 1)]
(J − 1)

D = r2I
(J − 1)2

(∑
n2
j − 2

N

∑
n3
j + 1

N2

(∑
n2
j

)2
)

.

For equal sample sizes an exact confidence interval is available, still assuming that
sampling is from normal distributions with equal variances (Searle, 1971). Let f1−α/2
be the 1−α/2 quantile of the F-distribution with ν1 = J−1 and ν2 = N−J degrees of
freedom. Similarly, fα/2 is the α/2 quantile. Then an exact confidence interval for ρI is

(
F/f1−α/2 − 1

n + F/f1−α/2 − 1
,

F/fα/2 − 1
n + F/fα/2 − 1

)
,

where n is the common sample size. The tables in Appendix B give only the upper
quantiles of an F-distribution, but you need the lower quantiles when computing a
confidence interval for ρI . To determine fα/2,ν1,ν2 , you reverse the degrees of freedom
and look up f1−α/2,ν2,ν1 , in which case

fα/2,ν1,ν2 = 1
f1−α/2,ν2,ν1,

.

For example, if α = .05 and you want to determine f.025 with ν1 = 2 and ν2 = 21
degrees of freedom, you first look up f.975 with ν1 = 21 and ν2 = 2 degrees of
freedom. The answer is 39.45. Then f.025 with 2 and 21 degrees of freedom is the
reciprocal of 39.45. That is,

f.025,2,21 = 1
39.45

= .025.

EXAMPLE. Assume that professors are rated on their level of extroversion
and you want to investigate how their level of extroversion is related to student

Continued
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TABLE 9.6 Students’ Ratings

Group 1 Group 2 Group 3

3 4 6

5 4 7

2 3 8

4 8 6

8 7 7

4 4 9

3 2 10

9 5 9

X̄1 = 4.75 X̄2 = 4.62 X̄3 = 7.75

EXAMPLE. (Continued ) evaluations of a course. Suppose you randomly sample
three professors, and their student evaluations are as shown in Table 9.6. (In
reality one would of course want to sample more than three professors, but
the goal here is to keep the illustration simple.) To illustrate how a confidence
interval for ρI is computed, suppose you choose α = .05. Then n = 8, f.025 =
.025, f.975 = 4.42, F = 6.05, and the .95 confidence interval for ρI is

(
6.05
4.42 − 1

8 + 6.05
4.42 − 1

,
6.05
.025 − 1

8 + 6.05
.025 − 1

)
= (0.047, 0.967).

Hence, you can be reasonably certain that ρI has a value somewhere between
.047 and .967. Notice that the length of the confidence interval is relatively
large, since ρI has a value between 0 and 1. Thus, in this case, the data might
be providing a relatively inaccurate estimate of the intraclass correlation. ■

In some situations you might also want a confidence interval for σ 2
µ. Methods

for accomplishing this goal are available, but no details are given here. For a recent
discussion of this problem, see C. Brown and Mosteller (1991).

9.6.2 A Heteroscedastic Method

One serious concern about the conventional random effects model just described is
the assumption of equal variances. We have seen that violating this assumption can
result in poor power and undesirable power properties in the fixed effects design, and
this problem continues for the situation at hand. This section describes a method
derived by Jeyaratnam and Othman (1985) for handling unequal variances. (For an
alternative approach, see Westfall, 1988.) As usual, let s2j be the sample variance
for the jth group, let X̄j be the sample mean, and let X̄ = ∑

X̄j/J be the average of
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the J sample means. To test H0 : σ 2
µ = 0, compute

qj = s2j
nj

,

BSS = 1
J − 1

∑
(X̄j − X̄)2,

WSS = 1
J

∑
qj,

in which case the test statistics is

Fjo = BSS
WSS

with

ν1 =

(
J − 1

J

∑
qj

)2

(∑ qj

J

)2

+ J − 2
J

∑
q2
j

and

ν2 =
(∑

qj
)2

∑ q2
j

nj − 1

degrees of freedom. In the illustration regarding students’ ratings,

BSS = 3.13

WSS = .517

Fjo = 6.05.

(The numerical details are left as an exercise.) The degrees of freedom are ν1 = 1.85
and ν2 = 18.16, and the critical value is 3.63. Because 6.05 > 3.63, reject and
conclude there is a difference among students’ ratings.

When there are unequal variances, a variety of methods have been suggested for
estimating σ 2

µ, several of which were compared by P. Rao, Kaplan, and Cochran
(1981). Their recommendation is that when σ 2

µ > 0, σ 2
µ be estimated with

σ̂ 2
µ = 1

J

∑
	2

j (X̄j − X̃)2,

where

	j = nj

nj + 1

X̃ =
∑

	jX̄j∑
	j

.

Evidently there are no results on how this estimate performs under nonnormality.
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9.6.3 A Method Based on Trimmed Means

Under normality with unequal variances, the F-test can have a Type I error probability
as high as .179 when testing at the α = .05 level with equal sample sizes of 20 in each
group (Wilcox, 1994a). The Jeyaratnam–Othman test statistic, Fjo, has a probability
of a Type I error close to .05 in the same situation. However, when the normality
assumption is violated, the probability of a Type I error using both F and Fjo can
exceed .3. Another concern with both F and the Jeyaratnam–Othman method is
that there are situations where power decreases even when the difference among
the means increases. This last problem appears to be reduced considerably when
using trimmed means. Trimmed means provide better control over the probability
of a Type I error and can yield substantially higher power when there are outliers.
Of course there are exceptions. Generally no method is best in all situations. But if
the goal is to reduce the problems just described, an extension of the Jeyaratnam–
Othman method to trimmed means has considerable practical value. (Extensions of
the random effects model based on MOM have not been investigated as yet.) The
computational details are relegated to Box 9.8. Readers interested in the derivation
and technical details of the method are referred to Wilcox (1997a, Sec. 6.3).

BOX 9.8 Comparing Trimmed Means in a Random Effects Model

For each of the J groups, Winsorize the observations as described in Section
3.2.6 and label the results Yij. For example, if the observations for group 3 are:

37,14,26,17,21,43,25,6,9,11,

then the 20% Winsorized values are Y13 = 26, Y23 = 14, Y33 = 26, and so
forth. To test the hypothesis of no differences among the trimmed means, let
hj be the effective sample size of the jth group (the number of observations
left after trimming), and compute

Ȳj = 1
nj

nj∑
i=1

Yij,

s2wj = 1
nj − 1

∑
(Yij − Ȳj)2,

X̄t = 1
J

∑
X̄tj,

BSST = 1
J − 1

J∑
j=1

(X̄tj − X̄t)2,

WSSW = 1
J

J∑
j=1

nj∑
i=1

(Yij − Ȳj)2

hj(hj − 1)
,

Continued
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BOX 9.8 (Continued )

D = BSST
WSSW

.

Let

qj = (nj − 1)s2wj

J(hj)(hj − 1)
.

The degrees of freedom are estimated to be

ν̂1 =
(
(J − 1)

∑
qj
)2

(∑
qj
)2 + (J − 2)J

∑
q2
j

,

ν̂2 =
(∑

qj
)2

∑
q2
j /(hj − 1)

.

Reject if D ≥ f , the 1−α quantile of an F-distribution with ν̂1 and ν̂2 degrees
of freedom.

9.6.4 S-PLUS Function rananova

The S-PLUS function

rananova(x,tr=.2,grp=NA)

performs the calculations in Box 9.8. As usual, x is any S-PLUS variable that has
list mode or is a matrix (with columns corresponding to groups), tr is the amount
of trimming, which defaults to .2, and grp can be used to specify some subset of
the groups if desired. If grp is not specified, all groups stored in x are used. If the
data are not stored in a matrix or in list mode, the function terminates and prints
an error message. The function returns the value of the test statistic, D, which is
stored in rananova$teststat, the significance level is stored in rananova$siglevel, and
an estimate of a Winsorized intraclass correlation is returned in the S-PLUS variable
rananova$rho. This last quantity is like the intraclass correlation ρI , but with the
variance of the means and observations replaced by a Winsorized variance.

EXAMPLE. Assuming the data in Table 9.5 are stored in the S-PLUS variable
data, the command rananova(data) returns.

$teststat:
[1] 140.0983

$df:
[1] 3.417265 36.663787

Continued
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EXAMPLE. (Continued )

$siglevel:
[1] 0

$rho:
[1] 0.9453473

So we reject the hypothesis of equal trimmed means. The value for rho indi-
cates that about 95% of the Winsorized variance among the observations is
accounted for by the Winsorized variance of the Winsorized means. (For tech-
nical reasons, Winsorized means are used rather than trimmed means when
deriving a robust analog of the intraclass correlation coefficient.) The command
rananova(data,tr=0) compares means instead and returns

$teststat:
[1] 76.23691

$df:
[1] 3.535804 63.827284

$siglevel:
[1] 0

$rho:
[1] 0.782022

So again we reject. In the latter case the intraclass correlation is estimated to
be .78, meaning that the variation among the means is estimated to account for
78% of the variation among all possible observations. ■

9.7 Exercises

1. For the following data, assume that the three groups have a common population
variance, σ 2

p . Estimate σ 2
p .

Group 1 Group 2 Group 3

3 4 6
5 4 7
2 3 8
4 8 6
8 7 7
4 4 9
3 2 10
9 5 9

X̄1 = 4.75 X̄2 = 4.62 X̄3 = 7.75
s21 = 6.214 s22 = 3.982 s23 = 2.214
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2. For the data in the previous exercise, test the hypothesis of equal means using
the ANOVA F. Use α = .05.

3. For the data in Exercise 1, verify that Welch’s test statistic is Fw = 7.7 with
degrees of freedom ν1 = 2 and ν2 = 13.4. Then verify that you would reject
the hypothesis of equal means with α = .01. Check your results with the
S-PLUS function t1way in Section 9.4.1.

4. Construct an ANOVA summary table using the following data, as described in
Section 9.1, and then test the hypothesis of equal means with α = .05.

Group 1 Group 2 Group 3 Group 4

15 9 17 13
17 12 20 12
22 15 23 17

5. In the previous exercise, what is your estimate of the assumed common
variance?

6. For the data used in the preceding two exercises, verify that for Welch’s test,
Fw = 3.38 with ν1 = 3 and ν2 = 4.42.

7. Based on the results of the previous exercise, would you reject the hypothesis
of equal means with α = .1?

8. Why would you not recommend the strategy of testing for equal variances and,
if not significant, using the ANOVA F-test rather than Welch’s method?

9. For the data in Table 9.1, assume normality and that the groups have equal
variances. As already illustrated, the hypothesis of equal means is not rejected.
If the hypothesis of equal means is true, an estimate of the assumed common
variance is MSBG = .12, as already explained. Describe a reason why you
would prefer to estimate the common variance with MSWG rather than MSBG.

10. Five independent groups are compared, with n = 15 observations for each
group. Fill in the missing values in the following summary table.

Source of Degrees of Sum of Mean
variation freedom squares square F

Between groups ______ 50 ______ ______

Within groups ______ 150 ______

11. Referring to Box 9.2, verify that for the following data, MSBG = 14.4 and
MSWG = 12.59.

G1 G2 G3

9 16 7
10 8 6
15 13 9

6
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12. Consider J = 5 groups with population means 3, 4, 5, 6, and 7 and a common
variance σ 2

p = 2. If n = 10 observations are sampled from each group, deter-
mine the value estimated by MSBG, and comment on how this differs from the
value estimated by MSWG.

13. For the following data, verify that you do not reject with the ANOVA F-test
with α = .05 but that you do reject with Welch’s test. What might explain the
discrepancy between the two methods?

Group 1: 10 11 12 9 8 7
Group 2: 10 66 15 32 22 51
Group 3: 1 12 42 31 55 19

14. Given the following ANOVA summary table; verify that the number of groups
is J = 4, that the total number of observations is N = 12, and that with
α = .025 the critical value is 5.42.

Source of Degrees of Sum of Mean
variation freedom squares square F

Between groups 3 300 100 10

Within groups 8 80 10

Total 11 428

15. For the data in Table 9.1, the ANOVA F-test and Welch’s test were not signif-
icant with α = .05. Imagine that you want power to be .9 if the mean of one
of the groups differs from the others by .2. (In the notation of Section 9.3,
a = .2.) Verify that according to the S-PLUS function bdanova1, the required
sample sizes for each group are 110, 22, 40, and 38.

16. For the data in Table 9.1, use the S-PLUS function pbadepth to compare the
groups based on MOM. Verify that the significance level is .17.

17. Compare the groups in Table 9.4 with the S-PLUS function pbadepth. You
should find that the function terminates with an error if allp=T is used. How
might you deal with this problem given the goal of comparing groups based on
MOM?

18. Store the data in Table 9.7 in an S-PLUS variable having matrix mode with two
columns corresponding to the two columns shown. There are three groups,
with the first column indicating to which group the value in the second column
belongs. For example, the first row indicates that the value 12 belongs to
group 1 and the fourth row indicates that the value 42 belongs to group 3.
Use the S-PLUS function selby in Section 1.1.6 to separate the data into three
groups and then store it in list mode. Then compare the three groups with
Welch’s test, the method in Section 9.4 with 20% trimming, and then use the
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S-PLUS function pbadepth in Section 9.5.4 to compare the groups based on
MOM.

19. Based on the properties summarized in Box 9.3, how would you estimate

∑
(µj − µ̄)2?

20. For the data in Table 9.8, verify that the significance level, based on Welch’s
test, is .98. Use the S-PLUS Function t1way.

21. For the data in Table 9.8, use t1way to compare 20% trimmed means and verify
that the significance level is less than .01.

TABLE 9.7 Data for Exercise 18

G X

1 12

1 8

1 22

3 42

3 8

3 12

3 9

3 21

2 19

2 24

2 53

2 17

2 10

2 9

2 28

2 21

1 19

1 21

1 56

1 18

1 16

1 29

1 20

3 32

3 10

3 12

3 39

3 28

3 35

2 10

2 12
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TABLE 9.8 Hypothetical Data for Exercises 20–22

Group 1 Group 2 Group 3 Group 4 Group 5

10.1 10.7 11.6 12.0 13.6

9.9 9.5 10.4 13.1 11.9

9.0 11.2 11.9 13.2 13.6

10.7 9.9 11.7 11.0 12.3

10.0 10.2 11.8 13.3 12.3

9.3 9.1 11.6 10.5 11.3

10.6 8.0 11.6 14.4 12.4

11.5 9.9 13.7 10.5 11.8

11.4 10.7 13.3 12.2 10.4

10.9 9.7 11.8 11.0 13.1

9.5 10.6 12.3 11.9 14.1

11.0 10.8 15.5 11.9 10.5

11.1 11.0 11.4 12.4 11.2

8.9 9.6 13.1 10.9 11.7

12.6 8.8 10.6 14.0 10.3

10.7 10.2 13.1 13.2 12.0

10.3 9.2 12.5 10.3 11.4

10.8 9.8 13.9 11.6 12.1

9.2 9.8 12.2 11.7 13.9

8.3 10.9 11.9 12.1 12.7

93.0 110.6 119.6 112.8 112.8

96.6 98.8 113.6 108.0 129.2

94.8 107.0 107.5 113.9 124.8

22. For the data in the Table 9.8, use pbadepth with the argument allp set equal to
F and verify that the significance level is zero. The text mentioned a possible
concern with using allp=F. Why is this not an issue here?



10
TWO-WAY ANOVA

This chapter takes up an extension of the analysis of variance method described in
Chapter 9. As usual, we begin by describing basic concepts and summarizing the
standard approach based on means. Then robust methods are described.

10.1 The Basics of a Two-Way ANOVA Design

The basic concepts are illustrated with a study where the goal is to understand the
effect of diet on weight gains in rats. Specifically, four diets are considered that differ
in: (1) amounts of protein (high and low) and (2) the source of the protein (beef
versus cereal). The results for these four groups, reported in Table 10.1, are taken
from Snedecor and Cochran (1967). Different rats were used in the four groups, so
the groups are independent. The first column gives the weight gains of rats fed a
low-protein diet, with beef the source of protein. The next column gives the weight
gains for rats on a high-protein diet, again with beef the source of protein, and the
next two columns report results when cereal is substituted for beef.

It is convenient to depict the population means as shown in Table 10.2. Table 10.2
indicates, for example, that µ1 is the population mean associated with rats receiving a
low-protein diet from beef. That is, µ1 is the average weight gain if all of the millions
of rats we might study are fed this diet. Similarly, µ4 is the population mean for rats
receiving a high-protein diet from cereal.

The study just described is an example of what is called a two-way design, meaning
that there are two independent variables, or factors, being studied. Here, the first factor
is source of protein, which has two levels: beef and cereal. The second factor is amount
of protein, which also has two levels: low and high. A more precise description is that
you have a 2-by-2 design, meaning you have two factors, both of which have two
levels. If you compare three methods for increasing endurance and simultaneously
take into account three different diets, you have a two-way design with both fac-
tors having three levels. More succinctly, this is called a 3-by-3 design. The first
factor is method and the second is diet. As a final example, imagine you want to
compare four methods for teaching statistics and simultaneously take into account

329
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TABLE 10.1 Weight Gains (in grams) of Rats on One of Four Diets

Beef, Beef, Cereal, Cereal,
low high low high

90 73 107 98

76 102 95 75

90 118 97 56

64 104 80 111

86 81 98 95

51 107 74 88

72 100 74 82

90 87 67 77

95 117 89 86

78 111 58 92

X̄1 = 79.2 X̄2 = 100 X̄3 = 83.9 X̄4 = 85.9

TABLE 10.2 Depiction of the Population Means for Four Diets

Source

Amount Beef Cereal

High µ1 µ2

Low µ3 µ4

the amount of previous training in mathematics. If you categorize students as hav-
ing poor or good training in mathematics, you have a 4-by-2 design. That is, you
have a two-way design where the first factor is method of teaching and the sec-
ond is previous training. If you ignore previous training and consider only the four
methods, you have what is called a one-way design with four levels. This means you
have one factor of interest (method of training) and four different methods are to be
compared.

Returning to Table 10.2, you could compare these four groups by testing

H0 : µ1 = µ2 = µ3 = µ4,

the hypothesis that all of the means are equal. However, there are other comparisons
you might want to make. For example, you might want to compare the rats receiving
a high-protein versus low-protein diet, ignoring the source of the protein. To illustrate
how this might be done, imagine that the values of the population means are as shown
in Table 10.3. For rats on a high-protein diet, the mean is 45 when consuming beef
versus 60 when consuming cereal instead. If you want to characterize the typical
weight gain for a high-protein diet while ignoring source, a natural strategy is to
average the two population means, yielding (45 + 60)/2 = 52.5. That is, the typical
rat on a protein diet gains 52.5 grams. For the more general situation depicted by
Table 10.2, the typical weight gain on a high-protein diet would be (µ1 + µ2)/2.
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TABLE 10.3 Hypothetical Population Means for Illustrating
Main Effects and Interactions

Source

Amount Beef Cereal

High µ1 = 45 µ2 = 60

Low µ3 = 80 µ4 = 90

Similarly, the typical weight gain for a rat on a low-protein diet would be (µ3 +µ4)/2,
which for Table 10.3 is (80 + 90)/2 = 85 grams. Of course, you can do the same
when characterizing source of protein while ignoring amount. The typical weight
gain for a rat eating beef, ignoring amount of protein, is (45 + 80)/2 = 62.5, and for
cereal it is (60 + 90)/2 = 75.

As usual, you do not know the population means. What is needed is some way of
testing the hypothesis that weight gain is different for a high-protein diet versus a
low-protein diet, ignoring source of protein. One way of doing this is to test

H0 :
µ1 + µ2

2
= µ3 + µ4

2
,

the hypothesis that the average of the populations means in the first row of Table 10.2
is equal to the average for the second row. If this hypothesis is rejected, then there
is said to be a main effect for the amount of protein. More generally, a main effect for
the first factor (amount) is said to exist if

µ1 + µ2

2
�= µ3 + µ4

2
.

Similarly, you might want to compare source of protein while ignoring amount. One
way of doing this is to test

H0 :
µ1 + µ3

2
= µ2 + µ4

2
,

the hypothesis that the average of the means in the column for beef in Table 10.2 is
equal to the average for the cereal column. If this hypothesis is rejected, then there
is said to be a main effect for the source of protein. More generally, a main effect for
the second factor is said to exist if

µ1 + µ3

2
�= µ2 + µ4

2
.

Consider again the 4-by-2 design where you want to compare four methods for
teaching statistics and simultaneously take into account the amount of previous train-
ing in mathematics. The means corresponding to the eight groups can be written as
shown in Table 10.4. Main effects for the first factor (method) can be addressed by
testing the hypothesis that the averages of the means in each row have equal values.
That is, test

H0 :
µ1 + µ2

2
= µ3 + µ4

2
= µ5 + µ6

2
= µ7 + µ8

2
.
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TABLE 10.4 Depiction of the Population Means for a 4-by-2 Design

Previous Training

Method High Low

1 µ1 µ2

2 µ3 µ4

3 µ5 µ6

4 µ7 µ8

Typically this is referred to as the hypothesis of no main effects for factor A, where factor
A is a generic term for the first of the two factors under study. The hypothesis of no
main effects for the second factor, previous training, is

H0 :
µ1 + µ3 + µ5 + µ7

4
= µ2 + µ4 + µ6 + µ8

4
.

That is, the average of the means in column 1 is hypothesized to be equal to the
average of the means in column 2. This is called a hypothesis of no main effects for
the second factor, previous training. A generic term for the second factor is factor B,
and the hypothesis of no main effects for factor B refers to the hypothesis that the
averages of the means in each column have a common value.

10.1.1 Interactions

There is one other important feature of a two-way design. Consider again a 2-by-2
design where the goal is to compare high- and low-protein diets in conjunction
with two protein sources. Suppose the population means associated with the four
groups are as depicted in Table 10.3. Now look at the first row (high amount of
protein) and notice that the weight gain for a beef diet is 45 grams versus a weight
gain of 60 for cereal. As is evident, there is an increase of 15 grams. In contrast,
with a low-protein diet, switching from beef to cereal results in an increase of 10
grams on average. That is, in general, switching from beef to cereal results in an
increase for the average amount of weight gained, but the increase differs depending
on whether we look at high or low protein. This is an example of what is called
an interaction.

In a 2-by-2 design with means as shown in Table 10.2, an interaction is said to exist if

µ1 − µ2 �= µ3 − µ4.

In words, an interaction exists if for the first level of factor A the difference between
the means is not equal to the difference between the means associated with the second
level of factor A. No interaction means that

µ1 − µ2 = µ3 − µ4.

Various types of interactions arise and can be important when considering how
groups differ. Notice that in the beef-versus-cereal illustration as depicted in Table
10.3, there is an increase in the average weight gain when switching from beef to
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cereal for both high- and low-protein diets. For high protein there is an increase in
the population mean from 45 to 60, and for low protein there is an increase from 80
to 90. In both cases, though, the largest gain in weight is associated with cereal. This
is an example of what is called an ordinal interaction. In a 2-by-2 design as depicted in
Table 10.2, an ordinal interaction is said to exist if

µ1 > µ2 and µ3 > µ4

or if

µ1 < µ2 and µ3 < µ4.

In words, an interaction is said to be ordinal if the relative rankings remain the same; in
the illustration, cereal always results in the largest weight gain, regardless of whether
a low- or high-protein diet is used.

If there is a change in the relative rankings of the means, a disordinal interaction is said
to exist. As an illustration, imagine that the population means are as follows:

Source

Amount Beef Cereal

High 80 110
Low 50 30

Observe that for the first row (a high-protein diet), the average weight gain increases
from 80 to 110 as we move from beef to cereal. In contrast, for the low-protein diet,
the average weight gain decreases from 50 to 30. Moreover, when comparing beef to
cereal, the relative rankings change depending on whether a high- or low-protein diet
is used. For a high-protein diet, cereal results in the largest gain; for a low-protein diet,
beef results in a larger gain than cereal. This is an example of a disordinal interaction.
In general, for the population means in Table 10.2, a disordinal interaction is said to
exist if

µ1 > µ2 and µ3 < µ4

or if

µ1 < µ2 and µ3 > µ4.

Research articles often present graphical displays reflecting ordinal and disordinal
interactions. Figure 10.1 is an example based on the sample means just used to
illustrate a disordinal interaction. Along the x-axis we see the levels of the first factor
(high and low protein). The line extending from 110 down to 30 reflects the change
in means when the source of protein is beef. The other line reflects the change in
means associated with cereal. As is evident, the lines cross, which reflects a disordinal
interaction.

Now suppose the population means are as shown in Table 10.3. Regardless of
whether rats are given a high- or low-protein diet, cereal always results in the largest
average weight gain. The left panel of Figure 10.2 graphs the means. Observe that
the lines are not parallel, but they do not cross, indicating an ordinal interaction.
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FIGURE 10.1 Example of a disordinal interaction.
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FIGURE 10.2 Two types of interactions.

Now imagine that the population means are

Source

Amount Beef Cereal
High 50 60
Low 80 90

There is no interaction because for the first row, the means increase by 10 (from
50 to 60), and the increase is again 10 for the second row. The right panel of
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Figure 10.2 graphs the means. Notice that the lines are parallel. That is, when there
is no interaction, a graph of the means results in parallel lines.

Notice that in the discussion of ordinal versus disordinal interactions, attention was
focused on comparing means within rows. Not surprisingly, ordinal and disordinal
interactions can also be defined in terms of columns. Consider again the example
where the means are

Source

Amount Beef Cereal

High 80 110
Low 50 30

As previously explained, there is a disordinal interaction for rows. Now, however,
look at the population means in the first column and notice that 80 is greater than
50, and for the second column 110 is greater than 30. There is an interaction
because 80 − 50 �= 110 − 30. Moreover, the interaction is ordinal because for
beef, average weight gain is largest on a high-protein diet, and the same is true for a
cereal diet.

When graphing the means to illustrate a disordinal or ordinal interaction for rows,
the levels of factor A (high and low amounts of protein) were indicated by the
x-axis, as illustrated by Figures 10.1 and 10.2. When describing ordinal or disordinal
interactions by columns, now the x-axis contains the levels of the second factor,
which in this example is source of protein (beef versus cereal). Figure 10.3 illustrates
what the graph looks like for the means considered here.

Source of protein
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High Protein
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FIGURE 10.3 Graph of an ordinal interaction based on columns.
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Situations also arise where there is a disordinal interaction for both rows and
columns. For example, if the population means happen to be

Source

Amount Beef Cereal

High 80 110
Low 100 95

then there is a disordinal interaction for rows, because for the first row, cereal results
in the largest gain, but for the second row (low amount of protein) the largest gain
is for beef. Simultaneously, there is a disordinal interaction for columns, because for
the first column (beef), a low-protein diet results in the largest average gain, but for
the second column (cereal) a high-protein diet has the largest mean.

10.1.2 Interactions When There Are More
Than Two Levels

So far, attention has been focused on a 2-by-2 design. What does no interaction mean
when there are more than two levels for one or both factors? Basically, no interaction
means that for any two levels of factor A and any two levels of factor B, there is no
interaction for the corresponding cells. As an illustration, consider the population
means in Table 10.5. Pick any two rows — say, the first and third. Then pick any two
columns — say, the first and second. The population means for the first row and the
first and second columns are 10 and 20. For the third row, the means for these two
columns are 30 and 40; these four means are in boldface in Table 10.5. Notice that
for these four means, there is no interaction. The reason is that for the first row, the
means increase from 10 to 20, and for the third row the means increase from 30 to 40.
That is, for both rows there is an increase of 10 when switching from column 1 to
column 2. In a similar manner, again looking at rows 1 and 2, we see that there is an
increase of 20 as we move from column 1 to column 3. That is, there is no interaction
for these four means either. An interaction is said to exist among the JK means if any
two rows and two columns have an interaction.

EXAMPLE. Suppose the population means for a 3-by-4 design are

Factor B

Factor A Level 1 Level 2 Level 3 Level 4

Level 1 40 40 40 40
Level 2 40 40 40 40
Level 3 40 40 40 40

Is there an interaction? The answer is no, because regardless of which two
rows you pick, there is an increase of 0 as you move from any one column to
another. ■
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TABLE 10.5 Hypothetical Population Means Illustrating Interactions

Factor B

Factor A Level 1 Level 2 Level 3

Level 1 10 20 30

Level 2 20 30 40

Level 3 30 40 50

EXAMPLE. For the population means used in this last example, is there a main
effect for factor A or factor B? First consider factor A. As is evident, for any row
we pick, the average of the four means is 40. That is, the average of the means
is the same for all three rows; this means there is no main effect for factor A.
In a similar manner, there is no main effect for factor B, because the average of
the means in any column is again 40. ■

EXAMPLE. Suppose the population means for a 3-by-4 design are

Factor B

Factor A Level 1 Level 2 Level 3 Level 4

Level 1 40 40 50 60
Level 2 20 20 50 80
Level 3 20 30 10 40

Is there an interaction? Looking at level 1 of factor A, we see that the means
increase by 0 as we move from level 1 of factor B to level 2. The increase for
level 2 of factor A is again 0, so there is no interaction for these four means.
However, looking at level 1 of factor A, we see that the means increase by 10
as we move from level 1 to level 3 of factor B. In contrast, there is an increase
of 30 for level 2 of factor A, which means that there is an interaction. ■

10.2 Testing Hypotheses About Main Effects and Interactions

So far, attention has been focused on explaining the meaning of main effects and
interactions in terms of the population means. As usual, we do not know the
population means, and this raises the issue of how we might test the hypotheses
of no main effects and no interactions. As was the case in Chapter 9, the most
commonly used method is based on the assumption that all groups have normal
distributions with a common variance, which we again label σ 2

p .
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TABLE 10.6 Sample Means for Illustrating Main Effects and Interactions

Source

Amount Beef Cereal

Low X̄11 = 79.2 X̄12 = 83.9

High X̄21 = 100 X̄22 = 85.9

The computations begin by computing the sample mean corresponding to the jth
level of factor A and the kth level of factor B. The computations are easier to describe
if we switch notation and represent this sample mean with X̄jk. That is, X̄jk is the
sample mean corresponding to the jth level of factor A and the kth level of factor B.
For example, for the 2-by-2 study comparing high versus low protein and beef versus
cereal, X̄11 is the sample mean for level 1 of factor A and level 1 of factor B. Referring
to Table 10.1, X̄11 is the sample mean of the rats on a low-protein diet (level 1 of
factor A) that consume beef (level 1 of factor B). From the first column in Table 10.1,
the average weight gain for the 10 rats on this diet can be seen to be X̄11 = 79.2.
Level 1 of factor A and level 2 of factor B correspond to low protein from a cereal
diet. The data are given in the third column of Table 10.1, and the sample mean is
X̄12 = 83.9. For level 2 of factor A and level 1 of factor B, X̄21 = 100, the sample
mean of the values in column 2 of Table 10.1. Finally, X̄22 is the sample mean for level
2 of factor A and level 2 of factor B and is 85.9. These sample means are summarized
in Table 10.6.

Under normality and equal variances, a test of the hypothesis of no main effects
for factor A can be performed that provides exact control over the probability of a
Type I error. Box 10.1 summarizes the bulk of the calculations when all groups have a
common sample size, n. (The method is not robust to violations of assumptions, par-
ticularly when the sample sizes are unequal, so the computational details for handling
unequal samples are omitted.) In Box 10.1, s2jk is the sample variance corresponding
to the data used to compute X̄jk. As in the one-way design, MSWG estimates the
assumed common variance, σ 2

p .

BOX 10.1 Computations for a Two-Way Design

Assumptions

1. Random sampling
2. Normality

Continued
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BOX 10.1 (Continued )

3. Equal variances
4. Equal sample sizes

Notation
J is the number of levels for factor A, and K is the number of levels for factor B.

Computations

X̄G = 1
JK

J∑
j=1

K∑
k=1

X̄jk

(X̄G is the average of all JK sample means.)

X̄j. = 1
K

K∑
k=1

X̄jk

(X̄j. is the average of the sample means for the jth level of factor A.)

X̄.k = 1
J

J∑
j=1

X̄jk

(X̄.k is the average of the sample means for the kth level of factor B.)

Aj = X̄j. − X̄G, Bk = X̄.k − X̄G

Cjk = X̄jk − X̄j. − X̄.k + X̄G

SSA = nK
∑

A2
j , SSB = nJ

∑
B2

k

SSINTER = n
∑∑

C2
jk

MSWG = 1
JK

∑∑
s2jk, SSWG = (n − 1)JK(MSWG)

MSA = SSA
J − 1

, MSB = SSB
K − 1

MSINTER = SSINTER
(J − 1)(K − 1)

.

(Some books write MSINTER and SSINTER as MSAB and SSAB, respec-
tively, where AB denotes the interaction of factors A and B.)
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DECISION RULES: Once you complete the computations in Box 10.1, the relevant
hypotheses are tested as follows:

• Factor A. The hypothesis of no main effects for factor A is tested with

F = MSA
MSWG

,

and you reject if F ≥ f , the 1 − α quantile of an F-distribution with ν1 = J − 1
and ν2 = N − JK degrees of freedom.

• Factor B. The hypothesis of no main effects for factor B is tested with

F = MSB
MSWG

,

and you reject if F ≥ f , the 1 − α quantile of an F-distribution with ν1 = K − 1
and ν2 = N − JK degrees of freedom.

• Interactions. The hypothesis of no interactions is tested with

F = MSINTER
MSWG

,

and you reject if F ≥ f , the 1 − α quantile of an F-distribution with
ν1 = (J − 1)(K − 1) and ν2 = N − JK degrees of freedom.

In Box 10.1, one of the assumptions is normality. In terms of Type I errors, this
assumption can be violated if all groups have identically shaped distributions and
the sample sizes are reasonably large. This means, in particular, that the equal
variance assumption is true. Put another way, if you reject with the ANOVA
F-test, this indicates that the distributions differ, but it remains unclear how they
differ and by how much. One possibility is that you reject because the popu-
lations means differ. Another possibility is that you reject primarily because the
variances differ. As for power, again practical problems arise under very slight
departures from normality, for reasons discussed in previous chapters. (See in par-
ticular Section 5.5.) Generally, the more groups you compare, the more likely the
ANOVA F-tests described in this section will be unsatisfactory when indeed groups
differ.

Table 10.7 outlines a typical ANOVA summary table for a two-way design. The
notation SS in the first row stands for sum of squares, DF is degrees of freedom, and
MS is mean squares.
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TABLE 10.7 Typical ANOVA Summary Table for a Two-Way Design

Source SS DF MS F

A SSA J − 1 MSA = SSA
J−1 F = MSA

MSWG

B SSB K − 1 MSB = SSB
K−1 F = MSB

MSWG

INTER SSINTER ( J − 1)(K − 1) MSINTER = SSINTER
(J − 1)(K − 1) F = MSINTER

MSWG

WITHIN SSWG N − JK MSWG = SSWG
N−JK

EXAMPLE. Consider the following ANOVA summary table.

Source SS DF MS F

A 200 1 200 1.94
B 300 2 150 1.46
INTER 500 2 250 2.42
WITHIN 620 6 103

Referring to Table 10.7, we see that J − 1 corresponds to the value 1 in the
example, indicating that J −1 = 1, so the first factor has J = 2 levels. Similarly,
the second factor has K = 3 levels. Table 10.7 indicates that N − JK = 6, but
JK = 6, so N − JK = N − 6 = 6, and therefore N = 12. That is, the total
number of observations among the 6 groups is 12. The estimate of the common
variance is MSWG = 103. If we use α = .05, then from Table 6 in Appendix
B, the critical values for the three hypotheses are 5.98, 5.14, and 5.14. The
F-values are less than their corresponding critical values, so you do not reject
the hypotheses of no main effects for factor A, as well as for factor B and the
hypothesis of no interactions. ■

10.2.1 Inferences About Disordinal Interactions

It should be mentioned that if you reject the hypothesis of no interactions, simply
looking at the means is not enough to determine whether the interaction is ordinal or
disordinal. Consider again the study on weight gain in rats described at the beginning
of this section. Suppose that unknown to you, the population means are

Source

Amount Beef Cereal

Low µ1 = 60 µ2 = 60
High µ3 = 50 µ4 = 70
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There is an interaction, because 60 − 60 �= 50 − 70, but the interaction is not
disordinal. Further assume that you reject the hypothesis of no interactions based on
the following sample means:

Source
Amount Beef Cereal

Low X̄1 = 55 X̄2 = 45
High X̄3 = 49 X̄4 = 65

That is, you have correctly concluded that there is an interaction. Notice that the
sample means suggest that the interaction is disordinal, because 55 is greater than
45 but 49 is less than 65. By chance, rats on a low-protein diet with beef as the
source got a smaller sample mean versus rats on a low-protein diet with cereal as the
source. The important point is that to establish that a disordinal interaction exists for
the rows, you must also reject the hypotheses H0 : µ1 = µ2 and H0 : µ3 = µ4. If,
for example, µ1 = µ2, you do not have a disordinal interaction. Moreover, simply
rejecting the hypothesis of no interaction does not tell you whether you should reject
H0 : µ1 = µ2 or H0 : µ3 = µ4. Under normality, these hypotheses can be tested with
Student’s T test or Welch’s test, described in Chapter 8. If both of these hypotheses
are rejected and if

X̄1 > X̄2 and X̄3 < X̄4

or if

X̄1 < X̄2 and X̄3 > X̄4,

then you have empirical evidence that there is a disordinal interaction.
A similar strategy is used when checking for a disordinal interaction for columns.

That is, to establish that a disordinal interaction exists, you must reject both H0 : µ1 =
µ3 and H0 : µ2 = µ4. If both hypotheses are rejected and the sample means satisfy

X̄1 > X̄3 and X̄2 < X̄4

or if

X̄1 < X̄3 and X̄2 > X̄4,

you conclude that there is a disordinal interaction for the columns.
An illustration of how to detect a disordinal interaction is postponed until Chapter

12 because there is yet another technical issue that must be addressed: The more
tests you perform, the more likely you are to reject even if none of the means differs.
There is a large collection of methods for dealing with this issue, many of which will
be described in Chapter 12.

10.2.2 The Two-Way ANOVA Model

There is a classic model associated with the two-way ANOVA method that gener-
alizes the ANOVA model in Chapter 9. Although the traditional ANOVA method
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described in this section is relatively ineffective by modern standards, variations of
the model turn out to have value (as will be seen in Chapter 15), so it is briefly
described here.

The population grand mean associated with the JK groups is

µ̄ = 1
JK

J∑
j=1

K∑
k=1

µjk,

the average of the population means. Let

µj. = 1
K

K∑
k=1

µjk,

be the average of the K means among the levels of factor B associated with the jth
level of factor A. Similarly,

µ.k = 1
J

J∑
j=1

µjk

is the average of the J means among the levels of factor A associated with the kth
level of factor B. The main effects associated with factor A are

α1 = µ1. − µ̄, . . . ,αJ = µJ. − µ̄.

So the main effect associated with the jth level is the difference between the grand
mean and the average of the means associated with the jth level, namely, αj = µj. −µ̄.
There are no main effects for factor A if

α1 = · · · = αJ = 0.

As for factor B, main effects are defined by

β1 = µ.1 − µ̄, . . . ,βK = µ.K − µ̄.

The hypothesis of no main effects for factor B can be expressed as

H0 : β1 = · · · = βK = 0.

As for interactions, let

γjk = µjk − αj − βk − µ̄

= µjk − µj. − µ.k + µ̄.

Then no interactions means that

γ11 = γ12 = · · · = γJK = 0.
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Although the γjk terms are not very intuitive, they provide a convenient framework
for deriving an appropriate test of the hypothesis that there are no interactions among
any two levels of factor A and factor B.

The discrepancy between the ith observation in the jth level of factor A and kth
level of factor B, versus the terms just described, is

εijk = Xijk − µ̄ − αj − βk − γjk.

Rearranging terms yields

Xijk = µ̄ + αj + βk + γjk + εijk.

Assuming that the error term, εijk, has a normal distribution with a common variance
among the groups results in the standard two-way ANOVA model, which forms the
basis of the hypothesis-testing methods covered in this section.

Based on the model just described, it can be shown that

E(MSWG) = σ 2
p ,

E(MSA) = σ 2
p + nK

J − 1

∑
α2

j ,

E(MSB) = σ 2
p + nJ

K − 1

∑
β2

k ,

E(MSINTER) = σ 2
p +

n
∑∑

γ 2
jk

(J − 1)(K − 1)
.

10.3 Heteroscedastic Methods for Trimmed Means

The tests for main effects and interactions just described assume sampling is from
normal distributions with a common variance. As was the case in Chapters 8 and 9,
violating the assumption of equal variances causes serious practical problems. That
is, unequal variances can result in poor power properties (power can go down as
the means become unequal), unsatisfactory control over the probability of a Type
I error, and relatively low power versus other methods that might be used. The
main reason for describing the extension of the F-test to a two-way design is that
it is commonly used, but its practical problems are relatively unknown and many
popular computer programs have not yet added more modern methods to their
library of techniques. Another reason for describing the conventional method is to
be sure readers understand the basic concepts and goals associated with two-way
designs.

As in the previous two chapters, our goal is to work up to a method that gives
more satisfactory results when groups differ in some manner. In previous chapters
we addressed this problem by first describing a heteroscedastic method for means
and then indicating how to extend the method to trimmed means. Here, for brevity,
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we merely describe a heteroscedastic method for trimmed means that includes the
problem of comparing means as a special case. The method for dealing with main
effects stems from Welch’s method, described in Chapter 9. The test statistics for the
main effects are computed as shown in Box 10.2. For interactions, it currently seems
that an extension of a method derived by Johansen (1980), which is summarized in
Box 10.3, gives more satisfactory results.

BOX 10.2 A Heteroscedastic Test for Main Effects Based on

Trimmed Means

Let njk represent the number of observations for the jth level of factor A and
the kth level of B, and let hjk be the number of observations left after trimming.
Compute

Rj =
K∑

k=1

X̄tjk, Wk =
J∑

j=1

X̄tjk

djk =
(njk − 1)s2wjk

hjk(hjk − 1)

ν̂j =
(∑

k djk
)2

∑
k d2

jk/(hjk − 1)
, ω̂k =

(∑
jdjk
)2

∑
j d

2
jk/(hjk − 1)

rj = 1∑
k djk

, wk = 1∑
j djk

R̂ =
∑

rjRj∑
rj

, Ŵ =
∑

wkWk∑
wk

Ba =
J∑

j=1

1
ν̂j

(
1 − rj∑

rj

)2

, Bb =
K∑

k=1

1
ω̂k

(
1 − wk∑

wk

)2

Va = 1

(J − 1)
(
1 + 2(J−2)Ba

J2−1

)
J∑

j=1

rj(Rj − R̂)2,

Vb = 1

(K − 1)
(
1 + 2(K−2)Bb

K2−1

)
K∑

k=1

wk(Wk − Ŵ)2.

Continued
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BOX 10.2 (Continued ) The degrees of freedom for factor A are

ν1 = J − 1, ν2 = J2 − 1
3Ba

.

The degrees of freedom for factor B are

ν1 = K − 1, ν2 = K2 − 1
3Bb

.

Decision Rule
Reject the hypothesis of no main effect for factor A if Va ≥ f1−α , the 1 − α

quantile of an F-distribution with the degrees of freedom for factor A. Simi-
larly, reject for factor B if Vb ≥ f1−α , where now the degrees of freedom are
for factor B.

BOX 10.3 A Heteroscedastic Test of the Hypothesis of No Interactions

Based on Trimmed Means

Let

djk =
(njk − 1)s2wjk

hjk(hjk − 1)

Djk = 1
djk

D.k =
J∑

j=1

Djk, Dj. =
K∑

k=1

Djk

D ¨ =
∑

Djk

X̃tjk =
J∑

�=1

D�kX̄t�k

D.k
+

K∑
m=1

DjmX̄tjm

Dj.
−

J∑
�=1

K∑
m=1

D�mX̄t�m

D..
.

The test statistic is

Vab =
J∑

j=1

K∑
k=1

Djk(X̄tjk − X̃tjk)
2.

Continued
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BOX 10.3 (Continued ) Let c be the 1−α quantile of a chi-squared distribution
with ν = (J − 1)(K − 1) degrees of freedom. Reject if Vab ≥ c + h(c), where

h(c) = c
2(J − 1)(K − 1)

{
1 + 3c

(J − 1)(K − 1) + 2

}
A,

A =
∑

j

∑
k

1
fjk

{
1 − Djk

(
1
Dj.

+ 1
D.k

− 1
D..

)}2

fjk = hjk − 3.

(From Johansen, 1980, it might appear that this last expression should be
hjk − 1, but hjk − 3 gives better control over the probability of a Type I
error.)

10.3.1 S-PLUS Function t2way

The S-PLUS function

t2way( J, K, x, tr=0.2, grp=c(1:p), alpha=0.05, p=J*K)

tests the hypotheses of no main effects and no interaction, as described in Boxes 10.2
and 10.3. Here J and K denote the number of levels associated with factors A and B,
respectively. Like t1way, the data are assumed to be stored in x, which can be any
S-PLUS variable that is a matrix or has list mode. If stored in list mode, the first K
groups are assumed to be the data for the first level of factor A, the next K groups are
assumed to be data for the second level of factor A, and so on. In S-PLUS notation,
x[[1]] is assumed to contain the data for level 1 of factors A and B, x[[2]] is assumed
to contain the data for level 1 of factor A and level 2 of factor B, and so forth. If, for
example, a 2-by-4 design is being used, the data are stored as follows:

Factor B

Factor A
x[[1]] x[[2]] x[[3]] x[[4]]
x[[5]] x[[6]] x[[7]] x[[8]]

For instance, x[[5]] contains the data for the second level of factor A and the first
level of factor B.

If the data are stored in a matrix, the first K columns are assumed to be the data for
the first level of factor A, the next K columns are assumed to be data for the second
level of factor A, and so on.

If the data are not stored in the assumed order, the argument grp can be
used to correct this problem. As an illustration, suppose the data are stored
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as follows:

Factor B

Factor A
x[[2]] x[[3]] x[[5]] x[[8]]
x[[4]] x[[1]] x[[6]] x[[7]]

That is, the data for level 1 of factors A and B are stored in the S-PLUS variable
x[[2]], the data for level 1 of A and level 2 of B are stored in x[[3]], and so forth. To
use t2way, first enter the S-PLUS command

grp<-c(2,3,5,8,4,1,6,7).

Then the command t2way(2,4,x,grp=grp) tells the function how the data are ordered.
In the example, the first value stored in grp is 2, indicating that x[[2]] contains the
data for level 1 of both factors A and B, the next value is 3, indicating that x[[3]]
contains the data for level 1 of A and level 2 of B, and the fifth value is 4, meaning
that x[[4]] contains the data for level 2 of factor A and level 1 of B. As usual,
tr indicates the amount of trimming, which defaults to .2, and alpha is α, which
defaults to .05. The function returns the test statistic for factor A, Va, in the S-PLUS
variable t2way$test.A, and the significance level is returned in t2way$sig.A. Similarly,
the test statistics for factor B, Vb, and interaction, Vab, are stored in t2way$test.B
and t2way$test.AB, respectively, with the corresponding significance levels stored in
t2way$sig.B and t2way$sig.AB.

As a more general example, the command

t2way(2,3,z,tr=.1,grp=c(1,3,4,2,5,6),alpha=.1)

would perform the tests for no main effects and no interactions for a 2-by-3 design
for the data stored in the S-PLUS variable z, assuming the data for level 1 of factors
A and B are stored in z[[1]], the data for level 1 of A and level 2 of B are stored in
z[[3]], and so on. The analysis would be based on 10% trimmed means and α = .1.

Note that t2way contains an argument p. Generally this argument can be ignored;
it is used by t2way to check whether the total number of groups being passed to the
function is equal to JK. If JK is not equal to the number of groups in x, the function
prints a warning message. If, however, you want to perform an analysis using some
subset of the groups stored in x, this can be done simply by ignoring the warning
message. For example, suppose x contains data for 10 groups but that you want to
use groups 3, 5, 1, and 9 in a 2-by-2 design. That is, groups 3 and 5 correspond to
level 1 of the first factor and levels 1 and 2 of the second. The command

t2way(2,2,x,grp=c(3,5,1,9))

accomplishes this goal.
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EXAMPLE. A total of N = 50 male Sprague–Dawley rats were assigned to one
of six conditions, corresponding to a 2-by-3 ANOVA. (The data in this example
were supplied by U. Hayes.) The two levels of the first factor have to do with
whether an animal was placed on a fluid-restriction schedule one week prior to
the initiation of the experiment. The other factor had to do with the injection
of one of three drugs. One of the outcome measures was sucrose consumption
shortly after acquisition of a LiCl-induced conditioned taste avoidance. The
output from t2way appears as follows:

$test.A:
[1] 11.0931

$sig.A:
[1] 0.001969578

$test.B:
[1] 3.764621

$sig.B:
[1] 0.03687472

$test.AB:
[1] 2.082398

$critinter:
[1] 7.385763

So based on 20% trimmed means, there is a main effect for both factors A and
B, but no interaction is detected. ■

10.3.2 S-PLUS Function selby2

Chapter 1 mentioned an S-PLUS function called selby that is aimed at assisting with
data manipulation when data are stored in a matrix, with some particular column
indicating group membership. The function separates the data into groups and stores
it in list mode, which in turn can be used by the S-PLUS functions in Chapter 9. For
a two-way design, situations arise where one column of a matrix indicates the levels
of factor A and another column indicates the levels of factor B. For example, suppose
the data are stored in a file as follows:

A B X
1 3 46
1 2 23
2 1 21
1 1 35...
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That is, the first column indicates the level of factor A, the second column indicates
the level of factor B, and the third column is the outcome of interest. So here, the first
row of data indicates that for level 1 of factor A and level 3 of factor B, the outcome
is 46. Suppose these data have been stored in an S-PLUS matrix m. The problem is
storing the data so that they can be fed into the function t2way. The S-PLUS function

selby2(m,grpc,coln=NA)

is designed to sort the data in the matrix m into groups and store them in list mode,
which in turn can be used in t2way. The argument grpc is a vector containing two
values indicating which columns of the matrix m reflect the levels of factors A and B.
For example,

selby2(m,grpc=c(1,2),coln=3)

indicates that there are two factors with the levels of the first factor stored in column 1,
the levels of factor B stored in column 2, and the outcome variable to be analyzed is
stored in column 3. So the command

> dat<−selby2(m,grpc=c(1,2),coln=3)

will determine how many levels there are for each factor and store the data in the
S-PLUS variable dat$x. The variable dat$x[[1]] will contain the data for level 1 of
both factors, dat$x[[2]] will contain the data for level 1 of factor A and level 2 of
factor B, dat$x[[3]] will contain the data for level 1 of factor A and level 3 of factor B,
and so on. That is, the data are automatically stored as described in Section 10.3.1.

10.4 Bootstrap Methods

The bootstrap methods described in previous chapters are readily extended to a
two-way design. To apply the bootstrap-t method with a trimmed mean, you proceed
in a manner similar to that in Chapter 9. That is, for the jth level of factor A and
the kth level of factor B you subtract the trimmed mean (X̄tjk) from each of the njk
observations; this is done for all JK groups. In symbols, for the jth level of factor A and
the kth level of factor B, bootstrap samples are generated from C1jk, . . . ,Cnjkjk, where
Cijk = Xijk − X̄tjk. Said yet another way, center the data for each of the JK groups
by subtracting out the corresponding trimmed mean, in which case the empirical
distributions of all JK groups have a trimmed mean of zero. That is, the distributions
are shifted so that the null hypothesis is true, with the goal of empirically determining
an appropriate critical value. Then you generate bootstrap samples from each of these
JK groups and compute the test statistics as described in Boxes 10.2 and 10.3. For
the main effect associated with factor A, we label these B bootstrap test statistics as
V∗

a1, . . . ,V∗
aB; these B values provide an approximation of the distribution of Va when

the null hypothesis is true. Put these values in ascending order and label the results
V∗

a(1) ≤ · · · ≤ V∗
a(B). If Va ≥ V∗

a(c), where c = (1 − α)B, rounded to the nearest
integer, reject. The hypotheses of no main effect for factor B and no interaction are
tested in an analogous manner.
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Other robust measures of location can be compared with the percentile boot-
strap method. Again there are many variations that might be used (which include
important techniques covered in Chapter 12). Here, only one of these methods is
described.

Let θ be any measure of location and let

ϒ1 = 1
K

(θ11 + θ12 + · · · + θ1K),

ϒ2 = 1
K

(θ21 + θ22 + · · · + θ2K),

...

ϒJ = 1
K

(θJ1 + θJ2 + · · · + θJK).

So ϒj is the average of the K measures of location associated with the jth level of
factor A. The hypothesis of no main effects for factor A is

H0 : ϒ1 = ϒ2 = · · · = ϒJ ,

and one variation of the percentile bootstrap method is to test this hypothesis using
a slight modification of the method in Box 9.7. For example, one possibility is
to test

H0 : �1 = · · · = �J−1 = 0, (10.1)

where

�j = ϒj − ϒj+1,

j = 1, . . . ,J − 1. Briefly, generate bootstrap samples in the usual manner, yielding �̂∗
j ,

a bootstrap estimate of �j. Then proceed as described in Box 9.7. That is, determine
how deeply 0 = (0, . . . ,0) is nested within the bootstrap samples. If 0 is relatively
far from the center of the bootstrap samples, reject. (Chapter 12 describes another
approach, where all pairwise comparisons of the rows are done instead. That is, for
every j and �, j < �, test H0 : ϒj = ϒ�.)

For reasons described in Section 9.5.3, the method just described is satisfactory
when dealing with the probability of a Type I error; but when the groups differ, this
approach might be unsatisfactory in terms of power, depending on the pattern of
differences among the ϒj values. One way of dealing with this issue is to compare all
pairs of the ϒj instead. That is, for every j < j′, let

�jj′ = ϒj − ϒj′ ,

and then test

H0 : �12 = �13 = · · · = �J−1,J = 0. (10.2)

Of course, a similar method can be used when dealing with factor B.
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The percentile bootstrap method just described for main effects can be extended
to the problem of testing the hypothesis of no interactions. Box 10.4 outlines how
to proceed.

BOX 10.4 How to Test for No Interactions Using the Percentile

Bootstrap Method

For convenience, label the JK measures of location as follows:

Factor B
θ1 θ2 · · · θK

Factor A
θK+1 θK+2 · · · θ2K

...
... · · · ...

θ(J−1)K+1 θ(J−1)K+2 · · · θJK

If A is any r-by-s matrix and B is any t-by-u matrix, the Kronecker product of
A and B, written as A ⊗ B, is


a11B a12B . . . a1sB

...
ar1B ar2B . . . arsB


 .

Let CJ be a (J − 1)-by-J matrix having the form



1 −1 0 0 … 0
0 1 −1 0 … 0

...
0 0 … 0 1 −1


 .

That is, cii = 1 and ci,i+1 = −1; i = 1, . . . ,J − 1, and CK is defined in a
similar fashion. A test of no interactions corresponds to testing

H0 : �1 = · · · = �(J−1)(K−1) = 0,

where

�L =
∑

cL�θ�,

L = 1, . . . ,(J − 1)(K − 1), � = 1, . . . ,J(K − 1) and cL� be the entry in the Lth
row and �th column of CJ ⊗ CK. So in effect we have a situation similar to
that in Box 9.7. That is, generate bootstrap samples yielding �̂∗

L values, do
this B times, and then determine how deeply 0 = (0, . . . ,0) is nested within
these bootstrap samples.

Continued
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BOX 10.4 (Continued ) A criticism of this approach is that when groups differ,
not all possible tetrad differences are being tested, which might affect power.
One way of dealing with this problem is, for every j < j′ and k < k′, set

�jj′kk′ = θjk − θjk′ + θj′k − θj′k′ ,

and then test

H0 : �1212 = · · · = �J−1,J,K−1,K = 0. (10.3)

10.4.1 S-PLUS Function pbad2way

The S-PLUS function

pbad2way( J, K, x, est = mom, conall= T, alpha = 0.05, nboot = 2000,

grp = NA, op = F,…)

performs the percentile bootstrap method just described, where J and K indicate the
number of levels associated with factors A and B. The argument conall=T indicates
that all possible pairs are to be tested [as described by Equation (10.2)], and conall=F
means that the hypotheses given by Equation (10.1) will be used instead. The remain-
ing arguments are the same as those used in the S-PLUS function pbadepth described
in Section 9.5.4.

EXAMPLE. The data in Table 10.1 are used to illustrate the S-PLUS function
pbad2way. Storing the data in the S-PLUS variable weight, the command

pbad2way(2,2,weight,est=median)

tests all relevant hypotheses using medians. It is left as an exercise to verify that
the significance levels for factors A and B are .39 and .056, respectively. The
test for no interaction has a significance level of .16. ■

10.5 Testing Hypotheses Based on Medians

As was the case in Chapter 9, the heteroscedastic method for trimmed means in
Boxes 10.2 and 10.3 should be modified for the special case where the goal is to
compare medians. Currently, the methods described in Boxes 10.5 and 10.6 appear
to perform relatively well and are based on simple modifications of the method for
trimmed means plus the McKean–Schrader estimate of the standard error of the
median (which was described in Section 4.11.2). Medians can also be compared
using the bootstrap method described in the previous section, but the advantages of
using this bootstrap method, versus the methods in Boxes 10.5 and 10.6, have not
been investigated.
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BOX 10.5 A Heteroscedastic Test for Main Effects Based on Medians

Let Mjk be the sample median for the jth level of factor A and the kth level
of B, and let njk and S2

jk be the corresponding sample size and estimate of the
squared standard error of Mjk. Here S2

jk is the McKean–Schrader estimate.
Compute

Rj =
K∑

k=1

Mjk, Wk =
J∑

j=1

Mjk,

djk = S2
jk,

ν̂j = (
∑

k djk)
2∑

k d2
jk/(njk − 1)

, ω̂k = (
∑

j djk)
2

∑
j d

2
jk/(njk − 1)

rj = 1∑
k djk

, wk = 1∑
j djk

rs =
J∑

j=1

rj, ws =
K∑

k=1

wk,

R̂ =
∑

j rjRj

rs
, Ŵ =

∑
k wkWk

ws

Ba =
J∑

j=1

1
ν̂j

(
1 − rj∑

rj

)2

, Bb =
K∑

k=1

1
ω̂k

(
1 − wk∑

wk

)2

Va =
∑

j rj(Rj − R̂)2

(J − 1)
(
1 + 2(J−2)Ba

J2−1

) , Vb =
∑

k wk(Wk − Ŵ)2

(K − 1)
(
1 + 2(K−2)Bb

K2−1

) .

The degrees of freedom for factor A are ν1 = J − 1 and ν2 = ∞. For factor
B the degrees of freedom are ν1 = K − 1 and ν2 = ∞.

Decision Rule
Reject the hypothesis of no main effect for factor A if Va ≥ f1−α , the
1 − α quantile of an F-distribution with the degrees of freedom for factor A.
Similarly, reject for factor B if Vb ≥ f1−α , with the degrees of freedom for
factor B.
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BOX 10.6 A Heteroscedastic Test of the Hypothesis of No Interactions

Based On Medians

Again let djk = S2
jk be the McKean–Schrader estimate of the squared standard

error of Mjk. Let

Djk = 1
djk

D.k =
J∑

j=1

Djk, Dj. =
K∑

k=1

Djk

D.. =
J∑

j=1

K∑
k=1

Djk

M̃jk =
J∑

�=1

D�kM�k

D.k
+

K∑
m=1

DjmMjm

Dj.
−

J∑
�=1

K∑
m=1

D�mM�m

D..
.

The test statistic is

Vab =
J∑

j=1

K∑
k=1

Djk(X̄jk − M̃jk)
2.

Let c be the 1−α quantile of a chi-squared distribution with ν = (J−1)(K−1)
degrees of freedom.

Decision Rule
Reject if Vab ≥ c.

10.5.1 S-PLUS Function med2way

The computations for comparing medians, described in Boxes 10.5 and 10.6, are
performed by the S-PLUS function

med2way( J,K,x,alpha=.05)

EXAMPLE. The example in Section 10.3.1 is repeated, only now medians are
compared instead. The output from med2way is as follows:

$test.A:
[1] 8.124937

Continued
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EXAMPLE. (Continued )

$sig.A:
[1] 0.004366059

$test.B:
[1] 1.805773

$sig.B:
[1] 0.1643474

$test.AB:
[1] 2.417318

$sig.AB:
[1] 0.2985974

So again there is a main effect for factor A and no interaction is found. But
unlike before, the main effect for factor B is not significant at the .05 level. ■

10.6 Exercises

1. State the hypotheses of no main effects and no interactions for a 2-by-4 design
with the following population means.

Factor B

Factor A Level 1 Level 2 Level 3 Level 4

Level 1 µ1 µ2 µ3 µ4
Level 2 µ5 µ6 µ7 µ8

2. For the following 2-by-2 design with population means, state whether there is
a main effect for factor A or for factor B and whether there is an interaction.

Factor B

Factor A Level 1 Level 2

Level 1 µ1 = 110 µ2 = 70
Level 2 µ3 = 80 µ4 = 40

3. For the following 2-by-2 design with population means, determine whether
there is an interaction. If there is an interaction, determine whether there is an
ordinal interaction for rows.
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Factor B

Factor A Level 1 Level 2

Level 1 µ1 = 10 µ2 = 20
Level 2 µ3 = 40 µ4 = 10

4. Make up an example where the population means in a 3-by-3 design have no
interaction effect but main effects for both factors exist.

5. For the following ANOVA summary table, fill in the missing values and then
determine the number of levels, the total number of observations used, the
estimate of the common variance, and whether the hypotheses of no main
effects or no interaction should be rejected with α = .025.

Source SS DF MS F

A 800 2 ______ ______
B 600 3 ______ ______
INTER 1200 ______ ______ ______
WITHIN 4800 36 ______

6. For the following ANOVA summary table, fill in the missing values and then
determine the number of levels, the total number of observations used, the
estimate of the common variance, and whether the hypotheses of no main
effects or no interaction should be rejected with α = .025.

Source SS DF MS F

A 667 1 ______ ______
B 212.4 5 ______ ______
INTER 884 ______ ______ ______
WITHIN 3900 48 ______

7. Imagine a study where two methods are compared for treating depression.
A measure of effectiveness has been developed; the higher the measure, the
more effective the treatment. Further assume there is reason to believe that
males might respond differently to the methods than females. If the sample
means are

Factor B

Factor A Males Females

Method 1 X̄1 = 50 X̄2 = 70
Method 2 X̄3 = 80 X̄4 = 60
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and if the hypothesis of no main effects for factor A is rejected but the
hypothesis of no interactions is not rejected, what does this suggest about
which method should be used?

8. In the previous exercise, suppose the hypothesis of no interactions is rejected
and in fact there is a disordinal interaction. What does this suggest about when
you might use method 1 versus method 2?

9. Use your answer to Exercise 8 to make a general comment on interpreting
main effects when there is a disordinal interaction.

10. Referring to Exercise 7, imagine the hypothesis of no interactions is rejected.
Is it reasonable to conclude that the interaction is disordinal?

11. This exercise is based on a study, where the general goal is to study people’s
reactions to unprovoked verbal abuse. In the study, 40 subjects were asked to
sit alone in a cubicle and answer a brief questionnaire. After the subjects had
waited far longer than it took to fill out the form, a research assistant returned
to collect the responses. Half the subjects received an apology for the delay
and the other half were told, among other things, that they could not even fill
out the form properly. Each of these 20 subjects were divided into two groups:
Half got to retaliate against the research assistant by giving her a bad grade,
and the other half did not get a chance to retaliate. All subjects were given
a standardized test of hostility. Imagine that the sample means are

Abuse

Retaliation Insult Apology

Yes X̄1 = 65 X̄2 = 54
No X̄3 = 61 X̄4 = 57

Further assume that the hypotheses of no main effects are rejected and that
the hypothesis of no interactions was also rejected. Interpret this result.

12. Verify that when comparing the groups in Table 10.1 based on medians and
with the S-PLUS function pbad2way in Section 10.4.1, the significance levels
for factors A and B are .39 and .056, respectively, and that for the test of no
interaction the significance level is .16.

13. Read the data in Table 10.8 into an S-PLUS variable having matrix mode,
and use the function selby2 in Section 10.3.2 to store the data in list mode.
Store the output from selby2 in the S-PLUS variable dat, and then use the
function t2way in Section 10.3.1 to test the hypotheses of no main effects or
interactions based on means. Verify that the significance levels for factors A
and B are .835 and .951, respectively.

14. For the data in the previous exercise, verify that if t2way is used to compare
20% trimmed means, the significance level when testing the hypothesis of
no interaction is reported to be Inf, meaning that it is infinitely large due to
division by zero. Explain why this happens based on the computations outlined
in Box 10.3.

15. For the data in Exercise 13, verify that if t2way is used to compare 20%
trimmed means instead, the significance levels for factors A and B are .15 and
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TABLE 10.8 Data for Exercise 13

A B Outcome

1 1 32

1 1 21

1 3 19

1 2 21

1 3 46

1 3 33

1 3 10

1 2 11

1 2 13

1 2 12

1 2 59

1 3 28

1 1 19

1 1 72

1 1 35

2 1 33

2 1 45

2 1 31

2 2 42

2 2 67

2 2 51

2 1 19

2 2 18

2 2 21

2 3 39

2 3 63

2 3 41

2 3 10

2 3 11

2 3 34

2 3 47

2 1 21

2 1 29

2 3 26

.93, respectively. Why does the significance level for factor A drop from .835
when comparing means to .15 with 20% trimmed means instead?

16. The data used to illustrate the S-PLUS function med2way can be downloaded
via anonymous ftp, as described in Section 1.2; it is stored in the file hayes.dat.
Use these data to compare medians with the S-PLUS function pbad2way in
Section 10.4.1.
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17. The data used in the example at the end of Section 10.3.1 are stored in the
file hayes.dat. (See Section 1.2 on how to download this file.) Compare the
groups with med2way. Verify that you reject at the .05 level for factor A but
not for factor B or when testing the hypothesis of no interaction. Note that in
contrast, when comparing 20% trimmed means, you reject when dealing with
factor B.



11
COMPARING DEPENDENT
GROUPS

Chapters 8–10 described methods for comparing independent groups. This chapter
describes methods for dealing with dependent groups or variables. For example,
imagine you sample 10 married couples and want to compare husbands and wives
on some measure of open-mindedness. That is, the goal is to characterize how, for
a typical couple, the wife compares to her husband. If open-mindedness scores are
independent among the population of married couples, we can compare husbands
to their wives using the methods in Chapter 8. But there is no particular reason to
assume that scores among women are independent of their spouse’s score, so special
methods are needed to take this into account. As another example, imagine that
the endurance of athletes is measured before a particular training program is begun
and again four weeks after training under some experimental method. This is an
example of what is called a repeated measures or a within-subjects design, simply meaning
that we repeatedly measure the same individuals over time. Of interest is whether
endurance levels have changed. But because there is no particular reason to assume
that endurance levels before undergoing the new training method are independent
of the scores after training, the methods in Chapter 8 may not be valid. As a final
example, C. R. Rao (1948) discussed a study where there was interest in the weight
of cork borings from trees. Of specific interest was the difference in weight for the
north, east, south, and west sides of the trees. Here we focus on the north versus
east sides. Table 11.1 reports the data for 28 trees. Do the typical weights differ in
some sense, and, if so, how do they differ and by how much? Because samples taken
from the same tree may be dependent, again special methods are required that take
this dependence into account.

When attention is restricted to comparing means, it is stressed that a plethora of
methods have been proposed that are not covered in this chapter. For book-length
descriptions of these techniques, which include procedures especially designed for
handling longitudinal data, see Crowder and Hand (1990), Jones (1993), and Diggle,
Liang, and Zeger (1994). This chapter covers the more basic methods for means that
are typically used in applied research; methods that address the practical problems
associated with these techniques are then described.

361
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TABLE 11.1 Cork Boring Data

i Xi1 (North) Xi2 (East) Di = Xi1 − Xi2

1 72 66 6

2 60 53 7

3 56 57 −1

4 41 29 12

5 32 32 0

6 30 35 −5

7 39 39 0

8 42 43 −1

9 37 40 −3

10 33 29 4

11 32 30 2

12 63 45 18

13 54 46 8

14 47 51 −4

15 91 79 12

16 56 68 −12

17 79 65 14

18 81 80 1

19 78 55 23

20 46 38 8

21 39 35 4

22 32 30 2

23 60 50 10

24 35 37 −2

25 39 36 3

26 50 34 16

27 43 37 6

28 48 54 −6

Before continuing, a comment about notation should be made. Notice that the
second column in Table 11.1 is headed by the symbol Xi1. The notation X11 refers to
the weight of the cork boring for the north side of the first tree. Similarly, X12 is the
weight for the east side for the first tree. More generally, Xi1 is the measurement for
the north side of the ith tree, and Xi2 is the east side of the ith tree. The sample mean
for the first group (the north side) is X̄1, and for the second group, or east side, the
average is denoted by X̄2. More succinctly, the mean of the jth group is

X̄j = 1
n

n∑
i=1

Xij.

The distribution associated with the jth group, ignoring all other groups, called the
jth marginal distribution, has a population mean labeled µj. As was the case when working
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with independent groups, X̄j is an unbiased estimate of µj under random sampling.
That is, E(X̄j) = µj.

11.1 The Paired T -Test for Means

Now we describe the most common method for comparing the means of two depen-
dent groups. To add perspective, it is noted that the method in Chapter 8 for
comparing independent groups is based on the result that the squared standard error
of the difference between the sample means is just the sum of the individual squared
standard errors. In symbols,

VAR
(
X̄1 − X̄2

) = σ 2
1

n1
+ σ 2

2

n2
,

the point being that the difference between the sample means can be standardized,
and this leads to a convenient method for comparing the means using the Laplace–
Gosset strategy covered in Chapter 4. However, when the groups are dependent,
VAR(X̄1 − X̄2) takes on a more complicated form that is inconvenient from a tech-
nical point of view. The usual method for dealing with this technical problem is
to use the differences between the pairs of observations to make inferences about
the means.

Let Di be the difference between the ith pair of observations. That is,

Di = Xi1 − Xi2,

i = 1, . . . , n. For example, for the first tree (i = 1), the weights are X11 = 72 and
X12 = 66 and the difference is D1 = X11 − X12 = 72 − 66 = 6. For the second tree
(i = 2), D2 = X21 − X22 = 60 − 53 = 7. It can be shown that the population mean
associated with the difference scores is just the difference between the population
means of the two groups or variables under study. In the illustration, if µ1 represents
the population mean for the north side of a tree and µ2 the mean for the east side,
then µ1 − µ2 is equal to µD, the population mean associated with the difference
scores D1, . . . , Dn. More succinctly,

µD = E(D) = µ1 − µ2.

This means that if we randomly sampled millions of trees and computed the sample
mean of the difference scores, we would get the same result if instead we averaged
the results for the east side and then subtracted this from the average for the north
side of the trees. For the special case where the population means µ1 and µ2 are
equal, µD = 0. That is, testing the hypothesis H0 : µ1 − µ2 = 0 is the same as
testing the hypothesis H0 : µD = 0. Assuming normality, H0 : µD = 0 can be tested
using Student’s T-test described in Chapter 5. The calculations are summarized in
Box 11.1 and this approach to comparing the means of two dependent groups is
called the paired T-test.
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EXAMPLE. For the data in Table 11.1, the sample mean and standard deviation
of the Di values are D̄ = 4.36 and sD = 7.93, respectively. There are n = 28
pairs of observations (or Di values), so, referring to Box 11.1, the test statistic is

TD = 4.36

7.93/
√

28
= 2.9.

With ν = 28 − 1 = 27 degrees of freedom and α = .01, the critical value is
the 1 − α/2 = 1 − .01/2 = .995 quantile of Student’s T distribution, which is
c = 2.77. Because |T| = 2.9 ≥ 2.77, reject the hypothesis of equal means and
conclude that the average weight for the north side of a tree is greater than the
average weight of the east side. The .99 confidence interval for the difference
between the means is

4.36 ± 2.77
7.93√

28
= (.21, 8.5).

This says that, assuming normality, we can be reasonably certain that the
difference between the means is at least .21 but not larger than 8.5. ■

BOX 11.1 How to Perform the Paired T-Test

Goal:
For two dependent groups, test H0 : µ1 = µ2, the hypothesis that they have
equal means.

We observe n pairs observations: (X11,X12), . . . ,(Xn1,Xn2).

Assumptions:
Random sampling from normal distributions

Computations:
Begin by forming the differences between the paired observations:

D1 = X11 − X12

D2 = X21 − X22

D3 = X31 − X32
...

Dn = Xn1 − Xn2

Testing the hypothesis of equal means is accomplished by testing the
hypothesis that the Di values have a population mean of zero. That
is, test H0 : µD = 0. To do this, compute the mean and variance of the

Continued
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BOX 11.1 (Continued ) Di values:

D̄ = 1
n

n∑
i=1

Di

and

s2D = 1
n − 1

n∑
i=1

(
Di − D̄

)2
.

Next, compute

TD = D̄
sD/

√
n
.

The critical value is c, the 1 − α/2 quantile of Student’s T distribution with
ν = n − 1 degrees of freedom.

Decision Rule:
The hypothesis of equal means is rejected if |TD| ≥ c.

Confidence Interval:
A 1−α confidence interval for µ1 −µ2, the difference between the means, is

D̄ ± c
sD√

n
.

As indicated in Box 11.1, the paired T-test has n − 1 degrees of freedom. If
the groups are independent, Student’s T-test in Section 8.1 has 2(n − 1) degrees
of freedom, twice as many as the paired T-test. This means that if we compare
independent groups (having equal sample sizes) using the method in Box 11.1, power
will be lower than when using Student’s T in Section 8.1. However, if the correlation
between the observations is sufficiently high, the paired T-test will have more power
instead. To provide an indication of why, it is noted that when pairs of observations
are dependent, then

VAR
(
X̄1 − X̄2

) = σ 2
1 + σ 2

2 − 2ρσ1σ1

n
,

where σ 2
1 and σ 2

2 are the variances associated with groups 1 and 2, respectively. From
this last equation we see that as the correlation, ρ, increases, the variance of the
difference between the sample means (the squared standard error of X̄1 − X̄2) goes
down. As noted in Chapters 5 and 8, as the standard error goes down, power goes
up. In practical terms, the loss of degrees of freedom when using the paired T-test
will be more than compensated for if the correlation is reasonably high. Just how high
it must be in order to get more power with the paired T-test is unclear. For normal
distributions, a rough guideline is that when ρ > .25, the paired T-test will have
more power (Vonesh, 1983).
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TABLE 11.2 Hypothetical Cholesterol Levels Before and After Training

X: 250, 320, 180, 240, 210, 255, 175, 280, 250, 200

Y: 230, 340, 185, 200, 190, 225, 185, 285, 210, 190

11.1.1 Assessing Power

When you fail to reject the hypothesis of equal means with the paired T-test, this
might be because there is little or no difference between the groups, or perhaps there
is a difference but you failed to detect it due to low power. Stein’s method, described
in Section 5.4.3, can be used to help distinguish between these two possibilities. You
simply perform the computations in Section 5.4.3 on the Di values. In particular, you
can use the S-PLUS functions stein1 and stein2 described in Section 5.4.4.

EXAMPLE. Table 11.2 shows some hypothetical data on cholesterol levels
before individuals undergo an experimental exercise program (X) and the lev-
els after four weeks of training (Y). Applying the paired T-test, we fail to
reject the hypothesis of equal means using α = .05. But suppose we want
power to be at least .8 when the difference between the means is 10. If we
store the X values in the S-PLUS variable x and the Y values in the S-PLUS
variable y, then the S-PLUS command stein1(x-y,10) returns the value 46.
That is, a total of 46 pairs of observations are required to achieve power
equal to .8 when the difference between the means is 10. Only 10 observa-
tions were used, so an additional 46 − 10 = 36 observations are required.
This analysis suggests that we should not accept the null hypothesis of equal
means, because the sample size is too small to achieve a reasonable amount of
power. ■

11.2 Comparing Trimmed Means

The good news about the paired T-test described in Section 11.1 is that if the
observations in the first group (the Xi1 values) have the same distribution as the
observations in the second group (the Xi2 values), so in particular they have equal
means and variances, then Type I error probabilities substantially higher than the
nominal level can generally be avoided. The reason is that for this special case, the
difference scores (the Di values) have a symmetric distribution, in which case methods
based on means perform reasonably well in terms of avoiding Type I error probabilities
substantially higher than the nominal level. However, as was the case in Chapter 8,
practical problems arise when the two groups (or the two dependent variables) differ
in some manner. Again, arbitrarily small departures from normality can destroy power,
even when comparing groups having symmetric distributions. And if groups differ in
terms of skewness, the paired T-test can be severely biased, meaning that power can
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actually decrease as the difference between the means gets large. Yet another problem
is poor probability coverage when computing a confidence interval for the difference
between the means as described in Box 11.1. If the goal is to test the hypothesis
that the two variables under study have identical distributions, the paired T-test is
satisfactory in terms of Type I errors. But if we reject, there is doubt as to whether
this is due primarily to the difference between the means or to some other way the
distributions differ.

