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Preface 

Early in my career I was given the task of designing a sub-critical nuclear 
reactor facility that was to be used to perform basic research in the area of 
reactor physics.  We planned to run a series of experiments to determine 
fundamental parameters related to the distribution of neutrons in such sys-
tems.  I felt that it was extremely important to understand how the design 
would impact upon the accuracy of our results and as a result of this re-
quirement I developed a design methodology that I subsequently called 
prediction analysis.    After working with this method for several years 
and applying it to a variety of different experiments, I wrote a book on the 
subject.  Not surprisingly, it was entitled Prediction Analysis and was pub-
lished by Van Nostrand in 1967. 
 
Since the book was published over 40 years ago science and technology 
have undergone massive changes due to the computer revolution.  Not on-
ly has available computing power increased by many orders of magnitude, 
easily available and easy to use software has become almost ubiquitous.  In 
the 1960's my emphasis was on the development of equations, tables and 
graphs to help researchers design experiments based upon some well-
known mathematical models.  When I reconsider this work in the light of 
today's world, the emphasis should shift towards applying current technol-
ogy to facilitate the design process.  The purpose of this book is to revisit 
prediction analysis with the emphasis upon application of available soft-
ware to the design of quantitative experiments. 
 
I should emphasize that quantitative experiments are performed in most 
branches of science and technology.  Astronomers analyze data from aste-
roid sightings to predict orbits.  Computer scientists develop models for 
improving network performance.  Physicists measure properties of mate-
rials at low temperatures to understand superconductivity.  Materials engi-
neers study the reaction of materials to varying load levels to develop me-
thods for prediction of failure.  Chemical engineers consider reactions as 
functions of temperature and pressure.  The list is endless.  From the very 
small-scale work on DNA to the huge-scale study of black holes, quantita-
tive experiments are performed and the data must be analyzed. 
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The common denominator in all this work is the similarity in the analysis 
phase of the experimental process.  If one can assume that the measure-
ment errors in the obtained data are normally distributed, the method of 
least squares is usually used to "fit" the data.  The assumption of normali-
ty is usually reasonable so for this very broad class of experiments the me-
thod of least squares is the "best" method of analysis.  The word "best" 
implies that the estimated parameters are determined with the smallest es-
timated uncertainty.  Actually, the theoretically best solution to the mini-
mization of estimated uncertainty is achieved by applying the method of 
maximum likelihood.  This method was proposed as a general method of 
estimation by the renowned statistician R. A. Fisher in the early part of the 
20th century. The method can be applied when the uncertainties associated 
with the observed or calculated data exhibit any type of distribution.  
However, when the uncertainties are normally distributed or when the 
normal distribution is a reasonable approximation, the method of maxi-
mum likelihood reduces to the method of least squares.  The assumption of 
normally distributed random errors is reasonable for most situations and 
thus the method of least squares is applicable for analysis of most quantita-
tive experiments.  For problems in which the method of least squares will 
be applicable for analysis of the data, the method of prediction analysis is 
applicable for designing the proposed experiments. 
 
Many of the examples of prediction analyses of experiments included in 
this book were done using the REGRESS program which is discussed in 
Section 3.10.  The program is available free of charge and can be obtained 
through my website. 
 

John Wolberg 
www.technion.ac.il/wolberg 
Haifa, Israel 

 Oct, 2009 
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Chapter 1   INTRODUCTION  

1.1 The Experimental Method  

We can consider the experimental method as consisting of four distinct 
phases: 
 

1) Design 
2) Execution 
3) Data Analysis 
4) Interpretation 

 
The design phase is partially problem dependent.  For example, we require 
answers to questions regarding the choice of equipment and the physical 
layout of the experimental setup.  However, there are also questions of a 
more generic nature: for example, how many data points are needed and 
what are the accuracy requirements of the data (i.e., how accurately must 
we measure or compute or otherwise obtain the data)? 
 
The execution phase is completely problem dependent.  The performance 
of an experiment is usually a physical process although we often see com-
puter experiments in which data is "obtained" as the result of computer 
calculations or simulations.  The purpose of the execution phase is to run 
the experiment and obtain data. 
 
The data analysis phase is typically independent of the details of the physi-
cal problem.   Once data has been acquired and a mathematical model has 
been proposed, the actual analysis is no longer concerned with what the 
data represents.  For example, assume that we have obtained values of a 
dependent variable Y as a function of time t.   We propose a mathematical 
model that relates Y to t and the ensuing analysis considers the values of Y 
and t as just a collection of numbers. 
 

J. Wolberg, Designing Quantitative Experiments, DOI 10.1007/978-3-642-11589-9_1,  
© Springer-Verlag Berlin Heidelberg 2010 
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The interpretation phase is really a function of what one hopes to accom-
plish.  There are a number of reasons why the experiment might have been 
performed.  For example, the purpose might have been to prove the validi-
ty of the mathematical model.  Alternatively, the purpose might have been 
to measure the parameters of the model.  Yet another purpose might have 
been to develop the model so that it could be used to predict values of the 
dependent variable for combinations of the independent variables.  To de-
cide whether or not the experiment has been successful one usually con-
siders the resulting accuracy.  Is the accuracy of results sufficient to meet 
the criteria specified in the design phase?  If not what can be done to im-
prove the results?  
 
 

1.2 Quantitative Experiments  

The subject of this book is the design of quantitative experiments.  We de-
fine quantitative experiments as experiments in which data is obtained for 
a dependent variable (or variables) as a function of an independent variable 
(or variables).  The dependent and independent variables are then related 
through a mathematical model.  These are experiments in which the va-
riables are represented numerically. 
 
One of the most famous quantitative experiments was performed by an 
Italian astronomer by the name of Giuseppe Piazzi of Palermo.  In the late 
1700's he set up an astronomical observatory which afforded him access to 
the southernmost sky in Europe at that time.  His royal patron allowed him 
to travel to England where he supervised the construction of a telescope 
that permitted extremely accurate observations of heavenly bodies.  Once 
the telescope was installed at the Royal Observatory in Palermo, Piazzi 
started work on a star catalog that was the most accurate that had been 
produced up to that time.  In 1801 he stumbled across something in the sky 
that at first he thought was a comet.  He took reading over a 42 day period 
when weather was permitting and then the object faded from view.  Even-
tually it was recognized that the object was a planetoid in an orbit between 
Mars and Jupiter and he named it Ceres.   
 
What made the discovery of Ceres such a memorable event in the history 
of science is the analysis that Gauss performed on the Piazzi data.  To per-
form the analysis, Gauss developed the method of least squares which he 
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described in his famous book Theoria Motus.  A translation of this book 
was published in English in 1857 [GA57].  By applying the method to cal-
culate the orbit of Ceres, Gauss was able to accurately predict the reap-
pearance of the planetoid in the sky.  The method of least squares has been 
described as "the most nontrivial technique of modern statistics" [St86].  
To this day, analysis of quantitative experiments relies to an overwhelming 
extent on this method.  A simulation of Piazzi's experiment is included in 
Section 6.6 of this book. 
 

1.3 Dealing with Uncertainty  

The estimation of uncertainty is an integral part of data analysis.  Typically 
uncertainty is expressed quantitatively as a value such as σ  (the standard 
deviation) of whatever is being measured or computed.  (The definition of 
σ  is discussed below.)  With every measurement we should include some 
indication regarding accuracy of the measurement.  Some measurements 
are limited by the accuracy of the measuring instrument.  For example, 
digital thermometers typically measure temperature to accuracies of 0.1°C.  
However, there are instruments that measure temperature to much greater 
accuracies.  Alternatively, some measurements are error free but are sub-
ject to probability distributions.  For example, consider a measurement of 
the number of people affected by a particular genetic problem in a group of 
10000 people.  If we examine all 10000 people and observe that twenty 
people test positive, what is our uncertainty?  Obviously for this particular 
group of 10000 people there is no uncertainty in the recorded number.  
However, if we test a different group of 10000 people, the number that will 
test positive will probably be different than twenty.  Can we make a state-
ment regarding the accuracy of the number 20? 
 
One method for obtaining an estimate of uncertainty is to repeat the mea-
surement n times and record the measured values xi, i = 1 to n.  We can es-
timate σ (the standard deviation of the measurements) as follows: 
 

 ∑
=

=
−

−
=

ni

i
avgxixn 1

2
1

12

︶︵σ  (1.3.1) 

 
In this equation xavg is the average value of the n measurements of x.  A 
qualitative explanation for the need for n-1 in the denominator of this equ-
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ation is best understood by considering the case in which only one mea-
surement of x is made (i.e., n = 1).    For this case we have no information 
regarding the "spread" in the measured values of x.  A detailed derivation 
of this equation is included in most elementary books on statistics.  The 
implication in Equation 1.3.1 is that we need to repeat measurements a 
number of times in order to obtain estimates of uncertainties.  Fortunately 
this is rarely the case. 
 
Often the instrument used to perform the measurement is provided with 
some estimation of the uncertainty of the measurements.  Typically the es-
timation of σ  is provided as a fixed percentage (e.g., σ = 1% of the value 
of x) or a fixed value (e.g., σ = 0.1°C).  Sometimes the uncertainty is de-
pendent upon the value of the quantity being measured in a more complex 
manner than just a fixed percentage or a constant value.  For such cases the 
provider of the measuring instrument might supply this information in a 
graphical format or perhaps as an equation.  For cases in which the data is 
calculated rather than measured, the calculation is incomplete unless it is 
accompanied by some estimate of uncertainty. 
 
For measurements that are subject to statistical distributions like the exam-
ple cited above regarding the genetic problem per 10000 people, often a 
knowledge of the distribution is sufficient to allow us to estimate the un-
certainty.  For that particular problem we could assume a Poisson distribu-
tion (discussed in Section 2.4) and the estimated value of σ is the square 
root of the number of people diagnosed as positive (i.e., √20 = 4.47).  We 
should note that our measurement is only accurate to a ratio of 4.47/20 
which is approximately 22%.  If we increase our sample size to 100,000 
people and observe about 200 with the genetic problem, our measurement 
accuracy would be about √200 = 14.1 which is approximately 7%.  This is 
an improvement of more than a factor of 3 in fractional accuracy but at an 
increase in the cost for running the experiment by a factor of 10! 
 
Once we have an estimation of σ, how do we interpret it?  In addition to σ, 
we have a result (i.e., the value of whatever we are trying to determine) ei-
ther from a measurement or from a calculation.  Let us define the result as 
x and the true (but unknown value) of what we are trying to measure or 
compute as μ.  Typically we assume that our best estimate of this true val-
ue of μ is x and that μ is located within a region around x.  The size of the 
region is characterized by σ.  In the preceding example our result x was 20 
and the estimated value of σ was 4.47.  This implies that if we were able to 
determine the true value of μ there is a "large" probability that it would be 
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somewhere in the range 15 to 25.  How "large" is a question that is consi-
dered in the discussion of probability distributions in Section 2.4.  A typi-
cal assumption is that the probability of μ being greater or less than x is the 
same.  In other words, our measurement or calculation includes a random 
error characterized by σ.  Unfortunately this assumption is not always va-
lid! 
 
Sometimes our measurements or calculations are corrupted by systematic 
errors.  Systematic errors are errors that cause us to either systematically 
under-estimate or over-estimate our measurements or computations.  One 
source of systematic errors is an unsuccessful calibration of a measuring 
instrument.  Another source is failure to take into consideration external 
factors that might affect the measurement or calculation (e.g., temperature 
effects).  The choice of the mathematical model can also lead to systematic 
errors if it is overly simplistic or if it includes erroneous constants.  Data 
analysis of quantitative experiments is based upon the assumption that the 
measured or calculated variables are not subject to systematic errors and 
that the mathematical model is a true representation of the process being 
modeled.  If these assumptions are not valid, then errors are introduced in-
to the results that do not show up in the computed values of the σ's.  One 
can modify the least squares analysis to study the sensitivity of the results 
to systematic errors but whether or not systematic errors exist is a funda-
mental issue in any work of an experimental nature. 

1.4 Parametric Models  

Quantitative experiments are usually based upon parametric models.  In 
this discussion we define parametric models as models utilizing a ma-
thematical equation that describes the phenomenon under observation.  As 
an example of a quantitative experiment based upon a parametric model, 
consider an experiment shown schematically in Figure 1.4.1.  In this expe-
riment a radioactive source is present and a detector is used to monitor rad-
iation emanating from the source.  Each time a radioactive particle enters 
the detector an "event" is noted.  The recorder counts the number of events 
observed within a series of user specified time windows and thus produces 
a record of the number of counts observed as a function of time.  The pur-
pose of this experiment is to measure the half-life of a radioactive isotope.  
There is a single dependent variable counts (number of counts per unit of 
time) and a single independent variable time.  The parametric model for 
this particular experiment is: 
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 3
2

1 atimeaeacounts +⋅−⋅=   (1.4.1) 
 
This model has 3 parameters: the amplitude a1, the decay constant a2 and 
the background count rate a3.  The decay constant is related to the half-life 
(the time required for half of the isotope atoms to decay) as follows: 
 

 212 /life_halfae =⋅−  
 

 
22

693150)2ln(
aa

life_half .
==  (1.4.2) 

 
 

 
Figure 1.4.1 Experiment to Measure Half-life of a Radioisotope 

 
The model equation (or equations) contains unknown parameters and the 
purpose of the experiment is often to determine the parameters including 
some indication regarding the accuracies (i.e., values of the σ's) of these 
parameters.  There are many situations in which the values of the individu-
al parameters are of no interest.  All that is important for these cases is that 
the model can be used to predict values of the dependent variable (or va-
riables) for other combinations of the independent variables.  In addition, 
we are also interested in some measure of the accuracy (i.e.,σ) of the pre-
dictions. 
 
We need to use mathematical terminology to define parametric models.  
Let us use the term y to denote the dependent variable and x to denote the 
independent variable.  Usually y is a scalar, but when there is more than 
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one dependent variable, y can denote a vector.  The parametric model is 
the mathematical equation that defines the relationship between the depen-
dent and independent variables.  For the case of a single dependent and a 
single independent variable we can denote the model as: 
 
 );( 21 pa..,a,axfy =  (1.4.3) 
 
The ak's are the p unknown parameters of the model.  The function f is 
based on either theoretical considerations or perhaps it is a function that 
seems to fit the measured values of y and x.  Equation 1.4.1 is an example 
of a model in which p=3.  The dependent variable y is counts and the in-
dependent variable x is time. 
 
When there is more than one independent variable, we can use the follow-
ing equation to denote the model: 
 
 );..,,( 2121 pm a..,a,axxxfy =  (1.4.4) 
 
The xj's are the m independent variables.  As an example of an experiment 
in which there is more than one independent variable, consider an experi-
ment based upon the layout shown in Figure 1.4.2.  In this experiment a 
grid of detectors is embedded in a block of material.  A source of radioac-
tivity is placed near the block of material and the level of radioactivity is 
measured at each of the detectors.  The count rate at each detector is a 
function of the position (x1, x2) within the block of material.  The unknown 
parameters of the model are related to the radiation attenuation properties 
of the material. 
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If there is more than one dependent variable, we require a separate func-
tion for each element of the y vector: 
 
 );..,,( 2121 pmll a..,a,axxxfy =     l = 1 to d     (1.4.5) 

 
For cases of this type, y is a d dimensional vector and the subscript l refers 
to the lth term of the y vector.  It should be noted that some or all of the xj's 
and the ak's may be included in each of the d equations.  The notation for 
the ith data point for this lth term of the y vector would be: 
 
 );..,,( 2121 pimiilil

a..,a,axxxfy =  
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Figure 1.4.3 Counts versus Time for Equations 1.4.6 and 1.4.7 

a1=1000, a2=100, c1=0.05, c2=0.025 
 
An example of an experiment requiring a model of the form of Equation 
1.4.5 can also be based upon the layout shown in Figure 1.4.1.  If we as-
sume that there are two radioactive species in the source and that species 2 
is the daughter product of the species 1, we can measure the number of 
counts emanating from each species by discriminating the counts based 
upon the differing energies of the particles reaching the detector from the 
two species.  Assuming that the two count rates (counts1 and counts2) are 
corrected for their background count rates, they are related to time t as fol-
lows: 
 
    tceacounts ⋅−⋅= 1

11  (1.4.6) 

    ( )tcetce
cc

catceacounts ⋅−−⋅−+⋅−⋅= 21

12

2
1

2
22 -

  (1.4.7) 

  
For this example, there are four unknown parameters: the initial ampli-
tudes a1 and a2, and the decay constants c1 and c2.  A typical plot of counts1 
and counts2 versus t is shown in Figure 1.4.3.  A least squares analysis of 
the data will determine the values of these four parameters and estimates 
of their standard deviations. 
 
A model is recursive if the functions defining the dependent variables yl 
are interdependent.  The form for the elements of recursive models is as 
follows: 
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 );..,,;..,,( 212121 pdmll a..,a,ayyyxxxfy =  (1.4.8) 

 
An example of a recursive model is the well-known prey-predator model 
of Kolmogorov [HO06, BR01, FR80]:  
  

 ( )2111
1 y,yfy

dt
dy

=  (1.4.9) 

 ( )2122
2 y,yfy

dt
dy

=  (1.4.10) 

 
where y1 is the prey population and y2 is the predator population. The fam-
ous Italian mathematician Vito Volterra proposed a simple model to 
represent predator-prey interactions: 
  
 2211 yaaf −=  (1.4.11) 
 4132 ayaf −=  (1.4.12) 
  
The parameter a1 is the prey growth rate in the absence of predators and a4 
is the predator death rate in the absence of prey.  The parameters a2 and a3 
are the interaction coefficients.  Increasing the predator population (i.e., y2) 
causes a decrease in the prey population (i.e., y1) and visa versa. Both of 
these equations are recursive: there is one independent variable t, four un-
known parameters (a1 to a4) and two dependent variables (y1 and y2).  We 
see that y1 is dependent upon y2 and y2 is dependent upon y1.  The solution 
of Equations 1.4.9 and 1.4.10 introduces 2 new parameters: the initial val-
ues of y1 and y2 (i.e., y10 and y20): 
 
 ( )dty,yfyyy ∫+= 2111101         (1.4.13) 

 ( )dty,yfyyy ∫+= 2122202         (1.4.14) 

 
These two parameters can be treated as known constants or unknown pa-
rameters that are determined as part of the analysis of the data.  Once a pa-
rametric model has been proposed and data is available, the task of data 
analysis must be performed.  There are several possible objectives of inter-
est to the analyst: 
 

1) Compute the values of the p unknown parameters a1, a2, … ap. 
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2) Compute estimates of the standard deviations of the p unknown 
parameters. 

3) Use the p unknown parameters to compute values of y for desired 
combinations of the independent variables x1, x2, … xm. 

4) Compute estimates of the standard deviations σf for the values of 
y = f(x) computed in 3. 

 
It should be mentioned that the theoretically best solution to all of these 
objectives is achieved by applying the method of maximum likelihood.  
This method was proposed as a general method of estimation by the re-
nowned statistician R. A. Fisher in the early part of the 20th century [e.g., 
FR92]. The method can be applied when the uncertainties associated with 
the observed or calculated data exhibit any type of distribution.  However, 
when these uncertainties are normally distributed or when the normal dis-
tribution is a reasonable approximation, the method of maximum likelih-
ood reduces to the method of least squares [WO06, HA01].  Fortunately, 
the assumption of normally distributed random errors is reasonable for 
most situations and thus the method of least squares is applicable for anal-
ysis of most quantitative experiments. 

1.5 Basic Assumptions  

The method of least squares can be applied to a wide variety of analyses of 
experimental data.  The common denominator for this broad class of prob-
lems is the applicability of several basic assumptions.  Before discussing 
these assumptions let us consider the measurement of a dependent variable 
Yi.  For the sake of simplicity, let us assume that the model describing the 
behavior of this dependent variable includes only a single independent va-
riable.  Using Equation 1.4.3 as the model that describes the relationship 
between x and y then yi is the computed value of y at xi.  We define the dif-
ference between the measured and computed values as the residual Ri: 
 
 ipiiii Ra,...a,axfRyY +=+= );( 21  (1.5.1) 
 
It should be understood that neither Yi nor yi are necessarily equal to the 
true value ηi.  In fact there might not be a single true value if the dependent 
variable can only be characterized by a distribution.  However, for the sake 
of simplicity let us assume that for every value of xi there is a unique true 
value (or a unique mean value) of the dependent variable that is ηi.  The 
difference between Yi and ηi is the error (or uncertainty) εi: 
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 iiiY εη +=  (1.5.2) 
 
The method of least squares is based upon the following assumptions: 
 

1) If the measurement at xi were to be repeated many times, then the 
values of error εi would be normally distributed with an average 
value of zero.  Alternatively, if the errors are not normally distri-
buted, the approximation of a normal distribution is reasonable. 

 
2) The errors are uncorrelated.  This is particularly important for 

time-dependent problems and implies that if a value measured at 
time ti includes an error εi and at time ti+k includes an error εi+k 
these errors are not related (i.e., uncorrelated).  Similarly, if the 
independent variable is a measure of location, then the errors at 
nearby points are uncorrelated. 

 
3) The standard deviations σi of the errors can vary from point to 

point.  This assumption implies that σi is not necessarily equal to 
σj. 

 
The implication of the first assumption is that if the measurement of Yi is 
repeated many times, the average value of Yi would be the true (i.e., error-
less) value ηi.  Furthermore, if the model is a true representation of the 
connection between y and x and if we knew the true values of the unknown 
parameters the residuals Ri would equal the errors εi: 
 
 ipiiii ),...,;x(fY εαααεη +=+= 21  (1.5.3) 
 
In this equation the true value of the ak is represented as αk.  However, 
even if the measurements are perfect (i.e., εi = 0), if f does not truly de-
scribe the dependency of y upon x, then there will certainly be a difference 
between the measured and computed values of y. 
 
The first assumption of normally distributed errors is usually reasonable.  
Even if the data is characterized by other distributions (e.g., the binomial 
or Poisson distributions), the normal distribution is often a reasonable ap-
proximation.  But there are problems where an assumption of normality 
causes improper conclusions.  For example, in financial risk analysis the 
probability of catastrophic events (for example, the financial meltdown in 
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the mortgage market in 2008) might be considerably greater than one 
might predict using normal distributions.  To cite another area, earthquake 
predictions require analyses in which normal distributions cannot be as-
sumed.  Yet another area that is subject to similar problems is the model-
ing of insurance claims.  Most of the data represents relatively small 
claims but there are usually a small fraction of claims that are much larger, 
negating the assumption of normality.  Problems in which the assumption 
of normal error distributions is invalid are beyond the scope of this book.  
However, there is a large body of literature devoted to this subject.  An ex-
tensive review of the subject is included in a book by Yakov Ben Haim 
[BE06]. 
 
One might ask when the second assumption (i.e., uncorrelated errors) is 
invalid.  There are areas of science and engineering where this assumption 
is not really reasonable and therefore the method of least squares must be 
modified to take error correlation into consideration.  Davidian and Gilti-
nan discuss problem in the biostatistics field in which repeated data mea-
surements are taken [DA95].  For example, in clinical trials, data might be 
taken for many different patients over a fixed time period.  For such prob-
lems we can use the term Yij to represent the measurement at time ti for pa-
tient j.  Clearly it is reasonable to assume that εij is correlated with the error 
at time ti+1 for the same patient.  In this book, no attempt is made to treat 
such problems. 
 
Many statistical textbooks include discussions of the method of least 
squares but use the assumption that all the σi's are equal.  This assumption 
is really not necessary as the additional complexity of using varying σi's is 
minimal.  Another simplifying assumption often used is that the models 
are linear with respect to the ak's.  This assumption allows a very simple 
mathematical solution but is too limiting for the analysis of many real-
world experiments.  This book treats the more general case in which the 
function f (or functions fl) can be nonlinear. 

1.6 Treatment of Systematic Errors 

I did my graduate research in nuclear science at MIT.  My thesis was a 
study of the fast fission effect in heavy water nuclear reactors and I was 
reviewing previous measurements [WO62].  The fast fission effect had 
been measured at two national laboratories and the numbers were curious-
ly different.  Based upon the values and quoted σ's, the numbers were 
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many σ's apart.  I discussed this with my thesis advisors and we agreed 
that one or both of the experiments was plagued by systematic errors that 
biased the results in a particular direction.  We were proposing a new me-
thod which we felt was much less prone to systematic errors. 
 
Results of experiments can often be misleading.  When one sees a result 
stated as 17.3 ± 0.5 the reasonable assumption is that the true value should 
be somewhere within the range 16.8 to 17.8.  Actually, if one can assume 
that the error is normally distributed about 17.3, and if 0.5 is the estimated 
standard deviation of the error, then the probability of the true value falling 
within the specified range is about 68%.  The assumption of a normally 
distributed error centered at the measured value is based upon an assump-
tion that the measurement is not effected by systematic errors.  If, howev-
er, one can place an upper limit on all sources of systematic errors, then 
the estimated standard deviation can be modified to include treatment of 
systematic errors.  By including systematic errors in the estimated standard 
deviation of the results, a more realistic estimate of the uncertainty of a 
measurement can be made. 
 
As an example of an experiment based upon a single independent variable 
and a single dependent variable, consider the first experiment discussed in 
Section 1.4: the measurement of the half-life of a radioactive species.  The 
mathematical model for the experiment is Equation 1.4.1 but let us assume 
that the background radiation is negligible (i.e., a3 is close to zero).  We 
could then use the following mathematical model: 
 

 timeaeacounts ⋅−⋅= 2
1   (1.6.1) 

 
The fact that we have neglected to include a background term is a potential 
source of a systematic error.  For this example, the source of the systematic 
error is the choice of the mathematical model itself.  The magnitude of this 
systematic error can be estimated using the same computer program that is 
used to compute the values of the unknown parameters (i.e., a1 and a2).   
 
Probably the greatest sources of systematic errors are measurement errors 
that introduce a bias in one direction or the other for the independent and 
dependent variables.  One of the basic assumptions mentioned in the pre-
vious section is that the errors in the data are random about the true values.  
In other words, if a measurement is repeated n times, the average value 
would approach the true value as n becomes large.  However, what hap-
pens if this assumption is not valid?   When one can establish maximum 
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possible values for such errors, the effect of these errors on the computed 
values of the parameters can be estimated by simple computer simulations.  
An example of this problem is included in Section 5.4. 
 
Another source of systematic errors is due to errors in the values of para-
meters treated as known constants in the analysis of the data.  As an exam-
ple of this type of error consider the constants y10 and y20 in Equations 
1.4.13 and 1.4.14.  If these constants are treated as input quantities, then if 
there is uncertainty associated with their values, these uncertainties are a 
potential source of systematic errors.  Estimates for the limits of these sys-
tematic errors can be made using the same software used for analysis of 
the data.  All that needs to be done is to repeat the analysis for the range of 
possible values of the constants (e.g., y10 and y20).  This procedure provides 
a direct measurement of the effect of these sources of uncertainty on the 
resulting values of the unknown parameters (e.g., a1 through a4). 
 
We can make some statements about combining estimates of systematic 
errors.  Let us assume that we have identified nsys sources of systematic 
errors and that we can estimate the maximum size of each of these error 
sources.  Let us define εjk as the systematic error in the measurement of aj 
caused by the kth source of systematic errors.  The magnitude of the value 
of εj (the magnitude of the systematic error in the measurement of aj 
caused by all sources) could range from zero to the sum of the absolute 
values of all the εjk 's.  However, a more realistic estimate of εj is the fol-
lowing: 
 

 ∑
=

=

=
nsysk

k
jkj

1

22 εε  (1.6.2) 

 
This equation is based upon the assumption that the systematic errors are 
uncorrelated.  The total estimated uncertainty σj for the variable aj should 
include the computed estimated standard deviation from the least squares 
analysis plus the estimated systematic error computed using Equation 
1.6.2. 
 
 222

jajj εσσ +=   (1.6.3) 
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Once, again this equation is based upon an assumption that the least 
squares estimated standard deviation and the estimated systematic error are 
uncorrelated. 

1.7 Nonparametric Models  

There are situations in which attempts to describe the phenomenon under 
observation by a single equation is extremely difficult if not impossible.  
For example, consider a dependent variable that is the future percentage re-
turn on stocks traded on the NYSE (New York Stock Exchange).  One 
might be interested in trying to find a relationship between the future re-
turns and several indicators that can be computed using currently available 
data.  For this problem there is no underlying theory upon which a parame-
tric model can be constructed.  A typical approach to this problem is to use 
the historic data to define a surface and then use some sort of smoothing 
technique to make future predictions regarding the dependent variable 
[WO00].  The data plus the algorithm used to make the predictions are the 
major elements in what we define as a nonparametric model. 
 
Nonparametric methods of data modeling predate the modern computer era 
[WO00].  In the 1920’s two of the most well-known statisticians (Sir R. A. 
Fisher and E. S. Pearson) debated the value of such methods [HA90].  
Fisher correctly pointed out that a parametric approach is inherently more 
efficient.  Pearson was also correct in stating that if the true relationship 
between X and Y is unknown, then an erroneous specification in the func-
tion f(X) introduces a model bias that might be disastrous. 
 
Hardle includes a number of examples of successful nonparametric models 
[HA90].  The most impressive is the relationship between change in height 
(cm/year) and age of women (Figure 1.7.1).  A previously undetected 
growth spurt at around age 8 was noted when the data was modeled using 
a nonparametric smoother [GA84].  To measure such an effect using para-
metric techniques, one would have to anticipate this result and include a 
suitable term in f(X). 
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Figure 1.7.1  Human growth in women versus Age.  The top graph is 
in cm/year.  The bottom graph is acceleration in cm/year2.  The solid 
lines are from a model based upon nonparametric smoothing and the 
dashed lines are from a parametric fit [GA84, HA90]. 
 
 
The point at which one decides to give up attempts to develop a parametric 
model and cross over to nonparametric modeling is not obvious.  For prob-
lems that are characterized by a large set of candidate predictors (i.e., pre-
dictors that might or might not be included in the final model) nonparame-
tric modeling techniques can be used in an effort to seek out information 
rich subsets of the candidate predictor space.  For example, when trying to 
model financial markets, one may consider hundreds of candidate predic-
tors [WO00].  Financial market predictions are, of course, an area of in-
tense world-wide interest.  As a result there is considerable interest in ap-
plying nonparametric methods to the development of tools for making 
financial market predictions.  A number of books devoted to this subject 
have been written in recent years (e.g., [AZ94, BA94, GA95, RE95, WO00, 
HO04, MC05]).  If the nonparametric methods can successfully reduce the 
set of candidate predictors to a much smaller subset then a parametric ap-
proach to modeling might be possible.  For such cases the design tech-
niques considered in this book are applicable.  However, if the experimen-
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tal data will only be modeled using nonparametric techniques, the 
tion analysis approach to design is not applicable.  
 

1.8 Statistical Learning 

The term statistical learning is used to cover a broad class of methods and 
problems that have become feasible as the power of the computer has 
grown.  An in-depth survey of this field is covered in an excellent book by 
Hastie, Tibshirani and Friedman entitled The Elements of Statistical 
Learning: Data Mining, Inference and Prediction [HA01].  Their book 
covers both supervised and unsupervised learning.  The goal of supervised 
learning is to predict an output variable as a function of a number of input 
variables (or as they are sometimes called: indicators or predictors).  In un-
supervised learning there is no particular output variable and one is inter-
ested in finding associations and patterns among the variables.  The cor-
nerstone of statistical learning is to learn from the data.  The analyst has 
access to data and his or her goal is to make sense out of the available in-
formation. 
 
Supervised learning problems can be subdivided into regression and clas-
sification problems.  The goal in regression problems is to develop quan-
titative predictions for the dependent variable.  The goal in classification 
problems is to develop methods for predicting to which class a particular 
data point belongs.  An example of a regression problem is the develop-
ment of a model for predicting the unemployment rate as a function of 
economic indictors.  An example of a classification problem is the devel-
opment of a model for predicting whether or not a particular email mes-
sage is a spam message or a real message.  In this book, the emphasis is on 
regression rather than classification problems.  The design methods dis-
cussed in this book are not applicable for classification problems. 
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2.1 Experimental Variables  

An experimental variable is measured, observed or calculated (for exam-
ple, in a computer experiment).  In statistics the terms population and 
sample are used when discussing variables.  For example, consider all 
boys in a particular city aged 12 years old.  There is a mean (or average) 
height of these boys which is called the population mean value.  To esti-
mate this value, an experiment can be performed in which a random sam-
ple of boys of this age is selected and a sample mean value of their 
heights is determined.  Clearly, the greater number of boys included in the 
sample, the "better" the estimate of the population mean.  The word "bet-
ter" implies that the estimated uncertainty in the calculation is smaller.  
The heights of the boys in the population and in the sample are distributed 
about their mean values.  For this particular variable, the population mean 
value is really only an instantaneous value because the population is conti-
nually changing.  Thus this variable is slightly time dependent. 
 
An experimental variable can be classified as either discrete or conti-
nuous.  An example of a discrete variable is the number of people ob-
served to have a certain genetic profile in a sample group of 1000.  The 
number of people with the genetic profile is a discrete number and does 
not change for the sample group, however, if we select a new sample 
group, the number observed will also be a discrete number but not neces-
sarily the same number as in the original group.  We can say that the num-
ber observed in any group of 1000 people is a distributed discrete varia-
ble.  This discrete variable can be used to estimate a continuous variable: 
the fraction of all people that would test positive for the genetic profile. 
 
Defining a continuous variable is not as clear-cut.  Theoretically a conti-
nuous variable is defined as a variable that can have any value within a 
particular range.  For example, consider the temperature of water which 
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can vary from 0 to 100 °C.  If we measure the temperature of the water us-
ing a thermometer that is accurate to 1 °C then there are 101 possible val-
ues that might be observed and we can consider temperature measured in 
this way as a discrete variable.  However, if we had a more accurate ther-
mometer, then we could observe many more values of temperature.  For 
example, if the accuracy of the thermometer is increased to 0.1 °C then 
1001 values are possible.  Typically, such variables are treated as conti-
nuous distributed variables that can assume any value within a specified 
range.  Repeated measurements of continuous variables typically contain 
random variations due to accuracy limitations of the measuring instrument 
and random processes affecting the measurement (e.g., noise in the elec-
tronics associated with the measurement, temperature effects, etc.). 
 
To characterize the distribution of a variable we use the notation Φ(x).  If x 
is a discrete variable then the following condition must be satisfied: 
 

 1)Φ( =∑
xmax

xmin
x  (2.1.1) 

 
If x is a continuous variable: 
 

 1)Φ( =∫
xmax

xmin

dxx  (2.1.2) 

 
There are several parameters used to characterize all distributions.  The 
most well known and useful parameters are the mean μ and the variance 
σ2.  The standard deviation σ  is the square root of the variance.  For dis-
crete distributions they are defined as follows: 
 

 ∑=
xmax

xmin
xxμ )Φ(  (2.1.3) 

 

 )Φ()( 22 xμxσ
xmax

xmin
∑ −=  (2.1.4) 

 
For continuous distributions: 
 



Chapter 2   STATISTICAL BACKGROUND      21 

 ∫=
xmax

xmin

dxxxμ )Φ(  (2.1.5) 

 

 dxxμxσ
xmax

xmin
∫ −= )Φ()( 22  (2.1.6) 

 
 

2.2 Measures of Location  

The mean is a measure of location and there are several other measures 
of location that are sometimes used.  The median is defined as the value of 
x in which the probability of x being less than the median is equal to the 
probability of x being greater than the median: 
 

 ∫∫ ==
xmax

xmed

xmed

xmin

.dxxdxx 50)Φ()Φ(  (2.2.1) 

 
The median xmed can be defined in a similar manner for discrete va-
riables.  An example of the computation of the median for a discrete varia-
ble is included in the discussion associated with Figure 2.2.2 below. 
 
