DATA QUALITY FOR PRACTITIONERS SERIES

Published by:

Technics Publications, LLC
Post Office Box 161

Bradlev Beach, NJ 07720 U.S A,
Ordersi@technicspub.com
www.technicspub.com

Edited by Susan Wright and Owen Genat

Cover design by Mark Brve

Cartoons by Abby Denson, www.abbyveomix.com
Lavout by Owen Genat

All nghts reserved. No part of this book may be reproduced or transmitted in anv
form or by any means, electronic or mechanical, including photocopying,
recording or by any information storage and retrieval svstem. without written
permussion from the publisher, expect for the mclusion of briel quotations in a
review.

The author and publisher have taken care in the preparation of this book, but make
no expressed or imphed warranty of any kind and assume no responsibility for
errors or omissions. No liability 1s assumed for incidental or consequential
damages in connection with or ansing out of the use of the information or
programs conlained herem,

The publisher offers discounts on this book when ordered in quantity for special
sales. For more information. please contact:

Techmes Publications Corporate Sales Division
Post Office Box 161
Bradley Beach, NJ 07720 U.S A,

CorporateSales'@ technicspub.com
This book is printed on acid-free paper.
¢ 2007 by Technics Publications, LLC. All rights reserved.

ISBNM. pr‘inl ed, 97E-0-9771400-2-2
First Printing 2007
Printed in the United States of America

Library of Congress Control Number: 2007902970

685x979x16 png

Table of Contents

Part | - Data Quality Overview...... - 1
Chapter 1 Canses of data gualily ProBIemIS st s ssssssens 5
Ll Initial Data Conversion £
1.2 System Consolldalons .o
1.3 Mfarmal Thata Fntry L1
14 Balch Feeds 12
L5 Real-Time Intertaces 13
L5 Db Processiing oo et ieieie e e snecesnee e sianesnsaeneiesnsenee L

| 7 Dt Clesmeimg 15
L8 [3ata Purging 17
1.9, Changes Not Caplured o I8
L.10, Svstemn Upprades ... 19
|11 Tdeay aca [lees 20
112 Loss of Fxperlise Rli]

1 13 Proweess Antoaralion 21
SUIMTIIY i e . 22
Chapier 2 Data Chirality Program OVEFVIEW oo 23
2.1 Data Quality Assessmeent. . 25
22 [ats Cleansing 29
2.3 Monitoring Data Integration Inlerfaees 3l
24 Ensoring Data Quality in Data Conversion and Consolidation 33
1.3 Bulding Data Quality Meta Data Warehouse ..o, 34

Chapier 3 Data Ouality Assessment Chverview

39

3.1, Project Team 41
32 Project PIan OVEIVIEW .o i e e 42
33 Plamning Phase ... CH
T4 Preparabion PRAse o e
35 Implementation Phase. .. A8
30,0 Fioe-Tuning PROSC .o 32

3.7 Ongoing Data Quahity Monitoring. ... 54
SLImary .35
PART II - Data Quality Rules............. 57
Chaprer 4 Arteibuste Dotad it CORSIFAITIS 1o s 63
4.1, Intreduetion o Atnbute Doman Constramts. cad
4.2 Attnibute Profiling. B3
4.3 Oplionality ComsIaIns. i (&15]
44 Aurtbute Format Consiraints o 69
45 Walid Value Constrammls. oo
46 Precision Constraints .74
Surmmary r
Cliapter 5 Relational Tntegrity Rules ..o ssss s s ssss s 79
5.1, Relational Ddata Model Basies o 80
520 Tdentity Rules. . R2
53 Reference Rules e BB
54 Cardinal Bules 18}
a3 Inherionee Eules 21
SUITUTUAIY oo oo et a2
Clvarpter 6 Rredes Jor TS 00v el TMIG v i i esnssasessnsese s s ssnsssensnsss sevase 03
61 Introduction to Histovical Data 94
6.2, Basic Data Quality Rules for Historical Data I8
6.3, Advanced Data Quality Rules For Historveal Data. oo 102
B4 Date Quality Roles for Event Histores oo 106
i PSP 111
Chapter 7 Rules for State-Dependent OBectS.....ooooovoeooooeoeeeeereee i3
7.1, Introduction to State-Thependent OBeets. e 114
7.2, Idenhifving State-Dependent Entities ..o eirserecinrnnn, W7
7.3 Probhng State-Transition Models i e
7.4, Hules Denved from State-Transition INagrams .ooooeveeeoeeveeseeeeeeen 124
13 Timeline Constraints 128
11 Advaneed Bules 133

SUMMaEry .o 141
Chapter 8 Attribute Dependency Bules i e [43
%.1. Introduction to Attribute Dependency Rules o 144
8.2, [denulving Dependencies through Analysis...ooon ... 151
8.3 [dentilving Dependencies through Data Profiling 136
84 Idenulving Dependencies Across Data Sources. oo 162
SUIMANY 167
PART 111 — Data Quality Assessment 169
Chapter 9 fmplementing Data Owalitn Bnles i 173
9.1, Project Scope and Fule Design. i, 11
9.2, Selecting Optimal Rule Desipn .. 180
9.3 Rule Cataloguing .. 188
94 Rule Coding 193
Summary 198
Chapter 10 Fine-Tunme Data Ouality Bides .o 201
10.1, Fule Imperfections ..o, 202
10.2. Rule Fine-Tuning Process. 205
10.3, Identfying Rule Imperfections 206
1.4, Analyzing Imperfection Patterns ., 21
1.5, FElumimating False Posinves. i 213
10.6, Handling False Negatives..o.o....ooov...... v 216
10.7, Handhne Unceramly w Ervor Location oo 218
SN o e c221
Chapter 11 Catafommming FrVOFS . .oooooiiiiiiiiiiiiiiini e esismssssansesmseseiees 223
11.1. Frror Catalogue Basies 14
11.2. Recording Missing Records...o.oooooveeeooeoevoiiiiieeeeiseeieveeecvveenene. 22D
11.3, Errors Affecting Multiple Recordsooooovvveviiiiiiiiriiiiioviernnn, 228
114 Lrror Gronips 231
115 Suhyect-1 evel Frror Tracking 234

SMUTTITEENIW oo oo oo e

238
240

i |

Chaprer 12 Measuring Dt Oualiny Seores 243
12.1. Introduction Lo Aggregale SCOres ..o 244
12.2. Score Tabulation Process Overview ..., v 248
12.3. Bulding Score Catalogue . 249
12.4, Tabulating Record-Level Scores L. i e 235
12.5. Adjusting Scores for Rule Imperfections_..... . 261
12.6. Tabulating Subject-Level Scores ..., 200
SIUITITIAIY oot ettt et e ee et et et e eb st e m e e 270

Chapter 13 Data Onality Meta Data Warehouse............ S e SRR I |
13.1. Drata Quality Assessment Meta Data . 274
13.2, [Data Quality Seorceard. ..o 285
13.3. Other DOMDW Functions and Reports o 292
BSLUTTIITIEITY oo i ittt ettt et et 294

Clapter 14 Recurrent Data Chality ASSESSsmel o nssissiisssssi snsssssssssssvase 227
14,1, Basics of Recurrent Data Quality Assessment ..., 298
14.2. Drata Quality Changes on Aomie Level ... 301
143, Adding Time Dmmension o DOMDW 303
14.4. Executing Assessment Runs Aganst Production Data................ 306
SLLITIIEVIIY L. ool ittt ee ettt et bt e e bt et et as 300

Appendix & Index " - " " R 311

Apperndin — Ulairts and 1aBes. .o s s s s s 33

[cley T

vii

viii

Urheberrechtlich geschiitztes Material

INTRODUCTION

It was the vear 1991 and 1 had just arrived in the United States as an immigrant
from Russia. My specialty was pattern recognition and statistical modeling, and
myv first contract was to build a mathematical medel for cash circulation n the
USA. A governmental agency that sponsored the project provided me with over a
gigabvie of data — a huge volume by the standards of 1991 — containing 25 vears
of inter-bank transactions and a variety of other information about cash circulation.
They had a great idea that statistical analysis could identify unusual patterns of
cash movement and eventually lead to the discovery of illegal financial activities.

I worked hard for three months and built the best models | could imagine. They
absolutely had to work. .. but the results made no sense whatsoever. After a week
of sleepless nights in search for a law in the logic or bug in the program. I finally
gol 1o the pomnt of trving to work the logic by hand for a small subsect of the data.
The results sull defied logic. but so did the data itsell. The numbers did not add
up; the amount of money poing out did not equal the amount of money coming in,
Some numbers were outrageously large, while others ridiculously small. This was
my first exposure to bad data qualitv. Of course something had to be done, and so
over the next six months [did my first data qualitv assessment and data cleansing

project. It taught me several lessons,

First, data quality is very important. My clients would not get the results they
wanted, and | would not get paid. all because some bny picces of data in the
database were inaccurate. Secondly. data quality can get really bad, especially in
large historical databases. According to my clients, their data were managed with
utmost care, and they were certain its quality would be far above average. | kept
wondering: What would be the quality of data in an average database” Thirdly,
with some effort. data quality can be measured, analyzed, and improved. Ewven
though 1t was my first effort, in six months [was able to fix Y8% of the data
problems and get the desired results. Finallv, nobody had a clue about what data
quality was and how to deal with it. There was no data quality profession, no
textbooks for practiioners, and no training courses. There was reallv nowhere 1o
turn to get advice,

The experience intrigued me so much that I decided to dedicate my career o data
quality. It took longer to get the ball rolling, but in 1997 1 finallv started a data

quality services company. Now, there i1s a huge difference between being a
consultant and a services provider. As a consultant, when a client asks vour
opinion about a solution that seems unrcasonably difficult, vou can simply advise
them against trving it, and 1l they do not listen. vou wash vour hands and quietly
walch the suffering. As a service provider, vou are asked 1o solve the problems,
no matter how difficult or impossible the solutions, and clients rarely take "no” for
an answer. So I had to deal with all kinds of problems and figure out how to deal
with all practical aspects of data quality in the most efficient manner. 1 did not
complain though; it was fun.

Something clse has happened over the last 15 vears. [n carlv 1990s, not many
people had heard the words “data qualitv.”™ Even in late 1990s, when I
occasionally stepped up to the podium (o speak at a conference, | always expected
rotten tomatoes flving in my face. Data quality was a taboo topic. Even the
companies that successfully completed a data quality initiative did not want to talk
about it in public. Over time the tide has changed and data quality has become one
of the hottest topics. [t almost seems like evervbody wants to know about data
quality these days. More and more, data quality departments are formed, and
many data quality improvement imbiatives are started every vear.

Yet, the data quahity profession 1s sull i its nfancy. There are very few truly
seasoned practitioners and existing training courses. Data quality books mostly
focus on the “what™ and “why™ of data quality, not the “how.” And so data quality
remains a major I'T problem. [have seen databases of all kinds at many large
companies — HR, pavroll, financial. marketing, and data warehouses. They varied
in size. architecture, and complexitv, but they had one thing in common - poor
data quality. According to some estimales, the cost of poor data quality can reach
as high as 15% to 25% of operating profil. The problem must be solved. and |
believe that can only be accomplished if the data quality professionals have access
to practical textbooks describing data quality solutions in all details. Without
proper methodology and techniques. data quality projects can only succeed by
accident.

That was the impetus behind my decision to switch from being a full-time services
provider to becoming an educator. Over the last two years [created and taught a
serics of training course — “Practical Skills for Data Qualitv™. Among several
hundreds of auendees, the majority gave very high assessment o the value of my

classes. Someone carelessly advised me to wrile a book based on my courses so

that 1 can reach a broader audience. And so | did.

This book 1s intended as the Nirst in a data quality series. [t is a textbook from a
practitioner to other practitioners. For the last 15 vears. [was a data doctor - |
studied, diagnosed. and reated data, My objective now is to teach vou what T have
learned about how to solve data quality problems from A 1o Z.

This book consists of 14 chapters, The first two chapters give a broad overview of
data quality problems and the kev components in a comprehensive data quality
program. It provides the roadmap for the entire book series. The rest of the book
is dedicated to data quality assessment — the process of identifving data problems
and mecasuring their magnitude and impact on various data-driven busincss
processes. Afler a brief overview in Chapter 3. 1 will roll up my sleeves and delve
into the details,

Even though the topic is technical, 1 triecd to do my best to make it a light reading.
It proved to be harder than | thought, and my respect for great authors has grown
day by day. The problem is it takes months to write a book: day, after day, after
day. Some days | was happy, and other davs [was sad. Sometimes | felt [could
do stand-up comedy, and other davs [would be better off teaching advanced
caleulus, so different parts of the book have inherited difTerent personalities.
Hopelully you will sull take pleasure from reading this book, and at the same time
will find it practically useful in evervday work.,

I am looking forward to any feedback and suggestions. Those will certainly
mfluence future volumes of this project. You can visit my website at
www dataqualitygroup.com where vou will find a forum dedicated to the
discussion of data quality problems in general and this book in particular.

L

Urheberrechtlich geschiitztes Material

ACKNOWLEDGEMENTS

I cannot even describe how much I owe this book to my wife and partner in many
vears of work, Olga. She suffered through the vears when | worked 12 hours a
day. weekends included. She shared the workload with me. and | could alwavs
rely on her ability 10 solve the most dilficull problems. She tried to stop me from
making wrong turns and consoled me after 1 did not histen, She put together a
better ball of myv training materials and read and entiqued every page of this book.
She also managed to raise our 9 year-old son, Max, and give birth to another boy,
Mathaniel, as [was finishing this book. And through all these vears she remained

my beautiful, loving wife. For this | am infinitelv grateful.

| also want to thank mv good friend and colleague, Dave Wells. Owver the vears
Dave and | discussed data quality matters many times and his insights alwavs
proved to be on the mark., In fact we were even thinking about writing a data
quahty book together. and I am sure 1t would be a much better book than what |
was able to accomplish myself. Dave also read this book three times in attempts o
find every possible flaw.

Gian Di Loreto, my old friend and business pariner, has also contributed to this
book. While | now spend more time in education, he stavs down in the trenches
fighting data quality battles everv day and onlv brings me to see the new and

interesting parts.

I thank Susan Wright lor editing this text. 1 could certainly learn better grammar
and punctuation if | could take some lessons from her, but she 1s busy in the
noblest profession of a schooltcacher.

I thank my son, Max, for alwavs trving to help. Selting an example for him has
been my greatest inspiration.

I thank my dad lor teaching me to believe in mysell and strive to be the best]
could possibly be, and my mom for showing me how to be happy with who | am,
I thank my older brother for endless hours of teaching me math and the mysteries
of numbers. I wish evervone had such a great brother. 1 thank my late math
teacher, Vladimir Sapozhnikov. for instilling in me perfectiomsm — the trant that
distinguished his life. which was dedicated to making better people of all he
taught.

i

v

Urheberrechilich geschitztes Material

PART | — DATA QUALITY
OVERVIEW

Urheberrechilich geschitztes Material

The corporate data universe consists of numerous databases linked by countless
rcal-time and batch data feeds. The data continuously move about and change.
The databases are endlesslv redesigned and upgraded. as are the programs
responsible for data exchange. The typical result of this dvnamic is that
information svstems get better, while data quality delenorates. This 15 very
unflortunate since il 1s the data quality that determines the intrinsic value of the
data to the business and consumers. Information technology serves only as a
magnifier for this intrinsic value, Thus, high quality data combined with effective
technology is a preat asset, but poor quality data combined with effective

technology is an equally great liability,

Yet we tolerate enommous inaccuracies in the databases. It has been widely
accepted that most databases are niddled with errors. These errors are the cancer of
information systems, spreading from place-to-place and wreaking operational and
financial havoe. Corporations are losing million of dollars due 10 inaccurate data,
What 15 even more dishcartening is that the magnitude of the data quality problems
is continuously growing, fostered by exponential increase in the size of the
databases and [urther proliferation of information systems. This certainly qualifies
data quality management as onc of the most important 1T challenges in this carly
part of the 21" century.

The big part of the challenge 1s that data quality does not improve by itself or as a
result of general IT advancements. Over the vears. the onus of data quality
improvement was placed on modemn database technologies and better information
svstems. [remember well an HR executive confidently telling me over lunch that
now that his company has implemented a modern HR and payroll system, it will
no longer have data quality problems. “PeopleSofi does not have data quality
problems.” he smid. How could I respond? 1 said. “I cannot tell vou whether or
nolt PeopleSolt has data quality problems, but yvour company certainly does. and
they are not gomg away. In fact thev arc about to get much igger” He did not
belicve me: people do not like those who predict rain on a sunny day. A few years
later the recently appointed new HR executive of that company called me for
advice about their data quality strategy.

In reality, most IT processes affect data quality negativelv, Thus, il we do
nothing, data quality will continuously deteriorate to the point where the data will

become a huge hability. In [act [have seen many databases that are living prool

3

(or I'd rather say, lossils) of this statement. The only way to address the data
quality challenge is by a svstematic, ongoing program, which would assess and
improve existing data quality levels. as well as continuously monitor data quality

and prevent its future deterioration as much as possible.

Tt is most important (o understand that data quality is nol a mountain that vou can
climb, raise the flag, and live happily ever alter, proud of yvour accomplishment. It
1s rather like a garden that must be taken care of continuously. With effort and
patience, 1t can be made stunningly beautiful; but left unattended for just a short
while, and the weeds will overrun it like seven-hcaded monsters, whose heads
orow back faster than vou can slash them.

In the first chapter 1 will discuss various processes that affect data quality. I will
outline the structure ol a comprehensive data quality program and briellv discuss
its components in Chapter 2. The challenge of implementing the data quality
program 1s so monumental that it would be naive to tackle it in 2 single book. 1 am
planning to accomplish this in steps through this book serigs. In this first book 1
will only address data quality assessment. the first siep in most data quahity
iittatives. Chapter 3 offers an introduction to the topic, while the remaining

eleven chapters ol the book will discuss the details.

CHAPTER 1
CAUSES OF DATA QUALITY
PROBLEMS

Data is impacted by numerous processes. most of which affect ns quality to a
certain degree. [had to deal with data quality problems on a daily basis for many
vears and have scen every imaginable scenario of how data quality deteriorates.
While each situation is different, I eventually came up with a classification shown
in Figure 1-1, It shows 13 categories ol processes that cause the data problems.

grouped into three high-level categones.

Procezses Bringing Procassaz Cansing
Data froam Outside Data Decay
Initial Data Conwversion Changes Mot Captured
System Consolidations System Upgrades
— (S
‘\-—1
Manual Data Entry T Mew Data Uees
—— Digtabasze
ﬁ-.i
Batch Feeds Loss of Expertise
Roal-Time Intorfaces ﬁ: Procesz Automation
Processes Changing Data from Within
Data Processing Data Cleansing Data Purging

Figure 1-1: Processes Affecting Data Quality

The group on the left shows processes that bring data into the database from
outside — either manually or through various interfaces and data integration
techniques. Some of these incoming data may be incorrect in the first place and
simply migrate from ene place to another, In other cases, the errors are introduced

N

Chapter 1 — Causes of data gquality problems

in the process of data extraction, transformation, or loading. High volumes of the

data trafTic dramatically magnify these problems.

The group on the right shows processes that manipulate the data inside the
databases. Some of these processes are routine, while others are brought upon by
periodic svstem upgrades. mass data updates, database redesign, and a variety of
ad-hoc activitics. Unfortunately. mn practice most of these procedures lack time
and resources, as well as reliable meta data necessary Lo understand all data quality
implications, It is not surprising, then, that intemnal data processing ofien leads to
numerous data problems,

The group on the boltom shows processes that cause accurate data o become
Inaccurate over time, without any physical changes made to 1t. The data values are
nol modilfied. but their accuracy takes a plunge! This usually happens when the
rcal world object described by the data changes. but the data collection proccsscs
do not capture the change. The old data tums obsolete and mmcorrect.

In this chapter we will svstematically discuss the 13 processes presented in Figure
I-1 and explain how and why they negatively affect data quality.

1.1. INITIAL DATA CONVERSION

Databases rarelv begin their life empty. More often the starting point in their
lifeevele 1s a data conversion from some previously exiting data source. And by a
cruel twist of fate. it is usually a rather violent beginming. Data conversion usually
takes the beuer half of new system implementation ¢ffort and almost never gocs
smoothly.

When I think of data conversion, my first association 15 with the mass extinetion of
dinosaurs, For 150 million vears, dinosaurs ruled the carth, Then one day —
BANG — a meteor came crashing down. Many anmimals died on impact, others
never recovered and slowly disappeared in the ensuing darkness. It took millions
of vears for flora and fauna to recover. In the end. the formerly dominant
dinosaurs were completely wiped out and replaced by the little furry creatures that
later evolved into rats, lemurs. and the strange apes who find nothing betier to do
than write data quality books.

{i

Chapter 1 — Causes of data guality problems

The data conversion is no different. Millions of unsuspecting data elements
quictly do their daily work until - BANG — data conversion comes hurling at them.
Much data never makes it to the new database: many of the lucky ones mutate so
much in transition that they simply die oul slowly in the allermath. Most
companics live with the consequences of bad data conversions for vears or even
decades. In facl, some data problems can be traced o “grandfathers of dala
conversions,” 1.e. conversion to the system from which the data were later
converted to the svstem from which the data is converted to the new svstem. ..

I still vividly remember one of my first major data conversion projects. | wason a
team implementing a new pension administration system. Among other things, we
needed to convert emplovee compensation data from the “legacy™ HR dalabase.
The old data was stored in much detail = by pavcheck and compensation tvpe. The
new database simplv needed aggregate monthly pensionable eamings. The
mapping was trivial — take all records with relevant compensation types (provided
as a list of valid codes), add up amounts for cach calendar month. and place the
result into the new bucket.

The result was disastrous, Half of the sample records 1 looked at did not match the
summary reports printed from the old system. The big meeting was called for the
next morning, and in the wee hours of the night, | had a presence of mind to stop
looking for bugs in the code and poke into the source data. The data certainly did
not add up to what was showing on the summary reports, vel the reports were
produced from these very data! This mathematical puzzle kept me up ull dawn.
By then 1 had most of it figured out,

Hall a dozen compensation codes included in the aggregate amounts were missing
from our list. In fact they were even missing from the data dictionary! Certain
codes were used in some vears but ignored in other vears. Records with negative
amounts — retroactive adjustments — were aggregated into the previous month.
which they technically belonged to, rather than the month of the pavcheck.
Apparently the old system had a ton of code that applied all these rules to calculate
proper monthly pensionable earmings. The new system was certainly not
programmed to do so, and nobody remembered to indicate all this logic in the
mapping document.

Chapter 1 — Causes of data gquality problems

It took us eight weeks of extensive data profiling, analysis, and quality assessment
to complete this portion of the project, whercas onc week was budgeted for. We
were lucky, though. that the problem was relativelv easy to expose. In many
conversion projects, the data is converted based on the mapping specilications that
are ridiculously out-of-sync with reality. The result 1s predictable — mass
extinction of the dala and the project (eams.

S0 what 15 1t that makes data conversion so dangerous? Al the heart of the issue 1s
the fact that every system is made of three layers: database, business rules, and
user interface. As a result what users see is not what is actuallv stored in the
database. This 1s especially true for older “legacy”™ systems. During the data
conversion it is the data structure that is usually the center of attention. The data is
mapped between old and new databases. However. since the business rule lavers
ol the source and destination svstems are verv different. this approach mevitably
fails. The converted data. while technically correct, is inaccurate for all practical
purposes.

The sccond problem is the typical lack of rchiable meta data about the source
database. Think about it, how often do we find value codes in the data that are
missing {rom the mapping documents? The answer is: All the time. But how can
we believe any meta data when even such a basic component is incorrect? Yet,
over and over again. data conversions are made to the specifications built on
incomplete, incorrect, and obsolete meta data,

To summarize, the quality of the data after conversion is directly proportional (o
the amount of time spent to analvze and profile the data and uncover the truc data
content, In an ideal data conversion project. 0% of time 15 spent on data analvsis
and 20% on coding transformation algorithms.

So far T have talked about the data problems introduced by the conversion process;
however, the source data itsell is never perfeet. Existing erroneous data tends to
mutate and spread out duning conversion like a virus. Some bad records are
dropped and not converted at all. Others are changed by the transformation
routings. Such changed and aggregated errors are much more difficult to identify
and correct after conversion. What 15 even worse - the bad records impact
conversion of many correct data elements.

Chapter 1 — Causes of data quality problems

To conclude, data conversion is the most difficull part of any system
implementation, The error rate in a freshly populated new database is often an
order of magnitude above that of the old svstem from which the data 1s converted.
As a major source of the dala problems, data conversion must be treated with the

utmost respect 1t deserves.

1.2, SYSTEM CONSOLIDATIONS

Database consolidations are the most common occurrence in the information
technology landscape. They take place regularly when old systems are phased out
or combined. And. ol course, thev alwavs follow company mergers and
acquisitions, Databasc consohdations after corporate mergers are especially
troublesome because they are usually unplanned. must be completed n an
unreasonably tight timeframe, take place in the midst of the cultural clash of IT
departments, and are accompanied by inevitable loss ol expertise when kev people
leave midway through the project

An old man once rode his Pontiac three miles in the oncoming traffic before being
stopped. He was verv surprised why evervbody was going the wrong way. That is

exactly how 1 feel when involved in a data consohidation project.

Instead of two small cars we have one big pile of iron, plastic, and rubber,

Data consolidation faccs the samc challenges as initial data conversion but
magnified to a great extent. 1 have already discussed why conversions cause data

Chapter 1 — Causes of data gquality problems

quality problems. The idea of consolidation adds the whole new dimension of
complexity. First of all. the data is often merzed into an existing non-cmpty
database, whose structure can be changed little or none whatsoever. However.
often the new data simply does not fit! The efforts o squeere square pegs inlo

round holes are panful, even o an outside observant.

More importantly, the data in the consolidated systems often overlap. There are
duplicates. there are overlaps in subject populations and data histories. and there
are numerous data conflicts, The traditional approach is to setup a winner-loser
matrix indicating which source data element is picked up in case of a conflict. For
mstance, date of birth will be taken from Svstem A if present. from Svstem B
otherwise. and from System C il it is missing in both A and B. This rarely works
because 1t assumcs that data on Syvstem A 1s always correct — a laughable
assumption. To mitigate the problem. the winner-loser matrix i1s usually
transformed into a complex conditional hierarchy, Now we take the date of birth
from System A for all males born afler 1936 in California, except if that date of
birth is January [, 1970, in which case we take it from System B, unless of course
the record on System B is marked as edited by John Doe who was flired lor playing

gamcs on the computer while doing data cntry, in which casc we pull it from
Spreadsheet C...

At some point the winner-loser matrix is so complex. that nobody reallv
understands what 15 going on. The programmers argue with business analysts
about the exact meaning of the word “unless.” and consumption of antidepressants
15 on the rise, 1015 time to scrap the approach and start over.

I will discuss the proper methodology for data consolidation in the next chapter.
For now we just conclude that data consolidation 1s one of the main causes of data
problems and must be treated with ercat fear. Walking a tightrope is child’s play
1N COMPArison.

1)

Chapter 1 — Causes of data guality problems

1.3. MANUAL DATA ENTRY

Despite high automation, much data i1s (and will always bel!) tvped into the
databases by people through various forms and interfaces. The most common
source of data inaccuracy is that the person manually enlering the data just makes
a mistake. To err, after all. 1s human! People mistvpe; thev choose a wrong entry
from the list or enter night data value into the wrong box. 1 had, at one time.
participated 1in a data-clcansing project where the analysts were supposed to
careflully check the corrections before entering them - and still 3% of the
corrections were entered incorrectly. Tlis was in a project where data quality was
the primary objective!

Common error rale in data entry is much higher. Over time 1 collected my
personal indicative data from varions databases. My collection includes cight
different spellings of mv first name. along with a dozen of myv last name, and lour

dates of birth; | was marked as male, female, and even the infamous “U”.

Convoluted and inconvemient data entry forms ofien further complicate the data
entrv challenge. The same applies to data entrv windows and web-based
interfaces. Frustration in using a form will lead 1o exponential increase in the
number of errors. Users often tend to find the casiest way (o complete the form,
cven if that means making deliberate mistakes.

A common data entrv problem is handling missing valucs., Users may assign the
same blank value to various types of missing values. When “blank™ iz not
allowed, uscrs often enter meaningless value substitutes. Default values in data
entry forms are often left untouched. The first entrv in anv list box 1s selected

more often than any other entry.

Good data entry forms and instructions somewhat mitugate data entry problems. In
an idecal fantasy world, data entry 15 as casv to the user as possible: ficlds are
labeled and organized clearly. data entry repetitions are eliminated, and data 1s not
required when it is not vet available or is already forgotlen, The reality of data
entry, however, is not that rosy (and probably won’t be for vears to come). Thus
we must accept that manual data entrv will always remain a significant cause of

data problems.

Chapter 1 — Causes of data gquality problems

1.4. BATCH FEEDS

Batch feeds are large regular data exchange interfaces between systems. The ever-
mcreasing number of databases in the corporale universe communicates through
complex spiderwebs of batch leeds.

In the old days, when Roman legions wanted 1o sack a fortified city. they hurled
heavy stones at its walls, dav after dav. Not many walls could withstand such an
assault. In the modern world, the databases suller the same unrelenting onslaught
of batch feeds. Each batch carmes large volumes of data, and anv problem in i
causes great havoe further magnified by future feeds. The batch feeds can be
usually tied to the greatest number of data quality problems. While each
individual Teed may not cause too many errors, the problems tend Lo accumulate
from batch to batch. And therc is little opportunity to fix the ever-growing
backlog.

So why do the well-tested batch feed programs falter? The source system that
originatcs the batch feed 1s subject to frequent structural changes, updates, and
upgrades. Testing the impact of these changes on the data feeds to multiple
independent downsiream databases is a difficull and ofien impractical step. Lack
of regression testing and quahity assurance inevitably leads to numerous data
problems with batch feeds any time the source system i1s modified — which is all of

the time!

Consider a simple example of a pavroll feed to the emplovee benefit
administration svstem. Paycheck data is extracted, aggregated by pay type, and
loaded into monthly buckets. Every few months a new pay code is added into the
payroll svstem o expand its lunctionality. In theory, every downstream system
may be impacted, and thus cach downstream batch feed must be re-evaluated. In
practice, this task ofien slips through the cracks. especially since many svsiems,
such as beneft administration databases, are managed by other departments or
even outside vendors. The records with the new code arrive al the doorsteps of the
destnation database and are promptly dropped from consideration. In the typical
scenario. the problem is caught afler a few feeds. By then, thousands of bad

records were created.

The other problem with baich feeds 1s that they quickly spread bad data from
database to database. Any errors that somechow find their way nto the source

12

Chapter 1 — Causes of data guality problems

system will usually flow immediately through the baich feeds like viruses and can
blend well encugh with the rest of the batch data to come unnoticed and cause the
sreatest damage.

The batch feeds are especially dangerous because newly ammived records do not sit
quietly. The incoming transactions usually (rigger immediate processing in the
target database. Even dunng loading, existing data might be changed to reflect
new transactions. Thus more data 15 immediately corrupted. Additional
processing can be triggered, creating more and more errors in an avalanche of bad
data. For example, erroncous emplovee termination records arriving to a benefit
administration system will initiate a sequence of benefit calculations. The results
will be forwarded to the benefit pavment system, which will create more wrong
data and imtiatc more wrong activitics. The cost of a single bad record can run in
to thousands of dollars. It is hard to even visualize the destructive power of a
batch feed full of erroncous data.

1.5. REAL-TIME INTERFACES

More and more data is exchanged between the systems through real-time (or near
real-time) interfaces. As soon as the data enters one database, 11 triggers
procedures necessary to send transactions to other downstream databases. The
advantage 1s immediate propagation of data to all relevant databases. Data is less
likely to be out-of-syne. You can close vour eyves and imagine the millions of little
data picces flving from databasc to databasc across vast distances with lightning
speed, making our lives easier. You see the triumph of the information age! 1 see

Wile E. Covote in his endless pursuit of the Road Runner. Going! Going! Gosh!

The basic problem is that data is propagated too lasl. There is little time to verily
that the data is accurate. At best, the validitv of individual attributes is usuallv
checked. Even il a data problem can be identilied. there 15 ofien nobody at the
other end of the line o react. The transaction must be either accepted or rejecled
(whatever the consequences). I data 1s rejected, it may be lost forever!

Further, the data comes in small packets. each taken completely out of context. A
packet of data in itself may look mnnocent, but the data m it may be totally
erroncous. | once received an email from a Disnev World resort thanking me for

Chapter 1 — Causes of data gquality problems

staving there. The text was grammaltically perfect and would have made me feel

ercat, except | did not go to Disnev that vear.

The point is that “faster™ and “better” rarely go hand-in-hand. More often quality
is the price paid for faster delivery. Real-time data propagation is no exception — it
is a liability from the data quality perspective. This does not make it anyv less
valuable, Real-time terfaces save millions of dollars and sigmficantly improve
efficiency of the information svstems. But data quality sulfers in the process. and
this has to be recognized. When an old batch feed is replaced by a new real-time
interface, the potential cost of data quality deterioration must be evaluated and
weighed against the benefit of faster data propagation.

1.6. DATA PROCESSING

Data processing 1s at the heart ol all operatonal svstems. [t comes in many shapes
and forms — from regular transactions triggered by users o end-of-the-year
massive caleulations and adjustments, In theory, these are repetitive processes that
should work “like a clock.” In practice there 1s nothing steady in the world of
computer software. Both programs and underlyving data change and evolve. with
the result that one morning the proverbial sun rises in the West, or worse vet, docs

not rise at all.

The first part of the problem 1s the change in the programs responsible for regular
data processing, Minor changes and tweaks are as regular as normal use. These
arc olten not adequately tested based en the common misconception that small
changes cannot have much impact, Of course a tiny bug in the code applied 10 a
million records can create a million errors faster than vou can read this sentence.

On the flip side, the programs responsible for regular processing often lag behind
changes in the data caused by new collection procedures. The new data may be
fine when 1t enters the database, but it mav be different enough to cause regular

processing 1o produce erroneous results,

A more subtle problem is when processing 15 accidentally done at the wrong time.
Then the correct program may vield wrong results because the data 1s not in the
state it 15 supposed 1o be. A simple example 15 running the program that calculates

Chapter 1 — Causes of data guality problems

weekly compensation before the numbers from the hours tracking svstem were
entered.

In theorv, documenting the complete picture of what is going on in the database
and how various processes are interrelated would allow us to completely mitigate
the problem. Indeed. someone could then analyvze the data quality implications of
any changes in code. processes, data structure, or data collection procedures and
thus eliminate unexpected data errors. In practice. this is an insurmountable task.
For that reason, regular dala processing inside the database will always be a cause
of data problems.

1.7. DATA CLEANSING

The data quality topic has caught on in recent vears, and more and morc
companics are attempting to cleanse the data. In the old days. eleansing was done
manually and was rather safe. The new methodologies have arrived that use
automated data cleansing rules to make corrections en masse. These methods are
of great value and I, myself, am an ardent promoter of the rule-driven approach to
automated data cleansing. Unfortunately, the risks and complexities of automated

data cleansing are rarely well understood.

The reader might ask in surprisc, “How come that data cleansing that strives (o
correct data errors may instead create new ones?” Those who. like me. in their
college vears mixed whites and colors in the laundry machine will know how
hopelessly “dirty™ the white shirts become after such cleansing. And so. despite
the noble goal of higher data quality. data clecansing ofien crcates more data
problems than it corects. This situation 1s further complicated by the

complacency that commonly sets in aller the cleansing project is “completed.”™

Chapter 1 — Causes of data quality problems

ul

Data cleansing 1s dangerous mainly because data quabity problems are usually
complex and interrelated. Fixing one problem may create many others in the same
or other related data elements. For instance, employvment history is tightly linked
with position history, pay rate history, and many other employment data attributes.
Making corrections to any one of these data categories will make the data

inconsistent with all other categories.

I also must mention that automated data cleansing algorithms are implemented by
computer programs. which will inevitably have bugs. Bugs i these algorithms are
very dangerous because they often impact thousands of records.

Another problem is that data quality specifications ofien do not reflect actual data
requirements. As a resull, data may be brought in compliance with some
theoretical model but remain incorrect for actual use. For example, in one of my
earlv projects the client — a large corporation with a historv of acquisitions —
requested to cleanse employment history on their HR system. One ol the major
problems was missing or incorrect original hire date for many ecmployeces. used to
calculate amount of retirement pension benefits. | had access to several “legacy™
data sources and was able o devise a series of algorithms to correct the problem
for over 15,000 emplovees. Unfortunately., many of the employees were not

16

Chapter 1 — Causes of data guality problems

originally hired by my client but came through numerous acquisitions. The
pension calculations performed by the HR svsiem were not supposed to use the
period of emplovment with the acquired companies prior to the acquisition.
Therefore, what the system really expected in the original hire date held for the
emplovees from acqured units was the acquisition date. However, the data quahity
specifications | was given did not reflect that. As a resull. many corrections were
wrong. Since I had a complete audit trail of all data changes, 1t was nol too
difficult to fix the problem. Many data cleansing projects do not have the happy
ending, and newly created errors linger for years,

To summarize, data cleansing is a double-edged sword that can hurt more than
help if not used carefullv. T will discuss the proper methodology for data cleansing

in the next chapter.

1.8. DATA PURGING

Old data is routinely purged from systems to make way for more data. This is
normal when a retention limit is satisfied and old data no longer nccessary.
However. data purging is highly risky for data quality.

When data is purged. there is alwavs a risk that some relevant data is purged by
accident. The purging program may simply fail. More likely, the data structure
may have changed since the last purging due to a svstem upgrade. data conversion.
or anv of the other discussed above processes. So now the purging may
accidentally impact the wrong data. More data than intended can be purged. Or
alternatively less data than intended might be purged, which is equally bad since it
leaves incomplete records in the database.

Another factor that complicates things 1s the presence of erroneous data in the
database. The erroneous data may accidentally fit the purging criteria and get
removed when it should be left alone. or vice versa. For example. if the HR
svstem 1s setup to purge data for all emplovees that were terminated over flive
vears ago. then it will wipe out records for some emplovees with incorrectly
entered termination dates.

Since purging often equals destruction, it has to be exercised with great care. The
fact that it worked reasonably well last vear does not guarantee that 1t will work

Chapter 1 — Causes of data quality problems

again this vear. Data is too volatile a compound to be fooled around with. This
requires more sophisticated design of the purging programs than is often used for
such a trivial technical task. After all. it seems quite easv to Just wipe out a few
millions of records. So we live with the data quality consequences ol data purging

in almost every database.

1.9. CHANGES NOT CAPTURED

Data can become obsolete (and thus incorrect) simply because the object it
describes has changed. If a caterpillar has turned into a butterfly but 1s stll listed
as a caterpillar on the finch’s menu, the bird is in her right to complain about poor

data quality.

This situation is very commonplace in human affairs, too. and mnevitably leads to
eradual data decay. The data is only accurate if it truly represents real world
objeccts. However. this assumes perfect data collection processcs. In reality,
object changes regularly go unnoticed o computers. People move. get marmed.
and even die without filling out all necessary forms to record these events in cach
svstem where their data 15 stored. This 1s actually why, in practice, data about

Chapter 1 — Causes of data guality problems

same person may be totally different across systems, causing pain during

consolidation.

In this age of numerous interfaces across systems, we rely largely on the fact that a
change made in one place will migrate to all other places. This obviously does not
always happen. As a result, changes are not propagated Lo all concerned databases
and data decavs. For instance, interfaces often 1gnore retroactive data corrections.
Alternatively, 1T personnel may make changes using a backdoor update query.
which, of course, does not trigger any transactions to the downstream systems,

Whether the cause is a faulty data collection procedure or a defective data
interface, the situation of data getting out of svnc with reality is rather common.
This is an example of data decav inevitably leading to deterioration of the data

quality.

1.10. SYSTEM UPGRADES

Most commercial systems get upgraded every few vears. Homegrown software is
often upgraded several times a vear, While upgrades are not nearly as invasive
and painful as svstem conversions and consolidations, they still often somehow
introduce data problems. How can a well tested. better version negatively impact

data quality?

The culprit here is the assumption that the data complics with what is theoretically
expected of 1. In practice, actual data is often far different from what 1s descnbed
in data models and dictionariecs. Data fields are used for wrong purposes. and
some data 1s missing while other was massaged into a form aceeptable to the prior
version, Yot more data just exisis harmlessly as an artifact of past generations but
should not be touched.

Upgrades expose all these problems. More often than not, they are designed for
and tested against what data is expected to be, not what it really is. Once the
upgrades are implemented. everything goes havwire. People lose their hair trving
to figure out why the syslem worked in the past, and the new version did

beautifully in the testing environment. vet all of the sudden it breaks on every siep.

Syvstem upgrades usually impact data quality through the descnibed above process
of data decay. However. they often require real restructuning and mass updates of

14

Chapter 1 — Causes of data gquality problems

the existing data. Such changes coupled with lack of reliable meta data lead to

huge quantitics of data crrors.

1.11. NEw DATA USES

Remember that data quality 1s deflined as “hitness Lo the purpose of use.” The data
may be good enough for one purpose but inadequate for another. Therefore, new
data uses often bring about changes in perceived level of data quality even though
underlving data is the same. For instance, HR syvstems may not care too much (o
differentiate medical and personal leave of absence — a medical leave coded as a
personal leave 1s not an error for most HR purposes. Bul starl using it 10 delermine
chgibility for employvee benelits, and such minute details become important. Now
a medical leave entered as a personal leave 1s plain wrong,

The new uses may also put greater prenmuum on data accuracy even without
changing the delinition of quality. Thus, a 13% crror rate in customer addresses
may be perfectly fine for telemarketing purposes, but tryv to survive with that many
inaccurate addresses for billing!

Besides accuracy, other aspects of data quality may differ for various uses. Value
granularitv. or data retention policy, may be inadequate for the new use. For
example, employee compensation data retained for three vears is adequate for

payroll administration but cannot be used to analvze compensation trends.

1.12. LOSS OF EXPERTISE

On almost everv data quality projeet | worked, there is Dick or Jane or Nancy
whose data expertise is unparalleled. Dick was with the department for the last 35
vears and is the only person who really understands why for some emplovees date
of hire 1s stored in the date of birth field, while for others it must be adjusted by
exactly 17 davs. Jane still remembers umes when she did calculations by hand and
entered the results into the sysiem that was shut down in 1985, even though she
stilll sometimes accesses the old data when i doubt. When Nancy decided o
retire, she was offered hourlv work from home at double her salarv. Those are true

slories,

Chapter 1 — Causes of data guality problems

Much data in databases has a long history, It might have come from old “legacy™
svsiems or have been changed several times in the past. The usage of data ficlds
and value codes changes over time. The same value in the same field will mean
otally dilferent thing in different records. Knowledge ol these facts allows
experts to use the dala properly. Without this knowledge. the data may be used
literally and with sad consequences.

The same 15 true about data quality. Data users in the trenches usually know good
data from bad and can sull use it efMliciently. Theyv know where to look and what
to check. Without these experts, incorrect data quality assumptions are oflen made
and poor data quality becomes exposed.

Unfortunatelv much of the data knowledge exists in people’s minds rather than
mela data documents. As these people move on, retire, or simply forget things. (he
data 1s no longer uscd properly. How do we solve this problem? Besides crecting
monuments hononng Dick, Jane. and Nancy, what we need 15 obviously a well-
designed and maintained meta data repository and data quality meta data
warchouses. Tlis 1s a great dream o have, and mayvbe with luck, some day, our
names will be etched on the monuments too, In the meantume, we muost deal with

the consequences of lost expertise in the form of data decay.

1.13. PROCESS AUTOMATION

With the progress of information technology. more and more tasks are automated.
It starts from replacement of data entry forms with system interfaces and extends
to every laver of our life. Computer programs process and ship orders, calculate
insurance premiums, and even send spam — all with no need for human
intervention. Where in the past a pair {or several pairs) of human eyes with the
full power of trained intellect protected the unsuspecting customers. now we arc
fully exposed 1o a compuler’s ability 1o do things wrong and not even feel sorry.

A human would automatically validate the data before using it. Computer
programs take the data hiterally and cannot make a proper judgment about the
likelihood of it been correct. Some validation screens may be implemented in the
automated processes, but these will often fail to see all data peculiarities, or are
wrned off in the interest of performance. As a resull, automation causes data
decay!

Chapter 1 — Causes of data gquality problems

Another aspect of technology development is grealer data exposure to broader
eroup of users. For instance. over the last 15 years it has become possible (o
publish HR. data for emplovee access via voice response systems and later intranet.
Emplovees can check their eligibility for benefits, various educational programs,
and query other mformation. All of the sudden crroncous HR data became
exposed, causing floods of emplovee complaints. The data did not change. but its
perceived quality deteriorated.

SUMMARY

We have discussed various processes that affect data quality. In some cases, bad
data comes from outside of the databasce through data conversions, manual entry,
or vartous data mtegration interfaces. In other cases. data deteriorate as a result of
internal svstem processing, Yet in many situations, data quality mayv decline
without anv changes made to the data itsell — the process we referred to as data
decay. Each of these problems must be addressed if we are to assume the data
quality management responsibility. The next chapter will discuss how it can be

done through a comprehensive data gquality program.

b=
(9]

CHAPTER 2
DATA QUALITY PROGRAM
OVERVIEW

Data quality program is a collection of initiatives with the common objective of
maximizing data quality and minimizing negative impact of the bad data. It is
made up of several components as shown in Figure 2-1,

___________________ o Data Quality
i Azsessment
i
| S '
| oo o Teropriz>
] I
i T ‘\\-.‘ L]
| Monitoring Ensuring Guality of Euilding Data
! Data. Cleanmng Data Integration Diata Qonversion Quality Metadais
E Interfaces and Consdidation Warshouse
i ‘\\\\-
E Recurrent
e e L ml:l.ql.ll.lit,

Aogesament

Flgure 2-1: Components of the Data Quality Program

The first step is to assess the magnitude of the problem. It is accomplished
through a process called data quality assessment, The objective of the data quality
assessment 15 to dentify data errors and measure their impact on various business
processes. Once assessment is complete we can decide what to do about data
quality. First of all, we may want 1o improve the data quality level of existing
data. This noble imbative 1s achieved through a process called data cleansing.
The objective of data cleansing is to correct as many existing errors as practically
feasible and thus to wrn the bad data into useable and trustworthy data. Keep in

23

Chapter 2 — Data Quality Progeam Overview

mind that 100% data quality is not realistic. and so the objective of data cleansing
15 never set at the absolute. Rather, it is defined as the quality level that provides

optimal return on investment into data cleansing.