A general strategy for addressing problems with a paired T-test is to switch to
some robust measure of location, such as a trimmed mean. One possibility is simply
to apply the methods for trimmed means described in Section 5.6 or the bootstrap
methods in Section 7.5 to the difference scores (the Di values). This is a reasonable
approach; in some situations it offers an advantage over other strategies that might
be used. But there is a technical issue that should be made clear. First it is noted that
when working with means,

D̄ = X̄1 − X̄2.

That is, the average of the difference scores is just the difference between the averages
associated with the two groups. Moreover, µD = µ1 − µ2, which makes it possible
to test H0 : µ1 = µ2 simply by testing H0 : µD = 0. However, when using trimmed
means, typically, but not always, the trimmed mean of the difference scores is not
equal to the difference between the trimmed means of the marginal distributions.
That is, usually, D̄t �= X̄t1 − X̄t2. An exception occurs when the pairs of observations
are identical.

EXAMPLE. Consider the following pairs of observations:

G1: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
G2: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Here both groups have a 20% trimmed mean of 5.5, so of course X̄t1 − X̄t2 = 0.
As is evident, the difference scores (the Di values) are all equal to zero, so
the 20% trimmed mean of the difference scores is zero as well. That is, D̄t =
X̄t1 − X̄t2. However, if for the second group we rearrange the values so that
now

G2: 1, 8, 2, 3, 4, 5, 6, 7, 9, 10

and the observations for G1 remain the same, then the difference scores are

0, −6, 1, 1, 1, 1, 1, 10, 0,

which have a 20% trimmed mean of 0.67. That is, D̄t �= X̄t1 − X̄t2. ■

More generally, if two dependent groups have identical distributions, then the
population trimmed mean of the difference scores is equal to the difference between
the individual trimmed means, which is zero. In symbols, µtD = µt1 − µt2 = 0.



368 Chapter 11 ■ Comparing Dependent Groups

However, if the distributions differ, this equality is not necessarily true and in general
it will be the case that µtD �= µt1 − µt2. In practical terms, computing a confidence
interval for µtD is not necessarily the same as computing a confidence interval for
µt1 − µt2. So an issue is whether one should test

H0 : µtD = 0, (11.1)

or

H0 : µt1 = µt2. (11.2)

The latter case will be called comparing the marginal trimmed means. In terms of
Type I errors, currently it seems that there is no reason to prefer one approach
over the other for the situation at hand. But for more than two groups, differ-
ences between these two approaches will be described later in this chapter. As for
power, the optimal choice depends on how the groups differ, which of course is
unknown. In some situations it will make little difference which method is used.
But for the general problem of comparing groups based on some measure of
location, we will see situations where the choice between these two approaches
alters our conclusions and can provide different perspectives on how groups
differ.

For the situation at hand, inferences about the trimmed mean of difference scores
can be made with the method in Section 4.9.3, and the S-PLUS function trimci in
Section 4.9.4 can be used to perform the calculations. Another option is to use the
bootstrap method in Section 7.5. The remainder of this section describes how to test
the hypothesis of equal trimmed means, which corresponds to Equation (11.2). In
our illustration, the goal is to test the hypothesis that the north and east sides of a
tree have equal population trimmed means.

To test the hypothesis of equal trimmed means using Laplace’s general strat-
egy, modified along the lines used by Gosset, we first Winsorize the observations.
Here, however, it is important to keep observations paired together when Win-
sorizing. In symbols, fix j and let X(1)j ≤ X(2)j ≤ · · · ≤ X(n)j be the n values
in the jth group, written in ascending order. Winsorizing the observations means
computing

Yij =




X(g+1)j if Xij ≤ X(g+1)j

Xij if X(g+1)j < Xij < X(n−g)j

X(n−g)j if Xij ≥ X(n−g)j,

where again g is the number of observations trimmed or Winsorized from each
end of the distribution corresponding to the jth group. As usual, 20% trim-
ming is assumed unless stated otherwise, in which case g = [.2n], where [.2n]
means to round .2n down to the nearest integer. The expression for Yij says that
Yij = Xij if Xij has a value between X(g+1)j and X(n−g)j. If Xij is less than or
equal to X(g+1)j, set Yij = X(g+1)j; if Xij is greater than or equal to X(n−g)j, set
Yij = X(n−g)j.
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EXAMPLE. As a simple illustration, consider these eight pairs of observations:

Xi1: 18 6 2 12 14 12 8 9
Xi2: 11 15 9 12 9 6 7 10

With 20% Winsorization, g = 1, and we see that X(1)1 = 2 and X(2)1 = 6. That
is, the smallest value in the first row of data is 2, and Winsorizing changes its
value to 6. If it had been the case that g = 2, then the values 6 and 2 in the first
row (the two smallest values) would be increased to 8, the third smallest value
in the first row. In this latter case, the first row of data would look like this:

Yi1: 18 8 8 12 14 12 8 9.

Notice that the order of the values remains the same — we simply Winsorize the
g smallest values. If g = 3, then we would have

Yi1: 18 9 9 12 14 12 9 9.

Returning to g = 1, Winsorizing means that the largest observation is pulled
down to the next largest. In our example, the 18 in the first row would
become 14. Winsorizing the second row of data using this same process,
6 becomes 7 and 15 becomes 12. So after both rows are Winsorized, this yields

Yi1: 14 6 6 12 14 12 8 9
Yi2: 11 12 9 12 9 7 7 10

Yuen’s method in Chapter 8 can be extended to the problem at hand in the
following manner. Let h = n − 2g be the effective sample size (the number of
observations in each group after trimming). Let

dj = 1
h(h − 1)

n∑
i=1

(
Yij − Ȳj

)2

and

d12 = 1
h(h − 1)

n∑
i=1

(
Yi1 − Ȳ1

) (
Yi2 − Ȳ2

)
.

(The term d12 plays a role in adjusting for the dependence between the groups
being compared.) Then the hypothesis of equal trimmed means can be tested
with

Ty = X̄t1 − X̄t2√
d1 + d2 − 2d12

, (11.3)

which is rejected if |Ty| ≥ t, where t is the 1 − α/2 quantile of Student’s T
distribution with h − 1 degrees of freedom. A 1 − α confidence interval for
the difference between the trimmed means (µt1 − µt2) is(

X̄t1 − X̄t2
)± t

√
d1 + d2 − 2d12.

■
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11.2.1 S-PLUS Function yuend

The S-PLUS function

yuend(x,y,tr=.2,alpha=.05)

has been supplied to perform the calculations just described, where x and y are any
S-PLUS variables containing the data for groups 1 and 2. As usual, the argument tr
indicates the amount of trimming and defaults to .2 (20%), and alpha is α, which
defaults to .05.

EXAMPLE. If the data in Table 11.1 for the north side of a tree are stored in
the S-PLUS variable cork1 and the data for the east side are stored in cork2,
then the S-PLUS command

yuend(cork1,cork2)

returns

$ci:
[1] 0.3658136 7.4119642

$siglevel:
[1] 0.03245657

$dif:
[1] 3.888889

$se:
[1] 1.66985

$teststat:
[1] 2.328885

$df:
[1] 17

So the .95 confidence interval for the difference between the 20% trimmed
means is (0.37, 7.41); this interval does not contain zero, so you reject the
hypothesis of equal trimmed means. As indicated, the significance level is .03.
The estimated standard error of the difference between the sample trimmed
means is 1.67. To test Equation (11.1), the hypothesis that the difference scores
have a trimmed mean of zero, simply use the command

trimci(cork1-cork2),

where trimci is the S-PLUS function described in Section 4.9.4. It returns a
.95 confidence interval of (0.254, 7.41), which is fairly similar to the confidence
interval given by yuend. ■
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11.2.2 Comparing Medians

For the special case where the goal is to test the hypothesis that difference scores
have a median of zero, simply use the method in Chapter 4. In particular, the S-PLUS
function sint can be used to compute a confidence interval for the median of the
difference scores. (If the data are stored in x and y, use the command sint(x-y).) As
for testing H0 : θ1 = θ2, the hypothesis that the population medians are equal, it
currently seems that the best approach is to use a bootstrap method described in the
next section of this chapter.

11.3 Bootstrap Methods

The bootstrap methods covered in previous chapters are readily extended to the prob-
lem of comparing dependent groups. However, based on what is currently known,
the recommended type of bootstrap method differs in some cases. That is, the choice
between percentile versus bootstrap-t is not always the same as described in Chap-
ters 9 and 10, and there is the additional issue of whether to use difference scores.
Currently, when comparing trimmed means, it seems that with 20% trimming or less,
the bootstrap-t is preferable to the percentile bootstrap, particularly when comparing
more than two dependent groups. (In contrast, when comparing independent groups
as described in Section 9.5.3, a percentile bootstrap with 20% trimmed means appears
to perform quite well in terms of controlling the probability of a Type I error.) But
for 25% trimming or more, a percentile bootstrap seems better. (This is a very rough
comparison and more detailed studies might alter this conclusion.) More generally,
when using any location estimator with a breakdown point of at least .25 (such as
MOM or the median), a percentile bootstrap method appears to perform relatively
well. For the special case where the goal is to compare medians, inferences based on
difference scores can be made with the method in Section 4.11. The extent to which
a bootstrap method offers an advantage for this special case has not been investi-
gated. As for comparing the medians of the marginal distributions, method RMPB2,
described in the next section, can be used.

11.3.1 The Percentile Bootstrap

We begin with the percentile bootstrap. The methods in this section can be used with
MOM, medians, M-estimators, and trimmed means (when the amount of trimming
is sufficiently high or the amount of trimming is close to zero and n is large). As usual,
we let θ be the population value for any of these measures of location, and we let
θ̂ be the estimate of θ based on data.

But before continuing, we expand upon a point made in Section 11.2. It was noted
that there are two closely related but different methods for comparing trimmed
means. The first uses difference scores and the second compares marginal measures
of location. This distinction carries over to the other robust measures of location
considered here. For example, we could test the hypothesis that difference scores
have a population value for MOM that is equal to zero, or we could test

H0 : θ1 = θ2.
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At the moment, using MOM with difference scores seems to be one of the best
methods for controlling Type I error probabilities when the sample size is very small. It
seems that testing H0 : θ1 = θ2 also performs well in terms of Type I error probabilities,
at least when the estimator being used has a reasonably high breakdown point. But
choosing between these methods is not an academic matter, because they can reach
different conclusions about whether groups differ. Also, using difference scores is
known to yield higher power in some situations, and presumably situations arise
where the reverse is true.

Method RMPB1

First consider how to compare groups based on difference scores. That is, the goal
is to test

H0 : θD = 0,

the hypothesis that the typical difference score (the typical Di value) is zero. In the
context of the bootstrap, this means that we obtain a bootstrap sample by resampling
with replacement n Di values. Let θ̂∗

D be the estimate of θD based on this bootstrap
sample. Next, repeat this process B times, yielding, θ̂∗

D1, . . . ,θ̂∗
DB and let p̂∗ be the

proportion of these bootstrap values that are greater than zero. So if A is the number
of times θ̂∗

Db > 0, then

p̂∗ = A
B

.

Then reject H0 if

p̂∗ ≤ α

2

or if

p̂∗ ≥ 1 − α

2
.

The S-PLUS function onesampb in Section 7.7.2 can be used to perform the
calculations just described.

EXAMPLE. Again assume the data in Table 11.1 are stored in cork1 and cork2.
Then the command

onesampb(cork1-cork2)

computes a confidence interval for the difference scores based on MOM and
returns a .95 confidence interval of (0.27, 7.82). So the typical difference
between the north and east sides of a tree tends to be greater than zero. That
is, the north side tends to have a higher cork boring weight. ■
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Method RMPB2

If instead the goal is to test

H0 : θ1 = θ2,

bootstrap samples are generated by resampling pairs of observations. (This is in
contrast to independent groups, where a bootstrap sample is obtained by resampling
observations from the first group and then resampling observations from the second.)
For example, suppose you observe the following five pairs of values:

6 12
19 2
23 5
32 21
15 18

Then a bootstrap sample consists of randomly resampling with replacement five pairs
of values from the five pairs just listed. So the first pair, (6, 12), has probability 1/5
of being chosen each time a bootstrap pair is generated, and the same is true for
the other four pairs. A bootstrap sample from these five pairs of values might look
like this:

23 5
32 21
6 12

32 21
6 12

More generally, if you observe n pairs of values — say, (X11, X12), . . . , (Xn1, Xn2) —
generating a bootstrap sample means that each pair has probability 1/n of being
selected each time a pair is chosen. That is, you randomly resample with replacement
pairs of observations. The bootstrap sample of paired observations generated in this
manner will be labeled (X∗

11, X∗
12), . . . ,(X∗

n1, X∗
n2).

After generating a bootstrap sample of n pairs of observations, label the resulting
estimates of location as θ̂∗

1 and θ̂∗
2 . Repeat this B times, yielding (θ̂∗

1b, θ̂
∗
2b), b = 1, . . . , B,

and let p̂∗ be the proportion of times the bootstrap estimate of location for the first
group is greater than the estimate for the second. In symbols, p̂∗ is an estimate of

P
(
θ̂∗

1 > θ̂∗
2

)

for a random bootstrap sample. As in Chapter 8, it is convenient to set p̂∗m equal to p̂∗
or 1 − p̂∗, whichever is smaller, in which case 2p∗m is like a significance level, and you
reject the hypothesis of equal measures of location if

p̂∗m ≤ α

2
. (11.4)
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Group 1 Bootstrap Value
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FIGURE 11.1 The lower right point corresponds to a situation where for a pair of
bootstrap estimates, Group 1 has the larger value. For a point above the line, the reverse
is true.

It helps to graphically illustrate the bootstrap method just described. First imagine
that we generate a single bootstrap sample, compute some measure of location θ̂

for each group (or variable), yielding the pair (θ̂∗
1 , θ̂∗

2 ), and then plot the point
corresponding to this pair of values. Then from basic principles, if θ̂∗

1 > θ̂∗
2 , (θ̂∗

1 , θ̂∗
2 )

corresponds to a point below (or to the right of ) a line having a slope of 1 and an
intercept of zero, as indicated in Figure 11.1. If θ̂∗

1 < θ̂∗
2 , the point (θ̂∗

1 , θ̂∗
2 ) will appear

above (or to the left) of this line. And if θ̂∗
1 = θ̂∗

2 , the point (θ̂∗
1 , θ̂∗

2 ) is somewhere
on the line shown in Figure 11.1.

More generally, if the null hypothesis is true and B bootstrap pairs are generated
and plotted, then it should be the case that approximately half of the plotted points
will be below the line having slope 1 and intercept zero, and about half should be
above the line instead, as illustrated in Figure 11.2. However, if the first group has
a larger population measure of location than the second (θ1 > θ2), then typically a
majority of the bootstrap values, when plotted, will be to the right of the line having
a slope of 1 and an intercept of zero, as shown in the left panel of Figure 11.3. If the
reverse is true and the typical measure for group 1 is less than the typical measure
for group 2, then a scatterplot of the points will appear as in the right panel of Figure
11.3. In particular, if we set α = .05 and if 97.5% of the bootstrap values are to the
right of the line in Figure 11.3, reject and conclude that the first group typically has
a larger value than the second. If 97.5% of the bootstrap values are to the left of the
line in Figure 11.3, reject and conclude that the first group typically has a smaller
value. A 1 − α confidence interval for θ1 − θ2 is(

V(�+1), V(u)
)

, (11.5)
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FIGURE 11.2 A plot of bootstrap values where the null hypothesis is true.
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FIGURE 11.3 Bootstrap values where the null hypothesis is false. In the left
panel, Group 1 has the larger measure of location. In the left panel, the reverse is
true.

where � = αB/2, rounded to the nearest integer, u = B − �, Vb = θ̂∗
1b − θ̂∗

2b,
b = 1, . . . ,B, and V(1) ≤ . . . ≤ V(B) are the Vb values written in ascending order.

The estimated significance level when using the method just described is 2p̂∗m, where
p̂∗m is given by Equation (11.4). A concern is that as the correlation between the two
variables under study increases, the method can become too conservative in terms
of the probability of a Type I error when using MOM or 20% trimmed means. For
example, when testing at the .05 level, the actual probability of a Type I error can drop
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below .025 and even go as low as .01, suggesting that power might be relatively low.
Currently, a method that appears to give better results in some situations is applied as
follows. Set Cij = Xij − θ̂j. That is, shift the data so that both groups have measures of
location equal to zero, so in particular the null hypothesis is true. Generate bootstrap
samples from the Cij values and let q̂∗ be the proportion of times, among the B
bootstrap samples, that the measure of location from the first group is larger than the
measure of location from the second. Because the null hypothesis is true, q̂∗ should
be approximately equal to .5. A so-called bias-adjusted significance level is

2min
(
p̂∗a ,1 − p̂∗a

)
,

where p̂∗a = p̂∗ − .1(q̂∗ − .5).

11.3.2 S-PLUS Function rmmcppb

The S-PLUS function

rmmcppb(x,y=NA,alpha=.05,est=mom,dif=T,plotit=T,nboot=NA,BA=F,…)

has been supplied for comparing dependent groups based on the percentile boot-
strap methods RMPB1 and RMPB2 described in the previous section. (This function
contains another argument, con, which is explained in Chapter 12.) You can enter
data through x, which can be a matrix or can have list mode. When x is a matrix,
columns correspond to groups. (That is, column 1 is group 1, column 2 is group 2,
and so forth.) Alternatively, when comparing two groups only, the data for the first
group can be stored in x and the data for the second stored in y. (When comparing
more than two groups, this function uses the method outlined in Section 12.8.4.)
The argument est indicates which measure of location is used and defaults to MOM.
The default value for the argument dif (T for true) indicates that difference scores
will be used. That is, method RMPB1 in Section 11.3.1 is applied; dif=F results in
using method RMPB2. When comparing two groups, this function also plots the
bootstrap values if plotit=T is used. For method RMPB2, pairs of bootstrap values
are plotted and the central 1 − α percent of these values is indicated by a polygon.
These centrally located values provide an approximate 1 − α confidence region for
the values of the parameters being estimated. (The following example will help clarify
what this means.) Included in the plot is a line having a slope of 1 and an intercept
of zero to help provide perspective on how much the groups differ. When dif=F is
used, setting BA=T will cause bias-adjusted significance levels to be computed.

EXAMPLE. Figure 11.4 shows the plot created by rmmcppb, with dif=F,
based on the cork data in Table 11.1. Each point represents a pair of boot-
strap estimates of the measures of location, which here is taken to be MOM.
The polygon contains the central 1 − α percent of these values and provides
a two-dimensional analog of a confidence interval. That is, it is estimated

Continued
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EXAMPLE. (Continued ) that (θ1, θ2) is somewhere inside this polygon. For
example, the value (50, 45) lies inside the polygon, indicating that having the
typical weight for the north side of a tree equal to 50 and simultaneously having
the typical weight for the east side equal to 45, is a reasonable possibility. The
point (55, 40) does not lie inside the polygon indicating that it is unlikely that
simultaneously, θ1 = 55 and θ2 = 40. Note, however, that θ1 = 55, taken
by itself, is a reasonable estimate of the typical weight for the north side of a
tree. The value 55 is within the .95 confidence interval based on the S-PLUS
function momci. That is, ignoring the data on the east side, the typical weight
on the north side could be as high as 55. But if the typical weight on the north
side is 55, Figure 11.4 suggests that it is unlikely that the typical weight on
the east side is 40. In contrast, if we ignore the north side data, now 40 is a
reasonable estimate for the east side. To add perspective, Figure 11.4 includes
the line having slope 1 and intercept zero. If the null hypothesis is true, that is,
θ1 = θ2, then the true values for θ1 and θ2 must be somewhere on this line.

Figure 11.5 shows the plot created when dif=T is used. When the typical
difference score is zero, about half of the bootstrap values should be above the
horizontal line having intercept zero. In this particular case, the proportion of
points below this horizontal line is only .014, indicating a significance level of
2 × .014 = .028.

A portion of the printed output from rmmcppb (with dif=F) looks like this:

$output:
psihat sig.level crit.sig ci.lower ci.upper

5.421652 0.174 0.05 -2.178571 10.85165

The value under psihat, 5.42, is θ̂1 − θ̂2, the estimated difference between the
typical weight for group 1 minus the typical weight for group 2. Under sig.level
we see 0.174, which is the significance level. That is, the proportion of points
in Figure 11.4 above the straight line is .174/2 = .087. If only 2.5% were above
the line, you would reject at the .05 level. Under crit.sig we see the α value used
and to the right is a 1−α confidence interval for θ1 −θ2: (−2.18, 10.85). When
using difference scores, we reject at the .05 level, but here we fail to reject, the
only point being that the choice of method can make a practical difference. ■

EXAMPLE. To test the hypothesis that the two variables in Table 11.1 have
equal population medians, use the command

rmmcppb(cork,est=median,dif=F),

assuming the data are stored in cork. The resulting significance level is .176. To
compare 20% trimmed means, use the command

rmmcppb(cork,est=mean,tr=.2).
■
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FIGURE 11.4 A plot created by the S-PLUS function rmmcppb with the argument
dif=F.
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FIGURE 11.5 A plot created by the S-PLUS function rmmcppb with the argument
dif=T.

11.3.3 Bootstrap-t

Unless the sample size is fairly large, in terms of controlling the probability
of a Type I error or achieving accurate probability coverage when computing a
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confidence interval, the percentile bootstrap method performs poorly when work-
ing with means or when using a trimmed mean and the amount of trimming is close
to zero. All indications are that when comparing dependent groups, the amount
of trimming should be at least .25 when using a percentile bootstrap method to
compare the marginal trimmed means. Indeed, with the amount of trimming suf-
ficiently high, the percentile bootstrap seems preferable to a bootstrap-t in terms
of Type I errors. (Some adjustments can be made to percentile bootstrap methods
when the amount of trimming is between .2 and .25 that can render it relatively
competitive with the bootstrap-t. The adjustments depend on the sample size, but
currently, from a practical point of view, there seems to be no reason to describe
them here.) Also, when comparing more than two groups, extant studies have
focused on testing for equal population-trimmed means, as opposed to making
inferences based on the trimmed mean of the difference scores. For this reason,
the bootstrap-t for comparing dependent groups focuses on comparing trimmed
means with the goal of testing H0 : µt1 = µt2. (There might be practical reasons
for considering a bootstrap-t on difference scores, but this has not been established
as yet.)

The goal is to estimate an appropriate critical value when the null hypothesis of
equal trimmed means is true and when using the test statistic Ty given by Equation
(11.3). This is done by centering the data, computing Ty based on a bootstrap sample
generated from the centered data, and then repeating this process B times to get an
estimate of the distribution of Ty when the null hypothesis of equal trimmed means
is true. More formally, set Cij = Xij − X̄tj and let C∗

ij be a bootstrap sample obtained
by resampling with replacement n pairs of values from the Cij values. Let T∗

y be
the value of Ty based on the C∗

ij values. Repeat this process B times, yielding T∗
yb,

b = 1, . . . ,B. Let T∗
y(1) ≤ · · · ≤ T∗

y(B) be the T∗
yb values written in ascending order.

Set � = αB/2, rounding to the nearest integer, and u = B − �. Then an estimate of
the lower and upper critical values is T∗

y(�+1) and T∗
y(u), respectively. An equal-tailed

1 − α confidence interval for µt1 − µt2 is
(
X̄t1 − X̄t2 + T∗

y(�+1)

√
d1 + d2 − 2d12, X̄t1 − X̄t2 + T∗

y(u)

√
d1 + d2 − 2d12

)
. (11.6)

To get a symmetric confidence interval, replace T∗
yb by its absolute value and set

a = (1 − α)B, rounding to the nearest integer, in which case the (1 − α) confidence
interval for (µt1 − µt2) is

(
X̄t1 − X̄t2

)± T∗
y(a)

√
d1 + d2 − 2d12.

(The S-PLUS function rmanovb described in Section 11.6.4 performs the
calculations.)

11.4 Measuring Effect Size

Section 8.11 describes some measures of effect size and indicates why they are
important. It is noted that analogs of these methods are available when comparing
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dependent groups. For example, a simple measure of effect size is

� = µ1 − µ2

σd
, (11.7)

where σd is the population standard deviation of the difference scores (the Di values).
But for reasons already described, this approach can grossly underestimate the extent
to which two groups differ, and it does not capture some of the global differences
between the groups. Another approach is to compute a confidence interval for
µ1 − µ2 or some robust measure of location, such as a trimmed mean or MOM.

A simple but useful way of assessing effect size is with a boxplot of the difference
scores (the Di values). When comparing dependent groups with identical distri-
butions, the D values will tend to be symmetrically distributed about zero. So in
particular, a boxplot will tend to have a median of zero. (Also see the discussion of
the sign test in Chapter 15.)

Another simple measure of effect size is p̂∗ or 2p̂∗m, the bootstrap estimate of the sig-
nificance level. These measures of effect size reflect the separation of the distributions
but not the magnitude of the differences between the measures of location.

Another approach is to use an analog of Q described in Section 8.11. That is, Q
represents the likelihood of correctly determining whether an observation came from
group 1 or group 2. If we make an arbitrary decision, meaning that we randomly decide
whether an observation came from group 1, then Q = .5. But suppose we decide that
an observation came from group 1 using the method outlined in Box 8.2. Roughly,
you first estimate the likelihood that an observation came from group 1 and then do
the same for group 2. If the estimated likelihood is higher that it came from group
1, then simply decide that it indeed came from group 1. If the groups are identical,
meaning they have identical (marginal) distributions, then the probability of a correct
decision is Q = .5. The more separated the groups happen to be, the closer Q will
be to 1. For dependent groups, Q can be estimated with the so-called .632 bootstrap
estimator, Q̂.632, which is computed as summarized in Box 11.2. As noted in Chapter
8, a rough guideline is that Q̂.632 = .55 reflects a small difference between the groups
and Q̂.632 = .66 is large. It is noted that Q̂.632 < .5 is possible even though we know
Q ≥ .5. So Q̂.632 < .5 suggests that there is little or no difference between the groups.

BOX 11.2 A Bootstrap Estimate of Q for Dependent Groups

For each group, compute the kernel density estimator as described in Sec-
tion 3.7 and label the results f̂1(x) and f̂2(x), respectively. Set η̂(Xi1) = 1
if f̂1(Xi1) > f̂2(Xi1); otherwise η̂(Xi1) = 0. Generate a bootstrap sample by
resampling n pairs of observations and let η̂∗ be the bootstrap analog of η̂.
Repeat this process B times, yielding η̂∗

b , b = 1, . . . ,B. Let

ε̂ = 1
n

n∑
i=1

1
Bi

∑
b∈Ci

η̂∗
b (X1i).

Continued
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BOX 11.2 (Continued )
Ci is the set of indices of the bth bootstrap sample not containing the pair
(X1i, X2i), and Bi is the number of such bootstrap samples. (The illustration in
conjunction with Box 8.2 provides some details about how ε̂ is computed.)
Let

Q̂ap = 1
n

∑
η̂(X1i).

The estimate of Q is

Q̂.632 = .368Q̂ap + .632ε̂,

11.4.1 S-PLUS Functions qhatd

The S-PLUS function

qhatd(x,y,nboot=50)

computes the measure of effect size, Q̂.632, as described in Box 11.2. As usual, x and
y can be any S-PLUS variables containing data.

EXAMPLE. For the data in Table 11.1, qhatd returns Q̂.632 = .42, suggesting
that if there is a difference between the groups, it is small. However, some
caution is required because the precision of the estimate of Q, based on Q̂.632,
is not known. The S-PLUS command

onesampb(x-y,est=median)

returns (0, 8) as a .95 confidence interval for the median of the difference scores.
This again suggests that if the groups differ, in some sense the difference might
be small, because we cannot rule out the possibility that the median difference
is zero. ■

11.5 Comparing Variances

As noted in Chapter 8, situations arise where the goal is to compare variances rather
than some measure of location. When comparing robust measures of scale, all indi-
cations are that the percentile bootstrap method is the most effective approach.
But for the special case where there is specific interest in the variances, a varia-
tion of the percentile bootstrap method is required. The method described here
is based on a bootstrap analog of the so-called Morgan–Pitman test and currently
appears to be the most satisfactory method among the many that have been
proposed.
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As usual, we have n pairs of randomly sampled observations: (X11, X12), . . . ,
(Xn1, Xn2). Set

Ui = Xi1 − Xi2 and Vi = Xi1 + Xi2,

(i = 1, . . . ,n). That is, for the ith pair of observations, Ui is the difference and Vi is
the sum. Let σ 2

1 be the variance associated with the first group (the Xi1 values) and
let σ 2

2 be the variance associated with the second. The goal is to test the hypothesis
that these variances are equal. It can be shown that if

H0 : σ 2
1 = σ 2

2

is true, then Pearson’s correlation between the U and V values is zero. That is, we
can test the hypothesis of equal variances by testing

H0 : ρuv = 0,

where ρuv is Pearson’s correlation between U and V . Section 6.5 describes the con-
ventional method for testing the hypothesis of a zero correlation based on Student’s T
distribution. Applying this method to the U and V values yields what is known as the
Morgan–Pitman test for equal variances. But we have already seen that the conventional
test of a zero correlation has undesirable properties when variables are dependent;
these problems render the Morgan–Pitman test unsatisfactory when distributions
differ. To deal with this problem, we simply apply the modified percentile bootstrap
as was done in Section 7.3. That is, take a bootstrap sample of n pairs of the U and
V values, compute the correlation between these values, repeat this 599 times, and
label the results r∗1 , . . . ,r∗599, in which case a .95 confidence interval for ρuv is(

r∗(a), r
∗
(c)

)
,

where for n < 40, a = 7 and c = 593; for 40 ≤ n < 80, a = 8 and c = 592; for
80 ≤ n < 180, a = 11 and c = 588; for 180 ≤ n < 250, a = 14 and c = 585; while
for n ≥ 250, a = 15 and c = 584. To apply the method, you can use the S-PLUS
function pcorb (described in Section 7.3.3), as illustrated in the next example.

EXAMPLE. Imagine that the data in Table 11.1 corresponding to the north
side of a tree are stored in the S-PLUS variable x and that the east side data are
stored in the S-PLUS variable y. Then the command pcorb(x-y,x+y) tests the
hypothesis that these two dependent groups have equal variances. The function
returns a .95 confidence interval of (−0.154, 0.677); this interval contains zero,
so you fail to reject. (The S-PLUS function comvar2d can be used as well. That
is, the command comvar2d(x,y) will test the hypothesis of equal variances.) ■

11.5.1 Comparing Robust Measures of Scale

As for comparing dependent groups using a robust measure of scale, a basic percentile
bootstrap method can be used. For example, if the goal is to test the hypothesis
that two dependent groups have equal population percentage bend midvariances,
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simply proceed as described in Section 11.3, where a bootstrap sample is obtained
by resampling with replacement n pairs of observations. For each group, compute
the percentage bend midvariance as described by Equation (3.18) (in Box 3.1) or
whichever measure of scale is of interest, and let d∗ be the difference between the
two estimates. Repeat this process B times, yielding d∗

1, . . . , d∗
B, and then put these B

values in ascending order, and label them in the usual way, namely, d∗
(1) ≤ · · · ≤ d∗

(B).
Then a 1 − α confidence interval for the difference between the measures of scale
is (d∗

(�+1), d
∗
(u)), where as usual � = α(B)/2, rounded to the nearest integer, and

u = B − �. In essence, use method RMPB2 (described in Section 11.3.1), except use
a robust measure of scale rather than a robust measure of location. The calculations
can be done with the S-PLUS function rmmcppb described in Section 11.3.2, with
the argument dif set equal to F.

EXAMPLE. Chapter 8 describes a study where EEG measures of convicted
murderers were compared to a control group. In fact measures for both groups
were taken at four sites in the brain. For illustrative purposes, the first two sites
for the control group are compared using the percentage bend midvariance
described in Chapter 3. The data are

Site 1: −0.15 −0.22 0.07 −0.07 0.02 0.24 −0.60 −0.17 −0.33
0.23 −0.69 0.70 1.13 0.38

Site 2: −0.05 −1.68 −0.44 −1.15 −0.16 −1.29 −2.49 −1.07 −0.84
−0.37 0.01 −1.24 −0.33 0.78

If we store the data in the S-PLUS variables eeg1 and eeg2, the command

rmmcppb(eeg1,eeg2,est=pbvar,dif=F)

returns a significance level of .13. So we are not able to detect a difference in the
variation between these two sites when testing at the .05 level. If the argument
est=pbvar is replaced with est=mad so that the MAD measure of scale is used,
the significance level is .25. ■

11.6 Comparing More Than Two Groups

This section describes how to compare measures of location corresponding to
multiple dependent groups. One strategy is to test

H0 : θ1 = · · · = θJ . (11.8)

Another approach is to test some appropriate hypothesis based on difference scores.
A simple possibility is to test

H0 : θd1 = · · · = θd,J−1 = 0, (11.9)

where θ is any measure of location, such as a median or MOM, and θdj is the value
of θ based on the difference scores between groups j and j + 1 ( j = 1, . . . , J − 1).
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That is, θdj is the population value of θ corresponding to Yij = Xij − Xi,j+1. We begin
with a nonbootstrap method based on trimmed means and then consider bootstrap
methods that can be used with trimmed means and other robust estimators. Section
11.8 discusses the relative merits of the methods about to be described.

11.6.1 A Method for Trimmed Means

This section generalizes the methods in Sections 11.1 and 11.2 to test

H0 : µt1 = · · · = µtJ , (11.10)

the hypothesis that all J groups have equal trimmed means. The test statistic, labeled
F, is computed as summarized in Box 11.3. You reject if F ≥ f , where f is the 1 − α

quantile of an F-distribution with ν1 and ν2 degrees for freedom, where ν1 and ν2 are
computed as described in Box 11.4.

For the special case where there is no trimming, F reduces to a standard test statistic
for comparing means (which is typically referred to as an ANOVA F-test). An early
approach to determining an appropriate critical value for this special case was based
on assuming that the variances and correlations among the J groups follow a rather
restrictive pattern called sphericity or circularity (see Huynh & Feldt, 1976). However,
violating this assumption is known to cause practical problems. Methods for testing
the assumption that sphericity holds have been proposed, but all indications are that
such tests do not have enough power to detect situations where the assumption
should be discarded (e.g., Boik, 1981; Keselman, Rogan, Mendoza, & Breen, 1980),
so no details are given here. Rather, we simply rely on the method in Box 11.4 for
determining a critical value that was derived without assuming sphericity. (Readers
interested in more details about sphericity are referred to Kirk, 1995, as well as Rogan,
Keselman, & Mendoza, 1979.) For simulation results on how the method in Box 11.3
performs with 20% trimmed means, see Wilcox, Keselman, Muska, and Cribbie, 2000.

BOX 11.3 Test Statistic for Comparing the Trimmed Means

of Dependent Groups

Winsorize the observations by computing

Yij =



X( g+1)j, Xij ≤ X( g+1)j

Xij, X( g+1)j < Xij < X(n−g)j

X(n−g)j, Xij ≥ X(n−g)j.

Let h = n − 2g be the effective sample size, where g = [γ n], [γ n] is γ n
rounded down to the nearest integer, and γ is the amount of trimming.
Compute

X̄t = 1
J

∑
X̄tj

Continued
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BOX 11.3 (Continued )

Qc = (n − 2g)
J∑

j=1

(
X̄tj − X̄t

)2

Qe =
J∑

j=1

n∑
i=1

(
Yij − Ȳ.j − Ȳi. + Ȳ..

)2
,

where

Ȳ.j = 1
n

n∑
i=1

Yij

Ȳi. = 1
J

J∑
j=1

Yij

Ȳ.. = 1
nJ

J∑
j=1

n∑
i=1

Yij.

The test statistic is

F = Rc

Re
,

where

Rc = Qc

J − 1

Re = Qe

(h − 1)(J − 1)
.

Decision Rule:
Reject if F ≥ f , the 1 − α quantile of an F-distribution with degrees of

freedom computed as described in Box 11.4.

BOX 11.4 How to Compute Degrees of Freedom When

Comparing Trimmed Means

Let

vjk = 1
n − 1

n∑
i=1

(
Yij − Ȳ.j

) (
Yik − Ȳ.k

)
Continued



386 Chapter 11 ■ Comparing Dependent Groups

BOX 11.4 (Continued )
for j = 1, . . . , J and k = 1, . . . , J, where, as in Box 11.3, Yij is the Winsorized
observation corresponding to Xij. When j = k, vjk = s2wj, the Winsorized
sample variance for the jth group; and when j �= k, vjk is a Winsorized analog
of the sample covariance.

Let

v̄.. = 1
J2

J∑
j=1

J∑
k=1

vjk

v̄d = 1
J

J∑
j=1

vjj

v̄j. = 1
J

J∑
k=1

vjk

A = J2(v̄d − v̄..)2

J − 1

B =
J∑

j=1

J∑
k=1

v2
jk − 2J

J∑
j=1

v̄2
j. + J2v̄2

..

ε̂ = A
B

ε̃ = n(J − 1)ε̂ − 2
(J − 1){n − 1 − (J − 1)ε̂} .

The degrees of freedom are

ν1 = (J − 1)ε̃

ν2 = (J − 1)(h − 1)ε̃,

where h is the effective sample size (the number of observations left in each
group after trimming).

11.6.2 S-PLUS Function rmanova

The S-PLUS function rmanova, which comes with this book, compares the trimmed
means of J dependent groups using the calculations in Boxes 11.3 and 11.4. The
function has the general form

rmanova(x,tr=.2,grp=c(1:length(x))).

The data are stored in x, which can be either an n-by-J matrix, with the jth column
containing the data for jth group, or an S-PLUS variable having list mode. In the
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latter case, x[[1]] contains the data for group 1, x[[2]] contains the data for group
2, and so on. As usual, tr indicates the amount of trimming, which defaults to .2, and
grp can be used to compare a subset of the groups. By default, the trimmed means
of all J groups are compared. If, for example, there are five groups but the goal is to
test H0 : µt2 = µt4 = µt5, then the command

rmanova(x,grp=c(2,4,5))

accomplishes this goal using 20% trimming.

EXAMPLE. The S-PLUS function rmanova is illustrated with the weight of
cork borings described in the introduction to this chapter, only now all four
sides of each tree are used. The data are reproduced in Table 11.3. If we store
the data in the S-PLUS variable cork in a matrix having four columns, then the
output from the command rmanova(cork) is

$test:
[1] 2.311757

$df:
[1] 2.636236 44.816010

$siglevel:
[1] 0.09624488

So with α = .05, we are unable to reject the hypothesis that the typical weights
of cork borings differ among the four sides of the trees. ■

11.6.3 A Bootstrap-t Method for Trimmed Means

When comparing trimmed means, a bootstrap-t method can be applied in basically
the same way as described in previous chapters, only again we generate bootstrap
samples in a manner consistent with dependent groups. As usual, when working with
a bootstrap-t method, we begin by centering the data. That is, we set

Cij = Xij − X̄tj

with the goal of estimating an appropriate critical value, based on the test statistic F
in Box 11.3, when the null hypothesis is true. The remaining steps are as follows:

1. Generate a bootstrap sample by randomly sampling, with replacement, n rows
of data from the matrix




C11, . . . , C1J
...

Cn1, . . . , CnJ


 ,
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TABLE 11.3 Cork Boring Weights for the North, East,
South, and West Sides of Trees

N E S W

72 66 76 77

60 53 66 63

56 57 64 58

41 29 36 38

32 32 35 36

30 35 34 26

39 39 31 27

42 43 31 25

37 40 31 25

33 29 27 36

32 30 34 28

63 45 74 63

54 46 60 52

47 51 52 53

91 79 100 75

56 68 47 50

79 65 70 61

81 80 68 58

78 55 67 60

46 38 37 38

39 35 34 37

32 30 30 32

60 50 67 54

35 37 48 39

39 36 39 31

50 34 37 40

43 37 39 50

48 54 57 43

yielding




C∗
11, . . . , C∗

1J
...

C∗
n1, . . . , C∗

nJ


 .

2. Compute the test statistic F in Box 11.3 based on the C∗
ij values generated in

step 1, and label the result F∗.
3. Repeat steps 1 and 2 B times and label the results F∗

1 , . . . ,F∗
B .

4. Put these B values in ascending order and label the results F∗
(1) ≤ · · · ≤ F∗

(B).
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The critical value is estimated to be F∗
(c), where c = (1 − α)B rounded to the nearest

integer. That is, reject the hypothesis of equal trimmed means if

F ≥ F∗
(c),

where F is the statistic given in Box 11.3 based on the Xij values.

11.6.4 S-PLUS Function rmanovab

The S-PLUS function

rmanovab(x, tr = 0.2, alpha = 0.05, grp = 0, nboot = 599)

performs the bootstrap-t method just described. The arguments have their usual
meaning; see, for example, Section 9.5.2.

11.7 Percentile Bootstrap Methods for Other Robust
Measures of Location

When comparing independent groups, some version of the percentile bootstrap
method generally performs better than the bootstrap-t, in terms of controlling the
probability of a Type I error, when the amount of trimming is at least 20%. For
the situation at hand, however, no percentile bootstrap method has been shown
to perform better than the bootstrap-t when the amount of trimming is 20%. But
in fairness, some promising percentile bootstrap methods have not been examined.
When comparing 20% trimmed means, all indications are that the bootstrap-t method
in Section 11.6.3 performs well, in terms of Type I errors, with sample sizes as small as
21 (Wilcox, Keselman, Muska, & Cribbie, 2000). But when comparing groups based
on MOMs, medians, and M-estimators or when the amount of trimming is at least
25%, certain variations of the percentile bootstrap method provide excellent control
over the probability of a Type I error.

There are in fact many variations of the percentile bootstrap method that might
be used to compare dependent groups. Most are not described here, either because
they are known to be relatively unsatisfactory or because little is known about how
well they perform when sample sizes are small. To complicate matters, there is the
issue of whether to use difference scores. So the goal in the remainder of this section
is to describe the methods that currently seem to have practical value and then in
Section 11.8 to comment on their relative merits.

11.7.1 Methods Based on Marginal Measures of Location

Again let θj be any measure of location associated with the jth group and let θ̂j be an
estimate of θj based on the available data (the Xij values). The goal is to test

H0 : θ1 = · · · = θJ ,

the hypothesis that all J dependent groups have identical measures of location. That
is, measures of location associated with marginal distributions are being compared,
as opposed to using difference scores.
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Method RMPB3

The first method uses the test statistic

Q =
∑(

θ̂j − θ̄
)2

,

where θ̄ = ∑
θ̂j/J is the average of the θ̂j values. An appropriate critical value is esti-

mated using an approach similar to the bootstrap-t technique. First, set Cij = Xij − θ̂j.
That is, shift the empirical distributions so that the null hypothesis is true. Next a
bootstrap sample is obtained by resampling, with replacement, as described in step 1
of Section 11.6.3. Again we label the results




C∗
11, . . . , C∗

1J
...

C∗
n1, . . . , C∗

nJ


 .

For the jth column of the bootstrap data just generated, compute the measure location
that is of interest and label it θ̂∗

j . Compute

Q∗ =
∑(

θ̂∗
j − θ̄∗)2

,

where θ̄∗ = ∑
θ̂∗

j /J, and repeat this process B times, yielding Q∗
1, . . . ,Q∗

B. Put these
B values in ascending order, yielding Q∗

(1) ≤ · · · ≤ Q∗
(B). Then reject the hypothesis

of equal measures of location if Q > Q∗
(c), where again c = (1 − α)B. (The S-PLUS

function bd1way described in Section 11.7.2 performs these calculations.)

Method RMPB4

If the null hypothesis is true, then all J groups have a common measure of location, θ .
The next method estimates this common measure of location and then checks to see
how deeply it is nested within the bootstrap values obtained when resampling from
the original values. That is, in contrast to method RMPB3, the data are not centered,
and bootstrap samples are obtained by resampling rows of data from




X11, . . . , X1J
...

Xn1, . . . , XnJ


 ,

yielding




X∗
11, . . . , X∗

1J
...

X∗
n1, . . . , X∗

nJ


 .
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For the jth group (or column of bootstrap values) compute θ̂∗
j . Repeating this pro-

cess B times yields θ̂∗
jb ( j = 1, . . . ,J; b = 1, . . . ,B). The remaining calculations are

performed as outlined in Box 11.5 (and are done by the S-PLUS function ddep in
Section 11.7.2). Notice that for J = 2, this method does not reduce to method
RMPB2 described in Section 11.3.1.

BOX 11.5 Repeated-Measures ANOVA Based on the Depth

of the Grand Mean

Goal:
Test the hypothesis

H0 : θ1 = · · · = θJ .

1. Compute

Sjk = 1
B − 1

B∑
b=1

(
θ̂∗

jb − θ̄∗
j

) (
θ̂∗

kb − θ̄∗
k

)
,

where

θ̄∗
j = 1

B

B∑
b=1

θ̂∗
jb .

(The quantity Sjk is the sample covariance of the bootstrap values
corresponding to the jth and kth groups.)

2. Let
θ̂∗

b =
(
θ̂∗

1b, . . . ,θ̂
∗
Jb

)
and compute

db =
(
θ̂∗

b − θ̂
)

S−1
(
θ̂∗

b − θ̂
)′

,

where S is the matrix corresponding to Sjk, θ̂ = (θ̂1, . . . ,θ̂J), θ̂j is the
estimate of θ based on the original data for the jth group (the Xij values,
i = 1, . . . ,n), and θ̂b = (θ̂1b, . . . ,θ̂Jb). The value of db measures how far
away the bth bootstrap vector of location estimators is from θ̂ , which
is roughly the center of all B bootstrap values.

3. Put the db values in ascending order: d(1) ≤ · · · ≤ d(B).
4. Let θ̂G = (θ̄ , . . . ,θ̄), where θ̄ = ∑

θ̂j/J, and compute

D =
(
θ̂G − θ̂

)
S−1

(
θ̂G − θ̂

)′
.

D measures how far away the estimated common value is from the
observed measures of location (based on the original data).

5. Reject if D ≥ d(u), where u = (1−α)B, rounded to the nearest integer.
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11.7.2 S-PLUS Functions bd1way and ddep

The S-PLUS functions

bd1way(x, est = onestep, nboot = 599, alpha = 0.05)

and

ddep(x, alpha = 0.05, est = mom, grp = NA, nboot = 500, …)

perform the percentile bootstrap methods just described. The first function performs
method RMPB3. By default it uses the one-step M-estimator of location (based on
Huber’s �), but any other estimator can be used via the argument est. As usual, x
is any S-PLUS variable that is a matrix or has list mode, nboot is B, the number of
bootstrap samples to be used, and grp can be used to analyze a subset of the groups,
with the other groups ignored. (That is, grp is used as illustrated in Section 10.3.1.)
The function ddep performs method RMPB4, described in Box 11.5.

EXAMPLE. We reanalyze the data in Table 11.3 using the S-PLUS functions
just described. Assuming the data are stored in the S-PLUS matrix cork, the
command bd1way(cork) returns

$test:
17.08

$crit:
34.09

So comparing one-step M-estimators, we fail to reject the hypothesis that the
typical weight of a cork boring is the same for all four sides of a tree. If we
compare groups using MOM in conjunction with method RMPB4 in Box 11.5,
the significance level is .385. ■

11.7.3 Percentile Bootstrap Methods Based on Difference Scores

The following method, based on difference scores, has been found to have practical
value, particularly in terms of controlling Type I error probabilities when sample sizes
are very small. Rather than test

H0 : θ1 = · · · = θJ , (11.11)

first consider the goal of testing the hypothesis that a measure of location associated
with the difference scores Dij = Xij − Xi,j+1 has the value zero. That is, use the
difference between the ith observation in group j and the ith observation in group
j+1, j = 1, . . . ,J −1. Let θj be any measure of location associated with the Dij values.
So, for example, θ1 might be the population value associated with MOM based on
the difference scores between groups 1 and 2, and θ2 the population MOM value
associated with difference scores between groups 2 and 3. A simple alternative to
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Equation (11.11) is to test

H0 : θ1 = · · · = θJ−1 = 0, (11.12)

the hypothesis that the typical difference scores do not differ and are all equal to
zero. However, a criticism of this approach is that the outcome can depend on how
we order the groups. That is, rather than take differences between groups 1 and 2,
we could just as easily take differences between groups 1 and 3 instead, which might
alter our conclusions about whether to reject. We can avoid this problem by instead
taking differences among all pairs of groups. There are a total of

L = J2 − J
2

such differences, which are labeled Di�, i = 1, . . . , n; � = 1, . . . , L. In particular,

Di1 = Xi1 − Xi2,

Di2 = Xi1 − Xi3,
...

DiL = Xi,J−1 − XiJ.

EXAMPLE. For four groups (J = 4), there are L = 6 differences, given by

Di1 = Xi1 − Xi2,

Di2 = Xi1 − Xi3,

Di3 = Xi1 − Xi4,

Di4 = Xi2 − Xi3,

Di5 = Xi2 − Xi4,

Di6 = Xi3 − Xi4.

■

The goal is to test

H0 : θ1 = · · · = θL = 0, (11.13)

where θ� is the population measure of location associated with the �th set of difference
scores, Di� (i = 1, . . . ,n). To test H0 given by Equation (11.13), resample vectors of D
values; but unlike the bootstrap-t, observations are not centered. That is, a bootstrap
sample now consists of resampling with replacement n rows from the matrix




D11, . . . , D1L
...

Dn1, . . . , DnL


 ,
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yielding




D∗
11, . . . ,D∗

1L
...

D∗
n1, . . . ,D∗

nL


 .

For each of the L columns of the D∗ matrix, compute MOM or whatever measure
of location is of interest, and for the �th column label the result θ̂∗

� (� = 1, . . . ,L).
Next, repeat this B times, yielding θ̂∗

�b, b = 1, . . . ,B, and then determine how deeply
the vector 0 = (0, . . . ,0), having length L, is nested within the bootstrap values θ̂∗

�b.
For two groups, this is tantamount to determining how many bootstrap values are
greater than zero. If most are greater than (or less than) zero, we reject, as indicated
in Section 11.3.1 in conjunction with method RMPB1. For more than two groups,
you use a method similar to the approach in Box 11.5. The details are relegated to
Box 11.6.

BOX 11.6 Repeated Measures ANOVA Based on Difference Scores

and the Depth of Zero

Goal:
Test the hypothesis, given by Equation (11.13), that all difference scores have
a typical value of zero.

1. Let θ̂� be the estimate of θ�. Compute bootstrap estimates as described
in Section 11.7.3 and label them θ̂∗

�b, � = 1, . . . , L; b = 1, . . . , B.
2. Compute the L-by-L matrix

S��′ = 1
B − 1

B∑
b=1

(
θ̂∗
�b − θ̂�

) (
θ̂∗
�′b − θ̂�′

)
.

Readers familiar with multivariate statistical methods might notice that
S��′ uses θ̂� (the estimate of θ� based on the original difference values)
rather than the seemingly more natural θ̄∗

� , where

θ̄∗
� = 1

B

B∑
b=1

θ̂∗
�b.

If θ̄∗
� is used, unsatisfactory control over the probability of a Type I

error can result.

Continued
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BOX 11.6 (Continued )

3. Let θ̂ = (θ̂1, . . . , θ̂L), θ̂∗
b = (θ̂∗

1b, . . . , θ̂
∗
Lb), and compute

db =
(
θ̂∗

b − θ̂
)

S−1
(
θ̂∗

b − θ̂
)′

,

where S is the matrix corresponding to S��′ .
4. Put the db values in ascending order: d(1) ≤ · · · ≤ d(B).
5. Let

0 = (0, . . . ,0),

having length L.
6. Compute

D = (0 − θ̂)S−1(0 − θ̂)′.
D measures how far away the null hypothesis is from the observed
measures of location (based on the original data). In effect, D measures
how deeply 0 is nested within the cloud of bootstrap values.

7. Reject if D ≥ d(u), where u = (1−α)B, rounded to the nearest integer.

11.7.4 S-PLUS Function rmdzero

The S-PLUS function

rmdzero(x,est = mom, grp = NA, nboot = NA,…)

performs the test on difference scores outlined in Box 11.6.

EXAMPLE. For the cork data in Table 11.3, rmdzero returns a significance
level of .044, so in particular reject with α = .05. That is, conclude that the
typical difference score is not equal to zero for all pairs of groups. This result is
in sharp contrast to comparing marginal measures of location based on MOM
and the method in Box 11.5, which has a significance level of .385. Currently, it
seems that the method in Box 11.5 does an excellent job of avoiding Type I error
probabilities larger than the nominal level, but that in many situations it is too
conservative. That is, the actual probability of a Type I error can be substantially
smaller than the nominal level, suggesting that it might have relatively poor
power. Switching to difference scores appears to correct this problem. ■

11.8 Comments on Which Method to Use

Several reasonable methods for comparing groups have been described, so there
is the issue of which one to use. As usual, no method is perfect in all situations.
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The expectation is that in many situations where groups differ, all methods based
on means perform poorly relative to approaches based on some robust measure of
location, such as MOM or a 20% trimmed mean. Currently, with a sample size as
small as 21, the bootstrap-t method in Section 11.6.3, used in conjunction with 20%
trimmed means, appears to provide excellent control over the probability of a Type I
error. Its power compares reasonably well to most other methods that might be used.
But as noted in previous chapters, different methods are sensitive to different features
of your data, and arguments for some other measure of location, such as MOM, have
been made.

The percentile bootstrap methods in Section 11.7 also do an excellent job of
avoiding Type I errors greater than the nominal level, but there are indications that
method RMPB3 in Section 11.7.1 can be too conservative when sample sizes are
small. That is, the actual probability of a Type I error can be substantially less than
α, suggesting that some other method might provide better power. Nevertheless, if
there is specific interest in comparing marginal distributions with M-estimators, it is
suggested that method RMPB3 in Section 11.7.1 be used and that the sample size
be greater than 20. There is some indirect evidence that a larger sample size might
be needed when using this method. (This is in contrast to comparing independent
groups, where sample sizes greater than 20 seem to suffice.) Also, it can be used to
compare groups based on MOM. But with very small sample sizes there are some
indications that its power might be inadequate, at least in some situations, relative to
other techniques that might be used.

Currently, among the techniques covered in this chapter, it seems that the two
best methods for controlling Type I error probabilities and simultaneously providing
reasonably high power are the bootstrap-t method based on 20% trimmed means
and the percentile bootstrap method in Box 11.6 used in conjunction with MOM,
which uses difference scores. (Other excellent options are covered in Chapter 12.)
With near certainty, situations arise where some other technique is more optimal, but
typically the improvement is small. However, comparing groups with MOM is not the
same as comparing means, trimmed means, or M-estimators, and certainly there will
be situations where some other estimator has higher power than any method based
on MOM or a 20% trimmed mean. If the goal is to maximize power, several methods
are contenders for routine use, but as usual, standard methods based on means are
generally the least satisfactory. With sufficiently large sample sizes, trimmed means
can be compared without resorting to the bootstrap-t method, but it remains unclear
just how large the sample size must be. When using MOM, currently a bootstrap
method is required regardless of how large the sample size might be.

As for the issue of whether to use difference scores versus robust measures of
location based on the marginal distributions, each approach provides a different per-
spective on how groups differ, and they can give different results regarding whether
groups are significantly different. There is some evidence that difference scores typ-
ically provide more power and better control over the probability of a Type I error,
but more detailed study is needed to resolve this issue.

As previously mentioned, method RMPB4, outlined in Box 11.5 (and performed
by the S-PLUS function ddep), is very conservative in terms of Type I errors, meaning
that when testing at the .05 level, say, often the actual probability of a Type I error will
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be less than or equal to α and typically smaller than any other method described in this
chapter. But a concern is that the actual Type I error probability can be substantially
smaller than the nominal level, resulting in low power relative to many other methods
you might use.

11.9 Between-by-Within, or Split-Plot, Designs

Chapter 10 covered a two-way ANOVA design involving JK independent groups,
with J levels associated with the first factor and K levels with the second. A between-
by-within, or split-plot, design refers to a situation where for a given level of the first
factor, the measures associated with the K levels of the second factor are dependent
instead. As a simple illustration, again consider the situation where endurance is
measured before and after training, but now we have two training methods. Moreover,
a sample of n1 athletes undergo training method 1 and a different, independent
sample of athletes undergo training method 2. So between methods, observations
are independent, but they are possibly dependent between occasions. The population
means are:

Time (B)
Method (A) 1 2

1 µ11 µ12
2 µ21 µ22

Moreover, the notions of main effects and interactions (described in Chapter 10)
extend immediately to the situation at hand. For example, the hypothesis of no main
effect for factor A (method) is

H0 :
µ11 + µ12

2
= µ21 + µ22

2
,

and the hypothesis of no interaction is

H0 : µ11 − µ12 = µ21 − µ22.

11.9.1 Method for Trimmed Means

The computational details on how to compare trimmed means (including means as
a special case) are tedious at best. Presumably most readers are more interested in
applying the method versus understanding the computational details, so the bulk of
the computations are relegated to Box 11.7 (assuming familiarity with basic matrix
algebra). In Box 11.7, Xijk represents the ith observation in level j of factor A and
level k of factor B, i = 1, . . . , nj; j = 1, . . . , J and k = 1, . . . , K. Once the quantities Q
and A are computed as described in Box 11.7, let

c = k + 2A − 6A
k + 2

.



398 Chapter 11 ■ Comparing Dependent Groups

When the null hypothesis is true, Q/c has, approximately, an F-distribution with
ν1 = k and ν2 = k(k + 2)/3A degrees of freedom (where k represents the number of
rows corresponding to the matrix C in Box 11.7). For factor A, k = J − 1; for factor
B, k = K − 1; and for interactions, k = (J − 1)(K − 1).

DECIS ION RULE: Reject if Q/c ≥ f1−α , the 1−α quantile of an F-distribution with
ν1 and ν2 degrees of freedom. (Also see Keselman, Algina, Boik, & Wilcox, 1999).

BOX 11.7 Computations for a Split-Plot Design When Using

Trimmed Means

The hypotheses of no main effects and no interactions can be written in the
form

H0 : Cµt = 0,

where C is a k-by-JK matrix (having rank k) that reflects the null hypothesis
of interest. (Here, µt is a column vector of population trimmed means having
length JK.) Let CJ be defined as in Box 10.4 and let j′J be a 1× J matrix of 1’s.
Then for factor A, C = CJ ⊗ j′K and k = J − 1. For factor B, C = j′J ⊗ CK,
k = K − 1, and the test for no interactions uses C = CJ ⊗ CK, where now
k = (J − 1)(K − 1).

For every level of factor A, there are K dependent random variables, and
each pair of these dependent random variables has a Winsorized covariance
that must be estimated. For fixed j, let gj be the number of observations
trimmed from both tails. (If the amount of trimming is γ , gj = [γ nj], as in
Chapter 3.) The Winsorized covariance between the mth and �th levels of
factor B is estimated with

sjm� = 1
nj − 1

nj∑
i=1

(
Yijm − Ȳ.jm

) (
Yij� − Ȳ.j�

)
,

where Ȳ.jm = ∑nj
i=1 Yijm/nj,

Yijk =




X( gj+1),jk if Xijk ≤ X( gj+1),jk

Xijk if X( gj+1),jk < Xij < X(n−gj),jk

X(n−gj),jk if Xijk ≥ X(nj−g),jk.

For fixed j, let Sj = (sjm�), which is the matrix of Winsorized variances and
covariances for level j of factor A. Let

Vj = (nj − 1)Sj

hj(hj − 1)
, j = 1, . . . , J,

Continued
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BOX 11.7 (Continued ) and let V = diag(V1, . . . ,VJ) be a block diagonal
matrix. The test statistic is

Q = X̄′C′(CVC′)−1CX̄, (11.14)

where X̄′ = (X̄t11, . . . ,X̄tJK). Let IK×K be a K-by-K identity matrix, let Qj be
a JK-by-JK block diagonal matrix (consisting of J blocks, each block being a
K-by-K matrix), where the tth block (t = 1, . . . ,J) along the diagonal of Qj
is IK×K if t = j, and all other elements are zero. (For example, if J = 3 and
K = 4, then Q1 is a 12-by-12 matrix block diagonal matrix, where the first
block is a 4-by-4 identity matrix and all other elements are zero. As for Q2, the
second block is an identity matrix, and all other elements are zero.) Compute

A = 1
2

J∑
j

tr({VC′(CVC′)−1CQj}2) + {tr(VC′(CVC′)−1CQj)}2

hj − 1
.

The remaining calculations are described in the text.

11.9.2 S-PLUS Function tsplit

The S-PLUS function

tsplit( J, K, x, tr = 0.2, grp = c(1:p), p = J ∗ K)

performs the calculations in Box 11.4. Here, J is the number of independent groups,
K is the number of dependent groups, x is any S-PLUS variable that is a matrix or has
list mode, and, as usual, tr indicates the amount of trimming, which defaults to .2 if
unspecified. If the data are stored in list mode, it is assumed that x[[1]] contains the
data for level 1 of both factors, x[[2]] contains the data for level 1 of the first factor
and level 2 of the second, and so on. If the data are not stored in the proper order,
grp can be used to indicate how they are stored. For example, if a 2-by-2 design is
being used, the S-PLUS command

tsplit(2,2,x,grp=c(3,1,2,4))

indicates that the data for the first level of both factors are stored in x[[3]], the data
for level 1 of factor A and level 2 of factor B are in x[[1]], and so forth. The last
argument, p, can be ignored. It is needed only to satisfy certain requirements of
S-PLUS. If the data are stored in a matrix, it is assumed that the first column contains
the data for level 1 of both factors, the second column contains the data for level 1
of the first factor and level 2 of the second, and so forth.

11.9.3 A Bootstrap-t Method

To apply a bootstrap-t method when working with trimmed means, you first center
the data in the usual way. In the present context, this means you compute

Cijk = Xijk − X̄tjk,



400 Chapter 11 ■ Comparing Dependent Groups

i = 1, . . . , nj; j = 1, . . . , J; and k = 1, . . . , K. That is, for the group corresponding
to the jth level of factor A and the kth level of factor B, subtract the corresponding
trimmed mean from each of the observations. Next, for the jth level of factor A, gen-
erate a bootstrap sample by resampling with replacement nj vectors of observations
from the data in level j of factor A. That is, for each level of factor A, you have an
nj-by-K matrix of data, and you generate a bootstrap sample from this matrix of data
as described in Section 11.6.3. Label the resulting bootstrap samples C∗

ijk. Compute
the test statistic F, based on the C∗

ijk values as described in Box 11.3, and label the
result F∗. Repeat this B times, yielding F∗

1 , . . . ,F∗
B , and then put these B values in

ascending order, yielding F∗
(1) ≤ · · · ≤ F∗

(B). Next, compute F using the original data
(the Xijk values) as described in Box 11.3 and reject if F ≥ F∗

(c), where c = (1 − α)
rounded to the nearest integer.

A crude rule that seems to apply to a wide variety of situations is: The more
distributions associated with groups differ, the more beneficial it is to use some
type of bootstrap method, at least when sample sizes are small. Keselman, Algina,
Wilcox, and Kowalchuk (2000) compared the bootstrap-t method just described to
the nonbootstrap method for a split-plot design, covered in Section 11.9.1. For the
situations they examined, this rule did not apply; it was found that the bootstrap-t
offered little or no advantage. Their study included situations where the correlations
(or covariances) among the dependent groups differ across the independent groups
being compared. However, the more complicated the design, the more difficult it
becomes to consider all the factors that might influence operating characteristics of
a particular method. One limitation of their study was that the differences among
the covariances were taken to be relatively small. Another issue that has not been
addressed is how the bootstrap-t performs when distributions differ in skewness.
Having differences in skewness is known to be important when dealing with the
simple problem of comparing two groups only. There is no reason to assume that
this problem diminishes as the number of groups increases, and indeed there are
reasons to suspect that it becomes a more serious problem. So currently, it seems
that if groups do not differ in any manner or the distributions differ slightly, it makes
little difference whether you use a bootstrap-t versus a nonbootstrap method for
comparing trimmed means. However, if distributions differ in shape, there is indirect
evidence that the bootstrap-t might offer an advantage when using a split-plot design,
but the extent to which this is true is not well understood.

11.9.4 S-PLUS Function tsplitbt

The S-PLUS function

tsplitbt(J,K,x,tr=.2,alpha=.05,JK=J∗K,grp=c(1 : JK),

nboot=599,monitor=F)

performs a bootstrap-t method for a split-plot design, as just described. The data are
assumed to be arranged as indicated in conjunction with the S-PLUS function tsplit
(as described in Section 11.9.2), and the arguments J, K, tr, and alpha have the same
meaning as before. The argument JK can be ignored, and grp can be used to rearrange
the data if they are not stored as expected by the function. (See Section 10.3.1 for
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an illustration on how to use grp.) The argument monitor can be used to monitor the
progress of the function. If we set monitor=T, the function prints a message each
time it completes a bootstrap iteration. This way you can get some sense of how long
it will take before the computations are complete.

11.9.5 Using MOMs, Medians, and M-Estimators

Comparing groups based on MOMs, medians, and M-estimators in a split-plot design
is possible using extensions of the bootstrap methods considered in this chapter as
well as Chapters 9 and 10. Generally, bootstrap samples must be generated in a
manner that reflects the dependence among the levels of factor B, and then some
appropriate hypothesis is tested using some slight variation of one of the methods
already described. In fact, the problem is not deriving a method, but rather decid-
ing which method should be used among the many that are available. This section
summarizes some approaches that are motivated by published papers, but it is noted
that alternative methods might be more optimal and that for the specific situation at
hand more research is needed to better understand the relative merits of different
techniques. (Methods in Chapter 12 provide yet another perspective and should be
considered before analyzing data.)

Again consider a two-way design where factor A consists of J independent groups
and factor B corresponds to K dependent groups. First consider the dependent
groups. One approach to comparing these K groups, ignoring factor A, is simply to
form difference scores and then to apply the method in Box 11.6. More precisely,
imagine you observe Xijk (i = 1, . . . , nj; j = 1, . . . , J; k = 1, . . . , K). That is, Xijk is the
ith observation in level j of factor A and level k of factor B. Note that if we ignore
the levels of factor A, we can write the data as Yik, i = 1, . . . , N; k = 1, . . . , K, where
N = ∑

nj. Now consider levels k and k′ of factor B (k < k′) and set

Dikk′ = Yik − Yik′ ;

let θkk′ be some measure of location associated with Dikk′ . Then the levels of factor B
can be compared, ignoring factor A, by testing

θ12 = · · · = θk−1,k = 0 (11.15)

using the method in Section 11.7.3. In words, the null hypothesis is that the typical
difference score between any two levels of factor B, ignoring factor A, is zero.

As for factor A, ignoring factor B, one approach is as follows. Momentarily focus
on the first level of factor B and note that the levels of factor A can be compared
using the method in Box 9.7. That is, the null hypothesis of no differences among
the levels of factor A is

H0 : θ11 = θ21 = · · · = θJ1,

where of course these J groups are independent, and a percentile bootstrap method
can be used as described in Chapter 9. More generally, for any level of factor B — say,
the kth — no main effects is

H0 : θ1k = θ2k = · · · = θJk,
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(k = 1, . . . ,K), and the goal is to test the hypothesis that these K hypotheses are
simultaneously true. Here we take this to mean that we want to test

H0 : θ11 − θ21 = · · · θJ−1,1 − θJ1 = · · · = θJ−1,K − θJK = 0 (11.16)

In this last equation, there are C = K(J2 − J )/2 differences, all of which are hypothe-
sized to be equal to zero. Generalizing the method in Box 9.7, for each level of factor
A, generate bootstrap samples as is appropriate for K dependent groups (see Section
11.7.1), and then test Equation (11.16). To briefly outline the computations, label the
C differences as δ1, . . . ,δC and then denote bootstrap estimates by δ̂∗

c (c = 1, . . . C).
For example, δ̂∗

1 = θ∗
11 − θ∗

21. Then we test Equation (11.16) by determining how
deeply the vector (0, . . . ,0), having length C, is nested within B bootstrap values,
which is done in the manner described in Box 11.6.

For factor A an alternative approach is to average the measures of location across
the K levels of factor B and then to proceed in the manner described in Box 9.7. In
symbols, let

θ̄j. = 1
K

K∑
k=1

θjk,

in which case the goal is to test

H0 : θ̄1. = · · · = θ̄J..

Again for each level of factor A, you generate B samples for the K dependent groups
as described in Section 11.7.1 in conjunction with method RMPB4. Let θ̄∗

j. be the
bootstrap estimate for the jth level of factor A. For levels j and j′ of factor A, j < j′,
set δ∗

jj′ = θ̄∗
j. − θ̄∗

j′.. Then you determine how deeply 0, having length (J2 − J )/2, is
nested within the B bootstrap values for δ∗

jj′ using the method described in Box 11.6.
As for interactions, again there are several approaches one might adopt. Here an

approach based on difference scores among the dependent groups is used. To explain,
first consider a 2-by-2 design, and for the first level of factor A let Di1 = Xi11 − Xi12,
i = 1, . . . ,n1. Similarly, for level 2 of factor A let Di2 = Xi21 − Xi22, i = 1, . . . ,n2, and
let θd1 and θd2 be the population measure of location corresponding to the Di1 and
Di2 values, respectively. Then the hypothesis of no interaction is taken to be

H0 : θd1 = θd2,

which of course is the same as

H0 : θd1 − θd2 = 0. (11.17)

Again the basic strategy for testing hypotheses is generating bootstrap estimates and
determining how deeply 0 is embedded in the B values that result. For the more
general case of a J-by-K design, there are a total of

C = J2 − J
2

× K2 − K
2

equalities, one for each pairwise difference among the levels of factor B and any two
levels of factor A.
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11.9.6 S-PLUS Functions sppba, sppbb, and sppbi

The S-PLUS function

sppba( J,K,x,est=mom,grp = c(1: JK),avg=F,nboot=500, . . . )

tests the hypothesis of no main effects for factor A in the manner just described.
Setting the argument avg to T (for true) indicates that the averages of the measures of
location (the θ̄j. values) will be used. That is, H0 : θ̄1. = · · · = θ̄J. is tested. Otherwise,
the hypothesis given by Equation (11.16) is tested. The remaining arguments have
their usual meaning. The S-PLUS function

sppbb( J,K,x,est=mom,grp = c(1: JK),nboot=500, . . . )

tests the hypothesis of no main effects for factor B (as described in the previous
section), and

sppbi(J,K,x,est=mom,grp = c(1: JK),nboot=500, . . . )

tests the hypothesis of no interactions.

EXAMPLE. We examine once more the EEG measures for murderers versus
a control group, only now we use the data for all four sites in the brain where
measures were taken. If we label the typical measures for the control group as
θ11, . . . ,θ14 and the typical measures for the murderers as θ21, . . . ,θ24, we have
a 2-by-4 between-by-within design, and a possible approach to comparing the
groups is testing

H0 : θ11 − θ21 = θ12 − θ22 = θ13 − θ23 = θ14 − θ24 = 0.

This can be done with the S-PLUS function sppba with the argument avg set
to F. If the data are stored in a matrix called eeg having eight columns, with the
first four corresponding to the control group, then the command sppba(2,4,eeg)
performs the calculations based on the MOM measure of location and returns
a significance level of .098. An alternative approach is to average the value
of MOM over the four brain sites for each group and then to compare these
averages. That is, test H0 : θ̄1. = θ̄2., where θ̄j. = ∑

θjk/4. This can be done
with the command

sppba(2,4,eeg,avg=T).

Now the significance level is .5, so we see that the significance level can vary
tremendously depending on how we compare the groups. ■

11.9.7 The S-PLUS Function selby

Section 1.1.6 describes an S-PLUS function that is convenient when data are stored
in a matrix, with one of the columns indicating the group to which an observation
belongs. Basically, the function takes the data in a matrix and sorts it into groups in a
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manner that can be used by the S-PLUS functions written for this book. It is noted
that this function can be used when there are multiple columns of data rather than
just one, as illustrated in Section 1.1.6. That is, the third argument, coln, can be a
vector.

EXAMPLE. Imagine that you have four dependent variables stored in columns
1–4 of the S-PLUS matrix mat and that column 5 indicates the group to which
a vector of observations belongs. So, for example, the data might look like this:

v1 v2 v3 v4 G
34 42 63 19 1
26 99 45 29 1
33 42 18 32 2

...

The problem is to sort the data into groups, based on the values listed in
column 5 (under G), and to store the data in a manner that can be used by, for
example, the functions in Section 11.9.6. The command

dat < −selby(mat,5,c(1:4))

accomplishes this goal. (This command stores the data in dat$x, having list
mode.) So if there are five groups corresponding to the values in column 5 of
mat, interactions could be investigated with the command

sppbi(5,4,dat$x).

■

11.10 Exercises

1. For the data in Table 11.3, perform the paired T-test for means using the
weights for the east and south sides of the trees. Verify that the significance
level is .09.

2. Repeat the previous exercise, but use 20% trimmed means instead, using the
difference scores in conjunction with the S-PLUS function trimci in Section
4.9.4. Note that the significance level is .049.

3. If in Exercise 1 you compare the marginal 20% trimmed means with the
S-PLUS function yuend in Section 11.2.1, verify that now the significance level
is .121.

4. Generally, why is it possible to get a different significance level comparing
the marginal trimmed means than when making inferences about the trimmed
mean of the difference scores?

5. Based on what is currently known, would you expect more power when com-
paring the marginal trimmed means or when making inferences about the
trimmed mean of the difference scores?
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6. Repeat Exercise 1, but now use a percentile bootstrap method based on MOM
and the difference scores. That is, use with the S-PLUS function rmmcppb.
Verify that the significance level is .092.

7. Repeat the last exercise, except now compare the marginal measures of location
based on MOM. So in the S-PLUS function rmmcppb, set dif=F. Verify that
the significance level is .578.

8. Based on the S-PLUS output from rmmcppb, if you were to repeat the last exer-
cise, except adding 6.75 to every observation in the second group, would you
reject with α = .05? Verify your answer by adding 6.75 to every observation
in the second group and invoking rmmcpp.

9. For the data in Exercise 1, verify that the .95 confidence interval for the median
of the difference scores, based on the method in Chapter 4, is (−7, .55).

10. Compare the marginal medians of the data in Exercise 1 using the S-PLUS
function rmmcppb in Section 11.3.2. Verify that the .95 confidence interval
for the difference between the population medians is (−14, 4.5).

11. In this chapter and in Chapter 8 reference was made to a study dealing with EEG
measures for murderers versus a control group. In another portion of this study,
the measures for four sites in the brain were found to be as reported in Table
11.4. (These observations differ from those used in previous illustrations.)
Using difference scores, compare site 1 and site 3 for murderers using both
means and 20% trimmed means. (Use the S-PLUS function trimci.) Verify that
the significance levels are .61 and .27, respectively.

12. For the data in Table 11.4, compare all four sites for murderers with the S-PLUS
function rmanova in Section 11.6.2. Verify that you reject with both means
and 20% trimmed means with α = .01.