Another measure of location is the mode which is defined as the value of x 
for which Φ(x) is maximized.  As an example, consider the distribution: 
 

 c/xe
c
xx −= 2)Φ(  (2.2.2) 

 
This is a distribution with range 0 ≤ x ≤ ∞ as it satisfies Equation 2.1.2.  
This can be show from the following integral: 
 

 1! +
∞

=∫ n

0

cx/-n cndxex  (2.2.3) 
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For n=1 this equation yields a value of c2.  Substituting this value into Eq-
uation 2.1.2 we see that the integral over the range of possible values (i.e., 
0 to ∞) equals one and thus Equation 2.2.2 is a continuous distribution in 
this range.  We can get the mean of the distribution by substituting 2.2.2 
into 2.1.5: 
 

 cc
c

dxex
c

μ
0

cx/- 2!211 12
2

2
2 === +

∞

∫  (2.2.4) 

 
It can be shown that the median for this distribution is 1.68c and the mode 
is c.  (For this particular distribution, to determine the mode, set the deriva-
tive of 2.2.2 with respect to x to zero and solve for x.)  The distribution and 
its measures of location are shown in Figure 2.2.1.  (Note: This distribution 
is a special case of a class called Gamma Distributions [JO70] which are 
discussed in Section 2.4.) 
 
Why do we consider measures of location other than the mean?  For some 
variables the median is more meaningful than the mean value.  For exam-
ple, when we consider the salary paid to a particular group of people, the 
median salary is usually more meaningful than the mean salary.  As an ex-
ample, consider the mean salary paid at most companies.  Often the salary 
of the top executives is very large compared to the vast majority of the 
other employees.  To judge whether or not a particular company adequate-
ly compensates its employees, the median salary is a more meaningful 
number than the mean salary.  The mode is the preferred measure of loca-
tion when we are interested in the most probable value of a variable. 
 
We often use the term average interchangeably with mean.  To be more 
exact, the term average is sometimes called the unbiased estimate of the 
mean.  If, for example, a variable x is measured n times the average xavg is 
computed as: 

 ∑
=

=
n

i
iavg x

n
x

1

1
 (2.2.5) 

 
If the measurements of x are unbiased, then the average value approaches 
the population mean value µ as n approaches infinity. 
 
The concept of a mean, median and mode of a distribution can also be ap-
plied to discrete distributions.  As an example, we can again use the num-
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ber of people testing positive for a genetic profile in a sample group of 
1000.  Let us assume that 10 different groups are tested and the number of 
positives in each group are 20, 23, 16, 20, 19, 20, 18, 19, 25, and 18.  The 
data can be shown graphically using a histogram as seen in Figure 2.2.2.  
The estimate of the mean of this distribution is the average of the 10 mea-
surements which is 19.8.  The estimated mode for this distribution is 20 
and the estimated median can be determined from Figure 2.2.2.  Half the 
area of the histogram is in the region x <= 19 and half is in the region x >= 
20 so the estimated median is 19.5.  We use the term estimated for these 
three measures of location because they are not the true values of the 
mean, median and mode.  In fact, for this particular discrete variable there 
is no true value!  There is a true mean value for the fraction of all people 
on earth testing positive for this genetic profile, but when translated to the 
number in a sample group of 1000 people, this would no longer be a dis-
crete variable.  For the sake of brevity, we will use the terms mean, median 
and mode to imply the unbiased estimates of the parameters when applica-
ble. 
 

 
Figure 2.2.1  Φ(x) versus x / c  for 2)Φ( c/xex c/x−=  



24     Chapter 2   STATISTICAL BACKGROUND 

 

 
Figure 2.2.2  Φ(x) versus x  for 10 measurement of the number of posi-

tives in genetic profile testing of groups of 1000 people. 
 
 

2.3 Measures of Variation  

The variance and standard deviation are measures of variation.  Equa-
tions 2.1.4 and 2.1.6 are used to compute these parameters for discrete and 
continuous distributions.  These equations imply that µ (the population 
mean of the distribution) is known.  For most cases all we have is a sample 
mean so the best we can do is determine an estimate of the variance.  Us-
ing the notation sx

2 as the unbiased estimate of the variance of x, we com-
pute it as follows for a discrete variable: 
 

 ∑
=

−
−

=
xmax

xminx
avgx xxn

n
s 2

x
2 )(

1
1

 (2.3.1) 

 
In this equation nx is the number of values of x and n is the total number of 
all x's from xmin to xmax.  For a continuous variable: 
 

 ∑
=

−
−

=
n

1i
avgix xx

n
s 22 )(

1
1  (2.3.2) 
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The need for the term n-1 in the denominator of these equations is neces-
sary because at least two measurements or observations of x are required 
to determine an estimate of the variance.  A single value gives no informa-
tion regarding the "spread" in the data. 
 
Knowledge of µ and σ do not completely describe a distribution, although 
for most cases they provide a fairly accurate description.  In Figure 2.3.1 
we see three distributions each with the same value of µ and σ and yet they 
are quite different.  The middle distribution is symmetrical about its mean 
but the other two are skewed – one to the left and the other to the right.  
Another parameter of distributions is know as the skewness and is based 
upon the 3rd moment about the mean: 
 

 )Φ()(1 3
3

xμx
σ

kewnesss
xmax

xmin
∑ −=      (discrete distribution)  

 

 dxxμx
σ

kewnesss
xmax

xmin

)Φ()(1 3
3 ∫ −=   (continuous dist.) (2.3.3) 

 
 

 
Figure 2.3.1  Φ(x) versus x  for 3 different distributions: each with µ 

equal to 100 and σ equal to 50√2.  
The distribution to the left of Figure 2.3.1 exhibits positive skewness while 
the distribution to the right exhibits negative skewness.  The symmetric 
distribution in the middle has zero skewness. 
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We can use Equation 2.2.3 to compute the variance and skewness of the 
distribution characterized by Equation 2.2.2.  We have already shown that 
the mean of this distribution is 2c.  Substituting this value of the mean and 
2.2.2 into 2.1.6 we get the following expression for the variance: 
 

dxe
c
xxdxxec2x

c
σ c/x

0

c/x −
∞∞

− ∫∫ +−=−=
0

2

2

3
2

2
2 4x)4

c
()(1  (2.3.4) 

 
Using Equation 2.2.3 we get: 
 

 22
3

2

4
2 2486 cc

c
c

c
cσ =+−=   and therefore    cσ 2=  

 
Similarly we can show that the skewness is 4c3/σ3=√2.  In Figure 2.3.1, the 
left distribution was generated using Equation 2.2.2 and c = 50.  The dis-
tribution on the right is the mirror image of the distribution on the left.   
All three distributions have means of 100 and σ's of 70.71 (i.e., 50√2).  
The mode for the distribution on the left is 50 and the mode for the distri-
bution on the right is 150.  The mode for the symmetric distribution is 100.  
 
Another parameter called kurtosis is defined in a manner similar to skew-
ness but is based upon the 4th moment of the distribution about the mean: 
 

 )Φ()(1 4
4

xμx
σ

kurtosis
xmax

xmin
∑ −=      (discrete distribution)  

 

 dxxμx
σ

kurtosis
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xmin
∫ −= )Φ()(1 4

4
    (continuous dist.) (2.3.5) 

 
We can again use Equation 2.2.3 to compute the kurtosis of the distribu-
tion characterized by Equation 2.2.2 and derive a value equal to 24c4/σ4=6. 
 
We define the nth central moment of a distribution as: 
 

 dxμ-xμ n
xmax

xmin
n )(∫=  (2.3.6) 
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By definition, for any distribution, μ1 is 0 and μ2 is σ2.  For normal distri-
butions the following recursion relationship can be shown: 
 
 2

2)1( -nn μσnμ −=  (2.3.7) 
 
We see that for normal distributions μ3 = 2σ2μ1 = 0 and μ4 = 3σ2μ2 = 3σ4.  
Thus for normal distributions skewness = 0 and kurtosis =3.  The value of 
kurtosis = 6 for the distribution characterized by Equation 2.2.2 is greater 
than for a normal distribution with the same value of variance.  Comparing 
a distribution with a normal distribution of the same variance (i.e., σ2), kur-
tosis measures whether the distribution is tall and skinny (less than 3) or 
short and fat (greater than 3).    
 
In finance, the term kurtosis risk is sometimes used to warn against as-
suming normality when in fact a distribution exhibits significant kurtosis.  
Mandelbrot and Hudson suggest that the failure to include kurtosis in their 
pricing model caused the famous Long-Term Capital Management col-
lapse in 1998 [MA04].  
 
To estimate skewness and kurtosis from a set of data we use the following 
equations: 
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2.4 Statistical Distributions  

In nature most quantities that are observed are subject to a statistical distri-
bution.  The distribution is often inherent in the quantity being observed 
but might also be the result of errors introduced in the method of observa-
tion.  In the previous section, we considered the testing of people for a ge-
netic profile.  The number of people testing positive for a given sample 
size is a discrete number and if the experiment is repeated many times the 
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number will vary from sample to sample.  In other words, the number is 
subject to a distribution.  Statistics helps us make statements regarding the 
distributions that we encounter while analyzing experimental data. 
 
The distribution of the number of people testing positive for a given genet-
ic profile is an example of an experimental variable with an inherent dis-
tribution.  Some experimental variables are subject to errors due to the 
measuring process.  Thus if the measurement were repeated a number of 
times, the results would be distributed about some mean value.  As an ex-
ample of a distribution caused by a measuring instrument, consider the 
measurement of temperature using a thermometer.  Uncertainty can be in-
troduced in several ways: 
 
1) The persons observing the result of the thermometer can introduce 

uncertainty.  If, for example, a nurse observes a temperature of a pa-
tient as 37.4°C, a second nurse might record the same measurement as 
37.5°C.  (Modern thermometers with digital outputs can eliminate this 
source of uncertainty.) 

 
2) If two measurements are made but the time taken to allow the temper-

ature to reach equilibrium is different, the results might be different.  
(Modern digital thermometers eliminate this problem by emitting a 
beep when the temperature has reached its steady state.) 

 
3) If two different thermometers are used, the instruments themselves 

might be the source of a difference in the results.  This source of un-
certainty is inherent in the quality of the thermometers.  Clearly, the 
greater the accuracy, the higher the quality of the instrument and 
usually, the greater is the cost.  It is far more expensive to measure a 
temperature to 0.001°C than 0.1°C! 

 
4) The temperature might be slightly time dependent.  

 
In this section some of the most important distributions are discussed.  
These distributions cover most of the distributions that are encountered in 
work of an experimental nature. 

The normal distribution 

When x is a continuous variable the normal distribution is often applicable.  
The normal distribution assumes that the range of x is from -∞ to ∞ and 
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that the distribution is symmetric about the mean value μ.  These assump-
tions are often reasonable even for distributions of discrete variables, and 
thus the normal distribution can be used for some distributions of discrete 
variables as well as continuous variables.  The equation for a normal dis-
tribution is: 
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=
xexpx /  (2.4.1) 

 
Equation 2.4.1 satisfies the condition expressed by Equation 2.1.2 for the 
range -∞ to ∞.   The normal distribution is shown in Figure 2.4.1 for vari-
ous values of the standard deviation σ.  We often use the term standard 
normal distribution to characterize one particular distribution: a normal 
distribution with mean μ = 0 and standard deviation σ = 1.  The symbol u 
is usually used to denote this distribution.  Any normal distribution can be 
transformed into a standard normal distribution by subtracting μ from the 
values of x and then dividing this difference by σ. 
 

 
Figure 2.4.1  Φ(x)  vs  x-μ  for Normal Distribution (σ =0.5, 1 and 2). 

 
We can define the effective range of the distribution as the range in which 
a specified percentage of the data can be expected to fall.  If we specify the 
effective range of the distribution as the range between μ ± σ , then as n 
becomes large approximately 68.3% of all measurements would fall within 
this range.  Extending the range to μ ± 2σ , 95.4% would fall within this 
range and 99.7% would fall within the range μ ± 3σ.  The true range of 
any normal distribution is always -∞ to ∞.  Values of the percentage that 
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fall within the range 0 to u (i.e., (x-μ)/σ) are included in tables in many 
sources [e.g., AB64, FR92].  The standard normal table is also available on-
line [ST03].  Approximate equations corresponding to a given value of 
probability are also available (e.g., AB64). 
 
The normal distribution is not applicable for all distributions of continuous 
variables.  In particular, if the variable x can only assume positive values 
and if the mean of the distribution μ is close to zero, then the normal dis-
tribution might lead to erroneous conclusions.  If however, the value of μ 
is large (i.e., μ/σ >> 1) then the normal distribution is usually a good ap-
proximation even if negative values of x are impossible. 
 
We are often interested in understanding how the mean of a sample of n 
values of x (i.e., xavg) is distributed.  It can be shown that the standard dev-
iation of the value of xavg has a standard deviation of σ  / √n.  Thus the 
quantity (xavg-μ) / (σ /√n) follows the standard normal distribution u.  This 
result is extremely important and is one of the fundamental concepts of 
statistics.  Stated in words, the standard deviation of the average value of x 
(i.e., σxavg) is equal to the value of σ  of the distribution divided by √n.  
Thus as n (the number of measurements of x) increases, the value of σ xavg 
decreases and for large n it approaches zero.  For example, let us consider 
a population with a mean value of 50 and a standard deviation of 10.  Thus 
for large n we would expect about 68% of the x values to fall within the 
range 40 to 60.  If we take a sample of n = 100 observations and then 
compute the mean of this sample, we would expect that this mean would 
fall in the range 49 to 51 with a probability of about 68%.  In other words, 
even though the population σ is 10, the standard deviation of an average of 
100 observations is only 10/ 100  = 1. 

The binomial distribution 

When x is a discrete variable of values 0 to n (where n is a relatively small 
number), the binomial distribution is usually applicable.  The variable x is 
used to characterize the number of successes in n trials where p is the 
probability of a single success for a single trial.  The symbol Φ(x) is thus 
the probability of obtaining exactly x successes.  The number of successes 
can theoretically range from 0 to n.  The equation for this distribution is: 
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As an example, consider the following problem: what is the probability of 
drawing at least one ace from a deck of cards if the total number of trials is 
3.  A deck of 52 cards includes a total of 4 aces so the probability of draw-
ing an ace in any trial is 4/52 = 1/13.  After each trial the card drawn is 
reinserted into the deck and the deck is randomly shuffled.  Since the card 
is returned to the deck the value of p remains unchanged.  For this problem 
the possible values of x are 0, 1, 2 and 3.  The value of p (i.e., drawing an 
ace) is 1/13 and the probability of not drawing an ace in a single trial is 
12/13.  The probability of drawing no aces in 3 trials is: 
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The probability of drawing an ace once is: 
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The probability of drawing two aces is: 
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The probability of drawing an ace all three times is: 

0.00046)13
1()(1

(0)!3!
3!Φ(3) 303 ==−= pp  

 
The sum of all 4 of these probable outcomes is one.  The probability of 
drawing an ace at least once is 1 – 0.78652 = 0.21348. 
 
The mean value μ and standard deviation σ of the binomial distribution 
can be computed from the values of n and p: 
 
 np=μ  (2.4.3) 
 
 2/1))1(( pnp −=σ  (2.4.4) 
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Equation 2.4.3 is quite obvious.  If, for example, we flip a coin 100 times, 
what is the average value of the number of heads we would observe?  For 
this problem, p = ½, so we would expect to see on average 100 * 1/2 = 50 
heads.  The equation for the standard deviation is not obvious, however the 
proof of this equation can be found in many elementary textbooks on sta-
tistics.  For this example we compute σ as (100*1/2*1/2)1/2 = 5.  If μ and n 
are large compared to 1 we can use the normal approximation to compute 
the probability of seeing exactly x heads.  (For large n the number of sig-
nificant digits required to use Equation 2.4.2 exceeds the calculational ca-
pabilities of most computer programming languages.)   The area under the 
normal approximation for x heads would be the area in the range from x - 
½ to x + ½.  Converting this to the standard normal distribution we use the 
range (x-μ-½)/σ to (x-μ+½)/σ.  For example, the probability of seeing ex-
actly 50 heads would correspond to the area under the standard normal dis-
tribution from -0.5/5 = -0.1 to 0.5/5 = 0.1.  Using the standard normal ta-
ble, the probability of falling between 0.0 and 0.1 is 0.0398 so the 
probability of seeing 50 heads is approximately 2 * 0.0398 = 0.0796.  The 
probability of falling in the range 45 to 55 (i.e., 44.5 to 55.5) corresponds 
to the standard normal range of -1.1 to 1.1 and equals 0.7286.  We could 
have tried to compute the exact probability of seeing 50 heads by using 
Equation 2.4.2 directly: 
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This seemingly simply equation is a calculational nightmare! 

The Poisson distribution 

The binomial distribution (i.e., Equation 2.4.2) becomes unwieldy for large 
values of n.  The Poisson distribution is used for a discrete variable x that 
can vary from 0 to ∞.  If we assume that we know the mean value μ of the 
distribution, then Φ(x) is computed as: 
 

 
!
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x

ex
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It can be shown that the standard deviation σ of the Poisson distribution is: 
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 1/2μ=σ  (2.4.6) 
 
If μ is a relatively small number and n is large, then the Poisson distribu-
tion is an excellent approximation of the binomial distribution.  If μ is a 
large value, the normal distribution is an excellent approximation of a 
Poisson distribution. 
 
As an example of a Poisson distribution, consider the observation of a rare 
genetic problem.  Let us assume that the problem is observed on average 
2.3 times per 1000 people.  For practical purposes n is close to ∞ so we 
can assume that the Poisson distribution is applicable.  We can compute 
the probability of observing x people with the genetic problem out of a 
sample population of 1000 people.  The probability of observing no one 
with the problem is: 
 
 10030!032Φ(0) 32032 .e/.e .. === −−  
 
The probability of observing one person with the problem is: 
 
 2306032!132Φ(1) 32132 .e./.e .. === −−  
 
The probability of observing two people with the problem is: 
 
 26520232232Φ(2) 322232 ./e./.e .. === −− !  
 
The probability of observing three people with the problem is: 
 
 21360632!332Φ(3) 323332 ./e./.e .. === −−  
 
From this point on, the probability Φ(x) decreases more and more rapidly 
and for all intents and purposes approaches zero for large values of x.  
(The probability of observing 10 or more is only about 0.00015.)  
 
Another application of Poisson statistics is for counting experiments in 
which the number of counts is large.  For example, consider observation of 
a radioisotope by an instrument that counts the number of signals emanat-
ing from the radioactive source per unit of time.  Let us say that 10000 
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counts are observed.  Our first assumption is that 10000 is our best esti-
mate of the mean μ of the distribution.  From equation 2.4.6 we can then 
estimate the standard deviation σ of the distribution as 100001/2 = 100.  In 
other words, in a counting experiment in which 10000 counts are observed, 
the accuracy (i.e., the estimated standard deviation) of this observed count 
rate is approximately 1% (i.e., 100/10000 = 0.01).  To achieve an accuracy 
of 0.5% we can compute the required number of counts: 
 

1/21/2/ −μ=μμ=μσ= /.0050  
 
Solving this equation we get a value of μ = 40000.  In other words to 
double our accuracy (i.e., halve the value of σ) we must increase the ob-
served number of counts by a factor of 4. 

The χ2 distribution 

The χ2 (chi-squared) distribution is defined using a variable u that is nor-
mally distributed with a mean of 0 and a standard deviation of 1.  This u 
distribution is called the standard normal distribution.  The variable χ2(k) 
is called the χ2 value with k degrees of freedom and is defined as follows: 
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In other words, if k samples are extracted from a standard normal distribu-
tion, the value of χ2(k) is the sum of the squares of the u values.  The dis-
tribution of these values of χ2(k) is a complicated function: 
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In this equation Γ is called the gamma function and is defined as follows: 
 

even k for kkk 1*2*3)...22/)(12/()2/( −−=Γ  

odd k for kkk 2/1*2/1*2/3)...22/)(12/()2/( π−−=Γ     (2.4.9) 
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Equation 2.4.8 is complicated and rarely used.  Of much greater interest is 
determination of a range of values from this distribution.  What we are 
more interested in knowing is the probability of observing a value of 
χ2 from 0 to some specified value.  This probability can be computed from 
the following equation [AB64]: 
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For small values of k (typically up to k=30) values of χ2 are presented in a 
tabular format [e.g., AB64, FR92, ST03] but for larger values of k, approx-
imate values can be computed (using the normal distribution approxima-
tion described below).  The tables are usually presented in an inverse for-
mat (i.e., for a given value of k, the values of χ2 corresponding to various 
probability levels are tabulated). 
 

i x u = (x-108)/2 u2

1 110.0 1.00 1.0000
2 105.5 1.25 1.5625
3 108.6 0.30 0.0900
4 103.8 -2.10 4.4100
5 105.2 -1.40 1.9600
6 113.7 2.85 8.1225
7 106.9 -1.05 1.1025
8 109.7 0.85 0.7225

sum 862.4 -0.80 18.9700
avg 107.8 -0.10 2.3712

Table 2.4.1  Measured values of x after a change in the process.  The 
historical values of μ and σ are 108 and 2. 

 
 
As an example of the use of this distribution, consider the data in Table 
2.4.1.  This data is from an experiment in which we are testing a process to 
check if something has changed.  Some variable x characterizes the 
process.  We know from experience that the historical mean of the distri-
bution of x is μ=108 and the standard deviation is σ=2.  The experiment 
consists of measuring 8 values of x.  The computed average for the 8 val-
ues of x is 107.8 which is close to the historical value of μ but can we 
make a statement regarding the variance in the data?  If there was no 
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change in the process, we would expect that the following variable would 
be distributed as a standard normal distribution (μ=0, σ=1): 
 

 
2

)108()( −
=

σ
μ−

=
xxu  (2.4.11) 

 
Using Equation 2.4.11, 2.4.7 and the 8 values of x we can compute a value 
for χ2.  From Table 2.4.1 we see that the value obtained is 18.97.  The 
question that we would like to answer is what is the probability of obtain-
ing this value or a greater value by chance?  From [ST03] it can be seen 
that for k = 8, there is a probability of 2.5% that the value of χ2 will exceed 
17.53 and 1% that the value will exceed 20.09.  If there was no change in 
the process, this test indicates that the probability of obtaining a value of 
18.97 or greater is between 1% and 2.5%.  This is a fairly low probability 
so we might suspect that there has been a significant change in the process. 
 
An important use for the χ2 distribution is analysis of variance.  The va-
riance is defined as the standard deviation squared.  We can get an un-
biased estimate of the variance of a variable x by using n observations of 
the variable.  Calling this unbiased estimate as s2, we compute it as fol-
lows: 
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We can use this equation to estimate the variance in the data in Table 2.4.1 
and this value can then be tested using the χ2 distribution.  For this data the 
value of s is 3.29.  The quantity (n-1)s2/σ2 is distributed as χ2 with n-1 de-
grees of freedom.  We can use the χ2 distribution to test if this value is sig-
nificantly different than the historic value of 2.  The quantity (n-1)s2/σ2 is 
equal to 7*3.292/22 = 18.94.  If there was no change in the process, for n-
1=7 degrees of freedom, the probability of exceeding 18.47 is 1%.  The 
probability of obtaining a value of 18.94 or greater is thus less than 1% 
which leads us to suspect that there might have been a change in the 
process.  Notice that this test yields an even lower probability than the 
usage of 2.4.11 (i.e., between 1% and 2.5%).  The reason for this increased 
estimate of the probability of a change in the process is due to the fact that 
we have included additional information in the analysis (i.e., the estimated 
value of the xavg which is included in Equation 2.4.12). 
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Two very useful properties of the χ2 distribution are the mean and standard 
deviation of the distribution.  For k degrees of freedom, the mean is k and 
the standard deviation is k2 .  For large values of k, we can use the fact 
that this distribution approaches a normal distribution and thus we can eas-
ily compute ranges.  For example, if k = 100, what is the value of χ2 for 
which only 1% of all samples would exceed it by chance?  For a standard 
normal distribution, the 1% limit is 2.326.  The value for the χ2 distribution 
would thus be μ + 2.326*σ = k + 2.326*(2k)1/2 = 100 + 31.2 = 131.2. 
 
  

The t distribution 

The t distribution (sometimes called the student-t distribution) is used for 
samples in which the standard deviation is not known.  Using n observa-
tions of a variable x, the mean value xavg and the unbiased estimate s of the 
standard deviation can be computed.  The variable t is defined as: 
 
 )//()( nsxt avg μ−=  (2.4.13) 

 
The t distribution was derived to explain how this quantity is distributed.  
In our discussion of the normal distribution, it was noted that the quantity 
(xavg-μ) / (σ / n ) follows the standard normal distribution u.  When σ of 
the distribution is not known, the best that we can do is use s instead.  For 
large values of n the value of s approaches the true value of σ of the distri-
bution and thus t approaches a standard normal distribution.  The mathe-
matical form for the t distribution is based upon the observation that Equa-
tion 2.4.13 can be rewritten as: 
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The term σ/s is distributed as ((n-1) / χ2 )1/2 where χ2 has n-1 degrees of 
freedom.  Thus the mathematical form of the t distribution is derived from 
the product of u (the standard normal distribution) and ((n-1)/  χ2

n-1 )1/2.  
Values of t for various percentage levels for n-1 up to 30 are included in 
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tables in many sources [e.g., AB64, FR92].  The t table is also available on-
line [ST03].  For values of n > 30, the t distribution is very close to the 
standard normal distribution. 
 
For small values of n the use of the t distribution instead of the standard 
normal distribution is necessary to get realistic estimates of ranges.  For 
example, consider the case of 4 observations of x in which xavg and s of the 
measurements are 50 and 10.  The value of s / n  is 5.  The value of t for 
n - 1 = 3 degrees of freedom and 1% is 4.541 (i.e., the probability of ex-
ceeding 4.541 is 1%).  We can use these numbers to determine a range for 
the true (but unknown value) of μ: 
 

27.30 = 50 – 4.541*5 <= μ <= 50 + 4.541*5 = 77.72 
 
In other words, the probability of μ being below 27.30 is 1%, above 77.71 
is 1% and within this range is 98%.  Note that the value of 4.541 is consi-
derably larger than the equivalent value of 2.326 for the standard normal 
distribution.  It should be noted, however, that the t distribution approaches 
the standard normal rather rapidly.  For example, the 1% limit is 2.764 for 
10 degrees of freedom and 2.485 for 25 degrees of freedom.  These values 
are only 19% and 7% above the standard normal 1% limit of 2.326. 

The F distribution 

The F distribution plays an important role in data analysis.  This distribu-
tion was named to honor R.A. Fisher, one of the great statisticians of the 
early 20th century.  The F distribution is defined as the ratio of two χ2 dis-
tributions divided by their degrees of freedom: 
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The resulting distribution is complicated but tables of values of F for vari-
ous percentage levels and degrees of freedom are available in many 
sources (e.g., [AB64, FR92, ST03]).  Simple equations for the mean and 
standard deviation of the F distribution are as follows: 
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From these equations we see that for large values of k2 the mean μ ap-
proaches 1 and σ2 approaches 2(1/k1 + 1/k2).  If k1 is also large, we see that 
σ2 approaches zero.  Thus if both k1 and k2 are large, we would expect the 
value of F to be very close to one. 

The Gamma distributions 

The gamma distributions are characterized by three constants: α, β and γ.  
The values of α and β must be positive.  The range of values of the varia-
ble x must be greater than γ.  The general form of all gamma distributions 
is: 
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Equation 2.2.2 is an example of a gamma distribution with α=2, β=c and 
γ=0.  (From 2.4.9 we see that for even integers, Г(n) is (n-1)! so Г(2) is 
one.)  Gamma distributions for α=1, 1.5, 2, 2.5, 4 and for β=1 and γ=0 are 
shown in Figure 2.4.2.  The χ2 distribution with k degrees of freedom is a 
special case of the Gamma distribution with α=k/2, β=2 and γ=0.  
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Figure 2.4.2  Φ(x)  vs x for Gamma Distributions  

(α = 1, 1.5, 2, 2.5 & 4,  β = 1, γ = 0). 

2.5 Functions of Several Variables  

In many experiments, data is often combined to create the independent 
and/or the dependent variables.  For example, in Section 1.4 experiments 
to measure half lives of radioisotopes were discussed.  In Equation 1.4.1 
the background term (i.e., a3) was included as an unknown but in Equa-
tions 1.4.6 and 1.4.7 the dependent variables counts1 and counts2 were as-
sumed to be corrected for their background count rates.  Thus the variables 
counts1 and counts2 are computed as the differences between the measured 
rates and the background rates. 
 
In general we can consider the problem as v (the variable) being a function 
computed using r measured or computed variables u1, u2 .. ur : 
 
 )( 21 ru...u,ufv =  (2.5.1) 
 
Defining Δv and Δui as the variations from the true values of v and ui, if 
these variations are small we obtain: 
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Squaring Equation 2.5.2: 
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If we repeat the measurements n times, we can then say that the 
average value of (Δv)2 is the sum of the average values of all the 
terms in Equation 2.5.3.  If the variables u1, u2 .. ur are uncorre-
lated (i.e., not related) then the average values of the products 
ΔuiΔuj approach zero as n approaches infinity and Equation 2.5.3 
approaches: 
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These average values can be replaced by σ2 terms for large n: 
 

 ∑
=

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

=
r

i
iu

i
v σ

u
fσ

1

2
2  (2.5.4)  

 
For large n if the average values of the products ΔuiΔuj do not ap-
proach zero then the variables are correlated and we must include 
these terms in the determination of σv
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The terms σij are called the covariances of the variables ui and uj. 

 
Example 2.5.1:  A very simple but useful example of a function of 
several variables is the case of v being the sum or difference of two 
other variables.  We often encounter these relationships when ana-
lyzing data.  Assume we have data obtained for two separate 
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groups (for example, males and females).  We are interested in de-
veloping models for the males and females separately and then to-
gether.  We start with the simple relationship: v = u1 + u2 where u1 
represents the males and u2 represents females.  Since there is no 
correlation between the values of u1 and u2 we use Equation 2.5.4 
to compute the value of σv. If, for examples u1=25±3 and u2=35±4 
then v=60±5: 
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Note that for this simple relationship the partial derivatives are 
one. 
 
Example 2.5.2: When the relationship is a difference and not a 
sum we run into a problem that can sometimes be quite crucial in 
work of an experimental nature.  In Section 1.4 we discussed the 
problem of measuring the count rate from a radioisotope and then 
correcting it using the measured background.  For this case the re-
lationship is v = u1 - u2.  The measured count rates are independent 
so once again we can use Equation 2.5.4.  Since the u variables are 
numbers of counts, from Poisson statistics the relevant σ's are the 
square roots of the u's.  For example if u1=400 and u2=256 then 
v=144.  We compute σv as follows: 
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We started with count rates that were accurate to about 5% 
(20/400) and 6% (16/256) and ended with a corrected count rate 
accurate to 17.8% (25.6/144) which is an erosion in accuracy of 
about a factor of three.  Summarizing, for sums and differences: 
 
 ru...uuv ±±= 21  (2.5.6) 
 
The value of σv

2 is computed as follows: 
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For products and ratios (v = u1* u2 and v = u1 / u2) Equation 2.5.4 
yields the following after dividing by v2: 
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In general if v is a series of products and ratios: 
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Another very useful relationship is v = un.  Using Equation 2.5.4 
we can derive the following simple relationship: 
 

 
u
σn

v
σ uv =  (2.5.10) 

 
Example 2.5.3:  As an example, consider the measurement of a 
radioisotope using two different specimens.  For the first specimen 
1600 counts were recorded and for the second, 900 counts were 
recorded.  The uncertainties computed for these two specimens 
are: 
 
 40)( 1/2

11 == uσu  counts  

 30)( 1/2
22 == uσu  counts 

 
and these uncertainties are uncorrelated.  The sum, difference, 
product, ratio and squares and their σ's are tabulated in Table 2.5.1. 
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Variable Value Units σ % σ 

u1 1600 counts 40 2.50 
u2 900 counts 30 3.33 

u1 + u2 2500 counts 50 2.00 
u1 - u2 700 counts 50 7.14 
u1 * u2 1,440,000 counts2 60,000 4.17 
u1 / u2 1.778 --------- 0.0741 4.17 

u1
2 2,560,000 counts2 128,000 5.00 

u2
2 810,000 counts2 54,000 6.67 

      Table 2.5.1 Elementary functions of variables u1 and u1 
 

When we can no longer assume that the variables are independent, 
we must use Equation 2.5.5 to compute σv.  We see from this equa-
tion that the covariance terms are included.  The covariance be-
tween two variables (lets say u and v) is defined as in a manner 
similar to Equation 2.1.6:   
 

 ∫ ∫ Φ−−=
umax

umin

vmax

vmin
vuuv dvduv,uμvμuσ )())((  (2.5.11) 

 
The term ф(u,v) is called the joint probability distribution and is 
only equal to ф(u)ф(v) when u and v are uncorrelated (i.e., the 
correlation coefficient ρ is zero).  The parameter ρ is defined as: 
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To estimate σuv we use an equation similar to 2.3.2: 
 

 )()(
1

1
avgi

n

1i
avgiuv vvuu

n
s −−

−
= ∑

=

 (2.5.13) 

 
To estimate ρ we use the following: 
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Example 2.5.4:  The data in Table 2.5.2 include values of ui and vi 
which are paired data measured at the same time.  We see that the 
estimated value of the covariance suv = -34/7 = -4.857 and the es-
timated correlation coefficient r = -4.857/(3.808*2.138) = -0.597.  
Looking at the data we see that as u increases, v tends to decrease. 
 
 

i U v u+v u-uavg v-vavg (u-uavg)(v-vavg) 
1 10 8 18 1.75 -0.50 -0.875 
2 6 10 16 -2.25 1.50 -3.375 
3 8 10 18 -0.25 1.50 -0.375 
4 12 8 20 3.75 -0.50 -1.875 
5 3 12 15 -5.25 3.50 -18.375 
6 9 5 14 0.75 -3.50 -2.625 
7 14 7 21 5.75 -1.50 -8.625 
8 4 8 12 -4.25 -0.50 2.125 

Sum 66 68 134 0.00 0.00 -34.000 
Avg 8.250 8.500 16.75 0.00 0.00  
Est σ 3.808 2.138 3.059 3.808 2.138 suv = -4.857 

Table 2.5.2 Values of paired data ui  and vi measured 
at times i= 1 to 8 

 
Example 2.5.5:  We next compute the values of x1 = u + v and x2 
= u*v using Equation 2.5.5 and the estimated value of covariance 
σuv computed in Example 2.5.4.  When there are only two va-
riables, Equation 2.5.2 simplifies to: 
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For x1 Equation 2.5.15 reduces to: 
 
 uvvux σσσσ 2)()( 222

1
++=  (2.5.16) 

 
Equation 2.5.16 is not a function of either u or v so one value of 
σx1 is applicable to all the points.  The value computed using this 
equation is 3.059 which we see in Table 2.5.2 is exactly the same 
as what we get if we just use the values of u + v directly to com-
pute σx1. 
 