Once we achieve a certain acceptable level of data quality. the next step 1s to
maintain the status quo by preventing new errors from being introduced into the
data. This proves to be extremely difficult, actually far more difficult than
identifyving and correcting existing problems. The two preventive measures that
provide the biggest immediale return on investment are monitoring data
integration interfaces and ensuring quality during data conversion and
consolidation. These measures address the two most common external sources of
data problems. Also, using the findings of the data quality assessment by itsell
helps prevent data quality from deterioration in more ways than one. For example,
it helps improve data collection procedures and seriously limits potential data
decay.

While we might attempt 1o identify and correct most data errors. as well as try 1o
prevent others [rom entering the database, the data quality will never be perfect.
Perfection 15 practically unattainable in data quality as with the quality of most
other products. In truth, it is also unnecessary since at some point improving data
quality becomes more expensive than leaving it alone. The more efficient our data
quality program, the higher level of quality we will achieve. but never will it reach
100%. However, accepling imperfection is not the same as ignoring il
Knowledge of the data hmitations and imperfections can help use the data wisely
and thus save tme and money. The challenge, of course, 15 making this
knowledge organized and easily accessible to the target users. The solution is a

comprchensive integrated data quality meta data warchouse.

Finallv, once we have gone through all of the above steps. there remains just one
more important aspect of a comprehensive data quality program - ongoing
monitoring. Withoul monitoring even the best prevenlive measures might
eventually begm to fal. We mav not notice data quality deterioration until 1t 1s too
late. Also. even more perfect measures will not completely eliminate new data
problems. To monitor data quality, we must perform data quality assessment
recurrently, compare the results, and observe the dynamics. The results can then
be used to perform more data cleansing. improve preventive measures, and

sharpen our understanding of data imperfections. Thus we have come full circle.

24

Chapter 2 — Data Quality Program Overview

In this chapter we will outline varions components of a comprehensive data quality
program and discuss their role in data quality management. The rest of this book
will be dedicated to data quality assessment. The other components will be
presented in future volumes of this book series.

2.1. DATA QUALITY ASSESSMENT

The objective of data quality assessment is (o ientify erroneous data elemenis and
estimate their impact on various data-driven business processes. In an ideal world,
it would be possible to determine whether or not cach data element in the database
15 correct and, 1f incorrect. where it came from and what had caused the error. Had
we accomplished that, we could understand the source of cach and every data
problem. Then (again in theoryv) we could correct the exasting errors and make
sure that future problems are prevented.

In practice this proves an msurmountable challenge. Indeed, the only wav to be
sure that a piece of data is correct is to compare it with some “trusted”™ source, that
15, a source which is correct 100% of the time. Such source may not alwayvs exist
or at least may not be readily available. For example, imagine we want to validate
the date of birth for all 1,000 emplovees of a mid-size corporation. To verily
someone s date of birth we could use a birth certificate 1f a copy was available in
the emplovee file. But what if we do not have one? Then we would have o
contact that person. The process of contacting cach of 1,000 emplovees 1s quite
lengthy,

Another dimension of complexity 15 added when we deal with historical data. Say
we wanted to validate the employment history for each emplovee. It would
include original date of hire, any leaves of absence, resignations, and rehire events.
Emplovee paper files are often kept but mav not alwavs be complete and accurate.
Conlacting emplovees may nol help either, as they may not remember all these

details or be unwilling to provide the information.

The bottom line is that the trusicd source 15 often not casily available. Another
problem 15 the ume constraint on data quality assessment. Consider a relatively
small HR. database for 1,000 employees. It may contain about 1 million individual
data pieces, a rather small size in todav's world ol gigabvies and terabyvies.
Imagine further that we have access to a trusted source of cach data clement (sav a

15

Chapter 2 — Data Quality Progeam Overview

paper file), and we want to validate each one manually. Assuming that a data
expert can validate one data clement in 15 secconds. we come up with 13 million
seconds required to do the job, the equivalent of about two person-vears of full-

time work., And frankly, this estimale is rather conservalive.

This approach is unreasonably expensive and totally impractical lor larger
databascs. But even for relatively small ones, it makes hitle sense because most
databases change over time. Even assuming that we are willing to dedicate money
and a vear of work by two data expens to manually validate the data, by the time
thev were done a vear later, the data would have changed by at least 15-20%,
Thus we would be chasing our tails and continuously spending more time and

Money.

Despite the obvious Maws in this approach, | have seen it employed in practice on
many occasions. Onc of the companics | consulted had a tcam of 38 pcople
(including two project managers, nine managers, and 27 data analysts) working
day and night to validate data in their HR database. Afier nine months, they were
about 12% done, which was probably why | was brought mto the picture.

And so the mevitable conclusion i1s that outside of the very small databases. total
manual data validation is impractical, Then how do we assess data quality?
Sampling approaches were suggesied. mostly drawing on the experience of quality
management in other industrics, Indeed, measuring quality of most mass-
production products (e.g. automobiles) relies on a comprehensive investigation of
sample products. You take random sample of automobiles coming ofl production
line and study them (o find any defects. You also collect information about car
breakdowns from repair shops. Based on the results. you can extrapolate the
overall quality of all produced automobiles,

This is not bad. We could validate the data for a random sample of 100 employees
in a mere three months, and then try 1o draw conclusions about the entire database
based on the findings. This scales the problem down a bit, but the solution
remains impractical for larger databases or on an enlerprise-wide scale. We
simply have wav too much data! The endless gigabyvics are incomprechensible —
the number of pieces of data in use by an average company dwarls the volume of
any other resource. Besides, data 1s heterogeneous, and so 1t takes a larger sample
to represent all different elements and situations. Our task can be compared to an

6

Chapter 2 — Data Quality Program Overview

attempt to check the health of every Mlower and every blade of grass on Earth by
sending a few botanists to check out a few plants here and there. No sample is
small enough to be looked at in a reasonable amount of time. vet also large enough

o provide comprehensive conclusions about the overall state of alTairs.

Without a better way, the data quality profession would never come to exist
Luckily there 1s a bettier wav. Modermm databases have two mmportant
characteristics that distinguish data from all other products. First. they allow the
data to be accessed and processed with dramatic speeds. Secondly, myriads of
data clements stored in them are tied by equally huge numbers of data
relationships. The combination of these two factors allows validating the data en
masse by computer. This is far more efTicient than doing it manually one dala

clement atl a time.

The main tool of a data quality assessment professional 15 a data quality rule — a
constraint that validates a data element or a relationship between several data
clements and can be implemented in a computer program. OF course, [use the
ierm data relationslhip here in the broadest sense — ranging from simple entity
rclationships found in data models to complex business rule dependencies. The
solulion relies on the design and implementation of hundreds and thousands of
such data quality rules, and then using them to identify all data inconsistencies.
Miraculously, a well-designed and fine-tuned collection of rules will identify a
majority ol data ¢rrors in a fraction of time compared with manual validation. In
fact. 1t never takes more than a few months to design and implement the rules and
producc comprehensive error reports, What is even better, the same setup can be
reused over and over again to reassess data quality periodically with minimal
cffort.

Using data quality rules brings comprchensive data quality assessment from
fantasy world to reality. However, it is bv no means simple. and it takes a skillful
skipper to navigate through the powerlul currents and maelstroms along the way.
Considering the volume and structural complexaty of a tvpical database. desigming
a comprehensive set of data quality rules 15 a daunting task. The number of rules
will often reach hundreds or even thousands, When some rules are missing, the
results of the data quality assessment can be completely jeopardized. Thus the
first challenge is to design all rules and make sure that thev indeed identifv all or

Most errors,

Chapter 2 — Data Quality Progeam Overview

It is also very hard to design perfect data quality rules. The ones we come up with
will ofien lail to spot some crroncous records and falsely accuse others. They may
not tell vou which data element i1s erroneous even when the emor is identified.
They may identify the same error in many different ways. Error reports produced
by such rules tend to suffer from the same malady as the data itself — poor quality.
This imperfection, 1f not understood and controlled, will overrun and doom any
data quality assessment effort. Minimizing the imperfection in the data quality
rules and accounting for it in the assessment results is the second challenge,

Data quality rules produce endless reports of data errors, Each error applies to one
or several data elements from one or several tables. Making any sense out of the
error reports is overwhelming. The sight of a 300-page printout or even of an
clectronic listing with 20,000 lines of crror messages will make most data quality
professionals duck for cover. And the error reports are just the tip of the weberg.
Data quality assessment uses and creates many other tvpes of meta data, such as
data models, data catalogues, data profiles, rule definitions, and aggregate quality
metrics. Organizing all of these meta data in a manageable data quality meta data
warehouse with a built-in dimensional data quality scorecard is the third challenge.

In this book I will address these and other challenges of data quality assessment
and show how it can be successfully performed in practice. [t is not bv accident
that [chose to start this book senies with this topic. Data quality assessment is the
comerstone of any data quality program. Below is a short list of main applications

of data quality assessment results.

* It helps to describe the state of the data, understand how well it supports
various processes, and estimate the cost of data problems to the business.

* It helps to plan and priontize data cleansing imitiatives and evaluate the
potential ROI of data cleansing. 1t also provides immediate input to data
cleansing i the form of the errors that must be corrected.

o It greatly simplifies data conversion and consolidation by providing
information about the data quality in the source system, invaluable in the
design of the target database and data transformation and consolidation
algorithms.

Chapter 2 — Data Quality Program Overview

» It helps to understand sources of existing data problems and investigate
ways of improving data collection processes.

* [t helps to understand implications of the data quality on newly planned
data uses and data-driven processes before they are pul in place. This
reduces the number of unwelcome surprises when the new processes fail

or at least do not perform as expected.

o It assists in testing svstem upgrades and mass updates since test cases
can be selected among records with crrors. This helps understand how

well the changes will work with real imperfect data.

Also, recurrent asscssment allows us (o monitor ongoing data quality, identify new
problems that manage o find the way mto the databases, observe and manage data
decay. As vou can see, the importance of data quality assessment 1s hard (o
oversiate,

2.2. DATA CLEANSING

It has been widely accepled that most databascs are riddled with errors. Data
cleansing 15 the process of correcting the erroncous data ¢lements. Unflortunately.
while data errors are spread throughout all parts of databases, the data cleansing
¢lforls in practice mostly focus on customer data standardization, de-duplication,
and matching. Cleansing the rest of the data is relegated to manual work.

The manual data cleansing work 15 rarely completed, as it usoally takes great
lengths of time, and the projects run out of patience before any measurable success
can be shown. The problem is similar to that of manual data quality assessment.
Even though the volume of work 1s far smaller (we are onlv concentrating on the
erroncous data elements found through assessment), it also requires more skill and
ume. Indeed. only a lighly competent data expert experienced with the specific
data can be trusted to make mass data corrcctions. Such experts arc rare and
usually already overloaded in every organization. As a result, data cleansing gets

stretched over very long penods of time.

The good news is that a better solution exists. It relics on the [act that most data
errors arc not arbitrary but are caused by some systematic processes. such as
mistakes in data interfaces or Mawed data collection procedures. IT many errors

Chapter 2 — Data Quality Progeam Overview

were introduced by the same process, then they will follow a pattern. 'With some
cffort and analvtical acumen, this pattern can be discovered, understood. and then
used to make corrections to all similar errors by a single data-cleansing algonthm.
This idea 1s the comerstone of the rule-driven approach to data cleansing. [have
successfully apphied 1t m practice on numerous occasions. It allowed me to
complele data cleansing projects in months rather than vears and with very limited
resources,

I must admit, however, that the approach is very challenging in practice. and it
took me some vears to fullv understand the origin of its difficultics and wavs to
overcome them. [n fact, looking back on some of my early projects, | am often
puzzled how lucky 1 was to succeed in some ol those data cleansing projects
despite the long odds. 1 did not know where the hidden underwater cunrents were,
and there was no place to look for advice.

Probably the greatest challenge of rule-dniven data cleansing 1s that data quality
rules are interdependent. Correction to a data element failing one rule may oflen
result in violation of other rules. Failure to recognize this jeopardizes the dala
cleansing process. potentially introducing many new errors while attempting to fix
the ones that were originally lound.

To be done right, data cleansing must start with comprehensive data quality
asscssment. Such assessment must be rerun regularly during data cleansing (and
after it is completed) to identify new data problems and ultimately ensure that the
data quality was improved.

Also, it is absolutely critical to have an automated mechanism tracking the
hicrarchy of the data quality rules and their dependencies. This hierarchy could be
uscd to track the implications of applving any corrective algorithm (o the data. We
would use it to proactively select only the records that need and are allowed to be
processed by each data correction rule, and execule all rules in the proper order.
Once a data change 1s made, the hierarchy could be further used to reevaluate all

data quality rules that might be impacted by the correction,

Another major challenge is that automated data cleansing relies on computer
programs to make corrcctions en masse. Therefore, there 15 alwavs risk to miss
some exceptions in the logic or simply to have bugs i the computer code.
Debugging the programs takes much time and resources. Sofiware development

30

Chapter 2 — Data Quality Program Overview

industry has long ago recognized this problem and addresses it through various
quality assurance techniques. But how do we assure quality ol data correction
algorithms”?

The casiest method 1s to execute the algorithm and venfy the results by simplv
checking that the data corrections it made are as expecled. This seems easy
cnough; however. with the large number of errors of different tyvpes, 1t 15 oflen
necessary to design many interdependent correction algonthms. A [law in the
logic in one algorithm may not become obvious until another one is applied later
on in the process. At this point, however, many other corrections have been made,

To deal with this situation, it is necessarv lo create a sophisticated audit trail
mechanism. This mechanism would permit to electronically track all changes
made (o the data. easily rollback dala corrections 1o any point if necessary. then
perfcet and rerun the algorithms with as many ilerations as nceded to achicve
acceplable results. The audit trail mechanism 1s also extremely valuable bevond
the completion of data cleansing as it provides reliable data lincage for all
correcled data.

OFf course. other challenges abound along the way. How do we wdenuly error
patterns? How do we devise best corrcction techmiques? How do we use
additional data sources? How do we report the results? When does automated
data cleansing become inefficient and manual validation becomes preferable?
These and manv other questions will be answered in the “Data Cleansing™ volume
of this book series.

2.3. MONITORING DATA INTEGRATION
INTERFACES

Most data comes into the database through various real-time, near real-ume, or
batch interfaces. These interfaces are the source of many data errors. The
objective of interface monitoring 1s to prevent these errors from getting into the
database, or at least o 1dentify new problems as early as possible (1o minimize the
damage they inflict. The solution to interface monitoring 15 1o design programs
operaling between the source and target databases. which are entrusted with the
task of analyzing the interface data before it 1s loaded and processed.

31

Chapter 2 — Data Quality Progeam Overview

Monitoring real-time interfaces starts with the setup of various screens validating
incoming data transactions. These sereens check internal reasonability of the data
transactions as well as their consistency with some existing data. It might be
beneficial at tmes (o pul the questionable (ransactions into a holding area.
However, n that case later transactions for the same object must also be held.
Indeed, 1f we choose 1o lemporarily hold a new order transaction due lo lack of
some attributes, then a following order cancellation transaction must also be held
or it will inevitably fail in processing. Thus, managing a temporary holding area is
quite a difficult undertaking,

Screens for real-time interfaces will miss many errors because there is simply not
enough data or window of opportunity to use sophisticated data quality rules. The
next step 15 to minimize the length of time the bad data stays in the databasc
unnoticed. New data can be flagged and data quality rules can then be applied (o
the Mageed records after they are loaded, but stll before much damage 1s done,
Until the Nagged records are tested, they should be used with caution. Recurring
data quality assessment 1s also critical for the databases, which receive much data
through real-time interfaces. Detailed comparison ol error reports allows us (o
identify new data problems, investigate their root causcs, and hopefully improve

the interfaces.

For batch interface. a far more sophisticated monitoring solution can be
implemented, consisting of many different interdependent interface monitors. In
general, these monitors fall inlo two categories: individual data momtors and
ageregate monitors,

Individual data monitors use data quality rules to test data accuracy and integrity.
Their objective is to identifv all potential data errors, An individual data monitor
can be viewed as performing recurrent data quality asscssment on cach baitch feed.
Such monitors vary dramatically in complexity. Simple screens validate the data
mside a single batch and are trivial to implement, but they flind lew errors.
Advanced monitors that compare data across batches or agamst target database
identify more problems, but they require extensive development and processing.

Agoregale monitors search for unexpected changes in batch interfaces. They
compare various aggregate attribute characteristics (such as counts of attribute
values) from batch to batch, relving on the fact that such aggregate charactenistics

Chapter 2 — Data Quality Program Overview

change little from batch to batch or follow predictable patterns. A value outside of
the reasonably expected range indicates a potential problem. Aggregate monitors
are easy to implement. though they require some special knowledge m data
profiling and staustical ume series analysis. They can be largely automated and
will catch all unexpected changes in the batch mterfaces.

The structure of data momitors depends on the batch terface architecture. It 1s
relatively simple for snapshot batch files commonly used (o feed data warchouses.
but can be very complex for transaction batches often exchanged between
operational transaction processing svstems, In the latter case, the solution might
mvolve a persistent staging area — a physical database where batch files are stored
indefinitely along with necessarv data lineage information and data quality

findings.

If several databases all exchange information through vanous imterfaces. the result
15 often a dangerous spider-web of data flows. Monitoring data quality through all
of these interrelated interfaces is a huge challenge. Tt may warrant implementation
of an information integration hub — a system designed specifically for centralized
processing of multiple interfaces between multuple databases. Of course, an
information integration hub has a persistent staging area as a backbone. This
solution affords the most flexible and comprehensive data quality monitoring. [t
allows maintaining detailed data limeage and data quality meta data for future
reference. Ttis a great answer 1o the mformation integration challenge.

Monitoring data quality of data integration interfaces is a broad and difficult
subject. I expect to address it in the “Data Integration” volume of this book series.

2.4. ENSURING DATA QUALITY IN DATA
CONVERSION AND CONSOLIDATION

Data conversion and consolidation projects are the worst data quality olTenders.
While other projects may cause more data errors overall, nothing can inflict as
much damage in one shol as data conversion and consolidation. This is especially
true for the projects involving "legacy” databases. 11 vou think of data mtegration
interfaces as artillery fire. and data decay as slowly debilitating starvation. then an

33

Chapter 2 — Data Quality Progeam Overview

average data conversion project is a megaton bomb while legacy data
consolidation 15 a lile-exterminating metcor.

The objective of any data quality program is to ensure that data quality does not
detenorate during conversion and consclidation projects. Ideallv, we would like to
do even more and use the apportunity to improve data quality since data cleansing

15 much casicr to perform before conversion than afterwards.

The greatest challenge in data conversion 1s that actual content and structure of the
source data is rarelv understood. More often data translormation algorithms rely
on the theoretical data definitions and data models. Since this information is
usually incompleie, outdated, and incorrect, the converied data look nothing like
what is expected. Thus, data quality plummets. The solution is to precede
conversion with extensive data profiling and analysis. In fact, data quality aller
conversion 1s in dircel {or cven cxponential) relation with the amount of
knowledge about actual data vou possess. Lack of in-depth analvsis will guarantee
significant loss of data quality.

Another problem is that straightforward data movement and wansformation from
source to targel database rarely works. This 1s because every system 1s made of
several lavers, with data at the bottom, business rules in the middle, and various
presentation lavers at the top (see Figure 2-2). Information that comes out of the
top laver is greatly affected by the business rules. When data is converted from
one database to another. the business rule lavers of the old and new system are
usually quite diflferent. This is especially true for conversion from “legacy™
svstems. which are notorious for elaborate hidden business rules. In fact. many of
the old system rules may be designed specifically to hide and handle poor data
quality. As a result, even il the data is converted with utmost accuracy, the
information that comes out of the new svstem may become totally incorrect, The
solution here is to investigate the business-rule laver of the source svstem. It is
also critical 1o perform comprehensive data profiling and data quality assessment

of the source data beforc mapping specilications arc created.

34

Chapter 2 — Data Quality Program Overview

Source System Target System

Information

Information

_/
Business Rules @ Business Rules
Diata @ Data
'-_____._,_:-'

Figure 2-2: Data Conversion Challenge

Equally critical is to include data quality definition and acceptable quality
benchmarks into the conversion specilications. No product design skips quality
specifications. including quality metrics and benchmarks, Yet rare data
conversion follows suit. As a result. nobodv knows how successful the conversion
project was until data crrors get exposed in the subsequent months and vears. The
solution 15 to perform comprechensive data quality assessment of the target data
upon conversion and compare the results with pre-defined benchmarks.

Finally, no matter how hard we trv, the data will still have many errors. A data
cleansing mmtiative 15 typically warranted. 1t 15 much casier o perform data
cleansing before conversion because transformation tends to “mutate™ the
erroneous records to the point where the nature of the problem is much more
difficult to recognize. Also, some bad data is inevitably and irrevocably lost in
translation. Unfortunatelv data cleansing is rarelv done during conversion in
practice. The common wishlul thinking is that since the new svstem is better it

will automatically solve existing data problems. The truth 1s exactly opposite.

Another problem 1s inadequate allocation of time and resources to the effort. The
data conversion usually requires much more time than anticipated. As a result it1s
rushed, and the problems are discovered alter the conversion i1s over and the data
quality greatly suffered. In reality, it is virtuallv impossible to create a proper
timeline and list of expectations for the conversion without prelimmmary data

profiling and data qualily assessmenl.

Chapter 2 — Data Quality Progeam Overview

Data consolidation is even more difficult than basic conversion because data from
consolidates sources ofien overlap and conflict. Say we must consolidale a data
attribute present in three svstems — A. B, and C. The common approach is to build
winner-losers matrix, which assumes precedence of one source over another.
Since mm reality no data 15 perfect (especially legacy data) such assumption
mevitably fuls.

What 15 even more (roublesome is that data consolidation specifications are usually
built without deep understanding of the actual structure, content, and quality of the
data in cach source, Comprehensive data profiling and quality assessment is key
here. even more so than for simple data conversion. A priori understanding of
overlaps and conflicts between the databases allows navigating a safe route rather

than marching into the oncoming traffic lanc head-on.

The corrcet approach to data consolidation 1s (o view 1t in a similar light as data
cleansing! We start with a comprehensive set of tests. comparing the data between
all sources. We now have a full list of discrepancies. These data inconsistencics
are conceptually very similar to the error found by the data quality rules. While
some of these discrepancies may be legitimate, without proper care they will most
likely tum inlo true data errors afler consolidation. The next step is to analvze the
discrepancies and look for patterns. Say we conclude that where any time values
of a certain attribute in Systems A and B coincide. they can be trusted (regardless
of the values in database C). Then we can mark those values as “trusted™ and
climinate those discrepancies from the list. In theorv. we can also make
corrections to the mismatching values on C. which 1s why data consolidation can
be viewed as very similar to data cleansing.

For each group of discrepancies, we can make an individual conclusion using
various conditions, Every time a decision is made, good data must be marked as
trusted and bad data can be corrected. With this technique. we decompose the list
of all discrepancies into a set of simple groups and derive a simple solution for
cach group. With cvery step, we move closer to the ultimate data quahity
objective. The approach is certainly not simple. especially for more complex
state-dependent and time-dependent data. 1t requires us to create and manage a
rule hicrarchy, the same as we discussed for data cleansing solution. However, it
guarantees the success.

KT

Chapter 2 — Data Quality Program Overview

This ig it in a nutshell, but clearly the topic deserves a comprehensive treatment,

which | will do in the “Data Conversion and Consolidation™ volume of this series.

2.5. BUILDING DATA QUALITY META
DATA WAREHOUSE

The [irst tiems to be called meta data were data models. Over time the concept has
taken a much broader form. We now apply term meta data (10 all data that provide
information about other data. Meta data plav a critical role in the information age.
They tell us what the data really means, where it can be found, in which format it
1s stored, where it came from, and what it 15 used for. Mecta data arc the
encyclopedia ol knowledge about the data. Theyv are the key without which the

data 1s like a message wrilten in a scerel code,

Data quality initiatives produce enormous volumes of valuable meta data. Data
quality assessment tells us about existing data problems and their umpact on
various business processes. When done recurrently, it also shows data quality
trends. Data cleansing determines causes of errors and possible treatments. It also
crcates an audit trail of corrections so that, at a later point. we could tell how a
particular data element came to look the wav it does. Interface monitoring
identifies ongoing data problems. It also tells about data hincage as does data

conversion and consohidation.

On the other hand. data quality initiatives are a great consumer of meta data. Theyv
require detatled understanding of data catalogues, data models, and actual data
conlent. As [sad many times beflore, the suceess in data quality management 15
largely dependent on our knowledge and understanding of the data,

Data quality meta data warchouse 15 the collection of tools for orgamization and
analvsis of all meta data relevant to or produced by the data quality imtiatives. In
its most general form, it is a very complex solution, combining elements of object-
oriented meta data repository with analvtical functionality of a data warchouse. |1
must admit that while | have completed dozens of data quality initiatives of every
possible Kind, 1 have never secen or implemented a comprehensive data quality
meta data warchouse. But | have a dream! The dav will come when | entice my
good [riend, colleague, and great data warchousing expert, Dave Wells, to

Chapter 2 — Data Quality Progeam Overview

collaborate with me on the architecture of a comprehensive data guality meta data
warchouse. Then together we will write the final volume of this book serics.

SUMMARY

We have discussed the objectives. basic methods, and challenges of five kev
components of a comprehensive data quality program:

¢ Data Quality Asscssment

+ Data Cleansing

o Monitoring Data Integration Interfaces

Ensuring Data Quality in Data Conversion and Consolidation
e Bulding Data Quality Mecta Data Warchouse

The remainder of this book 1s dedicated to data quality assessment. | hope o
address the other components in the future volumes of this book series.

34

CHAPTER 3
DATA QUALITY ASSESSMENT
OVERVIEW

Imaging we could travel back in time some 20,000 years. We would find
ourselves in the middle of a Stone Age landscape. The reason we call it “stone
age” 15 because the carly humans made tools and weapons from stone. In other
words, stone was the most important resource. If we could walk into a typical
hunter’s hut (or a typical caveman’s cave), we would certainly find spears with
sharpened stone points. These spears were used by our ecarlv ancestors to hunt
many large animals, including mammoths. Every time the food supplies dwindled,
men would grab their spears and go hunting. OfF course, hunting mammoths was a
dangerous business, and in many cases the spear would not penctratc mammoth's
skin. Most likely the widow of the poor hunter would make sure that her next
husband used a different and better spear.

Over time, though, a different breed of hunters developed. These hunters would
stretch and hang the skin of a previously killed mammoth on the wall and engage
in strange cabalistic rituals. They would dance around, chant incanlations, and
throw the spears at the wall. All the ttime they observed which spear, thrown from
which angle and distance, and accompamed by which dance and incantation.
penetrated the mammoth’s skin the best. What they learned was incredibly useful
to make better spears, it also helped develop hunting strategies that best
accommodated deficiencies of the existing weapons. These rituals were the
carliest examples of quality assessment, and T tend to believe that it was those
hunters who eventually became my ancestors.

39

Chapter 3 — Data Quality Assessment Overview

(NE‘#‘T +ime | should Fes+ my
Ef'ﬁlﬁf I,Jl,'H-lu.rf F- 9 rl.|-|nlln‘l"l"lll"'l.l‘:l'I'-Iﬂ;"I

Now let’s come back to our time. We now live in an information age — the term
intended to emphasize that information is our most important resource. Modem
humans and companics alike fight their battles and hunt their proverbial
mammoths with information. The success of corporations and govemment
institutions largely depends on the efficiency with which they can colleet,
orgamze, and utilize data aboul their products, customers, competitors, and
cmployees.

As was the case with carlv stone spear points, our data is far from perfect. In fact,
most organizations are aware of the problems with their data and of the importance
of data qualitv. But they have no idea of the extent of the problems. Tvpically,
data quality is either grossly underestimated or grossly overestimated. The impact
ol data quality level is also rarelv understood. This causes failure of many data-
driven projects (such as new svstem umplementations). Data quality improvement
initiatives. when put in place, also often fail because no method of measuring data
quality improvements is provided. 5o we waste enormous amounts of time and
money cvery day.

To solve the problem we must start by assessing data quality. And while dancing
and incantations at numerous meetings are of some value, the problem requires a

o

Chapter 3 — Dadca Quality Assessment Overview

more drastic solution — systematic evaluation of data in search for all errors and
deficiencies. This is the objective of data quality asscssment. In this chapter, we
will provide a high-level overview of the data quality assessment process.
including main steps, project timelineg, and project team makeup. We then will

proceed (o discuss the process m detail in the remainder of this book.

3.1. PROJECT TEAM

The question, “Who shall be responsible for data quality assessment?” is the most
frequently asked. Part of the reason for the uncertainty is that the data quality
profession is still in its infancy. and so there is no clearly defined group with the
appropriate expertise and responsibility. Even companics that form Data Quality
departments often have them staffed by handpicked employees with general I'T and
data expertise but no specific data quality knowledge.

[recently received an ¢-mail from one of my conference class atiendees, an
employee of a household name corporation, who wrote: [am new to the data
quality management world and have found myself in charge of Enterprise-Wide
Data Quality here at ..." This single sentence explains the major challenge to our
profession — most people in charge of data quality imitiatives lack data quality

expenience. As aresult, the projects tend to follow one of two polar scenarios.

In the first scenano. projects fall mto the laps of technical people within the IT
eroup, Another attendee of one of my classes — a database administrator — was
asked by her boss to outhne a data quality assessment strategy. Why her?
Because, according to her boss, data quality assessment involves writing querics,
manipulating data, and understanding databases — all parts of her resume, Thus, of
course, makes as much sense as asking me to be a reporter for the sports section of
the Chicago Tribune becanse [can type. published some articles. and watch sports
a lot from the comfort of my living room couch.

In the second scenario. data quality assessment is performed inside business units
by the data users. This appears to make some sense, as the data users can tell good
data from bad and are mostly in need of quality data, 5o business departments
sometimes initiate their own data quality assessment projects. Of cowrse, the
problem then is that business users lack technical expertise, which is why | keep
cetting this question at almost every class: “Is there a tool that can do data quality

<1

Chapter 3 — Dada Quality Assessment Overview

assessment without any custom coding or querving”” My answer does not make
those who ask this question happy. Data quality asscssment is an IT discipline and
requires 1T expertise.

In reality, 1t takes two to tango. so a data quality assessment team must include
both 1T specialists and business users, ideally at least two of each kind. 1In
addition. 1t needs data quality experts — those who have read my book or attended
my classes and who have firsthand experience in designing. implementing. and
fine-tuning data quality rules.

3.2. PROJECT PLAN OVERVIEW

Data quality assessment projects consist of four phases:
e During the planning phase, project scope and objectives are defined.
» During the preparation phasc, data and meta data are gathered,
e During the implementation phase, data quality rules are designed.

During the fine-tuning phasc, the error reports are validated by data
experts, and data quahty rules arc cnhanced to achicve maximum

accuracy in error identification.

The recommended project team for an average size data quality assessment project
(e.g. assessment of an HR database) consists of two data quality experls, one or
two IT professionals, and at least two business users (data experts).

Figure 3-1 depicts the project plan for a five-month data quality asscssment
project, It illustrates the timeline and required resources during each phase, OfF
course, this timeline 1s quite arbitrary because all projects are different. [have
been involved in small projects that were completed in four weeks and seen large
ones that took over a vear. but a five-month timeline is rather typical for data

quality assessment of an average size database.

Chapter 3 — Dadca Quality Assessment Overview

IT Group DR Gronp |Businesz Groap
Planuning 100 1o0s L0 2 weeks
FPreparation 1008 25% % 2 weshs
Implementa tion 5P 1% 6% 10 vresls
Fine-Tuning 1096 1009 100 10 weels
g Time

Figure 3-1: Typical Project Plan

Each project phase is shown as a horizontal block in Figure 3-1. The planning
phasc is usually the shortest, except when data quality assessment is planned as an
enterprisc-wide initiative. The preparation phase also usually does not take more
than a couple of weeks unless, of course, we are dealing with a legacy database. In
that case, the length can casily double. The implementation and fine-tuning phases
take the bulk of the time, about 30% cach, Usually the implementation phase has a
more predictable timeline, while fine-tuning can stretch and must be better

controlled.

Vertical silos in Figure 3-1 correspond to cach of the three groups involved in the
project — I'T on the left, data quality in the middle. and business users on the right.
The numbers inside sections indicate how busy each group 1s during each phase.
Overall, data quahity experts will be busy throughout the project, while IT and
business groups will only be involved about half of the time. Also. the IT group's
services are mostly required during the preparation and implementation phases,
while the business users are heavily taxed during fine-tuning. This is actually why
I prefer to have multiple members in each group., even if the work can be

performed by a single person.

43

Chapter 3 — Dada Quality Assessment Overview

3.3. PLANNING PHASE

Defining project scope is a crucial Nirst step in the project. [t drives budget.
timeline, and priorities. The main issue here is to specify the sel of data elements
on which data quality assessment will operate. There are three fundamenitally
different choices.

The first option is to use data quality assessment mn support of a specific data-
driven imitiative. A typical task is to determine quality of the data used in suppor
of a particular business process. This creates a very namow and focused scope of
the project because we know exactly which data tables, records, and fields are
relevant and can provide clear data quality definitions. For instance, HR database
may be vsed, among other things, to calculate retirement pension benelits. A data
quality assessment project can be initiated to determine quality of the data used in

this process and estimate cost of the bad data.

This option is a great way (o jump-start a data quality program in an organization
that has nonc. Indeed, it 1s often casicr to start with a small project that can
produce tangible results in a short timeframe. | find this to be the casiest wayv to
“gell” a data quality initiative o the management that 1s unaware of the Tull
magnitude of the data quality challenge. Also, it 15 a good way 1o starl gaiming
experience in data quality management. Frankly, the first data quality assessment
project is always verv hard (as is true for any discipline). The chance of success is

exponentially higher on a small, well-defined project.

The main drawback of this option 15 that the amount of work necessary to assess
data qualitv does not grow proportionally to the volume of the target data. To
validate one data element we usually compare it against many other data elements.
This automatically means that we are partially assessing quality of thosc other data
clements as well, even 1f they are out of scope of the project. Similarly, a data
quality rule validating a certain data element can be applied to all records, or just a
subset, with almost the same amount of effort, Thus, narrowing down the
recordset does not significantly decrease the workload.

My wife and partner in crime. Olga, was recentlv consulting on a project that
started out as quality assessment and cleansing of compensation data for a small
group of B0 cmplovees. It was driven by a specific corporate imbiative that
absolutely needed to have these data in perfect condition. The project took some

4

Chapter 3 — Dadca Quality Assessment Overview

two months which sounds like a lot of work. But it took only one extra month to
apply the same data quality rules (with some slight modifications) to the data for
the remaining #0000+ emplovees. Obviously ROI on this second step was much
higher.

The second aption is to perform data quality assessment ol an entire database.
This, of course, 1s a much bigger undertaking. [t requires a broader look at the
data and design of a much greater number of data quality rules. However. it 15 also
far more efficient and produces more valuable results. At the end of the project,
we can build a data quality scorecard that shows data fitness for a variety of
individual objectives and projects. The results can also be reused later for data

cleansing and other initiatives.

The final option is to take an enterprise-wide view ol data quality assessment.
This. of coursc. 1s a monster of a project, and it requires some prioritization. But it
has one great advantage. Data across different databases 1s often related or even
redundant. Many data quality rules can be designed comparing such data, and the
resultant ¢rror reports are often far more comprehensive than what could be
obtained if data in each database was validated separately. However, when the
project objective is limited to assessment of data qualily inside one dalabase, it is
often not justifiable to bring other databases into the equation. Afier all, it adds
quite a bit of tme and cost to the project. On the other hand. when data qualitv
assessment is planned as an enterprise-wide exercise, we can assess data quality in
several databases simultancously and achieve superior results.

To summarize. the first option requires the smallest possible cffort and offers
clearly defined ROL. The sccond option provides the most efficient result-to-cffort
ratio. The third opuon 1s the most complex but will Iikely produce the most
accurate and comprchensive results. The choice is vours. Of course, it is possible
to start from option one and proceed gradually to options two and three.

Some other questions need to be answered to define project scope. The most
significant is whether or not the assessment is intended as a one-lime deal or as a
recurring mmbiative. There 1s defimitely a difference in the degree of planning and
resources needed for these two tvpes of projects.

Also. 1t is important to know if any data cleansing. mass data update, or database
restruciuring initiatives are planned during the course of the assessment project.

45

Chapter 3 — Dada Quality Assessment Overview

Any such concurrent projects will greatly impact data quality assessment, It is
prelerable not to have considerable changes to the data structure in the course of
the data quality assessment, but 1f it is inevitable at least we must be prepared for
il

3.4. PREPARATION PHASE

The objective of this phase 1s to gel readv for data quality rule design. This
involves loading data to a staging area, g2athering data models and data calalogues,
and setting up a data quality meta data repository.

3.4.1. Loading Data to Staging Area

Implementation of data quality rules will take tme and put a strain on the
database. It 1s, thercfore, recommended to load data into a staging arca mnstead of
doing assessment on “live” databases. A staging area minimizes interference with
actual production database. There will be no performance slowdown due 1o
additional development. debugging and execution of data quality programs,

Loading data to a staging arca also allows for manipulation of the data whenever
neeessary or convenient for quality assessment. For imnstance, we could add
surrogale kevs for easier record referencing and normalize or de-normalize some
tables. However, keep in mind that 1t is easier to review error reports and provide
results to the users when the data in the staging arca look largelv like the data in
the actual database. Therefore. certain restraint must be exercised in data
restructuring. and it should be loaded to the staging arca with mintmal changes. |
cspectally advise against changing field names and attribute values even if it is
convenient.

Using a staging area affords a variety of other advantages. For instance, data
quality rules sometimes must compare data from multiple heterogencous sources,
including relational databases. spreadsheets, and even legacy systems. Direct
access and querving of the data in such situations are an implementation
nightmare. A staging arca brings all of the data into a homogeneous environment,

Also, inside a staging arca we can make temporary changes to the data, add
calculated fields and meta data tracking attributes to the tables, and perform many

=1

Chapter 3 — Dadca Quality Assessment Overview

other convenient manipulations. In other words, a staging area offers a playvground
for data analvsis and data quality rule implementation. Within a production

database, such frivolity would be inconceivable.

Loading data to a staging area is a strictlv technical task and must be done by the
IT group. In theory it should not take much time. while in practice it oflen
stretches over weeks, This usually does not depend much on the actual effort, but
rather on how much stake the IT group holds in the project. The more an IT group
buys into the project, the easier it is to gel the data loaded to the staging area.
Otherwise, database managers will feel “threatened™ by the loss of control over the
data and might stall the project.

3.4.2. Gathering General Meta Data

Data catalogues and data models are the source of numerous data quahity rules and
a pood stariing point for the data quality assessment. Data catalogue are
collections of basic meta data about data atributes. They include basic attribute
listings, detailed descriptions and usage patterns, as well as reference information,
including valid values, thewr meamings, and default values. Data catalogues are kev
o understanding the cast of characters in the data quality assessment play.

Data models describe the structure of the data. They fall into four broad
categories. Relational data models depict logical relationships belween various
entitics and attributes. Subject arca models define main data subjects - catcgorics
of high-level business objects whose data is stored in the database. Stale-transilion
madels describe the life cvele of complex state-dependent objects. Temporal
maodels deseribe the chronological structure of time-dependent data and event
histories. Understanding these data models is key to designing data quality rules.

While data models are readilv available, they might be inaccurate or obsolete, 1t is
a zood idea to find out who keeps these models up-to-date and how before relving
on them n data quahty rule design. When the models are unavailable (or
incomplete), they can usually be reconstructed through a combination ol reverse

engmeenng. model building, and data profiling techmques.

Chapter 3 — Dada Quality Assessment Overview

3.4.3. Designing Data Quality Meta Data
Warehouse

Data quality assessment uses meta data (e.g. data catalogues. data models. and data
profiles) to design data quality rules. It also preduces numerous error reports and
large volumes of other data quality meta data. Data quality meta data warchouse is
a collection of tools for organization and analysis of all these meta data.

Without a well-planned meta data repository, data quality assessment cannol be
successlully completed. Hundreds of data quality rules and error reports with lens
of thousands of crrors arc impossible to manage and casily overwhelm the project.
On the other hand. a well-designed data quality meta data warehouse in 1tself is a
valuable product with long shell life. It presents the assessment project results in
an interactive dimensional data quahitv scorecard, which offers a high-level view
of data quality along with drill-downs to detailed error reports. [t integrates data
quality meta data with the data isclf, and provides casy access o data quality meta
data by both technical and non-technical users.

It 15 important (o design the data quality meta data warchouse at the onset of the
project so that all collected and produced meta data neatly falls into place, Itis a
strictly technical task, though non-technical team members must participate in the
design of the meta data reports to make sure that thev are easy to understand and
analvze. In theorv, it can get quite complex and take a fair amount ol time. The
good news 1s that data quality meta data warchouse architecture can be reused
[rom project o project.

3.5. IMPLEMENTATION PHASE

The implementation phasc 1s the meat of the data quality asscssment project. This
15 when all data quality rules are identified. designed. and programmed. | often see
project teams rushing to start writing querics and implementing data quality rules
based on the data models. This 1s too hasty. The first step in the implementation
phase is data profiling, and vou must take your time with it.

4

Chapter 3 — Data Quality Assessment Overview

3.5.1. Data Profiling

The term “data profiling” originated from atinbute profiling techniques, which
produce basic attnbute statistics as well as value frequencies and distnbution
charts. Nowadays its meaning has greatly expanded and is used to describe
various expenimental techmiques aimed at examining the data and understanding 1s
actual structure and dependencies. Occasionally [have even seen 1t uwsed to
describe data quality assessment, but I draw the line between the two. Data
profiling tells us what the data looks like; data quality assessment describes how

good it 1s.

The reason data profiling is so important is that actual data is often verv different
from what is theorctically expected. Ovwer time, data models and dictionaries
become inaccurate. Data profiling 1s like an X-ray showing the idden truth. It is
the kev to building correct data quality rules. As a rule of thumb, the more in-
depth analysis and profiling we conduct the easier 1t 15 (o design a comprehensive
set ol data quality rules and achieve greater success in data quality assessment.

X- R AY

49

Chapter 3 — Dada Quality Assessment Overview

There are many data profiling techniques. The following four groups are mosl
usclul in data quality assessment.

I. Auribute profiling examines the values of individual data attributes and
vields information about basic aggregate statistics. frequent values, and
value distnbution [or each attribute.

[E*3

Relationship profiling is an exercise in identfving entity kevs and
rclationships as well as counting ececurrences for cach relationship in the
data model.

State-transition model profiling 15 a collection of techmques for analvsis
of the lifecyele of state-dependent objects and provision ol actual
information about the order and duration of states and actions,

Lk

4. Dependency proliling uses compuler programs lo look lor hidden
relationships between attnibute values.

Data profiling is a valuable excrcise in itself and produces meta data useful for
many purposes. [n fact. data profiling can produce enough valuable information to
scriously question data quality and justify a data quality assessment project, if one
has not been approved already.

Data profiling can take as much time as vou afford it. Of course. 1t 1s faster with
better tools, and the amount of time is proportional to the number of data elements
i the database. Experienced analysis armed with good tools can profile an
average-size database and organize all findings in a month with minimal support
from the IT group. It is important to have business users available for regular
consultations, as data profiling findings must be verified. Usually business uscrs
do not need to spend much time. just be available for a few hours a week to look at
and explain the strange data phenomena.

3.5.2. Designing Data Quality Rules

Data quality rules are the main tool of the data quality assessment. They are
constraints that validate data relationships and can be implemented in computer
programs, [t is rather trivial (o identify scores of data quality rules: the challenge
15 in designing all or most of them. This requires a svstematic approach. It 1s
important (o consider all rule tvpes, rule sources. and rule design strategies. The

A4

Chapter 3 — Dadca Quality Assessment Overview

more rules are initially designed, the better the final outcome of the data quality

asscssment projeet. Data quality rules fall into five broad calcgorics.

-2

Lk

Attribute domain constraints restrict allowed values of individual data
attributes. Thev are the most basic of all data qualitv rules since thev
apply 1o the most atomic data elements.

Relational integrity rules are derived [rom the relational data models.
They are more complex. apply to multiple records at a time, and enforce
identity and referential integrity of the data.

Rules for historical data include timehne constraints and value patlerns
for time-dependent value stacks and event histories. Since time-
dependent data are the most common database citizens (and since they
arc also most error-prone), these rules tvpically are a key part of data

quality assessment.

Rules for state-dependent objects place constraint on the lifecycle of
objects described by so-called state-transition models (c.g. insurance
claims or job applications). Data for such objects 1s most important and
can only be validated by a special class of data quality rules.

General dependency rules desceribe complex attribute relationships,
including constraints on redundant, derived, partially dependent. and
correlated attributes.

The cntire Part 11 of this book is dedicated to the investigation of various data
quality rules and methods for their identification and design.

Designing data quality rules 1s defimitely the job for the data quality professionals,

though business users must also contribute through interviews. This step overlaps

with the data profiling. With experience. it does not take much time. even though
the number of rules in an average data quality assessment project will reach

several hundreds.

All identified data quality rules must then be coded in computer programs. Some
rules can be implemented using tools or with simple queries. while others wall
require stored procedures or more complex programming. Unless performance
considerations are critical, all rules should be implemented as separate units.

Chapter 3 — Dada Quality Assessment Overview

Furthermore, rules need to be designed in such a wav as 1o make any rule re-

execution possible at any point of time.