TABLE 11.4 EEG Measures

Murderers Controls

Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4

−0.19 −1.05 −0.04 −1.48 0.45 −1.57 0.96 −0.76

0.39 −1.39 1.08 −0.95 0.24 −1.12 1.25 −0.31

0.09 −0.49 0.19 −2.14 0.33 −1.53 −0.64 −1.57

0.54 −0.76 1.06 −0.33 0.81 −0.28 0.29 −1.25

0.78 −0.36 −0.36 −1.09 1.30 −0.53 −0.05 −0.98

0.59 −1.17 0.80 −1.06 0.46 −1.09 0.09 −2.35

0.04 −1.75 0.11 −1.41 −0.01 −1.98 1.07 −0.94

0.38 −0.83 1.05 −0.29 1.11 −0.84 0.88 −1.62

0.25 −0.40 −0.07 −1.90 0.16 −1.25 0.28 −0.55

0.01 −1.06 0.50 −0.07 1.02 −1.07 0.00 −1.31

0.40 −1.36 0.54 −0.63 0.67 −0.92 −0.08 −2.18

0.52 −1.30 1.69 −0.22 1.37 −0.69 0.62 −0.86

1.35 −0.45 0.01 −1.22 0.59 −0.64 −0.02 −0.06

0.02 −0.86 −0.07 −1.65 0.66 −1.43 −0.48 −0.93
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13. For the data in Table 11.4, compare all groups using the S-PLUS function tsplit
in Section 11.9.2. Verify that when comparing murderers to the control group,
the main effect has a significance level of .9955.

14. For the data in Table 11.4, compare murderers versus controls using MOM
and difference scores as outlined in Section 11.9.5. That is, use the S-PLUS
function sppba in Section 11.9.6. Verify that the significance level is .138, and
compare this result with the previous exercise.

15. In the previous exercise, you could have used averages rather than difference
scores when comparing the murderers to the controls using the approach
described in Section 11.9.6. Using the S-PLUS function sppba with the
argument avg set equal to T, verify that the significance level is .89.

16. Compare the results from the previous three exercises and comment on finding
the optimal method for detecting a true difference among groups.

17. For the data in Table 11.4, use the S-PLUS function sppbi to test the hypothesis
of no interactions based on MOM. Verify that the significance level is .1.



12
MULTIPLE COMPARISONS

Chapters 9–11 describe how to test the hypothesis that two or more groups have a
common measure of location. When working with means, for example, one goal was
to test

H0 : µ1 = · · · = µJ , (12.1)

the hypothesis that J groups have equal population means. It is common, however,
to want to know more about how the groups compare: Which groups differ? How do
they differ, and by how much? When addressing these questions, what role should
the methods in Chapters 9–11 play? A very common strategy is first to test Equation
(12.1) and, if a nonsignificant result is obtained, to stop and fail to declare any of the
groups to be different. One goal in this chapter is to cover modern insights into the
relative merits of this approach.

The other general goal is to describe methods for controlling what is called the
familywise error rate (FWE) (sometimes called the experimentwise error rate) that is, the
probability of making at least one Type I error when performing multiple tests. To
elaborate, imagine you have four independent groups and for the moment assume
normality and homoscedasticity. Suppose that for each pair of means we test the
hypothesis of equal means using Student’s T. That is, the goal is to test

H0 : µ1 = µ2,

H0 : µ1 = µ3,

H0 : µ1 = µ4,

H0 : µ2 = µ3,

H0 : µ2 = µ4,

H0 : µ3 = µ4.

If we test each of these hypotheses at the .05 level (α = .05), then of course the
probability of a Type I error will be .05 for each test. But what is the probability of
at least one Type I error among the six hypotheses of interest? That is, what is the
probability of erroneously concluding that one or more pairs of means differ when
in fact none differ at all? Determining this probability is complicated by the fact

407
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that the individual tests are not all independent. For example, when testing the first
two hypotheses, the corresponding Student’s T-tests will be dependent because both
have the first sample mean in the numerator of the test statistic. That is, X̄1 is used both
times. If all six tests were independent, then we could use the binomial probability
function to determine the probability of at least one Type I error. But because there is
dependence, special methods are required. Bernhardson (1975) describes a situation
where the probability of at least one Type I error (FWE) can be as high as .29 for the
situation at hand. When comparing all pairs of 10 groups, this probability can be as
high as .59.

12.1 Homoscedastic Methods for the Means of
Independent Groups

We begin by describing classic methods for comparing means that assume normality
and equal variances. Problems with these classic methods have long been esta-
blished (e.g., Wilcox, 1996c), but they are commonly used; their pitfalls remain
relatively unknown, so they are included here merely for completeness and future
reference.

12.1.1 Fisher’s Least Significant Difference (LSD) Method

One of the earliest strategies for comparing multiple groups is the so-called least
significant difference (LSD) method due to Sir Ronald Fisher. Assuming normality and
homoscedasticity, first perform the ANOVA F-test in Section 9.1. If a significant
result is obtained, apply Student’s T to all pairs of means, but unlike the approach in
Chapter 8, typically the assumption of equal variances is taken advantage of by using
the estimate of the assumed common variance when performing Student’s T. Under
normality and homoscedasticity, this has the advantage of increasing the degrees of
freedom, which in turn can mean more power.

To be more concrete, suppose the ANOVA F-test in Section 9.1 is significant for
some specified value of α and let MSWG (described in Box 9.1) be the estimate of
the assumed common variance. To test

H0 : µj = µk, (12.2)

the hypothesis that the mean of the jth group is equal to the mean of the kth group,
compute

T = X̄j − X̄k√
MSWG

(
1
nj

+ 1
nk

) . (12.3)

When the assumptions of normality and homoscedasticity are met, T has a Student’s
T-distribution with ν = N − J degrees of freedom, where J is the number of
groups being compared and N = ∑

nj is the total number of observations in all J
groups. So when comparing the jth group to the kth group, you reject the hypothesis
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TABLE 12.1 Hypothetical Data for
Three Groups

G1 G2 G3

3 4 6

5 4 7

2 3 8

4 8 6

8 7 7

4 4 9

3 2 10

9 5 9

of equal means if

|T| ≥ t1−α/2,

where t1−α/2 is the 1 − α/2 quantile of Student’s T-distribution with N − J degrees
of freedom.

EXAMPLE. For the data in Table 12.1, it can be shown that MSWG = 4.14,
the sample means are X̄1 = 4.75, X̄2 = 4.62, and X̄3 = 7.75, and the F-test
is significant, so according to Fisher’s LSD procedure, you would proceed by
comparing each pair of groups with Student’s T-test. For the first and second
groups,

T = 4.75 − 4.62√
4.14(1

8 + 1
8)

= .128.

The degrees of freedom are ν = 21, and with α = .05, Table 4 in Appendix
B says that the critical value is 2.08. Therefore, you fail to reject. That is, the
F-test indicates that there is a difference among the three groups, but Student’s
T suggests that the difference does not correspond to groups 1 and 2. For
groups 1 and 3,

T = 4.75 − 7.75√
4.14(1

8 + 1
8)

= −2.94,

and because 2.94 is greater than the critical value, 2.08, reject. That is, conclude
that groups 1 and 3 differ. In a similar manner, you conclude that groups 2 and
3 differ as well, because T = 3.08. ■

When the assumptions of normality and homoscedasticity are true, Fisher’s
method controls FWE when J = 3. That is, the probability of at least one Type I
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error will be less than or equal to α. However, when there are more than three groups
(J > 3), this is no longer true (Hayter, 1986). To gain some intuition as to why, sup-
pose four groups are to be compared, the first three have equal means, but the mean
of the fourth group is so much larger than the other three means that power is close
to 1. That is, with near certainty, you will reject with the ANOVA F-test and proceed
to compare all pairs of means with Student’s T at the α level. So in particular you
will test

H0 : µ1 = µ2,

H0 : µ1 = µ3,

H0 : µ2 = µ3,

each at the α level, and the probability of at least one Type I error among these three
tests will be greater than α.

12.1.2 The Tukey–Kramer Method

Tukey was the first to propose a method that controls FWE. He assumed normality
and homoscedasticity and obtained an exact solution when all J groups have equal
sample sizes. Kramer (1956) proposed a generalization that provides an approx-
imate solution when the sample sizes are unequal, and Hayter (1984) showed
that when there is homoscedasticity and sampling is from normal distributions,
Kramer’s method is conservative. That is, it guarantees that FWE will be less than or
equal to α.

When comparing the jth group to the kth group, the Tukey–Kramer 1 − α

confidence interval for µj − µk is

(X̄j − X̄k) ± q

√
MSWG

2

(
1
nj

+ 1
nk

)
, (12.4)

where nj is the sample size of the jth group, MSWG is the mean square within groups,
which estimates the assumed common variance (see Box 9.1), and q is a constant read
from Table 9 in Appendix B, which depends on the values of α, J (the number of
groups being compared), and the degrees of freedom,

ν = N − J,

where again N is the total number of observations in all J groups. Under normality,
equal variances and equal sample sizes, the simultaneous probability coverage is exactly
1−α. That is, with probability 1−α, it will be simultaneously true that the confidence
interval for µ1 −µ2 will indeed contain µ1 −µ2, the confidence interval for µ1 −µ3
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TABLE 12.2 Ratings of Three Types of Cookies

Method 1 Method 2 Method 3

5 6 8

4 6 7

3 7 6

3 8 8

4 4 7

5 5

3 8

4 5

8

2

will indeed contain µ1 − µ3, and so on. You reject H0 : µj = µk if

|X̄j − X̄k|√
MSWG

2

(
1
nj

+ 1
nk

) ≥ q.

EXAMPLE. Table 12.2 shows some hypothetical data on the ratings of three
brands of cookies. Each brand is rated by a different sample of individuals.There
are a total of N = 23 observations, so the degrees of freedom are ν = 23−3 =
20, the sample means are X̄1 = 4.1, X̄2 = 6.125, and X̄3 = 7.2, the estimate of
the common variance is MSWG = 2.13, and with α = .05, Table 9 in Appendix
B indicates that q = 3.58. The confidence interval for µ1 − µ3 is

(4.1 − 7.2) ± 3.58

√
2.13

2

(
1
10

+ 1
5

)
= ( − 5.12, − 1.1).

This interval does not contain zero, so you reject the hypothesis that typical
ratings of brands 1 and 3 are the same. You can compare brand 1 to brand 2 and
brand 2 to brand 3 in a similar manner, but the details are left as an exercise. ■

12.1.3 A Step-Down Method

All-pairs power refers to the probability of detecting all true differences among all
pairwise differences among the means. For example, suppose you want to compare
four groups where µ1 = µ2 = µ3 = 10 but µ4 = 15. In this case, all-pairs
power refers to the probability of rejecting H0 : µ1 = µ4 and H0 : µ2 = µ4 and
H0 : µ3 = µ4. Still assuming normality and homoscedasticity, it is possible to achieve
higher all-pairs power than with the Tukey–Kramer method in Section 12.1.2 using
what is called a step-down technique. One price for this increased power is that you
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can no longer compute confidence intervals for the differences among the pairs of
means. Box 12.1 summarizes the details.

BOX 12.1 Summary of the Step-Down Procedure

The goal is to perform all pairwise comparisons of the means of J independent
groups such that the familywise Type I error probability is α.

1. Test H0 : µ1 = · · · = µJ at the αJ = α level of significance. Assuming
normality and homoscedasticity, this is done with the ANOVA F-test
in Chapter 9. If you fail to reject, stop; otherwise continue to the next
step.

2. For each subset of J − 1 means, test the hypothesis that these means
are equal at the αJ−1 = α level of significance. If all such tests are
nonsignificant, stop. Otherwise continue to the next step.

3. For each subset of J −2 means, test the hypothesis that they are equal
at the αJ−2 = 1 − (1 − α)(J−2)/J level of significance. If all of these
tests are nonsignificant, stop; otherwise continue to the next step.

4. In general, test the hypothesis of equal means, for all subsets of p
means, at the αp = 1− (1−α)p/J level of significance, when p ≤ J −2.
If all of these tests are nonsignificant, stop and fail to detect any
differences among the means; otherwise continue to the next step.

5. The final step consists of testing all pairwise comparisons of the means
at the α2 = 1− (1−α)2/J level of significance. In this final step, when
comparing the jth group to the kth group, you either fail to reject,
you fail to reject by implication from one of the previous steps, or you
reject.

EXAMPLE. Consider J = 5 methods designed to increase the value of a
client’s stock portfolio, which we label methods A, B, C, D, and E. Further
assume that when comparing these five methods, you are willing to sacrifice
confidence intervals to enhance your all-pairs power. Assume that you want the
familywise error rate to be α = .05. The first step is to test

H0 : µ1 = µ2 = µ3 = µ4 = µ5

at the α5 = α = .05 level of significance, where the subscript 5 on α5 indicates
that in the first step, all J = 5 means are being compared. If you fail to reject
H0, stop and decide that there are no pairwise differences among the five
methods. If you reject, proceed to the next step, which consists of testing
the equality of the means for all subsets of four groups. In the illustration,
suppose the F-test for equal means is applied as described in Chapter 9, yielding

Continued
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EXAMPLE. (Continued ) F = 10.5. Assuming the critical value is 2.6, you would
reject and proceed to the next step. That is, you test

H0 : µ1 = µ2 = µ3 = µ4

H0 : µ1 = µ2 = µ3 = µ5

H0 : µ1 = µ2 = µ4 = µ5

H0 : µ1 = µ3 = µ4 = µ5

H0 : µ2 = µ3 = µ4 = µ5.

In this step you test each of these hypotheses at the α4 = α = .05 level of
significance, where the subscript 4 indicates that each test is comparing the
means of four groups. Note that both the first and second steps use the same
significance level, α. If in the second step, all five tests are nonsignificant,
you stop and fail to detect any pairwise differences among the five methods;
otherwise you proceed to the next step. In the illustration, suppose the values
of your test statistic, F, are 9.7, 10.2, 10.8, 11.6, and 9.8, with a critical value
of 2.8. So you reject in every case, but even if you reject in only one case, you
proceed to the next step.

The third step consists of testing all subsets of exactly three groups, but this
time you test at the

α3 = 1 − (1 − α)3/5

level of significance, where the subscript 3 is used to indicate that subsets of
three groups are being compared. In the illustration, this means you test

H0 : µ1 = µ2 = µ3

H0 : µ1 = µ2 = µ4

H0 : µ1 = µ3 = µ4

H0 : µ1 = µ2 = µ5

H0 : µ1 = µ3 = µ5

H0 : µ1 = µ4 = µ5

H0 : µ2 = µ3 = µ4

H0 : µ2 = µ3 = µ5

H0 : µ2 = µ4 = µ5

H0 : µ3 = µ4 = µ5

Continued



414 Chapter 12 ■ Multiple Comparisons

EXAMPLE. (Continued ) using α3 = 1 − (1 − .05)3/5 = .030307. If none of
these hypotheses is rejected, you stop and fail to detect any pairwise differ-
ence among all pairs of methods; otherwise you continue to the next step.

The final step is to compare the jth group to the kth group by testing

H0 : µj = µk.

This time you test at the

α2 = 1 − (1 − α)2/5

level. In the illustration, α2 = .020308. In this final stage, you make one of three
decisions: You fail to reject H0, you fail to reject H0 due to the results from a
previous step, or you reject. To clarify the second decision, suppose you fail
to reject H0 : µ1 = µ3 = µ4. Then by implication, you would conclude that
µ1 = µ3, µ1 = µ4, and µ3 = µ4, regardless of what you got in the final step.
That is, H0 : µ1 = µ3, H0 : µ1 = µ4, and H0 : µ3 = µ4 would be declared not
significant by implication, even if they were rejected in the final step. This might
seem counterintuitive, but it is necessary if you want to control the familywise
Type I error probability. Table 12.3 summarizes the results. ■

As stressed in Chapter 9, the ANOVA F-test performs rather poorly when the
normality or homoscedasticity assumption is violated. One particular problem is low
power under arbitrarily small departures from normality. When comparing means
with a step-down procedure, there is a sense in which this problem is exacerbated. To
illustrate why, imagine you are comparing four groups; all of the groups have unequal
means, the first three groups have normal distributions, but the fourth has the mixed
normal described in Section 2.7. Then the ANOVA F-test, applied to all four groups,
can have low power, which in turn can mean that the step-down method described
here has low power as well. In fact, even a single outlier in one group can mask substan-
tial differences among the other groups being compared. (Dunnett & Tamhane, 1992,
describe results on a step-up method that has practical advantages under normality
and homoscedasticity, but it suffers from the same problem just described.)

12.2 ANOVA F Versus Multiple Comparisons

It is common practice to use Tukey’s method only if the ANOVA F-test is significant.
More generally, when using any multiple comparison procedure to compare groups
based on some measure of location θ , it is common first to test

H0 : θ1 = · · · = θJ (12.5)

and, if a nonsignificant result is obtained, to fail to detect any differences among the
groups. Testing this omnibus test obviously plays a central role in a step-down method,
but there is an important negative consequence of this strategy: Many modern multi-
ple comparison procedures are designed to control FWE without first testing Equation
(12.5). One example is Tukey’s procedure. Under normality, homoscedasticity, and
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TABLE 12.3 Illustration of the Step-Down Procedure

Groups F α ν1 Critical value Decision

ABCDE 11.5 α5 = .05 4 2.61 Significant

ABCD 9.7 α4 = .05 3 2.84 Significant

ABCE 10.2 Significant

ABDE 10.8 Significant

ACDE 11.6 Significant

BCDE 9.8 Significant

ABC 2.5 α3 = .0303 2 3.69 Not significant

ABD 7.4 Significant

ACD 8.1 Significant

ABE 8.3 Significant

ACE 12.3 Significant

ADE 18.2 Significant

BCD 2.5 Not significant

BCE 9.2 Significant

BDE 8.1 Significant

CDE 12.4 Significant

AB 5.1 α2 = .0203 1 5.85 Not significant by implication

AC 6.0 Not significant by implication

AD 19.2 Significant

AE 21.3 Significant

BC 1.4 Not significant by implication

BD 6.0 Not significant by implication

BE 15.8 Significant

CD 4.9 Not significant by implication

CE 13.2 Significant

DE 3.1 Not significant

equal sample sizes, it guarantees that FWE will be exactly equal to α. But if Tukey’s
method is used contingent on rejecting with the ANOVA F, this is no longer true —
FWE will be less than α, indicating that power will be reduced (Bernhardson, 1975).
Generally, most modern multiple comparison procedures are designed so that FWE
will be approximately equal to α. That is, they do not require that you first apply
one of the methods in Chapters 9–11 and reject the hypothesis that groups have a
common measure of location. Indeed, if you use modern methods only when you
first reject, you run the risk of lowering the actual Type I error probability by an
unknown amount, which in turn might mask true differences among the groups being
compared. Robust and heteroscedastic ANOVA methods remain relevant, however,
because they might be useful in some type of step-down or step-up technique.
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12.3 Heteroscedastic Methods for the Means of
Independent Groups

Consistent with earlier chapters, when groups have identical distributions, the
methods in the previous section appear to provide reasonably good control over
the probability of a Type I error. But when distributions differ in some manner, they
suffer from the same problems associated with the homoscedastic methods described
in previous chapters: Poor power, undesirable power properties (bias, meaning that
power can decrease as the difference among the means increases), and poor proba-
bility coverage. This section describes heteroscedastic methods that reduce these
problems, but serious practical concerns remain, some of which are not addressed
even with very large sample sizes. However, the methods in this section set the stage
for effective techniques.

12.3.1 Dunnett’s T3

For multiple comparison procedures based on means, Dunnett (1980a, 1980b) docu-
mented practical problems with methods that assume homoscedasticity and then
compared several heteroscedastic methods, two of which stood out when samp-
ling from normal distributions. Although nonnormality can ruin these methods,
they are important because they provide a basis for deriving substantially improved
techniques.

Dunnett’s so-called T3 procedure is just Welch’s method described in Section 8.3,
but with the critical value adjusted so that FWE is approximately equal to α when
sampling from normal distributions. Let s2j be the sample variance for the jth group,
again let nj be the sample size and set

qj = s2j
nj

, j = 1, . . . ,J.

When comparing group j to group k, the degrees of freedom are

ν̂jk = (qj + qk)
2

q2
j

nj−1 + q2
k

nk−1

.

The test statistic is

W = X̄j − X̄k√
qj + qk

,

and you reject H0 : µj = µk if |W| ≥ c, where the critical value, c, is read from
Table 10 in Appendix B. (This table provides the .05 and .01 quantiles of what is
called the Studentized maximum modulus distribution.) When using Table 10, you need to
know the total number of comparisons you plan to perform. When performing all
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pairwise comparisons, the total number of comparisons is

C = J2 − J
2

.

In the illustration, there are J = 3 groups, so the total number of comparisons is

C = 32 − 3
2

= 3.

If you have J = 4 groups and you plan to perform all pairwise comparisons,
C = (42 − 4)/2 = 6.

EXAMPLE. Suppose the goal is to compare five groups to a control group
and that only these five comparisons are to be done. That is, the goal is to test
H0 : µj = µ6, j = 1, . . . ,5, so C = 5. If α = .05 and the degrees of freedom
are 30, the critical value is c = 2.73. If you have five groups and plan to do all
pairwise comparisons, C = 10; and with α = .01 and ν = 20, the critical value
is 3.83. ■

A confidence interval for µj − µk, the difference between the means of groups j
and k, is given by

(X̄j − X̄k) ± c

√
s2j
nj

+ s2k
nk

.

By design, the simultaneous probability coverage will be approximately 1 − α, under
normality, when computing C confidence intervals and c is read from Table 10 in
Appendix B.

EXAMPLE. Table 9.1 reports skin resistance for four groups of individuals.
If the goal is to compare all pairs of groups with α = .05, then C = 6, and the
confidence interval for the difference between the means of the first two groups
is (−0.35, 0.52); this interval contains zero, so you fail to detect a difference.
The degrees of freedom are 12.3, the critical value is c = 3.07, the test statistic
is W = 0.56, and again you fail to reject, because |W| < 3.07. It is left as
an exercise to show that for the remaining pairs of means, you again fail to
reject. ■

12.3.2 Games–Howell Method

An alternative to Dunnett’s T3 is the Games and Howell (1976) method. When
comparing the jth group to the kth group, you compute the degrees of freedom,
ν̂jk, exactly as in Dunnett’s T3 procedure, and then you read the critical value, q,
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from Table 9 in Appendix B. (Table 9 reports some quantiles of what is called the
Studentized range distribution.) The 1 − α confidence interval for µj − µk is

(X̄j − X̄k) ± q

√√√√1
2

(
s2j
nj

+ s2k
nk

)
.

You reject H0 : µj = µk if this interval does not contain zero, which is the same as
rejecting if

|X̄j − X̄k|√
1
2

(
s2j
nj

+ s2k
nk

) ≥ q.

Under normality, the Games–Howell method appears to provide more accurate
probability coverage than Dunnett’s T3 method when all groups have a sample size
of at least 50. A close competitor under normality is Dunnett’s (1980b) C method,
but no details are given here.

EXAMPLE. Imagine you have three groups, with X̄1 = 10.4, X̄2 = 10.75,

s21
n1

= .11556,

s22
n2

= .156.

Then ν̂ = 19 and with α = .05, q = 3.59, so the confidence interval for
µ1 − µ2 is

(10.4 − 10.75) ± 3.59

√
1
2

(.11556 + .156) = ( − .167, 0.97).

This interval contains 0, so you do not reject the hypothesis of equal means. ■

12.3.3 Alternative Methods Based on Adjustments of ααα

Dunnett’s T3 and the Games–Howell method use adjusted critical values to attempt
to control FWE. There is a collection of methods for controlling FWE that adjust
the p-values in a more direct fashion that should be mentioned. The easiest to use
is based on the Bonferroni inequality, which, if C hypotheses are to be tested, test
each hypothesis at the α/C level. Provided the probability of a Type I error can be
controlled for each of the individual tests, FWE will be at most α.

Other approaches are based on what are called sequentially rejective methods. For
example, Hochberg’s (1988) method is applied as follows. Let P1, . . . ,PC be the
p-values associated with the C tests, put these p-values in descending order, and label
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the results P[1] ≥ P[2] ≥ · · · ≥ P[C]. The method is applied in steps, where the total
number of steps is at most C. Beginning with k = 1 (step 1), reject all hypotheses if

P[k] ≤ α

k
.

That is, reject all hypotheses if the largest p-value is less than or equal to α. If P[1] > α,
proceed as follows:

1. Increment k by 1. If

P[k] ≤ α

k
,

stop and reject all hypotheses having a p-value less than or equal to P[k].
2. If P[k] > α/k, repeat step 1.
3. Repeat steps 1 and 2 until you reject or all C hypotheses have been tested.

Benjamini and Hochberg (1995) proposed a similar method, only in step 1 of
Hochberg’s method, P[k] ≤ α/k is replaced by

P[k] ≤ (C − k + 1)α
C

.

Results in Williams, Jones, and Tukey (1999) support the use of the Benjamini–
Hochberg method over Hochberg. Both of these procedures have power greater
than or equal to the Bonferroni method. However, the Bonferroni method can be
used to compute confidence intervals, and currently there is uncertainty about how
one should compute confidence intervals when using either of the two sequentially
rejective methods just described.

EXAMPLE. Suppose six hypotheses are tested with the Benjamini–Hochberg
method based on the following results:

Number Test p-value

1 H0 : µ1 = µ2 P1 = .010 P[5]
2 H0 : µ1 = µ3 P2 = .015 P[3]
3 H0 : µ1 = µ4 P3 = .005 P[6]
4 H0 : µ2 = µ3 P4 = .620 P[1]
5 H0 : µ2 = µ4 P5 = .130 P[2]
6 H0 : µ3 = µ4 P6 = .014 P[4]

Because P[1] > .05, fail to reject the fourth hypothesis. Had it been the case that
P[1] ≤ .05, you would stop and reject all six hypotheses. Because you did not
reject, set k = 2; and because C = 6, we see that

(C − k + 1)α
C

= 5(.05)
6

= .0417.

Continued
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EXAMPLE. (Continued ) Because P[2] = .130 > .0417, fail to reject the fifth
hypothesis and proceed to the next step. Incrementing k to 3,

(C − k + 1)α
C

= 4(.05)
6

= .0333,

and because P[3] = .015 ≤ .0333, reject this hypothesis and the remaining
hypotheses having p-values less than or equal to .0333. That is, reject hypotheses
1, 2, 3, and 6 and fail to reject hypotheses 4 and 5. If the Bonferroni inequality
had been used instead, we see that .05/6 = .00833, so only hypothesis 3 would
be rejected. ■

A criticism of the Benjamini–Hochberg method is that situations can be found
where some hypotheses are true, some are false, and the probability of at least one
Type I error will exceed α among the hypotheses that are true (Hommel, 1988;
cf. Keselman, Cribbie, & Holland, 1999). In contrast, Hochberg’s method does not
suffer from this problem. However, the Benjamini–Hochberg method does have
the following property. When C hypotheses are tested, let Q be the proportion
of hypotheses that are true and rejected. That is, Q is the proportion of Type I
errors among the null hypotheses that are correct. If all hypotheses are false, then
of course Q = 0, but otherwise Q can vary from one experiment to the next. That
is, if we repeat a study many times, the proportion of erroneous rejections will
vary. The false-discovery rate is the expected value of Q. That is, if a study is repeated
infinitely many times, the false-discovery rate is the average proportion of Type I
errors among the hypotheses that are true. Benjamini and Hochberg (1995) show
that their method ensures that the false-discovery rate is less than or equal to α. The
Benjamini–Hochberg method can be improved if the number of true hypotheses is
known. Of course it is not known how many null hypotheses are in fact correct, but
Benjamini and Hochberg (2000) suggest how this number might be estimated, which
can result in higher power. (For related results, see Finner and Roters, 2002; Sarkar,
2002.)

12.4 Linear Contrasts

When dealing with a two-way design, as described in Chapter 10, it is convenient to
describe relevant multiple comparison procedures in the context of what are called
linear contrasts. For a J-by-K design, let L = JK represent the total number of groups.
(So in a one-way design, L = J.) By definition, a linear contrast is any linear combination
of the means among L groups having the form

� =
L∑

�=1

c�µ�, (12.6)
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where c1, . . . , cL, called contrast coefficients, are constants that sum to 0. In symbols, �

is a linear contrast if ∑
c� = 0.

EXAMPLE. Section 10.1 describes a two-by-two design dealing with weight
gain in rats. The two factors are source (beef versus cereal) and amounts of
protein (low versus high), and here the population means are represented as
follows:

Source

Amount Beef Cereal

Low µ1 µ2
High µ3 µ4

Consider the hypothesis of no main effect for the first factor, amount of protein.
As explained in Chapter 10, the null hypothesis is

H0 :
µ1 + µ2

2
= µ3 + µ4

2
.

Rearranging terms in this last equation, the null hypothesis can be written as a
linear contrast, namely,

H0 : µ1 + µ2 − µ3 − µ4 = 0.

That is � = µ1 + µ2 − µ3 − µ4, the contrast coefficients are c1 = c2 = 1,
c3 = c4 = −1, and the null hypothesis is H0 : � = 0. ■

EXAMPLE. Now consider a three-by-two design:

Factor B

Factor A 1 2

1 µ1 µ2
2 µ3 µ4
3 µ5 µ6

An issue that is often of interest is not just whether there is a main effect for
factor A, but which levels of factor A differ and by how much. That is, the goal
is to compare level 1 of factor A to level 2, level 1 to level 3, and level 2 to
level 3. In symbols, the three hypotheses of interest are

H0 :
µ1 + µ2

2
= µ3 + µ4

2
,

Continued
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EXAMPLE. (Continued )

H0 :
µ1 + µ2

2
= µ5 + µ6

2
,

H0 :
µ3 + µ4

2
= µ5 + µ6

2
.

In terms of linear contrasts, the goal is to test

H0 : �1 = 0,

H0 : �2 = 0,

H0 : �3 = 0,

where

�1 = µ1 + µ2 − µ3 − µ4,

�2 = µ1 + µ2 − µ5 − µ6,

�3 = µ3 + µ4 − µ5 − µ6.

The interactions can be written as linear contrasts as well. For example, the
hypothesis of no interaction for the first two rows corresponds to

H0 : µ1 − µ2 = µ3 − µ4,

which is the same as testing

H0 : �4 = 0,

where

�4 = µ1 − µ2 − µ3 + µ4.

Similarly, for rows 1 and 3, the hypothesis of no interaction is

H0 : �5 = 0,

where

�5 = µ1 − µ2 − µ5 + µ6.

In general, there are a collection of C linear contrasts that one might want to
test; the goal is to devise a method for performing these C tests in a manner
that controls FWE. ■

12.4.1 Scheffé’s Homoscedastic Method

Assuming normality and homoscedasticity, Scheffé’s classic method can be used to
test C hypotheses about C linear contrasts such that FWE is less than or equal to
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α — regardless of how large C might be! Let � be any specific hypothesis and let

�̂ =
L∑

�=1

c�X̄�. (12.7)

That is, estimate the mean, µ�, of the �th group with X̄�, the sample mean of the
�th group, and then plug this estimate into Equation (12.6) to get an estimate of �.
Then the confidence interval for � is

(�̂ − S, �̂ + S), (12.8)

where

S =
√

(L − 1)f1−α(MSWG)
∑ c2�

n�

,

MSWG is the mean square within groups (described in Chapters 9 and 10) that esti-
mates the assumed common variance, and f1−α is the 1−α quantile of an F-distribution
with ν1 = L − 1 and ν2 = N − L degrees of freedom, where N = ∑

nj is the total
number of observations in all L groups. (For a one-way design with J levels, L = J;
for a J-by-K design, L = JK.) In particular, H0 : � = 0 is rejected if the confidence
interval given by Equation (12.8) does not contain zero.

EXAMPLE. For the special case where all pairwise comparisons of J indepen-
dent groups are to be performed, Scheffé’s confidence interval for the difference
between the means of the jth and kth groups, µj − µk, is

(X̄j − X̄k) ± S,

where

S =
√

( J − 1)f1−α(MSWG)
(

1
nj

+ 1
nk

)
,

and f1−α is the ANOVA F critical value based on ν1 = J − 1 and ν2 = N − J
degrees of freedom. ■

Scheffé’s method remains one of the more popular multiple comparison pro-
cedures in applied work, but it suffers from the same problems associated with
other homoscedastic methods already covered. Even under normality but hetero-
scedasticity, problems arise (Kaiser & Bowden, 1983). Also, under normality and
homoscedasticity, the Tukey–Kramer method should give shorter confidence inter-
vals than the Scheffé method, but for certain collections of linear contrasts the reverse
is true (Scheffé, 1959, p. 76).
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12.4.2 Heteroscedastic Methods

Two heteroscedastic methods for linear contrasts are covered in this section.

Welch–S̆idák Method

The first contains Dunnett’s T3 method as a special case and is called the Welch–S̆idák
method. (The computations are performed by the S-PLUS function lincon described
in Section 12.6.1.) Again let L represent the total number of groups being compared,
let � be any linear contrast of interest, and let C represent the total number of
contrasts to be tested. An expression for the squared standard error of �̂ is

σ 2
�̂

=
∑ c2�σ

2
�

n�

,

where σ 2
� and n� are the variance and sample size of the �th group, respectively.

An estimate of this quantity is obtained simply by replacing σ 2
� with s2�, the sample

variance associated with the �th group. That is, estimate σ 2
�̂

with

σ̂ 2
�̂

=
∑ c2�s2�

n�

.

Let

q� = c2�s2�
n�

.

The degrees of freedom are estimated to be

ν̂ = (
∑

q�)2

∑ q2
�

n�−1

.

The test statistic is

T = �̂

σ̂
�̂

.

The critical value, c, is a function of ν̂ and C (the total number of hypotheses you
plan to perform) and is read from Table 10 in Appendix B. Reject if |T| ≥ c, and a
confidence interval for � is

�̂ ± cσ̂
�̂

. (12.9)

Kaiser–Bowden Method

A heteroscedastic analog of Scheffé’s method was derived by Kaiser and Bowden
(1983). The computations are exactly the same as in the Welch–S̆idák method, except
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the squared critical value is now

A = (L − 1)
(

1 + L − 2
ν̂2

)
f,

where f is the 1 − α quantile of an F-distribution with ν1 = L − 1 and

ν̂2 = (
∑

q�)2

∑ q2
�

n�−1

.

That is, ν̂2 = ν̂, the estimated degrees of freedom used by the Welch–S̆idák method.
The confidence interval for � is

�̂ ±
√

A
∑

q�,

where again q� = c2
�s2�/n�. Generally, the Welch–S̆idák method will provide shorter

confidence intervals and more power than the Kaiser–Bowden method. But the critical
values in Table 10 in Appendix B for the Welch–S̆idák method are limited to α = .05
and .01 and at most 28 hypotheses.

EXAMPLE. For the special case where all pairwise comparisons among J inde-
pendent groups are to be performed, the Kaiser–Bowden method for computing
a confidence interval for µj − µk is

(X̄j − X̄k) ±
√√√√A

(
s2j
nj

+ s2k
nk

)
,

where now

A = ( J − 1)
(

1 + J − 2
ν̂jk

)
f,

ν̂jk is as given in Section 12.3.1 (in conjunction with Dunnett’s T3 procedure),
and f is the 1 − α quantile of an F-distribution with ν1 = J − 1 and ν2 = ν̂jk
degrees of freedom. ■

EXAMPLE. Consider a 2-by-2 design and suppose the sample means are
X̄1 = 10, X̄2 = 14, X̄3 = 18, X̄4 = 12; the sample variances are s21 = 20, s22 = 8,
s23 = 12, s24 = 4; and the sample sizes are n1 = n2 = n3 = n4 = 4. Further
assume you want to test three hypotheses with the Welch–S̆idák method: no

Continued
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EXAMPLE. (Continued ) main effects for factor A, no main effects for factor B,
and no interaction. In terms of linear contrasts, the goal is to test

H0 : �1 = 0,

H0 : �2 = 0,

H0 : �3 = 0,

where

�1 = µ1 + µ2 − µ3 − µ4,

�2 = µ1 + µ3 − µ2 − µ4,

�3 = µ1 − µ2 − µ3 + µ4.

Moreover, the probability of at least one Type I error is to be .05 among these
three tests. For the first hypothesis, the estimate of �1 is

�̂1 = 10 + 14 − 18 − 12 = −6.

The estimate of the squared standard error is

σ̂ 2
�̂1

= 12(20)
4

+ 12(8)
4

+ ( − 1)2(12)
4

+ ( − 1)2(4)
4

= 11,

the degrees of freedom for the Welch–S̆idák method can be shown to be 9.3;
and with C = 3, the critical value is approximately c = 2.87. The test statistic is

T = −6√
11

= −1.8,

and because |T| < 2.87, fail to reject. If instead the Kaiser–Bowden method is
used, because there is a total of L = 4 groups, the critical value is

c =
√

(4 − 1)
(

1 + 4 − 2
9.3

)
3.81 = 3.7

which is considerably larger than the critical value based on the Welch–S̆idák
method. The other two hypotheses can be tested in a similar manner, but the
details are left as an exercise. ■

EXAMPLE. In Chapter 10 it was noted that when investigating the possibility
of a disordinal interaction, it can become necessary to test a collection of
relevant hypotheses. In the previous example, note that X̄1 < X̄2 but that
X̄3 > X̄4. To establish that there is a disordinal interaction, you must be able to
reject both H0 : µ1 = µ2 and H0 : µ3 = µ4. One way to control FWE among
these two hypotheses is with the Welch–S̆idák method. ■
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12.5 Judging Sample Sizes

As noted in Chapter 8, failing to reject some hypothesis might be because there is
little or no difference between the groups, or there might be an important difference
that was missed due to low power. So issues of general importance are determining
whether the sample size used was sufficiently large to ensure adequate power and how
large the sample size should have been if power is judged to be inadequate; there is
the related problem of controlling the length of confidence intervals. This section
describes two methods for accomplishing the last of these goals when working with
linear contrasts.

12.5.1 Tamhane’s Procedure

The first of the two methods is due to Tamhane (1977). A general form of his results
can be used to deal with linear contrasts, but here attention is restricted to all pairwise
comparisons among J independent groups. The goal is achieve confidence intervals
having some specified length 2m, given s2j , the sample variance from the jth group
based on nj observations ( j = 1, . . . ,J). The computational details are summarized in
Box 12.2.

BOX 12.2 Summary of Tamhane’s Method

Goal
Compute confidence intervals for all pairwise differences among J indepen-
dent groups such that the simultaneous probability coverage is equal to 1−α

and the length of each confidence interval is 2m. Normality is assumed but
unequal variances are allowed.

Compute

A =
∑ 1

nj − 1

ν =
[

J
A

]
,

where the notation [J/A] means you compute J/A and round down to the
nearest integer. Next, determine h from Table 11 in Appendix B with ν

degrees of freedom. (Table 11 gives the quantiles of the range of independent
Student T variates.) Note that Table 11 assumes ν ≤ 59. For larger degrees
of freedom, use Table 9 in Appendix B instead. Let

d =
(m

h

)2
.

Continued
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BOX 12.2 (Continued ) Letting s2j be the sample variance for the jth group,
the total number of observations required from the jth group is

Nj = max

{
nj + 1,

[
s2j
d

]
+ 1

}
.

Once the additional observations are available, compute the generalized sam-
ple mean, X̃j, for the jth group as described and illustrated in Box 9.6 in
connection with the Bishop–Dudewicz ANOVA. The confidence interval
for µj − µk is (

X̃j − X̃k − m, X̃j − X̃k + m
)

.

EXAMPLE. Assume that for three groups, n1 = 11, n2 = 21, n3 = 41, and the
goal is to compute confidence intervals having length 4 and having simultaneous
probability coverage 1 − α = .95. So

A = 1
10

+ 1
20

+ 1
40

= .175,

ν =
[

3
.175

]
= [17.14] = 17,

and h = 3.6. Confidence intervals with length 4 means that m = 2, so

d =
(

2
3.6

)2

= .3086.

If the sample variance for the first group is s21 = 2, then

N1 = max
{

11 + 1,
[

2
.3086

]
+ 1

}

= max(12,[6.4] + 1)

= 12.

You already have n1 = 11 observations, so you need 12 − 11 = 1 more. If you
get X̃1 = 14 and X̃2 = 17, the confidence interval for the difference between
the means is

(14 − 17 − 2,14 − 17 + 2) = ( − 5, − 1).

■
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12.5.2 S-PLUS Function tamhane

Tamhane’s two-stage multiple comparison procedure can be applied with the S-PLUS
function

tamhane(x, x2 = NA, cil = NA, crit = NA).

The first-stage data are stored in x (in a matrix or in list mode) and the second-stage
data in x2. If x2 contains no data, the function prints the degrees of freedom, which
can be used to determine h as described in Box 12.2. Once h has been determined,
store it in the argument crit. If no critical value is specified, the function terminates
with an error message; otherwise it prints the total number of observations needed
to achieve confidence intervals having length cil (given by the third argument). (So
in the notation of Section 12.5.1, the value of cil divided by 2 corresponds to m.) If it
finds data in the argument x2, confidence intervals are computed as described in Box
12.2 and returned by the function tamhane in the S-PLUS variable ci.mat; otherwise,
the function returns ci.mat with the value NA.

EXAMPLE. For the data in Table 9.1, if the goal is to perform all pairwise
comparisons such that the confidence intervals have length 1 (so m = .5) and
FWE is to be .05, then the degrees of freedom are 9 and, from Table 11 in
Appendix B, h = 4.3. If the data are stored in the S-PLUS variable skin, the
command

tamhane(skin,cil=1,crit=4.3)

returns

$n.vec:
[1] 13 11 11 11

indicating that the required sample sizes are 13, 11, 11, and 11, respectively. ■

12.5.3 Hochberg’s Procedure

This section describes another two-stage procedure derived by Hochberg (1975).
In contrast to Tamhane’s procedure, Hochberg’s method allows the possibility of
no additional observations being required in the second stage, uses the usual sample
mean (rather than the generalized sample mean), and ensures that the lengths of the
confidence intervals are at most 2m. When using Tamhane’s approach, the confidence
intervals have length exactly equal to 2m. (As before, m is some constant chosen
by the investigator.) Box 12.3 summarizes the computations for the more general
case, where C linear contrasts are to be tested, nj represents the sample size for the
jth group in the first stage, and s2j is the sample variance for the jth group based on
these nj observations. (Hochberg’s original derivation assumed equal sample sizes in
the first stage, but the adjustment for unequal sample sizes in Box 12.3 appears to
perform well.)
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BOX 12.3 Summary of Hochberg’s Method

As in Tamhane’s procedure, read the critical value h from Table 11 in
Appendix B, with the degrees of freedom, ν, computed as in Box 12.2.
If ν > 59, use Table 9 instead. Compute

d =
(m

h

)2
.

The total number of observations you need to sample from the jth group is

Nj = max

(
nj,

[
s2j
d

]
+ 1

)
. (12.10)

Sample an additional Nj − nj observations from the jth group, and compute
the sample mean, X̄j, based on all Nj values. For all pairwise comparisons, the
confidence interval for µj − µk is

(X̄j − X̄k) ± hb,

where

b = max

(
sj√
Nj

,
sk√
Nk

)
.

Be sure to notice that the sample variances used to compute b are not recom-
puted once the additional observations are available. For technical reasons,
you use the sample variances based on the initial n observations.

As for the linear contrast � = ∑
cjµj, sum the positive cj values and label

the result a. Again Nj is given by Equation (12.10), except

d =
( m

ha

)2
.

Let

bj = cjsj√
Nj

.

Let A be the sum of the positive bj values and C be the sum of the negative
bj values. Compute

D = max(A, − C),

�̂ =
∑

cjX̄j,

in which case the confidence interval for � is

�̂ ± hD.
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EXAMPLE. To illustrate Hochberg’s method, imagine that with four groups,
each having a sample size of n = 25, one of your goals is to compute a confidence
interval for H0 : � = 0 with α = .05, where

� = µ1 + µ2 − µ3 − µ4,

and the length of the confidence interval is to be at most 2m = 8. So ν = 24
and, from Table 11 in Appendix B, h = 3.85. We see that the sum of the positive
contrast coefficients is a = 2, so

d =
(

4
3.85(2)

)2

= .2699.

If s21 = 4, s22 = 12, s23 = 16, and s24 = 20, then

N1 = max
(

25,
[

4
.2699

]
+ 1

)
= 25.

Hence, no additional observations are required. The sample sizes for the other
three groups are N2 = 45, N3 = 60, and N4 = 75.

Once the additional observations are available, compute

b1 = 1 × 2√
25

= .4.

Similarly, b2 = .5164, b3 = −.5164, and b4 = −.5164. The sum of the positive
bj values is A = b1 + b2 = .4 + .5164 = 0.9164. The sum of the negative bj
values is C = −1.0328, so −C = 1.0328,

D = max(.9164,1.0328) = 1.0328,

hD = 3.85 × 1.0328 = 3.976.

If, after the additional observations are sampled, the sample means are X̄1 = 10,
X̄2 = 12, X̄3 = 8, and X̄4 = 18, then

�̂ = 10 + 12 − 8 − 18 = −4,

and the confidence interval is

−4 ± 3.976 = ( − 7.976, − 0.024).

Thus, you would reject H0. ■

12.5.4 S-PLUS Function hochberg

The S-PLUS function

hochberg(x, x2 = NA, cil = NA, crit = NA)

performs Hochberg’s two-stage procedure. The arguments are used in the same
manner as in Section 12.5.2.
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12.6 Methods for Trimmed Means

The serious practical problems with methods based on means, described in previous
chapters, extend to the situation at hand. One way of addressing these problems
is to switch to generalizations of the Welch–S̆idák and Kaiser–Bowden methods
to trimmed means. Letting L represent the total number of groups, details are
summarized in Box 12.4. (For a J-by-K design, L = JK.)

The method in Box 12.4 can be used to compute confidence intervals for all pairwise
differences of the trimmed means for the special case of J independent groups. That
is, the goal is to compute a confidence interval for µtj −µtk, for all j < k, such that the
simultaneous probability coverage is approximately 1 − α. The confidence interval
for µtj − µtk is

(X̄tj − X̄tk) ± c
√

dj + dk,

where

dj = (nj − 1)s2wj

hj(hj − 1)
,

hj is the number of observations left in group j after trimming, and c is read from Table
10 in Appendix B with

ν̂ = (dj + dk)
2

dj
hj−1 + dk

hk−1

degrees of freedom.

BOX 12.4 Heteroscedastic Tests of Linear Contrasts Based

on Trimmed Means

Let µt1, . . . ,µtL be the trimmed means corresponding to L independent
groups, and let

� =
L∑

�=1

c�µt�

be some linear contrast of interest. It is assumed that there is a total of C such
linear contrasts; for each the goal is to test H0 : � = 0 with FWE equal to α.

Continued
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BOX 12.4 (Continued ) Compute

�̂ =
L∑

�=1

c�X̄t�,

d� = c2�(n� − 1)s2w�

h�(h� − 1)
,

where s2w� and h� are the Winsorized variance and effective sample size (the
number of observations left after trimming) of the �th group, respectively.
An estimate of the squared standard error of �̂ is

Se =
∑

d�.

Letting

G =
∑ d2

�

h� − 1
,

the estimated degrees of freedom are

ν̂ = S2
e

G
.

Then a confidence interval for �, based on a trimmed analog of the Welch–
S̆idák method, is

�̂ ± c
√

Se,

where c is read from Table 10 in Appendix B (and is again a function of C
and ν̂).

As for a trimmed analog of the Kaiser–Bowden method, the confidence
interval is

�̂ ±√
ASe,

where

A = (L − 1)
(

1 + L − 2
ν̂

)
f,

and f is the 1 − α quantile of an F-distribution with ν1 = L − 1 and ν2 = ν̂

degrees of freedom.

12.6.1 S-PLUS Function lincon

The S-PLUS function

lincon(x,con=0,tr=.2,alpha=.05, KB=F)

tests hypotheses for a collection of linear contrasts based on trimmed means. The
default value for con is zero, indicating that all pairwise comparisons are to be done.
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Other linear contrasts can be specified by storing a matrix of linear contrast coeffi-
cients in con. By assumption, the rows of con correspond to groups, and the columns
correspond to the linear contrasts. That is, column 1 contains the contrast coefficients
for the first linear contrast of interest, column 2 has the contrast coefficients for the
second linear contrast, and so forth. So in general, con must be a matrix having J rows
and C columns, where C is the number of linear contrasts to be tested. If α = .05
or .01, and simultaneously the number of contrasts is less than or equal to 28, lincon
uses the generalization of the Welch–S̆idák method to trimmed means as described
in Box 12.4; otherwise it uses the extension of the Kaiser–Bowden method. Setting
the argument KB to T forces the function to use Kaiser–Bowden.

EXAMPLE. If the data in Table 9.1 are stored in the S-PLUS variable skin, the
command lincon(skin) returns:

Group Group test crit se df
1 2 0.2909503 3.217890 0.11539200 9.627086
1 3 0.8991534 3.306229 0.08713196 8.568838
1 4 2.2214991 3.307845 0.08703807 8.550559
2 3 1.1074715 3.406642 0.10105753 7.609956
2 4 1.5823636 3.408688 0.10097658 7.593710
3 4 4.0624997 3.190010 0.06688001 9.999866

Group Group psihat ci.lower ci.upper
1 2 -0.03357333 -0.4048921 0.33774542
1 3 0.07834500 -0.2097332 0.36642319
1 4 -0.19335500 -0.4812635 0.09455346
2 3 0.11191833 -0.2323484 0.45618510
2 4 -0.15978167 -0.5039794 0.18441602
3 4 -0.27170000 -0.4850479 -0.05835214

So, for example, the test statistic for comparing group 1 to group 2 is 0.29, the
critical value is 3.2, the estimate of �1 = µt1−µt2 is −0.03, and the confidence
interval for this difference is ( − 0.40, 0.34). ■

EXAMPLE. A classic problem is comparing treatment groups to a control
group. That is, rather than perform all pairwise comparisons, the goal is to
compare group 1 to group J, group 2 to group J, and so on. In symbols, the
goal is to test

H0 : µt1 = µtJ ,
H0 : µt2 = µtJ ,...
H0 : µt,J−1 = µtJ

Continued
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EXAMPLE. (Continued ) with FWE equal to α. For illustrative purposes, assume
J = 4. Then to compare the first three groups to the control (group 4) with
the S-PLUS function lincon, store the matrix




1 0 0
0 1 0
0 0 1

−1 −1 −1




in some S-PLUS variable — say, mmat. This can be done with the S-PLUS
command

mmat<−matrix(c(1,0,0,−1,0,1,0,−1,0,0,1,−1),ncol=3).

Then the command

lincon(x,con=mmat)

will perform the relevant comparisons. For the schizophrenia data in Table 9.1,
the results are

$test:
con.num test crit se df

1 -2.221499 2.919435 0.08703807 8.550559
2 -1.582364 2.997452 0.10097658 7.593710
3 -4.062500 2.830007 0.06688001 9.999866

$psihat:
con.num psihat ci.lower ci.upper

1 -0.1933550 -0.4474570 0.0607470
2 -0.1597817 -0.4624542 0.1428908
3 -0.2717000 -0.4609709 -0.0824291

So again the conclusion is that groups 3 and 4 differ. ■

EXAMPLE. Consider a 3-by-3 ANOVA design with population trimmed
means labeled in the usual way:

Factor B

Factor A 1 2 3

1 µt1 µt2 µt3
2 µt4 µt5 µt6
3 µt7 µt8 µt9

All pairwise comparisons for the main effects of factor A are given by the three

Continued



436 Chapter 12 ■ Multiple Comparisons

EXAMPLE. (Continued ) linear contrasts

�1 = µt1 + µt2 + µt3 − µt4 − µt5 − µt6,

�2 = µt1 + µt2 + µt3 − µt7 − µt8 − µt9,

�3 = µt4 + µt5 + µt6 − µt7 − µt8 − µt9.

So the matrix of contrast coefficients is


1 1 0
1 1 0
1 1 0

−1 0 1
−1 0 1
−1 0 1

0 −1 −1
0 −1 −1
0 −1 −1




.

■

12.6.2 S-PLUS Function mcp2atm for Two-Way Designs

As indicated in the previous section, multiple comparisons for a two-way ANOVA
design can be performed by specifying an appropriate set of linear contrasts. For
convenience the S-PLUS function

mcp2atm( J,K,x,tr = 0.2,con = 0, alpha = 0.05, grp = NA, op = F)

is provided for performing all pairwise comparisons for the main effects as well as
for all interactions. This function creates the appropriate linear contrast coefficients
for you and calls the function lincon. By default, FWE is set at α when performing
the Ma = ( J2 − J)/2 pairwise comparisons for factor A; the same is done for the
Mb = (K2 − K)/2 pairwise comparisons for factor B. As for interactions, FWE is
based on all Mi = MaMb interactions. If op=T is used, FWE is controlled for all
M = Ma + Mb + Mi tests to be performed.

12.6.3 Linear Contrasts Based on Medians

The method for testing linear contrasts based on trimmed means should not be used
for the special case where the goal is to compare medians, but a modification of the
method for trimmed means appears to perform relatively well when the goal is to
compare medians. Again let L indicate the number of groups to be compared and let
M� represent the sample median of the �th group. Let θ1, . . . ,θL be the population
medians, and now let

� =
L∑

�=1

c�θ�
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be some linear contrast of interest. Compute

�̂ =
L∑

�=1

c�M�,

and let

S2
e =

∑
c2�S2

�,

where S2
� is the McKean–Schrader estimate of the squared standard error of M�. Then

an approximate 1 − α confidence interval for � is

�̂ ± cSe,

where c is read from Table 10 in Appendix B with degrees of freedom ν = ∞ and
where C is again the number of hypotheses to be tested. As usual, this method is
designed so that FWE will be approximately 1 − α.

12.6.4 S-PLUS Functions msmed and mcp2med

The S-PLUS function

msmed(x, y = NA, con = 0, alpha = 0.05)

can be used just like the function lincon, ignoring the second argument y. So if
data are stored in a matrix called mat having six columns corresponding to six groups,
msmed(mat) will perform all pairwise comparisons using medians. (If only two groups
are being compared, the second argument, y, can be used as indicated in Section
8.7.2.) The S-PLUS function

mcp2med( J, K, x, con = 0, alpha = 0.05, grp = NA, op = F)

performs multiple comparisons among main effects and interactions and is used
exactly like the function mcp2atm in Section 12.6.2; the only difference is that now
medians are compared rather than trimmed means.

12.7 Bootstrap Methods

As was the case in Chapter 8, when comparing means, all indications are that the
bootstrap-t method performs better than the percentile bootstrap. However, with
at least 20% trimming or when using some other robust measure of location, extant
results support the use of some type of percentile bootstrap method instead. When
comparing groups with trimmed means, the minimum amount of trimming required
to justify switching from the bootstrap-t to the percentile bootstrap is unknown. That
is, with 15% or perhaps 10% trimming it might be preferable to use some variation of
the percentile bootstrap, but this has not been established. But with 20% trimming,
all indications are that a percentile bootstrap has practical value. When comparing
groups using MOMs or M-estimators, currently some type of percentile bootstrap
method is recommended.
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12.7.1 Bootstrap-t

As usual, let �1, . . . ,�C indicate C linear contrasts of interest, which include all
pairwise comparisons of the groups as a special case. A bootstrap-t method for
testing the hypothesis that each of these C linear contrasts is zero is outlined in
Box 12.5.

BOX 12.5 Bootstrap-t Method for Trimmed Means

Goal
Test H0 : � = 0, for each of C linear contrasts such that FWE is α.

1. For each of the L groups, generate a bootstrap sample, X∗
i�, i = 1, . . . ,n�;

� = 1, . . . ,L. For each of the L bootstrap samples, compute the trimmed
mean, X̄∗

t�,

�̂∗ =
∑

c�X̄∗
t�,

d∗
� = c2�(n� − 1)(s∗w�)

2

h�(h� − 1)
,

where (s∗w�)
2 is the Winsorized variance based on the bootstrap sample

taken from the �th group and h� is the effective sample size of the �th
group (the number of observations left after trimming).

2. Compute

T∗ = |�̂∗ − �̂|√
A∗ ,

where �̂ = ∑
c�X̄t� and A∗ = ∑

d∗
� . The results for each of the C

linear contrasts are labeled T∗
1 , . . . ,T∗

C.
3. Let

T∗
q = max {T∗

1 , . . . ,T∗
C}.

In words, T∗
q is the maximum of the C values T∗

1 , . . . ,T∗
C.

4. Repeat steps 1–3 B times, yielding T∗
qb, b = 1, . . . ,B.

Let T∗
q(1) ≤ · · · ≤ T∗

q(B) be the T∗
qb values written in ascending order, and let

u = (1 − α)B, rounded to the nearest integer. Then the confidence interval
for � is

�̂ ± T∗
q(u)

√
A,

where A = ∑
d�, d� = c2

�
(n�−1)s2

w�
h�(h�−1) , and the simultaneous probability coverage

is approximately 1 − α.
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12.7.2 S-PLUS Function linconb

The S-PLUS function

linconb(x, con = 0, tr = 0.2, alpha = 0.05, nboot = 599)

has been supplied to perform the bootstrap-t method for trimmed means just
described. As usual, the argument con can be used to specify the contrast coefficients.
If con is not passed to the function, all pairwise comparisons are performed.

12.7.3 Sequentially Rejective Methods for MOMs
and M-Estimators

When comparing groups using MOMs or M-estimators, the bootstrap method in
Section 8.8.1 can be generalized to control FWE in a variety of ways. Currently, a
slight modification of a sequentially rejective method derived by Rom (1990) appears
to perform well when sample sizes are less than or equal to 100. With larger sample
sizes, perhaps a direct application of Rom’s method is preferable, but this issue needs
further research.

Consider the problem of all pairwise comparisons among J groups based on any
robust measure of location. As usual the measure of location associated with the jth
group is labeled θj; here the goal is to test for every j < k the hypothesis

H0 : θj = θk (12.11)

with FWE equal to α. The total number of hypotheses to be tested is

C = J2 − J
2

.

Compute the test statistic p̂∗ described in Section 8.8.1 for comparing the jth group
to the kth group. That is, among the B bootstrap samples, p̂∗ is the proportion of
times the bootstrap estimate for the jth group is greater than the bootstrap estimate
of the kth. There are a total of C p̂∗ values and for convenience they are labeled p̂∗c ,
(c = 1, . . . ,C). So p̂∗1, for example, is the proportion of times among B bootstrap
samples that a bootstrap estimate of θ1 is larger than a bootstrap estimate of θ2, p̂∗2
is the estimate when comparing group 1 to group 3, and p̂∗C is the estimate when
comparing group J − 1 to group J. Let

p̂∗mc = min
(

p̂∗c ,1 − p̂∗c
)

.

The value 2 p̂∗mc represents an estimated p-value for the corresponding hypothesis, as
was explained in Chapter 8.

The modification of Rom’s method is applied as follows. Put the p̂∗mc values in
descending order, yielding p̂∗m[1] ≥ p̂∗m[2] ≥ · · · ≥ p̂∗m[C]. So, for example, p̂∗m[1] is the
largest of the C values just computed and p̂∗m[C] is the smallest. Decisions about
the individual hypotheses are made as follows. If p̂∗m[1] ≤ α1, where α1 is read
from Table 12.4, reject all C of the hypotheses. Put another way, if the largest
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TABLE 12.4 Values of αc for α = .05 and .01

c α = .05 α = .01

1 .02500 .00500

2 .02500 .00500

3 .01690 .00334

4 .01270 .00251

5 .01020 .00201

6 .00851 .00167

7 .00730 .00143

8 .00639 .00126

9 .00568 .00112

10 .00511 .00101

estimated p-value, 2 p̂∗m[1], is less than or equal to α, reject all C hypotheses. If
p̂∗m[1] > α1 but p̂∗m[2] ≤ α2, fail to reject the hypothesis associated with p̂∗m[1], but the
remaining hypotheses are rejected. If p̂∗m[1] > α1 and p̂∗m[2] > α2 but p̂∗m[3] ≤ α3, fail
to reject the hypotheses associated with p̂∗m[1] and p̂∗m[2], but reject the remaining
hypotheses. In general, if p̂∗m[c] ≤ αc, reject the corresponding hypothesis and all
other hypotheses having smaller p̂∗m values. For other values of α (assuming c > 1) or
for c > 10, use

αc = α

c

(which corresponds to a slight modification of a sequentially rejective method derived
by Hochberg, 1988.) This will be called method SR.

Method SR is unusual, in the sense that familiarity with many multiple comparison
procedures suggests a slightly different approach. In particular, a natural guess at how
to proceed is to compute the estimated significance level for the cth hypothesis, 2 p̂∗mc,
and then to use Rom’s method outlined in Section 12.8.2. But a practical concern
is that with small to moderate sample sizes, now FWE will be substantially smaller
than intended. In fact, if the goal is to have FWE equal to α, typically the actual
FWE will be less than α/2, which can affect power. A better approach would be to
use the Benjamini–Hochberg method in Section 12.3.3; but again, with small sample
sizes the actual FWE level can be too small compared to the nominal level. For large
sample sizes, the Benjamini–Hochberg method might be preferable, but this issue
has received little attention.

Simulation studies indicate that method SR performs well in terms of control-
ling FWE when sample sizes are less than 100. However, a criticism of method
SR is that it is unknown what happens to FWE as all sample sizes get large. If all
pairwise comparisons among four groups are to be performed and all groups have
equal sample sizes of 100, then FWE is approximately .06. With sample sizes of
200, FWE is approximately .074, so for large sample sizes, perhaps Rom’s method is
preferable.
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EXAMPLE. To illustrate method SR, imagine you test five hypotheses corre-
sponding to the linear contrasts �1, . . . ,�5 and get p̂∗m1 = .02, p̂∗m2 = .005,
p̂∗m3 = .23, p̂∗m4 = .002, p̂∗m5 = .013, respectively. Further assume that you want
FWE to be .05. The largest of these five values is .23, which corresponds to
H0 : �3 = 0. That is, p̂∗m[1] = .23; with α = .05, α1 = .025; this is less than .23,
so you fail to reject H0 : �3 = 0. Had it been the case that p̂∗m[1] was less than
or equal to .025, you would stop and reject all five hypotheses. The next largest
p̂∗ value is .02, which corresponds to H0 : �1 = 0; this is less than α2 = .025,
so H0 : �1 = 0 is rejected. Moreover, the remaining hypotheses are rejected
regardless of what their p̂∗ value happens to be. ■

12.7.4 S-PLUS Functions pbmcp and mcp2a

The S-PLUS function

pbmcp(x, alpha = 0.05, nboot = NA, grp = NA, est = mom,

con = 0, bhop = F, . . . )

performs multiple comparisons using method SR described in the previous section. By
default, all pairwise comparisons are performed, but a collection of linear contrasts can
be specified instead via the argument con, which is used as illustrated in Section 12.6.1.
The function computes 2 p̂∗m, the estimated significance level for each hypothesis, and
lists it in the column headed sig.test. The appropriate critical value based on method
SR, which is taken from Table 12.4, is listed under sig.crit. (The value listed is 2αc,
which is compared to 2 p̂∗m as previously described.) At the end of the output is a value
for sig.num, the number of significant results. When all groups have sample sizes of
at least 100, it might be preferable to set the argument bhop to T. This causes the
significant critical levels to be computed via the Benjamini–Hochberg method in
Section 12.3.3.

EXAMPLE. For the data in Table 9.1, the S-PLUS function pbmcp
returns
$output:

con.num psihat sig.test sig.crit ci.lower ci.upper
[1,] 1 -0.03790389 0.6495 0.05000 -0.359385 0.43023143
[2,] 2 0.10149361 0.4945 0.05000 -0.184108 0.55663000
[3,] 3 -0.14128764 0.0770 0.02040 -0.549206 0.27054725
[4,] 4 0.13939750 0.3520 0.03380 -0.167386 0.37823232
[5,] 5 -0.10338375 0.2390 0.02540 -0.532423 0.12117667
[6,] 6 -0.24278125 0.0130 0.01702 -0.587199 -0.03574371

Continued
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EXAMPLE. (Continued )

$con:
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 1 1 0 0 0
[2,] -1 0 0 1 1 0
[3,] 0 -1 0 -1 0 1
[4,] 0 0 -1 0 -1 -1
$num.sig:
[1] 1

So one significant result was obtained and corresponds to the sixth hy-
pothesis where group 3 is compared to group 4. That is, among individuals with
schizophrenia, the typical measure of skin resistance among those with pre-
dominantly negative symptoms is lower than among those with predominantly
positive symptoms instead. In this particular case, similar results are obtained
when comparing 20% trimmed means with the function linconb (described in
Section 12.7.2), but no significant results are obtained when comparing medians
with the S-PLUS msmed in Section 12.6.4.

For convenience when dealing with a two-way ANOVA design, the S-PLUS
function

mcp2a( J,K,x,est=mom,con=0,alpha=.05,nboot=NA,grp=NA, . . . )

performs all pairwise multiple comparisons among the rows and the columns
and then does all tetrad differences relevant to interactions. ■

12.7.5 A Percentile Bootstrap Method for 20% Trimmed Means

The 20% trimmed mean has received considerable attention in recent years, because
it performs nearly as well as the mean when distributions are normal and it can handle
a fair degree of heavy-tailedness (situations where outliers are likely to appear). In
particular, in contrast to medians, power remains relatively high under normality.
Although arguments for preferring MOM can be made (e.g., MOM can handle more
outliers), the 20% trimmed mean remains one of the better measures of location.
When performing all pairwise comparisons based on 20% trimmed means, a special
variation of the percentile bootstrap method currently seems best. The method is
basically the same as the percentile bootstrap method in Section 12.7.3, except that a
single critical value is used for testing all C hypotheses; this critical value is designed
specifically for comparing 20% trimmed means. An approximation of the critical value
for α = .05 is

pcrit = 0.0268660714
C

− 0.0003321429,

which is based on results in Wilcox (2001d). Now you reject H0 : �c = 0 if
2 p̂∗mc ≤ 2pcrit.
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It is possible that, in terms of Type I errors, the method in Section 12.7.3 is as good
as and perhaps slightly better than the approach mentioned here when comparing
20% trimmed means. That is, you might be able to use the S-PLUS function pbmcp
with est = tmean (a 20% trimmed mean), but this issue needs further investigation
before any recommendations can be made.

12.7.6 S-PLUS Function mcppb20

The S-PLUS function

mcppb20(x, crit = NA, con = 0, tr = 0.2, alpha = 0.05, nboot = 2000,

grp = NA)

performs the multiple comparison procedure just described. If no value for crit, the
critical value, is specified, the function chooses a critical value based on results in
Wilcox (2001d). For situations where a critical value has not been determined, the
function approximates the critical value with pcrit given above if α = .05. Otherwise
it uses α/C as the critical value, a strategy that stems from the Bonferroni method
covered in Section 12.8.1.

12.8 Methods for Dependent Groups

Multiple comparison methods for independent groups typically take advantage of
the independence among the groups in some manner. When comparing dependent
groups instead, generally some modification of the methods for independent groups
must be made.

12.8.1 Bonferroni Method

One of the simplest and earliest methods for comparing dependent groups is based
on what is known as the Bonferroni inequality. The strategy is simple: If you plan to test
C hypotheses and want FWE to be α, test each of the individual hypotheses at the
α/C level of significance. So, for example, when comparing groups having normal
distributions, if you plan to test five hypotheses and want FWE to be at most .05,
perform the five paired T-tests at the .01 level. If each of the resulting confidence
intervals has probability coverage .99, then the simultaneous probability coverage
will be greater than .95. That is, with probability at least .95, all of the confidence
intervals will contain the true value of the parameter being estimated. Moreover, if
the individual tests are able to control the probability of a Type I error, then the
Bonferroni method controls FWE.

EXAMPLE. Consider J dependent groups and imagine that all pairwise
comparisons are to be performed. Then the number of hypotheses to be tested

Continued
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EXAMPLE. (Continued ) is C = ( J2 − J)/2. So if, for each pair of groups,
the hypothesis of equal (population) trimmed means is tested as described in
Section 11.2, and if the goal is to have FWE equal to .05, perform each test at
the .05/C level. ■

12.8.2 Rom’s Method

Several improvements on the Bonferroni method have been published, and one that
stands out is a so-called sequentially rejective method derived by Rom (1990), which
has been found to have good power relative to several competing methods (e.g.,
Olejnik, Li, Supattathum, & Huberty, 1997). To apply it, compute significance levels
for each of the C tests to be performed and label them P1, . . . ,PC. Next, put the
significance levels in descending order, which are now labeled P[1] ≥ P[2] ≥ · · · ≥
P[C]. Proceed as follows:

1. Set k = 1.
2. If P[k] ≤ dk, where dk is read from Table 12.5, stop and reject all C hypotheses;

otherwise, go to step 3.
3. Increment k by 1. If P[k] ≤ dk, stop and reject all hypotheses having a

significance level less than or equal to dk.
4. If P[k] > dk, repeat step 3.
5. Continue until you reject or all C hypotheses have been tested.

An advantage of Rom’s method is that its power is greater than or equal to
that of the Bonferroni approach. In fact, Rom’s method always rejects as many or
more hypotheses. A negative feature is that confidence intervals are not readily
computed.

A closely related method was derived by Hochberg (1988) where, rather than
use Table 12.5, use dk = α/(C − k + 1). For k = 1 and 2, dk is the same as in

TABLE 12.5 Critical Values, dk, for Rom’s Method

k α = .05 α = .01

1 .05000 .01000

2 .02500 .00500

3 .01690 .00334

4 .01270 .00251

5 .01020 .00201

6 .00851 .00167

7 .00730 .00143

8 .00639 .00126

9 .00568 .00112

10 .00511 .00101
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TABLE 12.6 Illustration of Rom’s method

Number Test Significance level

1 H0 : µ1 = µ2 P1 = .010 P[5]
2 H0 : µ1 = µ3 P2 = .015 P[3]
3 H0 : µ1 = µ4 P3 = .005 P[6]
4 H0 : µ2 = µ3 P4 = .620 P[1]
5 H0 : µ2 = µ4 P5 = .130 P[2]
6 H0 : µ3 = µ4 P6 = .014 P[4]

Rom’s method. An advantage of Hochberg’s method is that it does not require
special tables and can be used with k > 10.

EXAMPLE. Imagine you want to perform all pairwise comparisons among
four dependent groups and you apply some method for means and get the
significance levels shown in Table 12.6. Further assume that you want FWE
to be .05. The largest significance level is .62; this is greater than .05, so you
fail to reject the corresponding hypothesis, H0 : µ2 = µ3. The next largest
significance level is .130; this is greater than d2 = .025, so you fail to reject
H0 : µ2 = µ4. The next largest significance level is .015; this is less than d3 =
.0167, so you stop and reject the corresponding hypothesis as well as those
having smaller significance levels. ■

12.8.3 Linear Contrasts Based on Trimmed Means

More generally, a collection of linear contrasts can be tested when working with
trimmed means corresponding to dependent groups. First consider a single linear
contrast based on the marginal trimmed means of L groups:

� =
L∑

�=1

c�µ�.

Then H0 : � = 0 can be tested as outlined in Box 12.6. Alternatively, a generalization
of difference scores can be used instead. That is, set

Di =
L∑

�=1

c�Xi�

and test the hypothesis that the population trimmed mean of the Di values is zero.
When testing C such hypotheses, FWE can be controlled with Rom’s method.
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BOX 12.6 How to Test a Linear Contrast Based on the

Marginal Trimmed Means of Dependent Groups

Goal
Test H0 : � = 0 for each of C linear contrasts such that FWE is α. (There are
L groups.)

Let Yij (i = 1, . . . ,n; j = 1, . . . ,L) be the Winsorized values, which are
computed as described in Box 11.3. Let

A =
L∑

j=1

L∑
�=1

cjc�dj�,

where

dj� = 1
h(h − 1)

n∑
i=1

(Yij − Ȳj)(Yi� − Ȳ�)

and h is the number of observations left in each group after trimming. Let

�̂ =
L∑

�=1

c�X̄t�.

Test statistic:

T = �̂√
A

.

Decision Rule
Reject if |T| ≥ t, where t is the 1 − α/2 quantile of a Student’s T-distribution
with ν = h − 1 degrees of freedom. When testing more than one linear
contrast, FWE can be controlled with Rom’s method.

12.8.4 S-PLUS Function rmmcp

The S-PLUS function

rmmcp(x, con = 0, tr = 0.2, alpha = 0.05, dif = T)

performs multiple comparisons among dependent groups using trimmed means and
Rom’s method for controlling FWE. By default, difference scores are used. Set-
ting dif=F results in comparing marginal trimmed means. (When α differs from
both .05 and .01, FWE is controlled with Hochberg’s method as described in
Section 12.8.2.)
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EXAMPLE. Imagine a two-way ANOVA design where husbands and wives
are measured at two different times. Then L = 4, all four groups are dependent,
and this is an example of a two-way ANOVA with a within-subjects design on
both factors. That is, the levels of factor A are possibly dependent, as are the
levels of factor B. Assume that for wives, the trimmed means are µt1 and µt2 at
times 1 and 2, respectively and that the trimmed means at times 1 and 2 for the
husbands are µt3 and µt4, respectively. If the goal is to detect an interaction by
testing

H0 : µt1 − µt2 = µt3 − µt4,

the linear contrast is � = µt1 − µt2 − µt3 + µt4. To use rmmcp, first store the
contrast coefficients in some S-PLUS variable. For example, use the command

mat<−matrix(c(1,−1,−1,1)).

Then if the data are stored in the S-PLUS matrix m1, the command

rmmcp(m1,con=mat,dif=F)

will perform the computations. ■

12.8.5 Percentile Bootstrap Methods

A percentile bootstrap method for multiple comparisons among dependent groups
can be performed using a simple combination of techniques already described. First
consider all pairwise comparisons where the goal is to compare group j to k by testing

H0 : θj = θk (12.12)

for all j < k. As usual, the goal is to have FWE equal to α. Generate bootstrap
samples as described in Section 11.7.1 in conjunction with method RMPB4. For
any two specific groups, compute a significance level (or p-value) as indicated in
Section 11.3.1 in connection with method RMPB2. That is, compute the proportion
of bootstrap values from the first group that are greater than the bootstrap values
from second group, label the result p̂∗, set

p̂∗m = min( p̂∗, 1 − p̂∗),

in which case the estimated significance level is 2 p̂∗m. Then FWE is controlled using
a modification of Rom’s method. In particular, let p̂∗mc be the value of p̂∗m when
performing the cth comparison, c = 1, . . . ,C. Again, if all pairwise comparisons are
being performed, C = ( J2 − J)/2. Now proceed as in Section 12.7.3. That is, put
the p̂∗mc in descending order, yielding p̂∗m[1] ≥ · · · ≥ p̂∗m[C]. Then use Table 12.4 as
illustrated in Section 12.7.3.

Section 11.3.1 mentioned an adjustment of p̂∗ used in conjunction with method
RMPB2. It was called a bias-adjusted critical value and labeled p̂∗a . Here, when
testing the cth hypothesis, p̂∗a is labeled p̂∗ca. If this adjustment is used, the estimated
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significance level is 2min( p̂∗ca, 1 − p̂∗ca). Now it seems that a direct application of
Rom’s method can be used to control FWE. When using the method in the previous
paragraph, there are some indications that it might not be quite satisfactory with large
sample sizes, but switching to p̂∗ca and using Rom’s method seems to correct this.

12.8.6 Using Difference Scores

Another approach is to use difference scores. That is, when comparing group j to
group k, set

Dijk = Xij − Xik,

the difference between the ith pair of observations. (Now bootstrap samples, D∗
ijk, are

obtained by resampling n vectors of observations from the n-by-C matrix of difference
scores, where C = ( J2 − J)/2.) Then, when testing the hypothesis that the typical
difference is zero, you control FWE using either the Bonferroni method or Rom’s
technique.

To elaborate, it is again convenient to relabel the D∗
ijk values as D∗

ic, c = 1, . . . ,C. So
here, c = 1 corresponds to comparing group 1 to group 2, c = 2 is comparing group
1 to group 3, and so on. For the cth comparison, let p̂∗c be the proportion of times
among B bootstrap resamples that D∗

ic > 0. As usual, let

p̂∗mc = min( p̂∗c , 1 − p̂∗c ),

in which case 2 p̂∗mc is the estimated significance level for the cth comparison. Then
put the p-values in descending order and make decisions about which hypotheses are
to be rejected using method SR outlined in Section 12.7.3. That is, once the p̂∗mc is
computed, reject the hypothesis corresponding to p̂∗mc if p̂∗mc ≤ αc, where αc is read
from Table 12.4. Alternatively, reject if the estimated significance level 2 p̂∗mc ≤ 2αc.