For x2 = u*v Equation 2.5.15 reduces to: 
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Dividing this equation by x2

2 = (uv)2 we get the more useful form: 
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Equation 2.5.17 is a function of both u and v so there is a different 
value of σx2 for each point.  For example, for point 5: 
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For this point σx2 = x2 * √ 1.373 = 3*12*1.172=42.19. Note that 
for this particular point the value of σx2 is actually larger than x2 
due to the large fractional uncertainty in the value of u. 
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3.1 Introduction 

The method of least squares was the cause of a famous dispute between 
two giants of the scientific world of the early 19th century: Adrien Marie 
Legendre and Carl Friedrich Gauss.  The first published treatment of the 
method of least squares was included in an appendix to Legendre's book 
Nouvelles methods pour la determination des orbites des cometes.  The 9 
page appendix was entitled Sur la methode des moindres quarres.  The 
book and appendix was published in 1805 and included only 80 pages but 
gained a 55 page supplement in 1806 and a second 80 page supplement in 
1820 [ST86].  It has been said that the method of least squares was to sta-
tistics what calculus had been to mathematics.  The method became a stan-
dard tool in astronomy and geodesy throughout Europe within a decade of 
its publication.  Gauss in 1809 in his famous Theoria Motus claimed that 
he had been using the method since 1795.  (Gauss's book was first trans-
lated into English in 1857 under the authority of the United States Navy by 
the Nautical Almanac and Smithsonian Institute [GA57]).  Gauss applied 
the method to the calculation of the orbit of Ceres: a planetoid discovered 
by Giuseppe Piazzi of Palermo in 1801 [BU81].  (A prediction analysis of 
Piazzi's discovery is included in Section 6.6.)  Another interesting aspect 
of the method of least squares is that it was rediscovered in a slightly dif-
ferent form by Sir Francis Galton.  In 1885 Galton introduced the concept 
of regression in his work on heredity.  But as Stigler says: "Is there more 
than one way a sum of squared deviations can be made small?  Even 
though the method of least squares was discovered more than 200 years 
ago, it is still "the most widely used nontrivial technique of modern statis-
tics" [ST86]. 
 
The least squares method is discussed in many books but the treatment is 
usually limited to linear least squares problems.  In particular, the empha-
sis is often on fitting straight lines or polynomials to data.  The multiple li-

J. Wolberg, Designing Quantitative Experiments, DOI 10.1007/978-3-642-11589-9_3,  
© Springer-Verlag Berlin Heidelberg 2010 
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near regression problem (described below) is also discussed extensively 
(e.g., [FR92, WA93]).  Treatment of the general nonlinear least squares 
problem is included in a much smaller number of books.  One of the earli-
est books on this subject was written by W. E. Deming and published in 
the pre-computer era in 1943 [DE43].  An early paper by R. Moore and R. 
Zeigler discussing one of the first general purpose computer programs for 
solving nonlinear least squares problems was published in 1960 [MO60].  
The program described in the paper was developed at the Los Alamos La-
boratories in New Mexico.  Since then general least squares has been cov-
ered in varying degrees and with varying emphases by a number of authors 
(e.g., DR66, WO67, BA74, GA92, VE02, WO06).   
  
For most quantitative experiments, the method of least squares is the "best" 
analytical technique for extracting information from a set of data.  The me-
thod is best in the sense that the parameters determined by the least squares 
analysis are normally distributed about the true parameters with the least 
possible standard deviations.  This statement is based upon the assumption 
that the uncertainties in the data are uncorrelated and normally distributed.  
For most quantitative experiments this is usually true or is a reasonable 
approximation.  When the curve being fitted to the data is a straight line, 
the term linear regression is often used.  For the more general case in 
which a plane based upon several independent variables is used instead of 
a simple straight line, the term multiple linear regression is often used.  
Prior to the advent of the digital computer, curve fitting was usually li-
mited to linear relationships.  For the simplest problem (i.e., a straight 
line), the assumed relationship between the dependent variable y and the 
independent variable x is: 
 
 xaay 21 +=  (3.1.1) 
 
For the case of more than one independent variable (multiple linear regres-
sion), the assumed relationship is: 
 
 12211 +++++= mmm axa...xaxay  (3.1.2) 
 
For this more general case each data point includes m+1 values: yi, x1i, x2i, 
…, xmi. 
 
The least squares solutions for problems in which Equations 3.1.1 and 
3.1.2 are valid fall within the much broader class of linear least squares 
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problems.  In general, all linear least squares problems are based upon an 
equation of the following form: 
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In other words, y is a function of X (a vector with m terms).  Any equation 
in which the p unknown parameters (i.e., the ak's) are coefficients of func-
tions of only the independent variables (i.e., the m terms of the vector X) 
can be treated as a linear problem.  For example in the following equation, 
the values of a1, a2, and a3 can be determined using linear least squares: 
 
 
 
This equation is nonlinear with respect to x but the equation is linear with 
respect to the ak's.  In this example, the X vector contains only one term so 
we use the notation x rather than x1.  The following example is a linear eq-
uation in which X is a vector containing 2 terms: 
 
 
 
The following example is a nonlinear function: 
 
 
 
The fact that a4 is embedded within the second term makes this function 
incompatible with Equation 3.1.3 and therefore it is nonlinear with respect 
to the ak's. 
 
For both linear and nonlinear least squares, a set of p equations and p un-
knowns is developed.  If Equation 3.1.3 is applicable then this set of equa-
tions is linear and can be solved directly.  However, for nonlinear equa-
tions, the p equations require estimates of the ak's and therefore iterations 
are required to achieve a solution.  For each iteration, the ak's are updated, 
the terms in the p equations are recomputed and the process is continued 
until some convergence criterion is achieved.  Unfortunately, achieving 
convergence is not a simple matter for some nonlinear problems. 
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For some problems our only interest is to compute y = f(x) and perhaps 
some measure of the uncertainty associated with these values (e.g., σf) for 
various values of x.  This is what is often called the prediction problem.  
We use measured or computed values of x and y to determine the parame-
ters of the equation (i.e., the ak's) and then apply the equation to calculate 
values of y for any value of x.  For cases where there are several (let us say 
m) independent variables, the resulting equation allows us to predict y for 
any combination of x1, x2, .. xm.  The least squares formulation developed 
in this chapter also includes the methodology for prediction problems. 

3.2 The Objective Function 

The method of least squares is based upon the minimization of an objec-
tive function.  The term "least squares" comes from the fact that the objec-
tive function includes a squared term for each data point.  The simplest 
problems are those in which y (a scalar quantity) is related to an indepen-
dent variable x (or variables xj's) and it can be assumed that there is no (or 
negligible) errors in the independent variable (or variables).  The objective 
function for these cases is: 
 

∑∑∑
=

=

=

=

=

=

−=−==
ni

i
iii

ni

i
iii

ni

i
ii fYwyYwRwS

1

2

1

2

1

2 ))(X()(  (3.2.1) 

 
In this equation n is the number of data points, Yi is the ith input value of 
the dependent variable and yi is the ith computed value of the dependent va-
riable.  The variable Ri is called the ith residual and is the difference be-
tween the input and computed values of y for the ith data point.  The varia-
ble Xi (unitalicized) represents the independent variables and is either a 
scalar if there is only one independent variable or a vector if there is more 
than one independent variable.  The function f is the equation used to ex-
press the relationship between X and y.  The variable wi is called the 
"weight" associated with the ith data point and is discussed in the next sec-
tion.   
 
A schematic diagram of the variables for point i is shown in Figure 3.2.1.  
In this diagram there is only a single independent variable so the notation x 
is used instead of X.  The variable Ei is the true but unknown error in the 
ith value of y.  Note that neither the value of Yi nor yi is exactly equal to the 
unknown ηi (the true value of y) at this value of xi.  However, a fundamen-
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tal assumption of the method of least squares is that if Yi is determined 
many times, the average value would approach this true value. 
 
The next level of complexity is when the uncertainties in the measured or 
calculated values of x are not negligible.  The relevant schematic diagram 
is shown in Figure 3.2.2.  For the simple case of a single independent vari-
able, the objective function must also include residuals in the x as well as 
the y direction: 
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  (3.2.2) 

 
In this equation, Xi (italicized) is the measured value of the ith independent 
variable and xi is the computed value.  Note that Xi is not the same as Xi in 
Equation 3.2.1.  In that equation capital X (unitalicized) represents the vec-
tor of independent variables. 
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Figure 3.2.1 The True, Calculated and Measured Data Points with 

no Uncertainties in x. 
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Figure 3.2.2 The True, Calculated and Measured Data Points with 

Uncertainties in X. 
 
It can be shown [WO67] that we can create a modified form of the weights 
so that the objective function reduces to the following simple form: 
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  (3.2.3) 

 
In other words, Equation 3.2.1 is valid even if the uncertainties in the x va-
riables are not negligible.  All that is required is a modified form of the 
weighting function used to determine the values of wi.  Note that if there is 
more than one independent variable, an additional summation is required: 
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Note that in Eq 3.2.4 Xi is unitalicized because it represents the vector of 
the independent variables.  The italicized Xi used in Eq 3.2.3 represents 
measured value of the scalar independent variable.  If y is a vector quanti-
ty, then we must further modify the objective function by including a sum 
over all the y terms.  Assuming that there are d terms in the y vector (i.e., yi 
is a d dimensional vector), the objective function is: 
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In a later section we discuss treatment of prior estimates of the unknown ak 
parameters.  To take these prior estimates into consideration we merely 
make an additional modification of the objective function.  For example, 
assume that for each of the p unknown ak's there is a prior estimate of the 
value.  Let us use the notation bk as the prior estimate of ak and 

kbσ as the 

uncertainty associated with this prior estimate.  In the statistical literature 
these prior estimates are sometimes called Bayesian estimators.  (This 
terminology stems from the work of the Reverend Thomas Bayes who was 
a little known statistician born in 1701.  Some of his papers eventually 
reached the Royal Society but made little impact until the great French ma-
thematician Pierre Laplace discovered them.)  The modified form of Equa-
tion 3.2.1 is: 
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If there is no Bayesian estimator for a particular ak the value of 

kbσ  is set 

to infinity. 
 
Regardless of the choice of objective function and scheme used to deter-
mine the weights wi, one must then determine the values of the p unknown 
parameters ak that minimize S.  To accomplish this task, the most common 
procedure is to differentiate S with respect to all the ak's and the resulting 
expressions are set to zero.  This yields p equations that can then be solved 
to determine the p unknown values of the ak's.  A detailed discussion of 
this process is included in Section 3.4.   
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An alternative class of methods to find a “best” set of ak's is to use an intel-
ligent search within a limited range of the unknown parameter space.  A 
number of such stochastic algorithms are discussed in the literature (e.g., 
TV04).  The only problem with this approach is that the solution does not 
include estimates of the uncertainties associated with the parameters nor 
with the uncertainties associated with the fitted surface.  One solution to 
this lack of information is to use stochastic algorithms to find the best set 
of ak's and then apply the standard least squares method (see Section 3.4) 
to compute the required uncertainty estimates.  Clearly this approach only 
makes sense when convergence using the standard method is extremely 
difficult. 
 

3.3 Data Weighting 

In Section 3.2, we noted that regardless of the choice of the objective func-
tion, a weight wi is specified for each point.  The "weight" associated with 
a point is based upon the relative uncertainties associated with the different 
points.  Clearly, we must place greater weight upon points that have small-
er uncertainties, and less weight upon the points that have greater uncer-
tainties.  In other words the weight wi must be related in some way to the 
uncertainties 

iyσ  and jixσ . 

 
In this book the emphasis is on design of experiments and thus we must be 
able to attach estimates of σy and σx to the data points.  The method of 
prediction analysis allows us to estimate the accuracy of the results that 
should be obtained from a proposed experiment but as a starting point we 
need to be able to estimate the uncertainties associated with the data 
points.  By assuming unit weights (i.e., equal weight for each data point), 
the method of least squares can proceed without these estimated uncertain-
ties.  However, this assumption does not allow us to predict the uncertain-
ties of the results that will be obtained from the proposed experiment. 
 
The alternative to using wi's associated with the σ 's of the ith data point is 
to simply use unit weighting (i.e., wi=1) for all points.  This is a reasona-
ble choice for wi if the σ 's for all points are approximately the same or if 
we have no idea regarding the values (actual or even relative) of σ for the 
different points.  However, when the differences in the σ 's are significant, 
then use of unit weighting can lead to poor results.  This point is illustrated 
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in Figure 3.3.1.  In this example, we fit a straight line to a set of data.  Note 
that the line obtained when all points are equally weighted is very different 
than the line obtained when the points are "weighted" properly.  Also note 
how far the unit weighting line is from the first few points. 
 

 
Figure 3.3.1 Two Least Squares Lines using  

 Different Weighting Schemes. 
 
The question that must be answered is how do we relate wi to the σ 's asso-
ciated with the i th data point?  In Section 3.2 we noted that the objective 
function is of the form: 
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We will see that the least squares solution is based upon adjusting the un-
known values of the ak's that are included in the function f such that S is 
minimized.  If the function f is representative of the data, this minimiza-
tion process yields values of Si that tend to be distributed around an aver-
age value with some random error ε i: 
 
 iiii SRwS ε+== avg

2  (3.3.2) 

 
For cases in which the uncertainties associated with the values of xi are 
negligible our objective should be that the residuals Ri are more or less 
proportional to the values of 

iyσ .  (We would like to see the larger resi-
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duals associated with points with larger values of 
iyσ  and visa versa.)  If 

we define the relative error at point i as Ri / iyσ , our objective should be to 

have relative errors randomly distributed about 0.  To accomplish this, we 
choose the following weighting function: 
 
 2/1

iyiw σ=  (3.3.3) 

 
We call this type of weighting statistical weighting and we will see that it 
has many attractive properties.  Substituting Equation 3.3.3 into 3.3.1 and 
3.3.2 we obtain the following expression: 

iavgiiyi SS/R ε+==σ 2
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We define RMS(R) as the "root mean square" error: 
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What we expect is that RMS(R) approaches zero as the noise component 
of the y values approaches zero.  In reality, can we expect this from the 
least squares analysis?  The answer to this question is yes but only if sev-
eral conditions are met: 
 
1) The function f is representative of the data.  In other words, the data 

falls on the curve described by the function f with only a random 
"noise" component associated with each data point.  For the case 
where the data is truly represented by the function f (i.e., there is no 
"noise" component to the data), then all the values of Ri will be zero 
and thus the values of Si will be zero. 

 
2) There are no erroneous data points or if data errors do exist, they are 

not significantly greater than the expected noise component.  For ex-
ample, if a measuring instrument should be accurate to 1%, then er-
rors several times larger than 1% would be suspicious and perhaps 
problematical.  If some points are in error far exceeding 1% then the 
results of the analysis will probably lead to significant errors in the fi-
nal results.  Clearly, we would hope that there are methods for detect-
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ing erroneous data points.  This subject is discussed in detail in Sec-
tion 3.9 in the section dealing with Goodness-of-Fit. 

 
We can explore the effect of not using Equation 3.3.3 when the values of 
σy vary significantly from point to point.  The data used to generate Figure 
3.3.1 are shown in Table 3.3.1.  Note the large relative errors for the first 
few points when unit weighting (i.e., wi = 1) is used. 
 

X Y σy (Y-y)/σy   (wi=1) (Y-y)/σy   (wi=1/σy
2) 

1  6.90 0.05 15.86  0.19 
2 11.95 0.10  3.14 -0.39 
3 16.800 0.20 -1.82 -0.44 
4 22.500 0.50 -0.38  1.23 
5 26.200 0.80 -2.53 -0.85 
6 33.500 1.50 -0.17  1.08 
7 41.000 4.00  0.43  1.03 

Table 3.3.1 Fitting Fig 3.3.1 data using y = a1 + a2x with 2 different 
weighting schemes. 

 
The effect of statistical weighting can be further illustrated using a simple 
computer simulation of a counting experiment.  Data were generated using 
the model xaeay 2

1
−=  for 10 values of x (0.5, 1.5,…9.5) using a1=10000 

and a2=0.5.  We call this data set the "pure" data and assume that the un-
certainties in each data point is σy = y1/2 (i.e., Poisson statistics).  The 
weight for each point is therefore 1 /σy

2 = 1/ y.  The experiment proceeds 
as follows: 
 

1) The value of y1 is increased by σ (i.e., y1
1/2).  All other points re-

main exactly on the generated curve. 
2) The method of least squares is then used to analyze the data with 

two different weighting schemes: wi=1 and Equation 3.3.3. 
3) The experiment is repeated but only y10 is increased by σ (i.e., 

y10
1/2). 

 
The results are summarized in Table 3.3.2.  For all the data sets, using sta-
tistical weighting, the weight w1 (i.e., 1/ y1) of point 1 is the smallest and 
the weight w10 is the largest.  For unit weighting all points are equally 
weighted.  Thus when y1 is increased by σy1 this has less of an effect upon 
the results using statistical as compared to unit weighting.  When y10 is in-
creased by σy10 this has the opposite effect.  For the case of a corrupted 
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value of y10 we see that when unit weighting is used, the smallest effect 
(minimum values of Δa1 and Δa2) is observed.  This happens because the 
relative weight attached to this point is less than if statistical weighting is 
used.  Also, since this point is far from the y axis, we would expect a very 
small effect upon the value of a1.  Note that when the data is "pure" (i.e., 
all 10 points fall exactly on the exponential curve) both weighting schemes 
yield the exact values of both a1 and a2. 
 

Data wi a1 σa1 Δ a1 a2 σa2 Δ a2 
Pure Both 10000.0 0.0 0.0 0.5000 0.0000 0.0000 
Δ y1 1/σy

2 10085.4 21.8 85.4 0.5021 0.0008 0.0021 
Δ y1 1 10121.4 17.6 121.4 0.5046 0.0012 0.0046 
Δ y10 1/σy

2 9984.6 34.2 -15.4 0.4990 0.0013 -0.0010 
Δ y10 1 9999.3 5.0 -0.7 0.4999 0.0003 -0.0001 

Table 3.3.2  Fitting data using xaeay 2
1

−= with 2 different weighting 
schemes.  For 2 cases y1 is corrupted and for 2 cases y10 is corrupted.  

 
In the discussion preceding Equation 3.3.3 it was assumed that the errors 
in the independent variable (or variables) were negligible.  If this assump-
tion cannot be made, then if we assume that the noise component in the da-
ta is relatively small, it can be shown [WO67] that the following equation 
can be used instead of 3.3.3 for the weights wi: 
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This equation is a more generalized form of statistical weighting than Eq-
uation 3.3.3.  The derivation of this equation is based upon the assumption 
that higher order terms can be neglected in a Taylor expansion in the re-
gion near the minimum value of S.  As an example of the application of 
3.3.7 to a specific problem, the weighting function for an exponential ex-
periment (Table 3.3.2) would be the following if the σx's are included in 
the analysis: 
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3.4 Obtaining the Least Squares Solution  

The least squares solution is defined as the point in the "unknown parame-
ter" space at which the objective function S is minimized.  Thus, if there 
are p unknown parameters (ak, k = 1 to p), the solution yields the values of 
the ak's that minimize S.  When the errors associated with the data points 
are normally distributed or are reasonably close to normal distributions, the 
least squares criterion leads to the "best" set of the unknown parameters.  
The word "best" implies that these p unknown parameters are determined 
with the smallest possible uncertainty.  The most complete proof of this 
statement that I could find is in a book written by Merriman over 120 years 
ago [ME84].  To find this minimum point we set the p partial derivatives of 
S to zero yielding p equations for the p unknown values of ak: 
 

 0=
∂
∂

ka
S

      k = 1 to p (3.4.1) 

 
In Section 3.2 the following expression (Equation 3.2.3) for the objective 
function S was developed: 
 

 ∑
=

=

−=
ni

1i

2
iii fYwS ))(X(  

 
In this expression the independent variable Xi can be either a scalar or a 
vector.  The variable Yi can also be a vector but is usually a scalar.  Using 
this expression and Equation 3.4.1, we get the following p equations: 
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For problems in which the function f is linear, Equation 3.4.2 can be 
solved directly.  In Section 3.1 Equation 3.1.3 was used to specify linear 
equations: 
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The derivatives of f are simply: 
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Substituting 3.4.3 into 3.4.2 we get the following set of equations: 
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Simplifying the notation by using gk instead of gk(Xi) we get the following 
set of equations: 
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We can rewrite these equations using matrix notation: 
 
 VCA =  (3.4.6) 
 
In this equation C is a p by p matrix and A and V are vectors of length p.  
The terms Cjk and Vk are computed as follows: 
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The terms of the A vector (i.e., the unknown parameters ak) are computed 
by solving the matrix equation 3.4.6: 
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 VCA 1−=  (3.4.9) 
 
In this equation, C-1 is the inverse matrix of C.  As an example, let us con-
sider problems in which a straight line is fit to the data: 
 
 xaaxfy 21)( +==  (3.4.10) 
 
For this equation g1 = 1 and g2 = x so the C matrix is: 
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The V vector is: 
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To apply these equations to a real set of data, let us use the 7 points in-
cluded in Table 3.3.1 and let us use the case in which all the values of wi 
are set to 1 (i.e., unit weighting).  For this case, the C and C-1 matrices and 
the V vector are: 
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Solving Equation 3.4.9: 
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For problems in which the f function is nonlinear, the procedure is similar 
but is iterative.  One starts with initial guesses a0k for the unknown values 
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of ak.  Simplifying the notation used for Equation 3.4.2, we see that the eq-
uations for terms of the C matrix and V vector are: 
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In the equation for Vk the parameter Yi is no longer the value of the depen-
dent variable.  It is value of the dependent variable minus the computed 
values using the initial guesses (i.e., the a0k's).  For linear problems we 
don’t need to make this distinction because the initial guesses are zero and 
thus the computed values are zero.  The A vector is determined using Equ-
ation 3.4.9 but for nonlinear problems, this vector is no longer the solution 
vector.  It is the vector of computed changes in values of the initial guesses 
a0k: 

 
 kkk Aaa 0 +=       k = 1 to p (3.4.16) 
 
The values of ak are then used as initial guesses a0k for the next iteration.  
This process is continued until a convergence criterion is met or the 
process does not achieve convergence.  Typically the convergence crite-
rion requires that the fractional changes are all less than some specified 
value of ε: 
 
 ε/aA kk 0 ≤          k  = 1 to p (3.4.17) 
 
Clearly this convergence criterion must be modified if a value of a0k is ze-
ro or very close to zero.  For such terms, one would only test the absolute 
value of Ak and not the relative value.  This method of converging towards 
a solution is called the Gauss-Newton algorithm and will lead to conver-
gence for many nonlinear problems.  It is not, however, the only search al-
gorithm and a number of alternatives to Gauss-Newton are used in least 
squares software [WO06]. 
 
As an example, of a nonlinear problem, let us once again use the data in 
Table 3.3.1 but choose the following nonlinear exponential function for f : 
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 xaeaxfy 2

1== ︶︵  (3.4.18) 
 
The two derivatives of this function are: 
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Let us choose as initial guesses a01=1 and a02=0.1 and weights wi=1.  
(Note that if an initial guess of a01=0 is chosen, all values of the derivative 
of f with respect to a2 will be zero.  Thus all the terms of the C matrix ex-
cept C11 will be zero.  The C matrix would then be singular and no solution 
could be obtained for the A vector.)  Using Equations 3.4.14 and 3.4.15 
and the expressions for the derivatives, we can compute the terms of the C 
matrix and V vector and then using 3.4.9 we can solve for the values of A1 
and A2.  The computed values are 4.3750 and 2.1706 therefore the initial 
values for the next iteration are 5.3750 and 2.2706.  Using Equation 3.4.17 
as the convergence criterion and a value of ε = 0.001, final values of a1 = 
7.7453 and a2 = 0.2416 are obtained.  The value of S obtained using the in-
itial guesses is approximately 1,260,000.  The value obtained using the fi-
nal values of a1 and a2 is 17.61.  Details of the calculation for the first itera-
tion are included in Tables 3.4.1.and 3.4.2. 
 

X y f=1.0e0.1x Y = y - f 
1  6.900 1.105  5.795 
2 11.950 1.221 10.729 
3 16.800 1.350 15.450 
4 22.500 1.492 21.008 
5 26.200 1.649 24.551 
6 33.500 1.822 31.678 
7 41.000 2.014 38.986 

Table 3.4.1 Fitting Data using xaea)x(f 21=  with initial guesses 
a1=1, a2=0.1 
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Point 2

1 )f( '  2
2 )f( ' '' ff 21 Yf '

1 Yf '
2  

1 1.221 1.221 1.221 6.404 6.404 
2 1.492 5.967 2.984 13.104 26.209 
3 1.822 16.399 5.466 20.855 62.565 
4 2.226 35.609 8.902 31.340 125.360 
5 2.718 67.957 13.591 40.478 202.390 
6 3.320 119.524 19.921 57.721 346.325 
7 4.055 198.705 28.386 78.508 549.556 
Sum 16.854 445.382 80.472 248.412 1318.820 

 C11 C22 C12 V1   V2 

Table 3.4.2 Computing terms of the C matrix and V vector 
 
Using the values of the terms of the C matrix and V vector from Table 
3.4.2, and solving for the terms of the A vector using Equation 3.4.9, we 
get values of a1 = 4.3750 and a2 = 2.1706.  Using Equation 3.4.16, the val-
ues of the initial guesses for the next iteration are therefore 5.3750 and 
2.2706.  This process is repeated until convergence is obtained.  As the ini-
tial guesses improve from iteration to iteration, the computed values of the 
dependent variable (i.e., f) become closer to the actual values of the de-
pendent variable (i.e., y) and therefore the differences (i.e., Y) become 
closer to zero.  From Equation 3.4.15 we see that the values of Vk become 
smaller as the process progresses towards convergence and thus the terms 
of the A vector become smaller until the convergence criterion (Equation 
3.4.17) is achieved. 
 
A question sometimes asked is: if we increase or decrease the weights how 
does this affect the results?  For example, for unit weighting what happens 
if we use a value of w other than 1?  The answer is that it makes no differ-
ence.  The values of the terms of the V vector will be proportional to w and 
all the terms of the C matrix will also be proportional to w.  The C-1 matrix, 
however, will be inversely proportional to w and therefore the terms of the 
A vector (i.e., the product of C-1V) will be independent of w.  A similar ar-
gument can be made for statistical weighting.  For example, if all the val-
ues of σy are increased by a factor of 10, the values of wi will be decreased 
by a factor of 100.  Thus all the terms of V and C will be decreased by a 
factor of 100, the terms of C-1 will be increased by a factor of 100 and the 
terms of A will remain unchanged.  What makes a difference are the rela-
tive values of the weights and not the absolute values.  We will see, how-
ever, when Goodness-of-Fit is discussed in Section 3.9, that an estimate of 
the amplitude of the noise component of the data can be very helpful.  Fur-



66     Chapter 3   THE METHOD OF LEAST SQUARES 

thermore, if prior estimates of the unknown parameters of the model are 
included in the analysis, then the weights of the data points must be based 
upon estimates of the absolute values of the weights. 
 

3.5 Uncertainty in the Model Parameters 

In Section 3.4 we developed the methodology for finding the set of ak's 
that minimize the objective function S.  In this section we turn to the task 
of determining the uncertainties associated with the ak's.  The usual meas-
ures of uncertainty are standard deviation (i.e., σ) or variance (i.e., σ2) so 
we seek an expression that allows us to estimate the kaσ ’s.  It can be 

shown [WO67, BA74, GA92] that the following expression gives us an un-
biased estimate of kaσ : 
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We see from this equation that the unbiased estimate of kaσ   is related to 

the objective function S and the kth diagonal term of the inverse matrix C-1.  
The matrix C-1 is required to find the least squares values of the ak's and 
once these values have been determined, the final (i.e., minimum) value of 
S can easily be computed.  Thus the process of determining the ak's leads 
painlessly to a determination of the kaσ ’s. 

 
As an example, consider the data included in Table 3.3.1.  In Section 3.4 
details were included for a straight-line fit to the data using unit weighting: 
 
 xxaa)x(fy .. 528655786021 +=+==  (3.5.2) 
 
The C and C-1 matrices are: 
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The value for S / (n–p) = S / (7–2) is 1.6019.  We can compute the kaσ ’s 

from Equation 3.5.1: 
 
  1.070140/196*1.6019 ==

1aσ    and   0.23927/196*1.6019 ==
2aσ  

 
The relative error in a1 is 1.070 / 0.5786 = 1.85 and the relative error in a2 
is 0.2392 / 5.5286 = 0.043.  If the purpose of the experiment was to deter-
mine, a2, then we have done fairly well (i.e., we have determined a2 to 
about 4%).  However, if the purpose of the experiment was to determine, 
a1, then we have done terribly (i.e., the relative error is about 185%).  
What does this large relative error imply?  If we were to repeat the experi-
ment many times, we would expect that the computed value of a1 would 
fall within the range 0.5786 ± 2.57 * 1.85 = 0.5786 ± 4.75 ninety-five per-
cent of the time (i.e., from -4.17 to 5.33).  This is a very large range of 
probable results.  (The constant 2.57 comes from the t distribution  with 
(n-p) = (7-2) = 5 degrees of freedom and a 95% confidence interval.) 
 
If we use statistical weighting (i.e., wi=1/σy

2), can we improve upon these 
results?  Reanalyzing the data in Table 3.3.1 using the values of σy in-
cluded in the table, we get the following straight line: 
 
 xxaa)x(fy 4.99821.892621 +=+==  (3.5.3) 
 
The computed value of 

1aσ  is 0.0976 and the value for 
2aσ is 0.0664.  

These values are considerably less than the values obtained using unit 
weighting.  The reduction in the value of 

1aσ  is more than a factor of 10 

and the reduction in 
2aσ  is almost a factor of 4.  This improvement in the 

accuracy of the results is due to the fact that in addition to the actual data 
(i.e., the values of x and y) the quality of the data (i.e., the values of σy) 
were also taken into consideration. 
 
We should also question the independence of a1 and a2.  If for example, we 
repeat the experiment many times and determine many pairs of values for 
a1 and a2, how will the points be distributed in the two-dimensional space 
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defined by a1 and a2?  Are they randomly scattered about the point [a1 = 
0.5786, a2 = 5.5286] or is there some sort of correlation between these two 
parameters?  An answer to this question is also found in the least squares 
formulation.  The notation jkσ  is used for the covariance between the pa-
rameters j and k and is computed as follows: 
 

 1−

−
= jkC

pn
S

jkσ  (3.5.4) 

 
A more meaningful parameter is the correlation coefficient between the 
parameters j and k.  Denoting this parameter as jkρ , we compute it as fol-
lows: 
 

 
kaja

jk
jk σσ

σ
ρ =  (3.5.5) 

 
The correlation coefficient is a measure of the degree of correlation be-
tween the parameters.  The values of jkρ  are in the range from –1 to 1.  If 
the value is zero, then the parameters are uncorrelated (i.e., independent), 
if the value is 1, then they fall exactly on a line with a positive slope and if 
the value is –1 then the fall exactly on a line with a negative slope.  Exam-
ples of different values of jkρ  are seen in Figure 3.5.1. 
 
Returning to our example using unit weighting, let us estimate 

12σ and 12ρ : 
 
 0.228828/196*1.6019 −=−=12σ

 0.894
0.2392*1.070

0.2288
−=

−
=ρ12  

 
In other words, a1 and a2 are strongly negatively correlated.  Larger-than-
average values of a1 are typically paired with smaller-than-average values 
of a2. 
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Figure 3.5.1 Correlation Coefficients for Several Different Data  

Distributions 
 
As will be seen in Section 3.6, the covariance is used in evaluating the 
standard deviations of the least squares curves.  For example, we can use 
Equation 3.5.2 or 3.5.3 to predict the value of y for any value of x.  The 
covariance is needed to estimate the uncertainty σf associated with the pre-
dicted value of y (i.e., f(X)). 
 

3.6 Uncertainty in the Model Predictions 

In Section 3.5 the uncertainties in the model parameters were considered.  
If the only purpose of the experiment is to determine the parameters of the 
model, then only these uncertainties are of interest.  However, there are 
many situations in which we are interested in using the model for making 
predictions.  Once the parameters of the model are available, then the eq-
uation f(X) can be used to predict y for any combination of the indepen-
dent variables (i.e., the vector X).  In this section attention is turned to-
wards the uncertainties σf of these predictions. 
 
Typically, one assumes that the model is “correct” and thus the computed 
values of y are normally distributed about the true values.  For a given set 
of values for the terms of the X vector (i.e., a combination of the indepen-
dent variables x1, x2,… xm), we assume that the uncertainty in the predicted 
value of y is due to the uncertainties associated with the ak's.  The pre-
dicted value of y is determined by substituting X into f(X): 
 
 )(X; 21 pa,..,a,afy =  (3.6.1) 
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Defining Δak as the error in ak, we can estimate Δy (the error in y) by neg-
lecting higher order terms in a Taylor expansion around the true value of y: 
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To simplify the analysis, let is use the following definition: 
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Thus: 
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If we square Equation 3.6.2 we get the following: 
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If the experiment is repeated many times and average values of the terms 
are taken, we obtain the following from Equation 3.6.6: 
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Recognizing that ((Δak)2)avg is just ( kaσ )2 and (Δaj Δak)avg is σjk we get the 

following: 
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The number of cross-product terms (i.e., terms containing σjk) is p(p-1)/2.  
If we use the following substitution: 
 
 2

kakk σσ =  (3.6.9) 

and recognizing that jkσ  =  kjσ  we can simplify equation 3.6.8: 
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Using Equations 3.5.1 and 3.5.4, we can relate σf to the terms of the C-1 
matrix: 
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As an example of the application of this equation to a data set, let us once 
again use the data from Table 3.3.1 and wi = 1.  The data was fit using a 
straight line: 
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so the derivatives are: 
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We have seen that the inverse matrix is: 
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and the value of S / (n – p) is 1.6019.  Substituting all this into Equation 
3.6.11 we get the following expression: 
 

 )2( 1
12

21

1
22

22

1
11

11

2 −−−

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

−
= C

a
f

a
fC

a
f

a
fC

a
f

a
f

pn
S

fσ  

 

 )2( 1
12

1
22

21
11

2 −−− ++
−

= xCCxC
pn

S
fσ  

 

 )567140(
196

60191 22 xx.
f −+=σ  (3.6.12) 

 
(Note that the C-1 matrix is always symmetric so we can use 12 −

jkC  instead 

of 11 −− + kjjk CC .) 

 
Equations 3.5.2 and 3.6.12 are used to predict values of y and σf for several 
values of x and the results are seen in Table 3.6.1.  Note the curious fact 
that the values of σf are symmetric about x = 4.  This phenomenon is easily 
explained by examining Equation 3.6.12 and noting that this equation is a 
parabola with a minimum value at x = 4. 
 

x y=f(x) σf 
1.5 8.871 0.766 
2.5 14.400 0.598 
3.5 19.929 0.493 
4.5 25.457 0.493 
5.5 30.986 0.598 
6.5 36.514 0.766 

Table 3.6.1 Predicted values of y and σf using wI=1. 
 

In the table, we see that the values of x that have been chosen are all within 
the range of the values of x used to obtain the model (i.e., 1 to 7).  The use 
of a model for purposes of extrapolation should be done with extreme cau-
tion [WO06]!  Note that the σf values tend to be least at the midpoint of the 
range and greatest at the extreme points.  This is reasonable.  Instinctively 
if all the data points are weighted equally, we would expect σf to be least 
in regions that are surrounded by many points.  Table 3.6.1 was based 
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upon a least squares analysis in which all points were weighted equally.  
However, when the points are not weighted equally, the results can be 
quite different.  Table 3.6.2 is also based upon the x and y values from Ta-
ble 3.3.1 but using statistical weighting (i.e., wi=1/σy

2). 
 