Rule coding is the most technical part of the project and definitely the
responsibility of the IT group. Even though the number of rules is great, coding
them is not too difficult. Tn myv experience, it takes lar less time 1o implement the

rules than to design them. Thus, coding never slows down the project.

The only scrious challenge in rule implementation 15 how o orgamze a
comprehensive error catalogue. While on the surface it seems trivial to just
produce various error reports, the task proves quile challenging. A good error
catalogue must support the following functionality:

o Aggregate, filler, and sort errors across various dimensions.

s ldentifv overlaps and correlations between errors for different rules,

o Identily data records affected by a particular error or a group of errors.
* ldentify all errors for a particular data record or set of records.

{t 15 better to create a separate program responsible for logging and managing
errors than to catalogue errors dirgetly from the rule programs, The design of such
a program lakes some expertise and software development skill.

3.6. FINE-TUNING PHASE

Data quality assessment relies on our ability o use data quality rules 1o accurately
identify all data crrors. However, it 15 very difficult to design perfect data quahity
rules. The ones we come up with will ofien fail to spot some erroncous records
and falsely accuse others. They may not tell vou which data element is erroneous
even when the error is identified, or they mayv identifv the same error in many
different ways. Error reports produced by such rules will be innccurate and of

limited value.

In order 1o guarantee the accuracy of error reports, we go through extensive
manual data verification by the data experts. This 1s the step when the greatest
time commitment is required from the business users. who must review and
manually validate numerous data samples. Without such commitment, the project
cannot succeed, and this must be adequately planned for in advance. Since this is

=72

Chapter 3 — Dadca Quality Assessment Overview

a lot of work, it is preferable to buy time of several business users with data

expertise. With such sctup, this step can be completed in about a month.

Manual verification always vields holes and gaps in error identification by the data
quality rules. The next step is fixing these problems. Several solutions are
possible:

» Design of additional data quality rules ensures assessment completeness.

s Correction, improvement, or climination of existing data quality rules
IMproves assessment accuracy.

¢« Cateponization of errors identified bv a single data qualitv rule into

multiple groups helps distingush errors ol different types.

This approach ensures that the data quality rules were implemented correctly,
detected all errors. have no false-positives. and clearly indicate the location and
nature of each error.

Rule fine-tuning mvolves much analysis and some additonal programming. [t
usually takes several iterations to make error reports identified by the data quality
rules match findings of data experts to an acceptable level.

Eventually we get to the point where the resulls of our data qualily assessment can
be trusted. Now comes the time to organize our results. Indeed, crror reports
produced by data quality rules are overwhelming in volume and complexity and.
thus, arc hard to usc. To maximize their value, we must aggregate the reports into
meaningful summanies and create a data quality scorecard.

Aggregate scores provide high-level measures of the data qualitv. Each score
aggrepates errors identified by the data quality rules into a single number - a
percentage of good data records among all targel data records. By selecting
different groups of target data records, we can create many aggregale scores for a
single database. Well-designed scores are goal driven and allow us to make better
decisions and take action. They can measure data fitness for various purposes and
indicate quality of various data collection processes. From the perspective of
understanding the data quality and its impact on the business, aggregate scores are
the kev piece of data quality meta data.

Chapter 3 — Dada Quality Assessment Overview

A data quality scorecard is the central product of the data quality assessment
project. It provides comprehensive information about data quality and allows both
aggregated analvsis and detailed dnll-downs. At the top level of the scorecard are
aggregate quality scores. At the bottom level is information about data quality of
individual data records. In the middle are varnious score decomposiions and error
reports allowing uws 10 analvze and summanize data quality across various
dimensions and for different objectives,

A data quality scorecard is the key to understanding how well the data supports
various data-driven projects, [t is also critical for making good decisions about
data quality initintives. Building a comprehensive data quality scorecard is the

final step of data quality assessment.

3.7. ONGOING DATA QUALITY
MONITORING

It is critical to monitor data quality in “live™ databases on an ongoeing basis in order
to sce data quality trends, identify new data problems, and check the progress of
data quality improvements initiatives. Well-designed data quality assessment
solution creates a blueprint for recurrent data quality re-evaluation.

The idea seems rather trivial on the surface — all we need is to re-run data quality
rules penodically against the most current data and compare the results. However,
it presents several practical challenges. First. it requires adding time dimension 1o
the data quality meta data warchouse, Secondly, we must use a consistent method
for referencing erroncous data records so that we can identify which of the errors
found by the assessments are the same and which are different, However, both of
these challenges can be met rather easily.

The true test of our skill arises when data quality assessment must be performed
with high frequency or against very large databases. In this case, we cannot alford
to replicate the entire database to the staging area every time and must exccute
data quality rules against production data. Performance considerations become an
1ssuc, building data quality scorccard 15 Tar more difficult. and data quality meta
data warchouses require more sophistication,

5d

Chapter 3 — Dadca Quality Assessment Overview

We will address various problems and solutions involved in recurrent data quality

asscssment in Chapter 14 of this book.

SUMMARY

Data quality assessment project consists of four phases:

* During the planning phase, project scope and objectives are defined.
The main 1ssue here 1s to specily the set of data elements on which data
quality assessment will operate. This decision drives budget, timeline,
and priorities. The planning phase is usually the shorlest, except when

data quality assessment 1s planned as an enterprise-wide initiative.

* During the preparation phase, data and meta data are gathered. The
preparation phase also usually docs not take more than a couple of weeks
unless. of course. we are dealing with a legacy database. In that case, the

length can easily double.

e During the implementation phase. data quality rules are designed. This

phasc can take up to half of the project timeline.

o During the lne-tuming phase. the error reports are validated by data
cxperts. and data quahty rules are cnhanced to achieve maximum
accuracy in crror identification. This last phase takes many iterations
and can stretch over a long period of time if not managed properly.

The data quality assessment team must include data quahity experts, IT specialists,
and business uscrs, idcally at least two of cach kind, Ovcrall, data quality experts
will be busy throughout the project. while IT and business groups will enly be
involved about hall of the time. Also, the IT group’s services are mostly required
during preparation and implementation phases, while the business users arc
heavilyv taxed during line-tuning.

It is olten desirable to monitor data quality in “live™ databases on the ongoing
basis. A well-designed data quality assessment solution creates a blueprint for
recurrent data quality re-evaluation.

Chapter 3 — Data Quality Assessment Overview

Urheberrechtlich geschiitztes Malaria

PART Il — DATA QUALITY RULES

58

Urheberrechilich geschitztes Material

Data quality rules are constraints that validate data relauonships and can be
checked using computer programs. Thev form the comerstone of data quality
assessment. When properlv designed. data quality rules allow identuification and

precise classification of the majority of data problems.

The kev is (o discover all data quality rules and ensure that the rules are correctly
understood. When some rules are missing or musrepresented. the results of the
data quality assessment can be completely jeopardized.

Imagine that vou are appointed 10 be a home-plate umpire in a major league
baseball game. OF course, vou cannot do it without knowing the rules. The
official rulebook of major league baseball contains 124 rules, many with numerous
sub-rules. If vou miss just a couple of rules, vou may inadvertently influence the
outcome of the game — the one play that vou call erroneously could be decisive. 1T
vou do not know 10% of the rules. vou can casily cause a not. Also. complicated
rules are no less important than easy ones. so learming all but 10% of the most

complex rules still leave yvou 10% short of the target.

The strike zone is an
imng;nnrr heof

over the rfﬁ'ft-u

Data quality rules play the same role in data quality assessment as the rules ol

bascball in referecing a major league gamc. They determine the outcome!

Unfortunately, identifving data quality rules is more difficult than learning rules of
bascball because there is no official rulebook that is the same for all databases. In
every project, we have to discover the rules anew. Also. some rules are easy to
find. while others require lats of diggimg: some rules are easv o understand and
unplement, while others necessitate wniting rather complex programs. Bul as with
baseball, all rules are equally important, Omitting a few complex and obscure data
quality rules can (and most of the time will') jeopardize the entire elTort.

This part of the book is the closest I could come to the official data quality
rulebook. It svstematically discusses data quality rules of all kinds and places a
special emphasis on the process and strategies for rule discovery. Speaking from
personal experience in over 10(data quality assessment projects, | guarantee that
if vou stay the course and svstematically apply what vou learn in the next five
chaplters. vou will get a comprehensive and accurate rule sel.

In Chapter 4 we take the simplest view of the data as consisting of individual
values of various attributes, This perspective vields the first category of data
quality rules — altnbute domam constramnts. We discuss all kinds of these
constraints and show how to discover them and ensure their correctess through

analysis of meta data and especially through data profiling,

Chapter 5 takes a more advanced view of data structure — that consisting of
interrclated entitics and described by relational data models. This approach leads

us to the discoverv of various relational integritv rules.

Attribute domain constraints and relational integritv rules are quite casy to identifv
and implement. They are usually the first to be designed in any project. However,
we are still way short of the mark — the majonity of important data quahity rules are
more complex, In order to design those rules, we need to take the subject level
view of the data. In other words, we have to remember that data represent
atributes ol real world objects, such as people. whose characteristics are
mterrelated and whose behavior 1s complex and restricted by logical constraints.
These constraints can be translated into the data quality rules. In Chaplers 6

through & we will discuss these subject-level data quality rules.

In Chapter 6 we mvestigate the time dimension of the data and discuss the rules
arising from the dyvnamic relationships in the data. We start with sumple curreney.

i

retention, and continuity rules: proceed to more complex timeline and value

patterns; and finally graduate to advanced rules for event historics.

In Chapter 7 we look at the lifecycles of state-dependent objects and the rules
governing the state-transition data. These rules are of utmost significance because
state-dependent objects are often the most important database citizens, vel their

data arc mosl error-prone.

Finallv. Chapter 8 discusses all other subject-level data quality rules. It describes
various tvpes of data dependencies and outhines the strategies and technigues that
can help identify the rules.

0l

6

Urheberrechilich geschitztes Material

CHAPTER 4
ATTRIBUTE DOMAIN CONSTRAINTS

At the most atomie level, the data in any database consists of individual values of
various attributes. Those values generally represent measurements of the
characteristics of real world people, things, places, or events, For instance, height
and weight are characteristics of people: latitude and longitude are charactenstics
of geographical locations on Earth; and room number and duration are

characteristics of a “business meeting” event.

Now. real world objects cannot take any shape and form. We do not expect people
1o be 12 feet tall, or meetings to be held on the 21 5" floor. What this means is that
attribute values of these objects cannot take any values but only certain reasonable
ones. For anv attribute we can usually immediately tell whether or not a certain
value is valid. Since databases consist of numerous atomic values of various

attributes, this logic can be applied (o validate the data and find the outliers.

The data quality rules used to vahidate individual attribute values arc commonly
referred to as atinbute domain constrmnts. They are the simplest and most
common of all data quality rules. Rare attnibutes have no restrictions on the
permitted values. Despite apparent tniviality, attnbute domain constraints are
rarely designed properly because thev are usually based on incorrect or incomplete
documentation,

This chapter offers full treatment of the topic with the main focus on practical
challenges in identifying and designing various constraint types.

. Section 4.1 introduces attribute domain constrainis.

e Section 4.2 discusses attnbute-profiling techniques, which are critical for

identification of the true attribute domain constraints.
* Section 4.3 presents optionality constraints.
» Section 4.4 discusses attribute format constraints,
» Section 4.5 describes valid value constrainis.
e Section 4.6 presents precision and granularity constraints.

63

Chapter 4 Yriribute Domain Constraints

4.1. INTRODUCTION TO ATTRIBUTE
DOMAIN CONSTRAINTS

Attribute domain constraints resirict allowed values of the individual data
atirtbutes. The simplest domain constraint 1s oplionality, which prevents an
attribute from taking Null, or missing, values. For instance, FirstName, and
LastName are typically required attributes — a valid value must be present for each

person. On the other hand MiddlelInitial is optional.

Autribute domain i1s most often defined as a list of valid values. e.g. {M. F} for the
attribute representing gender. Domains of numeric atinbutes usually consist of a
large or even infimite number of values. Such domains usually have constraints in
the form of a range of permitted values. For instance, attribute representing hourly
pay rate must have values no less than the minimom wage: { Value = 85 75}

Values ol some text attribules must be made ol onlv certain characters. For
example, an address cannot have special characters. Individuals® names can only
have alpha characters. as do city names. Such attributes are said to have domain
constraint on the allowed set of characters. Another tvpe of domain constraints
tvpical for text attributes 1s a patterm mask. It applies to such attributes as social
security numbers, phone numbers, or credit card numbers. For example. social
security number has the mask 999-99-9999 where cach ¥ is a placcholder for any
numeric character.

Attribute domain constraints can be deduced from analysis of the meta data, such
as data models. data dictionaries. lookup tables. and actual attribute profiles. Data
models usually explicitly indicate attributes with optionality constraints and
sometimes even list valid values (or value ranges for numeric attributes). A data
dictionary, when avalable. will provide hsts ol vahid values along with a detailed
value deseription for most attributes. Lookup tables offer another source of vahd
values.

However, all these meta data should be used with caution since they may be
incorrect or incomplete. Data models tvpically reflect the data structure at the time
ol database design. Over time data models are rarely updated and quickly become
obsolete. especially in the volatile area of attribute domains. Data dictionaries and

lookup tables are also seldom up-lo-date.

v

Chapter 4 — Attribute Domain Constraints

or the last day of the vear. For numeric attributes, the most typical default value is

0); though, I have scen many other choices. especially in the “legacy™ svstems.

In general, any value that appears more often than the others should be questioned
as a candhdate for a default value. For manv attributes it 1s simply unlikely that the
same value is shared by many entily occurrences,

4.4. ATTRIBUTE FORMAT CONSTRAINTS

Most values can be represented in a vanety of ways. For example, date /7715006
can also be displaved as 13-Nov-6i or 11732006, or in many other wayvs. The
amount $3000.00 can be also presented as 3,000 with implicit currency type or as
J0E+3 in scientiflic format. My name Arkady can also be written as arkady

without capitalization or as __ Arkady with leading and trailing spaces.

In theory, all of these forms of presentation can be considered imrelevant as they
represent the same values, Human eve would tvpically have no problem
recognizing the value, However, the computer programs accessing the data may
have difficulties reading different formats properly. Further, even when the data is
accessed correctly, lack of standardization may cause problems in reading and
using the reports.

Format constraints define the expected form in which the attribute values are
stored n the database field, Format constraints are most important when dealing
with “legacy™ databases. Modern databases usually hide the format of all but text
atributes. However, even modern databases are Tull of surprises. From time (o
ume, numenc and date/ime attributes are sull stored in text liclds.

Format constramts for numerie, date/time, and currency attributes are usually
represented as a value mask, a la MMDDYYTYY standing for 2-digit month followed
by 2-digit dav and d4-digit year for the date. Hundreds of basic formats are
possible for such attributes. Legacy databases are especially prolific in wsing
numerous creative packed formats (o store the data in the minimum amount of
space. Discussion of these formats would easilv take a chapter by itself and
belongs more to the topic of legacy data conversion (I am planning to include it in
the “Data Conversion and Consolidation™ volume of this book series).

it

Chapter 4 Yriribute Domain Constraints

Format constraints are usvally easy to identify. Data dictionaries typically show
attribute format. In abscnce of a reliable data dictionary, data profiling tools can
be used to collect frequencies of vanons formats. Analvsis of frequency charts
helps identify format constraints. Tools are also available on the market that can

recognize complex legacy ficld formats and identify the disobedient values.

The format constraints are cspecially important for text attnbutes, Text attributes
are most ofien made of a single word that has restriction on length. allowed set of
characters, and mask. For example, first name must be made of alpha characters
and dashes and start with a capital letter. Social security number must have the
format 999-99-9999. A more complex attribute, such as invoice number. may be

deflined as follows:
s The first character is a capital letier — the first letter of the client’ s name.

» The next three characters contain the designated numerc client
identifier.

s The fifth character must be 4. B. (', or [depending on the job tvpe,
followed by a dash.

The next two characters are last two digits of the invoice vear.

o The last three characters are numeric and indicate invoice order number

for this specific job in this calendar vear.

Such format constraint, while long and rather convoluted on paper, is easv (o
implement in a data quality rule. In fact. text altributes with a strict mask are the

best from the data quality perspective.

Some Lext attributes are made of more than one word with little restriction on the
individual characiers. They are often relerred to as [ree-flow text attributes. True
frec-low values are very hard to validate. Fortunatelv, many supposedly {ree-flow
text attributes have a strict word pattern in actuality.

In order to determine which value patterns are valid, we must first identify all
present patterns. This task requires sophisticated text-parsing algorithms that may
bc only available in advanced profiling or standardization tools. The next step 1s
to examine and explain cach pattern. Values with strange palterns mav be totally
incorrect or simply require standardization,

T

Chapter 4 — Attribute Domain Constraints

Consider attribute FullName, which contains full name for all employees.

Applving the parsing algorithm produced the following results:
o Over 5% of all values have a pattern {LasiName, FirstName,}.

s Of the remaining values, about 200 (or 3%) consist of one word, most of
them records with only the Last Name. Such values are incomplete.

e The other 128 values consist of two words without any separators, most

likelv in the format (FirstName LasiName!. These values need to be
standardized.

The format constraint for this attribute i1s a complex pattern mask. requiring all
values 10 have pattern {LastName, FirstName .

4.5. VALID VALUE CONSTRAINTS

Many atiributes have a finite set of valid values. Valid value constraints limit
permitted attribute values to such a prescribed list. Unflortunately, valid value lists
arc often unavailable, incomplete, or incorrect. To identifv valid values, we first
need (o collect counts of all actual values (note that here we need all values rather
than just frequently occurring values). These counts can then be analvezed. and
actual values can be cross-referenced aganst the valid value hst. il available.

Values that are found i many records are probably valid. even il thev are missing
from the data dictionary, This typically happens when new values are added afier
the original database design and are not added to the documentation. Values that
have low frequency are suspect. The conclusions need to be confirmed by
business users.

Figure 4-3 shows frequency charts for the attributes FullTimeHours and
EmploveeTvpe and illustrates how frequency charts can be used to identify

attribute domain constraints.

Let's first assume that there are no documented constramnts on values of attnbute
FullTimeHours, which lisis a weekly work schedule for full-lime emplovees.
Analvsis of the attribute profile clearly shows that the domain consists of four
values: 40, 37.5, 35, and) hours per week. These values account for 99.93% of all
records. The first three are legiimate full-time schedules, while zero 1s used as a

-
N |

Chapter 4 — Attribute Domain Constraints

precision. Data profiling tools can usually compute precision [requency charls
dircctly or at least can be coaxed o do it using relatively simple formulas,

Figure 4-5 illustrates the use of data profiling in defining precision consiraints.
The frequency chart on the left shows distnbution of value precision for attnbute
AnnualPavRate. The observed precision is to the nearest hundred of dollars in
roughly 75% of records. Another 12% ol records arc expressed i 51.000°s, and
almost 1.8% of values are rounded to the nearest $10.000. These findings are
consistent with the prevailing attribute precision level of “hundreds of dollars.”
Now the question is whether or not other precision levels are acceptable or
SITONEOUS.

AnrualFayRate Precizion Schedule d Hours Granularity
| Bar Walue ~|Count | Percent | Ba [Value | Count ~|Pecent A
3| T am 1747 156 | | = 10 no
a1 140 0.37 || 12 3 nom
i 743 1584 || 575 3 oo
B m 1785 4 n 1 8 ool
00 2EE30 ¥4 Bl - — B2 i 0m
1000 4552 11 68 - 265 E nm
|| 10000 E34 L 1.73 || 255 E om
]| T 5 Ty
| —» 187 5 nm
|| P 5 om
| | 235 i oo

Figure 4-%; Examples of Precision and Granularity Constraints

Lower precision [requency (12% and 2%) is consistent with random occurrences.
For example, values $45.000 and $50.004 are valid as values with precision in
$100°s and in $1,000°s. With prevailing precision in $100°s, we generally expect
10% of records o be rounded 1o $1,000°s and 1% of records 1o $10,000°s for this
reason. In practice, the numbers usually are shightly higher due to the higher
human appeal of round numbers,

On the other hand, higher precision values could be erroncous or represent
legitimate exceptions, For instance, precision (o nearest $10°s and even $1s may
be valid, as annual compensation rate of $36,550 and cven $29,355 is plausible. If
the percentage of such values on the chart decreased dramaticallv (sav. was less
than 1%%), I would vote for the values being erroncous. As it is, both explanations
arc possible. and only a business user can tell the required and valid precision. In

Chapter 4 Yriribute Domain Constraints

this example, precision of $10°s and lower was deemed valid, while the remaining
records were considered crroncous. This example shows that in data practice, too
much precision can be equally wrong as too little.

Precision constraints can applv to both numenc and date/time attributes. For
numeric values, they define the desired number of decimals. For the date/time
attributes, precision can be defined as calendar month, dav, hour. minute, or
second. Profiling precision of date/ume attributes 1s somewhat tricky. The values
falling on the first or last day of the month would be considered to have the
precision level of a month, Similarly, we treat value 5,30 as having one decimal
for profiling purposes. even though it can possibly be truly measured to two

decimals but have the exact value of 5.50).

Granularity constraints are similar (o precision constraints. Consider attribute
ScheduledHours listing weekly scheduled hours for part-time employees. The
value frequency chart for this attribute 1s shown on the nght side of Figure 4-3.
Profiling indicates that all but a few values are measured in increments of 0,25
hour. Further analvsis proves that actual data collection processes drive this
aranularity. Only such values are valid. The values 18.7 or 36.92 are errongous,

Another similar constraint is the unit of measurement, Weight can be measure in
pounds, kilograms, or tons. Price can be represented in dollars, euros, or francs.
The appropriate data quality rules will require all values of an attribute to have the
same unit of measurement. When different values of the same attribute are
measured in different units it may turn into a costly data quality issue. A classical
cxample of the problem i1s an expensive satellite whose orbit decaved quickly at
the cost of millions of dollars because a picee of data was entered in a wrong unit
of measurement.

Th

Chapter 4 — Attribute Domain Constraints

SUMMARY

In this chapter, we have discussed various types of attribute domain constraints,

s Optionality constraints prevent attributes from taking Null values or anv
defaults used as substitutes for missing values.

s« Formatl constraints define the form mm which attnbule values must be
stored in the database field. Format constraints for numeric and
date/lime attributes usually take the form of a value mask. Text
attributes may have restriction on length, allowed set of characters,
mask. or word patterns.

Valid value constraints limit permitted attribute values to a prescribed
list. Constraints for numeric and date/ime attributes usually take the

form of valid value ranges.

e Precision constraints require all values of an attribute to have the same
precision. granularity, and umit of measurement.

There arc many practical challenges i dentifving true atinbute domains.
Comprehensive attribute profiling is the key. Without detailed understanding of
attribute profiles, domain constraints will always be incomplete and incorrect.

Chapter 4 — Attribute Domaio Constraints

T

Urheberrechtlich geschiitztes Malaria

CHAPTER 5
RELATIONAL INTEGRITY RULES

Of all revolutions in information technology, the introduction of relational data
maodels arguably had the greatest impact, It gave database designers a recipe for
systematic and efficient organization of data. Now some 304 years since their

introduction, relational databases are the cornerstone of the information universe.

The idea behind relational data modeling 1s surpnsingly simple. All individual
data elements stored in a database can be classified into attributes of structurally
similar persons. things. places, or events. Bv creating separate listings of such
similar objeets and organizing their attributes into columns, we form a tabular data
structure. This part was undersiood from the early days of database design and led
to the proliferation of “legacy™ databases with all attributes listed. column after
column, in never-ending rows. For instance, an HR database would hst all
employees in separate records with hundreds ol attributes, such as name, address,

compensation rates at different dates. and position history.

Relation data modeling took tlhus idea a giant step forward. It suggested
decomposing complex objects with repeating simpler parts, and sloring
information about such parts in separate histings. For instance, emplovee data n a
relational structure are broken down into a table with basic indicative data, table
with pavcheck data, table with position history data, and many other tables.
Various tables are then glued together by the relationships that tic parts ol the
same object, e.g. data for the same person 15 related by a common emplovee
identifier used throughout all tables.

In the previous chapter, we took the most simplistic view of the data as made up of
individual unrelated atiributes. Relational data models offer a higher-level notion
of the data structurc. In doing so. thev also place many constraints on the data.
This chapter offers comprehensive treatment of the data quality rules that can be

denved from the relatonal data models:

» Section 5.1 introduces kev relational data modeling concepts. The reader
can find detailed explanation for these concepts in numerous textbooks.

Chapter 5 — Relational Totegrity Rules
= Section 3.2 presents identity rules,
Seclion 3.3 discusses reference rules.

Scction 5.4 describes cardinal rules.

-
=

» Section 3.5 presents inheritance rules.

5.1. RELATIONAL DATA MODEL BASICS

Relational data models describe high-level logical data structure using several

central data modeling concepts.

» Ewrity is a class ol structurally similar persons, things, places, concepls.
or cvents about which the data 15 recorded. Each representative of an

entity 15 called entity occurrence.
o Artribute 1s a most pnmitive atomic charactenstic of an entity.
* Relationship is an association between occurrences of two entitics.

o Relationship cardinality indicates how many occurrences ol cach entity
can participate in the relationship.

» Primary key 15 a nominated sct of attributes that uniquely 1dentifics cach

entity occurrence.

» Foreign key tics an attribute or a collection of attributes of one cntity
with the primary key of another entity.

Figure 3-1 shows two entities tied bv a simple relatonship in a data model
diagram. EMPLOYEE is an entity describing all emplovees for an orgamzation;
POSITION 15 an entity describing all avanlable positions. Entity EMPLOYEE has
six attributes: EmploveelD, FirstName, LastName. Gender, BirthDate, and
CurrentPosition]D. The underlined attribute EmplD is nominated as the primary
key and thus cach EMPLOYEE cntity occurrence must have a unique valuce of
EmplD.

mi

Chapter 5 — Relational Totegrity Rules

EMPLOYEE = H POSITION
EmployealD PositionlD
FirstMName Dieseription
LastMame Effectivellate
Gender PositionType
BirthDate ParcentageFullTime
CurrentPosition]D

Figure 5-1: Simple Data Model Diagram

Entities EMPLOYEE and POSITION in Figure 3-1 are tied by the following
relationship:

Eacl emplovee must ocenpy exacily one position.
Fach positton may be occupied by zero or ane employees.

The relationship is depicted using standard information engineering (1E) notation.
The relationship cardinality on the right side of the relationship cquals 1, while
cardinality on the left side of the relatonship 1s {0 or [}, The relationship uses
forcign kev, which ties values of attribute CurrentPosition]D in EMPLOYEE
entity lo the values of the primary key attribute PositionID in POSITION entity.
Thus for cach emplovee, we can look up the value of CurrentPositionlD atinbute
in POSITION entity and find the details about his position.

Entities, entity occurrences, and attributes are concepls used in logical data
models. However, many readers are probably more familiar with tables. records,
and fields. While it is not always a one-to-one correspondence, entities are usually
associated with relational database tables: entity occurrences correspond (o
individual records: and individual fields tvpically represent attributes,

In all examples in this book, physical tables match logical entities. This allows us
10 use the terms interchangeably, which helps simplify the reading, In reality, a
physical database table will often store data for several distinct logical entities, if

the entitics have identical or at least similar attributes. Alternatively, occurrences

Ml

Chapter 5 — Relational Totegrity Rules

or attributes of a single entity may be divided among multiple tables. Finally, a
data ficld mav storc values of several attributes. Such adjustments are made Tor

performance oplimization or convenience.

We refer to the data quality rules that are derived from the analysis of relational
data models as relational integrity rules. These rules are relatively easy (o
identify and implement, which makes a relational data model a starting point in
any data quality assessment project,

It is important 1o remember that relational integrity rules {and actually most other
data quality rules) must be deflined in terms of logical data models, rather than
phyvsical database design. In other words, it is entiies and attributes thai are
coverned by identity, reference, cardinal, and inheritance rules. The properly
delined rules can then be translated into the language of tables, records. and helds

uscd by the rule validation algorithms.

5.2. IDENTITY RULES

Identity Keys ensure that every real world entity (person, thing, place, concept, or
cvent) represented in the data is uniquely identifiable and can be distinguished
from all other entities of the same tvpe. They provide a fundamental link between

the data and real world objects.

Imagine the pirates dividing the stolen loot according to the personnel table. Mad
Dog 15 engaged in a fight all death with recently recrunted Mad Doug whose name
was accidentally misspelled by the spelling-challenged captain. Wild Billy who
changed his name to One-Eved Billy after the last battle is trving to sneak in and
collect two shares in accordance with the register. The share for still listed but
drowned Wooden-Peg Jim 1s up for grabs, Life would be tough for pirates in the
information age. But it 1s equally tough for emplovees, customers, and other

objects whose data is maintained in the modemn databases.

An identity rule is a data qualitv rule. which validates that every record in a
database table corresponds to one and only one real world entity and that no two
records reference the same entity. Identity rules usually must be enforced for all
entitics m a relatonal data model. Therelore, the number of identity rules in a
tvpical data quality assessment project will be close to the number of entities,

Chapter 3 — Relational Integrity Rules

A reader familiar with database design will naturally ask, “Aren’t identity rules
alwavs enforced in relational databases through primary keyvs?” Indeed, according
to sound data modeling prnnciples everv entitv must have a primary key — a
nominated set of auributes that uniquely identifies each entity occurrence. In
addition to the umiqueness requirement. pnmary kevs impose not-Null constraints
on all nominated attributes.

While primary kevs are usually enforced in relational databases, this does not
guaraniee proper entity identity. One of the reasons is that surrogate kevs are oflen
created and nominated as primary kevs, Surrogate keys use computer generated
unique values to identifv each record in a table, but their uniqueness is

meaningless for data quality.

Figure 5-2 shows several records from the E EMPLOYEE PROFILE table. which
lists all cmployees along with their basic indicative data. The table has surrogate
key attribute EmplD declared as a primary kev and enforced by the database. Of
course uniqueness of EmplD for all records is guaranteed by design; vet it does not
mean that cach employee is properly identified in the data. Employvee Miltard
Abraham has two records with distinct values of EmplD but identical social
security number (stored in the SSN attribute). This is clearly an error — the two

records are duplicates referencing the same real person.

7 E_EMPLOYEE _PROFICE

EmplD [SSN [LastMame | FiestName | BirthD ate

141E%WI__ FEMNE 9/301954 F E2
- F70-27-1938 CaDy 119790] B3
:'5355 770-27-1938 | EURR 1NTnges] N4
, B : EUEE a2 M B
- EEEH SEE-65-1411 ABHm-mM . 71901943 | M M2
I__J%%Eg' EEB-EE-HH .&.BHAHM-I Than94a M M2
24 RSRR28S 111922 | M NZ
9159 991.95.8738 ABRUZZO DIEGD — 111922 M NZ
3915::: EIEIE-HE-EI??JB AEHI.IEZD DIEGO 1MAe22 | M N2
MaMFRED 1114093 7] [HC

1010 ut| e 0)im | _.-'ﬂ_,f [FLTR SRT | aLL IT._

Figure 5-2: Examples of Identity Rule Viclations

The example suggests that the databasce primary key docs not necessarily represent
the true identity kev. In this case. the SSN altribute 15 a more appropnale
candidate for the identity kev. Indeed, all people are expected to have unique
values ol social security number., The good news is that the logical data models

83

Chapter 5 — Relational Totegrity Rules

will often list the true identity key as an allernate keyv, even when a surrogate key
15 created and used as a primary kev., When such a key is not lisied in the data
model. we shall analvze varous attributes and attnbute combinations to see which
of them hold candidacy for the true identity key.

Now we can implement the identity rule (o compare values ol the true identity key
for all records. Any duplicate values are erroncous. The problem 1s usually
created by one of two processes. In some cases multiple records are ereated for
the same real world entity as in the example of Millard Abraham in Figure 5-2. In
other cases, the error can be caused by an erroncous value entered in the key
attribute. For instance, records for Conrad Cadv and Lincoln Barr have 1dentical
values of SSN autribute, thus violating the identity rule. The records clearly
represent distinct individuals and arc not duplicates of the same entity. This can be
determined by looking at their names. birth dates. and other attributes. One of the
reccords has an incorrect 55N value

Even validating uniqueness of the correct identity key may not be enough to find
all identity violations. Consider again data in Figure 5-2. Emplovee Diego
Abruzzo 1s listed twice with different SSN values. Further analvsis shows that
these values have only one distinct digit (compare 996-96-8738 with 991-96-
§738). ldentical values of BinthDate (///-/922}, Gender (M), and CompanyCode
(N2) also support the theorv of two records belonging to the same person. This is
a case of duplicate records, which do not vielate the identity key constraint but still
break the identity rule.

Finding these cases of hidden mustaken idenuty require sophisticated de-
duplication software, Fortunately, various tools are available on the market for de-
duplication of records lor persons or businesses.

Hd

Chapter 5 — Relational Totegrity Rules

5.3. REFERENCE RULES

Reference rudes ensure that every reference made from one entity occurrence 1o
another entity occurrence can be successfully resolved. Each reference rule is
represented in relational data models by a fareign key thal ties an attribule or a
collection of attributes of one entitv with the prnimarv kev of another entitv.
Foreign kevs guarantee that navigation of a reference across entities does not result
in a “dead end.”

Foreign kevs are the glue holding the database together. Without foreign kevs, the
data 1s like leaves covering the ground n the fall - vou know that each leal fell
from one of the trees. but it is impossible to say from which one,

Almost every entity in a relational data model will have one or several foreign
keys, The usual exceptions are tables with basic subject data and reference tables.
Therefore, the number of reference rules in o typical data quality assessment
project will slightly exceed the number of entities.

Foreign kevs are always present in data models but are often not enforced in actual
databascs. This is done primarily to accommodate real data that may be
erroneous! Solid database design precludes entering such records, but in practice
it is often considered a lesser evil o allow an unresolved link in the database than
to possibly lose valuable data by not entering it at all. The problem is intended to
be fixed later, but “later” often never comes. Forcign key violations are especially
typical for data loaded during data conversions from “legacy”™ non-relational

svstems, or as a result of incomplete record purging.

Figure 5-3 illustrates a relerence rule for entity E_STATUS_HISTORY containing
the historv of employment events. The data model includes a forcign kev that
links E_STATUS _HISTORY with strong entity E_EMPLOYEE _PROFILE,
which stores emplovee basic indicative data. The data quality rule requires cach
record in E_STATUS_HISTORY 1able to reference a record with same value of
EmpID attribute in E_EMPLOYEE_PROFILE. The two selected records in
E_STATUS_HISTORY table violate this rule — both reference employee #114603,
but no record of such emplovee is found m the parent table.

85

Chapter 5 — Relational Integrity Rules

| E_STATUS HISTORY ||} | E_EMPLOYEE_PROFILE

"= E STATUS_HISTORY

EmpD _ “EfDate [StatusCode
114603 | &/2171999 A

114603 4 10430971 s HIRE I Na |
20i2 W BlE Figued2 f — PAAT] #

-

EmplD |SSH [Lastharme [FiastN ame [BathDate)

| [114551 TE4299265 AGEE EMDGENE CREGE
114600 | 937434984 BURK _ERIANNE | 1118195
| 114605 991434880 CRUM RUDDLF 216
114610 | 932334273 AMIN MORRIS | 2A7h%3 |
Wi 5k 877293506 U TAMERA e e
5889013536 W(ef|Dlm ' Figued2 sAT | ALL | »

Figure 5-3: Example of Reference Rule Violations

The problem may have been caused by various reasons. The value 114603 in
EmplD ficld may bc crroncous, and the records actually belong to another
cmployee. Alternativelv, the record for emplovee 14603 may be missing from
E EMPLOYEE PROFILE table, e.g. it may have existed in the past but
ecrroncously purged. This second alternative will often result in numerous
violations of reference rules for various tables, Assuming that the record for
employee 114603 is missing from E EMPLOYEE PROFILE. each dependent
entity with various employvee data for this employee will have one or more orphan
records.

5.4. CARDINAL RULES

Cardinal rules define the constraints on relationship cardinality. Cardinal rules are
not to be confused with reference rules. Whereas reference rules are concerned
with the identity of the occurrences in referenced entities, cardinal rules define the
allowed number of such occurrences.

Probablv the most famous examplc of a practical application of cardinal rules 1s
Noah's ark. MNoah had to take into his vessel two animals of each species — male
and female. Assuming that he had tracked his progress using a relational database,

i

Chapter 5 — Relational [ntegrity Rules

Noah would need at least two entities — SPECIES and ANIMAL — tied by a
relationship with a cardinality of exactly one on the left side and two on the right
side. In fact, Noah's task was even more complex as he needed to ensure that the
two selected species were of different gender — an inheritance rule that we will
discuss in the next section. And. of course, he needed to ensure the proper identity
of each amimal. | imagine that had Noah used modern technology and had the data
quality been consistent with a common level of that in modern databases, we
would remember the story of Noah's ark in the same context as the mass
extinction of the dinosaurs,

TLE? P"“'-"'UEJ- rﬂfn'."i.nwnf

datobas €l enferce da-te 'i'“""-”‘rf.'f

Cardnal rules can be imtially 1dentified by analvsis of the relationships shown in
the relational data models. Almost every relationship in the data model will vield
two cardinal rules (limiting the number of occurrences for each entity participating
in the relationship). Therefore, the number of cardinal rules in a typical data

quality assessment project will be close to twice the number of relationships.

Chapter 5 — Relational Totegrity Rules

Figure 5-4 illustrates a relationship between entities EMPLOYEE and POSITION,
The crow’s feet notation is wsed 1o describe the relationship and 15 translaied as
follows:

Each emplovee must fill exactly one position,
Each position must be filled by zero or one employees,

The wnderlined portion of the relationship defines the cardinal rules for this
relationship. The highlighted records violate the rules. The record for emplovee
#44932 violates the first rule (he fills zero positions). Records for position #7717

violate the second rule (it is filled by three different emplovees).

Relationship cardinality is often represented incorrectly in relational data models.
For example, optionality is sometimes built into the entity -relationship diagrams
simply because real data 1s imperfect. Strong entities are routinely allowed to have
no corresponding weak entity records simply because database designers expect
bad and missing data. This 1s the very problem we are trving o address by the
data qualitv mitiative. The situation often occurs when data models are reverse-
engineered [rom actual databases in which constramnts have been relaxed to

accommodate data imperlection.

Another problem is that commonly used data modeling notations do not
distinguish cardinality bevond zero, one. and many. Thus. cardinality “many™ is
used as a proxy for “more than one.” Consider the siluation from Figure 5-4
where cach position 1s allowed 1o be filled by two part-ime emplovees. The
allowed relationship cardinahity 1s then {0.1.2}. However. many data maodels will
not put anv restrictions on the cardinality of such a relationship,

mA

Chapter 5 — Relational ITntegrity Rules

EMPLOYEE - = POSITION
L EMPLOYEE
EmployeelD | Fiesthame irthD &b
44532 CLWE M T 7H5N T
170843 LYNNETTE -t F | /2BS1955
2hlEZe JSABEL F A48
VERMELL i F
ulwinlm | Figy IFLTRSAT | ALL |

__________ | PostionType |
[1L 17141350 | Permaner
Jerdar —. 1/1/199 | Permanerd
Gandere I &0 41/2005
wlwlnlm | Figuedd/ | FLTRSAT (AL []
T ———

Figure 5-4: Example of Cardinal Rule Violations

In order 1o identifv true cardinal rules, we use relationship cardinality profiling —
an exercise in counting actual occurrences lor cach relationship in the data model.
Once counted. the results are presented in a cardinality chart showing how many

of the parent records have 0, 1. 2, and so on corresponding dependent records.

I have not seen a tool that offered built-in functionality for relationship cardinality
profiling. However, with the rapid development of data profiling software, we can
hope that such functionality will be soon available. In the absence of a tool. data
for cardinality charts can be gathered with nested queries.

nY

Chapter 5 — Relational Tntegrity Rules

Figure 5-5 illustrates the cardinality chart for the relationship between
EMPLOYEE and POSITION entities from the example above. Profiling shows
that out of 13,515 listed positions:

» 573 positions are open

o 10,214 positions are filled by 1 employee each

» 2,619 positions are occupied by 2 employees each
» 95 positions are lilled by 3 emplovees each

* |4 positions are occupied by 4 or more emplovees cach

12,000
10,214

10,000

2,000

6,000

Freguenoy

4,000 7513
2,000

ar3
) 85 14

Flgure 5-5: Cardinality Chart for the POSITION- EMPLOYEE Relationship

Large [requency 1s usually indicative of legitimate cardinalities. while rare
occurrences arc suspicious and require further investigation. Analvsis of the
sample data would show that {0.1.2} are legitmate carchnalities. The cardinality
of 3 or more 15 erroncous. Now we can implement the cardinal rule as follows:

Each position must be filled by no more than two employees.

The records for 109 positions vielating this rule will be caught along with the
records for emplovees occupving these positions.

b

Chapter 5 — Relational Totegrity Rules

5.5. INHERITANCE RULES

Inheritance rules express integrity constrainis on entitics that are associated
through generalization and specialization, or more technically through sub-typing.
Consider entitics EMPLOYEE and APPLICANT representing company
employvees and job applicants respectively. These entities overlap as some of the
applicants are eventually hired and become employees. More importantly, they
share many attributes, such as name and date of birth. In order to minimize
redundancy an additional entitv, PERSON can be created. It houses common
basic indicative data for all emplovees and applicants, and frees up the orniginal
entities to store onlv those attributes unique to emplovees and applicants. These
three entities are said to have a sub-typing relationship.

Data models distinguish complete (or exhaustive) and incemplete (or non-
exhaustive) sub-tyvping relationships. The former require that each occurrence of
the super-tvpe cntity participates in at lcast onc of the sub-tvpes. The latier allow
some super-tvpe occurrences to belong to neither of the sub-tvpes. In the example
above, i cach person is an emplovee andfor applicant, then the relationship is
complete. Il other classes of persons (such as next of kin) are stored in the
PERSON table, the relationship is incomplete.

Further data models distinguish comjoint (or overlapping) and disjeint {or non-
overlapping) sub-tvping relationships. The former allow an occurrence of the
super-tvpe to belong to more than one sub-type. while the latter require the
occurrences of the sub-tvpes to be mutually exclusive. The relationship in our
example 15 conjoint because some emplovees can also be applicants and vice
versa. On the other hand. a relationship between a super-tvpe PERSON and sub-
tvpes PERSON MALE and PERSON _FEMALE is disjoint.

Sub-typing relattonships and their forms are uwsually clearly shown in the data
maodels. However, sometimes they are erroneously represented by a combination
of several independent foreign keyv relationships, so vou must be vigilant, An
mdication of a possible idden sub-tyvping relationship 1s when three entities have
the same primary key, and two of them have foreign keys that link them with the

third entitv. Of course, the number of sub-tyvpes can be greater than two.

21

Chapter 5 — Relational Totegrity Rules

Inheritance rules enforce validity of the data governed by the sub-typing
rclationships. For instance, the rule based on the complete conjoint relationship
between entities PERSON, EMPLOYEE and APPLICANT has the form:

Every person is an employee, an applicani, or both.

Any PERSON occurrence not found in either EMPLOYEE or APPLICANT entity
is erroneous (or more likely points 1o a missing employee or applicant record).

SUMMARY

Relational data models are a gold mine for data quality rules. In this chapter, we

have discussed four tvpes of such relational integnty rules:

* ldentity rules make sure that every record in a database table corresponds
to ong and only one real world entity and that no two records reference
the same entity.

» Reference rules ensure that every relerence made from one enlity
occurrence o another entity occurrence can be successfully resolved.

o Cardinal rules define constraints on the allowed number of related
occurrences between enlities.

* Inheritance rules express integrity constraints on entities that are
associated through generalization and specialization.

Unlike attribute domain constraints discussed in the previous chapier, relational
integrity rules affect several records at a time. Also, in case of a rule violation, it
is nol immediatelv obvious which of the records are incorrect. This makes

implementation and usage of relational integrity rules somewhat more complex.

CHAPTER 6
RULES FOR HISTORICAL DATA

Most real world objects change over time, Newborn babies grow into playful
toddlers. love-stricken teenagers, somewhat depressed adulls, and finally wise
matriarchs and patriarchs. Emplovee positions change over time, their skills
increase, and so hopefully do their salaries. Stock markets fluctuate. product sales
ebb and flow, corporate profits vary, empires rise and fall, and even celestial
bodies move about in an infinite dance of time.

For any real world object. all but a few attributes are dvnamic in nature. The
databases charged with the task of tracking various object auributes inevitably
have 1o contend with this ume-dependeney of the data. Oceasionally, only the
current valucs of attributes are of interest. For instance, we can choose to only
track the current address of our customers, however more ofien at least some part
of the history 1s stored.

Historical data comprise the majority of data in both operational svstems and data
warchouses. Thev are also most error-prone. There 1s always a chance to nuss
parts of the history during data collection. or incomrectly timestamp the collecled
records. Also, listorical data ollen spend vears inside databases and undergo
many transformations. providing plenty of opportumity for data corruption and
decay. This combination of abundance, critical importance, and ervor-affinity of
the historical data makes them the primary target in any data quality assessment
project.

The good news is that historical data also offer great opportunities for vahdation.
Both the timestamps and attribute values usually follow predictable patterns that
can be checked using data quality rules. This chapter olfers comprehensive
treatment of the data quality rules for historical data:

» Section 6.1 mtroduces historical data.
» Section 6.2 describes basic data quality rules for historical data.

= Section 6.3 discusses advanced data quality rules for historical data.

03

Chapter ¢ — Rules Tor Histovical Data

» Scction 6.4 presents event histories — the more sophisticated sibling in
the family of ume-dependent data — and data quality rules specific for
them.

6.1. INTRODUCTION TO HISTORICAL DATA

We use the term time-dependent attribufe to designate an object characteristic that
changes over time. Any value of such an attribute 15 only meaningful when it is
accompanied by the date or time of measurement. For instance, it is meaningless
to sav that my weight is 165 pounds unless 1 just got ofl the scales in the doclor’s
office. We can only say that at a certain time, ¢.g. at noon on November 29, 2006,
my weight was 165 pounds. Combining measurements al various points in time
viclds my weight history. We refer to any such senics of time-stamped attribute
measurements as value history.