As for linear contrasts, consider any specific linear contrast with contrast
coefficients c1, . . . ,cJ , set

Di =
∑

cjXij,

and let θd be the typical (population) value of this sum. Then H0 : θd = 0 can be
tested by generating a bootstrap sample from the Di values, repeating this B times,
computing p̂∗, the proportion of bootstrap estimates that are greater than zero, in
which case 2min( p̂∗, 1 − p̂∗) is the estimated significance level. Then FWE can be
controlled in the manner just outlined.

When comparing groups using MOM, at the moment it seems that the method
based on difference scores often provides the best power versus testing Equation
(12.12). Both approaches do an excellent job of avoiding Type I error probabilities
greater than the nominal α level, still using MOM. But when testing Equation (12.12),
the actual Type I error probability can drop well below the nominal level in situations
where the method based on difference scores avoids this problem. This suggests
that the method based on difference scores will have more power; and indeed, there
are situations where this is the case even when the two methods have comparable
Type I error probabilities. It is stressed, however, that a comparison of these methods,
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in terms of power, needs further study, and perhaps the bias-adjusted critical value
mentioned in Section 12.8.5 helps increase power when testing Equation (12.12),
but this issue has not yet been investigated.

12.8.7 S-PLUS Function rmmcppb

The S-PLUS function

rmmcppb(x,y = NA, alpha = 0.05, con = 0, est = mom, plotit = T,

dif = T, grp = NA, nboot = NA, BA = F, . . . )

performs multiple comparisons among dependent groups using the percentile boot-
strap methods just described. The argument dif defaults to T (for true), indicating that
difference scores will be used. If dif=F, difference scores are not used. For example,
when comparing all pairs of groups, hypotheses given by Equation (12.12) will be
tested instead. If dif=F and BA=T, the significance levels are computed as described
in Section 11.3.1 and Rom’s method is used to control FWE. (With BA=F, a slight
modification of Rom’s method is used instead.) If no value for con is specified, then all
pairwise differences will be tested as given by Equation (12.12). As usual, if the goal
is test hypotheses other than all pairwise comparisons, con can be used to specify
the linear contrast coefficients. (See Section 12.6.1 for an illustration of how to
use con.)

12.9 Analyzing Between-by-Within Designs

There are various ways of performing multiple comparisons when dealing with a
between-by-within (or split-plot) design using a combination of methods already
described. A few specific possibilities are summarized here in the hope that one of
them will match the needs of the reader. We begin with nonbootstrap methods for
trimmed means and then consider bootstrap methods for other measures of location.

As in Chapter 11, it is assumed that levels of factor B correspond to dependent
groups and that the levels of factor A are independent. First consider factor A.
A simple approach is simply to average over the levels of factor B. So Xijk becomes
Yij = ∑

k Xijk/K. Then all pairs of levels of factor A can be compared as based on the
Yij values described in Section 12.6, and the computations can be performed with
the S-PLUS function lincon in Section 12.6.1.

An alternative approach, one that provides more detail about how groups differ,
is to perform all pairwise comparisons among the levels of factor A for each level of
factor B. So, for any k, the goal is to test

H0 : µtjk = µtj′k,

for all j < j′ and k = 1, . . . ,K. The total number of hypotheses is K( J2 − J)/2, and it
is desired to control FWE among all of these tests. For fixed k, because independent
groups are being compared, one approach is simply to create the appropriate linear
contrasts and use the S-PLUS function lincon in Section 12.6.1. (For convenience,
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the S-PLUS function bwamcp, described in the next section, creates these linear
contrasts for you.)

As for factor B, one approach is to ignore the levels of factor A and to test hypothe-
ses based on the trimmed means corresponding to the difference scores associated
with any two levels of factor B. So now there are (K2 −K)/2 hypotheses to be tested,
where each hypothesis is that the difference scores have a trimmed mean of zero.
One way of controlling FWE is with the method in Section 12.8.2. From Chapter
11, another approach is not to take difference scores, but rather to use the marginal
trimmed means.

A more detailed approach is as follows. Consider the jth level of factor A. Then
there are (K2 − K)/2 pairs of groups that can be compared. If, for each of the J levels
of factor A, all pairwise comparisons are performed, the total number of comparisons
is J(K2 − K)/2. In symbols, the goal is to test

H0 : µtjk = µtjk′ ,

for all k < k′ and j = 1, . . . ,J. And of course an alternative approach is to use
difference scores instead.

As for interactions, take any two levels of factor A — say, j and j′ — and do the
same for factor B — say, levels k and k′. Form the difference scores

Dij = Xijk − Xijk′ , and Dij′ = Xij′k − Xij′k′ ,

and let µtj and µtj′ be the population trimmed means associated with these difference
scores. Then one way of stating the hypothesis of no interaction for these specific
levels of factors A and B is with

H0 : µtj = µtj′ ,

and of course this can be done for any two levels of factors A and B. The goal is to
test this hypothesis for all j < j′ and k < k′ in a manner that controls FWE, and this
might be done as described in Section 12.8.2.

12.9.1 S-PLUS Functions bwamcp, bwbmcp, and bwimcp

Three S-PLUS functions are supplied for applying the methods just described. The
first is

bwamcp( J, K, x, tr = 0.2, JK = J ∗ K, grp = c(1 : JK),

alpha = 0.05, KB = F, op = T).

The default value for the argument op is T, meaning that the hypotheses H0 : µtjk =
µtj′k for all j < j′ and k = 1, . . . ,K are tested. In essence, the function creates
the appropriate set of linear contrasts and calls the S-PLUS function lincon. (The
argument KB is used as described in Section 12.6.1.) Setting op=F results in
averaging the data over the levels of factor B and performing all pairwise comparisons
corresponding to the levels of factor A.
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The S-PLUS function

bwbmcp( J, K, x, tr = 0.2, JK = J ∗ K, grp = c(1 : JK), con = 0,

alpha = 0.05, dif = T, pool = F)

compares the levels of factor B instead. If pool=T is used, it simply pools the data for
you and then calls the function rmmcp. If dif=F is used, the marginal trimmed means
are compared instead. By default, pool=F, meaning that H0 : µtjk = µtjk′ is tested for
all k < k′ and j = 1, . . . ,J. For each level of factor A, the function simply selects data
associated with the levels of factor B and sends them to the S-PLUS function rmmcp
described in Section 12.8.3.

As for interactions, the S-PLUS function

bwimcp( J, K, x, tr = 0.2, JK = J ∗ K, grp = c(1 : JK), alpha = 0.05)

can be used.

12.9.2 Bootstrap Methods

This section describes methods aimed at testing a collection of linear contrasts based
on some bootstrap method. One advantage is that it is easy to test some variations
of the methods described at the beginning of this section. Consider, for example,
factor A and let θ̄j. = ∑

θjk/K be the average measure of location for the jth level.
That is, for a fixed level of factor A, θ̄j. is the average of the measures of location
across the levels of factor B. Then an approach to comparing the levels of factor A is
to test

H0 : θ̄j. = θ̄j′. (12.13)

for every j < j′. That is, for all pairs of rows, compare the average measure of loca-
tion among the dependent groups. There are C = ( J2 − J)/2 such comparisons, the
individual tests can be performed as described in Chapter 11, and the resulting signif-
icance levels can be used in conjunction with the modified Rom’s method to control
FWE. (That is, use method SR in Section 12.7.3.) Of course, another possibility is
to focus on the kth level of factor B and test

H0 : θjk = θj′k (12.14)

for all j < j′ and then to do this for all K levels for factor B (i.e., k = 1, . . . ,K). So
now there is a total of C = K( J2 − J)/2 tests to be performed.

As for factor B, again a simple approach is to ignore the levels of factor A, simply
view the data as coming from K dependent groups, and use the methods in Section
12.8.1 or 12.8.2. As before, difference scores can be used or marginal measures of
location can be compared. In the latter case, again ignore factor A and let θk be the
population measure of location associated with the kth level of factor B. Then, for
every k < k′, test

H0 : θk = θk′

and control FWE using method SR in Section 12.7.3.
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As for Interactions, first consider a two-by-two design — say, two independent
groups measured at two different times. For the first group, let θd1 be the population
value for some measure of location based on the time 1 measure minus the time 2
measure. For example, θd1 might be the population M-estimators corresponding to
the difference scores between times 1 and 2. Similarly, for group 2, let θd2 be the
difference for group 2. Then an approach to interactions is to test

H0 : θd1 = θd2.

This can be done by first taking a bootstrap sample based on the difference scores
associated with group 1, repeating this for group 2, and labeling the difference
between these two bootstrap estimates δ̂∗. Then repeat this B times and let p̂∗ be the
proportion of times δ̂∗ is greater than zero. Then 2 p̂∗ is the estimated significance
level. For the general case of J independent groups and K dependent groups, this
process can be repeated for any two levels of factor A and any two levels of factor B,
and FWE can again be controlled by adopting method SR in Section 12.7.3.

12.9.3 S-PLUS Functions spmcpa, spmcpb, and spmcpi

The S-PLUS function

spmcpa( J, K, x, est = mom, JK = J ∗ K, grp = c(1 : JK),

avg = F, nboot = NA, . . . )

performs pairwise comparisons for factor A of a split-plot design as described in
the previous section. Setting est=tmean results in using 20% trimmed means. The
argument avg indicates whether measures of location are to be averaged. That is, the
goal is to test the hypotheses given by Equation (12.13) if avg=T is used. If avg is not
specified (in which case it defaults to F, for false), the hypotheses given by Equation
(12.14) will be tested. The function determines B if the argument nboot is omitted.
Otherwise, the arguments have their usual meaning.

The S-PLUS function

spmcpb( J, K, x, est = mom, JK = J ∗ K, grp = c(1 : JK),

dif=T, nboot = NA, . . . )

performs pairwise comparisons among the levels of factor B. Setting est=tmean
results in using 20% trimmed means. The argument dif=T indicates that difference
scores will be used. Setting dif=F results in marginal measures of location being
compared. The S-PLUS function

spmcpi( J,K,x,est=mom,JK=J∗K,grp=c(1:JK),nboot=NA, . . . )

tests hypotheses related to no interactions.
When using difference scores, the following might help when reading the output.

For every two levels of factor B, the function creates difference scores. In effect
the number of levels for factor B becomes (K2 − K)/2 and the contrast coefficients
reported correspond to the total number of parameters, which is J(K2 − K)/2.
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EXAMPLE. Imagine that for each of two independent groups, the goal is to
compare K measures in a manner that controls FWE. This problem is a special
case of a split-plot or a between-by-within subjects design. For example, one
group might receive an experimental drug at four different times, a control
group receives a placebo, and the goal is to compare the groups at time 1, at
time 2, at time 3, and at time 4. That is, four hypotheses are to be performed
and the goal is to have FWE equal to α. If the data are stored in the S-PLUS
variable x, the command bwamcp(2,4,x) will perform the analysis. ■

EXAMPLE. Another example stems from an illustration in Chapter 11 where
EEG for murderers was measured at four sites in the brain and the same was
done for a control group, in which case the goal might be, among other things,
to determine which sites differ between the two groups. When working with
means under the assumption of normality, the problem is simple: Compare each
site with Welch’s method and control FWE with Rom’s procedure. To compare
groups with outliers removed (using MOM), use the S-PLUS function spmcpa
described earlier. If the EEG data are stored in the S-PLUS function eeg, the
command spmcpa(2, 4, eeg) returns:

$output:
con.num psihat sig.test crit.sig ci.lower ci.upper

[1,] 1 -0.54895604 0.020 0.0254 -0.9635714 -0.03111111
[2,] 2 -0.02000000 0.802 0.0500 -0.7363889 0.60989011
[3,] 3 0.16000000 0.550 0.0338 -0.5131319 0.91923077
[4,] 4 -0.01275641 0.902 0.0500 -0.7785714 0.65279221

$con:
[,1] [,2] [,3] [,4]

[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1
[5,] -1 0 0 0
[6,] 0 -1 0 0
[7,] 0 0 -1 0
[8,] 0 0 0 -1

$num.sig:
[1] 1

The contrast coefficients are reported in $con. For example, among the eight
groups, the first column indicates that measures of location corresponding to
the first and fifth groups are compared. (That is, for level 1 of factor B, compare

Continued
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EXAMPLE. (Continued ) levels 1 and 2 of factor A.) The value of num.sig is 1,
meaning that one difference was found based on whether the value listed under
sig.test is less than or equal to the corresponding value listed under crit.sig. The
data indicate that the typical EEG for murderers differs from the control group
at the first site where measures were taken. ■

12.10 Exercises

1. Assuming normality and homoscedasticity, what problem occurs when
comparing multiple groups with Student’s T-test?

2. For five independent groups, assume that you plan to do all pairwise com-
parisons of the means and you want FWE to be .05. Further assume that
n1 = n2 = n3 = n4 = n5 = 20, X̄1 = 15, X̄2 = 10, s21 = 4, s22 = 9, s23 = s24 =
s25 = 15; test H0 : µ1 = µ2 using (a) Fisher’s method (assuming the ANOVA
F-test rejects), (b) Tukey–Kramer, (c) Dunnett’s T3, (d) Games–Howell,
(e) Scheffé’s method, (f) Kaiser–Bowden.

3. Repeat the previous exercise, but now with n1 = n2 = n3 = n4 = n5 = 10,
X̄1 = 20, X̄2 = 12, s21 = 5, s22 = 6, s23 = 4, s24 = 10, and s25 = 15.

4. You perform six tests and get significance levels .07, .01, .40, .001, .1, and .15.
Based on the Bonferroni inequality, which would be rejected with FWE equal
to .05?

5. For the previous exercise, if you use Rom’s method, which tests would be
rejected?

6. You perform five tests and get significance levels .049, .048, .045, .047, and
.042. Based on the Bonferroni inequality, which would be rejected with FWE
equal to .05?

7. Referring to the previous exercise, which would be rejected with Rom’s
procedure?

8. Imagine you compare four groups with Fisher’s method and you reject the
hypothesis of equal means for the first two groups. If the largest observation
in the fourth group is increased, what happens to MSWG? What does this
suggest about power when comparing groups 1 and 2 with Fisher’s method?

9. Repeat the previous exercise, but with the Tukey–Kramer and Scheffé’s
methods instead.

10. For the data in Table 9.1, each group has 10 observations, so when using
Tamhane’s method to compute confidence intervals for all pairwise differences,
the degrees of freedom are 9 and the value of h in Table 11 of Appendix B is
4.3. Verify that if the goal is to have confidence intervals with FWE equal to
.05 and lengths .5, the required sample sizes for each group are 50, 11, 18,
and 17.

11. Repeat the previous exercise using the S-PLUS function hochberg. Verify that
the required sample sizes are 50, 10, 18, and 17.

12. Use the S-PLUS function lincon to verify the results in the first example of
Section 12.6.1.
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13. Use the S-PLUS function msmed to compare all pairs of groups based on
medians and the data in Table 9.1. Verify that the output from msmed is

$test:
Group Group test crit se

[1,] 1 2 0.1443384 2.63 0.2742167
[2,] 1 3 0.4313943 2.63 0.3025886
[3,] 1 4 0.5795942 2.63 0.3019699
[4,] 2 3 0.9624726 2.63 0.1767479
[5,] 2 4 0.7709186 2.63 0.1756865
[6,] 3 4 1.4059718 2.63 0.2173265

$psihat:
Group Group psihat ci.lower ci.upper

[1,] 1 2 -0.039580 -0.7607699 0.6816099
[2,] 1 3 0.130535 -0.6652731 0.9263431
[3,] 1 4 -0.175020 -0.9692008 0.6191608
[4,] 2 3 0.170115 -0.2947319 0.6349619
[5,] 2 4 -0.135440 -0.5974955 0.3266155
[6,] 3 4 -0.305555 -0.8771238 0.2660138

14. Use the S-PLUS function msmedse to compute the standard errors for the
median corresponding to the four groups in Table 9.1. Compare the results to
the estimated standard error for the 20% trimmed means returned by trimse.
Now note that when comparing groups 3 and 4, you reject with 20% trimmed
means, as was illustrated in Section 12.6.1, but not with medians, as illustrated
in Exercise 13.

15. Perform all pairwise comparisons of the groups in Table 11.3 using the S-PLUS
function rmmcppb in Section 12.8.4. Use the MOM estimate of location and
use difference scores. Verify that a difference between groups 2 and 3 is found
with FWE set at .05.

16. A. Thompson and Randall–Maciver (1905) report four measurements of male
Egyptian skulls from five different time periods. The first was maximal breadth
of skull, and the five time periods were 4000 bc, 3300 bc, 1850 bc, 200 bc, and
150 ad. A portion of the output from lincon, when comparing means (with
the argument tr set equal to zero), is

$psihat:
Group Group psihat ci.lower ci.upper

[1,] 1 2 -1.0000000 -4.728058 2.72805781
[2,] 1 3 -3.1000000 -6.402069 0.20206887
[3,] 1 4 -4.1333333 -7.563683 -0.70298384
[4,] 1 5 -4.8000000 -8.729236 -0.87076449
[5,] 2 3 -2.1000000 -5.258496 1.05849612
[6,] 2 4 -3.1333333 -6.427215 0.16054796
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Group Group psihat ci.lower ci.upper
[7,] 2 5 -3.8000000 -7.615383 0.01538268
[8,] 3 4 -1.0333333 -3.813622 1.74695545
[9,] 3 5 -1.7000000 -5.103517 1.70351741

[10,] 4 5 -0.6666667 -4.193848 2.86051459

So when comparing means, significant results are obtained when comparing
group 1 to group 4 and group 1 to group 5. The output from pbmcp (when
comparing groups based on MOM) is

$output:
con.num psihat sig.test sig.crit ci.lower ci.upper

[1,] 1 -0.65134100 0.5910 0.05000 -4.358466 2.75714286
[2,] 2 -3.62997347 0.0110 0.01460 -7.172174 -0.05952381
[3,] 3 -3.70689655 0.0050 0.01278 -7.266667 -0.42142857
[4,] 4 -4.37356322 0.0005 0.01022 -8.733333 -1.23333333
[5,] 5 -2.97863248 0.0145 0.01702 -6.040134 0.19333333
[6,] 6 -3.05555556 0.0215 0.02040 -6.347619 0.42450142
[7,] 7 -3.72222222 0.0030 0.01136 -7.540404 -0.56410256
[8,] 8 -0.07692308 0.8545 0.05000 -3.433333 3.26638177
[9,] 9 -0.74358974 0.3580 0.02540 -4.817949 2.26819923

[10,] 10 -0.66666667 0.4475 0.03380 -4.869565 2.50000000

$con:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 1 1 1 0 0 0 0 0 0
[2,] -1 0 0 0 1 1 1 0 0 0
[3,] 0 -1 0 0 -1 0 0 1 1 0
[4,] 0 0 -1 0 0 -1 0 -1 0 1
[5,] 0 0 0 -1 0 0 -1 0 -1 -1

$num.sig:
[1] 5

Interpret the results and contrast them with the analysis based on means.
17. Among the five groups in the previous exercise, only one group was found to

have an outlier based on any of the boxplot rules in Section 3.4. What might
explain why more significant differences are found when comparing groups
based on MOM versus the mean?



13
ROBUST AND
EXPLORATORY
REGRESSION

Chapter 7 indicates how to make inferences about regression parameters when using
the least squares estimator if standard assumptions (normality and homoscedasticity)
are violated. A comparable method for making inferences about Pearson’s correlation
is also described there, but there are other fundamental problems with least squares
regression and Pearson’s correlation that need to be addressed. One basic concern
is that outliers can greatly distort both of these methods. A second concern is that
heteroscedasticity can grossly inflate the standard error of the ordinary least squares
estimator, relative to other estimators one might use, even under normality. This
means that in terms of power (the probability of detecting an association), using
least squares regression can be relatively ineffective. A related problem is getting
an accurate and relatively short confidence interval for the slope and intercept. This
chapter describes some of the tools one might use to address these problems. Some
issues related to multiple predictors are discussed, but the emphasis in this chapter is
on simple regression, meaning that there is only one predictor. (Chapter 14 expands
upon strategies for dealing with multiple predictors.)

13.1 Detecting Outliers in Multivariate Data

First consider the problem of detecting outliers in bivariate data. As in Chapter 6,
imagine we have n pairs of observations, which we label (X1, Y1), . . . ,(Xn, Yn). At
first glance the problem might appear to be trivial: Simply apply one of the outlier
detection methods in Chapter 3 to the X values and do the same to the Y values.
Comrey (1985) gives a rough indication of why this approach can be unsatisfactory
with the following example. It is not unusual for an individual to be young or for an
individual to have hardening of the arteries. But it is unusual for someone to be both
young and have hardening of the arteries. More formally, this approach suffers from
a fundamental problem: If the points are rotated, values that were declared outliers
might no longer be declared outliers, and points that were not declared outliers might
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FIGURE 13.1 For multivariate data, simply checking for outliers among the
marginal distributions can lead to different conclusions depending on how the points
are rotated.

become outliers. That is, if you look at a scatterplot of points on a sheet of paper,
declaring a point an outlier should not depend on whether you hold your head up
straight versus tilting your head slightly to the right.

To illustrate this important point, look at the upper left panel of Figure 13.1. The
points in this plot were created by generating 20 values from a standard normal curve
for both X and the error term (ε) and setting

Yi = Xi + εi.

That is, points were generated according to the standard regression model discussed
in Chapter 6, where the regression line has a slope of 1 and an intercept of zero.
Then an additional point was added at X = 2.1 and Y = −2.4; it appears in the lower
right corner of the scatterplot. To the right of the scatterplot are boxplots for the
X and Y values. As is evident, no outliers are found, and none are found using any
of the other outlier detection methods in Chapter 3. Note, however, that the point
(X, Y) = (2.1, −2.4) is unusual by construction. The reason is that when X = 2.1,
Y should have a value that is reasonably close to 2.1 as well (because the regression
line is simply Y = X). But given that X = 2.1, Y = −2.4 is located 4.5 standard
deviations away from the regression line, which makes it unusual. Indeed, a casual
glance at the scatterplot suggests that it is somehow removed from the bulk of the
points.

The bottom left portion of Figure 13.1 shows the same points rotated by
45 degrees. So in effect the points are rotated so that now they are centered around a
regression line having a slope of zero. The lower right panel of Figure 13.1 shows the
resulting boxplots of the rotated points. Now an outlier is found among the Y values,
which corresponds to the unusual point in the scatterplot of the unrotated points.
What we need is an outlier detection method that takes into account the overall
structure of the scatterplot. In particular, outliers should remain outliers under any
rotation of the points we might make.



13.1 ■ Detecting Outliers in Multivariate Data 459

In the context of regression, the problem just illustrated is important, because
when fitting a straight line to data, even when no outliers are found among the X
values and none are found among the Y values, it is possible for a few points to be
separated from the bulk of the observations in a way that has an inordinate effect on
the least squares regression line. That is, in a very real way, points can be outliers in
a scatterplot even though they are not deemed outliers when attention is restricted
to the X values or the Y values. As an illustration, again consider the points in the
scatterplot in the upper left panel of Figure 13.1, only now we add two points at
(X, Y) = (2.1, −2.4). For the original 20 points, the least squares slope of this line
is b1 = 1.063. So in this particular case, the least squares regression line provides a
fairly accurate estimate of the true slope, which is 1. What is particularly important
is that the two points added at (X, Y) = (2.1, −2.4) have a tremendous influence
on the least squares regression line — the estimate of the slope drops from 1.063 to
0.316.

A criticism of the illustration just given might be that the two points added to the
scatterplot should have some influence on the estimated slope. However, another
point of view is that a few unusual values should not mask a true association. If we
test the hypothesis that the slope is zero using the conventional method covered in
Section 6.3.1, then, based on the original 20 values, we reject with α = .001. But
when the two unusual values are added to the data, the significance level increases
to .343. In this particular case, simply restricting the range of X to values less than
2.1 corrects this problem. But the simple strategy of restricting the range of X is not
always effective when trying to detect associations that might be masked by outliers.
Indeed, conventional wisdom is that restricting the range of X can actually mask an
association, and this is in fact a realistic concern, as will be illustrated in Section 13.4.

13.1.1 A Relplot

An outlier detection method that satisfies our goal of dealing with the rotation of
points and taking into account the overall structure of the data is the so-called relplot
proposed by Goldberg and Iglewicz (1992); it is a bivariate analog of the boxplot. The
somewhat involved computations are not particularly important for present purposes
and therefore not given. (Computational details can be found in Goldberg & Iglewicz,
1992; and Wilcox, 1997a, Section 7.6.) However, familiarity with a relplot helps
convey other concepts and strategies used in this chapter. The basic idea is first to
compute a measure of location that has a reasonably high breakdown point. That is,
any reasonable measure of location should be embedded in the central portion of a
scatterplot of the data, and we want to avoid having a measure of location that is
not near the center due to a few points that are unusually separated from the bulk of
the observations. (Recall from Chapter 3 that we need estimators with a reasonably
high breakdown point when searching for outliers, which continues to be the case
here.) The particular measure of location used by Goldberg and Iglewicz is related to
the M-estimator described in Chapter 3. They also compute a measure of covariance
that is based primarily on the centrally located points. Based on these measures of
location and covariance, a relplot creates two ellipses. The inner ellipse contains the
central half of the points; points outside the outer ellipse are declared outliers.
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13.1.2 S-PLUS Function relplot

The S-PLUS function relplot, written for this book, has the form

relplot(x,y,plotit=T)

and computes a relplot. As usual, x and y are any S-PLUS variables containing data.
The function also returns a correlation coefficient based on the centrally located data
(labeled mrho), but it plays no important role in this book and in fact suffers from a
practical problem illustrated momentarily.

EXAMPLE. To illustrate how a relplot can alter our perceptions about the
association between two variables, first look at Figure 13.2, which shows a
scatterplot of data from a study where the goal is to predict reading ability.
(These data were generously supplied by L. Doi. The X values are stored in
column 4 of the file read.dat, and the Y values are in column 8.) Also shown is the
least squares regression line, which has an estimated slope of −0.032. Testing
the hypothesis of a zero slope using the conventional method in Section 6.3.1,
the significance level is .764 (which is the same significance level obtained when
testing H0 : ρ = 0 with Student’s T ) and the .95 confidence interval for the
slope is (−0.074, 0.138). Using the modified bootstrap method in Section 7.3,
the .95 confidence interval is (−0.27, 0.11). So again no association is detected
between the two variables under study. ■

Figure 13.3 shows a relplot of the same data. The inner ellipse contains the central
half of the data; points outside the outer ellipse are declared outliers. As is evident,
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FIGURE 13.2 Scatterplot and least squares regression line for the reading data.
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FIGURE 13.3 Relplot for the reading data in Figure 13.2.

we get a rather different impression about the association between these two variables
versus the scatterplot in Figure 13.2. Figure 13.3 suggests that for the bulk of the
points there might be a negative association that is masked when using least squares
due to the outliers in the right portion of the scatterplot. (Methods covered later in
this chapter support this conclusion.)

EXAMPLE. A criticism of the relplot is that outliers might affect our overall
sense of how points are associated, depending on where the outliers happen to
be located. Consider again the data in the upper portion of Figure 13.1 — only
momentarily we ignore the unusual point that was added at (X, Y) = (2.1, −2.4).
Figure 13.4 shows a relplot of the data (and it reports a correlation of .66, which
is reasonably close to Pearson’s correlation, r = .68). ■

Now we add two points at (X, Y) = (2.1, −2.4). Figure 13.5 shows the relplot.
It correctly identifies the two outliers, but the association among the points not
declared outliers is less pronounced. In particular, the relplot correlation drops from
.66 to .32 and Pearson’s correlation becomes r = .21.

13.1.3 MVE and MCD Estimators

The relplot is certainly an improvement on the simple strategy of checking for outliers
among the X values only (ignoring the Y values) and then doing the same for the
Y values. However, in addition to the concern just illustrated, a limitation is that
it has not been extended to situations where we have more than two measures for
each individual. There is an interesting alternative called a bagplot (Rousseeuw, Ruts,
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FIGURE 13.4 Relplot where both X and Y have normal distributions.
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FIGURE 13.5 Adding two outliers can substantially alter the relplot in Figure 13.4.

& Tukey, 1999), but it too is restricted to the bivariate case. This is not to say that the
bagplot has no practical value, but to conserve space attention is now restricted to
methods that have been generalized to more than two variables. (The bagplot might
soon meet this requirement if certain technical difficulties can be addressed.) But
before describing multivariate alternatives to the relplot, we first need to consider
robust analogs of the covariance between X and Y.
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Recall from Chapter 6 that the sample covariance between X and Y is

sxy = 1
n − 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ).

This quantity is the numerator of Pearson’s correlation, and it has a finite-sample
breakdown point of only 1/n. That is, a single unusual point can have an inordinate
influence on its value. One general strategy for dealing with outliers in bivariate
data hinges on analogs of sxy that can handle a large number of outliers. One such
strategy arises as follows. Consider all ellipses that contain half of the data points. The
inner ellipse in Figure 13.3 is one example for the reading data. The strategy behind
the minimum-volume ellipsoid estimator, typically called the MVE estimator, is to search
among all of the ellipses containing half of the data and identify the one having the
smallest area. Once this ellipse is identified, a robust analog of the usual covariance
(sxy) is the covariance based only on the points inside this particular ellipse, and the
mean of these points provides a measure of location with a high breakdown point.
(The finite-sample breakdown point is .5.) Although the details as to how to find the
ellipse with the smallest area are not straightforward, S-PLUS has a built-in function
that performs the calculations for you. (It has the form cov.mve(m), where m is
a matrix having n rows.) Moreover, the estimate is automatically rescaled so that
when sampling from normal distributions, it estimates the variance and Pearson’s
correlation. (A comparable function, called MVE, can be found in SAS.)

Given the covariance and measure of location just described, one can measure the
distance of each point from the center of the scatterplot using an analog of what is
called the Mahalanobis distance. This distance can be used to judge how far away a point
happens to be from the centrally located portion of a scatterplot. Rousseeuw and
van Zomeren (1990) proposed a rule for deciding if a point is sufficiently far from the
center to be declared an outlier. For readers familiar with matrix algebra, the details
are relegated to Box 13.1 for the more general case where we have p measures for
each individual. (Basic matrix algebra is summarized in Appendix C.)

BOX 13.1 How to Detect Outliers Using the MVE or MCD

Measures of Covariance

We have a sample of p measures for each of n individuals, which is denoted
by X′

i = (Xi1, . . . , Xip), i = 1, . . . , n. Let C and M be the center and covari-
ance matrix, respectively, of the data determined by the MVE estimator
(which is computed by the built-in S-PLUS function cov.mve) or by the MCD
estimator (which is computed by the built-in S-PLUS function cov.mcd). Let

Di =
√

(Xi − C)′M−1(Xi − C).

Continued
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BOX 13.1 (Continued )
The value Di measures how far the point X′

i is from the center of the data and
is a generalization of what is called the Mahalanobis distance. (See for example
Mardia, Kent, & Bibby, 1979, for details about the Mahalanobis distance.)
The point X′

i is declared an outlier if Di >
√

χ2
.975,p, the square root of the

.975 quantile of a chi-squared distribution with p degrees of freedom.

An alternative to the MVE estimator is the so-called minimum-covariance determinant
(MCD) estimator. To convey the basic strategy, we first must describe the notion of a
generalized variance (introduced by S. Wilks in 1934), which is intended to measure
the extent to which a scatterplot of points is tightly clustered together. For bivariate
data, this measure of dispersion is given by

s2g = s2x s2y(1 − r2), (13.1)

where s2x and s2y are the sample variances associated with the X and Y values, respec-
tively, and r is Pearson’s correlation between X and Y. (In the multivariate case, s2g is the
determinant of the covariance matrix.) Recall from Chapter 3 that the smaller the vari-
ance of the X values, the more tightly clustered together are the X values, and of course
a similar result applies to the Y values. We have seen that a single outlier can inflate
the sample variance tremendously, but what is more important here is that the sample
variance can be small only if the X values are tightly clustered together with no outliers.
And in Chapter 6 we saw that the correlation is sensitive to how far points happen to be
from the regression line around which they are centered. When the sample variances
are small and Pearson’s correlation is large, the generalized variance will be small.

To provide some perspective, the left panel of Figure 13.6 shows a scatterplot of
100 points for which s2g = 0.82. The right panel shows a scatterplot of another 100
points, except that they are more tightly clustered around the line Y = X, and the
generalized variance has decreased to s2g = 0.23. The left panel of Figure 13.7 shows
another 100 points that were generated in the same manner as those shown in the
left panel of Figure 13.6, except that the variance of the X values was reduced from 1
to 0.5. Now s2g = 0.20. In the right panel of Figure 13.7, the points are more tightly
clustered together, and the generalized variance has decreased to s2g = 0.06.

Now consider any subset of the data containing half of the points. The strategy
behind the MCD estimator is to search among all such subsets and identify the
one with the smallest generalized variance. Then the MCD measure of location and
covariance is just the mean and covariance of these points. (For results supporting the
use of the MCD estimator over the MVE estimator, see Woodruff & Rocke, 1994.)
As with the MVE estimator, computing the MCD measure of location and covariance
is a nontrivial, computer-intensive problem, but S-PLUS has a built-in function that
performs the calculations for you (called mcd.cov); SAS has an analog of this function
called MCD. (For a description of the algorithm used, see Rousseeuw & van Driesen,
1999.) Once these measures of location and scale are available, you can measure
the relative distance of a point from the center using the method in Box 13.1, and
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FIGURE 13.6 The more tightly points are clustered around a line, the smaller
the generalized variance. The right panel has a smaller generalized variance than the
left panel.
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FIGURE 13.7 The generalized variance is also related to the variance of X and Y.
In the left panel, s2g = .2; in the right panel, s2g = .06.

these distances can be used to detect outliers. (For an extension of this method, see
Rocke & Woodruff, 1996.)

13.1.4 S-PLUS Function out

The S-PLUS function
out(m,mcd=F,plotit=T)

detects outliers using the MVE method when mcd=F is used; otherwise, the MCD
method is used. It is common for the MCD method to find more outliers than the
method based on MVE.
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FIGURE 13.8 Output from the S-PLUS function out. The left panel is with mcd=F,
meaning that the MVE method is used; the right panel is with mcd=T, meaning that the
MCD method is used. Both methods return the same results in this particular case.

EXAMPLE. If the reading data used to create Figure 13.2 are stored in the
S-PLUS variable blob, the command out(blob) creates the plot shown in the
left panel of Figure 13.8. Points marked with a circle are declared outliers.
The right panel shows the plot created by the function out with MCD=T. So
in this particular instance, both methods flag the same points as outliers, and
more points are declared outliers than with the relplot. ■

13.1.5 The Minimum Generalized Variance Method

It might seem that we could simply discard any outliers detected by the MVE or
MCD methods and estimate the regression line with the data that remain. That is,
use a method similar in spirit to the MOM estimator in Section 3.5.2. However,
many variations of this approach are known to be unsatisfactory — they can mask the
overall association (cf. Fung, 1993). This is somewhat expected based on properties
of Pearson’s correlation coefficient, r, covered in Chapter 6. In particular, we saw that
restricting the range of X or Y can greatly influence r, so it is not too surprising that
if we focus on the middle 50% of the data only, we might be misled regarding the
association between X and Y.

EXAMPLE. As an illustration, the MVE and MCD methods are applied to
the original 20 points in Figure 13.1. Both X and Y were generated from
normal distributions, with the regression line between X and Y having a slope

Continued
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FIGURE 13.9 Eliminating outliers using the MVE or MCD method and fitting a least
squares regression line to the data that remain can result in a poor estimate of the true
slope, which is 1 in this particular case.

EXAMPLE. (Continued ) equal to 1. The left panel of Figure 13.9 shows the
plot created by out plus the least squares regression line based on the points
not flagged as outliers. This line has a slope of .55, so it poorly estimates the
true slope. The right panel shows the results when the MCD method is applied
instead. As is evident, MCD finds more outliers. But what is perhaps more
important, if the outliers found by MCD are discarded, the true association
between X and Y is completely lost, as indicated by the least squares regression
line based on the points not declared outliers. ■

EXAMPLE. To add perspective, the process used to generate Figure 13.9 was
repeated 500 times, and each time the least squares estimate of the slope was
computed using the points not flagged as outliers. So again the true slope is 1.
The first boxplot in the left panel of Figure 13.10 shows the estimated slopes
when using MVE to detect outliers; the second boxplot is based on the least
squares estimate of the slope using all of the data instead. (That is, outliers are
not discarded.) The second panel shows a boxplot of the least squares estimate
when outliers detected by the MCD are removed; again, the other boxplot is
based on the estimated slopes when outliers are not removed. As is evident,
discarding outliers and applying least squares is a relatively unsatisfactory strat-
egy in this particular case, because the least squares estimate based on all of the
data tends to be closer to the true slope being estimated. More generally, where

Continued
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FIGURE 13.10 In the left panel, the first boxplot shows estimated slopes, based
on least squares, with outliers detected by the MVE method removed. The other
boxplot shows the estimated slopes when retaining all points. The right panel is the
same as the left, but with the MVE method replaced by MCD.

EXAMPLE. (Continued ) observations do not have a normal distribution, dis-
carding outliers and fitting a least squares regression line to the remaining data
can be highly unsatisfactory. ■

There are many strategies for discarding outliers and fitting a line to the data that
remain. Currently, most seem to offer little or no improvement over other regression
estimators described in this chapter. However, a variation of this strategy, where
outliers are discarded and then a line is fit to the remaining points, does have practical
value, at least in some situations, and is based on a different approach to detecting
outliers. When searching for outliers, of particular importance is detecting so-called
bad leverage points. A leverage point is an outlier among the X values. A regression outlier is a
point with a relatively large residual. A bad leverage point is a leverage point that is also a
regression outlier. A good leverage point is a leverage point that is not a regression outlier.
That is, a good leverage point is a point that is reasonably close to the regression
line, as illustrated in Figure 13.11. Good leverage points lower the standard error of
the least squares estimate of the slope without giving a distorted indication of the
association among the bulk of the observations. Bad leverage points can result in a
poor fit to the majority of the data, even when using various robust estimators. So
the hope is to be able to eliminate the effects of bad leverage points yet achieve
a relatively accurate estimate of the slope and intercept, even under normality and
homoscedasticity. In some situations this means that we want to avoid identifying and
discarding so many points that the true association is lost. There are direct methods
for detecting regression outliers (Rousseeuw & van Zomeren, 1990), but currently it
seems that an indirect method performs best, based on the criterion of achieving a
relatively low standard error, when estimating the slope.
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FIGURE 13.11 Illustration of a good versus bad leverage point.

For p-variate data, an outlier detection method that has been found to have practical
value, in the context just described, begins by determining the p centrally located
points and then determining how close each point is to the center using the notion
of a generalized variance. There are many ways of finding the center of a cloud of
points, some of which use some multivariate analog of the median (e.g., Small, 1990),
and perhaps for the situation at hand the method used here can be improved upon;
this issue is in need of further investigation.

The steps for applying this alternative outlier detection method, called the MGV
method, are as follows.

1. Initially, all n points are described as belonging to set A.
2. Find the p points that are most centrally located. In the bivariate case, for the

ith pair of points, compute

di =
n∑

j=1

√
(Xj − Xi)2

MAD2
x

+ (Yj − Yi)2

MAD2
y

, (13.2)

where MADx and MADy are the values of MAD for the X and Y values,
respectively. The two most centrally located points are taken to be the two
points having the smallest di values. For the more general case where we have
p measures for each individual, (Xi1, . . . , Xip), i = 1, . . . , n,

di =
n∑

j=1

√√√√ p∑
�=1

(Xj� − Xi�)2

MAD2
�

, (13.3)

where MAD� is the value of MAD based on X1� , . . . , Xn�.
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3. Remove the centrally located points from set A and put them into set B.
At this step, the generalized variance of the points in set B is zero. (When
dealing with p measures, any p distinct points will have a generalized variance of
zero.)

4. If the ith point in set A is put in set B, the generalized variance of the points in
set B will be changed to some value that is labeled s2gi. That is, associated with
every point in A is the value s2gi, which is the resulting generalized variance
when it, and it only, is placed in set B. Compute s2gi for every point in A.

5. Among the s2gi values computed in the previous step, permanently remove the
point associated with the smallest s2gi value from set A and put it in set B. That
is, find the point in set A that is most tightly clustered together with the points
in set B. Once this point is identified, permanently remove it from A and leave
it in B henceforth.

6. Repeat steps 4 and 5 until all points are now in set B.

The first p points removed from set A have a generalized variance of zero, which
is labeled s2g(1) = · · · = s2g( p) = 0. When the next point is removed from A and put
into B (using steps 4 and 5), the resulting generalized variance of set B is labeled
s2g( p+1); continuing this process, each point has associated with it some general-
ized variance when it is put into set B. Note that by construction, s2g(1) ≤ s2g(2)≤ · · · ≤ s2g(n).

Based on the process just described, the ith point has associated with it one
of the ordered generalized variances just computed. For example, in the bivari-
ate case, associated with the ith point (Xi, Yi) is some value s2g( j) indicating that
the ith point was removed in the jth step of the process used to compute the val-
ues s2g(1) ≤ s2g(2) ≤ · · · ≤ s2g(n). For convenience, the generalized variance associated
with the ith point, s2g( j), is labeled Di. The p deepest points have D values of zero.
Points located at the edges of a scatterplot have the highest D values, meaning that
they are relatively far from the center of the cloud of points. Moreover, we can detect
outliers simply by applying one of the outlier detection rules in Chapter 3 to the Di
values. Note, however, that we would not declare a point an outlier if Di is small, only
if Di is large. If we use the rule based on the median and MAD, for example, then
according to Equation (3.22), the point (Xi, Yi) is declared an outlier if

|Di − MD|
MADD/.6745

> 2.24, (13.4)

where MD and MADD are the median and the value of MAD, respectively, based on
the D values.

Of course, an alternative to Equation (13.4) is some type of boxplot rule. Currently,
in the context of regression, the boxplot rule described in Section 3.4.4 has received
the most attention and will be used henceforth. (When trying to estimate regression
parameters, the effect of using Equation (13.4) has not been studied.) In particular,
declare the ith point an outlier if

Di > q2 − 1.5(IQR), (13.5)
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where IQR = q2 − q1 and where q1 and q2 are the ideal fourths based on the Di
values. For the more general case where there are p variables, replace Equation (13.5)
with

Di > MD +
√

χ2
.975,p(IQR),

where
√

χ2
.975,p is the square root of the .975 quantile of a chi-squared distri-

bution with p degrees of freedom.

13.1.6 S-PLUS Function outmgv

The S-PLUS function

outmgv(x,y = NA, plotit = T, outfun = outbox,…)

applies the MGV outlier detection method just described. If the second argument
is not specified, it is assumed that x is a matrix with p columns corresponding to the
p variables under study. So, for example, in the bivariate case, x could be a matrix
having n rows and two columns. If the second argument, y, is specified, the function
combines the data in x with the data in y and checks for outliers among these p + 1
variables. In particular, the data do not have to be stored in a matrix; they can be
stored in two vectors (x and y) and the function combines them into a single matrix
for you. If plotit=T is used and bivariate data are being studied, a plot of the data
will be produced, with outliers marked by a circle. The argument outfun can be
used to change the outlier detection rule applied to the depths of the points (the Di
values in the previous section). By default, the boxplot rule based on Equation (13.5)
is used.

EXAMPLE. Consider the following five pairs of points:

X: 6 22 19 29 33
Y: 11 7 42 22 26

To find the two centrally located points, first note that for the X values MAD is
7 and for the Y values MAD is 11. For the first pair of points, (X, Y) = (6, 11),

d1 =
√

(6 − 6)2

72 + (11 − 11)2

112 + · · · + (6 − 33)2

72 + (11 − 26)2

112 = 6.73.

In a similar manner, d2 = 4.896, d3 = 5.76, d4 = 4.523, and d5 = 5.36. The two
smallest di values are 4.896 and 4.523, which correspond to the points (29, 22)
and (22, 7). ■
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FIGURE 13.12 For the star data, the MGV outlier detection method flags the points
indicated by a circle as outliers.

EXAMPLE. If the star data in Figure 6.3 are stored in the S-PLUS variables
starx and stary, the command

outmgv(starx,stary)

produces the plot shown in Figure 13.12. If the data are stored in the n-by-2
matrix mstar, the command outmgv(mstar) will again produce Figure 13.12. ■

13.1.7 A Variation of the MGV Method for Large Sample Sizes

The MGV outlier detection method has practical value when fitting a straight line to
data. However, a criticism is that as n gets large, execution time increases substantially
using the software provided with this book. (Much faster software could be written,
but this has not been done as yet.) When fitting a line to data, a regression method
based in part on a variation of the MGV method performs well and has faster execution
time. This alternative method begins by determining for each point the generalized
variance when it is removed. That is, we remove the ith point, (Xi, Yi), and compute
the generalized variance for the remaining n − 1 points, which we label as Di. So, for
example, D1 is the generalized variance if (X1, Y1) is eliminated from the data, and D2
is the generalized variance when (X1, Y1) is put back and (X2, Y2) is removed instead.
Extreme points will tend to have smaller D values versus points near the center of the
data. So points with unusually small D values are declared outliers, and this will be
called method MGVF or the inward depth method. Here, the boxplot rule for detecting
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FIGURE 13.13 Output from the MGVF outlier detection method applied to the star
data. The MGVF method misses what appears to be an obvious outlier, but despite this it has
practical value when estimating the slope.

outliers (described in Section 3.4.4) will be applied to the D values unless stated
otherwise.

It is stressed that if the main goal is to detect outliers, the method just described
can be unsatisfactory. For example, if we apply the MGVF method to the data in
Figure 13.12, we get the plot shown in Figure 13.13. Notice the point indicated
by the arrow. It is declared an outlier in Figure 13.12 and it certainly seems to be
relatively far from the majority of points. However, it is not declared an outlier by
method MGVF. But despite this shortcoming, method MGVF will be seen to have
practical value when we take up regression.

For completeness, there are several other approaches to measuring how deeply a
point is embedded in a scatterplot (see, for example, Liu & Singh, 1997). Perhaps
some of these techniques will be found to have practical value versus the measures of
depth described here, but this remains to be seen. Also, there are other methods for
detecting outliers that might have more practical value when fitting a straight line to
data. For example, Fung (1993) begins by declaring points an outlier with the MVE
method in Section 13.1.3. Then an iterative method is used to determine whether
any of these outliers should be put back into the set of points not declared an outlier.
(Some preliminary checks do not support the use of this method, but a more detailed
study is needed.) Another possibility is to modify the MVE or MCD methods so that
rather than use the central 50% of the data to determine the center and correlations,
some higher proportion is used instead. This lowers the breakdown point, but in
terms of estimating the association between two variables, perhaps this approach has
practical value. So far, variations of this approach have been found to be relatively
unsatisfactory. Another possibility is to use method MGVF but rather than use the
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boxplot rule on the D values, use instead the method in Section 3.4.2 which is based
on the median and MAD. This strategy now flags the point marked by the arrow in
Figure 13.12 as an outlier, but an additional point is marked an outlier beyond the five
outliers found in Figure 13.11. Other approaches to detecting outliers in multivariate
data were recently proposed by Rocke and Woodruff (1996); Poon, Lew, and Poon
(2000); and Peña and Prieto (2001). Perhaps they can be used effectively in regression,
relative to the other methods considered here, but this remains to be determined.

13.1.8 S-PLUS Function outmgvf

The S-PLUS function

outmgvf(x,y = NA, plotit = T, outfun = outbox,…)

checks for outliers using the MGVF method. The arguments x and y are used as
described in Section 13.1.6. By default a boxplot rule is applied to the measures of
depth, but this can be altered with the argument outfun. For example, outfun=out
would use MAD and the median instead.

13.1.9 A Projection Method for Detecting Outliers

If the main goal is to detect outliers, all of the methods described so far are open to
criticism. One issue has to do with the so-called outside rate per observation. This is just the
expected or average proportion of outliers among n randomly sampled vectors. When
working with a single random variable and when sampling from a normal distribution,
a goal has been to achieve an outside rate per observation roughly equal to .05.
The basic boxplot rule in Section 3.4.4 achieves this goal reasonably well (Hoaglin,
Iglewicz, & Tukey, 1986), but the outside rate per observation is a bit unstable as the
sample size increases from small to moderately large values. The method in Section
3.4.5 was developed to help correct this problem.

It seems that for most outlier detection methods aimed at multivariate data, little
or nothing is known about their outside rate per observation. Checks on this rate
when sampling from bivariate normal data indicate that the rate can be well above .05
when using the MVE method, and it is even higher when using MCD when variables
are correlated (cf. Fung, 1993). These methods are well known and now easy to apply,
but for some purposes an alternative strategy might be in order. This section outlines
one approach for which the outside rate per observation is roughly equal to .05. The
method reflects a blend of techniques that have been proposed, and it appears to
have practical value for a wide range of situations.

The method begins by computing the Donoho and Gasko (1992) estimate of the
median of the data (which can be done with the S-PLUS function dmean). The
computational details are too involved to give here, but an outline of the strategy
might help. For simplicity, attention is restricted to the bivariate case, but the method
can be extended to more than two variables. The Donoho–Gasko median is based
on something called halfspace depth, which is a method for measuring how deeply a
point is nested within a scatterplot of all the data. For any point in a scatterplot,
consider any line going through this point. As is evident, a certain proportion of the
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points in a scatterplot will be on or above this line, and a certain proportion will be
on or below it. For convenience, the smaller of these two proportions is labeled Pm.
Now, among the infinitely many lines going through some specific point there will
be a minimum Pm value; this is called the halfspace depth of the point. (For bivariate
data, halfspace depth can be computed exactly using the algorithm in Rousseeuw
& Ruts, 1996. For more than two variables, an approximation has been derived by
Rousseeuw & Struyf, 1998.) A high halfspace depth indicates that a point is deeply
nested within the cloud of data. The Donoho–Gasko median is the average of all
points having the largest depth. (For a single variable it reduces to the usual sample
median.) An alternative and much simpler approach when trying to find the center
of a scatterplot is to compute the median for each of the variables under study, but
there are theoretical concerns about this strategy that go well beyond the scope of
this book.

Before continuing, the notion of a projection of a point onto a line is needed.
Consider any line through a scatterplot of data. For convenience, call this line L.
Now consider any point in the scatterplot, say, (X, Y). If we draw a line through
this point that is perpendicular to the line L, it will intersect with L at some point,
say, (Xp, Yp). The point (Xp, Yp) is the (orthogonal) projection of (X, Y) onto the
line L.

Consider any point among the scatterplot of the data, and form the line connecting
this point with the Donoho–Gasko median. Then project all points onto this line. (For
computational details, see for example, Graybill, 1983, Section 4.4.) The distance
between the projected points can be used to check for outliers. One possibility is
simply to apply a boxplot rule, but a slight modification is needed to achieve an outside
rate per observation reasonably close to .05. In particular, use Equation (3.25) on the
distances of the projected points, but with k = 2.4 when dealing with bivariate data.
(For the general case of p-variate data, use k =√

χ2
.95,p.) Equation (3.26) is not used,

because only points with large distances are declared outliers. As in Section 3.4.5,
use the interquartile range based on the ideal fourths. The process just described is
repeated for every point in the scatterplot. That is, n projections are considered. Any
point is declared an outlier if it is found to be an outlier for any of the projections.
(Complete computational details can be found in Wilcox, 2002.)

13.1.10 S-PLUS Function outpro

The S-PLUS function

outpro(m, gval = NA, plotit = T, op=T)

checks for outliers using the projection method just described. Here m is assumed
to be a matrix having two or more columns. The argument gval is k and defaults to√

χ2
.95,p if not specified. If op=T is used with bivariate data and plotit=T, the function

creates a scatterplot of the data and draws a polygon containing the centrally located
points and ignoring the outliers. (This polygon is the .5 depth contour as described
by Liu, Parelius, & Singh, 1999. It encompasses approximately half of the data,
corresponding to the points having the highest halfspace depths.) Setting op=F,
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the function does not ignore the outliers when drawing the .5 depth contour. (An
illustration will be given in Figure 13.21.)

13.2 Some Robust Regression Methods

This section summarizes some robust regression estimators that appear to have con-
siderable practical value. All of the regression methods in this chapter can be used
when there are multiple ( p) predictors. However, explaining the basic strategy behind
some of these methods is easier if we first focus on the single predictor case. As in
Chapter 6, if there is a single predictor, it is assumed that

Yi = β0 + β1Xi + ε (13.6)

and X and ε are independent and that for p predictors the standard regression model
is that

Yi = β0 + βpXip + · · · + β1Xi1 + ε,

i = 1, . . . , n. Typically it is assumed that E(ε) = 0, but here it is assumed that ε has a
median of zero instead. The goal is to estimate the unknown slope and intercept (β1
and β0). With p predictors there are p + 1 parameters to be estimated: β0 , . . . , βp.

Although it is clear that the blind use of least squares regression is highly unsatis-
factory, all indications are that no single regression method is always optimal among
the many situations encountered in practice. That is, regression method A might
have substantial advantages relative to method B in some situations, but situations
arise where the reverse can happen as well. To complicate matters, several criteria
are used to compare different regression methods, making it difficult and seemingly
impossible to single out one method for routine use — several methods need to be
considered. So for the moment we merely describe some regression methods and
then try to convey their relative merits. At a minimum it is suggested that the meth-
ods in this section be given serious consideration, and it is recommended that several
of the estimators in Section 13.3 be considered as well.

Another important point is that not all regression estimators are covered in this
chapter. The omission of some methods was not arbitrary, but some experts might
argue passionately that additional methods should have been included in this chapter.
There might be merit to these arguments. Moreover, views about regression estima-
tors continue to evolve. Simultaneously, some would argue that too many estimators
are covered in this chapter and that providing such a seemingly bewildering array of
methods will only confuse individuals learning about modern techniques. Currently,
it seems that familiarity with multiple methods is a must. As will be illustrated, even
among the better robust estimators, different results can be obtained with different
methods, and choosing a method that provides relatively short confidence intervals
is a nontrivial task, as will become evident. During the exploratory phases of an inves-
tigation, it seems that several estimators should be considered. An educated guess
is that some of the estimators in this section can be ignored in most applications,
but there is no compelling evidence that this can be done safely, so the goal is to
cover a reasonable number of estimators in the hope that at least one of them will be
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valuable to the reader. Some authorities would argue that simply looking at a scatter-
plot enables us to tell which points are influential and that this should tell us which
estimator should be used. But some of the illustrations later in this chapter suggest
that dealing with regression is not always that simple.

In case it helps, a brief list of some of the estimators omitted from this chapter
is given here. Maronna and Morgenthaler (1986) discuss how one might approach
regression via robust covariances. A variation and extension of this method is dis-
cussed by Wilcox (1997a). This chapter describes two M-estimators, but certain
variations of this approach are not covered. In particular, GM-based estimators (with
Mallows weights) are not discussed. Recent results on this estimator are reported by
Bianco, Boente, and Rienzo (2000), but work reviewed by Wilcox (1997a) suggests
that it does not compete well with other estimators when there is heteroscedasticity.
Despite this, perhaps arguments can be made for using this estimator in applied work,
but this remains to be established. For a survey of results related to M-estimators,
see Maronna, Yohai, and Zamar (1993). Some methods approach heteroscedasticity
assuming that it can be modeled using some known function (e.g., Carroll & Ruppert,
1982; Giltinan, Carroll, & Ruppert, 1986). Such situations are not discussed here.
For methods that deal with heteroscedasticity by attempting to estimate the optimal
weights in weighted least squares, see Cohen, Dalal, and Tukey (1993) as well as
Wilcox (1996a). (Rank-based approaches are briefly discussed in Chapter 15.)

13.2.1 The Theil–Sen (TS) Estimator

As is evident, any two distinct points determine a line. A method proposed by Theil
(1950) and Sen (1968) estimates the slope of a regression line by computing the
slope for all pairs of points having distinct X values and then computing the median
of these slopes; the result will be labeled b1ts. More formally, let Xi and Xi′ be any two
X values such that Xi > Xi′ . The slope corresponding to the two points (Xi, Yi) and
(Xi′ , Yi′) is

b1ii′ = Yi − Yi′

Xi − Xi′
. (13.7)

Computing the slope for all pairs of points having Xi > Xi′ , the median of these slopes
is the Theil–Sen estimate of β1 and is labeled b1ts. The intercept is estimated with

b0ts = My − b1tsMx,

where My and Mx are the sample medians corresponding to the Y and X values,
respectively.

When there is one predictor, the finite-sample breakdown point of the Theil–Sen
estimator is approximately .29 (Dietz, 1989), meaning that about 29% of the data must
be altered to make the resulting estimate of the slope and intercept arbitrarily large
or small. A negative feature is that the finite-sample breakdown point has not been
established when there are two or more predictors, but it appears to decrease as p gets
large. An advantage is that its standard error can be tens, even hundreds, of times
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TABLE 13.1 Boscovich’s Data on Meridian Arcs

X: 0.0000 0.2987 0.4648 0.5762 0.8386

Y: 56,751 57,037 56,979 57,074 57,422

smaller than the ordinary least squares estimator when the error term is hetero-
scedastic. Even when the error term has a normal distribution but is heteroscedastic,
the Theil–Sen estimator can be substantially more accurate.

EXAMPLE. The computation of the Theil–Sen estimator is illustrated with
the data in Table 13.1, which were collected about 200 years ago and analyzed
by Roger Boscovich. The data deal with determining whether the earth bulges
at the center, as predicted by Newton, or whether it bulges at the poles as
suggested by Cassini. Here X is a transformed measure of latitude and Y is a
measure of arc length. (Newton’s prediction implied that β1/(3β0) ≈ 1/230.)
For the first two pairs of points, the estimated slope is

57,037 − 56,751
0.2987 − 0

= 1560.1.

Computing the slope for the remaining nine pairs of points and taking the
median yields 756.6. It is left as an exercise to verify that the intercept is
estimated to be 56,685. Interestingly, b1ts/(3b0ts) = 0.0044, which is fairly
close to Newton’s prediction: 1/230 = 0.0043. (Least squares gives a very
similar result.) ■

13.2.2 S-PLUS Function tsreg

The S-PLUS function

tsreg(x,y)

(written for this book) computes the Theil–Sen estimate of the slope and intercept.
Here, x can be any n-by-p matrix of predictors and y is any S-PLUS variable containing
the Y values. For the data in Table 13.1 this function returns

$coef:
[1] 56685.3235 756.6191

$residuals:
[1] 65.67654 125.67443 -58.00000 -47.28736 102.17580

where $residuals are the residuals given by ri = Yi − b1tsXi − b0ts.
It is noted that generalizations of the Theil–Sen estimator to multiple predictors

are available. One approach, which is used by the S-PLUS function tsreg, is based on
the so-called Gauss–Seidel algorithm, which is described in a general context by Hastie
and Tibshirani (1990), but no details are given here. Other extensions have been
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considered (e.g., Hussain & Sprent, 1983; Wilcox, 1998), but currently there is no
known reason for preferring them to the method used here.

13.2.3 M-Estimators

Section 3.2.8 introduced M-estimators of location, which stem from the realization
that different ways of measuring closeness lead to different measures of location. To
quickly review, if the goal is to choose a constant c that is close to all of the values
X1, . . . , Xn, and if we measure the overall closeness of c to these n values with

∑
(Xi − c)2,

the sum of all squared differences, then the value of c that minimizes this sum is
c = X̄, the sample mean. If we use

∑
|Xi − c|

to measure closeness, this leads to taking c to be the median. M-estimators of location
consider a broad class of measures that might be used to measure closeness, and
members of this class have been identified that have desirable properties. In particular,
if we use Huber’s � (described in Section 3.2.8), we get an estimator that has a
finite-sample breakdown point of .5, and the accuracy of the estimator (its standard
error) compares well to the sample mean in the event sampling is from a normal
distribution. But unlike the sample mean, this particular M-estimator can maintain
a relatively small standard error when sampling is from a heavy-tailed distribution
instead, where outliers are fairly common.

The basic idea behind M-estimators of location is readily extended to regression.
Rather than measure the fit of a regression line with the sum of squared residuals,
M-estimators are based on a broad class of functions that includes least squares as a
special case. This approach leads to choosing the slope and intercept to be the values
satisfying

∑
�
( ri
τ̂

)
= 0, (13.8)

where � is some function to be determined, r1, . . . ,rn are the residuals corresponding
to some choice for the slope and intercept, and τ̂ is some measure of scale based on
the residuals. [Equation (13.8) is a generalization of Equation (3.11).]

In the context of regression, many M-estimators (choices for �) have been pro-
posed and studied. Several have excellent theoretical properties, but no attempt is
made to list all of these methods here. (Readers interested in more details are referred
to Coakley & Hettmansperger, 1993; Staudte & Sheather, 1990; Rousseeuw & Leroy,
1987; Wilcox, 1997a.) Rather, two methods are described in Box 13.2. The first is
based on Huber’s � in conjunction with what are called Schweppe weights. Roughly, the
strategy is to look for outliers among the X values (using the hi values given in Box
13.2) and to make adjustments if any outliers are found. The method also makes an
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adjustment if any unusually large residuals are found. The second method described
in Box 13.2 was derived by Coakley and Hettmansperger (1993).

BOX 13.2 Two Regression M-Estimators

The first method begins by setting k = 0 and

hi = 1
n

+ (Xi − X̄)2∑
(Xi − X̄)2 .

Compute the least squares estimate of the intercept and slope as described
in Chapter 6. Denote them by b0k and b1k, respectively. Proceed as follows:

1. Compute the residuals, ri,k = yi − b0k − b1kXi1, let Mk be equal to
the median of the largest n − 1 of the |ri,k|, τ̂k = 1.48Mk, and let
ei,k = ri,k/τ̂k.

2. Form weights,

wik =
√

1 − hi

eik
�

(
eik√

1 − hi

)
,

where

�(x) = max[−K, min(K, x)]
is Huber’s � with K = 2

√
2/n.

3. Use the wik values to obtain a weighted least squares estimate of the
slope and intercept. That is, find the values b0,k+1 and b1,k+1 that
minimize ∑

wikr
2
i .

(S-PLUS and other software have built-in functions for computing
weighted least squares estimates of the slope and intercept.) Increase
k by 1.

4. Repeat steps 1–3 until convergence. That is, iterate until the change
in the estimates of the slope and intercept are small.

The second estimator, called the Coakley–Hettmansperger estimator, is described
for the general case of p predictors. Begin by computing the LTS estimator
in Section 13.3.7, a vector having length p + 1. Compute the residuals,
ri (i = 1, . . . ,n), and let

τ̂ = 1.4826
(

1 + 5
n − p

)
× med{|ri|}

and

wi = min

{
1,
[

b
(xi − mx)′C−1(xi − mx)

]a/2
}

,
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BOX 13.2 (Continued )
where the quantities mx and C are the minimum volume ellipsoid (MVE)
estimators of location and covariance associated with the predictors. (The
notation med{|ri|} refers to the median of the values |r1|, . . . ,|rn|.) Let
� ′(ri/τ̂wi) = 1 if |ri/τ̂wi| ≤ K; otherwise � ′(ri/τ̂wi) = 0. Coakley
and Hettmansperger suggest using K = 1.345. Let W = diag(wi) and
B = diag(� ′(ri/τ̂wi)). The Coakley–Hettmansperger estimator is

bch = blts + (X′BX)−1X′W�

(
ri

wiτ̂

)
τ̂ .

A serious criticism of the first M-estimator in Box 13.2 is that the finite-sample
breakdown point is only 2/n. That is, it can handle one outlier, but two might cause
practical problems. One way of addressing this concern is to switch to the Coakley–
Hettmansperger estimator. It begins by computing the LTS estimate of the slope and
intercept as described in Section 13.3.7. Then it forms weights based on how deeply
each Xi is nested within all of the X values. It then uses these weights, in conjunction
with Huber’s �, to adjust the initial estimate of the slope and intercept. The result is
an estimator with the highest possible breakdown point of .5. It can be substantially
more accurate than the first method outlined in Box 13.2, and it enjoys excellent the-
oretical properties. For the special case of a single predictor, often it seems that some
other estimator is a bit more satisfactory, but it remains one of the many estimators
that should be given serious consideration. A possible argument for the Coakley–
Hettmansperger estimator is that software is available that has relatively fast execution
time, even when the sample size is fairly large and there are multiple predictors.

13.2.4 S-PLUS Functions bmrg and chreg

The S-PLUS functions

bmreg(x,y) and chreg(x,y)

compute the two M-estimators just described. The function bmreg performs the
calculations for the first method in Box 13.2; chreg computes the Coakley–
Hettmansperger estimator.

13.2.5 MGV and MGVF Regression

The so-called MGV regression estimator first checks for outliers using Equation (13.5). If
any outliers are found, they are discarded, and the Theil–Sen estimator is applied to
the data that remain. (So this approach is similar in spirit to the class of skipped esti-
mators mentioned in Section 3.5.2.) All indications are that this does a relatively good
job of eliminating any points that cause contamination bias when using Theil–Sen,
where, roughly, contamination bias refers to the ability of a very small number of unusual
values to result in a poor fit to the bulk of the observations. (More details are given
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in Section 13.4.) If instead you apply the least squares estimator after eliminating
outliers, the accuracy of your estimate can be relatively poor, particularly when there
is heteroscedasticity. That is, it might seem that least squares might be salvaged by
first eliminating outliers; but based on the standard error of this method, it cannot be
recommended (Wilcox, 2001b). Of course, some alternative to both Theil–Sen and
least squares might be used after outliers are removed, but so far Theil–Sen seems to
be a very effective choice.

As will be illustrated, the MGV estimator appears to have practical value when
dealing with contamination bias, and it seems to compete reasonably well in terms
of achieving a relatively small standard error. But a practical concern is that as the
sample size increases, execution time can become unacceptably high when using
the software written for this book, particularly when computing confidence intervals
using the bootstrap method in Section 13.5. An alternative approach is to replace the
MGV outlier detection method with the inward method described in Section 13.1.7.
That is, discard any outliers found by the method in Section 13.1.7 and again apply
Theil–Sen to the data that remain. This will be called the MGVF regression estimator.

13.2.6 S-PLUS Functions mgvreg and mgvfreg

The S-PLUS function

mgvreg(x,y,regfun=tsreg,outfun=outbox)

computes the MGV estimate of the slope and intercept as just described. The argu-
ment regfun indicates which estimator is applied after outliers are removed and
defaults to Theil–Sen. The argument outfun indicates which boxplot rule will be
applied to the depths of the points (the D values described in Section 13.1.5). By
default, a boxplot rule is used. The function

mgvfreg(x,y,regfun=tsreg,outfun=outbox)

is like mgvreg, except that the inward outlier detection method (described in Section
13.1.7) is used instead.

13.3 More Regression Estimators

When there is a single predictor, it seems that often the Theil–Sen estimator is a good
choice, but there are indications that with multiple predictors it might not compete
well with other methods. (This issue is in need of more study.) Generally, the methods
in the previous section seem to provide reasonably good alternatives to least squares,
but currently the only certainty is that exceptions can occur. Accordingly, some
additional estimators are described here that might prove to be useful.

13.3.1 S-Estimators and a Modification of Theil–Sen

S-estimators of regression parameters search for the slope and intercept values that
minimize some measure of scale associated with the residuals. Least squares,
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for example, minimizes the variance of the residuals and is a special case of
S-estimators. The hope is that by replacing the variance with some measure of scale
that is relatively insensitive to outliers, we will obtain estimates of the slope and
intercept that are relatively insensitive to outliers as well. As noted in Chapter 3,
there are many measures of scale. The main point is that if, for example, we
use the percentage bend midvariance (described in Section 3.3.7), situations arise
where the resulting estimate of the slope and intercept has advantages over other
regression estimators we might use. This is not to say that other measures of scale
never provide a more satisfactory estimate of the regression parameters. But for
general use, it currently seems that the percentage bend midvariance is a good
choice.

Here a simple approximation of the S-estimator is used. (There are other ways
of computing S-estimators, e.g., Croux, Rousseeuw, & Hössjer, 1994; Ferretti et al.,
1999. Perhaps they have practical advantages, but it seems that this possibility has
not been explored.) As with the Theil–Sen estimator, consider any two points such
that Xi < Xi′ and again let b1ii′ be the corresponding slope given by Equation (13.7).
For convenience we let K represent the total number of slopes that can be computed
in this manner. In the event all n of the X values are distinct, there are a total of
K = n(n − 1)/2 such slopes. Next, let

vj = Yj − b1ii′Xj,

j = 1, . . . , n. That is, for each of the n points and the slope corresponding to Xi and
Xi′ (b1ii′), compute the difference between Yj and b1ii′Xj, ( j = 1, . . . , n) and label the
results v1, . . . ,vn. Let Sii′ be some measure of scale based on the v values just computed,
repeat this process for all K slopes, and let Smin be the smallest of the corresponding
Sii′ values. The final estimate of the slope is the value of b1ii′ corresponding to Smin,
which we label b1. The intercept is taken to be

b0 = My − b1Mx,

where Mx and My are the medians of the X and Y values, respectively. This will be
called method STS. (As with the Theil–Sen estimator, the Gauss–Seidel method is used
to handle multiple predictors.)

13.3.2 S-PLUS Function stsreg

The S-PLUS function

stsreg(x,y,sc=pbvar,…)

computes the STS estimator (the S-type modification of the Theil–Sen estimator)
just described. The arguments x and y are used as described in Section 13.2.2. The
argument sc indicates which measure of scale will be applied to the residuals and
defaults to the percentage bend midvariance. The argument . . . can be replaced by
arguments related to the chosen measure of scale, sc.
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EXAMPLE. For the data in Table 13.1, the S-PLUS function stsreg returns
b1 = 490.5 and b0 = 56,809. In contrast, the Theil–Sen estimate of the slope
is 756.6, the only point being that these two methods can give substantially
different results. ■

13.3.3 An Extension of S-Type Estimators

An appeal of the STS estimator in Section 13.2.3 is that it can provide a reasonable
fit to the majority of the points in situations where many other estimators provide a
poor fit instead. There are exceptions, but there are situations where it has practical
value. However, even when this estimator gives a reasonably good fit to the majority
of points, it can provide a relatively poor estimate of the true slope when the error
term is heteroscedastic. That is, its standard error can be relatively high compared
to other estimators that might be used.

One approach toward this problem is to use the STS estimator in Section 13.2.3
as a preliminary fit to data, with the goal of detecting points with unusually large
residuals. Such points can result in a poor fit to the bulk of the observations and a
highly inaccurate estimate of the true slope (the slope we would get if all individuals
could be measured). So one strategy is first to check for points that have unusually
large residuals, called regression outliers, to remove them, and then to fit a line to the
data that remain. (For an extensive comparison of methods for detecting regression
outliers when there is homoscedasticity, see Wisnowski, Montgomery, & Simpson,
2001.) One specific strategy for fitting a line to data after outliers are removed is simply
to use the least squares estimator covered in Chapter 6. But this approach can perform
poorly when the error term is heteroscedastic and should be used with caution. The
Theil–Sen estimator performs relatively well when there is heteroscedasticity, little
accuracy is lost, versus least squares, in the event that the error term is homoscedastic,
so here the Theil–Sen estimator is used to fit a line to data once regression outliers
are removed.

The specific method used to detect regression outliers is applied as follows. First,
fit a line to the data using the S-type modification of the Theil–Sen estimator (the
STS estimator) described in Section 13.3.1. Let b1 and b0 be the resulting estimates
of the slope and intercept and let

ri = Yi − b1X1 − b0,

(i = 1, . . . ,n) be the usual residuals. Let Mr be the median of the residuals and let
MADr be the median of the values |r1 − Mr|, . . . ,|rn − Mr|. Then the ith point (Xi, Yi)
is declared a regression outlier if

|ri − Mr| >
2(MADr).

.6745
. (13.9)

The final estimate of the slope and intercept is obtained by applying the Theil–
Sen estimator to those points not declared regression outliers. When there are
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p predictors, again compute the residuals based on STS and use Equation (13.9)
to eliminate any points with large residuals. This will be called method TSTS.

13.3.4 S-PLUS Function tstsreg

The estimator just described is computed by the S-PLUS function

tstsreg(x,y,sc=pbvar,…),

which was written for this book. The argument sc indicates which measure of scale
will be used when method STS is employed to detect regression outliers, and the
default measure of scale is the percentage bend midvariance.

13.3.5 Least Median of Squares (LMS) Estimator

For the general case of p predictors, the least median of squares (LMS) estimator simply
chooses the values b0, b1, . . . , bp so as to minimize the median of the squared residuals.
That is, choose b0, b1, . . . , bp so as to minimize

MED
(
r21 , . . . , r2n

)
,

the median of the values r21 , . . . , r2n , where

ri = Yi − b0 − bpXip . . . , b1Xi1,

(i = 1, . . . , n) are the residuals.
The LMS estimator has the highest possible breakdown point, .5. Its main use has

been as an exploratory tool, such as when trying to detect regression outliers. Its
standard error generally compares poorly to many other estimators, and it can give a
poor fit to the majority of points, so this method should be used cautiously. However,
despite its many shortcomings, situations do arise where in the preliminary stages of
analysis it gives a reasonable fit to data when many other methods do not.

13.3.6 S-PLUS Function lmsreg

The LMS (least median of squares) estimator can be computed with the built-in
S-PLUS function

lmsreg(x,y).

13.3.7 Least Trimmed Squares (LTS) Estimator

Rather than minimize the sum of the squared residuals or the median of the squared
residuals, another approach is to minimize the sum of the trimmed squared residuals
instead. That is, now the slope and intercept are taken to be the values that minimize

h∑
i=1

r2(i), (13.10)
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where r2(1) ≤ r2(2) ≤ . . . ≤ r2(n) are the squared residuals written in ascending order.
This is called the least trimmed squares (LTS) estimator. Typically, h = [n/2] + 1 is used
to achieve the highest possible breakdown point, which is approximately .5. (The
notation [n/2] means that n/2 is rounded down to the nearest integer.)

Consideration has been given to increasing the efficiency of the LTS estimator
by lowering its breakdown point. That is, investigations have been conducted to see
whether increasing h in the previous paragraph results in situations where the standard
error of the LTS estimator competes more favorably with other estimators that might
be used. In particular, consideration has been given to using h = [(1 − γ )n] with
γ = .2 and .25 (Wilcox, 2001b). Generally, LTS has a smaller standard error than
least squares when the error term is sufficiently heteroscedastic and h = [n/2] + 1
is used. Switching to γ = .2 or .25 does not appear to improve its performance
appreciably, so this variation of the LTS estimator is not considered henceforth.

13.3.8 S-PLUS Function ltsreg

The built-in S-PLUS function

ltsreg(x,y)

computes theLTS (least trimmed squares) estimator just describedwith h = [n/2] + 1,
the highest amount of trimming.

13.3.9 Least Trimmed Absolute (LTA) Value Estimator

A close variation of the LTS estimator is the least trimmed absolute (LTA) value
estimator. Rather than choose the intercept and slope so as to minimize Equation
(13.10), the goal is to minimize

h∑
i=1

|r|(i), (13.11)

where |r|(i) is the ith smallest absolute residual and h is as defined as in Section 13.3.7.
(For recent results on the LTA estimator, see Hawkins & Olive, 1999.) Like LTS,
the LTA estimator can have a much smaller standard error than the least squares
estimator, but its improvement over the LTS estimator seems to be marginal at best,
at least based on what is currently known. (For some comparisons of LTA and LTS,
see Wilcox, 2001b.)

13.3.10 S-PLUS Function ltareg

The S-PLUS function

ltareg(x,y)

computes the LTA estimate of the slope and intercept.
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13.3.11 Deepest Regression Line

The outlier detection methods covered in Section 13.1 are based in part on measur-
ing how deeply a point is embedded in a scatterplot. Today there are comparable
(numerical) methods for measuring how deeply a line is embedded in a scatterplot.
This leads to yet another method of fitting a line to data: Search for the line that
is most deeply nested within a cloud of points. Rousseeuw and Hubert (1999) have
examined how this might be done and provided an algorithm for implementing the
technique. Box 13.3 provides a brief outline of how this approach is applied, but
complete details go well beyond the scope of this book. A negative feature is that
the software provided with this book allows one predictor only.