Table 3.6.2 presents a very different picture than Table 3.6.1 (which is 
based upon unit weighting).  When unit weighting is used differences in 
the quality of the data are ignored, and we see (in Table 3.3.1) that the rela-
tive errors for the first few data points are large.  However, when the data 
is statistically weighted, the relative errors (also seen in Table 3.3.1) are all 
comparable.  In Table 3.6.2 we observe that the values of σf are much less 
than the values in Table 3.6.1 even for points at the upper end of the range.  
This improvement in accuracy is a result of taking the quality of the data 
into consideration (i.e., using statistical weighting).  Furthermore, the most 
accurate points (i.e., least values of σf) are near the points that have the 
smallest values of σy. 
 
 

x y=f(x) σf 
1.5  9.390 0.044 
2.5 14.388 0.089 
3.5 19.386 0.151 
4.5 24.384 0.215 
5.5 29.383 0.281 
6.5 34.381 0.347 

Table 3.6.2 Predicted values of y and σf using wi=1/σy
2. 

 
In Section 3.4 we noted that increasing or decreasing weight by a constant 
factor had no effect upon the results (i.e., the resulting A vector).  Similar-
ly, changes in the weights do not affect the computed values of σf and 

kaσ .  The value of S and the terms of the C matrix will change propor-

tionally if the w’s are changed by a constant factor and the changes in the 
terms of the C-1 matrix will be inversely proportional to the changes in w.  
The computation of both σf and kaσ  are based upon the products of S and 

terms of the C-1 matrix so they will be independent of proportional changes 
in w.  What does makes a difference is the relative values of the weights 
and not the absolute values.  This does not imply that estimates of the ac-
tual rather than the relative uncertainties of the data are unimportant.  



74     Chapter 3   THE METHOD OF LEAST SQUARES 

When designing an experiment, estimates of the absolute uncertainties are 
crucial to predicting the accuracy of the results of the experiment. 
 
It should be emphasized that values of σf computed using Equation 3.6.11 
are the σ's associated with the function f and are a measure of how close 
the least squares curve is to the "true" curve.  One would expect that as the 
number of points increases, the values of σf decreases and if the function f 
is truly representative of the data σf will approach zero as n approaches in-
finity.  Equation 3.6.11 does in fact lead to this conclusion.  The term S / 
(n – p) approaches one and the terms of the C matrix become increasingly 
large for large values of n.  The terms of the C-1 matrix therefore become 
increasingly small and approach zero in the limit of n approaching infinity.  
In fact one can draw a "95% confidence band" around the computed func-
tion f.  The interpretation of this band is that for a given value of x the 
probability that the "true" value of f falls within these limits is 95%.  
Sometimes we are more interested in the "95% prediction band".  Within 
this band we would expect that 95% of new data points will fall [MO03].  
This band is definitely not the same as the 95% confidence band and the 
effect of increasing n has only a small effect upon the prediction band.  
Assuming that for a given x the deviations from the true curve and from 
the least squares curve are independent, the σ 's associated with the predic-
tion band are computed as follows: 
 
 222

yfpred σσσ +=  (3.6.13) 

 
Knowing that as n increases, σf becomes increasingly small, the limiting 
value of σpred is  σy.  In Table 3.6.3 the values of σpred are computed for the 
same data as used in Table 3.6.2.  The values of σy are interpolated from 
the values in Table 3.3.1.  The 95% prediction band is computed using 
σpred and the value of t corresponding to 95% limits for n – p degrees of 
freedom.  From Table 3.3.1 we see that n = 7 and for the straight line fit p 
=2.  The value of t for α = 2.5% and 5 degrees of freedom is 2.571.  In 
other words, 2.5% of new points should fall above f(x) + 2.571σpred and 
2.5% should fall below f(x) – 2.571σpred.  The remaining 95% should fall 
within this band.  As n increases, the value of t approaches the value for 
the standard normal distribution which for a 95% confidence limit is 1.96.  
The 95% confidence and prediction bands for this data are seen in Figure 
3.6.1. 
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x y=f(x) σy σf σpred 
1.5  9.390 0.075 0.044 0.087 
2.5 14.388 0.150 0.089 0.174 
3.5 19.386 0.350 0.151 0.381 
4.5 24.384 0.650 0.215 0.685 
5.5 29.383 1.150 0.281 1.184 
6.5 34.381 2.750 0.347 2.772 

Table 3.6.3 Values of σpred using data from Table 3.3.1 and  
statistical weighting 

 

Figure 3.6.1 Confidence and Prediction Bands for Data from 
 Table 3.6.3 

3.7 Treatment of Prior Estimates 

In the previous sections we noted that a basic requirement of the method of 
least squares is that the number of data points n must exceed p (the number 
of unknown parameters of the model).  The difference between these two 
numbers n-p is called the "number of degrees of freedom".  Very early in 
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my career I came across an experiment in which the value of n-p was in 
fact negative!  The modeling effort was related to damage caused by a cer-
tain type of event and data had been obtained based upon only two events.  
Yet the model included over ten unknown parameters.  The independent 
variables included the power of the event and other variables related to po-
sition.  To make up the deficit, estimates of the parameters based upon 
theoretical models were used to supplement the two data points.  The prior 
estimates of the parameters are called Bayesian estimators and if the num-
ber of Bayesian estimators is nb then the number of degrees of freedom is 
n+nb-p.  As long as this number is greater than zero, a least squares calcu-
lation can be made. 
 
In Section 3.2 Equation 3.2.6 is the modified form that the objective func-
tion takes when prior estimates of the ak parameters are available: 
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In this equation bk is the prior estimates of ak and 

kbσ  is the uncertainty 

associated with this prior estimate.  The parameter bk is typically used as 
the initial guess a0k for ak.  We see from this equation that each value of bk 
is treated as an additional data point.  However, if 

kbσ  is not specified, 

then it is assumed to be infinite and no weight is associated with this point.  
In other words, if 

kbσ  is not specified then bk is treated as just an initial 

guess for ak and not as a prior estimate.  The number of values of bk that 
are specified (i.e., not infinity) is nb. 
 
In the previous sections it was stated that the weights wi could be based 
upon relative and not absolute values of the uncertainties associated with 
the data points.  When prior estimates of the ak’s are included in the analy-
sis, we are no longer at liberty to use relative weights.  Since the weights 
associated with the prior estimates are based upon estimates of absolute 
values (i.e., 1 / ( kbσ )2 ), the wi values must also be based upon estimates 

of absolute values. 
 
To find the least squares solution, we proceed as in Section 3.4 by setting 
the p partial derivatives of S to zero yielding p equations for the p un-
known values of ak: 
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The terms in the last summation can be expanded: 
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As in Section 3.4 this equation is best treated as a matrix equation: 
 
 VCA =  
 
The diagonal terms of the C matrix are modified but the off-diagonal terms 
remain the same: 
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The terms of the V vector are also modified: 
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Solution of the matrix equation CA = V yields the vector A which is then 
used to compute the unknown ak's (Equation 3.4.16).  The computation of 
the kaσ  terms must be modified to include the additional data points.  The 

modified form of Equation 3.5.1 is: 
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In this equation nb is the number of Bayesian estimations included in the 
analysis (i.e., the number of bk’s that are specified.  Using the same reason-
ing, Equation 3.6.11 must also be modified: 
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As an example of the application of prior estimates, let us once again use 
the data in Table 3.3.1 but only for the case of statistical weighting (i.e., 
w=1/σy

2).  The straight line computed for this case was: 
 
 xxaaxfy 4.99821.8926 +=+== 21︶︵  
 
The computed value of 

1aσ  and 
2aσ were 0.0976 and 0.0664.  The C ma-

trix and V vector for this case are: 
 

 ⎥⎦
⎤

⎢⎣
⎡

=
1147.125701.917
701.917531.069C  and  ⎥⎦

⎤
⎢⎣
⎡

=
7016.96
4513.39V  

 
Let us say that we have a prior estimate of a1: 
 
 0.101.00 ±=1b  
 
The only term in the C matrix that changes is C11.  The terms of the V vec-
tor are, however, affected by the changes in the values of Yi.  Since we 
start from the initial guess for a1, all the values of Yi are reduced by a1 (i.e.,  
1.00) :  
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=
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Solving for the terms of the A vector we get A1 = 0.4498 and A2 = 5.2691.  
The computed value of a1 is therefore 1.4498 and a2 is 5.2691.  Note that 
the prior estimate of a1 reduces the value previously computed from 
1.8926 towards the prior estimate of 1.00.  The values of 

1aσ  and 
2aσ for 

this calculation were 0.1929 and 0.1431.  These values are greater than the 
values obtained without the prior estimate and that indicates that the prior 
estimate of a1 is not in agreement with the experimental results.  Assuming 
that there is no discrepancy between the prior estimates and the experimen-
tal data, we would expect a reduction in uncertainty.  For example, if we 
repeat the analysis but use as our prior estimate:  0.102.00 ±=1b  : 
 
The resulting values of a1 and a2 are: 
 
 0.06701.9459 ±=1a  0.04974.9656 ±=2a  
 
If we repeat the analysis and use prior estimates for both a1 and a2: 
 
 0.102.00 ±=1b  0.055.00 ±=2b  
 
The resulting values of a1 and a2 are: 
 
 0.05081.9259 ±=1a  0.03254.9835 ±=2a  
 
The results for all these cases are summarized in Table 3.7.1. 
 
b1 b2 n+nb a1 

1aσ  a2 
2aσ  

none None 7 1.8926 0.0976 4.9982 0.0664 
1.00±0.1 None 8 1.4498 0.1929 5.2691 0.1431 
2.00±0.1 None 8 1.9459 0.0670 4.9656 0.0497 
2.00±0.1 5.00±0.05 9 1.9259 0.0508 4.9835 0.0325 

Table 3.7.1 Computed values of a1 and a2 for combinations of b1 
and b2. 

 
We see in this table that the best results (i.e., minimum values of the σ ' s) 
are achieved when the prior estimates are in close agreement with the re-
sults obtained without the benefit of prior estimates of the unknown para-
meters a1 and a2.  For example when b1 is close to the least squares value 
of a1 without prior estimates (i.e., a1=1.89 and b1=2.00) the accuracy is 
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improved (i.e., 0.0607 vs. 0.0967).  However, when b1 is not close, (i.e., 
b1=1.00) resulting accuracy is worse (i.e., 0.1929 vs. 0.0967). 

3.8 Applying Least Squares to Classification Problems 

In the previous sections the dependent variable y was assumed to be a con-
tinuous numerical variable and the method of least squares was used to de-
velop models that could then be used to predict the value of y for any com-
bination of the independent x variable (or variables).  There are, however, 
problems in which the dependent variable is a "class" rather than a conti-
nuous variable.  For example the problem might require a model that diffe-
rentiates between two classes: "good" or "bad" or three levels: "low", "me-
dium" or "high".  Typically we have nlrn learning points that can be used 
to create the model and then ntst test points that can be used to test how 
well the model predicts on unseen data.  The method of least squares can 
be applied to classification problems in a very straight-forward manner. 
 
The trick that allows a very simple least squares solution to classification 
problems is to assign numerical values to the classes (i.e., the y values) and 
then make predictions based upon the computed value of y for each test 
point.  For example, for two class problems we can assign the values 0 and 
1 to the two classes (e.g., "bad" = 0 and "good" = 1).  We then fit the learn-
ing data using least squares as the modeling technique and then for any 
combination of the x variables, we compute the value of y.  If it is less than 
0.5 the test point is assumed to fall within the "bad" class, otherwise it is 
classified as "good".  For 3 class problems we might assign 0 to class 1, 
0.5 to class 2 and 1 to class 3.  If a predicted value of y is less than 1/3 then 
we would assign class 1 as our prediction, else if the value was less than 
2/3 we would assign class 2 as our prediction, otherwise the assignment 
would be class 3.  Obviously the same logic can be applied to any number 
of classes. 
 
It should be emphasized that the least squares criterion is only one of many 
that can be used for classification problems.   In their book on Statistical 
Learning, Hastie, Tibshirani and Friedman discuss a number of alternative 
criteria but state that "squared error is analytically convenient and is the 
most popular" [HA01].  The general problem is to minimize a loss function 
L(Y, f(X)) that penalizes prediction errors.  The least squares loss function 
is Σ(Y - f(X))2 but other loss functions (e.g. Σ│Y - f(X)│) can also be used.  
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A different approach to classification problems is based upon nearest 
neighbors [WO00]. 
 
In my previous book (Data Analysis using the Method of Least Squares) 
[WO06] I discuss the application of least squares to classification problems 
in detail with several examples to illustrate the process.  However, the em-
phasis in this book is upon design of experiments using the method of pre-
diction analysis and this method is not applicable to classification problem.  
What one would like to be able to estimate at the design stage for classifi-
cation problems is the mis-classification rate and this is not possible using 
prediction analysis.   

3.9 Goodness-of-Fit 

In Section 2.4 the χ2 (chi-squared) distribution was discussed.  Under cer-
tain conditions, this distribution can be used to measure the goodness-of-
fit of a least squares model.  To apply the χ2 distribution to the measure-
ment of goodness-of-fit, one needs estimates of the uncertainties asso-
ciated with the data points.  In Sections 3.3 it was emphasized that only 
relative uncertainties were required to determine estimates of the uncer-
tainties associated with the model parameters and the model predictions.  
However, for goodness-of-fit calculations, estimates of absolute uncer-
tainties are required.  When such estimates of the absolute uncertainties 
are unavailable, the best approach to testing whether or not the model is a 
good fit is to examine the residuals.  This subject is considered in Section 
3.9 of my book on least squares [WO06].  
 
The goodness-of-fit test is based upon the value of S / (n-p).  Assuming 
that S is based upon reasonable estimates of the uncertainties associated 
with the data points, if the value of S / (n-p) is much less than one, this 
usually implies some sort of misunderstanding of the experiment (for ex-
ample, the estimated errors are vastly over-estimated).  If the value is 
much larger than one, then one of the following is probably true: 
 

1) The model does not adequately represent the data. 
 
2) Some or all of the data points are in error. 
 
3) The estimated uncertainties in the data are erroneous (typically 

vastly underestimated). 
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Assuming that the model, the data and the uncertainty estimates are cor-
rect, the value of S (the weighted sum of the residuals) will be distributed 
according to a χ2 distribution with n-p degrees of freedom.  Since the ex-
pected value of a χ2 distribution with n-p degrees of freedom is n-p, the 
expected value of S / (n-p) is one.  If one assumes that the model, data and 
estimated uncertainties are correct, the computed value of S / (n-p) can be 
compared with χ2 / (n-p) to determine a probability of obtaining or exceed-
ing the computed value of S.  If this probability is too small, then the 
goodness-of-fit test fails and one must reconsider the model and/or the da-
ta. 
 
Counting experiments (in which the data points are numbers of events rec-
orded in a series of windows (e.g., time or space) are a class of experi-
ments in which estimates of the absolute uncertainty associated with each 
data point are available.  Let us use Yi to represent the number of counts 
recorded in the time window centered about time ti.  According to Poisson 
statistics the expected value of 2

iσ  (the variance associated with Yi) is just 
Yi and the weight associated with this point is 1/ Yi .    From Equation 2.2.1 
we get the following expression for S: 
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Since the expected value of (Yi - yi)2 is 2

iσ = Yi the expected value of 
2
ii Rw is one.  The expected value of S is not n as one might expect from 

this equation.  If the function f includes p unknown parameters, then the 
number of degrees of freedom must be reduced by p and therefore the ex-
pected value of S is n–p.  This might be a confusing concept but the need 
for reducing the expected value can best be explained with the aid of a 
qualitative argument.  Lets assume that n is 3 and we use a 3 parameter 
model to fit the data.  We would expect the model to go thru all 3 points 
and therefore, the value of S would be zero which is equal to n–p. 
 
To illustrate this process, let us use data included in Bevington and Robin-
son's book Data Reduction and Error Analysis [BE03].  The data is pre-
sented graphically in Figure 3.9.1 and in tabular form in Table 3.9.1.  The 
data is from a counting experiment in which a Geiger counter was used to 
detect counts from an irradiated silver sample recorded in 15 second inter-
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vals.  The 59 data points shown in the table include two input columns (ti 
and Yi) and one output column that is the residual divided by the standard 
deviation of Yi (i.e., Ri / σi ): 
 
 iiiii Y/yY/R ︶︵ −=σ           (3.9.2) 
 
The data was modeled using a 5 parameter equation that included a back-
ground term and two decaying exponential terms: 
 

 54
21 3

a/teaa/teaay −+−+=          (3.9.3) 
 

i ti Yi Ri / σi i ti Yi Ri / σi 
1 15 775 0.9835 31 465 24 -0.0208 
2 30 479 -1.8802 32 480 30 1.2530 
3 45 380 0.4612 33 495 26 0.7375 
4 60 302 1.6932 34 510 28 1.2466 
5 75 185 -1.6186 35 525 21 0.0818 
6 90 157 -0.4636 36 540 18 -0.4481 
7 105 137 0.3834 37 555 20 0.1729 
8 120  119 0.7044 38 570 27 1.6168 
9 135 110 1.3249 39 585 17 -0.2461 

10 150  89 0.4388 40 600 17 -0.1141 
11 165 74 -0.2645 41 615 14 -0.7922 
12 180 61 -1.0882 42 630 17 0.1231 
13 195 66 0.2494 43 645 24 1.6220 
14 210 68 1.0506 44 660 11 -1.4005 
15 225 48 -1.0603 45 675 22 1.4360 
16 240 54 0.2938 46 690 17 0.5068 
17 255 51 0.3200 47 705 12 -0.7450 
18 270 46 0.0160 48 720 10 -1.3515 
19 285 55 1.5750 49 735 13 -0.0274 
20 300 29 -2.2213 50 750  16 0.5695 
21 315 28 -2.0393 51 765 9 -1.4914 
22 330  37 0.0353 52 780 9 -1.4146 
23 345 49 2.0104 53 795 14 0.2595 
24 360 26 -1.4128 54 810 21 1.7830 
25 375  35 0.5740 55 825 17 1.0567 
26 390  29 -0.2074 56 840 13 0.1470 
27 405 31 0.4069 57 855 12 -0.0891 
28 420 24 -0.7039 58 870 18 1.3768 
29 435 25 -0.2503 59 885 10 -0.6384 
30 450 35 1.6670     

Table 3.9.1 Input data (t and Y) from Table 8.1, Bevington and Ro-
binson [BE03].   
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The input data in the table was analyzed using the REGRESS program [see 
Section 3.10] and yielded the following equation: 
 
 6820929128244347795713410 ./te../te..y −+−+=  
 
For example, for the first data point (i.e., t =15), the computed value of y 
according to this equation is 747.62.  The relative errors included in the 
table (i.e., Ri /σi) are computed using Equation 3.9.2.  Thus the value of the 
relative error for the first point is (775 – 747.62) / sqrt(775) = 0.9835.  
Note that the relative errors are distributed about zero and range from -
2.2213 to 2.0104.  The value of S is the sum of the squares of the relative 
errors and is 66.08.  The number of points n is 59 and the number of un-
known parameters p is 5 so the value of S / (n – p) is 1.224.  The good-
ness-of-fit test considers the closeness of this number to the most probable 
value of one for a correct model.  So the question that must be answered is: 
how close to one is 1.224? 
 

Figure 3.9.1 Bevington and Robinson data [BE03] 
 
In Section 2.4 it was mentioned that for the χ2 distribution with k degrees 
of freedom, the mean is k and the standard deviation is k2 .  Furthermore 
as k becomes larger, the χ2 distribution approaches a normal distribution.  
We can use these properties of the distribution to estimate the probability 
of obtaining a value of S greater or equal to 66.08 for a χ2 distribution with 
54 degrees of freedom: 
 
66.08 = 54 + xp* 54*2  = 54 + xp* 10.39  →  xp = (66.08 - 54)  / 10.39 = 1.163 
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In other words, 66.08 is approximately xp = 1.16 standard deviations above 
the expected value of 54.  From a table of the normal distribution we can 
verify that the integral from 0 to 1.163 standard deviations is 0.378, so the 
probability of exceeding this value is 0.5 – 0.378 = 0.122 (i.e., about 12%).  
Typically one sets a value of the probability at which one would reject the 
model.  For example, if this probability is set at 1%, then the lower limit of 
xp for rejecting the model would be 2.326.  Since our computed value of xp 
of 1.163 is much less than 2.326, we have no reason to reject the five pa-
rameter model. 
 
If we really want to be pedantic, we can make a more accurate calculation.  
From the Handbook of Mathematical Functions [AB64], Equation 
26.4.17 is suggested for values of k > 30: 
 

 
3

2

9
2

9
21 ⎥

⎦

⎤
⎢
⎣

⎡
+−=

k
x

k
k pχ           (3.9.4) 

 
In this equation xp is the number of standard deviations for a standard 
normal distribution to achieve a particular probability level.  For example, 
if we wish to determine the value of  the χ2 distribution with k degrees of 
freedom for which we could expect 1% of all values to exceed this level, 
we would use the standard normal distribution value of xp = 2.326.  Using 
Equation 3.9.4 we can compute the value of xp corresponding to a χ2 value 
of 66.08: 
 

 3]54)*2/(954)*2/(954[166.08 px+−=  

 

Solving this equation for xp we get a value of 1.148 which is close to the 
value of 1.163 obtained above using the normal distribution approxima-
tion. 
 
Equation 3.9.3 is a 5 parameter model that includes a background term and 
two decaying exponential terms.  If we were to simplify the equation to in-
clude only a single exponential term, would we still have a "reasonable" 
model?  Would this equation pass the goodness-of-fit test?   The proposed 
alternative model is: 
 

3
21

a/teaay −+=            (3.9.5) 
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Once again using the REGRESS program the resulting equation is: 
 
  989629975230818 ./te..y −+=  
 
and the value of S is 226.7.  The value of xp corresponding to this value of 
S is estimated as follows: 
 
 226.7 = 56 + xp * 562 *  
 
 xp = (226.7 – 56) / 10.39 = 15.28 
 
This value is so large that we would immediately reject the proposed mod-
el.  The probability of getting a value of S that is over 15 standard devia-
tions above the expected value for a correct model is infinitesimal.  (Note 
that since this is only a 3 parameter fit to the data, the number of degrees 
of freedom is increased from 54 to 56.)  

3.10 The REGRESS Program 

Throughout this book much of the data analysis examples were created us-
ing the REGRESS program.  The REGRESS program falls within the cat-
egory of non-linear regression (NLR) programs [WO06].  I particularly 
like REGRESS because I wrote it!  The history of the development of this 
program goes back to my early career when I was in charge of designing a 
sub-critical heavy water nuclear reactor facility.  One of the experiments 
that we planned to run on the facility involved a nonlinear regression based 
upon the following nonlinear function: 
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In the 1960's commercial software was rare so we had no choice other than 
writing our own programs.  It became quite apparent that I could general-
ize the software to do functions other than this particular function.  All that 
had to be done was to supply a function to compute f(x) and another func-
tion to compute the required derivatives.  We would then link these func-
tions to the software and could thus reuse the basic program with any de-
sired function.  At the time we called the program ANALYZER. 
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In the early 1970's I discovered a language called FORMAC that could be 
used for symbolic manipulation of equations.  FORMAC was compatible 
with FORTRAN and I used FORTRAN and FORMAC to write a program 
similar to ANALYZER and I called the new program REGRESS.  The 
REGRESS program accepted equations as input quantities, using 
FORMAC automatically generated equations for the derivatives, and then 
created FORTRAN subroutines that could then be used to perform the 
nonlinear regression.  All these steps, including compilation and link-
editing of the subroutines, were performed automatically without any user 
intervention.  The REGRESS program became a commercial product on 
the NCSS time-sharing network and I had the opportunity to work with a 
number of NCSS clients and learned about many different applications of 
non-linear regression (NLR).  In particular, working with these clients I 
discovered what users needed in the software. 

 
In the mid 1970's I realized that with languages that support recursive pro-
gramming, I could avoid the need to externally compile subroutines.  Re-
cursion is the ability to call a subroutine from within itself.  Using recur-
sion, it became a doable task to write a routine to symbolically 
differentiate functions.  Using PL/1 I rewrote REGRESS and added many 
new features that I realized were desirable from conversations with a num-
ber of users of REGRESS.  I've returned to the REGRESS program on 
many occasions since the original version.  In the 1980's I started teaching 
a graduate course called Design and Analysis of Experiments and I sup-
plied REGRESS to the students.  Many of the students were doing experi-
mental work as part of their graduate research and the feedback from their 
experiences with REGRESS stimulated a number of interesting develop-
ments. In the early 1990's I rewrote REGRESS in the C language and 
eventually it migrated into C++.  Through the many version changes 
REGRESS has evolved over the years and is still evolving. 

 
The REGRESS program lacks some features that are included in some of 
the other general NLR programs.  A serious problem with REGRESS was 
the need to create data files in a format that the program could understand.  
Many users of the program gather data that ends up in an Excel Spread 
Sheet.  The problem for such users was how to get the data into 
REGRESS.  It turned out that the solution was quite simple: Excel allows 
users to create text files.  A feature was added to accept Excel text files.  
Another important issue was the creation of graphics output.  One of the 
features of REGRESS is that the entire interactive session is saved as a text 
file.  The current method for obtaining graphics output is to extract the 
output data from the text file and then input it into programs such as Excel 
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and Matlab that supports graphics.  Since this turns out to be a relatively 
painless process, the need for REGRESS to generate graphic output is not 
a pressing issue.  It would be nice if REGRESS could seamlessly interface 
with a graphics program but so far I have not attempted to create such an 
interface. 

 
The REGRESS program includes some features that are generally not in-
cluded in other NLR programs.  The most important feature in REGRESS 
that distinguishes it from other general purpose NLR programs is the Pre-
diction Analysis (experimental design) feature described in Chapter 4.  All 
of the examples in the subsequent chapters were created using the Predic-
tion Analysis feature of REGRESS.  Another important feature that I have 
not seen in other general purpose NLR programs is the int operator.  This 
is an operator that allows the user to model initial value nonlinear integral 
equations.  This operator was used extensively in the runs required to gen-
erate the results in Chapter 6.  As an example of the use of the int operator, 
consider the following set of two equations: 

 

40 132

20 211

adxyay

adxyay
x

x

+=

+=

∫

∫
        (3.10.1) 

These highly nonlinear and recursive equations can be modeled in 
REGRESS as follows: 
 

a4'  x) 0, int(y1, * a3'  y2
a2'x)0,int(y2, * a1' y1

+=
+=

  

 
This model is recursive in the sense that y1 is a function of y2 and y2 is a 
function of y1.  Not all general purpose NLR programs support recursive 
models.  The user supplies values of x, y1 and y2 for n data points and the 
program computes the least squares values of the ak 's. 
 
Another desirable REGRESS feature is a simple method for testing the re-
sulting model on data that was not used to obtain the model.  In REGRESS 
the user invokes this feature by specifying a parameter called NEVL 
(number of evaluation data points).  Figure 3.10.1 includes some of the 
REGRESS output for a problem based upon Equation 3.10.1 in which the 
number of data records for modeling was 8 and for evaluation was 7.  Each 
data record included values of x, y1 and y2 (i.e., a total of 16 modeling and 
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14 evaluation values of y).  This problem required 15 iterations to con-
verge. 
 

 
Figure 3.10.1   Output for a recursive problem with the int 

operator and Evaluation data set 



Chapter 4   PREDICTION ANALYSIS 

4.1 Introduction 

Prediction analysis is a general method for predicting the accuracy of 
quantitative experiments.  The method is applicable to experiments in 
which the data is to be analyzed using the method of least squares.  Use of 
prediction analysis allows the designer of an experiment to estimate the 
accuracy that should be obtained from the experiment before equipment 
has been acquired and the experimental setup finalized.   Through use of 
the method, a picture is developed showing how the accuracy of the results 
should be dependent upon the experimental variables.  This information 
then forms the basis for answering the following questions: 
 

1. Can the proposed experiment yield results with sufficient ac-
curacy to justify the effort in performing the experiment? 

 
2. If the answer to 1 is positive, what choices of the experimental 

variables (e.g., the number of data points, choice of the inde-
pendent variables for each data point, accuracy of the indepen-
dent variables) will satisfy the experimental objectives? 

 
3. Which combination of the experimental variables optimizes 

the resulting experiment? 
 
In this chapter the method of prediction analysis is developed.   The fol-
lowing chapters discuss a variety of experimental classes. 
 

J. Wolberg, Designing Quantitative Experiments, DOI 10.1007/978-3-642-11589-9_4,  
© Springer-Verlag Berlin Heidelberg 2010 
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4.2 Linking Prediction Analysis and Least Squares 

In Chapter 3 the method of least squares was developed.  Prediction analy-
sis is based upon the assumption that once an experiment has been per-
formed and data collected, the data will then be analyzed using the method 
of least squares.  There are several compelling reasons for using the me-
thod of least squares to analyze data: 
 

1. If the errors associated with the dependent variables can be as-
sumed to be normally distributed, then the method yields the 
"best estimates" of the parameters of the fitting function 
[WO06]. 

   
2. The method of least squares includes as by-products, estimates 

of the uncertainties associated with the parameters of the fit-
ting function. 

 
3. The method of least squares also includes estimates of the un-

certainties associated with the fitting function itself (for any 
combination of the independent variables). 

 
Equation 3.5.1 is the expression that is used to compute the uncertainty as-
sociated with the model parameters: 
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Equation 3.6.11 is the expression that is used to compute the uncertainty 
associated with the fitting function: 
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The terms of the C-1 matrix are only dependent upon the values of the in-
dependent variables, and the partial derivatives in Equation 3.6.11 are 
computed using the values of the independent variables and the values of 
the model parameters (i.e., the ak's).  To estimate the values of σak and σf 
we only need to estimate S (i.e., the weighted sum of the squares of the re-
siduals associated with the fitting function).  The calculation of S is dis-
cussed in detail in Section 3.2. 
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In Section 3.9 the concept of Goodness-of-Fit was introduced.  The good-
ness-of-fit test assumes that the value of S is χ2 (chi-squared) distributed 
with n-p degrees of freedom.  In other words, the mean value of the S dis-
tribution is n-p and the mean value of S / n-p is one!   This is a beautiful 
revelation and implies that our best estimates of the accuracies that we can 
expect for our proposed experiment is obtained by applying this result to 
Equations 3.5.1 and 3.6.11: 
 
 12 −=σ kka Ck  (4.2.1) 
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Equations 4.2.1 and 4.2.2 are the basic equations of the method of predic-
tion analysis.  All that is needed to estimate the expected accuracy of the 
parameters of a model (i.e., the ak's) is to compute the elements of the C 
matrix, invert the matrix and then use the diagonal elements of the inverted 
matrix to estimate the values of σak.  To estimate the accuracy of the fitting 
function (i.e., σf for any point on the surface of the function), in addition to 
the inverse matrix, the partial derivatives must also be estimated.  In the 
next section prediction analysis of a very simple experiment is used to illu-
strate the method: a straight line fit to a set of data.  

4.3 Prediction Analysis of a Straight Line Experiment 

In this section we analyze a proposed experiment in which the dependent 
variable y will be related to the independent variable x by a straight line:  
 
 xaaxfy 21)( +==  (4.3.1) 
 
Many real-world experiments use this very simple fitting function to mod-
el data.  This equation is the simplest case of the multiple linear regression 
equation discussed in Section 4.10.  This model can be analyzed analyti-
cally and thus we can obtain equations that can be used to predict accura-
cy.  The first step is to propose an experiment.  Let us make the following 
assumptions: 
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1. All values of y are measured to a given accuracy: σy.  The ac-
tual value of σy is not important.  This value will be one of the 
design parameters of the experiment. 

 
2. The values of x are obtained with negligible uncertainty (i.e., 

assume σx= 0). 
 

3. The number of data points is n. 
 

4. The points are equally spaced (i.e., Δx constant). 
 
From Equation 3.4.11 we can predict the terms of the C matrix: 
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The values of wi are all equal to 1 / σy

2 so this constant can be removed 
from all the summations: 
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The terms C12 and C21 are simply n xavg / 2

yσ . The assumption of equally 
spaced values of x allows us to estimate C22 by replacing the summation 
with an integral : 
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For large values of n the range a to b approaches x1 to xn but for smaller 
values of n a more accurate approximation is obtained by using the range a 
= x1 – Δx/2 to b = xn + Δx/2. 
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Substituting 4.3.3 into Equations 4.3.2 the C matrix can now be expressed 
as follows: 
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Inverting this matrix: 
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Where D is the determinant of the matrix: 
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From Equations 4.3.5 and 4.2.1 we can predict the variances 2

1aσ and 2
2aσ  

and the covariance 12σ : 
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We can put these equations into a more useable form by noting that the 
range b – a is nΔx and defining a dimensionless parameter rx : 
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Using 4.3.9 we obtain the following expressions for the variances and co-
variance: 
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From these equations some obvious conclusions can be made.  If the pur-
pose of the experiment is to accurately measure a1 then we see from Equa-
tion 4.3.10 that the best results are obtained when rx=0 therefore we should 
choose a range in which the average value of x=0.  If the values of x must 
be positive then the minimum value of rx is 1/2 and the predicted minimum 
value of 2

1aσ is: 
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It should be remembered that 2

1aσ can be less than this value in a real expe-
riment.  This value is a design minimum based upon the assumptions that 
the value of S / n - p is one, the value of x1 is close to zero and the values 
of x are equally spaced. 
 
If the purpose of the experiment is to measure the slope of the line, then 
from Equation 4.3.11 it is clear that the value of rx is irrelevant.  The range 
of the values of x (i.e., b – a = nΔx) is the important parameter.  Stated in a 
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different way, if n is a fixed number (i.e., the experiment must be based on 
a fixed number of data points), then the accuracy of the slope (i.e., a2) is 
improved by increasing Δx as much as possible.  The value of x1 makes no 
difference when all we are interested in is the measurement of a2. 
 
Assume that the purpose of the straight line experiment is to determine a 
line that can be used to estimate the value of y for any value of x within the 
range of the values of x (i.e., from  x1 to xn).  The predicted value of y is 
computed using Equation 4.2.2.  For the straight line experiment, this equ-
ation takes the following simple form: 
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Substituting Equations 4.3.10 to 4.3.12 into 4.3.13: 
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This equation is a parabola in the x direction and we can find the point at 
which the parabola has its minimum value by setting the derivative with 
respect to x equal to zero: 
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This result is not surprising: the most accurate prediction (i.e., minimum 
value of 2

fσ ) is achieved at the midpoint of the range.  And clearly, the 
most inaccurate predictions are made at the extreme ends of the range: 
(i.e., at x1 and xn). 
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Example 4.3.1: 
 
Assume we wish to design an experiment in which the dependent variable 
y is related to x by Equation 4.3.1 (i.e., a straight line).  The values of x are 
limited to the range 1 to 10 and the purpose of the experiment is to deter-
mine the value of a1 to ±0.01 (i.e., 1aσ = 0.01).  This parameter is the 
extrapolated value of y at x = 0 as seen in Figure 4.3.1.   Assume that the 
values of x are equally spaced with x1 = 1 and xn = 10.  The range b-a re-
quired in the computation of rx in Equation 4.3.10 is slightly greater than 9 
due to the addition of Δx/2 at each end of the range.  Thus b-a =9+Δx= 9n 
/ (n-1).  The two design variables are n and σy.  Results for several values 
of n are included in Table 4.3.1. 