A simple value historv is usually stored in an entity containing three attributes:
object identifier (myv name in the above example), tumestamp indicating the
measurement date, and the tme-dependent attribute uselfl We refer o any
database entity with time-dependent attributes as a time-dependent entity. Several
tme-dependent attributes can coexistl within a single entity. Consider, for
instance, perniodic customer surveyvs. The answers would be hikely stored mm a
single entity with the number ol ime-dependent atiributes equal to the number of
SUrvey questions,

Occasionally value histories are stored in repeating groups of attributes within a
single record. This de-normalized form is common in “legacy™ databases but
sometimes occurs in relational databases when the number of measurements 1s

fixed or small.

Value histories are most common in data warchousing. The tvpical data
warchouse or data mart will consist of snapshots of attributc valucs taken from
various operational systems. Thus for each attribute. 1t contams the value history
with the mcasurements taken every time a new snapshot 1s brought to the data
warchouse.

The table and accompanying chart in Figure 6-1 show my height history since the
carly childhood. It was mtially collected in the form of entries into my “Baby

4

Chapter ¢ — Rules for Historical Data

Book.” and later combined with measurements reflected by pencil marks on the
door to my bedroom. It is clearly an example of historical data. My records could
be combined with the data for a million of other people and stored mn a tune-
dependent entity PERSON_HEIGHT with attributes Name. MeasurementDate.
and Height.

The kev leature differentiating value histones from other ime-dependent data 1s
that attribute values are onlv known at the times of measurement. Nothing can be
directly deduced about the values between measurements, For instance it is known
with certainly that | was about 64 inches tall (3°47) in Mav 1984 and grew o 69
inches tall (5°97) by October 1985, It is possible that I gained all five inches in the
first week afler the first measurement. or altematively that [had a growth spurt the
week before the sccond measurement. However, neither conclusion can be drawn
from the data itself.

Date | Heapht,
) | imeheg Arkady's Height History
DetTD]
D=7 I3
Mar-7 | i} an
Jun-T1 8 10 L et

Dct-F1 m

Mar72 | 31 M
Octd2 | 35 60 Mr“
hdar-F3] a0

I
I
I
=
LR - Y |
' |
May-To | &7 = 30 ?lr |
OGLTT 51
0ict-78 57 20
bl | &6 10 |
Oet40 T3 |
Dea-R1 £l 1] . : - : - . 1 1
Jan-23 E7
Mayed | B4 Ot -Tin Oiet-T4 Cet-TE Cict-32 Oict-86 Oict-90
Oct4 B4
May27 72 Measuramant Date
hlar-54 [

Figure 6-1: My Helght History Data and Chart

Let’s take a more in-depth look at the data in Figure 6-1. The measurements have
been taken at penodic but rather random dates. Yel. these dates are not trulv
arbitrary. For instance, the first measurement coincides with my date of birth. This
would be true for all people — the carliest record for any person could not precede
the date of birth. In fact we may reasonably expect the first measurement to be
taken exactly on the day of birth. This tvpe of constraint 1s common for historical

data and is usuallv called the retention rule. In general retention rules enforce the

93

Chapter ¢ — Rules Tor Histovical Data

desired depth of the historical data. Thev are usually expressed in the form of

constraints on the overall duration or the number of records in the history.

Further, mv height measurements ceased in 1989 when [was 18,5, There was no
point to take further measurements — to my great disappointment [finally stopped
growing. just two inches short of my older brother. Again this would be similar
for most people., as they stop growing m late teens or carly twenties. The
constraints on the date of the most recent historical record are usually called
currency rules.

The values ol my height measurements also follow certain predictable patterns.
For instance, the values never decrease and change by no more than five inches in
one vear (except in the first vear). This would hold true for all people, as we
generally do not get shorter and our rate of growth stayvs within a reasonable limit.
such as six inches per vear. This simple example illustrates how many constraints
applv to even the simplest of historical data. These constraints can be translated
into data quality rules.

Values of some attributes are more meaningful when accumulated over a period of
iime. Even for the same attribute, atomic historical data may be uselul for one
purpose, while cumulative numbers may be more helpful for another, For
example, individual product sales must be tracked for order procurement but are
uscless in analysis of consumer demand patterns. For the latter purpose, it is more
pertinent to collect weekly. monthly. or quarterlv cumulative sales volumes. We
refer to any such seres of cumulative time-period measurements as accumilaror
history.

Accumulator histories are very common in data warchousing but are also found in
many other databases. For example, pavroll databases store annual taxable
compensation histories of employvees. Insurance databases track total amounts of
claims per policy period for the insured,

L

Chapter 6 — Rules Tor Wistorical Data

Accumulator histories are usually stored in time-dependent entities containing al
least four attributes:

o Object wdentifier (product identifier in the product sales example above)
s Time interval beginning date

s Time interval ending date

« Attnbute(s) for which the values are accumulated

The kev feature differentiating accumulator history is that attribute values are not
measured at certain points in time. but rather are accumulated over time intervals.
The table in Figure 6-2 shows an example of emplovee compensation history.

"= W2 WAGE

| | ErmplogeslD HegD ate | EndDates | 'Wageamt |
» 33 14141999 127301 /15999 51400
[foe] 1/1/2000 1243172000 54000
5] 33 1414200 12537200 BGz00
338 1172002 12431 /2002 55400
333 1/1/2003 12/31/2003 57100
i 338 1/1/2004 1273172008 B2400
338 1/1/2005 12/31/2005 B5000
338 1/1/2008 12731 /2008 E6500
L 1] | Daf (AL

Figure &-2: Employee Compensation Hiztory Example

Accumulator histories are tvpically governed by an cven greater number of
constraints than basic value histories, Consider the example in Figure 6-2. The
ume periods must have no gaps and overlaps and all have the same granulanity of
one calendar vear. The most recent record must show compensation for the most
recent calendar vear, Compensation values also follow patterns, ¢.g. they must be
consistent with the annual payv rale and length of emplovment. In practice,
accumulator historics are even more suitable for comprchensive data quality
assessment than value histories.

Chapter ¢ — Rules for Historvical Data

6.2. BAsSIC DATA QUALITY RULES FOR
HISTORICAL DATA

We will start with the discussion of data quality rules for historical data from basic
timeline constraints, which validate that all required, desired, or expected
measurements are recorded and that all timestamps are accurale. These rules can
be broken down into categories of currency, retention, continuity, and granularity,

6.2.1. Currency Rules

Currency rules enforce the desired “Treshness™ of the historical data. They usually
arc cxpressed n the form of constraints on the cffective date of the most recent
record in the historv. Currency testing identifies the voungest record in the
historical data and compares its timestamp to a pre-defined threshold,

Figure 6-3 illustrates the currency rule for a sample of annual emplovee
compensation history. The rule requires the most recent record for cach emplovee
to match the last complete calendar vear, 2006 in our example. Data for emplovee
#338 meet the criteria, while the historv lor emplovee #339 only goes up to 2004

and thus violates the rule.

= W7 WAGE
| EmgloveelD BegD ate | ErdDate "W aoafmt

3 kX %ﬂ.ﬂﬁ_ T2 1998 L]

| EE ! 1172000 12431/ 2000 S4000

— W 1A/ 12/71/20M 56200

| I8 1Af002 1243 /2002 Eh400 >_ Diata for E mploores
et | 1A2002 12/71/2003 57100 2338 is curvent
73 1772004 124731 /2004 £2400
1 | 172005 12/31/2005 5000
e VAZI0E 127200 EES01

_ 39 1//200 1249172001 35100

u 3 17172002 12/31/2002 37200 23‘;; ﬁﬁf“ﬁlﬂm‘

u 31 [1172003 12/71/2003 35000 s et e
R 1AZ00E 123172004 25600

1012 d |p5) B)le | | [AL | 4

Figure &-3: Example of Currency Rule

The rule in this example fixes the timestamp of the most recent record as a
function of todav’s date. Such form 1s common for historical data with timestamps
falling on fixed dates. In some “legacy™ value histories, the last measurement

H

Clhapter ¢ — Rules for Historvical Data

might even be required to fall on a constant pre-defined date. For instance, if a
survey was conducted regularly in the past but then discontinued, then the
currency rule for the history will require the most recent record for all participants
to fall on the exact date of the last survey.

An alternative form of the currency rules restricts maximum age of the most recent
record. The term “age,” while technically incorrect, 1s commonly used to describe
length of time smce the record’s barth (represented by 1s effective date). For
example. patients may be expected to visit the dentist at least every six months for
regular checkups. While the time of the last visit will differ for all patients, it has
o be no earlier than six months before the today’s date. Thus, the age of the

record from the last visit must be less than six months.

In some tvpes ol historical data, currency will be defined differently for different
objects. For instancc, if the compensation lustory table W2 WAGE in Figure 6-3
includes data for both active and terminated emplovees. then the currency rule
cannot require ¢ach person to have records up to 2006, This will only be true for
active workers. For the terminated emplovees. the most recent record must be for
the vear of termination, Thus, if emplovee #339 resigned on December 15, 2004,
his lalest compensation history record must be for the year 2004; and his data in

the example would be correct.

6.2.2. Retention Rules

Retention rules enforce the desired depth of the historical data. They are usually
expressed in the form of constraints on the overall duration or the number of
records in the history.

Retention rules often reflect common retention policics and regulations requiring
data to be stored for a certain perind of time before it can be discarded. For
instance, all tax-related mformation mav need to be stored for seven vears pending
possibility of an audit. Further, a bank may be required to keep data of all
customer transactions for several vears. All of these retention rules take the form

of constramnts on the age of the oldest record in the historical data.

In some cases the required age of the oldest record will vary from object 1o object.
Figure 6-4 shows an example of a retention rule for annual emplovee
compensation history. Payroll data retention policies olten require five years of

i) 4}

Chapter ¢ — Rules for Historvical Data

history to be present. The data for employee #338 meets this criteria, while the
data for employee #339 scems to violate the rule. However, what if employee
#339 was hired on January 22, 20017 In that case no compensation data beyond
20001 can possibly exist. Thus, the proper retention rule will require the
compensation history to go back at least five calendar vears or up to the vear of
hire.

= W2 WAGE
H E¥] I 17172000 12/31/2000 54000

33 17172001 12/31/2001 56200
I - T 1V - B P 1 7 - T 'R }Eﬁggfmmﬁphﬁ;

] [1A72003 12/31/2003 57100 neets .y
u 13 1A 72004 12.!'_31_?3]]4 EZ!III retention cntena
B 33 | 1052006 124 3/2005 ERODO

L] 100 1o/ 312008 Diata for E rapl

—_— T 1271/ 2007 o100 2330 only koae
u I i 1z 37200 back 4 years. but is
_ E5s) /200 12/91/2003 39000 i

kK| 1422004 120122004 3600 washired in 2001
10612 ed o 0 i | I I TR

Figure 6-4: Example of Retention Rule

In the examples above, the minimum age of the oldest record was restricted.
Occasionally maximum age 15 also constrained, when the presence of older records
is considered undesirable. For example, pavroll database mav store emplovee
compensation data by paycheck for the cwrent vear in entity
WAGE CURR_YEAR, and cumulative annual compensation data for previous
vears in another entity WAGE PREV _ANNUAL. Any overlap in the data 1s
undesirable and is eliminated during the vear-end data rollup when values from
WAGE CURR_YEAR entitv are aggregated and moved o
WAGE PREV_ANNUAL. The presence of any records in
WAGE_CURR_YEAR with effective dates in prior vears is likely a data entry
error. Such errors would be caught by the retention rule requiring the timestamps
of all records in WAGE CURR_YEAR table to fall in the current vear.

In some cases, retention rules demand the minimum number of records in the data
historv rather than its duration. For instance, a golfer’s handicap is determined as
a function of scores in the last 20 rounds of play. These last 20 rounds may all be
in the last month. as thev are for some of my more fortunate friends: but they go

[R11)]

Chapter ¢ — Rules for Historical Data

back all the way to the last vear for me. The retention rule here requires score

history to include no less than 20 rounds regardless of their temporal distribution.

6.2.3. Continuity and Granularity Rules

Typical accumulator history is made of a sequence of measurements aggregated
over continuous identical ime periods. For instance, product sales history might
be a collection of the last 20 quarterly sales totals. Emplovee compensation
history may be required to include annual compensation lor the last five calendar
vears. These constraints can be represented by a combination of two data quality
rules:

e Granularity rules require all measurement periods in accumulator
histories to have the same size. In the product sales example, it is a

calendar quarter; [or the emplovee compensation example, it is a year,

o Continnity rules prohibit gaps and overlaps in accumulator histories.
Thev require that the beginning date of each measurement period

immediately follows the end date of the previous penod.

Granularity and continuity rules do not apply to valuc histories wherc
measuremenis are taken at poinis in time rather than accumulated over longer time
periods,

Figure 6-5 illustrates the emplovee compensation history example, The earliest
history record violates granularity rule — its duration is less than a vear, There is a
timeline gap between the records for years 2003 and 2005 — the record for vear
2004 1s missing. Finally, the two most recent records overlap. The last record 1s

most likely redundant and must be removed.

m
ErglogeslD |BecDate [EndDate [Wagebm |
b 340 /1572001 127312001 22400 Wrorg granularity
340 171/2002 /312002 deoo0
340 171/2003 12/31/2003 48000 Gapfo 2004
340 11 wlaryes
340 1172005 12431 /72008 &2000
ﬂ 3417 R . Intervals averlap
1066 FEE I R Al | ¢

Figure 6-5: Example of Continuity and Granularity Rules

1l

Chapter ¢ — Rules Tor Histovical Data

6.3. ADVANCED DATA QUALITY RULES
FOR HISTORICAL DATA

Basic rules enforee that historical data cover the entire desired space ol ume.
However, this does not vet guarantee that the data is complete and accurate. More
advanced rules are necessary o identifv possibly missing historical records or Lo
find records with mncorrect timestamps or values of tme-dependent attributes. All
such rules are based on validation of more complex patterns in historical data.
They generally fall nto categones of timeling patterns and value patterns, which
will be discussed next.

6.3.1. Timeline Patterns

Value history timestamps usually do not fall on random dates but follow some
patterns. My height measurements shown in Figure 6-1 were mostly dated in
October because I usually checked my height on my birthday. If this was true for
all people. we could set a data guality rule requiring records to be present with
dates falling in the month of birth for cach person and every vear between the year
ol birth and age 20. This would be an example of a timeline pattern rale.

Timeling pattern rules usually require all tmestamps to fall into a certain repeating
date interval, such as every March or every other Wednesday or between the first
and Nilth of each month., Occasionally the patlem lakes the form of minimum or
maximum length of time between measurements. For example, participants in a
medical study may be required to take blood pressure readings at least once a
week, While the length of time between particular measurements will differ, it has

to be no longer than seven days.

Timeline patterns are common to many historical data. However. finding the
pattern can be a challenge. One useful technique 1s to collect counts of records by
calendar vear, month. day, or any other regular ume nterval. For example.
frequencies of records for each calendar month (vear and day of the record does
not matter) will tell if the records have eflective dates spread randomlyv over the

vear or if thev follow some pattern.

The chart on the left of Figure 6-6 shows a frequency chart for the calendar month
ol fiscal vear-end bonus payments from a corporate pavroll database. Here we

102

Chapter ¢ — Rules for Historical Data

ageregated data over the last 15 vears. Almost 93% of all records are dated in
March with additional 6.3% in February. Further research proved that bonuses in
that company were alwavs pad between the last week of February and the first
week of April. All other dates are invalid.

The table on the right of Figure 6-6 shows bonus history for emplovee #78172.
All records with the exception of the highlhighted one are dated in mid-March. The
record dated 1/2/1992 does not fit the umeline pattern and is erroneous.
Additional analysis shows that the record was actually for the holiday pay
mistakenly classified as vear-end bonus,

Al valuez
Bar |value ~|Counk | Percent |

» i 5 ool

2 2404 620

3 35403 sg.az
L 172 312158 5752
- 5 10 003 78172 313158 4000
L g “5 Eﬂ N 78172 3/15/1933 2500
- 7E172 3350
H 8 14 04 78172 CMMD 1421992
| 3 4 00! 78172 31571391 U7
H 10 2 1u] TE172 3151550 3520
n 11] 00z —

172 a7 nio 1ol 8 ME[B m | FLTFIEE,.%‘

Flgure 6-6: Bonus Timestamp Profile and Timeline Pattern Rule

6.3.2. Value Patterns

Value histories for time-dependent attributes usually follow systematic patterns.
Value pattern rules utihze these patterns to predict reasonable ranges of values for
each measurement and identify likely outliers,

The simplest value pattern rules restrict direction in value changes from
measurement to measurement. In my height history example, measurements were
not allowed to decrease. This is by far the most common rule tvpe. Eleetric meter
measurements, total number of copies of this book sold to-date and many other

common attributes alwavs grow or at least remain the same,

A slightly more complex form of the rule restricts the magnitude of value changes.
It 15 usually expressed in maximum (and occasionally minimum) allowed change
per unit of time. For instance. height changes might be restricted 1o six inches per

103

Chapter ¢ — Rules Tor Histovical Data

vear, This does not mean that values from measurement (o measurement may not
change bv more than six inches. but rather that the change cannot cxceed six
inches tunes the length of the interval in vears. Also, this tvpe of constraints work

well for measurement made larther apart.

The value change constraints work well for attributes whose values are rather
stationarv. This does not apply to many rcal world attributes. For instance,
regular pay raises rarely exceed 10-153%, but raises for emplovees promoted 10 a
new position routinely reach 20-30% or even more. Since (hopefully) the majority
ol emplovees experience a promotion at least once in their carcer, we could not use
value change constraint for pav rate histories. However. pay rates still do not

change arbitrarily.

Figure 6-7 illustrates this point. The table on the lefi contains pay rate data for two
cmployees, while the chart on the night illustrates the data visually. Obscrve the
data for cach employvee. Pay rate for emplovee #8052 is growing steadilv. and he
even experiences a big raise once in the yvear 2004, Data for employee #2121 has a
similar pattern. except the rase n 2003 s followed by an immediale drop in the
following vear. Normal behavior of pay rate history for an emplovee of most
companies is a steady increase over the vears (of course | came up with this
example a few years ago!). Sudden increase in pay rate followed by a drop signals
an error in the data (or the end to the dot-com bubble). In our example the
highlighted pay rate of $734.50 1n 2003 is erroncous. [t was caused by a typo and
true pay rate was 5634.50 — consistent with previous and later values.

114

Chapter ¢ — Rules for Historical Data

[&~ Emplogec 2121 8 Employes 5r62 |

EmpiD___ [EfDale __[Payfiate

2121 1352002 575.0 $900
21 104 8/2002
2121 /26,2003 81

2121 9/3/2003 (000 —
221 AN | AS0 g % /-—"
b 7. 7. 1 B 1 g
;| eS| 7is0 ;-
By
Tt o550 3600 ‘,-/
8052 &/24/2002 5450 g

B0S2 2/4/2003 | 5575

| eS2 ase003 515 0 ;
i 1 | A4 | 5140 Howl Mar-03 Aug Dec05
| 8052 B/10/2004 {00
E52 242005 7EIL IMeasnrement Date
B2 - Pl 1 - e 1
3ol 16 MEE P
—

Figure &-7: Value Pattern far Pay Rate Histary

The value patterm rule that can identify such errors must look for spikes and drops
in conseculive values. Here we do not restrict individual value change, but rather
do not permit an increase 1o be followed by a decrease and vice versa. In other
words, the rule restricts volatilitv of value changes. Rules of this tvpe are
applicable to many data histories.

The rules restricting direction, magnitude. and volatility in historical data are easy
to recognize and implement. However, thev only calch obvious offenders. Many
unrcasonable values slip through the cracks because true value pattems can be
rather complex. [T the historical data is suspect. and identifving the majority of
erroncous values 1s important, we can use more sophisticated time series models,

The idea behind these models 1s to view historical data as a sequence ol
measurements, cach mathematically compnised ol two parts — svstemic component
and a random “shock.” The systemic component can then be expressed using a
strict mathematical equation, such as the regression line, The random shock can
be described using methods of mathematical statistics. Then, the reasonable range
of values for each measurement can be predicted and used to validate the actual
data.

The great advantage ol time series analysis, and especially the more advanced
statistical models. is that they provide probability estimates for the likelihood of

105

Chapter ¢ — Rules Tor Histovical Data

the particular actual values Muctuations. In other words, rather than making rules
based on common sense (such as no changes of over 25% from value to valuc) we
can sav that a chance of a specific observed value being observed under normal
conditions is, say, 0.01. This appreach provides much more accurate error listings
with fewer false positives. Howewer, 1t 1s umportant to recogmze thal unexpecled
value fluctuations, while unlikely. are possible. Therefore, advanced value patlern
rules must be used with great care so as nol to produce long listings ol “errors™
which turn out to be not errors at all,

The reader interested in the topic of time series analvsis and modeling can find it
studied in many textbooks, so we will not discuss it more in depth here. Also,
implementing rules using (ime series models will require statistical analvsis

softwarc. Fortunatcly, numcrous statistical packages arc available on the market.

6.4. DATA QUALITY RULES FOR EVENT
HISTORIES

Time is arguably the most important aspect of our life, We are surrounded by
calendars and watches, and rare is the activity that does not involve time. Ever
since myv son entered elementary school. his life became a collection of timestamps
and time mmtervals: school schedule, soccer schedule, play date, ume to do
homework. TV ume. time to play video games. time to go to bed. number of davs
ull Christmas and to the next vacation, and even the number of vears left (o
accumulate college funds. And it stavs that way for an entire hife, except rare
Hawaii vacations. | fully realized our dependence on time when I once estimated
that we reference time at least once every five minutes in our conversations. This
phenomenon stavs true in the databases we build, Much of the data is time-

stamped. and absolute majonity of the database entitics contain histories.

So far in this chapter we discussed data qualitv rules for attribute value histories,
i.e. histories of measurements of various characteristics of people, businesses,
things, and other objects. The next most common content in information svstems
15 the data about events. Car accidents, doctor appointments. emplovee reviews
and pav raises are all examples of events. Since events naturally occur at a point
in time and event timing is usually of importance, the event data is auwtomatically
histoncal.

[RIIE

Clhapter ¢ — Rules for Historvical Data

We refer to anv listing of events as event history. Event histories are more
complex than value and accumulator historics. First, events often apply to scveral
objects. For instance. a doctor's appomtment involves two individuals - the
doclor and the patient. Secondly, events sometimes occupy a period rather than a
pomt m tme. Thus, recording a doctor’s appointment requires appointment
scheduled time and duration (or alternatively scheduled start and stop (imes).
Finally, events are ofien described with several event-specilic attributes. For
example, the doctor’s appointment can be prophvlactic, scheduled, or due to an
emergency. It can further be an initial or a follow-up visit, and it will often result

in diagnosis.

As a result, time-dependent entities tracking event histories often contain many

attributes. including:
* Eventidentifier;
o Object(s) impacted by or involved in the event:
» Event effective date/time and duration {or end date/time):

» Event-specilic atiributes.

When the number and tvpes of involved objects and event-specific attributes varies
from event to event. the event history is ofien stored in a collection of interrelated
entitics. For example, car accident data can be divided among parent ACCIDENT
entity with cvent identifier. accident tvpe. and accident time attnibutes: dependent
ACCIDENT_AUTO entity with references to involved automobiles: and
dependent ACCIDENT _PARTY entity with references to involved drivers and
passengers,

As the complexity of events grows, so does the number of constraints governing
the event histories. Consider again the doctor appointments history. For each
appointment the duration should be reasonable — we do nol expect to spend six
hours 1n the dentist’s office for simple filling. unless the waiting time 15 included.
Here the appointment duration is not just constrained by common sense (as in no
less than 30 minuites) but 1s also related to the diagnosis. Further, a doclor cannot
see several patients at the same tume (again, of course. common sense does not
alwavs apply to the medical profession).

Chapter ¢ — Rules Tor Histovical Data

The list of constraints will go on and on. All of these constraints translate into data
quality rules that can be used to validate the event historics. In the practice of data
quality assessment. rules for event histonies often occupv the bulk of the project

and {ind numerous errors.

Data quality rules discussed in this chapter apply to event histories as well.
However, cvent histonies are more complex than value histones. Naturally, the
data quality rules for the event histories are also more diverse and complex. Rules
that are specific to event histories can be classified into event dependencies, event
pre-condition and post-conditions, and event-specific atiribute constraints,

6.4.1. Event Dependencies

Various events in the event histories often affect the same objects. Because of
this, different events may be interdependent. Data quality rules can use these

dependencies to validate the event histories.

The simplest event rule of this kind restricts frequency of the events. For example,
patients may be expected 1o visit the dentist at least every six months for regular
checkups. While the length of tme between particular visits will differ, 1t has (o
be no longer than six months.

Sometimes event [requency can be delined as a function of olther data. For
cxample, an airplane 18 required to undergo extensive mainicnance after a certain
number of flights. Here frequency of maintenance events is not a function of time
but of another data attribute. Assuming good safety procedures, a greater than
required number of flights between maintenance events is a likely indication of a

missing record in the event history.

A constraint can also be placed on the number ol events per unit of time. For
cxample, a doctor may not be able to sce more than 15 patients in a normal
workday. Higher number of dector visits will likelv indicate that some of the

records in the event history show errongous name of the doctor or date of the visit.

The most complex tvpe of rules applies to sitnations when events are tied by a
causc-and-cffect relation. For example, mounting a dental crown will involve
several visits (o the dentist. The nature, spacing. and duration of the visits are
related. Relationships of this Kind can get quite complex with the timing and

1%

Clhapter ¢ — Rules for Historvical Data

nature of the next event being a function of the outcome of the previous event. For
instance, a diagnosis made during the first appointment will influence following
appomtments.

In most cases event dependencies can onlyv be found bv extensive analvsis of the
nature of events, Business users will provide key inpul here. On the flip side.
event dependencies and other complex data guality rules for event histornies arc
tvpically the source of finding numerous hidden data errors.

6.4.2. Event Conditions

Events of many Kinds do not occur at random but rather only happen under certain
unique circumstances. Event conditions verify these circumstances.

Consider a typical new car maintenance program. It includes several visits to the
dealership for scheduled maintenance activities. These activities may include
engine oil change, wheel alignment, tire rolation, and break pad replacement. For
each activity. there 15 a desired [requency. In fact. my new car has a great gadget
that reminds me when each of the activities is due. It does it in a beautiful voice,
but in no uncertain terms. A tvpical message will be “Your tires are due lor
rotation. Driving the car may be VERY unsafe. Please, make a legal U-turn and
proceed to the nearest dealership at a speed of no more than 15 miles an hour.™

Sinee [do not appreciate this kind of life-threatening circumstance, the next time [
decided to visit the dealership before maintenance was due. Unflortunately, for
obvious business reasons, the dealership would not do the maintenance before it is
due. As it was, my only option was to wait for the next announcement and find

my wav (o the nearest dealership at the speed of 15 miles an hour.

On a more serious note, this constraint is an example of evenr condition - a
condition that must be satisfied for an cvent to take place. Each specific car
maintenance event has pre-conditions based on the car make and model. the age of
the car, car mileage, and the time since the last event of same type. All of these
conditions can be implemented in a data quality rule (or rules) and used to vahidate
car maintenance event histories in an auto dealership database.

1

Chapter ¢ — Rules Tor Histovical Data

In a more formal mathematical literature, event conditions are commonly divided
into three groups:

o Pre-conditions must be satisfied before an event can take place.
» Post-conditions must be met for the event to be successfully completed.
» Coincidental conditions simply are always true when an event occurs.

This classification is based on the causc-and-cffect approach. Certain things causc
or precede the event: some other things are caused by or follow the event. Yel
more things simply happen simultancously with the event itself because both are
caused bv the same reason. [find that these gradations. while theoretically valid.
often bring confusion o the design ol data quality rules, 1t 1s important 1o
remember that from the perspective of rule design, it tvpically does not matter
what 15 the cause and what is the effect. Event condition rules usually just verify
that when events are recorded, appropriate conditions are mel and/or vice versa.
Still it sometimes helps to identify event conditions by thinking about causes and
effects of the events.

Event conditions are common to most event histories, vet rarelv fullv undersicod.
As was the case with event dependencies, in order to identify these constraints we
must analyze the events from the business perspective and interview business
USErs.

6.4.3. Event-Specific Attribute Constraints

Events themselves are oflen complex entities. cach with numerous attributes. In
the example of recording automobile accident information, cach event must be
accompanied by much data — involved cars and their post-accident condition,
nvolved drivers and their accident accounts, police officers and their observations,
witnesses and their view of events. The list of data elements can be quite long.
and the data may be stored simply in extra atiributes of the event table or in
additional dependent entitics.

Evemt-specific attribute constraings enforee that all atinbutes relevant to the event
are present. The exact form of these constraints mav depend on the nature of the
event and its specific characteristics. For instance, a collision must involve two or

more cars with two or more drivers (cach driver matched to one and only one car).

110

Clhapter ¢ — Rules for Historvical Data

This condition will typically translate into a relatively complex combination of

conditional relational integrity and attribute optionality constraints.

It gets even more exciting when different events mayv have different attributes. For
instance. collision events have somewhat different attnbutes than hit-and-run
evenls. The lformer embroil two or more cars. each with a driver; the latter usually
involve a single car with no identified driver. Thus the name “cvent-specific
attribute constraints”™ has two connotations - both the attrnibutes and the constraints
are event-specific.

The good news is that these constraints only seem complex when vou try them
first time. With some experience, event-specific atiribule constraints become
easier to design. At the same time, these constraints are rarely enforced by

databases. and erroneous data in this area proliferate.

SUMMARY

Historical data comprise the majority of data in both operational svstems and data
warchouses, They are also the most error-prone. In this chapter we discussed
various types of data quality rules for historical data, specifically:

« Basic timeline constraints validate that all required. desired, or expected
measurements are recorded and that all timestamps are accurate. These
rules can be broken down into categories of currency. retention.

continuity. and granularty.

» More advanced rules are necessary to identify possibly missing historical
records or to find records with incorrect timestamps or values of tume-
dependent attributes. All such rules arc based on the validation of
patterns in historical data. They generally fall into categories of timeline
patterns and value patierns.

» Event histories are more complex than value histories. As the
complexity of cvents grows. so does the number and sophistication of
constraints governing the event histories. Rules that are specific to event
historics can be classified inlo event dependencics, event pre-condition
and post-conditions, and event-specific attribute constraints,

Chapter ¢ — Rules Tor Histovical Data

The combination of abundance, critical importance, and error-affinity of the
historical data makes them the primary target in any data quality asscssment
project. While the data quality rules for historical data are rather complex to
design and implement, they are crucial o data quality assessment since they

usually identiliv numerous critical data errors.

CHAPTER 7
RULES FOR STATE-DEPENDENT
OBJECTS

In the previous chapter, we discussed data quality rules for historical data, with the
crescendo on event histories, [event histories were not complex enough, things
can somectimes get even more exciting. Most complex objects can go through a
sequence of states in the course of their life cvcle as a result of various events. Job
application is an example of such objects. lts life cvele i1s a progression from
submission. through pre-screening. to applicant interviews. to possible job offers.
and up to an eventual hiring or rejection decision. Such objects are called state-
dependent.

While data describing the lifecvele for state-dependent objects can be viewed as an
event history, 1t 158 more complex than that. We are not dealing here with Just a
series of unfortunate events and event-specific atinbutes, but also with sequences
of object states and stale-speciflic attributes. The bottom line is that state-
dependent objects add another dimension of complexity to event histonies. Yet,
these objects are often the most important database citizens, and their data are
Most error-prone.

Adequate descriptions of the lifecvele ol state-dependent objects use a special
apparatus of state-transition modeling. State-transition models provide a wealth of
imporiant data quality rules, which are relativelv easy to wdenufy and implement.
The [irst three sections of this chapler introduce state-transition models. The
remaining three sections present various tvpes of data quality rules governing the
lifecyvele of state-dependent objects.

* Section 7.1 introduces kev concepts of state-transition models.

« Section 7.2 describes how state-dependent objects can be identified

among the relational entities.

s Section 7.3 discusses state-transition model profiling - a collection of
techniques vsed o analyze the lifeevele of state-dependent objects.

Chapter 7 — Rules lor State-Dependent Ohjects

» Scction 7.4 presents data quality rules that can be derived directly from
the analysis of state-transition diagrams.

* Section 7.5 discusses timeline constraints on the lifecvele of the state-
dependent objects.

» Section 7.6 deseribes advanced rules governing the lifecvele of the state-

dependent objects.

7.1. INTRODUCTION TO STATE-
DEPENDENT OBJECTS

Consider a carcer of a loyal Bad Data Corporation employee, Jane Gooding. She
was origimally hired in 1939 at the age of 26, During the next 1Y vears, she
remained with the company with the exception of two maternity leaves in 1964
and 1967, respectively. In 1978 she quit her job but retumed four vears later.
After 13 more vears of hard work. Jane finally retired at the age of 62.

Janc’s employment historv can be described as a sequence of chronological events,
each bringing about a change in her emplovment status. For instance, a new hire
cvent on 3/13/1959 starts Janc's carcer as an active cmployee (status Aciive).
Jane’s resignation on 3/153/1978 changed her emplovment status from Active (o
Terminated, Figure 7-1 illusirates the timeline of Jane’s career,

Actire
On Leave
Returned | Terminated

Resgned Retired
\ ™~

y \\&

¥ >

AMEASTE G155
Went On Leawve Rehired

Figure 7-1: Employment Timeline for Jane Gooding

114

Chapler 7 — Rules lar State-Dependent Ohjects

The objects that go through a sequence of states in the course of their life cycle as
a result of various cvents arc referred (o as state-dependent abjects. Employees,
job applications, msurance claims. and product orders are all examples of state-
dependent objects.

Diflerent emplovees have different careers. Some take one or more leaves of
absence, while others do not. Some are terminated and later rehired: others resign
and never come back. Thus. their careers consist of a varving number, sequence.
and duration of events and emplovment statuses., However, not just any
combination is allowed. For instance, no emplovee can be terminated twice in a
row without being rehired in between. In order to design data quality rules for
state-dependent objects. we need a model distinguishing valid [rom invalid life

cveles.

State-transition models describe constraints on the life cvele of stale-dependent
objects through two kev concepis: stale and action.

State 1s a unigue sct of circumstances in which an object may exist. At
any point in its hife. the object must be in one and onlv one state. The
states that identify possible beginning and ending points of the object’s
life evele are called terminators.

o Action s a unique event that results mn a change of state. An action may
have conditions that must be satisfied before it can take place (action
pre-conditions) or after it 1s completed successfully (action post-
conditions).

State-transition models are usually presenied by stale-transition diagrams, Figure
7-2 depicts such a diagram for state-dependent object EMPLOYEE., The five
shaded ovals represent valid object states: Active (A)., Terminared (1), On Leave
(L), Retired (R), and Deceased (7). At any point in tme. cach object must be in
exactly one of these states. Further. cach object must begin the life eyele in
terminator state Active as illustrated by the white circle on the top of the diagram.

115

Chapter 7 — Rules lor State-Dependent Ohjects

Terminator]- -------

S - %
o5 gb‘*" . Qg%ﬂ';
..?1 'q = ™
1??% : E ‘E’}’"x‘ b
T'I.'I'I:]lalrll R&%ﬂjﬂ_ RETIRE

| Actions States

Figure 7-2; State-Transition Diagram for Object Employee

Valid actions arc shown as arrows conneccting various states. For cxample, action
DEATH applies to objects in Acrive state and changes their state to Deceased.
Note that some actions can apply 1o objects in different states (e.g. action DEATH
can also apply to emplovees in states OOn Leave or Retred). Also. sometimes
multiple actions can apply to the same object vielding similar state transitions. For
mstance, two distinct actions can apply to employees On Leave and change ther
stale to Ferminated,

We will use this model throughout this chapter in many examples ol the data
quality rules and data errors.

116

Chapler 7 — Rules lar State-Dependent Ohjects

7.2. IDENTIFYING STATE-DEPENDENT
ENTITIES

The first step towards using state-transition models i data quality assessment 15 1o
wdentify state-dependent entities in the relational data models. There are two
approaches.

You can start with the analysis of high-level business objects. whose data is
maintained n the database. Then trv to identufv conceptually what kind of states
they can be in and what kind of actions apply to them. For instance. insurance
claims get Niled, screened. and finally demied or approved. Now it 15 a simple
matter of finding the entities i the database that track the desired data.

Allernatively. vou can examine ¢ach entity and idenuly the ones tracking state-
dependent data based on attributes. Presence of timestamp altributes (such as
EffDate) is a good starling point because state-dependent data is tyvpically
chronological. Occasionallyv, sumple sequencing of actions and states 15 used
instead of timestamps. Thus, entities with atiributes like SeqNum are also state-

dependency candidates.

The presence of chronological order 1s not enough to classify an entity as state-
dependent. For example. interest rate historv and pav rate history are time-
dependent but not state-dependent. The next clue is existence of action and/or
state attributes with names such as ActionCode. StateCode, or StatusCode. In fact
a combination of timestamp with any coded attribute (that is any attribute taking a
discrete set of values) makes the entity a good candidate for state-dependency.

Figure 7-3 shows the entity E STATUS HISTORY storing emplovment status
history. Attribute EmplD defines the emplovee identity. There are one or more
records in the table for everv emplovee. Each record comresponds to a period
between employment events, The effective date of each record {(aunibute EffDate)
15 the cvent date and 1s exactly one dav after the end of the previous penod
(attribute EndDate). The attributes ActionCode and StateCode reference the
employvment event and the state of the employee afler the event, respectively.

The table in Figure 7-3 shows the data for previously discussed emplovee Jane
Gooding. For example, the [irst record shows that Jane was hired on 3/13/1939,
and her state became Active (A). She staved in that state until 1/17/1964 when she

117

Chapter 7 — Rules lfor State-Dependent Ohjects

went on the maternity leave as indicated by the following record. The number of
records describing Jane’s life cyele equals the number of events in her
employment historv. The last record has Null value in EndDate attnibute,
indicating that Kevriree (R) is her current state.

E_STATUS_HISTORY
EmplD - Detines employes identity
EffData - Shows effective date of tha action
EndDate - shows last day in current state
ActionCode - Indicates empleyment action
StateCoda - Indicates new emplovment state

= £ STATUS_HISTORY

EmglD __ |ElfDate EndDate [ActionCode

3 33158 11177194 HIRE A

| 229516 1/18/1964 B/23/1964 LOA L

| 223516 | B/24/1964 2/21/1%67 RETLOA A

|| 2ERI6 212N %7 6/4/1967 LW L

| 22516 | 619 5/14/1378 RETLOA A

|| 229516 5/15/1978 5/21/1382 RESIGN T

| 229516 5/2241332 3/2011935 REHIRE A
25516 W25 Ml RETIRE R

10l 8 it e5| B fim [Fiose53) 4]] | SRTPART|

Figure 7-3; Example of a State-Dependent Entity

The five shown attnibutes contain full information about the lifecyvcle of a state-
dependent object EMPLOYEE. Some of the attributes may often be missing in
practice. The EndDate can be omitted without any loss of information — its value
can always be deduced as one day before the EffDate of the next chronological
record. Aunbutes ActionCode and StateCode are not always present together.
Sometimes only states are tracked when it is deemed not significant to know which
of the actions caused the change in state. In other cases, only actions are tracked

il each action uniquely identifies the new state to which the object is transitioned.

When any of the attributes are missing, it is often beneficial to complete the data
before applving data quality rules to it. End dates, actions, and states can be
deduced from the available data. This. of course. assumes that we have brought
the data to a staging area first and can manipulate it freely. Having a complete set

of attributes makes implementing data quality rules casier and more cfficient.

118

Chapler 7 — Rules lar State-Dependent Ohjects

7.3. PROFILING STATE-TRANSITION
MODELS

State-transition models provide a wealth of important data quality rules.
Unfortunately, thev are ofien unavailable or unreliable. This problem can be
casily mitigated, as state-transition models can be built quite easily from the data
and available meta data through analvsis and profiling,

Understanding the nature of the object from the business perspective 1s a good
starling point. A business user will quickly tell vou whalt states the object can take.
which of the states are valid terminators. what actions can apply to the object in
ecach state. and what 15 the mmpact ol each acton on the object state. This
information can be used to build a state-transition diagram.

However, data does not always follow common sense. As is the case with most
other types of models and meta data, the only wayv to get them right is lo use data
profiling.

State-transition model profiling 13 a collection of techniques for analvsis of the
lifecvele of state-dependent objects that provides actual information about the
order and duration of states and actions. Combining the results of the data
profiling with the information obtained from business users will vield the correct
state-transition model.

7.3.1. State and Terminator Profiling

The first step in building state-transition models is to identify all object states and
select terminator states from among them. Valid states are derived from the
frequency diagram of the StateCode attribute obtained through attribute profiling.
Sclecting terminators 15 a bit more complex. Understanding the nature of the
object from the business perspective is a good starting point. For instance. it is
clear that emplovees should alwavs start their lifeevele [rom state dctive upon
being hired. However. data does not always follow common sense.

I was involved in several HR data consolidation projects following corporate
acquisitions. When the data for employees from the acquired company is merged

into the acquirer's HR database, it is ollen deemed unnecessary 1o bring all the

[

Chapter 7 — Rules Tfor State-Dependent Ohjects

data. For instance, past employment history for the retirees may be considered
uscless — all that is required is to store the retirement date and the information
about post-retirement emplovee benefits. Thus. if the data for Jane Gooding from
Figure 7-3 was integrated into the acquirer's HR database. only the most recent
record would be brought. Her emplovment history would then scem to start
Reriree state. The situation would be the same for thousands of other retirees.

Starting vour emplovee carcer with retirement seems like a dream unless vou
happen to have a very rich uncle. But it 1s commonplace in employment state-
transition models — Retiree state is ofien a valid terminator. This example suggests
that state-transition models for real world data may defy logic. The only way to

gel them right is 1o use data profiling.

Terminator profiling is the easiest technique. It involves collecting terminator
frequencics and analvzing their logical validity. A terminator profile shows how
often each state actuallv appears as the first (terminator) record in the object
lifecveles, Stales with high frequency are likely 1o be valid terminators, If the

count 15 small compared to the total count of values. the data must be questioned.

Table 7-1 shows terminator frequencies in the table E_STATUS_HISTORY from
our casc study. State Achive 1s clearly the only valid terminator (occwring over
98% of times).

Terminator Frequency Percentage
Active 13,310 98.20%
Terminated 208 1.54%
On Leave 33 0.24%
Helireg 2 0.02%
Deceased o 0.00%
TOTAL 13,564 100.00%

Table 7-1: Terminator Profile for EMPLOYEE Object

Chapler 7 — Rules lar State-Dependent Ohjects

7.3.2. State-Transition Profiling

The next step i bwilding state-transition models 1s to identify all vahd state
transitions. This is equivalent to drawing arrows between state shapes in the state-
transition diagram.

As was the case with terminators, state transitions often defy logic. For instance, it
seems mildly strange to find any employment states following Deceased state. Yet
it 1s frequently considered legitimate in real world data. HR systems often restrict
retroactive ediling. Imagine DEATH event erroneously entered into the data. I
the employee is later found in the good health, the correction may take form of
entering the AEHIRE action on the following day. The svstem is then
programmed 1o recognize such a sequence of events and ignore the DFATH
record. While this scems illogical, 1t 1s a solution | have seen in pracuce olten. In
ong case an additional state Pending Death was introduced into the model. It was
recorded every time to indicate pending confirmation of the emplovee death, The
inside joke in the IT department was to code the system to popup a “Call 911
immediately” message window upon Pendmmg Death event.

Data profiling as usual comes to the rescue. The technique here is to collect
[requencies of all state transitions in actual data. Analysis of their logical validity
15 then used to build proper state-transition models and implement data quality
rules. A state-transition profile shows how oflien cach state transiton occurs.
High frequencies indicale valid transition: low frequencies point o possibly
Crroncous ones.

Table 7-2 shows a portion of the stale-transition profile for table
E STATUS HISTORY from our casc studv. Included are frequencies of
transitions from various states to state Deceased. Transitions from state Active or
Retiree to state Deceased are clearly valid, while the transition from Terminated to
Deceased 15 infrequent. While it seems that terminated former emplovees are as
likely to die as the retirees, additional analysis of the business processes shows that
such information will never be collected, The stale transition is invalid, and
observed transition occurrences are Srrongous.

Chapler 7

Rules for State-Dependent Ohjects

From State To State Frequency Percentage
Active Deceased 58 T1.60%
Refiree Deceased 21 25.93%

Terminated Deceased 2 2.47%

On Leave Deceased | 0.00%
Deceased Deceased 0 0.00%
TOTAL 81 100.00%

Table 7-2: Profile of State Transitions to Docoased State

7.3.3. Action Profiling

The last step in building state-transition models is to identifv the actions
responsible for valid state transitions. This is equivalent to specifving valid
actions along all arrows on the state-transition diagram.

Again we will use data profiling to collect frequencies of all actions accompanying
each state transition in actual data. Analvsis of their logical validity is then used to
build a proper state-transition model and implement data quality rules. An action
prafile shows how often cach action vields a specific state transiion. High
frequencies indicate valid actions: low [requencies point to possibly erroneous
anes.

Tables 7-3 and 7-4 show poruons of the action profile for the table
E_STATUS_HISTORY from our case study. Table 7-3 lists frequencies of all
terminator actions leading to the imtial Acrive state. It 1s clear that HIRFE action 1s
the only legitimate terminator action here, accounting for over 97% of all cases.
The other two actions arc cither crroncous or arc cascs of partially missing
employment history.

“hapter 7

Rules for State-Dependent Objects

Terminator Action Frequency | Percentage
Active HIRE 12,943 87.25%
Active REHIRE 335 2.52%
Active RETLOA H 0.03%
TOTAL 13,309 100.00%

Table 7-3: Profile of Terminator Actions Leading to Active State

Table 7-4 lLists all actions resulting in state transition from (M Leave to
Terminated. Two distinet actions are valid here: RESIGN and TERM. The other
two actions (RETIRE and LOA) are out of place.