BOX 13.3 A Brief Outline of the Deepest Regression Line Estimator

Let b1 and b0 be any choice for the slope and intercept, respectively, and let
ri (i = 1, . . . , n) be the corresponding residuals. Roughly, this candidate fit
is called a nonfit if you can find some partition or splitting of the X values
such that all of the residuals for the lower X values are negative (positive) but
that for all of the higher X values the residuals are positive (negative). So, for
example, if all of the points lie above a particular straight line, in which case
all of the residuals are positive, this line is called a nonfit. More formally, a
candidate fit is called a nonfit if and only if a value for v can be found such
that

ri < 0 for all Xi < v

and

ri > 0 for all Xi > v

or

ri > 0 for all Xi < v

and

ri < 0 for all Xi > v.

The regression depth of a fit (b1, b0) relative to (X1, Y1), . . . ,(Xn, Yn) is the
smallest number of observations that need to be removed to make (b1, b0) a
nonfit. The deepest regression estimator corresponds to the values of b1 and
b0 that maximize regression depth.

13.3.12 S-PLUS Function depreg

The S-PLUS function

depreg(x,y)
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computes the deepest regression line. A negative feature of this function is that exe-
cution time can be relatively high compared to many other estimators you might use.

13.4 Comments on Choosing a Regression Estimator

Again it is stressed that no single regression estimator is optimal in all situations.
However, this does not mean that choosing an estimator is an academic matter. The
standard least squares estimator covered in Chapter 6 is satisfactory when variables
are independent. But when there is an association, different methods can lead to
drastically different conclusions, and the routine use of least squares, to the exclusion
of all other estimators that might be used, can be disastrous. Although authorities are
not in agreement as to which method is best, familiarity with their relative merits might
help the reader choose a method. For some purposes, particularly in the exploratory
phases of an investigation, multiple methods might be considered. However, when
testing hypotheses, there is the problem of controlling the probability of a Type I error.
If multiple tests are performed using different regression estimators, the familywise
error rate can be controlled along the lines covered in Chapter 12. A simple strategy
would be to use the Bonferroni method in Section 12.8.1; or a sequentially rejective
method might be used as described in Section 12.8.2. However, a consequence of
such adjustments is lower power versus testing a single hypothesis.

Given the goal of finding a straight line that gives a good fit to the bulk of the points,
a minimum requirement is that an estimator have a reasonably high finite-sample
breakdown point. This eliminates least squares plus the first of the two M-estimators
covered in Section 13.2.3. However, having a high finite-sample breakdown point
is not sufficient to guarantee a good fit to the majority of points. That is, some
estimators can be highly influenced by a few unusual points even though they have a
high breakdown point. Said yet another way, some estimators guard against complete
disaster, meaning that a few unusual values cannot result in estimates that are arbitrarily
large (or small). But some of these estimators might poorly reflect the association
among the vast majority of the data, depending on where the outliers are located. So
as a general rule, regardless of which estimator is used, it seems prudent always to
graphically check how well a line fits the data.

EXAMPLE. For the data in Figure 13.2, the least squares estimate of the slope
is −0.02. In contrast, both TS and LTA estimate the slope to be −0.28, the
MGV estimate is −0.69, and the STS estimate is −0.8, the only point being
that the choice of an estimator can make a practical difference. In this particular
case, LTS and the Coakley–Hettmansperger estimate give results similar to least
squares. As was indicated in Section 13.1.2 (see Figure 13.3), the rightmost six
points are outliers. If we eliminate these outliers by restricting the range of X
to values less than 100, the least squares estimate is now −0.48, with a signifi-
cance level less than .001, and the Coakley–Hettmansperger estimate is −0.64.

Continued
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EXAMPLE. (Continued ) However, simply restricting the range of the X values
does not necessarily deal with problems due to heteroscedasticity and outliers
among the Y values. (Restricting the range of the Y values and applying stan-
dard hypothesis-testing methods results in using the wrong standard error.)
Even without restricting the range, the MGV and STS estimates suggest that
the association might be more negative for the bulk of the observations than
indicated by least squares when the range of X is restricted. ■

Next it is illustrated that although robust estimators can be substantially more
accurate than least squares, situations do arise where some robust estimators are
greatly influenced by a few outliers, despite having a high breakdown point. That is,
it can make a difference which robust method is used, and switching to some robust
method does not necessarily eliminate the need to check the fit to data graphically.

EXAMPLE. Twenty points were generated as in Figure 13.4, so the true slope
is 1. Then two aberrant points were added to the data at (X, Y) = (2.1, −2.4).
Figure 13.14 shows a scatterplot of the points plus the LTS regression line, which
has an estimated slope of −0.94. So in this case, LTS is a complete disaster in
terms of detecting how the majority of the points were generated. The least
squares estimate is −0.63. The Coakley–Hettmansperger estimator relies on
LTS as an initial estimate of the slope, and despite its high breakdown point the
estimate of the slope is −0.65. In contrast, the MGV estimate of the slope is
.97, nearly equal to the true slope, 1. The deepest regression line estimate is .66,
and the STS estimate performs poorly in this particular case, the estimate being
−0.98. The LMS estimate of the slope is 1.7, so it performs poorly as well in this
particular instance. Again, this is not to suggest that LMS, LTS, STS, and the
Coakley–Hettmansperger estimators be excluded from consideration. Rather,
the point is that despite the robust properties they enjoy, they can perform
poorly in some situations where other methods do well. Also, although MGV
does very well here, this is not to suggest that it be used to the exclusion of all
other methods. ■

In Figure 13.14, it is evident that the rightmost point is an outlier, and eliminating
it by restricting the range of the X values improves matters considerably for the
estimators that performed poorly in this particular case. But it cannot be stressed too
strongly that there is more to robust regression than simply restricting the range of
the X values, as will be illustrated.

To add perspective, the process used to generate the data in Figure 13.14
was repeated 500 times, and estimates of the slope were computed using least
squares, the M-estimator with Schweppe weights (estimator bmreg), the Coakley–
Hettmansperger estimator (chreg), the Theil–Sen estimator (tsreg), and the deepest
regression line. Boxplots of the results are shown in Figure 13.15. Notice that the
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FIGURE 13.14 Twenty points where the true slope is 1, plus two outliers. The solid line
is the LTS regression line, which performs poorly in this particular case.
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FIGURE 13.15 Boxplots of the estimated slope using (from left to right) least squares,
M-estimator (with Schweppe weights), the Coakley–Hettmansperger estimate, Theil–
Sen, and the deepest regression line. The true slope is 1, but all five estimators are
influenced by two outliers.

medians of all these estimators differ from 1, the value being estimated. This illus-
trates that these estimators can be sensitive to a type of contamination bias. That is,
despite having a reasonably high finite-sample breakdown point, it is possible for a
few unusual points to result in a poor fit to the bulk of the observations. So these
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FIGURE 13.16 As in Figure 13.15, the only estimators used here are LTS with
a breakdown point of .5, LTS with a breakdown point of .2, TSTS, and MGV. All four
estimators have a median value approximately equal to the true slope, despite the outliers.

estimators can provide substantial advantages versus least squares, but they do not
eliminate all practical concerns.

Figure 13.16 shows the results when using LTS with a breakdown point of .5,
LTS with a breakdown point of .2, TSTS, and the MGV estimator in Section 13.2.5.
(The LTA estimator gives results similar to LTS.) In contrast to the estimators in
Figure 13.15, the median of all the estimators is approximately 1. So in this particular
situation, these estimators do a better job of avoiding contamination bias. Note that
there is considerably more variation among the LTS estimates based on a breakdown
point of .5. This illustrates that under normality, this estimator is substantially less
accurate than the others, at least on average. Again, this is not to suggest that LTS
has no practical value.

There is some evidence that the STS estimator generally gives a better fit to the
majority of points versus LTS and LMS. In particular, it seems common to encounter
situations where STS is less affected by a few aberrant points. However, excep-
tions occur, as is illustrated next, so again it seems that multiple methods should be
considered.

EXAMPLE. Figure 13.17 shows 20 points that were generated in the same
manner as in Figure 13.14. So the two aberrant points located at (X, Y) =
(2.1, −2.4) are positioned relatively far from the true regression line, which
again has a slope of 1 and an intercept of zero. Also shown in Figure 13.17
are the STS, LMS, and MGV estimates of the regression line. In this particular
case, STS performs poorly; the estimated slope is −.23. The estimated slope

Continued
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FIGURE 13.17 Illustration that some robust estimators can give substantially different
results from others, depending on where the outliers happen to be.

EXAMPLE. (Continued ) and intercept based on the MGV estimator are 0.96
and −0.03, respectively, which are closer to the true values than are the other
estimates considered here. The estimated slope based on the TSTS estimator
is .58, and least squares returns an estimate of .4. So once again we see that
the choice of which robust estimator to use can make a substantial difference
in how the association between X and Y is summarized. ■

To provide more perspective about the relative merits of various robust estimators,
some comparisons are made of their small-sample accuracy versus the least squares
estimator, including situations where there is heteroscedasticity. This is done in terms
of the standard error of the least squares estimate of the slope divided by the standard
error of some competing estimator. So if, for example, this ratio is less than 1, least
squares tends to be more accurate. A ratio of .5, for instance, means that least squares
has a standard error that is only half as large, and a ratio of 3 indicates that it is three
times as large instead. Here it is assumed that Y = X + λ(X)ε, where the function
λ(X) reflects heteroscedasticity. Setting λ(X) = 1 corresponds to the homoscedastic
case. Table 13.2 shows estimates of these ratios for the estimators TS, MGVF, MGV,
the deepest regression line estimator (T∗), and TSTS, where VP 1 corresponds to
λ(X) = 1, VP 2 is where λ(X) = X2, and VP 3 is

λ(X) =
(

1 + 2
(|X| + 1)

)
ε.1

1 The estimated ratios of the standard errors in Table 13.2 are based on simulations with 5000 replications.
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TABLE 13.2 Estimated Ratios of Standard Errors, X Distribution Symmetric, n = 20

X ε VP TS MGVF MGV T∗ TSTS

N N 1 0.91 0.91 0.91 0.76 0.88

2 2.64 2.64 2.62 3.11 2.36

3 202.22 201.18 196.31 187.89 135.70

N SH 1 4.28 4.28 4.27 4.42 3.51

2 10.67 10.66 10.94 11.03 8.66

3 220.81 220.29 214.31 228.59 121.35

N AL 1 1.13 1.13 1.13 0.92 1.05

2 3.21 3.21 3.21 3.69 2.84

3 183.74 182.69 177.53 146.89 106.70

N AH 1 8.89 8.84 8.85 16.41 7.05

2 26.66 26.59 27.07 25.81 20.89

3 210.37 209.85 204.25 182.20 103.04

SH N 1 0.81 0.80 0.72 0.61 0.76

2 40.57 40.55 42.30 55.47 27.91

3 41.70 40.54 34.44 40.08 22.57

SH SH 1 3.09 3.08 2.78 2.88 2.41

2 78.43 78.41 83.56 90.84 47.64

3 38.70 38.03 31.93 45.29 17.80

SH AL 1 0.99 0.98 0.87 0.73 0.90

2 46.77 46.74 49.18 63.60 31.46

3 39.32 38.68 32.70 31.70 19.76

SH AH 1 6.34 6.31 5.64 6.75 4.62

2 138.53 138.49 146.76 108.86 78.35

3 43.63 43.22 37.34 39.38 18.40

N = normal; SH = symmetric, heavy-tailed; AL = asymmetric, light-tailed; AH = asymmetric, heavy-tailed.

So for VP 2, the error term has more variance, corresponding to extreme X values,
and VP 3 is a situation where the error term has more variance when the value of
X is near its median. The results are limited to situations where the distribution
for X is symmetric; but very similar results are obtained when X has an asymmetric
distribution instead. In Table 13.2, the distributions for ε are taken to be normal (N),
symmetric and heavy-tailed (SH), asymmetric and relatively light-tailed (AL), and
asymmetric and relatively heavy-tailed (AH). (For precise information about these
four distributions, see Wilcox, 2001b.)

The results in Table 13.2 can be roughly summarized as follows. If the error term
is homoscedastic and simultaneously has a light-tailed distribution, the ordinary least
squares estimator covered in Chapter 6 competes well against the alternative estima-
tors considered here. However, as the distribution of the error term becomes more
heavy-tailed (meaning outliers become more common), the least squares estimator
becomes unsatisfactory. Moreover, if the error term is sufficiently heavy-tailed, the
least squares estimator is disastrous, even when there is homoscedasticity. In fact,
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even when the error term is normal but heteroscedastic, the least squares estimator
can be highly unsatisfactory. Note that for VP 3, situations arise where the least
squares estimator has a standard error more than 100 times larger than competing
estimators.

Said another way, if two variables are independent, then power is not an issue when
testing the hypothesis that the slope is zero (because the null hypothesis is true).
However, if the variables are dependent, then the results in Table 13.2 suggest that
the choice of estimator can make a substantial difference in terms of the likelihood
of detecting a true association.

For the situations in Table 13.2, the MGV and MGVF estimators do not seem to
have a striking advantage over the other robust estimators considered. It is stressed,
however, that while several estimators compete well with least squares, it seems
to be easy to find fault with any estimator that has been proposed. For example,
the execution time required for MGV and MGVF increases substantially as the
sample gets large, which makes them impractical for many situations based on the
software and computer hardware currently available. Also, MGVF tends to have faster
execution time than MGV, so the results in Table 13.2 might seem to suggest using
MGVF over MGV. However, situations can be constructed where MGV gives a good
fit to the bulk of the points when all of the other estimators give a unsatisfactory fit
instead. Again, it seems that no single estimator is always ideal.

It is noted that the M-estimators in Section 13.2.3 also offer an advantage over
least squares when there is heteroscedasticity. If there is reasonable certainty that the
Coakley–Hettmansperger estimator is not being affected by contamination bias, it is
a possible option and is fairly fast in terms of execution time.

So which estimator should be used? A rough strategy might be as follows. First plot
the points and then plot the estimated regression line using several of the estimators
considered in this book. (The S-PLUS command

abline(mgvreg(x,y)$coef ),

for example, will plot the line corresponding to the MGV estimator.) The goal at this
point is merely to make sure that a reasonable fit to the data is obtained. (At this stage,
it is strongly recommended that a smooth of the data, described in Section 14.1,
be checked as well.) In some cases, simply restricting the range of the X values
might improve the fit and provide relatively short confidence intervals for the slope
and intercept. If several estimators appear to give an adequate fit, then one strat-
egy is to choose the estimator that will have relatively high power and relatively
short confidence intervals, assuming of course that probability coverage will be ade-
quate. The results in Table 13.2 illustrate that the choice of estimator might make
a practical difference, and it will be illustrated that in applied work this is indeed
the case. Although no single estimator is optimal in all situations, there seems to
be general agreement on the worst possible strategy: Apply standard least squares
regression and assume all is well. At a minimum, use an estimator with a reasonably
high breakdown point. Also, it is strongly recommended that an estimator perform
reasonably well (in terms of achieving a relatively low standard error) when there is
heteroscedasticity.
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13.5 Hypothesis Testing and Confidence Intervals

Confidence intervals for the slope and intercept can be computed with a percentile
bootstrap method with bootstrap samples generated as described in Section 7.3.
When there is one predictor, if we observe (X1, Y1), . . . , (Xn, Yn), a bootstrap sample
is obtained by resampling with replacement n pairs of these points, with each pair of
points having probability 1/n of being resampled. The resulting bootstrap sample will
be labeled (X∗

1 , Y∗
1 ), . . . , (X∗

n , Y∗
n ). When there are p predictors, resample n vectors of

observations from

(X11 , . . . , X1p ,Y1) , . . . , (Xn1 , . . . , Xnp, Yn).

Next, compute the slope and intercept based on one of the robust estimators in this
chapter, applied to the bootstrap sample just obtained, and repeat this process B times.
If we label the resulting estimates of the slope as b∗11 , . . . , b∗1B, then an approximate
1−α confidence interval for the slope is given by the middle 95% of these bootstrap
estimates: (

b∗1(�+1), b
∗
1(u)

)
,

where � = αB/2, rounded to the nearest integer, and u = B − �. If p̂∗ is the
proportion of bootstrap estimates greater than zero, the significance level (when
testing H0 : β1 = 0) is

2 min
(

p̂∗, 1 − p̂∗
)

.

A confidence interval and significance level for the intercept, and the other slope
coefficients when p > 1, can be computed in the same manner.

13.5.1 S-PLUS Function regci

The S-PLUS function

regci(x,y,regfun=tsreg,nboot=599,alpha=.05)

computes percentile bootstrap confidence intervals using the method just described.
As indicated, the default regression estimator is tsreg (the Theil–Sen estimator). This
default estimator was chosen based on its ability to improve substantially upon the
least squares estimator and because its execution time is fairly fast. But it is stressed
that situations arise where some other estimator might offer a better fit to the majority
of the data and yield substantially shorter confidence intervals.

EXAMPLE. The diabetes data in Exercise 15 of Chapter 6 serve to illus-
trate the output from regci when the least trimmed squares estimator is used.
Assuming the data are stored in the S-PLUS variables x and y, the command
regci(x,y,regfun=ltsreg) returns

Continued
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EXAMPLE. (Continued )

$regci:
[,1] [,2]

[1,] 1.22786964 1.64758295
[2,] -0.00727429 0.03702609

$sig.level:
[1] 0.0000000 0.1866667

$se:
[1] 0.11215894 0.01120903

So the .95 confidence interval for the intercept is (1.23, 1.65) with a significance
level of 0.0, and the confidence interval for the slope is (−0.007, .04) with a
significance level of 0.187. The estimated standard errors for the intercept and
slope are 0.11 and 0.011, respectively. ■

EXAMPLE. Sometimes restricting the rangeof X values eliminates outliers that
mask an association or create contamination bias, but exceptions are encoun-
tered. Consider again the diabetes data. One goal was to understand how age
is related to C-peptide concentrations, and here we focus on children under
the age of seven (for reasons motivated by results covered in Chapter 14). The
MGV and MVE outlier detection methods in Sections 13.1.5 and 13.1.3 find
one outlier. However, to eliminate it by restricting the range of the X values
would entail eliminating points that are not flagged as outliers. (The MCD out-
lier detection method finds an additional outlier, but to eliminate both outliers
by restricting the range of X values would again entail eliminating points that
are not flagged as outliers.) If we simply apply the S-PLUS function regci using
the default Theil–Sen estimator, the .95 confidence interval is (0.0, .11), with a
significance level of .023. So with α = .05 we reject the hypothesis of a zero
slope. Using the Coakley–Hettmansperger estimator, the significance level is
.063, so now we fail to reject. As for the S-estimator in Section 13.3.1, the
significance level is .07. Using least squares in conjunction with the method in
Chapter 7, the .95 confidence interval is (−0.001, .106), so we fail to reject,
although we come close when testing at the .05 level. With the MGV estimator,
the .95 confidence interval is (.004, .14) with a significance level of .013, about
half the significance level based on Theil–Sen, which merely illustrates that the
choice of method can make a practical difference. ■

EXAMPLE. Figure 6.3 shows some star data where the least squares regression
line provides a poor fit to the bulk of the observations. It was noted that if we

Continued
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EXAMPLE. (Continued ) eliminate the five points having the smallest X values
(values less than 4), which are flagged as outliers among the X values using
the boxplot methods in Chapter 3, a much better fit to the data is obtained.
If we compute a .95 confidence interval for the slope using least squares and
the percentile bootstrap method in Section 7.3, we get (1.85, 3.95). Using the
Theil–Sen estimator (tsreg) or the MGVFREG estimator, the .95 confidence
interval based on the S-PLUS function regci is (2.11, 4.00). So in this particular
case we get a slightly longer confidence interval using least squares. The least
squares estimate of the slope is 2.93. The Theil–Sen estimate, as well as the
estimate returned by MGVFREG, is 3.07, and MGVREG estimates the slope
to be 3.22. However, if we use the outlier detection rule in Section 3.4.2 (based
on MAD and M), an additional outlier among the X values is found: 4.01. If we
restrict X to those values greater than 4.01, the least squares estimate of the
slope increases slightly to 2.98 and Theil–Sen increases to 3.22, the same value
returned by MGVREG. ■

EXAMPLE. Here is another illustration that restricting the range of the X
values can decrease the strength of an association. Fifty values for the error
term (ε) were generated on a computer from a standard normal distribution,
the same was done for X, and Y = .35X + ε was computed, yielding 50
values for Y. Pearson’s correlation between X and Y was found to be .26 with
a significance level of .026 using Student’s T-test of H0 : ρ = 0 described in
Chapter 6. Restricting the range of X to values less than 1.3 results in eliminating
five values, and the significance level increases to .094. Restricting the range of
X so that |X| ≤ 1.5 results in the elimination of six points with the significance
level now equal to .14. ■

EXAMPLE. Table 6.3 reports data on aggression in the home (X) versus a
measure of cognitive functioning among children (Y). In Figure 6.9, it was
illustrated that if we split the data into two groups according to whether X has
a value greater than or equal to 25, we get two strikingly different impressions
about the association between X and Y. For X ≥ 25 the least squares estimate
of the slope is close to zero, but for X < 25 the estimated slope is −0.19. In
Section 7.3 we saw that the least squares slope is significantly different from
zero (based on the modified percentile bootstrap method) when using all of
the data. So a case might be made that there is a negative association between
X and Y up to about X = 25 and that for X ≥ 25 there appears to be little
or no association at all. But is it adequate to describe the association as linear
and negative for X < 25, or is it more accurate to say that the association is
primarily due to heteroscedasticity? Figure 13.18 shows the plot created by the

Continued
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FIGURE 13.18 For the aggression data, with X < 25, the horizontal line is the MGV
regression line, which suggests that the typical value of Y changes very little with X and that
the apparent dependence between X and Y is perhaps better explained by other perspectives
(such as heteroscedasticity).

EXAMPLE. (Continued ) S-PLUS function outmgv when attention is restricted
to X < 25. The horizontal line is the regression line based on the MGV
estimator. (Theil–Sen, the Coakley–Hettmansperger estimator, and MGVF
return estimated slopes of −0.11, −0.13, and −0.11, respectively.) If we use the
method in Section 8.10.1 to compare the variance of the Y values corresponding
to X < 25 versus X ≥ 25, the .95 confidence interval for the difference
between the variances is (2.49, 32.34), so we reject at the .05 level of significance,
indicating heteroscedasticity. In this particular case, our ability to reject hinges
on using a measure of scale that is sensitive to outliers. If, for example, we use
the percentage bend midvariance instead (a robust measure of scale described in
Chapter 3), now we fail to reject. Also, with X < 25, the least squares regression
line is no longer significantly different from zero; the .95 confidence interval
(based on the modified bootstrap method in Chapter 7) is (−0.51, 0.17). Using
Theil–Sen, in conjunction with the S-PLUS function regci in Section 13.5.1,
we get a .95 confidence interval of (−0.43, 0.11) and again we fail to reject.
Of course, failing to reject the hypothesis of a zero slope might be due to low
power resulting from a reduction of the sample size. ■

In summary, there is evidence that recall scores are associated with aggression in
the home, but it seems that some care must be taken when describing what this
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association might be. In particular, there is evidence of decreasing variability among
the Y values as X gets large, in the sense that relatively large Y values become less
likely as X increases. In terms of typical Y values as X increases, again there are
some indications of a negative association. But it seems that if the apparent negative
association is real, it is weaker in some sense compared to the decrease in variation
and number of outliers among the Y values as X gets large. For example, the estimated
slope based on the MGV estimator is exactly equal to zero for the data in Figure 13.18.
That is, typical recall scores are estimated to have no association with aggression in
the home; but despite this, relatively high recall test scores appear to become less
likely as X gets large.

EXAMPLE. Figure 13.19 shows a scatterplot of the same points shown in Fig-
ures 13.2 and 13.3. As previously noted, the least squares estimate of the slope is
highly nonsignificant, but it is fairly evident the six rightmost points are outliers.
If we ignore these outliers by restricting attention to points having X < 100,
the least squares regression line is the dashed line in Figure 13.19, which has an
estimated slope of −0.48, and the .95 confidence interval for the slope (using
the modified percentile bootstrap method in Section 7.3) is (−0.87, −0.17).
The Theil–Sen estimate of the slope is −0.6, and the bootstrap confidence inter-
val for the slope (using the S-PLUS function regci) is (−0.90, −0.27). In this
particular case, both methods yield confidence intervals having approximately
the same length. ■
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FIGURE 13.19 For the reading data in Figure 13.2, outliers can be eliminated simply
by restricting the range of X values. In this particular case, various methods give similar
confidence intervals for the slope based on the remaining data.
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We have seen that in some situations, restricting the range of the X values can do
a reasonable job of salvaging least squares. But it is important to realize that simply
restricting the range of the X values does not always salvage least squares, especially
when computing a confidence interval or testing hypotheses. In particular, situations
arise where least squares yields an estimated slope similar to other robust estimators,
but the length of the confidence interval can be substantially larger.

EXAMPLE. Consider the data in Figure 13.20, which is from the reading study
mentioned in connection with Figure 13.2. The solid, nearly horizontal line is
the least squares regression line, and the dashed line is based on the TSTS esti-
mator in Section 13.3.3. It is evident that the upper six points are outliers, but
if we simply eliminate them and apply the conventional methods in Chapter 6
to test the hypothesis of a zero slope, we are using the wrong standard error.
Still using least squares, if a .95 bootstrap confidence interval for the slope is
computed as described in Chapter 7, we get (−0.417, 0.414). As is evident, this
confidence interval is not remotely close to rejecting the hypothesis of a zero
slope. In contrast, the .95 confidence interval based on the Theil–Sen estimator
(using the S-PLUS function regci) is (−0.428, 0) — about half the length of the
confidence interval based on least squares — with a significance level of .056;
the estimated slope is −0.23. The MGV estimator estimates the slope to be
−0.35 and the TSTS estimate is −0.426. The .95 confidence interval based on

Continued
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FIGURE 13.20 Example where the length of the confidence interval depends in a crucial
way on the regression estimator used.
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EXAMPLE. (Continued ) this last estimator is (−0.6, −0.125) with a significance
level of .003. The .95 confidence interval based on the MGV estimator is
(−0.56, −0.125) with a significance level less than .001. ■

13.6 Robust Measures of Correlation

This section summarizes some robust analogs of Pearson’s correlation, r. We begin
with two relatively simple measures of association and then consider how they might
be improved.

13.6.1 Winsorized Correlation

The Winsorized correlation coefficient is obtained by Winsorizing the n pairs of obser-
vations as described in Section 11.2 and in Box 11.3. (For technical reasons, trimming
is a less satisfactory approach to defining a robust correlation.) The Winsorized corre-
lation between X and Y is just Pearson’s correlation applied to the Winsorized values.
The resulting correlation coefficient will be labeled rw.

Letting ρw be the population analog of rw, it can be shown that when X and Y are
independent, ρw = 0. If we assume independence — implying homoscedasticity —
a simple test of

H0 : ρw = 0

is to compute

Tw = rw

√
n − 2
1 − r2w

. (13.12)

Let

ν = n − 2g − 2,

where, as in Chapter 3, g = [γ n] and γ is the amount of Winsorizing. (Remember
that [γ n] means to compute γ n and then to round down to the nearest integer.) Then
reject if |Tw| ≥ t1−α/2, the 1−α/2 quantile of Student’s T-distribution with ν degrees
of freedom. Setting the amount of Winsorizing to zero (i.e., using γ = 0) reduces
Tw to the test statistic covered in Section 6.5.

13.6.2 Percentage Bend Correlation

A criticism of the Winsorized correlation is that the amount of Winsorizing is fixed
in advance rather than determined by your data. One solution is to use what is
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called the percentage bend correlation, rpb, which is computed as described in Box 13.4.
Under independence, the population value of rpb, ρpb, is zero. To test H0 : ρpb = 0,
compute

Tpb = rpb

√
n − 2

1 − r2pb
(13.13)

and reject if |Tpb| ≥ t1−α/2, where t1−α/2 is the 1 − α/2 quantile of Student’s
T-distribution with n − 2 degrees of freedom.

BOX 13.4 How to Compute the Percentage Bend Correlation

For the observations X1, . . . , Xn, let θ̂ be the sample median. Choose a value
for β between 0 and 1 and compute

Wi = |Xi − θ̂ |,
m = [(1 − β)n],

where the notation [(1−β)n] is (1−β)n rounded down to the nearest integer.
Using β = .2 appears to be a good choice in most situations. (The value of β

determines the finite-sample breakdown point of a measure of scale used to
detect outliers.) Let W(1) ≤ · · · ≤ W(n) be the Wi values written in ascending
order and let

ω̂x = W(m).

Let i1 be the number of Xi values such that (Xi − θ̂)/ω̂x < −1 and let i2 be
the number of Xi values such that (Xi − θ̂)/ω̂x > 1. Compute

Sx =
n−i2∑

i=i1+1

X(i)

φ̂x = ω̂x(i2 − i1) + Sx

n − i1 − i2
.

Set Ui = (Xi − φ̂x)/ω̂x. Repeat these computations for the Yi values, yielding
Vi = (Yi − φ̂y)/ω̂y . Let

�(x) = max[−1, min(1, x)].
Set Ai = �(Ui) and Bi = �(Vi). The percentage bend correlation is
estimated to be

rpb =
∑

AiBi√(∑
A2

i
) (∑

B2
i
) .
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13.6.3 S-PLUS Functions wincor and pbcor

The S-PLUS functions

wincor(x,y,tr=.2) and pbcor(x,y,beta=.2)

compute the Winsorized and percentage bend correlations. The argument tr deter-
mines how much Winsorizing is done and defaults to .2. This function also tests
H0 : ρw = 0 using Tw given by Equation (13.12). Setting tr=0 results in the con-
ventional test based on Pearson’s correlation, which is described in Section 6.5. The
function pbcor tests the hypothesis of independence using Equation (13.13).

The practical advantages of the Winsorized and percentage bend correlation are
that they limit the influence of a few unusual X values, and they do the same for
the Y values. However, a concern is that neither one takes into account the overall
structure of the data, as is illustrated next.

EXAMPLE. Look again at the scatterplot in Figure 13.4 and recall that
Pearson’s correlation is r = .68. Figure 13.5 shows the same data but with
two unusual values added at (X, Y) = (2.1, −2.4), which causes r to drop to .21.
For the data in Figure 13.4, the Winsorized correlation is rw = .59 with a signif-
icance level of .011 when testing ρw = 0 with Equation (13.12). But in Figure
13.5, the Winsorized correlation is only rw = .33 with a significance level of
.14. As for the percentage bend correlation, in Figure 13.4, rpb = .57 with a
significance level of .008; but in Figure 13.5, rpb = .25 with a significance level
of .26. Of course, one might argue that the association between X and Y is
weaker in Figure 13.5. Certainly this is true in some sense, but simultaneously
it is erroneous to conclude that there is no association. ■

13.6.4 Heteroscedastic Bootstrap Confidence Intervals for
Robust Correlations

Chapter 6 noted that heteroscedasticity can result in undesirable properties when
using the conventional method for testing the hypothesis that Pearson’s correlation
is zero. These same concerns apply when using the methods in Sections 13.6.1 and
13.6.2. When these methods reject, it is reasonable to conclude that the variables
under study are dependent, but the reason for rejecting remains a bit unclear. One
strategy is to replace the methods in Sections 13.6.1 and 13.6.2 with techniques
that allow heteroscedasticity. This can be done by using a bootstrap to compute a
confidence interval for some robust correlation coefficient. Essentially, proceed as
described in Section 13.5 but with the estimated slope replaced by the correlation of
interest.

13.6.5 S-PLUS Function corb

The S-PLUS function

corb(x,y,corfun=pbcor,nboot=599)
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tests the hypothesis of a zero correlation using a heteroscedastic percentile bootstrap
method. By default, the percentage bend correlation is used.

EXAMPLE. For the reading data in Figure 13.2, the test of a zero percent-
age bend correlation, based on Equation (13.12), has a significance level of
.014. Is heteroscedasticity playing a role here? Using a percentile bootstrap
method instead, a .95 confidence interval for the percentage bend corre-
lation is (−0.63, −0.19); this interval does not contain zero, so again we
reject. ■

13.6.6 Correlation with Outliers Removed

We saw in Section 13.1.5 that simply discarding outliers using the MVE or MCD
methods and then applying Pearson’s correlation to the remaining data can mask
an association. We have also seen that the MGVF outlier detection method can
miss outliers. However, it generally detects any blatant outliers, so another strat-
egy is first to check for outliers using MGVF, to remove any that are found,
and then to apply the percentage bend correlation to the data that remain. By
using the percentage bend correlation, you guard against any outliers that were
not found by MGVF but that might have an inordinate influence on the correla-
tion. However, a criticism of this approach is that there are no published papers
on how one might test the hypothesis of independence based on the resulting
correlation coefficient. A bootstrap method might give good control over the prob-
ability of a Type I error, but more research is needed before this approach can be
recommended.

Yet another strategy is to remove outliers with the projection method described
in Section 13.1.9 and to compute Pearson’s correlation on the data that remain. One
appeal of this method is that under normality, the resulting estimate of the population
correlation coefficient, ρ, is relatively accurate. That is, if our criterion is to get a
good estimate of ρ in the event data follow a bivariate normal distribution, this is one
of the few methods that performs reasonably well. Also, there is a simple test of a
zero correlation that performs well under homoscedasticity.

Let rp be Pearson’s correlation based on the data not flagged as outliers using the
projection method. Let

Tp = rp

√
n − 2

1 − r2p
.

Then, when testing at the .05 level, reject the hypothesis of zero correlation when
|Tp| ≥ c, where

c = 6.947
n

+ 2.3197.
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The value of rp can be computed quickly with n = 100, but as the sample size
increases, execution time will get high with the software currently available. There
are types of heteroscedasticity where the method does not control the probability of
a Type I error. However, if the only goal is to control the probability of a Type I error
when there is independence, all indications are that Tp is satisfactory (Wilcox, 2002).

13.6.7 S-PLUS Functions ocor and scor

The S-PLUS function

ocor(x, y, corfun = pbcor, outfun = outmgvf, pcor = F, plotit = F)

computes a correlation coefficient by removing outliers detected by the function out-
fun, which defaults to the MGVF method, and then applying the function indicated
by the argument corfun. By default, corfun is the percentage bend correlation. To
use the Winsorized correlation, set corfun=wincor. To apply Pearson’s correlation
instead, set the argument pcor to T, or you can use corfun=pcor. To plot the data,
set plotit to T.

The S-PLUS function

scor(x,y=NA, plotit = T)

computes Pearson’s correlation after outliers, identified with the S-PLUS function
outpro, are removed. If no values for y are specified, it is assumed that x is a matrix
with p columns of data. The function tests the hypothesis of a zero correlation at the
.05 level. If plotit=T is used, the same plot created by outpro is produced. (Methods
for controlling FWE, the familywise error rate, have not been investigated as yet.)

EXAMPLE. If the star data in Figure 13.12 are stored in the S-PLUS variables
starx and stary, the command

ocor(starx,stary)

returns a correlation of .63. This is in contrast to Pearson’s correlation, r = −.21.
If we eliminate points where starx is less than 4.1, now Pearson’s correlation is
r = .65. Often, restricting the range of X values gives similar results to robust
methods, but this is not always the case. Figure 13.21 shows the plot created by
scor (which is the same plot created by outpro). Here, rp = .68, |Tp| = 6.26,
and the .05 critical value is 2.47, so reject and conclude there is dependence.
The command

ocor(starx,stary,outfun=out)

removes outliers with the MVE method and returns a value of .71, but now
no simple test of a zero correlation has been derived. (A bootstrap method
might be used, but this has not been investigated as yet.) So in some instances
using MVE (or MCD) can lower the correlation, but situations arise where it
increases the correlation as well. ■
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FIGURE 13.21 Plot created by the S-PLUS function scor based on the star data.

13.6.8 Explanatory Power

This section describes a general approach to measuring association based on what
is called explanatory power. Roughly, it measures the variation among the predicted Y
values (based on X) relative to the variation of Y when the predictor X is ignored. Let
S(Y) indicate some (population) measure of variability. For example, S(Y) might be
the variance of Y (σ 2

y ), or it could be the Winsorized variance, the percentage bend
midvariance, or even MAD. Let Ŷ be any method for predicting Y given some value
for X. For example, Ŷ might be the least squares estimate of Y given X, or it could be
any of the robust regression estimators described in this chapter. In its most general
form explanatory power is defined to be

η2 = S(Ŷ)
S(Y)

. (13.14)

If we use the sample variance to measure variation and least squares regression to
predict Y given X, then η2 is just ρ2, the square of Pearson’s correlation, which is
the population value of the coefficient of determination covered in Chapter 6. Note
that η2 can be turned into a correlation coefficient by taking the square root and
multiplying by the sign of the estimated slope. That is, if the regression line has a
negative slope, make η negative as well; otherwise, η is taken to be positive.

To provide some graphical intuition about explanatory power, look at the left panel
of Figure 13.22, which shows 10 points all falling on the straight line having slope
1 and intercept zero. As is evident, Ŷ = Y = X, and the variance of both the Y
and the Ŷ values is 115.2. That is, the explanatory power is 1. In the right panel of
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FIGURE 13.22 Graphical explanation of explanatory power.

Figure 13.21, 10 points are centered around the straight line having slope 1 and inter-
cept zero, but they are not on the line. The predicted Y values (the Ŷi values) fall
on the straight line and again have variance 115.2. In contrast, the observed Y values
have variance 159.6, so the explanatory power is 115.2/159.6 = .72.

A natural estimate of η2, based on the least squares regression line and the usual
sample variance, is

η̂2
1 =

∑
(Ŷi − Ỹ)2∑
(Yi − Ȳ)2 , (13.15)

where Ỹ = ∑
Ŷi/n, the average of the predicted Y values. A little algebra shows that

this estimate is just r2, the coefficient of determination. However, results in Doksum
and Samarov (1995) as well as Wilcox (2000a) suggest estimating explanatory power
by computing the squared correlation between the values (Yi, Ŷi). That is, estimate
η2 with

η̂2
2 = (COR(Ŷ, Y))2. (13.16)

If the goal is to use the variance as a measure of explanatory power, then use
Pearson’s correlation. If instead you want to use a Winsorized variance, use the
Winsorized correlation, and use the percentage bend correlation for the percentage
bend midvariance.

Before ending this section, it is remarked that yet another approach to measuring
association stems from the following connection between Pearson’s correlation and
the least squares regression line:

r = b1
sx
sy

. (13.17)
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So a reasonable generalization is

rg = bg
τ̂x

τ̂y
, (13.18)

where now bg is any estimate of the slope and τ̂ 2
x is an estimate of some measure

of variation among the X values, such as the Winsorized variance or the percentage
bend midvariance described in Chapter 3.

13.6.9 S-PLUS Functions epow and ecor

The S-PLUS function

epow(x,y, pcor = F, regfun = tsreg, corfun = pbcor, outkeep = F,

outfun = outmgvf, varfun = pbvar, op = T)

estimates explanatory power (η2) as just described. (When there are p predictors, x
is assumed to be an n-by-p matrix.) If you want to use Pearson’s correlation between
Ŷ and Y to estimate explanatory power, set the argument pcor to T; otherwise the
function uses the measure of correlation specified by corfun, which defaults to the
percentage bend correlation. The argument regfun indicates which regression esti-
mator will be used; the default method is the Theil–Sen regression line. The measure
of variation (varfun) defaults to the percentage bend midvariance. The argument op
controls how η2 is estimated. By default (op=T), the squared correlation between
the Ŷ and Y values is used. Should a situation arise where there is some reason to
use Equation (13.15), use op=F. (The argument varfun is ignored if op=T.) The
argument outkeep indicates whether outliers are to be retained when estimating
explanatory power. If this argument is F, the data are checked for outliers using the
function outfun (which defaults to the method in Section 13.1.7) and outliers are
removed.

The S-PLUS function

ecor(x,y,pcor = F, regfun = tsreg, corfun = pbcor, outkeep = F,

outfun = outmgvf )

computes the explanatory power correlation coefficient. The arguments are the same
as those used by epow. The function ecor assumes that x is a vector or a matrix having
a single column of numbers. This is in contrast to epow, which allows x to be a matrix
with multiple predictors.

EXAMPLE. For the data in Figure 13.19, first consider the situation where
outliers are kept. The command

epow(x,y,outkeep=T)

Continued
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EXAMPLE. (Continued )
returns a value of only .078. However, restricting the range of X to values
less than 100 increases the estimate substantially to .23. If you use instead
the command epow(x,y) so that again the range of X values is not restricted,
outliers are removed and now the estimate is .28. That is, by removing outliers,
in effect the range of X values is restricted, except that now we get a slightly
larger measure of explanatory power because even when attention is restricted
to X < 100, a few outliers are detected. So roughly, there is a fair amount of
explanatory power among the points clustered together, but there are outliers
that, when included, reduce the explanatory power considerably. Because the
slope of the regression line is negative, if we were to convert the estimate
.078 into a correlation, we would get −1

√
.078 = −.28, which is the value

returned by the S-PLUS function ecor. In this particular case, the percentage
bend correlation is also equal to −.28. ■

EXAMPLE. Again the aggression data in Table 6.3 are analyzed, except that
now all of the data are used and consideration is given to fitting the data with
Y = β0 + β1X + β2X2. Figure 13.23 shows a scatterplot of the data plus
the least squares regression line (the dashed line in the figure) and the regres-
sion line based on the Coakley–Hettmansperger estimator. For both methods,
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FIGURE 13.23 Quadratic regression line fit to the aggression data.
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EXAMPLE. (Continued ) the hypothesis H0 : β2 = 0 is not rejected. The explana-
tory power based on least squares is .098; for the Coakley–Hettmansperger
estimator, in conjunction with the percentage bend variance, it is .051. If
the quadratic term is ignored, the estimates are now .088 and .040, respec-
tively, suggesting a modest improvement in the fit when the quadratic term is
included. ■

13.6.10 Detecting Associations in Contingency Tables

Section 2.3 introduced the notion of a contingency table. Special methods for ana-
lyzing contingency tables have been developed, and there are many books devoted
exclusively to this topic. These books are typically classified under the analysis of cat-
egorical data, recent examples of which are Agresti (1990, 1996), Andersen (1997),
and Powers and Xie (1999). Although it is impossible to cover the many important
issues here, a few comments about detecting associations might help.

Consider a two-by-two contingency table. To be concrete, look at the hypothetical
data in Table 13.3, which deals with blood pressure and personality types. For exam-
ple, there were eight individuals who were classified as having a type A personality
and simultaneously having high blood pressure. A fundamental issue is determin-
ing whether personality type and blood pressure are dependent. An approach to
this problem is to test the assumption that they are independent. If you are able to
reject, you conclude that they are dependent, and this means that knowing whether
a person has a type A personality provides you with some information about that
person’s probability of having high blood pressure.

For the four cells in Table 13.3, let n11 be the number of individuals falling in the
first row and first column. In Table 13.3, n11 = 8. More generally, nij represents the
entry in the ith row and jth column. So, for example, n21 = 5. Let

ni+ = ni1 + ni2 and n+j = n1j + n2j.

In the example, n1+ = 8+67 = 75 and n+2 = 87. The total number of observations
is represented by n, which is 100 in Table 13.3.

A classic test of the hypothesis of independence is based on

X2 = n(n11n22 − n12n21)2

n1+n2+n+1n+2
.

TABLE 13.3 Hypothetical Results on Personality versus Blood Pressure

Blood pressure

Personality High Not high Total

A 8 67 75

B 5 20 25

Total 13 87 100
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When the null hypothesis of independence is true, X2 has, approximately, a
chi-squared distribution with 1 degree of freedom. For the more general case where
there are R rows and C columns,

X2 =
R∑

i=1

C∑
j=1

n
(
nij − ni+n+j

n

)2

ni+n+j

and the degrees of freedom are

ν = (R − 1)(C − 1).

Now

ni+ =
∑

j

nij and n+j =
∑

i

nij.

If X2 equals or exceeds the 1−α quantile of a chi-squared distribution with ν degrees
of freedom, which is read from Table 3 in Appendix B, you reject. In the illustration

X2 = 100[8(20) − 67(5)]2
75(25)(13)(87)

= 1.4.

With ν = 1 degree of freedom and α = .05, the critical value is 3.84; because 1.4 <
3.84, you fail to reject. This means that you are unable to detect any dependence
between personality type and blood pressure. Generally, the chi-squared test of
independence performs reasonably well in terms of Type I errors (e.g., Hosmane,
1986), but difficulties can arise, particularly when the number of observations in any
of the cells is relatively small. For instance, if any of the nij values is less than or equal
to 5, problems might occur in terms of Type I errors. There are a variety of methods
for improving upon the chi-squared test, but details are not given here. Interested
readers can refer to Agresti (1990).

It is noted that measuring the strength of the association in a contingency table is
a nontrivial matter. An early approach was to use the so-called phi coefficient:

φ = X√
n
.

But this measure, plus all other functions of X2, have been found to have little value
as measures of association (e.g., Fleiss, 1981). Effective methods have been devised,
but the details go beyond the scope of this book.

13.7 Exercises

1. The following data were collected from 29 lakes in Florida by the U.S.
Environmental Protection Agency (and are taken from Stromberg, 1993).
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NIN: 5.548 4.896 1.964 3.586 3.824 3.111 3.607 3.557 2.989 18.053
3.773 1.253 2.094 2.726 1.758 5.011 2.455 0.913 0.890 2.468 4.168
4.810 34.319 1.531 1.481 2.239 4.204 3.463 1.727

TW: 0.137 2.499 0.419 1.699 0.605 0.677 0.159 1.699 0.340 2.899
0.082 0.425 0.444 0.225 0.241 0.099 0.644 0.266 0.351 0.027 0.030
3.400 1.499 0.351 0.082 0.518 0.471 0.036 0.721

NIN is the average influent nitrogen concentration and TW is the water reten-
tion time. Plot the points, and verify that six points are declared outliers by
the MVE and MCD methods but that the MGV outlier detection method in
Section 13.1.5 detects only two outliers, namely, points 10 and 23. (In this
particular case, the MGV method will flag the same points as the MVE and
MCD methods if, in the the argument list of outmgv, the option se=T is used.
This option standardizes the data.)

2. In the study mentioned in the previous exercise, there was a third variable of
interest, Y: the mean annual nitrogen concentration. One particular goal was
to understand how Y is related to NIN and TW. The Y values are

2.590 3.770 1.270 1.445 3.290 0.930 1.600 1.250 3.450 1.096 1.745
1.060 0.890 2.755 1.515 4.770 2.220 0.590 0.530 1.910 4.010

1.745 1.965 2.550 0.770 0.720 1.730 2.860 0.760

Create a scatterplot of Y versus NIN. Verify that the least squares regression
line has a slope of .012, and plot this line with the S-PLUS command

abline(lsfit(NIN,Y)$coef ),

assuming that the data are stored in the S-PLUS variables NIN and Y. As will
be evident, the two largest NIN values are outliers. Verify that if they are
eliminated, then now the least squares regression line has a slope of .56. Plot
this line.

3. Repeat the previous exercise, except use TW to predict Y and verify that the
six rightmost points are outliers.

4. The results in the previous exercise suggest restricting the range of TW values
to those less than 1. Verify that if we eliminate these values and the corre-
sponding Y values, and if the S-PLUS function out is used to check for outliers
among the scatterplot of the remaining Y and TW values, there are outliers
among the Y values. Also verify that the least squares estimate of the slope is
−1.975 versus −1.88 using Theil–Sen.

5. In the previous exercise, why would it be improper to eliminate the outliers
among the Y values by restricting the range of Y values and comput-
ing a confidence interval for the slope using the conventional method in
Section 6.3.1?

6. In the previous two exercises, why might some robust estimator provide a
substantially different confidence interval for the slope than the conventional
method in Section 6.3.1? What must be done to determine whether a robust
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method does indeed give a shorter confidence interval? Apply this method
using Theil–Sen and the MGV estimators.

7. The star data in Figures 6.3 and 13.12 are examined again, only now we consider
the problem of predicting the surface temperature given the light intensity.
The data are

Y: 4.37 4.56 4.26 4.56 4.30 4.46 3.84 4.57 4.26 4.37 3.49 4.43 4.48 4.01
4.29 4.42 4.23 4.42 4.23 3.49 4.29 4.29 4.42 4.49 4.38 4.42 4.29 4.38 4.22
3.48 4.38 4.56 4.45 3.49 4.23 4.62 4.53 4.45 4.53 4.43 4.38 4.45 4.50 4.45
4.55 4.45 4.42

X: 5.23 5.74 4.93 5.74 5.19 5.46 4.65 5.27 5.57 5.12 5.73 5.45 5.42 4.05
4.26 4.58 3.94 4.18 4.18 5.89 4.38 4.22 4.42 4.85 5.02 4.66 4.66 4.90 4.39
6.05 4.42 5.10 5.22 6.29 4.34 5.62 5.10 5.22 5.18 5.57 4.62 5.06 5.34 5.34
5.54 4.98 4.50

Plot the data, and note that not all outliers can be eliminated simply by restrict-
ing the range of the X values. Using all of the data, verify that the .95 confidence
interval for the slope, using least squares and the modified percentile bootstrap
method in Chapter 7, is (−0.33, 0.14) and so you fail to reject. Then verify that
when using the Theil–Sen estimate and the S-PLUS function regci, the .95
confidence interval is (0.0, 0.18) with a significance level of .017. Finally, verify
that when using the MGV estimator, the .95 confidence interval is (0.05, 0.22)
with a significance level of .013.

8. For the data in the previous exercise, the least trimmed squares estimate of
the slope is .169, the STS estimator in Section 13.2.3 estimates the slope to be
.149, and the MGV estimate is .161. It might be argued that these estimates
are similar enough that it makes no practical difference which estimator is
used. What is wrong with this argument?

9. Verify the results in Section 13.2.2.
10. The MGV outlier detection method can fail to declare points outliers that are

clearly unusual and flagged as outliers by other methods. Why is this desirable?
11. For the data in Exercise 7, the MGVF estimate of the slope is only .107 and the

Coakley–Hettmansperger estimate is .13. The latter estimator has the highest
possible breakdown point, .5. Both of these estimates are smaller than the
least trimmed squares and the MGV estimates reported in Exercise 8. What
might explain this?

12. For the data in Table 13.1, the percentage bend correlation is rpb = .9367.
Verify that you reject H0 : ρpb = 0 with α = .05.

13. The earthquake data in Table 13.4 were taken from a brochure published
by the Southern California Earthquake Center. For the first two variables
(magnitude and fault length) check for outliers among the data using the
MVE, MCD, projection, and MGV methods. (Use the S-PLUS functions
out, outpro, and outmgv, and be sure to examine the plots created by these
functions.) Verify that the MCD method identifies five points as outliers, the
MVE method identifies four, and the MGV and projection methods identify
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TABLE 13.4 Earthquake Data

Fault length Duration

Magnitude (kilometers) (seconds)

7.8 360 130

7.7 400 110

7.5 75 27

7.3 70 24

7.0 40 7

6.9 50 15

6.7 16 8

6.7 14 7

6.6 23 15

6.5 25 6

6.4 30 13

6.4 15 5

6.1 15 5

5.9 20 4

5.9 6 3

5.8 5 2

only two. Imagine we want to predict fault length based on magnitude. If we
used the strategy of removing outliers and fitting a line to the remaining data,
why might the MGV method be preferable when fitting a regression line to
the bulk of the observations?

14. Repeat the previous exercise, but now use magnitude versus duration.
15. For the data in Table 13.4, remove the two points with the largest magnitude

and check for outliers when examining magnitude and fault length with dura-
tion ignored. Why might it be a poor idea to remove outliers and use the MGV
regression estimator on the data that remain?

16. For the data in Table 13.4, based on a plot of magnitude versus fault length,
would you expect Pearson’s correlation to be larger or smaller than the corre-
lation returned by the S-PLUS function ocor in Section 13.6.7? Check your
response by actually computing the correlations.

17. The percentage bend correlation between magnitude and fault length is .897.
Verify that you reject the hypothesis of a zero correlation with α = .05.

18. The average LSAT scores (X) for the 1973 entering classes of 15 American
law schools, and the corresponding grade point averages (Y), are as follows.

X: 576 635 558 578 666 580 555 661 651 605 653 575 545 572 594

Y: 3.39 3.30 2.81 3.03 3.44 3.07 3.00 3.43 3.36 3.13 3.12 2.74 2.76 2.88 2.96

Create a boxplot for the X values and note that no outliers are found. Do
the same for the Y values. Now verify that the function relplot also finds
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no outliers but that outliers are detected when using MGVF, MVE, and
MCD.

19. For the data in the previous exercise, verify that the .95 confidence interval
for the slope, using least squares and the bootstrap method in Section 7.3.1,
is (0.0022, 0.0062) and that the .95 confidence interval for the slope using
the S-PLUS function regci in Section 13.5.1 (with the Theil–Sen estimator)
is (0.0031, 0.0061). Note that the ratio of the lengths of the confidence
interval is

.0062 − .0022

.0061 − .0031
= 1.33.

Based on the results in the previous exercise, what might explain why the
Theil–Sen estimator provides a substantially shorter confidence interval?



14
MORE REGRESSION
METHODS

Regression is an extremely vast topic that is difficult to cover in a single book let
alone a few chapters. The goal in this chapter is to cover some modern methods that
are particularly relevant in applied work, with the understanding that many issues and
techniques are not discussed.

14.1 Smoothers

One way of describing a fundamental goal in regression is to say that for any given
value of X, we want to estimate some (conditional) measure of location associated
with Y. In Chapter 6, for example, where the standard least squares regression model
was introduced [given by Equation (6.6)], the assumption is that the conditional
mean of Y, given X, is β1X + β0. More formally,

E(Y|X) = β0 + β1X,

a result that is implied by assuming that the error term (ε) has a mean of zero. That is,
the mean of Y is assumed to have a linear association with X. Often this assumption
provides a reasonable summary of the data, but it is common to encounter situations
where it is highly unsatisfactory. This section describes some exploratory methods,
called smoothers, that attempt to estimate a regression line without forcing it to have
a particular shape, such as a straight line. There are many smoothers, two of which
are described in this section. (S-PLUS has at least six built-in smoothers.) Readers
interested in more details about smoothers are referred to Hastie and Tibshirani
(1990).

14.1.1 Cleveland’s Smoother

Suppose we want to estimate the mean of Y given that X = 6 based on n pairs
of observations: (X1, Y1) , . . . , (Xn, Yn). One strategy is to focus on the observed X
values close to 6 and use the corresponding Y values to estimate the mean of Y.

517



518 Chapter 14 ■ More Regress ion Methods

Age

C
-p

ep
tid

e

5 10 15

1.2

1.4

1.6

1.8

FIGURE 14.1 Least squares regression line for the diabetes data.

A specific technique for implementing this strategy was derived by Cleveland (1979)
and is known as a locally weighted running-line smoother. The idea is that, although a regres-
sion line might not be linear over the entire range of X values, it will be approximately
linear over small intervals of X. That is, for X values close to 6, say, a linear regression
line might perform reasonably well and can be used to estimate Y given that X = 6.
But for X values far from 6, some other regression estimate of Y should be used
instead.

To be more concrete, look at Figure 14.1, which shows the logarithm of C-peptide
concentrations in children versus their age. (The data are given in Exercise 15 of
Chapter 6 and are taken from a study on diabetes in children.) The solid straight line
is the least squares regression line. Cleveland’s strategy begins by measuring how far
away each Xi value is from the point of interest. If you want to predict or estimate the
typical C-peptide concentration for a 10-year-old you measure how far away each Xi
is from 10, while for an 11-year-old you measure how far away each Xi is from 11.
The idea is to give less credence to those who are relatively far away from the age
that is of interest. In fact, those individuals furthest away are ignored altogether. In
particular, given the goal of estimating the mean of Y corresponding to some specific
value for X, you measure the distance of X from each of the observed Xi values with

δi = |Xi − X|.
For example, if the goal is to predict C-peptide concentrations for 10-year-old chil-
dren, then X = 10; because X1 = 5.2, X2 = 8.8, and X3 = 10.5, it follows
that δ1 = |5.2 − 10| = 4.8, δ2 = |8.8 − 10| = 1.2, δ3 = |10.5 − 10| = 0.5,
and so forth. When predicting C-peptide levels for 11-year-old children, X = 11,
δ1 = |5.2 − 11| = 5.8, δ2 = |8.8 − 11| = 2.2, and so on.
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Next, sort the δi values and retain the pn pairs of points that have the smallest δi
values, where p is a number between 0 and 1. The value of p represents the proportion
of points used to predict Y and is generally referred to as the span. For the moment,
suppose p = 1/2. In the illustration, n = 43, so this means that you retain 22 of the
pairs of points that have Xi values closest to X = 10. These 22 points are the nearest
neighbors to X = 10. If you want to predict C-peptide concentrations for 11-year-old
children, you retain the 22 pairs of points with Xi values closest to X = 11. Let δm
be the maximum value of the δi values that are retained. For X = 10 and p = 0.5,
δm = 2.7. (The details are left as an exercise.) Set

Qi = |X − Xi|
δm

;
if 0 ≤ Qi < 1, set

wi = (
1 − Q3

i
)3 ,

otherwise set

wi = 0.

Finally, use weighted least squares to predict Y using wi as weights (cf. Fan, 1992). That
is, determine the values b1 and b0 that minimize∑

wi(Yi − b0 − b1Xi)2

and estimate the mean of Y corresponding to X to be Ŷ = b0 + b1X. Because the
weights (the wi values) change with X, generally a different regression estimate of
Y is used when X is altered. Finally, let Ŷi be the estimated mean of Y given that
X = Xi based on the method just described. Then an estimate of the regression line
is obtained by the line connecting the points (Xi, Ŷi) (i = 1, . . . ,n) and is called a smooth.

The span, p, controls the raggedness of the smooth. If p is close to 1, we get
a straight line stronger even when there is curvation. If p is too close to zero, an
extremely ragged line is obtained instead. By choosing a value for p between .2 and .8,
curvature can usually be detected and a relatively smooth regression line is obtained.

14.1.2 S-PLUS Function lowess

The built-in S-PLUS function

lowess(x,y,p=2/3)

computes Cleveland’s smoother, just described. The value for p, the span, defaults to
2/3. You can create a scatterplot of points that contains this smooth with the S-PLUS
commands

plot(x,y)

lines(lowess(x,y))

If the line appears to be rather ragged, try increasing p to see what happens. If the
line appears to be approximately horizontal, indicating no association, check to see
what happens when p is lowered.
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EXAMPLE. For the diabetes data in Figure 14.1, testing the hypothesis that
the slope is zero with the conventional method in Chapter 6 returns a signifi-
cance level of .008. The heteroscedastic, .95 confidence interval for the slope,
based on the modified bootstrap method in Section 7.3, is (−0.001, .029), and
the bootstrap test of independence covered in Section 7.8 rejects at the .05
level. So although the confidence interval based on the modified bootstrap
method is not quite able to reject at the .05 level (because the .95 confidence
interval contains 0), there are indications that age and C-peptide concentra-
tions are dependent, and based on Figure 14.1 it might seem that C-peptide
concentrations tend to increase with age.

Now look at the solid line in Figure 14.2, which is the smooth created by
lowess. Notice that it increases up to about the age of 7 and then flattens out.
That is, this smooth suggests that there is a positive association up to about
age seven, and then the association seems to disappear. However, some caution
is warranted in this particular case. The dashed line shows the smooth when
X values less than 4 are ignored; it is nearly horizontal. Because there are only
six points with X < 4, it is difficult to know how age is related to C-peptide
concentrations for very young children. The smooth suggests that generally,
there is little or no association; it hints that this might not be true for children
under the age of 4, but more data in this age range are needed to understand the
association when X < 4. Generally, the ends of a smooth must be viewed with
caution, because data are often sparse in these regions and there is an inherent

Continued
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FIGURE 14.2 Two smooths for the diabetes data based on the S-PLUS function lowess.
The dashed line is the smooth ignoring points with X < 4.
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EXAMPLE. (Continued ) bias associated with these points. For example, if X = 3
is the smallest observed X value, estimating E(Y|X = 3) is hampered by the
fact that the estimate is based on X values that are greater than or equal to 3.
Ideally, a smooth would be based on X values that are both less than and greater
than 3. ■

14.2 Smooths Based on Robust Measures of Location

A natural guess at how to extend Cleveland’s method to robust measures of location
is to replace the weighted least squares estimator with one of the robust regression
estimators covered in Chapter 13. However, this strategy is known to be highly
unsatisfactory. The reason is that robust regression estimators can be insensitive to
curvature, so the resulting smooth often misses curvature when in fact it exists.
A better strategy is to use what is called the running-interval smoother. To estimate some
measure of location for Y, given some value for X, a running interval smoother searches
for all points close to the value of X that are of interest and then simply computes the
measure of location based on the corresponding Y values. Note that the number of
Xi values close to X will depend on the value of X. In contrast, Cleveland’s method
uses the k nearest points, with k fixed and chosen in advance.

To elaborate, compute MAD based on the X values and label it MADx. Let f be
some constant that is chosen in a manner to be described and illustrated. Then the
value X is said to be close to Xi if

|Xi − X| ≤ f
(

MADx

.6745

)
.

So for normal distributions, X is close to Xi if X is within f standard deviations of
Xi. Now consider all of the Yi values corresponding to the Xi values that are close
to X. Then an estimate of the typical value of Y, given X, is the estimated measure
of location based on the Y values just identified. For example, if six Xi values are
identified as being close to X = 22 and the corresponding Y values are 2, 55, 3, 12,
19, and 21, then the estimated mean of Y, given that X = 22, would be the average of
these six numbers: 18.7. The estimated 20% trimmed mean of Y, given that X = 22,
would be the trimmed mean of these six values, which is 13.75.

A running-interval smoother is created as follows. For each Xi, determine which
of the Xj values are close to Xi, compute a measure of location associated with the
corresponding Yj values, and label this result Ŷi. So we now have the following
n pairs of numbers: (X1, Ŷ1), . . . ,(Xn, Ŷn). The running-interval smooth is the line
formed by connecting these points. The span, f , controls how ragged the line will
be. As with Cleveland’s method, if f is too close to 1, the smooth will be a straight
line, even when there is curvature; if f is too close to zero, the result is a very
ragged line.
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14.2.1 S-PLUS Functions rungen and runmean

The S-PLUS function

rungen(x,y,est=mom,fr=.8,plotit=T,scat=T,pyhat=F,…)

computes a running interval smooth assuming that there is only one predictor. (For
multiple predictors, see Sections 14.2.3 and 14.2.4.) The argument est determines the
measure of location that is used and defaults to MOM. The argument fr corresponds
to the span ( f) and defaults to .8. The function returns the Ŷi values if the argument
pyhat is set to T. By default, a scatterplot of the points is created with a plot of the
smooth. To avoid the scatterplot, set scat=F. If there is specific interest in using a
trimmed mean, the function

runmean(x,y,fr=.8,tr=.2,pyhat=F)

is a bit more convenient to use. As usual, the argument tr controls the amount of
trimming and defaults to 20%.

EXAMPLE. The left panel of Figure 14.3 shows the smooth created by rungen
for the reading data shown in Figures 13.2 and 13.8. The dashed line is the
smooth created by lowess. In this particular case both methods give similar
results, but strategically placed outliers can cause lowess to give a distinctly
different impression about the association between two variables. To illustrate
that curvature can be detected correctly, the right panel shows the smooth
returned by runmean for 40 points generated on a computer where Y = X2 +ε,
with both X and ε having standard normal distributions. ■
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FIGURE 14.3 The left panel shows the smooths for the reading data based on lowess
(the dashed line) and rungen. The right panel shows the smooths for data where Y = X2+ε.
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14.2.2 Prediction When X is Discrete:
The S-PLUS Function rundis

In some situations the predictor X has very few values and there are multiple Y values
for each X value. In this case it might be of interest to compute a measure of location
for Y corresponding to each X value and to plot the results. For example, for all Y
values corresponding to X = 1, say, compute some measure of location, do the same
for X = 2, and so on. This is in contrast to the smooths previously described, where
you search for all X values close to 2, for example, and compute a measure of location
based on the corresponding Y values. For convenience, the S-PLUS function

rundis(x,y,est=mom,plotit=T,pyhat=F,…)

has been supplied to perform this task.

14.2.3 Multiple Predictors

The basic idea behind the running-interval smoother can be extended to multiple
predictors. First consider the case with two predictors, so we have n pairs of X
values: (X11, X12), . . . ,(Xn1, Xn2). For the ith pair of predictors, (Xi1, Xi2), imagine you
want to estimate the corresponding typical value of Y. For instance, if Xi1 = 6 and
Xi2 = 12, the goal is to estimate the typical value of Y given that (Xi1, Xi2) = (6, 12).
Like the running-interval smoother, the strategy is to apply a measure of location to
those Y values for which the corresponding (Xj1, Xj2) values are close to (Xi1, Xi2). To
determine whether (Xj1, Xj2) is close to (Xi1, Xi2), we proceed in a manner that has
certain similarities to the outlier detection method described in Box 13.1. For the
more general case of p predictors, let Xi = (Xi1, . . . ,Xip) and let M be the MVE or
MCD covariance matrix based on X1, . . . ,Xn. Then a measure of the distance between
the two points Xi and Xj is

Dij =
√

(Xi − Xj)M−1(Xi − Xj)′.

We say that Xj is close to Xi if Dij ≤ f , where f again plays the role of the span.
Generally, f = 1 seems to give good results; but, as usual, exceptions arise. Now,
for all those Xj that are close to Xi, compute a measure of location associated with
the corresponding Y values and label it Ŷi. That is, the typical value of Y, given that
X = Xi, is estimated to be Ŷi.

14.2.4 S-PLUS Functions runm3d and rung3d

The S-PLUS function

rung3d(x,y,est = mom, fr = 1, plotit = T, pyhat = F,…)

creates a running-interval smooth of the data based on the measure of location spec-
ified by the argument est, which defaults to MOM. Here, x is assumed to be a matrix
with p columns corresponding to the p predictors. The argument fr is the span and
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FIGURE 14.4 The left panel is a smooth for data where the true regression line is a
plane. The right panel is a smooth based on data from a diabetes study.

pyhat=T will return the Ŷi values. To get 20% trimmed means, use est=mean and
tr=.2. The function

runm3d(x, y, fr = 1, tr = 0.2, plotit = T, pyhat = F)

is designed for trimmed means only.

EXAMPLE. The left panel of Figure 14.4 shows a smooth for 100 points
generated according to Y = X1 + X2 + ε, where X1, X2, and ε are independent
standard normal variables. Notice that the smooth is well approximated by a
plane, which is consistent with how the data were generated. ■

EXAMPLE. The diabetes data mentioned in Section 14.1 are reconsidered,
only now two predictors of C-peptide concentration are used: age and base
deficit. The right panel of Figure 14.4 shows the smooth created by rung3d. In
this case, it seems that a plane does not provide an adequate summary of the
data. ■

14.2.5 Seeing Curvature with More Than Two Predictors

The running-interval smoother can be used with more than two predictors, but, as
is evident, visualizing curvature cannot be done in a simple manner. A variety of
techniques have been proposed for dealing with this problem, and a comparison of
several methods was made by Berk and Booth (1995). (They focused on predicting
means, but the strategies they considered are readily extended to robust measures
of location.) Generally, these methods can help, but situations can be created where
any one method fails.

A simple strategy, sometimes called the partial response plot, is to check a smooth
for each individual predictor while ignoring the others. An alternative approach is to
plot the residuals versus the predicted values. Experience suggests that this strategy
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often can be unsatisfactory. Another strategy is based on what is called a partial residual
plot. The idea dates back to Ezekiel (1924, p. 443) and was named a partial residual
plot by Larsen and McLeary (1972). To explain it, imagine there are p predictors and
that you want to check for curvature associated with predictor j. Assuming that the
other predictors have a linear association with Y, fit a regression plane to the data,
ignoring the jth predictor. The partial residual plot simply plots the resulting residuals
versus Xj. A smooth applied to this plot can be used to check for curvature.

14.2.6 S-PLUS Function prplot

The S-PLUS function

prplot(x,y,pvec=ncol(x),regfun=tsreg,fr=.8,est=mom,…)

creates a partial residual plot assuming that curvature is to be checked for the predictor
indicated by the argument pvec. The argument x is assumed to be an n-by-p matrix.
By default, it is assumed that curvature is to be checked using the data stored in the
last column of the matrix x. The argument regfun indicates which regression method
will be used, fr is the span used to create the smooth, and est indicates which measure
of location is used with the smooth.

EXAMPLE. The model Y = β0 +β1X1 +β2X2 +β3X1X2 + ε is often used to
investigate interactions in regression and appears to have been first suggested by
Saunders (1955, 1956). One hundred vectors of observations were generated
according to the model Y = X1 + X2 + X1X2 + ε, where X1, X2, and ε

are independent standard normal random variables. The partial residual plot
provides a partial check on the adequacy of this model. If the model is correct,
then, in particular, a partial residual plot based on the term X1X2 should produce
a reasonably straight line. Applying the S-PLUS function prplot to the data
creates the smooth shown in Figure 14.5. We see that for the bulk of the
centrally located points, we do indeed get a straight line, which has a slope
approximately equal to the true slope, 1. ■

EXAMPLE. For another portion of the reading study (previously mentioned
in Chapter 13), there was interest in how a measure of orthographic ability
(Y) is related to a measure of sound blending (X1) and a measure of auditory
analysis (X2). A smooth between X1 and Y strongly indicates a linear association.
Assuming that the association between X1 and Y is linear, is it reasonable to
assume that the association between Y, X1, and X2 is linear? That is, does the
model Y = β0 +β1X1 +β2X2 +ε provide an adequate summary of the data for
some choice for β0, β1, and β2? Figure 14.6 shows the plot created by prplot.
As is evident, there seems to be a bend at approximately X2 = 6, which is near
the center of the X2 values. That is, it appears that something might be wrong

Continued
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FIGURE 14.5 Output from the S-PLUS function prplot, where the goal is to check a
commonly used method for modeling interactions.

EXAMPLE. (Continued ) with this particular model. Because a smooth indicates
that Y and X1 have a linear association, it seems that there might be curvature
associated with X2. A smooth (or partial response plot) between Y and X2
again indicates a curvilinear association. One possible way of dealing with this
apparent curvature is simply to divide the data into two groups according to
whether X2 ≤ 6. ■

14.2.7 Some Alternate Methods

The methods already covered for detecting and describing curvature when there are
multiple predictors are far from exhaustive. Although complete details about other
methods are not provided, it might help to mention some of the alternate strategies
that have been proposed.

One approach is to assume that for some collection of functions f1 , . . . , fp,

Y = β0 + f1(X1) + · · · + fp(Xp) + ε,

and then to try to approximate these functions using some type of smoother. This is
called a generalized additive model; details can be found in Hastie and Tibshirani (1990),
who described an algorithm for applying it to data. (S-PLUS has built-in functions for
applying this technique; see the methods listed under generalized additive models in
the S-PLUS Guide to Statistics.)
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FIGURE 14.6 Output from the S-PLUS function prplot based on the reading data.

The augmented partial residual plot (Mallows, 1986) is like the partial residual plot,
except that it includes a quadratic term for the predictor being investigated. For a
generalization of this method, see Cook (1993).

Another approach is to search for nonlinear transformations of both Y and the
predictors that results in an additive model. That is, search for functions fy, f1 , . . . , fp
such that

fy(Y) = f1(X1) + · · · + fp(Xp) + ε

provides a good fit to data. An algorithm for implementing the method was derived
by Breiman and Friedman (1985) and is called alternating conditional expectations, or ace.
(S-PLUS has built-in functions for applying the technique.) For some refinements
and extensions, see Tibshirani (1988).

14.3 Comparing the Slopes of Two Independent Groups

Consider two independent groups and imagine that for each group you have an
outcome variable Y and a predictor X. For the jth group ( j = 1, 2), assume

Yj = β0j + β1jXj + εj,

where εj is independent of Xj and E(εj) = 0. That is, for each group, the standard
regression model in Section 6.2 holds. Then a common goal is to test

H0 : β11 = β12, (14.1)

the hypothesis that the two groups have equal slopes.
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A variety of methods have been proposed for testing Equation (14.1), many of
which are summarized by Conerly and Mansfield (1988), but the bulk of the meth-
ods are known to be relatively unsatisfactory, including a popular technique derived
by Chow (1960). Here attention is focused on comparing slopes with a percentile
bootstrap method plus one of the robust estimators covered in Chapter 13. As in
Chapter 13, the error terms can be heteroscedastic, and it is not assumed that the
distribution for the two error terms are similar in any manner. (Methods that assume
homoscedasticity or that groups have error terms with identical distributions can
be highly unsatisfactory, for the basic reasons mentioned in previous chapters.) To
test Equation (14.1), generate bootstrap samples from each group as described in
Chapter 7, compute the slope for each group based on these bootstrap samples, and
label them b∗11 and b∗12. Next, repeat this process B times; let d∗

b be the difference
between the bootstrap estimate of the slopes based on the bth bootstrap sample
(b = 1 , . . . , B) and let p̂∗ be the proportion of times the bootstrap estimate for the
first group is less than the bootstrap estimate from the second. That is, p̂∗ is the
proportion of d∗

b values less than zero. Setting

p̂∗m = min( p̂∗, 1 − p̂∗),

the estimated significance level for the hypothesis given by Equation (14.1) is 2p̂∗m.
Then reject the null hypothesis if 2p̂∗m ≤ α. Putting the d∗

b values in ascending order,
the 1 − α confidence interval for the difference between the slopes, β11 − β12, is
(d∗

(�+1), d
∗
(u)), where, as usual, � = αB/2 and u = B − �. In essence, use the method

in Section 8.8.1 (designed for measures of location) adapted to the problem at hand.

14.3.1 S-PLUS Functions reg2ci and runmean2g

The S-PLUS function

reg2ci(x1, y1, x2, y2, regfun = tsreg, nboot = 599, alpha = 0.05, plotit = T)

compares the slopes of two groups using the method just described. The data for
group 1 are stored in x1 and y1, and for group 2 they are stored in x2 and y2. As
usual, nboot is B, the number of bootstrap samples, regfun indicates which regression
estimator is to be used and defaults to the Theil–Sen estimator, and plotit=T creates
a plot of the bootstrap estimates.

To provide some visual sense of how the regression lines differ and to provide an
informal check on whether both regression lines are reasonably straight, the S-PLUS
function

runmean2g(x1, y1, x2, y2, fr = 1, est = mom, …)

has been supplied. It creates a scatterplot for both groups (with a + used to indicate
points that correspond to the second group) and it plots a smooth for both groups.
The smooth for the first group is indicated by a solid line, and a dashed line is used
for the other.
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FIGURE 14.7 A smooth for two groups of students.

EXAMPLE. A controversial issue is whether teachers’ expectancies influence
intellectual functioning. A generic title for studies that address this issue is
Pygmalion in the classroom. Rosenthal and Jacobson (1968) argue that teachers’
expectancies influence intellectual functioning, and others argue that it does not.
A brief summary of some of the counterarguments can be found in Snow (1995).
Snow illustrates his concerns with data collected by Rosenthal, where children
in grades 1 and 2 were used. Here, other issues are examined using robust
regression methods. One of the analyses performed by Rosenthal involved
comparing experimental children, for whom positive expectancies had been
suggested to teachers, with control children, for whom no expectancies had
been suggested. (The data used here are taken from Elashoff and Snow, 1970.)
One measure was a reasoning IQ pretest score, and a second was a reasoning
IQ posttest score. Here we consider whether the slopes of the regression lines
differ for the two groups when predicting posttest scores based on pretest
scores. Figure 14.7 shows the output from the S-PLUS function runmean2g.
The .95 confidence interval for the difference between the slopes, returned by
reg2ci and based on the Theil–Sen estimator, is (−0.72, 0.18) with a significance
level of .22. ■

EXAMPLE. For the example in connection with Figure 14.6, a partial residual
plot suggested that there is a curvilinear relationship between a measure of

Continued
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EXAMPLE. (Continued ) orthographic ability Y and X2, a measure of auditory
analysis. In particular, there seems to be a distinct bend near X2 = 6. If we
split the data into two groups according to whether X2 ≤ 6, does this alter
the association between Y and X1, a measure of sound blending? One way of
checking this possibility is to test the hypothesis that these two groups have
identical slopes. The .95 confidence interval for the difference between the
slopes is (−1.5, 0.0) with a significance level of .09, so we fail to detect a change
in the association at the .05 level. ■

14.3.2 Comparing Correlations

The method for comparing slopes just described can be used to compare correlation
coefficients simply by replacing estimates of the slopes with a measure of association
that is of interest. When working with Pearson’s correlation, however, a modified
percentile bootstrap method is required. In particular, if there are n1 pairs of observa-
tions for the first group and n2 for the second, let n = n1 + n2 be the total number of
observations, and set B = 599. Now generate bootstrap samples from both groups
and for the bth bootstrap sample from each group (b = 1, . . . ,599), let d∗

b be the dif-
ference between the bootstrap estimates of the correlations. Then a .95 confidence
interval for ρ1 − ρ2, the difference between the population (Pearson) correlation
coefficients, is (

d∗
(a), d∗

(c)

)
,

where for n < 40, a = 7 and c = 593; for 40 ≤ n < 80, a = 8 and c = 592; for
80 ≤ n < 180, a = 11 and c = 588; for 180 ≤ n < 250, a = 14 and c = 585; while
for n ≥ 250, a = 15 and c = 584. If this interval does not contain zero, reject the
hypothesis of equal Pearson correlations. Adjustments (choices for a and c) for other
values of α have not been determined.