 
Figure 4.3.1  Straight line experiment to measure a1 

 
n b - a  rx σa1 / σy σy 

 10 10.00 0.550 0.463 0.0147 
 20  9.47 0.581 0.502 0.0199 
 50  9.18 0.599 0.326 0.0307 
100  9.09 0.605 0.232 0.0431 

Table 4.3.1  Computed values of σy to achieve 1aσ = 0.01 
 
We can see from this table that if we can measure the values of y to an ac-
curacy of 0.02 we will need about 20 data points to obtain an expected 
value of 1aσ = 0.01.  However, if we can only measure the values of y to 
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an accuracy of 0.04 we will need between and 50 and 100 data points.  In 
other words, as the accuracy of the individual measurements of y decreases 
(i.e., σy increases), the number of data points required to obtain the desired 
accuracy (i.e., 1aσ = 0.01) increases.  
 
 
Example 4.3.2: 
 
For the same experiment we would like to use the line for making predic-
tions of the value of y for any point on the line.  What combinations of n 
and σy are required to achieve values of σf = 0.02 at all points along the 
line?  In the discussion following Equation 4.3.14 we see that the maxi-
mum values of σf occur at the extreme values of x (i.e., 1 and 10). 
 

n b - a  rx σf / σy σy 

 10 10.00 0.550 1.201 0.0166 
 20  9.47 0.581 0.858 0.0233 
 50  9.18 0.599 0.545 0.0367 
100  9.09 0.605 0.387 0.0517 

Table 4.3.2  Computed values of σy  to achieve fσ = 0.02 

The values of σf/σy in the Table 4.3.2 were computed using Equation 
4.3.14 and either x =1 or x = 10.  (The values are the same for both x = 1 
and 10.)  We see from the results that to achieve values of σf <= 0.02 at 
both ends of the line (and indeed, for all points within this range), the ac-
curacy requirement for the individual points decreases as n increases.  For 
example, if the values of y are measured to σy=0.02, then between 10 and 
20 points are needed.  However, if we can only measure the points to an 
accuracy of σy=0.05, then we will need close to 100 points.  

4.4 Prediction Analysis of an Exponential Experiment 

In this section we analyze a proposed experiment in which the dependent 
variable y is related to the independent variable x by an exponential func-
tion: 
 
 xaeaxfy 2

1)( −==  (4.4.1) 
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Typically, the x variable represents time and the y variable represents the 
number of events happening within the time-segment Δx centered at x.  
For example, this function can be used to analyze the decay of a radioac-
tive isotope.  In Section 4.3 the straight line experiment (i.e., Equation 
4.3.1) was analyzed.  Equation 4.4.1 provides another example of an expe-
riment that can be analyzed analytically.  We again start by proposing an 
experiment.  Let us assume the following: 
 

1. The values of x are obtained with negligible uncertainty (i.e., 
assume σx= 0). 

 
2. Assume that the points are equally spaced (i.e., Δx constant). 
 
3. Assume that the number of data points is n. 

 
4. All values of y are Poisson distributed and are measured to an 

accuracy characterized by σy = (Ky)1/2 therefore wi = 1/ σy
2 = 

1/(Ky).  
 
The need for the constant K is required to maintain consistency of the 
units.  If y is measured in counts (per time slice Δx) then σy and a1 are also 
expressed in the same units.  The units of K would thus be counts and the 
value of K would be one.  However, if y are recorded in counts per time 
unit (i.e., counts / second) then K = 1 / Δx.  The units of K would be the 
same as y.  For example, if 100 counts are recorded in a time slice of 0.01 
seconds, then the count rate y would be 100 / 0.01 = 10000 cps and σy = 
(Ky)1/2  = (10000/0.01)1/2 = 1000 cps.  
 
From Equation 3.4.14 we can develop expression for the terms of the C 
matrix: 
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If we define a new dimensionless variable z ≡ a2x the C matrix can be ex-
pressed as follows: 
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Inverting the matrix: 
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Where D is computed as follows: 
 

 ])()()[( 2)(2
avg

z
avg

z
avg

z eee zzD −−− −=  (4.4.7) 

 
The average values are only dependent upon the values of za and zb where 
za = a2(x1-Δx/2) and zb = a2(xn+Δx/2).  For example, if n = 10 and the val-
ues of x are 0.5, 1.5, 2.5, .. 9.5 (i.e., Δx=1) and a2 = 0.2 then za=0 and zb=2. 
If we choose our x values so that za=0, then z runs from 0 to a maximum 
value of  z = zb = a2nΔx.  We can develop simple expressions for the aver-
ages required in Equations 4.4.6 and 4.4.7.  
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These equations assume that the value of n is large.  Values of Equations 
4.4.7 through 4.4.10 are included in Table 4.4.1 for various values of z.  
For most experiments based upon Equation 4.4.1, the purpose of the expe-
riment is to measure a2.  The predicted value of the variance of this mea-
surement can be computed using Equation 4.4.6 and then Equations 4.4.7 
through 4.4.10 for the average values: 
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 1.0 0.6321 0.2642 0.1606 0.0317 19.94 
 2.0 0.4323 0.2970 0.3233 0.0516  8.38 
 3.0 0.3167 0.2670 0.3845 0.0505  6.27 
 4.0 0.2454 0.2271 0.3809 0.0419  5.86 
 5.0 0.1987 0.1919 0.3501 0.0327  6.07 
 6.0 0.1663 0.1638 0.3127 0.0252  6.61 
 7.0 0.1427 0.1418 0.2772 0.0195  7.33 
 8.0 0.1250 0.1246 0.2466 0.0153  8.18 
 9.0 0.1111 0.1110 0.2208 0.0122  9.09 
10.0 0.1000 0.1000 0.1994 0.0100 10.05 

Table 4.4.1  Asymptotic Values (large n) Computed for Ranges 0 to z  
using Equations 4.4.7 through 4.4.10 

 
 
Example 4.4.1: 
 
Assume that we want to design an experiment based upon Equation 4.4.1 
to determine a2 to 1% accuracy.  If the approximate value of a2 is 0.2 sec-1, 
what combinations of n, Δx and a1 will best satisfy the accuracy require-
ment of the proposed experiment?  From Equation 4.4.11 and the last col-
umn in Table 4.4.1 we see that the best choice for z (i.e., a2n Δx) is about 
4.  This value minimizes σa2.  Thus the choice of n and Δx should satisfy 
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the following relationship: a2n Δx = 4.  Since a2 is approximately 0.2, nΔx 
should be about 20 seconds.  Using 4.4.11 with K=1 we can solve for n a1: 
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The units of a1 are counts/Δx seconds.  For example, if n = 100, a1 should 
be 586/ Δx and Δx should be about 20/100 = 0.2.  The design count rate a1 
is therefore 586/0.2 = 2930 cps (counts per second). 
 
 
Example 4.4.2: 
 
Reconsider the experiment discussed in Example 4.4.1.  Using the same 
values of n, Δx, a1 and a2 what is predicted value of σa1?  From Equation 
4.4.6 we can develop an equation similar to 4.4.11 for σa1: 
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Using the value z = 4, from Table 4.4.1 2

1aσ = 586 * 0.3809 / (100 * 

0.0419) = 53.27 and therefore σa1 = 7.30 counts/0.2 seconds = 36.5 cps. 
 
 
Example 4.4.3: 
 
For the experiment discussed in Example 4.4.1 develop an equation for 
predicting the value of σf as a function of x using the same values of n, Δx, 
a1 and a2.  We start with Equation 4.2.2 and substitute the expressions for 
the two partial derivatives of Equation 4.4.1: 
 
       = − +2 2 22 2 2 2 2

1 12 1
2 2 2

1

- - -
f 2a a

a x a x a xσ 2xa σ x a σe e eσ  (4.4.13) 

 
The values of 2

1aσ and 2

2aσ are 53.27 and 0.000004.  The value of σ12 is 

computed as follows: 
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Using the results in Table 4.4.1 for z = 4, n=100, a2=0.2 and K=1 the pre-
dicted value of σ12 = 0.01084.  Substituting into Equation 4.4.13 we obtain 
the following expression that can be used to predict σf : 
 
       = − +2 20.4 (53.276 12.705 1.3736 )f

- x x xeσ  (4.4.15) 
 
For example, at the midpoint of the range (i.e., x=10), the value of 2

fσ is 

0.0183*(53.27 - 127.05 + 137.36) = 1.164 therefore σf = 1.078.  The value 
of y at this point is 586e-0.2*10 = 79.3 so the relative uncertainty of the pre-
dicted value of y at x=10 is 1.078 / 79.3 = 1.36%.  Note that for a data 
point at x=10 the relative uncertainty would be approximately 1/sqrt(79.3) 
= 11%.  Thus the uncertainties associated with predicted values of y on 
the curve are much less than the uncertainties of the individual points 
used to fit the curve. 
 
In this section experiments based upon a single exponential function (i.e., 
Equation 4.4.1) were considered.  In Section 4.6 a more complicated mod-
el that includes a constant background term (i.e., Equation 4.6.1) is dis-
cussed.  In Section 5.2 the analysis is based upon separation experiments 
in which the mathematical model includes two exponential terms (i.e., Eq-
uation 5.2.1). 

4.5 Dimensionless Groups 

Analysis of a proposed experiment presents a problem: how should the re-
sults be displayed?  The method of prediction analysis allows us to predict 
the accuracy that can be expected for a particular set of experimental va-
riables but if the number of variables is more than a few, we need to simpl-
ify the presentation by combining the variables into manageable dimen-
sionless groups.  The experiment discussed in Section 4.4 (the exponential 
experiment) is used to illustrate this process. 
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The exponential experiment was analyzed analytically and equations for 
predicting accuracies (i.e., σa1, σa2 and σf ) were developed.  Assuming that 
the x values were evenly spaced, these σ's turned out to be functions of n, 
Δx, a1 and a2.  Further, it was assumed that the range of values of x started 
from x = Δx/2 and ended at x = nΔx - Δx/2.  (In other words, data collec-
tion starts at 0 and ends at nΔx.) The dimensionless group z was defined as 
a2nΔx.  Equations 4.4.11 and 4.4.12 can be reformulated to present the re-
sults for σa1 and σa2 in a dimensionless manner: 
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Values of 1Φ and 2Φ are included in Table 4.5.1 for various values of z.   
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1Φ  
 

2Φ  

 1.0 0.6321 0.1606 0.0317 2.25 4.47 
 2.0 0.4323 0.3233 0.0516 2.50 2.89 
 3.0 0.3167 0.3845 0.0505 2.76 2.50 
 4.0 0.2454 0.3809 0.0419 3.01 2.42 
 5.0 0.1987 0.3501 0.0327 3.27 2.46 
 6.0 0.1663 0.3127 0.0252 3.52 2.57 
 7.0 0.1427 0.2772 0.0195 3.77 2.71 
 8.0 0.1250 0.2466 0.0153 4.01 2.86 
 9.0 0.1111 0.2208 0.0122 4.25 3.01 
10.0 0.1000 0.1994 0.0100 4.46 3.17 

Table 4.5.1  Values of 1Φ and 2Φ  for Ranges 0 to z  (Eq 4.5.1 & 4.5.2) 
 
A dimensionless group that characterizes σf can be developed from Equa-
tion 4.4.13.  Substituting Equations 4.4.11, 4.4.12 and 4.4.14 into 4.4.13 
we obtain the following: 
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In this equation the f 's are functions of z.  We thus see that the following 
dimensionless group fΦ is a function of two dimensionless groups: 
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The dimensionless group a2x runs from 0 to z.   Values of fΦ are pre-

sented graphically in Figure 4.5.1 for z = 4.  We see in the graph that σf 
decreases by more than a factor of 10 over the range of 0 to 4.  However, 
the relative uncertainty (i.e., σf / y) actually decreases, reaches a minimum 
and then increases.  We can show this by dividing Equation 4.5.3 by y2, ga-
thering terms and then taking the square root: 
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We see from this equation that Ψf is the square root of a parabola along the 
a2x axis.  A plot of Ψf versus a2x for z = 4 is shown in Figure 4.5.2. 
 

 
Figure 4.5.1   fΦ versus  a2x  for z = 4 
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Figure 4.5.2   Ψf  versus  a2x  for z = 4 

4.6 Simulating Experiments 

Sections 4.3, 4.4 and 4.5 analyzed two very simple experiments in which 
the mathematical models allowed derivations of equations that could be 
used to predict accuracy (i.e., σ 's).  We use the term "simple" in the sense 
that the mathematical model is simple to analyze both before and after data 
is collected.  In reality, the actual experiment might be extremely complex 
and costly when one is faced with the task of running the experiment and 
collecting the data. 
 
The simplicity of an experiment (from the analysis point-of-view) is meas-
ured to a large extent by the complexity of the mathematical model that 
will be applied to the data.  For example, consider the class of experiments 
analyzed in Section 4.4 and 4.5 (i.e., the exponential experiment with two 
unknown parameter: Equation 4.4.1).  If we add a background term to the 
equation and treat the model as containing three unknowns the task of de-
veloping an analytical solution becomes much more difficult.  Consider the 
following equation: 
 
 3

2
1)( aaxfy xae +== −  (4.6.1) 
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The C matrix has nine terms and inversion of the matrix leads to some 
very messy equations indeed.  A simple approach is to avoid trying to seek 
analytical solutions for the terms of the C - 1 matrix and go directly to solu-
tions based upon simulations of the proposed experiment.  What is re-
quired is simulation software.  Such software can be built for a given expe-
riment using readily available software (like MATLAB).  Alternatively, a 
general purpose simulation tool is available in the public domain.  Simula-
tion is a feature included in the REGRESS program [WO06].  The 
REGRESS program is available for general purpose least squares analysis 
but can also be used in the prediction analysis mode. 
 
Building upon the results in Section 4.5 three dimensionless groups were 
defined: 1Φ , 2Φ and fΦ (Equations 4.5.1, 4.5.2 and 4.5.4).   The first 

two are functions of z (i.e., a2nΔx) and the third is a function of z and a2x.  
If we add a third parameter to the model (i.e., a3) we will need an addition-
al dimensionless parameter such as a3 / a1.  The units for a1, a3, y and K 
are all in counts per Δx so K = 1.  Examining Equation 4.5.1, if we choose 
values of a1 = n, then the computed value of σa1 is equal to 1Φ .  If we 
choose a2 = 1 then 2Φ =  σa2 n.  We first select values of n and z and then 
we can compute the initial value of x (i.e., x1) and Δx.  For example, if a2 = 
1 and z = 4, then n Δx = 4.   If we choose n = 1000 then Δx = 0.004 and x1 
= 0.002.  (Remember that the range is from x1–Δx/2 to xn+Δx/2 which for 
this example is from 0 to 4.)  A REGRESS simulation of this example us-
ing Equation 4.6.1 as the model and a3 = 0 is shown in Figure 4.6.1. 



108     Chapter 4   PREDICTION ANALYSIS 

 
Figure 4.6.1 - Simulation of an experiment using Eq. 4.6.1 for z = 4 

 
In the results table in Figure 4.6.1 the column PRED_SA(K) is the pre-
dicted value of σak.  Plugging these values into equations 4.5.1 and 4.5.2 
the computed values of 1Φ = 3.21 and 2Φ = 4.62 are obtained. We can 
compare the results from this simulation with similar results using the two 
parameter model (i.e., Equation 4.4.1).  From Table 4.5.1 we see that for 
z=4 the values of 1Φ = 3.01 and 2Φ = 2.42 are noted.  In other words, add-
ing a third parameter to the analysis does increase the value of 1Φ slightly 
but the effect upon 2Φ is quite dramatic: an increase of almost a factor of 
2 even when a3 = 0.  Clearly, if the purpose of the experiment is to meas-
ure a2 as accurately as possible, one should attempt to use Equation 4.4.1 
rather than 4.6.1 by measuring the background (i.e., a3) separately. 
 
In addition, we need a third dimensionless group that includes σa3: 
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The value of 3Φ as seen in the simulation is 0.625.  We have assumed that 
the dimensionless groups are insensitive to the value of n, a1 and a2.  We 
can test this assumption by repeating the simulation using z = 4 and a2 = 1 
but changing n and a1 to 100, Δx = 0.04 and x1 = 0.02.  The results are 
seen in Figure 4.6.2.  
 

 
Figure 4.6.2 – Similar to Fig 4.6.1 but using n = a1 = 100. 

 
From Equations 4.5.1, 4.5.2 and 4.6.1 the values of 1Φ  = 3.21, 2Φ  = 4.62 
and 3Φ = 0.625 are obtained and are in agreement to 3 decimal places of 
accuracy in both simulations.  If we reduce n even further to n = 10, an 
additional simulation yields values of 1Φ  = 3.29, 2Φ  = 4.72 and 3Φ = 
0.640 which are only a few percent larger than the values for much larger 
values of n.  In other words, the value of n used in simulations of this ex-
periment has only a small effect upon the results. 
 
To measure the effect of the dimensionless parameter a3 / a1 simulations 
were performed for z = 4 and the results are presented in Figure 4.6.3. 
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 Figure 4.6.3 – 1Φ , 2Φ and 3Φ versus a3 / a1 for z = 4. 

 
Example 4.6.1:  
 
We wish to measure a2 to 1% accuracy in a very noisy experiment in 
which the signal to noise ratio (i.e., a1 / a3) is approximately 1/8.  What 
combinations of initial amplitude (i.e., a1 + a3 per Δx) and n are required 
so that the predicted values of σa2 / a2 = 0.01?  Assume that the choice of 
values for x1, Δx and n satisfy the relationship z = 4. 
 
 From Figure 4.6.3 for a3 / a1 = 8 we see that the value of 2Φ is approx-
imately 30.  With K = 1, from the definition of 2Φ (Equation 4.5.2) we can 
develop the following relationship: 
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Example 4.6.2:  
 
Example 4.6.1 is based upon the choice of z = 4.  This value was chosen 
because in Table 4.5.1 it was seen that this choice of z minimizes 2Φ .  
However, Table 4.5.2 was based upon the two parameter model (i.e., Eq-
uation 4.4.1) and Example 4.6.1 is based upon the three parameter model 
(i.e., Equation 4.6.1).  For the noisy experiment discussed in Example 
4.6.1 is the choice of z = 4 still an optimum or close to an optimum choice 
for z? 
 
To answer this question a series of simulations were performed in which 
the parameters a1 and n were set equal to 100, a3 was set to 800 and the 
values of x1 and Δx were varied to cover the range z = 3, 4 .. 8.  The value 
of 2Φ for z = 3 was 35.1, and this value decreased to a minimum of 27.5 
for z = 6.  Thus for the proposed experiment the choice of z = 4 is not op-
timal but is not very far from optimal.  Increasing z to 6 should reduce the 
predicted value σa2 / a2 by about 2.5/30 (i.e., 8%) compared to the value 
that would be obtained if the experiment were to be performed using z = 4. 
 

4.7 Predicting Calculational Complexity 

One can predict whether or not the least squares analysis phase of an expe-
riment will be plagued by numerical problems.  The Condition number of 
the C matrix is a number that is indicative of several issues: 
 

1) The sensitivity of the results due to variations in the data. 
 
2) The difficulty that one might encounter in converging to a so-

lution for nonlinear models. 
 
3) The numerical problems associated with ill-conditioned sys-

tems. 
 
The Condition number is defined as the ratio of the maximum to minimum 
absolute values of the Eigenvalues of the C matrix.  Since the C matrix is 
symmetric, all the Eigenvalues are real numbers but not necessarily posi-
tive.  Eigenvalues are not easy to calculate but functions included in wide-
ly available software (like MATLAB and MAPLE) can be used to deter-



112     Chapter 4   PREDICTION ANALYSIS 

mine the Condition number of a matrix.  The REGRESS program includes 
a parameter that directs the program to include the condition number of the 
C matrix in the program output. 
 
To illustrate the effect of Condition number on the sensitivity of the re-
sults, consider the following matrix equation: 
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The solution to this equation is easily seen to be a1 = a2 = 1 for any value 
of n.  The condition of the C matrix is shown in Table 4.7.1 for values of n 
from 1 to 1000.  The value of v2 is then perturbed from 2n+1 to 2n+1.001 
and Equation 4.7.1 is solved for the terms of the perturbed A vector. 
 

N Condition a1 a2 Perturbed a1 Perturbed a2 
1 17.9 1 1 1.002  0.997   

10 486.0 1 1 1.011  0.988 
20 1766.0 1 1 1.021  0.978 
50 10496.0 1 1 1.051  0.948 

100 40806.0 1 1 1.101  0.898 
200 161606.0 1 1 1.201  0.798 
500 1004006.0 1 1 1.501  0.490 

1000 4008006.0 1 1 2.001   -0.002 
Table 4.7.1 – Effect of perturbing v2 from 2n+1 to 2n+1.001 

 
We see in this table that as the condition of the matrix becomes more and 
more ill-conditioned (i.e., larger), the effect of the small perturbation in the 
data causes an ever increasing perturbation in the computed value of the 
terms of the A vector.  The sensitivity of the results for the case of n = 
1000 is particularly dramatic.  The condition of the matrix is about 4 mil-
lion and we see that a change in v2 from 2001 to 2001.001 (i.e., a change of 
0.00005%) causes an increase of about 100% in a1 and a decrease of close 
to 100% in a2.  Note that c21a1 + c22a2 = 1001*2.001 – 1000*0.002 is ex-
actly 2001.001 so the reason for the large changes in a1 and a2 are not at-
tributable to numeric problems such as round-off errors.  It is a fact of life 
that solving equations based upon ill-conditioned matrices will yield re-
sults that are highly sensitive to small changes in the data. 
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Converging to a solution can be extremely difficult for nonlinear problems 
in which the C matrix is highly ill-conditioned.  The U.S. National Institute 
of Standards and Technology (NIST) initiated a project to develop a stan-
dard group of statistical reference datasets (StRD's) [WO06].  In their 
words the object of the project was "to improve the accuracy of statistical 
software by providing reference datasets with certified computational re-
sults that enable the objective evaluation of statistical software."   One of 
the specific areas covered was datasets for nonlinear regression.  The prob-
lems in the nonlinear regression group were graded as Lower, Average and 
Higher levels of difficulty.  The Bennett5 problem includes a 3 parameter 
fit to 154 data points and is graded as highly difficult.  This problem re-
quired over 536,000 iterations using the default settings of REGRESS and 
starting from the "far" (according to the NIST system) initial values.  The 
fitting function for this problem is: 
 

3
21

1)( b/xbby −++=      (4.7.2) 
 

The Condition number of the matrix using the NIST initial values is great-
er than 1017.  As seen in Figure 4.7.1 the value decreases to >1014 after 3 
iterations and after more than 536,000 settles at a value >1016.  Note that 
after an initial rapid decrease in the value of S/(n-p) (from 437 down to 
7.36*10-6) it takes more than 500,000 additional iterations to achieve a fur-
ther reduction to 3.47*10-6. This problem illustrates the extreme difficulty 
in achieving convergence for least squares problems that require solutions 
of highly ill-condition systems of equations.  (Note – for those readers in-
terested in trying to solve the Bennett5 problem using software other than 
REGRESS, the data and solutions can be obtained directly from the NIST 
website: http://www.itl.nist.gov/div898/strd/index.html.  To examine the 
datasets, go into Dataset Archives and then Nonlinear Regression.) 
 
The lesson to be learned from this example is that one should avoid least 
squares problems in which the C matrix will be highly ill-conditioned.  
The condition of the matrix can be estimated at the design stage, and if ill-
conditioning is noticed the problem should be reformulated.  For example, 
a different fitting function might be considered.  Another possible ap-
proach is to choose different or additional values of the independent varia-
ble (or variables).  
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Figure 4.7.1 – REGRESS output for the Bennett5 problem 
 
To demonstrate the numerical problems associated with ill-conditioned 
systems, the NIST data sets include a data series called Filip.dat (in the 
Linear Regression directory).  This data set was developed by A. Filippelli 
from NIST and includes 82 data points and a solution for an 11 parameter 
polynomial.  For p parameters the function is: 
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The C matrix for this function is generated using Equation 3.4.14 and 
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As p increases, the Condition of the C matrix explodes.  It is well known 
that fitting higher degree polynomials of the form of Equation 4.7.3 to data 
is a poor idea.  If one really would like to find a polynomial fit to the data, 
then the alternative is to use orthogonal polynomials [WO06, FO57].  How-

PARAMETERS USED IN REGRESS ANALYSIS: Wed Dec 24 15:26:05 2008 
 
  INPUT PARMS FILE: bennett5.par 
  INPUT DATA  FILE: bennett5.par 
  REGRESS  VERSION: 4.22, Dec 24, 2008 
 
  N - Number of recs used to build model  :   154 
  YCOL1 - Column for dep var Y               :  1 
  SYTYPE1 - Sigma type for Y              :     1 
     TYPE 1:  SIGMA Y = 1 
Analysis for Set 1 
  Function Y:  B1 * (B2+X)^(-1/B3) 
 
  EPS - Convergence criterion           : 0.00100 
  CAF - Convergence acceleration factor :   1.000 
 
 ITERATION         B1          B2         B3  S/(N.D.F.)  CONDITION 
         0   -2000.00   50.00000    0.80000   437.23475     >10^17  
         1 -696.26923   39.53721    1.14423    99.76370     >10^17 
         2 -772.85887   33.14625    1.18089     1.62694     >10^15 
         3 -790.25485   33.86791    1.19260  0.00028004     >10^14 
         4 -791.34742   34.12556    1.19369  0.00000845     >10^14 
         5 -791.60305   34.17606    1.19391  0.00000736     >10^14 
         . 
    536133   -2523.51   46.73656    0.93218  0.00000347     >10^16 
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ever, trying to fit Equation 4.7.3 with increasing values of p illustrates the 
numerical problems inherent with ill-conditioned systems.   
 

p Condition VarReduction Num Iter Solution 
 2 7.52*1002 87.54 1 Yes 
 3 4.89*1005 90.64 1 Yes 
 4 5.05*1008 93.45 1 Yes 
 5 4.86*1011 97.30 1 Yes 
 6 6.28*1014 97.42 1 Yes 
 7 7.67*1017 98.99 1 Yes 
 8 1.57*1019 99.00 1 Yes 
 9 8.18*1020 99.48 6 Yes 
10 1.04*1023 / / No 
11 1.46*1023 99.43 1142 Yes 

Table 4.7.2 – Results for the NIST filip Data Set using Eq 4.7.3 
 
 

 
Figure 4.7.2 – Least Squares Line and  filip Data Set 

 
Table 4.7.2 includes results obtained using REGRESS for p = 2 to 11.  For 
p = 9 we see the first signs of trouble brewing.  Theoretically for linear 
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problems the least squares method should converge to a solution with a 
single iteration.  Within each iteration, REGRESS checks the error vector 
(i.e., CA – V) and iteratively corrects A until the error vector is smaller 
than a specified tolerance level or until 10 attempts have been made to re-
duce the error vector.  For p = 9 six iterations were required until the A 
vector satisfied the convergence criterion.  Beyond p = 9 nothing helped.  
We see that for p = 10 REGRESS failed to obtain a solution.  The search 
for a solution was halted after 10,000 iterations.  For p = 11, although con-
vergence was achieved after many iterations, the values obtained were 
completely different than the reference values included with the data set.  
The huge values of Condition ( > 1023) were just too much for the program 
to handle.  Note that the variance reduction increased from a value of 
87.5% for p = 2 to almost 99.5% for p = 9.  The large value of variance re-
duction using only a straight line (i.e., p = 2) might seem surprising, how-
ever in Figure 4.7.2 we see that the data is not very far from the straight 
line obtained using the 2 parameter fit. 

4.8 Predicting the Effects of Systematic Errors 

In Section 1.6 the subject of systematic errors was discussed.  Obvious 
sources of systematic errors are measurement errors.  For some experi-
ments the effect of a systematic error is quite obvious.  For example, in 
Section 4.3 prediction analysis of a straight line experiment using Equation 
4.3.1 was discussed.  If there is a calibration error εy in the measurements 
of the values of y the effect upon the computed value of a1 will be just εy 
and the effect upon the computed value of a2 will be 0.  The actual value of 
εy is unknown (otherwise we would correct for it) however, we can usually 
estimate a maximum absolute value for the systematic error.  Similarly, if 
there is a calibration error in the measurement of x equal to εx the effect 
upon the computed value of a1 will be just −εxa2 and the effect upon the 
computed value of a2 will also be 0.   
 
Even for simple experiments (from the analysis point-of-view), the nature 
of the systematic errors can lead to a complicated process of estimating the 
effects upon the computed parameters.  For example, consider the expo-
nential experiment discussed in Section 4.4.  Equation 4.4.1 is an exponen-
tially decaying function in which the background term is either negligible 
or the values of y have been corrected to remove the background.  One 
way to approach such problems is through the use of simulations.  In Ex-
ample 4.4.1 an experiment was discussed in which the requirement was to 
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measure the decay constant a2 to 1% accuracy.  Using 100 points over a 
range of z = a2nΔx = 4 and a2 equal to approximately 0.2, the design value 
for a1 was computed to be equal to 586 counts per Δx seconds.  Let us es-
timate that the error in the background count rate is in the range -10 to 10 
cps.  Since Δx = 4/(0.2*100) = 0.2, the maximum background error εb = 10 
* 0.2 = 2 counts per Δx.  To determine the effect of such an error, a simu-
lation can be performed using the following steps. 
 

1) Create a data series based upon 100 data points starting from x 
= Δx/2 = 0.1 and increasing in increments of 0.2 with corres-
ponding y values computed using y = 586*exp(-0.2*x). 

 
2) Create a 2nd data series in which the values of y are increased 

by 2. 
 

3) Run least squares analyses using both series and Equation 
4.4.1. 

 
4) The effect of εb upon both a1 and a2 is just the differences be-

tween the two results. 
 
The results of the least squares analysis for the first data series should re-
turn values of a1 = 586 and a2 = 0.2 and confirm that the series has been 
created correctly.  The least squares analysis for the 2nd data series is 
shown in Figure 4.8.1 and we note values of a1 = 582.7 and a2 = 0.196.  
The experiment had been designed for an accuracy of 1% in a2 which is 
0.002.  We note, however, that if there is a 10 cps error in the determina-
tion of the background count rate, this causes an error of -0.004 in a2.  In 
other words, if our background count rate is truly in error by 10 cps then 
the resulting error in a2 is twice as large as our design objective! 
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Figure 4.8.1 – Least Squares Analysis of Data with Background Error 
 

4.9 P.A. with Uncertainty in the Independent Variables  

 
In the examples shown to this point it was assumed that the values of x are 
known (i.e., σx = 0).  Equation 3.3.7 shows how one must weight the data 
if the assumption that σx = 0 is not valid.  For some problems this addition-
al term requires only a minor modification.  For example, for the straight 
line experiment with a constant value of σy for all data points, the resulting 
values of σa1, σa2 and σ12 are computed using Equations 4.3.10, 4.3.11 and 
4.3.12.  Note that a constant value of σy implies that there is a random er-
ror component for all the values of y with a mean of zero and a constant 
standard deviation of σy.  The weights for all the points were equal to 1 / 
σy

2 but if σx is a constant other than zero (i.e., a random error with mean 
zero and standard deviation of σx), the weights would all equal the follow-
ing: 
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The resulting modifications in 4.3.10 through 4.3.12 are: 
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Alternatively the effect of non-zero values of σx can be determined using 
simulations.  As an example of the use of a simulation to predict the effect 
of non-zero values of σx consider the exponential experiment discussed in 
Section 4.4.  Example 4.4.1 considers an experiment in which the require-
ment was to measure the decay constant a2 to 1% accuracy.  Using 100 
points over a range of z = a2nΔx = 4 and a2 equal to approximately 0.2, the 
design value for a1 was computed to be equal to 586 counts per Δx 
seconds.  The value of Δx for this experiment was 4/(0.2*100) = 0.2.  In 
Figure 4.9.1 a prediction analysis for this experiment in which σx = 0.2 
(i.e., the same as Δx) is used.  The results in Figure 4.9.1 should be com-
pared to the results in Examples 4.4.1 and 4.4.2 (i.e., σa1 = 7.30 and σa2 = 
0.00200).  The effect of σx increasing from 0 to 0.2 causes an increase in 
σa1 to 9.17 and  σa2 to 0.00224. 
 
It should be mentioned that the examples used in this section are based 
upon a very simple model for σx (i.e., a constant value for all data points).  
In reality any desired model can be used in a simulation. 
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Figure 4.9.1 – Prediction Analysis with non-zero σx 

 
 

4.10 Multiple Linear Regression 

In the previous sections the mathematical models discussed were based 
upon a single independent variable.  Many experiments utilize models that 
require several independent variables.  For example, thermodynamic expe-
riments to measure the properties of a gas as a function of both tempera-
ture and pressure are typical.  Health studies of children might consider 
height, weight and age as independent variables.  To illustrate a prediction 
analysis of an experiment with more than one independent variable, the 
following simple model is used: 
 
 dd xa...xaay 1121 ++++=  (4.10.1) 
 
In the statistical literature the subject "multiple linear regression" is based 
upon this model [FR92,ME92].  In this equation a d dimensional plane is 
used to model y as a function of the values of a vector X.  In Section 4.3 
this model was analyzed for the simplest case: d = 1.   The analysis was 
based upon the following assumptions: 
 

1. All values of y are measured to a given accuracy: σy.   
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2. The values of x are obtained with negligible uncertainty (i.e., 
assume σx= 0). 