Action Frequency | Percentage
RESIGHN 83 T6.85%
TERM 21 18.45%
RETIRE 2 1.85%
LOA 2 1.85%
TOTAL 108 100.00%

Table T-4: Profile of Actions Leading from On Leave State to Terminated State

7.3.4. Conclusion

We have discussed various techniques for state-transition model profiling,
including state profiling. terminator profiling. state-transition profiling. and action
profiling. Using all of the information from these vanous data profiles, combined
with conceptual analvsis and information from the business users. allows us (o
FCVErse-cngineer accurate state-transition models,

State-transition model profiling is generally more complex than regular atinibute
profiling. While I have not seen tools that specifically address this important area
of data profiling, some existing tools can be cajoled into providing necessary
information with little maneuvering. The profiling can also be done using some

advanced queries and data manipulation techniques.

123

Chapter 7 — Rules lor State-Dependent Ohjects

7.4. RULES DERIVED FROM STATE-
TRANSITION DIAGRAMS

Reading state-transition diagrams 1s easy. An objeet’s life cyvele must start from a
terminator and can generally follow any path through the arrows, This suggests a
broad data quality rule that can be derived directly from the state-transition
chagram and applies to a chronological sequence of records describing an object’s

life cvele:
e Each record must have a valid state and action;
e First record must have a valid terminator with a valid terminator action:

Any two sequential records must have states connected with a valid
arrow, and the action of the later record must be a valid action for that

Aoy,

The data guahty rule defined in this broad form will identufy all discrepancies
between the model and actual data. It 15 also relatively casy to implement. We
simply need to go through all records m chronological order and vahdate that they
follow a valid hfe cyele path on the state-transition diagram. However, this
eeneric data quality rule lumps together errors of many dilferent (vpes. making the
results more difficult to analvze. An alternative approach i1s to validate a state-
transition model through a series of more atomic data quality rules as described

below.

7.4.1. Domain Constraints

Three distinct rules can be designed o check the validity of states, actions, and
terminators in accordance with the state-transition model.

A state domain constraine limits the set of allowed states to only those shown in
the state-transition model. The number of allowed states cquals the number of
state shapes in the state-transition diagram. Invalid states are usually typos inside
otherwise valid records. The true state can often be deduced based on the actlion

value.

An action domain constraint limits the sct of allowed actions to only those shown

in the state-iransition model. The actions are shown near the arrows connecling

124

Chapler 7 — Rules lor State-Dependent Ohjects

state shapes. Sometimes the same action appears near several arrows., Invalid
actions arc usually tvpos inside otherwise valid records. The true action can often
be deduced based on the state value.

A terminator domain constraint limits the set of allowed terminators, specifically
states in which an object can start and end its life cycle. The terminator domain
value sct 15 always a subsct of the state domamn. Invahd terminators often arc a
svmplom of missing records at the beginning of the life cyele.

For the emplovee state-transition model discussed in this chapter. the domain
consiraints lake the following form:

* State domain consists of five values: Active (A), Deceased (D), On Leave
(). Retived (R), and Terminated (1),

e Action domain consisis of nine values: DEATH, HIRE, TAYOFF, LOA,
REHIRE, RESIGN, RETIRE, RETLOA, TERM.

o Only Acrive (4) state 15 allowed as terminator.
Figure 7-4 shows emplovment history data that violates all three constraints:
e The record marked (1) has invalid state code 5, likely a typo.
* The record marked (2) has invalid action code RETHIRE. also a tvpo.

e The record marked (3) 15 the terminator and must have state code A. but
is L instead.

= E_STATUS_HISTORY -
[EmplD EifD ate [EndDate | ActionCode [StateCode |

(Y R HERE 8/3/1587 LOA _ L———(3)

175 8401987 10/871987 REHIRE A _

[| 1175 10491387 /711989 RESIGN (s———(1)
| m /enses 31498 REHIRE A |

|| 1175 /241999 10/3/1999 TERM T

B - I T TV L Hull <HETHIAE> & : (2)
16 (0|e9| Dl | FigweSd /1 ol]| [[sRT[PART[

Figure 7-4: Employment History Data Viclating Domain Constraints

State and action domain constraints are technically no different from the regular
attributc domain constraints discussed in Chapter 4. It 15 simply a morc

Chapter 7 — Rules Tfor State-Dependent Ohjects

appropriate place to design, or at least verify, them during the analvsis of the state-

transition model.

7.4.2. Transition Constraints

Two additional rules can be designed to check the validitv of state transitions in

accordance with the model.

State-transition constraints limit state changes o those allowed by the state-
transiion model. For example. a person who 1s already terminated cannot be
terminated again without being rehired in between. The number of allowed state
transitions equals the number ol arrows connecting the shapes on the state-
transition diagram. Invalid state-transitions often signily a missing action in
between.

State-transition constraints are often represented by the state-transition matrix.
with “from™ states hsted in rows and “10” states hsted in columns. Invalid
transitions arc marked with “X” at the intersection. Table 7-5 shows a state-
transition matrix for our emplovee state-transition model. The “X" at the
intersection of Aefive row and On Leave column indicates that transition from state
Active 10 state On Leave is allowed, On the other hand. transition from state Active
to itself is not allowed, as is designated by the empty space at the intersection of
Aetive row and column,

To State
Activa on Terminated | Relired | Deceased
Leave

Active x X kS x
- On Leave X X X X
=
E Terminated X
i Retired X x

Deceased

Table 7-5: Slate-Transitlon Matrix For Employee Object

State-action constraints require that each action is consistent with the change in
the object state. For instance, when the record with Acrive state 1s followed by the

126

Chapter 7 — Rules for State-Dependent Ohjects

record with On Leave stale, the action recorded with the second record must be
LOA, which is the action listed near the arrow connecting the two states in Figure

12,

Figure 7-5 shows an example of emplovment historv data that violate transition
constraints:

s The transition marked (1) from state Terminated to state On Leave 1s not
allowed by the state-transition matrix in Table 7-5 and is therclore
mvahd.

e The transition marked (2) from state Acrve to state On Leave s

erroncously accompanied by RESIGN action. Only LOA action 1s
allowed for this transition.

" [EmplD __ EffDate EndDale ActioriCods SiateCode
M 237] 24n®w0 | 10/2018% : £
e 10/21/13%6 5MA9% 0 CRESEBN 0 Lo>—1——(2)
237 £/12/1555 2/21/2003 FEHIF A
232 2/22/2003 1A2/2003 TERM T |
232 NA208 | Hull LOA _ L T —I(1)
Tat (e |\ Fguess/ 4| — [T ARt [

Figure 7-5: Employment History Data Violating Transition Constraints

Let’s consider the first error in more detail. We can clearly sce that the data is
incorrect. But do we know which record 15 erroncous? The rule itself does not tell
us. It is possible that Jeff has never been terminated and in reality simply worked
until 11/13/2003 when he went on the leave of absence. In thal case, the first
record is erroncous, Alternatively, he may have terminated as the data shows and
the leave record is entered by mistake. It is also possible that both records are
valid, but JefT was rchired somewhere in between though the data is missing the

rehire record.

In Part 1Ll of this book. we will deal more with such situations and discuss how to
deal with the uncertainly of the errors. However, it is nol critical for the project at
hand. This 1s where data quahty assessment 15 Tundamentally different from data
cleansing. For data quality assessment purposes. 1t 1s enough to know that there 15
an error. Data cleansing requires us to go the extra mile and figure out what is the

Chapter 7 — Rules lor State-Dependent Ohjects

nature of the error and how it can be fixed. This makes data cleansing much more
complex and exciting. 1 am planning to dedicate one of the volumes of this book
series to the topic of data cleansing.

7.5. TIMELINE CONSTRAINTS

Not all data quality rules for state-dependent objects can be denved directly from
the state-transition diagram, Some constraints apply to the timeline and duration
ol the object lifecyvele,

7.5.1. Continuity Rules

Centinuity rules prohibit gaps and overlaps in state-transition historv. In other
words, they require that the effective dale ol each state record must immediately
follow the end date of the previous state record. For example, the continuity rule
for emplovment historv in our example requires the effective date of each
employment record to be exactly one day afler the end date of the previous record.
Continuity rules [or stale-dependent objects are similar to general continuily rules
for historical data discussed in the previous chapter.

Figure 7-6 shows an example of employment status historv that violates the
continuity rule;

The transition marked (1) has a timeline gap - the employee appears to
be active from 3/15/1998 through 5/11/72001, but the following
termination event has an cffective date 6/12/2001 instead of expected
3/12/2001,

The transition marked (2) has a timeline overlap - the emplovee appears
to be terminated up until 821/2003, but the effective date of the
following REFIRE event is 6/15/2003,

Chapter 7 — Rules for State-Dependent Objects

= E_STATUS_HISTORY Cwfi=ir,

EmplD EFD ate [ActionCode [ShataCode |
| | 295943 T | 11
| 295943 REHIRE A
| 295943 . RESIGN 1 | 3
| 295943 - 6A5/2003 | Nul 7 FERRE A (=)
1ci5 5|0)@ [FoueSt/ <] [sRT [PaRT[

Figure 7-6; Employment History Data Vielating Contlnuity Rules

Violation of a continuity rule is alwavs an error. However. it is often not clear
what the nature of the error is. For an overlap, one of the two dates is certainly
incorrect, though it mav not be clear which one — the end date of the previous
record or the effective date of the next one. In case of a gap, it is also possible that

another record is missing for the gap peried.

The exact lorm of the continuity rule depends on the unit ol time used in the
lifecvele timeling. The unit of time for many real world objects is a calendar day,
but for some state-dependent objects the timeline is more detailed. For example,
order procurements can often go through states that only last hours or even
minutes. Thus, the appropniate unit of measurement 1s minutes. The continuity
rule will then require the elfective date of each order procurement record to be
exactly one minute alter the end data of the previous record. Further, in partcle
physics the particle lifetime often is measured in milliseconds or less. and still a
particle can go through a sequence of interactions and states. The state-transition
history for such a particle will have continuity rules represented in very small time

measurement units.

Occasionallyv. timing of state-transitions 1s considered immatenal. and only the
order of states and actions is tracked. In such cases, the lifecvele is represented as
a sequence of events that are simply numbered {1, 2, 3}. The continuity rule then
requires the sequence of event numbers to be continuous without gaps. Sequences
11.2,3. 5} and {1. 2, 2, 3} will then be erroneous.

129

Chapter 7 — Rules lor State-Dependent Ohjects

7.5.2. Duration Rules

An object can ofien stav in a particular state for only a limited amount of tme. On
the other hand. 1t can be required to stav in certain states for at least a certain
minimum amount of time,

Duration rudes put a constraint on the maximum and/or minimum length of time
an object can stay in any specific state. The simplest form of the duration rule is
the zero-length rule, which requires the length of time spent in cach state to be
positive. In other words. the end date of anyv state record must be after the
effective date. Violations of this rule creale time warps common in science fiction

and leading to well-known time travel paradoxes.

As a cunous student of phvsics, | read many books about the nature of time.
Beginming with Albert Emstein, physicists have been looking for possibihities of
traveling back in time. According to modern physics theones, ime travel can only
be achieved mside the black holes or in other exotic places in the universe, |
believe that {as usual) scienusts are looking too far, In my experience, time travel
is very common and is simply a secret that database administrators keep from
phvsicists in hopes of getting the Nobel Prize.

While zero-length rule is common to all states and objects. some duration rules are
more complex and vary by state. For example. the length ol a hospital stay afler a
hecart bypass surgery can be no less than a week. Thus, a paticnt must be in
Hospitalized state after BYPASS SURGERY action for at least seven davs (though
some insurance companies would disagree). This is an example of a minimum
duration rule, Rules like that are very common and casy to implement.

Alternatively, an order shipped via overnight mail must be (hopefully) delivered
within two busingss davs, or one if it was shipped before 3pm. Thus, the order
must be in state Shipped initated by action OVERNIGHT SHIPMENT for no more
than two business davs. This 1s an example of a maximam duration rule. Nole
that here the maximum duration for a state 15 also a function of the action applied
to the object. For different actions, the maximum (or minimum) duration in a
eiven state will vary,

150

Chapter 7 — Rules for State-Dependent Ohjects

7.5.3. State Duration Profiling

Identifving mumimum and maximum duration rules 15 not simple. These
constramnts are rarelv listed in documentation and must be deduced through
analvsis of the business processes underlving the state-transition models. Business
users can usually help.

A useful profiling technique that helps identify probable duration rules is called
state duration profiling. It involves obtaining attribute profiles for derived
attribute State Duration with a condition on the value of state (and possibly
action). The state duration profile can be gathered using standard data profiling

tools or simple aggregate queries.

Figure 7-7 shows state duration distribution for On Leave state from our case study
example. More formally it 1s the distnbution of values ol the caleulated Neld
{EndDate — EffDate} for all records mecting condition {StateCode = L}, The
observed distribution shows a sharp drop-off afier 366 davs. This is not by
chance. According to the business rule, anv leave of absence of over one vear
must be coded as a termination. We can thus derive a maximum duration rule: an
emplovee must not be in state (n Leave for more than one vear.

Digtibticn

0 20 S B5 113 141 169 197 226 254 202 210 330 266 295 423 451 479
Az 3lals|el7f4] | v [l -

Figure T-7: State Duration Profile For State On Leave

Chapter 7 — Rules Tor State-Dependent Objects
Figure 7-8 shows employment history that violates the duration rules:

» The record marked (1) violates the zero-length duration rule. This oflen
happens when an erroneous action 1s enfered and immediately correcled
rather then deleted.

o The record marked (2) has a duration of over three vears and violates the
maximum duration rule for state On Leave.

ErrglD EitDate ErcDate "AchonCode StateCode b ——(2)
P AET | ?:%nmaﬂa!
aM L

- 556 B4/ L (1)
14387 | - B
14387 _
14387 | _ _ I !
B el Dl [\ Figue58, 4lb] | SRT PART |

Figure 7-8: Employment History Data Violating Duration Rules

7.5.4. Cumulative Duration Rules

Occasionally, the duration rules will apply to the cumulative amount of time the
object can spend in a particular state. When | teach the full-day data quality
assessment class al conferences. | am usually required (o present for about six
hours with scveral breaks. The samc rules apply to all other full-day class
instructors. Consider a database tracking the time each instructor spends in class.
The instructor is a state-dependent object going through a repeating sequence of
states: {/n Class. On a Break, In Class, On a Break,). The duration rule will
siate that the cumulative amount of time in state Jn Class must be no less than Shr
30min and no more than Ghr 30 min. This is an example ol a cumulative duration
rufe. Other duration rules will also apply. For instance, the duration of cach
individual fn Class segment can be no more than two hours,

Cumulative duration rules can get rather complicated. A friend of mine, who lives
and works in a beautiful European country, told me that according to their federal
labor laws a person cannot work for more than 213 davs in a given calendar vear.
In his company, once an emplovee reaches the magic number, his entrv keveard no
longer works. While I envy my friend’s life, I do not envy the programmers of the

132

Chapler 7 — Rules lar State-Dependent Ohjects

keyecard entry system who had to incorporate this camulative duration rule into the
soltware. Let’s assume that the HR svstem tracks the emplovment hisiory in a
tvpical wav — that 1s as a senes of emplovment events discussed throughout this
chapter. The cumulative duration rule then states that the otal length of time an
emplovee can spend in Active stale during cach calendar vear 15 no more than 213
business days.

7.6. ADVANCED RULES

Sometimes actions are too complex to be adeguatelv described by a simple action
code. Rather, some additional action-specific attributes must be stored. Similarly.
for some states more detatled information must be tracked besides just the state
code. Finallv. actions usually do not oceur at random. but rather can only happen
under certain unique circumstances. Advanced data quality rules verify these
circumstances and validate action-specific and state-specific attributes,

Action-specific and state-specific attribute constraints are present in all but the
simplest state-transition models and must be identified in the process of data
quality assessment. They tvpically vield numerous errors.

7.6.1. Action-Specific Attribute Constraints

Action-specific attribute constraints cnforce that action-specific attributes arc
populated consistently with the actions, Consider for example the hifecvele of the
state~dependent object Order. When a product 1s shipped. the package tracking
number must be recorded along with the action. The data quality rule for tas
cvent will require a vahd tracking number to accompany SHIPPED action.
Further, when a pavment is received it might be necessary to store the form of
payment (and the amount in case of a partial payment). The data quality rule will

enforce that a valid pavment code (and pavment amount) accompanies FAYMENT
RECEIVED action,

Sometimes action-specific attributes are stored along with the action in the main
state-dependent entity. Since different attributes may apply to different actions, it
is possible to have dozens of action-specific attributes in the entity. The data

quality rules will then enforce that for each action: all but a few attributes relevant

Chapter 7 — Rules lor State-Dependent Ohjects

to that action must remain Null, while the relevant attributes must be populated

with valid values.

Figure 7-9 shows a possible structure of the state-dependent entity
ORDEER. STATE along with applicable action-specific attnbute constraints. In the
entity vou find all basic state-transition attributes and. additionally. three action-
specific attnbutes: TrackmgMNumber, PavmentForm, and PaymentAmount. The
appropriate action-specific atribute constraints take the form of conditional
atiribute optionality rules,

ORDER_STATE i Rula 1. Conditional Attribute Optionality :
vOIE ActionCods = BHIFFELDY !

UrderlD) : Then TrachingNumber Is et Mull 5
EffTrate i Elsa TrackingMumber Iz 1Mull !
EndData T -
BtateCode ¢ Bule . Conditional Attribute Optionality :
ActionCade o IE ActionCade = PAYMENT _RECEIVEL
Tesckingilumber + Then PaymentForm 15 Mol Hull E
PaymentForm ; Eljnd ;ﬁ,‘?m“t;m““?tff I;Tlﬂt- Mull '
i ; @ aymentForm Ie Mu :
PaymentAmount ' Al PaymentAmount Is Mull !

Figure 7-9: Action-Specific Attributes Stored Within State-Dependent Entity

Things get even more cumbersome when the same field i1s “overloaded™ and stores
action-specific data for all actions, This approach was very common in “legacy™
svstems and 15 still used a lot in practice. Then the data quality rule must verify

that the value of the attribute i1s consistent with the action.

Another method to track action-specific attnbutes is to create additional dependent
cnlitics for different aclions. In our cxample an additional entity
ORDER_SHIPPED would be used to track action-specific attributes for SHIPPED
action, while entity ORDER_PYMT RCVD would be used to store action-specific
attributes for PAYMENT RECEIVEDY action. Both new entitics are the sub-types
of the main state-dependent entity ORDER. In thus case, the action-specific
attribute constraint will require that for each action. an appropriate dependent

record 15 created and populated with valid values.

Figure 7-10 shows the data model for this data structure along with the data quality

rules that enforce the action-specific attribute constraints. The rules here take the

134

Chapler 7 — Rules lar State-Dependent Ohjects

form of standard relational integrity constraints — foreign keys and inheritance
rules — and domain optionality constraints.

ORDER_SHIFPED
ORDER_STATE
‘SHIPFED" %%‘ﬂ?
EffDate hetionCade Trackinglumbae
EndDate Ig}
atatel.ode ORDER_PYMT_RCVD
ActionCode
DD
"PAYMEMT RECEIVED' | EilDate
fmm e m e s e mmm e mme e smassemmeamesemiissmesaesas FaymentTorm
Eula 1. Raferonca Bula Paymentimount

i Dopondert ontty OEDER_SHIFFELNY must kove forsugn
i ey to the parent entity ORDER_STATE'

L L L T T R e e

' Bule 2. Rafarenca Rule !
i Dependent entity ‘ORDER_PYMT_RCVL' must have foreign
ltewr to the parent entity ORDER_STATE |

B L L T T L e

e A 0

+ Bule 3 Attribute Oplionality 'E-‘.:-:-u-l-ﬂ:t:alut ;
i All attributes in dependent entities ‘CROER _FHIPPETY and ‘ORDER_PYMT RCVLY are |
i required to have not-Hull values, :

e e g T - T

+ RBule 4. Inheritance Rule :
| Buper-type entity 'CEDER_STATE and sub-bype entibes “ORDER _BHIFTPELD and :
i 'OEDER_FYMT_RCVL are led by a disjoint incomplete inheritance rule based on the :
i value of the dizenuminating abinbule ActonCode’, In layvman's lerms, CRDERE_STATE
i records with “ActonCode attnbute walue SHIFPELD must have corresponding records in
 'ORDER_SHIPPELY entity whils records with “ActionCode’ PAYMENT_RECEIVELS :
' must have comresponding records in “ORDER_FYMT_RCVDY entity. Under no other :

Figure 7-10: Action-Specific Attributes Stored in Additional Entities

7.6.2. State-Specific Attribute Constraints

For many state-dependent objects, 1t is necessary Lo track some state-specilic data.
For example, an active cmplovee can be designated as full-time or part-time and
regular or tlemporarv. These attributes are not action-specific since they can
change without any state-altering action, i.c. cmployees can freely change from
pari-time (o full-time and vice versa but stll remain in the same state Active from
the perspective of the state-transition model. At the same time, these attributes are
only applicable to objects in certain state(s). An emplovee can go from part-time

135

Chapter 7 — Rules lor State-Dependent Ohjects

to full-time employment while in states Active and (possibly) On Leave, but not in

any other state.

State-specific attribure constraints enforce that state-specific attributes are
populated consistently with the states. Thev fall into two general categories:
existence rules and prohibition rules. Existence rules require that such attributes
are populated with some valid values while the objects are in appropnale states.
The opposite is enforced by prohibition rules, which require that state-specific
attributes are not populated (or at least their values do not change) while the
objects are not in the appropriate state. In our example, the rules will take the
form:

1. Anribuies FIPTCode and RegTempCode must be populated with valid

verfnes whife the object is i state Active or On Leave

!‘--'l

Anributes FTPTCode and RegTempCode must not he populated while

the object is in any stale other than Active or On Leave
Occasionally the sccond rule is replaced with a weaker constraint;

2% Values of attribuies FIPTCode and RegTempCode must not change

wihnle the object is in any stafe other than Active or On Leave

Typically. state-specific attributes are stored in separate time-dependent entities.
In our example, entity EMPLOYEE TYPE could be created with atiributes
EmplD, EffDate. EndDate, FTPTCode, and RegTempCode. Rule 1 will then
require that the intervals between EffDate and EndDate in the EMPLOYEE_TYPE
entity envelop all the periods when the emplovee is in state Active or On Leave.
Rule 2 requires that the intervals between EffDate and EndDate in the
EMPLOYEE TYPE entity do not overlap at all with the periods when the
employee is in any state other than Active and On Leave, Rule 2* requires that the
clffective date of any EMPLOYEE_TYPE record docs not fall inside the peniods
when the emplovee 15 in any states other than Acrive and On Leave.

Figure 7-11 illustrates the rules. The boxes at the bottom show the umeline for
employment history of an employee. This particular emplovee was hired in 195%,
resigned in 1981, was rehired in 1992 and finally retired in 1998 Above the boxes
are three scenarios for the EMPLOYEE TYPE data. The first (bottom) scenario

meets all data quality rules. The second (middle) scenario violates rule 1 — state-

136

Chapler 7 — Rules lar State-Dependent Ohjects

specific data are missing between 1959 and 1974, Tt also violates rule 2 — the data
cover the period between 1981 and 1992 when the person was not emploved with
the companyv. However, this scenario does not violate rule 2*. Finally. the third
(top) scenario violates rule 2* - the employee changes from part-time to full-time

employment, while in Terminated state.

Rule violations of this nature are verv common for stale-dependent objects and
more often than not, point to data errors in the state-dependent entity itself. While
these rules require rather advanced custom code to implement, they are very
important and typically vield a feast of data problems.

Additional complications arise when state-specific attributes are stored within the
state-dependent entity, rather than in separate dependent entities. For instance,
employee tvpe attributes can be simply added 1o the main stale-dependent entity
E STATUS HISTORY. The problem is that now attributc changes that arc not
accompanied by state-transitions must be tracked. Looking at the example in
Figure 7-11, we lind such an event in 1974 when the emplovee switched from full-
tme to part-time emplovment while remaming in detive stale. How would this be
tracked in the state-dependent entity?

Scenario 3 % Eull Time o TortTime Full Time

Scenario 2 » Part Tims JFull Time,

Scenario 14 Full Time o—rort Time ‘FUH Tiene
Aetive Terminatad Active

1959

1205

Figure 7-11: Examples of Violaticns for State-Specific Atiribute Constraint=

The most commaon solution in practice 1s to introduce a non-state-changing action,
named something like DA7A. and use it every tme state-specific attnibutes change
values but the state itself does not change. This new action is a legitimate clement

137

Chapter 7 — Rules lor State-Dependent Ohjects

of the state-transition model — it applies to objecls in one or more states (Acnive
and (M Leave in our cxample) and can be viewed as resulting in state transition
from these states to themselves. It can be added to the state-transition diagram and

validated through normal domain and transition constraints discussed above in

Section 7.4,

The state-specific value constraints in this case are casier to vahidate. They simply
require that state-specific attnbutes are populated in all state records o which the
attributes apply and not in any other records. In our example, the rule demands
that attributes FTPTCode and RegTempCode are not Null for all records with
StateCode value Aciive (4) or On Leave (L), and are Null in the remaining records.
Note that in more general cases, dilTerent attribules mav be applicable o different

slales.

Figurc 7-12 1llustrates this data structure. The employvee goes through a normal
life cyvele of been hired. resigning, been rehired. and retiring. In addition. the
employee has several changes in state-specific attributes recorded by DATA
actions within the penods of active employiment.

The data in Figure 7-12 secems to be in accord with the state-specific attribute
constraint {(and all other data quality rules). Values of attnbutes FTPTCode and
RegTempCode are present in all records with StateCode values Active (4) and are
absent i all records with StateCode values Terminated (1) and Renred (1)
However, the data 1s maccurate. Records marked (2) and (3) are histed with action
DATA suggesting a change in values of one or more of the state-specific attributes.
However., a comparison of values between records (1), (2) and (3) shows no
change! This malady 1s sometmes referred to as “virtual duplicates™ — the records
carry mostly identical information, but are not exact duplicates. Records (2) and

(3) could be removed without any loss of information.

138

Chapler 7 — Rules lor State-Dependent Ohjects

= E_STATUS_HISTORY

EmplD __ [ENDale |EndDele | ActioriCode |StdleCode |FTPTCods | ReglemgCoc
3725] 7200139 1161374 HIRE A F | R
729 1IN 441W) DATA A P A
| FA | A0 | ERATAE RESIGH T M Hudl

(DF——3728 928N 512154 R AL /Fsk i
(D373 | 51341994 | 2/41955 " DATA ™ A F F
(733 25135 11/20/1338 . DAT, A ==
7@ (11721198 Nul_ RETIRE A Nud]
Tol7 b/ el ol | Figushs) Figl 4]) | SAT |PART | -

Figure 7-12: Example of “Wirtual Duplicates”

“Virtual duplicates”™ arc verv common in state-dependent entities containing
additional state-specific attributes. While many records serve no purpose. the error
is often considered immaiterial since it does not impact data use in any way other
than performance. The root cause for the problem can be often traced to mmtial
conversion or an interface that creates more records than necessary because the
source system tracks data in more detail.

Alternatively, “virtual duphcates™ can point to a mistake in a value in one of the
state-specific attributes. For instance record marked (2) in Figure 7-10 might be
erroneous in that the true value of attribute FTPTCode 1s P rather than listed value
F. This correction would immediately eliminate both problems — now both
records (2) and (3) would carry legitimate changes in a state-specific atinibute. For
this reason, a “virtual duplicate”™ should never be ignored in a data quality
assessment project,

Occasionally, values of state-specific attributes are permitted to be present even
when the objeet is in one of the states to which the attributes technically do not
apply. It1s done usually when it 1s desired to have easy access to the last values of
such attributes from the most current record. For instance, it may be desired to be
ablc to know whether a retiree was last full-time or part-time cven while looking at
his current record with state Kesred. State-specific attribute rules apply mostly in
the same fashion in that case, with one exception: While the attribute values are
allowed for all states, the values can only change when the objeet is in one of the
applicable states.

Consider the example in Figure 7-13. The attributes FTPTCode and

RegTempCode are allowed o have values Tor all records. For instance, the most

139

Chapter 7 — Rules Tor State-Dependent Objects

recent record — marked (1) — shows an employee in state Refired, but still lists him
as a part-time temporary emplovee. Of course, we know that this person now has
better things to do than come to work everv moming, but we can also see that he
was working part-time even before retiring. It is convenient to have access (o this
mformation without having to reference carlier records. The problem 1s with the
record marked (2). [t shows that the emplovee resigned and changed state o
Terminated, 11 also lists him as part-time, vet the previous record while the person
was still emploved lists him as full-time! This cannot be true. State-specific
attributes can never change values when the object is in one of the states to which
the attributes do not applyv. Catching the problems of this nalure requires more

sophisticated state-specific attribute constraints,

== L STATUS_MISTOR

EmplD! Efiste EndDate |ActorCode |StsteCode [FTPTCode |ReglempCoc
[72901959 A/241980 HIRE A —F R
@2)4——373 A5N881 9/%5A%82 RESIGN T F R
373 | 9/26M13992 11/20/1338 REHIRE A ~, T
(1) 373 121458 Ha RETIRE R QE_,,/ T
1064 w5 B @ " Fiowei11 /S 4]] | SRT [PART | ~

Figure 7-13; Example of Invalid Changes in Attribute Values

To summarize the discussion, state-specific and action-specific attribute
constraints, while rather simple in concept, can take many different forms when
applied to the real data. It is important to recognize that the form of this data
quality rule will depend on the way the data for the state-dependent object 1s
organized in the databasc.

7.6.3. Action Pre-Conditions and Post-
Conditions

State-changing actions and events do not occur at random. but rather can only

happen under certain unique circumstances. Action pre-conditions and action

post-conditions verify these circumstances. They are very similar to the event
conditions discussed in the previous chapier.

Action pre-conditions arc the conditions that must be satsficd before an action
can take place. For example, an emplovee may not be hired without her job

141

Chapler 7 — Rules lar State-Dependent Ohjects

application being previously considered and approved. Thus, a pre-condition for
the HIRE action in the emplovment state-iransition model is presence of a job
application historv record for the same person with state Job Offer Accepied and
effective date shortly belore the effective date of the HIRE event. Another
example of a pre-condition 1s that a loan 1s defaulted when a pavment 1s past duc
by at least 90 davs. Thus an action DEFAULTED can only be applied Lo state-
dependent object loan when payment history shows pavment sufficiently in
arrcars. In rcality the pre-condition in this case can be quite more complicated and
involve written legal terms of the loan.

Action post-conditions are the conditions that must be satisfied after the action is
successlully completed. For instance. upon retirement the emplovee must have
post-rctirement benefits calculated and entered m the appropnate tables of the HR
svstem. Thus, a post-condition for the RETIRE event in the employment state-
ransition model is the presence of an employee benefits record for the same
cmployee with all necessary attributes filled in and effective dated by the
retirement date. An example for Loan object would be that a previously defaulted
loan can be reinstated into a satisfactory status once all payments, along with

interest and penaltics, are brought up-to-date.

Action pre-conditions and post-conditions are very common in state-transition
models, vet rarelv fully understood. In order to identitv these constraints, we must
analvze the objects from the business perspective and interview business users.
On the other hand. these more complex data quality rules will often find many
otherwise hidden, but critical, data qualitv errors,

SUMMARY

State-dependent objects go through a sequence of states in the course of their life
evele as a result of vanous events. Data for the state-dependent objects is very
common in real world databases and 15 also most error-prone. In this chapter we
discussed various tvpes of data quality rules for state-dependent objects.
specifically:

» State domain constrainis limit the set of allowed states to onlv those
shown in the state-transition model.

141

Chapter 7 — Rules lor State-Dependent Ohjects

» Action domain constraints limit the set of allowed actions to only those
shown in the stale-transition model.

. Terminator domain constraints limit the set of allowed terminators, that
15, states in which an object can start and end its life evele.

» State-transition constraints limit state changes to those allowed by the

state-transition model,

* State-action constraints require that each action is consistent with the
change in the object state.

e Continuity rules prohibit gaps and overlaps in state-transition history .

» Duration rules pul a constraint on the maximum and/or minimum length
of time an object can stav in anv specific state.

*» Action-speciflic attribute constraints enforce that action-specific
attributes are populated consistently with the actions.

o State-specific attribute constraints enforce that state-specific attributes
are populated consistently with the states.

» Action pre-conditions are the conditions that must be satisfied before an
action can lake place.

* Action post-conditions are the conditions that must be satisfied after the
action is successlully completed.

Some of these rules are rather simple. while others can be quite complex and vary
significantly depending on the data structurc. In all cascs, data quality rules for
state-dependent objects are key o successful data guality assessment. since data
for such objects is typically very important and yet contains numerous “hidden”
ITOrS,

CHAPTER 8
ATTRIBUTE DEPENDENCY RULES

It is important 0 remember that data represent attributes of real world objects,
such as people, whose characteristics are interrelated and whose behavior is
complex and restricted by logical constraints. These constraints can alwayvs be
translated into data relationships and used to test the data quality.

In the last two chapters. we presented two specific views of the data for complex
real world objects. In Chapter 6 we investigated the time dimension and discussed
the data quality rules arising from the dvnamic relationships i the data. In
Chapter 7 we looked al the lifecyveles of state-dependent objects and the rules
governing the state-transition data. However, this still leaves numerous
miscellancous attribute dependencies in the data deseribing real world objects.

Finding such general attribute dependency rules is more difficult vet is key to the
success of any data quality assessment project. In this chapter, we discuss various

strategies and techniques that help us lind success with this challenging task.

e Section 8.1 describes various (vpes of attribute dependencies, including
rcdundant attributcs. derived attributes, partially dependent attributes.
alinbutes with dependent optionalitv. and correlated attributes.
Understanding these categories aids tremendously in the scarch for data
quahity rules,

» Section 8.2 discusses analytical methods and informal mvyestigative
techniques for finding attribute dependencies. Specifically, we address
experl knowledge gathering, in-depth data model investigation, and data

gazing.

e Section 8-3 presents more formal dependency profiling methods, which
usc data mining. statistical models. and pattcrn recognition technigues to
discover hidden data relationships.

* Scction 8-4 outlines the process of identifving data dependencies across
different databases.

143

Cleapter o Atribute Dependency Rules

8.1. INTRODUCTION TO ATTRIBUTE
DEPENDENCY RULES

We sav that two atinibutes are dependent when the value of the first attribute
influences possible values of the second atinbute. Dependencies between two
atributes (sometimes referred to as binary relationships) are the simplest (o
identify and use. However, often more than two atiributes participate in the
relationship. In the latter case, values of one ol them (called the dependent
attribute) are somechow alfected by the values of the other attnibutes. Attnbute
dependencies generally fall nto five broad categories: redundant attributes.
derived altributes, partially dependent atiributes, attributes with dependent
oplionality, and correlated attributes.

8.1.1. Redundant Attributes

Redundant attributes are data elements that represent the same attribute of a real
world object. While attribute redundancy goes against basic data modeling
principles, it is common in practice for several rcasons. First, redundancy 1s
widespread in “legacy” databases and certain svstems that were converted from the
“legacy” databases. Sccondly, redundancy 1s ofien used even in modem relational
databases to improve clficiency of data access. informaltion presentation, and
transaction processing. Finally, some data across different systems is invariably
redundant.

Redundancy across databases is the most common reason [or using redundancy
data quality rules. Consider, for example, HR, pavroll. and ecmplovee benefits
administration svstems. Thev all track data about company emplovees and
inevitably have much overlap. At a minimum, all three databases will track
employee name, address, and date of birth. Obviously. these data clements are
redundant and must have identical values,

While many data integration techniques are put in place to keep the data in
different svstems consistent, it is a tremendous challenge. Considering that we
struggle to keep the data inside a single database coherent. 1t 1s no surpnise that the
data across svstems 15 oflen out of syne. However, this is a blessing in disguise for

144

Chapter 8 — Attribute Dependency Rules

data quality initiatives, Comparison of redundant attributes across databases is a
surc way to identify (and eventually correct) numerous data problems.

Attribute redundancy is also common within a single database.
example is a situation where current values of some attributes are stored in a
separale entity in addition to being present in the most recent record of a historical
data stack.

A common

Figure 8-1 illustrates a more complex siluation. Onginal date of hire for an
emplovee can be found as the effective date of the earliest record in state-
dependent entity E_STATUS_HISTORY. Similarly, last termination date can be
found as the effective date of the most recent termination event in the same entity,
Many HR
svslems prefer to store these attributes along with other basic emplovee data in a
scparatc cntity (E_EMPLOYEE INFO in Figure 8-1).

However. querving these data on the flv would be very inefficient.

This creates attnbute

redundancy .
frim o
. HieDate
Hiieiate i | 75291959 952641932 114214598 1| TermDaz is
redundant o 1at EIE G FLTR [T~ I | redundant to
effective dat= of Fr effective date of
the earliest the most recant
record in ' - termin mion
status kistory record
. EmalD | EHD ate | Aphianl ods
L3 T 7/29/1959 HIFE
. e 4/25/1381 RESIGH
] 3723 9/2E41992 EEHIRE
s '
Tof& 80|

Theoretically. the valucs of redundant attributcs must always coincide.

Figure 8-1: Example of Attribute Redundancy

This

requirement. when applied to redundant attributes Attributel and Attnibute2.
translates into a simple atteibute redundancy rule expressed in mathematical form
as:

Astribure! = Artribute2

45

Cleapter o Atribute Dependency Rules

While redundant attributes are expected to have identical values for all entities, in
practice they beg to differ. This happens because it 1s often extremely difficult (o
create a failsafe process for the data svnchronization (which is. of course. the
original reason behind the strong objections of the data-modeling discipline

against attribuie redundancy).

In many databascs, no automatic mechamsm exists (o synchromze the values, and
the task 15 relegated to the data enury personnel. This approach. of course.
guarantees numerous discrepancies in the values of the redundant attributes.
Sometimes recurring offline processes are used to synchronize the data, but the
technique has a major flaw in that the data remains inconsistent between

synchronization events.

The ideal technique is to set up automatic trigeers that are tripped any time one of
the redundant attributes 1s changed and firc events to change the other ones.
However, even this techmigue is not failsafe. Triggers are often hard to implement.
Consider the example of the emplovee's original date of hire in Figure 8-1.
Capturing situations when HireDate atiribute is changed in E_EMPLOYEE_INFO
table is easy, but correctly propagating this change to the E STATUS_HISTORY
table is far from trivial. On the other hand, capluring all situations when the
cffective date of the earliest record in E STATUS HISTORY table is changed

proves quite complex.

8.1.2. Derived Attributes

Values of derived attributes are calculated based on the values of some other
attributes. This approach is very common when the caleulation is rather complex
and involves data stored in multiple records of possibly muluple entities,
Performing the calculation on the f1v is then very inefMicient.

Consider, lor instance, golf handicap index. It is a very important attribute lor any
golfer as 1t determines handicap that one player has over another in a competition
lo compensale for the possibly significant dillerence in skills. For instance, a
plaver with handicap 10 must score at least five shots less than a plaver with
handicap 15 to win. Without handicap the better plaver would virtually alwavs
win, making competing meaningless,

146

Chapter 8 — Attribute Dependency Rules

To make it fairly reflect playvers™ skills, handicap formula has to be rather complex.
It must account for play under different conditions on golf courses of varving
difficulty. The actual formula is a weighted average of the best 10 out of the last
20} scores, with weights representing goll’ course difTiculty. Calculating my goll
handicap mmdex would require accessing and processing many records, ncluding
the history of my scores and linked information about the difficulty of the golf
courses [have played. In practice. doing it on the fly is highly ineflicient. Instead
the central database for all members of the Chicago District Goll Association
stores pre-calculated values of handicap index. The index is recalculated for all
members everv two weeks and stored in a handicap history table. It is an example

of a denved attnbute.

Whilc the golf handicap may not scem to be a mission cnitical example (unless vou
have just lost $20 on a round of golf to someone with an incorrect handicap).
derived attributes permeate most databases. Business examples would be length of
cmployment used for cmplovee benelits cligibility and unused insurance
deductible.

Obviously the values of derived attributes must be mn syne with the attributes used
in the calculation. This translates into a derived attribute constraint expressed in

mathematical form as:

Attribute [= Func (Attribuge 2, Attribute3, ., AttributeN)

In this formula. Auributel is the derived attribute, while Attribute2 and others are
used to calculate 1ts value using routine designated as Func,

One of the most common special cases of denved attmbute constraints i1s a
balancing rule, which requires an aggregate attribute to equal the total of atomic
level attribute values. For instance. annual compensation stored in W2 WAGE
entity 1s aggregaled for each emplovee and calendar vear. On the other hand.
entity E_PAYCHECK stores details of cach paycheck for cach emplovee by pay
period and compensation type. Obviously. annual compensation 15 a denved
atiribute and must equal the sum of individual payments for that calendar vear (and
applicable pay tvpes). This constraint is implemented by a balancing rule,

147

Cleapter o Atribute Dependency Rules

Derived attribute constraints ofien find numerous errors, The reasons are largely
the same as those for the discrepancics in redundant attributes — it is very hard (o
create a falsafe vet practical mechanism to keep the data in sync. With denived
data it 1s even more complex. The derived attribute is tvpically a function of many
other attnibules, so 1t 1s impractical to set up triggers on changes for all of them.
Instead the calculation is usually either explicitly requested by users or performed
svstematically for all the data. In the former case, a recalculation may have been
forgotten. In the latter case, some records may be missed due to a program bug.
In both cases retroactive changes often throw the data of balance.

8.1.3. Partially Dependent Attributes

The wvalues of redundant and dernved attributes are prescribed exactly by the
dependency. Oftentimes. the relationships between attributes arc not so exact.
The value of one altribute may restrict possible values of another atribute 1o a
smaller subset, bul not to a single value. We call such atributes partially
dependent,

Consider the relationship between attributes HireDate and TerminationDate
containing the onginal date of hire and the latest termination date (if any) for each
employee, Clearly a person muslt be hired first and terminated later. This
translates into a simple attribute dependency rule:

FerminationDate ~ HiveDate

This relationship is bi-dircetional, 1.e. both attributes affect one another, Without
changing its meaning. we could rewrite the rule as:

TerminationDare — HireDare = 00

This form better reflcets the fact that both attributes play cqual roles in the
constraint.

Sometimes the atinbutes participating i a relationshop have a diserete set of
values. For example, job titles of an emplovee and his or her boss are somewhat
related. 1T 1 were a junior programmer, my supervisor would be likely Lo hold a

148

Chapter 8 — Attribute Dependency Rules

title of senior software developer or project manager, but not that of sales
coordinator or loan officer. This constraint would be implemented through a
matrix with valid title combinations. Now, we could take the subordination table.
which lists reporting relationships between company emplovees, look up title for
cach employee n the position table, and venty the value combination agamst the
valid value matrix.

Regardless ol the tvpe of the attribute. the common theme here is that the rule
restricls possible value combinations of two or more attributes o a subset of all
values, but not down to a one-to-one relationship. Any database is full of attribute
relationships. and it 1s simply a matter of patience and analysis to identify many of
them. This work alwavs payvs ofl. as the data guality rules for partial attribute

dependencics will find large pockets of crrors.

8.1.4. Attributes with Conditional Optionality

Conditional optionality represents situations where values of one attribute
determine whether or not the other attribule must take Null or not-Null value (that
is 1o be prevented or required). Adtributes with conditional optionality technically
are a special case of partially dependent attributes discussed above. However, they

deserve separale consideration due to their highly [requent occurrence in practice.

Consider attribute EmployeeType, which indicates whether or nol an emplovee is
working a full-time or part-time schedule. In the former casc. attribute
AnnualSalarvRate would be required. while ScheduledHours and HourlvPavRate
would be prevented. In the latter case AnnualSalarvRate would have 1o be Null,
while ScheduledHours and Hourly PavRate would take not-Null values.

A rather trivial special case of conditional optionality is the situation where two
attributes are mmtually exclusive (also called disjoint atiributes), e, the mere
presence of a value of one attnibute precludes another attribute from taking a not-
Null value and vice versa. This situation occurs mostlv with event-specific and
state-specific atnbutes, e.g. LastDayWorked and NextSalarvReviewDate. Since a
person 15 either terminated or emploved, only one of these attnbutes can be
populated. Note that this example does not preclude values of both attributes (o be
absent at the same time. The sitwations where one or the other attribute musi
alwavs be present are also common.

149

Cleapter o Atribute Dependency Rules

An opposite situation is when two attributes can either be both present or absent.
For instance, LastDayWorked and TerminatonDate are such attributes (sometimes
referred to as conjoint attributes). For an active emplovee both must be Null. but
upon termination both will take not-Null values. The dependency between these
two attributes 1s mutual. 1.¢. values of both are either present or absent. Sometimes
the dependency can have a direction. For instance, terminated emplovees will
often continue to get severance payments for a while. Thus, attribute LastDayPaid
may not have a value for some time after LastDayWorked is populated. However,
the opposite is not true — anv emplovee with a value of LastDayPaid must have a
value in LastDavWorked.

8.1.5. Correlated Attributes

So far we have discussed situations where values of some attributes somchow
restrict allowed values ol other attributes. Occasionally the relauonships can be
subtler. Values of one attribute can change the likelihood of values of another one,
though not firmly restricting anv possibilitics. We call such attributes correlated.

My golf score and my placement in the local club tournament are correlated - the
better the score the higher the position. However. thev are not trulv dependent.
With any given score | could theoretically place anywhere {rom first 1o last place.
Let's sav | posted an otherwise average handicap adjusted score of 72, It could be
that the weather conditions were hommible, evervbody shol poorly. and my score
was by far the best. Alternauvely, it is conceivable that the ficld in the tournament
was small and evervone plaved extremely well on a mice sunny day. so that my
scorec was dead last, Both scenarios are possible, but highly unlikely. That score
most likely would land me in the middle of the pack.

More generally we can sav that knowledge of the score influences our expeclations
for tournament placement and vice versa. This can be used to implement a data
quality rule. We could build a chart of likely value pairs {score: placement} and
treat the other value pairs as polentially erroneous. Of course. the rule 1s inexact
and will vield some false positives, but it will also catch many errors,

An example from evervday business databases 15 the correlation between gender
and first name, The majority of names are distinctly male or female, Thus there 1s

a definite relationship between these attributes; however, it is nol exact in nature.