14.3.3 S-PLUS Functions twocor and twopcor

The S-PLUS function
twocor(x1, y1, x2, y2, corfun = pbcor, nboot = 599, alpha = .05, plotit = T, …)

compares the correlations corresponding to two independent groups. The argument
corfun indicates which correlation is to be used and defaults to the percentage bend
correlation. The argument plotit indicates whether the bootstrap estimates are to be
plotted. To compare Pearson correlations, use

twopcor(x1, y1, x2, y2).

14.4 Tests for Linearity

Smooths provide an informal check on curvature. This section describes two methods
that can be used to establish curvature in a more formal manner.
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14.4.1 A Method Based on a Split of the Data

The first strategy is to split the data into two groups based on the X values. If there is
no curvature, then these two sets of observations should have identical slopes, which
can be tested as described in Section 14.3.

EXAMPLE. Consider the diabetes data in Figure 14.2. As previously noted,
a smooth suggests that there might be a positive association between age and
C-peptide concentrations up to about the age of 4, or possibly 7, but then
the association seems to disappear. For illustrative purposes, split the data into
two groups according to whether a child is less than or greater than 7 years
old. If there is no curvature, then the regression lines for these two groups
should have identical slopes. Applying the S-PLUS function reg2ci to these
two groups and using the default regression method (the Theil–Sen estimator),
the .95 confidence interval for the difference between the slopes is (0, .125).
This interval contains zero, so we fail to reject, although we come very close to
detecting curvature. ■

14.4.2 An Alternate Method

This section describes an alternate approach to detecting curvature by testing the
hypothesis that there is a linear association between Y and some set of predictors.
That is, the goal is to test the hypothesis that for some β0, . . . ,βp, Y = β0 + β1X1 +
· · · + βpXp + ε. Here, it is not assumed that the error term is homoscedastic. The
theoretical justification for the method in this section is due to Stute, Manteiga,
and Quindimil (1998) and is essentially a generalization of the test of independence
covered in Section 7.8. For simplicity, the method is described for the case of a single
predictor only, but multiple predictors can be handled as well. Basically, proceed as
was done in Section 7.8, only with Ȳ replaced by Ŷ, where Ŷ is the estimate of Y
based on some regression estimator that assumes there is a linear association. The
details are summarized in Box 14.1.

BOX 14.1 Test the Hypothesis That a Regression Line is Straight

Let Ŷ be some regression estimate of Y. Least squares could be used, but
it has been shown that this can lead to problems in terms of controlling the
probability of a Type I error. So it is suggested that some robust estimator be
used instead. For fixed j (1 ≤ j ≤ n), set Ii = 1 if Xi ≤ Xj; otherwise Ii = 0,

Continued
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BOX 14.1 (Continued ) and let

Rj = 1√
n

∑
Ii(Yi − Ŷi)

= 1√
n

∑
Iiri,

(14.2)

where ri = Yi − Ŷi are the usual residuals. The (Kolmogorov) test statistic is
the maximum absolute value of all the Rj values. That is, the test statistic is

D = max|Rj|, (14.3)

where max means that D is equal to the largest of the |Rj| values. As in
Chapter 7, a Cramér–von Mises test statistic can be used instead, where now

D = 1
n

∑
R2

j . (14.4)

A critical value is determined with the bootstrap method described in Section
7.8. Generate n observations from a uniform distribution and label the results
U1, . . . ,Un. Next, for i = 1 , . . . , n, set

Vi = √
12(Ui − .5),

r∗i = riVi,

Y∗
i = Ŷi + r∗i .

Then based on the n pairs of points (X1, Y∗
1 ), . . . ,(Xn,Y∗

n ), compute the test
statistic and label it D∗. Repeat this process B times and label the resulting test
statistics D∗

1 , . . . ,D∗
B. Finally, put these B values in ascending order, yielding

D∗
(1) ≤ · · · ≤ D∗

(B). The critical value is D∗
(u), where u = (1 − α)B rounded to

the nearest integer. That is, reject if

D ≥ D∗
(u).

14.4.3 S-PLUS Functions lintest and linchk

The S-PLUS function

lintest(x,y,regfun=tsreg,nboot=500,alpha=.05)

tests the hypothesis that a regression surface is a plane using the method outlined in
Box 14.1. (Execution time is fairly fast with one predictor, but it might be slow when
there are multiple predictors instead.) When reading the output, the Kolmogorov
test statistic is labeled dstat and its critical value is labeled critd. The Cramér–von
Mises test statistic is labeled wstat. The default regression method (indicated by the
argument regfun) is Theil–Sen.
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For convenience, the function

linchk(x,y,sp,pv=1,regfun=tsreg,nboot=599,alpha=.05)

is supplied, which splits the data into two groups according to whether predictor pv
has a value less than the value stored in the argument sp. For example,

linchk(x,y,sp=10,pv=3)

would split the data into two groups based on whether predictor 3 has a value less
than 10. Then it compares the regression parameters for these two groups with the
function reg2ci.

EXAMPLE. For the diabetes data shown in Figure 14.1, the Kolmogorov test
statistic returned by lintest is D = .179; it reports a .05 critical value of .269, so
you fail to reject. Note that based on results in Section 14.1, a smooth suggests
that for the bulk of the data, the association is linear, with a nearly horizontal
regression line. It was previously remarked, however, that this association might
change for children under the age of 4. But even if a change exists, with only
six children under the age of 4, detecting it is difficult at best. ■

14.5 Inferential Methods with Multiple Predictors

This section takes up the problem of making inferences about regression parame-
ters when there are multiple predictors. We begin with the classic approach, which
assumes that there is a linear relationship between the p predictors X1, . . . ,Xp and
some variable Y, that Y has a normal distribution, and that there is homoscedasticity.
That is,

Y = β0 + β1X1 + β2X2 + · · · + βpXp + ε (14.5)

is assumed, where ε has a normal distribution with variance σ 2, and σ 2 does not
depend on the values of the predictors. With one predictor ( p = 1), Equation (14.5)
reduces to the regression model given by Equation (6.6). The goal is to test

H0 : β1 = · · · = βp = 0, (14.6)

the hypothesis that all p slope parameters are zero.
Let Ŷ = b0 + b1X1 + · · · + bpXp be the least squares regression line. That is, the

values b0, . . . ,bp minimize
∑

(Yi − Ŷi)2, the sum of the squared residuals. The squared
multiple correlation coefficient is

R2 = 1 −
∑(

Yi − Ŷi

)2

∑(
Yi − Ȳ

)2 (14.7)

and can be seen to be the squared (Pearson) correlation between Yi and Ŷi. Note
that when using least squares regression, R2 is an estimate of explanatory power, as
discussed in Section 13.6.8. The classic method for testing the hypothesis given by
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Equation (14.6) is based on the test statistic

F =
(

n − p − 1
p

)(
R2

1 − R2

)
. (14.8)

Under normality and homoscedasticity, F has an F-distribution with ν1 = p and
ν2 = n − p − 1 degrees of freedom. So the null hypothesis is rejected if F ≥ f1−α ,
the 1 − α quantile of an F-distribution with ν1 and ν2 degrees of freedom.

If you have three predictors with the data stored in the S-PLUS variables x1, x2,
and x3 and the outcome predictor stored in y, then the built-in S-PLUS command

summary(lm(y˜x1+x2+x3))

will perform the F-test just described (and it performs a Student’s T-test of H0 : βj = 0,
j = 0,1, . . . ,p, for each of the p + 1 regression parameters).

14.5.1 A Bootstrap Method

As was the case in Chapter 6, the conventional hypothesis-testing method just
described performs well in terms of controlling Type I error probabilities when Y
is independent of all p predictors, which implies that there is homoscedasticity.
When Y and the p predictors are dependent, the conventional F-test can be very
unsatisfactory — even under normality.

A straightforward application of a particular bootstrap method can be used to
test Equation (14.6), the hypothesis that the parameters in a linear regression model
have a common value of zero. The method is similar in spirit to the method for
comparing measures of location among dependent groups that was covered in Box
11.6 and is described in Box 14.2. Basically, generate B bootstrap estimates of the
p slope parameters and then check to see how deeply the vector 0 = (0, . . . ,0),
having length p, is nested within the bootstrap values. When p = 1, the method in
Box 14.2 is essentially a bootstrap-t method with the standard error of the regression
estimators estimated by the bootstrap values. This is in contrast to the method in
Section 13.5 for computing a confidence interval for the individual parameters, which
uses a percentile bootstrap method instead.

BOX 14.2 Test the Hypothesis That All Slope Parameters Are Zero

First, generate a bootstrap sample as was described in Chapter 7. For the
p predictors case, this means that among the n vectors of observations

(Y1,X11, . . . , X1p)
...

(Yn,Xn1, . . . , Xnp),
Continued
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BOX 14.2 (Continued )
randomly resample with replacement n vectors, yielding(

Y∗
1 ,X∗

11, . . . , X∗
1p

)
...(

Y∗
n ,X∗

n1, . . . , X∗
np
)

.

Let β̂∗
j be the estimate of the jth regression parameter, j = 1, . . . ,p. Next,

repeat this process B times, yielding β̂∗
jb, j = 1, . . . ,p; b = 1, . . . ,B, and let

sjk = 1
B − 1

B∑
b=1

(
β̂∗

jb − β̂j

) (
β̂∗

kb − β̂k

)
,

where β̂j is the estimate of βj based on the original data. Compute

db =
(

β̂∗
b − β̂

)
S−1

(
β̂∗

b − β̂
)′

,

where S is the matrix corresponding to sjk, β̂ = (β̂1, . . . ,β̂p), and β̂∗
b =

(β̂∗
1b, . . . ,β̂

∗
pb). The value of db measures how far away the bth bootstrap vector

of estimated slope parameters is from the center of all B bootstrap values.
Put the db values in ascending order, yielding d(1) ≤ · · · ≤ d(B). The test
statistic is

D = (0 − β̂)S−1(0 − β̂)′

and measures how far away the null hypothesis is from the estimated slope
parameters. Reject if D ≥ d(u), where u = (1 − α)B, rounded to the nearest
integer.

The bootstrap method in Box 14.2 has been found to perform relatively well when
using robust regression estimators such as those covered in Chapter 13. Limited
studies suggest that it even performs reasonably well when using least squares regres-
sion, provided n ≥ 40. This means that when testing at the .05 level, the actual
Type I error probability will be less than .05. However, a criticism is that when using
least squares, the probability of a Type I error can be substantially less than .05,
suggesting that power might be relatively low. For smaller sample sizes, the function
lsfitci (described in Section 7.3), which uses a modified percentile bootstrap method,
provides more accurate results, but it is limited to testing for a zero slope coefficient
for each parameter at the α = .05 level. That is, for each j, it tests H0 : βj = 0, but it
does not test Equation (14.6) and it does not control the probability of at least one
Type I error among all the tests that are performed. The method in Box 14.2 can be
seen to differ in a crucial way from the method in Section 7.3. For the special case of
a single predictor, both of these methods can be used to test H0 : β1 = 0. Based on
the goal of controlling Type I error probabilities, little is known about their relative
merits for this special case.
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14.5.2 S-PLUS Function regtest

The S-PLUS function

regtest(x,y,regfun=tsreg,nboot=600,alpha=.05,grp,nullvec)

tests the hypothesis that the regression coefficients are equal to some specified set of
constants using the method in Box 14.2. By default, the hypothesis given by Equation
(14.6) is tested. The argument nullvec can be used to set the hypothesized values
to something other than zero. For example, if there are two predictors, the S-PLUS
command

regtest(x,y,nullvec=c(2,4))

will test the hypothesis that β1 = 2 and β2 = 4. The argument grp can be used
to indicate that a subset of the parameters is to be tested, which can include the
intercept term. For example, when calling the function, setting grp=c(0,3) will test
H0 : β0 = β3 = 0, assuming the argument nullvec is not specified. The command

regtest(x,y,grp=c(2,4,7))

will test H0 : β2 = β4 = β7 = 0.

EXAMPLE. For the error term (ε) and each of two predictors, 30 observations
were generated from a standard normal distribution and Y was determined by
Y = .33X1 + 0X2 + ε. Applying the standard F-test [given by Equation (14.8)]
for H0 : β1 = β2 = 0, the significance level is .23. Now suppose the same data
are used, except that when X1 > .8, the error term is taken to be X2

1ε rather than
just ε. So in general the data follow the standard regression model, except when
the first predictor is somewhat large, in which case there is heteroscedasticity.
Now the significance level of the standard F-test is .90. If we use the S-PLUS
function regtest with the default regression estimator (the Theil–Sen estimator),
the significance level is .79. Situations arise where the Theil–Sen estimator
substantially increases power when there is heteroscedasticity, but here it does
not do much better than least squares. ■

EXAMPLE. This example illustrates that it is possible to reject the hypothesis
that the slope parameters are all equal to zero [the hypothesis given by Equation
(14.6)] but fail to reject for any of the individual slope parameters. Table 14.1
shows data from a study by Hald (1952) concerning the heat evolved, in calories
per gram (Y), versus the amount of each of four ingredients in the mix: tricalcium
aluminate (X1), tricalcium silicate (X2), tetracalcium alumino ferrite (X3), and
dicalcium silicate (X4). Consider the first and third predictors and suppose we
test H0 : β1 = β3 = 0 with the S-PLUS function regtest. Figure 14.8 shows the
bootstrap estimates returned by the function regtest when using least squares.

Continued



14.5 ■ Inferential Methods with Multiple Predictors 537

TABLE 14.1 Hald’s Cement Data

Y X1 X2 X3 X4

78.5 7 26 6 60

74.3 1 29 15 52

104.3 11 56 8 20

87.6 11 31 8 47

95.9 7 52 6 33

109.2 11 55 9 22

102.7 3 71 17 6

72.5 1 31 22 44

93.1 2 54 18 22

115.9 21 47 4 26

83.8 1 40 23 34

113.3 11 66 9 12

109.4 10 68 8 12
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FIGURE 14.8 Bootstrap estimates of β1 and β3 using the cement data in Table 14.1.

EXAMPLE. (Continued ) (That is, regfun=lsfit was used.) The significance
level is .047, so in particular we would reject with α = .05. However, if
we test the individual slope parameters with the S-PLUS function lsfitci (see
Section 7.3.1), the .95 confidence intervals for β1 and β3 are (−0.28, 5.93) and
(−2.3, 3.9), respectively, so we fail to reject for either of the predictor variables.

Continued
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EXAMPLE. (Continued ) This phenomenon, where the omnibus test is significant
but the individual tests are not, is known to occur when using the conventional
F-test [given by Equation (14.8)] as well (e.g., Fairley, 1986). The reason is
that when two estimators have a reasonably strong association, the resulting
confidence region for the two parameters is a relatively narrow ellipse. Figure
14.8 shows a plot of the bootstrap estimates for the data under consideration and
provides some indication of why this phenomenon occurs. The square, where
the horizontal and vertical lines intersect, corresponds to the hypothesized
values and, as is evident, is relatively far from the bulk of the bootstrap estimates.
However, in order to reject H0 : β1 = 0 at the .05 level, which corresponds to
parameter 1 in Figure 14.8, 97.5% of the bootstrap estimates would need to
be either above or below the horizontal line. To reject H0 : β3 = 0, 97.5%
of the bootstrap estimates would need to be to the right or to the left of
the vertical line. Said another way, computing separate confidence intervals is
essentially computing a rectangular confidence region for the two parameters
under investigation. When the two estimators are approximately independent,
this tends to give similar results to those obtained with the confidence region
used by the S-PLUS function regtest, but otherwise it is possible for one method
to reject when the other does not. ■

EXAMPLE. Repeating the previous example using the conventional F-test, we
again reject H0 : β1 = β3 = 0, only now Student’s T-test of H0 : β1 = 0 rejects
as well. Using regtest with the Theil–Sen estimator, we reject H0 : β1 = β3 = 0
once more and the S-PLUS function regci rejects H0 : β1 = 0. ■

14.6 Identifying the Best Predictors

A problem that has received considerable attention is identifying a subset of predic-
tors that might be used in place of the p predictors that are available. If p is large, the
variance of the regression equation can be relatively large. If a subset of the p predic-
tors can be identified that performs relatively well in some sense, not only do we get a
simpler model, but we can get a regression equation with a lower variance. (For exam-
ple, the variance of a sum of two variables — say, X1 and X2 — is σ 2

1 + σ 2
2 + 2ρσ1σ2,

where σ1 and σ2 are the standard deviations associated with X1 and X2 and ρ is
Pearson’s correlation. So if ρ > 0, the variance of the sum is larger than the variance
of the individual variables.) If we have 40 predictors, surely it would be convenient if a
subset of, say, five predictors could be found that could be used instead. Of particular
concern in this book is subset selection when using a robust regression estimator and
the number of predictors is relatively small. This is an extremely complex problem
that has received relatively little attention. Based on what is known, some type of
bootstrap estimate of prediction error (which is formally defined later) appears to be
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relatively effective, and so this approach is described here. It is stressed, however,
that this area is in need of more research and perhaps some alternative strategy will
be found to have practical advantages over the approach used here.

Perhaps the best-known method for selecting a subset of the predictors is
stepwise regression, but it is known that the method can be rather unsatisfactory (e.g.,
Montgomery & Peck, 1992, Section 7.2.3; Derksen & Keselman, 1992), and the
same is true when using a related (forward selection) method, so for brevity these
techniques are not covered here. (Also see Kuo & Mallick, 1998; Huberty, 1989;
Chatterjee & Hadi, 1988; cf. A.J. Miller, 1990.) Generally, methods based on R2 (given
by Equation (14.7)), F (given by Equation (14.8)) and a homoscedastic approach
based on

Cp = 1
σ̂ 2

∑
(Yi − Ŷi)2 − n + 2p,

called Mallows’ (1973) Cp criterion, cannot be recommended either (A.J. Miller,
1990).1 Another approach is based on what is called ridge regression, but it suffers from
problems listed by Breiman (1995). Three alternative approaches are cross-validation,
bootstrap methods (such as the .632 estimator described in Box 14.3), and the
so-called nonnegative garrote technique derived by Breiman (1995). Efron and Tibshirani
(1993, Chapter 17) discuss cross-validation, but currently it seems that some type
of bootstrap method is preferable, so no details are given here. (Breiman’s method
is appealing when the number of predictors is large. For an interesting variation of
Breiman’s method, see Tibshirani, 1996.) Here, henceforth, attention is restricted to
methods that allow heteroscedasticity.

Imagine you observe n pairs of values (X1,Y1), . . . ,(Xn,Yn), you estimate the regres-
sion line to be Ŷ = b0 + b1X, and now you observe a new X value, which will be labeled
X0. Based on this new X value you can, of course, estimate Y with Ŷ0 = b0 + b1X0.
That is, you do not observe the value Y0 corresponding to X0, but you can estimate
it based on past observations. Prediction error refers to the discrepancy between the
predicted value of Y, Ŷ0, and the actual value of Y, Y0, if only you could observe it.
One way of measuring the typical amount of prediction error is with

E[(Y0 − Ŷ0)2],
the expected squared difference between the observed and predicted values of Y. Of
course squared error might be replaced with some other measure, but for now this
issue is ignored. As is evident, the notion of prediction error is easily generalized to
multiple predictors. The basic idea is that via some method we get a predicted value
for Y, which we label Ŷ, and the goal is to measure the discrepancy between Ŷ0 (the
predicted value of Y based on a future collection of X values) and the actual value of
Y, Y0, if it could be observed.

A simple estimate of prediction error is the so-called apparent error rate, meaning you
simply average the error when predicting the observed Y values with Ŷ. To elaborate,

1 When using Cp, σ̂ 2 is usually taken to be
∑

r2i /(n − 2), where the residuals are based on all of the
predictors under consideration.
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let Q(Y,Ŷ) be some measure of the discrepancy between an observation, Y, and its
predicted value, Ŷ. So squared error corresponds to

Q(Y,Ŷ) = (Y − Ŷ)2.

The goal is to estimate the typical amount of error for future observations. In symbols,
the goal is to estimate

η = E[Q(Y0,Ŷ0)],
the expected error between a predicted value for Y, based on a future value of X, and
the actual value of Y, Y0, if it could be observed. A simple estimate of η is the apparent
error:

η̂ap = 1
n

∑
Q(Yi,Ŷi).

So for squared error, the apparent error is

η̂ap = 1
n

∑
(Yi − Ŷi)2,

the average of the squared residuals.
A practical concern is that the apparent error is biased downward because the data

used to come up with a prediction rule (Ŷ) are also being used to estimate error
(Efron & Tibshirani, 1993). That is, it tends to underestimate the true error rate, η.
The so-called .632 bootstrap estimator, described in Box 14.3, is designed to address
this problem and currently seems to be a relatively good choice for identifying the
best predictors. It is stressed, however, that more research is needed when dealing
with this very difficult problem, particularly when using robust methods.

BOX 14.3 How to Compute the .632 Bootstrap Estimate of η

Generate a bootstrap sample as described in Box 14.2, except rather than
resample n vectors of observations, as is typically done, resample m < n
vectors of observations instead. (Setting m = n, Shao, 1995, shows that the
probability of selecting the correct model may not converge to 1 as n gets
large.) Here, m = 5 log(n) is used, which was derived from results reported
by Shao (1995). Let Ŷ∗

i be the estimate of Yi based on the bootstrap sample,
i = 1, . . . ,n. Repeat this process B times, yielding Ŷ∗

ib, b = 1, . . . ,B. Then an

Continued
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BOX 14.3 (Continued ) estimate of η is

η̂Boot = 1
nB

B∑
b=1

n∑
i=1

Q
(
Yi,Ŷ∗

ib

)
.

A refinement of η̂Boot is to take into account whether a Yi value is contained
in the bootstrap sample used to compute Ŷ∗

ib. Let

ε̂0 = 1
n

n∑
i=1

1
Bi

∑
b∈Ci

Q
(
Yi,Ŷ∗

ib

)
,

where Ci is the set of indices of the bth bootstrap sample not containing Yi
and Bi is the number of such bootstrap samples. Then the .632 estimate of
the prediction error is

η̂.632 = .368η̂ap + .632ε̂0. (14.9)

This estimator arises in part from a theoretical argument showing that .632 is
approximately the probability that a given observation appears in a bootstrap
sample of size n. [For a refinement of the .632 estimator given by Equation
(14.9), see Efron & Tibshirani, 1997.]

14.6.1 S-PLUS function regpre

The S-PLUS function

regpre(x,y,regfun = lsfit, error = sqfun, nboot = 100,

mval = round(5 log(length(y))),model = NA)

estimates prediction error for a collection of models specified by the argument model,
which is assumed to have list mode. For example, imagine you have three predictors
and you want to consider the following models:

Y = β0 + β1X1 + ε,

Y = β0 + β1X1 + β2X2 + ε,

Y = β0 + β1X1 + β3X3 + ε,

Y = β0 + β1X1 + β2X2 + β3X3 + ε.

Then the commands

model< − list( )

model[[1]]< − 1

model[[2]]< − c(1,2)
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model[[3]]< − c(1,3)

model[[4]]< − c(1,2,3)

regpre(x,y,model=model)

result in estimating prediction error for the four models. For example, the values
in model[[3]], namely, 1 and 3, indicate that predictors 1 and 3 will be used and
predictor 2 will be ignored. The argument error determines how error is measured;
it defaults to squared error. Setting error=absfun will result in using absolute error.

EXAMPLE. For the Hald data in Table 14.1, if we test the hypothesis given by
Equation (14.5) with the conventional F-test in Section 14.5 [given by Equation
(14.8)], the significance level is less than .001, indicating that there is some
association between the outcome variable and the four predictors. However,
for each of the four predictors, Student’s T-tests of H0 : βj = 0 ( j = 1, 2, 3, 4)
have significance levels .07, .5, .9, and .84, respectively. That is, we fail to
reject for any specific predictor at the .05 level, yet there is evidence of some
association. Now consider the eight models

Y = β0 + β1X1 + ε,

Y = β0 + β2X2 + ε,

Y = β0 + β3X3 + ε,

Y = β0 + β4X4 + ε,

Y = β0 + β1X1 + β2X2 + ε,

Y = β0 + β1X1 + β3X3 + ε,

Y = β0 + β1X1 + β4X4 + ε,

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε.

The estimated prediction errors for these models, based on least squares regres-
sion, are 142, 94.7, 224, 94, 7.6, 219, 9.6, and 638, respectively. Notice that the
full model (containing all of the predictors) has the highest prediction error,
suggesting that it is the least satisfactory model considered. Model 5 has the
lowest prediction error, indicating that Y = β0 + β1X1 + β2X2 + ε provides
the best summary of the data among the models considered. ■

14.7 Detecting Interactions

This section illustrates the methods previously covered in this chapter in the context
of detecting interactions. Consider some outcome variable, Y, and two predictors, X1
and X2. Roughly, the issue is whether knowing the value of X2 modifies the association
between Y and X1. For example, for the reading study introduced in Section 13.1,
there was interest in how a measure of orthographic ability (Y) is related to a measure



14.7 ■ Detecting Interactions 543

of auditory analysis, X1. A third variable in this study was a measure of sound blending
(X2). Does knowing the value of this third variable alter the association between
Y and X1; and if it does, how? More generally, there is interest in knowing whether
a particular factor affects the magnitude of some effect size. Such factors are called
moderators (e.g., Judd, Kenny, & McClelland, 2001).

Graphically, an interaction, in the context of regression, can be roughly described
as follows. Let x2 be any value of the second predictor variable, X2. For example,
x2 could be the median of the X2 values, but any other value could be used in what
follows. Now consider the outcome variable, Y, and the first predictor (X1), and
imagine that we split the n pairs of points (Y1, X11), . . . ,(Yn, Xn1) into two groups:
those pairs for which the corresponding X2 value is less than x2 and those for which
the reverse is true. No interaction means that the regression lines corresponding to
these two groups are parallel. For example, if for the first group Y = X2

1 + ε and
for the second Y = X2

1 + 6 + ε, these regression lines are parallel and there is no
interaction. But if for the second group Y = X2

1+8X1+3+ε, say, then the regression
lines intersect (at X1 = −3/8) and we say that X2 modifies the association between
Y and X1.

A very popular method for checking and modeling interaction is with

Y = β0 + β1X1 + β2X2 + β3X1X2 + ε. (14.10)

That is, use the product of the two predictors to model interaction and conclude that
an interaction exists if H0 : β3 = 0 can be rejected. (Saunders, 1955, 1956, appears
to be the first to suggest this approach to detecting interactions in regression; cf.
Cronbach, 1987; Baron & Kenny, 1986.) This hypothesis can be tested using methods
already covered. That is, for the observations (Y1, X11, X12), . . . ,(Yn, Xn1, Xn2), set
Xi3 = Xi1Xi2 and for the model Y = β0 +β1X1 +β2X2 +β3X3 + ε, test H0 : β3 = 0.
However, it currently seems that a collection of tools is needed to address the issue
of interactions in an adequate manner.

To add perspective on the product term just described, suppose we fix (or condi-
tion on) X2. That is, we treat it as a constant. Then a little algebra shows that Equation
(14.10) can be written as

Y = (β0 + β2X2) + (β1 + β3X2)X1 + ε.

So the intercept term becomes (β0 + β2X2) and the slope for X1 changes as a linear
function of X2. If β3 = 0, then

Y = (β0 + β2X2) + β1X1 + ε.

That is, knowing X2 alters the intercept term but not the slope. Said another way, if
we split the data into two groups according to whether X2 is less than or greater than
some constant x2, the corresponding regression lines will be parallel, consistent with
the description given earlier.

There are various ways one might model interaction in a more general fashion. For
example, one could replace Equation (14.10) with

Y = β0 + β1X1 + β2X2 + g(X1X2) + ε (14.11)
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for some function g of the product. Equation (14.10) corresponds to the special case
g(X1X2) = β3X1X2. A simple method for examining whether some function of the
product might be useful is to create a partial residual plot as described in Section
14.2.5. This assumes, of course, that Y has a linear association with X1 and X2, and
for the reading data, for example, we have already seen that this assumption seems
dubious.

Before continuing, an exploratory tool is described that is useful when checking for
a modifier variable; the method is based on a slight extension of the running-interval
smoother. The basic idea is to plot the strength of the association between Y and X1
as a function of X2. Consider the ith observed value for X2, Xi2. Briefly, identify all
of the Xj2 values that are close to Xi2 in the manner outlined in Section 14.2. Then
for the corresponding pairs of points, (X1j, Yj), compute some correlation coefficient
and label it θ̂i. Repeat this process for i = 1, . . . ,n and then plot the pairs (Xi2, θ̂i). The
computations are performed by the S-PLUS function runcor described in Section
14.7.1 (cf. Doksum, Blyth, Bradlow, Meng, & Zhao, 1994).

EXAMPLE. Some of the strategies that might be used to detect modifier
variables are illustrated with data from a reading study previously mentioned.
Again, we take as the outcome variable a measure of orhographic ability (Y),
only this time the first predictor (X1) is a measure of sound blending and the issue
is whether a measure of phonological awareness (X2) modifies the association
between Y and X1. First consider the model given by Equation (14.10), where
X3 = X1X2. If we apply the conventional F-test to H0 : β1 = β2 = β3 = 0,
the significance level is .044, but the significance levels for the three individual
slope parameters are .46, .67, and .92, respectively. Estimating prediction error
as described in Section 14.6, among the models

Y = β0 + β1X1 + ε,

Y = β0 + β2X2 + ε,

Y = β0 + β3X3 + ε,

Y = β0 + β1X1 + β2X2 + ε,

Y = β0 + β1X1 + β2X2 + β3X3 + ε,

the first has the lowest prediction error (using least squares regression and
squared error). This suggests that the first predictor is important but the others
are not. But before making any final decisions about the associations under
study, it is important to see whether other methods paint a different picture. ■

To get some feel for the data, Figure 14.9 shows a smooth created by the S-PLUS
function runm3d, described in Section 14.2.4, when using X1 and X2 to predict Y.
Notice that the regression surface does not appear to be well approximated by a plane.
That is, assuming a linear association might provide an inadequate representation of
the data, contrary to what is typically assumed when investigating interactions.
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FIGURE 14.9 A smooth for two predictors used in a reading study.

Next we examine the association between X1 and Y, ignoring X2 for the moment.
Typically it is assumed that this association is linear and so one goal is to get some
sense of whether this assumption is reasonable for the problem at hand. Figure 14.10
shows a smooth of these two variables that suggests a nonlinear association. Using
the S-PLUS function linchk (described in Section 14.4.3) to check for linearity, with
the data split at X1 = 7, the .95 confidence interval for the difference between the
slopes is (−1.5, 0) with a significance level of .027. The estimated slopes, using
Theil–Sen, are 0 (for X1 < 7) and .5. Checking for linearity with the method in
Box 14.1, the test statistic reported by the S-PLUS function lintest is 7.76 and the
.05 critical value is 4.27, again suggesting that the hypothesis of a linear association
is false. One way to proceed from here is to incorporate a measure of association
that is sensitive to monotonic relationships that are not necessarily linear. Two classic
approaches are available, but the details are postponed until Chapter 15. (For an
analysis of these data based on one of these approaches, see the example in Section
15.12.) It is instructive, however, to proceed under the assumption that problems
with nonlinearity can ignored.

Next we plot the smooth relating the (percentage bend) correlation between Y
and X1 as a function of X2. Figure 14.11 shows the results based on the S-PLUS
function runcor (described in Section 14.7.1). The + indicates the location of the
median of X2, and the quartiles are indicated by a |. Note that the smooth is fairly
horizontal on the left but that there is some indication that it begins to increase
around X2 = 12 or perhaps X2 = 15. To provide perspective, the S-PLUS function
runmean2g is used to simultaneously plot a smooth between Y and X1 based on
points corresponding to X2 ≤ 12 as well as for X2 > 12. That is, runmean2g creates
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FIGURE 14.10 A smooth based on the first of the two predictors used in the reading
example.

a smooth when predicting Y based on X1 for two groups. The first group corresponds
to X2 ≤ 12, and the second is simply X2 > 12. ( To facilitate this part of the analysis,
the S-PLUS function regi, described in Section 14.7.1, is provided.) Figure 14.12
shows the results. Notice that for the second group (with points indicated by a +),
there is only one point with X1 < 4. This means that the left portion of the smooth for
the second group might be relatively inaccurate, for reasons mentioned in Section
14.1. Focusing on the X values in Figure 14.12 that are greater than or equal to
4, the two smooths appear to be fairly parallel, which suggests that there is no
interaction. Also, curvature between Y and X1 now seems to be minimal. Testing
the hypothesis of equal slopes with the S-PLUS function reg2ci using the Theil–Sen
estimator, the significance level is .47, so we fail to reject and it might seem that
it is safe to conclude that there is no interaction. The estimates of the slopes are
0 and .33.

There are, however, several concerns. The first is that for convenience, Theil–Sen
was used. Checking for outliers using the MGV method and comparing the MGV
regression estimate of the slope to Theil–Sen suggests that the slopes for the two
groups are even more similar than indicated: The estimated slope for the second
group drops slightly to .29. This might seem to support the conclusion that there is
no interaction, but the MGV estimator can have a much smaller standard error, which
could result in rejecting the hypothesis of equal slopes. Another concern is that the
data were split according to whether X2 ≤ 12. Is this the optimal split for detecting an
interaction? Empirical results previously described suggest splitting the data in this
manner, but perhaps a slightly different split would make a practical difference. A third
concern, which is always an issue when failing to reject, is whether power is sufficiently
high to accept the null hypothesis of equal slopes. Addressing this problem for the
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FIGURE 14.11 A smooth based on the reading data that shows the percentage bend
correlation between Y and X1 as a function of X2.
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FIGURE 14.12 A smooth, based on the reading data, between Y and X1. The solid line
is based on points with X2 ≤ 12 and the dashed line is for X2 > 12.

problem at hand is difficult at best. And finally, it is unclear whether the apparent
curvilinear association between X1 and Y can be ignored. (In Section 15.12, we will
see that using a measure of association that is sensitive to this curvilinearity makes a
practical difference.)
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EXAMPLE. The same two predictors in the previous example are used again,
but now the outcome variable of interest (Y) is a measure of word accuracy and
we consider whether phonological awareness modifies the association between
sound blending and Y. Here we merely split the data into two groups according
to whether X2 is less than or equal to its median. Checks on the second group
indicate that a single unusual X1 value is seriously affecting the estimated slope
based on both the Theil–Sen estimator and least squares. By restricting the
range in this second group so as to eliminate this seemingly aberrant point, the
.95 confidence interval for the difference between the slopes, using Theil–Sen,
is (0, 4) with a significance level of .057 when testing the hypothesis that the
slopes are equal. That is, for this particular split of the data, we are unable
to reject at the .05 level the hypothesis that the two groups have unequal
slopes. But we come fairly close to rejecting and concluding that phonological
awareness modifies the association between sound blending and word accuracy.
Testing the hypothesis that in Equation (14.10), β3 = 0, the significance level
is .14 using least squares and the conventional Student’s T-test. ■

14.7.1 S-PLUS Functions runcor, regi, and cori

The S-PLUS function

runcor(x, y, z, fr = 1, corflag = F, corfun = pbcor, plotit = T, rhat = F)

plots the correlation between x and y as a function of the data stored in the argument
z. Setting the argument corflag to T (for true) results in using Pearson’s correlation;
otherwise the function uses the correlation specified by the argument corfun, which
defaults to the percentage bend correlation. Setting the argument rhat to T, the
function returns the values of the estimated correlations corresponding to each value
stored in z. For example, if the first value in z is 6, then the first value returned in rhat
is the correlation between x and y for points for which the corresponding z values
are close to 6. As usual, fr is the span and plotit=F will suppress the plot.

The S-PLUS function

regi(x, y, z, pt=median(z),fr=.8,est=mom,regfun=tsreg,testit=F,…)

creates two smooths. The first is based on the x and y values for which the corre-
sponding value for z is less than the value stored in the argument pt. By default, pt is
taken to be the median of the z values. The other smooth is based on the x and y val-
ues for which the corresponding value for z is greater than pt. The smooth is created
with the measure of location given by the argument est, which defaults to MOM. If
testit=T is used, the slopes (and intercepts) of the two regression lines, based on the
function regfun (which defaults to the Theil–Sen estimator), are compared. (This is
done by splitting the data for you and calling the function reg2ci.)

The S-PLUS function

cori(x, y, z, pt=median(z),fr=.8,est=mom,corfun=pbcor,testit=F,…)
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is like regi, except that setting testit to T causes the correlations to be compared
rather than the regression slopes. By default, the percentage bend correlation is used,
but the argument corfun can be used to specify some other measure of association.
(For example, corfun=spear results in using Spearman’s correlation, a measure of
association covered in Chapter 15.)

14.8 ANCOVA

This section takes up a topic known as the analysis of covariance, or ANCOVA. As
was the case in Chapter 8, the goal is to compare two independent groups in terms
of some measure of location, but here an additional goal is to take into account
the information provided by some predictor variable called a covariate. As a simple
illustration, imagine that men and women are compared in terms of their typi-
cal score on some mathematics aptitude test and it is found that the typical male
scores higher than the typical woman. However, test scores might be related to
previous training in mathematics, and if we compare men and women having com-
parable training, now women might score higher than men. Here the covariate is
previous training.

There is a standard ANCOVA method that is based on least squares regression.
(See Huitema, 1980; Rutherford, 1992.) Not only does the method assume nor-
mality and homoscedasticity, but it assumes that the regression lines for the two
groups being compared are parallel. As previously mentioned, there are many meth-
ods for testing the assumption that regression lines are parallel. But it is unknown
how to determine whether they have enough power to detect nonparallel lines
in situations where violating this assumption has practical consequences. Some
least squares methods that allow nonparallel regression lines are available, a clas-
sic example being the Johnson–Neyman method (P. Johnson & Neyman, 1936).
Here, however, attention is focused on modern robust methods. Unlike conven-
tional approaches, it is not assumed that the regression line is straight. Rather, a
smooth is used to approximate the regression lines and then typical values for Y,
given some value for the covariate, are compared using methods covered in previous
chapters.

For the jth group, let mj(X) be some population measure of location associated
with Y given X. So for the first group, m1(6) might represent the population mean of
Y given that X = 6, or it could be the population value for MOM or a 20% trimmed
mean. Given X, the problem is determining how the typical value of Y in the first
group compares to the typical value in the second. In the Pygmalion study introduced
in Section 14.3.1, the goal might be to determine how the 20% trimmed mean of the
experimental group compares to the trimmed mean of the control group, given that
a student’s IQ reasoning pretest score is X = 90. Of course, a more general goal is
to determine how the trimmed means compare as X varies. A common strategy is to
assume that a straight regression line can be used to predict Y from X. In the present
notation, it is assumed that for the jth group,

mj(X) = β0j + β1jX1j,
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j = 1, 2. However, when working with robust regression methods, currently this
approach to ANCOVA has been found to be relatively unsatisfactory when testing
hypotheses.

A more satisfactory approach is based in part on the running-interval smooth
described in Section 14.1. So in particular, it is not assumed that a straight line
provides an adequate summary of the data; in the event it does, all indications are
that the method described here continues to perform relatively well in terms of both
Type I errors and power (Wilcox, 1997b). Even under normality, the conventional
ANCOVA method appears to have only a minor advantage.

To elaborate on how the method is applied, first assume that an X value has been
chosen with the goal of computing a confidence interval for m1(X) − m2(X). For the
jth group, let Xij, i = 1, . . . ,nj be values of the predictors that are available. The
value mj(X) is estimated as described in Section 14.2. That is, for fixed j, estimate
mj(X) using the Yij values corresponding to the Xij values that are close to X. Let
Nj(X) be the number of observations used to compute the estimate of mj(X). That
is, Nj(X) is the number of points in the jth group that are close to X, which in turn
is the number of Yij values used to estimate mj(X). Provided that both N1(X) and
N2(X) are not too small, a reasonably accurate confidence interval for m1(X) − m2(X)
can be computed using methods already covered. When comparing the regression
lines at more than one design point, confidence intervals for m1(X) − m2(X), having
simultaneous probability coverage approximately equal to 1 − α, can be computed
as described in Chapter 12.

14.8.1 S-PLUS Functions ancova, ancpb, and ancboot

The S-PLUS function

ancova(x1,y1,x2,y2,fr1=1,fr2=1,tr=0.2,alpha=0.05,plotit=T,pts = NA)

performs ANCOVA with trimmed means as just described. The arguments x1, y1,
x2, y2, tr, and alpha have their usual meaning. The arguments fr1 and fr2 are the
spans used for groups 1 and 2, respectively. The argument pts can be used to specify
the X values at which the two groups are to be compared. For example, pts=12
will result in comparing the trimmed mean for group 1 (based on the y1 values)
to the trimmed mean of group 2 given that X = 12. If there is no trimming, the
null hypothesis is H0 : E(Y1|X = 12) = E(Y2|X = 12), where Y1 and Y2 are the
outcome variables of interest corresponding to the two groups. Using pts=c(22,36)
will result in testing two hypotheses. The first is H0 : m1(22) = m2(22) and the second
is H0 : m1(36) = m2(36). If no values for pts are specified, then the function picks five
X values and performs the appropriate tests. The values that it picks are reported in
the output illustrated later. Generally, this function controls FWE using the method
in Section 12.6. If plotit=T is used, the function also creates a scatterplot and smooth
for both groups, with a + and a dashed line indicating the points and the smooth,
respectively, for group 2.

The function

ancpb(x1,y1,x2,y2,est=mom,pts=NA,fr1=1,fr2=1,nboot=599,plotit=T,…)
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is like the S-PLUS function ancova, except that only a percentile bootstrap method is
used to test hypotheses and by default the measure of location is MOM. Now FWE
is controlled as described in Section 12.7.3. In essence, the function creates groups
based on the values in pts; in conjunction with the strategy behind the smooth, it
creates the appropriate set of linear contrasts and then calls the function pbmcp,
described in Section 12.7.4.

Finally, the function

ancboot(x1,y1,x2,y2,fr1=1,fr2=1,tr=0.2,nboot=599,pts=NA,plotit = T)

compares trimmed means using a bootstrap-t method. Now FWE is controlled as
described in Section 12.7.1.

EXAMPLE. The ANCOVA methods described in this section are illustrated
with the Pygmalion data described in Section 14.3.1. The goal is to compare
posttest scores for the two groups, taking into account the pretest scores. If the
data for the experimental group are stored in the S-PLUS matrix pyge, with
the pretest scores in column 1, and the data for the control are stored in pygc,
the command

ancova(pyge[,1],pyge[,2],pygc[,1],pygc[,2])

returns

X n1 n2 DIF TEST se ci.low ci.hi
72 12 63 13.39103 1.848819 7.243016 -9.015851 35.79790
82 16 68 14.79524 1.926801 7.678655 -8.211174 37.80165

101 14 59 22.43243 1.431114 15.674806 -26.244186 71.10905
111 12 47 23.78879 1.321946 17.995286 -35.644021 83.22161
114 12 43 21.59722 1.198906 18.014112 -37.832791 81.02724

The first column, headed by X, says that posttest scores are being compared
given that pretest scores (X) have the values 72, 82, 101, 111, and 114. The
sample sizes used to make the comparisons are given in the next two columns.
For example, when X = 72, there are 12 observations being used from the
experimental group and 63 from the control. That is, there are 12 pretest scores
in the experimental group and 63 values in the control group that are close to
X = 72. The column headed DIF contains the estimated difference between
the trimmed means. For example, the estimated difference between the posttest
scores, given that X = 72, is 13.39. The last two columns indicate the ends
of the confidence intervals. These confidence intervals are designed so that
FWE is approximately α. The critical value is also reported and is 3.33 for the
situation here. All of the confidence intervals contain zero, and none of the test
statistics exceeds the critical value, so we fail to detect any differences between
posttest scores taking into account the pretest scores of these individuals. ■

Figure 14.13 shows the plot created by the S-PLUS function ancova. Note that
X = 72 appears near the center of the plot, yet this is the smallest X value used.
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FIGURE 14.13 A plot created by the S-PLUS function ANCOVA.

The reason is that for the experimental group, there are only six cases where X < 72.
If for example we try to compare the posttest scores given that the pretest scores are
X = 70, there are too few individuals in the experimental group with X close to 70
to make meaningful comparisons.

If we apply the function ancpb instead, a portion of the output is

$mat:
X n1 n2

[1,] 72 12 63
[2,] 82 16 68
[3,] 101 14 59
[4,] 111 12 47
[5,] 114 12 43

con.num psihat sig.level sig.crit ci.lower ci.upper
[1,] 1 12.334699 0.05008347 0.0102 -4.507937 35.28625
[2,] 2 7.907925 0.10350584 0.0127 -7.200000 57.44683
[3,] 3 8.092476 0.12020033 0.0169 -5.282468 62.18519
[4,] 4 6.917874 0.18697830 0.0250 -7.025000 63.63889
[5,] 5 5.388889 0.23706177 0.0500 -5.887805 55.28488

Again we fail to find any differences, but note that the length of the confidence
intervals are generally substantially shorter than the confidence intervals from the
function ancova. For example, with X = 114, the length of the confidence interval
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here is (55.3+5.9) = 61.2. In contrast, the length of the confidence interval reported
by ancova is 118.8, and the ratio of the lengths is .51. Moreover, MOM, used in
conjunction with the percentile bootstrap, can provide accurate probability coverage
in situations where trimmed means (with trimming less than 20%) and nonbootstrap
methods are unsatisfactory.

14.9 Exercises

1. For the predictor X2 in Table 14.1, MAD/.6745=20.756. If in Section 14.2
you take the span to be f = 1, what would be the estimate of Y given that
X2 = 250, based on a 20% trimmed mean? What would be the estimate based
on MOM?

2. Exercises 1 and 2 in Chapter 13 report data on 29 lakes in Florida. Assuming
that you want to predict Y (the mean annual nitrogen concentration) given
TW (water retention time), plot a smooth, and comment on whether a straight
regression line is advisable.

3. Repeat the previous exercise, only now use NIN (the average influent nitrogen
concentration) to predict Y.

4. Again referring to Exercises 1 and 2 in Chapter 13, check for any outliers among
the TW and NIN values using the MVE method, eliminate any outliers that are
found, and plot a smooth for predicting Y using the S-PLUS functions rungen
and runmean in Section 14.2.1. Compare the results to smooths you get when
the outliers are not eliminated. Comment on why retaining the outliers among
the TW and NIN values might have an adverse effect on fitting a regression
plane to the data.

5. For the data in Exercises 1 and 2 of Chapter 13, check for curvature using a
partial residual plot.

6. For the data in Exercises 1 and 2 of Chapter 13, eliminate any outliers among
the predictor values found by the MVE method, and for the remaining data,
test H0 : β1 = β2 = 0 using the methods in Section 14.5.

7. Table 14.2 contains a portion of the data reported by Thompson and Randall-
Maciver (1905) dealing with skull measurements of male Egyptians from
different time periods. Here, only the data from 4000 bc and 150 ad are
reported. Pool the data from both periods and create a smooth using runmean,
rungen, and lowess. What do these smooths suggest about the association
between X and Y? Check this possibility with the S-PLUS function lintest in
Section 14.4.3.

8. For the data in Table 14.2, create a smooth using the 4000 bc data only and
compare it to the smooth for the 150 ad data.

9. Compare the regression slopes in the previous exercise using the S-PLUS
function reg2ci. Verify that the significance level is .04 when using the default
settings.

10. Repeat the previous exercise, only now use the S-PLUS function ancova to
compare the regression lines. At which X values do you get a significant
difference with α = .05?
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TABLE 14.2 Skull Measurements

X (4000 bc) 138 131 132 132 143 137 130 136 134 134

138 121 129 136 140 134 137 133 136

131 133 135 124 134 130 135 132 129 136 138

X (150 ad) 123 131 126 134 127 138 138 126 132 135

120 136 135 134 135 134 125 135 125

129 136 129 126 124 127 125 128 135 129 133

Y (4000 bc) 89 92 99 96 100 89 108 93 102

99 95 95 109 100 100 97 103 93 96

101 102 103 93 103 104 100 93 106 114 101

Y (150 ad) 91 95 91 92 86 101 97 92 99

92 95 101 95 93 96 95 99 96 92

89 92 97 88 91 97 85 81 103 87 97

X is basibregmatic height of skull; Y is basialveolar length of skull.

11. Data were generated from normal distributions for X1, X2, and ε. Setting
X3 = X1X2, consider the following models:

Y = β0 + β1X1 + ε,

Y = β0 + β1X2 + ε,

Y = β0 + β1X3 + ε,

Y = β0 + β1X1 + β2X2 + ε,

Y = β0 + β1X1 + β2X2 + β3X3 + ε.

The output from the S-PLUS function regpre (in Section 14.6.1) is

$estimates:
apparent.error boot.est err.632

[1,] 1.4623288 1.639636 1.625111
[2,] 1.2262127 1.364102 1.353811
[3,] 1.0169318 1.136070 1.124203
[4,] 1.2100394 1.440440 1.422938
[5,] 0.8807802 1.121439 1.095643

Based on this output, which model appears to be the best summary of the
data?

12. In the previous exercise, imagine that you fail to reject H0 : β3 = 0. Describe
some reasons why it might be erroneous to conclude that there is no
interaction.
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13. An exploratory method for dealing with interactions is to assume that the
model Y = β0 + β1X1 + β2X2 + β3X1X2 + ε is true and to use a partial
residual plot to check the adequacy of the third term (β3X1X2), assuming that
Y has a linear association between β1X1 and β2X2. Describe some reasons why
this approach might be unsatisfactory.



15
RANK-BASED AND
NONPARAMETRIC
METHODS

This chapter covers basic nonparametric and so-called rank-based methods.
Generally, the techniques covered here provide a different and interesting perspec-
tive on how groups differ and how variables are related versus the methods covered
in previous chapters. Often the methods in this chapter are recommended for dealing
with problems that arise when sampling from nonnormal distributions, and so one
goal is to try to convey their relative merits versus techniques covered in previous
chapters. Many conventional rank-based methods suffer from serious practical prob-
lems when comparing groups with different distributions, but substantial progress
has been made regarding how to overcome these difficulties.

15.1 Comparing Two Independent Groups

This section describes methods for comparing two independent groups. We begin
with a classic technique, outline its practical problems, and then cover modern
methods for dealing with these issues.

15.1.1 Wilcoxon–Mann–Whitney Test

The standard rank-based method for comparing two independent groups is called
the Wilcoxon–Mann–Whitney (WMW) test. It was originally derived by Wilcoxon
(1945), and later it was realized that Wilcoxon’s method was the same as a procedure
proposed by Mann and Whitney (1947). To describe the basic goal, imagine you
randomly sample an observation from the first group and do the same for the second.
Now temporarily assume that these two observations cannot have equal values. For
example, if the observation from the first group is 6, it is assumed that there is
zero probability that you will get 6 when sampling from the other group. Let p
be the probability that a randomly sampled observation from the first group is less
than a randomly sampled observation from the second. If the groups do not differ

557
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in any way, meaning that they have identical distributions, then p = .5. Also, p
provides a perspective (a measure of effect size) on how groups differ not provided
by any of the techniques covered in previous chapters. So a general goal of interest is
making inferences about p based on observations we make. This includes estimating
p, computing a confidence interval for p, and testing the hypothesis

H0 : p = .5. (15.1)

First consider the problem of estimating p. For illustrative purposes suppose we
observe

Group 1: 30, 60, 28, 38, 42, 54
Group 2: 19, 21, 27, 73, 71, 25, 59, 61

Now focus on the first value in the first group, 30, and notice that it is less than four
of the eight observations in the second group. So a reasonable estimate of p is 4/8.
In a similar manner, the second observation in the first group is 60; it is less than
three of the values in the second group, so a reasonable estimate of p is 3/8. These
two estimates of p differ, and a natural way of combining them into a single estimate
of p is to average them. More generally, if we have n1 observations in group 1 and n2
observations in group 2, focus on the ith observation in the first group and suppose
this value is less than Vi of the observation in group 2. So based on the ith observation
in group 1, an estimate of p is Vi/n2, and we have n1 estimates of p: V1/n2, . . . ,Vn1 /n2.
To combine these n1 estimates of p into a single estimate, average them, yielding

p̂ = 1
n1n2

∑
Vi. (15.2)

As is usually done, let

U = n1n2p̂. (15.3)

The quantity U is called the Mann–Whitney U statistic; typically a test of H0 : p = .5
is described in terms of U. If p = .5, it can be shown that E(U) = n1n2/2. More
generally,

E
(

U
n1n2

)
= p.

Next, consider the problem of estimating VAR(U), the squared standard error
of U. If we assume there are no tied values and that both groups have identical
distributions, the classic estimate of the standard error can be derived. (By “no tied
values” it is meant that each observed value occurs only once. So if we observe the
value 6, for example, it never occurs again among the remaining observations.) The
expression for VAR(U) is

σ 2
u = n1n2(n1 + n2 + 1)

12
.

This means that the null hypothesis given by Equation (15.1) can be tested with

Z = U − n1n2/2
σu

, (15.4)
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which has, approximately, a standard normal distribution when the assumptions are
met and H0 is true. In particular, reject if

|Z| ≥ Z1−α/2,

where Z1−α/2 is the 1 − α/2 quantile of a standard normal distribution. Hodges,
Ramsey, and Wechsler (1990) suggest estimating the p-value as outlined in
Box 15.1.

BOX 15.1 Computing the p-Value of the Wilcoxon–Mann–Whitney Test

Let

y = 1
σu

(
U + 0.5 − n1n2

2

)
,

k = 20n1n2(n1 + n2 + 1)

n2
1 + n2

2 + n1n2 + n1 + n2
,

S = y2,

T1 = S − 3,

T2 = 155S2 − 416S − 195
42

,

c = 1 + T1

k
+ T2

k2 .

If cy is negative, the one-sided p-value is

P(Z ≤ cy),

where Z is a standard normal random variable. So the p-value can be
determined from Table 1 in Appendix B. If cy is positive, the one-sided
p-value is

1 − P(Z ≤ cy).

The two-sided p-value is

2[1 − P(Z ≤ |cy|)].

EXAMPLE. Continuing the illustration using the data just following Equation
(15.1), it can be seen that p̂ = .479, so U = 23 and

Z = 23 − 24
7.75

= −0.129.

With α = .05, the critical value is 1.96; |Z| is less than 1.96, so fail to reject. ■
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Sometimes the Wilcoxon–Mann–Whitney test is described as a method for com-
paring medians. However, it is relatively unsatisfactory for this purpose because it
is not based on a direct estimate of the population medians. For example, there are
situations where power decreases as the difference between the population medians
increases, and confidence intervals for the difference cannot be computed (Kendall &
Stuart, 1973; Hettmansperger, 1984).

Another characterization of the Wilcoxon–Mann–Whitney method is that it tests
the hypothesis that two groups have identical distributions. In symbols, if F1 and F2
are the distributions of the two groups being compared, the goal is to test

H0 : F1(x) = F2(x), (15.5)

which says that for any x, the probability that a randomly sampled observation is
less than or equal to x is the same for both groups. A more accurate description
of the method in Box 15.1 is that it approximates the p-value of the Wilcoxon–
Mann–Whitney test when the goal is to test Equation (15.5) as opposed to testing
H0 : p = .5.

When tied values occur with probability zero and the goal is to test H0 : F1(x) =
F2(x), the probability of a Type I error can be controlled exactly by computing a
critical value as described, for example, in Hogg and Craig (1970, p. 373). Let

W = U + n2(n2 + 1)
2

(15.6)

and suppose H0 [given by Equation (15.5)] is rejected if W is sufficiently large or
small. If H0 is rejected when

W ≤ cL

or when

W ≥ cU,

where cL is read from Table 13 in Appendix B and

cU = n2(n2 + n1 + 1) − cL,

then the actual probability of a Type I error will not exceed .05 under random sampling.

15.1.2 S-PLUS Function wmw

Using the data stored in the S-PLUS variables x and y, the S-PLUS function

wmw(x,y)

computes the significance level of the Wilcoxon–Mann–Whitney test as described in
Box 15.1.

15.1.3 Handling Ties and Heteroscedasticity

A practical concern is that if groups differ, then under general circumstances
the wrong standard error is being used by the Wilcoxon–Mann–Whitney test in
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Equation (15.4), which can result in relatively poor power and an unsatisfactory
confidence interval for p. Said another way, if groups have different distributions,
generally σ 2

u is the wrong standard error for U. Another problem is how to handle
tied values. Currently there are two general approaches to both of these problems
that appear to be relatively effective.

First consider the problem of tied values and note that if we randomly sample a
single observation from both groups, there are three possible outcomes: the obser-
vation from the first group is greater than the observation from the second, the
observations have identical values, and the observation from the first group is less
than the observation from the second. The probabilities associated with these three
mutually exclusive outcomes are labeled p1, p2, and p3. In symbols, if Xij represents
the ith observation from the jth group, then

p1 = P(Xi1 > Xi2),

p2 = P(Xi1 = Xi2),

p3 = P(Xi1 < Xi2).

So in the notation of Section 15.1.1, p3 = p. Cliff (1996) focuses on testing

H0 : δ = p1 − p3 = 0. (15.7)

In the event tied values occur with probability zero, in which case p2 = 0, Equation
(15.7) becomes H0 : p1 = p3 = .5, which is the same as Equation (15.1). It can be
shown that another way of expressing Equation (15.7) is with

H0 : p3 + .5p2 = .5.

For convenience, let P = p3 + .5p2, in which case this last equation becomes

H0 : P = .5. (15.8)

Of course, when there are no tied values, P = p3. The parameter δ [in Equation
(15.7)] is related to P in the following manner:

δ = 1 − 2P, (15.9)

so

P = 1 − δ

2
. (15.10)

Cliff derived a heteroscedastic confidence interval for δ, which is computed as
summarized in Box 15.2. If the confidence interval for δ does not contain zero, reject
H0 : δ = 0. When ties occur with probability zero, this is tantamount to rejecting
H0 : p = .5.
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BOX 15.2 Cliff’s Method for Two Independent Groups

As usual, let Xij be the ith observation from the jth group, j = 1, 2. For the
ith observation in group 1 and the hth observation in group 2, let

dih =



−1 if Xi1 < Xh2,
0 if Xi1 = Xh2,
1 if Xi1 > Xh2.

An estimate of δ = P(Xi1 > Xi2) − P(Xi1 < Xi2) is

δ̂ = 1
n1n2

n1∑
i=1

n2∑
h=1

dih, (15.11)

the average of the dih values. Let

d̄i. = 1
n2

∑
h

dih,

d̄.h = 1
n2

∑
i

dih,

s21 = 1
n1 − 1

n1∑
i=1

(d̄i. − δ̂)2,

s22 = 1
n2 − 1

n2∑
h=1

(d̄.h − δ̂)2,

σ̃ 2 = 1
n1n2

∑∑
(dih − δ̂)2.

Then

σ̂ 2 = (n1 − 1)s21 + (n2 − 1)s22 + σ̃ 2

n1n2

estimates the squared standard error of δ̂. Let z be the 1 − α/2 quantile of a
standard normal distribution. Rather than use the more obvious confidence
interval for δ, Cliff (1996, p. 140) recommends

δ̂ − δ̂3 ± zσ̂
√

(1 − δ̂2)2 + z2σ̂ 2

1 − δ̂2 + z2σ̂ 2
.

If there are no tied values, alternative heteroscedastic methods have been proposed
by Mee (1990) as well as Fligner and Policello (1981). Currently it seems that for
this special case, these methods offer no practical advantage over the method in
Box 15.2.
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15.1.4 S-PLUS function cid

The S-PLUS function

cid(x,y,alpha=.05),

written for this book, performs the calculations in Box 15.2.

15.1.5 The Brunner–Munzel Procedure

An alternative approach to both tied values and heteroscedasticity stems from Brunner
and Munzel (2000). Their approach is based in part on what are called the midranks
for handling tied values. To explain, first consider the values 45, 12, 32, 64, 13, and
25. There are no tied values and the smallest value is said to have rank 1, the next
smallest has rank 2, and so on. A common notation for the rank corresponding to the
ith observation is Ri. So in the example, the first observation is X1 = 45 and its rank
is R1 = 5. Similarly, X2 = 12 and its rank is R2 = 1.

Now consider a situation where there are tied values: 45, 12, 13, 64, 13, and 25.
Putting these values in ascending order yields 12, 13, 13, 25, 45, 64. So the value
12 gets a rank of 1, but there are two identical values having a rank of 2 and 3. The
midrank is simply the average of the ranks among the tied values. Here, this means
that the rank assigned to the two values equal to 13 would be (2 + 3)/2 = 2.5, the
average of their corresponding ranks. So the ranks for all six values would be 1, 2.5,
2.5, 4, 5, 6.

Generalizing, consider

7, 7.5, 7.5, 8, 8, 8.5, 9, 11, 11, 11.

There are 10 values, so if there were no tied values, their ranks would be 1, 2,
3, 4, 5, 6, 7, 8, 9, and 10. But because there are two values equal to 7.5, their
ranks are averaged, yielding a rank of 2.5 for each. There are two values equal to 8;
their original ranks were 4 and 5, so their final ranks (their midranks) are both 4.5.
There are three values equal to 11; their original ranks are 8, 9, and 10, the aver-
age of these ranks is 9, so their midranks are all equal to 9. So the ranks for the
10 observations are

1, 2.5, 2.5, 4.5, 4.5, 6, 7, 9, 9, 9.

Now consider testing H0 : P = .5, where P is as defined in Section 15.1.3. As
usual, let Xij be the ith observation from the jth group (i = 1, . . . , nj; j = 1,2).
To apply the Brunner–Munzel method, first pool all N = n1 + n2 observations
and assign ranks. In the event there are tied values, ranks are averaged as just
illustrated. The results for the jth group are labeled Rij, i = 1, . . . , nj. That is, Rij
is the rank corresponding to Xij among the pooled values. Let R̄1 be the average of
the ranks corresponding to group 1 and R̄2 be the average for group 2. So for the jth
group,

R̄j = 1
nj

nj∑
i=1

Rij.
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Next, for the first group, rank the observations, ignoring group 2, and label the
results V11, . . . , Vn11. Do the same for group 2 (ignoring group 1), and label the ranks
V12, . . . , Vn22. The remaining calculations are shown in Box 15.3.

BOX 15.3 The Brunner–Munzel Method for Two Independent Groups

Compute

S2
j = 1

nj − 1

nj∑
i=1

(
Rij − Vij − R̄j + nj + 1

2

)2

,

s2j = S2
j

(N − nj)2 ,

se = √
N

√
s21
n1

+ s22
n2

,

U1 =
(

S2
1

N − n1
+ S2

2

N − n2

)2

,

U2 = 1
n1 − 1

(
S2

1

N − n1

)2

+ 1
n2 − 1

(
S2

2

N − n2

)2

.

The test statistic is

W = R̄2 − R̄1√
Nse

,

and the degrees of freedom are

ν̂ = U1

U2
.

Decision Rule
Reject H0 : P = .5 if |W| ≥ t, where t is the 1 − α/2 quantile of a Student’s

T-distribution with ν̂ degrees of freedom. An estimate of P is

P̂ = 1
n1

(
R2 − n2 + 1

2

)
= 1

N

(
R̄2 − R̄1

)+ 1
2

.

The estimate of δ is

δ̂ = 1 − 2P̂.

An approximate 1 − α confidence interval for P is

P̂ ± tse.
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There is a connection between the method just described and the Wilcoxon–
Mann–Whitney test that is worth mentioning:

U = n2R̄2 − n2(n2 + 1)
2

.

That is, if you sum the ranks of the second group (which is equal to n2R̄2) and subtract
n2(n2 + 1)/2, you get the Wilcoxon–Mann–Whitney U statistic given by Equation
(15.3). Many books describe the Wilcoxon–Mann–Whitney method in terms of U
rather than the approach used here.

Note that both the Cliff and Brunner–Munzel rank-based methods offer protection
against low power due to outliers. If, for example, the largest observation among
a batch of numbers is increased from 12 to 1 million, its rank does not change.
But how should one choose between rank-based methods covered here versus the
robust methods in Chapter 8? If our only criterion is high power, both perform
well, with weak evidence that in practice, robust methods are a bit better. But the
more important point is that they provide different information about how groups
compare. Some authorities argue passionately that as a measure of effect size, P and
δ, as defined in this section, reflect what is most important and what we want to know.
Others argue that measures of location also provide useful information; they reflect
what is typical and provide a sense of the magnitude of the difference between groups
that is useful and not provided by rank-based methods. The only certainty is that at
present, there is no agreement about which approach should be preferred or even if
it makes any sense to ask the question of which is better.

Often Cliff’s method gives similar results to the Brunner–Munzel technique. But
when the probability of a tied value is high and there are relatively few outcomes
possible (i.e., there are few possible X values that can be observed), the Brunner–
Munzel procedure can have a higher Type I error probability than Cliff. Based on
a very limited comparison of the two methods, the author has found that generally
there seems to be little separating Cliff’s approach from Brunner–Munzel. However,
situations can be constructed where, with many tied values, Cliff’s approach seems
to be better at guaranteeing an actual Type I error probability less than the nominal α
level; and when testing at the .05 level, Cliff’s method seems to do an excellent job
of avoiding actual Type I error probabilities less than .04. In contrast, the Brunner–
Munzel method can have an actual Type I error rate close to .07 when tied values are
common and sample sizes are small. This suggests the possibility that the Brunner–
Munzel method might have more power and reject when Cliff’s method does not,
but the issue of how these two methods compare needs closer scrutiny.

15.1.6 S-PLUS function bmp

The S-PLUS function

bmp(x,y,alpha=.05)

performs the Brunner–Munzel method. It returns the p-value (or significance level)
when testing H0 : P = .5 plus an estimate of P labeled phat and a confidence interval
for P labeled ci.p (an estimate of δ, labeled d.hat, is returned as well).
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EXAMPLE. Table 8.3 reports data from a study of hangover symptoms among
sons of alcoholics versus a control. Note that there are many tied values among
these data. In the second group, for example, 14 of the 20 values are zero.
Welch’s test for means has a significance level of .14, Yuen’s test has a significance
level of .076, the Brunner–Munzel method has a significance level of .042, and
its .95 confidence interval for P is (.167, .494). Cliff’s method also rejects at the
.05 level, the .95 confidence interval for δ being (0.002, 0.60). ■

15.1.7 The Kolmogorov–Smirnov Test

Yet another way of testing the hypothesis that two independent groups have identical
distributions is with the so-called Kolmogorov–Smirnov test. This test forms the basis
of the shift function in Section 8.11.2. Like the WMW test in Section 15.1.1, exact
control over the probability of a Type I error can be had by assuming random sampling
only. When there are no tied values, the method in Kim and Jennrich (1973) can be
used to compute the exact significance level. With tied values, the exact significance
level can be computed with a method derived by Schroër and Trenkler (1995). The
S-PLUS function supplied to perform the Kolmogorov–Smirnov test has an option
for computing the exact significance level, but the details of the method are not given
here. (Details can be found in Wilcox, 1997a.)

To apply the Kolmogorov–Smirnov test, let F̂1(x) be the proportion of observations
in group 1 that are less than or equal to x, and let F̂2(x) be the corresponding
proportion for group 2. Let

Ui = |F̂1(Xi1) − F̂2(Xi1)|,
i = 1, . . . ,n1. In other words, for Xi1, the ith observation in group 1, compute the
proportion of observations in group 1 that are less than or equal to Xi1, do the same
for group 2, take the absolute value of the difference, and label the result Ui. Repeat
this process for the observations in group 2 and label the results

Vi = |F̂1(Xi2) − F̂2(Xi2)|,
i = 1, . . . ,n2. The Kolmogorov–Smirnov test statistic is

KS = max{U1, . . . ,Un1 ,V1, . . . ,Vn2}, (15.12)

the largest of the pooled U and V values. For large sample sizes, an approximate
critical value when α = .05 is

1.36

√
n1 + n2

n1n2
.

Reject when KS is greater than or equal to the critical value. When there are no tied
values, the Kolmogorov–Smirnov test can have relatively high power; but with ties,
its power can be relatively low.
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15.1.8 S-PLUS Function ks

The S-PLUS function

ks(x,y,w=F,sig=T)

performs the Kolmogorov–Smirnov test. The argument w can be used to invoke
a weighted version of the Kolmogorov–Smirnov test not covered here. (See, for
example, Wilcox, 1997a.) By default, w=F, meaning that the version described here
will be used. With sig=T, the exact critical value will be used. With large sample sizes,
computing the exact critical value can result in high execution time. Setting sig=F
avoids this problem, but now only the approximate critical value with α = .05 can
be used.

EXAMPLE. For the data in Table 8.3, the function ks returns

$test:
[1] 0.35

$critval:
[1] 0.4300698

$siglevel:
[1] 0.03942698

This says that the Kolmogorov–Smirnov test statistic is KS = 0.35, the approxi-
mate .05 critical value is 0.43, which is greater than KS, yet the exact significance
level, assuming only random sampling, is .039. ■

15.2 Comparing More Than Two Groups

15.2.1 The Kruskall–Wallis Test

The best-known rank-based method for comparing multiple groups is the Kruskall–
Wallis test. The goal is to test

H0 : F1(x) = F2(x) = · · · = FJ(x), (15.13)

the hypothesis that J independent groups have identical distributions. The method
begins by pooling all N = ∑

nj observations and assigning ranks. In symbols, if
Xij is the ith observation in the jth group, let Rij be its rank among the pooled
data. When there are tied values, use midranks, as described in connection with
the Brunner–Munzel method. Next, sum the ranks for each group. In symbols,
compute

Rj =
nj∑

i=1

Rij,
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( j = 1, . . . ,J). Letting

S2 = 1
N − 1


 J∑

j=1

nj∑
i=1

R2
ij − N(N + 1)2

4


 ,

the test statistic is

T = 1
S2

(
−N(N + 1)2

4
+
∑ R2

j

nj

)
.

If there are no ties, S2 simplifies to

S2 = N(N + 1)
12

,

and T becomes

T = −3(N + 1) + 12
N(N + 1)

∑ R2
j

nj
.

The hypothesis of identical distributions is rejected if T ≥ c, where c is some appro-
priate critical value. For small sample sizes, exact critical values are available from
Iman, Quade, and Alexander (1975). For large sample sizes, the critical value is
approximately equal to the 1 − α quantile of a chi-squared distribution with J − 1
degrees of freedom.

EXAMPLE. Table 15.1 shows data for three groups and the corresponding
ranks. For example, after pooling all N = 10 values, X11 = 40 has a rank of
R11 = 1, the value 56 has a rank of 6, and so forth. The sum of the ranks
corresponding to each group are R1 = 1 + 6 + 2 = 9, R2 = 3 + 7 + 8 = 18,
and R3 = 9 + 10 + 5 + 4 = 28. The number of groups is J = 3, so the
degrees of freedom are ν = 2; from Table 3 in Appendix B, the critical value is
approximately c = 5.99 with α = .05. Because there are no ties among the N
observations,

T = −3(10 + 1) + 12
10 × 11

(
92

3
+ 182

3
+ 282

4

)
= 3.109.

Because 3.109 < 5.99, fail to reject. That is, you are unable to detect a difference
among the distributions. ■

15.2.2 The BDM Method

The Kruskall–Wallis test performs relatively well when the null hypothesis of iden-
tical distributions is true, but concerns arise when the null hypothesis is false. In
particular, the Kruskall–Wallis test is homoscedastic, which might affect power.
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TABLE 15.1 Hypothetical Data Illustrating the
Kruskall–Wallis Test

Group 1 Group 2 Group 3

Xi1 Ri1 Xi2 Ri2 Xi3 Ri3

40 1 45 3 61 9

56 6 58 7 65 10

42 2 60 8 55 5

47 4

A heteroscedastic analog of the Kruskall–Wallis test that allows tied values was derived
by Brunner, Dette, and Munk (1997), which will be called the BDM method. Again
the goal is to test the hypothesis that all J groups have identical distributions. The
basic idea is that if J independent groups have identical distributions and we assign
ranks to the pooled data as was done in the Kruskall–Wallis test, then for each group
the average of the ranks should be approximately equal. (This greatly oversimplifies
the technical issues.) To apply it, compute the ranks of the pooled data as was done
in connection with the Kruskall–Wallis test. As before, let N = ∑

nj be the total
number of observations. The remaining calculations are relegated to Box 15.4. The
values in the vector Q in Box 15.4 are called the relative effects and reflect the average
ranks among the groups, which provide some sense of how the groups compare.

BOX 15.4 BDM Heteroscedastic Rank-Based ANOVA Method

Let R̄j be the average of the pooled ranks corresponding to the jth group.
So if Rij is the rank of Xij after the data are pooled, then

R̄j = 1
nj

nj∑
i=1

Rij.

Let

Q = 1
N

(
R̄1 − 1

2
, . . . ,R̄J − 1

2

)
.

For the jth group, compute

s2j = 1
N2(nj − 1)

nj∑
i=1

(Rij − R̄j)2,

and let

V = N diag
{

s21
n1

, . . . ,
s2J
nJ

}
.

Continued
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BOX 15.4 (Continued )
Let I be a J-by-J identity matrix, let J be a J-by-J matrix of 1’s, and set

M = I − 1
J

J.

(The diagonal entries in M have a common value, a property required to
satisfy certain theoretical restrictions.) The test statistic is

F = N
tr(M11V)

QMQ′, (15.14)

where tr indicates trace and Q′ is the transpose of the matrix Q. (See
Appendix C for how the trace and transpose of a matrix are defined.)

Decision Rule
Reject if F ≥ f , where f is the 1 − α quantile of an F-distribution with

ν1 = M11[tr(V)]2
tr(MVMV)

ν2 = [tr(V)]2
tr(V2Λ)

degrees of freedom and

Λ = diag{(n1 − 1)−1, . . . ,(nJ − 1)−1}.

An alternative heteroscedastic method, one that assumes there are no tied values,
was derived by Rust and Fligner (1984). In the event there are no tied values, it
is unknown how the Rust–Fligner and BDM methods compare. Perhaps the use of
midranks in conjunction with the Rust–Fligner procedure performs reasonably well
when tied values occur, but it seems that this issue has not been investigated. (The
S-PLUS function rfanova(x), written for this book, performs the Rust–Fligner tech-
nique but is not described because currently it seems that the BDM method suffices.)

15.2.3 S-PLUS Function bdm

The S-PLUS function

bdm(x)

has been supplied to perform the BDM rank-based ANOVA described in Box 15.4.
Here, x can have list mode or it can be a matrix with columns corresponding to
groups. The function returns the value of the test statistic, the degrees of freedom,
the vector of relative effects, which is labeled q.hat, and the significance level.