 
3. The number of data points is n. 

 
4. The points are equally spaced (i.e., Δx is constant). 

 
The only modification required to analyze 4.10.1 is that the data points are 
generated by taking n1 values in the x1 directions, n2 values in the x2 direc-
tions, etc. so that the total number of points is n which is the product of all 
the nj values.  Furthermore, the nj values are generated as follows: 
 
 jjji xixx Δ−+= )1(1         i = 1 to nj (4.10.2) 
 
The C matrix for this model is: 
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 (4.10.3) 

 
Since wi is constant for all points (i.e., wi = 1/ σy

2) it can be removed from 
the summations.  In Section 4.3 we proceeded to develop an analytical so-
lution for the predicted values of 2

1aσ and 2
2aσ , the covariance 12σ  

and 2
fσ .  At first glance the C matrix looks messy but by simply subtract-

ing out the mean values of xj from all the values of xji, all the off-diagonal 
terms of the C matrix become zero and the matrix can easily be inverted.  
We can use Equations 4.3.10, 4.3.11, 4.3.12 and 4.3.14 to anticipate the re-
sults that one should expect for d greater than one.  In Section 4.3 the di-
mensionless midpoint of the range x was defined by Equation 4.3.9.  We 
can define a more general rj as follows: 
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where aj = xj1 – Δxj/2 and bj = xjn+ Δxj/2.  If the xji's have been adjusted so 
that the average value in each direction is zero, then all the rj's are zero.  
However, if the original values of the xji's are used, then the rj's have val-
ues other than zero.  The results can be presented using the following di-
mensionless groups: 
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The simplest case to analyze is when all the values of rj are zero (i.e., the 
data is centered about zero in each direction).  For this case all the off-
diagonal terms of the C matrix are zero and the results reduce to the fol-
lowing for large n:  
 
 
 
 11 =Φ    &   2112 /

j =Φ  (4.10.7) 
 
These rather surprisingly simple results are independent of the dimensio-
nality of the model (i.e., d) and are in agreement with the results from Sec-
tion 4.3 for the case of d=1.  Furthermore, varying the values of the rj pa-
rameters only changes the value of 1Φ : 
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Confirmation of these results is shown in Figure 4.10.1.  This is a simula-
tion of a case in which d =3 and all three values of rj are equal to 1/2.  
Since σy = 1 and n = 10000, 1Φ  = 100 1aσ = 3.172.  From Equation 4.10.8 
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we get a value of (12*(1/4+1/4+1/4)+1)1/2 = 101/2 = 3.162 which is close to 
3.172.  The values of 11 xn Δ , 22 xn Δ  and 33 xn Δ  are 1, 2 and 1 and there-
fore the values of the remaining jΦ 's are : 
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From Equation 4.10.7 the limiting values (for large n) of these jΦ 's are 

121/2 = 3.464 which is exact to 4 decimal place for  2Φ  and close for 3Φ  
and 4Φ .  As expected, the simulation yields a more accurate result for 2Φ  
because n1 = 100 while n2 and n3 are only 10.  The values of the jΦ 's are 
independent of the values of a1 to a4. 
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Figure 4.10.1 – Prediction Analysis of 3D plane model 

 
For some experiments based upon Equation 4.10.1 the purpose is to deter-
mine a plane that can be used to estimate the value of y for any set of val-
ues of xj within the range of the values of the xj's.  For the straight line ex-
periment (i.e., d = 1) in Section 4.3 we obtained a parabola (Equation 
4.3.14).  The accuracy of the predicted value of y was seen to be best at the 
midpoint of the range and worst at the edge points.  For d greater than one 
we would expect similar results: however, the parabola would be replaced 
by a d dimensional multinomial of degree 2.  For example, for d=2 we 
would obtain an equation of the form:  
 
         215

2
24

2
1322110

2 xxKxKxKxKxKKf +++++=σ  (4.10.9) 
 
If all the xj's have been adjusted so that their mean values are zero, Equa-
tion 4.10.9 is reduced to a simpler form as seen in Equation 4.10.10.  The 
minimum value of fσ will be obtained at the midpoint of the ranges of the 

xj 's and the maximum values will be obtained at the corners of the d di-
mensional cube.  For a given value of d it can be shown that the value of 
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2
fσ can be computed for any point within the d dimensional cube from the 

following equation: 
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The derivation of this equation is simplified by considering the case where 
all the average values of xj are zero.  We can, of course, transform any set 
of experimental data to just this case by subtracting xjavg from all the val-
ues of xj. For cases satisfying this condition, it can be shown that the in-
verse C matrix is:  
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Δ

Δσ
=−

)(1200

0)(120
001

11
2

1

dd

y

xn/...
............

...xn/

...

n
C  (4.10.11) 

 

Recall that n is the product of all the nj's.  Equation 4.10.10 follows from 
substitution of Equation 4.10.11 into Equation 4.2.2.  The best accuracy 
(minimum value of σf) is obtained at the midpoint of the d dimensional 
cube (i.e., where xj = xjavg for all j).  The worst accuracy (maximum value 
of σf) is obtained at the corners of the d dimensional cube.  Note that these 
minimum and maximum values of σf are not functions of the values of the 

jr 's and jj xn Δ 's.  The minimum value is not a function of d and the max-

imum value of 2
fσ increases linearly with d. 
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For example, if d = 4, the predicted values of σf range from σy/n1/2 to 
131/2σy/n1/2.  
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Example 4.10.1: 
 
Assume that we wish to perform a multiple linear regression within a 3 
dimensional space.  Assume that Equation 4.10.1 is a realistic representa-
tion of the dependence of the values of y upon the values of x1, x2 and x3.  
Assume that we can measure each value of y to an accuracy of σy and that 
we can assume that the values of the x's are error free.  The purpose of the 
experiment is to predict values of y for any point within the space.  We 
want to design the experiment so that within the experimental volume all 
values of y will be computed to an accuracy of 0.01 (i.e., σf <= 0.01). 
 
From Equation 4.10.13, within the design region, the maximum values of 
σf are : 
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Setting σfmax to 0.01 we get the following design requirement: 
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From this equation we see that if we can only measure the values of y to an 
accuracy of σy = 1, then we would require 100,000 randomly distributed 
points to satisfy the design requirement.  However, if we could measure 
the values of y to an accuracy of σy = 0.1, then the number of points re-
quired is reduced to 1000.  If we relax our requirement regarding σf from 
0.01 to 0.02 then the value of n is reduced by an additional factor of 4. 
 
 
Example 4.10.2: 
 
In Example 4.10.1 with the requirement σfmax = 0.01 it was seen that 1000 
points were required to achieve the desired result if the values of y could 
be measured to an accuracy of σy = 0.1.  Assuming that the values of the 
x's are adjusted so that their means are zero (i.e., all the rj's are zero), what 
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is the predicted accuracy for the coefficients in Equation 4.10.1?  From 
Equations 4.10.5, 4.10.6 and 4.10.7 we get: 
 
   

00320
1000

10
10

1000
1 211

21
1

21
1

1 ..
.

n
/a

/
a

y

/
a ==σ⇒

σ
==

σ

σ
≡Φ  

 

10

)(1000
12

)( 21
121

21
1

1 .

xnxnn jj
/

ja/

y

jj
/

ja
j

Δσ
==

σ

Δσ
≡Φ ++

+     

 

jjjj

/

ja xn
.

xn
)/(.

Δ
=

Δ
=σ

+

011010001210 21

1           j = 1 to d 

 
It should be remembered that these results are based upon the assumption 
that Equation 4.10.1 is a realistic model for y as a function of x1, x2 and x3.  
When the experiment is performed, this assumption can be tested using the 
Goodness-of-Fit tools discussed in Section 3.9. 
 



Chapter 5   SEPARATION EXPERIMENTS 

5.1 Introduction 

Many experiments fall within the category of "separation experiments".  
The purpose of these experiments is to separate two or more competing 
phenomena.  As an example consider experiments in which counts are rec-
orded from several decaying radioactive species over a given time period.  
The purpose of the experiment might be to determine the relative amounts 
of the species or perhaps to identify the species by computing the various 
decay constants.  Another example relates to spectroscopy in which spec-
tral lines tend to overlap.  In astronomy measurements of light coming 
from overlapping light sources present difficult problems of analysis. 
 
Probably the most famous separation experiment is carbon dating which is 
used to determine the age of organic material.  In living material the rela-
tive amounts of three carbon isotopes C12, C13 and C14 is very close to be-
ing constant.  Once living material dies, the fraction of carbon in the form 
of C14 starts to decrease because this isotope is not replenished through in-
teraction with atmospheric carbon dioxide. The C14 content decreases 
through radioactive decay with a half life of approximately 5730 years.  
The age of the material can thus be estimated by measuring the relative 
amount of C14 to C12 and C13 in the specimen.  Willard Libby developed 
the method of radioactive carbon dating in 1949 and received the Nobel 
prize in 1960 for this work. 
 
In this chapter we will discuss several broad classes of separation experi-
ments in which the mathematical models include exponential functions, 
Gaussian functions and sin functions.  Prediction analyses of these classes 
are developed and can be used as starting points for planning experiments.  
The methodology for obtaining the results included in this chapter is de-
scribed in Section 4.6.  The common thread thru all these types of experi-

J. Wolberg, Designing Quantitative Experiments, DOI 10.1007/978-3-642-11589-9_5,  
© Springer-Verlag Berlin Heidelberg 2010 
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ments is that the difficulty in achieving accurate results increases dramati-
cally as the separation between the competing phenomena decreases. 
 

5.2 Exponential Separation Experiments 

In this class of experiments we consider cases in which the purpose of the 
experiment is to analyze data based upon a model that includes several de-
caying exponential functions.  Such experiments are well known in many 
areas of science and technology (e.g., chemical kinetics and radioisotope 
analysis).  Considering experiments analyzing data from decaying radioac-
tive isotopes, the purpose of the experiments might be to identify the iso-
topes or perhaps measure the relative amounts of the species included in 
the specimen.  In chemical kinetics the purpose might be to measure the 
reaction rates of the competing processes.  Typically experiments in this 
class utilize data that is obtained by counting the number of events occur-
ring within a time "window".  The size of the time window is usually an 
experimental variable and is one of the parameters that can be varied as 
part of the process of designing the experiment for optimum results.  Other 
experimental variables include the number of data points and often the ini-
tial amplitude of the count rate.  Clearly the greater the initial amplitude, 
the more accurate the measured parameters will be.  However, when the 
cost involved in increasing the initial amplitude is considered, this parame-
ter becomes part of the optimization process. 
 
Assuming that the background number of counts per time window is neg-
ligible, the model might be based upon a two-exponential version of Equa-
tion 4.4.1: 
 
 tata ee aatfy 4

3
2

1)( −− +==  (5.2.1) 
 
Once again assuming Poisson statistics (i.e., σy = √y ), the dimensionless 
groups used to characterize the results of the prediction analysis of Equa-
tion 4.4.1 were expressed as Equations 4.5.1 and 4.5.2.  For Equation 5.2.1 
since the C matrix (Equation 3.4.14) is four by four, analytical expressions 
for the dimensionless groups will be so large as to make them useless.  
However we can express the results of a prediction analysis of Equation 
5.2.1 in a similar manner using the following dimensionless groups: 
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In addition, three additional groups are required to completely specify the 
experiment: a3/a1 , a4/a2 , and z ≡ a2nΔt.  In these equations if a1 and a3 
are measured in counts within the Δt window, then K is one and (a1 + a3) 
is the initial counts per Δt at t=0.  (Alternatively, if a1 and a3 are measured 
in counts per unit time then K = 1/Δt.)  Results for a3/a1 = 1 and z = 8 are 
seen in Tables 5.2.1 for various values of a4/a2. 
  

a4/a2 Ф1 Ф2 Ф3 Ф4 
1.10  10489.8   927.7  10486.5  1085.5 
1.20  1497.8   237.9   1494.4   321.8 
1.50 150.4 46.7 147.1 89.1 
2.00  38.1 18.2  35.3 49.8 
2.50  20.2 12.1  18.4 41.7 
3.00  13.9  9.6  13.4 39.1 

Table 5.2.1 – Values of Фk  vs  a4/a2  for a3/a1=1 and z=8   
 

a4 / a2 z Ф1 Ф2 Ф3 Ф4 
1.10 4 28555.6 2634.5 28552.6 2821.9 
1.10 8 10489.8 927.7 10486.5 1085.5 
1.10 10 9237.8 809.7 9244.3 965.4 
1.10 12 9060.0 791.1 9056.2 951.0 
1.10 14 9363.5 816.5 9359.6 984.4 
1.20 4 3779.2 647.1 3776.2 744.7 
1.20 8 1497.8 237.9 1494.4 321.8 
1.20 10 1368.3 214.4 1364.7 298.8 
1.20 12 1378.6 215.0 1374.9 303.0 
1.20 14 1446.7 225.2 1442.7 318.6 
Table 5.2.2 – Values of Фk vs z for a3/a1=1 and  a4/a2=1.1 and 1.2 

 
We see that as a4/a2 approaches one, all the Ф's become very large.  The 
effect of z is seen in Table 5.2.2 for a3/a1 = 1 a4/a2 = 1.1 and 1.2.   We see 
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that for a4/a2 = 1.1 the optimum value of z is about 12 and for a4/a2 = 1.2 
the optimum is about 10 to 11.  The implication of these results upon the 
design of an experiment is shown in the following examples. 
 
 
Example 5.2.1: 
 
We wish to design an experiment in which our objective is to measure both 
a2 and a4 to about 1% accuracy.  We know that a3/a1 is approximately 1 
and  a4/a2 is about 1.2.  After choosing a value of z = 10 what values of n, 
a1 and a3 satisfy the objective of the proposed experiment?  From Table 
5.2.2 we see that Ф4 is greater than Ф2 (299 vs 214) so we need only de-
sign to satisfy the requirement that σa4 / a4 = 0.01.  From our expression 
for Ф4 we get the following: 
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Solving, we obtain the following expression: 
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If n=1000 then a1 and a3 will each have to be about 4.46*105 counts per 
Δt.  If a2 = 1 sec-1, then Δt=z / (a2 n) = 10/1000 = 0.01 sec and the initial 
count rate would 89.3 million cps (counts per second) which is a huge 
number!  If  a2 = 1 hour-1 = 1/3600 sec-1 then Δt = 36 sec and the initial 
count rate would be 8.93*105 / 36 which is about 24,800 cps. 
 
The experiment becomes more complicated when the value of a3/a1 is not 
equal to one.  Results for several values of a3/a1 are included in Table 
5.2.3 for z = 10 and a4/a2 = 1.2.  As one might expect, as the ratio a3/a1 

increases the fractional uncertainty in a2 increases and the fractional un-
certainty in a4 decreases.  From the definitions of Ф1 and Ф3 we see that 
the values of σa1 and σa3 decrease as a3/a1 increases.  The explanation for 
this effect is explained by the separation phenomenon.  As time increases 
the fraction of the counts coming from the longer lived species with decay 
constant a2 increases.  However, increasing a3/a1 results in an increase in 
the fraction of counts for the shorter lived species.  This increase results in 
decreases for both σa1 and σa3. 
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a3 / a1 Ф1 Ф2 Ф3 Ф4 
0.25 1524.9 150.3 1521.3 826.0 
0.50 1458.9 172.1 1455.4 475.7 
1.00 1368.3 214.4 1364.7 298.8 
2.00 1264.8 295.8 1261.3 208.5 
4.00 1167.8 452.7 1164.4 161.5 

Table 5.2.3 – Values of Фk  vs  a3/a1  for a4/a2=1.2 and z=10  
 
 
Example 5.2.2: 
 
We wish to design an experiment to determine both a1 and a3 to at least 
10% accuracy.  We know that a4/a2 is approximately 1.2 and a3/a1 is ap-
proximately 2.  Assuming that we design the experiment so that z = 10, 
what conditions must be satisfied to achieve predicted values of σa1/a1 and 
σa3/a3 = 0.1?  From the definitions of Ф1 and Ф3 we obtain the following 
expressions: 
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Using K=1 and values from Table 5.2.3 we obtain the following: 
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From these two expressions, we see that the expression for Ф1 is the more 
difficult to satisfy and should therefore be the design criterion. 
 
An alternative approach to this experiment is to treat the values of a2 and 
a4 as known parameters. Thus instead of Equation 5.2.1 we could use: 
 

 tt dd ee aatfy 2
2

1
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In this equation d1 and d2 are the known decay constants.  This equation is 
linear with respect to the ak's.  The two dimensionless groups that charac-
terize the results are: 
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For the case of z =10, a2/a1 =1 and d2/d1 = 1.2, the values of Ф1 and Ф2 
are 17.0 and 20.4.  Comparing these to the values of Ф1 and Ф3 from 
Table 5.2.3 (i.e., 1368.3 and 1364.7) we see that the predicted values of 

1aσ and 2aσ using Equation 5.2.2 are several orders of magnitude less 
than what could be expected if Equation 5.2.1 with 4 unknown parameters 
is used. 
 
The use of Equation 5.2.2 is perhaps misleading.  It assumes that both a2 
and a4 are known without any uncertainty.  A more realistic approach to 
this problem is to include the estimated values of 2aσ and 4aσ as Baye-

sian estimators.  For example, assuming that z =10, a3/a1 =1 and a4/a2 = 
1.2, Table 5.2.4 includes the values of the Фk's as functions of the 
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Bayes Fractional Uncertainties (i.e., σa2/a2 and σa4/a4).  The results in 
this table show that decreasing the Bayes Fractional Uncertainties (BFU) 
from 20% down to 0.1% reduces Ф1 and Ф3 down to the equivalent values 
for Ф1 and Ф2 that are obtained using Equation 5.2.2 (i.e., 17.0 and 20.4).  
As the BFU increases the Фk's approach the values obtained when no 
Bayesian estimators are specified. 
 

Bayes Frac Ф1 Ф2 Ф3 Ф4 
Not Spec 1368.3 214.4 1364.7 298.8 
0.200 656.0 104.4 654.6 143.6 
0.100 362.8 60.0 362.1 79.9 
0.050 189.3 34.7 189.8 42.6 
0.020 80.6 17.5 81.8 18.7 
0.010 43.6 9.6 45.4 9.8 
0.001 17.5 1.0 20.8 1.2 

Table 5.2.4 – Фk's  vs  Bayes Frac  for a3/a1, a4/a2=1.2 and z=10 
 
The values of the Фk's in Table 5.2.4 were obtained using the Prediction 
Analysis mode of REGRESS with specification of Bayesian estimators.  
The run shown in Figure 5.2.1 are for BFU = 0.02.  Note that the value of 
(n / (a1 + a3)) = 1 and K = 1 therefore Ф1= σa1 and Ф3= σa3.  Also, the 
value of (n(a1 + a3))1/2 = 1000 so Ф2 = 1000σa2/a2 = 1000σa2 and Ф4 = 
1000σa4/a4 = 1000σa4/1.2.  Note that PRED_SA(K) is the predicted value 
of σak .  Note that T1 is the mid-point of the first time window of width 
DelT and therefore z = a2nΔt = 1*1000 * 0.01 = 10. 
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Figure 5.2.1 – Prediction Analysis run for BFU = 0.02 

 
Table 5.2.4 is misleading!  Since all the results in this table were generated 
using the same value of n, a1 and a3 we don’t see the effect of changes of 
these parameters when BFU is specified.  An examination of Equation 
3.7.7 shows that the specification of Bayesian estimators is accomplished 
by adding a term to the diagonal element of the C matrix for each Bayesian 
estimator.  For example, for the run shown in Figure 5.2.1, the added term 
to the element C22 is 1/σa2

2 = 1/0.022 = 2500 and the added term to the 
element C44 is 1/0.0242 = 1736.  Note that the elements of the C matrix 
prior to these additions are function of n, a1 and a3.  For example, the C22 

element before addition of the Bayesian term is 8016.6 and with the 
addition of 2500 is 10516.6 (i.e., an increase of 31%).  Reducing n, 
a1 and a3 each by a factor of 10 reduces C22 before addition of the 
Bayesian term to 80.17 but after addition of the Bayesian term it is 
2580.17 (i.e., an increase of 3200%)!!  In other words increases in n, a1 
or a3 reduce the impact of the Bayesian estimators upon the results. 
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5.3 Gaussian Peak Separation Experiments 

In this class of experiments the mathematical model includes two or more 
Gaussian peaks that are typically overlapping.  The x variable might be a 
measure of energy or wavelength or perhaps distance.  The y variable is 
some measure of the strength of a signal emanating from x and is often a 
count rate.  Typical examples of these types of experiments are found in 
spectroscopy, astronomy, image processing and many other areas of 
science and engineering. 
 
For our initial analysis we assume that the data is gathered along the x axis 
in windows of equal width Δx and that the y variable is a measure of 
counts in the Δx window.  Since y is measured in counts it is reasonable to 
assume that Poisson statistics (i.e., σy = √y ) is applicable.  If we assume 
that the background number of counts in each window is negligible, the 
model might be based upon a two-peak Gaussian function: 
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A typical plot of y versus x is shown in Figure 5.3.1.  A set of dimension-
less groups that can be used to display the results are: 
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A reasonable question to ask is why it is preferable to use a2 in the deno-
minator of ф3 instead of a3 (and a5 in the denominator of ф6).  The loca-
tions of the peaks are not really important.  Note that if the starting and 
ending points of x and the values of a3 and a6 are all increased an equal 
amount the values of the σak's will not be effected.  The values of σa3 and 
σa6 should be compared with the widths of the peaks and not the locations.  
Clearly the experiment increases in difficulty as a3 approaches a6.  We de-
fine the separation between the peaks as follows: 
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Results for various values of SEP are shown in Table 5.3.1 for the case a2 
= a5 and the range of x values starting from a3 - 2a2 and ending at a6 +2a5.  
We see that as SEP decreases the values of the ф's increase rapidly.  
 

 
Figure 5.3.1 – Equation 5.3.1: a3=2, a6=4, a1= a4=100, a2= a5=1 

 
 

SEP Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 
2.0   2.5  3.0  3.3   2.5  3.0  3.3 
1.5 6.6 4.9 8.0 6.6 4.9 8.0 
1.0  54.3 12.1 33.0  54.3 12.1 33.0 
0.8 168.6 21.6 75.8 168.6 21.6 75.8 
0.6 724.2 48.1 23.2 724.2 48.1 23.2 
0.4 5721.2 159.5 1176.3 5721.2 159.5 1176.3 
Table 5.3.1 – Фk's vs  SEP  for a2=a5,  range from a3-2a2 to a6+2a5 

Assuming Poisson Statistics (i.e., σy = y1/2) 
 
 
For the sake of comparison consider an experiment based upon data that 
will be modeled as a single Gaussian peak: 
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If the data range is similar to the range used in Table 5.3.1 (i.e., from a3-
2a2 to a3+2a2), the values of Ф1, Ф2 and Ф3 are 1.88, 1.18 and 1.09 re-
spectively.  Notice that for large values of SEP the comparable values are 
not very much greater that the values for a single peak (for SEP=2, Ф1 is 
46% greater, Ф2 is 18% greater and Ф3 is a bit more than a factor of 2 
greater).  However, for small values of SEP the Фk's are orders of magni-
tude greater. 
 
 
Example 5.3.1: 
 
We wish to design an experiment to determine both peak locations a3 and 
a6 to an accuracy of ±0.1.  The peak amplitudes (i.e., a1 and a4) are ap-
proximately the same and the widths of both peaks (i.e., a2 and a5) are 
about 10.  Furthermore, we know that the dimensionless peak separation 
SEP is approximately 1.  The data is to be gathered using a 256 channel 
analyzer (i.e., n = 256).  All the data will be gathered at the same time so 
that Poisson statistics are applicable.  By adjusting the time to gather the 
data we can design the experiment so that any value of a1 and a4 can be 
obtained.  What should be the design value of the peak amplitude (i.e., 
both a1 and a4) that satisfies the requirement of the experiment? 
 
For this experiment the relevant dimensionless groups are Ф3 and Ф6.  
From Table 5.3.1 both of these groups should be about 33.  Since the am-
plitude and width of both peaks are the same, we need only design for one 
of the peaks and the other one will also be satisfied.  Using the equation 
for Ф3: 
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Defining yi as counts in channel i, the value of K is one.  From this equa-
tion we see that the design values of a1 and a4 should be (33/0.16)2 = 
42590.  The duration of the experiment would be the amount of time re-
quired to obtain approximately this amount of counts in the peak channels. 
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In this section up to this point the analyses have all assumed Poisson statis-
tics (i.e., the values of σy are equal to or proportional to y1/2).  For many 
experiments in which the y values are measured in terms of counts within a 
"window" centered at a value of x the assumption of Poisson statistics is 
reasonable.  However, there are experiments when the x variable is varied 
over the range of interest and the values of y are each measured indepen-
dently.  For such experiments the time spent measuring y at each value of x 
can be varied so that each value of y can be measured to a constant value 
of σy / y.  For example, if we would like to design an experiment such that 
all the values of σy / y are 0.01 (i.e., 1% accuracy), we would have to wait a 
sufficient time at each value of x so that 10000 counts are recorded.  The 
values of y would thus be computed as counts / measurement_time for 
each value of x. 
 
Defining F as the constant fractional uncertainty (i.e., σy / y) of each meas-
ured value of y, a set of dimensionless groups that can be used to display 
the results are: 
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Once again the ratios σa3 / a2 and σa6 / a5 are used in the definitions of the 
dimensionless groups.  Results for various values of SEP are shown in Ta-
ble 5.3.2 for the case a2 = a5 and the range of x values starting from a3 - 
2a2 and ending at a6 +2a5.  We again see that as SEP decreases the values 
of the Ө's increase rapidly.  
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SEP Ө1 Ө2 Ө3 Ө4 Ө5 Ө6 
2.0 2.2 1.4 2.4 2.2 1.4 2.4 
1.5 4.7 2.3 4.8 4.7 2.3 4.8 
1.0 27.7 5.3 16.3 27.7 5.3 16.3 
0.8 79.8 9.4 35.5 79.8 9.4 35.5 
0.6 329.0 20.9 104.8 329.0 20.9 104.8 
0.4 2593.7 71.2 532.9 2593.7 71.2 532.9 
Table 5.3.2 – Ө k's vs  SEP  for a2=a5,  range from a3-2a2 to a6+2a5 

AssumingConstant Fractional Uncertainty (i.e., σy / y= F) 
 
For the sake of comparison consider an experiment based upon data that 
will be modeled as a single Gaussian peak (i.e., Equation 5.3.3).  If the da-
ta range is similar to the range used in Table 5.3.2 (i.e., from a3-2a2 to 
a3+2a2), the values of Ө1, Ө2 and Ө3 are 1.50, 0.42 and 0.43 respectively. 
 
 
Example 5.3.2: 
 
We wish to design an experiment similar to the experiment discussed in 
Example 5.3.1.  The difference is that each value of y will be measured in-
dependently to a constant fractional uncertainty F.  The objective is still to 
determine both peak locations a3 and a6 to an accuracy of ±0.1.  The peak 
amplitudes (i.e., a1 and a4) are approximately the same and the widths of 
both peaks (i.e., a2 and a5) are about 10.  Furthermore, we know that the 
dimensionless peak separation SEP is approximately 1.  The data is to be 
gathered using a 256 channel analyzer (i.e., n = 256).  What should be the 
design value of F that satisfies the requirements of the experiment? 
 
For this experiment the relevant dimensionless groups are Ө3 and Ө6.  
From Table 5.3.2 both of these groups should be about 16.3.  Since all the 
peak amplitudes and widths are the same for both groups we need only de-
sign for one of the peaks and the other one will also be satisfied.  Using the 
equation for Ө3: 
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From this equation we see that the design values of F is approximately 
0.01.  To obtain this level of accuracy we would need to record about 
10000 counts in each of the 256 channels. 
 
To this point in this section all the analysis has been directed towards one 
specific case: the amplitudes of both peaks are the same, the widths of both 
peaks are the same and the range of x values is from a3-2a2 to a6+2a5.  
Only SEP was varied.  We next consider 2 cases of varying amplitudes:  
the first case using Poisson statistics (Table 5.3.3) and the second case us-
ing constant fractional error for the values of y (Table 5.3.4).  The results 
are symmetric with respect to x.  It doesn't matter whether the peak at a3 or 
at a6 is larger.  In Tables 5.3.3 and 5.3.4 we make the peak at a3 the larger 
peak (i.e., a1 / a4 is greater than one), however, if a1 / a4 is less than one, 
we could just renumber the dimensionless groups.  It makes no difference 
if the higher peak is located at the lower or higher value of x.  For both 
cases we maintain the same range (from a3-2a2 to a6+2a5) and equal peak 
widths (i.e., a2 = a5).  We also limit the cases to SEP = 1. 
 

a4 / a1 Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 
1.0  54.3 12.1 33.0  54.3 12.1 33.0 
0.75 50.4 11.6 30.9 58.7 12.8 35.2 
0.50 45.7 10.8 28.4 65.8 13.9 38.9 
0.25 39.1 9.8 24.9 81.1 16.2 46.8 
0.15 35.2 9.2 22.8 95.7 18.3 54.3 
0.10 32.7 8.8 21.5 109.8 20.4 61.6 

Table 5.3.3 – Фk's vs  a4 / a1 for SEP=1, a2=a5,  range a3-2a2 to a6+2a5, 
Assuming Poisson Statistics (i.e., σy = y1/2) 

 
The results for the Фk's representing the first peak decrease steadily as the 
2nd peak becomes smaller.  In other words, the larger peak parameters are 
measured to a greater accuracy as interference from the smaller peak de-
creases.  The results for the smaller peak rise gradually, but the effect upon 
the σ's of this peak is more dramatic due to the definition of the Ф's for 
this peak.  This effect is seen in Example 5.3.3. 
 
 
Example 5.3.3: 
 
We wish to design an experiment to determine both peak locations a3 and 
a6 to an accuracy of ±0.1.  The ratio of the peak amplitudes (i.e., a4 / a1) is 
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approximately 0.15 and the widths of both peaks (i.e., a2 and a5) are about 
10.  Furthermore, we know that the dimensionless peak separation SEP is 
approximately 1.  The data is to be gathered using a 256 channel analyzer 
(i.e., n = 256).  All the data will be gathered at the same time so that Pois-
son statistics are applicable.  By adjusting the time to gather the data we 
can design the experiment so that any value of a1 can be obtained.  What 
should be the design value of the peak amplitude (i.e., a1) that satisfies the 
requirement of the experiment?   
 
Clearly, the most difficult task of this experiment is to determine the peak 
location of the smaller peak to the specified accuracy.  For this reason we 
use the definition of Ф6 as our design criterion.  From Table 5.3.3 the val-
ue of  Ф6 should be 54.3. 
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The design value for a1 is a4 /0.15 = 768,000.  In example 5.3.1 the com-
parable value was 42590 so we see that satisfying the accuracy require-
ment for the 2nd peak requires a massive increase in the amplitude of the 
larger peak to satisfy the design requirements of the experiment.  We can 
also compute the predicted resulting accuracy for the peak location of the 
larger peak: 
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We see that the resulting measurement of a3 will be about 40 times better 
than required in the design statement (i.e., ±0.025 compared to ±0.1). 
 
Results for the 2nd case (i.e., constant fractional uncertainty for the values 
of y) are shown is Table 5.3.4.  They are comparable to the results seen in 
Table 5.3.3 (which are based upon Poisson statistics).  The values of the 
Өk's representing the first peak decrease steadily as the 2nd peak becomes 
smaller.  The results for the smaller peak rise gradually, but the effect upon 
the σ's of this peak is more dramatic due to the definition of the Ө's for this 
peak.  This effect is seen in Example 5.3.4.  
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a4 / a1 Ө1 Ө2 Ө3 Ө4 Ө5 Ө6 
1.0 27.7 5.3 16.3 27.7 5.3 16.3 
0.75 24.0 4.9 14.4 32.3 5.9 18.5 
0.50 19.7 4.3 12.3 40.2 7.0 22.4 
0.25 14.3 3.5 9.5 60.1 9.4 31.8 
0.15 11.6 3.1 8.0 82.3 12.0 42.1 
0.10 9.9 2.8 0.7 107.1 14.8 53.4 

Table 5.3.4 – Ө k's vs  a4/a1 for SEP=1, a2=a5,  range a3-2a2 to a6+2a5 
AssumingConstant Fractional Uncertainty (i.e., σy / y = F) 

 
 
 
Example 5.3.4: 
 
We wish to design an experiment to determine both peak locations a3 and 
a6 to an accuracy of ±0.1.  The ratio of the peak amplitudes (i.e., a4 / a1) is 
approximately 0.15 and the widths of both peaks (i.e., a2 and a5) are about 
10.  Furthermore, we know that the dimensionless peak separation SEP is 
approximately 1.  The data is to be gathered using a 256 channel analyzer 
(i.e., n = 256).  All the data will be gathered individually in a manner that 
permits each measurement of y to attain the same fractional uncertainty 
(i.e., σy / y are equal to a constant F).  What should be the design value of 
F that satisfies the requirements of the experiment?  
 
For this experiment the two relevant dimensionless groups are Ө3 and Ө6.  
Since Ө6 is larger we use this as our design criterion. 
 

00380
10

1610142
21

5

6
6 .F

F
*.

F
n

a
.

/a =⇒=
σ

==Θ   

 
The requirement that each value of y should be measured to 0.38% accura-
cy means that the number of points counts to be recorded in each of the 
256 channels of the analyzer are (1/0.0038)2  ≈ 69000.  Compare this to the 
results obtained in Example 5.3.2 in which only about 10000 counts per 
channel were required to measure both locations to ±0.1.  As noted in Ex-
ample 5.3.3 the measurement of the location of the peak at a3 will be much 
more accurate.  Using the definition of Ө3 and the value of 8.0 (Table 
5.3.4) we obtain the following: 
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We could next vary SEP, the ratios a4 / a1 and a2 / a5 and the range of x 
values and generate many additional tables and figures but this would be 
"over-kill".  The main point to note is the application of the method of pre-
diction analysis to simulation of a proposed experiment.  By limiting the 
range of cases studied to those relevant to the proposed experiment one 
can quickly get an understanding regarding the expected accuracy of the 
proposed experiment. 
 
In this section the analysis is based upon a single independent variable x.  
For many problems the peaks are two dimensional.  For example, in image 
processing one might be interested in examining images in which two "hot 
spots" are observed and one is interested in modeling these hot spots.  The 
bivariate normal distribution is a generalization of the normal distribution 
into two independent variables x1 and x2 and can be used to model prob-
lems of this nature.  A separation problem based upon use of two bivariate 
normal distribution is discussed in Section 7.3.  

5.4 Sine Wave Separation Experiments 

Sine waves are used to model phenomena in many areas of science and 
technology (e.g., music, power generation, radio transmission, radar, etc.).  
There are many different possibilities in this broad class of experiments.  A 
general purpose model is a sine series with p terms, each term with an un-
known amplitude, frequency and phase angle: 
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This equation has 3p unknown parameters: (ak,  fk, φk) k = 1, p.  The sim-
plest case is a sum of harmonic terms in which all the phase angles are ze-
ro: 
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This equation has only p unknowns and x is a dimensionless variable re-
lated to z, a variable with dimensions of length: 
 
 H/zx =  (5.4.3) 
 
where H is the value of z for which x = 1.  All the terms in the harmonic 
series are zero at z = cH for all integer values of c.  When Equation 5.4.2 is 
applicable, the data can be combined into the range x = 0 to 1 to improve 
the accuracy of the measured values of y.  For example, assume that each 
value of y is measured to given accuracy (i.e., σy = 0.1).  If we measure y 
for a range x = 0 to x = 100, we actually have 100 data points that are 
equivalent to each data point in the range 0 to 2π.  Taking the average val-
ue of each set of 100 values of y, the value of σy is reduced by a factor of 
n1/2 = 10 and is thus 0.01. 
 
The difference between sine series and series composed of exponential and 
Gaussian terms is that the dependent variable y can be negative.  If all 
points are weighted equally, negative values of y are not a problem.   
However, if CFU (constant fractional uncertainty) is used to weigh the da-
ta, if the value of y is zero at a particular value of x then the weight of that 
point will be infinite and the C matrix will be singular.  This effect is also 
possible if statistical weighting (i.e., σy =y1/2) is used.  One approach to this 
problem is to disregard points for which the weight is infinite.  To avoid 
this problem the REGRESS program sets the weight of a point to zero if 
the denominator of Equation 3.3.7 is zero. 
 
One of the nice features of the harmonic series 5.4.2 is that over the range 
from 0 to 2πc (where c is an integer) the various terms are orthogonal: 
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As a result, for the case where we can assume σy = Ky and σx = 0 (i.e., 
equal weight for all data points), the separation of harmonics is quite sim-
ple.  In Table 5.4.1 values of Ψk are shown for values of p up to 5 for har-
monics with equal amplitudes.  We define the following dimensionless 
groups: 
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When the range of x values is from 0 to c (an integer) we see that all val-
ues of Ψk are equal to √2. 
 

p Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 
1 1.414     
2 1.414 1.414    
3 1.414 1.414 1.414   
4 1.414 1.414 1.414 1.414  
5 1.414 1.414 1.414 1.414 1.414 

Table 5.4.1 – Ψ k's vs p assuming σy = Ky 
 
Using Equations 5.4.4 and 5.4.5 the results in Table 5.4.1 can easily be ob-
tained analytically.  The C matrix is p by p but all the off-diagonal terms 
are 0 due to Equation 5.4.4 and all the diagonal terms are n/(2Ky

2).  The 
results in Table 5.4.1 are valid for any p and for any values of the ak's.  For 
harmonic series such as Equation 5.4.2, there is no problem in separating 
the various harmonics because the Ψk's are not dependent upon the value 
of p. 
 