1560

Chapter 8 — Attribute Dependency Rules

Finding a female named Fred or male named Rachel is unexpected but not
impossible. And in some cascs the names are truly common o boih genders, as in
cases of Terry and Lee. Sull the relationship can (and should) be used in a data
quality rule. Unlikely pairs ol values should be Magged as potentially erronecus.

I recently reviewed the results of a project where a database with nearly a million
records was analvzed. In it were found almost 45,000 distinct first names. Of
them over 2,600 were hsted for both men and women. When unexpecled
name/gender pairs were identified by the data quality rule, some 20,000+ records
were found, Of them, absolute majority (over 93%) proved to be erroncous.

8.2. IDENTIFYING DEPENDENCIES
THROUGH ANALYSIS

Most of the data quality rules can be identified through rather formal procedures.
Attribute domain constraints can be found in data dictionaries and through
svsiematie attribute profiling. Relational integrity constraints are deduced from
data models. Timeline constraints for historical data and various rules [or event
histories can be identified systematicallyv. Rules for state-dependent objects can be
inferred from stale-transition models.

Still, as the rules get progressivelv more complex. the search for them becomes
more of an art than a science. Al the level of event conditions or value patterns for
historical data. it takes a creative and inquisitive mind to find the mles. General
atribute dependencies presented in this chapter fall in the same category, Yel.
these more complex business rules are very important as they often find numerous
less obvious data errors,

While there is no exact recipe to discover complex attribute dependencies, a few
analvtical techmques can be used. In this section, we will discuss informal
investigative techniques. The next section i1s devoled o more formal profiling
methods.

Cleapter o Atribute Dependency Rules

8.2.1. Gathering Expert Knowledge

Nobody knows the data better than the users. Unknown to the big bosses, the
people in the trenches are measuring data quality every day. And while they rarely
can give a comprehensive picture, each one of them has encountered certain data
problems and developed standard routines to look for them.

Talking to the users never fails to vield otherwise unknown data quality rules with
many data errors. And it is really simple. The only trick is not to ask the users
about data quality rules. They often will not be able to offer anv. The right

questions to ask are:

“What data do you usually check manually before using?”

“What are some typical data problems you encounter?”

A useful technique 1s 1o ask business users (o track all data quality lindings during
a week or two and make notes on all identified errors, Ofien it 15 simply useful (o

sit next to those data experts and watch them while they work.

8.2.2. Investigating Data Relationships

Review and analvsis of the data model and other meta data are the kevs to finding
complex data quality rules. Redundant atiributes can be usually identified through
meta data review. Derived attributes can be identified bv reading documentation
and analy zing the meaning of each entity and attribute.

More complex auribule dependencies can be uncovered with a thorough
investigation. The secret 1s to systematically consider cach data element and
Inguire:

“If 1 knew the value of this attribute, what could I say

about other data™”

Anytime value of one data element restricts acceptable values of another data

clement, we have an opportunity (o design a data quahity rule.

152

Chapter 8 — Attribute Dependency Rules

For instance, a data dictionary might say that attribute LastDayPaid is populated
with the date of the last pavcheck for terminated employees. We can find several

useful facts in that statement:

» All emplovees with not-Null value of LastDavPaid are terminated. Thus,
their current emplovment status found in attribute CurEmpStatus must be

Terminated (7). The opposite would also be true.

* LastDayPaid is the date of the last payvcheck, which is also found in
atiribute EffDate of the most recent record of entity E_ PAYCHECK.

We can now implement three attribute dependency rules:
If LastDayPaid Is Null Then CurlmpSrams = 1
If LastDavPaid Is Not Null Then CurlompStatus <= 1"
LastDavPaid = Max({l. PAYCHECK] [E{IDatef) or Null

MNow. consider a more advanced example. Entuty E_POSITION in the HR
databasc of Bad Data Corporation contains a history of positions that each
employee occupied in the company. Let’s sav there is a record in it indicating that
Arkady Mavdanchik has been an Assistant Manager since 1/1/2006, What can we
deduce from that?

« First, that means that [was actively ecmploved in 2006, Thus,
emplovment status history table must show me in Aetive status during
that period.

o The salary history table must show my salary through that period, too.
Further, my salary should be consistent with the salary range for the
Assistant Manager position.

» We can also conelude that an Assistant Manager position must exist in
my department and be occupied by none other than me. This can be

crosschecked against the department position table.

» Finally, I must have a manager and one or several subordinates. This can
be verified against a table containing data on the reporting relationships,

153

Chapter 8 — Attribute Dependency Rules
It is often convenient to represent such logic in the form of a fact wee.

Figure 8-2 illustrates the fact tree for the last example. It can be used to design
numerous attribute dependency rules.

,ﬂ&]., There is & reased i an HR
— databazs indoakng bhat
- Ackearly Maydanohik hes bese
r L employed az an Assistant
Manpgar simea L2006
¥ y r L J
Arkady must havea Arkady must have a Aasistant Manoger M:‘*-"' m“'lt:;" .
recocd in status record i salarcy position musk be th“'-'l“ n
history tabls with histery takle with Listed for the subordinates wt
Aotive () status esmpensation for departniant wheve Eﬁr::h titles
during that period. yoar 2008 Arkady works. ataclin capetitng
L L B |
[] - o -
i Arkacy's salary must L - ==
wd 3 V— be conmstent with tha Hlm‘:::::n - <J »
= galary renge for S v, -:"' £ »
-l

Figure B-2: Fact Tree Example

8.2.3. Data Gazing

I know many people who enjov staving out late on a beautiful night. stargazing
and wondering in awe what strange and umimaginable things happen in the
Universe. | often get the same emotion while browsing various databases. which
15 why T call it data gazing,

Data gazing is simply a process ol looking at the data and trving to reconstruct the
story behind these data, Following the real story helps identify parameters about
what might or might not have happened. Once vou find that the story behind
certain data elements contradicts common sense, vou can usually come up with
data quality rules to catch the disobedicnt data.

[remember sitting with a client a few vears ago in front of a computer and
discussing the data quality of their HR database. As we talked, 1 was browsing

154

Chapter 8 — Attribute Dependency Rules

through the data for various employees. One record caught my attention so much
that I could not hold my cxcitement. “Wow!™ — | said — “What an ecmployee vou
have here! Her name 1s Mana. For 11 vears Mana worked for vour Philadelphia
olfice until she moved to California. Knowing that vou do not have an oflice on
the West Coast and do not practice telecommuting, | can only mmagine how
dilficult 1t was for Maria to come (o work every moming afler a four-hour fhght.
But she persevered. Not just that, but since vour company was apparently in
trouble, Maria worked the next two vears without getting paid. Eventually | guess
the stress from the travel wore her out and she resigned. But your company must
have felt a great abligation 1o such a loval emplovee. and so since then and till this
day vou keep Marna on the pavroll. This 1s quite unique!™ My collecagues looked
at me in shock before bursting in laughter about the funny anecdote. But 1 did not
make up the story. T just read it from the data, literally word-byv-word.

The point is that data represent characteristics of real world objeets, such as
people. whose behavior 1s complex and restneied by logical constraints. And so,
as mv storv made no sense, the underlying data was contemptuously wrong. Itis
just more difficult for our human mind to lind the inconsistency in the data,

compared to the inconsistencics in rcal world stories. But with some cffort. it can
be done.

Data gazing is also a useful means to find pattems in known data errors. These
patterns can be used to devise an appropriate data quality rule. Here 1s a practical
example. A few vears ago | was involved in a payvroll data quality assessment
project. Looking at historical pay rate data, we kept finding strange records.
Some were duplicates; others had clearly too high or too low amounts, Still others
looked wvalid but proved incorrect when reviewed by pavroll specialists or
compared to paper records. We just could not put our fingers on the pulse and

[igure out what data quality rule(s) would help us identifv all of these problems.

In the process of data gazing, we discovered that many ol these strange pay rale
records had a value of 5 n the ficld with a mystenous name ATII. Most of the
normal records had a value of J in this field. Interestingly, data users never used
this field and most were not aware ol 1ts existence. In fact, this field was not even
listed in the data dictionary! Such ghosts always pique mv natural curiosity.

Chapter 8 — Attribute Dependency Rules

Consider attributes PayPeriod and PayCycle in E_ PAY RATE HISTORY entity
of the pavroll database. The first attribute describes emplovee pay rate and takes
two values: A (“annual™) for salaried emplovees and W (“weeklyv™) for temporary
and occasional emplovees. The second aurnbute specifies how frequently each
emplovee gets pavchecks. The domain of the second attribute includes lour
values: W ("weeklv™), B (“bi-weekIlv™). S (“semi-monthly”). and M (“monthly”).
Table 8-1 shows a value affinity matrix for these two altributes.

PayPeriod

A W TOTAL

W 2375 | 89,536 91,811
) B 2777 1,510 4,287
% 5 16,693 4 16,697
& M 12208 | 131 12,339
Null 4,249 1,187 5,436

TOTAL | 38302 | 92368 | 130,670

Table B-1: Value Affinity Matrix for Aftributes PayPeriod and PayCycle

Some value affinity patterns can be immediately observed. For example, 16,693
oul of 16,697 records with PayCyele value & also have PayPeriod value A. That is,
almost 99.98% of all emplovees paid semi-monthly have annual pav rate. This is
suggestive ol an actual attribute dependency. Further analysis of the business
process would confirm the theory and vicld this data quality rule:

If PavCyele = 5" Then PayPeriod = ‘A’

The four records (cell marked by *) with PayCycle value 8 and PayPeriod value W
are erroneous.

Chapter 8 — Attribute Dependency Rules

LastDayWaorked

Not Null Nufll TOTAL

Not Nafl 13 10,104* 10,117

MNextSalaryReviewDate
Null SE1* 2]
TOTAL 594 10,108 10,700

Table 8-2: Example of Value Atfinity Matrix

We can see from the matrnix that 10.117 records have a not-Null value of
NextSalarvReviewDate, Some 10,104 of them contain Null in LastDayWorked
{ccll marked by *). This 1s a whopping 99.87%. Similarly. out of 394 records
with not-Null values of LastDayWorked., 581 (or 97.81%) have Null in
NextSalarvReviewDaite (cell marked by **). These attributes are clearly mutually

exclusive.

You can also combine the two alfinity concepts and build a matrix that lists values
of onc attribute in rows and only Null/not-Null in the columns, This technigue
helps identify conditional optionality constraints.

With a large number ol attributes, it may be impractical (o perfomm all the analvsis.
Indeed for just 20 attnbutes the number of attribute pairs 1s 380, Even 1l cach
atiribute can take only five values. we have potentially 9,500 value combinations
to review, hardly a reasonable task. This is where aitribute dependency profiling
tools must come in. However, even in absence of such a tool vou can wrile a
rather simple program that will produce value affinitv matrixes for various
attribute pairs and identifv cases with a high value aflinity (sav over 95%). Then
vou can go through a systematic review of this subsct of polential attnbute
dependencies.

Of course. value affimity matrixes onlv help vou find dependencies between values
of two attributes. Sometimes the relationships involve more than two attributes,
Finding value affinity for atribute triplets or groups of higher order is practically
impossible without a “smart”™ pattern recognition tool. The good news is that
complex relationships involving many attributes usuallv have serious business
rcasons. So these relationships are casier to find through analysis and

investigation. discussed in the previous chapter, rather than through data profiling.

Chapter 8 — Attvibute Dependency Rules

Of course, this relationship is rather obvious and could be deduced theoretically.
However, it is often difficult to remember all possible relationships in a large
database with hundreds of attnbutes. Correlation profiling helps to make sure that

no rules are forgotten.

In theory, attribute dependencies can get quite complex and so do the pattemn
recognition methods for their finding. However, since these techniques are outside
of practical capabilities m mos 1t projects, we will not discuss them in this book.

8.3.3. Value Clustering

Value clustering occurs when the distribution of attiribute values falls into two or
more clusters depending on the values of another attribute. It usually indicates
partially dependent attributes and can be translated into conditional domain
constraints, Value clustering 1s very common when a single data held is used o

store different logical attributes, such as weeklv and annual pav rates.

Consider the distribution of values of attribute PavRate shown n Figure 8-3. [t
clearly has two distinet clusters — one with rather small values and the other with
values between $14.000 and $84.000.

Distibustion

[y

$0~ $14000 —m—m——— ———§34.000 $120,000

12]3]afis’ &) 2]] | -

Figure 8-3; Walue Clustering for PayRate Attribute

Whenever vou observe such value clustering, further analvsis is warranted. The
objective 1s to identify a discriminating variable, that 1s. an attribute or collection

of attnbutes whose values dnive clustering for cach record. Some sophisticated

16l

Cleapter o Atribute Dependency Rules

pattern recognition techniques can be utilized, but often a simple investigation will
provide the answer. In casc of the example from Figure 8-3, it was rather casy to
identify that attribute PayPeriod made a perfect discriminating variable: code A4
(“annual™) correlated with high PavRale amount, while code W (“weeklyv™)

correlated with low amounts,

As with other dependency profiling techmigues, value clustering can be expanded
to search for complex clusters of values in a multi-dimensional atiribule space.
Again, these technmiques are outside of the practical capabilities in most projects,
and we will not address them in this book.

8.4. IDENTIFYING DEPENDENCIES ACROSS
DATA SOURCES

The explosion of software development in the last two decades forever changed
the structure and complexity of the information universe. Orgamzatons. large and
small, routinely have hundreds of svstems and thousands of smaller databases,
files, and spreadsheets storing incomprehensible volumes of data.

It is important to recognize that the data for the same real world object — such as
company cmplovee, customer, or product - is often stored in several svstems.
Since most characteristics and behaviors of a complex object are somewhat
interrelated, so are the data elements across various databases. In lact, some of the
data may even be tofally redundant. While database designers growl about the
imefTiciencies and costs of data redundancy (and make no mistake, they are right!),
[must point out that the redundancy across various databases 15 a gold mne for
data quality initialives.

Designing data quality rules that span across multiple dala sources 15 quile a
cifficult task and should not be undertaken without forethought. While such data
gquality rules are invaluable in data cleansing and data consolidation, their
uscfulness 1s more marginal in pure data quality assessment. For that reason. we
will discuss it only briefly in this chapter. [am planning 1o include detailed
trcatment of the topic in the “Data Conversion and Conselidation™ volume of this
book series.

162

Chapter 8 — Attribute Dependency Rules

For clarity we will refer to the databases whose data quality we measure as
primary data sources. In a simple project, c.2. data guality asscssment of a
pavroll database. we have onlv one primary data source. When the mitiative 1s
enterprise-wide, sav data quality assessment of all emplovee data in the
organization, then all databases with some data-of-record are primary data sources.
All other databases containing potentiallv related data are referred Lo as seconduary
data sources,

8.4.1. Step 1 - Identifying Secondary Data
Sources

The first step towards designing cross-database data quality rules 15 to wdentily
rclevant secondary data sources. This is not alwavs trivial, Many useful databases
may not be readily known to all but their immediate users. It takes several
interviews with various business users and I'T stalT to identify all possibilities. The

following is a list of potential categories:

s Corporate operational svstems manage day-to-dav business transactions
and contain atomic level operational data-of-record. These are arguably
the most trusted sources of information used by business,

s Old legacy svstems are inherited from past generations of software
design and ollen kept alive mostly due to the high replacement costs.
Legacy systems are ugly behemoths that often lack documentation and
use mind-boggling data structures. [ronically though, legaey svstems
have one big advanlage over modern applications — they are not well
suited for data editing and purging and thus typically contain a wealth of

historical data.

« “Ad-hoc” databases are systems and documents created by business
users for their internal purposes. Thev are a ludden treasure for data
quality projects since they almost alwavs contan highly rehiable data.
Why? Simply because people who ereate them are at the same time their
users and so are likely to be very diligent, motivated, and detail-oriented,

163

Cleapter o Atribute Dependency Rules

» Backups are point-in-time images of the database. They are [requently
created as a part of disaster recovery programs or due to the IT fiduciary
policics. Frozen databases are old systems that have been shutdown and
are no longer updated or even maintiined. Backups and frozen databases
arc usually stored much longer than onc would anucipate. often hidden
i the far corners of corporate tape hbrarigs, They often contain a wealth
of the data not found anvwhere else.

» Extemal databases from varnous vendors are managed outside of the
business and ofien have much information overlap with internal
databases.

*» Hard copies are data stored in a non-clectronic format. They include
paper forms, images, and microfiche, While these data cannot be
directly used in data quality assessment, it is often rather easv and
inexpensive lo key the data into an electronic format and then use it in a

data quality mitiative.

8.4.2. Step 2 — Qualifying Secondary Data
Sources

A large organization may have hundreds of possible candidate databases. and it
would be impractical and imprudent to use all ol them. The next step is to qualify
sclected candidate data sources and choose which ones 1o use. This 15 based on
thetr utthity to our initiative, First and foremost, we need secondary data sources
with redundant data to our primary data source. For mstance, if the pnmary data
source 15 an HR database, we need more data about the company emplovees. I
the primary data source is the customer data warchouse. then we need more data

about the company customers,

Data redundancy, though, does not guarantee high utlity for the data quality
asscssment project. Ideally we want redundant data that was collected
mdependentlv. They have the highest utilitv, Databases that feed data to the
primary data source (iLe. upsircam data sources) have reasonably high utility,
Thev are used to identify data errors that were introduced in the primary data
source by bugs in the incoming data feeds. Finally, databascs that arc fed from the

primary data source (i.e. downstream data sources) are mostly useless.

16

Chapter 8 — Attribute Dependency Rules

8.4.3. Step 3 - Subject Matching

Subjects are the high-level business objects whose data are stored in the database.
For example. emplovees and positions are among the subjects of common HR
databases. In order lo compare the data across data sources, we need 1o be able o
maltch subjects in them.

To match subjects we first need to identify the main subject table in each data
source. We then compare primary kevs of these tables. If the primary keys
coincide, then direct one-to-one matching by keyv is possible. For example. if
chfferent svstems adentifv employees by Social Sceurity Number, cmployee

matching is rather trivial.

When primarv kevs of the main subject tables differ. matching must use common
attributes. For instance, people can be matched using a combination of name and
birth date. The result mayv not alwayvs be a one-lo-one comespondence. For
instance, the same person mayv be listed with several values of Pavrollldentifier in

a pavroll system 1f that person worked at several divisions.

Subject maiching gets complex when maiching attribules are in a free-flow fext
format. For instance, matching people by name is more difficult than by social
seccurity number. Various fuzzy matching techniques can be used. and numerous

tools exist on the markel to do the job.

If the subjects in question are identified differently on different svstems, we need
o create a subject master fist. This Tist inventorics all subjects from all different
svslems and gives cach subject a umque master identifier. Then vanous lookup
tables are populated matching subject kevs used by various systems to the
identifier in the master list.

Many databases store data about subjects of various tvpes (olten referred to as
subject classes). For mstance. shipping database can track orders. customers, and
products; an HR database will have data for employees, positions, and
benehceiaries. Subject master lists must be created for all subject types.

165

Chapter 8 — Attribute Dependency Rules

SUMMARY

We say that two atnbutes are dependent when the value of the first attnibute
influences possible values of the second attnbute. Aurnbule dependencies
eenerally fall into five broad categories.

Historical data comprise the majority of data in both operational svstems and data
warchouses. They are also most error-prone. In this chapter we discussed various

types of data quality rules for historical data. specifically:

Redundant attributes are data elements representing the same attribute of
a real world object. Theoretically the values of redundant attributes must
alwavs comeaide. This requirement translates into a simple atinbute
redundancy rule.

Values of derived attnbutes are calculated based on the values of some
other attributes. Obviously the values of derived attributes must be in
svnc with the attributes used in the caleulation, One of the most
common cascs of derived attribute constraints is a balancing rulc, which
requires an aggregate atiribute to equal the total of atomic level attnbute

values.

Olten the value ol one attribute will restrict possible values of another
atiribute to a smaller subsct, but not to a single value. We call such
attributes partially dependent. A very common special case ol partially
dependent attributes is condinonal optionality. It represents a situation
where values of one attribute determine whether or not the other attribute
must take a Null or not-Null value.

Occasionally values of ong attribute can change the likelihood of values
of another one, though not firmly restricting any possibilities. We call
such attributes correlated, Knowledge of attribute correlation patierns
helps 1dentify unlikely value combinations and implement data quality
rules.

There is no exact recipe to discover complex alttribute dependencies. However.

many analytical techmques can be used, including gathering expert knowledge, in-
depth nvestigation of data relationships. and data gazng, Also. formal

16

Cleapter o Atribute Dependency Rules

dependency profiling methods use data mining, statistical models, and patiern

recognition techniques to discover hidden data relationships.

16t

PART Il - DATA QUALITY
ASSESSMENT

170

Urheberrechtlich geschiitztes Material

The reader might remember an example we discussed in the introduction to Part 11
— a bascball umpire who does not fully understand the rules i1s a disaster in the
making. However, the reader will certainlv agree that it takes more than just
knowing the rules to be a good umpire. One needs (o also appreciate the nature of
various individual plavs, roles of different plavers, and many other aspects of the
game. Similarly, (he data quality assessment process involves more than just
design of the data quality rules. In the following four chapters, we will discuss all
aspects of this process.

In Chapter 9 we talk about the design, cataloguing, and coding of the data quality
rules. We outline the structure of the rule catalogue and discuss the architecture of

the rule engine.

Chapter 10 is devoted to rule [ine-tuning — the process of identifving and
climinating rule imperfcctions. This step 1s very important because without fine-
tuning. data quality rules tend to suffer from the same malady as the data itselfl -

poor quality.
Chapter 11 presents the architecture of the error catalogue, Tt is a collection of
tables that store error reports and manage the links between the crrors. the rules

that identify them, and the erroneous data records. Without a well-organized crror
catalogue, it would be impossible to make anv sense of the ocean of errors,

Chapter 12 introduces aggregate data quality scores that provide high-level
estimates of the data quality. Each score aggregates errors identified by the data
quality rules into a single number — a percentage of good data records among some
target data recordset. Wise design of aggregate scores allows us 1o measure data
fitness for various purposes, indicate quality of vanious data collection processes.
and make better decisions about data quality improvement.

Throughout the text. we will take a dual perspective of data quality assessment.
From one side we look at the steps, procedures, and techniques of data quality
assessment. From the other side we see various categories of the data quality meta
data used or created n the process. This seccond perspective i1s very important
because these meta data are the real product of the data quality assessment; thus
the better we understand and organize them, the more valuable our result. In
Chapter 13 we summarize the data quality meta data model and present the design

and functionality of the data quality mela data warehouse, including architecture of

the data quality scorccard.

It is a rather common situation when we want Lo reassess quality of the same data
peniodicallv in order to understand data quality trends and identify new errors.
Adding the time dimension to data quality assessment requires making adjustment

to many of its aspects. Chapter 14 describes the solution n detail.

The content of the upcoming chapters will get progressively more technical as we
cover more advanced topics in data quality assessment. Chapter 11 and Chapter
12 are especially difficult as we venture into the areas of complex data
manipulation and even some mathematical and statistical analysis. However, |
recommend even the less technically inclined reader to not skip anv of them

entirely.

Each chapter is designed in lavers from a simple general overview of the topic
more detailed and advanced arcas. You can choosc 1o stop at the point that you
feel 1s bevond vour level of interest and stll get the general idea.

Most importantly. Chapter 13 is not technical or difficult at all. It provides a good
overview of the material from the previous four chapters and culminates in the
thscussion of the central product of data quality assessment — the interactive
dimensional data quality scorecard,

CHAPTER 9
IMPLEMENTING DATA QUALITY
RULES

Data quality rules are the main tool of a data quality professional. In Chapters 4
through 8 we have leamed how to discover data quality rules of various types
through meta data analvsis, data profiling, and various analvtical techniques.
However. this knowledge must be applied wiselv to achieve anv success.

I used to play soccer with friends. Every Sundav some of us gol together, split
into two tcams, and the batltle began. Sometimes only five people showed and the
game was not pretty. We got exhausted after ten minutes and stopped running.
Other times 15 or more people came, and the game got really ugly we were a
swarm following the ball: something vou normally observe when watching
Kindergarteners plav. Even when we had the right number of plavers, it did not
alwavs work out well until we figured out how to sphit into well-organmized teams:
five big slow guvs do not make much ol a soccer team, neither do [ive
defensemen. The pont being, 1t takes the nght number of well-matched plavers to
make a leam.

The same phenomenon works for data quality rules. Not enough rules means we
cannot find all of the errors. but with too many rules the results are unnecessarily
difficult to comprehend. Poorly designed rules identily immaterial errors or lind
the same crrors in many different ways. It is possible to design data quality rules
in many dilferent wavs, and the success ol the assessmenl project is greatly
influenced by the rule design. This chapter offers comprehensive treatment of this
lopic,

* Section 9.1 describes how rule design is affected by the project scope.
s Section 9.2 describes rule aggregatnon and specialization techniques.

» Section 9.3 discusses the challenges of building the rule catalogue - a
group of cntities that collectively stores definitions of data quality rules.

Section 9.4 presenits a high-level overview of the techniques for coding
rule validation algorithms,

Chapter ® — Implementing Data Quality Rules

A special topic in implementing data quality rules is organization of the error
reports. It is the challenge that ruins manv a data quality asscssment project, To

aive 1t Justice, we will dedicate the entire Chapter 11 to this subject.

9.1. PROJECT SCOPE AND RULE DESIGN

The purpose of using data quality rules 1s to identuly data errors. This leads Lo an
obvious question: “What constitutes a data error?” The fact is, there 1s no absolute
in data quality, and it is impossible to deline data accuracy in vacuum. This is
nothing unique to the world of data. Qualitv 1s pencrally defined as “fitness for the
purpose of use.” [like going Lo old castles and forts. The tour guide will tell vou
all about who built the castle. why it was built, and when. He will also mention
who attacked the castle. why and when 1t was attacked. and how many times it was
sacked. Finally, the guide will often say something like, “This 14" century castle
15 still in great condition.” Seeing the cracks, holes, and gaps, however, tells me
otherwise. [clearly see why the visitors are not allowed into some portion of the
building. Yes, it is a greal historical monument and from that perspective the
walls are sull of highest quality. But even a child could bring down these walls, so

their quality from the perspective of the original builders would be suspect at best.

Lﬂﬂk at +I'Ji'5 -t:..La.rﬂ;nj n‘& -l.'.d-!i‘HE!

We mos+ charge them. The
walls wont protect us

anymore,

Chapter ® — Implementing Dxata Quality Rules

Data quality is measured by ils filness to the purpose of use. For instance,
emplovee compensation amounts used for tax reporting must be accuraie to the
ncarest $1. The same compensation amounts used to calculate retirement benefits
must only be precise (o the nearest $100. Further, annual compensation will
suffice for tax reporting. while monthly amounts are used i benefit calculation.
Thus. if the January amount is short by $500, while the Februarv amount is $500
oo high, the data is still perfectly fine for tax purposes but inaccurate for benefit
caleulation. Finallv, onlv data (or the last three vears may be required for tax
reporting. while amounts for the last five vears might be used in retirement

calculations.

To conclude, data precision. granularity, and completeness requirements are all
determined by the way the data 1s used. Thercfore, the first sicp in data quality
rule design 15 to determine how the data is used and what the quality requirements
dre.

Defining data quality requirements is easy when the assessment project is initiated
by the need to understand data quality implication on some dala-driven process or
initiative. Business users instigate projects with such specific scope if they have a
concern that the data quality may not adequately support some business process.
For instance, | often find employee benefits administrators demanding an HR data
quality assessment project when thev believe the benefit amounts are not
calculated accurately. In all such cases, it 15 immediately clear which data
clements and records must be validated — the ones that are used. Also, data quahity
itself is clearly defined in terms of the data usage - data is good when the results of
its use are acceptable and bad otherwise.

Defining data quality requirements is more difficult when the impetus for the
asscssment project i1s an overall desire to measure quality of data in a particular
database. This mav be just a part of due diligence and IT audit procedures. Also.
such projects can be requested by the business users who regularly come in contact
with the data and sce data problems. Alternatively. full database quahity
assessment can be done in anticipation of the database conversion or a new syslem
implementation. This case is more complex because the same data elements may
be used for a variety of purposes (including some unknown future uses). and it
may not be trivial to define accurate vs. inaccurate data. In fact it is often

necessary o design multiple versions of the same rule, one lor each data quality

175

Chapter D — Implementing Data Quality Rules

definition (or to use error-grouping techniques discussed later in this chapter lo
dhstinguish crrors within a single rule).

Another question is which of all possible rules should be implemented in a
particular project. It 1s rather intmtive that not all data quality rules may be
relevant, e.g it seems logical to only validate the data elemenis that are included in
the project scope. In realitv, the project objective influences rule selection mn a
more subtle way.

Let's start with a simple data quality assessment project. Most HR databases are
used (among other things) 0 manage emplovee life insurance benefils. A typical
program may provide each employee with an annual term lile insurance policy in
an amount equal to three times annual base compensation rate, effective at the
beginning ol the calendar vear. Let’s assume for simplicity that on Januarv 1 of
cach vear, the cmployer purchascs all policics bascd on the compensation ratc
data. Benefits are then communicated to all emplovees on nicely printed colorful
stalcments,

Obviously, the policy amounts will be incorrect any time the compensation rate 1s
meorrect. A tvpical emplovee receives the statement. venfies the policy amount.
and discovers one of three things:

* The policy amount 15 correct. and the emplovee sends the statement to
straight to the wastebasketL

* The policy amount 15 lower than 1t should be (because the compensation
rate was inaccurate on the low side), and the employee phones the call
center in a fury. A services specialist must research and [ix the problem,
the policy must be re-issued, and benefit statement must be re-sent to the
emplovee. Even ignoring the intangible cost of hurt feelings. the cost of

re-work might be $250 per case,

176

Chapter ® — Implementing Dxata Quality Rules

» The policy amount is higher than it should be (because the compensation
rate was inaccuraie on the high side), and... the emplovee stll happily
sends the statement to the wastebasket. Actually, this would be a
desirable outcome since the overpavment for a higher policy limit 1s
probably less than the cost of re-work. However. a good and honest
emplovee will sull phone the call center, and the service cost will again
run at $250 per case.

Thus the overall annual cost of inaccurate compensation rate data 1s $250 times the
number of emplovees with data errors. For a company with 10,000 emplovees, a
4% ervor rate would then translate into $100.000 a vear. This is certainly a
significant amount to justify a recurrent dala quality assessment project 1f any

concern about data qualily exists,

The objective ol the project is deflined very clearly — 1o identilv erroneous
compensation rates as of January 1 for all employvees cligible for the life insurance
benefit. The question now is, “Which data quality rules should we design™ OfF
course, we want rules that validate compensation rate records. Some rules are
immediately obvious. We must check that one and only one record exists for cach
employee and that the compensation rate itself is not Null and is reasonable (e.g.

positive). However, such trivial constraints will miss many errors,

The next step 1s o design more sophisticated rules. For instance. we could
compare the compensation rate as of January | with the previous record for the
same employee (presumably before the last pav raise) to see that the change is
reasonable, We could also validate the compensation rate against the customary
salarv range for the position occupied by the emplovee. We could even reach out
to the payroll database and verifv that the compensation rate is consistent with

actual pavcheck data.

There is certainly a benefit in designing more rules, as we are likely to identify
more errors. However, there is also downside. Anv comparison that involves
several data elements creales an uncertainty of which one is erroncous il a
discrepancy 1s observed. For instance, il the compensation rate is 850,000, and the
emplovee occupies an “Assistant Vice-President” posiion with the salarv range
between $70,000 and $90,000, it is premature (o deem the compensation rate
incorrect. It is possible that the position is mislabeled and, in reality, the

177

Chapter D — Implementing Data Quality Rules

employee’s job is “Administrative Assistant to Vice-President”™ with the salary
range between $45.000 and $55.000. Or mavbe the range for this position is lisied

mcorrectly.

In order to make accurate decisions about data quality when multple data
elements are involved in the data quality rule. we need 1o analy e all of them. This
requires a lot more work, as we need to understand and profile many more data
clements than are immediately relevant to our objective. More importantly. we
now need (o make judgments about the quality of the data we use in comparison,
such as emplovee position in the example above. The only good way to
accomplish that is to design more data quality rules that validate these additional
data elements. However these rules will involve more data elements. which in tum
will require more rules. The rule set can be viewed as made of many lavers, with
the mnermost laver validating the target data elements, the next laver validating
the data elements used to validate target data elements, and so on.

This is a lot more work! At the same time, we get a lot more results. Indeed we
are measuring the quality of many more data clements than we mitially planned.
Also, the accuracy of data quality assessment is proportional to the number of
lavers in the rule set and the amount of crosschecking between various data
clements. As a result, both accuracy and ROI of the data quality assessment for an
entire database (made of manv interdependent data elements and used for manv
purposes) are far greater than those for quality assessment ol a data subset,

Of course, in reality we sometimes have to conduct data quality assessment
projects with a narrow scope. such as the life isurance example above. It could
be due to budget constraints or simply because it 15 often casier to “sell” a more
specific project to the management. In that case, the question becomes, “How
many lavers do we incorporate””

The solution 15 to implement data quality rules iteratively rather than commit to the
set of rules from the beginning. We start byv designing and implementing the rules
that involve only the data elements within the project scope. We then add the
second laver with rules validating target data against other data clements. In our
example, we could implement the rules comparing the compensation rate as of
January 1 against historic values and against position salary information,

178

Chapter ® — Implementing Dxata Quality Rules

The next step is to analyze the results and see if the rules from the second laver
produce potentially useful findings. Have we found a significant number of
errors”? If no. then we can stop with this line of questioning. Do the emors overlap
with the ones found by the rules in the first laver? If ves. then again the new rule
prabably adds little value {although 1t may be used at a future pont to confirm that
these are truly errors). When many new erroneous records are found, 1t 15 worth
checking that the errors affect the target data element rather than the ones we use
in comparison. This can be done quickly through a sample review. For instance,
we can take 10 records with discrepancies between compensation rate and position
salary range and manually check which ones are actually incomect. I we find that
a rule helps identify a meaningful number of otherwise missed crrors in the target
data. it certainly deserves to be a part of the data quality assessment.

Then there comes the question of adding another laver. ie. additional rules
validating the non-target data used by the rules in the previous laver. In our
cxample, we could design further rules to test position information. The resulls
would help decide which data 1s incorrect when our compensation rates are
inconsistent with position salary ranges.

A noteworthy question is when Lo utilize the data from other databases. Il is often
helpful to compare redundant or related data across databases: however, it 1s
usually time-consuming and expensive. The decision to use external data sources
in data quality assessment is rather subjective. My typical recommendation is (o
start the assessment using rules within the database and add external data sources
if such rules cannot find the majority of errors. There are, however, three major
exceptions.

First, il data cleansing is planned to follow data quality assessment, then additional
data sources should be incorporated immediately since they will be necessary
during data cleansing anvway. Secondlv. if it is known that the data in the external
data source 1s reliable, it must be used. For instance, we would be justified to use
payroll data to vahdate compensation rates 1f we beheved that pavcheck numbers
were generally verv reliable. Finallv, if an enterprise-wide data quality assessment
is planned, it is always betier (o prioritize and schedule it in such a way that related
databases are assessed one afier another. This makes data crosschecking casier,

1749

Chapter D — Implementing Data Quality Rules

9.2. SELECTING OPTIMAL RULE DESIGN

Any given set of rules can be implemented in many different ways. A way of
visualizing the problem is to first imagine all rules combined in one enormous
super-rule, testing every possible aspect of data quality. On the other end of the
spectrum. we can picture thousands of the most trivial atomic rules, each testing
the simplest possible condition and leoking for a unique tyvpe of errors under
unique circumstances. In the practice of rule mplementation, both approaches
may be undesirable, and the middle ground must be found. However, there are
many ways to find the middle ground as the atomic rules can be combined into
many sels of (possibly partially overlapping) rules.

Consider a simple example. Dala elements A, B, and C are all redundant (i.e. they
must have equal values). This condition can be used to implement a single super-
rule, which gets tripped il any two of the three elements differ. Alterativelv, we
can implement three distinet atomic rules, comparing individual pairs of clements
(A aganst B. B against C, and A agamnst C). We could also use a combmation of
two rules instead of three, ¢.g. rule #1 could compare A against B, while rule #2
would test C against A and B. All of these options assume thai these data elements
arc all part of the project scope. But what if only A is important? Of course, 1t 1s
still valuable to compare A with B and C; vet again there are many ways of doing
it. For instance, we could use rule #1 to compare A against B and rule #2 to
compare A against C. Another option is to onlv validate rule #2 if A and B are the
same.

Clearly there are many ways o implement the same rules even in this trivial case.
Things get far more complex when we look at more sophisticated rules. such as
rules for state-transition models, The reader might ask, “Is there any difference?”
Indeed, rule decomposition and aggregation do not affect our ability to find errors.
However, this impacts the ease of error analvsis in the data quality scorecard. For
example, many rules are nterdependent. 1e. get tripped by the same data
problems. In some cases, it is beneflicial as it helps to conflirm the nature of the
problem. In other cases, it simplv leads to unnecessary duplication of errors in the
reports and makes analvsis more cumbersome.

Keep in mind that designing data quality rules and creating error listings 1s not the
ultimate goal of the data quality program. Rather, it is a siep towards

14520

Chapter ® — Implementing Dxata Quality Rules

understandimg and 1mproving data quality. To achieve that objective we will
eventually need to identify the true causes, nature, and location of the crrors.
Well-designed data qualitv rules clearly separate ermmors of different kinds and
eliminate unnecessary duplication. We will now discuss the main reasons for and

aganst rule aggregation and decomposition,

9.2.1. Rule Aggregation

Let's start our discussion with a simple example of reference rules for the data
maodel presented in Figure 9-1. The data model shows four entities: strong entity
E_ EMPLOYEE PROFILE and three dependent entitics. Each of the dependent
entities has a foreign kev to E EMPLOYEE PROFILE.

Assuming that the database does not enforce referential integritv. we would
immediately use the data model 10 design three foreign key rules. The first rule
requires that each record mn entity E STATUS HISTORY has a corresponding
parent record in E EMPLOYEE PROFILE with the same value of kev attribute
EmplD. The other two rules have similar requirements for entities
E PAY RATE HISTORY and E PAY SPECIAL_HISTORY,

< E_STATUS_HISTORY
E_EMPLOYEE_PROFILE ﬂ—e{ E_PAY_SPECIAL_HISTORY
T J E_PAY_RATE_HISTORY

Figure 9-1; Data Model with Three Foreign Key Constraints

Figure 9-2 shows records violating our data quality rules. Altogether we found
cight records violating these three rules. We clearly did not miss any bad records.
However. there 1s a sipnificant problem with our approach. Observe that seven of
the records have the same value of EmplD equal to 114603, It is pretty obvious

that the rcal error 1s a missing (or mislabeled) record for cmplovee #114603 in the

151

Chapter 9 — Tmplementing Data Quality Rules

main E_ EMPLOYEE_PROFILE table. On the other hand, the record with EmpID
cqual to 483 in table E_STATUS_HISTORY is most likely crroncous. Further
analvsis would show that it 1s miscoded and in realitv belongs to emplovee #484.
So rather than having eight erroneous records, we really have one incorrect and
one missing record — for the total of two.

AL H il

EmplD |[EFDate |ActonCods || | |EmpiD EffDate [PayRals |
114603 S/2719%9 DATA | AT TEEE /57200 25
114603 10A3A%H HIRE |1 477272000 %e0 |

p[483 1101072001 REHIRE 114602 8/8/1999 8820
ELE MEEGS il IEE FIEE .

2 460 82001 B20.0
114602 104/23/2000 Jfa0e

102 FIEREN A

EmolD Eff0ste |Boras ‘

Figure 8-2; Reference Rule Viclations

Why is this distinction so important? From the data quality perspective. there is a
big difference between eight erroncous records and (wo erroncous records.
Further, the missing main employee record in E EMPLOYEE PROFILE table 1s
probably far more significant than having a mislabeled E_ STATUS _HISTORY
record.

Since we designed the three foreign key rules separately, the resultant error reports
do not tell us about this patiern. 'We would have to get lucky to find the crror
overlap between the three rules and recognize its significance., Indeed. while it
seems obvious when laid down side-bv-side in Figure 9-2, remember that in data
quality assessment projects we routinely use hundreds of rules: and many of them
have some overlapping errors.

Obviously, the proper design for reference rules is to combine all foreign key
constraints pointing to the same parent table inlo a single data quality rule. One
crror for this rule will include all orphan records with the same foreign key value.
Such a rule will find two errors in our example: the first one for EmplD equal to
483 allecting one record, and the second one for EmplD equal o 114603 affecting
seven records.

182

Chapter D — Implementing Data Quality Rules

9.2.3. Derived Rules

It 15 natural to ask whether or not rule design should be dniven by coding
complexity and processing efficiency. For example. simple foreign kev violations
can be identified by a rather wivial query, while validating an aggregated reference
rule requires a creative solution. 1 have seen people choose not to aggregate rules
Just because it makes coding more complex,

This logic is wrong. The complexity of programming the rule validation
algorithms should plav no significant part in rule design. Whatever vou save
turing coding will be paid back cxponcntially once vou start analyzing data
quality assessment results. Remember that the value of data quality assessment is
not in the efMiciency ol the rule implementation programs, but in the accuracy and
usability of the data quahity scorecard and detailed error reports.

I alwayvs recommend using derived rales in order to mitigate coding complexity.
Derived rules do not operate on the actual data but rather manipulate and aggregate
the results of other rules. Consider again the foreign key rules example, Rather
than trving to agegregale individual foreign kev rules immediately, we could keep

them separately. Thus we have three primarv foreign kev rules:

e Rule FK E STATUS HISTORY finds three errors.

o Rule FK.E PAY RATE HISTORY finds three errors.

* Rule FK.E PAY SPECIAL HISTORY finds two errors.
Each error identifies an individual orphan record.

Now we design a derived rule REFERENCEE EMPLOYEE PROFILE that takes
all errors from the primary forcign kev rules and processes them into aggrepate
level errors. This derived rule finds and aggregates all errors referencing records
with the same EmpID. Naturally, it will find two errors — one for employvee #483
affecung one record, and the second one for employvee #1 14603 affecting seven
records,

Using derived rules simplifies rule coding and makes rule aggregation decisions
less painful. In essence, derived rules allow the application of common concepts
of structural programming to data quality assessment. We start by decomposing

rules into simple sub-rules that are casy to implement and test. Then we use

186

Chapter ® — Implementing Dxata Quality Rules

derived rules to manipulate the results and build the logically desired aggregated

rulcs.

9.2.4. Error Grouping

More often than not. a single data qualitv rule will find errors of different kinds.
Constder again the aggregated reference rule discussed above. The rule clearly
vielded two distinet types of errors — those with a parent record mussing and those
with a child record mislabeled. It can be very important (o know which error
cause 15 more hikely to make proper judgments about data quality,

The rule specialization view would be to sphit the rule into two sub-rules. Bul can
we determine for sure which error 18 of which type”? The answer is probably no.
In practice, there is usuallv no reliable way to determine the exact nature of each
error, al least not al the beginming of the project and not without extensive
analyvsis. But we have some clues that indicate which cause may be more hkely
for cach error.

For instance, if we find complete emplovment history and pav rate history but no
parent emplovee profile record, we can conclude that the latter is most likely
missing, Similarly, if we only find one orphan pay rate record with no parent
employee profile record and no records with the same EmpID in other tables, we

can deduce that the record is probably mislabeled.

In order to accommodate this important knowledge, we use error grouping-
creation of multiple sub-groups of errors identified by a single rule. For instance.

we can categorize all errors into three groups:
s Errors with orphan records in two or more tables.
* Errors with scveral orphan records confined to a single table.
» Errors with only one orphan record,

This allows us to keep the errors together for casy aggregated analysis. and vet
provides enough decomposition to account for these crrors differently when
building aggregated data quality scorecards.

Error grouping is one of the most important techniques in error analvsis, building
the data quality scorecard, and data cleansing. In practice, rare data quahity rules

187

Chapter D — Implementing Data Quality Rules

Table 9-2 gshows how a simple data quality rule — an attribute domain constraint —
15 stored in the rule listing. The rule has numeric identifier (1) and descriptive
name (DOMAIN . E STATUS EMP TYPE) referencing rule tvpe and the attribute to
which the constraint applies. l1s formal definition allows immediate coding. while
the informal description can be understood and venfied by non-technical users.

Rule #1. DOMAIN.E_STATUS.EMP_TYPE
Formal Definition:

[E_EMPLOYEE_STATUS] [EmployeeType] in ('O ‘RF 'RP, TF, TP
Informal Description:

Employee type must either be O {"occcasional™} or consist of exacily two characters, with the
first one as R ("regular™} or T (“temporary”) and the second one as F ("fulltime™) or P ("part-
time™}. All other values are imvalld,

Tabde 9-2: Simple Data Quality Rule

As we discussed in the previous section, many rules find errors of different types.
We use error groups to differentiate such errors. Each group must be given an
identifier. a descriptive name. and a definition. We do not require distinguishing
between formal and informal descriptions since group definitions are typically

rather simple. Table 9-3 shows two crror groups for rule #1 from Table 9-2.

Rule #1. DOMAN.E_STATUS.EMP_TYPE

Group A, MissingValue. EmployeeType ls Null

Group B. InvalidValue. EmplayeeType Netin {Q, RF. RP, TF, TF}

Table 8-3: Error Groups for Simple Data Quality Rule

Each data quality rulc can apply to onc or scveral attributes from onc or scveral
data entities. We use the term rufe domain o describe a collection of data
clements o which the rule applics. The basic rule listing does not define rule
domains, though the domains can be deduced from the formal defimbions. A more
advanced rule catalogue provides structured information about data entities and
atiributes to which each rule applies. This information can be queried to construct
a list of all data qualitv rules created for a specific subset of data elements. Such
reports allow us to keep track of all data elements validated in a project. Thev are

also invaluable for the purposes of change management.

1%

Chapter ® — Implementing Dxata Quality Rules

aroups. For example, rule #2 has one generic error group that holds all errors.