EXAMPLE. For the schizophrenia data in Table 9.1, the S-PLUS function bmd
returns a significance level of .040. The relative effect sizes (the Q values) are

Continued
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EXAMPLE. (Continued ) reported as

$ output$q.hat:
[,1]

[1,] 0.4725
[2,] 0.4725
[3,] 0.3550
[4,] 0.7000

So the conclusion is that the distributions associated with these four groups
differ, and we see that the average of the ranks among the pooled data is
smallest for group 3 and highest for group 4. This is consistent with the means.
That is, group 3 has the smallest mean and group 4 the largest. The same is true
when using a 20% trimmed mean or MOM. ■

15.3 Multiple Comparisons Among Independent Groups

One way of extending the Cliff and the Brunner–Munzel methods when comparing
all pairs of J groups, J > 2, is to proceed in the manner used to derive Dunnett’s
T3 (described in Section 12.3.1). In particular, use a critical value from Table 10 in
Appendix B (which reports some quantiles of the Studentized maximum modulus
distribution). Here, assuming all pairwise comparisons are to be made, there are a
total of C = (J2 − J)/2 hypotheses to be tested. First consider an extension of the
Brunner–Munzel method. When comparing group j to group k, simply perform the
calculations in Section 15.1.5, ignoring the other groups. Let ν̂jk be the resulting
degrees of freedom, let sejk be the corresponding value of se, and let P̂jk be the
estimate of P. So when there are no ties, Pjk is the probability that a randomly
sampled observation from group j is less than a sampled observation from group k.
The confidence interval for Pjk is

P̂jk ± csejk,

where c is the critical value read from Table 10 in Appendix B, which depends on C
and ν̂jk.

As for extending Cliff’s method, the same strategy can be used. That is, proceed
as described in Box 15.2, but when computing a confidence interval for δ, replace z
with a critical value read from Table 10 with degrees of freedom ν = ∞. For example,
if there are four groups and all pairwise comparisons are to be performed, the total
number of hypotheses to be tested is C = 6, so if α = .05, the critical value is 2.63.
That is, replace z with 2.63 in Box 15.2.

15.3.1 S-PLUS Functions cidmul and bmpmul

The S-PLUS function

bmpmul(x,alpha=.05)
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performs the extension of the bmp method in Box 15.3 when the goal is to perform
all pairwise comparisons among the groups stored in x, where x has list mode or is a
matrix with columns corresponding to groups. The S-PLUS function

cidmul(x,alpha=.05)

is like bmpmul, except that Cliff’s method for making inferences about δ is used
instead. Both of these functions are limited to α = .05 and .01. If the argument alpha
has any value other than .05, α = .01 is assumed.

15.3.2 Multiple Comparisons Based on BDM

Rather than perform multiple comparisons based on estimates of P, another approach
is to compare each pair of groups in terms of their distributions. That is, for the jth
and kth groups, test

H0 : Fj(x)=Fk(x),

with the goal of controlling FWE among all the hypotheses to be tested. For each pair
of groups, the significance level associated with this hypothesis can be computed as
described in Box 15.4. Here, FWE is controlled using either Rom’s method, which is
described in Section 12.8.2, or the Benjamini–Hochberg technique in Section 12.3.3.

15.3.3 S-PLUS r1mcp

The S-PLUS function

r1mcp(x,alpha=.05,bhop=F)

performs all pairwise comparisons of J independent groups, each comparison being
based on the BDM method in Section 15.2.2; if bhop=F, then FWE is controlled
via Rom’s procedure. Here, the argument alpha corresponds to the desired value for
FWE. Setting bhop=T, the Benjamini and Hochberg method (described in Section
12.3.3) is used to control FWE.

15.4 Two-Way Designs

The BDM method described in Section 15.3.2 can be extended to a two-way design.
(For an extension to a mixed design where one factor is fixed and the other is random,
see Brunner & Dette, 1992.) Following the notation in Chapter 10, now we have
J levels associated with the first factor and K levels for the other, for a total of
JK independent groups. The observations are represented by Xijk, i = 1, . . . ,njk;
j = 1, . . . ,J; and k = 1, . . . ,K. Let Fjk(x) be the distribution associated with the jth
and kth levels. So, for example, F23(6) is the probability that for the second level of the
first factor and the third level of the second factor, a randomly sampled observation
has a value less than or equal to 6.

Pool all of the observations and assign ranks. In the event of tied values, ranks
are averaged as in Section 15.1.5. For convenience, let L = JK represent the total
number of groups and assume the first K groups correspond to level 1 of factor A,
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the next K correspond to level 2 of factor A, and so on. So the groups are arranged
as described in Section 10.3.1. Furthermore, the sample size for the �th group is n�.
For each of the L groups, compute the average of the corresponding ranks, label the
results R̄1, . . . ,R̄L, and let

s2� = 1
N2(n� − 1)

n�∑
i=1

(Ri� − R̄�)2,

where N = ∑
n� is the total sample size and Ri� is the rank of the ith observation in

the �th group. Main effects and interactions are tested as described in Box 15.5.

BOX 15.5 BDM Two-Way, Heteroscedastic Rank-Based ANOVA Method

Set

V = N diag
{

s21
n1

, . . . ,
s2L
nL

}
.

Let IJ be a J-by-J identity matrix, let HJ be a J-by-J matrix of 1’s, and let

PJ = IJ − 1
J

HJ , MA = PJ ⊗ 1
K

HK,

MB = 1
J

HJ ⊗ PK, MAB = PJ ⊗ PK.

(The notation ⊗ refers to the right Kronecker product, which is described
in Appendix C.) As in Box 15.4, let

Q = 1
N

(
R̄1 − 1

2
, . . . ,R̄L − 1

2

)

be the relative effects. The test statistics are:

FA = N
tr(MA11V)

QMAQ′, FB = N
tr(MB11V)

QMBQ′,

FAB = N
tr(MAB11V)

QMABQ′.

Decision rules
For factor A, reject if FA ≥ f , where f is the 1 − α quantile of an

F-distribution with degrees of freedom

ν1 = MA11[tr(V)]2
tr(MAVMAV)

, ν2 = [tr(V)]2
tr(V2Λ)

,

Continued
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BOX 15.5 (Continued )
where

Λ = diag{(n1 − 1)−1, . . . ,(nL − 1)−1}.
Here MA11 is the first diagonal element of the matrix MA. (By design, all of
the diagonal elements of MA have a common value.) For factor B, reject if
FB ≥ f , where

ν1 = MB11[tr(V)]2
tr(MBVMBV)

.

(The value for ν2 remains the same.) As for the hypothesis of no interactions,
reject if FAB ≥ f , where now

ν1 = MAB11[tr(V)]2
tr(MABVMABV)

and ν2 is the same value used to test for main effects.

Before continuing it might help to be more precise about how the null hypotheses
are formulated. The basic idea stems from Akritas and Arnold (1994) and the partic-
ular case of a two-way design was addressed by Akritas, Arnold, and Brunner (1997).
For any value x, let

F̄j.(x) = 1
K

K∑
k=1

Fjk(x)

be the average of the distributions among the K levels of factor B corresponding to
the jth level of factor A.

EXAMPLE. Consider a 2-by-2 design and suppose that F11(6) = .5 and
F12(6) = .3. That is, for the first level of factor A and the first level of fac-
tor B, the probability that an observation is less than 6 is .5. For the first
level of factor A and the second level of factor B, this probability is .3. So
F̄1.(6) = (.5 + .3)/2 = .4. More generally, for any x,

F̄1.(x) = F11(x) + F12(x)
2

.

■

The hypothesis of no main effects for factor A is

H0 : F̄1.(x) = F̄2.(x) = · · · = F̄J.(x).

for any x. Letting

F̄.k(x) = 1
J

J∑
j=1

Fjk(x)
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be the average of the distributions for the kth level of factor B, the hypothesis of no
main effects for factor B is

H0 : F̄.1(x) = F̄.2(x) = · · · = F̄.K(x).

As for interactions, first consider a 2-by-2 design. Then no interaction is taken to
mean that for any x,

F11(x) − F12(x) = F21(x) − F22(x),

which has a certain similarity to how no interaction based on means was defined in
Chapter 10. Here, no interaction in a J-by-K design means that for any two rows and
any two columns, there is no interaction as just described. From a technical point
of view, a convenient way of stating the hypothesis of no interactions among all JK
groups is with

H0 : Fjk(x) − F̄j.(x) − F̄.k(x) + F̄..(x) = 0,

for any x, all j ( j = 1, . . . ,J) and all k (k = 1, . . . , K), where

F̄..(x) = 1
JK

J∑
j=1

K∑
k=1

Fjk(x).

15.4.1 S-PLUS Function bdm2way

The S-PLUS function

bdm2way( J, K, x)

performs the two-way ANOVA method described in Box 15.5.

15.5 Multiple Comparisons in a Two-Way Design

One approach when dealing with multiple comparisons among the levels of each
factor in a two-way design is to perform each comparison of interest using the BDM
method and control FWE using Rom’s method or perhaps the Benjamini–Hochberg
technique described in Chapter 12.

To elaborate, first consider factor A and imagine that all pairwise comparisons
among the J levels are to be performed. This means that for any two levels — say, j
and j′ — the goal is to test

H0 : F̄j. = F̄j′.

and simultaneously to control FWE among all pairwise comparisons. As noted in
Chapter 12, if all pairwise comparisons are to be made among the J levels of factor
A, there are a total of C = (J2 − J)/2 hypotheses to be tested. To compare level
j to level j′, compute F and ν2 as indicated in Box 15.4, ignoring all other groups.
(That is, perform the calculations in Box 15.4 as if you were testing the hypothesis
of no main effect for factor A in a 2-by-K design, in which case ν1 = 1.) Then for
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each of the individual hypotheses, make a decision about whether to reject using the
significance levels as described in Section 12.3.3. (That is, use the Rom or Benjamini–
Hochberg method.) The levels of factor B can be compared in a similar manner using
the methods in Section 12.8 to control FWE.

As for interactions, a basic approach is to test the hypothesis of no interaction for
any two levels of factor A and factor B and to repeat this for all pairs of rows and all
pairs of columns. That is, for every j < j′ and k < k′, test

Fjk(x) − Fjk′(x) = Fj′k(x) − Fj′k′(x).

Again Rom’s method or the Benjamini–Hochberg technique can be used to control
FWE (the familywise Type I error rate).

15.5.1 S-PLUS Function r2mcp

The S-PLUS function

r2mcp( J,K,x,grp=NA,alpha=.05,bhop=F)

performs the multiple comparisons method just described. The groups are assumed
to be arranged as in Section 10.3.1; if not arranged in this manner, the argument
grp can be used to address this problem as illustrated in Section 10.3.1. The default
value for bhop causes critical significance levels to be computed using Rom’s method;
bhop=T results in using the Benjamini and Hochberg method instead.

15.5.2 The Patel–Hoel Approach to Interactions

Patel and Hoel (1973) proposed an alternative approach to interactions in a 2-by-2
design that can be extended to a multiple comparison method for a J-by-K design,
even when there are tied values. To describe the basic idea, first consider a 2-by-2
design where Xijk is the ith observation randomly sampled from the jth level of factor A
and the kth level of factor B. Temporarily assume ties never occur and let

p11,12 = P(Xi11 < Xi12).

In words, Xi11 represents a randomly sampled observation from level 1 of factors A
and B, Xi12 is a randomly sampled observation from level 1 of factor A and level 2 of
factor B, and p11,12 is the probability that Xi11 is less than Xi12. Note that ignoring level
2 of factor A, levels 1 and 2 of factor B can be compared by testing H0 : p11,12 = 0, as
described in Sections 15.1.3 and 15.1.5. The Patel–Hoel definition of no interaction
is that p11,12 = p21,22. That is, the probability that an observation is smaller under
level 1 of factor B than under level 2 is the same for both levels of factor A. In the
event ties can occur, then define

p11,12 = P(Xi11 ≤ Xi12) + 1
2

P(Xi11 = Xi12),

p21,22 = P(Xi21 ≤ Xi22) + 1
2

P(Xi21 = Xi22),
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and the hypothesis of no interaction is

H0 : p11,12 = p21,22.

Again, temporarily ignore level 2 of factor A and note that the 2 independent groups
corresponding to the 2 levels of factor B can be compared in terms of δ, as defined
in Section 15.1.3. Let δ1 represent δ when focusing on level 1 of factor A with level
2 ignored, and let δ̂1 be the estimate of δ as given by Equation (15.11). An estimate
of its squared standard error is computed as indicated in Box 15.2 and will be labeled
σ̂ 2

1 . Similarly, let δ2 be δ when focusing on level 2 of factor A with level 1 ignored,
and denote its estimate with δ̂2, which has an estimated squared standard error σ̂ 2

2 .
It can be seen that the null hypothesis of no interaction just defined corresponds to

H0 : � = δ2 − δ1

2
= 0.

Moreover, the results in Box 15.2 can be used to estimate p11,12 − p21,22 and compute
an appropriate 1 − α confidence interval. The estimate is

�̂ = δ̂2 − δ̂1

2
,

the estimated squared standard error of �̂ is

S2 = 1
4

(σ̂ 2
1 + σ̂ 2

2 ),

where σ̂ 2
j is the value of σ̂ 2 in Box 15.2 corresponding to the jth level of factor A,

and a 1 − α confidence interval for � is

�̂ ± z1−α/2S,

where z1−α/2 is the 1−α/2 quantile of a standard normal distribution. The hypothesis
of no interaction is rejected if this confidence interval does not contain zero.

There remains the problem of controlling FWE for the more general case of a
J-by-K design. Here, an analog of Dunnett’s T3 method is used, but Rom’s method
or the Benjamini–Hochberg approach are other possibilities. When working with
levels j and j′ of factor A and levels k and k′ of factor B, we represent the parameter
� by �jj′kk′ , its estimate is labeled �̂jj′kk′ , and the estimated squared standard error
is denoted by S2

jj′kk′ . For every j < j′ and k < k′, the goal is to test

H0 : �jj′kk′ = 0.

The total number of hypotheses to be tested is

C = J2 − J
2

× K2 − K
2

.

The critical value, c, is read from Table 10 in Appendix B with degrees of freedom
ν = ∞. The confidence interval for �jj′kk′ is

�̂jj′kk′ ± cSjj′kk′ ,
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and the hypothesis of no interaction, corresponding to levels j and j′ of factor A and
levels k and k′ of factor B, is rejected if this confidence interval does not contain zero.

Yet another approach to testing the hypothesis of no interactions can be based
on the results in Section 15.1.5. The method just described seems to perform well
in simulations ( Wilcox, 2000b), so currently there seems to be little motivation for
extending the method in Section 15.1.5 to the problem at hand.

15.5.3 S-PLUS Function rimul

The S-PLUS function

rimul( J,K,x,p=J*K,grp=c(1:p))

performs the test for interactions just described. (The fourth argument, p=J*K, is
not important in applied work; it is used to deal with certain conventions in S-PLUS.)
The groups are assumed to be arranged as in Section 10.3.1, and the argument grp is
used as illustrated in Section 10.3.1.

EXAMPLE. Table 10.1 shows data on weight gains in rats under four condi-
tions: source of protein (beef versus cereal), which is factor A, and amount of
protein (factor B), which has two levels: low and high. Assume that for beef,
the data for low protein is stored in x[[1]], and for high protein it is stored in
x[[2]]. As for cereal, low-and high-protein data are stored in x[[3]] and x[[4]],
respectively. Then the S-PLUS command rimul(2,2,x) returns:

$test:
Factor A Factor A Factor B Factor B delta

[1,] 1 2 1 2 0.31

ci.lower ci.upper
-0.02708888 0.6470889

Let p11,12 represent the probability that for beef, the weight gain for a randomly
sampled rat will be smaller under a low-versus high-protein diet. Similarly, for
cereal, let p21,22 represent the probability that weight gain is smaller under a
low-protein diet. The estimate of � = p11,12 − p21,22 is listed under delta and is
0.31, and a .95 confidence interval for � is (−0.027, 0.647). So the hypothesis
of no interaction is not rejected at the α = .05 level. ■

15.6 Comparing Two Dependent Groups

15.6.1 The Sign Test

A simple method for comparing dependent groups is the so-called sign test. In essence
it is based on making inferences about the probability of success associated with a
binomial distribution, which is discussed in Section 4.13, but here we elaborate a bit
on its properties.
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As in Chapter 11, let (X11, X12), . . . ,(Xn1, Xn2) be a random sample of n pairs of
observations. That is, Xij is the ith observation from the jth group. Primarily for
convenience, it is temporarily assumed that tied values never occur. Let p be the
probability that for a randomly sampled pair of observations, the observation from
group 1 is less than the observation from group 2. In symbols,

p = P(Xi1 < Xi2).

Letting Di = Xi1 − Xi2, an estimate of p is simply the proportion of Di values that
are less than zero. More formally, let Vi = 1 if Di < 0; otherwise Vi = 0. Then an
estimate of p is

p̂ = 1
n

∑
Vi. (15.15)

Because X = ∑
Vi has a binomial probability function, results in Section 4.13 provide

a confidence interval for p. If this interval does not contain zero, reject

H0 : p = .5

and conclude that the groups differ. If p > .5, group 1 is more likely to have a lower
observed value than group 2; if p < .5, the reverse is true.

Now consider a situation where ties can occur. Given the goal of making inferences
about p, one strategy is simply to ignore or discard cases where Di = 0. So if among n
pairs of observations, there are N Di values not equal to zero, then an estimate of p is

p̂ = 1
N

∑
Vi, (15.16)

where Vi is defined as before.
To add perspective, look at Figure 15.1, which shows a scatterplot of the cork

boring data given in Table 11.1. Also shown is a diagonal line through the origin.
Points to the right of this line correspond to Di values that are greater than zero, and
points to the left are Di values for which the reverse is true. So graphically, the sign
test is based on the proportion of points to the right of this line. Points falling exactly
on this line are ignored. In this particular case, n = 28, two points fall exactly on
the line, so N = 26, p̂ = .31, and the .95 confidence interval for p is (.15, .52); this
interval contains .5, so fail to reject.

Notice that some of the methods in Chapter 11 found a difference between these
two groups, in contrast to the sign test. One reason this can happen is that the sign
test does not take into account how far a point is from the line in Figure 15.1 Also, it
might help to note the graphical similarity between the sign test as depicted in Figure
15.1 and the graphical description of the bootstrap in Figure 11.2. The sign test is
based on whether the observations are to the left or the right of the diagonal line. In
contrast, the bootstrap is based on whether bootstrap estimates of the measures of
location are to the left or the right of this line.
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FIGURE 15.1 Scatterplot of the data in Table 11.1. In order for the sign test to reject,
most of the points need to be above or below the diagonal line.

15.6.2 S-PLUS Function signt

The S-PLUS function

signt(x, y = NA, alpha = 0.05)

tests H0 : p = .5 with the sign test as just described. If the argument y is not specified,
it is assumed either that x is a matrix with two columns corresponding to the two
dependent groups or that x has list mode. The function computes the differences
Xi1 − Xi2, eliminates all differences that are zero, leaving N values, determines the
number of pairs for which Xi1 < Xi2, i = 1, . . . ,N, and then calls the function binomci
(see Section 4.13.1).

EXAMPLE. The output from signt based on the cork data in Figure 15.1 is

$phat:
[1] 0.3076923

$ci:
[1] 0.1530612 0.5179361

$n:
[1] 28

$N:
[1] 26

■
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15.6.3 Wilcoxon Signed Rank Test

The sign test provides an interesting, useful, and reasonable perspective on how two
groups differ. However, a common criticism is that its power can be low relative
to other techniques that might be used. One alternative approach is the Wilcoxon
signed rank test, which tests

H0 : F1(x) = F2(x),

the hypothesis that two dependent groups have identical distributions. To apply
it, first form difference scores as was done in conjunction with the paired T-test in
Chapter 11 and discard any difference scores that are equal to zero. It is assumed that
there are n difference scores not equal to zero. That is, for the ith pair of observations,
compute

Di = Xi1 − Xi2,

i = 1, . . . ,n and each Di value is either less than or greater than zero. Next, rank the
|Di| values and let Ui denote the result for |Di|. So, for example, if the Di values are
6, −2, 12, 23, −8, then U1 = 2, because after taking absolute values, 6 has a rank
of 2. Similarly, U2 = 1, because after taking absolute values, the second value, −2,
has a rank of 1. Next set

Ri = Ui,

if Di > 0; otherwise

Ri = −Ui.

Positive numbers are said to have a sign of 1 and negative numbers a sign of −1, so
Ri is the value of the rank corresponding to |Di| multiplied by the sign of Di.

If the sample size (n) is less than or equal to 40 and there are no ties among the
|Di| values, the test statistic is W, the sum of the positive Ri values. For example, if
R1 = 4, R2 = −3, R3 = 5, R4 = 2, and R5 = −1, then

W = 4 + 5 + 2 = 11.

A lower critical value, cL, is read from Table 12 in Appendix B. So for α = .05 and
n = 5, the critical value corresponds to α/2 = .025 and is 0, so reject if W ≤ 0. The
upper critical value is

cU = n(n + 1)
2

− cL.

In the illustration, because cL = 0,

cU = 5(6)
2

− 0 = 15,

meaning that you reject if W ≥ 15. Because W = 11 is between 1 and 15, fail to
reject.
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If there are ties among the |Di| values or the sample size exceeds 40, the test
statistic is

W =
∑

Ri√∑
R2

i

.

If there are no ties, this last equation simplifies to

W =
√

6
∑

Ri√
n(n + 1)(2n + 1)

.

For a two-sided test, reject if |W| equals or exceeds z1−α/2, the 1 − α/2 quantile of a
standard normal distribution.

Rejecting with the signed rank test indicates that two dependent groups have
different distributions. Although the signed rank test can have more power than
the sign test, a criticism is that it does not provide certain details about how the
groups differ. For instance, in the cork boring example, rejecting indicates that the
distribution of weights differs for the north versus east side of a tree, but how might we
elaborate on what this difference is? One possibility is to estimate p, the probability
that the weight from the north side is less than the weight from the east side. So
despite lower power, one might argue that the sign test provides a useful perspective
on how groups compare.

15.6.4 S-PLUS Function wilcox.test

The built-in S-PLUS function

wilcox.test(x, y, paired = F, exact = T)

performs the Wilcoxon signed rank test just described by setting the argument paired
to T, for true. (With paired=F, a one-sample version of the test is used.)

15.7 Comparing Multiple Dependent Groups

There are a variety of rank-based methods for comparing multiple dependent groups.
Recent advances and techniques can be found in Agresti and Pendergast (1986);
Akritas and Arnold (1994); Brunner and Denker (1994); Brunner, Munzel, and Puri
(1999); and Munzel and Brunner (2000b). Here, only portions of these methods are
described, plus some classic techniques that are typically covered in an introductory
course.

15.7.1 Friedman’s Test

The classic rank-based method for comparing multiple dependent groups is
Friedman’s test. The goal is to test

H0 : F1(x) = · · · = FJ(x),
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the hypothesis that all J dependent groups have identical distributions. The method
begins by assigning ranks within rows. For example, imagine that for each individual,
measures are taken at three different times, yielding

Time 1 Time 2 Time 3
9 7 12
1 10 4
8 2 1

...

The ranks corresponding to the first row (the values 9, 7, and 12) are 2, 1, and 3.
For the second row the ranks are 1, 3, and 2, and continuing in this manner the data
become

Time 1 Time 2 Time 3
2 1 3
1 3 2
3 2 1

...

Let Rij be the resulting rank corresponding to Xij (i = 1, . . . ,n; j = 1, . . . ,J). Compute

A =
J∑

j=1

n∑
i=1

R2
ij

Rj =
n∑

i=1

Rij

B = 1
n

J∑
j=1

R2
j

C = 1
4

nJ(J + 1)2.

If there are no ties, the equation for A simplifies to

A = nJ(J + 1)(2J + 1)
6

.

The test statistic is

F = (n − 1)(B − C)
A − B

. (15.17)

Reject if F ≥ f1−α , or if A = B, where f1−α is the 1 − α of an F-distribution with
ν1 = J − 1 and ν2 = (n − 1)(J − 1) degrees of freedom.
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15.7.2 Agresti–Pendergast Test

A variety of improvements on Friedman’s test have been proposed (e.g., Iman, 1974;
Quade, 1979). One such method that currently stands out was proposed by Agresti
and Pendergast (1986); it provides better control over the probability of a Type I error
than does Iman’s method and it can have higher power than Friedman’s test. (For
theoretical results on the Agresti–Pendergast test, see Kepner & Robinson, 1988.)
Basically, the method tests the hypothesis of equal distributions based on the average
ranks among the groups. Box 15.6 describes the computations.

BOX 15.6 The Agresti–Pendergast Method for Dependent Groups

Pool all the observations and assign ranks. Let Rij be the resulting rank of the
ith observation in the jth group. Compute

R̄j = 1
n

n∑
i=1

Rij

sjk = 1
n − J + 1

n∑
i=1

(Rij − R̄j)(Rik − R̄k).

Let the vector R′ be defined by

R′ = (R̄1, . . . , R̄J),

and let C be the (J − 1)-by-J matrix given by




1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
. . . . . .
0 0 0 . . . 1 −1


 .

The test statistic is

F = n
J − 1

(CR)′(CSC′)−1CR,

where

S = (sjk).

Decision Rule
Reject if F ≥ f1−α , the 1 − α quantile of an F-distribution with ν1 = J − 1

and ν2 = (J − 1)(n − 1) degrees of freedom.
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15.7.3 S-PLUS Function apanova

The S-PLUS function

apanova(x)

performs the Agresti–Pendergast ANOVA method based on ranks.

15.8 One-Way Multivariate Methods

There are several rank-based methods for dealing with situations where there are J
independent groups with K measures for each individual (e.g., Choi & Marden, 1997;
Liu & Singh, 1993; Hettmansperger, Möttönen, & Oja, 1997; Munzel & Brunner,
2000a). The theoretical details of the method developed by Hettmansperger,
Möttönen, and Oja assume that tied values occur with probability zero and that
distributions are symmetric, so the details of their method are not given here.

15.8.1 The Munzel–Brunner Method

This section describes a one-way multivariate method derived by Munzel and Brunner
(2000a). (A variation of the Munzel–Brunner method can be used in place of the
Agresti–Pendergast procedure in Section 15.7.2, but the relative merits of these two
techniques have not been explored.) For the jth group, there are nj randomly sampled
vectors of observations, with each vector containing K measures. Let Fjk(x) be the
distribution associated with the jth group and kth measure. So, for example, F32(6) is
the probability that for the third group, the second variable will be less than or equal
to 6 for a randomly sampled individual. For the kth measure, the goal is to test the
hypothesis that all J groups have identical distributions. And the more general goal
is to test the hypothesis that simultaneously, all groups have identical distributions
for each of the K measures under consideration. That is, the goal is to test

H0 : F1k(x) = · · · = FJk(x) for all k = 1, . . . , K. (15.18)

To apply the method, begin with the first of the K measures, pool all the observa-
tions among the J groups, and assign ranks. Ties are handled in the manner described
in Section 15.1.3. Repeat this process for all K measures and label the results Rijk. That
is, Rijk is the rank of the ith observation in the jth group and for the kth measure. Let

R̄jk = 1
nj

nj∑
i=1

Rijk,

be the average rank for the jth group corresponding to the kth measure. Set

Q̂jk = R̄jk − .5

n
,

where n = ∑
nj is the total number of randomly sampled vectors among the J groups.

The remaining calculations are summarized in Box 15.7. The Q̂ values are called the
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relative effects and reflect the ordering of the average ranks. If, for example, Q̂11 < Q̂21,
the typical rank for variable 1 in group 1 is less than the typical rank for variable 1
in group 2. More generally, if Q̂jk < Q̂j′k, then based on the kth measure, the typical
rank (or observed value) for group j is less than the typical rank for group j′.

BOX 15.7 The Munzel–Brunner One-Way Multivariate Method

Let

Q̂ = (Q̂11,Q̂12, . . . ,Q̂1K,Q̂21, . . . ,Q̂JK)′,
Rij = (Rij1, . . . ,RijK)′,

R̄j = (R̄j1, . . . ,R̄jK)′,

Vj = 1
nnj(nj − 1)

=
nj∑

i=1

(
Rij − R̄j

) (
Rij − R̄j

)′
,

where n = ∑
nj, and let

V = diag {V1, . . . ,VJ} .

Compute the matrix MA as described in Section 15.4. The test statistic is

F = n
tr(MAV)

Q̂′MAQ̂.

Decision Rule
Reject if F ≥ f , where f is the 1 − α quantile of an F-distribution with

ν1 = (tr(MAV))2

tr(MAVMAV)

and ν2 = ∞ degrees of freedom.

15.8.2 S-PLUS Function mulrank

The S-PLUS function

mulrank( J, K, x)

performs the one-way multivariate method in Box 15.7. The data are stored in x, which
can be a matrix or have list mode. If x is a matrix, the first K columns correspond to
the K measures for group 1, the second K correspond to group 2, and so forth. If
stored in list mode, x[[1]], . . . , x[[K]] contain the data for group 1, x[[K+1]], . . . ,
x[[2K]] contain the data for group 2, and so on.
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TABLE 15.2 CGI and PGI Scores After Four Weeks of Treatment

Exercise Clomipramine Placebo

CGI PGI CGI PGI CGI PGI

4 3 1 2 5 4

1 1 1 1 5 5

2 2 2 0 5 6

2 3 2 1 5 4

2 3 2 3 2 6

1 2 2 3 4 6

3 3 3 4 1 1

2 3 1 4 4 5

5 5 1 1 2 1

2 2 2 0 4 4

5 5 2 3 5 5

2 4 1 0 4 4

2 1 1 1 5 4

2 4 1 1 5 4

6 5 2 1 3 4

EXAMPLE. Table 15.2 summarizes data (reported by Munzel & Brunner,
2000a) from a psychiatric clinical trial where three methods are compared
for treating individuals with panic disorder. The three methods are exercise,
clomipramine, and placebo. The two measures of effectiveness were a clinical
global impression (CGI) and the patient’s global impression (PGI). The test
statistic is F = 12.7 with ν1 = 2.83 and a significance level less than .001. The
relative effects are:

$q.hat:
[,1] [,2]

[1,] 0.5074074 0.5096296
[2,] 0.2859259 0.2837037
[3,] 0.7066667 0.7066667

So among the three groups, the second group, clomipramine, has the lowest
relative effects. That is, the typical ranks were lowest for this group, and the
placebo group had the highest ranks on average. ■

15.8.3 The Choi–Marden Multivariate Rank Test

This section describes a multivariate analog of the Kruskal–Wallis test derived by
Choi and Marden (1997). There are actually many variations of the approach they
considered, but here attention is restricted to the version they focused on. As with
the method in Section 15.8.1, we have K measures for each individual and there are J
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independent groups. For the jth group and any vector of constants x = (x1, . . . ,xK), let

Fj(x) = P(Xj1 ≤ x1, . . . ,XjK ≤ xK).

So, for example, F1(x) is the probability that for the first group, the first of the K
measures is less than or equal to x1, the second of the K measures is less than or equal
to x2, and so forth. The null hypothesis is that for any x,

H0 : F1(x) = · · · = FJ(x), (15.19)

which is sometimes called the multivariate hypothesis, to distinguish it from Equation
(15.18), which is called the marginal hypothesis. The multivariate hypothesis is a stronger
hypothesis, in the sense that if it is true, then by implication the marginal hypothesis
is true as well. For example, if the marginal distributions for both groups are standard
normal distributions, the marginal hypothesis is true; but if the groups have different
correlations, the multivariate hypothesis is false.

The Choi–Marden method represents an extension of a technique derived by
Möttönen and Oja (1995) and is based on a generalization of the notion of a rank to
multivariate data, which was also used by Chaudhuri (1996, Section 4). First consider
a random sample of n observations with K measures for each individual or thing and
denote the ith vector of observations by

Xi = (Xi1, . . . ,XiK).

Let

Aii′ =
√√√√ K∑

k=1

(Xik − Xi′,k)
2,

Here, the “rank” of the ith vector is itself a vector (having length K), given by

Ri = 1
n

n∑
i=1

Xi − Xi′

Aii′
,

where

Xi − Xi′ = (Xi1 − Xi′1, . . . ,XiK − Xi′K).

The remaining calculations are summarized in Box 15.8. All indications are that this
method provides good control over the probability of a Type I error when ties never
occur. There are no known problems when there are tied values, but this issue is in
need of more research.

BOX 15.8 The Choi–Marden Method

Pool the data from all J groups and compute rank vectors as described in
the text. The resulting rank vectors are denoted by R1, . . . ,Rn, where n = ∑

nj

Continued
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BOX 15.8 (Continued ) is the total number of vectors among the J groups.
For each of the J groups, average the rank vectors and denote the average of
these vectors for the jth group by R̄j.

Next, assign ranks to the vectors in the jth group, ignoring all other groups.
We let Vij (a column vector of length K) represent the rank vector correspond-
ing to the ith vector of the jth group (i = 1, . . . , nj; j = 1, . . . , J) to make a
clear distinction with the ranks based on the pooled data. Compute

S = 1
n − J

J∑
j=1

nj∑
i=1

VijV′
ij,

where V′
ij is the transpose of Vij (so S is a K-by-K matrix). The test statistic is

H =
J∑

j=1

njR̄′
jS

−1R̄j. (15.20)

(For K = 1, H does not quite reduce to the Kruskall–Wallis test statistic.
In fact, H avoids a certain technical problem that is not addressed by the
Kruskall–Wallis method.)

Decisions Rule
Reject if H ≥ c, where c is the 1 − α quantile of a chi-squared distribution

with degrees of freedom K(J − 1).

15.8.4 S-PLUS Function cmanova

The S-PLUS function

cmanova( J,K,x)

performs the Choi–Marden method just described. The data are assumed to be stored
in x as described in Section 15.8.2.

15.9 Between-by-Within Designs

There are a variety of rank-based methods one might use in a between-by-within-
subjects design, or what is called a split-plot design. That is, as in Section 11.9, we have a
two-way design where the J levels of the first factor are independent and the K levels
of the other factor are possibly dependent. For comparing the independent groups,
one approach is to use the methods in Section 15.8. As for the dependent groups,
one possibility is to ignore the levels of factor A and use the methods in Section 15.6.
For example, if the two independent groups are males and females, and measures for
every individual are taken at three different times, you could simply pool the males and
females and test the hypothesis that the distributions are identical at times 1, 2, and 3.
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Yet another approach is to proceed along the lines in Section 11.9, only rather than
compare measures of location, hypotheses are formulated in terms of distributions,
as was done in Section 15.4. So as in Section 15.4, main effects for factor A are given
in terms of

F̄j.(x) = 1
K

K∑
k=1

Fjk(x),

the average of the distributions among the K levels of factor B corresponding to the
jth level of factor A. The only difference between the present situation and Section
15.4 is that the average of dependent groups is being used. The hypothesis of no
main effects for factor A is

H0 : F̄1.(x) = F̄2.(x) = · · · = F̄J.(x)

for any x. Letting

F̄.k(x) = 1
J

J∑
j=1

Fjk(x)

be the average of the distributions for the kth level of factor B, the hypothesis of no
main effects for factor B is

H0 : F̄.1(x) = F̄.2(x) = · · · = F̄.K(x).

As for interactions, again proceed as before. So for a 2-by-2 design, no interaction is
taken to mean that for any x,

F11(x) − F12(x) = F21(x) − F22(x).

More generally, the hypothesis of no interactions among all JK groups is

H0 : Fjk(x) − F̄j.(x) − F̄.k(x) + F̄..(x) = 0,

for any x, all j ( j = 1, . . . , J) and all k (k = 1, . . . , K), where

F̄..(x) = 1
JK

J∑
j=1

K∑
k=1

Fjk(x).

A technical difficulty is taking into account the dependence among the levels of factor
B, and here the methods covered in Brunner, Domhof, and Langer (2002, Chapter 8)
are used. (Beasley, 2000, suggests another approach to interactions; perhaps it has
a practical advantage over the approach described here, but this issue has not been
investigated as yet.)

As usual, let Xijk represent the ith observation for level j of factor A and level
k of factor B. Here, i = 1, . . . , nj. That is, the jth level of factor A has nj vectors
of observations, each vector containing K values. So for the jth level of factor A
there are a total of njK observations; and among all the groups, the total number of
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observations is denoted by N. So the total number of vectors among the J groups is
n = ∑

nj, and the total number of observations is N = K
∑

nj = Kn.
Pool all N observations and assign ranks. As usual, midranks are used if there are

tied values. Let Rijk represent the rank associated with Xijk. The remaining calculations
for factor A are relegated to Box 15.9; factor B and interactions are tested as described
in Box 15.10.

BOX 15.9 Main Effects for Factor A in a Between-by-Within Design

Let

R̄.jk = 1
nj

nj∑
i=1

Rijk,

R̄.j. = 1
K

K∑
k=1

R̄.jk,

R̄ij. = 1
K

K∑
k=1

Rijk,

σ̂ 2
j = 1

nj − 1

nj∑
i=1

(R̄ij. − R̄.j.)2,

S =
J∑

j=1

σ̂ 2
j

nj
,

U =
J∑

j=1

(
σ̂ 2

j

nj

)2

,

D =
J∑

j=1

1
nj − 1

(
σ̂ 2

j

nj

)2

.

Factor A
The test statistic is

FA = J
(J − 1)S

J∑
j=1

(R̄.j. − R̄...)2,

Continued
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BOX 15.9 (Continued )
where R̄... = ∑

R̄.j./J. The degrees of freedom are

ν1 = (J − 1)2

1 + J(J − 2)U/S2 ,

ν2 = S2

D
.

Decision Rule
Reject if FA ≥ f , where f is the 1 − α quantile of an F-distribution with ν1
and ν2 degrees of freedom.

BOX 15.10 Interactions and Main Effects for Factor B in a

Between-by-Within Design

Factor B
Following the notation in Box 15.9, let

Rij = (Rij1, . . . , RijK)′,

R̄.j = 1
nj

nj∑
i=1

Rij, R̄.. = 1
J

J∑
j=1

R̄.j, n =
∑

nj (so N = nK),

Vj = n
N2nj(nj − 1)

nj∑
i=1

(Rij − R̄.j)(Rij − R̄.j)′.

So Vj is a K-by-K matrix of covariances based on the ranks. Let

S = 1
J2

J∑
j=1

Vj

and let PK be defined as in Box 15.5.
The test statistic is

FB = n
N2tr(PKS)

K∑
k=1

(R̄..k − R̄...)2.

The degrees of freedom are

ν1 = (tr(PKS))2

tr(PKSPKS)
, ν2 = ∞.

Continued
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BOX 15.10 (Continued )

Interactions
Let V be the block diagonal matrix based on the matrices Vj, j = 1, . . . , J.

(See Appendix C for a definition of a block diagonal matrix.) Letting MAB be
defined as in Box 15.5, the test statistic is

FAB = n
N2tr(MABV)

J∑
j=1

K∑
k=1

(R̄.jk − R̄.j. − R̄..k + R̄...)2.

The degrees of freedom are

ν1 = (tr(MABV))2

tr(MABVMABV)
, ν2 = ∞.

Decision Rule
Reject if FA ≥ f (or if FAB ≥ f), where f is the 1 − α quantile of an

F-distribution with ν1 and ν2 degrees of freedom.

15.9.1 S-PLUS Function bwrank

The S-PLUS function

bwrank( J,K,x)

performs a between-by-within ANOVA based on ranks using the method just
described. In addition to testing hypotheses as indicated in Boxes 15.9 and 15.10,
the function returns the average ranks (R̄.jk) associated with all JK groups as well as
the relative effects, (R̄.jk − .5)/N.

EXAMPLE. Lumley (1996) reports data on shoulder pain after surgery; the
data are from a study by Jorgensen et al. (1995). Table 15.3 shows a portion
of the results where two treatment methods are used and measures of pain are
taken at three different times. The output from bwrank is

$test.A:
[1] 12.87017

$sig.A:
[1] 0.001043705

$test.B:
[1] 0.4604075

$sig.B:
[1] 0.5759393

Continued
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EXAMPLE. (Continued)

$test.AB:
[1] 8.621151

$sig.AB:
[1] 0.0007548441

$avg.ranks:
[,1] [,2] [,3]

[1,] 58.29545 48.40909 39.45455
[2,] 66.70455 82.36364 83.04545

$rel.effects:
[,1] [,2] [,3]

[1,] 0.4698817 0.3895048 0.3167036
[2,] 0.5382483 0.6655580 0.6711013

Continued

TABLE 15.3 Shoulder Pain Data

Active treatment No active treatment

Time 1 Time 2 Time 3 Time 1 Time 2 Time 3

1 1 1 5 2 3

3 2 1 1 5 3

3 2 2 4 4 4

1 1 1 4 4 4

1 1 1 2 3 4

1 2 1 3 4 3

3 2 1 3 3 4

2 2 1 1 1 1

1 1 1 1 1 1

3 1 1 1 5 5

1 1 1 1 3 2

2 1 1 2 2 3

1 2 2 2 2 1

3 1 1 1 1 1

2 1 1 1 1 1

1 1 1 5 5 5

1 1 1 3 3 3

2 1 1 5 4 4

4 4 2 1 3 3

4 4 4

1 1 1

1 1 1

1 = low, 5 = high.
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EXAMPLE. (Continued )
So treatment methods are significantly different and there is a significant inter-
action, but no significant difference is found over time. Note that the average
ranks and relative effects suggest that a disordinal interaction might exist. In
particular, for group 1 (the active treatment group), time 1 has higher average
ranks than time 2, and the reverse is true for the second group. However, the
Wilcoxon signed rank test fails to reject at the .05 level when comparing time 1
to time 2 for both groups. When comparing time 1 to time 3 for the first group,
again using the Wilcoxon signed rank test, you reject at the .05 level, but a
nonsignificant result is obtained for group 2. So again a disordinal interaction
appears to be a possibility, but the empirical evidence is not compelling. ■

15.9.2 Multiple Comparisons Based on
Comparing Distributions

Multiple comparisons for a between-by-within design can be performed in essentially
the same way used to compare all independent groups as described in Section 15.5.
For example, when dealing with factor A, simply compare level j to level j′, ignoring
the other levels. For all pairwise comparisons among the J levels of factor A, FWE
is controlled using Rom’s method or the Benjamini–Hochberg technique, and the
same is done for factor B and the collection of all interactions corresponding to any
two levels of factor A and any two levels of factor B.

15.9.3 S-PLUS Function bwrmcp

The S-PLUS function

bwrmcp( J,K,x,grp=NA,alpha=.05,bhop=F)

performs all pairwise multiple comparisons using the method for a between-by-within-
subjects design described in the previous section. The value for alpha indicates the
FWE for all pairwise comparisons among the levels of factor A, as well as all pairwise
comparisons among the levels of factor B and all interactions. So if J = 3 and K = 4,
the default value for FWE when performing all three comparisons among any two
levels of factor A will be .05. There are a total of 18 interactions that would be tested,
and again the default FWE will be .05 among these 18 hypotheses.

15.9.4 Multiple Comparisons When Using a Patel–Hoel
Approach to Interactions

Rather than compare distributions when dealing with a between-by-within design,
one could use a simple analog of the Patel–Hoel approach instead. First consider a
two-by-two design and focus on level 1 of factor A. Then the two levels of factor B
are dependent and can be compared with the sign test described in Section 15.6.1.
In essence, inferences are being made about p1, the probability that for a randomly
sampled pair of observations, the observation from level 1 of factor B is less than the
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corresponding observation from level 2. Of course, for level 2 of factor A, we can
again compare levels 1 and 2 of factor B with the sign test. Now we let p2 be the
probability that for a randomly sampled pair of observations, the observation from
level 1 of factor B is less than the corresponding observation from level 2. Then as in
Section 15.5.2, no interaction can be defined as p1 = p2.

The hypothesis of no interaction,

H0 : p1 = p2,

is just the hypothesis that two independent binomials have equal probabilities of
success, which can be tested using one of the methods described in Section 8.13.
Here, Beal’s method (described in Box 8.4) is used rather than the Storer–Kim method
in Box 8.3, because it currently seems that Beal’s method provides more accurate
control over FWE for the problem at hand, execution time can be much lower when
sample sizes are large, and, unlike the Storer–Kim procedure, Beal’s method provides
confidence intervals. There are various ways FWE might be controlled using the
methods in Chapter 12. However, it seems that they result in an actual FWE that can
be substantially smaller than the nominal level, so the following modification is used.

Among a collection of techniques considered by Wilcox (2001c) for controlling
FWE, the following method was found to be relatively effective. Let q be the critical
value read from Table 10 in Appendix B with degrees of freedom ν = ∞. Recall that
in Table 10, C is the total number of hypotheses to be tested. Assuming that all pairs
of rows and columns are to be considered when checking for interactions,

C = J2 − J
2

× K2 − K
2

.

Let Z be a standard normal random variable (so P(Z ≤ z) can be read from Table 1 in
Appendix B). Then if FWE is to be α, test each of the C hypotheses at the αa level,
where

• If (J, K) = (5, 2), then αa = 2(1 − P(Z ≤ q)).
• If (J, K) = (3,2), (4, 2), or (2, 3), then αa = 3(1 − P(Z ≤ q)).
• For all other J and K values, αa = 4(1 − P(Z ≤ q)).

These adjusted α values appear to work well when the goal is to achieve FWE
less than or equal to .05. Whether this remains the case with FWE equal to .01 is
unknown. For C > 28 and FWE equal to .05, use

q = 2.383904C1/10 − .202.

(Of course, for C = 1, no adjustment is necessary; simply use Beal’s method as
described in Chapter 8.)

Tied values are handled in the same manner as with the sign test in Section 15.6.1:
Pairs of observations with identical values are simply discarded. So among the remain-
ing observations, for every pair of observations, the observation from level 1 of factor
B, for example, is either less than or greater than the corresponding value from level 2.

A criticism of the method in this section is that compared to the test of no
interaction in Section 15.9.2, power is generally lower. However, the method in
Section 15.9.2 tests hypotheses about entire distributions based on average ranks.



15.10 ■ Rank-Based Correlations 597

The method in this section adds information about how the groups differ that is not
supplied merely by comparing distributions. The situation is similar to how the sign
test compares to the Wilcoxon signed rank test. The sign test generally has lower
power, but it provides a direct estimate of the probability that an observation in the
first group is less than an observation in the second. This probability adds perspective
that is not available when attention is restricted to the Wilcoxon signed rank test. The
method in this section deals directly with how p1 compares to p2, which provides a
characterization how groups differ that we do not get when comparing groups based
on the average ranks.

A variation of the approach in this section is where, for level 1 of factor B, p1 is the
probability that an observation from level 1 of factor A is less than an observation
from level 2. Similarly, p2 is now defined in terms of the two levels of factor A when
working with level 2 of factor B. However, the details of how to implement this
approach have not been studied.

15.9.5 S-PLUS Function sisplit

The method just described for testing hypotheses of no interaction can be applied
with the S-PLUS function

sisplit( J,K,x)

This function assumes α = .05; other values are not allowed.

15.10 Rank-Based Correlations

As in previous chapters, imagine that we have n randomly sampled pairs of obser-
vations, which are labeled (X1, Y1), . . . ,(Xn, Yn). Two goals are determining whether
these two measures are dependent and, if they are, characterizing what this depen-
dence is like. There are two well-known rank-based measures of association aimed at
accomplishing these goals: Kendalls’ tau and Spearman’s rho.

15.10.1 Kendall’s tau

Kendall’s tau is based on the following idea. Consider two pairs of observations, which
are labeled in the usual way as (X1, Y1) and (X2, Y2). For convenience, assume that
X1 < X2. If Y1 < Y2, then these two pairs of numbers are said to be concordant. That
is, if Y increases as X increases or if Y decreases as X decreases, we have concordant
pairs of observations. If two pairs of observations are not concordant, they are said
to be discordant.

Roughly, among all pairs of points, Kendall’s tau is just the average number that
are concordant minus the average number that are discordant. If the measures X and
Y are independent, then this difference should be approximately equal to zero. To
describe its computation in a more formal manner, let Kij = 1 if the ith and jth pairs
of observations are concordant; otherwise Kij = −1. Then Kendall’s tau is given by

τ̂ = 2
∑

i<j Kij

n(n − 1)
(15.21)
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and has a value between −1 and 1. If τ̂ is positive, there is a tendency for Y to increase
with X — possibly in a nonlinear fashion — and if τ̂ is negative, the reverse is true.

The population analog of τ̂ is labeled τ and can be shown to be zero when X and
Y are independent. To test

H0 : τ = 0,

compute

σ 2
τ = 2(2n + 5)

9n(n − 1)
,

Z = τ̂

σ τ
,

and reject if

|Z| ≥ z1− α
2
,

where z1−α/2 is the 1 − α/2 quantile of a standard normal distribution (which can be
read from Table 1).

Cliff (1996) suggests computing a confidence interval for τ by estimating the
variance of τ̂ and applying Laplace’s strategy. There are various ways this might be
done, and a method that seems to be relatively effective is outlined in Box 15.11.
(Also see J. D. Long & Cliff, 1997.) Another approach is to use the heteroscedastic
bootstrap method in Section 13.6.4, which can be done with the S-PLUS function
corb in Section 13.6.5. Direct comparisons between the heteroscedastic bootstrap
method and the method in Box 15.11 have not been made. An educated guess is that
the bootstrap method is better for general use, but this issue is in need of further study.

BOX 15.11 Confidence Interval for Kendall’s tau

For the ith and hth pair of observations, set

Uih = sign(Xi − Xh),

where sign(X) is 1, 0, or −1 according to whether X is greater than, equal to,
or less than zero. Let

Wih = sign(Yi − Yh),

tih = UihWih,

ti. = 1
n − 1

∑
h

tih,

V1 = 1
n − 1

∑
i

(ti. − τ̂ )2,

Continued
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BOX 15.11 (Continued )

V2 = 1
[n(n − 1)] − 1

[(∑∑
t2ih
)

− n(n − 1)τ̂ 2
]

,

s2t = 1
n(n − 1)

(4(n − 2)V1 + 2V2).

The 1 − α confidence interval for τ is

τ̂ ± z1−α/2st,

where z is the 1 − α/2 quantile of a standard normal distribution (read from
Table 1 in Appendix B).

For a general discussion about handling tied values when dealing with Kendall’s tau,
readers are referred to Cliff (1996), who provides an excellent summary of various
approaches. Here it is merely remarked that different strategies lead to different
measures of association, which include the Goodman–Kruskal γ , Somers’ d, and
Yule’s Q.

EXAMPLE. Imagine we observe the 10 values X = .1, .2, . . . ,1 and that
Y = X2. Then there is a perfect monotonic increasing relationship between
X and Y, τ̂ = 1, and Pearson’s correlation is r = .975. So in this particular case
there is little separating the two coefficients. However, Kendall’s tau provides
some protection against missing an association due to one or more outliers. For
example, if the largest Y value is increased from 1 to 10, again τ̂ = 1 but now
r = .59 with a significance level (based on Student’s T) equal to .07. Increasing
the largest Y value to 50, r = .54.

As just indicated, Kendall’s tau provides protection against outliers among the
X values; it does the same among the Y values, but it does not take into account
the overall structure of the data. That is, it does not address the concerns raised
in Section 13.3. ■

EXAMPLE. Following the second illustration in Section 13.3, 20 points were
generated according to the model Y = X + ε, where both X and ε have
standard normal distributions. The points are shown in Figure 13.4. Kendall’s
tau is estimated to be .368 and when testing H0 : τ = 0, the significance level
is .023 based on the method in Box 15.11. Now we add two aberrant points
at (X, Y) = (2.1, −2.4); a scatterplot of the points now appears as shown in
Figure 13.5. The estimate of Kendall’s tau drops to .13 and the significance
level increases to .398 — these two unusual points have a substantial impact on
Kendall’s tau. ■
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15.10.2 Kendall’s tau and the Theil–Sen Estimator

There is a connection between Kendall’s tau and the Theil–Sen regression estimator
in Section 13.2.1 that is worth mentioning. As was done in Chapter 13, let b1 be
some estimate of the slope. A general approach for determining b1 from data is to
take it to be the value that results in a zero correlation between the n pairs of points
Yi and Yi − b1Xi. If the correlation used is Kendall’s tau, b1 is the Theil–Sen estimate
in Chapter 13.

15.10.3 S-PLUS Function tau

The S-PLUS function

tau(x,y)

has been supplied for computing Kendall’s tau and testing H0 : τ = 0. The function
returns an estimate of τ plus the significance level. To compute a confidence interval
for τ , it is suggested that the S-PLUS function corb in Section 13.6.5 be used.

15.10.4 Spearman’s rho

Spearman’s rho, labeled rs, is just Pearson’s correlation based on the ranks associated
with X versus the ranks associated with Y. Under independence, the population analog
of rs, ρs, is zero. Also, like Kendall’s tau, Spearman’s rho is exactly equal to 1 if there is
a monotonic increasing relationship between X and Y. That is, Y is a strictly increasing
function of X. And ρs = −1 if the association is monotonic decreasing instead.

The usual approach to testing

H0 : ρs = 0

is based on

T = rs
√

n − 2√
1 − r2s

.

When there is independence, T has, approximately, a Student’s T-distribution with
ν = n − 2 degrees of freedom. So reject and conclude there is an association if
|T| ≥ t, where t is the 1 − α/2 quantile of a Student’s T-distribution with n − 2
degrees of freedom.

Like Kendall’s tau, Spearman’s rho provides protection against outliers among
the X values or among the Y values, but it does not take into account the overall
structure of the data. That is, a few unusual points, properly placed, can have a
substantial influence on its value.

EXAMPLE. In the last example it was illustrated that Kendall’s tau can be
influenced by a few unusual values. We repeat this illustration with Spearman’s
rho. For the original 20 values, rs = .54 with a significance level of .014. But
when the two outliers are added at (X, Y) = (2.1, −2.4), now rs = .16 with a
significance level of .48. ■
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15.10.5 S-PLUS Function spear

The S-PLUS function

spear(x,y)

computes Spearman’s rho and returns the significance level when testing H0 : ρs = 0
as described in Section 15.10.3. A confidence interval for ρs can be computed with
the S-PLUS function corb in Section 13.6.5.

15.11 Comparing Rank-Based Correlations

Section 14.3.2 describes a bootstrap method for comparing the correlations associ-
ated with two independent groups that allows heteroscedasticity. The computations
are performed with the S-PLUS function twocor in Section 14.3.3. It is noted that
this method can be used to compare rank-based correlations as well. That is, we have
two independent groups with two measures for each participant. Letting ρs1 and ρs2
represent the population Spearman correlations, the S-PLUS function computes a
confidence interval for ρs1 − ρs2, so, in particular, the hypothesis

H0 : ρs1 = ρs2

can be tested.

EXAMPLE. In Section 14.7, one of the examples was aimed at investigating
whether the association between two variables from a reading study (ortho-
graphic ability, Y, and a measure of sound blending, X1) is modified by a third
variable, phonological awareness (X2). A smooth of the data, using both X1
and X2 as predictors, is shown in Figure 14.9. Attempts at establishing that X2
modifies the association failed, but it was noted that there seems to be a non-
linear association between Y and X1. Rank-based correlations are sensitive to
monotonic associations that are not necessarily linear, and it was suggested that
using a rank-based correlation with these data might make a difference in the
conclusions reached. If we use the S-PLUS function runcor (in Section 14.7.1)
with the argument corfun set equal to spear (so that Spearman’s correlation is
used), we see that the association between X1 and Y appears to change around
X2 = 14. Using the S-PLUS function twocor to compare Spearman’s corre-
lation between X1 and Y when X2 < 14, versus X2 ≥ 14, the .95 confidence
interval for the difference between these two correlations is (−0.775, −0.012)
with a significance level of .043. So there is empirical evidence that X2 modifies
the association between X1 and Y. ■

15.12 Rank-Based Regression

Yet another approach to regression, beyond those covered in Chapters 6 and 13, is to
minimize sum function of the ranks of the residuals. In simple regression, for example,
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with n pairs of values, (X1, Y1), . . . ,(Xn, Yn), consider any choice for the slope and
intercept, say, b1 and b0. As in previous chapters, Ŷi = b1Xi + b0 is the predicted
value of Y based on Xi. Least squares chooses the slope and intercept so as to minimize
the sum of squared residuals,

∑
r2i , where as usual ri = Yi−Ŷi. A rank-based approach

simply replaces the residuals with their ranks, and often some function of the ranks
is used instead (e.g., Hössjer, 1994). Here attention is focused on a slight variation
of this method, which is called the Wilcoxon R estimate. The method begins by
choosing the slope (b1) so as to minimize

n∑
i=1

= a(R(Yi − b1Xi))(Yi − b1Xi), (15.22)

where R(Yi − b1Xi) is the rank of Yi − b1Xi among Y1 − b1X1, . . . ,Yn − b1Xn,

a(i) = φ

(
i

n + 1

)
,

and

φ(u) = √
12
(

u − 1
2

)
.

Once b1 is determined, one way of estimating the intercept is with

b0 = med{Yi − b1Xi},
the median of the values Y1 − b1X1, . . . ,Yn − b1Xn. (Readers interested in a theoretical
treatment of this estimator are referred to Hettmansperger & McKean, 1998.)

15.12.1 S-PLUS Function wreg

The S-PLUS function

wreg(x,y)

computes an estimate of the slope and intercept using the Wilcoxon R estimate just
described. A negative feature of this function is that execution time can be somewhat
high compared to some of the other estimators in Chapter 13.

EXAMPLE. For the reading data in Figure 13.18, wreg estimates the slope to be
zero, which is close to the least squares estimate of −0.02 as well as the Coakley–
Hettmansperger M-estimate of −0.04. It is fairly evident, however, that the six
most right points are outliers. If these six points are ignored, wreg estimates the
slope to be −0.53. The Theil–Sen estimate of the slope is −0.6, again ignoring
the outliers; but even with the outliers, the Theil–Sen estimate is −0.28. So
switching to the rank-based estimate does not eliminate the possibility that a
few points can dominate the estimate of the slope and give a relatively poor fit
to the bulk of the points. ■
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EXAMPLE. For the star data in Figure 13.12, wreg estimates the slope to be
−0.477 versus the Theil–Sen estimate of 1.73, which gives a better fit to the bulk
of the observations. Again, ignoring the outliers by restricting X to be greater
than 4.01, a good fit to the data is obtained with the rank-based regression
method. ■

EXAMPLE. As with many of the other estimators covered in Chapter 13,
restricting the range of X values by checking for outliers among the X values
and eliminating any that are found is no guarantee that a good fit to the data will
be obtained with wreg. For example, in Figure 13.5, the data were generated
having a slope of 1 and then two unusual points were added, but no outliers are
found among the X values using the methods in Chapter 3. The function wreg
estimates the slope to be .498. ■

As stressed in Chapter 13, it currently seems that no single regression estimator is
ideal under all circumstances, and in applied work it seems that multiple methods are
required, at least in the preliminary stages of data analysis. The rank-based regres-
sion estimator described here does not perform well in some situations where other
estimators give excellent results, but it remains among the group of estimators that
seem to have practical value.

One appeal of the Wilcoxon R estimator is that it appears to perform reasonably
well when there are multiple predictors and the goal is to detect curvature using a
partial residual plot (as described in Section 14.2.5). McKean and Sheather (2000)
provide results on this issue and compare the use of the Wilcoxon R estimator to
partial residual plots based on least squares.

Yet another issue is testing hypotheses when using the Wilcoxon R estimator. One
possibility is the bootstrap method in Section 14.5. It is possible to avoid the boot-
strap using results in Hettmansperger and McKean (1998), but it seems the relative
merits of this approach, versus the bootstrap method have not been investigated.

15.12.2 Other Rank-Based Estimators

For completeness, there are other rank-based estimators that are briefly mentioned
here. Jaeckel (1972) suggests estimating the slope by minimizing

∑
i<j

|(Yi − b1Xi) − (Yj − b1Xj)|,

which turns out to be tantamount to minimizing a function of the ranks of the residuals.
A generalization of this method was derived by Naranjo and Hettmansperger (1994).
An appeal of their method is that it appears to control Type I error probabilities
relatively well without resorting to the bootstrap. A negative feature is that when
there are leverage points (outliers among the X values), power can be low versus least
squares (Wilcox, 1995). For yet another rank-based approach, see Cliff (1996).
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15.13 The Rank-Transform Method

It should be noted that a simple approach when dealing with rank-based meth-
ods is to replace the observations by their ranks and apply a method for means.
There are situations where this strategy gives reasonable results, but there are
general conditions where it performs poorly. For criticisms of the method, see
Blair, Sawilowski, and Higgens (1987); Akritas (1990); G. Thompson and Ammann
(1990); and G. Thompson (1991). For more details, see McKean and Vidmar (1994);
Hettmansperger and McKean (1998, Section 4.7); and Brunner, Domhof, and Langer
(2002, Section 5.8). Headrick and Rotou (2001) studied this approach when dealing
with multiple regression and found it to be unsatisfactory.

15.14 Exercises

1. Two methods for reducing shoulder pain after laparoscopic surgery were
compared by Jorgensen et al. (1995). The data were

Group 1: 1 2 1 1 1 1 1 1 1 1 2 4 1 1

Group 2: 3 3 4 3 1 2 3 1 1 5 4

Verify that all of the methods in Section 15.1 reject at the .05 level. Although
the Kolmogorov–Smirnov test rejects with α = .05, why might you sus-
pect that the Kolmogorov–Smirnov test will have relatively low power in
this particular situation? Check your results using the S-PLUS functions
provided.

2. Imagine two groups of cancer patients are compared, the first group having
a rapidly progressing form of the disease and the other having a slowly pro-
gressing form instead. At issue is whether psychological factors are related to
the progression of cancer. The outcome measure is one where highly nega-
tive scores indicated a tendency to present the appearance of serenity in the
presence of stress. The results are

Group 1: −25 −24 −22 −22 −21 −18 −18 −18 −18 −17 −16 −14 −14
−13 −13 −13 −13 −9 −8 −7 −5 1 3 7 7

Group 2: −21 −18 −16 −16 −16 −14 −13 −13 −12 −11 −11 −11
−9 −9 −9 −9 −7 −6 −3 −2 3 10

Verify that the Wilcoxon–Mann–Whitney test rejects at the .05 level but that
none of the other methods in Section 15.1 reject. Check your results using
the S-PLUS functions provided. What might explain this?

3. Chapter 14 mentions data from a study regarding four skull measurements
from five different time periods. If we compare the five groups based on these
four measures with the S-PLUS function mulrank in Section 15.8.2, the output
is as follows.
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$test.stat:
[1] 4.197179

$nu1:
[1] 14.13007

$sig.level:
[1] 1.717545e-07

$N:
[1] 150

$q.hat:
[,1] [,2] [,3] [,4]

[1,] 0.3605556 0.5682222 0.6316667 0.4626667
[2,] 0.3881111 0.4988889 0.6518889 0.4422222
[3,] 0.5380000 0.5635556 0.4756667 0.4568889
[4,] 0.5898889 0.4855556 0.3880000 0.5961111
[5,] 0.6234444 0.3837778 0.3527778 0.5421111

Interpret the results.
4. If a significant result is obtained with the S-PLUS function cmanova in Section

15.8.4, is this evidence that we should also reject the hypothesis tested by
mulrank in Section 15.8.2?

5. Imagine that you get a significant result when using the ANOVA F-test in
Chapter 9. If we increase the largest observation among the J groups, it is
generally the case that eventually we will no longer reject. Is the same thing
true when using the rank-based methods in Section 15.2?

6. Two independent groups are given different cold medicines and the goal is to
compare reaction times. Suppose that the decreases in reaction times when
taking drug A versus B are as follows.

A: 1.96, 2.24, 1.71, 2.41, 1.62, 1.93

B: 2.11, 2.43, 2.07, 2.71, 2.50, 2.84, 2.88

Compare these two groups with the Mann–Whitney–Wilcoxon test using
Equation (15.4). What is your estimate of the probability that a randomly
sampled participant receiving drug A will have less of a reduction in reaction
time than a randomly sampled participant receiving drug B?

7. Repeat the previous exercise, only now use the Cliff as well as the Brunner–
Munzel methods.

8. For two dependent groups you get

Group 1: 10 14 15 18 20 29 30 40

Group 2: 40 8 15 20 10 8 2 3

Compare the two groups with the sign test and the Wilcoxon signed rank test
with α = .05. Verify that according to the sign test, p̂ = .36, that the .95
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confidence interval for p is (.13, .69), and that the Wilcoxon signed rank test
has an approximate significance level of .46.

9. For two dependent groups you get

Group 1: 86 71 77 68 91 72 77 91 70 71 88 87

Group 2: 88 77 76 64 96 72 65 90 65 80 81 72

Apply the Wilcoxon signed rank test with α = .05. Verify that W = .7565 and
that you fail to reject.

10. A developing nation is trying to improve its ability to grow its own crops. Four
methods of growing corn are being considered, and you have been asked to
help determine whether it makes a difference which method is used. To find
out, four adjacent plots of land are used to grow the corn, and the yield is
measured at the end of the season. This process is repeated in 12 locations
located throughout the country, and the results are as shown in Table 15.4.
Because results for adjacent plots of land might not be independent, you decide
to use Friedman’s test. Verify that a significant result among the four methods
is obtained with α = .05.

11. Repeat the previous exercise using the Agresti–Pendergast procedure. (Use
the S-PLUS function apanova.)

12. Use the Agresti–Pendergast procedure to perform all pairwise comparisons
of the groups in the previous two exercises. Use Rom’s method so that the
familywise error rate does not exceed 0.05. Verify that a significant result is
obtained only when comparing groups 1 and 3.

13. For the following pairs of observations, test H0 : τ = 0 with α = .05.

Time 1: 10 16 15 20

Time 2: 25 8 18 9

Verify that τ̂ = −0.667, Z = −1.36, so you fail to reject.

TABLE 15.4 Data for Exercise 10

A B C D

10 7 6 4

11 6 9 5

9 5 5 10

8 2 7 9

10 5 4 8

6 6 6 7

4 11 5 12

6 9 2 8

9 4 5 9

10 3 5 4

9 4 8 3

6 2 3 6
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14. Repeat the previous exercise, except use Spearman’s rho instead. Verify that
rs = −0.8 and that again you fail to reject.

15. Section 15.8.3 makes a distinction between the multivariate versus the marginal
hypothesis. Describe a situation where the marginal hypothesis is true but the
multivariate hypothesis is false.

16. Apply the S-PLUS function mulrank to the data in Table 15.2, and verify the
results in the example of Section 15.8.2.

17. Using the S-PLUS function cmanova, apply the Choi–Marden method to the
data in Table 15.2 and verify that the significance level is less than .01.

18. Apply the S-PLUS function bwrank to the data in Table 15.2. Verify that the
significance level associated with the main effect for factor A is less than .001
but that you get a highly nonsignificant result for factor B and the hypothesis
of no interaction.

19. Using the S-PLUS function bwrmcp, verify that for the data in Table 15.2,
all pairwise comparisons among the levels of factor A are significant when the
goal is to have FWE equal to .05.

20. Verify that no interaction is found using the method in Section 15.9.4 with the
data in Table 15.2.

21. In the previous three exercises, beyond random sampling, what is being
assumed about the variables when making inferences about the levels of factor B
and interactions?

22. Verify that for the data in Table 15.3, the S-PLUS function bwrmcp returns

$Factor.A:
Level Level test.stat sig.level sig.crit

[1,] 1 2 12.87017 0.001043705 0.05

$Factor.B:
Level Level test.stat sig.level sig.crit

[1,] 1 2 0.3048713 0.5808447 0.0250
[2,] 1 3 0.2224258 0.6371979 0.0500
[3,] 2 3 0.5858703 0.4440207 0.0169

$Factor.AB:
Lev.A Lev.A Lev.B Lev.B test.stat

[1,] 1 2 1 2 6.520209
[2,] 1 2 1 3 11.170399
[3,] 1 2 2 3 3.728463

sig.level sig.crit
0.0106656917 0.0250
0.0008311581 0.0169
0.0534928817 0.0500

23. Based on the results of the previous exercise, can you conclude that based on
the average ranks among the groups, there is a disordinal interaction?

24. Look at the data in Table 15.3 and comment on why the method in Section
15.9.4 would be expected to have relatively low power.
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25. Verify that for the data in Table 15.3, time 1 and time 2 among the active
treatment group have a Kendall’s tau equal to .31 with a significance level
of .04.

26. For the data in Table 15.3, compute a .95 confidence interval for Spearman’s
rho using the data for time 1 and time 2 among the active treatment group. Use
the S-PLUS function corb in Section 13.6.5. Verify that the .95 confidence
interval is (0.036, 0.84), so again you reject H0 : ρs = 0 at the .05 level.

27. For the data used in the last exercise, plot the points and comment on the
association and the robustness of Spearman’s rho and Kendall’s tau.

28. Verify that for the data in Table 15.3, the Choi–Marden method has a
significance level less than .001.

29. Verify that the hypothesis given by Equation (15.7) is the same as the
hypothesis given by Equation (15.8).
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Solutions to Selected Exercises

Chapter 2

3. µ = 3, σ 2 = 1.6. 4. Smaller, σ 2 = 1.3. 5. Larger. 7. (a) .3, (b) .03/.3, (c) .09/.3,
(d) .108/.18. 8. Yes. For example, probability of a high income given that they are
under 30 is .03/.3 = .1, which is equal to the probability of a high income. 9. (a)
1253/3398, (b) 757/1828, (c) 757/1253, (d) no, (e) 1831/3398. 10. Median = 2.5.
The .1 quantile — say, y — is given by ( y − 1) ∗ (1/3) = .1, so the .1 quantile is 1.3.
The .9 quantile is 3.7. 11. (a) 4× (1/5), (b) 1.5× (1/5), (c) 2× (1/5), (d) 2.2× (1/5),
(e) 0. 12. Median = −.5. The .25 quantile, y, is given by ( y− (−3))×1/5 = .25, so
y = −1.75. 13. (a) (c− (−1))× (1/2) = .9, so c = .8, (b) (c− (−1))× (1/2) = .95,
c = .9, (c) (c − ( − 1)) × (1/2) = .01, c = −.98. 14. (a) .9, (b) c = .95, (c) c = .99.
15. (a) 0, (b) .25, (c) .5. 16. (a) 0, (b) 1/6, (c) 2/3, (d) 1/6. 17. y × (1/60) = .8,
y = 48. 18. (a) 0.0668, (b) 0.0062, (c) 0.0062, (d) .683. 19. (a) 0.691, (b) 0.894,
(c) .77. 20. (a) .31, (b) .885, (c) 0.018, (d).221. 21. (a) −2.33, (b) 1.93, (c) −0.174,
(d) .3. 22. (a) 1.43, (b) −0.01, (c) 1.7, (d) 1.28. 23. (a) .133, (b) .71, (c) .133,
(d) .733. 24. (a) .588, (b) .63, (c) .71, (d) .95. 26. c = 1.96. 27. 1.28. 28. .16.
29. 84.45. 30. 1 − .91. 31. .87. 32. .001. 33. .68. 34. .95. 35. .115. 36. .043. 37.
Yes. 39. No, for small departures from normality this probability can be close to 1.
40. No, for reasons similar to those in the previous exercise. 41. Yes. 42. Yes. 43.
µ = 2.3, σ = .9, and P(µ − σ ≤ X ≤ µ + σ ) = .7. 44. (a) .755, (b) .255, (c)
1 − .255 − 5(.75)(.25)4. 45. (a) .586, (b) .732, (c) 1 − .425, (d) 1 − .274. 46. .4(25),
.4(.6)(25), .4, .4(.6)/25.

Chapter 3

3. Two. 7. n = 88. 10. 9. 11. Yes. 12. One. 13. 20%. 17. 98, 350, 370, and 475.
18.

∑
(x − X̄)2( fx/n). 25. The lower and upper quartiles are approximately 900 and

1300, respectively. So the standard boxplot rule would declare a value an outlier if it
is less than 900 − 1.5(1300 − 900) or greater than 1300 + 1.5(1300 − 900). 26. .1.

A-1
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Chapter 4

2. 1.28, 1.75, 2.326. 3. 45±1.96. 4. 45±2.58. 5. Yes, upper end of confidence interval
is 1158. 6. (a) 65 ± 1.96(22)/

√
12, (b) 185 ± 1.96(10)/

√
22, (c) 19 ± 1.96(30)/

√
50.

8. 9 and 8/10. 9. 2.7 and 1.01/12. 10. 2.7. 11. 1.01. 12. 94.3/8 and
√

94.3/8. 13. 32.
No. 14. 93,663.52/12. 15. They inflate the standard error. 16. 94.3/8,

√
94.3/8. 17.

No. 18. 10.9/25; small departures from normality can inflate the standard error. 20.
(a) .0228, (b) .159. 21. (a) .16, (b) .023, (c) .977 − .028. 22. .023. 24. .933 − .067.
25. (a) .055, (b) .788, (c) .992, (d) .788 − .055. 26. (a) .047, (b) .952, (c) 1 − .047,
(d) .952 − .047. 27. Sample from a heavy-tailed distribution. 28. Sampling from a
light-tailed distribution, the distribution of the sample mean will be well approximated
by the central limit theorem. 29. (a) 26 ± 2.26(9)/

√
10, (b) 132 ± 2.09(20)/

√
18,

(c) 52 ± 2.06(12)/
√

25. 31. (161.4, 734.7). 32. (10.7, 22.4). 35. (a) 52 ±
2.13

√
12/(.6

√
24), (b) 10 ± 2.07

√
30/(.6

√
36). 37. (160.4, 404.99). 38. Outliers.

39. Outliers. 41. No.

Chapter 5

1. Z = −1.265, fail to reject. 2. Fail to reject. 3. (74.9, 81.1). 4. .103. 5. .206. 6.
Z = −14, reject. 7. Reject. 8. (118.6, 121.4). 9. Yes, because X̄ is consistent with
H0. 10. Z = 10, reject. 11. Z = 2.12, reject. 19. Increase α. 20. (a) T = 1, fail to
reject. (b) T = .5, fail to reject. (c) T = 2.5, reject. 22. (a) T = .8, fail to reject.
(b) T = .4, fail to reject. (c) T = 2, fail to reject. 24. T = .39, fail to reject. 25.
T = −2.61, reject. 26. (a) Tt = .596, fail to reject. (b) Tt = .298, fail to reject. (c)
Tt = .894, fail to reject. 28. Tt = −3.1, reject. 29. Tt = .129, fail to reject.

Chapter 6

4. .87. 6. b1 = −0.0355, b0 = 39.93. 7. b1 = .0039, b0 = .485. 10. One concern
is that X = 600 lies outside the range of X values used to compute the least squares
regression line. 9. b1 = −0.0754, b0 = −1.253. 11. r = −.366. Not significantly
different from zero, so can’t be reasonably certain about whether ρ is positive or
negative. 14. Health improves as vitamin intake increases, but health deteriorates
with too much vitamin A. That is, there is a nonlinear association. 17. Extrapolation
can be misleading.

Chapter 7

1. (8.1, 14.6), the middle 80%. 4. The one based on trimcibt, which uses the
bootstrap-t method. 7. The one based on trimpb, which uses the percentile boot-
strap method. 10. In a bootstrap sample, outliers are more likely to inflate the 20%
trimmed mean if no Winsorizing is done. 12. The amount of Winsorizing equals the
amount of trimming, which might mean inaccurate probability coverage. 13. (7, 14.5).
Even though the one-step M-estimator removes outliers, situations arise where using
a median might yield a substantially shorter confidence interval. 17. There might
be a nonlinear association. 18. Restricting the range of the X values can reveal an
association that is not otherwise detected. 19. Now you reject, before you did not
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reject, so again restricting the range of X can reveal an association that is otherwise
missed. 20. The conventional method appears to have accurate probability coverage
in this particular situation.

Chapter 8

3. T = (45 − 36)/
√

11.25(.083333) = 9.3, ν = 48, reject. 4. W = (45 − 36)/√
8/20 + 24/10 = 10.49, reject. 5. Welch’s test might have more power. 6. T = 3.79,

ν = 38, reject. 7. W = 3.8, ν = 38, reject. 8. With equal sample sizes and equal
sample variances, T and W give exactly the same result. This suggests that if the
sample variances are approximately equal, it makes little difference which method is
used. But if the sample variances differ enough, Welch’s method is generally more
accurate. 9. h1 = 16, h2 = 10, d1 = 2.4, d2 = 6, ν = 16.1, so t = 2.12. Ty = 2.07,
fail to reject. 10. .99 confidence interval is (− 2.5, 14.5). 11. ν = 29, t = 2.045, CI
is (1.38, 8.62), reject. 12. CI is (1.39, 8.6), reject. 13. W = 1.2, ν̂ = 11.1, t = 2.2,
fail to reject. 14. Ty = 1.28, ν̂ = 9.6, fail to reject. 15. No, power might be low.
16. .95 CI is ( − 7.4, .2), fail to reject. 17. Fail to reject. 20. The data indicate that
the distributions differ, so the confidence interval based on Student’s T might be
inaccurate. 24. The distributions differ, so some would argue that by implication
the means in particular differ. 26. Power. 28. One concern is that the second group
appears to be more skewed than the first, suggesting that probability coverage, when
using means, might be poor. Another concern is that the first group has an outlier. 31.
If the tails of the distributions are sufficiently heavy, medians have smaller standard
errors and hence can have more power. 33. An improper estimate of the standard
error is being used if extreme observations are discarded and methods for means are
applied to the data that remain. See Section 4.9.1.