Example 5.4.1: 
  
The purpose of the experiment is to measure each of the first three ampli-
tudes in a sine series to an accuracy of at least 0.1%.  Assume that the am-
plitudes are proportional to 1/k2 so the 3rd amplitude will be the most diffi-
cult to measure.  Assume that all the amplitudes can be increased by 
increasing the time T devoted to the experiment: ak = CT / k2 where C is a 
constant. Assume that our measurements are limited to the range 0 to 2π 
(i.e., x from 0 to 1).  What is the design criterion that should be satisfied 
for this experiment? 
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For the case of CFU (σy/y = F), we define Θk as follows: 
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Note that Equations 5.4.4 and 5.4.5 are not applicable for this case as the 
terms of the C matrix include the weights of the individual points and these 
are not constant.  In Table 5.4.2 values of Θk are shown for p = 1 to 5.  
Θk's are one (for any value of p) regardless of the values of the ak's. 
 

p Θ1 Θ2 Θ3 Θ4 Θ5 
1 1.000     
2 1.000 1.000    
3 1.000 1.000 1.000   
4 1.000 1.000 1.000 1.000  
5 1.000 1.000 1.000 1.000 1.000 

Table 5.4.2 – Ө k's vs p assuming σy/y = F 
 
We see from the results in Table 5.4.2 that for experiments based upon 
Equation 5.4.2 and with the y values measured to a constant fractional un-
certainty, there is no problem in separating the various harmonics. The 
Θk's are not dependent upon the value of p.  
 
Example 5.4.2: 
  
The purpose of the experiment is the same as in Example 5.4.1: to measure 
each of the first three amplitudes in a sine series to an accuracy of at least 
0.1%.  For this example we assume that each value of y is measured to a 
constant fractional uncertainty of F.  Since all the values of Θk are one, 
from Equation 5.4.7 we see that each of the amplitudes will be determined 
to the same fractional accuracy and the results are not dependent upon the 
individual amplitudes.  Assume that our measurements are limited to the 
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range 0 to 2π (i.e., x from 0 to 1).  What is the design criterion that should 
be satisfied for this experiment? 
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The next level of complexity is to include phase angles in the model:  
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This model has 2p unknowns: (ak, φk) k = 1, p.  For the case where the 
values of  y are determined to a constant level of uncertainty (i.e., σy = Ky), 
The values of the Ψk's (Equation 5.4.6) are still √2 for this model.  The ap-
propriate dimensionless groups for the uncertainties that we can expect for 
the computed values of the φk's are: 
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Example 5.4.3: 
  
The purpose of the experiment is similar to Example 5.4.1: to measure all 
the parameters of the first 3 harmonics to an accuracy of at least 0.1%.  
Assume that the amplitudes are proportional to 1/k2 so the 3rd amplitude 
will be the most difficult to measure.  In example 5.4.1 we developed a de-
sign criterion for measuring ak's to the required accuracy.  We now need to 
develop similar criteria for the measurement of the φk's.  From Equation 
5.4.9 we see that the predicted values of the fractional uncertainties of the 
phase angles are not dependent upon the values of the ak's.  Assume that 
our measurements are limited to the range 0 to 2π (i.e., x from 0 to 1), the 
design criterion for the phase angles is: 
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In both Tables 5.4.1 and 5.4.2 it was assumed that the values of x are error 
free.  For experiments of this type random errors in the values of x are 
usually very small.  However, the experiment might be affected by a sys-
tematic error in the x's.  For example, the measured value of x = 0 might 
not correspond to the true zero point of the sine series.  For example, using 
the model Equation 5.4.2, for the case of p =3 and all the ak's equal, a sys-
tematic error of 2 degrees (εx = 2/360) causes errors in a1 = -0.07%, in a2 = 
-0.24%, and in a3 = -0.64%.   
 
For problems in which the general purpose Equation 5.4.1 is valid, then the 
complexity of the experiment is vastly increased even if we can assume 
that the phase angles are zero.  Let us consider one specific case of this eq-
uation: p = 2, f1 = 1 and the range of f1x is from 0 to 2π.  Let us further as-
sume that both a1 and a2 are positive and f2 < f1.  For the weighting 
schemes discussed above, as f2 approaches f1 the predicted values of the 
σak's and σfk's approach infinity.  To illustrate this point using CFU (σy/y = 
F), the relevant dimensionless groups are: 
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Results are included in Table 5.4.3 for various values of f2/ f1.  The results 
in this table are limited to the specific case a1 = a2.  The results in the table 
are easily explainable.  For small values of  f2/ f1 (e.g., 0.1), the range of x 
includes only a small portion of the first cycle of f2 so the values of Θa2 
and Θf2 are very large.  For f2/ f1 = 0.5 the best results are obtained for the 
2nd harmonic because the range f2x is from 0 to π. Also, as f2/ f1 approach-
es one, all the Θ's become large confirming that separation become increa-
singly difficult under this condition.   

 
f2 / f1 Θa1 Θa2 Θf1 Θf2 
0.10   1.1 121.5  0.5 131.3 
0.25   1.1   6.1  0.5  11.1 
0.50   1.1   2.1  0.5   1.0 
0.75  35.8  36.7  5.2   6.2 
0.90 336.6 337.7 18.4  17.6 

Table 5.4.3 – Θ's vs f2 / f1 for case a1 = a2, assuming σy/y = F 
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Example 5.4.4: 
 
We wish to design an experiment to measure both f1 and f2 to 1% accuracy.  
Assuming that the range of the experiment will be 0 ≤  f1x ≤ 2π and that f2/ 
f1 is approximately 0.75, if n = 100, what fractional accuracy F is required 
to satisfy the experimental objectives? 
 
From Table 5.4.3 we see that the more difficult objective is to measure f2 
so we should satisfy the requirement that Θf2 = 6.2.  From Equation 
5.4.10: 
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Thus to satisfy the requirements of the experiment, the values of y should 
be measured to about 1.6% accuracy. 

5.5 Bivariate Separation 

In the previous sections the separation problems were all based upon a sin-
gle independent variable.  In this section we consider a generalization of 
the Gaussian separation problems considered in Section 5.3: separation of 
bivariate normally distributed peaks.  The bivariate normal distribution 
(Equation 7.3.1) is discussed in Section 7.3 in detail. 
 
There are applications in which the models require two-dimensional peaks.  
For example, astronomical data related to overlapping heavenly bodies 
(e.g., stars, galaxies, black holes) can be modeled using this distribution.  
Experiments of these types typically are based upon numbers of counts 
within a specified area on a grid and therefore statistical weighting (σy = 
Cy y1/2) most often appropriate.  For cases in which the values of the inde-
pendent variables are uncorrelated (i.e., ρ = 0), Equation 7.3.1 (the two-
dimensional distribution for a single peak) reduces to: 
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Equation 5.5.1 assumes that both x1 and x2 have been normalized.  How-
ever, if the mean values and standard deviations are unknown parameters 
then the equation must be expanded accordingly: 
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This equation assumes that the standard deviation σ is the same in both di-
rections.  If we have two peaks, we can choose as our x1 axis the line be-
tween the mid-points of the two peaks and thus μ2 = 0 for both peaks. Our 
distribution for each peak becomes: 
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Furthermore is we set x1 = 0 at the mid-point between the two peaks and 
define μ as the distance between the peaks, our two peak model is: 
 
      )2,()2,-( 22121211 σμ+σμ= ,/x,xfa,/x,xfay  (5.5.4) 
 
This model has 5 unknown: a1, a2, μ, σ1 and σ2.  If we assume that σ1 = σ2 
= σ then the model is reduced to 4 unknowns: 
 
      )2,()2,-( 212211 σμ+σμ= ,/x,xfa,/x,xfay  (5.5.5) 
 
In addition to the model parameters, there are experimental parameters.  
Assuming that data is collected by observing the number of "events" tak-
ing place within a square box on a grid that is placed symmetrically about 
the two peaks, an example of the experimental layout is shown in Figure 
5.5.1.  This layout is for an experiment in which a very coarse grid of only 
5 values of x1 and 5 values of x2 are used for a total of 25 data points.  In 
Figure 5.5.2 a prediction analysis for the same peak separation and range is 
show but a much finer grid with 10000 (i.e., 100 by 100) data points is 
specified. 
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Figure 5.5.1 – Experimental Layout: 25 data points positioned equally 

in a square grid of size 5μ/σ.  The peak separation is μ/σ.   
 

 
Figure 5.5.2 – Prediction Analysis: 10000 data points positioned equal-

ly in a square grid of size 5μ/σ.  The peak separation is μ/σ. 
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Note that in Figure 5.5.2 the predicted values of σa were the same for both 
a1 and a2 (i.e., 0.07574).  This is due to the fact that a1 and a2 were as-
sumed to be equal (i.e., 0.5).  The results can be expressed using the fol-
lowing dimensionless groups: 
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Values of the ф's are included in Table 5.5.1 for values of N = 2 to 6 where 
N is the number of multiples of μ/σ (i.e., range = N μ/σ).  The results in 
the table are limited to the specific case where μ = σ and a1 = a2.  
 

N 
1aΦ  & 2aΦ  Фσ Фμ 

2 9.425 10.845 51.92 
3 7.707  6.092 31.16 
4 6.929  4.690 25.64 
5 7.574  4.359 25.19 
6 8.613  4.530 27.22 

Table 5.5.1 – Effect of Range Nμ/σ for the Case μ = σ and a1 = a2. 
 
We see from Table 5.5.1 that the optimum range is of the order 4 to 5 
times μ/σ for this specific case (i.e., μ = σ and a1 = a2).  For N = 5, the 
range is thus from 2σ to the left of the first peak to 2σ to the right of the 2nd 
peak. 
 
In Table 5.5.2 we see the effect of μ/σ upon the values of the ф's.  All cal-
culations in this table are for the range peak1 - 2σ to peak2 + 2σ (i.e., -μ/2-
2σ to μ/2+2σ) in the x1 direction and an equal range in the x2 direction.  
The results in the table yield an interesting insight into experiments of this 
type.  Note that the values of ф's increase when μ/σ increases from 2 to 4.  
In the previous sections of this chapter we discussed separation experi-
ments and in all the models considered, as separation increased predicted 
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results were improved.  The explanation for the predicted decrease in accu-
racy as the separation increases from 2 to 4 is due to the range in the x2 di-
rection.  For example, when μ/σ = 4, all points at the extreme values of x2 
(i.e., ±4σ) are at least 4σ from the nearest peak and thus there is very little 
information in these distant points.  By reducing the range in the x2 direc-
tion, values of the ф's can be reduced.  For example, reducing the range in 
the x2 direction to ±2σ the values for μ/σ equal to 4 are reduced to фa=5.52 
from 7.29, Фσ=4.30 from 4.66 and Фμ=12.75 from 17.53. 
 

μ/σ 
1aΦ  & 2aΦ  Фσ Фμ 

0.50 11.270 4.425 49.89 
0.75  8.670 4.381 33.13 
1.00  7.574 4.359 25.19 
1.50  6.764 4.342 18.26 
2.00  6.566 4.337 15.93 
4.00  7.289 4.658 17.53 

Table 5.5.2 – Effect of Peak Separation for the Case a1 = a2 and  
range -μ/2-2σ to μ/2+2σ. 

 
In Table 5.5.3 the effect of differing amplitudes in the two peaks is consi-
dered.  The assumptions used to generate this table are that μ/σ = 1, σ1 = σ2 
and the range is  -μ/2-2σ to μ/2+2σ (i.e., -2.5σ to 2.5σ) in both directions. 
 

a1/a2 
1aΦ  2aΦ  Фσ Фμ 

10 8.670 10.079 4.200 23.59 
 8 8.550  9.990 4.219 23.79 
 6 8.357  9.818 4.245 24.05 
 4 8.026  9.445 4.282 24.43 
 2 7.486  8.476 4.337 24.97 
 1 7.574  7.574 4.359 25.19 

Table 5.5.3 – Effect of Amplitude Variation for the Case μ/σ = 1 and 
range -μ/2-2σ to μ/2+2σ. 

. 
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Example 5.5.1: 
 
We want to design an experiment to analyze data based upon two bivariate 
distributions with negligible correlation coefficients. The purpose of the 
experiment is to determine the separation μ between the peaks of the two 
distributions to approximately 1% accuracy.  We can assume that σ of both 
peaks are equal and approximately equal to the peak separation.  The ratio 
of the amplitudes of the two peaks is approximately 5.  The data is to be 
obtained in a square symmetric grid of sides approximately equal to 5σ. 
 
From interpolation in Table 5.5.3 an estimated value of Фμ = 24.2 is ob-
tained.  Assuming that the values of a1 and a2 are specified in the same 
units as the measured values of y, the value of Cy is one.  From Equation 
5.5.7 we obtain the following design criterion: 
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If, for example, the grid is 100 by 100 (i.e., n = 10000), then the sum of the 
two "hot spots" (i.e., a1 + a2) should be 586 (i.e., approximately 98 in the 
smaller peak and 488 in the larger peak).  In other words, the number of 
counts that should be observed in the area of size 5σ/100 by 5σ/100 near 
the larger peak should be about 488.  
 
 
Example 5.5.2: 
 
For the experiment analyzed in Example 5.5.1 what fractional accuracy 
can we expect for the measured values of a1, a2 and σ?  Assume that the 
square grid is divided into 100 by 100 equally sized sections. 
 
From Table 5.5.3 we estimate the values of Фa1, Фa2 and Фσ to be approx-
imately 8.19, 9.66 and 4.26.  From Equation 5.5.6: 
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From Equation 5.5.8: 
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We see from these results that the experiment designed to measure the 
peak separation μ to 1% accuracy also yields the three other parameters 
but to accuracies different than 1%.  The larger peak amplitude a1 will be 
measured to a predicted accuracy of 0.37%, the smaller peak amplitude a2 
will be measured to a predicted accuracy of 2.4% and σ to a predicted ac-
curacy of 0.18%. 
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6.1 Introduction 

Many mathematical models are expressed as initial value problems starting 
from a differential equation (or equations).  Often the differential equation 
can be solved analytically and thus the model is expressed as an equation 
that includes some unknown parameters.  Experiments to determine the 
unknown parameters might then be performed.  However, some initial val-
ue problems do not have a simple analytical solution.  Even if there is no 
analytical solution one can still use the method of least squares to deter-
mine the unknown parameters of the model.  The solution is simply ex-
pressed as an integral (or integrals) and the integrals are computed numeri-
cally.  In the REGRESS program the integral operator INT is used to 
perform numerical integration.  An example of the use of such an operator 
is shown in Section 6.2.  In Section 6.3 an initial value problem with an 
analytical solution is discussed.  This example is based upon the well-
known logistics population model.  In Section 6.4 we consider an initial 
value problem in which the model is based upon several simultaneous first 
order differential equations.  This problem is an example of the type of 
chain reactions that are encountered in many branches of science and engi-
neering (e.g., nuclear decay, chemical kinetics).  The design of an experi-
ment for estimating the coefficients used to model a Chemostat is consi-
dered in Section 6.5.  In Section 6.6 astronomical observations to 
determine orbits of rotating bodies are considered.  The determination of 
orbits is an initial value problem best analyzed in polar coordinates.  The 
solution utilizes two coupled integral equations. 

6.2 A Nonlinear First Order Differential Equation 

As an example of a nonlinear first order differential equation, the general 
form of the Ricatti equation is: 

J. Wolberg, Designing Quantitative Experiments, DOI 10.1007/978-3-642-11589-9_6,  
© Springer-Verlag Berlin Heidelberg 2010 
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dx
dy

++=  (6.2.1) 

 
Let us consider one case within this family of equations: p(x)=a1, q(x)=0 
and r(x)=x : 
 

 xya
dx
dy

+= 2
1  (6.2.2) 

 
There is no solution to this equation based upon elementary mathematical 
functions but we can express the solution as an integral.  Using the boun-
dary condition y=a2 at x=0 we can solve for the values of a1 and a2 by fit-
ting the following equation to a set of experimentally determined values of 
x and y in the range 0 to xmax: 
 

 2
0

2
1 )( adxxyay

x

x

++= ∫
=

 (6.2.3) 

 
This is an interesting equation and for any combination of a1 and a2 there 
are an infinite number of values of x for which the value of y becomes in-
finite.  Analytical equations for the x singularities cannot be expressed 
with elementary mathematical functions but can be determined using nu-
merical methods.  As long as the range of values of x doesn’t include one 
of these singularities then the experiment can proceed to a solution for a1 
and a2.  As an example of an analysis of one case, Figure 6.2.1 includes a 
REGRESS run using a1=0.9, a2=1 with 11 values of x ranging from 0 to 1.  
Unit weighting (UNIT) was used for the y values.  Note that the value of y 
explodes as x reaches 1.  The singularity is thus slightly greater than x=1 
for this combination of a1 and a2. 



Chapter 6   INITIAL VALUE EXPERIMENTS      159 

  

 
Figure 6.2.1 – Prediction Analysis with unit weighting 

 
The results in Figure 6.2.1 show that for this particular case the predicted 
value of σa1 is 0.065 and the predicted value of σa2 is 0.099.    These re-
sults are based upon an assumption that all data points are weighted equal-
ly.  We could assume that the values of σy are proportional to y and thus 
the weights would be proportional to 1/y2.  This method of weighting is 
called CFU (Constant-Fractional-Uncertainty).  In Figure 6.2.2 we see re-
sults similar to those in Figure 6.2.1 but using CFU in place of UNIT 
weighting of the data points. 
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Figure 6.2.2 – Prediction Analysis with Constant Fractional Uncertainty 

 
At first glance a comparison of Figures 6.2.1 and 6.2.2 leads one to the 
conclusion that fractional weighting leads to a much more accurate expe-
riment than if all data points are weighted equally.  The average values of 
σy are very different for the two cases (UNIT and CFU).  In Figure 6.2.1 it 
was assumed that σy = 1.  If the estimated values of σy = C where C is a 
constant, then the values of the PRED_SA(K) and PRED_SIGY shown in 
the figure will be proportional to C.  In Figure 6.2.2 it was assumed that σy 
= Cy and C = 1.  The values of the PRED_SA(K) and PRED_SIGY 
shown in the figure will also be proportional to C.  For this case the 
weights decrease rapidly as x increases so the average weight for the CFU 
case is much less than one (i.e., the average weight for the unit weight 
case).  The values of PRED_SA(K) and PRED_SIGY increase with in-
creasing weights so this explains why the CFU results are so much less.   
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For both cases the results will be inversely proportional to n1/2.  In other 
words, if the range remains the same and the value of n is increased by a 
factor of 4, then the values of PRED_SA(K) and PRED_SIGY will be 
decreased by a factor of 2. 
 
Equation 6.2.2 is an example of an equation that exhibits explosive growth 
(i.e., growth that reaches infinity for a finite value of x).  To compute the 
value of x at which the singularity occurs we would have to obtain an ana-
lytical solution for the equation but this nonlinear equation cannot be 
solved based upon elementary mathematical functions.  We can, however, 
obtain an approximate solution by substituting the x term in the equation 
with a constant [GR09]: 

 22
1 kya

dx
dy

+=  (6.2.4) 

 
At first glance we might expect that the value of k would be somewhere 
within the range of x values.  Using the initial value y0 as the value of y at 
x=0, the solution for this equation is: 

 )()( 01

k
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The smallest positive singular value of x occurs when the argument of the 
tan function is equal to π/2.  So this singularity for Equation 6.2.4 is at: 
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In the examples shown in the figures above, the value of y0 is one.  Using 
Equation 6.2.3 and increasing x in increments of 0.001, the singularity was 
noted to be between 1.020 and 1.021 for values of a1=0.9 and a2=1.  No 
value of k will yield a value of x greater than one so we see that Equation 
6.2.6 gives only a hint as to the values of the singularities of Equation 
6.2.2. 
 
Another interesting result from simulations of experiments based upon Eq-
uation 6.2.2 is the effect of the range of x values upon the predicted values 
of σa1, σa2 and σf (x).  Setting the range from x1=0 to xn=xmax with Δx= 
xmax/(n-1), results are tabulated in Table 6.2.1 for n = 11 and CFU.  Note 
that as the value of xmax approaches the singularity (between 1.020 and 
1.021), the values of all the predicted σ's approach zero and the values of 
yn and COND (the condition of the matrix) approach infinity.  Clearly 
these results indicate that for the best results the experimenter should try to 
obtain a value of xmax as close to the singularity as possible.  However, 
the increasing value of COND suggests that convergence problems might 
arise as xmax approaches the singularity.  
 
xmax yn σf (xmax)/ F σa1/ F σa2/ F COND 
0.96   18.5 0.0541 0.0272 0.0340 4.8*103 

0.98   27.7 0.0361 0.0175 0.0235 1.0*104 

1.00   55.3 0.0181 0.0090 0.0138 3.6*104 

1.02 3811.6 0.0003 0.0003 0.0033 3.5*109 

  Table 6.2.1 – Effect of Range upon the Prediction Analysis.  
Values of y  measured to CFU (σy / y = F) 

 
 

6.3 First Order ODE with an Analytical Solution 

The simplest population model that includes decreasing per capita growth 
as the population increases is called the logistics population model.  The 
following ODE was first proposed by Verhulst in 1838 [VE38]: 
 

  )1(
K
yry

dt
dy

−=  (6.3.1) 
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The solution of this equation exhibits exponential growth while the popu-
lation y is small but as the population reaches the limiting value of K the 
growth approaches zero.  The solution for this equation is known as the lo-
gistic population model [BR01]: 
 

  
rte

y
K

Ky
−−+

=
)1(1

0

 (6.3.2) 

 
In this equation y0 is the value of y at time t = 0.  Equation 6.3.2 is valid for 
y0 in the range  0 < y0 < K.  To analyze this model, Brauer and Castillo-
Chavez [BR01] used the U.S. census data from 1790 to 1990 (21 data 
points) shown in Table 6.3.1. 
 
To test the model, a least squares analysis of the data in Table 6.3.1 can be 
performed.  It is reasonable to assume that the values of σy are proportional 
to y (i.e., σy = Cy).  The only question that must be answered is what is a 
reasonable value for the constant C?  As explained in the discussion of 
Goodness-of-Fit in Section 3.9, the expected value of S / (n-p) is 1 if the 
estimated values of σy are reasonable and the model is an accurate descrip-
tion of the phenomenon being modeled.  Using a value of C = 0.01 the 
analysis yielded a value of S / (n-p) of 35.5.  One possible reason for this 
huge discrepancy is that the value of C was grossly underestimated.  In 
fact, to reduce S / (n-p) to one we would have to increase C by a factor of 
sqrt(35.5) or approximately 6.  In other words, if we assumed that the ac-
curacy of the data was approximately 6%, we would compute a value of 
S/(n-p) of approximately one.  Rerunning the least squares analysis using 
σy = 0.06y, yielded the results shown in Figure 6.3.1.  The values of 
REL_ERROR in this figure are computed as (Y – CALC_VALUE) / 
SIGY. 
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We assumed that the initially large value of S/(n-p) was due to an underes-
timate of C (the fractional error in the values of y).  However, another pos-
sibility that should be considered is the validity of the logistics population 
model for the range of data included in Table 6.3.1.  We can immediately 
see that the results are not realistic as the limiting value of population is 
258.6 ± 13 million and this value has already been exceeded in more recent 
U.S. censuses and is continuing to grow.  To accurately model the U.S. 
population one would need a more sophisticated model, however, let us 
consider this model as valid for other populations and for other time 
ranges. 
 
One alternative to running the analysis as a model with 3 unknown para-
meters (i.e., K, r and y0) is to treat y0 as a known constant with a value of 
3.9.  Rerunning the analysis as a 2 parameter model yielded values K = 
250 ± 11 and r = 0.0302 ± 0.00036.  Comparing these results with the re-
sults in Figure 6.3.1 it is seen that the values of σK and σr are smaller but is 
this a real improvement in accuracy?  If there is uncertainty in the value of 
y0 then this uncertainty should be included in the analysis.  For this particu-
lar problem do we really know that the population of the U.S. was exactly 
3.9 million in 1790? 
 

Year t y  Year t Y 
1790   0  3.9  1900 110  76.0 
1800  10  5.3  1910 120  92.0 
1810  20  7.2  1920 130 105.7 
1820  30  9.6  1930 140 122.8 
1830  40 12.9  1940 150 131.7 
1840  50 17.1  1950 160 150.7 
1850  60 23.1  1960 170 179.0 
1860  70 31.4  1970 180 205.0 
1870  80 38.6  1980 190 226.5 
1880  90 50.2  1990 200 248.7 
1890 100 62.9     

 Table 6.3.1 – U.S. Census Data from 1790 to 1990 (in millions) 
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Figure 6.3.1 – REGRESS Analysis of U.S. Census Data 

 
To perform a prediction analysis of the logistic population model we first 
assume that CFU (constant fractional uncertainty) is valid (i.e., σy = Cy).    
From Equation 6.3.2 the results should be functions of 2 dimensionless 
groups: the dimensionless range of values of t (i.e., r tmax) and the dimen-
sionless limiting value (i.e., K / y0).  The results can be expressed as 3 di-
mensionless groups: 
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The most interesting of these groups is ΘK.  This dimensionless number al-
lows us to predict the accuracy to which the limiting value of the popula-
tion will be determined.  In Figure 6.3.2 values of ΘK are shown as a func-
tion of the dimensionless range rt for several values of the ratio K / y0. 
 

 
Figure 6.3.2 – ΘK versus rt for several values of K / y0  

 
 
Example 6.3.1: 
 
We wish to design an experiment in which we are trying to determine the 
limiting population of a type of bacteria (measured in units of millions of 
cells per ml).  Our assumption is that Equation 6.3.2 is a valid model.  Our 
preliminary estimates of K / y0 and rt are 20 and 2 based upon a least 
squares analysis with n = 25 data points.  The value of ΘK from Figure 
6.3.2 is between 10 and 100 and the more accurate value using the original 
data upon which the figure is based is 51.9.  Using the resulting value of 
S/(n-p) and then setting it to one, an estimate of the fractional uncertainty 
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of the data points of C = 0.1 is obtained.  From the definition of ΘK the 
predicted value of σK / K = ΘKC/n1/2 = 51.9 * 0.1 / 5 = 1.04.  In other 
words, the predicted value of σK is approximately equal to K and the re-
sults from the least squares analysis verify this conclusion.  If we double 
the time devoted to the measurement of K and take an additional 25 mea-
surements, what is the predicted fractional uncertainty in the limiting 
population (i.e., σK / K)? 
 
From Figure 6.3.2 if the value of rt is increased from 2 to 4, the predicted 
value of ΘK for K / y0 = 20 should be less than 10 (and using the original 
data it is 6.64).  The predicted value of σK / K (using all 50 data points) is 
6.64 * 0.1 / 501/2 = 0.094.  In other words, doubling the time of the experi-
ment and the number of data points should result in a decrease in σK / K by 
about a factor of 10! 
 
 
Example 6.3.2: 
 
In Example, 6.3.1 the predicted value of σK / K for K / y0 = 20, rt = 4 and n 
= 50 was computed to be 0.094.  What are the predicted values of σr / r 
and σy0 / y0 for this experiment?  A prediction analysis for this experiment 
is shown in Figure 6.3.3.  Note that the values of C, r and y0 are all 1 and 
n=100 in the prediction analysis so the values of Θr = n1/2

 σr/Cr = 
1001/2*0.300 = 3.00 and Θy0 = n1/2

 σy/Cy0 = 1001/2*0.281 = 2.81.  Thus for 
the experiment discussed in Example 6.3.1 the predicted value of σr /r = 
ΘrC/ n1/2 = 3.00*0.1/501/2 = 0.042 and σy0 / y0 = 2.81 * 0.1/501/2 = 0.040.  
Checking the value of ΘK: ΘK = n1/2

 σK/CK = 1001/2*13.27/20 = 6.64 
which is the value used in Example 6.3.1. 
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Figure 6.3.3 – Prediction Analysis for Example 6.3.2  

6.4 Simultaneous First Order Differential Equations 

In the previous examples in this chapter the dependent variable y was a 
scalar.  In this section experiments based upon simultaneous dependent va-
riables are considered.  A class of experiments that is modeled using si-
multaneous first order differential equations is the following chain reac-
tion: 
  dSSSS →→→→→ 321   
 
Examples of such schemes are found in the decay of radioactive isotopes, 
in chemical kinetics and in many other areas of science and technology.  
The reaction is started with species S1 decaying into species S2 which de-
cays into S3 until the final product Sd is obtained.  The value of d is the 
length of the chain.  The dependent variable is thus a d dimensional vector 
with time dependent terms S1, S2, … Sd.  The initial values of the various 
terms are S01, S02, … S0d.  The differential equation for the first term is: 
 

  11
1 Sk

dt
dS

−=  (6.4.1) 
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The differential equations for the intermediate terms are: 
 

  iiii
i SkSk

dt
dS

−= −− 11  (6.4.2) 

 
The differential equation for the final term is: 
 

  11 −−= dd
d Sk

dt
dS

 (6.4.3) 

 
These equations are linear and can be solved analytically.  However, as the 
chain gets larger the analytical solutions can be cumbersome.  The solution 
for Equation 6.4.1 is always: 
 
  tkeSS 1

011
−=  (6.4.4) 

 
The solution for the intermediate terms can be expressed using the integral 
operator: 
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The solution for the final term utilizes the fact that at t = ∞ Sd is the sum of 
all the initial values as all species eventually decay to the final product: 
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Assuming that the initial values of all the species except S1 are zero, the 
model has d unknown parameters: the d-1 reaction rates k1 thru kd-1 and the 
initial value S01.  Assuming that the values of Si are measured in numbers 
of counts, we can assume that σSi

2=Si and the results can be expressed us-
ing the following dimensionless variables: 
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A typical plot if the values of Si are shown in Figure 6.4.1 for the case 
where all three values of ki are equal (i.e., ki=k), d=4 and the dimension-
less variable kt runs from 0 to 5.  The value of S01 is 100 and all the other 
initial values are zero.  The results of the prediction analysis for a similar 
run are shown in Figure 6.4.2.  In this run the values of S01 and n are both 
100 so that the фS01 is equal to σS01 and the 3 фKi's are equal to 100σKi.  
The data generated for this run is not included in Figure 6.4.2 but is shown 
graphically in 6.4.1.  We see from Figure 6.4.2 that the predicted values of 
the σki 's are 1.52, 2.00 and 2.43 and the value of 01Sσ = 1.12.  In Table 

6.4.1 values of the ф's are listed for several values of ktmax.  The results in 
this table obtained using S01 = n = 1000 and explain the slight differences 
with the results in Figure 6.4.2.  Note that the optimum value of ktmax is 
different for the different k's. 
 

ktmax 01SΦ  1kΦ  2kΦ  3kΦ  
1 1.13 1.95 5.36 21.54 
3 1.15 1.43 2.12  3.28 
5 1.11 1.53 2.00  2.44 
7 1.08 1.72 2.17  2.45 
9 1.06 1.92 2.41  2.65 

Table 6.4.1 – ф's  for various values of ktmax (all k's are equal) 
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Figure 6.4.1 – Si  vs kt  for case of k1= k2= k3= k 

 

 
Figure 6.4.2 – Prediction Analysis for ktmax = 5 
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6.5 The Chemostat 

The chemostat is a device found in laboratories studying chemical and bio-
logical phenomena.  A detailed discussion of chemostats and their usage is 
included in books by Leah Edelstein-Keshet and Michael Greenberg 
[ED88, GR09].   A schematic diagram of a chemostat used in a biological 
experiment is shown in Figure 6.5.1.  The volume V of laboratory chemos-
tats can range from about 0.5 liters to over 10 liters.  Industrial chemostats 
can exceed 1000 m3.  The C variable is the concentration of a nutrient and 
the N variable is the number of the microorganism strain of interest within 
the chamber.  The chemostat includes a stirring device to reduce the spatial 
effects within the chamber.  The purpose of the experiment might be to 
study the dynamics of this biological process or the equilibrium state (i.e., 
when the time variable t is large). 
 

 
Figure 6.5.1 – Schematic Diagram of a Chemostat 

 
Two first order initial value differential equations are used to model this 
system: 
 

   N
V
qNCk

dt
dN

−= )(  (6.5.1) 

 

  0)( C
V
qC

V
qNCk

dt
dC

+−α−=  (6.5.2) 
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The k(C) term is growth rate for the N variable and is dependent upon the 
nutrient concentration.  Edelstein-Keshet proposes Michaelis-Menten ki-
netics as the model for k(C): 
 

  
C

CCk
+γ

β
=)(  (6.5.3) 

 
This model is shown in Figure 6.5.2 and is based upon the assumption that 
there is a saturation value of k equal to β which is the growth rate when C 
is very large.  The parameter γ is the value of C that causes k to equal β/2. 
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Figure 6.5.2 – The Michaelis-Menten kinetics model 

 
In this section an experiment to determine the parameters α, β, and γ is 
considered.  An analysis of this set of equations shows that the asymptotic 
value of N can be either 0 (i.e., the microorganisms all die) or a non-zero 
value that is a function of the parameters of the system: q (the flow rate), V 
(the chamber volume), C0 (the input nutrient concentration), and the three 
coefficients: α, β, and γ.  Greenberg [GR09] defines two parameters that 
are combinations of the system parameters: 
 

  
q
Vβ

=δ ,     
γ

=ε 0C
  (6.5.4) 

 
The purpose of the chemostat (both in the laboratory and in industrial ap-
plications) is to maintain a stable constant population level of the culture. 
The conditions that must be satisfied so that N reaches a non-zero equili-
brium state are: 
 

  1>δ ,     
1

1
−δ

>ε   (6.5.5) 
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This region of stability is shown in Figure 6.5.3 (the shaded zone).  When 
these conditions are satisfied, the equilibrium values of N and C are: 
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Substituting 6.5.4 into 6.5.6 and 6.5.7 and gathering terms: 
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In these equation since V is constant, q/V is replaced by Q and has the 
units of time -1. 
 
We are now in a position to propose an experiment to determine the values 
of the parameters α, β, and γ.  We can treat C0 and Q as our independent 
variables and N and C as the dependent variables.  Varying the indepen-
dent variables over a range that satisfies the conditions specified by Equa-
tion 6.5.5 the values of N and C are measured and the coefficients can then 
be determined using a 3 parameter least squares analysis. 
 
An example of a prediction analysis using 9 pairs of values of C0 and Q is 
shown in Figure 6.5.4.  The pairs chosen satisfy the two conditions speci-
fied in Equation 6.5.5.  For this prediction analysis the values of α, β, and 
γ were all set to one and a constant fractional error of 100% was used (i.e., 
σN =N and σC =C).  The predicted results are proportional to the expected 
fractional error of the measurements.  For example, if both N and C are 
measured to 10% accuracy, then the predicted values of σα, σβ and σγ 
would be one-tenth the PRED_SIGMA values shown in Figure 6.5.4. 
 