Rule #1 has two groups, while rule #3 has four groups.

9.4. RULE CODING

We now know how o design and catalogue data quality rules. Through analvsis
and profiling. we have prepared and documented a comprehensive List of rules. It
is time to consider the coding of rule validation algorithms.

It is a natural desire to look for a tool that can be used to quickly and easily
implement all data quality rules. Unfortunately such yearning is totally unrealistic.
No data quality tool on the market today can be used to casily define more than a
tiny fraction of the data qualitv rules. Also. in recent years several commercial
business rule engines have become avanlable, which can be used to implement
some data quality rules. However, these engmes do not target data quality rules
directly and so are nol casv to use. Hopefully, functionality of the tools will
expand in the future. In the meantime, we have to rely on more basic approaches,
such as using SQL or general programming languages, to code the bulk of data
quality rules.

Fundamentally, there are two approaches o coding rule validation algorithms.
The first method 15 to simply write individual programs (in SQL or a programming
language) for each data quality rule. The second method 1s to utilize a table-drnven
rule engine, which will use stored rule parameters o exceute the rules. In practice.
a combination of both works best. In this section we will offer an overview of
these techniques.

9.4.1. Writing Individual Programs for Each
Rule

Consider the attribute domain constraint for attnbute EmployeeType, [t restricts
values of the attribute o {RF, RP, TF, TP, O}, A rather trivial Query 9-1 can be
used to validate this data quality rule. All records returned by the query violate the
rule. and thus we can simply process this querv record by record and register data
errors (we will discuss how to catalogue data errors in the Chapter 11).

193

Chapter ® — Implementing Dxata Quality Rules

Rule #3. DERIVED LAST_DAY_FAID

Formal Definition:
If [E_EMPLOYEE_INFO) [CurEmpStatus] In [A", L)
Then [E_EMPLOYEE_INFO][LastDayPaid] Is Null

Eise [E_EMPLOYEE_INFO} LastDayPald] = Max{[E_PAYCHECK][ENDate])

Informal Description:

“Last day paid"® iz a derived attribute. It is populated with the effective date of the last
paycheck for terminated employees. For all ather employess, ‘last day paid” must be blank.

Table 9<4: Derived Attribute Constraints Tor LastDayPaid

9.4.2. Using Parameterized Rule Engine

It 15 quite obvious that rules of similar ype will have wvery similar
implementations, For instance. all atnibute optionality constraimis can be
implemented by a generic Query 9-3, The query takes three parameters:
EntityName and Atrribute Name reference the attribute to which the rule 1s applied,
while DefaunitValuelist is a comma-separated list of default values used as
substitutes for Null values. Of course, the “OR”™ part of the “WHERE" clause in
the SQL is not necessary when no default values exist. We could write a program
that takes EntinName, AttributeName, and DefawdtValuelList as parameters, builds
the appropriate SOL statement, executes 1l and catalogues all errors. Such a
program could then be used to validate all atiribute optionalily constraints.

SELECT -
FROM Ent: Dphamns
WHERE Al

ributeiame I3 HULL

e e P g
ributelNams IN lE=mfauscValaLIisl}

Cuery 9-3: Generic Statement for WValidating Optionality Constraints

Similarly, all foreign key rules on a single attribute can be vahdated using generic
Query 9-4. It has four parameters: the two names of the related entities
(ParentEntity and ChildEnniny) and the two names of the linked key fields in the
respective entities (ParentRevlield and ChildKevField). We could write a

Lhl

'sou0 12|dwis uownuo
21001) JZ1|EI2UaT AJUO pUR SAUTINOI [ENPIATPUT 1T SASED [ans juawajdun o) 1a12q
Apeardsy st 1] Csmonewmquiod a5uel 1o sysew paeddwod dajoam pue xdpduros
AI2A 2 UED SUIRUWIOP JWOS g "SaFURT anjeA |RI2AJS 10 U0 JO IPEW SUIRWIOP
s sumensuod szudwnied o Asea ose s1 1) (anSopmeD viep 10) andopeivs
e a1 ul paIois aq uea apqe dnyoo] v Jo 151 ajduns v oCsanjea Jo 125 Masasip
B JO dpLW ST URWOP Y1 UdAY, WA JO [[B IZI[RI2UIT 0) 1NDIJIP A[DWANND g
SINIENSUOD aN[EA PI[EA NGLINIE JWOS JZMEIAUAT O) ASE2 IaIEL 511 “20uw)sul 10
"s05E2 a]qssod [[e 1] suonnjos pazieIduad Surwr AT O] ST 9YEISTIL UOLIUOD a1],

"DIYAIHIOAL AJUIRLIDD ST 350D JATIR[2I
(s wersosd pazudaweaed 200 Ul SN udzOp 221RI2u28 ued am 1 o5 s12load
Juawssasse Aenb wmep aming qe w pasnaxr aq uwd swerford pazudounered
OS[Y C2ARY [[IAv 2Av SENGQ JIMIT Y] CIIHM JSNWE DAL JPOD SSI) U 2P0
JUEPLNP2T JO BONRUINIS §1°28In03 Jo “afmueape sy xapdwos 20w pue ssou
awoaaq Aoy ‘sweadosd vonepies pazumaweied o SNt snouea FIRIAUDE
0) An nod sy cdofaasp 0] Iaisea yonw am sweiSord [enprapu) uonsanb
sip o1 Jamsue aduns ou 1202y, sauo pazuddwered [p1ouad doppaop 01 udym

pue sweltold uonepiEs NI ENPLAIPUL 2118 O] UM 51 uonsanb snorwgo uy
sayorolddy om] Buluiqwon ‘g'¢'6

ANFTOEIed a)ru 2ty o1l SadA) png Jusaipp Auew jo simaunaed erodioou

pue swesfosd uonepies apnu pazupwemd Jo 195 2 SUIPUIXD ANUNUOI UED

sapny sarpendy #reg fuppuamapdmy — g ragdeyy

Chapter D — Implementing Data Quality Rules

SUMMARY

In this chapter, we have discussed various techniques for rule design and
implementation along with the architecture of the rule catalogue. Here are the

main takeawayvs from this chapter:

Data precision, granularity, and completeness requirements are all
determined by the way the data is used. Therefore. the first step in data
quality rule design is to determine how the data 1s used and what the
quality requirements arc.

Defining data quality requirements is easy when the assessment project
is initiated by the need 1o understand data quality implication on some
data-driven process or mutiative. It 1s more difficult when the impetus
for the assessment project 15 an overall desire to measure quality of data
in a particular database. In the latter case, the same data elements may
be used for a varety of purposes (including some unknown future uses).
and it may not be trivial to define accurate vs. inaccurate data. In fact. it
is often necessary to design multiple versions of the same rule, onc for

each quality definition.

It 15 rather intuitive that not all data quality rules may be relevant in a
project. e.g. 1t seems logical to only validate the data elements that are
included in the project scope. Further, while there is a benelit in
designing more rules (as we are likely (o identify more errors), there 15
also a downside. Any comparison that involves additional data elements
creates an uncertainly as 1o which one is erroneous if a discrepancy is

observed.

Designing data quality rules and creating error listings is not the ultimate
goal of the data qualitv program. Rather, it 1s a step towards
understanding and improving data quality. To achieve that objective we
will eventually need to identify the true causes, nature, and locahion of
the errors. Well-designed dala quality rules clearly separate errors of
different Kinds and eliminate unnecessary duplication. We use rule
aggregation, specialization, and error grouping to design the best set of
rules.

1498

Chapter ® — Implementing Dxata Quality Rules

A rule catalogue is a group of entities that collectively stores delinitions
of data quality rules. It consists of the main rule listing, rule groups, rule
domains, and (optional) parameters used by the rule engine for rule
execution. A rule listing enumerates all designed data quality rules and
provides their detaled descriptions. A rule group table stores definitions
Tor all error groups. A rule domain specifies data elements (entities and
altributes) affected by the rule.

Fundamentallv, there are two approaches (o coding the rule vahdation
algorithms. The first method 15 to simply write individual programs (in
SQL or a programming language) lor cach data quality rule. The second
method 15 to develop a table-driven rule engine, which will use stored
rule parameters to execute the rules. In practice, a combination of both

15 most effective.

149

Chapter ® — Implementing Data Quality Rules

on

Urheberrechtlich geschiitztes Malaria

CHAPTER 10
FINE-TUNING DATA QUALITY RULES

The objective of the data qualitv assessment is to identifv all data errors,
Considering the volume and structural complexity of a typical database. this is a
daunting task, OQur optimism in tackling the problem should certainly cause any
normal person to question our sanity. The reason we accept the challenge has
nothing to do with our state of mind or vouthful abandon. Instead, we possess the
most powerful tool - data quality rules. They can be designed and implemented
by hundreds: they can validate millions of data pieces in minutes: and they can
find even the sncakiest data errors!

However, there is a calch. 1t 1s very hard to design perfect data quality rules. The
oncs we come up with will often fail 1o spot some crroncous records and falsely
accuse others, They may not tell you which data element is erronzous even when
the error 15 identified. They mav identily the same error in many dilferent wavs.
This imperfection, 1f not understood and controlled. will overrun and doom anv
data quality assessment elfort.

But do not despair — there is a solution! Most rules can be “fine-tuned”™ to near
perfection. This problem can hardly be addressed at the onset of the project.
Instead, we start by designing and implementing the most complete set ol data
quality rules within the project scope as discussed in the last chapter. We then
analvze the results to find and eliminate rule imperfections as best we can. This
process of rule fine-tuning 1s the subject of this chapter.

* Section 101 offers an overview of possible rule imperfections.
Section 10.2 mtroduces lour steps of the rule ling-luning process.
» Section 10.3 describes how to identify rule imperfections.

» Section 104 shows how to analyze rule imperfections and find patierns
in them.

201

Chapter 10 — Fine-Tuning Data Quality Rules

= Scction 105 discusses methods for climinating false positives - rule
violations that under close examination prove to be correct data.

» Section 10.6 presents techniques for dealing with false negarives — errors
missed by all data quality rules.

» Section 10,7 outlines ways for using error groups to eliminate situations

when crrors of different tvpes are found by the same rule.

10.1. RULE IMPERFECTIONS

Data quahity assessment rchies on our abality to use data quality rules to accurately
identify all data errors. By that we mean finding and identifving each and every
erroneous record. However, this proves to be a major challenge. Data quality
rules often fall short in at least three departments.

First, the fact that the data are tested by hundreds or even thousands of data quality
rules does not guarantee that all errors are identified. The data might conform to
all applied rules and still be inaccurate, With the increase in the number and
varicty of the rules more crrors will be found. Yet the question remains: “How
many errors did we miss?”

Secondly. while well-designed rules can wdentily data errors en masse they will
often vield numerous false positives. Without a systematic approach to weeding
oul the false positives, they tend to overrun the error reports and doom the entire
cffort of data quality assessment.

Finally, most data quality rules test several data clements apainst one another.
When a rule violation is identified, it is often not obvious which of the data
clements is incorrect. Knowing the exact location of the error is critical since the
qualitv of different data elements mav have different importance. The error may
be eritical in one of them but neghgible in the other one.

Consider. for example. the attribute redundancy rule for HireDate attribute. It
requires the emplovee’s onginal date of hire (HireDate in E_EMPLOYEE_INFO
table) to coincide with the cffective date of the carlicst record in the employment
history (EffDate intable E_ STATUS _HISTORY).

Chapter 10 — Fine-Tuning Data Quality Rules

Figure 10-1 shows relevant data for two employees. The lefl panels show
HireDate values while the right panels show cmplovment history data in
E STATUS_HISTORY table.

False
positive
_|EwalD_TEWD ActenCade] ConparyCode |
= .— - False
|- i HIFE Na :
relate 1s 61311524 E _ 18 1XmWATH DATA 1T} || | negative
1al1 FIEECIE | I A

Figure 10-1; Examples of False Positives and False Negatives

Obviously data for emplovee #11226 (top tables) violates the rule and thus will be
identified as an error, while data for emplovee #18 (bottom tables) will pass the
rule. Now let's compare these results with the truth (assuming that we have done
research and found out when each emplovee actually was hired).

o Emplovee #11226 15 actually part of an acquired company (coded as GB
in CompanyCode field). Emplovment with this acquired company does
not count for anv HR purposes. Thus ecmplovee #11226 was assigned
HireDate as of the acquisition date 9/15/1996. The onginal emplovment
history with the acquired company was loaded into the
E_STATUS_HISTORY table during data consolidation for
informational purposes only. Our rule does not account for this special
case and produces the [alse positive.

« Emplovee #18 has an original hire date recorded as 5/20/1996 in both
HireDate Nield and emplovment history. Our rule will, therefore, not get
tripped. In fact. none of the designed rules identifics it as crroncous.
However. the data is wrong! The actual date of hire is 6/3/1996.

These are verv important deficiencies. Our rule is simply inaccurate and must be

improved belore we can rely upon its results to evaluate the data quality.

Chapter 10 — Fine-Tuning Data Quality Rules

Figure 10-2 shows two more data examples in the same format. Data for both

employees is truly inaccurate and it does violate the hire date attribute redundancy
rule. Thus the rule correctly finds two emors. However, it does not indicate which

of the dala elements is erroneous.

Errar
Tape 1
; OYEENED = [T X N = £ STATUS_HISTORY Ty
E |HireDiate Evgll | EllDae [AstenCads] CampanyCods |
M Bk | TAThAES %@ " HIFE BC rlf;ll-rl:u-E
. — 12/BN3¥E RETIRE BC. Pe
[TrueHireDateis GHE1584 | 4505 709K REHIRE BC
4506 4N/20M RETIRE BC
10t G 14 Mje/ofm iz

Figure 10-2: Examples of Errors of Different Types Found by the Same Rule

MNow, imagine again that we have conducted research and found out when each

emplovee actually was hired. Below are our findings:

Employee #3000 was actually hired on 5/11/1998. However, his data
were not entered mnto the svstem until 5/13/1998. Dunng data entry the
initial employment history record automatically defaulied to the then
date, and the HR administrator forgotl to make the correction. Therelore
in this case, the ecrroncous data clement i1s the emplovment history

record.

Emplovee #4506 was actually hired on 6/16/1984 and worked for 8.5
vears until retiring on 12/26/1992, all in accordance with employment
history. Two vears later she returned as a temporary emplovee and
worked from home until 4/1/2001. Due to a software glitch. HireDate
value for all rehired retirees was changed to their rehire date. Thus
HireDate for emplovee #4306 was reset o 7/17/1995 and became
incorrect.

In this example the rule correctly indicates presence of an error, but it cannot tell
which record is incorrect. It may be acceptable for preliminary data quality

204

Chapter 10 — Fine-Tuning Data Quality Rules

assessment, but this must be improved before a serious data cleansing initiative
can be undertaken. Even for data quality assessment, such imprecision may be
significant. Imagine. for example. that we have a process that uses HireDate but
nol emplovment historv. If we are asked whether or not the data quality is

adequate for this process, we cannol provide a rehable answer.

10.2. RULE FINE-TUNING PROCESS

The examples of rule imperfections presented in Figures 10-1 and 10-2 make data
quality asscssment results incomplete and partially inaccurate. The objective of
rule fine-tuning is to identify such imperfections and enhance the rules as much as

possible.

Rule fing-tunming rehes largely on manual venificaton of the sample data and
companson of the results with the errors identified by the data quality rules. The
discrepancies must be addressed through rule redesign, error grouping, and other
techniques. Any rule imperfections that cannot be eliminated must at least be
understood and accounted for in the data quality scorecard. The process of rule

fine-tuning involves four steps shown in Figure 10-3.

Identifying Anslyzing Rule Handling
Ruls —» Imperfection —» —» Hemaining
Imperfections Patterns Issues

+

Enhancement

Figure 10-3: Steps in Rule Fine<Tuning Process

The objective of the first step is to identily rule imperfections, The second step is
devoted to the analvsis of our findings and the search for patterns. On the third
step we enhance the rules in order to eliminate as many flaws as possible. These
three steps are repeated iteratively until we are satisfied with the results, cannot
make further improvements, or simply run out of resources. Ideally at that point
we have a set of rules that accurately identify and locate each and everv data error.
In reality we usually stop short of this objective. On the final step we estimale
percentages of residual false positives and false negatives. as well as quantily other
error uncertainties.

Chapter 10 — Fine-Tuning Data Quality Rules

cet more errors validated with the same amount of work. Secondly, now experts
also look lor errors that the data quality rules possibly missed. Finally, experts do
not need to understand anything about the rules. Instead, theyv simply follow their
normal data validation routine — indeed most data experts have to validate data

from time to time as a part of their evervday work.

In Fact, an cven better 1dea 15 to have data experts cleanse the data from the
selected sample. At this point, 1t will take them no more work (0 make the
corrections once the investigation is done. As a result, the work 1s not just a step
in our rule fine-tuning exercise, but simultancously a data improvement effort.
Under this banner vou may find it easier to conscript the data experts to help in the

project.

Of course, once the experts are done with data validation we can simply compare
their findings with the crrors identificd by the data quality rules and producc hsts
of confirmed errors as well as any discrepancies. This 15 the same information we
would have obtained il the data experts were direetly validaung the error reports in
the first place.

10.3.2.How to Select Validation Sample?

The second question is. “How to select subjects for manual validation? Of
course, it 1s impractical to have an expert verify every error. Fortunately, it 15 also
unnceessary. All we need 1s to validate a rather small sample. A sample made of
a few hundred subjects is typically enough to identify all rule imperfections that

Impact many crrors,

Indeed. imagine a data quality rule that inttially yields 100 false positives out of
LOOU errors (10% rate). It can be shown statistically that after reviewing only
seven sample errors, the odds of finding a false positive are over 30/50. The odds
grow to over 9 against 1 after only 22 samples. Thus, for a rule with a reasonably
large fraction of false positives. we only need to vahidate a small sample before we
find a representative problem. Since rule imperfections are tvpically syslemic.
finding even one or two false positives would often be enough to see the pattemn,

enhanee the rule, and eliminate the problem.

On the other hand, 1if a rule has 10 false positives out of 1.OU0D errors (1% rate). 1t1s
unhkely that we will hit one of them even from a large sample, Indeed, we need

v

Chapter 10 — Fine-Tuning Data Quality Rules

70 errors reviewed to have a 50/50 chance of hitting one false positive. This
basicallv means that we arc unlikely to identifv such minor problems in practice.
The good news is that data quality assessment does not reach for the stars with
ultimate perfection. There is not much practical difference between having 1,000
or 990 ¢crrors. So even 1f our rules have a few false posilives and false negatives
here and there, we do not need o be concerned with the overall resulis,

The sample size 15 typically perceived as an all-important question on many
projects and 15 covered in mysteries, For instance, il 15 a common misconception
that the sample needs to be proportional to the size of the database. It 1s also a
misconception that mathematics offers an exact formula for optimal sample size.
The tvpical result of these misconceptions is that project teams end up with a much
bigeer sample (and thus much more work)} than really necessarv. Even morc
disappointing is that vou can get marginal results from the verification of a large
sample il the sample records are nol properly selected.

The truth is that how the sample is selected is far more important than how big it
15, For now let’s ignore the question of the uliimate sample size. Instead, we will
address the issue of how to select subjects into the sample, Fundamentally, we

need a sample that meets two criteria:

o It allows us to make safe conclusions about the numbers and tvpes of
maccuracies in the data outside of the samples.

 Itvields as much information as possible about rule imperfections, so we
can use il lo fine-tune the rules,

The second objective i1s far more important. Indeed, if we find rule imperfections
we stand a good chance of eliminating most of them. Our error reports will then
be very accurate. and estimating the number ol residual inaccuracies becomes a

somewhat mute point.

The first objective 1s achieved by using a random sample. 1.e. when the selection
criteria are not biased towards certain tvpes of subjects. An ideal method uses a
computer-generated randomizer to pick sample subjects. This principle is rarely
followed in practice. For instance. | often sce sample selection delegated to the
data experts, who are usuallv biased towards what theyv know about the data and
tend to select known “special cases.” Their samples. then, do not randomly

08

Chapter 10 — Fine-Tuning Data Quality Rules

represent all data problems and are of limited value. While it actually helps to let
the experts pick sample subjccts in addition to the bascline sample, the baseline
itself must be created more randomly.

The second objective 1s achieved by using a representative sample. 1.e. a sample in

which all relevant types of subjects are represented. But how do vou identify
rclevant types of subjects? In this context. subject types are defined as groups of
subjects with similar tvpes of errors. And of course (as is tvpical n all methods
relying on sampling), if we knew all about error types we would not need to build
the sample and work on the rule fine-tuning in the first place. So this definition
does not help us.

Mathematical statistics suggests that a large enough random sample would most
certainly be representative due to the law ofl large numbers, but we do not want a
large sample. Further, a sample sclected totallv at random will be biased towards
larger groups of errors. This would work well if the errors themselves were
random, but in reality most errors are systemic. Thus we only need to find a few
rule imperfections of any kind o make general conclusions. The bottom line 15
that we need a few samples of every kind, rather than a lot of samples from a few

rules with the majority of errors.

Let’s say we want to end up with 10 sample subjects with errors for each rule.
How can we build such a sample? It scems trnivial on the surface - just sclect
randomly 10 subjects for each rule. right? Wrong! This would work if there was
no overlap between populations of subjects with errors found by different rules.
However. in reality many subjects have multiple errors. And so when we sclect 10
samples from rule #1, one or more of them will likelv have errors in other rules,
say rule #2. Then if we selected 10 more subjects from rule #2, we would end up
with 11 in total, rather than 10. In fact, if the overlap between every pair of rules
was 10% and we selected randomly 10 subjects for each rule. we would end up
with about 20 samples for each rule, rather than 10, This is actually good news. [t
means that we need a smaller overall sample than imtially thought. In other
words, 10 get 10 samples from 30 rules we tvpically need much less then 300
sample subjects, likely as few as 150-200,

The actual algorithm for selecting 10 sample subjects with errors for each rule is
rather tricky. In fact, there is no exact method. | use a simple. rather informal

o9

Chapter 10 — Fine-Tuning Data Quality Rules

10.5. ELIMINATING FALSE POSITIVES

Consider the false positive example from Figure 10-1 (shown again in Figure 10-
4). A data expert could clearly communicate the reason why the error we found
for emplovee #11226 is a [alse positive. The emplovee is actuallv part of an
acquired company (coded as B i CompanyCode ficld), and emplovment with
this acquired company does not count for anv HR purposes. The HireDate is
corrcctly sct to the first day of the employment with the parent company. The
emplovment history shows previous employment with the acquired company for
information purposes. In this case HireDate simply does not have to maich the
clfective date of the carliest record in the employment history, Rather it must be
set to the first dav of emplovment with the main parent company (or one of its

original subdivisions).

E Hi |
M 1 151 | HMRE | SGR n fAcquired
-.—‘EHH_—.—(.Em_—l COImpan ¥
51 REHIRE
___TEEM Bs |
1ol o=inlm CIE] L

Figure 10-4: False Positive Example

We can now try to find the pattern that can be used to enhance the rule. First we
need to determine all of the acquired companies that fall in this category and
idently their company codes (found in the CompanyCode field). Secondlv, we
need to determine an algorithm for vahdating the value of HireDate for all

emplovees from these acquired compamies.

The expert mav suggest using company acquisition dates, which can be found in
COMPANY table. For instance. the acquisition date for company 8 is listed as
9/153/1996. However, we cannot trust the experts blindly. No disrespect, but 9 out
of 10 general rules suggested by data experts are wrong. It is not for the lack of
knowledge, but rather because data experis are used to thinking about individual
situations rather than in terms of general rules.

To check the acquisition date theory we could start by running a report showing
HireDate value for all emplovees whose emplovment starts with an acquired

Chapter 10 — Fine-Tuning Data Quality Rules

company. Based on the expert’s opinion, we expect to find all emplovees from
(8 to have HircDate of 9/15/1996. What we might actually find is that only about
half of them do. Another 30% have HireDate of 11/1/1996, vet a smaller group
has HireDate of 5/15/1997: and some employees have daltes in between.

Armed with this knowledge. we go back 1o our data experts and promptly learn
that emplovees [rom the company B were transferred in stages. thus the many
dates. The same is true for several other acquisitions. This situation is very
tvpical of working with data experts. They have a tremendous amount of
knowledge but usually cannot summarize it. You have to ask the right questions to
get the right answers. and finding exceptions from the rules is the best way to ask

the right questions.

So now we have determined that HireDale for emplovees [rom acquired
companics does not have to fall on the acqusition date listed in COMPANY tablc.
What do we do now? One suggestion 1s lo simply assume that anyv of the dates
during the acquisition period are aceeptable. However, this is nol a very accurale
rule il the period extends over several years. We can casily miss many errors,

Data gazing gives us another allernative. A look at the data i Figure 10-4 suggests
that the acquisition was coded in the employment history as one-day termination
on 9/14/1996 and rehire on the following dav. We can use this pattern to match
HircDate against the date of the REHIRE record. A report again is in order,
checking that the technique was used for all acquisitions. More likelv than not, the
report will show some further kinks that require more investigation. 1 love my job!

The bottom line is that rule fine-uning 15 a process that takes much data analysis
and mvestigation. It also typically results in adding a lot of speetal logic to the
rules to make them more accurate. The further vou go, the more precise will be
the data quality assessment. Fortunately, with reasonable efforts it is almost

always possible to make rules quite precise,

With the best effort, it is often inevitable that some rules will still produce false
positives. Therefore, we will alwavs have somewhat inflated error counts. To
adjust for this phenomenon we can estimate [alse positive fractions and use them
when tabulaung agegrcgate data quality scores (see Chapter 12). The best estimate
for the false positive fraction 1s the ratio of the number of remaining false positives
in the sample among all reviewed samples. In other words, if we validated 20

214

Chapter 10 — Fine-Tuning Data Quality Rules

Now we can use this formula to figure out the desired sample size. Say we have
taken a sample of 15 errors identified by a rule and found no falsc positives (or at
least we eliminated all that we found by fine-tuning the rule. which is the same
thing for us). Now, we do not know how many lalse pasitives this rule really has,
but we can bet 8 against 2 that the [raction of false positives among all dentified
errors 15 no more than 10%. These are good enough odds for me. OF course, the
possibility of having even 9% false positives may be too unsettling. Then we need
a slightly bigger sample. For instance, a sample size of 31 gives us the same 8
against 2 odds that the fraction of false positives among all identified errors is no
more than 5%, We can tune the sample sizes 1o our desired level of comfort or

simply accept the comfort level provided by a certain sample size.

Onc important thing to kcep in mind is that this formula docs not guaraniec
anylhing but only gives vou the odds. 1f we apply the same logic to many different
rules, it will work for most but not for all, Indeed, il vou play a game with 8
against 2 odds over and over again, vou will still lose sometimes. Thus, based on
the formula we can sav that most rules will have no more than 3% of false
positives, but some will probably have over 5%. At the same time, many will have

way less than 5%,

At the end of the dav, let’s remember that we are dealing with good records falsely
accused by our data quality rules of being erroneous. Having a few of these is not
as bad as having erroneous records sneaking in among the good citizens. S0 we
are safe here even if we muss a few false positives. Once we fimish data quahty
assessment and proceed to data cleansing, we will inevitably find these
perpetrators.

10.6. HANDLING FALSE NEGATIVES

False negatives are data errors not found by anyv rules. Those are the most
dangerous and sneaky criminals. Examples of [alse negatives arc often identificd
during sample vahdaton, The challenge 15 o design new data quality rules that
will catch the missing errors, Sometimes the data experis can offer suggestions by
describing how they were able to identify these errors, In other cases, data gazing
helps find something unusual n the data. A common technigue 15 to find an

Il6

Chapter 10 — Fine-Tuning Data Quality Rules

10.7. HANDLING UNCERTAINTY IN ERROR
LOCATION

Consider the two examples from Figure 10-2 (shown again in Figure 10-5), Both
are legitimate errors. However, in the first case HireDate is correct, while the
effective date of the first emplovment history record is erroneous. In the second
case emplovment historv is accurate. while HireDate 1s incorrect.

Sample validation will idenufv this situation. Further mvestigation would
hopefully provide the explanations. The first situation is an example of “delaved
data entry” mto the svstem. We can adentily all similar situations rather
accuratelv, though not with 100% precision. An adequate algonthm would look
for all sitwations where HireDate precedes cffective date of the earliest
employment history record by less than two weeks.

The second situation is also rather simple. Due to a sofltware glitch, HireDate
value for all rehired retirees was changed to the rehire date. We could casily
identify all rehired retirees and see that this is true. If fortunate enough to be in an
organization that does formal softwarc maintenance tracking. we may ¢ven be able
to include in the rule the period of time for which the glitch existed.

[GEL] Simall
3 . _4fnes DATA difference
102 =R
FE T ARETIRE™, Rehired
= :-'ﬁ%—j Retires
1o} WignfE el D& A

Figure 10-5: Examples of Errers with Different Locations

And what il we cannot find good error patterns? Ofien a good technique is to find
additional data elements related to the data compared in the rule. We can use such
data elements as “tie-breakers,” who decide which of the data elements are more

Chapter 10 — Fine-Tuning Data Quality Rules

Once we identify patterns, the next step is to enhance the rules. We can split them
into sub-rules, but a better solution 15 to introduce error groups. In our casec we
have three groups:

» HircDate precedes the earliest employment history record by less than
two weeks.

. HircDate coincides with the effective date of the REHIRE record in

employment history for a rehired retiree.
¢« All other errors.

Note that we alwavs have the last “unclassified” error group. Sample review by
experts should always be focused on the errors from this group. As we lind more

palterns. we continue reclassifving crrors from that group into the known patterns.

The rcader may ask. “Aren’t we going to far”” Indeed a more narrow view of data
gquality assessment 15 simply o denuly errors, not explain their causes.
Invesugating the nature of the errors belongs to the data quality improvement
initiative. This is partially true, which is why I defer further discussion of the error
patterns and error grouping {o my future book on data cleansing. Suffice it to say
here that if you can {ind some error groups with different emor tvpes, it 15 very
usclul to create them.

It 15 also vsclul to estimate how often cach of the records affected by a rule 1s
erroneous among all identified emors. For example. sav we reviewed 20 sample
crrors from the HireDate rule and concluded that in five of them HireDate was
erroneous, while i the remaining 13 the carbiest employvment history record was
iaccurate. Then our best estimate for the probability that HireDate 15 mcorrect,
given the rule violation, is 5/20 or 25%, This information can be used (o build a
more accurate data quality scorecard. We will discuss the topic further in the next

two chapters.

Chapter 10 — Fine-Tuning Data Quality Rules

SUMMARY

In this chapter we have discussed the process of rule fine-tuning. The purpose of
fine-tuning 1s to 1dentify and elimimate various rule imperfections, which generally
fall into three main categories:

» False positives are rule violations that under a close examination prove
to be legitimately correct data.

o False negatives are erroncous data not found by any data qualily rules.

Uncertainties in error location are situations when a rule compares two
or more data elements and identifics an inconsistency but cannot tell
which of the data elements is incorrect.

The process of rule fine-tuning mvolves four steps. The objective of the first step
15 1o identily rule imperfections. The only wav (o accomplish this 1s through
manual venfication of the sample data by the data experts. The sccond step 1s
devoted to the analysis of sample verification findings and the scarch lor patterns.
On the third step we enhance the rules in order to ehiminate as many flaws as
possible, Tyvpical enhancements include narrowing the rule scope and adding error
groups. In addition. new rules sometimes must be designed. and some originally

designed rules are eliminated.

These three steps are repeated ileratively until we are satisfied with the resulis,
cannot make further improvements, or simply run out of resources. Idcally at that
point we have a set of rules that accuralely identify and locate each and every data
error. In reality we usuvally stop well short of this objective. On the final step we
estimate percentages of residual false positives and false negatives, as well as
quantify other error uncertainties.

L
(E¥)
=

CHAPTER 11
CATALOGUING ERRORS

The main objective of data quality assessment 1s (o identifv erroncous data. To
that end we design numerous data quality rules and use them to produce an even
greater number of lengthy crror reports. While it scems rather simple to store
these error reports, the task proves quite challenging in practice. I have seen many
data quality assessment projects successfully produce hundreds of error reports
and get subsequently totally lost in the meta data jungle. The sight of a 300-page
printout or even of an clectronic listing with 20,000 lines of ermor messages will
make most data quality professionals duck for cover.

To get any significant value out of the data quality assessment imtiative we need a
well-structured. quervable electronic error catalogue, An ideal error cataloguc
would support the following functionalities:

o Agpprepate, filter, and sort errors across various dimensions,
» ldentifv overlaps and correlations between errors for different rules,

o ldenufy data records alfected by a particular error or a group of errors,
and

» Identify all errors for a particular data record or a set of records,

This functionality can onlv be achieved if the error catalogue stores all error
reports in a relational structure that links errors with rules that identify them and
with erroneous data records themselves. In this chapter, we will discuss such

architccture.
* Section 11.1 introduces basic crror calalogue concepls.
* Section 11.2 presents methods for tracking potentially missing records.
« Section 11.3 introduces an important concept of error locations.
 Scction 1.4 discusses error groups.

» Scction 11.5 describes the mechanism for subject-level error tracking.

1-&
(%)
L=

Chapter 11 — Cataloguing Ervors

» Section 11.6 presents the structure of error messages,

11.1. ERROR CATALOGUE BASICS

An error catalogne is a group of entities that collectively stores information about
all identified data errors. An error catalogue is the core part of data quality meta
data. | will start the analysis of the error calalogue architecture from a simple
cxample, Consider the attribute domain constraint described in Table 11-1.

Rule #1. DOMAIN.E_STATUS EMP_TYPE

Formal Definition:
[E_EMPLOYEE_STATUS][EmployeeType] In (Q', 'RF, ‘RF', TF, TP
Infarmal Description:

Employee type must elther be O (“occasional™) or consist of exactly two characters, with the
first one as R ("regular’} or T ("temporary”) and the second one as F (“fulltime”) or P ("part-

time"). All other values are invalid.

Table 11-1: Attribute Domain Constraint for Employee Type
Figure 11-1 shows two records in E EMPLOYEE STATUS table with invahd
values of EmploveeType atiribute. Rule #1 from Table 11-1 will identify both as
erroneous, How do we record these errors in the error catalogue”?

"= E_EMPLOYEE STATUS

AecordD |EmglD Efffate |EmplopesSistus /[EmplopesType |
T 36435 10/26/1938 A RFT /
L 41873 9/28/2001 i TN
10f2 d] 5] B fim | FigureS-£§ IFLTR| [PART|

Figure 11-1: Records with Erroneous Employee Type

First of all, cach error must be registered in a general error listing. At a bare
minimum each entry in this listing must be given a unique error identifier and must
also reference the data quality rule that found the error,

Additionally we wanlt to be able to identify the data records where the errors are
found. Consider the crroncous records in Figure 11-1. Each can be identified by

the combination of the table name (E EMPLOYEE STATUS) and the value of

=
b
L

Chapter 11 — Cataloguing Ercors

the primary key field EmpID. In general, we can reference any record in the
databasc by a combination of its table name and the value of a unique identity key.
Such reference reliably distinguishes all records. The question becomes: which
identity key Lo use?

The simplest solution is to add a surrogate key attribute to all tables and use it for
rcferencing. Table E EMPLOYEE STATUS in Figure 11-1 has such a surrogate
key field named RecordlD. It is actually convenient to have a common name for
the surrogate kev in all database tables. Now we can eastly reference all erroneous
records using a simple identity key made up of the table name and RecordlD
value. For instance, records in Table 11-1 are referenced as

VE EMPLOYEE STATUS; 1662} and {£ EMPLOYEE STATUS; 1904},

Figure 11-2 shows basic error catalogue architecture made of two tables. ERROR
table simply lists all crrors and provides refcrence (o the data quality rules that
found cach error. ERROR_RECORD table references actual erroncous records. It
must be a separate table because a single error will often alfect multiple records.

TFueD [Fuehore |
_Up[1 __1DOMAINE_FROFILE_EMPTYFE
II:A 2 FKE_STATUS_HISTORY

3 | DERIVEDLAST DAY_PAID

o e BB T B e e T R WA T i L.

ety | 'R | 1S

ste ___|EmplopeeStatus | Empk
H99 A

o B L. A < |

o2 Ml nlm | Fic [FLTR[[PART [

Figure 11-2: Basic Architecture of the Error Catalogue

Let’s look at the way the errors are registered in Figure 11-2. Rule #l {inds an
erroneous value RET in EmploveeType for emplovee #36495. It logs a new entry
with a unique ErrorlD equal to | into the ERROR table. A linked entry 1s made in

225

Chapter 11 — Cataleguing Ervors

the ERROR_RECORD table. Tt has the same ErrorlD and identifies the erroneous
reccord as coming from E_EMPLOYEE _STATUS table with RecordID equal to

1662, The trace 1s now complete. We can use it to locate all erroneous records.

The reader may wonder, “Why are we using a surrogate key to reference erroncous
records?” After all, most data tables have a primary kev. which can be used for
referencing. However, using actual primary kevs may be undesirable for several
reasons. First of all. primary kevs are not alwavs enforced by the databases (we
even include identity rules to check primary key violations in the data quality
assessment). When kev duplications are possible, the kev cannot be used for
reliable record referencing. Secondly, some data tables may have composite keys
made ol multiple attributes with varving data tvpes. Using values of such kevs in
the crror catalogue presents significant challenges. This 1s why 1 recommend
using surrogate kevs in place of actual primarv kevs, even when the pnmary kevs
CXIst.

Surrogate kevs are casy 1o create when data quality assessment is done in a staging
arca, rather than agamst the production database. | alwayvs recommend using a
staging arca when there are no plans to execute data quality assessment
recurrently. On the other hand, when data quality assessment is done on a regular
basis, we often have to run the rules directly against the production database; and
thus we are stuck with the actual structure of the database. We will discuss this
situation in detail in Chapter 14, which is dedicated 1o the specifics of recurrent
data quality assessment.

11.2. RECORDING MISSING RECORDS

Now consider a slightly more complex foreign kev constraint for
E STATUS HISTORY entitv (descnibed in Table 11-2). Any time an orphan
record 15 found in E STATUS HISTORY 1able with no matching record with
same EmplD in E_ EMPLOYEE_PROFILE table. an error must be recorded.

Chapter 11 — Cataloguing Ercors

Rule #2. FK.E_STATUS_HISTORY
Farmal Definition:

FK(IE_STATUS_HISTORY][EmplD]) = [E_EMPLOYEE PROFILE] [EmplD]
Informal Description:

Every record in the employment status history must have EmplD referencing an existing
employee listed In the main employee profile table,

Table 11-2: Foreign Key Constraint for E_STATUS_HISTORY

Figure 11-3 displavs data violating this rule. It shows two records in
E STATUS _HISTORY table for emplovee #114603. There is no record of such
an emplovee in E EMPLOYEE PROFILE table. The foreign kev constraint (rule
#2 from Table 11-2) will identify the error. How do we record it in the error
cataloguc?

The challenge here 1s that the error can be explained cither by erroncous values ol
EmplD in E_STATUS_HISTORY records or as a missing record with EmplD
equal to 114603 in E_ EMPLOYEE_PROFILE table. We already know how to
reference E_STATUS _HISTORY records in the error catalogue (by using table
ERROR RECORD). But how do we log a possibly missing record” We cannot
reference what does nol exist! Yel we cannot ignore the possibility. Missing
records are as umportant as crroncous records and must find then way into the
error reporis and. ultimately. the data quality scorecard.

542741999 DAaTA
ABA3ASHIRE

| FictHame
; EMOGENE 197
EURK HRAMNMNE 111847955 e
CAUM AUDOLF 2anEs
AN |MORRIS 271983 ko
ulesinfm | | [SAT [ALL | -

Figure 11-3: Recards with Foreign Key Viclation

4
I
' |

Chapter 11 — Cataloguing Ervors

The solution necessitales the introduction of an additional table into the error
catalogue. The new ERROR_RECORD_MISSING table 1s used to track possibly
missing records. Figure 11-4 illustrates the use of the new table.

Rule #2 1s applied to the data from Figure 11-3 and finds a foreign kev violation
for records with EmplD equal to 114603, It logs the error with unique ErrorlD
cqual to 2 into the ERROR table. Two linked entnies arc made mto the
ERROR_RECORD table. They reference the two orphan records (RecordlD
#33349 and #33350 in table E STATUS HISTORY). In addition, an entry is
logged into ERROR_RECORD_MISSING table indicating the possibility of one
record missing in E EMPLOYEE PROFILE. We can now use the error catalogue

to locate all erroneous records and also to count potentially missing records.

i1

| RecordiD || RecordD |EmgiD |EfiDate | ActierCode

“[E STATUS FISTORY | 33348 —d0T 33343 | 114603 | 5/2719% DATA
3 E_STATUS_HISTORY 33350 - 114603 10/13A971 HIRE

NEEICE _ wiwlpl[T

Figure 11-4: Errar Catalogue Incorporating Mizsing Records

11.3. ERRORS AFFECTING MULTIPLE
RECORDS

Most data quality rules affect several records, oflen in several tables. Thus when
an error 1s found. one or more of these records could be erroncous. We must log
all potentially erroneous or missing records in the error catalogue so they can be
later identified for further analysis. For instance, for the foreign key error shown
in Figure 11-4. we catalogued both orphan records and a potentially missing parent
record. Now when we decide 10 run an error report or build the data quality
scorecard, all possible errors will be accounted for.

14
I
= =

Chapler 11 — Catalegzuing Errors

But what if we conclude that 75% of the time the foreign key violation is caused
by a missing parent record, and 23% of the time orphan records are mislabeled?
We catalogued them all. but how do we make sure that the errors are properly
counted? Indeed, a query tallying all catalogued records will count three. 1In
reality we have two erroncous records with probability 0.75, or one missing record
with probability 0,23, Under no circumstance do we have three erroneous records.

This problem will persist for most data quality rules. We will inescapably
overgstimate the number of erroneous records. What we need to do 1s somehow
assign error probability factors to the potentially erroncous records.

The first solution that comes to mind is to add ErrorProbability attribute directly to
the tables ERROR_RECORD and ERROR_RECORD MISSING and populate it
during the rule execution. But it is very inelficient. First, we end up storing the
same value with every crror. More importantly, 1if we later concluded that our
(.75/0.25 probabilities were off and 0.9/0.1 were more precise, we would be
forced to rerun the rule.

The proper solution is to introduce the concept of error locarion that marks
records tn similar circumstances. Error locations must be selected in such a way
that for all records from the same location the probability to be in error is the same.
For instance. a foreign key constraint would have two error locations:

o Orphan record.
« Missing parent record.

Figure 11-53 incorporates locations into the error catalogue from Figure 11-4. The
list of locations along with error probabilities for each one is stored in a new table
RULE ERROR LOCATION. We then record locaiion for each erroncous record.
Orphan E STATUS HISTORY records are properly assigned location A, while
polentially missing record in E EMPLOYEE PROFILE table is designated with
location B. We do not need to store error probabilitics in ERROR_RECORD and
ERROR_RECORD MISSING tables as these can be accessed by queries, but we
show them in Figure 11-5 for ease of understanding.

And what if we concluded that the error is alwavs indicative of a missing parent

record in E_ EMPLOYEE_PROFILE table? Then, of course. we do not have to
log orphan E STATUS HISTORY records into the error catalogue. However, if

T

Chapter 11 — Cataloguing Ervors

it was desirable to catalogue such records (for instance for reference purposes Lo
know which records were used by the rule), we would list them under a special
location “X" assigned error probability 0.

== RULE

EnuF'rnb |'

| Recorclly

STATUS_HISTORY I1348
QET[EJ-II’S'IDHH% B <« - | 'II.IE*
R L7

j. ;'.1'-"-:;'5_ gy el Tl e e S
=0 ocationll) | TableN ame | MistingC
----- DT 125 ¢ onovee prorie

eI

Figure 11-5: Error Catalogue Incarporating Error Locatlons

Keep in mind that the assignment of records to locations is driven by their
likelihood of being in error, not by their physical location. For example. consider
the aggregated reference rmule that vahdates all forcign kevs referencing
E EMPLOYEE PROFILE entitv. A single error will aflect records in all
dependent entities with the same value of the kev attribute EmpID missing in the
parcnt E EMPLOYEE_PROFILE entity. This rule will still have two crror
locations. Indeed. we have only two possibilities: either a parent record is missing,
or all child records are mislabeled. Therefore location A can be used (o refer Lo all
orphan records in all dependent entitics.

230

Chapter 11 — Cataloguing Errors

Consider another example, State-transition rules limit valid pairs of slates in
sequential records. Each error will therefore impact two records in the same state-
dependent entitv. Analvsis mav indicate that the first record 1s more likelv to be
correcl, sav in 90% ol cases, than the second. To incorporate this we would

introduce two error locations:
. First {(earlier) record.
e Second (later) record.

We will then assign appropriate probabilities to these locations. Now we have an

crror affecting records in the same table but assigned to different locations.

11.4. ERROR GROUPS

When a rule has muluiple error groups, we need to calegorize each error into its
croup. We also need to account for the possibility that crror probabilitics by

location vary for different error groups.

Consider the example of the aggrepated reference rule that validates all foreign
keys referencing E_ EMPLOYEE PROFILE entitv. Each error will affect all
orphan records with the same EmplD in all dependent entitics. We can categonze
all errors into three groups:

» Errors with orphan records m two or more tables
¢ Errors with several orphan records confined to a single table
e Errors with only one orphan record

We can reasonably conclude that errors of group A are most likely caused by a
missing parent record. while errors of group C are more likely cxplained by a
mislabeled child record. Assume that the estimated error probability by location is

as shown in Table 11-3.

Group A Group B Group C

Location A: Orphan Record 5 0% 80%

Location B: Parent Record 100% S50% 0%

Table 11-3: Error Frobability by Error Group and Location

Chapter 11 — Cataleguing Ervors

To fully incorporate error grouping into the error catalogue we must first add

ErrorGroup attribute to the main ERROR table in the crror catalogue. Further we

must add a new table to store error probability data from Table 11-3.