Chapter 9

17. Set allp=F, but this might lower power. A better approach would be to use the
method in Section 12.7.3. 19. (MSBG − MSWG)(J − 1)/n. 22. Using allp=F might
lower power, but this is not an issue here because you reject.

Chapter 10

2. There are main effects for both factors A and B but no interaction. 3. There is a
disordinal interaction. 4. Row 1: 10, 20, 30; Row 2: 20, 30, 40; Row 3: 30, 40, 50.
5.

Source SS DF MS F

A 800 2 400 3.00
B 600 3 200 1.5
INTER 1200 6 200 1.5
WITHIN 4800 36 133.3

This is a 3-by-4 design. The total number of observations is N = 48. None of the
hypotheses is rejected.
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7. The means suggest that there is a disordinal interaction by rows. That is, method
1 is best for females, but method 2 is best for males. Although no interaction was
detected, accepting the null hypothesis is not warranted, because power might be
too low to detect a true interaction.
9. Disordinal interactions means that interpreting main effects may not be straight-
forward. 10. No, more needs to be done to establish that a disordinal interaction
exists.

Chapter 11

4. One possible reason is that these measures of location differ. That is, they are
testing different hypotheses; depending on how the groups differ, one approach
could have more power than the other.
5. Currently it seems that trimmed means based on difference scores usually provide
more power.

Chapter 12

1. Does not control the familywise error rate (the probability of at least one Type I
error).
2. MSWG = 11.6. (a) T = |15 − 10|/√11.6(1/20 + 1/20) = 4.64, ν =
100 − 5 = 95, reject. (b) T = |15 − 10|/√11.6(1/20 + 1/20)/2 = 6.565, q = 3.9,
reject. (c) W = (15 − 10)/

√
4/20 + 9/20 = 6.2, ν̂ = 33, c = 2.99, reject.

(d) (15 − 10)/
√

.5(4/20 + 9/20) = 8.77, q = 4.1, reject. (e) f = 2.47, S =√
4(2.47)(11.6)(1/20 + 1/20) = 3.39, reject. (f ) f = 2.66, A = 4(1 + 3/33)2.66 =

11.61, reject.
3. MSWG = 8. (a) T = |20 − 12|/√8(1/10 + 1/10) = 6.325, ν = 50 − 5 = 45,
reject. (b) T = |20 − 12|/√8(1/10 + 1/10)/2 = 8.94, q = 4.01, reject. (c)
W = (20 − 12)/

√
5/10 + 6/10 = 7.63, ν̂ = 37.7, c = 2.96, reject. (d)

(20 − 12)/
√

.5(5/10 + 6/10) = 10.79, q = 4.06, reject. (e) f = 2.58, S =√
4(2.58)(8)(1/10 + 1/10) = 4.06, reject. (f) f = 2.62, A = 11.3, reject.

4. Reject if the significance level is less than or equal to .05/6 = .0083. So the fourth
test is significant.
5. Fourth test, having significance level .001. 6. None is rejected. 7. All are
rejected. 8. MSWG goes up and eventually you will no longer reject when comparing
groups one and two. 9. The same problem occurs as in Exercise 8. 16. Signifi-
cant results are obtained when comparing groups 1 to 3, 1 to 4, 1 to 5, as well as
2 to 5. 17. One possibility is that the boxplot rule is missing outliers. Using the rule
based on MAD and M in Section 3.4.2, group 3 is found to have four outliers, but
none of the boxplot rules in Chapter 3 finds an outlier in this group. Comparing the
standard errors of the means versus the standard errors when using MOM, sometimes
MOM has a smaller standard error, but sometimes the reverse is true. Skewness can
affect power when comparing means, even when there are no outliers, and in general
the differences among the MOM population values might be larger than those among
the population means.
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Chapter 13

6. Both outliers among the Y values and heteroscedasticity can affect the confi-
dence intervals. The only known method that effectively determines whether robust
methods make a difference is simply to try the methods and compare the results. The
conventional .95 confidence interval for the slope, using the method in Section 6.3.1,
is (−4.23, 0.285) with a significance level of .083. Using the heteroscedastic boot-
strap method in Chapter 7 it is (−4.62, 0.41). Using Theil–Sen it is (−4.26, 0.26), and
for MGV it is (−4.55, 0.37). So all four methods fail to reject. 8. When computing
a confidence interval, the length of the confidence interval can change substantially,
depending on which estimator is used. That is, power can depend to a large extent
on which regression method is employed. 10. Eliminating too many points can mask
the true association among the bulk of the observations.

Chapter 14

1. All but three of the X3 values are close to 50. The three that are not are observations
1, 2, and 7. Excluding the corresponding Y values, the 20% trimmed mean of the
remaining Y values is 99.9 and the value of MOM is 98.5. 5. It appears that the
association might be nonlinear. However, lintest fails to reject the hypothesis of a
linear association. 8. X = 131 and 133.

Chapter 15

6. p̂ = .9. Significance level is .015. 7. Using Cliff’s method, the .95 confidence
interval for δ is (−0.966, −0.21), so reject with α = .05. The Brunner–Munzel
method returns a significance level of .00066. 15. For the first group, suppose there
are two variables, each having standard normal distributions with a correlation of
zero. Imagine for the second group that, again, the two variables each have standard
normal distributions, only now ρ = .5. Then the marginal hypothesis is true but the
multivariate hypothesis is false. 21. A basic assumption is that it is meaningful to
compare the variables. For example, if for every individual we measure height and
weight, we could analyze the data with the methods in Section 15.9, but the analysis is
meaningless when dealing with factor B or interactions. We could, however, compare
groups, based on these measures, using the methods in Section 15.8. 23. No. The
average ranks need to be compared for the appropriate groups. 24. There are many
tied values. 27. The significant results associated with Spearman’s rho and Kendall’s
tau are due to the two points where both time 1 and time 2 scores are equal to 4.
These two points appear in the upper right corner of a scatterplot. Ignoring these
two points, both Kendall’s tau and Spearman’s rho are no longer significant.
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Tables

Table 1 Standard Normal Distribution
Table 2 Binomial Probability Function
Table 3 Percentage Points of the Chi-Squared Distribution
Table 4 Percentage Points of Student’s T-Distribution
Table 5 Percentage Points of the F-Distribution, α = .10
Table 6 Percentage Points of the F-Distribution, α = .05
Table 7 Percentage Points of the F-Distribution, α = .025
Table 8 Percentage Points of the F-Distribution, α = .01
Table 9 Studentized Range
Table 10 Studentized Maximum Modulus Distribution
Table 11 Range of J Independent t Variates
Table 12 Critical Values for the One-Sided Wilcoxon Signed Rank Test
Table 13 Critical Values for the One-Sided Wilcoxon–Mann–Whitney Test
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TABLE 1 Standard Normal Distribution

z P(Z ≤ z) z P(Z ≤ z) z P(Z ≤ z) z P(Z ≤ z)

−3.00 0.0013 −2.99 0.0014 −2.98 0.0014 −2.97 0.0015

−2.96 0.0015 −2.95 0.0016 −2.94 0.0016 −2.93 0.0017

−2.92 0.0018 −2.91 0.0018 −2.90 0.0019 −2.89 0.0019

−2.88 0.0020 −2.87 0.0021 −2.86 0.0021 −2.85 0.0022

−2.84 0.0023 −2.83 0.0023 −2.82 0.0024 −2.81 0.0025

−2.80 0.0026 −2.79 0.0026 −2.78 0.0027 −2.77 0.0028

−2.76 0.0029 −2.75 0.0030 −2.74 0.0031 −2.73 0.0032

−2.72 0.0033 −2.71 0.0034 −2.70 0.0035 −2.69 0.0036

−2.68 0.0037 −2.67 0.0038 −2.66 0.0039 −2.65 0.0040

−2.64 0.0041 −2.63 0.0043 −2.62 0.0044 −2.61 0.0045

−2.60 0.0047 −2.59 0.0048 −2.58 0.0049 −2.57 0.0051

−2.56 0.0052 −2.55 0.0054 −2.54 0.0055 −2.53 0.0057

−2.52 0.0059 −2.51 0.0060 −2.50 0.0062 −2.49 0.0064

−2.48 0.0066 −2.47 0.0068 −2.46 0.0069 −2.45 0.0071

−2.44 0.0073 −2.43 0.0075 −2.42 0.0078 −2.41 0.0080

−2.40 0.0082 −2.39 0.0084 −2.38 0.0087 −2.37 0.0089

−2.36 0.0091 −2.35 0.0094 −2.34 0.0096 −2.33 0.0099

−2.32 0.0102 −2.31 0.0104 −2.30 0.0107 −2.29 0.0110

−2.28 0.0113 −2.27 0.0116 −2.26 0.0119 −2.25 0.0122

−2.24 0.0125 −2.23 0.0129 −2.22 0.0132 −2.21 0.0136

−2.20 0.0139 −2.19 0.0143 −2.18 0.0146 −2.17 0.0150

−2.16 0.0154 −2.15 0.0158 −2.14 0.0162 −2.13 0.0166

−2.12 0.0170 −2.11 0.0174 −2.10 0.0179 −2.09 0.0183

−2.08 0.0188 −2.07 0.0192 −2.06 0.0197 −2.05 0.0202

−2.04 0.0207 −2.03 0.0212 −2.02 0.0217 −2.01 0.0222

−2.00 0.0228 −1.99 0.0233 −1.98 0.0239 −1.97 0.0244

−1.96 0.0250 −1.95 0.0256 −1.94 0.0262 −1.93 0.0268

−1.92 0.0274 −1.91 0.0281 −1.90 0.0287 −1.89 0.0294

−1.88 0.0301 −1.87 0.0307 −1.86 0.0314 −1.85 0.0322

−1.84 0.0329 −1.83 0.0336 −1.82 0.0344 −1.81 0.0351

−1.80 0.0359 −1.79 0.0367 −1.78 0.0375 −1.77 0.0384

−1.76 0.0392 −1.75 0.0401 −1.74 0.0409 −1.73 0.0418

−1.72 0.0427 −1.71 0.0436 −1.70 0.0446 −1.69 0.0455

−1.68 0.0465 −1.67 0.0475 −1.66 0.0485 −1.65 0.0495

−1.64 0.0505 −1.63 0.0516 −1.62 0.0526 −1.61 0.0537

−1.60 0.0548 −1.59 0.0559 −1.58 0.0571 −1.57 0.0582

−1.56 0.0594 −1.55 0.0606 −1.54 0.0618 −1.53 0.0630

−1.52 0.0643 −1.51 0.0655 −1.50 0.0668 −1.49 0.0681

−1.48 0.0694 −1.47 0.0708 −1.46 0.0721 −1.45 0.0735

−1.44 0.0749 −1.43 0.0764 −1.42 0.0778 −1.41 0.0793

−1.40 0.0808 −1.39 0.0823 −1.38 0.0838 −1.37 0.0853

continued
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TABLE 1 continued

z P(Z ≤ z) z P(Z ≤ z) z P(Z ≤ z) z P(Z ≤ z)

−1.36 0.0869 −1.35 0.0885 −1.34 0.0901 −1.33 0.0918

−1.32 0.0934 −1.31 0.0951 −1.30 0.0968 −1.29 0.0985

−1.28 0.1003 −1.27 0.1020 −1.26 0.1038 −1.25 0.1056

−1.24 0.1075 −1.23 0.1093 −1.22 0.1112 −1.21 0.1131

−1.20 0.1151 −1.19 0.1170 −1.18 0.1190 −1.17 0.1210

−1.16 0.1230 −1.15 0.1251 −1.14 0.1271 −1.13 0.1292

−1.12 0.1314 −1.11 0.1335 −1.10 0.1357 −1.09 0.1379

−1.08 0.1401 −1.07 0.1423 −1.06 0.1446 −1.05 0.1469

−1.04 0.1492 −1.03 0.1515 −1.02 0.1539 −1.01 0.1562

−1.00 0.1587 −0.99 0.1611 −0.98 0.1635 −0.97 0.1662

−0.96 0.1685 −0.95 0.1711 −0.94 0.1736 −0.93 0.1762

−0.92 0.1788 −0.91 0.1814 −0.90 0.1841 −0.89 0.1867

−0.88 0.1894 −0.87 0.1922 −0.86 0.1949 −0.85 0.1977

−0.84 0.2005 −0.83 0.2033 −0.82 0.2061 −0.81 0.2090

−0.80 0.2119 −0.79 0.2148 −0.78 0.2177 −0.77 0.2207

−0.76 0.2236 −0.75 0.2266 −0.74 0.2297 −0.73 0.2327

−0.72 0.2358 −0.71 0.2389 −0.70 0.2420 −0.69 0.2451

−0.68 0.2483 −0.67 0.2514 −0.66 0.2546 −0.65 0.2578

−0.64 0.2611 −0.63 0.2643 −0.62 0.2676 −0.61 0.2709

−0.60 0.2743 −0.59 0.2776 −0.58 0.2810 −0.57 0.2843

−0.56 0.2877 −0.55 0.2912 −0.54 0.2946 −0.53 0.2981

−0.52 0.3015 −0.51 0.3050 −0.50 0.3085 −0.49 0.3121

−0.48 0.3156 −0.47 0.3192 −0.46 0.3228 −0.45 0.3264

−0.44 0.3300 −0.43 0.3336 −0.42 0.3372 −0.41 0.3409

−0.40 0.3446 −0.39 0.3483 −0.38 0.3520 −0.37 0.3557

−0.36 0.3594 −0.35 0.3632 −0.34 0.3669 −0.33 0.3707

−0.32 0.3745 −0.31 0.3783 −0.30 0.3821 −0.29 0.3859

−0.28 0.3897 −0.27 0.3936 −0.26 0.3974 −0.25 0.4013

−0.24 0.4052 −0.23 0.4090 −0.22 0.4129 −0.21 0.4168

−0.20 0.4207 −0.19 0.4247 −0.18 0.4286 −0.17 0.4325

−0.16 0.4364 −0.15 0.4404 −0.14 0.4443 −0.13 0.4483

−0.12 0.4522 −0.11 0.4562 −0.10 0.4602 −0.09 0.4641

−0.08 0.4681 −0.07 0.4721 −0.06 0.4761 −0.05 0.4801

−0.04 0.4840 −0.03 0.4880 −0.02 0.4920 −0.01 0.4960

0.01 0.5040 0.02 0.5080 0.03 0.5120 0.04 0.5160

0.05 0.5199 0.06 0.5239 0.07 0.5279 0.08 0.5319

0.09 0.5359 0.10 0.5398 0.11 0.5438 0.12 0.5478

0.13 0.5517 0.14 0.5557 0.15 0.5596 0.16 0.5636

0.17 0.5675 0.18 0.5714 0.19 0.5753 0.20 0.5793

0.21 0.5832 0.22 0.5871 0.23 0.5910 0.24 0.5948

0.25 0.5987 0.26 0.6026 0.27 0.6064 0.28 0.6103

continued
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TABLE 1 continued

z P(Z ≤ z) z P(Z ≤ z) z P(Z ≤ z) z P(Z ≤ z)

0.29 0.6141 0.30 0.6179 0.31 0.6217 0.32 0.6255

0.33 0.6293 0.34 0.6331 0.35 0.6368 0.36 0.6406

0.37 0.6443 0.38 0.6480 0.39 0.6517 0.40 0.6554

0.41 0.6591 0.42 0.6628 0.43 0.6664 0.44 0.6700

0.45 0.6736 0.46 0.6772 0.47 0.6808 0.48 0.6844

0.49 0.6879 0.50 0.6915 0.51 0.6950 0.52 0.6985

0.53 0.7019 0.54 0.7054 0.55 0.7088 0.56 0.7123

0.57 0.7157 0.58 0.7190 0.59 0.7224 0.60 0.7257

0.61 0.7291 0.62 0.7324 0.63 0.7357 0.64 0.7389

0.65 0.7422 0.66 0.7454 0.67 0.7486 0.68 0.7517

0.69 0.7549 0.70 0.7580 0.71 0.7611 0.72 0.7642

0.73 0.7673 0.74 0.7703 0.75 0.7734 0.76 0.7764

0.77 0.7793 0.78 0.7823 0.79 0.7852 0.80 0.7881

0.81 0.7910 0.82 0.7939 0.83 0.7967 0.84 0.7995

0.85 0.8023 0.86 0.8051 0.87 0.8078 0.88 0.8106

0.89 0.8133 0.90 0.8159 0.91 0.8186 0.92 0.8212

0.93 0.8238 0.94 0.8264 0.95 0.8289 0.96 0.8315

0.97 0.8340 0.98 0.8365 0.99 0.8389 1.00 0.8413

1.01 0.8438 1.02 0.8461 1.03 0.8485 1.04 0.8508

1.05 0.8531 1.06 0.8554 1.07 0.8577 1.08 0.8599

1.09 0.8621 1.10 0.8643 1.11 0.8665 1.12 0.8686

1.13 0.8708 1.14 0.8729 1.15 0.8749 1.16 0.8770

1.17 0.8790 1.18 0.8810 1.19 0.8830 1.20 0.8849

1.21 0.8869 1.22 0.8888 1.23 0.8907 1.24 0.8925

1.25 0.8944 1.26 0.8962 1.27 0.8980 1.28 0.8997

1.29 0.9015 1.30 0.9032 1.31 0.9049 1.32 0.9066

1.33 0.9082 1.34 0.9099 1.35 0.9115 1.36 0.9131

1.37 0.9147 1.38 0.9162 1.39 0.9177 1.40 0.9192

1.41 0.9207 1.42 0.9222 1.43 0.9236 1.44 0.9251

1.45 0.9265 1.46 0.9279 1.47 0.9292 1.48 0.9306

1.49 0.9319 1.50 0.9332 1.51 0.9345 1.52 0.9357

1.53 0.9370 1.54 0.9382 1.55 0.9394 1.56 0.9406

1.57 0.9418 1.58 0.9429 1.59 0.9441 1.60 0.9452

1.61 0.9463 1.62 0.9474 1.63 0.9484 1.64 0.9495

1.65 0.9505 1.66 0.9515 1.67 0.9525 1.68 0.9535

1.69 0.9545 1.70 0.9554 1.71 0.9564 1.72 0.9573

1.73 0.9582 1.74 0.9591 1.75 0.9599 1.76 0.9608

1.77 0.9616 1.78 0.9625 1.79 0.9633 1.80 0.9641

1.81 0.9649 1.82 0.9656 1.83 0.9664 1.84 0.9671

1.85 0.9678 1.86 0.9686 1.87 0.9693 1.88 0.9699

1.89 0.9706 1.90 0.9713 1.91 0.9719 1.92 0.9726

continued
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TABLE 1 continued

z P(Z ≤ z) z P(Z ≤ z) z P(Z ≤ z) z P(Z ≤ z)

1.93 0.9732 1.94 0.9738 1.95 0.9744 1.96 0.9750

1.97 0.9756 1.98 0.9761 1.99 0.9767 2.00 0.9772

2.01 0.9778 2.02 0.9783 2.03 0.9788 2.04 0.9793

2.05 0.9798 2.06 0.9803 2.07 0.9808 2.08 0.9812

2.09 0.9817 2.10 0.9821 2.11 0.9826 2.12 0.9830

2.13 0.9834 2.14 0.9838 2.15 0.9842 2.16 0.9846

2.17 0.9850 2.18 0.9854 2.19 0.9857 2.20 0.9861

2.21 0.9864 2.22 0.9868 2.23 0.9871 2.24 0.9875

2.25 0.9878 2.26 0.9881 2.27 0.9884 2.28 0.9887

2.29 0.9890 2.30 0.9893 2.31 0.9896 2.32 0.9898

2.33 0.9901 2.34 0.9904 2.35 0.9906 2.36 0.9909

2.37 0.9911 2.38 0.9913 2.39 0.9916 2.40 0.9918

2.41 0.9920 2.42 0.9922 2.43 0.9925 2.44 0.9927

2.45 0.9929 2.46 0.9931 2.47 0.9932 2.48 0.9934

2.49 0.9936 2.50 0.9938 2.51 0.9940 2.52 0.9941

2.53 0.9943 2.54 0.9945 2.55 0.9946 2.56 0.9948

2.57 0.9949 2.58 0.9951 2.59 0.9952 2.60 0.9953

2.61 0.9955 2.62 0.9956 2.63 0.9957 2.64 0.9959

2.65 0.9960 2.66 0.9961 2.67 0.9962 2.68 0.9963

2.69 0.9964 2.70 0.9965 2.71 0.9966 2.72 0.9967

2.73 0.9968 2.74 0.9969 2.75 0.9970 2.76 0.9971

2.77 0.9972 2.78 0.9973 2.79 0.9974 2.80 0.9974

2.81 0.9975 2.82 0.9976 2.83 0.9977 2.84 0.9977

2.85 0.9978 2.86 0.9979 2.87 0.9979 2.88 0.9980

2.89 0.9981 2.90 0.9981 2.91 0.9982 2.92 0.9982

2.93 0.9983 2.94 0.9984 2.95 0.9984 2.96 0.9985

2.97 0.9985 2.98 0.9986 2.99 0.9986 3.00 0.9987

Note: This table was computed with IMSL subroutine ANORIN.

TABLE 2 Binomial Probability Function (Values of Entries are P(X ≤ k))

n = 5

p

k .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

0 0.774 0.590 0.328 0.168 0.078 0.031 0.010 0.002 0.000 0.000 0.000

1 0.977 0.919 0.737 0.528 0.337 0.188 0.087 0.031 0.007 0.000 0.000

2 0.999 0.991 0.942 0.837 0.683 0.500 0.317 0.163 0.058 0.009 0.001

3 1.000 1.000 0.993 0.969 0.913 0.813 0.663 0.472 0.263 0.081 0.023

4 1.000 1.000 1.000 0.998 0.990 0.969 0.922 0.832 0.672 0.410 0.226

continued
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TABLE 2 continued

n = 6

p

k .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

0 0.735 0.531 0.262 0.118 0.047 0.016 0.004 0.001 0.000 0.000 0.000

1 0.967 0.886 0.655 0.420 0.233 0.109 0.041 0.011 0.002 0.000 0.000

2 0.998 0.984 0.901 0.744 0.544 0.344 0.179 0.070 0.017 0.001 0.000

3 1.000 0.999 0.983 0.930 0.821 0.656 0.456 0.256 0.099 0.016 0.002

4 1.000 1.000 0.998 0.989 0.959 0.891 0.767 0.580 0.345 0.114 0.033

5 1.000 1.000 1.000 0.999 0.996 0.984 0.953 0.882 0.738 0.469 0.265

n = 7

p

k .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

0 0.698 0.478 0.210 0.082 0.028 0.008 0.002 0.000 0.000 0.000 0.000

1 0.956 0.850 0.577 0.329 0.159 0.062 0.019 0.004 0.000 0.000 0.000

2 0.996 0.974 0.852 0.647 0.420 0.227 0.096 0.029 0.005 0.000 0.000

3 1.000 0.997 0.967 0.874 0.710 0.500 0.290 0.126 0.033 0.003 0.000

4 1.000 1.000 0.995 0.971 0.904 0.773 0.580 0.353 0.148 0.026 0.004

5 1.000 1.000 1.000 0.996 0.981 0.938 0.841 0.671 0.423 0.150 0.044

6 1.000 1.000 1.000 1.000 0.998 0.992 0.972 0.918 0.790 0.522 0.302

n = 8

p

k .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

0 0.663 0.430 0.168 0.058 0.017 0.004 0.001 0.000 0.000 0.000 0.000

1 0.943 0.813 0.503 0.255 0.106 0.035 0.009 0.001 0.000 0.000 0.000

2 0.994 0.962 0.797 0.552 0.315 0.145 0.050 0.011 0.001 0.000 0.000

3 1.000 0.995 0.944 0.806 0.594 0.363 0.174 0.058 0.010 0.000 0.000

4 1.000 1.000 0.990 0.942 0.826 0.637 0.406 0.194 0.056 0.005 0.000

5 1.000 1.000 0.999 0.989 0.950 0.855 0.685 0.448 0.203 0.038 0.006

6 1.000 1.000 1.000 0.999 0.991 0.965 0.894 0.745 0.497 0.187 0.057

7 1.000 1.000 1.000 1.000 0.999 0.996 0.983 0.942 0.832 0.570 0.337

n = 9

p

k .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

0 0.630 0.387 0.134 0.040 0.010 0.002 0.000 0.000 0.000 0.000 0.000

1 0.929 0.775 0.436 0.196 0.071 0.020 0.004 0.000 0.000 0.000 0.000

2 0.992 0.947 0.738 0.463 0.232 0.090 0.025 0.004 0.000 0.000 0.000

3 0.999 0.992 0.914 0.730 0.483 0.254 0.099 0.025 0.003 0.000 0.000

4 1.000 0.999 0.980 0.901 0.733 0.500 0.267 0.099 0.020 0.001 0.000

5 1.000 1.000 0.997 0.975 0.901 0.746 0.517 0.270 0.086 0.008 0.001

6 1.000 1.000 1.000 0.996 0.975 0.910 0.768 0.537 0.262 0.053 0.008

7 1.000 1.000 1.000 1.000 0.996 0.980 0.929 0.804 0.564 0.225 0.071

8 1.000 1.000 1.000 1.000 1.000 0.998 0.990 0.960 0.866 0.613 0.370

continued



Appendix B ■ Tables B-7

TABLE 2 continued

n = 10

p

k .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

0 0.599 0.349 0.107 0.028 0.006 0.001 0.000 0.000 0.000 0.000 0.000

1 0.914 0.736 0.376 0.149 0.046 0.011 0.002 0.000 0.000 0.000 0.000

2 0.988 0.930 0.678 0.383 0.167 0.055 0.012 0.002 0.000 0.000 0.000

3 0.999 0.987 0.879 0.650 0.382 0.172 0.055 0.011 0.001 0.000 0.000

4 1.000 0.998 0.967 0.850 0.633 0.377 0.166 0.047 0.006 0.000 0.000

5 1.000 1.000 0.994 0.953 0.834 0.623 0.367 0.150 0.033 0.002 0.000

6 1.000 1.000 0.999 0.989 0.945 0.828 0.618 0.350 0.121 0.013 0.001

7 1.000 1.000 1.000 0.998 0.988 0.945 0.833 0.617 0.322 0.070 0.012

8 1.000 1.000 1.000 1.000 0.998 0.989 0.954 0.851 0.624 0.264 0.086

9 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.972 0.893 0.651 0.401

n = 15

p

k .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

0 0.463 0.206 0.035 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.829 0.549 0.167 0.035 0.005 0.000 0.000 0.000 0.000 0.000 0.000

2 0.964 0.816 0.398 0.127 0.027 0.004 0.000 0.000 0.000 0.000 0.000

3 0.995 0.944 0.648 0.297 0.091 0.018 0.002 0.000 0.000 0.000 0.000

4 0.999 0.987 0.836 0.515 0.217 0.059 0.009 0.001 0.000 0.000 0.000

5 1.000 0.998 0.939 0.722 0.403 0.151 0.034 0.004 0.000 0.000 0.000

6 1.000 1.000 0.982 0.869 0.610 0.304 0.095 0.015 0.001 0.000 0.000

7 1.000 1.000 0.996 0.950 0.787 0.500 0.213 0.050 0.004 0.000 0.000

8 1.000 1.000 0.999 0.985 0.905 0.696 0.390 0.131 0.018 0.000 0.000

9 1.000 1.000 1.000 0.996 0.966 0.849 0.597 0.278 0.061 0.002 0.000

10 1.000 1.000 1.000 0.999 0.991 0.941 0.783 0.485 0.164 0.013 0.001

11 1.000 1.000 1.000 1.000 0.998 0.982 0.909 0.703 0.352 0.056 0.005

12 1.000 1.000 1.000 1.000 1.000 0.996 0.973 0.873 0.602 0.184 0.036

13 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.965 0.833 0.451 0.171

14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.965 0.794 0.537

n = 20

p

k .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

0 0.358 0.122 0.012 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.736 0.392 0.069 0.008 0.001 0.000 0.000 0.000 0.000 0.000 0.000

2 0.925 0.677 0.206 0.035 0.004 0.000 0.000 0.000 0.000 0.000 0.000

3 0.984 0.867 0.411 0.107 0.016 0.001 0.000 0.000 0.000 0.000 0.000

4 0.997 0.957 0.630 0.238 0.051 0.006 0.000 0.000 0.000 0.000 0.000

5 1.000 0.989 0.804 0.416 0.126 0.021 0.002 0.000 0.000 0.000 0.000

6 1.000 0.998 0.913 0.608 0.250 0.058 0.006 0.000 0.000 0.000 0.000

7 1.000 1.000 0.968 0.772 0.416 0.132 0.021 0.001 0.000 0.000 0.000

8 1.000 1.000 0.990 0.887 0.596 0.252 0.057 0.005 0.000 0.000 0.000

continued
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TABLE 2 continued

n = 20

p

k .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

9 1.000 1.000 0.997 0.952 0.755 0.412 0.128 0.017 0.001 0.000 0.000

10 1.000 1.000 0.999 0.983 0.872 0.588 0.245 0.048 0.003 0.000 0.000

11 1.000 1.000 1.000 0.995 0.943 0.748 0.404 0.113 0.010 0.000 0.000

12 1.000 1.000 1.000 0.999 0.979 0.868 0.584 0.228 0.032 0.000 0.000

13 1.000 1.000 1.000 1.000 0.994 0.942 0.750 0.392 0.087 0.002 0.000

14 1.000 1.000 1.000 1.000 0.998 0.979 0.874 0.584 0.196 0.011 0.000

15 1.000 1.000 1.000 1.000 1.000 0.994 0.949 0.762 0.370 0.043 0.003

16 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.893 0.589 0.133 0.016

17 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.965 0.794 0.323 0.075

18 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.992 0.931 0.608 0.264

19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.988 0.878 0.642

n = 25

p

k .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

0 0.277 0.072 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.642 0.271 0.027 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.873 0.537 0.098 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 0.966 0.764 0.234 0.033 0.002 0.000 0.000 0.000 0.000 0.000 0.000

4 0.993 0.902 0.421 0.090 0.009 0.000 0.000 0.000 0.000 0.000 0.000

5 0.999 0.967 0.617 0.193 0.029 0.002 0.000 0.000 0.000 0.000 0.000

6 1.000 0.991 0.780 0.341 0.074 0.007 0.000 0.000 0.000 0.000 0.000

7 1.000 0.998 0.891 0.512 0.154 0.022 0.001 0.000 0.000 0.000 0.000

8 1.000 1.000 0.953 0.677 0.274 0.054 0.004 0.000 0.000 0.000 0.000

9 1.000 1.000 0.983 0.811 0.425 0.115 0.013 0.000 0.000 0.000 0.000

10 1.000 1.000 0.994 0.902 0.586 0.212 0.034 0.002 0.000 0.000 0.000

11 1.000 1.000 0.998 0.956 0.732 0.345 0.078 0.006 0.000 0.000 0.000

12 1.000 1.000 1.000 0.983 0.846 0.500 0.154 0.017 0.000 0.000 0.000

13 1.000 1.000 1.000 0.994 0.922 0.655 0.268 0.044 0.002 0.000 0.000

14 1.000 1.000 1.000 0.998 0.966 0.788 0.414 0.098 0.006 0.000 0.000

15 1.000 1.000 1.000 1.000 0.987 0.885 0.575 0.189 0.017 0.000 0.000

16 1.000 1.000 1.000 1.000 0.996 0.946 0.726 0.323 0.047 0.000 0.000

17 1.000 1.000 1.000 1.000 0.999 0.978 0.846 0.488 0.109 0.002 0.000

18 1.000 1.000 1.000 1.000 1.000 0.993 0.926 0.659 0.220 0.009 0.000

19 1.000 1.000 1.000 1.000 1.000 0.998 0.971 0.807 0.383 0.033 0.001

20 1.000 1.000 1.000 1.000 1.000 1.000 0.991 0.910 0.579 0.098 0.007

21 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.967 0.766 0.236 0.034

22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.991 0.902 0.463 0.127

23 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.973 0.729 0.358

24 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.928 0.723
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TABLE 3 Percentage Points of the Chi-Squared Distribution

ν χ2
.005 χ2

.01 χ2
.025 χ2

.05 χ2
.10

1 0.0000393 0.0001571 0.0009821 0.0039321 0.0157908

2 0.0100251 0.0201007 0.0506357 0.1025866 0.2107213

3 0.0717217 0.1148317 0.2157952 0.3518462 0.5843744

4 0.2069889 0.2971095 0.4844186 0.7107224 1.0636234

5 0.4117419 0.5542979 0.8312111 1.1454763 1.6103077

6 0.6757274 0.8720903 1.2373447 1.6353836 2.2041321

7 0.9892554 1.2390423 1.6898699 2.1673594 2.8331099

8 1.3444128 1.6464968 2.1797333 2.7326374 3.4895401

9 1.7349329 2.0879011 2.7003908 3.3251143 4.1681604

10 2.1558590 2.5582132 3.2469759 3.9403019 4.8651857

11 2.6032248 3.0534868 3.8157606 4.5748196 5.5777788

12 3.0738316 3.5705872 4.4037895 5.2260313 6.3037949

13 3.5650368 4.1069279 5.0087538 5.8918715 7.0415068

14 4.0746784 4.6604300 5.6287327 6.5706167 7.7895403

15 4.6009169 5.2293501 6.2621403 7.2609539 8.5467529

16 5.1422071 5.8122101 6.9076681 7.9616566 9.3122330

17 5.6972256 6.4077673 7.5641880 8.6717682 10.0851974

18 6.2648115 7.0149183 8.2307510 9.3904572 10.8649368

19 6.8439512 7.6327391 8.9065247 10.1170273 11.6509628

20 7.4338474 8.2603989 9.5907822 10.8508148 12.4426041

21 8.0336685 8.8972015 10.2829285 11.5913391 13.2396393

22 8.6427155 9.5425110 10.9823456 12.3380432 14.0414886

23 9.2604370 10.1957169 11.6885223 13.0905151 14.8479385

24 9.8862610 10.8563690 12.4011765 13.8484344 15.6587067

25 10.5196533 11.5239716 13.1197433 14.6114349 16.4734497

26 11.1602631 12.1981506 13.8439331 15.3792038 17.2919159

27 11.8076019 12.8785095 14.5734024 16.1513977 18.1138763

28 12.4613495 13.5647125 15.3078613 16.9278717 18.9392395

29 13.1211624 14.2564697 16.0470886 17.7083893 19.7678223

30 13.7867584 14.9534760 16.7907562 18.4926147 20.5992126

40 20.7065582 22.1642761 24.4330750 26.5083008 29.0503540

50 27.9775238 29.7001038 32.3561096 34.7638702 37.6881561

60 35.5294037 37.4848328 40.4817810 43.1865082 46.4583282

70 43.2462311 45.4230499 48.7503967 51.7388763 55.3331146

80 51.1447754 53.5226593 57.1465912 60.3912201 64.2818604

90 59.1706543 61.7376862 65.6405029 69.1258850 73.2949219

100 67.3031921 70.0493622 74.2162018 77.9293976 82.3618469

continued
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TABLE 3 continued

ν χ2
.900 χ2

.95 χ2
.975 χ2

.99 χ2
.995

1 2.7056 3.8415 5.0240 6.6353 7.8818

2 4.6052 5.9916 7.3779 9.2117 10.5987

3 6.2514 7.8148 9.3486 11.3465 12.8409

4 7.7795 9.4879 11.1435 13.2786 14.8643

5 9.2365 11.0707 12.8328 15.0870 16.7534

6 10.6448 12.5919 14.4499 16.8127 18.5490

7 12.0171 14.0676 16.0136 18.4765 20.2803

8 13.3617 15.5075 17.5355 20.0924 21.9579

9 14.6838 16.9191 19.0232 21.6686 23.5938

10 15.9874 18.3075 20.4837 23.2101 25.1898

11 17.2750 19.6754 21.9211 24.7265 26.7568

12 18.5494 21.0263 23.3370 26.2170 28.2995

13 19.8122 22.3627 24.7371 27.6882 29.8194

14 21.0646 23.6862 26.1189 29.1412 31.3193

15 22.3077 24.9970 27.4883 30.5779 32.8013

16 23.5421 26.2961 28.8453 31.9999 34.2672

17 24.7696 27.5871 30.1909 33.4087 35.7184

18 25.9903 28.8692 31.5264 34.8054 37.1564

19 27.2035 30.1434 32.8523 36.1909 38.5823

20 28.4120 31.4104 34.1696 37.5662 39.9968

21 29.6150 32.6705 35.4787 38.9323 41.4012

22 30.8133 33.9244 36.7806 40.2893 42.7958

23 32.0069 35.1725 38.0757 41.6384 44.1812

24 33.1962 36.4151 39.3639 42.9799 45.5587

25 34.3815 37.6525 40.6463 44.3142 46.9280

26 35.5631 38.8852 41.9229 45.6418 48.2899

27 36.7412 40.1134 43.1943 46.9629 49.6449

28 37.9159 41.3371 44.4608 48.2784 50.9933

29 39.0874 42.5571 45.7223 49.5879 52.3357

30 40.2561 43.7730 46.9792 50.8922 53.6721

40 51.8050 55.7586 59.3417 63.6909 66.7660

50 63.1670 67.5047 71.4201 76.1538 79.4899

60 74.3970 79.0820 83.2977 88.3794 91.9516

70 85.5211 90.5283 95.0263 100.4409 104.2434

80 96.5723 101.8770 106.6315 112.3434 116.3484

90 107.5600 113.1425 118.1392 124.1304 128.3245

100 118.4932 124.3395 129.5638 135.8203 140.1940

Note: This table was computed with IMSL subroutine CHIIN.
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TABLE 4 Percentage Points of Student’s T-Distribution

ν t.9 t.95 t.975 t.99 t.995 t.999

1 3.078 6.314 12.706 31.821 63.6567 318.313

2 1.886 2.920 4.303 6.965 9.925 22.327

3 1.638 2.353 3.183 4.541 5.841 10.215

4 1.533 2.132 2.776 3.747 4.604 7.173

5 1.476 2.015 2.571 3.365 4.032 5.893

6 1.440 1.943 2.447 3.143 3.707 5.208

7 1.415 1.895 2.365 2.998 3.499 4.785

8 1.397 1.856 2.306 2.897 3.355 4.501

9 1.383 1.833 2.262 2.821 3.245 4.297

10 1.372 1.812 2.228 2.764 3.169 4.144

12 1.356 1.782 2.179 2.681 3.055 3.930

15 1.341 1.753 2.131 2.603 2.947 3.733

20 1.325 1.725 2.086 2.528 2.845 3.552

24 1.318 1.711 2.064 2.492 2.797 3.467

30 1.310 1.697 2.042 2.457 2.750 3.385

40 1.303 1.684 2.021 2.423 2.704 3.307

60 1.296 1.671 2.000 2.390 2.660 3.232

120 1.289 1.658 1.980 2.358 2.617 3.160

∞ 1.282 1.645 1.960 2.326 2.576 3.090

Entries were computed with IMSL subroutine TIN.

TABLE 5 Percentage Points of the F-Distribution, α = .10

ν1

ν2 1 2 3 4 5 6 7 8 9

1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86

2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38

3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24

4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94

5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32

6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96

7 3.59 3.26 3.07 2.96 2.88 2.83 2.79 2.75 2.72

8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56

9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35

continued
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TABLE 5 continued

ν1

ν2 1 2 3 4 5 6 7 8 9

11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27

12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21

13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16

14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12

15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09

16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06

17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03

18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00

19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98

20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96

21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95

22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93

23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92

24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91

25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89

26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88

27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87

28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87

29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86

30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85

40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79

60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74

120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68

∞ 2.71 2.30 2.08 1.94 1.85 1.77 1.72 .167 1.63

ν1

ν2 10 12 15 20 24 30 40 60 120 ∞
1 60.19 60.70 61.22 61.74 62.00 62.26 62.53 62.79 63.06 63.33

2 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49

3 5.23 5.22 5.20 5.19 5.18 5.17 5.16 5.15 5.14 5.13

4 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76

5 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.10

6 2.94 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.72

7 2.70 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49 2.47

8 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.29

9 2.42 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18 2.16

10 2.32 2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.08 2.06

continued
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TABLE 5 continued

ν1

ν2 10 12 15 20 24 30 40 60 120 ∞
11 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.97

12 2.19 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93 1.90

13 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.88 1.85

14 2.10 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83 1.80

15 2.06 2.02 1.97 1.92 1.90 1.87 1.85 1.82 1.79 1.76

16 2.03 1.99 1.94 1.89 1.87 1.84 1.81 1.78 1.75 1.72

17 2.00 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72 1.69

18 1.98 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69 1.66

19 1.96 1.91 1.86 1.81 1.79 1.76 1.73 1.70 1.67 1.63

20 1.94 1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.64 1.61

21 1.92 1.87 1.83 1.78 1.75 1.72 1.69 1.66 1.62 1.59

22 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.57

23 1.89 1.84 1.80 1.74 1.72 1.69 1.66 1.62 1.59 1.55

24 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.61 1.57 1.53

25 1.87 1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56 1.52

26 1.86 1.81 1.76 1.71 1.68 1.65 1.61 1.58 1.54 1.50

27 1.85 1.80 1.75 1.70 1.67 1.64 1.60 1.57 1.53 1.49

28 1.84 1.79 1.74 1.69 1.66 1.63 1.59 1.56 1.52 1.48

29 1.83 1.78 1.73 1.68 1.65 1.62 1.58 1.55 1.51 1.47

30 1.82 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.50 1.46

40 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42 1.38

60 1.71 1.66 1.60 1.54 1.51 1.48 1.44 1.40 1.35 1.29

120 1.65 1.60 1.55 1.48 1.45 1.41 1.37 1.32 1.26 1.19

∞ 1.60 1.55 1.49 1.42 1.38 1.34 1.30 1.24 1.17 1.00

Note: Entries in this table were computed with IMSL subroutine FIN.

TABLE 6 Percentage Points of the F-Distribution, α = .05

ν1

ν2 1 2 3 4 5 6 7 8 9

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02

continued
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TABLE 6 continued

ν1

ν2 1 2 3 4 5 6 7 8 9

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96

∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88

ν1

ν2 10 12 15 20 24 30 40 60 120 ∞
1 241.88 243.91 245.96 248.00 249.04 250.08 251.14 252.19 253.24 254.3

2 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50

3 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53

4 5.97 5.91 5.86 5.80 5.77 5.74 5.72 5.69 5.66 5.63

5 4.73 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36

6 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67

7 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23

8 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.00 2.97 2.93

9 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71

10 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

continued
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TABLE 6 continued

ν1

ν2 10 12 15 20 24 30 40 60 120 ∞
11 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40

12 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30

13 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21

14 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13

15 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07

16 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01

17 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96

18 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92

19 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88

20 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84

21 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81

22 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78

23 2.27 2.20 2.13 2.05 2.00 1.96 1.91 1.86 1.81 1.76

24 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73

25 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71

26 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69

27 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67

28 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65

29 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64

30 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62

40 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51

60 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25

∞ 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00

Note: Entries in this table were computed with IMSL subroutine FIN.

TABLE 7 Percentage Points of the F-Distribution, α = .025

ν1

ν2 1 2 3 4 5 6 7 8 9

1 647.79 799.50 864.16 899.59 921.85 937.11 948.22 956.66 963.28

2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39

3 17.44 16.04 15.44 15.10 14.88 14.74 14.63 14.54 14.47

4 12.22 10.65 9.98 9.61 9.36 9.20 9.07 8.98 8.90

5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68

continued
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TABLE 7 continued

ν1

ν2 1 2 3 4 5 6 7 8 9

6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52

7 8.07 6.54 5.89 5.52 5.29 5.12 5.00 4.90 4.82

8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36

9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78

11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59

12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44

13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31

14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21

15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12

16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05

17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98

18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93

19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88

20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84

21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80

22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76

23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73

24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70

25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68

26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65

27 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63

28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61

29 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59

30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57

40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45

60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33

120 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22

∞ 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11

ν1

ν2 10 12 15 20 24 30 40 60 120 ∞
1 968.62 976.71 984.89 993.04 997.20 1001 1006 1010 1014 1018

2 39.40 39.41 39.43 39.45 39.46 39.46 39.47 39.48 39.49 39.50

3 14.42 14.33 14.26 14.17 14.13 14.08 14.04 13.99 13.95 13.90

4 8.85 8.75 8.66 8.56 8.51 8.46 8.41 8.36 8.31 8.26

5 6.62 6.53 6.43 6.33 6.28 6.23 6.17 6.12 6.07 6.02

6 5.46 5.37 5.27 5.17 5.12 5.06 5.01 4.96 4.90 4.85

7 4.76 4.67 4.57 4.47 4.41 4.36 4.31 4.25 4.20 4.14

8 4.30 4.20 4.10 4.00 3.95 3.89 3.84 3.78 3.73 3.67

9 3.96 3.87 3.77 3.67 3.61 3.56 3.51 3.45 3.39 3.33

10 3.72 3.62 3.52 3.42 3.37 3.31 3.26 3.20 3.14 3.08

continued
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TABLE 7 continued

ν1

ν2 10 12 15 20 24 30 40 60 120 ∞
11 3.53 3.43 3.33 3.23 3.17 3.12 3.06 3.00 2.94 2.88

12 3.37 3.28 3.18 3.07 3.02 2.96 2.91 2.85 2.79 2.72

13 3.25 3.15 3.05 2.95 2.89 2.84 2.78 2.72 2.66 2.60

14 3.15 3.05 2.95 2.84 2.79 2.73 2.67 2.61 2.55 2.49

15 3.06 2.96 2.86 2.76 2.70 2.64 2.59 2.52 2.46 2.40

16 2.99 2.89 2.79 2.68 2.63 2.57 2.51 2.45 2.38 2.32

17 2.92 2.82 2.72 2.62 2.56 2.50 2.44 2.38 2.32 2.25

18 2.87 2.77 2.67 2.56 2.50 2.44 2.38 2.32 2.26 2.19

19 2.82 2.72 2.62 2.51 2.45 2.39 2.33 2.27 2.20 2.13

20 2.77 2.68 2.57 2.46 2.41 2.35 2.29 2.22 2.16 2.09

21 2.73 2.64 2.53 2.42 2.37 2.31 2.25 2.18 2.11 2.04

22 2.70 2.60 2.50 2.39 2.33 2.27 2.21 2.14 2.08 2.00

23 2.67 2.57 2.47 2.36 2.30 2.24 2.18 2.11 2.04 1.97

24 2.64 2.54 2.44 2.33 2.27 2.21 2.15 2.08 2.01 1.94

25 2.61 2.51 2.41 2.30 2.24 2.18 2.12 2.05 1.98 1.91

26 2.59 2.49 2.39 2.28 2.22 2.16 2.09 2.03 1.95 1.88

27 2.57 2.47 2.36 2.25 2.19 2.13 2.07 2.00 1.93 1.85

28 2.55 2.45 2.34 2.23 2.17 2.11 2.05 1.98 1.91 1.83

29 2.53 2.43 2.32 2.21 2.15 2.09 2.03 1.96 1.89 1.81

30 2.51 2.41 2.31 2.20 2.14 2.07 2.01 1.94 1.87 1.79

40 2.39 2.29 2.18 2.07 2.01 1.94 1.88 1.80 1.72 1.64

60 2.27 2.17 2.06 1.94 1.88 1.82 1.74 1.67 1.58 1.48

120 2.16 2.05 1.95 1.82 1.76 1.69 1.61 1.53 1.43 1.31

∞ 2.05 1.94 1.83 1.71 1.64 1.57 1.48 1.39 1.27 1.00

Note: Entries in this table were computed with IMSL subroutine FIN.

TABLE 8 Percentage Points of the F-Distribution, α = .01

ν1

ν2 1 2 3 4 5 6 7 8 9

1 4052 4999 5403 5625 5764 5859 5928 5982 6022

2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39

3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.50 27.34

4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16

6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98

7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72

8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91

9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94

continued
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TABLE 8 continued

ν1

ν2 1 2 3 4 5 6 7 8 9

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63

12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39

13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19

14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78

17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68

18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60

19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40

22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35

23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30

24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18

27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15

28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12

29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89

60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56

∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41

ν1

ν2 10 12 15 20 24 30 40 60 120 ∞
1 6056 6106 6157 6209 6235 6261 6287 6313 6339 6366

2 99.40 99.42 99.43 99.45 99.46 99.46 99.47 99.48 99.49 99.50

3 27.22 27.03 26.85 26.67 26.60 26.50 26.41 26.32 26.22 26.13

4 14.55 14.37 14.19 14.02 13.94 13.84 13.75 13.65 13.56 13.46

5 10.05 9.89 9.72 9.55 9.46 9.38 9.30 9.20 9.11 9.02

6 7.87 7.72 7.56 7.40 7.31 7.23 7.15 7.06 6.97 6.88

7 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65

8 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86

9 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31

10 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91

continued
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TABLE 8 continued

ν1

ν2 10 12 15 20 24 30 40 60 120 ∞
11 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60

12 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36

13 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17

14 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00

15 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87

16 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75

17 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65

18 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57

19 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49

20 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42

21 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36

22 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31

23 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26

24 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21

25 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17

26 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13

27 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10

28 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06

29 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03

30 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01

40 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80

60 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60

120 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38

∞ 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00

Note: Entries in this table were computed with IMSL subroutine FIN.

TABLE 9 Studentized Range Statistic, q, for α = .05

J (number of groups)

ν 2 3 4 5 6 7 8 9 10 11

3 4.50 5.91 6.82 7.50 8.04 8.48 8.85 9.18 9.46 9.72

4 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83 8.03

5 3.64 4.60 5.22 5.68 6.04 6.33 6.59 6.81 6.99 7.17

6 3.47 4.34 4.89 5.31 5.63 5.89 6.13 6.32 6.49 6.65

7 3.35 4.17 4.69 5.07 5.36 5.61 5.82 5.99 6.16 6.30

8 3.27 4.05 4.53 4.89 5.17 5.39 5.59 5.77 5.92 6.06

9 3.19 3.95 4.42 4.76 5.03 5.25 5.44 5.59 5.74 5.87

10 3.16 3.88 4.33 4.66 4.92 5.13 5.31 5.47 5.59 5.73

continued
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TABLE 9 continued

J (number of groups)

ν 2 3 4 5 6 7 8 9 10 11

11 3.12 3.82 4.26 4.58 4.83 5.03 5.21 5.36 5.49 5.61

12 3.09 3.78 4.19 4.51 4.76 4.95 5.12 5.27 5.39 5.52

13 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43

14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36

15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31

16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26

17 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.21

18 2.97 3.61 4.00 4.28 4.49 4.67 4.83 4.96 5.07 5.17

19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.93 5.04 5.14

20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11

24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01

30 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92

40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82

60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73

120 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.64

∞ 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55

α = .01

2 14.0 19.0 22.3 24.7 26.6 28.2 29.5 30.7 31.7 32.6

3 8.26 10.6 12.2 13.3 14.2 15.0 15.6 16.2 16.7 17.8

4 6.51 8.12 9.17 9.96 10.6 11.1 11.5 11.9 12.3 12.6

5 5.71 6.98 7.81 8.43 8.92 9.33 9.67 9.98 10.24 10.48

6 5.25 6.34 7.04 7.56 7.98 8.32 8.62 8.87 9.09 9.30

7 4.95 5.92 6.55 7.01 7.38 7.68 7.94 8.17 8.37 8.55

8 4.75 5.64 6.21 6.63 6.96 7.24 7.48 7.69 7.87 8.03

9 4.59 5.43 5.96 6.35 6.66 6.92 7.14 7.33 7.49 7.65

10 4.49 5.28 5.77 6.14 6.43 6.67 6.88 7.06 7.22 7.36

11 4.39 5.15 5.63 5.98 6.25 6.48 6.68 6.85 6.99 7.13

12 4.32 5.05 5.51 5.84 6.11 6.33 6.51 6.67 6.82 6.94

13 4.26 4.97 5.41 5.73 5.99 6.19 6.38 6.53 6.67 6.79

14 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66

15 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55

16 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46

17 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38

18 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31

19 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25

20 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19

24 3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02

30 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85

40 3.82 4.37 4.69 4.93 5.10 5.26 5.39 5.49 5.60 5.69

60 3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 5.53

120 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.37

∞ 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23

Note: The values in this table were computed with the IBM SSP subroutines DQH32 and DQG32.



Appendix B ■ Tables B-21

TABLE 10 Studentized Maximum Modulus Distribution

C (Number of Tests Performed)

ν α 2 3 4 5 6 7 8 9 10

2 .05 5.57 6.34 6.89 7.31 7.65 7.93 8.17 8.83 8.57

.01 12.73 14.44 15.65 16.59 17.35 17.99 18.53 19.01 19.43

3 .05 3.96 4.43 4.76 5.02 5.23 5.41 5.56 5.69 5.81

.01 7.13 7.91 8.48 8.92 9.28 9.58 9.84 10.06 10.27

4 .05 3.38 3.74 4.01 4.20 4.37 4.50 4.62 4.72 4.82

.01 5.46 5.99 6.36 6.66 6.89 7.09 7.27 7.43 7.57

5 .05 3.09 3.39 3.62 3.79 3.93 4.04 4.14 4.23 4.31

.01 4.70 5.11 5.39 5.63 5.81 5.97 6.11 6.23 6.33

6 .05 2.92 3.19 3.39 3.54 3.66 3.77 3.86 3.94 4.01

.01 4.27 4.61 4.85 5.05 5.20 5.33 5.45 5.55 5.64

7 .05 2.80 3.06 3.24 3.38 3.49 3.59 3.67 3.74 3.80

.01 3.99 4.29 4.51 4.68 4.81 4.93 5.03 5.12 5.19

8 .05 2.72 2.96 3.13 3.26 3.36 3.45 3.53 3.60 3.66

.01 3.81 4.08 4.27 4.42 4.55 4.65 4.74 4.82 4.89

9 .05 2.66 2.89 3.05 3.17 3.27 3.36 3.43 3.49 3.55

.01 3.67 3.92 4.10 4.24 4.35 4.45 4.53 4.61 4.67

10 .05 2.61 2.83 2.98 3.10 3.19 3.28 3.35 3.41 3.47

.01 3.57 3.80 3.97 4.09 4.20 4.29 4.37 4.44 4.50

11 .05 2.57 2.78 2.93 3.05 3.14 3.22 3.29 3.35 3.40

.01 3.48 3.71 3.87 3.99 4.09 4.17 4.25 4.31 4.37

12 .05 2.54 2.75 2.89 3.01 3.09 3.17 3.24 3.29 3.35

.01 3.42 3.63 3.78 3.89 3.99 4.08 4.15 4.21 4.26

14 .05 2.49 2.69 2.83 2.94 3.02 3.09 3.16 3.21 3.26

.01 3.32 3.52 3.66 3.77 3.85 3.93 3.99 4.05 4.10

16 .05 2.46 2.65 2.78 2.89 2.97 3.04 3.09 3.15 3.19

.01 3.25 3.43 3.57 3.67 3.75 3.82 3.88 3.94 3.99

18 .05 2.43 2.62 2.75 2.85 2.93 2.99 3.05 3.11 3.15

.01 3.19 3.37 3.49 3.59 3.68 3.74 3.80 3.85 3.89

20 .05 2.41 2.59 2.72 2.82 2.89 2.96 3.02 3.07 3.11

.01 3.15 3.32 3.45 3.54 3.62 3.68 3.74 3.79 3.83

24 .05 2.38 2.56 2.68 2.77 2.85 2.91 2.97 3.02 3.06

.01 3.09 3.25 3.37 3.46 3.53 3.59 3.64 3.69 3.73

30 .05 2.35 2.52 2.64 2.73 2.80 2.87 2.92 2.96 3.01

.01 3.03 3.18 3.29 3.38 3.45 3.50 3.55 3.59 3.64

40 .05 2.32 2.49 2.60 2.69 2.76 2.82 2.87 2.91 2.95

.01 2.97 3.12 3.22 3.30 3.37 3.42 3.47 3.51 3.55

60 .05 2.29 2.45 2.56 2.65 2.72 2.77 2.82 2.86 2.90

.01 2.91 3.06 3.15 3.23 3.29 3.34 3.38 3.42 3.46

∞ .05 2.24 2.39 2.49 2.57 2.63 2.68 2.73 2.77 2.79

.01 2.81 2.93 3.02 3.09 3.14 3.19 3.23 3.26 3.29

continued
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TABLE 10 continued

C

ν α 11 12 13 14 15 16 17 18 19

2 .05 8.74 8.89 9.03 9.16 9.28 9.39 9.49 9.59 9.68

.01 19.81 20.15 20.46 20.75 20.99 20.99 20.99 20.99 20.99

3 .05 5.92 6.01 6.10 6.18 6.26 6.33 6.39 6.45 6.51

.01 10.45 10.61 10.76 10.90 11.03 11.15 11.26 11.37 11.47

4 .05 4.89 4.97 5.04 5.11 5.17 5.22 5.27 5.32 5.37

.01 7.69 7.80 7.91 8.01 8.09 8.17 8.25 8.32 8.39

5 .05 4.38 4.45 4.51 4.56 4.61 4.66 4.70 4.74 4.78

.01 6.43 6.52 6.59 6.67 6.74 6.81 6.87 6.93 6.98

6 .05 4.07 4.13 4.18 4.23 4.28 4.32 4.36 4.39 4.43

.01 5.72 5.79 5.86 5.93 5.99 6.04 6.09 6.14 6.18

7 .05 3.86 3.92 3.96 4.01 4.05 4.09 4.13 4.16 4.19

.01 5.27 5.33 5.39 5.45 5.50 5.55 5.59 5.64 5.68

8 .05 3.71 3.76 3.81 3.85 3.89 3.93 3.96 3.99 4.02

.01 4.96 5.02 5.07 5.12 5.17 5.21 5.25 5.29 5.33

9 .05 3.60 3.65 3.69 3.73 3.77 3.80 3.84 3.87 3.89

.01 4.73 4.79 4.84 4.88 4.92 4.96 5.01 5.04 5.07

10 .05 3.52 3.56 3.60 3.64 3.68 3.71 3.74 3.77 3.79

.01 4.56 4.61 4.66 4.69 4.74 4.78 4.81 4.84 4.88

11 .05 3.45 3.49 3.53 3.57 3.60 3.63 3.66 3.69 3.72

.01 4.42 4.47 4.51 4.55 4.59 4.63 4.66 4.69 4.72

12 .05 3.39 3.43 3.47 3.51 3.54 3.57 3.60 3.63 3.65

.01 4.31 4.36 4.40 4.44 4.48 4.51 4.54 4.57 4.59

14 .05 3.30 3.34 3.38 3.41 3.45 3.48 3.50 3.53 3.55

.01 4.15 4.19 4.23 4.26 4.29 4.33 4.36 4.39 4.41

16 .05 3.24 3.28 3.31 3.35 3.38 3.40 3.43 3.46 3.48

.01 4.03 4.07 4.11 4.14 4.17 4.19 4.23 4.25 4.28

18 .05 3.19 3.23 3.26 3.29 3.32 3.35 3.38 3.40 3.42

.01 3.94 3.98 4.01 4.04 4.07 4.10 4.13 4.15 4.18

20 .05 3.15 3.19 3.22 3.25 3.28 3.31 3.33 3.36 3.38

.01 3.87 3.91 3.94 3.97 3.99 4.03 4.05 4.07 4.09

24 .05 3.09 3.13 3.16 3.19 3.22 3.25 3.27 3.29 3.31

.01 3.77 3.80 3.83 3.86 3.89 3.91 3.94 3.96 3.98

30 .05 3.04 3.07 3.11 3.13 3.16 3.18 3.21 3.23 3.25

.01 3.67 3.70 3.73 3.76 3.78 3.81 3.83 3.85 3.87

40 .05 2.99 3.02 3.05 3.08 3.09 3.12 3.14 3.17 3.18

.01 3.58 3.61 3.64 3.66 3.68 3.71 3.73 3.75 3.76

60 .05 2.93 2.96 2.99 3.02 3.04 3.06 3.08 3.10 3.12

.01 3.49 3.51 3.54 3.56 3.59 3.61 3.63 3.64 3.66

∞ .05 2.83 2.86 2.88 2.91 2.93 2.95 2.97 2.98 3.01

.01 3.32 3.34 3.36 3.38 3.40 3.42 3.44 3.45 3.47

continued
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TABLE 10 continued

C

ν α 20 21 22 23 24 25 26 27 28

2 .05 9.77 9.85 9.92 10.00 10.07 10.13 10.20 10.26 10.32

.01 22.11 22.29 22.46 22.63 22.78 22.93 23.08 23.21 23.35

3 .05 6.57 6.62 6.67 6.71 6.76 6.80 6.84 6.88 6.92

.01 11.56 11.65 11.74 11.82 11.89 11.97 12.07 12.11 12.17

4 .05 5.41 5.45 5.49 5.52 5.56 5.59 5.63 5.66 5.69

.01 8.45 8.51 8.57 8.63 8.68 8.73 8.78 8.83 8.87

5 .05 4.82 4.85 4.89 4.92 4.95 4.98 5.00 5.03 5.06

.01 7.03 7.08 7.13 7.17 7.21 7.25 7.29 7.33 7.36

6 .05 4.46 4.49 4.52 4.55 4.58 4.60 4.63 4.65 4.68

.01 6.23 6.27 6.31 6.34 6.38 6.41 6.45 6.48 6.51

7 .05 4.22 4.25 4.28 4.31 4.33 4.35 4.38 4.39 4.42

.01 5.72 5.75 5.79 5.82 5.85 5.88 5.91 5.94 5.96

8 .05 4.05 4.08 4.10 4.13 4.15 4.18 4.19 4.22 4.24

.01 5.36 5.39 5.43 5.45 5.48 5.51 5.54 5.56 5.59

9 .05 3.92 3.95 3.97 3.99 4.02 4.04 4.06 4.08 4.09

.01 5.10 5.13 5.16 5.19 5.21 5.24 5.26 5.29 5.31

10 .05 3.82 3.85 3.87 3.89 3.91 3.94 3.95 3.97 3.99

.01 4.91 4.93 4.96 4.99 5.01 5.03 5.06 5.08 5.09

11 .05 3.74 3.77 3.79 3.81 3.83 3.85 3.87 3.89 3.91

.01 4.75 4.78 4.80 4.83 4.85 4.87 4.89 4.91 4.93

12 .05 3.68 3.70 3.72 3.74 3.76 3.78 3.80 3.82 3.83

.01 4.62 4.65 4.67 4.69 4.72 4.74 4.76 4.78 4.79

14 .05 3.58 3.59 3.62 3.64 3.66 3.68 3.69 3.71 3.73

.01 4.44 4.46 4.48 4.50 4.52 4.54 4.56 4.58 4.59

16 .05 3.50 3.52 3.54 3.56 3.58 3.59 3.61 3.63 3.64

.01 4.29 4.32 4.34 4.36 4.38 4.39 4.42 4.43 4.45

18 .05 3.44 3.46 3.48 3.50 3.52 3.54 3.55 3.57 3.58

.01 4.19 4.22 4.24 4.26 4.28 4.29 4.31 4.33 4.34

20 .05 3.39 3.42 3.44 3.46 3.47 3.49 3.50 3.52 3.53

.01 4.12 4.14 4.16 4.17 4.19 4.21 4.22 4.24 4.25

24 .05 3.33 3.35 3.37 3.39 3.40 3.42 3.43 3.45 3.46

.01 4.00 4.02 4.04 4.05 4.07 4.09 4.10 4.12 4.13

30 .05 3.27 3.29 3.30 3.32 3.33 3.35 3.36 3.37 3.39

.01 3.89 3.91 3.92 3.94 3.95 3.97 3.98 4.00 4.01

40 .05 3.20 3.22 3.24 3.25 3.27 3.28 3.29 3.31 3.32

.01 3.78 3.80 3.81 3.83 3.84 3.85 3.87 3.88 3.89

60 .05 3.14 3.16 3.17 3.19 3.20 3.21 3.23 3.24 3.25

.01 3.68 3.69 3.71 3.72 3.73 3.75 3.76 3.77 3.78

∞ .05 3.02 3.03 3.04 3.06 3.07 3.08 3.09 3.11 3.12

.01 3.48 3.49 3.50 3.52 3.53 3.54 3.55 3.56 3.57

Note: This table was computed using the FORTRAN program described in Wilcox (1986b).
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TABLE 11 Percentage Points, h, of the Range of J Independent t Variates

α ν = 5 ν = 6 ν = 7 ν = 8 ν = 9 ν = 14 ν = 19 ν = 24 ν = 29 ν = 39 ν = 59

J = 2 groups

.05 3.63 3.45 3.33 3.24 3.18 3.01 2.94 2.91 2.89 2.85 2.82

.01 5.37 4.96 4.73 4.51 4.38 4.11 3.98 3.86 3.83 3.78 3.73

J = 3 groups

.05 4.49 4.23 4.07 3.95 3.87 3.65 3.55 3.50 3.46 3.42 3.39

.01 6.32 5.84 5.48 5.23 5.07 4.69 5.54 4.43 4.36 4.29 4.23

J = 4 groups

.05 5.05 4.74 4.54 4.40 4.30 4.03 3.92 3.85 3.81 3.76 3.72

.01 7.06 6.40 6.01 5.73 5.56 5.05 4.89 4.74 4.71 4.61 4.54

J = 5 groups

.05 5.47 5.12 4.89 4.73 4.61 4.31 4.18 4.11 4.06 4.01 3.95

.01 7.58 6.76 6.35 6.05 5.87 5.33 5.12 5.01 4.93 4.82 4.74

J = 6 groups

.05 5.82 5.42 5.17 4.99 4.86 4.52 4.38 4.30 4.25 4.19 4.14

.01 8.00 7.14 6.70 6.39 6.09 5.53 5.32 5.20 5.12 4.99 4.91

J = 7 groups

.05 6.12 5.68 5.40 5.21 5.07 4.70 4.55 4.46 4.41 4.34 4.28

.01 8.27 7.50 6.92 6.60 6.30 5.72 5.46 5.33 5.25 5.16 5.05

J = 8 groups

.05 6.37 5.90 5.60 5.40 5.25 4.86 4.69 4.60 4.54 4.47 4.41

.01 8.52 7.73 7.14 6.81 6.49 5.89 5.62 5.45 5.36 5.28 5.16

J = 9 groups

.05 6.60 6.09 5.78 5.56 5.40 4.99 4.81 4.72 4.66 4.58 4.51

.01 8.92 7.96 7.35 6.95 6.68 6.01 5.74 5.56 5.47 5.37 5.28

J = 10 groups

.05 6.81 6.28 5.94 5.71 5.54 5.10 4.92 4.82 4.76 4.68 4.61

.01 9.13 8.14 7.51 7.11 6.83 6.10 5.82 5.68 5.59 5.46 5.37

Source: Reprinted, with permission, from R. Wilcox, “A table of percentage points of the range of independent t
variables,” Technometrics 25: 201–204, 1983.

TABLE 12 Lower Critical Values for the One-Sided Wilcoxon Signed Rank Test

n α = .005 α = .01 α = .025 α = .05

4 0 0 0 0

5 0 0 0 1

6 0 0 1 3

7 0 1 3 4

8 1 2 4 6

9 2 4 6 9

10 4 6 9 11

11 6 8 11 14

12 8 10 14 18

13 10 13 18 22

continued
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TABLE 12 continued

n α = .005 α = .01 α = .025 α = .05

14 13 16 22 26

15 16 20 26 31

16 20 24 30 36

17 24 28 35 42

18 28 33 41 48

19 33 38 47 54

20 38 44 53 61

21 44 50 59 68

22 49 56 67 76

23 55 63 74 84

24 62 70 82 92

25 69 77 90 101

26 76 85 111 125

27 84 94 108 120

28 92 102 117 131

29 101 111 127 141

30 110 121 138 152

31 119 131 148 164

32 129 141 160 176

33 139 152 171 188

34 149 163 183 201

35 160 175 196 214

36 172 187 209 228

37 184 199 222 242

38 196 212 236 257

39 208 225 250 272

40 221 239 265 287

Entries were computed as described in Hogg and Craig, 1970, p. 361.

TABLE 13 Lower Critical Values, cL, for the One-Sided Wilcoxon–Mann–Whitney Test

α = .025

n2 n1 = 3 n1 = 4 n1 = 5 n1 = 6 n1 = 7 n1 = 8 n1 = 9 n1 = 10

3 6 6 7 8 8 9 9 10

4 10 11 12 13 14 15 15 16

5 16 17 18 19 21 22 23 24

6 23 24 25 27 28 30 32 33

7 30 32 34 35 37 39 41 43

8 39 41 43 45 47 50 52 54

9 48 50 53 56 58 61 63 66

10 59 61 64 67 70 73 76 79

continued
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TABLE 13 continued

α = .005

n2 n1 = 3 n1 = 4 n1 = 5 n1 = 6 n1 = 7 n1 = 8 n1 = 9 n1 = 10

3 10 10 10 11 11 12 12 13

4 15 15 16 17 17 18 19 20

5 21 22 23 24 25 26 27 28

6 28 29 30 32 33 35 36 38

7 36 38 39 41 43 44 46 48

8 46 47 49 51 53 55 57 59

9 56 58 60 62 65 67 69 72

10 67 69 72 74 77 80 83 85

Entries were determined with the algorithm in Hogg and Craig, 1970, p. 373.



APPENDIX C

Basic Matrix Algebra

A matrix is a two dimensional array of numbers or variables having r rows and c
columns.

EXAMPLE. 


32 19 67
11 21 99
25 56 10
76 39 43




is a matrix having four rows and three columns. ■

The matrix is said to be square if r = c (the number of rows equals the number of
columns). A matrix with r = 1 (c = 1) is called a row (column) vector.

A common notation for a matrix is X = (xij), meaning that X is a matrix where
xij is the value in the ith row and jth column. For the matrix just shown, the value in
the first row and first column is x11 = 32 and the value in the third row and second
column is x32 = 56.

EXAMPLE. A commonly encountered square matrix is the correlation matrix.
That is, for every individual, we have p measures with rij being Pearson’s correla-
tion between the ith and jth measures. Then the correlation matrix is R = (rij).
If p = 3, r12 = .2, r13 = .4, and r23 = .3, then

R =

 1 .2 .4

.2 1 .3

.4 .3 1


 .

(The correlation of a variable with itself is 1.) ■

C-1
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The transpose of a matrix is just the matrix obtained when the rth row becomes
the rth column. More formally, the transpose of the matrix X = (xij) is

X′ = (xji),

which has c rows and r columns.

EXAMPLE. The transpose of the matrix

X =




23 91
51 29
63 76
11 49




is

X′ =
(

23 51 63 11
91 29 76 49

)
.

■

The matrix X is said to be symmetric if X = X′. That is, xij = xji.
The diagonal of an r-by-r (square) matrix refers to xii, i = 1, . . . , r. A diagonal

matrix is an r-by-r matrix where the off-diagonal elements (the xij, i �= j) are zero.
An important special case is the identity matrix, which has 1’s along the diagonal and
zeros elsewhere. For example,


 1 0 0

0 1 0
0 0 1




is the identity matrix when r = c = 3. A common notation for the identity matrix
is I.

Two r × c matrices, X and Y, are said to be equal if for every i and j, xij = yij. That
is, every element in X is equal to the corresponding element in Y.

The sum of two matrices having the same number of rows and columns is

zij = xij + yij.

EXAMPLE. 
 1 3

4 −1
9 2


+


 8 2

4 9
1 6


 =


 9 5

8 8
10 8


 .

■
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Multiplication of a matrix by a scalar — say, a — is

aX = (axij).

That is, every element of the matrix X is multiplied by a.

EXAMPLE.

2


 8 2

4 9
1 6


 =


 16 4

8 18
2 12


 .

■

For an n-by-p matrix (meaning we have p measures for each of n individuals), the
sample mean is

X̄ = (X̄1, . . . , X̄p),

the vector of the sample means corresponding to the p measures. That is,

X̄j =
n∑

i=1

Xij, j = 1, . . . , p.

If X is an r-by-c matrix and Y is a c-by-t matrix (the number of columns for X is
the same as the number of rows for Y), the product of X and Y is the r-by-t matrix
Z = XY, where

zij =
c∑

k=1

xikykj.

EXAMPLE. 
 8 2

4 9
1 6


( 5 3

2 1

)
=

 44 26

38 21
17 9




■

EXAMPLE. Consider a random sample of n observations, X1, . . . , Xn, and let
J be a row matrix of 1’s. That is, J = (1,1, . . . ,1). Letting X be a column matrix
containing X1, . . . , Xn, then ∑

Xi = JX.

Continued
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EXAMPLE. (Continued )
The sample mean is

X̄ = 1
n
JX.

The sum of the squared observations is
∑

X2
i = X′X.

■

Let X be an n-by-p matrix of p measures taken on n individuals. Then Xi is the ith
row (vector) in the matrix X and (Xi − X̄)′ is a p-by-1 matrix consisting of the ith row
of X minus the sample mean. Moreover, (Xi − X̄)′(Xi − X̄) is a p-by-p matrix. The
(sample) covariance matrix is

S = 1
n − 1

n∑
i=1

(Xi − X̄)′(Xi − X̄).

That is, S = (sjk), where sjk is the covariance between the jth and kth measures. When
j = k, sjk is the sample variance corresponding to the jth variable under study.

For any square matrix X, the matrix X−1 is said to be the inverse of X if

XX−1 = I,

the identity matrix. If an inverse exists, X is said to be nonsingular; otherwise it is
singular. The inverse of a nonsingular matrix can be computed with the S-PLUS
built-in function

solve(m),

where m is any S-PLUS variable having matrix mode, with the number of rows equal
to the number of columns.

EXAMPLE. Consider the matrix(
5 3
2 1

)
.

Storing it in the S-PLUS variable m, the command solve(m) returns( −1 3
2 −5

)
.

It is left as an exercise to verify that multiplying these two matrices together
yields I. ■
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EXAMPLE. It can be shown that the matrix
(

2 5
2 5

)

does not have an inverse. The S-PLUS function solve, applied to this matrix,
reports that the matrix appears to be singular. ■

Consider any r-by-c matrix X, and let k indicate any square submatrix. That is,
consider the matrix consisting of any k rows and any k columns taken from X. The
rank of X is equal to the largest k for which a k-by-k submatrix is nonsingular.

The trace of a square matrix is just the sum of the diagonal elements and is often
denoted by tr. For example, if

A =
(

5 3
2 1

)
,

then

tr(A) = 5 + 1 = 6.

The notation

diag{x1, . . . , xn}
refers to a diagonal matrix with the values x1, . . . , xn along the diagonal. For example,

diag{4,5,2} =

 4 0 0

0 5 0
0 0 2


 .

A block diagonal matrix refers to a matrix where the diagonal elements are themselves
matrices.

EXAMPLE. If

V1 =
(

9 2
4 15

)
and V2 =

(
11 32
14 29

)
,

then

diag(V1,V2) =




9 2 0 0
4 15 0 0
0 0 11 32
0 0 14 29


 .

■
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Let A be an m1 × n1 matrix, and let B be an m2 × n2 matrix. The (right) Kronecker
product of A and B is the m1m2 × n1n2 matrix

A ⊗ B =




a11B a12B · · · a1n1B
a21B a22B · · · a2n1B

...
...

...
...

am11B am12B · · · am1n1B




A matrix X− is said to be a generalized inverse of the matrix X if

1. XX− is symmetric.
2. X−X is symmetric.
3. XX−X = X.
4. X−XX− = X−.

A method for computing a generalized inverse can be found in Graybill (1983).
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