176     Chapter 6   INITIAL VALUE EXPERIMENTS 

 
Figure 6.5.3 – The Region of Stability (the shaded zone) 

 
The prediction analysis shown in Figure 6.5.4 is based upon 9 data points 
that include three values of Q and for each Q, 3 values of C0.  These points 
were chosen arbitrarily to demonstrate the process.  One does not necessar-
ily have to vary both C0 and Q to determine the coefficients.  For example, 
the value of C0 can be held constant while Q is varied.  One will obtain a 
least squares solution.   However, if Q is held constant and only C0 is va-
ried, the prediction analysis yields indeterminate values for σα, σβ and σγ.  
An explanation for this phenomenon is seen in Equation 6.5.9.  Since the 
equilibrium value of C is only a function of Q and not of C0 all values of C 
will be the same.  From Figure 6.5.2 it is obvious that estimates of β and γ 
cannot be made from a single value of C.  This is an interesting point.  If 
real data were obtained based upon a constant value of Q and a series of 
measurements taken for various values of C0, then the measured values of 
C would not be exactly the same (due to random variations) and a least 
squares analysis could be performed.  However, one could expect that the 
computed values of the parameters would be subject to very large uncer-
tainties (i.e., σα, σβ and σγ).  Once again, looking at Figure 6.5.2 one can 
see that if all the values of C are concentrated in one portion of the curve, 
the computed values of β and γ will not be very accurate. 
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  Figure 6.5.4 – Prediction Analysis of a Chemostat Experiment 

 
No attempt is made in this section to present results for a wide variety of 
combinations of the variables.  The number of degrees of freedom for the 
general chemostat problem is large and the purpose of this section is to 
show how one would go about designing a specific chemostat experiment. 

6.6 Astronomical Observations using Kepler's Laws 

The history of astronomy is thousands of years old [KO95, KO04, HA00].  
Observations of the sky include positions of stars and other heavenly bo-
dies by cataloging angles from very distant objects.  One of the earliest star 
catalogues was compiled by Hipparcos in about 190 BC.  His catalogue in-
cluded about 850 stars.  Ptolomy developed the Almagest several centuries 
after Hipparchus.  It is the only surviving ancient treatise on astronomy 



178     Chapter 6   INITIAL VALUE EXPERIMENTS 

and includes a catalogue of 1022 stars.  He died in 168 AD.  In the 15th 
century Ulugh Beg (1393 – 1449) compiled a catalogue of 1019 stars 
which is accurate to about 20 minutes of arc.  In the following century Ty-
cho Brahe (1546 to 1601) developed instruments capable of measuring star 
positions to accuracies of 15 to 35 seconds of arc (arcsecs).  In 1729 James 
Bradley measured stellar parallax to less than one arcsec of accuracy. 
 
Modern astronomy has made incredible strides in recent years.  The use of 
CCD's (charge-coupled devices) has made possible observations with ac-
curacies measured in milliarcsecs.  In addition, satellite observations and 
ground-based telescopes with adaptive optics have reduced the distortions 
created by Earth's atmosphere and gravitation.  The Hipparcos satellite was 
launched in 1989 by the European Space Agency and its observations over 
a 4 year period were used to create a new star catalogue called Tycho 
(named after Tycho Brahe).  The positions of 118,218 stars were deter-
mined to accuracies in the 20 to 30 milliarcsec range. 
 
One of the pivotal moments in astronomy was the publication of Johannes 
Kepler's three laws of planetary motion.  Kepler was born in 1571 and died 
in 1630.  He studied the motion of planets orbiting about the sun and de-
rived a theory that would explain the orbits.  He used the Tycho Brahe data 
to test his theory.  Prior to Kepler, the prevailing assumption was that the 
motion should be circular but Kepler showed that in reality it is elliptical 
with one of the two foci of the ellipse deep within the sun.  Kepler laws are 
stated in terms of planets revolving around the sun, however, Newton 
(1642 – 1727) generalized Kepler's laws to be applicable to rotation of any 
two bodies of any mass ratio revolving around each other. 
 
The three laws of Kepler are as follows: 
 
First law: The orbit of every planet is an ellipse with the sun at a focus.  
The generalized version of this law is that the motion of each body is an el-
lipse about the 2nd body with one of the foci at the barycenter of the two 
bodies.  The barycenter is defined as the point at which the gravitational 
forces are equal.  For planets revolving around the sun, the barycenter is 
located deep within the sun but not exactly at its center of mass.  (Remem-
ber that the sun's gravity at its very center of mass is zero!) 
 
Second law: The line joining a planet and the sun sweep out equal areas 
during equal intervals of time.  The generalized version of this law is that 
the line joining one body and the barycenter sweeps out equal areas during 
equal time intervals. 
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Third law: The square of the orbital period of a planet is directly propor-
tional to the cube of the semi-major axis of its orbit.  In general this law is 
valid for any body revolving around any other body. 
 
To determine orbits, astronomers collect data in the form of angular posi-
tions in the celestial sky of a body under observation as a function of time.  
The position in the sky is corrected to where it would have been on a par-
ticular date and time.  The currently used standard is Jan 1, 2000 at 12:00 
TT (Terestial Time).  Two angles are measured: right ascension and decli-
nation.  These angles are equivalent to longitude and latitude.  Changes in 
declination indicate that the ellipse of the body under observation is tilted 
with respect to the plane in which earth rotates around the sun.   
 
The mathematical treatment of Kepler's laws are best described using polar 
coordinates.  Figure 6.6.1 is a schematic diagram of the motion of one 
body around a second body.  Using the center of the polar coordinate sys-
tem as one of the two foci of the ellipse, every point on the ellipse is de-
noted by two coordinates: r and Ө.  The angular coordinate Ө ranges from 
0 to 2π radians and the radial coordinate r ranges from rmin at angle Ө = 0 
to rmax at angle Ө = π.  Observations are not made directly in the polar 
coordinate system.  What are measured are changes in the position of the 
rotating body from the initial position.  Assuming that the initial observa-
tion is located at an unknown angle Ө0 in the elliptic orbit, the subsequent 
observations can be transformed into the polar coordinate system as 
changes from the angle Ө0.  The length a is the separation between the two 
foci and is also half the length of the semi-major axis (i.e., (rmin + rmax) / 
2).  The length b is the semi-minor axis and is computed as sqrt(rminrmax) = 
p / sqrt(1-ε2).  The symbol ε denotes the eccentricity of the ellipse and is 
in the range 0 to less than one.  The length p can be related to rmin, rmax and 
a as follows: p = (1+ε) rmin = (1-ε) rmax = a(1-ε2). 
 
Kepler's first law: 
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Kepler's second law can be restated as angular momentum l is constant: 
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The constants G, M and m are the gravitational constant, the mass of the 
sun and the mass of the body rotating about the sun. 
 
Kepler's third law: 
 
 32 aT ∝  (6.6.3) 
 
In this equation T is the period (time for a complete rotation) and increases 
as a3/2.  For example, the value of a for earth is one AU (Astronomical 
Unit) which is the average distance between the earth and the sun) and is 
about 1.5237 for Mars.  Thus Mars rotates about the sun with an orbital pe-
riod of 1.52371 5 = 1.8809 earth years. 
 
The changes in angles in the celestial sky can be used to compute changes 
in Ө (i.e., changes in the angles in the plane of rotation) from Ө0.  The val-
ues of the 3 unknown parameters p, ε and Ө0 can be computed using the 
method of least squares based upon Equations 6.6.4 and 6.6.5: 
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Note that these equations are recursive as Ө is required to compute r, and r 
is required to compute Ө. 
 
As an example of the use of these equations in a prediction analysis let us 
consider the calculation of the orbit of Ceres.  In 1801 Giuseppe Piazzi 
discovered a moving object in the sky which at first he thought might be a 
comet.  He then made an additional 18 observations of the object over a 42 
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day period.  Eventually he realized that the object was rotating around the 
sun and named it Ceres.  During these 42 days the Earth rotated almost 42 
degrees around the sun and at the end of this time period Ceres could no 
longer be observed.  Subsequently Gauss analyzed the data and predicted 
the orbit of Ceres using the method of least squares which he developed as 
part of his analysis [GA57].  From this orbit he also successfully predicted 
when Ceres would reappear. 
 
To develop a prediction analysis of an experiment similar to that of Piazzi, 
let us assume that the changes in Ө are measured to the accuracy of the in-
strument used by Piazzi (i.e., about 25 arcsecs = 0.006944 degrees).  As-
sume that the 18 changes in angles are measured over a 42 day period with 
equal changes in time.  (This differs from Piazzi's experiment because the 
times between his observations were not constant.)  We know that rmin 
(called the Perihelion) of Ceres is 2.544 AU and rmax (the Aphelion) is 
2.987 AU.  The value of a is therefore (2.544 + 2.987) / 2 = 2.7655 AU.  
The eccentricity ε of Ceres's orbit is known to be about 0.080.  From a we 
can compute p = a(1-ε2) = 2.7478.  We also know that the orbit that Ceres 
makes about the sun requires 4.599 years.  A prediction analysis based 
upon Equations 6.6.4 and 6.6.5 with values of p=2.7478, ε=0.08 and 
Ө0=450 is shown in Figure 6.6.2. The constant GM=0.02533 was deter-
mined by trial-and-error so that a complete revolution of earth around the 
sun is made in one years (using ε = 0.016710219 and a = 1 AU to describe 
the earth orbit).  Equations 6.6.4 and 6.6.5 were modified so that angles are 
expressed in degrees rather than radians using the conversion constant c 
(from degrees to radians).   The 18 time changes were each 42/365/18 = 
0.006393 years.  The constant CY1 = 0.006944 is the estimated uncertain-
ty of the angular measurements in degrees (i.e., 25 arcsecs).  Note that 
CY2 and CY3 (i.e., σΘ and σr) are set to zero because these are computed 
and not measured variables. 
 
The results of the simulation in Figure 6.6.2 show the predicted value of σε 
= 0.00556, the predicted value of σp = 0.01293 and the predicted value of 
σӨ0 = 0.00227.  The starting point (i.e., first observation of Piazzi's mea-
surements) was arbitrarily assumed to be 450 from the zero point of the 
Ceres ellipse.  We can ask the following question: If we could choose any 
starting point, how will the resulting accuracies of the measured 3 parame-
ters (i.e., p, ε and Ө0) be effected?  The prediction analysis was repeated 
for different values of Ө0 and the results are in shown in Table 6.6.1.  The 
value of ΔӨ included in the table is the total angular change over the 42 
day period.  The most interesting parameter is p because it is directly re-
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lated to the length of the major axis and the period of the orbit.  We see 
from the results in the table that the most accurate measurements of p are 
achieved if the data is obtained in the region near Ө = 900.  The values of 
ΔӨ in the table confirm that the change in angle is greatest near the point 
where Ө = 00 and least where Ө = 1800.  Based upon the known period of 
Ceres we can compute the average change for any 42 day period as 
3600*42/(365*4.6) = 9.0050. 
 

Ө0 σε σp σӨ0 ΔӨ 
  0 0.00643 0.02223 0.00231 10.600 
 45 0.00556 0.01293 0.00227 10.054 
 90  0.00872 0.00222 0.00215  8.983 
135 0.01370 0.04078 0.00217  8.031 
180 0.00768 0.03121 0.00231  7.702  

Table 6.6.1 Predicted accuracies of simulated experiment to determine 
the orbit of Ceres   

 
Another interesting question relates to the total time of the observations 
(i.e., from the first to the last observation).  In Table 6.6.2 results are in-
cluded for times periods of 21, 42 and 84 days using Ө0 = 450 and n = 18 
(the number of angular changes taken during the time period).  Increasing 
the time period of the observations will dramatically improve the mea-
surements of p and ε but will have a very negligible effect on the determi-
nation of Ө0.  We can also vary n.  As expected, increasing n while main-
taining the total time as a constant, the values of the predicted σ's are 
inversely proportional to n1/2.  In other words, increasing n by a factor of 4 
should reduce the resulting σ's by a factor of 2. 
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Total days σε σp σӨ0 ΔӨ 
21 0.01460 0.03531 0.00229  5.052 
42 0.00556 0.01293 0.00227 10.054 
84  0.00178 0.00380 0.00222 19.894 

Table 6.6.2 Predicted accuracies of simulated experiment to determine 
the orbit of the Ceres.   Varying n for Ө0 = 450. 

 
 
Example 6.6.1: 
 
If Piazzi hadn't been ill during the 42 day period that he observed Ceres, 
and if the weather had been ideal so that he could have taken measure-
ments on all 42 days, how much better would the resulting σ's have been? 
 
Over the 42 day period, 41 angle changes could have been measured and 
the σ's would have been reduced by a factor of sqrt(41/18) = 1.51. 
 
 
Example 6.6.2: 
 
If measurements of the location of Ceres is taken daily over an 84 day pe-
riod using modern-day instruments that are accurate to 25 milliarcsecs, 
how accurately would p be measured if Ө0 = 450? 
 
From Table 6.6.2 we see that the predicted value of σp is 0.0038 if 18 
changes in angle are measured over an 84 day period using an instrument 
with measurement accuracy of 25 arcsecs.  Improving the accuracy of the 
measurements by a factor of 1000 and increasing n from 18 to 83, the ac-
curacy should be improved by a factor of 1000 *sqrt(83/18) = 2150.  Thus 
the value of σp should be about 0.0038 / 2150 = 0.00000177 AU.  Since 
one AU is 149,597,871 Km, an error of this amount (i.e., σp) would be 
about 264 Km. 
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Figure 6.6.1 Diagram of the orbit of one body rotating around a 

second body (from Wikipedia: Kepler's laws of planetary motion) 
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   Figure 6.6.2 Prediction Analysis of an experiment which simulates 

 Piazzi's observations of Ceres. 
 



Chapter 7   RANDOM DISTRIBUTIONS 

7.1 Introduction 

For many of the experiments discussed in the preceding chapters there was 
an implied assumption: the experimenter could control the values of the 
independent variables.  Often the assumption was that the independent va-
riable x could be varied from x1 to xn with a constant value of Δx = xi+1 - xi.  
For experiments with more than one independent variable it was usually 
assumed that the independent variable space could be spanned in a similar 
manner.  For many experiments this is a reasonable assumption but there 
are innumerable experiments where this assumption is unrealistic.  For ex-
ample, experiments based upon the measurement of the effects of tempera-
ture upon some variable might or might not be controllable.  If, for exam-
ple, the temperature is the atmospheric temperature at the time the variable 
is measured then this temperature can only be observed.  It cannot be con-
trolled.  Examples from the medical field are experiments related to the ef-
fects of cholesterol upon a variable that is a measure of heart function.  
The amount of cholesterol in a subject of the experiment is measured but 
not controlled.  All that can be said for the subjects when taken as a group 
is that the amount of cholesterol in the blood of the subjects is distributed 
according to some known (or observed) distribution.  If the experiment is 
designed properly, then the subjects taken as a group are representative of 
similar groups of subjects that are being modeled. 
 
The subject of distributions was discussed in Section 2.4.  Many distribu-
tions of the independent variable x can be approximated by a normal dis-
tribution when the number of samples n is large.  Another simple approx-
imation is a uniform distribution of the value of x within the range xmin to 
xmax (i.e., all values of Φ(x) are equal within this range).  To design expe-
riments based upon randomly distributed independent variables, one must 
generate values of the independent variable (or variables) based upon the 
representative distribution.  For example, if we can assume that x is nor-

J. Wolberg, Designing Quantitative Experiments, DOI 10.1007/978-3-642-11589-9_7,  
© Springer-Verlag Berlin Heidelberg 2010 
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mally distributed then values of x conforming to this distribution can be 
generated and the prediction analysis can then be performed. 
 
The REGRESS program includes the ability to generate randomly distri-
buted variables.  This feature is used in the following sections to perform 
prediction analyses on several common types of experiments.  In Section 
7.2 the multiple linear regression problem is revisited but this time with 
randomly distributed independent variables.  In Section 7.3 experiments 
based upon the bivariate normal distribution are discussed.  In Section 7.4 
the value of orthogonally distributed x's is considered. 
 

7.2 Revisiting Multiple Linear Regression 

The multiple linear regression problem was discussed in Section 4.10.  The 
analysis was based upon the assumption that independent variables xj 
could be controlled and values of xji were generated using xj1 and Δxj and 
Equation 4.10.2.  In this section we assume that the values of xji cannot be 
controlled but they are generated from known random distributions. 
 
Clearly if the assumption is that all values within the specified ranges are 
equally probable, the predicted values of all the σ's will approach the same 
values (for large n) as obtained in Section 4.10 for the same volumes.  In 
Figure 7.2.1 we see results from a prediction analysis similar to the analy-
sis shown in Figure 4.10.1.  The only difference between these two analys-
es is that in 4.10.1 the xji are controlled and in 7.2.1 they are generated 
randomly within the same volume as in Figure 4.10.1.  The probability of a 
data point falling on any point within the volume is equally probable.  
Comparing the results, as expected, the values of the σaj's (i.e., 
PRED_SA(K)) are very close. 
 
If the random distributions are normal, then the results are different than 
those obtained for a uniform distribution.  We start the analysis using the 
same mathematical model as in Section 4.10: 
 
 dd xa...xaay 1121 ++++=  (4.10.1) 
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Figure 7.2.1 - Prediction Analysis of 3D plane model 

(Note how close these results are to Figure 4.10.1) 
 
The assumption of normally distributed xj's requires two parameters for 
each xj : µj and σj.  In Section 4.10 Equations 4.10.5 and 4.10.6 were used 
to define the dimensionless groups used to present the results. Equation 
4.10.5 can also be used for the case of normally distributed x's but Equa-
tion 4.10.6 is replaced by 7.2.1:  
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Once again the mathematics is simplified if we consider the cases in which 
all the values of µj are zero.  Any set of experimental data can be trans-
formed to this specific case by subtracting out the values of µj from the 
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values of the xj 's.  For these cases we can show that the inverse C matrix 
is: 
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From Equation 4.2.1 we see that the values of 2

jaσ  are just the diagonal 

terms of this inverse matrix.  Substituting these terms into Equations 
4.10.5 and 7.2.1 we get the following: 
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If the µj 's are not zero, only 1Φ changes: 
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If the purpose of the experiment is to compute the values of y at any point 
in the d dimensional space, the values of 2

fσ are computed using Equation 
4.2.2.  It can be shown that this equation reduces to the following simple 
form:  
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Example 7.2.1: 
 
Assume that we wish to perform a multiple linear regression on a 3 dimen-
sional space.  Assume that Equation 4.10.1 is a realistic representation of 
the dependence of the values of y upon the values of x1, x2 and x3.  Assume 
that we can measure each value of y to an accuracy of σy and that we can 
assume that the values of the x's are error free.  The purpose of the experi-
ment is to predict values of y for any point within the space.  We want to 
design the experiment so that within the range |xji - xjavg| <=2σj all values 
of y will be computed to an accuracy of 0.01 (i.e., σf <= 0.01). 
 
From Equation 7.2.6, within the design region, the maximum values of σf 
are : 
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Setting σfmax to 0.01 we get the following design requirement: 
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From this equation we see that if we can only measure the values of y to an 
accuracy of σy = 1, then we would require 130,000 randomly distributed 
points to satisfy the design requirement.  However, if we could measure 
the values of y to an accuracy of σy = 0.1, then the number of points re-
quired is reduced to 1300.  If we relax our requirement regarding σf from 
0.01 to 0.02 then the value of n is reduced by an additional factor of 4. 
 
 
Example 7.2.2: 
 
In Example 7.2.1 with the requirement σfmax = 0.01 it was seen that 1300 
points were required to achieve the desired result if the values of y could 
be measured to an accuracy of σy = 0.1.  Assuming that the values of the 
x's are adjusted so that their means are zero, what is the predicted accuracy 
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for the coefficients in Equation 4.10.1?  From Equations 7.2.3 and 7.2.4 
we get: 
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It should be remembered that these results are based upon the assumption 
that Equation 4.10.1 is a realistic model for y as a function of x1, x2 and x3.  
When the experiment is performed, this assumption can be tested using the 
Goodness-of-Fit tools discussed in Section 3.9. 

7.3 Bivariate Normal Distribution 

The bivariate normal distribution is useful for modeling many experiments 
in which the dependent variable is a function of 2 independent variables 
(which are often spatial dimensions).  For example, the dependent variable 
y might represent the response from a signal at a location x1, x2.  The biva-
riate normal distribution is: 
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This equation assumes that x1 and x2 have been normalized by subtracting 
their means μ1 and μ2 and then dividing by their standard deviations σ1 and 
σ2.  The parameter ρ is the correlation coefficient between x1 and x2.  The 
parameter ρ can be treated as know or unknown.  An experiment based 
upon this distribution might be based upon the following model: 
 
       ),( 21 ρ= x,xafy  (7.3.2) 
 
If ρ is known than there is only one unknown parameter (i.e., a), otherwise 
both ρ and a are the unknowns that will be determined by the experiment.  
Other variables in the experiment include the number of data points n, the 
distributions of x1 and x2 , and the uncertainty model for the standard devi-
ations of the values of y.  The simplest uncertainty model is that all values 
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of σy are equal.  Another useful model is that the values of σy = Cy y1/2.  
This second model is used when y represents the number of counts within 
a region of the x1 - x2 plane.  For example, in a ballistics experiment, a 
weapon is fired repeatedly at a target and the numbers of "hits" within each 
region is counted. 
 
To apply prediction analysis to experiments based upon Equation 7.3.2 it is 
necessary to be able to generate data sets with any given value of ρ.  The 
method for doing this is to generate two sets of random numbers (x1 and r).  
Two popular methods for generating random numbers are numbers that are 
equally probably within a given range or numbers that are normally distri-
buted with given values of the mean and standard deviation.  To create the 
series x2 with a correlation coefficient ρ with x1 the following transforma-
tion is made: 
 

             212
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When both r and x1 are generated from the same random distributions then 

1xσ = rσ and Equation 7.3.3 is simplified.  The n values of x2 created in 

this manner have the value of 2xσ  equal to 1xσ .  The value of c is related 
to ρ by the following equation: 
 

            212 )1( /c
ρ−
ρ

=  (7.3.4) 

 
To demonstrate a prediction analysis of an experiment based upon Equa-
tion 7.3.2 with two unknowns (ρ and a), the two independent variables are 
x1 and r.  The variable x2 (as well as y) is treated as a dependent variable.  
The parameter c is a constant.  The results are included in Figure 7.3.1 us-
ing the uncertainty model σy = 1.  In Figure 7.3.2 the uncertainty model σy 
= y1/2 is used.  For both cases both x1 and r are generated from standard 
normal distributions  (μ = 0 and σ = 1) and x2 is generated so that ρ = 0.5.  
From Equation 7.3.4 the values of c = 0.5/(3/4)1/2 = 1/31/2 = 0.57735.  No-
tice that the assumed uncertainties in the values of x2 are zero because x2 is 
an observed and not measured variable.  In the proposed experiment it is 
assumed that x1 and x2 are observed without error and only y is measured 
to assumed uncertainty σy. 
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     Figure 7.3.1 - Prediction Analysis of a Bivariate model, σy = 1 

 

 
Figure 7.3.2 – Same as 7.3.1 except σy = y1/2 

 
For the case of constant σy the results are presented using the following 
dimensionless groups: 
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Results for values of ρ from 0.0 to 0.95 are included in Table 7.3.1.  The 
results show that the predicted value of ρΨ deceases and aΨ increases as ρ 
increases but as ρ approaches one the analysis becomes ill-conditioned and 
both approach infinity. 
 

ρ c ρΨ  aΨ  
0.0 0.00000 32.66 10.89 
0.1 0.10050 32.05 11.10 
0.2 0.20412 30.21 11.63 
0.3 0.31449 27.32 12.30 
0.4 0.43644 23.62 12.93 
0.5 0.57735 19.43 13.37 
0.6 0.75000 15.07 13.58 
0.7 0.98020 10.85 13.60 
0.8 1.33333  6.95 13.68 
0.9 2.06474  3.61 14.89 
0.95 9.74359  5.41 52.35 

Table 7.3.1 – Prediction Analysis for constant σy 
 
 
Figure 7.3.2 shows a prediction analysis for a case in which the values of 
σy are equal to σy = Cyy1/2.  The proportionality constant Cy is in units of 
y1/2 and typically is equal to one unless a and y are expressed in different 
units (for example, a is expressed in counts/cm2 and y will be measured in 
counts within a grid location in which the grid size is not one cm2).  The 
dimensionless groups used to present the results are: 
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ρ c ρΦ  aΦ  

0.0 0.00000 7.11  3.54 
0.1 0.10050 6.97  3.56 
0.2 0.20412 6.56  3.61 
0.3 0.31449 5.93  3.68 
0.4 0.43644 5.13  3.73 
0.5 0.57735 4.22  3.78 
0.6 0.75000 3.27  3.83 
0.7 0.98020 2.34  3.94 
0.8 1.33333 1.51  4.32 
0.9 2.06474 0.87  5.76 
0.95 9.74359 1.54 25.47 

Table 7.3.2 – Prediction Analysis for σy = Cyy1/2 
 
Results for values of ρ from 0.0 to 0.95 are included in Table 7.3.2 and are 
similar to the results shown in Table 7.3.1.  The results show that the pre-
dicted value of ρΦ deceases and aΦ increases as ρ increases but as ρ ap-
proaches one the analysis becomes ill-conditioned and both approach in-
finity. 
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Example 7.3.1: 
 
We want to design an experiment to determine the amplitude a of a biva-
riate distribution to one percent accuracy.  An initial analysis suggests that 
the values of x1 and x2 are correlated with a value of the correlation coeffi-
cient ρ equal to approximately 0.5.  We plan to measure values of y using a 
grid in the x1 - x2 plane of size one mm2.  The units of a are to be ex-
pressed in counts per cm2 = 100 * counts per mm2 so Cy = 10.  For exam-
ple if the number of counts within a particular 1 mm2 square in the grid is 
100 counts, then this number is accurate to ±1001/2 = ±10 counts.  Convert-
ing to counts per cm2 the count rate is 10000 but the accuracy remains 10% 
(i.e., 10/100 = 1000/10000 = Cy*100001/2/10000 = Cy/100 and therefore Cy 
= 10). 
 
From Equation 7.3.7 and Table 7.3.2 we establish the following relation-
ship: 
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This relationship can now be used to design the experiment.  For example 
if we set n = 10000 points, the value of a1/2 should be about 42.2 and there-
fore we require a count rate of a equal to approximately 1780 counts per 
cm2 to satisfy the accuracy requirements of the experiment. 

7.4 Orthogonality 

The subject of experimental design has long recognized the value of ortho-
gonality in the independent variables for multidimensional models.  An 
excellent book that summarizes the fundamentals of experimental design is 
the 2005 book by G.E.P. Box, J.S. Hunter and W.G. Hunter: Statistics for 
Experimenters [BO05].  On the subject of orthogonality for multidimen-
sional models they state: "In general, when the x's are orthogonal, calcula-
tions and understanding are greatly simplified.  Thus orthogonality is a 
property that is still important even in this age of computers."  
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In our discussions of multidimensional models we have often assumed an 
orthogonal distribution of x's.  For example in Section 4.10 in the discus-
sion of Multiple Linear Regression, the values of the x's were assumed to 
be distributed according to Equation 4.10.2:  
 
 jjji xixx Δ−+= )1(1         i = 1 to nj (4.10.2) 
 
This assumption insures an orthogonal distribution of the independent va-
riables because it satisfies the following criterion for orthogonality: 
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In Section 5.5 the discussion of Bivariate Separation is also based upon the 
assumption that the values of x1 and x2 are orthogonal.  This orthogonality 
is seen in Figures 5.5.1 and 5.5.2. 
 
In this section we consider the problem of a lack of orthogonality in the 
independent variables.  Is there a price to pay for a lack of orthogonality?  
To study this problem, we can use random distributions to generate biva-
riate distributions with a specified amount of correlation between x1 and 
x2.  The technique for accomplishing this is described in Section 7.3.  Pre-
diction analyses can then be performed to observe the effect of a lack of 
orthogonality in the independent variables. 
 
One of the basic problems considered in the design of experiments is based 
upon the simple mathematical model:  
 
 2211 xaxay +=  (7.4.2) 
 
Box and Hunter use an example from chemical engineering to discuss ex-
periments based upon this equation: the rate of formation on an undesira-
ble impurity y as a function of the concentration of a monomer x1 and the 
concentration of a dimmer x2 [BO05].  The rate of formation is zero when 
both components x1 and x2 are zero. 
 
To illustrate the effect of a lack of orthogonality in the x variables, the fol-
lowing simple example based upon Equation 7.4.2 shows the deterioration 
in the predicted accuracy of a1 and a2 as the correlation coefficient ρ in-
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creases.  Consider an experiment in which there are only 4 data points dis-
tributed in two dimensions as shown in Figure 7.4.1.  
 

  
Figure 7.4.1 – Four data points for 2D experiment 

 
For the case where d = 0 the correlation coefficient ρ is zero (i.e., the x 
values are orthogonal) but as d approaches one ρ approaches one.  In Table 
7.4.1 we see values of 1aσ and 2aσ for values of d from zero (orthogonal) 
to 0.95 (highly correlated).  These results were obtained using prediction 
analyses based upon Equation 7.4.2 with coefficient a1 and a2 both equal to 
1.  (However, the same results are obtained regardless of the values of a1 
and a2.)  We see that as d (and therefore ρ) increases the predicted values 
of 1aσ and 2aσ increase.  If the purpose of the experiment is to measure a1 
and a2, then we see that if the x's are highly correlated, the predicted values 
of 1aσ and 2aσ are much greater than if we can choose values for the x's 
that are uncorrelated or close to being uncorrelated (i.e., orthogonal). 
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d ρ 1aσ  2aσ  
0.0 0.000  0.816  0.816 
0.1 0.107  0.879  0.879 
0.2 0.229  0.963  0.963 
0.3 0.362  1.075  1.075 
0.4 0.500  1.231  1.231  
0.5 0.636  1.455  1.455 
0.6 0.761  1.798  1.798  
0.7 0.865  2.379  2.379  
0.8 0.941  3.549  3.549 
0.9 0.985  7.077  7.077  
0.95 0.997 14.145 14.145  

Table 7.4.1 – Results for a simple experiment with 4 data points. 
 
When the independent variables x1 and x2 are uncorrelated, we can proceed 
to a simple analytical solution using a procedure similar to the procedure 
followed in Section 4.3 for a straight line.  Assuming that all values of y 
are measured to the same accuracy (i.e., σy = constant), the values of wi are 
all equal to 1 / σy

2 and we can then express the terms of the C matrix as: 
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If we assume that the values of x1 and x2 are uncorrelated and randomly 
distributed within the volume -R ≤ x1 ≤ R, -R ≤ x2 ≤ R  we can show that 
the number of data points n becomes large, the C matrix approaches:   
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Inverting the matrix we obtain: 
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Thus the predicted values of 1aσ  and 2aσ are: 
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If the values of x1 and x2 are correlated (ρ ≠ 0) we can run prediction ana-
lyses to observe the effect upon the predicted values of 1aσ and 2aσ .  A 
prediction analysis for ρ = 0.5 is shown in Figure 7.4.1.  To generate data 
sets using Equation 7.4.2 with a specified value of ρ using Equations 7.3.3 
and 7.3.4, random values of x1 and r were generated in the range -1 to 1 
(i.e., R = 1).  The computed values of x2 are not necessarily within the 
same range.  For example, for the 10,000 points generated for the calcula-
tion shown in Figure 7.4.2, about 4% of the values of x2 were less than -1 
and about 4% were greater than 1.  Results for ρ = 0 to 0.95 are shown in 
Table 7.4.2.   The results are presented in terms of the dimensionless 
groups 1Ψ and 2Ψ : 
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Figure 7.4.2 – Prediction Analysis for constant σy, ρ = 0.5 

 
Notice that the observed values of 1Ψ  and 2Ψ are not exactly the same in 
Table 7.4.2 for the various values of ρ.  These small differences are due to 
the random nature of the values of x1 and x2.  Increasing n decreases these 
differences.  What is clear from the table is that increasing the correlation 
between the x's does increase the predicted values of 1aσ and 2aσ .  The 
effect, however, is not dramatic but as expected, as ρ approaches one, the 
predicted values approach infinity. 
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ρ c 1Ψ  2Ψ  
0.0 0.00000 1.728 1.732 
0.1 0.10050 1.738 1.741 
0.2 0.20412 1.767 1.768 
0.3 0.31449 1.817 1.816 
0.4 0.43644 1.893 1.890 
0.5 0.57735 2.004 2.000 
0.6 0.75000 2.171 2.165 
0.7 0.98020 2.433 2.426 
0.8 1.33333 2.895 2.887 
0.9 2.06474 3.981 3.974 
0.95 9.74359 5.551 5.548 

Table 7.4.2 – Prediction Analysis for constant σy, varying ρ 
 
A slightly more sophisticated model than Equation 7.4.2 includes an inte-
raction term between the two independent variables: 
 
 21122211 xxaxaxay ++=  (7.4.8) 
 
This model requires an additional dimensionless group: 
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 Results for this model are summarized in Table 7.4.3.  Note that the re-
sults for 1Ψ  and 2Ψ are exactly the same as for the simpler model and the 
value of 12Ψ decreases with increasing ρ.  Clearly, increasing correlation 
implies that the interaction term becomes increasingly important. 
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ρ 1Ψ  2Ψ  12Ψ  
0.0 1.728 1.732 3.000 
0.1 1.738 1.741 2.964 
0.2 1.767 1.768 2.926 
0.3 1.817 1.816 2.869 
0.4 1.893 1.890 2.797 
0.5 2.004 2.000 2.713 
0.6 2.171 2.165 2.621 
0.7 2.433 2.426 2.525 
0.8 2.895 2.887 2.427 
0.9 3.981 3.974 2.330 
0.95 5.551 5.548 2.283 

Table 7.4.3 – Prediction Analysis for Equation 7.4.8, varying ρ 
 
 
Example 7.4.1: 
 
We want to design an experiment based upon Equation 7.4.8 and we wish 
to determine all three coefficients to an accuracy of 0.02.  The values of 
the y's will be measured to an accuracy of 0.1 (i.e., σy = 0.1). A prelimi-
nary analysis indicates that the correlation coefficient between the x's is 
about 0.5 (i.e., ρ = 0.5).  How many points in the range -1 ≤ x1 ≤ 1 are re-
quired to satisfy the experimental requirement?  
 
From Table 7.4.3 we see that the most difficult requirement is the mea-
surement of a12: 
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The results included in Tables 7.4.2 and 7.4.3 are based upon a choice of 
the range of values of x1 from -1 to 1.  Changes in the range have a very 
important effect upon these results.  If the range is changed from -1 ≤ x1 ≤ 
1 to -R≤ x1 ≤R the values of 

1aσ and 
2aσ decrease inversely with increas-
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ing R and 
12aσ  decreases inversely with increasing R2.  For example, 

doubling the range from -1 ≤ x1 ≤ 1 to -2 ≤ x1 ≤ 2 will result in a decrease 
in the values of 

1aσ  and 
2aσ  by a factor of 2 and 

12aσ by a factor of 4. 

 
Example 7.4.2: 
 
We wish to design the same experiment as in Example 7.4.1 but can per-
form the experiment by choosing values of x1 in the range -2 ≤ x1 ≤ 2.  For 
this modified experiment, the most difficult requirement is the measure-
ments of a1 and a2: 
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What value of the range parameter R is required so that n = 100 satisfies 
the experimental requirement? 
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The requirement on the a12 term is the more difficult to satisfy so to meas-
ure all 3 terms to an accuracy of at least 0.02 using only 100 data points, 
we must extend the range to -1.16 ≤ x1 ≤ 1.16. 
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