Figure 11-6 illustrates this solution. The top four tables are techmically parts of the

rule catalogue. Observe the following:

RULE table lists rule #4 REFERENCE.E_ EMPLOYEE PROFILE.
RULE_GROUP table defines three error groups for rule #4,
RULE_ERROR_LOCATION table describes two locations for rule #4.

RULE_ERROR_PROBABILITY table stores error probabilities by error
eroup and location as shown in Table 11-3.

The bottom three tables in Figure 11-6 are parts of the crror catalogue. ERROR

table lists two errors. The first error (ErrorlD equal to 4) affects seven orphan

records in three tables for the same emplovee. Obscrve how 1t 1s recorded:

ERROR table assigns the error to group A of rule #4.

ERROR_RECORD table references all seven orphan records. Lookup
into RULE_ERROR_PROBABILITY yields the probability zero. Thus
we are certamn these orphan records are actually vahid, though we decided
to list them in the error catalogue for relerence purposes.

Entry 1in the ERROR_RECORD MISSING table indicates that one
record is missing in E_EMPLOYEE_PROFILE. Lookup in
RULE_ERROR_PROBABILITY obtains the probability one, meaning
that we are certain a record for this emplovee is missing.

1=k
Lk
i

Chapter 11 — Cataloguing Evvors

RuleMame

REFEFRENCE.E_EMPLOYEE_FROFILE

Groun® sms
Hml'ahle

TGreipiD |
A

1 L.
FudelD Luﬂnhm‘iﬂlﬂﬂcrﬂm T Dt
> | Otphan Record 106 mi=lnlE :
S — ' | 7
Toid MEE 4

— LD
: ey

E_F'ﬁ"l' 1E_HISTORY o1 3?-

mane__n:m :
_E_Fﬁ‘f H.ITEHETI:FH'] HZH‘IEB

E_Fﬁ'f o e
A

Figure 11-8: Error Catalogue incorparating Emor Groups

The second crror (ErrorlD cqual to 5) involves a single orphan record.
Accordingly, ERROR table assigns the emor to group C of mule #4.
ERROR_RECORD table references the orphan record (RecordID #206 in
E STATUS HISTORY table) classified into locaton A. Lookup mto
RULE_ERROR_PROBABILITY wvields the probability 0.8, This means that
record #2006 is erroncous with 80% probability,

Keep in mind that this technique assumes mutually exclusive error groups, ic. a
situation where cach error falls into one and only one group. A solution for

133

Chapter 11 — Cataleguing Ervors

overlapping groups is also possible, but more complex. T recommend using
mutually exclusive groups whenever possible for basic grouping purposes and lor
defining error probabilities. Additional groups can be defined as tags in the error

message, as discussed in section 11.6.

11.5. SUBJECT-LEVEL ERROR TRACKING

In Chapter 8 we introduced the concept of subjects — high-level business objects
whose data are stored in the database. For example, emplovees and positions are
among the subjects in common HR databascs: shipping database subjects would
include orders. customers. and products. Subjects play a critical role in data

quality imtiatives,

First of all, data quality is more mcaningful when defined on the subject level
rather than the record level. Indeed. knowing that 10% of emplovees have
mcorrect HR data, or that 8% of insurance claims have maierial errors, is far more
important than knowing that 4% of data records in the database are erroncous.
Subject level quality measurements can be casier translated into the cost of bad
data and ROI of data quality initiatives.

Secondlv. many data qualitv rules operate on the subject-level data. For instance.
state-transition rules really apply 1o subjects as a whole rather than to individual
records. Even such simple rules as foreign kev constraints are more meaningful on
the subyect level. Recall how we aggregated various Toreign key constraints into a
composile reference rule to see all orphan records for the same emplovee.

Chapter 11 — Cataloguing Ercors

How do we accomplish that? We cannot simply reference the subject from inside
ERROR table since an error may impact multiple subjeets. A proper solution is to
add another error catalogue table ERROR_SUBJECT. Figure 11-8 shows this
expanded error catalogue with errors (4) and (6) logged in.

- EX

-
—

e

,,HuIeN ame |
THANSITFDH EH‘F‘ HI_STUHT

I TEniD~, [SubleciCiassHiame _ [SubjeciiD |

b JEMELOTEE 198
" EMPLOYEE 19
Ik >

7% ERROR_RECORD cfi=ie. |

| |Enodll | LocationlD | TableName | RecardD
(P 101 5| A E STATUS_HISTOAY 56349 |
i B E_STATUS_HISTORY 5636
A7 | A E_PaY RATE_HISTORY = 170835 |
N7 A E_PAY_RATE_HISTORY 170832

1o wienld] SR

Figure 11-8: Error Gatalogue Incorporating Subjects

Error (4) 15 logged with error identifier #101, while error (6) i1s logged with
identifier #217. As vou can sce, ERROR_RECORD table references all four
affected records (two for each error). At the same time ERROR_SUBJECT table
indicates that both errors affect the same emplovee #193585. The trace is now
complete. The data can be used to run subject-level data quality reports.

Notec that in the general casc of multiple subject classes and multiple
heterogeneous databases, we would need to create a master subject list for each
class. That is why we have autribute SubjectClassName in ERROR_SUBJECT
table. We could also usc these master lists to track the status of cach data quality
rule for each subject. For mstance. we could add Boolean Mags for each data
quality rule to indicate whether or not each subject passed or [ailed this rule. This
mechanism would tremendously speed up subject-level error reporting and also
help us manage interdependencies between data quality rules.

i
i
= |

Chapter 11 — Cataloguing Evvors

' ERROR
AulelD | EirodD | Message [Messagef reef low

i

2 13 1121.11.000.0 Employes 8112 has an ophan employes info recod

2 14 15357411462 |Emploves 3153379 has onphan ecords m sl tabkes |14 in babal]
2 15 4831100100 Emplopee #4683 has an orphan employment history record
2

Fd

16 [A211.800020 Employee 82121 has 8 ophan recoids n payiste history
17 60521800080 Employes HB052 has B orphan records in pay 1ate histary

10iB b5l o[| Figusl16, Figwel18)3 FLTR SRT| ALL | -

Figure 11-8: Error Messages for a Reference Rule

For instance, message for the first error (ErrorID #12) tells us that for emplovee
#1 14003 a total of 15 orphan records were found in five entuties. Specifically. one
record in E_EMPLOYEE_INFO, one record in E_EMPLOYEE_STATUS, two
records in E_ STATUS HISTORY. nine records in E_ PAY RATE HISTORY.
and two records in E_PAY _SPECIAL_HISTORY. This clearly indicates that a
comprehensive set of records exists for this emplovee in all but the main
E EMPLOYEE PROFILE table. A similar situation applies to emplovee
#153379 (third row for ErrorlD #14).

On the other hand, the message for the last crror (EmorlD #17) shows that for
employee #8052 there are eight orphan records, all in a single table
E_PAY_RATE_HISTORY. The next to last error has identical message for
employee #2121, These errors likely have the same cause but still different from
that for the first two errors. This conclusion would be difficult to arrive without

comprehensive error messages.

SUMMARY

In this chapter we have discussed the structure of the error catalogue - a group of
entities that collectively stores information about all identified data errors. These
arc kev components of the rule catalogue:

« Each error must be registered in a general listing ERROR. Each entry in
this histing must be given a umque error identifier and must also
reference the data quality rule that found the error.

240

Chapter 12 — Measuring Data Quality Scores

numbers. Conversely, detailed error reports are unusable when the volume of
errors is 5o large that the report serves only to discourage and not to enable data
quality improvement.

Many scores can be created for a single database. Some can measure data fitness
for various purposes: others can indicale quality ol various data collection
processes. Analvsis of aggregate scores answers kev dala quality questions. such
LN

What is the impact of the crrors in vour databasc?
« What are the sources and causes of the errors?
o Where are most of the errors hikely (o be lound?

Let’s consider the main calegories of aggregate dala scores.

12.1.1.Scores Measuring Impact of Bad Data

Data quality 1s defined as “hitness for the purpose of use.” Therelore, data quality
should be primanly measured in relation io daia usage. For each purpose of use, a
speciflic aggregate score can be designed. Remember that aggregate score s
delined as the percentage of good data records among all data records. The score
measuring fitness for a specific purpose of use narrows the scope to only relevant
records and only considers data quality rules that produce material errors for this

particular purposc.

Scores built around data uses provide information on the impact of the bad data.
This allows estimating the cost of bad data, evalvating potential ROT of data
quality initiatives, and setling correct expeclations for data-driven projects,

For example, a human resources database serves many purposes. One ol them is
tracking health insurance participation. Employees with invalid data related to
health insurance plan eligibility and participation will get incorrect coverage.
Such errors are very costly, and having 3% rate of emplovees with incorrect data

here 1s totally unacceptable.

A human resource database may also be used as a source for a newly built data
mart about emplovee cdueation levels. A dilferent subset of data is used for this

1
A
s

Chapter 12 — Measuring Data Quality Scores

purpose, and errors are not as critical. The 5% error rate (or may be even 15%) is

probably acceptable.

Aggregale scores measuring {itness of data for certain purposes of use are the most
valuable of all. Often the entire objective of a data quality assessment project 1s to
calculate one of such scores.

12.1.2.5cores ldentifying Sources of Bad Data

Data comes to the database in different ways. Some records are manually entered
through various interfaces. Others are electronically delivered from other
databases through various interfaces. Aggregale scores based on the data origin
provide estimates of the quality of the data obtained [rom a particular source.
Such scores are defined bv naurrowing down the records to a subset from a
common origin, Thev are eritical for identilying sources of bad data and

improving data collection processes.

Consider. for instance. a retirement plan admimistration database. It collects basic
indicative data. such as emplovee addresses and emplovment status changes. from
a human resources system. It also obtains emplovee and emplover contributions
amounts from a pavroll system. Finally, allocation of the money on cach
employee’s account among the funds comes through manual entry from paper
forms or via direct data entry by employees on an intranel. Records of each origin
can be identified rather accuratelv. and agegregate scores can be built separately for
these groups of data. These scores will indicate which data collection processes
arc most al fault. Such knowledge can be put to use immediately (10 save moncy

by improving the most defective process.

A similar concept involves measuning the quality of the data collected during a
specific period of ume. Indeed, it 15 usuallv important to know if the data errors
are mostly historic or were introduced recently. The presence ol recent errors
mdicates a greater need for data collection improvement mmbatives. Such
measurement can be accomplished by an aggregate score with constraints on the

tumestamps of the relevant records,

Choice of scores for this calegory 1s dnven by understanding the processes by
which data is collected and updated. While 1t takes some effort to obtain this
information, it offers the most powerful dimension for quality improvement

246

Chapter 12 — Measuring Data Quality Scores

actions — those that move the effort bevond data cleansing to defect prevention. If
vou learn. for example. that a high frequency of some error types is introduced by
a specific department (or svstem). then you can act upon that knowledge with
training, monitoring, incentives, or other tactics. Similarly, by knowing that error
rates ncrease during specific business cyvcles (duc to budgeting or general salary
adjusiment) you can act to enhance or improve those business processes.

12.1.3.Scores Identifying Location of Bad Data

Errors are usually not distributed uniformly throughout the database. Some tables,
for instance, have more errors than others. Scores built for logical subsets of data
help us understand distribution of errors in the database. This in its turn is helpful

when prioritizing data cleansing initiatives,

Database score simply counts all records in the database and errors found by all
data quality rules. While it is rather uscless, it 1s casy to produce and looks good
among all other more valuable measures on the data quality scorecard.

Entity scores count all errors in cach table. They are casv to produce and
understand. A table with a 20% error rate is usually a better candidate for
automaled data cleansing than a table with a 1% error rate.

Subject population scores count all errors for a particular population of subjects.
Such scores are key to understanding overall data quality, For example,
employees from dilTerent subsidiaries may have drastically different data quality
in the human resources system, 1f 14% of emplovees from subsidiary A have
errors. and then number for subsidiarv B is 1%. we certainly have some
breakdown in data collection for the former. We now know where the data quality
improvement mitiative shall start. Also, since data cleansing 15 often done on the
subject level. it is imporiant to identify populations of subject with more data
problems.

12.1.4.Record-Level and Subject-Level Scores

Record-level scores measure the percentage of bad data records among all
considered records. For example, record-level score for E STATUS _HISTORY
table measures the percentage of good records among all records. Record-level

247

Chapter 12 — Measuring Data Quality Scores

scores are not referenced from many places in the meta data. Table 12-1 illustrates

score entry for a simple example, which we will use throughout this chapter.

Aggregate Score #1. MINING_EMP_PATTERNS
Definitton:

A new HR dala-mining project is scheduled. |t will use employee dates of birth, hire, and
rehine 1o analyze patterns of age-at-hire for all regular employees of the company. The
findings will not be used to make specific decisions about individual employees. bul rather to
Judge changes in histarcal hiring patiems.

The project intends te use the date stored in summary employment tables, The abjective of
this aggregate scare it lo evaluate whether ar not guality of these data is adequate for this
project. Based on the score, the decision will be made o use another data source, perform
partial data cleansing, proceed with Inaccurate data, delay, or even abandon the project. Itis
understaod that the data needs not be parfect for all employees. However, a reasonable
benchmark of 50% employees with carrect data is considerad necessary

Tatle 12-1: Example of a SCORE Eniry

12.3.2.1dentifying Relevant Data Elements

Now that we described the score objective, we need to define relevant data
clements. Onlv crrors in these data clements will count towards the score.
According to the definition given in Table 12-1. the data elements relevant to the

project in our example are:

o Emplovee's original hire date (HireDate in E_ EMPLOYEE _INFO)
*» Emplovee’s recent rehire date (RehireDate in E EMPLOYEE INFO)
» Employee’s birth date (BirthDate in E_ EMPLOYEE PROFILE).

Observe that these data clements are stored in separate tables. They can only be
used together if the tables are properly joined using the kev field EmplD. Thus.
we have overall five relevant fields in two tables. These data elements must be
logged into SCORE ATTRIBUTE table in the score catalogue as shown in Figure
12-2.

i
o

Chapter 12 — Measuring Data Quality Scores

objective. Since data quality is defined as fiiness for the purpose of use, same dala
clement may be considered accurate for one purpose and erroncous for another.
This 15 especially true for such rule tvpes as completeness, retention. currency, and
precision. Thus, a rule can alTect the data element but be deemed immalterial for

the score objective.

Occasionally we have situations when some of the crrors found by a rule are
malerial for certain objectives, while other errors are not. A good solution in this
case 15 to create error groups separating errors of each kind. An alternative is to
split the rule into two or more groups. each validating data fitness for a specific

purpose.

Once we have completed our analvsis. the list of relevant data quality rules (and
optionally error groups) must be logged in the score catalogue table
SCORE RULE. A portion of the list for our example 1s shown in Figure [2-3.
Notice that [have chosen to keep the ErrorGroup ficld blank. This indicates that
all error groups are relevant,

Deacxiphion)
A nzw HE dala-mereng project i scheculed. Bteally
[Pt

[Secestlame— —___ [AulsiD __ [Encibroup | |
\ \{/ MINING_EMP_PATTERHS~ 7

M I
|| MENING_EMP_PATTERNS 8 Y .
- NG_EMP_PAT 17 Hud i

& of 10 | B E

Figure 12-3: Score Calalogue Tracking Relevant Data Quality Rules

12.3.4.Defining Relevant Subject Populations

Now that wec identified pertinent data quality rules. the next step 1s to define
records and subjects, which will be counted during score tabulation. 'We will start
from specilving the subject population since it 1s often used to deline relevant
records. Also. subject population is obviously directly used for the subject-level
score tabulation.

T
h
L

Chapter 12 — Measuring Data Quality Scores

In our example, the definition seems trivial. The subject population includes all
past and current regular emplovees whose data is stored in the HR database. The
keyword here 1s “regular.” thus we are not interested in data for temporary
employees. More formally these emplovees can be selected using critena:

Left (fE_EMPLOYEE STATUS].[EmployeeType], 1) = ‘R’

Figure 12-4 shows this information is logged into SCORE_SUBIJECT table in the
score catalopue. The reason we need a separate catalogue table rather than adding
attributes o SCORE table 1s because many databases have multiple subject
classes. For instance, a general HR database may have data for emplovees.
retirees, and positions. In that case. a single aggregate score can be tabulated
separately for various subject classes. This would translate into multiple entrics in
SCORE_SUBIJECT table in the score catalogue. one for cach pertinent subject
class.

\Deseapbon |
‘IIHIHIHG EMP FATTERMS & new HR datamining progect is scheduled. It w
e - = S e e
; i ™
coelame SubpectClazshame | Condibon
Ml INE ERP PO EMPLOYEE Left[E_EMPLOYEE_STATUS|[EmployeeType]. 1) = ‘A"
17 o8 1 [0jE Fose124/ [BART!

Figure 12-4: Score Catalogue Tracking Refevant Subject Populations

Since we only have one subject class — employees — in our data quality assessment
project. and assuming that all the data arc dependent on the main emplovee list
stored 1n table E EMPLOYEE PROFILE. we could reference that table directly
instead of using the master list. However, [alwavs recommend crealing subject
master hists, as it makes data quality work much casier,

When the subject selection condition 1s relatively simple (as in our example), 1t
can be applied on the flv during score tabulation. However, this technique is not
efficient and ofien totally impractical for complex conditions. A better solution is

o add a Boolean flag to the subject masier list for each agegregale score and

Chapter 12 — Measuring Data Quality Scores

populate it either with Trwe (for subjects that are pertinent for that score), or False.
The score condition then simply references the appropriate Boolean ficld. We will
address this 1ssue further in Section 12.6.

The mam problem with population conditions is that we are using somewhat
inaccurate data (o select relevant subject population. The problem is very difTicult
to deal with since it 1s of a “chicken-and-cgg™ tvpe. We arc using the condition to
measure data quality, bul we need quality data to use the condition properly. In
truth, the simplest practical approach is to ignore the problem assuming that the
data used to evaluate the condition are reasonably accurate.

A more appropriate approach in the spirit of data quality and due diligence is to
add a data quality score measuring quality of the data used to evaluate the
condition. Thus we would add a score measuring accuracy in determining regular
cmployce population. The score would tell us about the fraction of misidentificd
regular emplovees. Now we can simplv combine the results of both scores in our
data quality scorecard. We will address this issue Turther in Section 12,6,

12.3.5.Defining Relevant Recordsets

The final part of defining an aggregate score is to specify relevant records. Only
these records will be counted during score tabulation. In our example. these
include all records in tlables E _EMPLOYEE_PROFILE and
E EMPLOYEE INFO for emplovees from the sclected subject population, We
store this information in the score catalogue table SCORE RECORDSET as
shown in Figure 12-5.

n

—ecoebams . | Descighion
.f'{: 4 M A neww HA datameng pogecl i@ schmduled. 10vall o
r“i 1dT ——— W@ ojm | fif — [Fmil s
| =% SCORE. RECORDSET |
ll"'-. | tocomdbame— | TableHanne | Cemaition |
L] IE]IE]TEE'IEIIiE‘II.[ﬁTH- E_EMPLOYEE_PROFILE Hul
b MM P_PATTERMN E_EMPLOYEE_INFO Hull
1ol2 W o5 o lim | ' IPaRT |

Figure 12-5: Score Catalegue Tracking Relevant Recordseis

T
i
.

Chapter 12 — Measuring Data Quality Scores

Each score is built for a particular objective that determines relevant cast
of characters including entities, attributes, data quality rules, recordsets,
and subject population. All ol these definitions must be carcfully
organized in the score catalogue, so they can be used for tabulation and
analvsis of various scores,

Tabulating a score requires identifving and counting all relevant
rccords/subjects as well as the ones with crrors. I the rules were
Mawless. the task would be rather simple and could be accomplished
using straightforward queries of meta data from a rule catalogue, error
catalogue, and score catalogue.

The straightforward calculations tend (o understate data quality because
of various rule imperfections, To produce more accurale estimates we
need to account for possible false positives. false negatives, and
uncerlainly in error location among the errors. This can be accomplished
using mathematical techniques of varving complexity. [t 1s important to
understand that the calculations can be made infinitely complex in the
name of higher accuracy, bul no matter what we do they remain
esumates only. So some shorteuts in score tabulation are certainly
allowed.

While score tabulation is one of the most complex aspects of data quality
assessment. accurale aggregate scores are a critical result of data quality
assessment. They help translate data quality assessment results into the
cost of bad data, ROl from data quality improvement imitiatives. and
expeclations from the data-driven projects. Thus the effort in accurate
score tabulation 1s not wasted.

Chapter 12 — Measuring Data Quality Scoves

172

Urheberrechtlich geschiitztes Malaria

Chapter 13 — Data Quality Meta Data Warehouse

: Scors Catalogus : E Scores and Reports |
[P ———— | P p—p———
Rule Catelogue Daka Catalogue
Error Catalogus Datz Modsls
fmmmmmmmmmm—mmmm—mm——mm
E Ruls Imperfections Data Profiles
Subject Master Lists Hecord Lews] Matadata

Figure 13-6: Implementing Data Quality Rules

13.1.6.5tep 6 — Fine-Tuning Data Quality Rules

Data quality assessment rclics on our ability to use data quality rules to accurately
identify all data errors. However, it 1s verv difficult to design perfect data quality
rules. The ones we come up with will often fail to spot some erroneous records
and lalsely accuse others. They may not tell yvou which data element is erroncous
even when the emror is identified, or they mav identify the same error in many
different ways. Error reports produced by such rules tend to suffer from the same
malady as the data itsell — poor quality.

In order to save our data quality assessment efforts from imminent doom, we must
maximize the accuracy of error reports. This i1s accomplished through the process
of rule fine-tuning. Rule fine-tuning relies largely on manual venfication of the
sample data and companson of the results with the crrors idennfied by the data
quality rules. The discrepancies are addressed through rule redesign. emor
grouping, and other techniques. Any rule imperfections that cannot be eliminated
must al least be understood and accounted for in the data quality scorecard.

Of course, the ability 1o access, manipulate, and analyze error reports is key to the
success of rule fine-tuning, However, it is equally important to have the ability to
access, manipulate. and analvze data profiles and other general meta data. This is

another vote for integration of a general meta data repository with DOMDW,

Chapter 13 — Data QGuality Meta Data Warehouse

Rule fine-tuning plays a dual role from the meta data perspective. On one hand, it
produces and a comprchensive list of rule imperfections, which are used to
enhance the rules and improve the accuracy of the error catalogue. On the other
hand. it quantifies residual rule imperfections, including percentages of [alse
positives among ¢rrors identified by cach rule, probabilities of errors by location
and error group for rules comparing muluple data elemenits, and estimates for the
number of errors missed by all rules. These are important ingredients of the data
quality meta data.

Rule Catzlogus Data Catalogue

Hine-Tunming

Error Catalogue - Data Modsl
E Data Quelity Hules B —
Rule Imperfections Data Profiles
Subject Master Lists Record Level Metadata

Figure 13-T: Fine-Tuning Data Quality Rules

13.1.7.Step 7 — Tabulating Aggregate Scores

Error reports produced by data quality rules provide detailed information about
data quality. While extremely valuable. these error reports are overwhelming in
volume and complexity. Aggregate scores help make sense out of the jungle of the
numerous and lengthy error reports. They provide high-level estimates of the data
quality. Each score aggregates errors identified by the data quality rules into a
single number — a percentage of good data records among all target data records.

By selectng different groups of target data records. we can create many aggregale
scores for a single database, Well-designed scores are goal driven and allow us to
make better decisions and take actions. For instance, they can measure data fitmess
for various purposes or indicate quality of data collection processes. From the
perspective of understanding the data quality and its impact on the business.
aggregate scores are they key piece of data quality meta data.

283

Chapter 13 — Data QGuality Meta Data Warehouse

13.2. DATA QUALITY SCORECARD

And now we welcome the ultimate result of our craflismanship — the data quality
scorecard. Data guality scorecard 1s the ceniral product of the data gquality
assessment project. It provides comprehensive information about data quality and
allows both aggregated analvsis and detailed dnll-downs. A well-designed data
quality scorecard is the key to understanding how well the data supporls various
data-driven projects. It 1s also cntical for making good decisions about data
quality initiatves.

In other words. a data quality scorecard 15 what data quality assessment 15 all
about. We can spend months designing, implementing, and fine-tuning data
quality rules. We can build a neat rule catalogue and extensive error calalogue.
But without a data quality scorecard, all we have are raw materials. No amount of

firewood will make vou warm in the winter unless vou can make a decent [ire.

As the name suggests. a data quality scorecard presents data quality scores.
However, this 1s only on the surface: the data quality scorccard 1s a lot more.
Unfortunatelv. manv data quality assessment projects invest time and effort in
designing and implementing data quality rules and building error reports but stop
there. Some go one more step and estimate some aggregate scores, mostly for
reporting to the management. But the reallv important step that exponentially
increases the value of data quality assessment is to build the data quality scorecard
that is not just a report, but a valuable analvtical tool. Of all the time and money

mmvestments in the data quality assessment. this one has highest ROL

Figure 13-9 represents the data quality scorecard as an information pvramid. At
the top level are aggregate scores; at the bottom level 1s mformation about data
quality of individual data records. In the nuddle are various score decompositions
and error reports allowing us to analyze and summarize data quality across varous
dimensions and for different objectives. A data quality scorecard integraies data
quality meta data with general meta data and actual data itself. It brings together
all components of DOMDW and is undoubtedly its most important function. In
one word — 1t is a marvelous result of a well-done data quality assessment job.

1-&
-
o

Chapter 13 — Data Quality Meta Data Warehouse

13.2.2.Score Decompositions

Next laver mm the data qualily scorccard 1s composed of various score
decompositions, which show contributions of different components to the data
quality, Table 13-2 illustrates an example of score decomposition along the data
table dimension. It demonstrates how aggregale score MINING EMP PATTERNS
is comprised from sub-scores for two individual data tables,
E EMPLOYEE PROFILE and E EMPLOYEE INFO.

=
[TH
S 2
o =
-
g |
m] 2
All Target Records 5198 4.987 10,185
Records Affected by Errors 114 1,966 2,080
Erroneous Records ay 732 8249
Missing Records 0 n 21
Completeness Score 100.0% 95.9% 098.0%
Accuracy Score 95.1% | B5.3% 91.9%
Overall Score 98.1% | B1.6% 90.0%

Table 13-2: Score Decomposition along Data Table Dimension

It 15 clear from this point of view that the records n E_ EMPLOYEE _INFO table
have many more problems than those in E EMPLOYEE PROFILE. Indeed. the
profile records are nearlv perfect with no missing data and less than 2% errors:
while employment dates are missing for over 200 employees, and another 700+
have erroncous data. We can immediately see where the heart of the problem is.

Chapter 13 — Data Quality Meta Data Warehouse

A variety ol decompositions are possible along several main dimensions,

including:

= Decompositions across data elements show contribution to the aggregate
score by errors for different entitics or attributes (sce example above).

» Decompositions across dala quality rules show contributions to the
agerepate scorc by crrors identified by different rules (c.p. rules of
different types).

* Decompositions across subject populations show contributions to the
ageregate score by errors for different groups of subjects (¢.g. emplovees

from different subsidiaries).

o Decompositions across record subscts show contributions to the
aggregate score by errors in different groups of records (e.g. more recent
vs. older records).

13.2.3.Intermediate Error Reports

The level of detail obtained through various score decompositions is most certainly
enough to understand where most data quality problems come from. However. if
we want 1o investigate data quality further, more drill-downs are necessary. The
next step would be to produce various reports of individual errors that contribute to
the score (or sub-score) tabulation. These reports can be filtered and sorted in
various ways to better understand the causes, nature, and magnitude of the data
problems.

For example. Figure 13-10 shows an error hsting for rule #0112, which matches
original hire date (stored in HircDaie ficld of E_ EMPLOYEE INFO table) against
the effective date of the earliest record in the emplovment history. It lists all 1,076
chscrepancies. For cach of them, the report indicates EmplD for the emplovee

whose data are incorrect and also shows the two dates that are supposed to match.

IRK

Chapter 1.3 — Data Quality Meta Data Warchouse

RulelD | ErrorlD EmplD Msg -

» 112 DPB445 12268 B/23/1978 vs 4/17/1978 =

112_ EEME_ 2355 2/23/1986 v= 27111932

112 26448 _EZ[B_ 8/2M9B7 vs 9911287

112 26450 4247 0/20/1956 vs 6/25/1956

112 26455 ??Ei_ 6/11/1951 vs 6/29/1952

M2 26459 BAST 27291960 vs 10201960

112 26461 4542 4/23/1968 vs 1/8/1968

112 26462 2169|5/111970 vs 9771970

112 26463 B004| 1141241998 vs 11/9/1998

112 26465 &7560/ 51151972 vs 6/18/1971

T2 26467 2571/1/31/1994 vs 97771993

1 12, 26471 AG44 9/5/2000 vs B/5/1974)
Record: 14| 4 [T 1 _b | M |b¥] of 107

Figure 13-10: Listing of Errors Found by Rule #112

In addition 1o error reports (such as the report shown in Figure 13-10), we could
look at the actual erroncous data. This. of course. assumes that DOMDW s fully
integrated with actual production data (or staging data). Erroneous record listings
can be obtained by joining the error calalogue tables with data tables, This is
illustrated in Figure 13-11, which contains a report of the same errors found by
rule #112 but in the form of actual histings of alTected data records. Side-by-side
comparison ol the two affected tables gives more detail since it allows us to sce all
data 1 the erroneous records. [t helps locate and correct individual errors.

B = ErrancousRecordiliyiiule - Select Query = O %)

Erred | HireDate | RohiraDate | TermDawn |« :!
i Jhaldh Brafiere | Fodls AATH978 A HRE
- 20446 22811966 i LT A .ﬂl HRE
= Zhd LB B4 987 S 9ET || ZE448 S99ET A HRE
= 5450 S0/ 356 TN 2001 ed a0 B2 955 A H=E
|| 655 B 1/195] BT 952 =2 Ha55 BAAr1952 A HRE
i} 58 22N IE0 12000 B Hasa 20950 A HRE
= JodE1 12311968 | 26461 1158 A HRE
|| SaE2 14970 947 13 <5 Han2 Qe A HRE
= X483 11126995 G200 =l a6 11803 A HRE |
| | X485 SN5N1972 =] L] :®®E5 &I8AFIA HRE -|
Recoed: W] 0 [T 1 @ | mi[e#]| ok 10 pwod W4 [T 2 b 1M r#] of 1076 =

Figure 13-17: Listing of Records Affected by Rule #112

249

Chapter 13 — Data Quality Meta Data Warehouse

13.2.4.Atomic Level Information

Al the very bottom of the data quality scorecard pyvranmid are reports showing the
quality of individual target records or subjects. These atomic level data reports
identify records and subjects affected by errors and even show the probability that
cach of them 15 erroncous.

Figure 13-12 contains a portion ol such a histing. It shows three records from the
target population in E_EMPLOYEE_INFO table. Along with the data it provides
error probability for the aggregate score MINING EMP PATTERNS. The first
record has error probability 1.00, meaning it is crroncous with certainty. The
second record has error probability 0.24 meaning that it is affected by one or more
errors but is rather unlikely o be erroneous. A more likely secenanio 1s that the rule
compares 1t with another data clement that 15 indeed crroncous. Finally, the last
record has error probability 0,00, meaning it was not affected by any identified
errors. If we looked at the complete listing of all records and added up all error
probabilities, the result would vield the Accuracy Score (with a minor adjustment
for possibly missing errors).

& E_EMPLOYEE INFO

FRecordD | EmplD | HieDrate | RehireD ate irarFreh

B[148 | 2947 5101933 Mudl 1.00
149 2000 5/11/1998 Hudl 024

| | 180 3028 B/20/20M Midl 0.on
Tol3 wle/nlE | T

Figure 13-12: Atomic Leve| Data Quality Report

Of course. if we are in the error investigation mode, it is useful 1o be able 1o set up
various filters on the record list. It would also help to dnll down further and sce
which errors by which rules affect a particular record. Thus, 1if we dnlled-down
the record #149 [rom Figure 13-10, we would see that it is alTected by a single rule
#112, which compares HircDate field against the effective date of the carliest
record in employment history. We would further learn that 10% of errors found by
the rule are deemed f[alse positives: and of the remaining errors HireDale is
expected to be erroncous in only 27% of cases. while employment historv record is
incorrect in 73% of cases.

The atomic laver completes the data quality scorecard pyvramid. As the reader can
sce, the pyvramid starts from the aggregate scores and demonstrates how they were

2UH)

Chapter 13 — Data Quality Meta Data Warehouse

obtained, which portions of the data have most problems, and eventually which

individual records contributed to the observed error level.

13.2.5.Miscellaneous Definitions

The reports throughout the data quality scorecard reference scores. data elements.
and data quality rules. Tt is very useful to have direct access to the delimitions of

these components.

For example. for cach score in the data quality scorecard. it 1s useful to have a
drill-down 1o the score description. It provides all information from the score
catalogue including score objective, relevant data elements, data quality rules,
subjects, and records. This is illustrated in Table 13-3.

Score Name | MIMING_EMP_PATTERNS

Score Objective | A new HR data-mining project is scheduled. It will use employee
dates of birth, hire, and rehire to analyze patterns of age-at-hire for
all regular employees of the company. The objeclive of this
aggregate score is to evaluate whether or not quality of these data is
adequate for this project,

Relevant Data | E_EMPLOYEE_PROFILE.EMP_ID
Elements | =\ PLOYEE PROFILE BIRTH_DATE
E_EMPLOYEE_INFO.EMP_ID
E_EMPLOYEE_INFO.HIRE_DATE
E_EMPLOYEE_INFO.REHIRE_DATE

Relevant Rules | Rule #7 PKE_EMPLOYEE_PROFILE
Rule #9 PK.E_EMPLOYEE_INFO

Rule #17 PK E_EMPLOYEE_INFO

Rule #21 REL_OPT.E_EMPLOYEE_INFO

Relevant Subjects | Subject Class EMPLOYEE: Lefit
(E_EMPLOYEE_STATUS EmployeeType, 1) = 'R’

Relevant Records | General filter - records for relevant subjects only
E_EMPLOYEE_PROFILE — no specific fiter
E_EMPLOYEE_INFQ = no specific filier

Table 13-3: Score Definition

Further drill-downs could provide detailed information about each of the relevant

data elements (obtained from the data catalogue and data profiles) and data quality

P |

Chapter 13 — Data Quality Meta Data Warehouse

The error listings are a step towards analysis of the errors on the atomic level.
Integration of DOMDW with actual data allows us to generate many uschul atomic

level emror reports. Below are some examples.

» List of data records affected by a particular data problem or a group of
data problems

» List of all crrors that affect a particular record or a group of records

» List of all data records and data crrors for a particular subject presented

in an integrated subject browser

For instance. a simple join of the error catalogue with an actual data table would
produce the list of all potentally erroneous records in that particular table, rather
than just crrors found by a particular rule. Such reports will hist cach record
several times if' it happens o be affected by multiple errors. The listing can now
be filtered and sorted by either the data values or across the rules, thus giving more
flexibility to error analvsis,

Atomic level error reports can even be made available to some of the data users,
This allows the users to judge quality of the records before making anv decisions
based on the data. It is a dream application of DOMDW,

SUMMARY

In this chapter we discussed the content and functionality of the data quality meta
data warchouse (DOMDW). Here are the kev conclusions:

e DOMDW is a collection of tools for arganization and analysis of all meta
data relevant to or produced by the data quality initiatives. Mela data
used in a data quality assessment projects falls into four broad
calegories: ageregate meta data, rule meta data, atomic meta data, and
gencral meta data. Intcgration of all the meta data into an cfficicnt
DOMDW s erinical 1o the ultimate value ol data quality assessment,

» A data quahty scorecard 15 the central product of the data quality
assessment project. It provides comprehensive information about data
quality and allows both aggregated analysis and detailed drill-downs, It
is not just a report but also a valuable tool for data quality analysis,

294

CHAPTER 14
RECURRENT DATA QUALITY
ASSESSMENT

Assessment 15 kev to understanding data qualitv, The data quality scorecard
provides comprehensive information about data fitness for various purposes.
Assuming that some flaws are discovered, the next step is to initiate a data quality
improvement program, including data cleansing and enhancement of data
collection processes. The question then becomes, how do we measure the success
of such programs? Without a clear wav to show data quality improvements, it 1s
impossible to understand the value of the program, analyze its shortcomings, and
make enhancements. The solution 15 to mstitule a recurrent data quality
asscssment, whereas data quality will be reevaluated periodically to show the
progress.

Another aspect of data quality 1s that it may be acceptable today but may quickly
deteriorate over time, Recurrent data quality assessment allows us 1o establish

quality benchmarks. monitor trends. and 1dentify new causes of data problems.

On the surface recurrent data quality assessment 1s trivial. We simply need to re-
run the established process periodically and observe the results. In practice
challenges abound. This chapter presents a comprehensive treatment of Lhe
problems and solutions for recurrent data quality assessment.

o Section 14-1 outlines the basic approach to recurrent assessment. It
shows how to make adjustments to data quality rules to account for
changes in data structure, as well as how to build a dynamic data quality
scorccard.

* Section 14-2 shows how to monitor data quality on the atomic level. It
describes mechanisms for comparison of error catalogues produced by

conseculive assessment runs.

s Section 14-3 outlines mechanisms for adding time dimension to the data
quality meta data warchouse, which is necessary to analvze data quality
trends over many assessment runs.

2497

Chapter 14 Recwrvent Data Quaality Assessment

= Scction 14-4 discusses techniques for performing assessment against
production dala directly, bypassing data staging area,

14.1. BASICS OF RECURRENT DATA
QUALITY ASSESSMENT

Let’s say we would like to check the quality of data in a particular database every
six months., The first tme we execute assessment exactly as was discussed thus
far 0 this book. We bring the data to the staging area: go through data analyvsis
and profiling: design, implement, and fine-tune data quality rules; populate the
data quality meta data warchouse: and butld the dala quality scorecard. The next
time we want to run the assessment all we need to do 1s backup the staging arca
and DOMDW, wipe out the error catalogue, reload the most recent data dump back
to the staging arca, and rerun all data quality rules. This procedure will produce

the new data quality scorecard quickly and with practically no extra work.

Of course, the reality is somewhat more complex. First of all. this approach
assumes that the rules will successfully apply 1o the new data dump. This requires
careful rule design. We must avoid relving on temporal data charactenistics. For
instance, data currency rules cannot use constant date 1/1/2006, but instead must
use a flunction returning first day of the current vear, In general, any dvnamic rule
parameters must be consohidated in a scparate function or a database table that can
be updated before each run.

Even properly designed rules will decay and produce wrong results (or even fail
outright) when the data structure changes between assessment runs or when the
business rules that are the basis of data quality rules change. Thereflore, blind re-
execution is likely to create many problems. The solution is to perform
comparative analvsis ol the data between the dumps. This includes a simple
comparison of thc data structure and a rather advanced comparison of data
profiles. Fortunately. data profile comparison can be largely automated. |
reccommend writing a program that runs through all aspecis of the profiles and
identifics any significant changes for further review. For inslance. value
frequencies can be easily contrasted, and anv change of more than 15% can be
deemed significant. T also like to look for new or disappearing values and large

changes in aggregate statistics (such as mean or standard deviation). Similarly,

198

Chapter 14 Recurvent Data Quality Assessment

relational profiles, state-transition profiles, and other data profile components must

be compared.

Once we find any changes in data structure, it 1s necessary 1o understand how they
impact data qualitv rules. We can narrow down the list of possibly impacted rules
by selecting only those whose rule domain includes alTected attributes. Afier that
it 15 strctly a manual analvibcal process. We need to understand the nature of the
changes to the data structure and then review the rule catalogue and decide
whether or not the rules will still work properly. Some rules always must be fine-
tuned belore cach assessment run.

Onee we are comfortable that the rules will work adequatelv, we can execute them
and build the new data quality scorecard. The next step is to analvze the changes
in the results. The things (o compare are aggregate scores and score
decompositions, as well as summary crror counts by rule. Generally speaking. any
significant change must be analvzed and explained. Sometimes the analvsis will
indicate that data quality has changed. This is exactly the result we are looking for
in setting up recurrent data quahity assessment. Hopelully, the data quabty has
improved. Otherwise, if data quality has deteriorated, our findings can be used to
identily means for future improvements. Another possibility is that data quality
did not reallv change, but some changes to the data require further modification of
the rules. While we try to catch all such situations through a prion comparative
data profiling, some will alwavs slip through the cracks and get caught on the back
end of the assessment run.

Onc more challenge (o address is that some new errors might have been introduced
into the data that are not caught by any of the existing rules. The only solution
here iz additional manual data review and rule fine-tuning. Ideally we want to
utilize the findings of data users in the course of their normal work between the
assessment runs, since many data problems are caught on a daily basis in the
wrenches. This will save unnecessary extra manual data verification. To do so we
must create a process by virtue of which all data quality problems found by the
data users are reported.

Assuming that we overcame all the obstacles. we now have the second data quality
snapshot. We can repeat the procedure to create such snapshois regularly. While
we lose the details ol cach assessment run when we repopulate data staging area

a9

Chapter 14 — Recorvent Data Quality Assessment

and error catalogue, the summary results can be maimntained and ntegrated into a
dynamic data quality report. We can definitely add time dimension to the data
quality scorecard summary and score decomposition lavers. This affords a high-
level view ol data quality trends. Table 14-1 illustrates a dynamic scorecard

summary from three conseculive assessment runs.

Scora Name

Subject Level Score

Comple-teness Score
Accuracy Score
Overall Score

58.0% 1. 8% 80.0% 81.1%

MINING_EMP_PATTERNS £8.4% 89.6% BB.2% 79.5%
L. T% BT 4% BE.3% T7.8%

S5,4% B4.5% B81.5% T77.5%
COMP_DATA o5 4% B4.8% B1.7% 77.6%
98,3% B4 4% B1.3% 77.4%

83.3% g97.5% B1.2% 85.4%
EDU_COMPLIANCE 92.4% 898.6% 91.1% 94.7%
04.5% 99.0% Q3.6% 96, 4%

Table 14=-1: Trends in Data Quality Scores

We can see from Table 14-1 that the quality of the data used in the data-mining
project (MINING EMFP PATTERNS score) has deteriorated. cven though fewer
data records are mmssing. This 15 a cause of concern and indicates a svstematically
failing data collection process. On the other hand, data quality for education
compliance reporting (EDU COMPLIANCE score) significantly improved.
probablv as a result of a data-cleansing project. Note that any significant
improvement in data quality must be analyzed and explained. In absence of a data

quality improvement initiative, such a result mav be indicative of a flaw in data

quality rules.

S

Chapter 14 Recwrvent Data Quaality Assessment

With a persistent master subject list, tracking error dynamics is rather
straightiorward. The casicst method is to build and compare subject-hy-rule status
matrices. Each matrix has subjects in rows. rules in columns, and a ves/no flag in
the intersections indicating whether or not an error was identified by a specific rule
for a specific subject. Status matrices are casv to populate based on crror
catalogue table ERROR_SUBJECT. Superimposing matrices lor consequent runs
provide lists of all changes in subject data quality.

This is illustrated in Table 14-2 showing portions of two superimposed subject
status matrices. For each subject the top row of {lags corresponds to the results of
the previous run, while the bottom row shows the results of the following run.
Highlighted flags indicate error changes. For instance, subject #1 had an error
found bv rule #14 in the original asscssment run, which was not found by the
second run. Instead. rule #42 identified a new error. Further. subject #2 had no
errors in the original assessment run, but now has an error found by rule #35;
subject #3 had an error in rule #20, but has no errors in the new run. Of course.
the matrices need not be compared manually. Instead. a simple query can identify
and report all discrepancies for further analysis,

LA ES el 23 amatEanl 2345 tonl A 345670001 2 34257230

Subject #1 HHRTHHERNEN T NNNERHIEN NS RER T MHNRNNE N T H N NRE RN
HHNY WHERNHH NSNS R RN N EHA R T NN RHANEN EH R R NRENE
$L|b_'PE'E| g2 Bt T T i o | il 0 O R ARt S N R B o T RS R R SR Dl B i
i 1 o O P Y4 BT Rl 1 i G R T bl s TR Bl R R G B b e
El.lbje'l:l #3 B T TR) O et o | el Ay Bt I S A B o e RS N N E T B i
B 1 0 O N et et 80 1 N e B e e T TR Bl I R R B) B B e

Table 14-2: Comparison of Status Malrices

Subjeci level comparison is useful but still does not provide information about data
quality changes on the most atomic level - individual records. The ability to easily
identify individual records with new errors would be invaluable for ongoing data
quality management. Of course, cvery time we cxecule data quality asscssment
the error catalogue lists references to all erroncous records in ERROR. RECORD
table. Furthermore, we add data quality meta data fields to all tables and populate
them during score tabulation so that we can track the quality of cach record. So
what is the big deal? Can’t we just match this information” The problem is that

inz

DATABASE / DATA QUALITY TECHNICS PUBLICATIONS, LLC

DATA QUALITY ASSESSMENT

Imagine a group of prehistoric hunters armed with stone-tipped spears. Their primitive
weapons made hunting large animals, such as mammeoths, dangerous work, Over time,
however, a new breed of hunters developed. They would strelch the skin of a previously
killed mammoth on the wall and throw their spears, while observing which spear, thrown
from which angle and dislance, penetrated the skin the best. The data gathered helped
them make beller spears and develop betler hunting strategies.

Quality data is the key lo any advancement, whether it's from the Stone Age lo the
Bronze Age. Or from the Infarmation Age to whatever Age comes next. The success
of corporations and government institutions largely depends on the elficiency

with which they can collect, organize, and ulilize dala about products, customers,
competitors, and employees. Fortunately, improving your data quality doesn't

have to be such a mammoth task.

DATA QUALITY ASSESSMENT is a must read for anyone who needs le understand,
correct, or prevent data quality issues in their organization. Skipping theery and
focusing purely on what is practical and what works, this text contains a proven
approach to identilying, warehousing, and analyzing data errors - the first step in
any data quality program. Master techniques in:

* Dala proliling and gathering meta data
* |dentitying, designing, and implementing data quality rules
* Organizing rule and error catalogues

* Ensuring accuracy and completeness of the data qual sessment
+ Constructing the dimensional data quality scorgasire
: '-'-;-.Elunullng a recurrent data quality assess

T

